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CHAPTER I 

 

INTRODUCTION 

 

Thesis Overview 

The successful propagation of any virus depends on the capacity to deliver its 

genome into the interior of an uninfected target cell.  To do so, viruses must transit across 

a limiting membrane, either at the cell surface or within a vesicular compartment. 

Disparate virus families have evolved a variety of specialized proteins to facilitate trans-

membrane passage. Activation of these cell-entry systems often requires structural 

rearrangement of capsid components in response to receptor binding or environmental 

cues. However, the viral cell entry machinery is tightly regulated to ensure that it is 

triggered only at the proper time and place for productive infection. Thus, viral capsid 

components are frequently poised at the fulcrum between stability and instability, and 

perturbation of that balance may have ramifications for viral fitness and disease 

pathogenesis. 

Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that feature a 

segmented, double-stranded (ds) RNA genome. Reovirus was first isolated from the 

respiratory and intestinal tracts of human patients in the 1950s (120), yet is rarely 

associated with human disease. The name “reovirus”, derived from the phrase respiratory 

enteric orphan, is a reference to this lack of clinical disease. However, newborn mice are 

quite susceptible to reovirus infection, providing an excellent experimental system for 

studies of viral pathogenesis.  
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To initiate infection, reovirus particles undergo a stepwise uncoating process 

catalyzed by host endosomal proteases. The reovirus disassembly cascade exposes 

hydrophobic domains of specialized capsid proteins that disrupt endosomal membranes, 

an essential requirement for productive cell entry. This well-characterized disassembly 

process makes reovirus an excellent system for studies of nonenveloped virus cell entry. 

My dissertation research focuses on molecular determinants of reovirus capsid protease 

sensitivity and the influence of capsid stability on reovirus-mediated disease and host-to-

host transmission. 

 

Introduction to Reovirus 

Mammalian orthoreoviruses display a very broad natural host range, having been 

isolated from monkeys, chimpanzees, rabbits, mice, swine, cattle, dogs, and cats (34, 41, 

117, 121). The majority of humans are seropositive for reovirus by the time they reach 

adulthood (84, 122, 134). Most people likely contract reovirus as an unremarkable 

childhood infection (134). However, reovirus infection is occasionally associated with 

mild upper respiratory or gastrointestinal symptoms (69, 72). Reovirus infection is also 

associated with neonatal biliary atresia (112, 138), but further study is required to 

establish what role, if any, reovirus plays in precipitating this condition.  

The natural route of reovirus transmission is presumed to be fecal-oral. Like other 

nonenveloped viruses, such as the picornaviruses (enteroviruses and rhinoviruses) and 

caliciviruses, reovirus is relatively stable in the environment and retains infectivity for 

several days when dried on nonporous surfaces (59). Reovirus-specific sequences have 

been detected by PCR in water samples from coastal estuaries, but it is unclear whether 
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waterborne transmission plays a role in reovirus transmission. Despite the near ubiquity 

of reovirus infection, sequence data is relatively sparse for primary isolates, complicating 

an understanding of the diversity of circulating reovirus populations and dynamics of 

virus spread.  

There are three major serotypes of reovirus as defined by antibody neutralization 

(120). The prototype strains of each serotype are named for the patient from which they 

were originally isolated, e.g., type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing 

(T3D). These reovirus strains differ in their receptor utilization, disassembly kinetics, 

capacity for apoptosis induction, and transcriptional efficiency, among other biological 

properties. Moreover, there are significant strain-specific differences in patterns of 

disease induced by strains T1L and T3D, discussed in greater detail below.  

The reovirus genome is comprised of 10 segments of dsRNA, encoding 11 protein 

products. The segmented nature of the reovirus genome allows genetically distinct 

reovirus strains to co-infect a single cell and give rise to viable reassortant progeny that 

contain gene segments derived from both parents. Genomic RNA segments from 

different reovirus serotypes migrate to different positions when resolved by 

polyacrylamide gel electrophoresis, allowing straightforward genotyping of reassortant 

viruses. Genetic reassortment thus allows a given phenotype to be easily linked to a 

particular gene segment. 

Reovirus reverse genetics facilitates the introduction of specific mutations, 

insertions, and deletions in otherwise isogenic viral genetic backgrounds (77). The 

reovirus reverse genetics system utilizes plasmids containing all 10 reovirus genes, along 
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with their 3’ and 5’ untranslated regions (UTRs), in the context of a T7 polymerase 

promoter and hepatitis delta ribozyme. These constructs are transfected into BSR cells 

that stably express T7 polymerase. Following a 72-hour incubation period, viable 

reovirus can be recovered by freeze/thaw and plaque selection. Strains recovered by 

reverse genetics are denoted “rs” for “recombinant strain” (i.e., rsT3D) and may be 

amplified to high titers with limited passage, reducing the accumulation of nonspecific 

mutations. Site-directed mutagenesis of parent rescue plasmids allows the construction of 

reovirus strains with desired mutations, providing a versatile tool for studying all aspects 

of reovirus biology. 

 

Reovirus Structure 

Reovirus virions lack an envelope and consist of concentric protein shells 

surrounding the dsRNA genome (55, 101) (Figure I-1). The innermost of these shells is 

referred to as the core and features a complex of λ1 and σ2 proteins (113), the viral RNA-

dependent RNA polymerase,  λ3, and the polymerase co-factor, µ2 (33, 150). Core 

particles also contain hollow, turret-like pentamers of λ2 protein at each fivefold axis of 

symmetry (113). Core particles are transcriptionally active and can direct mRNA 

transcript synthesis in vitro (89, 135). However, it is thought that reovirus gene segments 

remain inside the core throughout the viral life cycle. Thus, λ2 turrets serve as channels 

through which mRNA transcripts are extruded during transcription (53). In addition, λ2 

functions as an mRNA capping enzyme, adding 5’ guanyl and methyl groups to nascent 

transcripts (29, 88, 135). 
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been cleaved are referred to as infectious subvirion particles (ISVPs) (Figure I-1). ISVPs 

also can be generated by treating virions with purified proteases, including cathepsins 

(47) and digestive enzymes such as trypsin and chymotrypsin (15, 47). Formation of 

ISVPs during cell entry requires the activity of host endosomal proteases (5, 133). 

Further proteolytic cleavage in cells results in removal of σ1 to generate a 

transcriptionally active species referred to as an ISVP* (20). The µ1N, µ1-φ, and µ1-δ 

species have hydrophobic domains that disrupt lipid bilayers, allowing ISVP*s to 

penetrate endosomal membranes and access the cytoplasm of infected cells (65, 87). 

Having already undergone disassembly, infection by in vitro-generated ISVPs are not 

blocked by inhibitors of endosome acidification and protease activity, such as ammonium 

chloride and E64 (5, 133).  Accordingly, ISVPs are also approximately two-fold more 

infectious than virions (103).  

 

Reovirus Attachment and Internalization 

The initial step in reovirus cell entry is the binding of the virus to cell-surface 

receptors via the σ1 attachment protein. Early studies showed that reovirus agglutinates 

erythrocytes, suggesting that the virus binds cell-surface carbohydrates (83). Subsequent 

studies revealed that type 3 reovirus strains bind sialic acid moieties on glycosylated 

proteins via a carbohydrate-binding domain in the body portion of σ1 (42, 52). A high-

resolution crystal structure of the T3D σ1 protein in complex with siallylactose was 

published in 2011 (114). There is evidence that type 1 reovirus strains also engage 

terminal sialic acid moieties (62), but the exact nature of the glycans bound by T1L and 

the carbohydrate-binding domain of T1L σ1 are still unclear. In addition to 
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carbohydrates, all reovirus serotypes utilize junctional adhesional molecule A (JAM-A) 

as a receptor (8). JAM-A is a member of the immunoglobulin protein superfamily that 

localizes to tight junctions linking polarized cells (86, 94, 146). Structural studies reveal 

that the head domain of σ1 binds JAM-A with nanomolar affinity (Figure I-2) (26, 58, 

76). Interestingly, a soluble sialic acid analogue inhibits reovirus infection at early but not 

late timepoints post-adsorption, whereas an antibody that blocks JAM-A binding inhibits 

infection at both early and late timepoints (7). These findings suggest a multi-step 

adhesion strengthening model in which initial, low-affinity binding to carbohydrates 

potentiates subsequent high-affinity interactions with JAM-A. Animals that lack JAM-A 

are susceptible to reovirus administered intracranially, suggesting the possibility of a 

CNS-specific reovirus receptor, but this molecule has yet to be identified.  

 

 

 

Figure I-2. Reovirus σ1-JAM-A binding. A model of full-length σ1 binding is shown 
with predicted portions of σ1depicted in grey and the known structure of the C-terminus 
shown in color. The reovirus receptor JAM-A is shown in green. Adapted from Kirchner, 
2008 (76). 
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Following σ1 binding to JAM-A, reovirus particles are internalized via 

endocytosis. Electron microscopy reveals internalized viral particles localized to 

structures resembling clathrin-coated pits (119, 133). Fluorescent microscopy also 

provides evidence of co-localization between reovirus and clathrin (50). Chlorpromazine, 

which selectively inhibits clathrin-mediated endocytosis, limits reovirus infectivity in cell 

culture (91), providing functional evidence for clathrin-dependent uptake of reovirus. 

However, it is still unclear how reovirus receptor binding initiates internalization. JAM-A 

constructs lacking a cytoplasmic tail, which is required for JAM-A intracellular signaling, 

are still capable of conferring reovirus infection, suggesting a role for other cell-surface 

molecules in reovirus internalization (90). There is evidence that β1 integrins are 

involved in reovirus internalization. There are RGD and KGE integrin-binding motifs in 

the reovirus λ2 protein, and treatment of permissive cells with antibodies against β1 

integrin diminishes reovirus infectivity (90).  However, direct interactions between 

reovirus particles and integrins have not been demonstrated, and the signal transduction 

events required to trigger reovirus internalization are as yet undefined. 

Internalized reovirus particles must access late endosomes containing the requisite 

proteases and acidic pH for proper disassembly. To do so, reovirus takes advantage of a 

series of vesicular sorting events mediated by Src-family tyrosine kinases. The role of Src 

in reovirus cell entry emerged following a screen in which genistein and PP2, a tyrosine-

kinase inhibitor and Src-family kinase inhibitor, respectively, were found to diminish 

reovirus infectivity (92). Cells pretreated with PP2 target reovirus virions to lysosomes 

instead of late endosomes where they are degraded, indicating that Src plays a key role in 

directing internalized particles to the proper compartment for disassembly. Rab GTPases 
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also function in vesicular sorting of reovirus and influence the fate of internalized 

reovirus virions (Figure I-3)(93). Fluorescently-labeled reovirus virions and JAM-A co-

localize in early endosomes marked by Rab5A and Rab5C. From there, virions proceed 

to either Rab7-marked late endosomes where productive disassembly occurs or Rab4- 

and Rab11-marked recycling endosomes that presumably return viruses to the cell 

surface. Transfecting cells with dominant-negative Rab5A, Rab5C, or Rab7 diminishes 

reovirus infectivity, but transfection with dominant-negative Rab4 and Rab11 does not, 

suggesting a functional requirement for Rab GTPases in sorting reoviruses to the proper 

compartments for productive infection (Figure I-3). Although some of the signaling 

events responsible for proper reovirus trafficking have been elucidated, the mechanisms 

by which reovirus induces or modulates this process are unclear.  
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.  

Figure I-3. Reovirus cell entry. After attachment to cell surface glycans and JAM-A, 
reovirus is internalized via receptor-mediated endocytosis using a mechanism dependent 
on β1 integrin. Reovirus traffics to early endosomes marked by Rab5A or Rab5C, where 
viral particles are sorted into productive or nonproductive entry pathways. Virions in the 
nonproductive pathway enter recycling endosomes marked by Rab4 or Rab11 and may 
return to the cell surface. Virions in the productive pathway enter endosomes marked by 
Rab7 or Rab9, where viral disassembly takes place. The disassembly intermediate 
penetrates endosomal membranes, releasing the transcriptionally active viral core into the 
cytoplasm. From Mainou and Dermody 2012 (93). 
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The Reovirus Disassembly Cascade 

Stepwise disassembly of reovirus virions within target cells is catalyzed by acid-

dependent cathepsin family members (47). Cathepsins are a family of approximately 

twelve proteases primarily localized to endocytic compartments (98). Several cathepsins, 

including cathepsin B and cathepsin L, are constitutively expressed in most cell types and 

play roles in protein turnover and MHC class II antigen processing (98). However, some 

cathepsins serve tissue-specific functions, including cathepsin K, which is primarily 

expressed by osteoclasts and is involved in bone remodeling, and cathepsin S, which is 

primarily secreted by immune cells (98, 149). Cathepsin L also has a specialized function 

in the thymus, where it is involved in removal of the invariant chain from MHC II 

molecules in cortical thymic epithelial cells, a process essential for the proper 

development of CD4+ and NK T cells (64, 102). Most cysteine-protease cathepsins are 

endopeptidases, but cathepsin B also has significant exopeptidase activity (98).  

The role of cathepsins in reovirus disassembly was foreshadowed by the 

observation that reovirus uncoating is acid-dependent (43, 133). Later studies identified 

σ3 proteolysis as the rate-limiting step in reovirus disassembly and noted that pan-

cysteine protease inhibitors block uncoating in cell culture (5). The role of cathepsins, 

particularly cathepsin B and cathepsin L, was definitively established by a previous 

graduate student in the Dermody laboratory, Dan Ebert. Ebert showed that inhibitors 

specific for cathepsin B and cathepsin L limit reovirus disassembly in fibroblasts and that 

the reciprocal addition of specific cathepsin inhibitors to cathepsin B- and cathepsin L-

deficient fibroblasts completely abrogated reovirus disassembly (47). 

Another series of experiments by a different graduate student in the Dermody lab, 
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Elizabeth Johnson, probed the role of cathepsins in disease pathogenesis using mice 

deficient for cathepsins B, L, or S (Ctsb-/-, Ctsl-/-, and Ctss-/-, respectively) (71).  Given 

the essential requirement for proteolysis in reovirus cell entry, Johnson hypothesized that 

cathepsin-deficient animals would be protected from reovirus challenge. Indeed, Ctsb-/- 

animals have higher survival rates than wildtype animals following reovirus infection, 

and peak viral titers in all three cathepsin-deficient strains are lower than those in 

wildtype mice. However, reovirus clearance is delayed in Ctsl-/- and Ctss -/- animals, 

likely due to the involvement of those proteases in T cell maturation and macrophage 

function, respectively. The immunodeficiencies imposed by cathepsin ablation thus 

complicate analysis of viral substrate-protease interactions in reovirus pathogenesis. This 

study also showed that mice pre-treated with cathepsin L-specific inhibitor CLIK-148 

have higher survival rates than control animals, suggesting that transient protease 

inhibition may be a viable therapeutic strategy for viruses reliant on cathepsins for cell 

entry (71). 

 
Sigma 3 is a Key Protease Substrate 

The initial step in reovirus disassembly is the proteolysis of outer-capsid protein 

σ3. Following σ3 cleavage, the reovirus disassembly cascade proceeds, eventually 

culminating in endosomal membrane penetration. Sigma 3 is a globular protein, 365 

residues in length, encoded by the S4 gene segment. A crystal structure of T3D σ3 was 

obtained in 2001 (109). The molecule is generally organized into a virion-proximal 

domain that binds µ1 and tethers the protein to the virion surface and a solvent-exposed 

virion-distal domain (109) (Figure I-4). There is substantial sequence identity between 

T1L and T3D σ3 proteins, with only 12 amino acids differing between the two (73). In 
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vitro biochemical studies suggest that σ3 proteolysis proceeds in a tightly regulated, 

stepwise fashion. Treatment of T1L σ3 with purified cathepsin L in vitro leads to an 

initial cleavage of σ3 at its extreme C-terminus, generating a species that migrates 

slightly faster when resolved by polyacrylamide gel electrophoresis (47). Further 

cathepsin L cleavage generates two fragments of approximately 29 kDa and 13 kDa, 

corresponding to the N- and C-termini, respectively. Protein sequencing of the cleavage 

products identified internal cathepsin L cleavage sites that reside between residues 243-

244 and 250-251 (47) (Figure I-4). It is still unclear whether both or neither of these 

cleavage sites are utilized in vivo. However, these sequences fall within a so-called 

“protease-hypersensitive domain” of the protein that contains cleavage sites for several 

other proteases including chymotrypsin, proteinase K, and thermolysin (70, 96). Cleavage 

at these internal sites globally disrupts σ3 structure and results in the removal of σ3 from 

the virion. Together, these data suggest a model in which an initial, rate-limiting protease 

cleavage event occurs at the σ3 C-terminus, removing it from the molecule and exposing 

internal sites for subsequent cleavage events.  
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of cathepsins B and L, providing a mechanism of selection for viruses with accelerated 

disassembly kinetics (48). In subsequent studies, reovirus variants adapted to replication 

in the presence of the weak base, ammonium chloride, and the pan-cysteine protease 

inhibitor, E64, were found to contain the same σ3-Y354H mutation and undergo 

proteolysis more rapidly than wildtype virus (5, 27, 49). Together, these studies indicate 

that σ3-Y354H arises readily in response to protease-limiting selection pressure and 

induces a highly penetrant rapid disassembly phenotype by promoting σ3 proteolysis. 

However, σ3-Y354H is absent from primary reovirus isolates, with a single documented 

exception, type 3 Abney (T3A) σ3 (73), suggesting σ3-Y354H faces limiting selection in 

circulating strains. It is plausible that enhanced sensitivity to protease correlates with 

diminished biochemical capsid stability, thus reducing viral fitness by diminishing 

environmental persistence or infectivity from fomite surfaces. 

Tyr354 is located in the σ3 C-terminal domain in close proximity to the putative 

C-terminal cathepsin cleavage site (109). The σ3 C-terminus opposes a hydrophobic 

pocket in the virion-distal domain of σ3. It is hypothesized that substitution of the mildly 

hydrophobic tyrosine at position 354 with the polar histidine destabilizes intramolecular 

interactions of the σ3 C-terminus. In support of this hypothesis, cryo-EM analysis of a 

reovirus isolate containing σ3-Y354H, PI 3-1, revealed that the PI 3-1 σ3 structure differs 

markedly from that of its parent virus, T3D (147). A cleft normally formed between the 

virion-proximal and virion-distal domains of σ3 is occluded in PI 3-1 σ3, the excess 

density there perhaps representing the dislocated σ3 C-terminal domain.  Rearrangement 

of the C-terminal domain by Y354H may obviate the need for an initial C-terminal 
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cleavage event, affording protease molecules direct access to the internal cleavage sites, 

leading to rapid σ3 proteolysis.  

With the advent of reverse genetics it became possible to introduce σ3-Y354H 

into an otherwise isogenic background, creating rsT3D-σ3Y354H  (77). This virus 

replicates efficiently in the presence of E64 and displays accelerated disassembly kinetics 

when treated with exogenous protease, supporting the conclusion that residue 354 is 

capable of independently regulating σ3 proteolysis. 

 

Reovirus Pathogenesis 

Newborn mice are susceptible to reovirus infection and commonly used for 

studies of reovirus pathogenesis. Following peroral inoculation, reovirus replicates 

efficiently in the intestinal epithelium (3, 9, 118). Reovirus virions in the intestine 

undergo extracellular disassembly to ISVPs, a process catalyzed by digestive enzymes (2) 

and inhibited by peroral administration of protease inhibitors (2, 10). However, T3D does 

not efficiently infect mice per orum, likely because the T3D σ1 protein is hypersensitive 

to cleavage by digestive proteases (25, 103).  

Reovirus disseminates throughout an infected host via both hematogenous and 

neural routes. Hematogenous spread from the intestine involves the lymphoid tissue of 

intestinal Peyer patches, which reovirus accesses via transcytosis through overlying 

microfold (M) cells (148). Type 1 reoviruses disseminate primarily via the hematogenous 

route, but it is unclear whether bloodstream-borne virus is cell-associated, and if so, what 

cells are involved in dissemination. In addition to hematogenous dissemination, type 3 

reoviruses are neurotropic and access the CNS via peripheral nerves (100). Sectioning of 
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the sciatic nerve in animals inoculated in the hindlimb with type 3 reovirus prevents virus 

access to the spinal cord (137) but not the brain(13), suggesting type 3 viruses also access 

the brain via the bloodstream. 

Apoptosis is an important means of tissue injury in reovirus-infected animals. 

Reovirus induces apoptosis in cell culture and in vivo (40, 115, 116, 139) using a process 

that requires virion-to-ISVP disassembly (31). Furthermore, membrane penetration by µ1 

cleavage products µ1-φ and µ1-δ is required for apoptosis induction (35, 36). The finding 

of an isoleucine-to-lysine mutation in the µ1-φ domain that abrogates apoptosis induction 

but not membrane penetration suggests that µ1-φ induces apoptosis directly (35). Indeed, 

transient expression of isolated µ1-φ is sufficient to induce apoptosis in cell culture (30). 

T3D induces apoptosis more efficiently than does T1L, a difference that segregates with 

the S1 and M2 genes encoding σ1 and µ1, respectively (116, 140). Reovirus-mediated 

apoptosis requires NF-κB activation in most cell types (32), although there are important 

exceptions to this requirement, particularly in cardiac myocytes (28, 106). 

The brain is an important end organ for reovirus infection. Type 3 reovirus strains 

are neurotropic (143, 144), disseminate to the brain via both hematogenous and neural 

routes (3, 14), and induce a characteristic pattern encephalitis in infected animals (67). 

Type 3 strains infect neurons, in particular, in the pyramidal layers of the hippocampus 

and the Purkinje neurons of the cerebellum (3), resulting in a lethal encephalitis. Type 3 

reovirus infection also damages neurons in the spinal cord, resulting in flaccid paralysis 

of the limbs of infected animals (57). Neurotropic reoviruses induce apoptosis in neurons 

both in cell culture and in vivo (36, 37, 56, 66, 107, 115), accounting for most of the 

reovirus-mediated damage in the CNS.  Reovirus neuronal infection is independent of 
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both sialic acid (9) and JAM-A (3), suggesting that type 3 reovirus strains utilize an as-

yet unidentified neural receptor. Type 1 reovirus strains also replicate in the brain of 

infected animals, but they primarily infect ependymal cells lining the ventricles of the 

brain, resulting in hydrocephalus (142) (14). 

Reovirus reaches high titers in the hearts of infected animals and replicates 

efficiently in cultured cardiac myocytes (11, 124). Some reovirus strains induce 

significant cardiac injury with characteristic dystrophic calcification (127), a capacity that 

correlates with replication in cardiac myocyte cultures (11, 95), suggesting that cardiac 

injury in infected animals is directly attributable to virus-induced cellular damage. 

Reovirus is capable of myocardial injury in both immunocompetent mice and mice 

lacking either T cells (127) or T and B cells (126), indicating that adaptive immunity is 

not involved in reovirus myocarditis. However, there is ample evidence implicating 

interferon (IFN) as a modulator of reovirus-mediated myocarditis. Mice deficient in NF-

κB subunit p50 (106), PKR  (131), IRF1 (4), and IRF3(63) sustain enhanced cardiac 

injury following reovirus infection. Studies using reassortant reovirus strains indicate that 

the capacity to produce heart injury and replicate in cultured cardiac myocytes segregates 

with the viral S1, M1, L1, and L2 genes, encoding σ1, μ2, λ3, and λ2, respectively (95, 

125, 127). Furthermore, μ2 suppresses IFN function by interfering with IRF9-stimulated 

interferon-stimulated gene (ISG) expression (151). Apoptosis induction also may play a 

role in reovirus-mediated myocarditis, as strain-specific differences in myocarditic 

capacity correlate with induction of apoptosis in cultured cardiac myocytes(97). Finally, 

cardiac damage in infected animals is greatly diminished by treatment with calpain- and 
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caspase-specific inhibitors, underscoring a role for apoptosis in reovirus myocarditis (38, 

40). 

 

Significance of the Research 

Reovirus cell entry depends on enzyme-substrate interactions between host 

proteases and the viral outer capsid. The capsid protein σ3 is structurally and 

biochemically constrained by its required proteolysis at the appropriate time and place in 

an infected host. My dissertation research focused on the mechanisms that determine σ3 

protease sensitivity, and in turn, how those mechanisms work to balance reovirus outer 

capsid stability at an optimal level for viral fitness. Furthermore, I am interested in the 

influence of protease utilization in reovirus disease pathogenesis.  

Reovirus is not commonly associated with human disease. However, discoveries 

made using reovirus have applications to the study of other virus families, often in 

unanticipated fashion. For instance, the finding that cathepsins B and L are involved in 

reovirus disassembly was the first documentation of endosomal cathepsins mediating 

viral cell entry events. Since that discovery, cathepsins have been described in the entry 

pathways of several other viruses, including significant human pathogens such as the 

paramyxoviruses Hendra virus (111) and Nipah virus (44), the flavivirus Japanese 

encephalitis virus (99), and Ebolavirus (22). Cathepsins and other proteolytic enzymes 

are amenable to transient blockade and may thus represent attractive therapeutic targets, 

particularly for virulent pathogens for which treatment options are limited. Indeed, work 

conducted in our lab has shown that mice treated with a cathepsin-L-specific inhibitor 

tolerate the drug well and are protected from lethal reovirus challenge. Thus, enhancing 
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an understanding of protease-substrate interactions in the reovirus system may provide 

tangible benefits to studies of viruses more commonly associated with human disease. 

Reovirus preferentially infects transformed cells in culture, suggesting its 

potential development as a cancer therapeutic. Treatment with reovirus impairs tumor 

growth in animal models and is well tolerated by human patients. In fact, type 3 Dearing 

(Reolysin™) is currently in Phase 3 clinical trials as an adjunct therapy for a variety of 

solid tumors (54, 74, 80). Although the precise mechanisms responsible for reovirus-

mediated cytotoxicity in transformed cells are unclear (132), there are several pieces of 

evidence suggesting that proteolytic disassembly is key (1). Cathepsins and other cellular 

proteases are frequently upregulated and secreted in neoplastic tissues, leading to the 

hypothesis that the highly proteolytic milieu in the tumor microenvironment leads to 

rapid disassembly and enhanced reovirus-mediated cytotoxicity (1). Greater 

understanding of the interplay between cellular proteases and the reovirus outer capsid 

may facilitate refinements in oncolytic reovirus vector design. 

Capsid protein rearrangement is an essential part of the replication cycle of most 

nonenveloped viruses. Accordingly, the ease with which capsid disassembly occurs is a 

quantifiable biophysical property of the virus particle and is likely to affect 

environmental persistence and transmission. It is also possible that ease of disassembly 

influences viral tissue tropism, kinetics of systemic dissemination, or any of a variety of 

factors that determine patterns of viral-mediated disease. However, very little is known 

about how altering viral capsid stability affects patterns of viral disease. With well-

defined disassembly intermediates, a robust animal model, and facile reverse genetics, 
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reovirus is an excellent system for investigating capsid stability in nonenveloped viral 

pathogenesis.   

To identify determinants of reovirus capsid stability, I focused on the outer-capsid 

protein σ3. We had previously identified a single tyrosine-to-histidine residue in the σ3 

C-terminus, Y354H, as a critical regulator of σ3 protease sensitivity. This mutation is 

absent from circulating strains, with a single exception, strain T3A. However, T3A 

displays wildtype disassembly kinetics, supporting the conclusion that capsid stability is 

tightly regulated and suggesting the presence of a second-site Y354H suppressor. Using 

reverse genetics, I generated a panel of reovirus mutants incorporating T3A σ3 

polymorphisms in the context of Y354H and identified a second determinant of σ3 

protease sensitivity, the residue at position 198. Altering the glycine at residue 198 to a 

glutamate or a bulky hydrophobic residue ablated the Y354H disassembly phenotype, 

indicating that the two residues act in concert to control σ3 protease sensitivity. 

Given the apparent fitness disadvantage imposed by σ3-Y354H, I tested whether 

viruses containing that mutation display altered disease in inoculated mice. I 

hypothesized that Y354H might limit reovirus-induced disease, impairing shedding and 

reducing host-to-host spread. Surprisingly, I found that viruses containing Y354H 

disseminated more rapidly than wildtype reovirus and induced greater lethality. 

Moreover, I observed that mice inoculated with Y354H mutant strains produced 

significantly greater cardiac injury than those infected with wildtype reovirus when 

administered perorally. Finally, I found that littermates of mice inoculated with σ3-

Y354H-containing virus had greatly enhanced disease compared with littermates of mice 
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inoculated with wildtype virus, suggesting that diminished capsid stability imposed by 

σ3-Y354H actually enhances host-to-host spread.  

Together, these studies provide new insights into the mechanisms by which 

reovirus modulates the stability of its outer capsid and established σ3 proteolysis as a key 

determinant of reovirus-mediated disease. Ultimately, this work may offer novel insights 

into our understanding of the disease pathogenesis of nonenveloped viruses and lead to 

improved reovirus therapeutics. 
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CHAPTER II 

 

TWO POLYMORPHIC RESIDUES IN SIGMA 3 CONTROL 
PROTEASE SUSCEPTIBILITY AND CAPSID STABILITY 

 

Introduction 

 The rate-limiting step in reovirus disassembly is the proteolysis of σ3, a 

component of the viral outer capsid. A single mutation in the σ3 C-terminus, σ3-Y354H, 

arises readily in response to protease-limiting selection and enhances the kinetics of 

proteolysis by altering σ3 structure (147). However, circulating strains of reovirus lack 

σ3-Y354H with the exception of T3A. Preliminary experiments showed that T3A is 

equally sensitive to the protease inhibitor E64 as T3D, suggesting that the σ3-Y354H 

phenotype is dampened in some way. Several σ3 residues are polymorphic between T3A 

and T3D, and I hypothesized that one of these polymorphisms in the T3A σ3 protein 

might oppose σ3-Y354H and negate its effect on disassembly. To test this hypothesis, I 

generated a panel of reovirus variants incorporating each σ3 polymorphism in the context 

of σ3-Y354H and tested their protease sensitivity, specific infectivity, particle stability, 

and kinetics of endosomal escape. I discovered that σ3 position 198, a glycine in T3D, 

suppresses Y354H when mutated to a glutamate, as in T3A σ3. I also observed the 

emergence of de novo tryptophan and valine mutations at position 198 that also 

suppressed Y354H, supporting the conclusion that Y354H imposes a fitness penalty on 

reovirus replication that is rescued by mutations at position 198. Finally, I demonstrated 

that purified virions containing unsuppressed His354 lost titer more rapidly when 
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exposed to heat than those with Tyr354, establishing a link between accelerated σ3 

protease sensitivity and diminished reovirus biophysical stability. 

 

Results 

 T3A and T3D are sensitive to protease inhibitor E64. The deduced amino acid 

sequences of T3A and T3D σ3 proteins contain eight polymorphic residues (Table II-1). 

Several of the T3A-T3D polymorphic residues including 354 are found in the virion-

distal region of σ3, which is predicted to be accessible to protease (Figure II-1). To 

determine whether the Y354H polymorphism in T3A σ3 confers resistance to protease 

inhibitors, I tested the capacity of T3A, T3D, and T3D-σ3Y354H to grow in the presence 

of protease inhibitor E64. L929 cells were incubated in medium supplemented to contain 

100 μM or 200 μM E64, adsorbed with T3A, T3D, and T3D-σ3Y354H, and incubated in 

the presence or absence of E64 for 24 h. Cells were lysed and viral titers in cell lysates 

were determined by plaque assay (Figure II-2). Despite the presence of histidine at 

position 354 in T3A σ3, yields of T3A were reduced 259-fold, approximating the 

reduction observed for T3D,195-fold, in the presence of 100 μM E64, whereas yields of 

T3D-σ3Y354H were diminished less than 10-fold at this E64 concentration. Replication 

of T3A and T3D was completely ablated in the presence of 200 μM E64, but yields of 

T3D-σ3Y354H were not further diminished. These findings suggest that one or more of 

the additional polymorphisms displayed by T3A σ3 suppresses the Y354H phenotype and 

restores optimal σ3 stability. 
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TABLE II-1. Polymorphic residues between T3A and T3D σ3. T3A and T3D differ at 
the eight indicated positions in the σ3 open reading frame. 
 
 

Amino Acid Position 28 108 180 198 215 233 347 354 

T3A Thr Ala Val Glu Asn Leu Thr His 

T3D Ala Glu Ile Gly Ser Ser Ile Tyr 

 

 
FIGURE II-1. Location of polymorphic residues in strains T3A and T3D σ3 proteins. A 
crystal structure of T3D σ3 (109) is shown highlighting polymorphic residues in T3A and 
T3D σ3 proteins, including Tyr354 (dark green), which is altered in reovirus variants 
selected for enhanced disassembly kinetics (27, 49, 145). The virion-distal domain of σ3 
including the C-terminus (depicted in red) is at the top of the figure. The virion-proximal 
region including the N-terminus is at the bottom. Putative cathepsin L cleavage sites 
(determined for strain T1L) between amino acids 243 and 244 and between 250 and 251 
are depicted in black (47).  
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G198E confers susceptibility to E64 in the context of Y354H. To identify residues 

in T3A σ3 that suppress the capacity of the Y354H polymorphism to confer viral growth 

in the presence of protease inhibitors, I engineered a panel of reovirus variants that 

incorporate single T3A-T3D polymorphisms in the context of T3D-σ3Y354H but are 

otherwise isogenic with T3D (Table II-2). Despite several attempts, I could not recover 

T3D-σ3A28T,Y354H. In addition, T3D-σ3 S233L,Y354H was recovered only with a 

concomitant glycine-to-tryptophan mutation at position 198 of σ3. Each of the other 

variants was rescued and propagated to high-titer working stocks. 

I tested each of the variant viruses for replication in the presence of E64      

(Figure II-3). As before, yields of T3A and T3D were diminished substantially by this 

inhibitor, whereas yields of T3D-σ3Y354H were only modestly impaired. Similarly, 

yields of T3D-σ3E108A, T3D-σ3I180V, T3D-σ3S215N, and T3D-σ3I347T were only 

slightly diminished by E64. In sharp contrast, yields of T3D-σ3G198E,Y354H were 

markedly decreased in the presence of E64, approximating those of T3A and T3D. These 

findings suggest that a glycine-to-glutamic acid mutation at position 198 independently 

suppresses the Y354H phenotype in T3A and limits its sensitivity to the protease 

inhibitor E64. 
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TABLE II-2. Reovirus variants in which polymorphic residues in T3D σ3 are exchanged 
with those in T3A σ3. Reovirus variants were engineered using plasmid-based reverse 
genetics. Each reovirus variant is isogenic with T3D with the exception of His354 and a 
single additional T3A residue as shown. Italics indicate viruses that were not successfully 
recovered. 

 

 

Amino Acid Position 28 108 180 198 215 233 347 354 

T3D A E I G S S I Y 

T3A T A V E N L T H 

T3D-σ3Y354H A E I G S S I H 

T3D-σ3A28T,Y354H T E I G S S I H 

T3D-σ3E108A,Y354H A A I G S S I H 

T3D-σ3I180V,Y354H A E V G S S I H 

T3D-σ3G198E,Y354H A E I E S S I H 

T3D-σ3S215N,Y354H A E I G N S I H 

T3D-σ3S233L,Y354H A E I G S L I H 

T3D-σ3I347T,Y354H A E I G S S T H 
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FIGURE II-3. E64 susceptibility of T3A-T3D variant viruses. Monolayers of L929 cells 
were preincubated for 4 h in medium supplemented with or without E64 at the 
concentrations shown. The medium was removed, and cells were adsorbed with virus at 
an MOI of 2 PFU per cell. After adsorption for 1 h, the inoculum was removed, and fresh 
medium with or without E64 was added. After incubation at 37°C for 24 h, cells were 
frozen and thawed twice, and viral titers were determined by plaque assay. The results are 
presented as the mean viral yields, calculated by dividing titer at 24 h by titer at 0 h for 
each concentration of E64, for triplicate experiments. Yields of less than zero are not 
shown. Error bars indicate SD.  
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Cathepsin L sensitivity of T3A-T3D variant viruses. Cathepsin proteases catalyze 

reovirus disassembly within cellular endosomes (47, 71). To determine whether T3A-

T3D polymorphisms alter capsid disassembly when treated with endosomal proteases, I 

digested virions of T3A, T3D, T3D-σ3Y354H, and the T3A-T3D variants in vitro with 

purified human cathepsin L (18). At 30-min intervals, aliquots were removed from the 

digestion mixtures, and viral proteins were resolved by SDS-PAGE and visualized using 

colloidal blue staining (Figure II-4A). Intensity of the band corresponding to σ3 remained 

relatively constant for T3A and T3D over the 240-min time course, as did the band 

corresponding to μ1C. However, in these experiments, T3D-σ3Y354H displayed almost 

complete loss of σ3 protein within 60 min. In addition, the band corresponding to μ1C in 

T3D-σ3Y354H diminished in intensity over the course of protease treatment, and the 

appearance of a band corresponding to the δ fragment of μ1C was noted for this virus. 

Each of the variant viruses was observed to undergo disassembly with kinetics similar to 

those of T3D-σ3Y354H (Figure II-4A) with the exception of T3D-σ3G198E,Y354H, 

which displayed a digestion profile similar to that of T3A and T3D. 
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FIGURE II-4A. Digestion of reovirus strains with cathepsin L. A. Purified virions were 
treated with human cathepsin L (18) for the intervals shown and loaded into wells of 4-
20% gradient polyacrylamide gels. After electrophoresis, the gels were stained with 
colloidal blue (Invitrogen). Viral proteins μ1C, δ, σ2, and σ3 are labeled at the left. The 
experiments shown are representative of two performed for each virus. 
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FIGURE II-4B. Digestion of reovirus strains with cathepsin L. B. Intensities of bands 
corresponding to reovirus proteins were quantified using the Odyssey software package 
(Li-Cor). Results are expressed as the ratio of σ3 band intensity to σ2 band intensity to 
control for differences in loading for two independent experiments. Error bars indicate 
SD.  
 

 

Specific infectivity of reovirus variants. I next considered the possibility that one 

or more of the σ3 polymorphisms in our panel of variant reovirus strains might affect 

assembly of σ3 onto nascent virions and thus compromise infectivity. To test this 

hypothesis, I examined the specific infectivity of our variant panel by calculating 

particle/PFU ratios for several independent preparations of each virus (Figure II-5). I 

observed that most of the virion stocks tested displayed particle/PFU ratios between 100 

and 500, consistent with reported values for type 3 reovirus strains (60) and our previous 
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observations (Dermody, unpublished observations). Although we observed some prep-to-

prep variation, there were no significant differences between the variant and parental 

viruses (ANOVA, P > .05). I concluded that the σ3 mutations introduced in our variant 

panel do not substantially affect reovirus replicative efficiency and thus likely do not alter 

capsid assembly. 

 

 
 
 
 
 
FIGURE II-5. Infectivity of reovirus variants. Purified virions of variant viruses were 
generated from independent cultures of L929 cells (approximately 4 × 108 cells) using 
CsCl-gradient centrifugation. Particle number was quantified using the equivalence 1 
O.D.260 = 2.1 × 1012 particles/mL. The titer of each preparation was determined by plaque 
assay. The results are presented as particle/PFU ratio. Data points indicate independent 
viral purifications. 
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Outer capsid mutations affect reovirus heat sensitivity. To assess whether the 

differences in protease sensitivity of our variant viruses correlate with biochemical 

measures of capsid stability, I determined the relative loss of titer of our variant panel 

following heat treatment. Samples of each virus were diluted to a titer of 2 × 108 and 

placed at 55°C for 1 h. Aliquots were removed at 15-min intervals, and titers were 

determined by plaque assay (Figure II-6). I observed that T3D-σ3Y354H lost titer more 

rapidly at elevated temperature than did either T3A or T3D. Additionally, each of the 

variant viruses tested lost titer at rates similar to T3D-σ3Y354H, again with the exception 

of T3D-σ3G198E,Y354H. The titer of that virus diminished at a rate commensurate with 

that observed for T3A and T3D. The fact that enhanced protease sensitivity and altered 

sensitivity to heat are correlated in the context of Y354H suggests that this residue 

controls both properties through a common structural mechanism. 
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FIGURE II-6. Resistance of reovirus variants to inactivation by heat. Purified virions of 
reovirus variants were diluted to a concentration of 2 ×108 particles per ml in virion 
storage buffer and incubated at 55°C for 60 min. At 15-min intervals, samples were 
removed and placed on ice for 15 min. Titers were determined by plaque assay. Results 
are presented as percent of mean viral titer of untreated samples per interval of 
incubation, for triplicate experiments. Error bars indicate SD; *, P ≤ .05 in comparison 
with T3D.  
 
 

Enhanced outer-capsid protease sensitivity facilitates endosomal escape. 

Following binding to cell-surface receptors, reovirus particles are thought to be 

internalized via clathrin-dependent endocytosis (16, 17, 50, 91). Cleavage of σ3 by 

endosomal cathepsins is required for particle disassembly and subsequent escape from 

the endosome into the cytoplasm (5, 6, 20, 24, 47, 68, 129) . To determine whether the 

enhanced susceptibility to proteolytic cleavage mediated by σ3-Y354H alters the kinetics 

with which reovirus particles escape host cell endosomes, I took advantage of the fact 

that reovirus disassembly is abrogated by preventing the pH drop required for efficient 
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cathepsin cleavage while intact particles are still resident in endosomes (43, 133). I 

adsorbed monolayers of L929 cells with variant reovirus strains at 4°C for 1 h to 

synchronize viral attachment, warmed the cells to 37°C, and added ammonium chloride 

at various intervals following warming to prevent endosome acidification. Cells were 

incubated overnight and scored for viral infectivity by indirect immunofluorescence 

(Figure II-7). Variant viruses containing the σ3-Y354H mutation, with the exception of 

T3D-σ3G198E,Y354H, escaped ammonium chloride blockade approximately 45 min 

earlier than either T3A or T3D. These findings indicate that enhanced outer-capsid 

protease sensitivity accelerates access of reovirus to the cytoplasm for subsequent steps in 

its replication cycle. 
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FIGURE II-7. Kinetics of ammonium chloride bypass by reovirus variants. Monolayers 
of L929 cells were adsorbed with reovirus variants at an MOI of 25 PFU per cell at 4°C. 
After adsorption for 1 h, the inoculum was removed, fresh pre-warmed medium was 
added, and cells were warmed to 37°C. At the times shown post-adsorption, ammonium 
chloride was added to a final concentration of 25 mM. After incubation at 37°C for 20 h, 
cells were fixed with methanol at -20°C, and infectivity was assessed by indirect 
immunofluorescence. The results are presented as percent of cells infected, normalized to 
untreated wells, for triplicate experiments. Error bars indicate SD. 
 
 

 

Residue 198 second-site changes. One of the variant viruses, T3D-

σ3S233L,Y354H, could be recovered only in combination with a glycine-to-tryptophan 

substitution at position 198. In addition, multiple isolates of T3D-σ3I347T,Y354H 

contained de novo glycine-to-valine mutations at position 198. To determine whether 
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these second-site mutations affect reovirus disassembly, I tested the effect of E64 

treatment on the replication of variants containing these alterations (Figure II-8). Viruses 

containing either Val198 or Trp198 in the context of Y354H had modestly enhanced E64 

sensitivity in comparison to that of T3D-σ3Y354H. In particular, introduction of Val198 

restored the E64 sensitivity of T3D-σ3G198V,I347T,Y354H to that of T3D. The E64 

sensitivity of T3D-σ3G198W,S233L,Y354H was intermediate between that of T3D and 

T3D-σ3Y354H, althoughT3D-σ3G198W,S233L,Y354H produced lower peak titers in 

the absence of protease inhibitor than did T3D. These findings underscore the importance 

of residue 198 in determining σ3 stability and suggest that the molecular basis of Y354H 

suppression may differ depending on the biochemical nature of the amino acid at that 

position. 
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FIGURE II-8. E64 sensitivity of reovirus strains with second-site mutations. Monolayers 
of L929 cells were preincubated for 4 h in medium supplemented with or without E64 at 
the concentrations shown. The medium was removed, and cells were adsorbed with 
reovirus strains at an MOI of 2 PFU per cell. After adsorption for 1 h, the inoculum was 
removed, and fresh medium with or without E64 was added. After incubation at 37°C for 
24 h, cells were frozen and thawed twice, and viral titers were determined by plaque 
assay. The results are presented as the mean viral yields, calculated by dividing titer at 24 
h by titer at 0 h for each concentration of E64, for triplicate experiments. Yields of less 
than zero are not shown. Error bars indicate SD. 
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Discussion 

Nonenveloped viruses must undergo particle disassembly to initiate an infectious 

cycle. The rate-limiting step in reovirus disassembly is the enzyme-mediated cleavage of 

σ3 protein in endosomes of infected cells (5, 17, 24, 129, 133). Surface features of σ3 that 

influence its capacity to serve as an enzyme substrate are not well understood. A single 

mutation in reovirus T3D σ3 protein, Y354H, enhances susceptibility of the reovirus 

virion to protease and confers viral resistance to protease inhibitors (5, 27, 49, 147). 

Structural evidence suggests that enhanced susceptibility to protease conferred by Y354H 

is due to an intra-molecular rearrangement of domains in σ3 that enhances access to 

internal protease-cleavage sites (147). However, this model has not been explicitly tested. 

Selection of reovirus mutants under conditions that diminish endosomal protease activity 

yields viruses containing the σ3-Y354H mutation (5, 27, 49), suggesting that capsid-

destabilizing mutations are advantageous in certain settings. The importance of capsid 

stability in other phases of the reovirus life cycle is unclear. 

In this study, I identified a new surface determinant of reovirus capsid stability 

located at position 198 in σ3. To our knowledge, reovirus strain T3A is the only field-

isolate reovirus strain reported to date that contains a histidine at position 354 (73). Based 

on previous understanding of the phenotype of virus strains containing σ3-Y354H, I 

anticipated that T3A would be resistant to protease inhibitors and display enhanced 

susceptibility to proteases in comparison to T3D. Surprisingly, I found that T3A has E64 

sensitivity similar to that of T3D despite the presence of His354 in σ3. I also observed 

that T3A and T3D have similar in vitro disassembly kinetics when treated with the 
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endosomal protease cathepsin L. Based on these observations, I hypothesized that other 

residues in T3A σ3 that differ from T3D σ3 suppress the Y354H phenotype. 

I used plasmid-based reverse genetics to generate a panel of reovirus variants to 

test the contributions made by each T3A-T3D polymorphic residue to capsid stability in 

an otherwise isogenic background that includes Y354H. Despite numerous attempts, a 

virus containing an aspartate-to-threonine change at position 28, T3D-σ3D28T,Y354H, 

could not be recovered. Amino acid 28 is located in a virion-proximal domain of σ3 

(Figure II-1) that is important for interactions of σ3 with µ1 during virion assembly (85). 

It is possible that mutations at position 28 impair interactions between σ3 and μ1 (85), 

hindering recovery of T3D-σ3D28T,Y354H. The recovered variant viruses had no overt 

defects in replication or specific infectivity (Figure II-5). All of the T3A-T3D variant 

viruses are resistant to cysteine-protease inhibitor E64 and thus phenocopy T3D-

σ3Y354H, except the virus containing a glycine-to-glutamate change at position 198, 

T3D-σ3G198E,Y354H. Yields of T3D-σ3G198E,Y354H are markedly diminished in 

cells treated with E64. Concordantly, all members of the T3A-T3D variant panel except 

T3D-σ3G198E,Y354H display kinetics of digestion by cathepsin L similar to T3D-

σ3Y354H.  Moreover, I also observed that all of the variant viruses escape an endosomal 

infectivity block more rapidly than T3A or T3D, again excepting T3D-σ3G198E,Y354H. 

Together, these results provide strong evidence that suppression of the Y354H phenotype 

in T3A is solely attributable to the glycine-to-glutamate polymorphism at position 198. 

Another virus, T3D-σ3S233L,Y354H, could be recovered only with an 

accompanying glycine-to-tryptophan mutation at position 198. In addition, four of the 

seven T3D-σ3I347T,Y354H clones sequenced contained a second-site mutation at 
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position 198, specifically, a glycine-to-valine substitution. I found that T3D-

σ3G198W,S233L,Y354H and T3D-σ3G198V,I347T,Y354H had increased E64 

susceptibility in comparison to that of T3D-σ3Y354H, although neither virus was as 

sensitive to this protease inhibitor as was T3A or T3D. The observation of two different, 

independently arising mutations at position 198 in σ3 supports the conclusion that residue 

198 is a key determinant of σ3 protease susceptibility. It is plausible that mutations at 

positions 233 and 347 enhance selection of Y354-suppressive mutations, perhaps by 

further destabilizing σ3. 

 

 
 
 
 
FIGURE II-9. Residues 198 and 354 define an amino acid network regulating σ3 
proteolysis. The virion-distal domain of T3D σ3 is shown. The C-terminus is depicted in 
red. Glu198 and His354 are modeled in yellow and green, respectively, and are drawn in 
stick representation. The amino acids corresponding to the two putative cathepsin L 
cleavage sites, residues Val243-Thr244 and Gly250-His251 (47), are shown in stick 
representation. 

 

 



43 
 

The σ3 C-terminus is thought to control the rate of σ3 cleavage by restricting 

protease access to cleavage sites located internally within the protein (47, 85, 147). The 

C-terminal domain of σ3 localizes to a solvent-exposed surface of the σ3/μ1 

heterohexamer and is not predicted to directly interact with other viral proteins (85). 

There is some structural evidence suggesting that the Y354H mutation accelerates σ3 

cleavage by dislocating the σ3 C-terminus, affording easier access to internal cleavage 

sites (147). The observation that residue 198 suppresses Y354H indirectly supports this 

model (Figure II-9). The σ3 C-terminus (red) covers the cleavage sites (black) located 

between residues 243-244 and 250-251. Substitution of Tyr354 in the C-terminus (green) 

with histidine, a basic amino acid, may disrupt hydrophobic interactions required for 

proper folding of the σ3 C-terminus. Low-resolution cryo-EM reconstructions of σ3-

Y354H reveal added density in a hinge region between the virion proximal and virion 

distal σ3 lobes that is absent in T3D σ3 (147). This increase in density may represent the 

dislocated C-terminus of the molecule. Residue 198 in σ3 is located on a loop directly 

opposed to residue 354. It is possible that the glycine-to-glutamate polymorphism 

observed in T3A stabilizes the C-terminus through charge-charge interactions with 

His354. Substitution of residue 198 with hydrophobic amino acids, such as tryptophan 

and valine as observed in this study, also may stabilize the σ3 C-terminus, perhaps by 

steric interactions that limit its mobility. The finding that alterations at positions 233 and 

347 elicit compensatory hydrophobic mutations at position 198 suggests that more 

complex intra-molecular rearrangements of σ3 may occur in those viruses. Interestingly, 

a virus selected for growth in the presence of E64, D-EA3, contains two mutations in σ3, 

the expected Y354H and a glycine-to-arginine change at position 198 (49). In that study, 
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Arg198 failed to suppress Y354H, perhaps because it fails to neutralize the basic charge 

of His354. Although my results suggest that σ3 residue 198 is a key surface determinant 

of reovirus outer-capsid stability, the ready selection of mutations at position 198 that 

incorporate amino acids with a range of biochemical properties may point to subtle roles 

for residue 198 either in maintaining capsid stability or in other aspects of reovirus 

replication. 

The observation that σ3-Y354H is rare in circulating reovirus strains and exists 

coincident with suppressor mutations in T3A σ3 suggests that reovirus strains suffer a 

fitness penalty for mutations that destabilize the outer capsid. The reovirus life cycle 

involves fecal-oral transmission between infected hosts, a process that requires some 

degree of resistance to degradation. Viruses with diminished outer-capsid stability may 

have decreased viability outside a mammalian host, which would reduce their likelihood 

of encountering a new host. We note that viruses containing uncompensated σ3-Y354H 

lose titer more rapidly at elevated temperature than T3A or T3D (Figure II-6), suggesting 

that such viruses incur diminished environmental persistence or decreased infectivity 

from fomite surfaces. However, it is also possible that destabilization of the outer capsid 

adversely affects other aspects of viral replication or virus-host interactions. More work 

is necessary to identify the specific steps of the viral life cycle that are so affected. The 

findings reported in this study identify a network of residues that determine the stability 

of reovirus σ3 and provide insight into mechanisms used by nonenveloped viruses to 

maintain optimum capsid stability. In the next chapter I present data demonstrating a role 

for σ3 protease sensitivity in determining patterns of reovirus-mediated disease. 
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CHAPTER III 

 

DIMINISHED OUTER CAPSID STABILITY ENHANCES 

REOVIRUS VIRULENCE AND HOST-TO-HOST SPREAD 

 

Introduction 

 

 Reovirus depends upon host proteases to catalyze disassembly. Key residues in 

reovirus outer-capsid protein σ3, particularly σ3-Y354H, control the rate of σ3 

proteolysis, which in turn determines the kinetics of reovirus uncoating. In studies 

described in chapter II, I showed that the mechanism by which σ3-Y354H accelerates σ3 

proteolysis also correlates with diminished biophysical capsid stability. Furthermore, 

utilization of host proteases during cell entry is a strategy shared by several families of 

viruses, and capsid stability is a universal physical property of nonenveloped virions. 

However, virtually nothing is known about the effect of altering protease utilization or 

overall capsid stability on disease pathogenesis. I therefore sought to investigate the 

differences in disease induced by reovirus strains with σ3-Y354H, particularly T3D-

σ3Y354H. I chose this virus because its parent strain, T3D, is neurotropic and has a 

relatively low lethal dose when delivered into newborn mice intramuscularly or 

intracranially. Given the rarity of σ3-Y354H in primary reovirus isolates, I hypothesized 

that the mutation would attenuate reovirus virulence. Surprisingly, this series of 

experiments instead identified Y354H as a potent enhancer of reovirus virulence and 

identified a novel role for σ3 in reovirus disease pathogenesis. 
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 Results 

Diminished reovirus outer-capsid stability correlates with enhanced lethality. To 

investigate whether differences in outer-capsid stability influence reovirus disease 

pathogenesis, I inoculated newborn mice in the hindlimb with 105 PFU of either wild-

type rsT3D or the protease-hypersensitive mutant rsT3D-σ3Y354H and monitored 

infected animals for survival (Figure III-1). Surprisingly, I found that a significantly 

higher percentage of mice inoculated with rsT3D-σ3Y354H succumbed to infection than 

those infected with rsT3D. The median survival interval for mice infected with rsT3D 

was approximately 4 days longer than that observed for animals infected with rsT3D-

σ3Y354H, suggesting that the latter virus replicated to lethal titers more rapidly than 

rsT3D. Type 3 reovirus strains are neurotropic, inducing lethal encephalitis in infected 

animals (57, 142, 143). Accordingly, animals infected with both rsT3D and rsT3D-

σ3Y354H displayed neurological signs, including bilateral flaccid paralysis, dyskinesias, 

myoclonic jerks, and occasional seizures.  

To confirm that the enhanced virulence of rsT3D-σ3Y354H is attributable to the 

capsid-destabilizing effects of the Y354H mutation in σ3, I inoculated newborn mice 

with 105 PFU of rsT3D-σ3G198E,Y354H, which is isogenic with rsT3D-σ3Y354H with 

the exception of a glycine-to-glutamate mutation at position 198 in σ3. The G198E 

mutation suppresses the destabilizing effects of Y354H on the reovirus outer capsid and 

restores wild-type protease sensitivity and disassembly kinetics (45). Interestingly, 

rsT3D-σ3G198E,Y354H had reduced lethality in comparison with wild-type rsT3D and 

rsT3D-σ3Y354H. Thus, diminution of outer-capsid stability associated with σ3-Y354H 

results in a marked increase in reovirus virulence.  
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Construction of reassortant T1L/T3D viruses. The Y354H mutation is selected 

using a variety of conditions in cell culture, and clearly enhances reovirus virulence in 

vivo in the experiments described thus far. However, it is absent from circulating reovirus 

strains except in the presence of suppressive second-site mutations (73) Accordingly, I 

hypothesized that enhanced susceptibility to proteolytic disassembly might reduce host-

to-host transmission of reovirus, limiting the prevalence of σ3-Y354H. Natural reovirus 

infection is thought to be primarily fecal-oral (12, 75). However, strain T3D does not 

efficiently transit the digestive tract, as its σ1 attachment protein is cleaved by intestinal 

proteases (25, 103). Therefore, to test the effect of the σ3-Y354H mutation on 

transmission between littermates, I constructed a reassortant virus with eight gene 

segments from strain type 1 Lang (T1L) and the T3D M2 and S4 gene segments, which 

encode outer-capsid proteins μ1 and σ3, respectively (Figure III-3A). The T3D M2 and 

S4 alleles were included together in the reassortant viruses to preserve optimum 

interactions between σ3 and µ1 and their synergistic role in facilitating reovirus 

endosomal escape (85). Two versions of this reassortant virus were constructed, rsT1L-

T3DM2,S4 and rsT1L-T3DM2,S4Y354H, respectively with and without the σ3-Y354H 

mutation. Genotypes of the reassortant viruses were verified using electrophoresis of viral 

genomic dsRNA (Figure III-3B).  
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The Y354H mutation enhances lethality of reovirus following peroral challenge. 

To determine whether capsid stability affects reovirus virulence following oral challenge, 

I inoculated newborn mice perorally with 104 PFU of the reassortant reovirus strains 

rsT1L-T3DM2,S4 and rsT1L-T3DM2,S4Y354H and monitored for survival (Figure III-

4). Similar to the results gathered using rsT3D and rsT3Dσ3-Y354H, a significantly 

higher percentage of mice inoculated with rsT1L-T3DM2,S4Y354H succumbed to 

infection in comparison to those inoculated with rsT1L-T3DM2,S4. The reassortant 

strains express a serotype 1 σ1 attachment protein, which promotes efficient systemic 

spread but does not facilitate neural transmission (3, 14, 137). Accordingly, infected 

animals displayed lethargy beginning 8 days post-inoculation, but neurological findings 

were absent in mice infected with either reassortant strain. Therefore, introduction of the 

σ3-Y354H mutation enhances reovirus-mediated virulence independent of viral genetic 

background, route of inoculation, and mode of death.      
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Viral loads of reassortant viruses. I hypothesized that the significantly enhanced 

lethality of rsT1L-T3DM2,S4Y354H compared with rsT1L-T3DM2,S4 might be due to 

differences in initial replication or dissemination of the two viruses. To test this 

hypothesis, I inoculated newborn mice perorally with 104 PFU of rsT1L-T3DM2,S4 and 

rsT1L-T3DM2,S4Y354H, and harvested brain, heart, liver, spleen, and intestine at days 

2, 4, and 8 post-inoculation. Viral loads in these organs were determined by plaque assay 

(Fig III-5). Interestingly, there were no significant differences in titer between the two 

viruses in the selected organs at any timepoint tested. This finding raises the possibility 

that in the context of the reassortant viruses, σ3-Y354H enhances lethality via a different 

mechanism than the kinetic replication advantage observed following intramuscular 

inoculation (Figure III-2).  
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The σ3-Y354H mutation exacerbates reovirus-induced myocarditis. Type 1 

reovirus strains induce myocarditis in newborn mice following peroral inoculation (124, 

126, 127). To investigate whether the σ3-Y354H mutation is associated with enhanced 

lethality in the T1L/T3D-M2,S4 genetic background by exacerbating reovirus-induced 

myocarditis, I inoculated newborn mice with 104 PFU of the reassortant reovirus strains 

rsT1L-T3DM2,S4 and rsT1L-T3DM2,S4Y354H. Hearts of infected mice were resected 8 

days post-inoculation and examined histologically. Hearts of mice inoculated with rsT1L-

T3DM2,S4Y354H displayed markedly greater gross pathology than hearts from rsT1L-

T3DM2,S4-infected animals (Figure III-6A). Hearts were fixed in 10% formalin, 

embedded in paraffin, and sectioned. Sectioned cardiac tissue was stained with 

hematoxalin and eosin (Figure III-6B) and anti-reovirus antiserum (Figure III-6C). 

Cardiac tissue from rsT1L-T3DM2,S4Y354H infected mice displayed strikingly greater 

levels of tissue injury than those infected with rsT1L-T3DM2,S4, although reovirus 

antigen distribution was approximately equivalent. These results indicate that 

introduction of σ3-Y354H into the genetic background of T1L/T3DM2,S4 results in 

fulminant myocarditis, likely resulting in the differences in lethality following peroral 

challenge with the reassortant viruses. 
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The Y354H mutation in σ3 increases the frequency of host-to-host transmission 

and severity of disease in uninfected littermates. Given the diminished biochemical 

stability imposed by σ3-Y354H (45), I hypothesized that σ3-Y354H-containing viruses 

might spread less efficiently between hosts due to diminished viability or decreased 

persistence on fomite surfaces. To test this hypothesis, I divided newborn mice into litters 

of eight animals each, inoculated two animals from each litter with 104 PFU of either 

rsT1L-T3DM2,S4 or rsT1L-T3DM2,S4Y354H, and replaced the infected pups with their 

uninfected littermates. Eight days post-inoculation, both inoculated and uninoculated 

littermates were euthanized, organs were resected, and viral titers were determined by 

plaque assay. Consistent with our previous findings, titers in animals inoculated with 

rsT1L-T3DM2,S4 and rsT1L-T3DM2,S4Y354H were comparable. However, titers in the 

intestine (Figure III-8A), heart (Figure III-8B), and brain (Figure III- 8C) of naïve 

littermates housed with animals inoculated with rsT1L-T3DM2,S4Y354H were 

significantly higher than in animals housed with animals inoculated with rsT1L-

T3DM2,S4. This finding indicates that Y354H is associated with increased littermate 

transmission and increased replication yields in newly infected pups.  
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Figure III-7. The Y354H mutation enhances transmission of reovirus between 
littermates. Two newborn C57/BL6 mice from a litter of eight animals were inoculated 
perorally with 104 PFU of either T1L-T3D-M2-S4 or T1L-T3D-M2-S4Y354H. Eight 
days post inoculation, inoculated mice and uninoculated littermates were euthanized, 
intestine (A), brain (B), and heart (C) were resected, and viral titers were determined by 
plaque assay. Results are expressed as viral titers for each animal assayed. Filled shapes 
and open shapes indicate inoculated and uninoculated animals, respectively. * , P < 0.05 
as determined by Mann-Whitney test in comparison to T1L-T3D-M2-S4.  

A 

B 
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Figure III-7 (continued).  
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Discussion 

To productively infect target cells, reovirus must undergo a stepwise disassembly 

cascade mediated by host proteases (17, 47, 133). The initial step in this uncoating 

process is the proteolytic cleavage of the outer-capsid protein, σ3. Proteolysis of σ3 

allows subsequent cleavage of μ1 to generate μ1N, μ1-δ, and μ1-φ (19, 105), species that 

disrupt host cell membranes and allow the transcriptionally active viral core to access the 

cytoplasm. A single mutation in the σ3 C-terminus, Y354H, increases the rate of σ3 

proteolysis and drives reovirus resistance to protease inhibitors such as E64 and 

ammonium chloride (147). The σ3-Y354H phenotype is not protease-specific; rather, σ3-

Y354H induces a structural rearrangement that accelerates attack by a variety of 

proteases. I have previously shown that viruses with the σ3-Y354H mutation lose titer 

more rapidly when exposed to elevated temperature than do those with native σ3, 

indicating that σ3-Y354H reduces biophysical capsid stability. In addition, σ3-Y354H is 

largely absent from primary reovirus isolates, supporting the hypothesis that σ3-Y354H 

imposes fitness disadvantages at some stage of the reovirus replication cycle. Achieving 

the optimal balance between stability and instability is a challenge common to all 

nonenveloped viruses, but very little is known about the influence of capsid stability in 

disease pathogenesis. In this study, I used viruses containing σ3-Y354H to investigate the 

role of capsid stability in reovirus-mediated disease.  

 I inoculated mice in the left hindlimb with 105 PFU of either rsT3D or rsT3D-

σ3Y354H and monitored infected animals for survival. Surprisingly, I found that rsT3D-

σ3Y354H displayed significantly enhanced virulence compared with rsT3D. Strain T3D 

is neurotropic, and mice infected with either rsT3D or rsT3D-σ3Y354H developed 



62 
 

neurological findings, including paralysis and seizures. I observed that rsT3D-σ3Y354H 

replicated to higher titers at days 2 and 4 following inoculation in the hindlimb muscle, as 

well as sites of secondary replication, including the heart and liver. However, the two 

viruses reached equivalent peak titers in all tissues later in infection. These findings 

suggest that the σ3-Y354H mutation confers a replication advantage early in infection, 

allowing more rapid dissemination and seeding of secondary sites. The cumulative 

burden of viral replication over time may account for the enhanced lethality of T3D-

σ3Y354H.  

 The natural route of reovirus infection is likely fecal-oral. However, T3D does not 

infect efficiently per orum because the T3D σ1 attachment protein is hypersensitive to 

proteolysis by digestive enzymes (25, 103). Accordingly, I engineered reassortant 

reovirus strains containing the T3D μ1 and σ3 proteins, both with and without Y354H, in 

an otherwise T1L genetic background. I infected newborn mice perorally with these 

viruses and again observed enhanced lethality in mice inoculated with the σ3-Y354H-

containing virus. This observation indicates that σ3-Y354H enhances disease 

pathogenesis in multiple genetic backgrounds and via multiple routes of inoculation, 

strengthening the conclusion that σ3 is a reovirus virulence determinant. Interestingly, 

viral loads in infected organs were essentially equivalent between the two reassortant 

strains even at very early timepoints post-inoculation. The reassortant viruses feature a 

T1L σ1 attachment protein and are thus not neurotropic. However, there was frank 

cardiac pathology in the hearts of mice inoculated with both reassortant strains, although 

the effect was much more pronounced in mice infected with the σ3-Y354H reassortant. 

The σ3-Y354H reassortant induced profound cardiac tissue injury and dystrophic changes 
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in the hearts of infected animals. Interestingly for non-neurotropic strains of reovirus, 

both reassortants are quite virulent. The apparent LD50 value of the wildtype reassortant 

is approximately 104 PFU, while the σ3-Y354H reassortant is significantly less than that. 

Thus, the combination of a T3D outer capsid and a T1L core results in particularly 

virulent strains of reovirus, an effect exacerbated by σ3-Y354H. 

 Since σ3-Y354H imposes no obvious fitness penalty in vivo, I hypothesized that 

the mutation might impair host-to-host spread. Infecting naïve hosts requires some degree 

of environmental persistence, and previous studies have shown that σ3-Y354H 

diminishes the thermostability of the viral particle (45). To test this hypothesis, I 

separated newborn mice into litters of eight and inoculated two pups per litter with 104 

PFU per orum with one of the reassortant reovirus strains. I then replaced them with their 

uninoculated littermates. After eight days, all of the mice were euthanized, and I assessed 

viral titers in the heart, brain, and intestine by plaque assay. Surprisingly, σ3-Y354H 

facilitates host-to-host spread, as uninoculated littermates of animals receiving the σ3-

Y354H reassortant had a far greater burden of viral replication in all three tested organs 

than those receiving the wildtype reassortant. 

 The experiments described in this study demonstrate that σ3-Y354H enhances 

reovirus virulence and host-to-host spread. However, the precise mechanism by which 

the mutant virus mediates these effects is less clear. Mice inoculated with rsT3D and 

rsT3D-σ3Y354H intramuscularly had higher levels of viral replication early in infection, 

perhaps explaining the increased lethality observed in that infection protocol. However, 

the mechanism of σ3-Y354H-mediated enhanced virulence is less straightforward in 

animals inoculated perorally with the reassortant viruses. The σ3-Y354H reassortant 
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induces greater cardiac injury, likely leading to its increased mortality, but does not 

produce elevated titers in the heart that are significantly higher than those produced by 

wild-type virus. This finding suggests that σ3-Y354H alters the host response to reovirus 

infection, accounting for the enhanced tissue damage. Interferon induction and apoptosis 

are both important mediators of reovirus-mediated cardiac injury (39, 123, 128). Thus, 

σ3-Y354H might induce higher levels of apoptosis or suppress interferon signaling in 

some way. An alternative hypothesis is that cardiac myocytes and hindlimb muscle have 

lower constitutive levels of protease expression than other tissues, providing replication 

advantages to σ3-Y354H.  

I found it remarkable that σ3-Y354H enhances littermate transmission, but the 

mechanism by which it does so is unclear. One possibility is that the σ3-Y354H 

reassortant is shed from the intestine of infected hosts in greater quantity than wildtype 

virus. Additionally, it remains unclear what fitness disadvantages limit the prevalence of 

σ3-Y354H. One intriguing possibility is that reovirus has evolved to be a mild, often 

asymptomatic pathogen. Inducing more severe disease in infected animals may be 

maladaptive in some way, perhaps by limiting the opportunity to shed viral progeny or 

provoking immune responses that limit viral replication. However, it is difficult to test 

this hypothesis without knowing more about the natural ecology of reovirus infection and 

transmission. 

 In summary, I have shown here that viruses with reduced outer-capsid stability 

display induce profoundly enhanced disease, an effect that is penetrant in different strains 

of reovirus and via multiple routes of inoculation. These studies establish σ3 as a new 
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reovirus virulence determinant. More broadly, this work may provide insights into the 

role of capsid structural stability in the pathogenesis of nonenveloped viruses. 
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CHAPTER IV 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Like many nonenveloped viruses, reovirus must disassemble to productively 

infect host cells. The disassembly process can occur either inside a target cell or 

extracellularly in the airway or intestine and, in either case, it is dependent on host 

proteases. The rate-limiting step in reovirus disassembly is proteolysis of outer-capsid 

protein σ3. Thus, the suitability of σ3 as a protease substrate determines the efficiency of 

reovirus cell entry. My work focused on defining the mechanisms that maintain reovirus 

capsid stability at an optimal level for viral uncoating, replication, and pathogenesis.  

The involvement of cathepsin proteases in viral cell entry was first documented in 

reovirus disassembly (47). A role for cathepsins has since been demonstrated in the 

replication programs of several other viruses, including Hendra virus, (111), Nipah virus 

(110), and Ebola virus (22), suggesting that dependence on host proteases to activate viral 

proteins is a conserved mechanism of entry across unrelated virus families. However, the 

manner in which enzyme-substrate interactions between the virus and host proteases 

influences disease pathogenesis remains murky. There is some suggestion that reovirus 

has the capacity to use a wide variety of proteases for disassembly, with cathepsins 

readily accessible in most tissues (70).  

Previous work in the Dermody lab sought to define specialized roles played by 

cathepsins B, L, and S in reovirus pathogenesis using animals deficient for each enzyme 

(71). However, these studies were complicated by the fact that several cathepsin family 
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members have specialized roles in immunity. Thus, cathepsin-deficient animals have 

impaired viral clearance and increased mortality following reovirus challenge. Mice 

pretreated with the cathepsin L-specific inhibitor CLIK-148 are protected from reovirus-

induced disease, a proof-of-concept for the idea of antiviral therapeutics targeted against 

host protease co-factors (71).  

A tyrosine-to-histidine mutation in the C-terminus of σ3 had been selected in 

several independent studies using various inhibitors of protease activity (5, 49, 145). The 

σ3-Y354H mutation mediates enhanced susceptibility to a variety of proteases (27, 77) 

by inducing a structural alteration in the σ3 C-terminal domain (147). Viruses containing 

the mutation also undergo much more rapid disassembly when treated with purified 

proteases in vitro (77).  

I began my work by analyzing the disassembly of T3A, a primary reovirus isolate 

that contains σ3-Y354H. I discovered that T3A undergoes disassembly with kinetics 

equivalent to prototype strain T3D, which lacks σ3-Y354H. The suppression of the σ3-

Y354H phenotype is attributable to a second mutation in T3A σ3, a glycine-to-glutamate 

change at position 198. I found that viruses containing both the G198E and Y354H σ3 

mutations phenocopied wild-type T3D in E64 sensitivity and in vitro disassembly 

kinetics. I also observed that viruses containing unsuppressed σ3-Y354H escaped from 

endosomes an average of 60 min before wildtype viruses, an effect suppressed by G198E. 

My experiments also revealed that σ3-Y354H is associated with more rapid titer loss at 

elevated temperature compared with virions of wildtype viruses, providing evidence that 

protease sensitivity and biophysical stability are linked. Finally, I observed multiple de 

novo mutations at position 198, including tryptophan and valine, indicating that the 
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destabilizing effects of σ3-Y354H places selection pressure on compensatory changes in 

G198.  

Structural evidence indicates that residue 198 and residue 354 are directly 

opposed in the virion-distal domain of σ3. The G198E mutation introduces a negatively 

charged glutamate side chain that may serve to stabilize the positively charged His354 by 

electrostatic interactions and thus prevent His354 from dislocating the σ3 C-terminus. 

This conclusion requires a high-resolution structure of T3D-σ3G198E,Y354H which is 

currently in progress. Ultimately, my work identified a second residue in σ3 that acts in 

concert with the disruptive Y354H polymorphism to maintain consistent σ3 protease 

sensitivity. This finding strongly suggests that despite its advantages under certain types 

of selection, σ3-Y354H imposes a fitness penalty on circulating reovirus strains.   

 I next sought to define the effects of σ3-Y354H in reovirus-mediated disease 

pathogenesis. Given the findings made in analysis of T3A σ3, I anticipated that σ3-

Y354H would impose some fitness cost to reovirus in infected hosts. However, when I 

inoculated animals with T3D and T3D-σ3Y354H, I found that the latter virus had greatly 

enhanced lethality, replicating to higher titers at early timepoints at both the site of 

inoculation and disseminated replication sites. As the natural route of reovirus 

transmission is thought to be fecal-oral, I engineered reassortant viruses containing either 

wildtype σ3 or σ3-Y354H and inoculated them perorally into newborn mice. I observed a 

very similar pattern of lethality between these viruses, namely, that a significantly higher 

percentage of mice succumbed to inoculation with the σ3-Y354H mutant. However, titers 

in various organs were equivalent between the wildtype and σ3-Y354H viruses at all 

timepoints tested. However, there was striking cardiac pathology in T3D-σ3Y354H-
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infected animals accompanied by numerous histological lesions. Finally, I hypothesized 

that because σ3-Y354H diminishes the biochemical stability of reovirus virions, the 

mutation might diminish host-to-host transmission. Most surprisingly, naïve littermates 

of animals inoculated with σ3-Y354H-containing strains had far higher titers of virus in 

their brains, hearts, and intestines than littermates of animals inoculated with viruses 

containing wildtype σ3. To my knowledge, this is the first characterization of the patterns 

of disease induced by a nonenveloped virus with diminished capsid stability. This is also 

the first description of a reovirus strain with enhanced lethality, in vivo replication, and 

host-to-host transmissibility. Finally, this study identifies σ3 as a new determinant of 

reovirus disease virulence. 

 

Future Directions 

 The enhanced pathogenesis induced by σ3-Y354H raises several interesting 

questions. First, what factors contribute to the enhanced cardiac injury induced by that 

virus? Reovirus-induced cardiac injury is associated with antagonism of IFN (4, 63, 106) 

and apoptosis induction (106). An important next step is to determine the effects of σ3-

Y354H on viral replication in cultured cardiac myocytes. A careful study of replication 

and infectivity using primary cardiac cells is required to establish a baseline 

understanding of σ3-Y354H in cardiac tissue. To extend these studies, I propose a careful 

study of differences in IFN induction, apoptotic capacity, and cytokine profiling in 

cultured myocytes with viruses containing σ3-Y354H. It also is plausible that myocytes 

have diminished cathepsin expression, giving a comparative growth advantage to σ3-

Y354-containing viruses. This concept can be easily tested in cell culture using 
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radiolabeled virus for in vivo scoring of σ3 and μ1 cleavage. Another virtue of using 

reovirus for these experiments is that there are excellent positive and negative controls 

for such experiments, namely ISVPs and E64. A thorough cell-culture study should 

reveal how Y354H induces cardiac damage. Finally, the survival and viral titer 

experiments should be repeated with a lower inoculum of virus. From Figure III-4, it is 

clear that 104 PFU of the Y354H reassortant is far higher than an LD50 value. Lower 

doses may magnify differences between the two viruses and allow for more nuanced 

understanding of how they differ in vivo. 

 Another major unanswered question from my work concerns the apparent 

enhancement of host-to-host transmission conferred by σ3-Y354H. The finding that 

littermates of mice inoculated with σ3-Y354H-containing virus have higher viral titers 

than controls suggests a number of possibilities. First, σ3-Y354H may cause enhanced 

viral shedding and release from the intestinal epithelia of infected animals. I would 

anticipate these differences being greatest at early timepoints post-inoculation, given the 

data presented in Figure II-2. Second, σ3-Y354H-containing viruses may be more 

infectious from fomite surfaces, perhaps related to their lower requirement for 

disassembly mediated by intestinal proteases. The littermate transmission experiment 

described in Chapter III is unlikely to replicate the preponderance of natural reovirus 

infection. A more stringent series of littermate transmission studies should be conducted, 

using exchanges of soiled bedding and longer incubation periods between hosts to more 

accurately replicate natural viral transmission. Another method for addressing this 

possibility is to carefully quantify shed virus or viral titers in intestinal tissue following 

peroral inoculation.  
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 It is still unclear why σ3-Y354H is not present in circulating reovirus strains. 

Although reovirus sequence data are limited, the stark absence of σ3-Y354H except in 

the setting of suppressive mutations, along with the ease with which suppressor mutations 

arise in vivo, strongly suggests that diminishing the stability of the reovirus outer capsid 

is deleterious for the virus. One possibility is that σ3-Y354H reduces the duration of viral 

environmental persistence, limiting the opportunities for σ3-Y354H-containing viruses to 

infect new hosts. In Chapter II, I presented data showing that purified virions containing 

σ3-Y354H lose titer more rapidly when exposed to elevated temperatures than wildtype 

virions, indicating that σ3-Y354H does indeed reduce the biophysical stability of the viral 

capsid. However, I have been unable to identify another measure of stability by which 

σ3-Y354H imposes a fitness penalty. More detailed knowledge of the natural ecology of 

reovirus may be required to define the steps likely to limit transmission of σ3-Y354H. 

High-resolution structures of both T3D-σ3Y354H and T3D-σ3G198E,Y354H also may 

provide insights into the biophysical effects of those mutations on capsid stability. Such 

studies are currently in progress, in collaboration with Dr. B.V. Prasad at Baylor College 

of Medicine. Finally, the possibility exists that enhanced pathogenesis is maladaptive for 

reovirus at a population level. As most reovirus cases are asymptomatic, it is plausible 

that reovirus is optimally fit when infections remain subclinical.  

 Finally, the findings that diminished capsid stability enhances reovirus 

pathogenesis and host-to-host spread may have important clinical implications given the 

use of reovirus as an adjunct therapy for cancer. Although reovirus is generally well-

tolerated by human patients, identification of factors that might enhance viral 

pathogenicity in infected hosts is vital for use of reovirus as an oncolytic agent. 
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Moreover, there is evidence that proteolytic disassembly plays an important role in 

reovirus-mediated oncolysis. The oncolytic potential of viruses containing σ3-Y354H 

should be evaluated using transformed cells in tissue culture. If σ3-Y354H enhances 

reovirus-mediated oncolysis, the next step would be to evaluate its efficacy in a small-

animal tumor model. The importance of these experiments is twofold: first, enhanced 

oncolytic activity in cell culture merits evaluation in a more clinically relevant setting. 

More importantly, the enhanced pathogenicity σ3-Y354H should be carefully evaluated 

in a small animal model to ensure viruses containing that mutation are safe for use in a 

clinical setting. These experiments, if successful, may provide a rationale for evaluation 

of a new generation of reovirus oncolytic vectors that leverage σ3-Y354H for enhanced 

efficacy.  
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CHAPTER V 

 

MATERIALS AND METHODS 

 

Cells and viruses- Spinner-adapted murine L929 cells were grown in either 

suspension or monolayer cultures in Joklik’s modified Eagle’s minimal essential medium 

(SMEM; Lonza, Walkersville, MD) supplemented to contain 5% fetal bovine serum 

(Invitrogen; Carlsbad, CA), 2 mM L-glutamine (Invitrogen), 100 U of penicillin per mL, 

100 U streptomycin per ml (Invitrogen), and 0.25 µg of amphotericin per ml (Sigma-

Aldrich; St. Louis, MO). BHK-T7 cells were grown in Dulbecco's modified Eagle's 

minimal essential medium (Invitrogen) supplemented to contain 5% fetal calf serum, 2 

mM L-glutamine, 2% MEM amino acid solution (Invitrogen), and 1 mg geneticin per ml 

(Invitrogen). Reovirus strain T3A is maintained as a laboratory stock. Recombinant strain 

(rs) T3D is a stock generated by plasmid-based reverse genetics from cloned T3D cDNAs 

(78). The engineered reovirus mutants rsT3D-σ3Y354H, rsT3D-σ3G198E,Y354H and the 

reassortant viruses rsT1L-T3D-M2-S4 and rsT1L-T3D-M2-S4Y354H were generated as 

described (77).  

 

Generation of reovirus variants- Viruses containing engineered changes in σ3 

protein were generated using reverse genetics (78). The S4 gene was excised from the 

pT7-M2-S2-S3-S4T3D plasmid (78) using HindIII and NheI to generate the tri-cistronic 

plasmid pT7-M2-S2-S3T3D. The pT7-S4T3D plasmid was used as template to generate 

pT7-S4T3DA28T+Y354H, pT7-S4T3DE108A+Y354H, pT7-S4T3DI180V+ Y354H, 
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pT7-S4T3DG198E+Y354H, pT7-S4T3DS215D+Y354H, pT7-S4T3DS233L+ Y354H, 

and pT7-S4T3DI347T+Y354H using Quickchange mutagenesis (Stratagene; La Jolla, 

CA). Monolayers of BHK-T7 cells (78) at 90% confluency (approximately 3 × 106 cells) 

seeded in 60-mm dishes (Costar; Corning Incorporated, Corning, NY) were co-

transfected with 3.5 μg each of five plasmids representing the cloned reovirus T3D 

genome using 3 μl of TransIT-LT1 transfection reagent (Mirus Bio LLC; Madison, WI) 

per μg of plasmid DNA. Following 72 h of incubation, recombinant virus was isolated 

from transfected cells by plaque purification using monolayers of L929 cells (141). Virus 

stocks were passaged and titers were determined as described (51). 

 

Growth of virus in cells treated with E64- Confluent monolayers of L929 cells 

(approximately 2 × 105 cells/well) in 24-well plates (Costar) were preincubated in SMEM 

supplemented to contain 0 to 200 µM E64 (Sigma-Aldrich) at 37°C for 4 h. The medium 

was removed, and cells were adsorbed with second- or third-passage virus stocks at an 

MOI of 2 PFU per cell. After incubation at 4°C for 1 h, the inoculum was removed, cells 

were washed with PBS, and 1 ml of fresh SMEM supplemented to contain 0 to 200 µM 

E64 was added. Cells were incubated at 37°C for 24 h and frozen and thawed twice. Viral 

titer in cell lysates was determined by plaque assay (141). 

 

Treatment of reovirus virions with cathepsin L- Purified reovirus virions at a 

concentration of 2 × 1012 particles per ml in reaction buffer L (100 mM NaCl, 15 mM 

MgCl2, 50 mM sodium acetate [pH 5.0]) were treated with 50 μg of purified, recombinant 

human cathepsin L (7) per mL in the presence of 5 mM dithiothreitol at 37°C for 0 to 4 h. 
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Aliquots were removed at various intervals, mixed with SDS sample buffer supplemented 

to contain 500 µM E64, and incubated on ice for 5 min to terminate protease activity. 

Reaction mixtures were analyzed by SDS-PAGE. 

 

SDS-PAGE of reovirus structural proteins- Discontinuous SDS-PAGE was 

performed as described (79). Samples were incubated at 98°C for 5 min, loaded into 

wells of pre-cast 4 to 20% gradient Tris-tricine polyacrylamide gels (Bio-Rad 

Laboratories; Hercules, CA), and electrophoresed at a constant voltage of 180V for 1 h. 

Following electrophoresis, gels were stained using a Novex Colloidal Blue Staining Kit 

(Invitrogen) according to the manufacturer’s instructions. 

 

Densitometric analysis of reovirus structural proteins- Stained gels were 

visualized using an infrared imaging system (Li-Cor Biosciences; Lincoln, NE). Band 

intensities in the scanned images were quantified using Odyssey Application Software 

version 3.0.16 (Li-Cor). The relative amount of σ3 protein was determined by comparing 

the intensity of bands corresponding to σ3, which has an apparent molecular weight of ~ 

41 kDa, to bands corresponding to viral core protein σ2, which has an apparent molecular 

weight of ~ 47 kDa and is not affected by protease treatment under these conditions (5). 

 

Heat resistance of reovirus virions- Purified reovirus virions at a concentration of 

2 × 108 particles per ml in virion storage buffer (150mM NaCl, 15mM MgCl2, 10mM 

Tris [pH 7.4]) were treated at 55°C for 60 min. At 15-min intervals, samples were 

removed and placed on ice. Viral titers were determined by plaque assay (28). 
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Specific infectivity of reovirus virions- Fresh preparations of reovirus virions were 

generated in triplicate from second-passage lysate stocks as described (27). Particle 

density of each viral preparation was determined by quantifying absorbance at 260 nm 

and calculated using the equivalence 1 O.D.260 = 2.1 x 1012 particles/mL (130). Titer of 

each preparation was determined by plaque assay (28). 

 

Kinetic ammonium chloride protection assay- Confluent monolayers of L929 

cells (approximately 2 × 105 cells/well) in 24-well plates were adsorbed with second- or 

third-passage virus stocks at an MOI of 25 PFU per cell. After incubation at 4°C for 1 h, 

the inoculum was removed, cells were washed with PBS at 4°C, and 1 ml of pre-warmed 

SMEM was added. At various times post-adsorption, 25 μL of 1 M NH4Cl was added to 

the medium to give a final concentration of 25 mM. At 20 h post-adsorption, the medium 

was removed, and cell monolayers were fixed with 1 mL of methanol at -20°C for a 

minimum of 30 min. Fixed monolayers were washed twice with PBS, blocked with 5% 

immunoglobin-free BSA (Sigma-Aldrich) in PBS, and incubated at 37°C for 30 min with 

rabbit polyclonal anti-reovirus serum at a 1:1000 dilution in PBS plus 0.5% Triton X-

100. Monolayers were washed twice with PBS and incubated at 37°C for 30 min with a 

1:1000 dilution of anti-rabbit goat immunoglobulin conjugated with Alexa 488 

(Molecular Probes, Inc., Eugene, OR). Monolayers were washed twice and visualized by 

indirect immunofluorescence. Reovirus antigen-positive cells were quantitated by 

enumerating fluorescent cells in three random fields of view per well at 100–400 × 
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magnification. Total cell number was quantified by enumerating 4',6-diamidino-2-

phenylindole (DAPI)-stained nuclei. 

Infection of mice- C57BL/6J mice were obtained from Jackson Laboratory. Two- 

or three-day-old mice were inoculated intramuscularly or perorally with purified reovirus 

diluted in PBS. Intramuscular inoculations (10 μl) were delivered into the left hind limb 

(hamstring muscle) using a Hamilton syringe and 30-gauge needle. Peroral inoculations 

(50 μl) were administered using a Hamilton syringe, 30-gauge needle, and Intramedic 

PE-10 polyethylene tubing (BD Biosciences) (3, 61, 136). For analysis of viral virulence, 

mice were monitored for symptoms of disease for 21 days postinoculation. Mice were 

euthanized when found to be moribund (defined by rapid or shallow breathing, lethargy, 

or paralysis). Data from these experiments are reported as “percent survival”, although 

death was not used as an endpoint. For analysis of virus replication, mice were 

euthanized at various intervals post inoculation, and organs were collected into 1 ml of 

PBS and homogenized by freezing, thawing, and sonication. Viral titers in organ 

homogenates were determined by plaque assay using L929 cells. For 

immunohistochemical analysis, mice were euthanized at various intervals post 

inoculation, and organs were resected and fixed overnight in 10% formalin. Fixed organs 

were embedded in paraffin, and 6-μm histological sections were prepared. Sections were 

processed for hematoxalin and eosin staining, detection of reovirus protein using 

polyclonal antisera, detection of intracellular calcium using alizarin red, and detection of 

apoptotic cells using the NeuroTACS II system (Trevingen, Gaithersburg, MD). For 

littermate transmission studies, newborn mice were separated into litters of eight animals. 

Two animals per litter were inoculated perorally and replaced into original cages with 
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dams and uninoculated littermates. Both inoculated and uninoculated animals were 

euthanized eight days post inoculation, and viral titers were determined by plaque assay. 

Animal husbandry and experimental procedures were performed in accordance with 

Public Health Service policy and approved by the Vanderbilt University School of 

Medicine Institutional Animal Care and Use Committee. 
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APPENDIX 

A. GENETIC AND PHARMACOLOGIC ALTERATION OF CATHEPSIN 
EXPRESSION INFLUENCES REOVIRUS PATHOGENESIS 

 

This study used animals deficient for cathepsins B, L, and S to investigate the role 

played by different cathepsins family members in reovirus disease pathogenesis. 

Though genetic cathepsin ablation reduced peak reovirus titers, cathepsins L and S 

play important roles in adaptive immunity, and their absence impaired reovirus 

clearance, leading to delayed mortality. This study also provided evidence that 

transient pharmacologic cathepsin blockade, using the cathepsin L inhibitor CLIK-

148, protected mice from reovirus challenge. My involvement in this study was in 

validating the inhibitory activity of CLIK-148 against recombinant cathepsin L in 

vitro as well as helping with mouse survival experiments. 
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Genetic and Pharmacologic Alteration of Cathepsin Expression
Influences Reovirus Pathogenesis�
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The cathepsin family of endosomal proteases is required for proteolytic processing of several viruses during
entry into host cells. Mammalian reoviruses utilize cathepsins B (Ctsb), L (Ctsl), and S (Ctss) for disassembly
of the virus outer capsid and activation of the membrane penetration machinery. To determine whether
cathepsins contribute to reovirus tropism, spread, and disease outcome, we infected 3-day-old wild-type (wt),
Ctsb�/�, Ctsl�/�, and Ctss�/� mice with the virulent reovirus strain T3SA�. The survival rate of Ctsb�/� mice
was enhanced in comparison to that of wt mice, whereas the survival rates of Ctsl�/� and Ctss�/� mice were
diminished. Peak titers at sites of secondary replication in all strains of cathepsin-deficient mice were lower
than those in wt mice. Clearance of the virus was delayed in Ctsl�/� and Ctss�/� mice in comparison to the
levels for wt and Ctsb�/� mice, consistent with a defect in cell-mediated immunity in mice lacking cathepsin L
or S. Cathepsin expression was dispensable for establishment of viremia, but cathepsin L was required for
maximal reovirus growth in the brain. Treatment of wt mice with an inhibitor of cathepsin L led to amelio-
ration of reovirus infection. Collectively, these data indicate that cathepsins B, L, and S influence reovirus
pathogenesis and suggest that pharmacologic modulation of cathepsin activity diminishes reovirus disease
severity.

As obligate intracellular parasites, viruses must coopt basic
cellular processes to enter host cells and deliver their genomes
to the appropriate intracellular site for replication (45). Viral
entry steps include attachment of the virus to the cell surface,
penetration of the virus into the cell interior, disassembly of
the viral capsid, and activation of the viral genetic program.
These events are essential for the virus to transition from the
extracellular environment to the cellular compartment in
which viral transcription and replication occur. Entry steps also
play key roles in viral pathogenesis, as these events often de-
termine cell tropism within the infected host.

Mammalian orthoreoviruses (reoviruses) are important
models for studies of virus cell entry and the pathogenesis of
viral disease. Reoviruses form nonenveloped, double-shelled
particles that contain a segmented, double-stranded RNA ge-
nome (70). Virtually all mammals, including humans, serve as
hosts for reovirus infection (84). However, reovirus causes
disease primarily in the very young (44, 77, 79). Newborn mice
infected with reovirus sustain injury to a variety of organs,
including the brain, heart, and liver (5, 56, 84). Mechanisms of
reovirus-induced disease, including cellular determinants of
viral spread and tropism, are only partially understood.

Reovirus entry into cells is initiated by the attachment of
virions to cell surface receptors via the �1 protein (41, 85) and

internalization into cells by receptor-mediated endocytosis (6,
7, 24, 76). In cellular endosomes, virions undergo stepwise
disassembly, forming discrete intermediates, the first of which
is the infectious subvirion particle (ISVP) (7, 14, 74, 76). ISVPs
are generated by proteolytic removal of the �3 protein and
cleavage of the �1 protein to form particle-associated frag-
ments � and �. Following formation of ISVPs, �1 is shed and
the �1 cleavage fragments undergo conformational rearrange-
ment, yielding the ISVP* (11, 12). ISVP*s penetrate endo-
somes to deliver transcriptionally active viral cores into the
cytoplasm (54, 55).

Endocytic proteases cathepsins B and L catalyze reovirus
virion-to-ISVP disassembly in murine fibroblasts, although ca-
thepsin L is the major mediator of this process (23). These
proteases are expressed in most organs, including the intestine,
brain, heart, and liver (78). In P388D cells, a macrophage-like
cell line, cathepsin S, mediates the uncoating of some reovirus
strains (28). Cathepsin S expression is largely restricted to cells
and tissues of the immune system (16), which may be impor-
tant during enteric infection, as reovirus replication in the
intestine occurs in mononuclear cells of Peyer’s patches (25,
51). Cathepsin S is known to be expressed in mononuclear
cells, including alveolar macrophages in the lung (72, 73) and
microglial cells in the brain (61).

Cathepsins B, L, and S are responsible for unique, tissue-
specific activities (65). Cathepsin B modulates pathological
trypsinogen activation (30) and apoptosis induced by tumor
necrosis factor alpha (29). Cathepsin L is required for hair
follicle cycling and epidermal homeostasis (68). By virtue of its
activity at neutral pH (9, 39), cathepsin S is thought to partic-
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ipate in remodeling of the extracellular matrix (72, 89). Func-
tions of cathepsins B, L, and S intersect in the regulation of
adaptive immunity. Cathepsin L cleaves the invariant chain in
cortical thymic epithelial cells (52) and is hypothesized to me-
diate efficient endosomal protein fragmentation to ensure di-
verse peptide generation in the thymus (33, 43). Through these
functions, cathepsin L serves to facilitate positive selection of
CD4� T cells (15, 35). Cathepsin S cleaves the invariant chain
in peripheral antigen-presenting cells, leading to CD4� T-cell
activation (53). Both cathepsin L (32) and cathepsin S (67)
participate in NK1.1� T-cell selection in the thymus through
proteolytic processing in thymocytes and antigen-presenting
cells, respectively. As a result, cathepsin L-deficient (Ctsl�/�)
and cathepsin S-deficient (Ctss�/�) mice have impairments in
both CD4� and NK1.1� T-cell activities. Cathepsin S also
processes antigen in endosomes for cross-presentation via the
major histocompatibility complex class I pathway (71). Like
cathepsins L (34) and S (63), cathepsin B processes endocy-
tosed antigen for display by major histocompatibility complex
class II molecules (46, 48). However, cathepsin B-deficient
mice (Ctsb�/�) do not display overt immunodeficiency (65).

Underscoring the importance of endosomal cathepsin pro-
teases in host functions, viruses have usurped these enzymes to
allow entry into the cytoplasm. In addition to reovirus, cathep-
sins catalyze proteolytic events required for membrane fusion
of several important pathogens. Ebola virus requires both ca-
thepsin B and cathepsin L for efficient cell entry (13), while
severe acute respiratory syndrome coronavirus requires ca-
thepsin L but also can utilize cathepsins B and S (36, 75).
Hendra (58) and Nipah (57) viruses utilize cathepsin L for
fusion protein processing, most likely at the stage of virion
assembly (47). Despite the importance of cathepsins in viral
growth, nothing is known about the function of these proteases
in the pathogenesis of viral disease.

To determine the role of cathepsin proteases in viral viru-
lence, we studied reovirus disease by using mice lacking a
single cathepsin. Mice deficient for cathepsin B, L, or S were
monitored for survival, disease symptoms, and viral replication
following reovirus infection. We found that following peroral
inoculation of reovirus, cathepsin deficiency leads to decreased
viral replication in sites of secondary replication. However,
Ctsl�/� and Ctss�/� mice succumb to doses of virus nonlethal
to wild-type (wt) and Ctsb�/� animals. Although viremia is not
affected by cathepsin deficiency, we observed alterations in
disease pathogenesis in the hearts, livers, and brains of cathep-
sin-deficient animals. Furthermore, treatment of wt mice with
an inhibitor of cathepsin L reduces disease severity. These
studies demonstrate that cathepsin activity plays a key role in
viral pathogenesis and identify a new target for antiviral drug
development.

MATERIALS AND METHODS

Cells and viruses. L929 cells were maintained in Joklik’s minimal essential
medium (Lonza) supplemented to contain 10% fetal bovine serum, 2 mM L-
glutamine, 100 U/ml penicillin, 100 �g/ml streptomycin (Invitrogen), and 25
ng/ml amphotericin B (Sigma-Aldrich). T3SA� is a reassortant virus containing
the S1 gene segment of strain T3C44MA and the remaining nine gene segments
of strain T1L (4). Virus was purified after growth in L929 cells by CsCl gradient
centrifugation (27). Viral titers were determined by a plaque assay (83). ISVPs
were generated by treatment of 5 � 106 virions per ml with 20 �g of N-�-tosyl-

L-lysine chloromethylketone-treated �-chymotrypsin type VII from bovine pan-
crease (Sigma-Aldrich) per ml at 37°C for 1 h.

Treatment of virions with purified cathepsins. Purified reovirus virions at a
concentration of 1012 particles per ml, as determined by optical density at 260
nm, in reaction buffer B-L (50 mM sodium acetate [pH 5.0], 15 mM MgCl2, 100
mM NaCl, 5 mM dithiothreitol) were treated with 400 �g/ml bovine spleen
cathepsin B (Calbiochem-Novabiochem) or 100 �g/ml purified recombinant
human cathepsin L (10) at 37°C for various intervals. Alternatively, purified
virions at a concentration of 1012 particles per ml in reaction buffer S (50 mM
sodium acetate [pH 6.0], 15 mM MgCl2, 100 mM NaCl) were treated with 300
�g/ml purified recombinant human cathepsin S (Calbiochem) at 37°C for various
intervals. Proteolysis was terminated by incubation of reaction mixtures on ice
and addition of 1 mM (final concentration) E64 (Sigma-Aldrich), a pan-cysteine-
containing protease inhibitor (3). A 30-�l aliquot of each reaction mixture was
incubated with 7 �l of 6� sample buffer (350 mM Tris [pH 6.8], 9.3% dithio-
threitol, 10% sodium dodecyl sulfate, 0.012% bromophenol blue) at 100°C for 5
min. Samples were loaded into wells of 10% polyacrylamide gels and electro-
phoresed. After electrophoresis, gels were fixed and stained using colloidal
Coomassie blue (Invitrogen).

Mice. C57BL/6J mice (wt) were obtained from Jackson Laboratory. Ctsb�/�

(21, 30) and Ctsl�/� (68) mice, each backcrossed to a C57BL/6 background at
least eight times to ensure that all strains studied were of similar genetic back-
grounds, were provided by D. Hanahan (San Francisco, CA). Ctss�/� mice,
backcrossed at least 10 times to a C57BL/6 background (67), were provided by H.
Chapman (San Francisco, CA).

Infection of mice. Newborn mice, 2 to 4 days old, weighing approximately 2 g
were inoculated perorally or intracranially with purified reovirus virions diluted
in phosphate-buffered saline (PBS). Peroral inoculations (50 �l) were delivered
intragastrically (69). Intracranial inoculations (5 �l) were delivered to the left
cerebral hemisphere by using a Hamilton syringe and 30-gauge needle (80). For
analysis of virulence, mice were monitored for weight loss and symptoms of
disease for 21 days after inoculation and euthanized when found to be moribund
(defined by rapid or shallow breathing, severe lethargy, or paralysis). For analysis
of viral replication, mice were euthanized at various intervals following inocula-
tion, and organs were harvested into 1 ml of PBS before freezing, thawing, and
homogenization by sonication (1, 5, 18), using a midrange setting on a VirSonic
100 sonicator (VirTis). Organ sizes did not noticeably differ between genotypes
of mice. For analysis of viremia, mice were euthanized and decapitated at various
intervals following inoculation. Whole blood was collected from the neck into a
1 ml syringe containing 100 �l Alsever’s solution (Sigma) and frozen, thawed,
and sonicated. Viral titers in organ and blood homogenates were determined by
a plaque assay (83). Animal husbandry and experimental procedures were per-
formed in accordance with Public Health Service policy and approved by the
Vanderbilt University School of Medicine Institutional Animal Care and Use
Committee.

Treatment of mice with an inhibitor of cathepsin L. Mice were inoculated
intraperitoneally with approximately 100 �g/g average litter weight of CLIK-148
in dimethyl sulfoxide (DMSO) or DMSO alone in a volume of 10 �l. One hour
following treatment, mice were inoculated perorally with PBS or reovirus
T3SA�. Mice were subsequently treated with CLIK-148 daily for 7 days. Anal-
ysis of virulence was conducted for 21 days or mice were euthanized at 8 days
postinoculation and organs resected for determination of viral titers by a plaque
assay. Pups that had obvious injury from intraperitoneal injections or that died
within 6 days postinoculation were eliminated from the study. CLIK-148 speci-
ficity in vitro and in vivo has previously been established (26, 37, 50, 88).

Statistical analysis. For survival experiments, curves were obtained using the
Kaplan-Meier method and compared using the log rank test. For experiments in
which viral titers in an organ or blood sample were determined, the Mann-
Whitney test was used to calculate two-tailed P values. This test is appropriate for
experimental data that display a non-Gaussian distribution (66). Mann-Whitney
analysis lacks the power of the t test, and therefore, statistical significance is
achieved less frequently with this method. All statistical analyses were performed
using GraphPad Prism software.

Histology. Newborn mice, 2 to 4 days old, weighing approximately 2 g were
inoculated perorally with purified reovirus virions diluted in PBS. At various
intervals following inoculation, mice were euthanized, organs were resected, and
a wedge of liver was removed for titer determination by a plaque assay. Remain-
ing organs were incubated in 10% formalin at room temperature for 24 h,
followed by incubation in 70% ethanol at room temperature. Fixed organs were
embedded in paraffin, and 5-�m sections were prepared. Consecutively obtained
sections were stained with hematoxylin and eosin for evaluation of histopatho-
logic changes or processed for immunohistochemical detection of reovirus pro-
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tein (56). The histology was reviewed by a pathologist blinded to the conditions
of the experiment.

Quantitation of serum hepatic enzymes. Newborn mice, 2 to 4 days old,
weighing approximately 2 g were inoculated perorally with purified reovirus
virions diluted in PBS. At various intervals following inoculation, mice were
euthanized and decapitated. Blood samples were collected and allowed to coag-
ulate, and sera were separated by centrifugation. Sera were stored at �20°C,
protected from light, and submitted in batches to Charles River Research Ani-
mal Diagnostic Services (Wilmington, MA). A small wedge of liver was resected
concurrently with blood collection for correlative titer determination by a plaque
assay.

Growth of reovirus in vitro in the presence of cathepsin inhibitors. Monolay-
ers of L cells (2 � 105 cells) in 24-well plates were preincubated in medium
supplemented to contain 10 to 100 �M CLIK-148 or 200 �M E64 for 4 h. The
medium was removed, and cells were adsorbed with T3SA� virions or ISVPs at
a multiplicity of infection of 2 PFU per cell. After incubation at 4°C for 1 h, the
inoculum was removed, cells were washed with PBS, and 1 ml fresh medium
supplemented with CLIK-148 or E64 was added. After incubation at 37°C for 0
or 24 h, cells were frozen and thawed twice, and viral titers in cell lysates were
determined by a plaque assay.

RESULTS

Processing of reovirus virions by purified cathepsin pro-
teases. Cathepsins B (23), L (23), and S (28) can catalyze
reovirus disassembly in vitro and in certain types of cells. Reo-
virus strain T3SA� is a reassortant virus that contains the S1
gene segment from strain T3C44-MA on the genetic back-
ground of T1L (4). Following peroral inoculation of newborn

mice, T3SA� replicates in the intestine and disseminates sys-
temically from that site to the brain, heart, and liver (5). To
determine whether T3SA� is susceptible to cathepsins B, L,
and S, we incubated purified virions with each enzyme over a
time course and resolved the resultant digestion mixtures by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Following incubation for 24 h with each protease, we observed
complete degradation of �3 and cleavage of �1 to � (Fig. 1).
Therefore, treatment of T3SA� virions with cathepsin B, L, or
S results in formation of ISVPs.

Cathepsin deficiency differentially affects survival following
reovirus infection. To determine the function of cathepsin
proteases in reovirus disease, we inoculated wt, Ctsb�/�,
Ctsl�/�, and Ctss�/� mice perorally with 107 PFU of reovirus
T3SA�. Mice were monitored for 21 days after infection for
morbidity and mortality. The cathepsin-null mice displayed
differential survival patterns in comparison to wt animals. Fol-
lowing a 21-day observation interval, the survival rate of
Ctsb�/� animals was greater than that of wt mice; 82% of
Ctsb�/� mice survived, in comparison to 61% for wt mice (Fig.
2A). In contrast, the survival rates of Ctsl�/� and Ctss�/� mice
were decreased in comparison to that of wt animals; only 7%
and 39% of Ctsl�/� and Ctss�/� mice, respectively, survived
T3SA� infection. However, the mean survival time for each
strain of cathepsin-deficient mice was increased in comparison
to that for wt animals (Table 1). The disease phenotypes in all
strains did not notably differ, with all strains of mice displaying

FIG. 1. Treatment of reovirus virions with cathepsins B, L, and S.
Purified virions of T3SA� were treated with 400 �g/ml cathepsin B
(A), 100 �g/ml cathepsin L (B), or 300 �g/ml cathepsin S (C) at 37°C
for the times shown. Equal numbers of viral particles were loaded into
wells of 10% polyacrylamide gels and electrophoresed. Viral proteins
are labeled on the right.

FIG. 2. Survival of wt and cathepsin-deficient mice following per-
oral inoculation. C57BL/6 wt and cathepsin-deficient mice, 2 to 4 days
(d) old, were inoculated perorally with 107 PFU T3SA�. Mice (n 	 14
to 21) were monitored for survival (A) and weight gain (B). (A) *, P
values of 
0.01, as determined by a log rank test, in comparison to the
wt level. (B) Results are expressed as mean weight of all living infected
animals. Statistical significance (P values of 
0.05 as determined by
Student’s t test) in comparison to the level for wt mice was achieved for
Ctsb�/� mice between days 2 and 8; for Ctsl�/� mice at days 1, 13, and
14; and for Ctss�/� mice at days 4 to 8, 11, and 14.
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weakness and lethargy during the period of illness. All pups of
wt and cathepsin-deficient strains inoculated with PBS and
observed under identical conditions survived and did not dis-
play symptoms (data not shown). As a surrogate marker for
disease severity, Ctsb�/� mice displayed approximately equiv-
alent levels of weight gain in comparison to wt animals at the
time of peak illness (Fig. 2B). However, Ctsl�/� and Ctss�/�

mice had more weight loss than wt mice, and subsequent
weight gain, indicative of recovery of these juvenile animals,
was delayed. These findings suggest that despite the increased
mortality of Ctsl�/� and Ctss�/� mice, these animals display
slower kinetics of disease development. Thus, expression of
cathepsins B, L, and S influences reovirus pathogenesis.

Peak reovirus titers are diminished in cathepsin-deficient
mice. To understand differences in susceptibility to reovirus
infection among the cathepsin-deficient mice, we inoculated
3-day-old mice perorally with a lower dose of T3SA�, 102

PFU, and quantified viral growth in selected organs. In com-
parison to wt mice, Ctsb�/� mice demonstrated equivalent
growths of reovirus in the intestine, the site of primary repli-
cation, at all time points tested (Fig. 3A). Although titers were
lower at day 4 in the livers of Ctsb�/� mice, peak titers at day
8 were equivalent to those in wt mice. In contrast, peak titers
in the hearts and brains of Ctsb�/� mice were lower than those
in wt mice, reaching statistical significance at day 12 in the
brain. In concordance with these results, Ctsb�/� mice exhib-
ited greater weight gain than wt mice at day 12 (Fig. 4), sug-
gesting that lower titers in the heart and brain are associated
with diminished disease and lead to enhanced survival. In these
experiments, neither wt nor Ctsb�/� mice displayed signs of
illness or succumbed to infection.

The trend displayed by Ctsl�/� mice differs from that of
Ctsb�/� mice with respect to both peak titer and kinetics of
disease progression. In contrast to what was found for Ctsb�/�

mice, peak titers in all organs of Ctsl�/� mice were decreased
in comparison to those for wt mice, reaching statistical signif-
icance in the heart at day 8 (Fig. 3B). However, viral clearance
was delayed, as titers in Ctsl�/� mice were greater than those
in wt mice at days 12, 16, and 20 postinoculation, reaching
statistical significance in the intestine and liver at day 12. As
expected from these results, the average weight of Ctsl�/� mice
was significantly less than that of wt mice at day 20 (Fig. 4).
Despite the lower dose of T3SA� used in these experiments,
several Ctsl�/� animals displayed overt signs of illness, includ-
ing weakness and lethargy, and some died.

FIG. 3. Reovirus titers in organs of wt and cathepsin-deficient mice
following peroral inoculation. C57BL/6 wt and Ctsb�/� (A), Ctsl�/� (B),
and Ctss�/� (C) mice, 2 to 4 days (d) old, were inoculated perorally with
102 PFU T3SA�. Organs were resected at the times shown and homog-
enized by freeze-thawing and sonication. Viral titers in organ homoge-
nates were determined by a plaque assay. Results are presented as mean
viral titers in whole organs of 6 to 20 mice. Error bars represent standard
errors of the means. *, P values of 
0.05, as determined by a Mann-
Whitney test, in comparison to the level for wt mice at the same time after
inoculation. The limit of detection was 102 PFU/organ.

TABLE 1. Mean survival time following reovirus infectiona

Genotype No. of
mice

Mortality
(%)b

Mean survival
time (days)c Pd

wt 21 38.1 9.0 � 1.2
Ctsb�/� 17 17.6 18.3 � 0.9 0.0017
Ctsl�/� 15 93.3 12.6 � 0.5 0.0041
Ctss�/� 13 61.5 13.3 � 0.7 0.0098

a C57/Bl6 wt and cathepsin-deficient mice, 2 to 4 days old, were inoculated
perorally with 107 PFU T3SA�. Mice were monitored for survival for 21 days.

b Percent animals dead after 21 days.
c Mean survival time, as defined by the average day of death for animals that

succumbed to infection, in number of days � standard error of the mean.
d P value, as determined by Student’s t test, in comparison to the level for wt

mice.
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The kinetics of viral growth in Ctss�/� mice were similar to
those in Ctsl�/� mice. Peak titers in all organs of Ctss�/�

animals were lower than those in wt mice, reaching statistical
significance in the liver at day 4, in the heart at days 4 and 8,
and in the brain at day 8 (Fig. 3C). As in Ctsl�/� mice, viral
titers did not decrease in Ctss�/� mice between days 8 and 12,
and titers in the intestines of Ctss�/� mice were actually
greater than those in wt mice at days 12 and 16. These data
suggest that viral clearance was delayed in Ctss�/� mice. Also,
like Ctsl�/� mice, Ctss�/� mice infected with T3SA� displayed
signs of illness, including weakness and lethargy, diminished
weight gain (Fig. 4), and mortality. Thus, peak reovirus titers

were decreased in all strains of cathepsin-deficient mice, but
mice deficient in cathepsin L or cathepsin S had higher viral
titers at late times after inoculation and increased disease
severity.

Inflammation in the liver is more severe in cathepsin L- and
cathepsin S-deficient mice. To better understand why Ctsl�/�

and Ctss�/� mice had greater susceptibility to reovirus infec-
tion than wt and Ctsb�/� mice, we compared histological sec-
tions of heart and liver from mice inoculated perorally with 106

PFU T3SA�. Animals chosen for histological analysis were
matched for viral titer in the liver. Viral antigen staining in the
hearts of all genotypes of mice localized primarily to the sub-
epicardial myocardium, with little to moderate involvement of
the deeper myocardium (data not shown). The extents of in-
flammatory cell infiltrates associated with infectious foci were
consistent across all strains of mice.

In all mouse strains, infection in the liver centered on the
bile duct epithelium (Fig. 5), as has been previously reported
(5). Viral antigen and inflammation were more pronounced
along large portal tracts; however, smaller portal tracts also
were involved. Hepatic lobular involvement was present in all
strains of mice in regions of increased reovirus antigen staining
and inflammation. Although there was variability within each
genotype of mice and some overlap between them, inflamma-
tion centered at the portal triads was more severe in Ctsl�/�

and Ctss�/� than in wt and Ctsb�/� mice (Fig. 5, low-magni-
fication panels showing increased numbers of leukocytes in
panels C and D versus A and B).

Liver enzyme levels are increased in cathepsin L- and ca-
thepsin S-deficient mice. To obtain biochemical evidence of
biliary or hepatic injury in reovirus-infected mice, we assessed
levels of total bilirubin (TBIL), alkaline phosphatase (ALK),
alanine aminotransferase (ALT), and aspartate aminotransfer-

FIG. 4. Weights of mice following peroral inoculation with T3SA�.
C57BL/6 wt and cathepsin-deficient mice, 2 to 4 (d) days old, were
inoculated perorally with 102 PFU T3SA�. Mice were weighed only on
the day of harvest, as indicated. Results are displayed as the mean
weights of 6 to 20 animals. *, P values of 
0.05, as determined by
Student’s t test, in comparison to the level for wt mice at the same time
after inoculation.

FIG. 5. Histological analysis of reovirus growth in the liver. C57BL/6 wt and cathepsin-deficient mice, 2 to 4 days old, were inoculated perorally
with 106 PFU T3SA�. Livers were resected at day 8 postinfection, and a small wedge of liver was removed for titer determination by a plaque assay.
The remaining liver was processed for histopathology, and consecutive sections were stained with hematoxylin and eosin or polyclonal reovirus
antiserum. Representative samples from titer-matched livers are shown. Boxes indicate areas of enlargement shown in the panels on the right.
Arrows indicate areas of inflammation. Original magnifications, �10 and �40. A, wt; B, Ctsb�/�; C, Ctsl�/�; D, Ctss�/�.
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ase (AST) in mice that were either mock infected or infected
with 106 PFU T3SA�. No biomarker of liver injury was ele-
vated in mock-infected mice at any time point or in any strain
of reovirus-infected mice at day 8 postinfection (data not
shown). In contrast, levels of TBIL and ALK were increased in
Ctsl�/� mice and levels of all four markers were increased in
Ctss�/� mice at day 12 postinfection (Table 2). These results
indicate more-severe hepatobiliary damage in reovirus-in-
fected Ctsl�/� and Ctss�/� mice than in wt and Ctsb�/�

animals.
Hematogenous dissemination of reovirus is unaffected by

the absence of a single cathepsin protease following peroral
inoculation. We thought it possible that the capacity of reovi-
rus to either disseminate to sites of secondary infection in
cathepsin-deficient mice or establish infection once reaching
those sites might be reduced. To distinguish between these
possibilities, we quantified viral titers in blood samples follow-
ing peroral inoculation. Newborn mice were inoculated per-
orally with 106 PFU of T3SA�, and blood samples were col-
lected at various times after inoculation. Reovirus established
viremia in all strains of mice, reaching peak titers that did not
differ significantly (Fig. 6). Therefore, the lack of a single
cathepsin protease does not appear to alter the efficiency of
reovirus hematogenous dissemination in mice.

Growth of reovirus in the brain is diminished in cathepsin
L-deficient mice following intracranial inoculation. To deter-
mine the effect of cathepsin deficiency on the capacity of reo-
virus to grow at a site of secondary replication, we quantified
viral titers in the brain following intracranial inoculation of wt
and cathepsin-deficient mice. This site was chosen for ease of
direct inoculation. Titers of T3SA� in the brains of wt,
Ctsb�/�, and Ctss�/� mice did not differ statistically (Fig. 7),
suggesting that cathepsins B and S are not required for reovi-
rus growth in the brain following direct inoculation into that
site. However, titers of T3SA� in the brains of Ctsl�/� mice
were significantly lower on day 9 postinoculation, suggesting
that cathepsin L is required for efficient growth of reovirus in
the brain.

Treatment with an inhibitor of cathepsin L promotes sur-
vival following reovirus infection. Since titers of reovirus in
organs of cathepsin-deficient mice are lower than those in wt
mice, but mortality is increased in Ctsl�/� and Ctss�/� mice, we
hypothesized that the immune defects accompanying genetic
cathepsin L and cathepsin S deficiency might mask a cathepsin
requirement for efficient viral growth. Therefore, we sought to

TABLE 2. Bilirubin and liver enzyme levels in sera following reovirus infectiona

Genotype

Concn in sera of indicated mouse group

Mock infected Reovirus infected

TBIL
(mg/dl)

ALK
(U/liter)

ALT
(U/liter)

AST
(U/liter) TBIL (mg/dl) ALK (U/liter) ALT (U/liter) AST (U/liter)

wt 1.5 634 127 461 0.9 (0.3) 768 (140.8) 295 (224.8) 495 (231.2)
Ctsb�/� 2.0 475 73 417 1.9 (0.2) 783 (109.0) 97.5 (31.1) 460.5 (105.1)
Ctsl�/� 1.5 567 57 409 9.2* (1.1) 1282.4 (300.3) 60 (20.8) 439 (43.8)
Ctss�/� 0.9 574 99 330 6.9* (2.0) 1709* (258.9) 858 (665.5) 2083.75 (856.8)

a C57/Bl6 wt and cathepsin-deficient mice, 2 to 4 days old, were inoculated perorally with PBS alone or 106 PFU T3SA�. At day 12 postinoculation, the liver was
resected and blood was collected. A small wedge of liver was removed for titer determination by a plaque assay. Mean values from two mock-infected mice or three
to five reovirus-infected mice with approximately equivalent viral titers in the liver are shown. �, P values of 
0.05, as determined by Student’s t test, in comparison
to the level for wt mice. The standard errors of the means are shown in parentheses.

FIG. 6. Viremia in wt and cathepsin-deficient mice following per-
oral inoculation. C57BL/6 wt and cathepsin-deficient mice, 2 to 4 days
(d) old, were inoculated perorally with 106 PFU T3SA�. Blood sam-
ples were collected at the times shown and homogenized by freeze-
thawing and sonication. Viral titers in blood samples were determined
by a plaque assay. Results are presented as mean viral titers of 9 to 14
mice. The limit of detection was 50 PFU/ml.

FIG. 7. Viral growth in the brains of wt and cathepsin-deficient
mice following intracranial inoculation. C57BL/6 wt and cathepsin-
deficient mice, 2 to 4 days (d) old, were inoculated intracranially with
102 PFU T3SA�. Brains were resected at the times shown and ho-
mogenized by freeze-thawing and sonication. Viral titers in brain ho-
mogenates were determined by a plaque assay. Results are expressed
as mean viral titers in the brains of 9 to 13 mice. Error bars represent
standard errors of the means. *, P values of 
0.05, as determined by
a Mann-Whitney test, in comparison to the level for wt mice at the
same time after inoculation. The limit of detection was 102 PFU/brain.
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determine whether reovirus disease could be ameliorated in wt
mice by treatment with a cathepsin inhibitor. CLIK-148, a
derivative of the pan-cysteine protease inhibitor E-64, inhibits
cathepsin L in vivo (37, 38). Mice were treated with CLIK-148
at a dose of approximately 100 �g/g body weight via intraper-
itoneal injection 1 h prior to peroral inoculation with 107 PFU
T3SA� and then every 24 h for 7 days. In comparison to mice
treated with vehicle alone, a significantly greater percentage of
mice treated with CLIK-148 survived (Fig. 8A). At day 21, 40%
of CLIK-148-treated mice succumbed, whereas 80% of vehi-
cle-treated mice died. As a surrogate marker for disease,
CLIK-148-treated mice exhibited only minimal weight loss,
followed by substantial weight gain through the course of the
experiment, whereas vehicle-treated mice exhibited more-se-
vere weight loss and gained weight more slowly during the
recovery phase (Fig. 8B). Mock-infected mice treated with
CLIK-148 or vehicle alone showed no signs of drug toxicity and
had survival rates of 100% (data not shown). These results
suggest that treatment with a cathepsin L inhibitor dampens
the severity of reovirus disease.

Treatment with an inhibitor of cathepsin L diminishes reo-
virus growth at sites of secondary replication. To determine
whether the cause of diminished mortality following treatment
with CLIK-148 is related to viral growth, we quantified viral

titers in various organs of wt mice treated with CLIK-148. Mice
were treated with CLIK-148 at a dose of approximately 100
�g/g body weight via intraperitoneal injection 1 h prior to
peroral inoculation with 10 PFU T3SA� and then every 24 h
for 7 days. On day 8 postinfection, organs were harvested and
titers determined by a plaque assay. Although titers in vehicle-
treated and CLIK-148-treated mice were equivalent in the
intestine, titers were reduced at sites of secondary replication
in the CLIK-148-treated mice in comparison to those in vehi-
cle-treated mice (Fig. 8C). More striking, perhaps, was that of
the five CLIK-148-treated animals with detectable titers in the
intestine, only two exhibited virus dissemination to other or-
gans. However, of the seven vehicle-treated mice with detect-
able titers in the intestine, six had disseminated virus. Thus,
pharmacologic blockade of cathepsin L activity diminishes reo-
virus dissemination to sites of secondary replication.

Treatment with CLIK-148 inhibits reovirus entry into cells.
To define the block to infection imposed by CLIK-148, murine
L cells were treated with various concentrations of CLIK-148
prior to infection with T3SA� virions and in vitro-generated
ISVPs. ISVPs are capable of penetrating cells at the plasma
membrane and are resistant to inhibitors of proteolytic disas-
sembly (2, 17, 19, 76, 86). In comparison to viral yields in
untreated cells, yields in cells treated with 100 �M CLIK-148

FIG. 8. (A to C) Treatment with an inhibitor of cathepsin L decreases disease severity. C57BL/6 wt mice, 2 to 4 days (d) old, were inoculated
intraperitoneally with CLIK-148 at a dose of 100 �g/g average litter body weight or vehicle control 1 h prior to peroral inoculation with 107 PFU
(A, B) or 10 PFU (C) T3SA�. Mice were treated intraperitoneally with CLIK-148 thereafter for 7 days. Mice (n 	 15) were monitored for survival
(A) and weight gain (B). (A) *, P values of 
0.05, as determined by a log rank test, in comparison to the level for vehicle-treated mice. (B) All
living mice were weighed each day. (C) Mice (n 	 9 or 10) were euthanized at day 8 postinoculation, and viral titers in organs were determined
by a plaque assay. Error bars represent standard errors of the means. (D) CLIK-148 inhibits infection by virions but not by ISVPs. Monolayers
of L cells were preincubated for 4 h in medium with or without CLIK-148 or E64 at the concentrations shown. The medium was removed, and
cells were adsorbed with T3SA� virions or ISVPs at a multiplicity of infection of 2 PFU per cell. After 1 h, the inoculum was removed, fresh
medium with or without CLIK-148 or E64 was added, and cells were incubated for 0 or 24 h. Viral titers in cell lysates were determined by a plaque
assay. The results are presented as mean viral yields, calculated by dividing the titer at 24 h by the titer at 0 h for each concentration of CLIK-148
or E64 for duplicate wells.

9636 JOHNSON ET AL. J. VIROL.

 on N
ovem

ber 30, 2012 by V
A

N
D

E
R

B
ILT

 U
N

IV
E

R
S

IT
Y

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


were diminished 10-fold (Fig. 8D). Treatment with 200 �M
E64, which blocks the activity of both cathepsin B and cathep-
sin L (3), diminished viral yields 100-fold. Yields produced
following infection by ISVPs were not decreased in cells
treated with either inhibitor, demonstrating that the block im-
posed by CLIK-148 occurs at a stage in viral replication prior
to generation of ISVPs.

DISCUSSION

In this study, we found that cathepsins B, L, and S are
individually required for development of peak viral titers at
sites of secondary replication and thus influence reovirus dis-
ease (Table 3). Survival is enhanced in mice lacking cathepsin
B but diminished in mice lacking cathepsin L or cathepsin S,
likely reflecting the differential importance of these cathepsins
in adaptive immunity. Importantly, treatment with an inhibitor
of cathepsin L activity, which uncouples cathepsin functions in
reovirus disassembly and immunity, enhances survival. These
findings indicate a key role for cathepsin proteases in viral
pathogenesis.

There are 11 cysteine proteases in the papain superfamily
encoded by the human genome (8, 40, 82). Of these, several
have been linked to disease in humans or animals. In addition
to roles in Alzheimer’s disease (31), atherosclerosis (42), can-
cer (49), and osteoporosis (81), cathepsins B, L, and S are
important mediators of cell entry by several viruses (13, 23, 28,
36, 58). Although members of the cathepsin family show some
redundancy of function, there exist specific roles for each pro-
tease. Therefore, we hypothesized that the proteases capable
of mediating reovirus disassembly would serve nonredundant
functions in reovirus pathogenesis by virtue of their specialized
host functions.

Reovirus virions are uncoated in late endosomes or lyso-
somes by cathepsins B (23), L (23), or S (28). We reasoned that
deficiency in the proteases that catalyze uncoating might lead
to decreased viral growth and diminished disease severity.
Only mice deficient in expression of cathepsin B fit this profile.
Ctsb�/� mice had an increased survival rate in comparison to
wt mice when infected with a high dose of reovirus, whereas
Ctsl�/� and Ctss�/� mice displayed decreased survival rates. In
concordance with this observation, reovirus produced lower
titers at sites of secondary replication in Ctsb�/� mice than in
wt mice, and Ctsb�/� mice displayed greater weight gain.
These results suggest that cathepsin B is required for reovirus
to establish high-titer infection and exert pathological effects.

The decreased survival rates of Ctsl�/� and Ctss�/� mice in

comparison to that of wt mice raised the possibility that viral
loads might be higher in these animals. However, reovirus
produced lower peak titers at sites of secondary replication in
both genotypes of mice in comparison to those in wt and
Ctsb�/� mice. Diminished survival rates among Ctsl�/� and
Ctss�/� mice are likely attributable to defects in immune func-
tion in these animals (15), with resultant failure to resolve viral
infection. Indeed, viral titers in the intestine at day 12 were
significantly higher in both Ctsl�/� and Ctss�/� mice than
those in wt animals. As viral titers in wt mice decreased from
day 8 to day 12, viral titers in Ctsl�/� and Ctss�/� mice did not.
We think it most likely that the absence of functional CD4� T
cells leads to inefficient viral clearance. Consequently, tissue
injury is sustained for a longer period of time. This conclusion
is supported by the kinetics of survival following infection.
Although Ctsl�/� and Ctss�/� mice die at higher frequency
than wt mice, survival times of the cathepsin-deficient mice are
prolonged. Thus, the immune deficiency displayed by mice
lacking cathepsin L or cathepsin S is associated with enhanced
reovirus virulence.

The paradox that Ctsl�/� and Ctss�/� mice display increased
disease severity and mortality despite lower peak titers sug-
gests that Ctsl�/� and Ctss�/� mice are more susceptible to the
pathological effects of reovirus infection than are wt mice. The
disease phenotype of these mice included lethargy, gallbladder
distention, intestinal obstruction, and oily hair (5, 20, 87), a
syndrome associated with viral replication in intrahepatic bile
duct epithelium, biliary obstruction, and fat malabsorption (5,
59, 60, 62, 87). However, the disease symptoms did not include
spastic movements of the extremities, overt seizures, or paral-
ysis, indicative of encephalitis. We think that death of reovirus-
infected animals lacking cathepsin L or cathepsin S resulted
from damage to the liver and heart. Histological analysis of the
heart did not reveal striking differences in pathological injury
in the different strains of mice, perhaps due to the high viral
loads in the hearts of all mice. However, the increase in in-
flammatory infiltrate surrounding portal triads, coupled with
the results of liver enzyme profiling, supports the conclusion
that damage to the liver contributed to the poor outcome of
reovirus-infected Ctsl�/� and Ctss�/� mice.

The observation that cathepsin-deficient mice inoculated
with reovirus had lower titers at sites of secondary replication
prompted us to investigate how individual cathepsins promote
viral pathogenesis. We envision two possibilities. First, cathep-
sin expression might allow the virus to disseminate systemically
in the host. Second, cathepsin expression might be required for

TABLE 3. Reovirus pathogenesis in cathepsin-deficient mice

Genotype Survival
rate

AST
level

Level in mice inoculated perorally Level of replication
in brain in mice

inoculated
intracranially

Replication
in intestine

Replication
in liver

Replication
in heart

Replication
in brain Viremia

Ctsb�/�b 1 1 % % 2 2 % %
Ctsl�/�b 2 1 2 2 2 2 % 2
Ctss�/�b 2 1 2 2 2 2 % %
wt plus CLIK-148c 1 ND % 2 2 2 ND ND

a1, increase; 2, decrease; %, no change; ND, not determined.
b Results shown are in comparison to the level for wt mice.
c Results shown are in comparison to the level for wt mice treated with DMSO.
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growth at sites of secondary replication once those sites are
reached. All strains of mice had detectable virus in the blood,
suggesting that cathepsin deficiency does not block reovirus
spread from the intestine into the bloodstream. However,
these proteases could be required for reovirus exit from the
bloodstream into the surrounding tissues, for example, by pro-
moting viral growth in endothelium or extravasation of in-
fected lymphocytes from blood vessels into host tissues.

While cathepsins B and S are dispensable for reovirus
growth in the brain, cathepsin L is not. Following intracranial
inoculation, titers in Ctsl�/� mice were decreased in compar-
ison to those in the other mouse strains tested. Cathepsin S is
required for maximal growth of reovirus in the intestine, as
titers of reovirus in the intestines of Ctss�/� mice are lower
than those in all other strains. It is possible that decreased
titers in the intestines of Ctss�/� mice are insufficient to allow
efficient viral dissemination to sites of secondary replication.
However, peak reovirus titers in the brains of Ctss�/� mice
following peroral inoculation are greater than those in Ctsb�/�

mice, suggesting that viral spread is independent of titer in the
intestine. Since spread to the brain is less affected in Ctss�/�

mice, and virus is present in the blood of Ctss�/� mice, cathep-
sin S may be important for reovirus growth at other sites of
secondary replication, including the heart and liver, at which
sites peak titers are less than those in wt mice. Cathepsin B also
may be important for growth in the heart, as titers at that site
in Ctsb�/� mice are decreased in comparison to those in wt
mice, while titers in the intestine and liver are not. It is note-
worthy that in mouse fibroblasts, although both cathepsin B
and cathepsin L can mediate reovirus uncoating, cathepsin L is
more efficient (23). Our data following both peroral and intra-
cranial inoculation support this conclusion in that peak titers in
all organs tested are lower in Ctsl�/� mice than in Ctsb�/�

mice. These findings suggest that cathepsin L is required for
efficient reovirus growth in tissues other than the intestine.

To eliminate the confounding variables present in the gene
deletion experiments, we sought to determine the effect of a
cathepsin inhibitor on reovirus pathogenesis. Mice treated with
CLIK-148, which specifically inhibits cathepsin L (37, 38), had
increased resistance to reovirus infection in comparison to
vehicle-treated controls, as assessed by both survival and viral
titers at sites of secondary replication. Because survival was
increased in CLIK-148-treated mice but decreased in Ctsl�/�

mice, we think that the inhibition of viral replication is specific
and that immune functions are preserved. Furthermore, since
the mice treated with CLIK-148 did not display defects in fur
growth characteristic of Ctsl�/� mice (68), we conclude that
pharmacologic inhibition of cathepsin L is not as complete as
genetic ablation. Successful pharmacologic attenuation of reo-
virus disease with a cathepsin inhibitor raises the possibility
that cathepsin inhibitor therapy could be effective for other
viruses that require cathepsin proteolysis for cell entry. Ebola
virus (13), Nipah virus (22, 57), Hendra virus (58), and severe
acute respiratory syndrome coronavirus (36) utilize cathepsin
proteases to enter cells. Treatment of cells with chloroquine
inhibits Hendra and Nipah virus infection (64), most likely via
interference with viral fusion glycoprotein processing by ca-
thepsin L. The absence of inhibitor-associated toxicity in this
study and others (37, 38), along with the efficacy of CLIK-148
treatment in the amelioration of disease (this study), suggests

that cathepsin inhibitors should be evaluated for therapeutic
efficacy against these viruses.

We have shown that cathepsin proteases are required for
efficient reovirus infection in mice. Cathepsins promote opti-
mal growth at specific sites of reovirus replication in the host
and influence survival following reovirus infection. Organ-spe-
cific differences in infection of cathepsin-deficient mice high-
light distinct roles for these proteases in vivo. A better under-
standing of the function of cathepsin proteases in the
pathogenesis of viral infections should lead to novel therapeu-
tics for a variety of important human pathogens.
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