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NOMENCLATURE

Symbol - Meaning

µ-TAS – miniaturized total analysis system

DNA – deoxyribonucleic acid

x, y, z – regular Cartesian coordinates

: - indicates ratio

V – velocity (or volt)

PDMS – polydimethyl siloxane

ODEs – ordinary differential equations

3-D – three dimensional

2-D – two dimensional

MEMS – micro mechanical electrical system

PSSMD – pulsed source-sink mixing device

Re – Reynolds number

q – source-sink strength, or flow rate

sn(z,k) – Jacobian elliptic sine

K(k) – complete elliptic integral of the 1st kind

L – length

p – period

u – x component of velocity

v – y component of velocity, or viscosity

w – z component of velocity

Symbol - Meaning

m – meter

A – area

s – seconds

nl – nanoliter

t – time

PC – personal computer

mm – millimeter

MM – microfluidic module

µm – micrometer

µl – microliter

cm – centimeter

I/O – input/output

“ – inch

ml – milliliter

Z – complex coordinate

CAD – computer-aided design

σ - Lyapunov exponent

Ψ - stream function

D – diameter

VI – virtual instrument
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CHAPTER I

INTRODUCTION

Overview

The mixing of fluids is intimately involved in the workings of the world, from the large

scale mixing that occurs in the mantle of the earth to the small scale mixing that occurs in

the blood vessels of the human body [1].  Improving the ability to mix things has long

been a concern of advancing society.  As the 21st century is championed in, and with it a

new era of technology, the need for novel mixing technologies continues to increase.  In

this study, the fundamentals of chaotic advection are leveraged to analyze and test a

mixing application.  Chaotic advection is directly related to mixing through its ability to

create stirring, or highly stretched particle interfaces, in a fluid, which in turn promotes

enhanced mixing by increasing the area over which high concentrations in a flow can

molecularly diffuse to lower concentrations.

One of the greatest advancing trends of today’s modern society is its ability to

view, study, and create in the world on smaller and smaller scales.  The hot topic of the

1980’s and 1990’s was micro-level sciences, now it is nano-level sciences.  As the ability

to manipulate objects expands into smaller and smaller scales, the challenge presented to

fluid scientists is to find new ways to mix at these levels.

A common result of having small length scales in a system, as in the case of

microfluidic devices, is having low Reynolds number fluid flow [2, 3, 4].  Low Reynolds

number flow, or laminar flow, is traditionally associated with poor mixing.  This

phenomenon is made clear when one closely examines the nature of laminar flow.  From
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a Eulerian point of view, the governing equations for the velocity field in laminar flow

are linear in nature and therefore no chaos can be found.  In a more physical example,

looking at a fluid from the Lagrangian point of view, in laminar flow a fluid particle

travels along the regular, nonintersecting streamlines of the flow.  Because of this

streamline motion there is no chaos or interfacial stretching between any two fluid

particles in a laminar flow (the exception being chaotically advected flow as will be

explained in the background of this chapter).  Aref’s unveiling of the idea of ‘chaotic

advection’ [5], as explained in the background of this chapter, changed the way mixing in

laminar flow is viewed.  Aref was able to show that in some spatial-temporal

arrangements of laminar flow chaos, or enhanced interfacial stretching, can be induced,

resulting in the promotion of good mixing.  Chaotic advection has opened the door to

several possible mixing applications involving laminar flow; the most exciting of these

applications are related to microfluidic biological and chemical systems [6 – 13], where

the flow regime is usually laminar [30].

The first microfluidic device emerged in the literature in 1979 [14].  The interest

in microfluidic devices was rather stagnant over subsequent years until the early 1990’s,

when the concept of the Miniaturized Total Chemical Analysis System (µ-TAS) was

proposed [15].  This system has found a home in the fields of gene expression profiling,

drug discovery, disease diagnosis, toxicology, environmental biotechnology, and

forensics [16 – 24].  The miniature scale total analysis system boasted benefits of

increased portability, decreased analyte consumption, shorter assay duration, and

decreased cost in fabrication, implementation, and disposal.  This concept turned the

heads of the scientific community, promising to revolutionize the state of modern
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medicine, and directed a lot of attention towards microfluidics.  Since the microfluidic

‘boom’, many mixing applications have been proposed that leverage microscale flow

science.  A piece in the literature entitled Designing for chaos: Applications of chaotic

advection at the microscale [3], provides an excellent catalogue of key microscale mixing

devices that have been suggested over the years.

  The development of the µ-TAS and its applicability to DNA hybridization is a

root motivator of this study.  DNA hybridization is governed by the tendency of

nucleotide base pairs to combine with their complements.  This natural propensity has

become an important element of biological discovery.  The biological tool of DNA

microarray analysis is used widely in genomic research [25].  The success of this tool

depends largely on having DNA molecules, suspended in a small fluid volume (about

0.05 ml) with a large aspect ratio (about 2000:1), uniformly sample as much of the

surface as possible [25].  During standard use, molecular diffusion of the DNA is the sole

mode of transport and thus requires very long sampling times and high concentrations of

DNA.  These requirements greatly limit the potential of this technology.  Imposing a flow

on the hybridization solution has been proposed as a means of overcoming the limitations

on this diffusion-limited sensing and has been observed to increase the sensitivity of the

process [26].  Imposing a flow provides for more rapid and more uniform target delivery

[27, 28].  When a flow is imposed that produces chaotic advection it is expected that

these enhancement will further increase.  Tests have been done by McQuain, and

Schaffer [28, 29] that show an enhancement to hybridization when the processes is

conducted in a pulsed rectangular micromixing chamber intended to induce chaotically



4

advected flow; but there has yet to be done a comprehensive study of the flow behavior

within the micromixing chamber.

In this study the nature of a chaotically advected flow within a chamber motivated

by a pulsed source-sink system is examined.  In particular this study characterizes the

behavior of pulsed source-sink pairs activated to produce mixing in a thin rectangular

chamber.  The goals of this study are to numerically and experimentally characterize the

mixing trends within the chamber throughout a range of pulse volumes, which are based

on a percentage of the total chamber volume.  This study seeks to establish a numerical

model that gives useful information about the mixing in a ‘real-life’ pulsed source-sink

system.  This thesis serves as a report of the research done and discoveries revealed in

pursuant of said goals.  The background of Chapter I presents details of the concept of

chaotic advection.  It also introduces the idea of pulsed source-sink induced chaotic

advection and provides a look at how the concept evolved to the present state of this

study.  Chapter II presents a description of the formulation of the numerical model used

to simulate the pulsed source-sink mixing device, the theory behind our chaos diagnostic

tools, and the results from the numerical study.  Chapter III gives an account of the past

experimental work done with a pulsed source-sink mixing device [29], along with the

new experimental work done in this study. Comparison is made between current and

previous results, and differences in the results are explained.  Chapter III provides a

comparison between the numerical model and the experimental results, intended to assess

the validity of the numerical assumptions.  Chapter IV provides a summary of the study,

points out key conclusions, and remarks on future endeavors.
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Background

There are two fundamental ways to describe fluid motion.  The Eulerian method uses a

field concept as a flow descriptor, and the Lagrangian method tracks individual particles

to describe a flow [30].  The Lagrangian description of fluid motion applies to the

situation of advection.  When a fluid particle is advected, it follows the ambient flow,

instantaneously adjusting its own velocity to that of the flow; this relation is

                                                                
Vparticle Vfluid 1( )

Because of the kinematics of the fluid, each fluid particle in the flow is advected as such.

Letting (x, y, z) be the position vector of the particle in ordinary Cartesian coordinates,

the particle velocity is then given by the rate of change of its position

                                                                
Vparticle

dx

dt

dy

dt
,

dz

dt
,





2( )

The fluid velocity is given by methods that involve solving some set of partial differential

equations, such as the Navier-Stokes equations, the Euler equations, or the Stokes

equations.  Representing an exact solution for the fluid velocity is not of interest, so let it

be assumed that the fluid velocity components u, v, and w are solved for elsewhere and

are given as a function of the Cartesian coordinates and time.  This relation is shown as

                                                    
Vfluid u x y, z, t,( )( ) v x y, z, t,( ), w x y, z, t,( ),[ ] 3( )
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Substituting equations 2 and 3 into equation 1 gives a set of ordinary differential

equations (ODEs) known as the advection equations [31],

                                                  

dx

dt
u x y, z, t,( ) 4a( )

dy

dt
v x y, z, t,( ) 4b( )

dz

dt
w x y, z, t,( ) 4c( )

According to dynamical systems theory, the ODEs of equation 4 are more than sufficient

for producing nonintegrable or chaotic dynamics.  The velocity components of the fluid

motion do not even have to be that complicated; it has been shown that three equations

with simple quadratic couplings can be nonintegrable [32].

Upon further examination of the advection equations, it can be seen that in three-

dimensional flow there need not be time dependence in order to have chaos; steady flow

is sufficient.  When simplified to two dimensions, time-dependent flow is required to

produce chaotic particle motion, because steady two-dimensional (2-D) advection is

integrable [31].

In two-dimensional, incompressible flow the velocity is derived from a stream

function [30],

                                                          
u

δψ

δy
 ,  v

δψ−

δx
5( )
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Combining equation 5 with the 2-D advection equation produces a system of equations

that is in the familiar format of Hamilton’s canonical equations for a one-degree-of-

freedom system,

                                                      

dx

dt

δψ

δy
 ,  dy

dt

δψ−

δx
6( )

The stream function in this case is the Hamiltonian [31].  The two-dimensional

kinematics of advection by an incompressible flow is equivalent to the Hamiltonian

dynamics of a one-degree-of-freedom system, and this applies regardless of whether the

dynamics of the fluid itself is viscous or inviscid.  There is no contradiction;

incompressibility alone is sufficient to give the flow kinematics a Hamiltonian nature.

The kinematics of advection as laid out in this background, when chaotic, is

commonly referred to as ‘chaotic advection’.  While it is believed that the general

concepts behind chaotic advection have been in existence for many years [31], these

ideas were not neatly formalized and the term was not officially coined until a talk given

by Aref in 1982 [33].

Single Source-Sink:

Jones and Aref first examined chaotic advection in pulsed source-sink systems in the late

1980’s [34].  The system consisted of a single source and a single sink operating in an

unbounded plane and of equal strength.  When the source is on, the sink is off, and when

the sink is on, the source is off.  A simple potential flow model was used to describe the

flow from the source and sink.  This study was novel because it showed the first instance
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of irrotational flow displaying chaotic behavior.  This result is of great interest because

efficient stirring by irrotational flow would require the least amount of energy in setting

up the flow field.  The work of Jones and Aref was backed by both experimental and

numerical results [34].  An important part of the system modeled by Jones and Aref is the

way in which the fluid is extracted at the sink and then reinjected at the source.  A

number of different procedures can be used for reinjection.  The bulk of the Jones and

Aref study [34] used a ‘first out – first in’ method of reinjection, which can be visualized

by imagining a hose connected to the sink at one end and directly to the source at the

other. In this case of just one source and one sink operating in an unbounded plane trends

are seen in the way the fluid interacts.  Areas of periodic (non-chaotic) motion, elliptic

islands, show up close to the source and sink while most of the remaining domain is

chaotic (all particles initially in an elliptic island will return to the island at the end of

every period).  As the fluid moves away from the source and sink, towards infinity, the

motion becomes more uniform and non-chaotic, with particles going off on long (far)

trajectories.  An example of the chaos diagnostics for this case is shown in figure 1

(Poincaré maps are created by plotting the position of a fluid particle at different times

and the Lyapunov exponent is a measure of how much the particles are stretching from

one another, these tools are explained in detail in Chapter II).  The single unbounded

plane source-sink analysis gives a good introduction into the workings of pulsed source-

sink systems and serves as a foundation for future work in the field.
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   (a)  (b)

Figure 1.  (a) is an example of a Poincaré map for a pulsed source-sink system on the
unbounded plane.  The reinjection procedure is ‘first in-first out’.  The source is located
on the right side of the image and the sink is located on the left, denoted by a + and –
respectively.  The fluid area being pulsed in this case is equal to π.  This result can be
directly compared to figure 3(g) of Jones and Aref.  (b) Convergence of the maximum
Lyapunov exponent of several trajectories in the chaotic sea in (a) [3].

Source-Sink Pair:

Based on the work of Jones and Aref [34], Evans [35] proposed a MEMS device for

mixing two fluids.  In actual implementation of such a device a boundary is introduced

that adds new parameters to the system.  This boundary now requires that there be

source-sink pairs in order to conserve volume in the system.

The effect of having source-sink pairs in a system is best examined on an

unbounded plane before considering boundaries.  The effects of adding a second source

and sink to the system are illustrated in comparing the figures 1 and 2.  When the distance

between the paired source and sink is much larger than the distance between the non-

paired source and sink, particle motion around the adjacent non-paired source and sink

are the same as those found in the case of figure 1.  Placing the source-sink pairs instead

at the vertices of a square gives the results of figure 2.  Paired sources and sinks are
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oriented on a vertical line and operate at the same time.  The dark area in the interior of

the source-sink pairs is highly chaotic.  The area outside this domain is similar to the

trajectories in the Jones and Aref [34] case that were away from the source and sink and

spent a lot of time in the far field.  Particles in the ‘inner-region’ experience a stretching

rate that is two orders of magnitude greater than the particles in the ‘outer region’.

Adding another source and sink, to create pairs, in general adds a higher degree of chaos

to the system.

    (a)  (b)

Figure 2.  (a) Poincaré map for two source-sink pairs on an unbounded plane.  The
reinjection procedure is ‘first in-first out’.  The sources and sink are located at the
vertices of a square with side of length 2; the paired sources and sinks are oriented on a
vertical line.  The sources and sink are denoted by + and – respectively.  The area pulsed
is equal to π .  (b) Convergence of the maximum Lyapunov exponent for several
trajectories in the chaotic sea of (a).  The central dark chaotic sea in (a), is the ‘inner
region’ and the chaotic sea surrounding the ‘inner region’ is the ‘outer region’ [3].

Rectangular Boundary:

Adding a boundary to a system of source-sink pairs introduces another parameter to the

system.  Bounding the system of figure 2 with a rectangular boundary that is of a similar
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scale as the source-sink separation distance produces figure 3.  Figure 3(a) uses the same

reinjection procedure and source-sink configuration as used in figure 2.  The analytic

solution in this case assumes a slip condition at the boundary.  The biggest change from

adding a boundary is in the ‘far-field’ region.  Since the fluid is no longer allowed to

move far away from the sources and sink, just about all of the fluid experiences the

frequent reinjection, and therefore high chaos, of the ‘inner-region’.  Only small areas in

the corners of the domain show signs of ‘far-field’ effect.

Changing the reinjection procedure and source-sink configuration affects the

details of the chaotic advection.  In figure 3(b) the source-sink pairs lie on the diagonal as

opposed to being aligned on the sides of the square, and the reinjection procedure is

changed to ‘last out-first in’, which can be compared to collecting fluid in a tube beneath

a sink, then sliding the tube to the source and reinjecting the fluid.  In this configuration

the corners of the domain are filled with chaotic sea, but large elliptic islands appear in

the middle of the domain.  Despite the details, a chaotic sea in which fluid particles are

very frequently reinjected mostly dominates both of the bounded cases.  Adding a

rectangular boundary in addition to having source-sink pairs enhances the overall chaotic

behavior of the system, allowing for a domain that is almost completely covered with a

chaotic sea of frequent particle reinjection [3].
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  (a)     (b)

Figure 3.  The Poincaré maps have sources and sinks denoted by + and – respectively.
The sources and sinks are located at the vertices of a 2X2 square in a square domain with
sides of length 4.  The pulse area for each case is equal to π.  In (a) the paired sources and
sinks lie on a vertical line and the reinjection procedure is ‘first out-first in’.  In (b) the
paired sources and sinks lie on a diagonal of the domain and the reinjection procedure is
‘last out-first in’ [3].
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CHAPTER II

NUMERICAL MODEL

Summary

This chapter presents the results of a numerical model of pulsed source-sink mixing in a

rectangular chamber.  This model is used to give an analytical comparison to what

happens in an actual Pulsed Source-Sink Mixing Device (PSSMD) experiment.  As in the

actual experiment, the only varying parameter in this numerical study is the pulse (or

reinjection) volume.  The pulse volume (represented as an area in our model) is varied

within the range of 5 to 100 percent of the total mixing chamber volume.  It is not the

goal of this chapter to identify one singular pulse volume where mixing is “ideal”, instead

it is hoped to characterize mixing trends throughout a range of pulse volumes.  In doing

this it is desired to identify different ranges of pulse volumes that could be suitable for

different applications.

The Model

The mixing chamber is a rectangular 3-D prism with a very small depth in relation to its

width and height.  For the experiments in Chapter III the mixing chamber is 71mm wide,

21 mm high, and 0.05 mm deep.  By using a few fundamental assumptions, the 3-D

volume of the chamber can be represented by a 2-D area.  Making this reduction to a 2-D

area significantly decreases computational time.  A 3-D model is likely to take orders of

magnitude longer to run than a 2-D model, and some of the 2-D runs can take weeks to

finish
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The model satisfies the no-slip boundary condition on the top and bottom of the

mixing chamber.  The large aspect ratio of the chamber means that the boundary

conditions on the top and bottom of the chamber dominate the behavior of the flow.  This

allows one to relax the boundary conditions on the sides of the mixing chamber and

model the sides as forced streamlines of the flow; that is, no flow is allowed through the

outer walls but slip is allowed along them.  The flow can be viewed as a Hele-Shaw flow

(flow with Re << 1 between two parallel plates), which is governed by the Stokes flow

approximation.  Under these approximations, a velocity potential can represent the depth-

averaged velocity.  Thus, assuming that the depth-averaged velocity determines the

transport of molecules across the surface, the chamber can effectively be modeled using

two-dimensional potential flow.  The flow in this case will transport molecules on a time

scale much shorter than that of diffusion, so it is expected that the flow kinematics will

provide a good representation of the overall molecule dynamics.

In deriving the model each source and sink is given the same strength, q, which is

equal to the product of the pulse volume (area in the model) and the amount of time a

given source or sink is on.  Superposition of a source located at Zp=Xp+iYp in the

complex plane and a sink at Zn produces the complex potential [36],

                                    
F z( )

q

2 π⋅
log z zp−( ) log z zn−( )−( )⋅ 7( )

which is for flow in an unbounded domain.  The equation can be modified for a variety of

bounded domains by conformal mapping of the z-plane to the w-plane.  The rectangular
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domain can be obtained by conformal mapping of the upper half plane onto a rectangle

using a Schwarz-Christoffel transformation.  Using the method of images the upper half

plane complex potential is found to be [36]:

                  
F z( )

q

2π
log z zp−( )( ) log z zp


−( )+ log z zn−( )− log z zn


−( )−  8( )

This plane is mapped to the interior of a rectangle by using the transformation

                                             
w f z( )

1

2
1 sn K k( ) z k,( )

1−
+( ) 9( )

where the Jacobian elliptic sine is sn(z,k), and K(k) is the complete elliptic integral of the

first kind.  The parameter k is determined by the aspect ratio α of the domain [36]

                                                            
10( )

α
K 1 k

2
−( )

2K k( )

The geometry of the model is a 71 mm x 21 mm rectangle.  The sources and sinks in

the model are placed at a 2.5 mm offset (measured to the center of the source or sink)

from the corners of the rectangle.  The sources and sinks are located relative to each other

as shown in figure 4.
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Figure 4.  Geometry, dimensions, and source-sink location used in the numerical model.

The model uses a ‘last in-first out’ reinjection procedure that can be realized by picturing

fluid being extracted with a syringe at the sink and then being forced back out the way it

came in at the source.  It is thought that the ‘last in-first out’ protocol is a good

representation of what is currently being done in experiments.  With the ‘last in-first out’

protocol there are two options on how to treat the behavior of a fluid particle as it enters

through a sink and leaves through a source.  First, one can allow the particle to remember

its entrance angle upon exit, as a result exiting at an angle rotated 180 degrees from its

entrance angle.  This case will be referred to as the ‘remembered angle’ case.  This case

is the most conservative in regards to evaluating mixing; it allows for the formation of

elliptic islands, which will be explained later.  For the other case, one can allow the

particle to reenter the chamber at a random angle.  This case will be referred to as the

‘random angle’ case.  This case is much less conservative in regards to evaluating

mixing; it does not allow for the formation of elliptic islands.  These different reinjection
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angle methods will be used to develop a deeper understanding of the chaos trends with

changing pulse area.

For this model the parameter that is varied in search of “optimal chaos” is the pulse

area.  Pulse area is a function of pulse time and pulse strength (pulse area = pulse time *

pulse strength).  This pulsing of the fluid is key to the development of chaotic advection

in the flow and the expected possibilities of optimal mixing.

Numerical Analysis Tools:

Four different tools are used to examine the results of the analytical chaotic advection

model:  Poincaré maps, Lyapunov exponents, a particle density model, and a variance

analysis.  It is desired to determine the system parameters for which (1) the domain is

dominated by the chaotic sea (as indicated by the Poincaré map and particle density

analysis) and (2) the fluid within that chaotic sea is stretched most rapidly and distributed

most evenly (as indicated by the Lyapunov exponents, particle density analysis, and

variance analysis).

Poincaré maps and Lyapunov exponents are computed by numerically integrating a

given particle forward in time under the constraint that during a cycle of operation the

particle remains on its streamline, which is constant.  The Poincaré maps are created by

following a fluid particle’s trajectory through several periods (or pulses) of operation and

recording the position of the particle after every period.  For each period, the particle

travels along a constant streamline, which is a function of the velocity potential that

governs the flow associated with the source and sink on during that particular period.

Figure 5 is an illustration of the streamlines associated with each source-sink pair.
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Panel (a) Panel (b)

Figure 5.  Panel (a) shows when source 1 and sink 1 are on, and panel (b) shows when

source 2 and sink 2 are on.

At the end of each period the particle’s position is recorded, and then used as a starting

position for the next period.  As a result of having source-sink pairs, there are two

different velocity potentials (a potential for each source-sink pair on, while the other pair

is off), and therefore two sets of constant streamlines that govern the flow behavior.  The

particle switching back and forth between streamlines is what creates the ‘stretching’

effect on the flow field.  Figure 6 is an illustration of a fluid particle’s path over several

periods, with the particle trajectory switching back and forth between streamlines as

mentioned before.
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Figure 6.  Advection of a particle due to pulsed source-sink operation.

The Poincaré maps consist of two main parts: The chaotic sea and elliptic islands.  In

the chaotic sea, particle trajectories are not periodic; a particle will never return to the

same location twice, and then as time goes to infinity that particle will visit every

available position within the chaotic sea.  Fluid within the chaotic sea experiences

exponential stretching, which is expected to produce enhanced mixing.  The more a fluid

is stretched (and folded) the better it is mixed.  In general mixing occurs naturally when

two miscible fluids have a concentration gradient between them.  In a chaotic sea the

interface between these fluids is stretched exponentially, which rapidly increases the

interfacial area across which diffusion occurs.  A good analogy to the relation between

stretching and mixing is the process of kneading dough.  The dough is stretched out then

folded over, and the process is continually repeated until the dough is mixed. The elliptic

islands are areas in which particle trajectories are periodic, and a particle will be trapped

within this region, meaning that all particles initially in an elliptic island will return to

that same elliptic island at the end of each period.  The elliptic islands are characterized

by only linear stretching, which is expected to produce poor mixing.  These periodic
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particle trajectories, elliptic islands, are dependent on the particle having some ability to

remember the angle at which it enters the sinks upon exit from the sources.  On a

Poincaré map the chaotic sea shows up as dense, somewhat uniform, areas of color,

whereas the elliptic islands show up as “holes” in the map.  An indication of an ideal

mixing situation would consist of maximizing the chaotic sea and minimizing the amount

and/or size of elliptic islands on a Poincaré map.  Poincaré maps show how much of the

domain experiences exponential stretching (or how many of the initial particles will be in

a chaotic region).  Another diagnostic tool, the Lyapunov exponent, gives the size of the

exponent for the exponential stretching. The Lyapunov exponent is calculated for both

stretching over time and stretching over period.  The Lyapunov exponent is calculated by

following two particles throughout time or over a period and measuring how fast they

move away from each other.  Imagine there is a line of length, L, connecting two fluid

particles.  As time (once again this can be period, we would just need to substitute p for

t), t, approaches infinity, the Lyapunov exponent, σ, is given by:
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The strongest chaos over time or period occurs when the Lyapunov exponent is largest; in

contrast, within the elliptic islands the Lyapunov exponent is zero.

The third diagnostic tool is a particle density map.  The map is used to approximate

how much of the domain is covered by the chaotic sea.  Dividing the mixing chamber
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domain into bins creates the map; this is done numerically in the form of a matrix.  The

mixing chamber is divided into 4940 bins for this analysis.  This bin number was chosen

by normalizing the data so that the pulse area that gives the greatest coverage is the only

one that gives zero empty bins.  Each case is then run for 50,000 periods, producing

approximately 100,000 data points (this is because in the model two points are tracked at

the same time).  The amount of points in each bin is tallied and the number of empty bins

is recorded for each case.  The result is used to determine the percentage of the domain

covered by the chaotic sea.  For the random angle case the particle density map is used to

show how randomly distributed the particles are across the domain.  This is done by

applying color intensities, to the bins of the matrix, scaled by the number of points in a

particular bin; the matrix is then plotted.

The finial diagnostic tool is a variance analysis.  The variance analysis is used to

better illustrate how randomly distributed the points are across the domain.  The variance,

c-bar, is calculated as
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Results

The system parameters that effect the time it takes to get enhanced chaos is considered,

and insight is provided into the balance between time and enhanced chaos as it may apply

to different applications.

In an attempt to understand the effect of pulse volume on the chaos characteristics in

the mixing chamber several test are run ranging from a pulse volume of 5% to a pulse

volume of 100% of the chambers total volume.  Test are run in increments of 5% and

note is made of trends observed in the Poincaré maps.  These tests are run using the

remembered angle case.  The number and size of elliptic islands present on a given

Poincaré map is used as a first indication of the presence of optimal chaos.  It is observed

that the pulse volumes of 5%, 10%, 15%, 20%, 25%, 30%, and 35% produced multiple

small elliptic islands that gradually shift to a few large elliptic islands as the pulse volume

increases.  The elliptic islands in each case are distributed throughout the domain in a

somewhat set, consistent pattern.  This pattern and the changes in elliptic island size are

shown in figures 7-10.
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Figure 7.  Pulse Volume is equal to 5%.  It should be noted that in this case a particle has
a tendency to stay on one side of the domain for a long time.

Figure 8.  Pulse volume is equal to 10%.
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Figure 9.  Pulse volume is equal to 20%.

Figure 10.  Pulse volume is equal to 35%.

It is observed that the pulse volumes of 40% and 45% produced just a few small elliptic

islands.  Figure 11 is an example of a Poincaré map for this case.
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Figure 11.  Pulse volume is equal to 45%(in the 40% case the domain is almost
completely covered by the chaotic sea).

It is observed that the pulse volumes from 50% to 100% produced a trend of increasing

elliptic island size with increasing pulse volume.  One large elliptic island begins to show

up in the middle of the domain at a pulse volume of 60%, and it grows larger with

increased pulse volume.  Thus, the Poincaré map pattern is the same for pulse volumes of

70% to 100%.  The Poincaré maps in figures 12-14 show the discussed trend.
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Figure 12.  Pulse volume is equal to 50%.

Figure 13.  Pulse volume is equal to 60%.
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Figure 14.  Pulse volume is equal to 70%(from 70% to 100% the only change is the size
of the center elliptic island; it gets bigger).

The Poincaré maps show the amount of the domain covered by the chaotic sea.  From

examining the Poincaré maps one is able to identify ranges of pulse volume that indicate

a possibility of optimal mixing.  In order to quantify the coverage it is necessary to do a

particle density analysis.  The density analysis is done to determine an approximate

percentage of the domain that is covered by the chaotic sea.  The results of this analysis

are shown in figure 15.
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Figure 15.  Plot of the amount of the mixing chamber domain that is covered by the
chaotic sea as a function of pulse volume.

It must be noted again that in the 5% pulse volume case a particle has a tendency to stay

in one side of the domain for a long time.  The results show the 5% case as having about

95% coverage of the domain, but it is best to view this as two half domains with 95%

coverage.  It can be seen from Figure 15 that the pulse volumes in the middle range, as

classified in our Poincaré analysis, provide a high chaos coverage ratio for the domain

space.  For pulse volumes larger than this range the domain coverage decreases, sloping

downward to a low at 100%.  For smaller pulse volumes the trend is a little more

complex, but it appears as if the best chaotic sea coverage in this range occurs in the

smallest pulse volumes (5%, 10%, 15%).
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Knowing how much of the domain is covered by the chaotic sea is an important

process, but it only tells part of the story in regards to understanding how well the mixing

might be in the domain.  The Lyapunov exponent, as explained before, is a measure of

the magnitude of the exponential stretching in the chaotic sea.  By looking at the

Lyapunov exponent one can get an idea about the level of potential mixing within the

identified chaotic sea.  The higher the Lyapunov exponent the faster fluid particles are

stretched over time (period).  In the analysis of Lyapunov exponents, the convergence of

the Lyapunov exponent over time (period) for each pulse volume ran, is examined.  This

number is multiplied by its respective chaotic sea coverage ratio, for each pulse volume.

This new value is a measure known as the Kolmogorov entropy, which gives a

comparison of the ‘total chaos’ in the entire mixing domain.  The results of this analysis

are shown in figure 16.
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Comparison of Exponential Stretching Over Time to Exponential 
Stretching Over Period
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Figure 16.  The numeric value of the Lyapunov exponent for stretching over time is an
order of magnitude less than the Lyapunov exponent for stretching over period, so for
better graphical comparison the time exponent is scaled up.  This scaling is allowed
because we are interested in trends, and not so much numerical values.

As seen in figure16 the Lyapunov exponent for stretching over time generally decreases

with increasing pulse volume.  There are small ranges where the behavior is different.

The behavior for the Lyapunov exponent for stretching over period is to generally

increase with increasing pulse volume; again with small areas behaving differently.  As a

note it has been observed for pulsed source-sink mixing on an unbounded domain that the

trends of the Lyapunov exponent behavior over pulse volume are similar to this bounded

case, the only difference is that in this bounded case there are small ranges of pulse

volume that display unique behavior.  This unique behavior is thought to be the result of

having bounded geometry, in general, but in this particular case the rectangular geometry
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of the mixing chamber.  To better understand the unique behaviors of this case one can

look at ranges of the chart in figure 16.  The lower range (5%-35%) Lyapunov exponents

present some interesting results.  The stretching over time in particular is found to be very

high in the small pulse volumes, with the time Lyapunov exponent for 5% being almost

double the average for the rest of the pulse volumes.  Equally, the stretching over period

in the lower range is very low.  What happens in the lower range is not unexpected.  The

stretching over the period is expected to be small for small pulse volumes (which

correspond to short periods), because there is not enough time in the period for any

significant stretching to occur.  On the other hand, the stretching over time is expected to

be large, because of the rapid fluid stirring created by the frequent switching of source-

sink pairs associated with short periods (or pulses).  The middle range (39%-45%)

Lyapunov exponents show an interesting trend of ‘humping’ up to higher values for both

time and period stretching.  This middle range offers the best combination of stretching

over time and period.  This characteristic of having the best combination of stretching

over time and period is not unexpected.  The interesting surprise in this case is the

‘humped’ or higher values experienced in this range.  The upper range (47.5%-80%)

shows some unique behaviors that go against the general trend of the data.  From 47.5%

to 60% pulse volume the Lyapunov exponents over period and time start to level off a bit,

then each case begins to show a trend that is similar to the other.  From 60% pulse

volume on to 80% both the Lyapunov exponent for stretching over time and period start

to slightly decrease.  In the case of stretching over time the decreasing Lyapunov

exponents is expected, because the longer periods allow for more constant streamline

motion over time.  The decreasing Lyapunov exponents for stretching over period in this
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case are less expected.  This is thought to be caused by a combination of the present

geometry and the large amount of the volume being pulsed.  For high pulse volumes there

is a tendency for fluid to stay in the injection tubes for a larger percent of the period, thus

causing that fluid to be stretched less over the period.

For practical applications of pulsed source-sink mixing in a rectangular chamber,

the Lyapunov exponent for stretching over time will give the best idea of the potential

mixing in the chamber.  Two important variables to consider in looking at practical

applications are the time it takes to get a level of mixing, and the level of mixing

achieved in that time.   The ideal situation would be fast and ‘good’ mixing.  To this

point, the coverage of the chaotic sea and how well particles are stretched within this sea

are examined as a way of classifying fast and potentially ‘good’ mixing.  In order to

further one’s understanding of this system, this study will now look at how randomly the

fluid particles are distributed across the domain; to do this the model is run using the

random angle reinjection case.  In reality the reinjection angle will be somewhere in

between the remembered case and random case, remembered being the lower bound on

the prediction of enhanced mixing and random being close to an upper bound.  By

reinjecting the particles at a random angle it destroys any periodic sections of the domain,

thus not allowing for the development of elliptic islands.  Using the variance and particle

density diagnostic tools it is desired to determine how evenly fluid particles are

distributed across the mixing chamber domain and how fast a decently even distribution

is achieved.

The variance of the particle distribution over time is calculated for this analysis.  This

calculation is done by dividing the domain into bins and counting the number of particles
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in each bin at different time steps.  5000 bins is initially chosen as the bin number, but the

analysis is run at 10000 and 1000 bins to see how the number of bins affects the trend of

the data.  Figures 17-19 show the variance over time for pulse volumes in the lower,

middle, and upper ranges.  The volumes are 5%, 10%, 41.5%, and 100%.

Figure 17.  For this chart the domain space is divided into about 5000 bins, and then the
variance of particles distributed across the bins is calculated as a function of time.
Displayed on this chart are pulse volumes of 5%, 10%, 41.5%, and 100%.
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Figure 18.  For this chart the domain space is divided into about 10000 bins, and then the
variance of particles distributed across the bins is calculated as a function of time.
Displayed on this chart are pulse volumes of 5%, 10%, 41.5%, and 100%.

Figure 19.  For this chart the domain space is divided into about 1000 bins, and then the
variance of particles distributed across the bins is calculated as a function of time.
Displayed on this chart are pulse volumes of 5%, 10%, 41.5%, and 100%.

The data shows a consistent and similar trend for each bin number chosen.  This leads

one to believe that the number of bins used has little effect on the variance trend, so for

the rest of the analysis a bin number of 5000 is used.  From figures 17, 18, and 19 it can

be seen that two of the cases, pulse volumes 10% and 41.5%, show good signs of even

particle distribution and getting to that even particle distribution fast.  The 41.5% case

gets to the most evenly distributed state, but it takes a little longer to get there.  The 5%
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and 100% case show signs of leveling off at a high variance and taking a very long time

to reach a low variance respectively.  The variance of the 5% case is greatly effected by

the tendency of a particle to get trapped on one side of the domain, as shown in particle

density image of figure 20.

Figure 20.  Particle density image for 5% pulse volume.

In the middle range the lowest variances are achieved.  From 40% to 45% the variance of

the particle distributions approach a value around 0.275 as seen in the figure below.

Figure 21.  Variance analysis for pulse volumes of 40% to 45% (Middle range).
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In the lower range, the pulse volumes of 10% to 20% approach variances that reach about

93% of the value of the middle range (around .295), but they approach these values in

32% to 57% of the time it takes the middle range to approach its values.  Figure 22 shows

the variances of the lower range.

Figure 22.  Variance analysis for pulse volumes of 5% to 30% (lower range).

The particle density images of figures 23 and 24 show the slight difference in the

distribution of particles for the lower range compared to the middle range.

Figure 23.  Particle density image for 10% pulse volume (in lower range).
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Figure 24.  Particle density image for 41.5% pulse volume (in middle range).

The variances in the upper range go from 0.29 up to 0.34 with increasing pulse volume as

seen in figure 25.

Figure 25.  Variance analysis for pulse volumes of 45% to 100% (upper range).

In the upper range it takes increasingly longer times to reach increasingly higher

variances with increasing pulse volume.  The trends displayed in the upper range point

towards less optimal mixing in that range.
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Conclusion

In this numerical model of a rectangular pulsed source-sink mixing chamber, it is desired

to understand how the parameter of pulse volume affects certain indicators of potential

good or bad mixing.  Those indicators are the amount of coverage of the chaotic sea, the

exponential stretching within the chaotic sea, and how evenly particles are distributed

over the chamber volume.  The results of this study show that there is more that one

range of pulse volumes that can be applied to produce positive indicators of optimal

mixing.  In the lower range, pulse volumes of 10% to 20% produce positive indicators of

optimal mixing.  For the conservative remembered angle method these pulse volumes

cover 82% to 90% of the domain with chaotic sea.  The chaotic sea coverage is a little

low in comparison to the best coverage displayed, but it has relatively high exponential

stretching.  For this range of pulse volumes the particles are evenly distributed across the

domain 32% to 57% faster than the middle range, which is the next best case.  This range

approaches a variance of about 0.295, which is about 93% of the best variance achieved,

0.275.  The pulse volumes of 10% to 20% can be classified as providing potentially fast

and close to optimal mixing.  The middle range, with pulse volumes of 40% to 45%,

produces positive indicators of optimal mixing.  For the remembered angle method the

middle range pulse volumes cover 98% to 100% of the domain with chaotic sea.  The

exponential stretching within the chaotic sea is high, although not quite as high as in the

case of pulse volumes of 10% to 20%.  For the middle range pulse volumes it takes a

little longer for the particles to be evenly distributed across the domain, but in the end this

range reaches the best variance, 0.275.  The middle range pulse volumes can be classified

as providing potentially ‘fast enough’ and optimal mixing.  The upper range, 45% to
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100%, can best be classified as providing the least optimal mixing, by all indications.  In

the upper range the potential mixing gets less favorable with increasing pulse volume.

An interesting case that shows potential for enhanced mixing is a pulse volume of 5%.  In

this case a particle has a tendency to stay on one side of the domain, but on that side the

coverage of the chaotic sea is high, 95%, and the exponential stretching is almost double

that of other cases.  In the 5% case the particles are evenly distributed across the half

domain faster than in any other case.  This case can best be described as providing

potentially fast and optimal mixing to limited applications.
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CHAPTER III

PHYSICAL MODEL

Summary

This chapter presents the results of experiments involving a pulsed source-sink mixing

system with a rectangular chamber.  These results will be compared with the numerical

results presented in Chapter II, so as to provide a rigorous analysis of the mixing system

behavior.  The work presented here will build on and expand upon previous work [29].  A

review of previous work with a Pulse Source-Sink Micromixing Device [29] is presented

in the beginning of this section.  This chapter will characterize experimental trends within

the mixing chamber, through a range of pulse volumes.

Previous Experimental Work

The focus of previous work [29] is to improve upon the process of microarray

hybridization.  To do this a Pulsed Source-Sink Micromixing device (PSSMD) is

designed.  This PSSMD is also used in this study, although the assembly procedure and

components are modified.  The previous work seeks to improve the hybridization process

by incorporating the principles of chaotic advection into the mixing device design and

secondly reducing the amount of analyte and solution necessary by the nature of the

PSSMD’s microfluidic components.
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An important aspect of the previous work [29] is the inclusion of the PSSMD

plumbing on the device itself.  This on-device microplumbing is created by the use of

PDMS, an advanced polymer substance [29].

 The PSSMD operating cycle is designed with the inspiration of previous work

that studied a planar, laminar mixer [29, 35].  The cycle is setup so that there are four

ports connecting the mixing chamber to four external channels.  Channels that operate on

alternating cycles are linearly aligned on one side and connected at a junction that leads

to one of two independent reservoirs.  Each of the four channels has a check valve that

restricts the flow to one direction.  Figure 26 shows a description of the PSSMD cycle.

On the half-cycle valves 2 and 4 are closed.  Fluid from reservoir A is injected and flows

into the chamber at port 1 (source).  Fluid flows out of the chamber at port 3 (sink) and is

collected in reservoir B.  On the full-cycle valves 1 and 3 are closed.  Fluid form

reservoir B is injected and flows into the chamber at port 2 (source).  Fluid flows out of

the chamber at port 4 (sink) and is collected in reservoir A.  This operating cycle is

designed to produce chaotic advection in the chamber and a fluid particle motion as

illustrated in figure 6.  Schaffer’s experimental setup consists of four modules:  The

PSSMD, Pumping Unit, Control Unit, and Valving Unit.  A schematic of this setup is

show in figure 27.
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Figure 26.  Conceptual view of the PSSMD cycle.  In this configuration, port 2 is the
source and port 4 is the sink [29].
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Figure 27.  Schematic of PSSMD .  The Control Unit, which is a PC, commands the
Valving Unit and the Pumping Unit using a custom LabVEIW Virtual Instrument.  The
Valving Unit is comprised of a relay circuit, a DC power supply, and an array of four
solenoid actuators.  The pumping Unit consists of a slave controller and two syringes,
each mounted in a motorized syringe pump.  The Microfluidic Module is the mixing
chamber and the on-board microchannels [29].

The control unit governs the behavior of the valves and pumps.  The unit is a custom

LabVIEW (National Instruments Corporation, Austin, TX) Virtual Instrument application

run on a desktop PC.  The VI is interfaced with the valves by a digital I/O card connected

to the PC.  The VI controls the pumping unit through a serial port on the PC where the

pumps slave controller is connected.  The VI control unit allows the user to control
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experimental parameters such as injection volume, flow rate, flow direction, valve

activation/ relaxation time, and number of pulse cycles.  The pumping unit is made up of

two independently controlled syringe pumps (World Precision Instruments, Inc.,

Sarasota, FL).  Each pump is equipped with a 500 µl syringe (Hamilton Company, Reno,

NV).  Vinyl tubing is used to connect each syringe to a steel port on the top of the

Microfluidic Module.  The pumps are wired to a slave controller that is connected to the

control unit.  The pumps are configured so that they can be controlled manually or

automatically.  The valving unit consists of four solenoid actuators (Bicron Electronics

Company, Canaan, CT).  When energized these solenoids will pinch closed the on-device

microchannel beneath it.  Upon relaxation the channels reopen due to the resilience of the

PDMS material.  This pinch valve system proves to be very efficient [29].  The I/O card

is not capable of providing enough power to energize the solenoid valves, so a relay

circuit [29] is used to allow the weak current from the card to switch the power from an

external 12V DC supply (B&K Precision Corporation, Yorba Linda, CA) to the

individual solenoids.

The Microfluidic Module (MM) is designed to have a mixing chamber depth of

35 µm.  This depth is established by a 35 µm thick, 1 mm wide transparent film (3M, St.

Paul, MN) inserted between the top and bottom of the chamber during assembly.  A

combination of the film and silicon sealant (GE Sealants & Adhesives, Huntersville, NC)

formed the walls of the chamber [29].  The bottom of the mixing chamber is a standard

25 X 75 mm microscope slide.  The top of the mixing chamber is made from a

combination of PDMS and a 50 X 70 mm glass microscope slide.  The glass slide has

four ports drilled out in the location of the desired sources and sinks (near each corner of
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the bottom microscope slide).  A 1 mm thick layer of PDMS with 25 µm deep channels,

fabricated using soft lithography methods, is plasma-bonded to the top of the 50 X 70

mm glass slide [29].  Each of the channels connects two ports along the long side of the

glass slide.  In the middle of each channel there is a T-junction that leads upward through

a 7.5 mm high, 6 mm diameter cylinder of PDMS that is integrated into the thin layer of

PDMS.  At these central ports a steel tube is pressed in to act as a plumbing connector to

the pumping unit.

The PSSMD chamber is designed to have a volume no greater than 50 µl.  The

chamber is also designed with minimizing the dead volume of the device in mind, or the

volume of fluid that is not available for mixing.  In order to minimize dead volume, the

channels are made with a depth of 25 µm and a width of 250 µm.  The total length of all

the channels is 150 mm, which gives us a total dead volume less than 1 µl with in the

channels.  Considering the volume in the source-sink ports to be dead, in addition to the

channels, gives us a total dead volume around 15 µl.

The PSSMD is assembled by placing the MM between two plexi glass plates that

are apart of the valving unit superstructure (the solenoids are attached to the top plate)

and provide structural integrity to the device.  Holes are machined in the top plate to

allow for the connection of the plumbing and for access to the channels for the solenoid

actuators.  Figure 28 is an illustration of this assembly.
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Figure 28.  On-board components of the PSSMD [29].

The PSSMD is design so that the mixing chamber is optically clear and is visually

unobstructed by any other component of the device.  This is done so that mixing test can

be done with a dye solution used for visualizing the flow and photos can be taken.

A proof of concept experiment is conducted for the novel PSSMD design [29].

The performance of the components of the PSSMD as well as the mixing ability of the

chamber over different pulse volumes is of interest.  A dye solution of 0.50%

erioglaucine (Sigma Inc., St. Louis, MO) is used to visualize the flow in the experiments.

Mixing conditions through a range of pulse volumes from 25% to 100% of the total

chamber volume are tested.
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To begin each experiment the mixing chamber is filled with a clean solution

(ethanol), then a dye solution equal to ten percent of the chamber volume, 5 µl, is injected

into the channel that will act as a source for the first half period.  The fully assembled

PSSMD is placed on a light box, which provides an invariable background of light.  The

Virtual Instrument in the control unit is then set to a specified pulse volume, and the

PSSMD is activated.  The device is allowed to run for enough cycles so that it is visually

determined that the dye is uniformly distributed.

A high-resolution digital camera (Nikon Corporation, Tokyo, Japan) is used to

record images of the chamber before each half-cycle throughout the test. A reference

photo is also taken of the chamber, before dye is injected for each run. These images are

then used to quantify the mixing ability of the chamber.  A bitmap analyses (Image Pro

software, Media Cybernetics Inc., Carlsbad, CA) is used to determine individual pixel

intensities within a specified region of interest, which is chosen to represent the area that

would contain spots of DNA on a microarray.  This area is shown boxed of in the image

of figure 29.

           

Figure 29.  Area designated for pixel intensity analysis.  This area is chosen based of the
application of this technology to DNA hybridization [29].
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The pixel intensities for each photo are used to calculate a mean and standard deviation

for each photo.  The coefficient of variation in each image is calculated by dividing the

standard deviation by the mean.  Back ground interference is factored out using the data

from the reference photos.  The coefficient of variation pixel intensity data is used to

compare the mixing in the case of different pulse volumes [29].

Results From Previous Experiment

The previous experiments provide results that characterize an intermediate trend with

respect to mixing over increasing pulse volume [29].  It is stated that as the pulse volume

is increased from 25% up to 75% of the total chamber volume the time required to

achieve uniform distribution (good mixing) is shortened.  Also, that for pulse volumes of

75% up to 100% of the total chamber volume the mixing efficiency slightly decreases.

This is stated to be a result of the initial dye stretching toward the perimeter of the

chamber, where most of it is not in the boxed mixing area of interest.  In the previous

work [29] experiments of different pulse volumes have different relaxation times, or time

for the flow to come to rest, because the total cycle duration is held constant throughout

each experiment; due to this the smaller pulse volumes end up having more rest time than

the larger ones.  A theoretical correction for this is done giving each test a relaxation time

of 20 seconds.  Even after this correction the data shows the same trend, which ultimately

leads to the conclusion that the larger pulse volumes not only provide better mixing, but

they also provide more efficient mixing, and that the most effective pulse volume is 75%

of the chamber volume.
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Changes Made to Experiment

Mentioned as ‘Future Endeavors’ in the previous work [29], parts of the PSSMD that is

thought to need further refinement are noted; given the novel nature of the design this

needed refinement is not unexpected.  A need for improved techniques in the fabrication

of the source-sink ports is mentioned.  The ports make up 93% of the dead volume of the

device, and it is desired to make the dead volume as small as possible [29].  The valving

apparatus is also mentioned as a potential area of improvement.  The current state of the

valving system requires an additional power supply and bulky external setup that

complicates the assembly of the PSSMD.  A finial area of potential improvement deals

with the physical dimensioning and structural integrity of the mixing chamber.   The

previous work points out that while the mixing chamber is designed to contain a set

volume of fluid, it proved very difficult to maintain that volume [29].  The work states

that because of the large aspect ratio of the chamber it is reasonable to believe that the

actual volume in the experiments varied significantly with internal as well as external

pressures.

Unlike the previous work [29], which concentrated on the specific application of

DNA hybridization, the work of this paper is directed towards characterizing the general

mixing behavior of the PSSMD as it may apply to many applications.  After consulting

the recommendations for improvement in the previous work [29], and with the thought in

mind of generally improving the performance and reliability of the PSSMD several

changes are made to the PSSMD.  The changes are conceptual, structural, material, and

procedural in nature.
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Two conceptual changes are made to the way the PSSMD is viewed.  The first

change deals with the definition of dead volume.  In the previous work [29] the volume

of fluid in the source-sink ports made up 93% of the dead volume of the device and

accounted for about 14 µl of fluid volume; because of the large depth of the source-sink

ports in relation to the chamber depth (20:1) and the very slow fluid velocity in the

chamber, this study will view the 14 µl of dead volume as ‘alive and well’, and it will be

included in the total volume of the mixing chamber.  This shift in view will require a

correction to be made to how much fluid volume is being pumped into the chamber

during a given cycle.  The second conceptual change deals with the area of interest for

mixing considerations.  Since the previous work is only concerned with mixing as it

relates to DNA hybridization [29], a boxed off area centered on the chamber is the only

area where pixel intensities are examined; the edges of the chamber are left unexamined.

This study will measure the pixel intensities and compare intensity coefficient of

variations for the entire chamber; including all the way up to the edges.

 Two structural changes are made to the PSSMD.  Both of the changes made are

made with the intention of solving the problems the previous work [29] was having with

keeping a constant chamber volume.  The changes also allow the chamber to be

assembled submerged in a fluid, which eliminates a huge problem of purging the

chamber of air bubbles.  A brass gasket 50 µm thick (manufactured in the Vanderbilt

Machine Shop) is used to provide the depth and wall constitution of the chamber, instead

of the thin film and silicon adhesive used before.  The plexi glass superstructure of the

valving system is replaced with a redesigned brass structure that is capable of applying

enough pressure across the MM to sandwich the top and bottom of the MM around the
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brass gasket and seal the chamber.  The small surface tolerances of the brass gasket and

glass slides allows for the creation of a liquid tight seal all around the chamber.  An

illustration of this assembly is shown in figure 30.

Figure 30.  Photo of the new Microfluidic Module fully assembled.

Two material changes are made to the operation of the PSSMD.  A dye solution

of 10% eiroglucine is used instead of a 0.5 % solution.  This is done in hope of getting a

more easily read signal and a better overall visualization of the flow.  Water is used as the

blank solution in the chamber, and the dye solution is also water based.  In the previous

work [29] ethanol is used as the blank solution, and the dye is water based; which might

have caused some fluid interfacial behaviors that affect the flow.  A water-water setup for
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the 50% case is used in the previous work to test the validity of the trends shown in the

ethanol-water test [29].  Based off the water-water 50% test it looks as if the trends are

the same.  The fact that the previous work only ran one water-water case gives more

weight to reexamining the behavior of this system.

Three procedural changes are made to the parameters of the PSSMD experiment.

Since the new brass gasket changes the depth of the chamber from 35 µm to 50 µm, and

the liquid in the source-sink ports is to be counted as part of the chamber volume (all the

ports will be considered ‘alive and well’ for this study, but future work requires further

examination of this), the chambers volume changes from 50 µl to 90 µl.  To account for

this an extra 5 µl of dye is injected in to the chamber.  The way the dye is initially

injected into the chamber is also changed.  Before, the experiment is setup so that the dye

begins entering the chamber at the source during the first half cycle [29].  This procedure

is changed so that the mixing chamber starts out with a similar initial blob of dye, located

at the first half-cycle source, for each case.  The other change made is to the amount of

relaxation time during a half cycle.  The amount of relaxation time during previous

experiments [29] is allowed to change with different pulse volumes; it will be held

constant at 30 seconds during current test.

New Experimental Setup and Procedure

This section presents the setup, procedure, and results of the current experiments.  The

focus of these experiments is to help characterize the mixing behavior of a 21 X 71 X

0.05 mm chamber that is subjected to pulsed source-sink induced chaotic advection over

a range of pulse volumes.  The pulse volumes that are examined in this experiment are
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5%, 25%, 42.5%, 50%, 60%, 75%, and 100% of the total chamber volume.  The total

chamber volume is defined to be the chamber volume plus the volume of the source-sink

ports in the roof of the chamber, which comes out to be about 90 µl.

The experimental setup of the PSSMD [29] consists of four components: Control

Unit, Pumping Unit, Valving Unit, and Microfluidic Module.  The control unit runs the

pumping and valving units that are both connected to the MM as show in figure 31 (for a

schematic of this assembly refer to figures 27).

Figure 31.  Photo of lab setup.
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To begin each experiment the 500 µl syringes and vinyl tubing of the pumping unit are

filled with water.  This is done under water to prevent bubbles from appearing in the

syringes or tubing (the syringes can be detached and reattached to the unit easily).  Next

the components of the MM and valving superstructure are submerged in water and

assembled.  Special attention is made to tighten down (the top glass slide will break if too

much pressure is applied; due to small surface tolerances in relation to the chamber depth

a small amount of pressure is sufficient to seal the chamber) the valving superstructure

around the MM just enough to provide adequate force to seal the top and bottom glass

slides around the brass gasket, in effect creating a sealed mixing chamber.  This method

of assembly easily keeps the mixing chamber free of bubbles.  The MM, secured by the

valving superstructure, is dried off with a paper towel then placed on a light box.  The

solenoid actuators are connected to the top of the valving superstructure and the tips of

the solenoids are lined up over there respective microchannels, so that when actuated they

will effectively pinch off the channel.  The vinyl tube coming off one of the syringes of

the pumping unit is attached to the side of the MM where a sink will be activated during

the first half-cycle of operation.  This connection is made through a 20 gauge steel tube

that has been inserted in the end of the vinyl tube and is now inserted into the cylinder of

PDMS that leads down to the microchannels.  In order to prevent bubbles from entering

the system it is important to form a meniscus at the tip of the steel tube and the top of the

PDMS cylinder before joining the two.  At this point the lights in the room are turned off,

the light box is turned on, and a reference photo is taken, using a Nikon High resolution

digital camera set on a tripod and positioned directly over the MM’s mixing chamber, of

the dye free chamber.  This photo is taken for each test run and is used to identify and
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deal with background interference.  Now, on the side of the MM where a source will be

on during the first half-cycle of operation, a 15 µl (in reality this varied between 10 µl

and 15 µl throughout different runs because of the difficulty involved with getting an

exact amount of dye into the chamber; corrections will be made for this in analyzing

results) blob of 10% erioglucine dye solution is inserted into the chamber at the source

location.  This is done by manually pinching off the side of the microchannel opposite of

the first half-cycle source, and inserting the dye using a 20 gauge blunt needle and a

syringe full of the dye solution.  After the blob of dye is successfully inserted, and while

keeping the microchannel opposite of the first half-cycle source pinched off, the vinyl

tube coming from the other syringe of the pumping system is connected to the MM

exactly as it was done with the first tube.

Once the four components of the PSSMD are assembled, attention is turned to

setting the operating parameters on the VI of the control unit.  The flow rate is chosen to

be 3 µl/s (same as in [29]), which gives the flow a Reynolds number of about 20 when

entering the chamber from the microchannels, assuring laminar behavior.  This Reynolds

number calculation is shown below in equation 14.
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6−
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The time for allowing the fluid to relax during a given half-cycle is set to 30 seconds and

is held constant for every run.  The delay, or time before the next half-cycle that the

solenoids switch changing the source and sink that are on, is set to 2 seconds and is held

constant for every run.  This means that 2 seconds before the end of the relaxation time

for a given half-cycle the sources and sinks switch to get ready for the next half-cycle.

The volume of fluid being pulsed and the total amount of time for a half-cycle of

operation varies with different runs.  The table of figure 32 shows the Virtual Instrument

controlled system parameters for each test conducted in this study.
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%

Chamber

Volume

Flow

Volume

(nl)

Flow Rate

(nl/s)

Time of Source-

Sink Operation

During Cycle (s)

Relaxation

Time (s)

Total Time of

One Cycle (s)

Delay

(s)

5 4500 3000 1.5 30 31.5 2

25 22500 3000 7.5 30 37.5 2

42.5 38250 3000 12.75 30 42.75 2

50 45000 3000 15 30 45 2

60 54000 3000 18 30 48 2

75 67500 3000 22.5 30 52.5 2

100 90000 3000 30 30 60 2

Figure 32.  These are the test conditions of each pulse volume case.  The flow volume
and time of source-sink operation changes for each case.  The flow rate is held constant
throughout the experiments.  The relaxation time is the time between when the flow stops
and the beginning of the next cycle.  The total time of one cycle is the sum of the
relaxation time and the time of source-sink operation.  The delay is equal to the amount
of time before the next cycle that the solenoids switch activation; placing the other source
and sink ready for operation.

Before running a test a photo is taken of the mixing chamber with the initial blob of dye.

This initial condition is shown in figure 33.

Figure 33.  This is an example of what it looks like when the mixing chamber is setup
before each experiment with an initial blob of dye.  The dye is inserted at the location of
the source to be on during the first half-cycle of operation.
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When the test is set to run, and begins running, a photo is taken after every half-cycle for

the first 15 full-cycles.  At this point subsequent photos are taken at the end of every 5th

full-cycle.  Ideally the test would be allowed to run until the dye visually appears

uniformly distributed throughout the chamber, but in reality some test were stopped

because of air bubbles appearing in the chamber after awhile.  It was found that the

longer the test runs, the more likely it was for an air bubble to eventually penetrate the

chamber. This air bubble problem affected the lower pulse volume test the most, as will

be explained in the results of this section.

Results From New Experiment

Test are run with the PSSMD for pulse volumes set to 5%, 25%, 42.5%, 50%, 60%, 75%,

and 100% of the total chamber volume.  A few test are run for each pulse volume case

and the results herein are a best representation of the gathered data.  The experimental

results afford us two ways of analyzing the mixing capabilities of the PSSMD.  The first,

and most obvious way is by simply making a visual analysis.  Visual analysis is crude

and hard to quantify, but it can be worthwhile by providing extra insight into fluid

behavior.  The second way to analyze the experimental results is by examining the pixel

intensities of the photos taken during the runs.  The bulk of the analysis done in this study

involves this second method; which is less crude and can provide a more reliable

analysis.

The visual observations of the experimental results are divided into three

categories:  Low pulse volume observations, middle pulse volume observations, and high
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pulse volume observations.  Low pulse volumes for this experiment are defined as the 5%

and 25% cases.  In both of these cases the initial dye blob has a tendency to stay on one

side of the mixing chamber as shown in the sequence of photos for the 25% case in figure

34.

Figure 34.  The sequence of photos is from when 25% of the chambers volume is pulsed.
(a) is the mixing chamber, with the initial blob of dye, before the PSSMD is put into
operation.  (b) is the mixing chamber after 1 full cycle of operation, (c) is the mixing
chamber after 3 full cycles, (d) is the mixing chamber after 5 full cycles, (e) is the mixing
chamber after 7 full cycles, and (f) is the mixing chamber after 9 full cycles.  It is noted
that photos (b) to (f) show the dye’s tendency to stay to one side of the mixing chamber.

Middle pulse volumes for this experiment are defined as the 42.5%, 50%, and 60% cases.

These cases are characterized by the initial dye blob sweeping down the center of the

mixing chamber with a parabolic looking trajectory.  For the 42.5% case the bottom tail

of the parabolic trajectory ends up being located at the source (slightly to the inside, this

is important because if it were to the outside, as shown in figure 36(b), it would get push
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into the wall of the chamber when the source is activated, as shown in figure 36(c),

instead of back towards the middle of the mixing chamber) to be activated in the second

half-cycle of operation; this is illustrated in figure 35(b).  This is noted, because on the

second half-cycle stroke, figure 35(c), the bit of ‘tail’ dye is pulsed out in a parabolic

looking trajectory towards the middle of the mixing chamber and is distributed more

uniformly.  The behavior of the middle cases, represented by the 42.5% case, is displayed

in the sequence of photos in figure 35.

Figure 35.  The sequence of photos is from when 42.5% of the chambers volume is
pulsed.  (a) is the mixing chamber, with the initial blob of dye, before the PSSMD is put
into operation.  (b) is the mixing chamber after 1 half cycle of operation, (c) is the mixing
chamber after 1 full cycle, (d) is the mixing chamber after 2 full cycles, (e) is the mixing
chamber after 3 full cycles, (f) is the mixing chamber after 4 half cycles, and (g) is the
mixing chamber after 4 full cycles.  It is noted that photos (b) to (g) show the dye
traveling down the middle of the mixing chamber and being dispersed more rapidly due
to the ‘tail’ dye located as shown in (b).
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High pulse volumes for this experiment are defined as the 75% and 100% cases.  The

75% case behaves different enough from the 100% case to warrant not talking about them

as one group.  In the 75% case the initial dye blob transverses the mixing chamber with

parabolic looking motion similar to the middle observations, although the dye is pushed

close to the walls.  Unlike the middle pulse volumes where there is some dye slightly to

the inside of the source to be activated on the second half-cycle, the 75% case left dye

slightly to the outside, as shown in figure 36(b), of the source (closer to the walls of the

mixing chamber).  When the second half-cycle is activated the dye gets push even further

up against the wall, as shown in figure 36(c).  This behavior is fully illustrated by the

sequence of photos in figure 36.

Figure 36.  The sequence of photos is from when 75% of the chambers volume is pulsed.
(a) is the mixing chamber, with the initial blob of dye, before the PSSMD is put into
operation.  (b) is the mixing chamber after 1 half cycle of operation and (c) is the mixing
chamber after 1 full cycle of operation.  It is noted that photos (b) and (c) show the
tendency for the dye to get pushed up against the walls of the mixing chamber (although
not as much as the 100% case illustrated in figure 37).

In the 100% case the initial blob of dye completely travels the length of the mixing

chamber as illustrated in figure 37(b).  While traveling the length of the chamber the dye
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is pushed close to the walls of the chamber.  This trend of being pushed close to the walls

is noticed throughout the 100% cases.  Even after several cycles it can be observed that

dye is accumulating near the sides of the mixing chamber, as illustrated in figure 38.  The

photos in figures 37 and figures 38 illustrate this concept.

Figure 37.  The two photos are from when 100% of the chambers volume is pulsed
(different lighting was used in this particular run).  (a) is the mixing chamber, with the
initial blob of dye, before the PSSMD is put into operation and (b) is the mixing chamber
after 1 half cycle of operation.  It is noted that the dye transverses the entire chamber
during the first half cycle.

Figure 38.  The two photos are from when 100% of the chambers volume is pulsed.  (a)
is the mixing chamber after 10 half cycles of operation and (b) is the mixing chamber
after 10 full cycles of operation.  It is noted that the dye is more concentrated near the top
wall of the mixing chamber in a pattern that inverts from the half period to the full period.

The pixel intensities of the photos taken during this experiment are used to compare

variation across the surface over time for different pulse volume cases.  ImageJ, a free

program provided by the National Institute of Health (www.nih.gov), is used to extract

pixel intensity data from the experimental photos.  The pixel intensities are given by the
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program on a grey scale.  The experimental photos are in color, so ImageJ converts the

pixel intensities to a grey scale by taking a weighted average of the reds, blues, and

greens in the images.  For each photo analyzed using ImageJ the average pixel intensity

and the standard deviation of pixel intensities across the chamber are given.  This data is

used to calculate a pixel intensity coefficient of variation.  After accounting for

background variation (noise), this coefficient of variation is used as a measure of mixing

in our experiment.  Smaller coefficients of variation are considered indicators of good

mixing, and larger coefficients of variation are considered indicators of poor mixing.

The coefficient of variation is calculated by dividing the standard deviation by the

mean.  To account for noise in this experiment and to best compare the data extracted

with ImageJ this simple calculation requires some manipulation.  Equations 15 through

20 show the steps taken to arrive at a meaningful coefficient of variation and equation 21

shows the associated error.  Pixel intensities from the reference, or base, photo are

denoted as b, while pixel intensities from the image being analyzed is denoted with an I.
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By substituting for A, expanding the summation, and using some simple algebra the cov can 
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I and b can be represented as having the same mean by scaling the I and b means by 
constants as shown below.

Error was usually on the order of 0.01.  The actual coefficient of variation is now shown

as a scaling constant times the image coefficient of variation minus the base coefficient of

variation.  To better graphically compare actual coefficients of variation from different

test runs, which might have different base coefficients of variation, the actual coefficients

of variation are scaled so that each base coefficient of variation has a value that is equal

to 0.1.
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Figure 39 shows a comparison of how the pixel intensity coefficient of variation

changes over time for different percentages of the total chamber volume pulsed into the

chamber during a half-cycle.  On the chart the base value of 0.1 is noted with a black line,

this value is considered to be the state of ‘perfectly uniform’ distribution, or perfect,

mixing.  At time zero each case starts with an initial variation that is based on the dye

blob that was injected in the chamber.  This initial point is seen as varying because in

reality the dye blob is not always the same shape, and the dye concentration of the blob

sometimes varies.  While pointed out, these initial condition discrepancies have little

effect on the trends shown by the data.

Comparison of Coef. Var. Over Time for Different Pulse Volumes
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Figure 39. Plot of coefficient of variance over time for all pulse volumes.
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It is noted from figure 39 that the lower pulsed volumes of 5% and 25% of the total

chamber volume provide a varied distribution, far from uniform.  The most uniform

distribution is achieved at a pulse volume equal to 42.5% of the total chamber volume.

As the pulse volume is increased from 42.5% to 100% the variedness of the distributions

increases slightly with increasing pulse volume.  Because of error associated with the

calculation of the coefficients of variation, it is safe to say that after 30 minutes the

differences in the coefficient of variation for the 42.5%, 50%, 60%, 75%, and 100%

cases, while there, are small.

Figure 39 shows coefficient of variation as it changes over time, but it is also

important to look at how the coefficient of variation changes over number of cycles.  The

more cycles it takes to reach a uniform distribution, the less efficient the mixing.  This is

easily understood by thinking of additional cycles as additional work being put into the

system; if the output is the same (similar or better mixing) then the process is less

efficient.  In figure 39 the data is presented on a 30 minute time scale.  In these 30

minutes each pulse volume case goes through a different number of pulse cycles.  The

general relation is the larger the pulse volume the more time it takes to pulse, and

therefore that test goes through less cycles than a smaller pulsed volume for a given

duration of time.  Figures 40, 41, and 42 show a comparison of coefficient of variation

for the test range of pulse volumes after 5, 10, and 15 full-cycles (30 half-cycles).  The

5% and 25% cases give a relatively high coefficient of variation and are very inefficient

in doing so.  The 75% and 100% cases give coefficients of variation that are similar to the

42.5%, 50%, and 60% cases, but are slightly less efficient in doing so.  As it turns out the
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cases of 42.5%, 50%, and 60% of the total chamber volume pulsed not only provide the

lowest coefficients of variation, but they are also the most efficient at doing so.

Coefficient of Variation after 5 full periods
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Figure 40. Plot of the coefficient of variance for all pulse volumes, after 5 full periods.

Coefficient of Variation after 10 Full Periods
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Figure 41.  Plot of the coefficient of variance for all pulse volumes, after 10 full periods.
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Coefficient of Variation After 15 Full Periods
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Figure 42.  Plot of the coefficient of variance for all pulse volumes, after 15 full periods.

To better compare the experimental results to the numerical work done in Chapter II the

pixel intensity coefficients of variation comparisons for the test cases are repotted in

figure 43 subtracting out the standard relaxation time of 30 seconds (in reality it is not

practical to be able to switch between half-cycles without some amount of delay, so this

could not be done experimentally).  A difference worth pointing out on this new plot is

the lower coefficients of variation shown for the 5% and 25% cases.  The subtraction of

the 30 seconds relaxation time allowed these cases in particular to go through a lot more

cycles than what was displayed before.  So while the mixing looks better in these cases,

they are still very inefficient.
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Comparison of Coef. Var. over time for different 
Pulse Volumes (adjusted)
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Figure 43.  Plot of coefficient of variance over time for all pulse volumes; adjusted to
factor out the relaxation time.

Comparison of Old and New Experimental Results

The biggest change in comparing the work done in this study to the work previously done

[29] is probably the way the total chamber volume is considered.  This study considers

the total chamber volume to include the volume contained in the source-sink ports on the

top glass slide of the MM.  The previous work did not consider this part of the chamber

volume; it classified that volume as dead [29].  If the previous work included the extra

volume as it is done in this study, then the total volume used in the previous experiments

would increase by 30% (the volume in this study is increased by only 20% by the

addition of the source-sink port volume; this is due to the larger mixing chamber size in

this study).  This increase in chamber volume would skew the numbers from the previous
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work [29], causing them to better match the data presented in this study.  The previous

work’s best mixing value of 75% of the total chamber volume being pulsed [29] would

change to 58% of the total chamber volume being pulsed.  In the previous work keeping a

set chamber volume is found to be difficult in general, due to the lack of sufficient

structural integrity in the setup.  Another significant change to examine is the area of the

chamber considered when examining pixel intensities.  In this study pixel intensities

across the entire mixing chamber are examined.  In the previous work only pixels that

were within a certain boxed off middle area are examined (see figure 29), which

eliminates analysis of behaviors close to the walls of the mixing chamber.  After

considering the conceptual differences between this study and the previous work, it is

possible to conclude that the trends seen in both studies relate, and data pertinent to the

behavioral characterization of the mixing chamber, as the pulse volume is changed, can

be drawn from both studies.

 Experimental Study vs. Numerical Study

The effective Reynolds number of the flow inside the mixing chamber is about 0.15.  In

the numerical model the flow in side the mixing chamber is modeled as a Hele-Shaw

flow where the flow is defined as having a Reynolds number much less than 1, Re << 1.

While 0.15 may not be considered much less than 1, it is still small enough to validate the

numerical assumption.  The numerical model uses a depth-averaged velocity, which

allows for a potential flow assumption.  This assumption is validated by the small depth

(50 µm) and large aspect ratio of the mixing chamber.  The finial big assumption in the

numerical model deals with how the fluid is reinjected into the chamber.  A ‘last in-first
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out’ method is used throughout the numerical work, which is a good representation of

what happens in reality, but the angle at which a fluid particle re-enters the chamber is

changed between being a ‘remembered angle’ (as calculated in the Poincaré maps) and a

random angle (as calculated in the stochastic analysis).  It is thought that during the real

experiments the reentry angle is somewhere between ‘remembered’ and random.
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CHAPTER V

DISCUSION

Conclusion

With the rapid advancement of technology in today’s world it is important to pursue

undertakings that help to meet the unavoidable challenges that no doubt will arise.  The

focus of this study is set forth to meet such a challenge.  The goal of this study is to

characterize the mixing within a rectangular chamber that is part of a pulsed source-sink

mixing device; by pulsing source-sink pairs, chaotic advection was produced within the

chamber to motivate the flow.  In pursuant of this goal a range of pulse volumes, which

made up a set percent of the total chamber volume, is studied in operation of the PSSMD

and in a numerical analysis.

The PSSMD experiment as previously setup [29] is modified to produce a more

stable device that is easier to use.  The experimental procedure and concepts are also

modified in attempt to get a better characterization of the mixing in the device.  Several

experiments are run with the PSSMD using different pulse volumes.  The middle range,

about 40% to 60% of the total chamber volume, of pulse volumes shows the most optimal

mixing.

By making a few simple assumptions a numerical model is made to study the

chaos, potential mixing, in the PSSMD.  The numerical results show the potential for

optimal mixing in the middle range, 39% to 45% of the total chamber volume pulsed.  In

the lower range the numerical results hint at the possibility of optimal mixing in special

applications.
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As it turns out there is good agreement between the numerical results and the

experimental ones.  Both studies classify a middle region of pulse volumes, of similar

magnitude that produced indications of optimal mixing.  In both studies, when the pulse

volume is set in a range between about 75% and 100% of the total chamber volume the

mixing is less optimal than in the middle pulse volume range.  In the range of lower pulse

volumes (about 5% to 30% of total chamber volume) the two studies show varying

results; the numerical results show some potential for optimal mixing in this range for

certain applications, while the experimental results show poor mixing in this range.

Future Work

This study only serves as a beginning to understanding the mixing behavior in pulsed

source-sink systems.  In this study the only parameter that is varied in the system is pulse

volume; there are several other parameters that can be varied and studied in a pulsed

source-sink system like boundary shape, number of sources and sinks, source-sink

location, and reinjection method.

As with any experimentation, additional work can be done to refine the

experimental equipment and techniques.  Particular focus should be applied to making

the PSSMD self contained and easier to manufacture and assemble.
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