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ABSTRACT 

 
The oncogenic PIM1 kinase has been implicated as a cofactor for the oncogene c-

MYC in prostate carcinogenesis. In this study, we show that coexpression of c-MYC and 

PIM1 is associated with high Gleason grade in prostate cancer. Using a tissue 

recombination model coupled with lentiviral-mediated gene transfer we show that Pim1 

is weakly oncogenic in naïve adult mouse prostatic epithelium. However, it cooperates 

dramatically with c-MYC to induce prostate cancer within 6 weeks. Importantly, c-MYC 

and Pim1 synergy is critically dependent on Pim1 kinase activity. c-MYC/Pim1-

expressing tumors showed increased phosphorylation of MYC on serine 62. Expression 

of a phosphomimetic c-MYC S62D mutant resulted in higher rates of proliferation 

compared to that of wild type c-MYC. However, c-MYC S62D did not result in tumors 

like c-MYC/Pim1 grafts, indicating that Pim1 cooperativity with c-MYC involves 

additional mechanisms other than enhancement of c-MYC activity by S62 

phosphorylation. In addition, c-MYC/Pim1-induced prostate carcinomas demonstrate 

evidence of neuroendocrine (NE) differentiation. Additional studies, including the 

identification of tumor cells co-expressing androgen receptor and NE cell markers 

synaptophysin and Ascl1 suggest that NE tumors arise from adenocarcinoma cells 

through transdifferentiation. These results directly demonstrate functional cooperativity 

between c-MYC and Pim1 in prostate tumorigenesis in vivo and support therapeutic 

strategies for targeting PIM1 in prostate cancer. 

Since Pim1 deficiency is well tolerated in vivo, it has been proposed that Pim1 

inhibition may offer an attractive option to impede prostate cancer progression. In the 

current study, we used small hairpin interfering RNA (shRNA) directed against Pim1 to 
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determine the anti-tumor effects in prostate cancer cell lines. In mouse c-MYC/Pim1 

prostate tumor-derived cells and human prostate cancer cells, Pim1 knockdown markedly 

decreased cellular proliferation, survival, and tumorigenicity. Further studies indicate that 

in prostate cancer cells, Pim1 is required to maintain ERK/MAPK signaling pathway 

activation. Thus, Pim1 is necessary to maintain tumorigenicity, and may represent an 

efficient target for prostate cancer therapy.  

 

(Note: Human MYC and mouse Pim1 are cloned in lentiviral constructs and used for this 

study) 
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CHAPTER I 

 

INTRODUCTION 

 

Overview 

Prostate cancer is the most common cause of cancer in men and is a leading cause 

of cancer-related death among men.  More than 186,000 American men are diagnosed 

with prostate cancer each year. One out of every 6 men will get prostate cancer and one 

out of every 36 men will die of it (American Cancer Society, 2009). It has been shown 

that many features of prostate organogenesis are paralleled in the initiation and 

progression of prostate cancer. Therefore, understanding the development of the normal 

prostate should provide insights into tumor formation and progression, which will help in 

the identification of novel biomarkers and the development of efficient therapies to treat 

prostate cancer (Figure 1). Using in vivo tissue recombination models, we have examined 

the role of two oncogenes, Myc and Pim1 kinase and their synergism in prostate cancer 

development. We have also analyzed the functional role of Pim1 kinase in prostate 

tumorigenesis and its potential role as a therapeutic target. 
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Figure 1. The diagram of normal prostate and prostate cancer (Adapted from 
http://www.nlm.nih.gov/medlineplus/ency/images/ency/fullsize/18038.jpg). 

Prostate gland anatomy 

The prostate is a male accessory sex gland located in front of the rectum and 

below the urinary bladder, encircling the urethra (Aumuller, 1989) (Figure 2). The main 

function of the prostate is to produce components of the seminal fluid during ejaculation. 

The fluid secreted by the prostate gland is rich in proteins and ionic components 

including acid phosphatase, citric acid, prostate specific antigen (PSA), zinc and calcium 

(Aumuller, 1990). The alkalinity seminal fluid helps to neutralize the acidity of the 

vaginal tract and to support sperm survival (Aumuller, 1990). 
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. 
Figure 2. Anatomy of human prostate gland. The human prostate is a walnut shaped gland surrounding 
the urethra below the bladder (Adapted from http://www.cancer.gov). 

 

Prostate gland development 

The prostate develops from the urogenital sinus (UGS). The UGS is an 

ambisexual embryonic rudiment. The UGS consists of epithelium (UGE) and 

mesenchyme (UGM). UGS develops into the prostate, prostatic urethra and bulbourethral 

glands in males, the lower vagina and urethra in females, and into the bladder in both 

sexes (Cunha, 1987; Staack, 2003).  The UGS becomes the sexually dimorphic in 

response to androgens around 13.5 days post-coitum (dpc) in mice and 8 weeks in human 

fetus. Around 15.5 dpc in the mouse and 10 weeks in the human, the androgen responsive 

http://www.cancer.gov/
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UGM signals to the epithelium, inducing it to form epithelial buds. Then epithelial buds 

grow as solid cords into the surrounding mesenchyme. The solid cords canalize and 

progress into the branching network (Figure 3) (Kurzrock; 1999; Hayward, 2000; Staack, 

2003; Meeks, 2010).  In a reciprocal manner, prostate epithelial cells induce 

mesenchymal cells to differentiate into smooth muscle (Cunha, 2008). In humans, the 

gland enters a quiescent state after birth until the circulating androgen levels increase at 

puberty. After puberty, the gland begins to grow slowly and epithelium proliferates, 

resulting in the branching structures seen in the mature gland (Cunha, 1987). This growth 

phase continues until adulthood. At age of 45 to 50 years in humans, androgen levels 

decline and the prostate undergoes a period of involution. While man becomes older, 

benign prostatic hyperplasia commonly appears (Berry, 1984)  

  

Figure 3. Schematic representation of phases of prostate development. A, The prostate develops from 
the UGS in response to androgens. The UGS consists of both epithelium (green) and mesenchyme (blue). B, 
Androgens engage androgen receptor in the mesenchyme and induce epithelial budding. C, Epithelial buds 
elongate into solid cords of tissue that eventually canalize into ducts. D, Latter phases of prostate 
development include epithelial branching (Adapted from Meeks J, 2010.)  
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Prostate structure  

The mouse prostate comprises four pairs of lobes depending on the regions 

relative to the urethra: the anterioral (AP), ventral (VP), dorsal (DP) and lateral prostates 

(LP) (Figure 4). 

 

Figure 4. Schematic diagram of the adult mouse genitourinary tract (lateral view). The mouse prostate 
consists of four pairs of distinct lobes (Adapted from Sugimura, 1986). 

 

Lowsley identified several lobes of prostate in fetuses and newborns including a 

dorsal or posterior lobe, a median and two lateral lobes, and a ventral lobe (atrophied 

after birth). In the adult human, these lobes are fused and grow as a single lobe with 

distinct glandular regions (Lowsley, 1912). In McNeal's model, human prostate is divided 

into 4 glandular zones: the peripheral zone, transition zone, periurethral zone and central 

zone (McNeal, 1981) (Figure 5). Majority of prostate cancers arises in the peripheral 
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zone, while benign prostatic hyperplasia usually originates in transition zone, and a 

significant subset of prostate cancer (approximately 20%) also occurs in this zone 

(McNeal, 1981). 

 

Figure 5. McNeal’s model of the prostate 

1, Peripheral Zone; 2, Central Zone; 3, Transitional Zone; 4, Anterior Fibromuscular Zone. B= Bladder, U= 
Urethra, SV= Seminal Vesicle (adapted from Algaba, 1991) 
 
 

Although these are anatomic differences between the single lobed prostate in 

human and the multi-lobed prostate in mouse, the early histological events and the steroid 

hormones that drive prostate development are similar in both mice and humans during the 

prostate development (Meeks, 2010). Certain similarities in prostate anatomy, clinical 

and pathological features between the mouse and human prostate gland support the use of 

mouse models for studying the mechanisms of prostate cancer initiation and progression 

(Shappell, 2004). 
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Cell types in prostate gland 

Adult prostate epithelium consists of flattened basal cells, tall columnar luminal 

cells, and rare neuroendocrine (NE) cells (Figure 6). Luminal cells express AR, 

cytokeratin (CK) 8 and 18. Basal cells express p63, CK5 and CK14. Neuroendocrine 

cells express chromogranin A and synaptophysin. There are cells with intermediate 

phenotypes expressing a mixture of basal and luminal markers (CK5, CK8, CK14, CK18, 

and PSA) (Wang, 2001). The majority of stroma is smooth muscle. Fibroblasts, nerves, 

endothelial cells and vascular smooth muscle are also located in the stroma (Abate-Shen, 

2000; Wang, 2001) (Figure 6).  

 

 

Figure 6. Cell types within a human prostatic duct. Prostatic epithelial cells are composed of luminal, 
basal and rare neuroendocrine cells (Adapted from Abate-Shen, 2000). 
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Prostate cancer 

Prostate cancer diagnosis  

The primary method of screening for prostate cancer is serum analysis for 

prostate-specific antigen (PSA) (Catalona, 1991). PSA is a kallikrein serine protease that 

is secreted by prostate epithelial cells. PSA is released into blood due to morphological 

and pathological changes in the prostate. The major function of PSA is breakdown of 

semenogelins and fibronectin in coagulated semen, causing liquefaction of semen and 

facilitating fertilization (Lilja, 1985; 1987). Prostate cancer is associated with elevated 

level of serum PSA. However, elevation of PSA may indicate other prostatic diseases, 

such as benign prostatic hyperplasia (BPH) and inflammation of the prostate (prostatitis). 

A digital rectal examination (DRE) is also used to detect a problem in the prostate. An 

irregular or hard lump may indicate the presence of a tumor. Rectal examination also 

determines whether the tumor remains within the borders of the prostatic capsule or goes 

beyond it. However, enlargement of the prostate gland can be found in BPH patients. Not 

all of prostatic abnormalities can be found through the rectum. Both DRE and PSA test 

are also associated with high false-positive rates because they cannot tell whether the 

problem is cancer or a benign condition. They cannot predict progression of cancer, and 

may detect some indolent prostate cancer that would never have caused clinical problems. 

If an abnormality is found after PSA or DRE test, patients will be subjected to transrectal 

biopsy to diagnose prostate cancer. However, prostatic biopsies are associated with 

complications, including fever, pain, hematospermia/hematuria, positive urine cultures, 

and rarely sepsis (Rietbergen, 1997).  

Next, the pathologist examines biopsy samples under a microscope and gives a 

grade. One system of grading uses Gleason score. The most common pattern is given a 
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grade of 1 (like normal cells) to 5 (most abnormal). If there is a second most common 

pattern, the pathologist also gives it a grade of 1 to 5, and adds the two most common 

grades together to make the Gleason score (Gleason, 1974). Another system of grading 

prostate cancer uses the TNM system, which evaluates the size and invasive of the tumor 

(T1-T4), the extent of involved lymph nodes (N0 or 1), any metastasis (M0 or M1a-c) 

also takes into account cancer grade. These are often grouped into four stages (I–IV). 

(Denoix, 1944; 1950). 

Research has shown an increased risk of prostate cancer among men age over 65. 

The risk is higher if a family member had prostate cancer. The risk is also related to race, 

most common in African man, and lowest in Asians. Many other possible risk factors are 

under study. Researchers are also studying how to prevent prostate cancer. Certain 

chemo-preventive agents including, vitamin E, selenium, green tea extract seem to help 

in preventing prostate cancer (American Cancer Society). 

Prostate cancer treatment 

Prostate cancer can be treated by surgery, radiation therapy, hormone therapy, and 

chemotherapy. It has been reported that current prostate cancer treatments cause 

permanent side effects in men, such as erectile dysfunction and urinary incontinence 

(Harris, 2002; Litwin, 2000; Steineck, 2002). Prostate cancer cells depend on androgen 

receptor for growth and survival. The most common treatment for prostate cancer is 

hormone therapy (androgen ablation).  Although this treatment is effective initially, over 

time Castration-Resistant Prostate Cancer (CRPC) occurs, which is refractory to current 

therapeutic modalities. Therefore, one of major challenges in prostate cancer research is 

to find efficient therapeutic approaches for treatment of CRPC. Notably, some types of 
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prostate cancer are indolent and may need minimal or no treatment, other types are 

aggressive and can spread quickly (American Cancer Society). However, the accuracy of 

identifying indolent versus aggressive cancer was poor, which leads to over-diagnosis 

and over-treatment of prostate cancer. Because of these, controversy exists in regard to 

the value of screening, the most appropriate staging evaluation, and the optimal treatment 

of each stage of the disease (Garnick, 1993.) Therefore, one of major challenges in 

prostate cancer research is to design reliable screens for distinguishing indolent versus 

aggressive cancer, and to elucidate the factors that contribute to disease progression.  

Model of prostate cancer progression 

Human prostate tumorigenesis involves a series of genetic and epigenetic 

alterations that transform benign prostatic epithelial cells into precursor lesions prostatic 

intraepithelial neoplasia (PIN) with progression to invasive carcinoma and ultimately to 

metastastic disease.  The skeletal bone, lymph nodes and lung are major metastastic sites 

for prostate cancer (Shen, 2000) (Figure 7). During this process, many oncogenes such as 

Myc, Pim1, EZH2 and Egr1 are upregulated, while tumor suppressor genes such as 

Nkx3.1, p27, PTEN and p53 are downregulated (Abdulkadir, 2005). The long term goal 

for prostate cancer research is to identify genes and molecular pathways that are involved 

in the initiation and progression of prostate cancer. These studies will provide insight into 

new strategies for treatment and prevention of prostate cancer (Abate-Shen, 2000, Shen, 

2010). 

Neuroendocrine (NE) cells are a minor population in normal prostate epithelium. 

During the progression of prostate cancer, the number of NE cells in malignant lesions 

increases especially in advanced prostate tumor, which is correlated with its 



11 
 

tumorigenicity and hormone-refractory growth (Jiborn, 1998; Ito, 2001; Ismail, 2002; 

Hirano, 2004). The biological basis for androgen insensitivity is not well understood. 

Recent studies have focused on finding the determinants of metastasis and CRPC for 

identifying specific therapeutic targets.  

 

Figure 7.  Development of prostate cancer. Diagram showing transformation of normal prostate 
epithelium to PIN, invasive carcinoma and metastasis with the progression of disease (Adapted from 
Abate-Shen, 2000). 

 

Mouse models of prostate cancer 

Prostate cancer involves a series of genetic and epigenetic alterations that 

transform normal prostate epithelial cells into cancer cells. Therefore, the development of 

useful models is necessary for understanding of the molecular mechanisms of prostate 

cancer.  

Mice are used for modeling human cancer due to a relatively short gestation 

period and lifespan. Importantly, the essential functions of most mouse genes implicated 

in cancer are structurally homologous to those in humans. Furthermore, another 

advantage is that mice are susceptible to cancer as humans (Rangarajan, 2003). Indeed, 

mouse models have provided valuable information about exploring mechanisms of 

tumorigenesis and testing new therapies. 
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Genetically engineered mouse models 

Transgenic models 

 Androgen responsive prostate-specific promoters are used to drive the expression 

of transgenes in prostate epithelial cells. These include elements derived from rat 

probasin, rat C3 (1) prostate steroid binding protein, human prostate specific antigen 

(PSA), and mouse mammary tumor virus (MMTV) long terminal repeat (LTR). The 

probasin promoters (PB) are commonly used, which includes the minimal probasin 

promoter (Rennie, 1993), long probasin promoter (Yan, 1997) and minimal probasin 

promoter containing multiple androgen response regions (Kasper, 1994). Probasin and 

PSA promoters have been shown to essentially drive prostate-specific expression. 

ARR2PB promoter links two androgen response regions (ARRs) to the PB promoter, 

which drives high levels of transgene expression in transgenic mice (Ellwood-Yen, 2003; 

Zhang, 2000). MMTV LTR is responsive to androgen and several other steroid hormones. 

However, it has been shown that hormone sensitivity is not the only criterion for MMTV 

expression (Stewart, 1998). C3 (1) regulatory sequence induced gene expression can be 

found in other tissues in addition to the prostate (Green, 1998). 

TRAMP and LADY mice are two well characterized models of prostate cancer. 

They rapidly form invasive tumors with neuroendocrine features metastases (Greenberg, 

1995; Gingrich, 1996; Kaplan-Lefko, 2003; Kasper, 1998; Masumori, 2001). The 

TRAMP mice contain a minimal probasin promoter to drive the expression of SV40 large 

T and small t tumor antigens (Greenberg, 1995). SV40 large T antigen functions to 

inactivate the tumor suppressor p53 and retinoblastoma (Levine, 1990). Small t antigen 

blocks the function of protein phosphatase 2A (PP2A) and thus activates MAPK 

signaling pathway (Sontag, 1993). TRAMP mice develop high-grade prostate 
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intraepithelial neoplasia (HGPIN) within 12 weeks of age and adenocarcinoma and 

finally, metastatic spread to the lymph nodes, adrenal glands, lung and bone at 18 to 30 

weeks of age (Gingrich, 1999). LADY mice contain long probasin promoter to direct 

expression of only SV40 large T antigen (Kasper, 1998; Masumori, 2001). The LADY 

mice display the variable pattern of tumor formation depending on different sites of 

transgene integration, ranging from 12 weeks to over 20 weeks of age, following the 

development of poorly or undifferentiated carcinoma with NE differentiation (Kasper, 

1998; Masumori, 2001). 

Knockout models 

           Deletion of a gene of interest is another way to study gene functions. Due to 

embryonic lethality of some ablations, conditional knockout mice are made by using 

prostate specific promoter to drive Cre expression, such as Pb-Cre, Nkx3.1-Cre. The 

targeted gene was inactivated by Cre deletion of the floxed region and the expression of a 

truncated protein with loss of gene function. Some knockout models are shown in table1. 

However, these conditional knockout mice come from constitutively loss of function in 

early stages of prostate development. An inducible gene targeting system can overcome 

this limitation by inducing the expression of the gene of interest in adult prostate 

epithelium. Tamoxifen-inducible Cre driven PTEN null mice is an example of inducible 

mouse models (Luchman, 2008; Ratnacaram, 2008; Birbach, 2009). 

Some other engineered mouse models are shown in Table 1 (Adapted from Shen 

MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old 

challenges. Genes Dev. 2010 Sep 15; 24 (18):1967-2000). 
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Xenograft models  

Human prostate cancer cell lines or primary prostate cancer tissue can be injected 

subcutaneously or orthotopically into the severe combined immune deficiency (SCID) 

mice or nude mice (van Weerden, 2000). Xenograft models can monitor tumor 

progression under different experimental conditions and resemble in vivo situation of the 

original human cancer. In addition, some cancers are able to metastasize when injected 

into the organ of origin, providing a useful tool for evaluation of new therapies 

(Thalmann, 1994; Stephenson, 1992). However, this model has several limitations 

including impaired host immune system, low tumor take rate, incomplete tumor-stroma 

interactions, and heterogonous microenvironment in host-donor background. In addition, 

it is difficult to examine the multi-step cancer development since most xenografted 

tumors or tumor cell lines represent advanced tumor (Frese, 2007; Becher, 2006). There 

is a limited number of existing human prostate cancer cell lines and most of them lack 

wild type AR expression. Therefore, all of these limit their use to the study of prostate 

cancer initiation and progression.  

Tissue recombination models 

Engineered mouse models can be manipulated to investigate the functions of 

target genes in development, physiology and disease. However, it takes as long as 1-2 

years to make transgenic mice. Current engineered mouse models use androgen-

dependent promoters to drive expression of gene of interest.  They are not suitable for 

studying the effects of modulating androgen levels, since androgen deprivation will 

simultaneously change transgene expression. Tissue recombination is a reliable method 

of inducing prostate differentiation, which drives to important advances in our 
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understanding of prostate biology during development and disease. A tissue 

recombination model can be made by mixing epithelial cells and stromal cells in a 

collagen gel, and then grafting under kidney capsule of SCID or nude mice. In detail, 

rat urogenital sinus mesenchyme (UGM) is prepared from 18-day embryonic fetuses. In 

this stage, the interface of urogenital sinus epithelium (UGE) and UGM is relatively 

simple for separation. UGE or pieces of prostatic epithelium, or dissociated prostate 

epithelial cells are combined with UGM cells, and then are suspended in collagen. This 

tissue recombinant is subsequently grafted under the renal capsule of SCID mice. After a 

period of growth and development the host is sacrificed and the graft is removed (Figure 

8). Surgery to the renal capsule is slightly more difficult than subcutaneous grafting but 

the graft take is much more efficient. The function of the gene can be examined by the 

size and histology of the graft (Hayward, 1998; 2002). Tissue recombinants can 

recapitulate the pathologic features of the neoplastic prostate seen in transgenic mice 

(Ishii, 2005). It takes just a few days to regenerate prostatic branched network (Cunha, 

1983). In order to minimize cell culture artifacts and investigate the function of target 

genes in vivo, genes of interest can either be overexpressed or knocked down by 

retroviral or lentiviral transduction of dissociated primary prostate cells (Xin, 2003; 2005).  



17 
 

 

Figure 8. Diagram of tissue recombination approach. Fetal rat urogenital mesenchyme (UGM) cells are 
combined with adult prostate cells or pieces of tissue and collagen, and then implanted under the renal 
capsule to regenerate prostates. 

 
Compared to transgenic mice that contain the transgene in every cell or in organ-

specific subsets of cells under specific promoter, the tissue recombination model involves 

a small percentage of “transgenic” cells by retroviral or lentiviral infection surrounding 

normal uninfected cells within the microenvironment. These conditions more 

appropriately mimic those seen in the initiation of human cancer, where genetic 

alterations initially occur in only a few cells and not simultaneously in all cells of a given 

lineage. Tissue recombination model facilitates in situ study of gene specific effects in 

context of the prostate tissue. Another advantage is the elimination of culture-related 

artificial selection of cell populations because isolated epithelial or stromal cells can be 

directly used for tissue recombination. The generation of prostate cancer in the tissue 

recombination model not only defines a role for a specific transgene or combination in 
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prostate cancer, but also leads to establishment of many cell lines from cancerous and 

premalignant tissue grafts, which are subsequently used to further define the molecular 

basis of prostate cancer. This technique also allows to generate adult tissues of interest 

from transgenic or knockout mice that are embryonic lethal. 

Instead of implanting into subrenal capsule, cells or explants can also be put into 

pocket created under anterior lobe of the prostatic capsule, which is called orthotopic 

(prostate) xenograft (Figure 9) (Wang, 2005a). This technique is useful for studying 

metastatisis and provides insights to develop models to test new therapies (Wang, 2005b). 

 

Figure 9. Orthotopic xenografts of human prostate tissue in a SCID mouse. A, Whole mount showing 
the anterior prostate orthotopic graft in place. The  anterior prostate is seen in the “crook” of the seminal 
vesicle (SV).The graft (arrow) can be clearly seen nestled between the two main ducts of the anterior 
prostate (AP). B, Gentle microdissection reveals the graft which has clearly become extensively 
vascularized. C, Whole mount view of a sub-cutaneous graft beneath the skin of a SCID mouse (Adapted 
from Wang, 2005a). 

 

Prostate stem cell and cancer stem cell 

Normal prostate stem cell 

Stem cells are undifferentiated cells that are able to self-renew through 

asymmetric cell division and undergo multi-lineage differentiation (Becker, 1963; 

Siminovitch, 1963). Prostate stem cells (PSCs) are capable of giving rise to differentiated 
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basal, luminal and neuroendocrince cells during prostate development and regeneration 

(Taylor, 2010). 

The existence of prostate stem cells was initially implied by normal prostate 

regeneration after repeated cycles of androgen deprivation and restoration in rat (English, 

1987).  It is known that each lobe of mouse prostate contains three regions: distal, 

intermediate, and proximal regions. The proximal region of glands has been suggested to 

contain the mouse prostate stem cells (Figure 10) (Tsujimura, 2002; Burger, 2005). 

Tissue recombination approach also demonstrates the existence of prostate stem cells 

(Xin, 2003).  

 

Figure 10. Response of prostate epithelium to castration and androgen addition. Androgen withdrawal 
causes massive apoptosis in the prostate epithelium, leaving behind only castration-resistant cells. Upon 
addition of androgen, castration-resistant cells are capable of regenerating the gland. The cycle of 
involution and regeneration can be repeated in the rodent prostate almost indefinitely (Adapted from 
Goldstein, 2010).  

 
A lot of evidence supports the idea that PSCs reside in basal cells. For example, 

putative stem cell markers, Sca-1, CD44, CD49b, CD133, Bcl2, p63, CD117, Trop2, 

belong to prostatic basal markers (Liu, 1997; Signoretti, 2000; Collins, 2001; Richardson, 

2004; Xin, 2005; Lawson, 2007; Tsujimura, 2007; Goldstein, 2008; Yao, 2010). In 
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contrast, some evidence supports the concept that PSCs reside in luminal cells. It has 

been suggested that both basal and luminal epithelium contain putative stem cells as 

shown by the label-retaining methods (Tsujimura, 2002). It has been shown that p63 null 

cells have regenerative capacity of prostate in absence of basal cells (Kurita, 2004). A 

recent report shows that a small population of castration-resistant luminal cells 

expressing Nkx3.1 (CARNs) can regenerate prostate (Wang, 2009). Leong et al. isolated 

a single stem cell defined by Lin-Sca-1+CD133+CD44+CD117+ that can generate a 

prostate gland using tissue recombination method (Leong, 2008). Sca-1 and 

CD133 expression has been found in both stem and non-stem-cell types, including 

stromal and differentiated epithelial cells (Xin, 2005; Shmelkov, 2008). In addition, 

CD117 cannot be found either in basal layer or luminal layer, it remains to determine if 

Lin-Sca1+CD133+CD44+CD117+ cells have epithelial origin (Goldstein, 2010). These 

data suggest there may be multiple independent stem cell populations within the adult 

prostate, which respond to different stimuli.  

Cancer stem cell  

Cancer stem cells (CSCs) are cancer cells that have features of normal stem cells, 

specifically the ability to self-renew and differentiate into multiple cell types in a specific 

tumor. Such cells are tumorigenic and proposed to exist in tumors, which lead to cancer 

relapse and metastasis by giving rise to new tumors. It is possible that cancer stem cells 

come from transformation of normal stem cells or progenitor cells. It is also possible that 

cancer stem cells can be derived from transformed differentiated cells, resulting in 

dedifferentiation to acquire characteristics of stem cell. There might be some factors in 
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the microenvironment that cause the formation of cancer stem cells and initiate tumor 

formation (Figure 11) (Gupta, 2009; Maitland, 2008; Bjerkvig, 2005).  

 

Figure 11.  Potential cell origins of cancer stem cell. The diagram shows potential relationships between 
cancer stem cells and normal stem cells, progenitor cells, or differentiated cells. Mutations (lightning 
symbol) in a stem cell, progenitor cell or differentiated cell may give rise to a cancer stem cell that has self-
renewal potential and form new tumors. The microenvironment may be involved in the formation of a 
cancer stem cell (Adapted from Bjerkvig, 2005). 

 

At present, the origin of cancer stem cells is still not well understood. It is 

speculated that cancer stem cells may have luminal cell of origin since the luminal 

compartment expands and basal cells are lost during prostate cancer progression. It has 

been found that the putative prostate cancer stem cells exhibit basal cell features although 

prostate cancer is absence of basal cell (Collins, 2005). Transformed basal cells can 

generate prostate cancer with luminal phenotype (Wang, 2006; Lawson, 2007; 

Mulholland, 2009; Goldstein, 2008; 2010). Other studies have shown that prostate cancer 
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can be derived from transformed luminal cells (Ma, 2005; Korsten, 2009; Wang, 2009). 

Neuroendocrine cells may possibly represent a stem/progenitor cell population in prostate 

cancer (Palapattu, 2009). On the other hand, cancer stem cells may be derived from 

fusion between cancer cells and normal cells, stem cells and differentiated cells (Bjerkvig, 

2005).  In summary, different genetic alterations may target different cell types and 

induce different subtypes of cancer. Further study of cancer stem cells will provide the 

foundation for developing new methods in diagnosis, prevention and treatment of 

prostate cancer. 

c-MYC 

c-Myc gene was originally identified as cellular homologue of v-Myc which 

induced myelocytomatosis in birds (Vennström B, 1982; Sheiness D, 1979). Thereafter 

N-Myc and L-Myc were found to be amplified in neuroblastoma and small cell lung 

cancer, respectively (Kohl, 1983; Nau, 1985). These genes are homologous with same 

general topography. c-MYC is localized at chromosome 8q24.21, a region that is 

translocated in Burkitt's lymphoma (Dalla-Favera, 1982). The MYC genes have a short 

half-life of 20–30 min (Gregory, 2000). All Myc isoforms contain two independently 

functioning domains: a N-terminal transcriptional activation domain and a C-terminal 

DNA binding domain containing basic-helix-loop-helix-leucine zipper (bHLHZ) segment. 

Most biological functions of c-Myc require heterodimerization with its activation partner 

Max to the E-box sequence of c-Myc target genes (Blackwood, 1991). c-Myc also 

negatively regulates the transcription of genes which function to arrest the cell cycle, 

primarily through the c-Myc associated zinc finger protein, Miz1 (Schneider, 1997).  

 



23 
 

c-Myc (Myc, hereafter) is a multifunctional transcription factor that regulates cell 

cycle, growth and metabolism, differentiation, apoptosis, transformation, genomic 

instability, and angiogenesis (Figure 12). MYC is overexpressed in many types of tumors 

in human. Myc is required for embryonic stem (ES) cell pluripotency and reprogramming. 

Expression of Myc is generally high during early embryonic development (Cartwright, 

2005; Takahashi, 2006). Myc expression is low or undetectable in differentiated adult 

tissues, and is dramatically increased by growth factor-induced stimulation. Gardner, Lee 

& Dang summarized that “Myc expression persists into the cell cycle, but then returns to 

its basal level in resting cells. Abnormal or ectopic overexpression of Myc in primary 

cells activates a protective pathway through the induction of p19/p14ARF and a p53-

dependent cell death pathway. Hence, normal cells that overexpress Myc are eliminated 

from the host organism through apoptosis, thereby protecting the organism from lethal 

neoplastic changes” (Garden, 2002). Myc also inhibits cellular differentiation (Coppola, 

1986), shortens the cell cycle phases G1 and G2 (Karn, 1989), Myc has been implicated 

in inducing cyclin D1 and D2, cyclin E, CDK4, and Cdc25A, a phosphatase, which 

activates CDK2 and CDK4 (Bouchard, 1999; Coller, 2000; Hermeking, 2000). Myc has 

also been shown to reduce the level or inhibit the function of the CDK inhibitors p15, p21, 

and p27 (Gartel, 2003). A highly regulated cell cycle permits cells to repair DNA damage 

before replicating, thus protecting genomic integrity. Inappropriate regulated cell cycle 

results genomic instability. Myc overexpression has been reported to cause gene 

amplification, aneuploidy and polyploidy (Kuttler, 2006; Prochownik, 2008). Other 

studies suggest that Myc induces the production of reactive oxygen species (ROS), 

leading to DNA damage and genomic instability (Ray, 2006). Overexpression of MYC in 
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human cancers may contribute to enhanced tumor glycolysis, known as the Warburg 

effect (Figure 12) (Dang, 2010). 

 

Figure 12.  The Myc-Max heterodimer binds and activates E-box of target genes, and regulates 
downstream of target genes resulting in activation cell cycle regulation, apoptosis, or inhibition of cell 
adhesion (Adapted from Gardner, Lee & Dang, The Encyclopedia of Cancer, Second Edition, July 2002).  

 

In addition, Myc transcriptionally regulates a number of non-coding RNA 

transcripts including ribosomal RNAs, tRNAs and microRNAs (Cole, 2008). Myc also 

has a role in DNA replication, in which directly interacts with components of the 

replication machinery to positively regulate DNA synthesis. Overexpression of Myc 

induces inappropriate replication origin firing leading to replication stress and genomic 

instability evidenced by the activation of a DNA damage response (Dominguez-Sola, 

2007). 

Pim1 kinase 

The pim1 gene was initially identified as a proviral insertion site of the Moloney 

Murine Leukemia Virus (MoMuLV) (Cuypers, 1984). Pim1, Pim2 and Pim3 belong to 



25 
 

Pim family. They are conserved in vertebrates and show sequence and structural 

similarity (Mikkers, 2004). Pim family is constitutively active serine/threonine kinase 

that does not require posttranslational modification to be activated. Many cytokines, 

growth factors, hormones, and hypoxia can induce Pim1 expression (Dautry, 1988; Lilly, 

1992; Mui, 1996; Aho, 2005; Wang, 2001; Bachmann, 2005; Magnuson, 2010).  Pim1 

has a short half-life with 5 to 10 minutes in primary cells (Saris, 1991; Liang, 1996). The 

pim1 gene encodes two proteins of 33kD, and 44 kD using an alternative translation 

initiation at an upstream CUG codon (Saris, 1991). 33kDa Pim1 is primarily in the 

cytoplasm, whereas 44kDa Pim1 is primarily on plasma membrane (Xie, 2006).  

Pim1 structure 

Pim1 structure has been solved and demonstrated by several groups (Qian, 2005; 

Jacobs, 2005; Kumar, 2005). The binding site for ATP is located in a deep cavity formed 

by the N-terminal lobe containing anti-parallel β-sheets, and the C-terminal lobe 

containing α-helices. The active state of kinases is characterized by the presence of the 

conserved lysine-glutamate salt bridge (Lys67 and Glu89). The replacement of a lysine at 

position 67 by a methionine causes inactivation of the kinase (Figure 13). The Pim1 is 

post-transcriptionally regulated by eIF-4E (Hoover, 1997), stabilized by Hsp90 (Mizuno, 

2001) and degraded by PP2A (Losman, 2003).  
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Figure 13. Structural aspects of PIM1. A, Structural overview of the PIM1 crystal structure in complex 
with the nonhydrolysable ATP analogue AMPPNP. Regulatory elements (the phosphate binding (P)-loop, 
the magnesium binding motif DFG, the hinge region, the catalytic loop and the activation segment (A)-loop 
and the β-hairpin insert) are labelled and highlighted using different colors. B, Details of the interaction of 
the phosphate moieties of AMPPNP and Mg2+ with the D186FG motif, the conserved lysine (K67) and 
glutamate (E89) and the catalytic aspartate (D167). The enlarged region corresponds to part of the boxed 
area in A (Adapted from Brault, 2010). 

 

Pim1 activation and cytokine signaling 

Pim1 is induced by a large set of cytokines and is a downstream target for many 

cytokine-signaling pathways (Dautry, 1988; Lilly, 1992, Mui, 1996; Aho, 2005). 

STAT3/STAT5 can bind to the Pim1 promoter and upregulate Pim1 expression. Pim1 

itself can negatively regulate the Jak/STAT pathway by binding to SOCS1 and SOCS3, 

which are negative regulators of STAT signaling (Chen, 2002; Peltola, 2004). It is 

proposed that overexpression of Pim1 and other oncogenes, such as Myc, impairs this 

negative feedback, leading to hyperproliferation and tumor formation.  
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Pim1 and cell survival 

Pim1 is responsible for protecting cells from undergoing cellular apoptosis under 

adverse conditions (Moroy, 1993; Rahman, 2001). Pim1 phosphorylates Bad on serine 

112 to inactivate it and enhances Bcl-2 activity, thereby promoting cell survival (Aho, 

2004). Recent reports indicate that other Pim1 substrates are associated with cell survival. 

One of them is the proapototic transcription factor FOXO3a, which is inactivated by 

Pim1 (Morishita, 2008). Apoptosis signaling kinase 1 (ASK1) is also phosphorylated and 

inactivated by Pim1 (Gu, 2009). The other protein is MDM2, which is phosphorylated by 

Pim1, promotes cell survival (Hogan, 2008).  

Pim1 and cell cycle 

Pim1 promotes cell cycle G1/S progression by binding and phosphorylating the 

phosphatase Cdc25A (Mochizuk, 1999), cell cycle inhibitor p21Waf (Wang, 2002; Zhang, 

2007) and p27Kip1 (Morishita, 2008). Pim1 also phosphorylates Cdc25C associated kinase 

1(C-TAK1) and Cdc25C to promote transition from the G2 phase into mitosis 

(Bachmann, 2004). Nuclear mitotic apparatus (NuMA), responsible for the organization 

of the spindle apparatus in the M phase, is phosphorylated by Pim1 (Bhattacharya, 2002). 

Heterochromatin protein (HP) 1γ is identified as a Pim1 substrate (Koike, 2000). Pim1 

overexpression in human prostate cells leads to defects in mitotic spindle checkpoints, 

resulting in polyploidy and chromosome mis-segregation (Roh, 2003; 2005). 

Pim1 is a potential diagnostic biomarker  

Pim1 is up-regulated in human leukemia, lymphoma, prostate cancer, pancreatic 

cancer, gastric cancer, and head and neck squamous cell carcinoma (Amson, 1989; 

Dhanasekaran, 2001; Shah, 2008; Brault, 2010; Magnuson, 2010). The level of Pim1 
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expression correlates with the clinical outcome of prostate cancer patients despite the 

absence of Pim1 expression at some advanced metastatic tumor (Figure 14) 

(Dhanasekaran, 2001). Strong expression of Pim1 has been found to be associated with 

advanced prostate cancer. Detection of pim1 mRNA levels in prostate cancer 

demonstrates similar results with previous findings (Xu, 2005; He, 2009). Some PIN 

lesions display moderately strong Pim1 staining, which indicates Pim1 expression may be 

a potential early event in the development of prostate cancer (Valdman, 2004; Cibull, 

2006; van der Poel, 2010).   

 

Figure 14. Representative elements of a tissue microarray stained with anti-PIM1 antibody. a, 
Staining is absent or weak in benign prostate (top), but strong in the cytoplasm of localized prostate cancer 
(bottom). b, PIM1 expression is absent or weak in the secretory luminal cells of benign prostate glands 
(top), but strong in infiltrating prostate cancers (bottom) (Adapted from Dhanasekaran, 2001). 

Pim1 is a potential therapeutic biomarker  

Pim1 knockout mice are viable and fertile with subtle phenotypes in 

hematopoietic system and cytokine response (Laird, 1993; Domen, 1993). The feature of 

cell tolerated by Pim1 loss makes Pim1 as an attractive therapeutic target. In addition, 

Pim1 structure has been solved, which facilitates the development of Pim1 inhibitors. 
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Pim1 inhibitor quercetagetin is able to inhibit PIM1 activity in prostate cancer 

cells in a dose dependent fashion (Holder, 2007). SGI-1776 is another Pim1 inhibitor. 

Prostate cancer cells or B-cell chronic lymphocytic leukemia cells (CLL) treated by SGI-

1776 show a concentration dependent induction of apoptosis (Mumenthaler, 2009; Chen, 

2009). CLL cells treated with SGI-1776 show decrease phosphorylation of Myc on 

Serine 62 (Chen, 2009b). Currently, this compound is being used in human clinical trials 

for prostate cancer and lymphoma. In addition, it has been reported that Pim1 induces 

multi-drug resistance by increasing expression of two ABC transmembrane proteins - 

Pgp and BCRP (Xie, 2008; 2010). Therefore, inhibiting Pim1 kinase is a novel approach 

to abrogate Pgp and BCRP mediated drug resistance. Indeed, SGI-1776 

sensitizes prostate cancer cell to chemotherapy treatment (Mumenthal, 2009). In addition 

to chemical Pim1 inhibitors, anti-PIM1 monoclonal antibodys (mAbs) are reported to 

function as Pim1 inhibitors. It has been shown that anti-PIM1 mAbs lead to disrupt 

PIM1/Hsp90 complexes, reduce BAD phosphorylation at S112 and induce apoptosis (Hu, 

2009). All of these studies demonstrate that Pim1 can be a valuable therapeutic target. 

Pim1 and Myc synergism 

Pim1 shows strong synergism with Myc in lymphomagenesis. Pim1 induces 

lymphoma at a low frequency with a long latency (Cuypers, 1984; van Lohuizen, 1989). 

However, all mice overexpressing Myc and Pim1 died of leukemia in utero (Verbeek, 

1991). In human prostate cancer, both PIM1 and MYC are upregulated and suggest there 

is cooperation between them (Dhanasekaran, 2001; Ellwood-Yen, 2003). Pim1 is also 

overexpressed in Myc-driven prostate cancer mouse model (Ellwood-Yen, 2003). 

However, whether Pim1 and Myc do cooperate in prostate carcinogenesis has not been 
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demonstrated previously. The possible mechanisms of synergism between Myc and Pim1 

kinases have been reported according to in vitro studies: (1) Pim1 decreases PP2A 

activity, thereby decreasing dephosphorylated Myc S62, resulting in Myc stabilization 

(Chen, 2005). (2) Pim1 binds Myc, thereby increasing phosphorylation of Myc on serine 

62 and decreasing phosphorylation of Myc on threonine 58, resulting in stabilized Myc 

(Chen, 2005; Zhang, 2008). (3) Myc recruits Pim1 to the E boxes of the Myc target genes 

and phosphorylates histone 3 at serine 10, contributing to the activation of Myc target 

genes and cellular transformation (Zippo, 2007) (Figure 15). Although those mechanisms 

can partially explain the cooperation between Pim1 and Myc, the mechanisms of robust 

cooperation between Pim1 and Myc in vivo are still unclear. 

 

 

Figure 15. PIM1 is recruited to the E-box element by its interaction with MYC. The MYC–MAX–
PIM1 complex brings about the phosphorylation of H3S10, stimulates the binding of RNA polymerase II 
(Pol II) and contributes to the transcriptional activation of a subset of Myc target genes (Adapted from 
Zippo, 2007).    
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CHAPTER II 

 

PIM1 KINASE SYNERGIZES WITH C-MYC TO PROMOTE PROSTATE 
CANCER PROGRESSION 

 

 Introduction 

An important area in contemporary cancer research is defining the causative 

genetic alterations in tumors and their utility as molecular targets. In this regard, gene 

expression profiling studies have identified overexpression of the serine-threonine kinase 

PIM1 in a significant fraction of human prostate tumors where its expression is found to 

be tightly associated with that of MYC (Dhanasekaran, 2001; Valdman, 2004). Pim1 is 

also overexpressed in Myc-driven transgenic mouse prostate tumors (Ellwood-Yen, 

2003). Previous studies in mouse lymphoma models have shown that Pim1 and Myc 

synergize to promote lymphomagenesis (van Lohuizen, 1989; Verbeek, 1991; Möröy, 

1991).  

Pim1 is able to interact and phosphorylate several targets that are involved in cell 

cycle progression or apoptosis. Pim1 can inhibit apoptosis through interactions with the 

anti-apoptotic molecules, bcl-2 and Gfi-1 (Schmidt, 1998) or by inactivating 

phosphorylation of Bad at serine 112 (Aho, 2004). Substrates of Pim1 involved in cell 

cycle regulation include p21Cip1 (Wang, 2002), p27Kip1 (Morishita, 2008), NuMA 

(Bhattacharya, 2002), Cdc25A (Mochizuki, 1999), Cdc25c (Bachmann, 2006) and c-

TAK1 (Bachmann, 2004).  Pim1 overexpression increases the tumorigenicity of human 

prostate cancer cell lines (Ellwood-Yen, 2003; Chen, 2005; Bhattacharya, 2002; Roh, 

2005; 2008; Kim, 2010). Pim kinases may modulate phosphorylation of c-Myc on Ser62 
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through decreasing PP2A activity (Chen, 2005). Pim1 can increase Ser62 

phosphorylation while decrease Thr58 phosphorylation, thus increase c-Myc stability 

(Zhang, 2008). It has been showed that PIM1 binds MYC, modifys chromatin at at MYC 

binding sites, and activates MYC target genes (Zippo, 2007).  All of these observations 

suggested the possibility that Pim1 may cooperate with Myc in prostate tumorigenesis. 

However, whether Pim1 does indeed cooperate with Myc in prostate carcinogenesis in 

vivo has not been conclusively demonstrated. 

In this chapter, we first showed that coexpression of MYC and PIM1 in human 

prostate cancer samples is correlated with high tumor grade. Then we used a tissue 

recombination model to directly examine cooperativity between MYC and Pim1 in 

prostate tumorigenesis and the possible role of Pim1 kinase activity in this process. The 

results revealed a potent synergy between Pim1 and MYC in prostate cancer progression 

that is critically dependent on Pim1 kinase activity.  

 

Materials and Methods 

Lentiviral constructs 

Mouse Pim1, the kinase-dead mutant K67M was amplified using pMSCV-Pim1, 

pMSCV-K67M vector as templates (Roh, 2003). Human c-MYC was amplified using 

pHAMyc (kindly provided by Dr. L. Lee, Johns Hopkins University). Human c-MYC 

S62D mutant was cloned by mutating serine at position 62 (TCC) into aspartic acid 

(GAC) using PCR. Each above PCR product was cloned into the lentiviral transfer 

vector FM-1 biscistronically expressing YFP (kindly provided by Dr. Jeffrey Milbrandt, 
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Washington University) and was verified by restriction enzyme digestions and 

sequencing.  

Lentiviral preparation 

Lentivirus was produced by cotransfecting the transfer vector containing the gene 

of interest, the VSVG envelope glycoprotein, and the HIV-1 packaging vector Δ8.9 

(kindly provided by Dr. David Baltimore, Caltech) into 293FT cells (Invitrogen) using 

PEI reagent (Sigma). Virus supernatant was collected at 24, 48 and 72 hrs post-

transfection, and then was filtered through 0.45 µm filter.  Virus supernatant was 

concentrated by ultrafiltration using Centricon-70 following manufacturer's instruction 

(Millipore, UFC710008). Concentrated virus was stored at -80ºC. Viral titers were 

determined by infecting HT1080 cells with serial dilutions of virus and followed by flow 

cytometric quantification of YFP-positive cells after 3 days of infection.  In parallel, 

infected cells were visualized under a fluorescence microscope and cell lysates were 

prepared for Western blot. 

Tissue recombination 

All lobes of prostates were isolated from 6 week old C57BL/6 mice, minced and 

digested with collagenase, Trypsin, Dispase, DNase I, and passed through 100µm nylon 

mesh (BD Biosciences).  Dissociated prostate cells were infected with lentivirus at MOI 

50-100 in the presence of 8 µg/ml polybrene using the centrifugation method (Xin, 2003). 

Rat fetal urogenital mesenchyme (UGM) was prepared from 18-day embryos. Urogenital 

sinuses were dissected from fetuses and separated into epithelial and mesenchymal 

components by tryptic digestion as described previously (Hayward, 1998). Single UGM 

cells were then prepared by a 90-min digestion at 37°C with 187 units/ml collagenase. 1-

https://email.mc.vanderbilt.edu/owa/redir.aspx?C=d96c7ce1b76f4f8eab511c2c59ae8673&URL=http%3a%2f%2fwww.millipore.com%2fcatalogue%2fitem%2fufc710008
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2×105 cells were recombined with 2.5×105 rat urogenital mesenchyme (UGM) and 

suspended in rat tail collagen prepared as described (Hayward, 1998). The recombinants 

were incubated overnight and subsequently placed beneath the renal capsule of male 

SCID mice. Six or 12 weeks after grafting, the hosts were sacrificed. Animal experiments 

were performed according to protocols approved by the Institutional Animal Care and 

Use Committee at Vanderbilt University. 

Histology and immunohistochemistry 

Histological and immunohistochemical analyses were performed as described 

(Abdulkadir, 2001a; Abdulkadir, 2001b). Human tissue microarray was purchased from 

US Biomax, Inc. The following antibodies were used for immunohistochemical analysis: 

E-cadherin (BD Biosciences), smooth muscle actin (Sigma), synaptophysin (BD 

Biosciences), androgen receptor, c-MYC, FoxA2 and Nkx3.1 (all from Santa Cruz 

Biotechnology), p63 (Biocare Medical), cytokeratin 8 (Covance), Ki67 (Abcam), 

phospho histone H3 (Millipore), Ascl1 (BD Pharmingen), activated caspase 3 (Cell 

Signaling), chromogranin A, NSE (kindly provided by Dr. Robert Matusik, Vanderbilt 

University). For Ki67 and activated caspase3 quantitation, we counted at least 1000 cells 

per graft. For human prostate tumors samples, tissue arrays from Imgenex were stained 

by double immunofluorescence for MYC (1:15,000 with Tyramide Signal Amplification, 

Perkin-Elmer) and PIM1 (Santa Cruz Biotechnology, 1:50) as described (Kim, 2009). 

Coexpression was scored in samples where at least 50% of the cells coexpressed both 

antigens. Epithelial staining intensity was scored where > 5% of cells show staining on a 

4-point scale (0=negative, 1=weak, 2=intermediate, 3=strong) and samples were 
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categorized as either not overexpressing (scores 0, 1) or overexpressing (scores 2, 3) the 

antigen. Tissue histology was confirmed by H&E staining.  

Western blot analyses 

Western blot analyses were performed using the following antibodies: c-MYC, 

Pim1, AR (Santa Cruz Biotechnology, 1:500); β-actin, Cyclins D1, D2 , E (Santa Cruz 

Biotechnology,  1:1000); MYC phospho S62 (Abcam, 1:1000). 

Statistical analysis 

We compared groups by using student’s t-test or Chi-square test 

(http://www.quantpsy.org). Values were considered statistically significant at P < 0.05. 

Quantitative variables are expressed as means + SD while categorical variables are 

expressed as numbers (%).   

Results 

Co-expression of MYC and Pim1 in human prostate cancer  

To examine whether MYC and PIM1 proteins co-expressed in human prostate 

cancer, we employed double immunohistochemical staining of MYC and PIM1 in tissue 

microarrays (TMAs) from total prostatectomy specimens. In 91 specimens, MYC 

staining was observed in 52 (57%) cases and PIM1 staining was present in 58 (64%) 

tumor samples. There was considerable overlap between samples that express MYC and 

PIM1 (44.4%) (Figure 16A, B). In addition, among 28 samples with Gleason grade 4/5, 

17 (61%) tumor samples were MYC and PIM1 double positive. Coexpression of MYC 

and PIM1 was significantly correlated to higher Gleason grades (Figure 16C). These 

results are consistent with, and extend previous findings that MYC and PIM1 mRNA are 
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frequently coexpressed in human prostate tumors (Dhanasekaran, 2001; Ellwood-Yen, 

2003). 

 
Figure 16. Coexpression of MYC and PIM1 in human prostate tumors. A, Representative micrographs 
of human prostate tumor samples showing co-expression of c-MYC (green) and PIM1 (red) by double 
immunofluorescence staining. DAPI was used as a nuclear counter stain. B, Venn diagram showing overlap 
between samples positive for MYC and PIM1 overexpression. C, Gleason grade distribution of samples 
coexpressing MYC and PIM1 (MYC+PIM1+) compared to samples without coexpression of MYC and 
PIM1 (other). MYC+PIM1+ samples are associated with high Gleason grades. *P < 0.05.   
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Pim1 and MYC synergize to accelerate prostate cancer progression 

Lentiviral transfer vector expressing Pim1, or MYC was cloned into FM1 control 

vector, which bicistronically expresses yellow fluorescent protein (YFP) variant, Venus. 

To study whether Pim1 and Myc cooperation depends on kinase activity, we also cloned 

kinase-dead Pim1 mutant K67M. Lentivirus was produced, and all of concentrated virus 

titer was among 107- 108 infectious units (I.U.)/µl. The expression of target genes was 

determined using fluorescence microscopy and Western blot (Figure 17).  

 

Figure 17. Cloning lentiviral constructs and preparation of lentiviru expressing Pim1, or K67M, or 
MYC. A, Schematic of the bicistronic lentiviral vector FM-1 used to target transgene expression together 
with YFP/Venus. B, Microscopic detection of YFP fluorescence in lentiviral infected HT1080 cells. C, 
Western blot for detection of target protein expression in lentiviral infected HT1080 cells. 

 

To study the effects of MYC and Pim1 on naïve mouse prostate epithelium, we 

employed tissue recombination with lentiviral-mediated gene transfer (Xin, 2003). We 

infected dissociated prostate cells from 6-week old C57BL/6 mice with the control, Pim1, 

K67M or MYC-expressing lentiviruses singly or in combination (MYC/Pim1 or 

MYC/K67M). Cells were combined with rat UGM and grafted under the renal capsules 
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of SCID mice (Figure 18A). After six weeks, gross examination showed that the 

MYC/Pim1 grafts formed large hemorrhagic tumors while control, or Pim1, or K67M, or 

MYC and MYC/K67M grafts were small and did not differ significantly in their sizes 

(Figure 18B). Western blot confirmed appropriate transgene expression (Figure 18C). In 

MYC/Pim1 tumors, MYC and Pim1 proteins levels appear elevated, which may be due to 

the increased cellularity of tumors or other mechanisms such as increased protein stability. 

It is known that both Myc and Pim1 have short half-lives (Saris, 1991; Yeh, 2004) and 

Pim1 inhibits Myc degradation in a kinase-dependent manner (Zhang, 2008).  

 

 

Figure 18. Tissue recombination coupled with lentiviral-mediated gene transfer for expression of 
MYC and Pim1 in regenerated mouse prostate. A, Scheme used for prostate recombination. Primary 
mouse prostate epithelial cells were infected with the indicated lentiviruses and recombined with fetal rat 
urogenital mesenchyme to regenerate prostates.  B, Representative images of sub-renal capsule grafts 
(arrows) after 6 weeks. Scale bar, 5mm. C, Western blot analyses from 6-week graft tissue lysates with the 
indicated antibodies.  
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Histologically, all grafts from control (N=7), Pim1 (N=8) or K67M (N=8) group 

consisted of normal-looking prostatic glands (Figure 19). Two of Pim1 grafts showed 

very mild hyperplasia (data not shown), consistent with a weak oncogene. In contrast, all 

MYC (N=19) and MYC/K67M (N=11) grafts showed multiple foci of high-grade PIN 

(HGPIN), a putative precursor lesion for prostate carcinoma. These lesions are 

characterized by nuclear pleomorphism, prominent nucleoli, high mitotic activity, 

apoptotic figures and stromal hypercellularity. None of the MYC alone or MYC/K67M 

6-week grafts showed evidence of invasive cancer (Figure 19). Strikingly, MYC/Pim1 

grafts (N=17) consisted of prostate tumors growing as sheets of cells with notable rosette 

formation upon histological examination. The tumor cells had bubbly cytoplasm, 

vesicular nuclei, high nuclear: cytoplasmic ratios, large nuclei and prominent nucleoli 

(Figure 19). These tumors were also highly vascular. We observed 3 mice developed 

metastatic carcinoma and one of them died in the sixth week. These results indicate 

potent cooperation between MYC and Pim1 in prostate tumorigenesis which is critically 

dependent on Pim1 kinase activity. 
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Figure 19. MYC/Pim1 coexpression leads to high-grade prostate cancer within 6 weeks. H&E stained 
sections of 6-week grafts show normal-looking prostatic glands in control, Pim1 and K67M grafts. MYC 
and MYC/K67M samples show HGPIN lesions and hypercellular stroma. The MYC/Pim1 samples show 
high-grade tumor consistent with neuroendocrine carcinoma. Scale bar, 50 µm. Insets: Higher-
magnification images.  

 

Evidence of neuroendocrine differentiation in MYC/Pim1 tumors 

Normal prostatic epithelium consists of basal and luminal cells, as well as 

neuroendocrine (NE) cells. To characterize the cell types present in the regenerated grafts, 

we performed immunohistochemical analyses using a panel of cellular markers: androgen 

receptor (AR), E-cadherin, CK8, p63, smooth muscle actin (SMA), synaptophysin. 

Control, Pim1 and K67M, MYC or MYC/K67M grafts showed positive staining patterns 

for all of these markers (Figure 20). MYC/Pim1 tumors showed loss of AR, E-cadherin, 

p63, CK8, SMA and tumor suppressor Nkx3.1 (Figure 20, 22). These tumors 

ubiquitously expressed the NE marker synaptophysin (Figure 20). Further analysis 

showed that these tumors also expressed the neurogenic transcription factor Ascl1 (Hu, 

2004; Vias, 2008) and neuron-specific enolase (di Sant'Agnese, 1987) (Figure 21). 

However, MYC/Pim1 tumors did not express FoxA2, which is shown in some 
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neuroendocrine tumors (Mirosevich, 2006) (Figure 22). These results demonstrate that 

MYC/Pim1 co-expression leads to the development of high-grade cancer with 

characteristics of NE differentiation within 6 weeks.  

 

Figure 20. MYC/Pim1 co-expression shows evidence of neuroendocrine (NE) differentiation. 
Immunohistochemical analysis of 6-week grafts for expression of androgen receptor (AR), E-cadherin, p63, 
cytokeratin 8 (CK8), synaptophysin (SYN) and smooth muscle actin (SMA).  MYC/Pim1 tumors show low 
or loss of AR, E-cadherin, p63 and CK8 expression and strong expression of synaptophysin. HGPIN 
lesions in MYC group strongly express SMA in the hypercellular stroma. Note loss of SMA staining in the 
MYC/Pim1 tumors, consistent with their invasive nature. SMA positive cells surrounding blood vessels in 
MYC/Pim1 tumor served as internal positive controls. Scale bars, 50 µm. 
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Figure 21. Heterogeneous NSE and AsclI expression (brown) in MYC/Pim1 tumors. Control grafts 
show negative NSE and AsclI staining (Original magnification: 400×). 

 

Figure 22. Loss of expression of Nkx3.1 and FoxA2 in MYC/Pim1 tumors. Upper, immunochemical 
staining shows Nkx3.1 expression in control grafts, but loss of expression in MYC/Pim1 tumors (Original 
magnification: 400×). Lower, Staining for FoxA2 shows lack of expression in MYC/Pim1 tumors (Right). 
Left: positive control from liver metastasis of the LADY transgenic mice (kindly provided by Dr. Xiuping 
Yu and Dr. Robert Matusik, Vanderbilt University) shows nuclear expression (brown). (Original 
magnification: 200×). LADY transgenic mice develop prostate cancer due to SV40T antigen expression in 
the prostate (Masumori, 2001). 
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Notably, the MYC and MYC/K67M grafts were strongly positive for smooth 

muscle actin staining in the surrounding hypercellular stroma (Figure 20 and data not 

shown). Stromal reaction has been noted in association with HGPIN lesions in several 

mouse models of prostate cancer (Shappell, 2004). Since MYC expression was not found 

in the stromal part, the hypercellular stroma may result from an invasive phenotype 

(Figure 23). 

 

Figure 23. Immunohistochemical analysis of MYC expression in 6 week of MYC and MYC/Pim1 
grafts. Note nuclear MYC expression (brown) in HGPIN glands and tumor cells and absence of MYC 
expression in stroma (*) (Original magnification: 400×). 

 

MYC/Pim1 induced NE tumors arise from transdifferentiation of adenocarcinoma 

Neuroendocrine prostate cancer may arise directly from the transformation of rare 

neuroendocrine cells in the prostate or via the transdifferentiation of adenocarcinoma 

(Cindolo, 2007). If the neuroendocrine tumor arose from the transformation of 
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neuroendocrine cells, one would expect to see clusters of neuroendocrine cells in 

precursor HGPIN lesions. However, we did not observe clusters of synaptophysin 

positive cells in the HGPIN lesions from any of the MYC or MYC/Pim1 samples (Figure 

24 and data not shown). Therefore, the neuroendocrine tumors probably arose via the 

transdifferentiation of adenocarcinoma to a neuroendocrine phenotype.  

 

Figure 24. No clusters of NE cells in early lesions of MYC/Pim1 grafts. Left: A representative image of 
grafts showing that 4-week MYC/Pim1 grafts were much smaller than 6-week MYC/Pim1 grafts. Right: 
Representative H&E image of 4-week graft sections shows HGPIN and adenocarcinoma; that of 6-week 
graft sections shows high grade cancer (Original magnification: 100×).  Immunohitochemical staining 
shows that 4-week MYC/Pim1 grafts express AR but not express synaptophysin;  6-week MYC/Pim1 
grafts do not express AR but express synaptophysin (SYP) (Original magnification: 400×).  

 

Further evidence for this hypothesis was obtained by identification of cells that 

coexpress AR, MYC and the NE marker synaptophysin in MYC/Pim1 tumors (Figure 25). 
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These results are consistent with evidence of transdifferentiation of adenocarcinoma to 

neuroendocrine cancer (Wafa, 2007; Sauer, 2006; Hansel, 2009). 

 

Figure 25. Evidence that c-MYC/Pim1-induced neuroendocrine tumors arise by transdifferentiation. 
a-a”, MYC/Pim1 graft co-stained for androgen receptor (AR, red), synaptophysin (SYN, green) and 
nuclear stain DAPI (blue). b-b”, An adjacent section to that in ‘a’ stained for MYC (green), synaptophysin 
(SYN, red) and DAPI (blue). Arrows point to nest of tumor cells coexpressing AR, SYN and MYC.   c-c”, 
MYC/Pim1 graft co-stained for AR (red), Ascl1 (green) and DAPI (blue). Note coexpression of AR, Ascl1 
and MYC. d and d’, An adjacent section to that in ‘c’ stained for MYC (green), and DAPI (blue). Scale 
bars, 50 µm.   

Chronic Pim1 overexpression leads to the development of low grade PIN lesions 

 To examine the effects of chronic overexpression of Pim1, we allowed grafts to 

grow for 12 weeks. While grafts from the kinase-dead mutant K67M consisted of normal 
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glands, Pim1-expressing grafts showed focal epithelial hyperplasia and dysplasia 

consistent with low grade PIN (Figure 26).  

 
Figure 26. H&E sections show epithelial hyperplasia and LGPIN (arrow) in 12-week Pim1 grafts, 
while normal-looking prostate glands in K67M grafts.  Scale bars, 50 µm. 

 
Pim1 grafts showed a slight elevation of the Ki67-index compared to K67M grafts, 

but did not reach statistical significance. Both the Pim1 and K67M grafts showed low 

levels of apoptosis (Figure 27). Pim1 has been reported to interact with and 

phosphorylate several cell cycle and apoptotic molecules, including Cdc25A/C, C-TAK1, 

p21cip1, p27kip1 and Bad (Bachmann, 2005; Morishita, 2008).  Thus, Pim1 is expected to 

promote proliferation and inhibit apoptosis. The lack of a discernible phenotype in 6 

week-Pim1 grafts suggests that the homeostatic mechanisms operating in prostatic cells 

are able to buffer the effects of Pim1 overexpression. At 12 weeks, we speculate that a 

small reduction in the rate of apoptosis in Pim1 grafts coupled with a modest increase in 
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proliferation could account for accumulation of epithelial cells that manifests as 

hyperplasia. 

 
Figure 27. Proliferative (Ki67) and apoptotic (activated caspase 3) indices in 12-week grafts. Data 
shown as mean ± SD.*, P <0.05 relative to K67M or Pim1. **, P < 0.05 relative to all other groups. N=3.  

 

Chronic MYC overexpression results in adenocarcinoma and carcinoma with 
neuroendocrine differentiation   

Overexpression of Myc in prostate gland of transgenic mice demonstrated that the 

dosage of Myc expression is correlated to the rate of prostatic tumor progression 

(Ellwood-Yen, 2003; Zhang, 2000). In addition, based on the notion that Pim1 may 

cooperate with MYC by amplifying MYC activity, we speculated that chronic expression 

of MYC alone may result in tumors that resemble 6-week MYC/Pim1 tumors (Williams, 

2005). Actually, two different sizes of MYC grafts were observed 12 weeks postgrafting 

(Figure 28A).  Histologically, smaller size of MYC grafts contained HGPIN lesions, 

while larger grafts were comprised of high grade adenocarcinoma consistent with 

neuroendocrine differentiation (Figure 28B). Indeed, grafts with MYC overexpression for 

12 weeks produced synaptophysin-positive neuroendocrine tumors and invasive 
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adenocarcinoma with focal synaptophysin-positive cells (Figure 29), which further 

illustrates that neuroendocrine phenotype arises via the transdifferentiation of 

adenocarcinoma. 

 
Figure 28. The size and histology of twelve-week MYC grafts.  A, MYC grafts show two different sizes. 
MYC (I) is much smaller than MYC (II). B, H&E staining shows two types of lesions: MYC grafts (I) 
display HGPIN with invasive adenocarcinoma (arrows), whereas MYC grafts (II) consist of high-grade 
tumor. N=2 each. Scale bars, 50μm. 

 

Figure 29. Immunohistochemical staining for synaptophysin (SYN) in 12 week-MYC grafts shows 
isolated focal expression (arrows) in MYC (I) adenocarcinoma and strong expression in MYC (II) 
neuroendocrine tumor. Scale bars, 50μm. 

 
The 12-week MYC neuroendocrine tumors expressed low levels of AR using 

immunohistochemistry (Figure 30) and Western blot analysis (Figure 31)  
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Figure 30. Immunohistochemical staining of androgen receptor in 12 -week grafts. Note uniform 
nuclear expression (brown) in glands from K67M and Pim1 grafts and examples of heterogeneous or nearly 
total loss of expression in two different MYC tumors (Original magnification: 400×). 

 
 Interestingly, Western blot analysis of the 12-week grafts showed that slightly 

increased endogenous Pim1 in synaptophysin-positive MYC tumors (Figure 31), 

suggesting that with progression, MYC tumors select for Pim1 overexpression, or Pim1 

may be induced by neuroendocrine tumor secreted factors. These results are consistent 

with previous observations of Pim1 mRNA overexpression in probasin-Myc transgenic 

tumors although those tumors were not reported to express markers of NE differentiation 

(Ellwood-Yen, 2003).  



50 
 

 

Figure 31. Western blot shows that Pim1, MYC and AR expression in 12-week grafts.  Note increased 
Pim1 and reduced AR expression in MYC (II) sample. 

 
Analysis of 12-week MYC grafts showed levels of proliferation and apoptosis 

consistent with tumor grade, with the neuroendocrine tumors showing the highest rates of 

proliferation and apoptosis (Figure 27). 

Pim1 may inhibit MYC-induced apoptosis 

Myc is known to induce proliferation as well as apoptosis. The Pim1 kinase 

inhibits apoptosis via interactions with the anti-apoptotic molecules, Bcl-2 and Gfi-1 

(Schmidt, 1998) or by phosphorylation and inactivation of the pro-apoptotic proteins, 

Bad (Aho, 2004), FOXO3a (Morishita, 2008) and ASK1 (Gu, 2009). On the other hand, 

Pim1 has also been reported to promote Myc mediated apoptosis in serum-deprived Rat-1 

fibroblasts (Mochizuki, 1999). We speculated that Pim1 cooperates with MYC by 

inhibiting the apoptotic effect of Myc. Therefore, we analyzed proliferation and apoptosis 
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using immunohistochemical staining. Notably, the rates of proliferation (Ki-67 index) 

and apoptosis (activated caspase 3 index) were similarly low in the 6-week control, Pim1 

and K67M grafts, consistent with the absence of histological alterations in these tissues. 

However, there were significant increases in proliferation and apoptosis in the MYC 

grafts and similar increases were noted in the MYC/K67M group. The Ki67-index was 

dramatically increased in the MYC/Pim1 tumors consistent with the nature of high-grade 

tumors. The apoptotic index was also elevated indicating high turnover of the tumor cells 

(Fig. 32A, B). The increased apoptosis in the MYC/Pim1 tumors may be due to the 

markedly elevated rates of proliferation. Although there were many more cells 

undergoing proliferation than apoptosis, the net effect was increased tumor growth.  

 

Figure 32. Increased cellular proliferation and apoptosis in MYC/Pim1 tumors. The increased 
apoptosis may be due to the dramatically increased proliferation in the MYC/Pim1 tumors. A, Ki67 
proliferative index in graft tissues. B, Apoptotic index in graft tissues determined by staining for activated 
caspase 3. Data shown as mean ± SD, N=3. *, P <0.05 relative to control. **, P < 0.05 relative to all 
samples. 

 

It is speculated that proliferative and apoptotic rates were not comparable between 

PIN (MYC grafts) and cancer (MYC/Pim1 grafts). Therefore, proliferative and apoptotic 

rates were analyzed between 6-week MYC/Pim1 tumors and 12-week MYC (II) tumors. 

The result showed that MYC (II) tumors had higher apoptotic rates than MYC/Pim1 



52 
 

tumors. Furthermore, apoptosis normalized to proliferation was higher in MYC (II) tumor 

than MYC/Pim1 tumor (Figure 33). 

 

 

Figure 33. Pim1 suppresses MYC-induced apoptosis. Left: 12-week MYC (II) tumors show higher 
apoptotic rates comparing to MYC/Pim1 tumors. Data shown as mean ± SD, N=2-3. *, P <0.05. Right: 
Apoptotic rate normalized to proliferative rate is higher in MYC (II) tumors than MYC/Pim1 tumors. Data 
shown as average ratio of apoptosis to proliferation. N=2-3. 

 

Pim1 may increase MYC target gene expression and MYC protein stability 

It has been reported that PIM1 may enhance MYC stability and activity by 

increasing the phosphorylation of MYC on serine 62 (MYCS62P) (Chen, 2005; Zhang, 

2008). Other studies have shown that PIM1 and MYC binding induces phosphorylation 

of histone H3 on serine 10 and facilitates transcriptional activation of MYC target genes 

(Zippo, 2007). Based on these studies, it is expected that MYC activity will be enhanced 

in MYC/Pim1-expressing tumors. Consistent with this notion, we found that relative 

levels of MYC and MYC targets, cyclin D1, cyclin D2 and cyclin E, were elevated in 

MYC/Pim1 tissues comparing those in MYC or MYC/K67M grafts (Figure 34A, B). 

Furthermore, phosphorylation of MYC on S62 normalized to total MYC protein level 

was higher in MYC/Pim1 tumors than MYC or MYC/K67M grafts (Figure 34C). 

0

0.06

0.12

MYC/Pim1 MYC (II)

Apoptosis/Proliferation 
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Increased MYC target gene expression and MYC protein stability may due to the 

cooperation between Pim1 and MYC, but also may due to indirect gene activation as 

consequences of tumorigenesis.  

 

Figure 34. Western blot for detecting Cyclin D1, Cyclin D2, Cyclin E and phosphorylation of MYC 
on S62 in graft lysates.  A, Western blot for the indicated proteins in graft lysates. B, Quantitation of 
Cyclins D1, D2 and E levels from “C” normalized to actin level.  C, Upper panel: Western blot for serine-
62 phosphorylated MYC (MYCS62P) and total MYC. Lower panel: Quantitation of Western blot data. 
Data shown as mean ± SD, N=2. 

 

To directly assess the contribution of MYC phosphorylation on serine-62 to 

tumorigenic activity in vivo, we used the same approach to generate grafts expressing 

MYC phosphomimetic mutant MYC S62D (serine-to-aspartic acid). The size and 

histology of grafts revealed no significant difference between MYC and MYCS62D 

grafts (n=4) (Figure 35A, B). Like the MYC grafts, MYC S62D grafts showed HGPIN 

with no evidence of invasive cancer as confirmed by SMA staining (Figure 35B). To 

precisely assess proliferative rates only in MYC-expressing cells, we co-stained the graft 

sections with phospho-histone H3 (a mitotic marker) and MYC. This analysis revealed a 

higher mitotic index in the MYC S62D grafts than MYC grafts (Figure 35C). Although 

MYC S62D phosphorylation has some positive effects on MYC tumorigenicity, it does 

not account for the bulk of the cooperativity between MYC and Pim1. The functions of 

Pim1 on MYC transforming activity needs to be further explored. 
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Figure 35. The phenotype of phosphomimetic mutant MYCS62D is similar to that of MYC rather 
than that of MYC/Pim1 grafts. A, The size of six-week grafts expressing the phosphomimetic mutant 
MYCS62D is similar to that of wild type MYC grafts, and much smaller than the size of MYC/Pim1 grafts. 
B, H&E and SMA staining show that MYCS62D is similar to wild type MYC grafts. Scale bars, 50 µm. C, 
Upper panel: representative image of histone H3 (red) and MYC-expressing cells (green). Lower panel: 
quantization of proliferation. Higher mitotic index (% phospho-histone H3 positive MYC-expressing cells) 
in grafts expressing the MYCS62D mutant (n=4) compared to those expressing wild type MYC (n=5). Data 
shown as mean ± SD. * P < 0.05. 

 

Discussion 

In humans, PIM1 and MYC levels are upregulated, which suggests they cooperate 

in prostate tumorigenesis. In this study, we found that a significant percentage of the 

human prostate cancer samples exhibited concurrent overexpression of MYC and PIM1, 

which is associated with high Gleason grades. Therefore, we examined the effects of 

MYC and Pim1 overexpression in prostate carcinogenesis using a tissue recombination 
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model. Our study has provided several insights. We demonstrated that Pim1 by itself is 

weakly oncogenic, and Pim1 synergizes dramatically with MYC to promote the 

development of advanced prostate carcinoma. These results are consistent with previous 

reports in mouse lymphoma models (Van Lohuizen, 1989; Verbeek, 1991). Our results 

also demonstrated a strict requirement for Pim1 kinase activity for both its oncogenic 

activity and its ability to synergize with MYC. The precise mechanism by which MYC 

and PIM1 cooperate in prostate carcinogenesis needs to be further explored. 
Tumors derived from the co-expression of MYC and Pim1 show evidence of 

neuroendocrine differentiation. Pure neuroendocrine or small cell carcinoma of the 

prostate is rare, and has a poor prognosis. However, partial neuroendocrine differentiation 

in prostate cancer, defined as expression of one or more neuroendocrine markers such as 

Chromogranin A, synaptophysin, Neuron specific enolase, L-Dopa carboxylase, is more 

common and is associated with a poor prognosis (Yuan, 2007; Wafa, 2007; Sauer, 2006; 

Hansel, 2009). There is also extensive literature on the transdifferentiation of prostate 

adenocarcinoma to neuroendocrine phenotype. For example, LNCaP human prostate 

carcinoma cells can be induced to transdifferentiate to NE-like cells by androgen 

depletion, interleukin-6 treatment or genistein treatment (Zhang, 2003; Pinski, 2006; 

Deeble, 2001; Kim, 2002). In addition, several observations support the notion that the 

MYC/Pim1 tumors arise from transdifferentiation of adenocarcinoma cells to acquire 

neuroendocrine features rather than from the transformation of the rare neuroendocrine 

cell type in the prostate. First, prostate tissue recombinants are derived from adult mouse 

prostate cells by prostate regeneration, and if rare neuroendocrine cells were transformed 

by oncogene expression, one would expect to see clusters of transformed neuroendocrine 
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cells in early lesions. However, we have never observed clusters of transformed 

neuroendocrine cells in precursor PIN lesions (Figure 24 and data not shown). This is in 

contrast to the situation in which neuroendocrine cells are transformed, such as targeted 

expression of T antigen in the Cr2-TAg model. In Cr2-TAg mice, transformed 

neuroendocrine cell clusters are readily identified in PIN lesions (Garabedian, 1998; 

Abdulkadir, 2001b). Secondly, we were able to identify cells coexpressing both AR and 

synaptophysin, consistent with transdifferentiation of adenocarcinoma cells to 

neuroendocrine cancer, similar to recent observations in some human prostate tumors 

(Wafa, 2007) as well as in TRAMP mice (Kaplan-Lefko, 2003). Mouse prostate-specific 

deletion of Trp53 and Rb induces neuroendocrine tumors in prostate and up-regulation of 

Pim1 and L-Myc (Zhou, 2006). Tumors from this model were also found to co-express 

synpatophysin and androgen receptor and to up-regulate the pro-neural transcription 

factors Ascl1 and Hes6. Interestingly, the expression of pro-neural transcription factors 

was useful in segregating metastatic form localized prostate cancer (Vias, 2008). 

Our findings clearly show that Pim1 kinase activity is important for the synergy 

between Pim1 and MYC in prostate carcinogenesis. The Pim1 has recently garnered 

interest as a possible molecular target in multiple cancers including lymphomas and 

prostate cancer. Mice deficient in Pim1 or all Pim kinases (Pim1/Pim2/Pim3) showed a 

very mild phenotype, suggesting that therapeutic inhibition of Pim1 may be well tolerated 

in vivo. Therefore, MYC/Pim1 tissue recombination model may be appropriate for testing 

therapeutic modalities aimed at inhibiting Pim1 kinase activity as it avoids both the 

drawbacks of xenograft models that use advanced cancer cell lines as well as the 

cost/time constraints that hamper most transgenic models. 
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CHAPTER III 

 

PIM1 IS REQUIRED TO MAINTAIN THE TUMORIGENIC POTENTIAL OF 
PROSTATE CARCINOMA CELLS 

 

 Introduction 

Prostate cancer is the most common malignancy in men and the second leading 

cause of cancer-related death in the Western world. Advanced prostate cancer is 

typically androgen-insensitive and resists conventional chemotherapy, hormone therapy 

and radiation therapy. Neuroendocrine differentiation has been shown to correlate with 

hormone deprivation therapy and tumor progression (Abrahamsson, 1999; Hirano, 2004; 

Vashchenko, 2005; Bonkhoff, 2005).  
Pim1 has been implicated in leukemias, lymphoma and some solid tumors such as 

prostate cancer, pancreatic cancer, and oral cancer (Shah, 2008). Pim1 is a conserved 

active serine/threonine kinase (Reeves, 1990; Saris, 1991). Transgenic mice 

overexpressing Pim1 delayed lymphoma at a low frequency (Cuypers, 1984; van 

Lohuizen, 1989). However, all mice overexpressing Myc and Pim1 died of lymphomas in 

utero (Verbeek, 1991). Our recent study showed that Pim1 potently synergizes with MYC 

to accelerate prostate cancer progression (Chapter II; Wang, 2010). The mechanism of 

cooperation between Pim1 and c-Myc has not been clearly established. Pim1 has been 

reported to promote tumorigenicity by increasing Myc expression or stability (Chen, 

2005; Zhang, 2008). Pim1 also has been shown enhancing the transcription of Myc target 

genes (Zippo, 2007; Kim, 2010). The phospomimetic mutant of Myc on Ser329 has 

comparable tumorigenisity to coexpression of Pim kinases and Myc in vitro (Zhang, 
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2008). However, in our tissue recombination model, the phosphomimetic MYC-S62D 

mutant did not form aggressive tumors as MYC/Pim1 grafts. It is unknown whether other 

MYC mutation sites that stabilize MYC, such as MYC-S329D, can induce tumor similar 

as co-expression of MYC and Pim1 in vivo. We speculated that other mechanisms may 

be involved in Pim1 and MYC synergism in prostate cancer addition to increasing MYC-

transcriptional activity by Pim1. On the other hand, in tissue recombination model, Pim1 

overexpression results in hyperplasia with focal low grade PIN lesions after 12 weeks, 

while MYC and Pim1 co-expression leads to the development of aggressive prostate 

cancer within 6 weeks suggesting that Pim1 is a weak oncogene, and strongly cooperates 

with Myc. Tumors that co-express MYC and Pim1 showed signs of neuroendocrine 

differentiation, which is observed in advanced stage of human prostate cancer and is 

associated with poor prognosis (Abrahamsson, 1999; Miyoshi, 2001; Hirano, 2004; 

Vashchenko, 2005; Bonkhoff, 2005, Taplin me, 2005; Berruti, 2005; Mcwilliam; 1997; 

Kamiya, 2008). It is needed to be explored whether inactivation of Pim1 in advanced 

tumor is sufficient to induce tumor regression and prevent tumor formation. 

Pim1 overexpression is observed in more than 50% of human prostate cancer, 

which is correlated with the high Gleason score.  Pim1 is also proposed to be a diagnostic 

and prognostic factor in prostate cancer (Dhanasekaran, 2001; Valdman, 2004; Cibull, 

2006; Xu, 2005; He, 2009). In addition, Pim1 appears to be essential for tumor 

progression and maintenance. Several therapeutic agents have been developed to inhibit 

Pim1 kinase activity, for example, Pim1 inhibitor Quercetagetin (Holder, 2007); SMI-4a 

(Lin, 2009); SGI-1776 (Chen, 2009b; Mumenthale, 2009), anti-PIM1 monoclonal 

antibody (Hu, 2009). Pim1 is constitutively active and its protein levels correlated with 
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kinase activity Therefore, decrease of PIM1 levels indicates decreased kinase activity, 

thereby inhibiting tumorigenicity (Qian, 2005).  RNA interference can specifically 

silence gene expression, so it can be used for blocking the expression of oncogenes in 

cancer cells. To determine whether Pim1 expression is necessary to maintain the 

malignant phenotype and its potential therapeutic role, we used short hairpin RNA 

(shRNA) directed against expression of Pim1 to determine the effects of decreasing the 

levels of Pim1 expression in prostate cancer cell lines. We found that lentivirus-mediated 

shRNA against Pim1 markedly decreased Pim1 gene expression, and inhibited cellular 

proliferation and survival of prostate cancer cells. Pim1 knockdown also reduced 

tumorigenic potential of prostate cancer cells.  In addition, phosphoralytion of ERK1/2 

was reduced upon Pim1 knockdown. These results indicated that Pim1 is required for 

tumorigenic maintenance, even in the presence of high MYC level. Targeting Pim1 

would be effective for the treatment of prostate cancer, even for advanced stages of 

cancer. 

 

Materials and Methods 

Cell lines and constructs 

 
DU145 cells were cultured in RPMI medium with 10% fetal bovine serum (FBS). 

MPT cells were isolated from MYC/Pim1 tumors. Briefly, MYC/Pim1 tumors were minced 

and digested into single cells using collagenase, then plated on collagen-coated dish with 

DMEM/F12/10% FBS medium. After confluences the cells were split into regular cell 

culture dishes.  
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Stable knockdown of Pim1with shRNA  

Lentiviral pGIPZ shRNAmir against mouse Pim1 (V2LMM_46214) and the 

sequence-scrambled, non-silencing-GIPZ lentiviral shRNAmir control (RHS4346) were 

provided by Vanderbilt Functional Genomics shared resource (Open Biosystems). 

Lentiviral pLKO.1 shRNA targeting human, mouse, rat Pim1 (RHS3979-9631245) and 

control empty vector were obtained from Open Biosystems. Lentivirus was prepared as 

described in Chapter II. MPT or DU145 cells were infected by virus in the presence of 

8μg/ml polybrene. Puromycin was added to select stably transduced cells 2 days after 

infection. 

Western blot analysis 

Cells were washed with PBS, and then RIPA buffer with protease inhibitors was 

added. Cells were harvested with cell scraper, briefly sonicated and spun down. Lystate 

was run on SDS-PAGE, transferred to PDVF membranes. Membranes were blot with the 

following antibodies: c-MYC, Pim1, AR and Actin (Santa Cruz Biotechnology); p44/42 

MAPK (Erk1/2), phospho-p44/42 MAPK (Thr202/Tyr204) (Cell signaling); β-actin (Santa 

Cruz Biotechnology); β-tubulin (Sigma). 

Proliferation assay 

For cell growth curve, MPT Cells were seeded at 20,000 cells per well in a six-

well plate. Viable cells determined by trypan blue-excluding ability were counted using a 

hemocytometer. For MTS assay, cells were quarterly plated on 96-well plate. 3 days later, 

CellTiter 96® Aqueous One Solution (Promega) was added to each well and absorbance 

was read at 490 nm in a plate reader according manufacture’s instruction. 
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Active caspase 3 staining 

Cells were plated on glass coverslips. Cells were fixed in 2% paraformaldehyde 

for 10 minutes followed by permeabilization in 1% Triton X-100 for 10 minutes. After 

washing in PBS, cells were blocked in 10% goat serum, stained with activated caspase-3 

(Cell Signal) at 1:500. Coverslips were mounted on slides using Vectashield mounting 

medium (Vector Laboratories). 1000 cells were counted per cover slip. 

Colony formation assay  

5,000 of MPT cells were plated in 10 cm dishes. Triplicate experiments were 

performed for each cell line. The medium was changed every 3-4 days. After 10-14 days, 

the cells were fixed and stained with crystal violet.  

Soft agar assay 

A 2 ml of 0.6% agar in RPMI-10% FBS was placed into each well of 6 well plate. 

After agar solidified, 2 ml of 0.3% top agarose in RPMI-10% FBS containing 10,000 cells 

was added to each well. The cells were fed every 3-4 days with RPMI/10% FBS. The 

plates were incubated for 2 weeks. The colonies that are larger than 100μm were counted. 

Each soft agar assay was performed in triplicate.  

In vivo tumorigenicity assay 

1×105 control MPT or Pim1 knockdown cells (shControl#1 and shPim1#1) were 

mixed with 15μl of Matrigel (Becton Dickinson Labware) and injected subcutaneously in 

both flanks of 8-week-old male athymic nude mice (BALB/c strain; Harlan Sprague 

Dawley).  Grafts were measured weekly. All mice were sacrificed by 12 weeks after 

injection. Animal care and experiments were carried out according to protocols approved 
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by the Institutional Animal Care and Use Committee at Vanderbilt University. Grafts were 

paraffin-embedded, sectioned, stained with H&E, and analyzed by light microscopy. A 

tumor was defined as a palpable mass that contained carcinoma cells upon histological 

examination. Immunostaining was performed as described (Abdulkadir, 2001a; Abdulkadir, 

2001b) using anti-synaptophysin (BD Biosciences), anti-androgen receptor (Santa Cruz 

Biotechnology). 

Results 

Knockdown of Pim1 expression in MYC and Pim1 overexpressing tumor-derived cell 
lines 

In Chapter II, we demonstrated that Pim1 and MYC cooperation leads to 

advanced prostate cancer with neuroendocrine differentiation 6 weeks postgrafting. In 

this study, we isolated cells from MYC and Pim1 induced tumors and established a cell 

line named MPT, standing for MYC and Pim1 overexpressing Tumorigenic cells (Figure 

36A). These cells expressed MYC and Pim1 as they contain exogenous plasmids 

bicistronically expressing MYC or Pim1 as well as YFP (see Chapter II, Figure 17). MPT 

cells expressed neuroendocrine cell marker neuron-specific enolase (NSE), consistent 

with neuroendocrine differentiation in MYC/Pim1 tumors (Figure 36B).  To test whether 

reducing Pim1 expression impacts oncogenesis, and whether Pim1 can be a potential 

therapeutic target, we used a shRNA approach to inhibit Pim1 expression. MPT cells 

were transduced with lentiviral shRNAmir against mouse Pim1 or nonsilencing control 

(named shPim1#1 or shControl#1, respectively). To exclude off-target effects, MPT cells 

were transduced with another shRNA targeting Pim1 or control lentivirus (named 

shPim1#2, or shControl#2, respectively).  shPim1#1 targets mouse Pim1 only, while 

shPim1#2 targets both mouse and human Pim1. Stable knockdown and corresponding 
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control cells were used for the following experiments. Western blot analysis showed that 

Pim1 expression was efficiently knocked down by two sets of shRNA (Figure 36B). 

Notably, Pim1 knockdown did not change the expression level of MYC in MPT cells. 

 

 

Figure 36. Knockdown of Pim1 expression in 6-week MYC/Pim1 tumor derived cell lines. A, Left: 
Over-expression of MYC and Pim1 results in large tumors 6 weeks postgrafting in tissue recombination 
experiments. H&E staining showed the poorly differentiated tumor. Right: The image of established cell 
line from 6-week MYC/Pim1 tumor. YFP fluorescence can be seen under fluorescence microscope as the 
cells contain exogenous plasmids bicistronically expressing MYC, and Pim1 as well as YFP (Scale bar: 
100 µm). B, Left:  Western blot shows that parental MPT cells express MYC and Pim1, and neuron-
specific enolase (NSE). MPT cells were infected with lentivirus containing GIPZ shRNAmir against Pim1 
(shPim1#1) or Non-silencing-GIPZ shRNAmir (shControl#1). Western blot shows that Pim1 is knocked 
down by shPim1#1. Right: Pim1 expression was stably knocked down using pLKO.1 shRNA against Pim1 
(shPim1#2), pLKO.1 empty vector was used as control (shControl#2).  

 

We also established a second cell line, named MPT2, from a 4-week MYC/Pim1 

graft (Figure 37A). In our previous tissue recombination experiments, 4-week 

MYC/Pim1 grafts consisted of HGPIN and prostate adenocarcinomas that were androgen 

receptor (AR) positive and neuroendocrine cell marker synaptophysin negative (Chapter 

II, Figure 24).  Figure 37B showed that Pim1 was markedly knocked down in MPT2 cells. 
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MPT2 cells expressed NSE and initially expressed AR but lost it with increasing 

passages in culture. These cells also expressed NSE, suggesting that MPT2 cells might 

aquire features of neuroendocrine differentiation (Figure 37B).  

 
Figure 37. Knockdown of Pim1 expression in 4-week MYC/Pim1 tumor derived cell lines. A, An 
established cell line from 4-week MYC/Pim1-expressing tumor (named MPT2). A representative image of 
MPT2 cells in bright field (left) and under fluorescence microscopy (right) (Original magnification: 200×).  
B, Western blot shows that MPT2 cells express MYC and Pim1. Pim1 expression was stably knocked 
down in MPT2 cells using shPim1#2. MPT2 cells express androgen receptor (AR) in early passages, but 
not in late passages. NSE is also expressed in MPT2 cells.  

Pim1 knockdown impairs prostate tumor cell proliferation and survival 

Although Myc level was not changed in MPT and MPT2 cells, cell growth curves 

showed that Pim1 knockdown substantially reduced cell growth comparing to the control 

cells (Figure 38A). MTS proliferation assay also showed that knockdown of Pim1 in 

MPT and MPT2 reduced proliferation (Figure 38B). Pim1 has been implicated in anti-

apoptosis functions via interactions with the anti-apoptotic molecules, bcl-2 and Gfi-1 

(Schmidt, 1998); or phosphorylation and inactivation of Bad, FOXO3a and ASK1 (Aho, 

2004; Morishita, 2008; Gu, 2009). Under regular cell culture conditions, Pim1 
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knockdown slightly increased the rate of cell apoptosis but was not statistically 

significant (data not shown). Both MPT and MPT2 cells are serum sensitive. Both Pim1 

knockdown cells showed higher rates of apoptosis than corresponding controls, as 

determined by activated Caspase 3 staining in low serum condition (Figure 38C). These 

results suggested that Pim1 plays a role in promoting cell proliferation and protecting 

from cell death under adverse conditions. 

 
Figure 38, Pim1 knockdown of MPT cells reduced proliferation and survival. A, Growth curve is 
generated by counting shPim1#1 and shControl#1 MPT cells for 4 days, duplicated wells for each time 
points. *P<0.05. B, Cell proliferation is measured by OD 490 nm using the CellTiter 96® AQueous One 
Solution Cell Proliferation Assay (MTS, Promega). The absorbance is directly proportional to the number 
of living cells in culture. The results are mean  SD of quadruplicate wells after 3 days of incubation of 
2000 cells. *P<0.05. C, Left panel: Representative image of active caspase 3 staining (red) of overnight 
serum starved cells (0.5% serum in DMEM/F12).  Nuclei are counterstained with DAPI (blue) (Original 
magnification: 400×).  Right panel: Quantification of apoptosis rate by counting activated capase 3 positive 
cells.  The results are mean SD of two independent experiments *P<0.05.  

 

To extend our findings beyond MPT and MPT2 cell lines, we studied the effects 

of Pim1 knockdown in DU145 cells.  DU145 is a human prostate cancer cell line that has 

endogenous PIM1 and MYC expression. We used shPim1#2 that targets both human and 
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mouse Pim1 mRNA sequence to knock down PIM1 in DU145 cells. Figure 39A showed 

that PIM1 was substantially knocked down in DU145. Endogenous MYC level was also 

reduced by PIM1 knockdown. NSE was expressed by DU145 cells, consistent with the 

previous result of expression of neuroendocrine cell markers in DU145 cells (Leiblich, 

2007). NSE expression was not altered by PIM1 knockdown. PIM1 knockdown in 

DU145 cells reduced proliferation comparing to control cells as shown by MTS 

proliferation assay (Figure 39B). PIM1 prevented serum starvation-induced cell apoptosis, 

consistent with results in MPT and MPT2 cells (Figure 39C). These results indicated that 

Pim1 promotes cell proliferate and survival potential in prostate cancer cells in vitro. 

 

 

Figure 39. Pim1 knockdown of DU145 cells reduced proliferation, survival and transformation 
potential.  A, DU145 cells are transduced with shPim1#2 or shControl#2 lentivirus. Stable cell lines 
selected by puromycin were used for following experiments. Western blots show that PIM1 is knocked 
down, and MYC level is reduced upon Pim1 knockdown. DU145 cells express NSE. B, Cell proliferation is 
measured by MTS assay. The results are mean SD of quadruplicate wells after 3 days of incubation of 
4000 cells. *P<0.05. C, Quantification of apoptosis by counting active capase 3 positive cells after DU145 
cells were treated with serum free medium overnight. The results are mean SD of two independent 
experiments *P<0.05. D, Left panel: reprehensive images of soft agar assay show that Pim1 knockdown in 
DU145 cells reduce the size and number of colonies (Original magnification: 4×).  Right panel: 
Quantification of colonies from soft agar assay of Pim1 knockdown and corresponded control DU145 cells. 
The results are mean s.d. of triplicates (Colony cut-off size: 100 µm). *P<0.05. 
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Pim1 knockdown impairs prostate tumor cell tumorigenicity 

Loss of cell contact-inhibition is one of the hallmarks of cancer cells. We used a 

focus-formation assay to test whether Pim1 knockdown in MPT cells affected 

transforming ability in vitro. The results showed that control MPT cells lost contact 

inhibition and formed lots of foci, while Pim1 knockdown cells abrogated focus-forming 

ability (Figure 40A, B). Anchorage independent growth is another way to test cell 

transformational potential in vitro. We tested whether Pim1 knockdown in DU145 cells 

inhibits anchorage-independent growth using a soft agar colony formation. After 2 weeks 

growing in soft agar, Pim1 knockdown cells exhibited markedly fewer and smaller 

colonies than control cells (Figure 39D). These results indicate that Pim1 plays a role in 

maintaining transforming potential of prostate cancer cells. 

To investigate whether Pim1 knockdown can reduce tumorigenicity in vivo, Pim1 

knockdown MPT cells (shPim1#1) or control MPT cells (shControl#1) were injected 

subcutaneously in athymic nude mice and graft growth was monitored over 12 weeks 

(n=10). No apparent tumors were seen in the Pim1 knockdown group. H&E staining of 

tissue sections from the injected areas indicated that they are composed of fat, muscle, or 

lymph nodes but no tumor cells were found (Figure 40C, D, E). In contrast, the control 

group formed large tumors, resulting in 60% tumor incidence (6 out 10 sites of 

inoculation) (Figure 40C, D, E). In histology, control group consisted of sheets of tumor 

cells, and expressed neuroendocrine differentiation marker synaptophysin (SYP), but did 

not express androgen receptor (AR), E-cadherin, p63, cytokeratin 8 and smooth muscle 

actin, consistent with the features of MYC/Pim1 tumor from tissue recombination  

experiments (Figure 40F, and data not shown). These results, taken together with our 

previous data on the effects of Pim1 overexpression on prostate cell transformation (See 
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Chapter II), indicate that although Pim1 overexpression alone is not sufficient to initiate 

the development of invasive prostate cancer, continued Pim1 expression is required to 

maintain prostate cancer cell tumorigenicity. 
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Figure 40. Pim1 maintains the tumorigenic potential of MPT cells.  A, Representative images of focus 
formation assay by two independent experiments. The result shows that non-silencing control MPT cells 
(shControl#1) lose cell contact inhibition and form colonies, whereas Pim1 knockdown cells (shPim1#1) 
keep cell contact inhibition without focus-forming ability. B, Similar result as A is seen in shControl#2 and 
shPim1#2 MPT as well. C, Pim1 knockdown (shPim1#1) or non-silencing control MPT cells (shControl#1) 
were injected subcutaneously into nude mice. No tumor is found in Pim1 knockdown group. Control group 
forms large tumor after 12 weeks grafting. D, Pim1 knockdown group (shPim1#1) abrogates subcutaneous 
engraftment, as compared with a 60% tumor take in the non-silencing control group (shControl#1). 
Numbers in the parentheses indicate the number of replicates in each group. E, Representative H&E images 
of graft sections.  shControl#1 group shows high-grade tumor, consistent with features of MYC/Pim1 
tumor in tissue recombination experiments. shPim1#1 group shows fat and blood vessel cells without tumor 
cells. Scale bar: 100 µm. Insets: Higher-magnification images. F, shControl#1 grafts are synaptophysin 
(SYP) positive and androgen receptor (AR) negative. Scale bar: 100 µm. Pim1 knockdown grafts are not 
analyzed because no tumor cells are found by H&E staining. Inset: AR positive control section. 
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Pim1 knockdown impairs ERK signaling pathway activation  

An increasing number of studies have shown that multiple signaling pathways are 

activated in various human cancers. AKT/mTOR and ERK MAPK signaling pathways 

are often up-regulated during human prostate cancer progression (Abreu-Martin, 1999; 

Gioeli, 1999; Malik, 2002; Mulholland, 2006; Shen MM, 2007; Kinkade, 2008). Our 

results showed that Pim1 knockdown impaired potentials of cell proliferation, survival, 

and tumorigenicity. We want to detect whether Pim1 knockdown affects AKT/mTOR 

and ERK/MAPK signaling pathways. We first compared the level of phosphorylation of 

AKT, mTOR, S6k, PDK1 between Pim1 knockdown cells and control cells using 

Western blot analysis and results showed no distinct differences in the AKT/mTOR 

pathways (data not shown). We found that ERK1/2 phosphorylation was consistently 

reduced by Pim1 knockdown in MPT, MPT2, and DU145 cells (Figure 41A, B, C and D). 

Phosphorylation of ERK indicates activation of the MAPK pathway. Pim1 knockdown 

reduced the phosphorylation of ERK, suggesting that Pim1 is essential for MAPK 

signaling activation. We next examined whether Pim1 expression is sufficient to induce 

phosphorylated ERK. Since serum can induce ERK phosphorylation, we starved cells 

with serum free medium and tested ERK1/2 phosphorylation in Pim1 stably 

overexpressing cell lines LNCaP, PC-3, and DU145 cells (Roh, 2003; Kim, 2010). We 

found that overexpression of Pim1 did not affect ERK phosphorylation (Figure 41E, F, 

and data not shown). These results indicated that while Pim1 is necessary for activation 

of MAPK signaling, it appears that Pim1 alone is not sufficient to mediate this activation 

in vitro. We further tested the phosphorylated ERK1/2 in tissue recombination grafts by 

Western blot. Compared to the control graft, Pim1 overexpression increased ERK1/2 
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phosphorylation without affecting total ERK level (Figure 41G), indicating that MAPK 

pathway can be activated by Pim1 overexpression in vivo.  

 

Figure 41. Pim1 is essential for ERK activation.  A, B, C, D, Western blots show that Pim1 knockdown 
decreases phosphorylation of ERK1/2 compared to control. A, shPim1#1 MPT cells; B, shPim1#2 MPT 
cells; C, shPim1#2 MPT2 cells; D, shPim1#2 DU145 cells with their correspondent controls. E, F, Western 
blots showed that Pim1 overexpression did not increase phosphorylation of ERK1/2 compared to control. 
Neo, empty vector control. G, Western blot analysis of 6-week graft tissue lysates shows increased 
phosphorylation of ERK1/2 in Pim1 group compared to control.  

 

 



72 
 

Discussion  

Although Pim1 is weakly oncogenic, it synergizes dramatically with Myc to 

induce invasive prostate cancer with characteristics of neuroendocrine cancer (Chapter II, 

Wang, 2010). The basis for this synergism between Pim1 and Myc is not well understood. 

To understand the function of Pim1 on MYC/Pim1 cooperation in prostate tumorigenicity, 

we knocked down Pim1 expression in MYC/Pim1 tumor derived cell lines and a human 

prostate cancer cell line DU145. We found that, while Pim1 alone is not sufficient to 

initiate development of invasive prostate adenocarcinoma, depletion of Pim1 expression 

resulted in decreased growth rate, survival, and tumorigenic potential, suggesting that 

Pim1 is required for maintenance of the tumorigenic phenotype. In MPT cells, Pim1 

knockdown reversed their tumorigenic phenotype even when MYC level was not 

decreased, which further illustrated that Pim1 and MYC synergism in prostate cancer 

may depend on other mechanisms in addition to enhancing Myc activity and stability. In 

addition, Pim1 knockdown cells displayed reduced ERK phosphorylation. Decreased 

MAPK signaling activation may be correlated with decreased proliferation and 

tumorigenicity in Pim1 knockdown cells. These results indicate Pim1 is essential for 

MAPK signaling activation, consistent with a previous report showing that Pim1-

depleted and Pim1-inhibitor treated bone marrow cells has impaired ERK 

phosphorylation (Grundler, 2009). Our data further suggested that Pim1 overexpression 

did not enhance ERK phosphorylation in vitro, but in vivo. This is consistent with a 

report showing that MAPK signaling is activated in cardiac-specific Pim1 transgenic 

mice but is not activated in Pim1 overexpressing cardiomyocyte cultures (Muraski, 2008). 

The Raf–MEK–ERK/MAPK pathway is subject to many levels of regulation. Our data 
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and previous reports indicated that Pim1 may not directly activate ERK/MAPK signaling 

pathway (Yan, 2006; Muraski, 2008). Constitutive ERK/MAPK activation appears to 

play a critical role for NE differentiation in prostate cancer cells (Yuan, 2007). It needs to 

be further investigated whether reduced ERK/MAPK signaling activation by Pim1 

knockdown is correlated with decreased NE differentiation and tumorigenicity.  

Many studies implicate that targeting Pim1 could be a promising strategy in anti-

cancer therapy. Importantly, Pim1 depletion has only subtle effects for normal cells. 

Pim1 deficient mice are ostensibly normal, healthy and fertile (Laird, 1993). Pim1, Pim2 

and Pim3 compound knockout mice are viable and fertile, but show a profound reduction 

in body size, suggesting Pim kinases might act as sensitizers for growth factor signaling 

pathways (Mikkers, 2004). Pim kinase inhibition using SGI-1776 in prostate cancer cells 

or CLL cells (B-cell chronic lymphocytic leukemia) results in a concentration dependent 

induction of apoptosis (Mumenthale, 2009; Chen, 2009b). Prostate cancer initially 

responds to androgen ablation therapy, but eventually progresses to an androgen-

independent stage. It is still a challenge for effectively treatment of advanced hormone-

refractory prostate cancer. The aggressive malignancy of neuroendocrine tumors is 

believed to be associated with hormonal independence (Vashchenko, 2005; Abrahamsson, 

1999). In this study, we knocked down Pim1 expression in androgen independent cell 

lines and showed Pim1 knockdown abrogated tumorigenesis. Activation of MAP kinase 

signaling pathway has been implicated in advanced and androgen-independent prostate 

cancers (Gao, 2006). Pim1 knockdown reduced ERK signaling activation, suggesting a 

functional role of Pim1 in maintaining tumorigenicity. Therefore, Pim1 kinase is required 

for maintenance of a transformed phenotype, indicating that Pim1 could be an attractive 

drug target for prostate cancer treatment.   
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CHAPTER IV 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 
 
 

Although cooperation between Pim1 and Myc was described many years ago in 

mouse lymphoma models (Verbeek, 1991; van Lohuizen, 1989; Möröy, 1991), the 

association of Pim1 and Myc in prostate cancer had not been clearly demonstrated in any 

in vivo animal models previously. In addition, it is debatable whether PIM1 is a key gene 

or a downstream player in cancer development and progression. Our study clearly 

demonstrated that Pim1 itself was a weak oncogene, but when it cooperated with MYC, 

dramatically accelerated MYC induced tumorigenicity. Further studies indicated that 

Pim1 was required to maintain tumorigenicity and ERK/MAPK signaling activity. Thus, 

Pim1 could represent a therapeutic target for treatment of prostate cancer.  

Some limitations regarding a tissue recombination model coupled with lentiviral-
mediated gene transfer  

In tissue recombination experiments, we used lentivirus to transduce adult 

prostate cells. This approach enables expression of a transgene in a few cells initially, 

which mimics the initiation of human cancer. In the current study, we used freshly 

isolated adult prostate cells and embryonic rat UGM cells in order to reduce undesired 

differentiation of the prostate stem/progenitor cells and to avoid artificial selection of cell 

population in the cell culture condition. Using this model we were able to define a role 

for Pim1 or MYC or their synergism in the development of prostate cancer. Furthermore, 

we were able to establish many cell lines from MYC/Pim1 tumors. However, there are 

some limitations in this tissue recombination model. 
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Lentivral infection is extensively used by many studies since it is very powerful to 

transduce both dividing and non-dividing cells. High MOI (Multiplicity Of Infection: the 

ratio of infectious virus particles to target cells) can increase transduction efficiency and 

transgene expression, but it can also increase the risk of insertion mutagenesis due to 

integration of multiple copies of transgene per cell (Woods, 2002; Kustikova, 2003). We 

infected cells for 3 hours using similar MOI and centrifuge method as described (Xin, 

2003). Two days post-infection, approximately 20-30% of cells were YFP positive by 

flow cytometry analysis (data not shown). Since the percentage of cells with the 

transgene expression was not very high, we did not attempt to evaluate the association of 

MOI and transgene copy numbers obtained in single cells. Although the risk of multiple 

and potentially harmful viral integrants per cell might exist due to insertional mutagenesis, 

we did not find any abnormalities in the regenerated control grafts. Further, we also 

found similar effects for multiple tissue recombination experiments. Thus, we think our 

study may not involve insertional mutagenesis.  

Another risk for lentiviral transduction is viral vector shuttle via transplanted cells 

resulting in undesired transduction of recipient cells (Blömer, 2005). In our study, mouse 

prostate cells infected by lentivirus and UGM cells are combined and incubated overnight, 

so the risk of viral vector shuttle may exist in our study. In order to test whether lentiviral 

particles in mouse prostate cells transduced into adjacent rat UGM cells, we carefully 

examined MYC expression in MYC grafts using immunohistochemical staining. The 

results showed that MYC expression was found only in epithelial cells, but not in stromal 

cells (Figure 23).  It indicates that viral shuttle might not occur in our study. If YFP 
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antibody were available to perform immunohistochemistry, it could be further confirmed 

whether other transgenes, such as Pim1, only expressed in epithelium part.  

It is still a debate whether using total prostate cells is sufficient or using isolated 

prostate epithelial cells for tissue recombination experiments. In our study, transgene 

expression could be expressed in any cell type because the lentiviral transfer vector 

contains the ubiquitin promoter (Lois, 2002), but we did not isolate epithelial cells for 

tissue recombination experiments based on the following considerations. First, tissue 

recombination requires stem/progenitor cells stimulated by the UGM cells to regenerate 

prostate glands. Current methods for isolating prostate epithelial cells are mainly based 

on the size or/and cell surface markers. Since there are no consistent standards for 

selection of stem/progenitor cells, we might lose the stem/progenitor population after the 

isolation of prostate epithelial cells.  Second, adult stromal fibroblasts could not survive 

after tissue recombination. Hoechst dye staining confirmed that the stromal cells 

observed in regenerated glands were of rat origin derived from rat UGM cells. Our data 

also showed that none of stromal cells expressed MYC transgene and MYC only 

expressed in luminal cells in the epithelium of regenerated glands. Therefore, we believe 

it is appropriate to use total prostate cells to perform tissue recombination experiments.. 

Prostate neuroendocrine cancer 

Neuroendocrine (NE) cells are rare in normal prostate epithelial compartments. 

NE differentiation increases during prostate cancer progression, which is correlated with 

aggressive disease, tumor grade, hormone deprivation therapy and survival 

(Abrahamsson, 1999; Miyoshi, 2001; Hirano, 2004; Vashchenko, 2005; Bonkhoff, 
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2005, Taplin me, 2005; Berruti, 2005; Mcwilliam; 1997; Kamiya, 2008). Although 

normal NE cells could transform to NE-like tumor cells, more evidence supports that 

adenocarcinoma cells can undergo a transdifferentiation process to become NE-like cells 

(Cindolo, 2007). Ta-Chun Yuan et al. pointed out that NE cells in prostate cancer 

originate from cancerous epithelial cells, but not from normal NE cells, and should be 

defined as ‘NE-like cancer cells’ (Yuan, 2007). They proposed that adenocarcinoma cells 

can undergo a transdifferentiation process to become NE-like cells. These NE-like cells 

acquire a similar phenotype as normal NE cells and express several NE markers, but still 

retain some epithelial characteristics (Figure 42). 

 

Figure 42. Proposed models of the cellular origins of prostate NE cancer. Model I shows that rare 
neuroendocrine cells are transformed and give rise to NE PIN, then to neuroendocrine prostate cancer. 
Model II shows that epithelial cells are transformed and give rise to PIN, adenocarcinoma, and then 
adenocarcinoma transdifferentiate to neuroendocrine prostate cancer. 

 

Our data suggests that NE carcinoma may be derived from adenocarcinoma 

(Figure 24 and 25). In addition, Gene Set Enrichment Analysis (GSEA) showed that 6-
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week MYC/Pim1 tumors or derived cell lines exhibited similar profiles of gene 

expression as human prostate cancer or cell lines but not as NE cells in normal tissues 

(data not shown), consistent with a previous report showing that NE-like tumor cells 

share identical profiles with non-NE tumor cells (Sauer, 2006). The mechanism of 

transdifferentiation of prostate cancer into NE-like tumor is unknown. Both TRAMP and 

Rb/p53-null mice show simultaneous inactivation or knockout of both p53 and Rb genes, 

which promotes NE like prostate cancer (Perez-Stable, 1997; Zhou, 2006). It has been 

reported that IL-6 signaling induces neuroendocrine differentiation (Palmer, 2005). 

ERK/MAPK activation was reported to be a potential mechanism in this 

transdifferentiation and may serve as a therapeutic target (Yuan, 2007). Proper animal 

models and cell lines are needed to elucidate the molecular basis of NE differentiation. 

However, it is claimed that “virtually no animal models of a neuroendocrine/small cell 

variant of prostate carcinoma are available for experimental studies” (Yuan, 2007). Given 

that there is limited research on NE tumor, MYC/Pim1 tumors and/or derivative cell lines 

could be valuable tools for studying the molecular mechanisms for NE 

transdifferentiation, and for developing and evaluating therapies for NE tumor.  

Prostate cancer develops from normal prostate to PIN to adenocarcinoma, and 

then transits to NE-like cancer, finally to metastasis. We have observed this progression 

in the Pim1 and MYC tissue recombination model (Table 2). Therefore, our tissue 

recombination would provide valuable information for the mechanisms of prostate cancer 

progression, and for developing novel diagnosis and therapeutic approach. 
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Table 2.  The progression of prostate cancer is demonstrated by histology of regenerated grafts  

 

 

 

 

 

Clinical significance of MYC/PIM1 synergism in human prostate cancer  

A major clinical problem is the development of castration-resistant prostate 

cancer (CRPC) during androgen ablation treatment. The molecular mechanisms 

underlying the change from androgen dependence to castration-resistance are not well 

understood and represent a challenge for development of efficient therapies.  It has been 

suggested that Myc may be involved in development of CRPC (Bernard, 2003). On the 

other hand, Pim1 enhances cell survival at castrate levels of androgen and 

neuroendocrine functions of PC12 cells (Glazova, 2005). Coexpression of MYC and 

PIM1 was frequently found in patients under androgen ablation therapy (van der Poel, 

2010). In this study, we found that coexpression of MYC and PIM1 is associated with 

high Gleason grade in human prostate tumors. Using a mouse tissue recombination model 

we demonstrated that Pim1 strongly cooperates with MYC, resulting in advanced prostate 

cancer with NE differentiation. NE tumors are correlated with hormonal independence 

(Vashchenko, 2005; Abrahamsson, 1999). Therefore, our tissue recombination model and 

its derivative cell lines could be extensively used for evaluation of the mechanisms of 

CRPC. It remains to be determined whether coexpression of MYC and PIM1 is 

Phenotype Weeks Name 

Benign 
 

6 Control 
6 Pim1 

PIN 6 MYC 
12 Pim1 

Adenocarcinoma 
 

4 MYC/Pim1 
12 MYC 

NE-like carcinoma 6 MYC/Pim1 

12 MYC 
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associated with neuroendcrine cancer in patients. Of importance in clinic is the need to 

know if coexpression of MYC and PIM1 can be used for distinguishing indolent versus 

aggressive prostate cancer. 

Potential cancer stem cells in MYC/Pim1 tumors 

Takahashi and Yamanaka reported that four transcription factors (Oct4, Sox2, 

Klf4, and c-Myc) can reprogram mouse and human somatic cells to be pluripotent 

(Takahashi, 2006). MYC contributes to cancer initiation and progression by stimulating 

an embryonic stem cell-like signature characterized by an enrichment of genes involved 

in ribosome biogenesis and by repressing differentiation (Koh, 2010). It is of interest to 

know whether synergism of Pim1 and MYC enhances stem /progenitor cell-like 

characteristics. 

MYC/Pim1 induced tumor shows evidence of neuroendocrine (NE) 

differentiation, which arises by transdifferentiation of adenocarcinoma cells with 

progression. This indicates that MYC/Pim1 tumors have plasticity within a specific time 

range. At 6 weeks, although the majority of MYC/Pim1 tumor had lost Nkx3.1 

expression, there were a few Nkx3.1 positive cells scattered in the tumor (Figure 43). It 

remains to be determined whether those Nkx3.1 positive cells represent cancer stem cells 

like CARNs (Wang, 2009). We also studied AR expression in the adenocarcinoma part of 

MYC/Pim1 tumor (Figure 44). Of note, a small amount of cells did not express AR in 

those parts. Since there is debate over AR status in prostate stem cells (Shen, 2010), it 

needs to be determined whether these cells have cancer stem cell properties. It also 

remains to be studied whether Nkx3.1 positive cells are those AR negative cells in 

MYC/Pim1 tumor. Furthermore, double staining of stem cell markers (for example Sca-1 
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Sca-1, CD133, CD117, CD44) and cell lineage markers (for example CK5, CK8, 

synaptophysin) may facilitate the identification of the cell origin of cancer stem cells in 

MYC/Pim1 tumors. 

 

Figure 43. A few areas of MYC/Pim1 tumor section showing Nkx3.1 expression. Immunohistochemical 
staining shows common loss of Nkx3.1 expression in MYC/Pim1 tumors (left), Nkx3.1 positive cells are 
seen in a few areas (middle and right) (Original magnification: 400×).. 

 

 

Figure 44. Early loss of AR expression in MYC/Pim1 tumors. Immunohistochemical staining shows 
some AR negative cells in the early lesions of MYC/Pim1 tumors (Original magnification: 400×). 

 
A sphere forming assay has been developed to study the function of stem cells in 

vitro (Xin, 2007; Garraway, 2010). Our preliminary data showed that earlier passages of 

control MPT cells were able to form a lot of spheres, while Pim1 knockdown 

dramatically decreased the number of sphere forming cells (Figure 45). Late passages of 

MPT cells lost the sphere forming proprieties for unknown reasons. It remains to be 

determined whether these spheres enrich a stem cell/progenitor population. We have 

other early passages of MYC/Pim1 cells that may help us further characterize these 

spheres. 
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Figure 45, Control MPT cells form more spheres than Pim1 knockdown cells. Upper panel: 
Representative images of solid spheres in Matrigel show that control MPT cells (shControl#1) are enriched 
for sphere-forming cells, which Pim1 knockdown cells (shPim1#1) lose this potential (Original 
magnification: 100×).  Lower panel: Graph shows the numbers of spheres. Results represent the mean + SD 
of triplicate wells after 7 days of incubation. 

 

Potential conjunction of PIM1 kinase and ERK inhibitors in the treatment of 
prostate cancer 

Cancer is a multistep process including activation of proto-oncogenes and 

inactivation of tumor suppressor genes. Extensive evidence shows that inactivation of a 

single oncogene can be sufficient to induce sustained tumor regression. These 

observations brought about oncogene addition concept which emphasizes the dependency 

of some cancers on one or a few genes for the maintenance of the malignant phenotype 

(Weinstein, 2006).  
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Oncogene addition has been shown in Myc transgenic mice (Felsher, 1999; 

Pelengaris, 2002). Targeting Myc could be an effective target in cancer therapy, but may 

be harmful for normal cells since it is a very important transcription factor for a living 

cell. Loss of Pim1 expression has only subtle effects in mice (Laird, 1993). In this 

scenario, we are interested in Pim1 inhibition in prostate cancer treatment. We speculated 

that Pim1 may establish a preneoplastic state although its overexpression is not sufficient 

to initiate prostate adenocarcinoma. Since Pim1 alone cannot induce tumorigenesis and 

there are examples of escaping from oncogene addiction (Ewald, 1996; Plattner, 1996), it 

remains to be determined whether inactivation of Pim1 is sufficient to induce prostate 

tumor regression. If Pim1 is not necessary to maintain tumorigenicity, Pim1 inhibitor 

might not be effective for cancer treatment. Thus, the results of our research are 

important in light of recent efforts in the development of Pim1 kinase inhibitors. In the 

current study, we found that depletion of Pim1 expression in established prostate cancer 

cell lines resulted in reduced cell proliferation, survival and tumorigenicity, indicating 

that Pim1 is required for tumorigenic maintenance. Because Pim2, Pim3 or other genes 

can compensate for Pim1 deficiency (Berns, 1999), it remains to be seen whether long-

term inhibition of Pim1 leads to a compensatory up-regulation of other PIM family 

members. 

The PIM1 kinase inhibitor quercetagetin is able to inhibit PIM1 activity in 

prostate cancer cells in a dose dependent fashion (Holder, 2007). In our preliminary study, 

we also found that Pim kinase inhibition using quercetagetin resulted in dose dependent 

reduction of MPT cell viability (Figure 46).  
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Figure 46. Pim1 inhibitor quercetagetin decreases MPT cell viability. MPT cells are treated with 
different doses of quercetagetin and cell viability is tested using CellTiter-Glo Luminescence Cell Viability 
Assay (Promega). 

 
The MYC/Pim1 cancer model may highly appropriate to test the efficacy of Pim1 

inhibitors in vivo. 4-week MYC/Pim1 grafts displayed HGPIN and adenocarcinoma, 

while 6-week MYC/Pim1 formed neuroendocrine tumor. It is of interest to determine 

whether Pim1 inhibitor, such as SGI-1776, is able to abrogate MYC/Pim1 tumorigenicity 

6 weeks post-grafting, and to prevent 4-week MYC/Pim1 early lesions progressing to 

neuroendocrine tumor at 6 weeks using tissue recombination approach. 

At present, effective treatment for advanced cancers is still a significant challenge. 

ERK/MAPK signaling is frequently activated in prostate cancer, especially in advanced 

cancer and CRPC (Abreu-Martin, 1999; Gioeli, 1999; Mailik, 2002). Pim1 

overexpression has been found in prostate cancer and associated with high grade tumor 

(Dhanasekaran, 2001; Valdman, 2004; Cibull, 2006; van der Poel, 2010). In addition, 

Pim1 plays an important role in multidrug resistance (Xie, 2006; 2008). Inhibiting Pim1 
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expression increases the sensitivity of prostate cancer cells to specific chemotherapy 

(Mumenthale, 2009). Therefore, adjunctive use of Pim1 and ERK inhibitors is expected 

to increase apoptosis, improve the efficacy and lower drug dosages. This combination 

therapy is also expected to lower the cytotoxicity and enhance tumor suppression in vivo, 

which would be important in treating hormone-refractory prostate cancer. 

Possible mechanisms of Pim1 and Myc cooperation 

Pim1 enhances Myc stability and activity  

The MYC and Pim1 oncogenes are frequently overexpressed in prostate cancer, 

and together they are sufficient to induce advanced prostate cancer in a mouse model. 

The precise mechanism of Pim1 as such an effective partner of Myc in tumorigenicity 

remains obscure. In vitro studies have shown that Pim1 promotes Myc induced 

tumorigenicity by increasing Myc stability through decreasing PP2A activity (Chen, 

2005), through increasing Myc S62 phosphorylation and decreasing T58 phosphorylation 

(Zhang, 2008), or by increasing Myc transcriptional activity through phosphorylation of 

histone H3 at Myc target genes (Zippo, 2007, Figure 47).  
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Figure 47. Summary of possibilities regarding Pim1 and Myc cooperation. Solid arrows show 
published findings; broken arrows show potential interactions with ERK/MAPK pathway (see the text for 
details and references). 

 
It is well known that phosphorylation of N terminal threonine 58 (T58) and serine 

62 (S62) has been implicated in regulating stability of MYC. First, S62 can be 

phosphorylated by ERK, and then T58 is phosphorylated by glycogen synthase kinase-3β 

(GSK-3β).  Double phosphorylated MYC is isomerized by Pin prolyl isomerase and S62 

is then dephosphorylated by serine/threonine protein phosphatase 2A (PP2A), which 

drives polyubiquitination and proteasomal degradation of MYC (Figure 48) (Sears, 2004).  
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Figure 48. Phosphorylation of N terminal threonine 58 (T58) and serine 62 (S62) regulates Myc 
turnover (See text for details). 

 

In MYC/Pim1 tumors, both MYC and Pim1 proteins levels appeared elevated 

compared to Pim1 alone or MYC alone grafts (Figure 18C and 34A). This is likely 

because both MYC and Pim1 were stabilized. These tumors also showed relatively 

increased Myc serine 62 phosphorylation, which is claimed to be a stabilized and activate 

form (Sears, 2004). Whether or how Pim1 stabilizes MYC or vice versa needs to be 

explored in the future study.  

In chapter II, we found Pim1 greatly accelerated MYC induced prostate cancer 

progression to neuroendcrine tumor within 6 weeks (Figure 19, 20). MYC grafts showed 

HGPIN, but over time (12 weeks) developed adenocarcinoma with neuroendocrine 

differentiation (Figure 19, 28). In addition, weak Pim1 expression was observed in 12-

week MYC tumors with neuroendocrine differentiation (Figure 31). In summary, MYC 

stability and activity seems to be enhanced when MYC and Pim1 are over-expressed 

concurrently.  
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Although MYC/Pim1 tumors showed increased levels of MYC phosphorylation 

on serine-62, grafts expressing a phospho-mimicking MYCS62D mutant did not form 

tumors resembling MYC/Pim1 grafts, revealing that S62 phosphorylation may not be a 

crucial step for MYC/Pim1 synergism (Figure 35). In addition, MYCS62D mutant is 

supposed to be more stable than wild-type MYC, but this still needs to be validated. The 

Myc phosphorylation deficient mutants T58A has been observed in lymphomas and is 

associated with increased MYC stability (Sears, 2004; Thibodeaux, 2009). Furthermore, 

the phospomimetic mutant MYC S329D has comparable tumorigenicity as co-expression 

of PIM1 kinases and MYC in vitro (Zhang, 2008). It remains to be determined if these 

mutants with increased MYC stability, for example, T58A, or S329D, can mimic 

MYC/Pim1 synergism in vivo.  

Pim1 seems to enhance MYC functions, showing that higher gene expression of 

phosphorylated MYCS62 and MYC targets, Cyclin D1, D2, E, in MYC/Pim1 tumors 

compared to MYC alone and MYC/K67M (Figure 34). However, it is difficult to separate 

the direct effects of MYC and Pim1 expression on these target genes from indirect gene 

activation as a consequence of tumorigenesis. Examination of MYC target genes after a 

few days of introducing transgenes by lentviral infection may clarify whether Pim1 

amplifies MYC function.  

In chapter III, we showed that Pim1 knockdown abrogated tumorigenicity of 

MPT cells even when MYC level was not decreased (Figure 40), which also suggests that 

Pim1 and MYC synergism in prostate cancer may depend on additional mechanisms 

other than enhancing MYC activity and stability. 
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ERK/MAPK signaling activation may be involved in Myc and Pim1 synergism 

In chapter III, we showed that knockdown of Pim1 expression in MYC/Pim1 

derived cell lines decreased phosphorylation of ERK (Figure 41), revealing that Pim1 

plays a role in ERK/MAPK signaling activation. Interestingly, Pim1 grafts showed 

increased phosphorylated ERK comparing to control grafts (Figure 41G), but Pim1 

overexpressing cancer cell lines did not show alteration of phosphorylated ERK (Figure 

41E, F). It is still unclear whether Pim1 directly or indirectly phosphorylates ERK. In the 

primary mitogen regulated pathway, extracellular stimuli activate Raf-1, which 

phosphorylates and activates MAPK kinase (MEK), leading to the phosphorylation and 

activation of the extracellular signal regulated kinases (ERK). Activated ERK 

translocates to the nucleus and activates gene expression by phosphorylation of a series 

of substrates including MYC S62. It remains to be determined whether Pim1 affects Raf-

1 or MEK phosphorylation, or interacts with other proteins that are involved in this 

pathway (Figure 47).  

It has been reported that Pim1-deficient bone marrow expresses less chemokine 

receptor CXCR4 and shows defects in homing and migration because of impaired 

CXCL12–CXCR4 signaling (Grundler, 2009).  CXCL12 is also known as SDF1 (stromal 

cell derived factor 1), which is the predominant ligand for CXCR4. The CXCL12–

CXCR4 pathway has been implicated in promoting prostate cancer cell migration, 

invasion, angiogenesis and metastasis (Chinni, 2006; Arya, 2004; Singh, 2004; Taichman, 

2002; Xing, 2008). ERK/MAPK can be activated by CXCL12–CXCR4 signaling (Tan, 

2008, Teicher, 2010). Therefore, we speculate that Pim1 may enhance CXCR4 

expression, which interacts with CXCL12 expressed by stomal fibroblast or other cell 

type in microenvironment, leading to enhanced CXCL12–CXCR4 signaling, and thereby 
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enhancing phosphorylation of ERK. This may explain why we observed that Pim1 

increased phosphorylation of ERK in vivo, not in vitro, and why Pim1 knockdown 

decreased phosphorylation of ERK. ERK/MAPK activation can phosphorylate Myc on 

S62, thereby stabilizing Myc (Figure 48).  

Interestingly, our Gene Set Enrichment Analysis (GSEA) of microarray data 

showed that epithelial-mesenchymal transition (EMT gene) set was down-regulated in 

Pim1 knockdown cells comparing to control, while EMT gene set was up-regulated in 

MYC/Pim1 tumor (data not shown). It suggests that Pim1 may play a role in EMT. It is 

known that MAPK signaling is required for EMT in vivo and metastasis (Janda, 2002). A 

recent report shows that Pim1 promotes cancer cell migration and invasion possibly 

through a Pim1 substrate NFATc (Santio, 2010). It is important to be confirmed whether 

Pim1 involved in EMT and differentiation, which may facilitate to study on the 

mechanisms of Pim1 and Myc cooperation in tumorigenesis. 

Other potential mechanisms of Pim1 and Myc cooperation 

Using a tissue recombination approach, we found that Pim1 expression resulted in 

mild pathological abnormalities, suggesting that Pim1 overexpression may establish a 

preneoplastic state. A recent report showed that Pim1 is induced by DNA damage 

possibly mediated by the nuclear factor kappa beta (NF-κB) pathway. In addition, Pim1 

overexpressing cell lines displayed genomic instability (Roh, 2003; 2005; 2008; 

Zemskova, 2010). Whether and how Pim1 overexpression induces genomic instability 

needs be to explored in vivo. It will be of interest to know whether Pim1 and MYC 

cooperate to induce genomic instability.  
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It is well known that Myc plays an important role in promoting proliferation and 

apoptosis. Pim1 increases cell proliferation and inhibits apoptosis. Pim1 may disrupt Myc 

induced apoptotic pathways and cooperate with Myc to transform normal cells. Our 

microarray data and previous reports implicate that Pim1 and Myc may synergize in 

promoting cell cycle, possible by activating cdc25 (Mochizuki T, 1999; Bachmann., 2004; 

Galaktionov, 1996). Pim1 can induce p53-dependent senescence (Hogan, 2008; 

Zemskova, 2010). Moreover, Myc can induce senescence, which is suppressed by 

Werner syndrome protein or cdk2 (Campaner, 2010).  It needs to be investigated whether 

and how Myc and Pim1 together can bypass senescence.  

Our conventional analysis of microarray data has shown only subtle differential 

gene expression between Pim1 grafts and control grafts, and between Pim1 knockdown 

and control MPT cells (data not shown), suggesting that the synergism of Pim1 and MYC 

may be mediated by epigenetic or/and microRNA regulation.  

The major aim of our studies is to establish a mechanistic model for the 

cooperation between Myc and Pim1. As described, MYC/Pim1 synergy is critically 

dependent on Pim1 kinase activity. Of importance is the need to know what Pim1’s 

substrates are responsible for its cooperation with Myc, and what downstream targets of 

Pim1 and Myc are responsible for this cooperation. Those studies will help us better 

understanding of the molecular basis of human prostate cancer initiation and progression. 

Such studies could facilitate to development of novel methods for diagnosis and 

treatment in human cancer. 

  



92 
 

REFERENCE 

 

Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev. 2000 Oct 
1;14(19):2410-34. Review. 

Abate-Shen C, Shen MM. Mouse models of prostate carcinogenesis. Trends Genet. 2002 
May;18(5):S1-5. Review 

Abdulkadir SA, Carbone JM, Naughton CK, Humphrey PA, Catalona WJ, Milbrandt J. 
Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. 
Hum Pathol. 2001a Sep;32(9):935-9. 

Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA, 
Milbrandt J. Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial 
neoplasia. Mol Cell Biol. 2002 Mar;22(5):1495-503. 

Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J, Carbone JM, 
Naughton CK, Catalona WJ, Ackerman JJ, Gordon JI, Humphrey PA, Milbrandt J. 
Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med. 2001b Jan;7(1):101-7. 

Abrahamsson PA. Neuroendocrine cells in tumour growth of the prostate. Endocr Relat 
Cancer. 1999 Dec;6(4):503-19. Review. 

Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL. Mitogen-activated 
protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and 
apoptosis in prostate cancer. Mol Cell Biol. 1999 Jul;19(7):5143-54. 

Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. 
Nat Rev Mol Cell Biol. 2005 Aug;6(8):635-45. Review. 

Aho TL, Lund RJ, Ylikoski EK, Matikainen S, Lahesmaa R, Koskinen PJ. Expression of 
human pim family genes is selectively up-regulated by cytokines promoting T helper type 
1, but not T helper type 2, cell differentiation. Immunology. 2005 Sep;116(1):82-8. 

Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase 
promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the 
Ser112 gatekeeper site. FEBS Lett. 2004 Jul 30;571(1-3):43-9. 

Algaba F. Lobar division of the prostate. In: Khoury S CC, Murphy G, Denis L, ed. 
Prostate cancer in questions. Edinburgh, UK: ICI publications; 1991:16-17. 

Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A. The human 
protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse 
leukemias. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8857-61.  



93 
 

Arya M, Patel HR, McGurk C, Tatoud R, Klocker H, Masters J, Williamson M. The  
importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate  
cancer metastasis. J Exp Ther Oncol. 2004 Dec;4(4):291-303.   

Aumüller G, Seitz J. Protein secretion and secretory processes in male accessory sex 
glands. Int Rev Cytol. 1990;121:127-231. Review. 

Aumüller G. [Functional morphology of the prostate]. Urologe A. 1989 Nov;28(6):306-
10. Review. 

Bachmann M, Hennemann H, Xing PX, Hoffmann I, Möröy T. The oncogenic 
serine/threonine kinase Pim-1 phosphorylates and inhibits the activity of Cdc25C-
associated kinase 1 (C-TAK1): a novel role for Pim-1 at the G2/M cell cycle checkpoint. 
J Biol Chem. 2004 Nov 12;279(46):48319-28. Epub 2004 Aug 19. 

Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Möröy T. The oncogenic 
serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific 
phosphatase Cdc25C. Int J Biochem Cell Biol. 2006 Mar;38(3):430-43. Epub 2005 Nov8. 

Bachmann M, Möröy T. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 
2005 Apr;37(4):726-30. Review. 

Barrier A, Olaya N, Chiappini F, Roser F, Scatton O, Artus C, Franc B, Dudoit S, 
Flahault A, Debuire B, Azoulay D, Lemoine A. Ischemic preconditioning modulates the 
expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in 
a human model of liver ischemia-reperfusion. FASEB J. 2005 Oct;19(12):1617-26. 

Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts 
for preclinical studies. Cancer Res. 2006 Apr 1;66(7):3355-8, discussion 3358-9. Erratum 
in: Cancer Res. 2006 May 15;66(10):5526. 

BECKER AJ, McCULLOCH EA, TILL JE. Cytological demonstration of the clonal 
nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963 
Feb 2;197:452-4.  

Bernard D, Pourtier-Manzanedo A, Gil J, Beach DH. Myc confers androgen-independent 
prostate cancer cell growth. J Clin Invest. 2003 Dec;112(11):1724-31. 

Berns A, Mikkers H, Krimpenfort P, Allen J, Scheijen B, Jonkers J. Identification and 
characterization of collaborating oncogenes in compound mutant mice. Cancer Res. 1999 
Apr 1;59(7 Suppl):1773s-1777s. 

Berruti A, Mosca A, Tucci M, Terrone C, Torta M, Tarabuzzi R, Russo L, Cracco  C,  
Bollito E, Scarpa RM, Angeli A, Dogliotti L. Independent prognostic role of circulating 
chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr 
Relat Cancer. 2005 Mar;12(1):109-17.  



94 
 

Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic 
hyperplasia with age. J Urol. 1984 Sep;132(3):474-9. 

Bhattacharya N, Wang Z, Davitt C, McKenzie IF, Xing PX, Magnuson NS. Pim-1 
associates with protein complexes necessary for mitosis. Chromosoma. 2002 
Jul;111(2):80-95. Epub 2002 May 15.  

Birbach A, Casanova E, Schmid JA. A Probasin-MerCreMer BAC allows inducible 
recombination in the mouse prostate. Genesis. 2009 Nov;47(11):757-64.). 

Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the 
cancer stem cell: current controversies and new insights. Nat Rev Cancer. 2005 
Nov;5(11):899-904. Review. Erratum in: Nat Rev Cancer. 2005 Dec;5(12):995. 

Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a 
sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 
8;251(4998):1211-7.  

Blömer U, Gruh I, Witschel H, Haverich A, Martin U. Shuttle of lentiviral vectors via 
transplanted cells in vivo. Gene Ther. 2005 Jan;12(1):67-74.  

Bonkhoff H, Fixemer T. Neuroendocrine differentiation in prostate cancer: an 
unrecognized and therapy resistant phenotype. Pathologe 2005, 26(6):453-460.  

Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, icinski 
P, Bartek J, Eilers M. Direct induction of cyclin D2 by Myc contributes  o cell cycle 
progression and sequestration of p27. EMBO J. 1999 Oct1;18(19):5321-33.  

Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine 
kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. 
Haematologica. 2010 Jun;95(6):1004-15. Epub 2010 Feb 9.  

 Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine 
kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. 
Haematologica. 2010 Jun;95(6):1004-15. Epub 2010 Feb 9. 

Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL. Sca-1 
expression identifies stem cells in the proximal region of prostatic ducts with high 
capacity to reconstitute prostatic tissue. Proc Natl Acad Sci U S A. 2005 May 
17;102(20):7180-5.  

Campaner S, Doni M, Verrecchia A, Fagà G, Bianchi L, Amati B. Myc, Cdk2 and 
cellular senescence: Old players, new game. Cell Cycle. 2010 Sep;9(18):3655-61.Epub 
2010 Sep 15.  



95 
 

Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls 
ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 
2005 Mar;132(5):885-96.  

Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, 
Andriole GL. Measurement of prostate-specific antigen in serum as a screening test for 
prostate cancer. N Engl J Med. 1991 Apr 25;324(17):1156-61. Erratum in: N Engl J Med 
1991 Oct 31;325(18):1324. 

Chang KT, Tsai CM, Chiou YC, Chiu CH, Jeng KS, Huang CY. IL-6 induces 
neuroendocrine dedifferentiation and cell proliferation in non-small cell lung cancer cells. 
Am J Physiol Lung Cell Mol Physiol. 2005 Sep;289(3):L446-53. Epub 2005 May 13. 

Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Kondo S, Wang H, Wang 
H, Yeung SC, Lee MH. Hypoxia-mediated up-regulation of Pim-1 contributes to solid 
tumor formation. Am J Pathol. 2009 Jul;175(1):400-11. Epub 2009a  Jun 15. 

Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, 
induces apoptosis in chronic lymphocytic leukemia cells. Blood. 2009 Nov 
5;114(19):4150-7. Epub 2009b Sep 4. 

Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS. Pim family kinases enhancetumor 
growth of prostate cancer cells. Mol Cancer Res. 2005 Aug;3 (8):443-51. 

Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ, Nawijn MC, Capece D, 
Cohan VL, Rothman P. Pim serine/threonine kinases regulate the stability of Socs-1 
protein. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2175-80. 

Cheryl M. Koh, Charles J. Bieberich, Chi V. Dang, William G. Nelson, Srinivasan 
Yegnasubramanian, aAngelo M. De Marzo. MYC and Prostate Cancer. Genes & Cancer, 
June 2010; vol. 1, 6: pp. 617-628., first published on August 3, 2010  

Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, Cher ML. 
CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer 
cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006 Jan 
1;66(1):32-48.  

Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR, Luo Y, Cheng L. 
Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol. 
2006 Mar;59(3):285-8.  

Cindolo L, Cantile M, Vacherot F, Terry S, de la Taille A. Neuroendocrine differentiation 
in prostate cancer: from lab to bedside. Urol Int. 2007;79(4):287-96. Review. 

Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of 
translation and DNA replication. Nat Rev Mol Cell Biol 2008; 9:810-5 



96 
 

Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, Golub TR.  
Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes 
involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A. 2000 
Mar 28;97(7):3260-5.  

Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of 
tumorigenic prostate cancer stem cells. Cancer Res. 2005 Dec 1;65(23):10946-51.  

Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human 
prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci. 
2001 Nov;114(Pt 21):3865-72. 

Coppola JA, Cole MD. Constitutive c-myc oncogene expression blocks mouse 
erythroleukaemia cell differentiation but not commitment. Nature. 1986 Apr 24-
30;320(6064):760-3.  

Cunha GR, Chung LW, Shannon JM, Taguchi O, Fujii H. Hormone-induced 
morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog 
Horm Res. 1983;39:559-98. Review. 

Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y. The 
endocrinology and developmental biology of the prostate. Endocr Rev. 1987 
Aug;8(3):338-62. Review.  

Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y. The 
endocrinology and developmental biology of the prostate. Endocr Rev. 1987 
Aug;8(3):338-62. Review. 

Cunha GR, Lung B. The possible influence of temporal factors in androgenic 
responsiveness of urogenital tissue recombinants from wild-type and androgen-
insensitive (Tfm) mice. J Exp Zool. 1978 Aug;205(2):181-93. 

Cunha GR. Mesenchymal-epithelial interactions: past, present, and future.Differentiation. 
2008 Jul;76(6):578-86. Epub 2008 Jun 28. Review.  

Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, 
Melief C, Berns A. Murine leukemia virus-induced T-cell lymphomagenesis: integration 
of proviruses in a distinct chromosomal region. Cell. 1984 May;37 (1):141-50.  

Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc 
onc gene is located on the region of chromosome 8 that is translocated in Burkitt 
lymphoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7824-7.  

Dang CV. Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell 
Cycle. 2010 Oct;9(19):3884-6. Epub 2010 Oct 9.  



97 
 

Dautry F, Weil D, Yu J, Dautry-Varsat A. Regulation of pim and myb mRNA 
accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines. J Biol 
Chem. 1988 Nov 25;263(33):17615-20.  

D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, 
Belka GK, Golant A, Cardiff RD, Chodosh LA. c-MYC induces mammary tumorigenesis 
by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001 
Feb;7(2):235-9. 

Deeble PD, Murphy DJ, Parsons SJ, Cox ME. Interleukin-6- and cyclic AMP-mediated 
signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol 
Cell Biol. 2001 Dec;21(24):8471-82. 

Denoix PF: Bull Inst Nat Hyg (Paris) 1944;1:69. 1944;2:82. 1950;5:81. 1952;7:743. 

Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, 
Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. 
Nature. 2001 Aug 23;412(6849):822-6.  

di Sant'Agnese PA, de Mesy Jensen KL. Neuroendocrine differentiation in prostatic 
carcinoma. Hum Pathol. 1987 Aug;18(8):849-56.  

Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, et al. Non 
transcriptional control of DNA replication by c-Myc. Nature 2007; 448:445-51 

Eilers M, Eisenman RN. Myc's broad reach. Genes Dev. 2008 Oct 15;22(20):2755-66. 
Review. 

Eisenberger M, Nelson WG, Mostwin JL, De Marzo AM. Shared TP53 gene mutation in 
morphologically and phenotypically distinct concurrent primary small cell 
neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate. 2009 May 
1;69(6):603-9. 

Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik 
R,Thomas GV, Sawyers CL. Myc-driven murine prostate cancer shares molecular 
features with human prostate tumors. Cancer Cell. 2003 Sep;4(3):223-38. Erratum in: 
Cancer Cell. 2005 Dec;8(6):485. 

English HF, Santen RJ, Isaacs JT. Response of glandular versus basal rat ventral prostatic 
epithelial cells to androgen withdrawal and replacement. Prostate. 1987;11(3):229-42. 

Ewald D, Li M, Efrat S, Auer G, Wall RJ, Furth PA, Hennighausen L.Time-sensitive 
reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science. 1996 Sep 
6;273(5280):1384-6.  



98 
 

Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. 
Mol Cell. 1999 Aug;4(2):199-207. 

Fowler FJ Jr, Barry MJ, Walker-Corkery B, Caubet JF, Bates DW, Lee JM, Hauser A, 
McNaughton-Collins M. The impact of a suspicious prostate biopsy on patients' 
psychological, socio-behavioral, and medical care outcomes. J Gen Intern Med. 2006 
Jul;21(7):715-21. 

Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007 
Sep;7(9):645-58. Review. 

Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. 
Nature. 1996 Aug 8;382(6591):511-7. 

Gao H, Ouyang X, Banach-Petrosky WA, Gerald WL, Shen MM, Abate-Shen C. 
Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-
independent prostate cancer. Proc Natl Acad Sci U S A. 2006 Sep26;103(39):14477-82. 
Epub 2006 Sep 14. Erratum in: Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17554. 

Garabedian EM, Humphrey PA, Gordon JI. A transgenic mouse model of metastatic 
prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A.  1998 
Dec 22;95(26):15382-7. 

Gardner, Lee & Dang, The Encyclopedia of Cancer, Second Edition, July 2002 

Garnick MB: Prostate cancer: screening, diagnosis, and management. Ann Intern Med 
118 (10): 804-18, 1993 

Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider  M, 
Head CS, Reiter RE, Rubin MA, Witte ON. Human prostate sphere-forming cells 
represent a subset of basal epithelial cells capable of glandular regeneration in vivo. 
Prostate. 2010 Apr 1;70(5):491-501. 

Gartel AL, Shchors K. Mechanisms of c-myc-mediated transcriptional repression of 
growth arrest genes. Exp Cell Res. 2003 Feb 1;283(1):17-21. Review.  

Gerber GS, Chodak GW. Routine screening for cancer of the prostate. J Natl Cancer Inst. 
1991 Mar 6;83(5):329-35. Review.  

Gingrich JR, Barrios RJ, Foster BA, Greenberg NM. Pathologic progression of 
autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis. 1999 
Mar;2(2):70-75 

Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ, 
Angelopoulou R, Rosen JM, Greenberg NM. Metastatic prostate cancer in a transgenic 
mouse. Cancer Res. 1996 Sep 15;56(18):4096-102. 



99 
 

Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ. Activation of mitogen-
activated protein kinase associated with prostate cancer progression.Cancer Res. 1999 Jan 
15;59(2):279-84.  

 Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ. Activation of mitogen-
activated protein kinase associated with prostate cancer progression. Cancer Res. 1999 
Jan 15;59(2):279-84. 

Glazova M, Aho TL, Palmetshofer A, Murashov A, Scheinin M, Koskinen PJ. Pim-1 
kinase enhances NFATc activity and neuroendocrine functions in PC12 cells. Brain Res 
Mol Brain Res. 2005 Aug 18;138(2):116-23.  

Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON. Trop2 identifies a 
subpopulation of murine and human prostate basal cells with stem cell characteristics. 
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20882-7. Epub 2008 Dec 16.  

Goldstein AS, Stoyanova T, Witte ON. Primitive origins of prostate cancer: in vivo 
evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol. 
2010 Oct;4(5):385-96. Epub 2010 Jul 14.  

Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima 
J, Russell DW, Swisshelm K, Frank S, Amati B, Dalla-Favera R, Monnat RJ Jr. Werner 
syndrome protein limits MYC-induced cellular senescence. Genes Dev. 2003 Jul 
1;17(13):1569-74.  

Green JE, Greenberg NM, Ashendel CL, Barrett JC, Boone C, Getzenberg RH, Henkin J, 
Matusik R, Janus TJ, Scher HI. Workgroup 3: transgenic and reconstitution models of 
prostate cancer. Prostate. 1998 Jun 15;36(1):59-63) 

Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, 
Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse. Proc Natl 
Acad Sci U S A. 1995 Apr 11;92(8):3439-43. 

Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, 
Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse. Proc Natl 
Acad Sci U S A. 1995 Apr 11;92(8):3439-43. 

Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: 
stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol. 2000 Apr;20(7):2423-
35. 

Grisanzio C, Signoretti S. p63 in prostate biology and pathology. J Cell Biochem. 2008 
Apr 1;103(5):1354-68. Review. 



100 
 

Grobholz R, Griebe M, Sauer CG, Michel MS, Trojan L, Bleyl U. Influence of 
neuroendocrine tumor cells on proliferation in prostatic carcinoma. Hum Pathol. 2005 
May;36(5):562-70.  

Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, Pogacic V, Villa A, 
Ehret S, Berridge G, Spoo A, Dierks C, Biondi A, Knapp S, Duyster J, Schwaller J. 
Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals 
PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med. 
2009 Aug 31;206(9):1957-70. Epub 2009 Aug 17.  

Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates 
ASK1-mediated apoptosis. Oncogene. 2009 Dec 3;28(48):4261-71. Epub 2009 Sep 14.  

Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 
2009 Sep;15(9):1010-2. Epub 2009 Sep 4. Review.  

Hansel DE, Nakayama M, Luo J, Abukhdeir AM, Park BH, Bieberich CJ, Hicks JL, 

Harris R, Lohr KN. Screening for prostate cancer: an update of the evidence for the U.S. 
Preventive Services Task Force. Ann Intern Med. 2002 Dec3;137(11):917-29. Review. 

Hayward SW, Cunha GR. The prostate: development and physiology. Radiol Clin North 
Am. 2000 Jan;38(1):1-14. Review. 

Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR. 
Interactions between adult human prostatic epithelium and rat urogenital sinus 
mesenchyme in a tissue recombination model. Differentiation. 1998 Jul;63(3):131-40. 

He HC, Bi XC, Dai QS, Wang SS, Wei HA, Zhong WD, Liu WH, Jiang FN, Liu LS. 
Detection of pim-1 mRNA in prostate cancer diagnosis. Chin Med J (Engl). 2007 Sep 
5;120(17):1491-3.  

He HC, Bi XC, Zheng ZW, Dai QS, Han ZD, Liang YX, Ye YK, Zeng GH, Zhu G, 
Zhong WD. Real-time quantitative RT-PCR assessment of PIM-1 and hK2 mRNA 
expression in benign prostate hyperplasia and prostate cancer. Med Oncol. 
2009;26(3):303-8.Epub 2008 Nov 12. 

Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC,  
Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, 
Kinzler KW. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A. 
2000 Feb 29;97(5):2229-34. 

Hinman F Jr. Screening for prostatic carcinoma. J Urol. 1991 Jan;145(1):126-9; 
discussion 129-30. Review.  



101 
 

Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in 
hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol. 
2004 May;45(5):586-92; discussion 592. 

Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N, Meek D. 
Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway  in cultured 
cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem. 2008 
Jun 27;283(26):18012-23. Epub 2008 May 8. 

Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS. Pim-1 protein expression is 
regulated by its 5'-untranslated region and translation initiation factor elF-4E. Cell 
Growth Differ. 1997 Dec;8(12):1371-80. 

Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX. PIM-1-specific mAb 
suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt 
phosphorylation, and activating apoptosis. J Clin Invest. 2009 Feb;119(2):362-75. doi: 
10.1172/JCI33216. Epub 2009 Jan 19.  

Hu Y, Wang T, Stormo GD, Gordon JI. RNA interference of achaete-scute homolog 1 in 
mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc 
Natl Acad Sci U S A. 2004 Apr 13;101(15):5559-64. Epub 2004 Apr 1. 

Isaacs, JT. Control of Cell Proliferation and Cell Death in the Normal and Neoplastic 
Prostate. IN: Benign Prostatic Hyperplasia, Volume II, NIH Publication No. 87-2881, pp. 
85-94, 1987. 

Ismail A HR, Landry F, Aprikian AG, Chevalier S. Androgen ablation promotes 
neuroendocrine cell differentiation in dog and human prostate. Prostate. 2002 
May1;51(2):117-25.  

Ito T, Yamamoto S, Ohno Y, Namiki K, Aizawa T, Akiyama A, Tachibana M. Up-
regulation of neuroendocrine differentiation in prostate cancer after androgen deprivation 
therapy, degree and androgen independence. Oncol Rep. 2001 Nov-Dec;8(6):1221-4.  

Jacobs MD, Black J, Futer O, Swenson L, Hare B, Fleming M, Saxena K. Pim-1 ligand-
bound structures reveal the mechanism of serine/threonine kinase inhibition by 
LY294002. J Biol Chem. 2005 Apr 8;280(14):13728-34. Epub 2005 Jan17.  

Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, BishopJM, 
Felsher DW. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. 
Science. 2002 Jul 5;297(5578):102-4. 

Jiborn T, Bjartell A, Abrahamsson PA. Neuroendocrine differentiation in prostatic 
carcinoma during hormonal treatment. Urology. 1998 Apr;51(4):585-9 



102 
 

Kamiya N, Suzuki H, Kawamura K, Imamoto T, Naya Y, Tochigi N, Kakuta Y, 
Yamaguchi K, Ishikura H, Ichikawa T. Neuroendocrine differentiation in stage D2 
prostate cancers. Int J Urol. 2008 May;15(5):423-8. 

Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ, Maddison 
LA, Foster BA, Greenberg NM. Pathobiology of autochthonous prostate cancer in a pre-
clinical transgenic mouse model. Prostate. 2003 May 15;55(3):219-37. 

Karn J, Watson JV, Lowe AD, Green SM, Vedeckis W. Regulation of cell cycle duration 
by c-myc levels. Oncogene. 1989 Jun;4(6):773-87. 

Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, Dodd JG, 
Duckworth ML, Matusik RJ. Development, progression, and androgen-dependence of 
prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. 
Lab Invest. 1998 Mar;78(3):319-33. Corrected and republished in: Lab Invest. 1998 
Jun;78(6):i-xv.  

Kim J, Adam RM, Freeman MR. Activation of the Erk mitogen-activated protein kinase 
pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell 
cycle withdrawal and STAT3 phosphorylation. Cancer Res. 2002 Mar 1;62(5):1549-54. 

Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA. Interactions between cells with 
distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet. 2009 
Jul;5(7):e1000542. Epub 2009 Jul 3. 

Kim J, Roh M, Abdulkadir SA. Pim1 promotes human prostate cancer cell tumorigenicity 
and c-MYC transcriptional activity. BMC Cancer. 2010 Jun 1;10:248. 

 Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Kohl 
NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW. Transposition and 
amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983 
Dec;35(2 Pt 1):359-67.  

Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin 
protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of 
phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett. 2000 
Feb 4;467(1):17-21.  

Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev 
Mol Cell Biol. 2005 Nov;6(11):827-37. Review 

Korsten H, Ziel-van der Made A, Ma X, van der Kwast T, Trapman J. Accumulating 
progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a 
Pten knockout mouse prostate cancer model. PLoS One. 2009 May 22;4(5):e5662.  



103 
 

Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, Artis DR, Ibrahim P, Bremer 
R. Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic 
hypermutations in diffuse large cell lymphoma. J Mol Biol. 2005 Apr 22;348(1):183-93. 

Kurita T, Medina RT, Mills AA, Cunha GR. Role of p63 and basal cells in the prostate. 
Development. 2004 Oct;131(20):4955-64. Epub 2004 Sep 15.  

Kurzrock EA, Baskin LS, Cunha GR. Ontogeny of the male urethra: theory of 
endodermal differentiation. Differentiation. 1999 Jan;64(2):115-22. 

Kustikova OS, Wahlers A, Kuhlcke K, Stahle B, Zander AR, Baum C, Fehse B. Dose 
finding with retroviral vectors: correlation of retroviral vector copy numbers in single 
cells with gene transfer efficiency in a cell population. Blood. 2003 Dec 1;102(12):3934-
7. Epub 2003 Jul 24.  

Kuttler F, Mai S. c-Myc, Genomic Instability and Disease. Genome Dyn. 2006;1:171-90. 
Review. 

Laird PW, van der Lugt NM, Clarke A, Domen J, Linders K, McWhir J, Berns A, Hooper  
M. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 1993 Oct11;21(20):4750-5. 

Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and functional 
characterization of murine prostate stem cells. Proc Natl Acad Sci U S A. 2007 Jan 
2;104(1):181-6. Epub 2006 Dec 21.  

Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer 
Metastasis Rev. 2004 Aug-Dec;23(3-4):293-310. Review. 

Leelawat K, Leelawat S, Narong S, Hongeng S. Roles of the MEK1/2 and AKT pathways 
in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J Gastroenterol. 
2007 Mar 14;13(10):1561-8.  

Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult 
stem cell. Nature. 2008 Dec 11;456(7223):804-8. 

Levine AJ. Tumor suppressor genes. Bioessays. 1990 Feb;12(2):60-6. Review. 

Liang H, Hittelman W, Nagarajan L. Ubiquitous expression and cell cycle regulation of 
the protein kinase PIM-1. Arch Biochem Biophys. 1996 Jun 15;330(2):259-65.  

Lilja H, Oldbring J, Rannevik G, Laurell CB. Seminal vesicle-secreted proteins and their 
reactions during gelation and liquefaction of human semen. J Clin Invest. 1987 
Aug;80(2):281-5.  

Lilja H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant 
seminal vesicle protein. J Clin Invest. 1985 Nov;76(5):1899-903. 



104 
 

Lilly M, Le T, Holland P, Hendrickson SL. Sustained expression of the pim-1 kinase is 
specifically induced in myeloid cells by cytokines whose receptors are  structurally 
related. Oncogene. 1992 Apr;7(4):727-32. 

Lin YW, Beharry ZM, Hill EG, Song JH, Wang W, Xia Z, Zhang Z, Aplan PD, Aster JC, 
Smith CD, Kraft AS. A small molecule inhibitor of Pim protein kinases blocks the 
growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood. 2010 Jan 
28;115(4):824-33. Epub 2009 Nov 23. 

Litwin MS, Pasta DJ, Yu J, Stoddard ML, Flanders SC. Urinary function and bother after 
radical prostatectomy or radiation for prostate cancer: a longitudinal, multivariate quality 
of life analysis from the Cancer of the Prostate Strategic Urologic Research Endeavor. J 
Urol. 2000 Dec;164(6):1973-7. 

Liu AY, True LD, LaTray L, Nelson PS, Ellis WJ, Vessella RL, Lange PH, Hood L,van 
den Engh G. Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc 
Natl Acad Sci U S A. 1997 Sep 30;94(20):10705-10. 

Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-
specific expression of transgenes delivered by lentiviral vectors. Science.2002 Feb 
1;295(5556):868-72.  

Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB. Protein phosphatase 2A regulates 
the stability of Pim protein kinases. J Biol Chem. 2003 Feb 14;278(7):4800-5. Epub 2002 
Dec 6. 

Lowsley OS. The development of the human prostate gland with reference to the 
development of other structures at the neck of the urinary bladder. Am J Anat 1912; 13, 
299-349. 

Luchman HA, Friedman HC, Villemaire ML, Peterson AC, Jirik FR. Temporally 
controlled prostate epithelium-specific gene alterations. Genesis. 2008 Apr;46(4):229-34. 

Lüscher B, Larsson LG. The basic region/helix-loop-helix/leucine zipper domain of Myc 
proto-oncoproteins: function and regulation. Oncogene. 1999 May 13;18(19):2955-66. 
Review.  

Ma X, Ziel-van der Made AC, Autar B, van der Korput HA, Vermeij M, van Duijn P, 
Cleutjens KB, de Krijger R, Krimpenfort P, Berns A, van der Kwast TH, Trapman  J. 
Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer 
accompanied by increased epithelial cell proliferation but not by reduced apoptosis. 
Cancer Res. 2005 Jul 1;65(13):5730-9. 

Magnuson NS, Wang Z, Ding G, Reeves R. Why target PIM1 for cancer diagnosis and 
treatment? Future Oncol. 2010 Sep;6(9):1461-78. 



105 
 

Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. Vd 
njiio00o8J Clin Oncol. 2008 Jun 10;26(17):2862-70. Review. 

Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R, Kreisberg JI. 
Immunohistochemical demonstration of phospho-Akt in high Gleason grade 
prostatecancer. Clin Cancer Res. 2002 Apr;8(4):1168-71.  

Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev 
Cancer. 2009 Nov;9(11):810-20. Review. 

Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S, Caprioli RM, 
Tsukamoto T, Shappell SB, Matusik RJ. A probasin-large T antigen transgenic mouse 
line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic 
potential. Cancer Res. 2001 Mar 1;61(5):2239-49. 

Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I. Interferon-
alpha activates multiple STAT proteins and upregulates proliferation-associated IL 
2Ralpha, c-myc, and pim-1 genes in human T cells. Blood. 1999 Mar 15;93(6):1980-91. 

McNeal JE. The zonal anatomy of the prostate. Prostate. 1981;2::35-49.  

McWilliam LJ, Manson C, George NJ. Neuroendocrine differentiation and prognosis in 
prostatic adenocarcinoma. Br J Urol. 1997 Aug;80(2):287-90.  

Meeks J, Schaeffer EM. Genetic Regulation of Prostate Development. J Androl.2010 Oct 
7.  

Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J, Berns A. Mice 
deficient for all PIM kinases display reduced body size and impaired responses to 
hematopoietic growth factors. Mol Cell Biol. 2004 Jul;24(13):6104-15. 

Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ. Expression and  role of 
Foxa proteins in prostate cancer. Prostate. 2006 Jul 1;66(10):1013-28. 

Miyoshi Y, Uemura H, Kitami K, Satomi Y, Kubota Y, Hosaka M. Neuroendocrine 
differentiated small cell carcinoma presenting as recurrent prostate cancer after androgen 
deprivation therapy. BJU Int. 2001 Dec;88(9):982-3.  

Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T. Regulation of 
Pim-1 by Hsp90. Biochem Biophys Res Commun. 2001 Mar 2;281(3):663-9. 

Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. Physical and 
functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for 
the Pim-1-mediated activation of the c-Myc signaling pathway. J  Biol Chem. 1999 Jun 
25;274(26):18659-66.  



106 
 

Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell 
cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional 
and posttranscriptional levels. Cancer Res. 2008 Jul 1;68(13):5076-85. 

Mui AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A. Suppression of interleukin-3-
induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. 
EMBO J. 1996 May 15;15(10):2425-33.  

 Mulholland DJ, Dedhar S, Wu H, Nelson CC. PTEN and GSK3beta: key regulators of 
progression to androgen-independent prostate cancer. Oncogene. 2006 Jan19;25(3):329-
37. Review. 

Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H. Lin-Sca-1+CD49fhigh 
stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer 
Res. 2009 Nov 15;69(22):8555-62. Epub 2009 Nov 3.  

Mumenthaler SM, Ng PY, Hodge A, Bearss D, Berk G, Kanekal S, Redkar S, Taverna P, 
Agus DB, Jain A. Pharmacologic inhibition of Pim kinases alters prostate cancer cell 
growth and resensitizes chemoresistant cells to taxanes. Mol Cancer Ther. 2009 
Oct;8(10):2882-93.  

Muraski JA, Fischer KM, Wu W, Cottage CT, Quijada P, Mason M, Din S, Gude N, 
Alvarez R Jr, Rota M, Kajstura J, Wang Z, Schaefer E, Chen X, MacDonnel S, 
Magnuson N, Houser SR, Anversa P, Sussman MA. Pim-1 kinase antagonizes aspects of 
myocardial hypertrophy and compensation to pathological pressure overload. Proc Natl 
Acad Sci U S  A. 2008 Sep 16;105(37):13889-94. Epub 2008 Sep 10. 

Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000 
Feb;26(2):99-109. Review.  

Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, 
Bertness V, Hollis GF, Minna JD. L-myc, a new myc-related gene amplified and 
expressed in human small cell lung cancer. Nature. 1985 Nov 7-13;318(6041):69-73. 

O'Hagan RC, Ohh M, David G, de Alboran IM, Alt FW, Kaelin WG Jr, DePinho RA. 
Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell 
cycle progression. Genes Dev. 2000 Sep 1;14(17):2185-91. 

Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C. Targeting AKT/mTOR and 
ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse 
model. J Clin Invest. 2008 Sep;118(9):3051-64.  

Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, 
Huang LS, Yang Q, Huang J. Selective expression of CD44, a putative prostate cancer 
stem cell marker, in neuroendocrine tumor cells of human prostate cancer.  Prostate. 2009 
May 15;69(7):787-98.  



107 
 

Palmer J, Ernst M, Hammacher A, Hertzog PJ. Constitutive activation of gp130 leads to 
neuroendocrine differentiation in vitro and in vivo. Prostate. 2005 Feb 15;62(3):282-9.  

Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells 
exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 
2002 May 3;109(3):321-34. 

Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ. Pim-1 kinase 
inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. 
Blood. 2004 May 15;103(10):3744-50. Epub 2004 Feb 5.  

Perez-Stable C, Altman NH, Mehta PP, Deftos LJ, Roos BA. Prostate cancer progression, 
metastasis, and gene expression in transgenic mice. Cancer Res. 1997 Mar 1;57(5):900-6. 

Pinski J, Wang Q, Quek ML, Cole A, Cooc J, Danenberg K, Danenberg PV. Genistein-
induced neuroendocrine differentiation of prostate cancer cells. Prostate. 2006 Aug 
1;66(11):1136-43. 

Plattner R, Anderson MJ, Sato KY, Fasching CL, Der CJ, Stanbridge EJ. Loss of 
oncogenic ras expression does not correlate with loss of tumorigenicity in human  cells. 
Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6665-70. 

Pollock K, Jupp R. Microarray analysis of eosinophils reveals a number of candidate 
survival and apoptosis genes. Am J Respir Cell Mol Biol. 2001 Oct;25(4):425-33. 

Prochownik EV. c-Myc: linking transformation and genomic instability. Curr Mol Med. 
2008 Sep;8(6):446-58. Review.  

Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct 
epithelial cell transformation defines gene expression changes induced by K-ras 
oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005 Jun15;65(12):5045-
53. 

Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White 
A, Mische S, Farmer B. Structural basis of constitutive activity and a unique nucleotide 
binding mode of human Pim-1 kinase. J Biol Chem. 2005 Feb 18;280 (7):6130-7. Epub 
2004 Nov 3. 

Rahman Z, Yoshikawa H, Nakajima Y, Tasaka K. Down-regulation of Pim-1 and Bcl-2 
is accompanied with apoptosis of interleukin-6-depleted mouse B-cell hybridoma 7TD1 
cells. Immunol Lett. 2001 Jan 15;75(3):199-208. 

Rainio EM, Ahlfors H, Carter KL, Ruuska M, Matikainen S, Kieff E, Koskinen PJ. Pim 
kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity. 
Virology. 2005 Mar 15;333(2):201-6.  



108 
 

Rainio EM, Sandholm J, Koskinen PJ. Cutting edge: Transcriptional activity of  NFATc1 
is enhanced by the Pim-1 kinase. J Immunol. 2002 Feb 15;168(4):1524-7. 

Rangarajan A, Weinberg RA. Opinion: Comparative biology of mouse versus human  
cells: modelling human cancer in mice. Nat Rev Cancer. 2003 Dec;3(12):952-9.Review. 

Ratnacaram CK, Teletin M, Jiang M, Meng X, Chambon P, Metzger D. 2008. 
Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a 
model of invasive prostatic adenocarcinoma. Proc Natl Acad Sci 105: 2521–2526. 

Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA, Felsher DW. 
MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. 
Cancer Res. 2006 Jul 1;66(13):6598-605.  

Reeves R, Spies GA, Kiefer M, Barr PJ, Power M. Primary structure of the putative 
human oncogene, pim-1. Gene. 1990 Jun 15;90(2):303-7. 

Reiser-Erkan C, Erkan M, Pan Z, Bekasi S, Giese NA, Streit S, Michalski CW, Friess H, 
Kleeff J. Hypoxia-inducible proto-oncogene Pim-1 is a prognostic marker in pancreatic 
ductal adenocarcinoma. Cancer Biol Ther. 2008 Sep;7(9):1352-9. Epub 2008 Sep 2.  

Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, 
Hamel A, Bock ME, MacDonald BS, et al. Characterization of two cis-acting DNA 
elements involved in the androgen regulation of the probasin gene. Mol Endocrinol. 1993 
Jan;7(1):23-36. 

Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a  
novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004 Jul 15;117(Pt 
16):3539-45. Epub 2004 Jun 29. 

Rietbergen JB, Kruger AE, Kranse R, et al.: Complications of transrectal ultrasound 
guided systematic sextant biopsies of the prostate: evaluation of complication rates and 
risk factors within a population-based screening program. Urology 49 (6): 875-80, 1997.   

Rimon E, Sasson R, Dantes A, Land-Bracha A, Amsterdam A. Gonadotropin-induced  
gene regulation in human granulosa cells obtained from IVF patients: modulation of 
genes coding for growth factors and their receptors and genes involved in cancer and 
other diseases. Int J Oncol. 2004 May;24(5):1325-38. 

Roh M, Franco OE, Hayward SW, van der Meer R, Abdulkadir SA. A role for polyploidy 
in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells. 
PLoS One. 2008 Jul 2;3(7):e2572. 

Roh M, Gary B, Song C, Said-Al-Naief N, Tousson A, Kraft A, Eltoum IE, Abdulkadir 
SA. Overexpression of the oncogenic kinase Pim-1 leads to genomic instability. Cancer 
Res. 2003 Dec 1;63(23):8079-84. 



109 
 

Roh M, Song C, Kim J, Abdulkadir SA. Chromosomal instability induced by Pim-1 is 
passage-dependent and associated with dysregulation of cyclin B1. J Biol Chem. 2005 
Dec 9;280(49):40568-77. Epub 2005 Oct 12. 

Santio NM, Vahakoski RL, Rainio EM, Sandholm JA, Virtanen SS, Prudhomme M, 
Anizon F, Moreau P, Koskinen PJ. Pim-selective inhibitor DHPCC-9 reveals Pim kinases 
as potent stimulators of cancer cell migration and invasion. Mol Cancer.  2010 Oct 
19;9(1):279. 

Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-
serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991 
Mar;10(3):655-64.  

Sauer CG, Roemer A, Grobholz R. Genetic analysis of neuroendocrine tumor cells in 
prostatic carcinoma. Prostate. 2006 Feb 15;66(3):227-34. 

Schmidt T, Karsunky H, Rödel B, Zevnik B, Elsässer HP, Möröy T. Evidence 
implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-
selection. EMBO J. 1998 Sep 15;17(18):5349-59.  

Schneider A, Peukert K, Eilers M, Hänel F. Association of Myc with the zinc-finger 
protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr Top Microbiol 
Immunol. 1997;224:137-46. 

Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle. 2004 
Sep;3(9):1133-7. Epub 2004 Sep 5. Review. 

Sepulveda AR, Tao H, Carloni E, Sepulveda J, Graham DY, Peterson LE. Screening f 
gene expression profiles in gastric epithelial cells induced by Helicobacter ylori using 
icroarray analysis. Aliment Pharmacol Ther. 2002 Apr;16 Suppl2:145-57. 

Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Potential roles 
for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Eur J 
Cancer. 2008 Oct;44(15):2144-51. 

Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey  
PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD. Prostate pathology  f 
genetically engineered mice: definitions and classification. The consensus eport from the 
Bar Harbor meeting of the Mouse Models of Human Cancer Consortium rostate athology 
Committee. Cancer Res. 2004 Mar 15;64(6):2270-305. Review. 

Sharma P, Schreiber-Agus N. Mouse models of prostate cancer. Oncogene. 1999 Sep 
20;18(38):5349-55. Review. 



110 
 

Sheiness D, Bishop JM. DNA and RNA from uninfected vertebrate cells contain 
nucleotide sequences related to the putative transforming gene of avian myelocytomatosis 
virus. J Virol. 1979 Aug;31(2):514-21. 

Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old 
challenges. Genes Dev. 2010 Sep 15;24(18):1967-2000. Review. 

 Shen MM, Abate-Shen C. Pten inactivation and the emergence of androgen-independent 
prostate cancer. Cancer Res. 2007 Jul 15;67(14):6535-8.Review. 

Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, 
Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale 
NW,Thurston G, Yancopoulos GD, D'Angelica M, Kemeny N, Lyden D, Rafii S. CD133 
expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon 
cancer cells initiate tumors. J Clin Invest. 2008 Jun;118(6):2111-20. 

Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, 
McKeon F, Loda M. p63 is a prostate basal cell marker and is required for prostate 
development. Am J Pathol. 2000 Dec;157(6):1769-75. 

SIMINOVITCH L, MCCULLOCH EA, TILL JE. THE DISTRIBUTION OF COLONY-
FORMING CELLS AMONG SPLEEN COLONIES. J Cell Physiol. 1963 Dec;62:327-36. 

Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12-CXCR4 interactions modulate 
prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest. 
2004 Dec;84(12):1666-76.  

Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old 
and new lines--part 1. J Urol. 2005 Feb;173(2):342-59. Review.  

Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old 
and new lines--part 2. J Urol. 2005 Feb;173(2):360-72. Review.  

Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M. The interaction 
of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase 
pathway and induces cell proliferation. Cell. 1993 Dec 3;75(5):887-97. 

Staack A, Donjacour AA, Brody J, Cunha GR, Carroll P. Mouse urogenital development: 
a practical approach. Differentiation. 2003 Sep;71(7):402-13. Review. 

Steineck G, Helgesen F, Adolfsson J, Dickman PW, Johansson JE, Norlén BJ, Holmberg 
L; Scandinavian Prostatic Cancer Group Study Number 4. Quality of life after radical 
prostatectomy or watchful waiting. N Engl J Med. 2002 Sep12;347(11):790-6.  



111 
 

Stephenson RA, Dinney CP, Gohji K, Ordóñez NG, Killion JJ, Fidler IJ. Metastatic 
model for human prostate cancer using orthotopic implantation in nude mice. J Natl 
Cancer Inst. 1992 Jun 17;84(12):951-7.  

Stewart TA, Hollingshead PG, Pitts SL. Multiple regulatory domains in the mouse 
mammary tumor virus long terminal repeat revealed by analysis of fusion genes in 
transgenic mice. Mol Cell Biol. 1988 Jan;8(1):473-9.  

Sugimura Y, Cunha GR, Donjacour AA. Morphogenesis of ductal networks in the mouse 
prostate. Biol Reprod. 1986 Jun;34(5):961-71. 

Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of  the 
stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. 
Cancer Res. 2002 Mar 15;62(6):1832-7.  

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic 
and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76. Epub 
2006 Aug 10. 

Tan CT, Chu CY, Lu YC, Chang CC, Lin BR, Wu HH, Liu HL, Cha ST, Prakash E, Ko 
JY, Kuo ML. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell 
carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 
pathway. Carcinogenesis. 2008 Aug;29(8):1519-27. Epub 2008 May 16. 

Taplin ME, George DJ, Halabi S, Sanford B, Febbo PG, Hennessy KT, Mihos CG, 
Vogelzang NJ, Small EJ, Kantoff PW. Prognostic significance of plasma chromogranin a 
levels in patients with hormone-refractory prostate cancer treated in Cancer and 
Leukemia Group B 9480 study. Urology. 2005 Aug;66(2):386-91.  

Taylor RA, Toivanen R, Risbridger GP. Stem cells in prostate cancer: treating the root of 
the problem. Endocr Relat Cancer. 2010 Sep 23;17(4):R273-85.  

Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 
2010 Jun 1;16(11):2927-31. Epub 2010 May 18. Review. 

Temple R, Allen E, Fordham J, Phipps S, Schneider HC, Lindauer K, Hayes I, Lockey J, 
Pollock K, Jupp R. Microarray analysis of eosinophils reveals a number  of candidate 
survival and apoptosis genes. Am J Respir Cell Mol Biol. 2001 Oct;25(4):425-33. 

Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von 
Eschenbach AC, Chung LW. Androgen-independent cancer progression and bone 
metastasis in the LNCaP model of human prostate cancer. Cancer Res. 1994 May 
15;54(10):2577-81. Erratum in: Cancer Res 1994 Jul 15;54(14):3953.  



112 
 

Thibodeaux CA, Liu X, Disbrow GL, Zhang Y, Rone JD, Haddad BR, Schlegel R. 
Immortalization and transformation of human mammary epithelial cells by a tumor-
derived Myc mutant. Breast Cancer Res Treat. 2009 Jul;116(2):281-94. Epub 2008 Jul 20. 

Thomas GV, Horvath S, Smith BL, Crosby K, Lebel LA, Schrage M, Said J, De Kernion 
J, Reiter RE, Sawyers CL. Antibody-based profiling of the phosphoinositide 3-kinase 
pathway in clinical prostate cancer. Clin Cancer Res. 2004 Dec 15;10(24):8351-6.  

Thurston G, Yancopoulos GD, D'Angelica M, Kemeny N, Lyden D, Rafii S. CD133 
expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon 
cancer cells initiate tumors. J Clin Invest. 2008 Jun;118(6):2111-20. 

Tsujimura A, Fujita K, Komori K, Takao T, Miyagawa Y, Takada S, Matsumiya K, 
Nonomur N, Okuyama A. Prostatic stem cell marker identified by cDNA microarray in 
mouse. J Urol. 2007 Aug;178(2):686-91. Epub 2007 Jun 15. 

Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, 
Sun TT, Wilson EL. Proximal location of mouse prostate epithelial stem cells: a model of 
prostatic homeostasis. J Cell Biol. 2002 Jun 24;157(7):1257-65. Epub 2002 Jun 24. 

Valdman A, Fang X, Pang ST, Ekman P, Egevad L. Pim-1 expression in prostatic 
intraepithelial neoplasia and human prostate cancer. Prostate. 2004 Sep 1;60(4):367-71.  

van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, 
Nordeen SK, Miller GJ, Lucia MS. Molecular characterization of human prostate 
carcinoma cell lines. Prostate. 2003 Nov 1;57(3):205-25.  

van der Poel HG, Zevenhoven J, Bergman AM. Pim1 regulates androgen-dependent 
survival signaling in prostate cancer cells. Urol Int. 2010;84(2):212-20. Epub 2010 Mar 4. 

van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, Berns 
A. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc 
and N-myc in murine leukemia virus-induced tumors. Cell. 1989 Feb 24;56 (4):673-82. 

van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer 
research. Prostate. 2000 Jun 1;43(4):263-71. Review. 

Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: 
implications for new treatment modalities.  Eur Urol 2005 , 47(2):147-155. 

Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization of c-
myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 
29. J Virol. 1982 Jun;42(3):773-9.  



113 
 

Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A. Mice bearing 
the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol 
Cell Biol. 1991 Feb;11 (2):1176-9. 

Vias M, Massie CE, East P, Scott H, Warren A, Zhou Z, Nikitin AY, Neal DE, Mills IG. 
Pro-neural transcription factors as cancer markers. BMC Med Genomics. 2008 May 
19;1:17.  

Wafa LA, Palmer J, Fazli L, Hurtado-Coll A, Bell RH, Nelson CC, Gleave ME, Cox ME, 
Rennie PS. Comprehensive expression analysis of L-dopa decarboxylase and established 
neuroendocrine markers in neoadjuvant hormone-treated versus varying  Gleason grade 
prostate tumors. Hum Pathol. 2007 Jan;38(1):161-70. Epub 2006 Sep 25.  

Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML, Abdulkadir SA. Pim1 
kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene. 2010 
Apr 29;29(17):2477-87. Epub 2010 Feb 8. 

Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H. Pten deletion leads to then 
expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc 
Natl Acad Sci U S A. 2006 Jan 31;103(5):1480-5. Epub 2006 Jan 23.  

Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP,  
Price SM, Abate-Shen C, Shen MM. A luminal epithelial stem cell that is a cell of origin 
for prostate cancer. Nature. 2009 Sep 24;461(7263):495-500. Epub 2009 Sep 9.  

Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation lineage in the 
prostate. Differentiation. 2001 Oct;68(4-5):270-9.  

Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, Xue H, Sadar M, 
Shappell SB, Cunha GR, Hayward SW. Development and characterization of efficient 
xenograft models for benign and malignant human prostate tissue. Prostate. 2005a Jul 
1;64(2):149-59. 

Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, Goetz LJ, Hayward SW, 
Sadar MD, Gilks CB, Gout PW, Squire JA, Cunha GR, Wang YZ. An orthotopic 
metastatic prostate cancer model in SCID mice via grafting of a transplantable human 
prostate tumor line. Lab Invest. 2005b Nov;85(11):1392-404.  

Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation 
of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002 
Dec 16;1593(1):45-55. 

Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS. 
Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation 
and tumorigenesis. J Vet Sci. 2001 Dec;2(3):167-79. Review. 



114 
 

Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction--a rationale for 
molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006 Aug;3(8):448-57. 
Review. 

Williams K, Fernandez S, Stien X, Ishii K, Love HD, Lau YF, Roberts RL, Hayward SW. 
Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. 
Prostate. 2005 Jun 1;63(4):369-84. 

Woods NB, Muessig A, Schmidt M, Flygare J, Olsson K, Salmon P, Trono D, von Kalle 
C, Karlsson S. Lentiviral vector transduction of NOD/SCID repopulating cells results in 
multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood. 
2003 Feb 15;101(4):1284-9. Epub 2002 Oct 17. 

Xie Y, Burcu M, Linn DE, Qiu Y, Baer MR. Pim-1 kinase protects P-glycoprotein  from 
degradation and enables its glycosylation and cell surface expression. Mol Pharmacol. 
2010 Aug;78(2):310-8. 

Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H, Qiu Y. The 44 kDa Pim-1 kinase directly 
interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from 
apoptosis induced by chemotherapeutic drugs. Oncogene. 2006 Jan 5;25(1):70-8.  

Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, 
Fazli L, Gleave ME, Qiu Y. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 
and thereby promotes its multimerization and drug-resistant activity in human prostate 
cancer cells. J Biol Chem. 2008 Feb 8;283(6):3349-56.  

Xin L, Ide H, Kim Y, Dubey P, Witte ON. In vivo regeneration of murine prostate from 
dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc 
Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11896-903. Epub 2003 Aug 8. 

Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-
regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad 
Sci U S A. 2005 May 10;102(19):6942-7. Epub 2005 Apr 28.  

Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON. Self-renewal and multilineage 
differentiation in vitro from murine prostate stem cells. Stem Cells. 2007 
Nov;25(11):2760-9. Epub 2007 Jul 19.  

Xing Y, Liu M, Du Y, Qu F, Li Y, Zhang Q, Xiao Y, Zhao J, Zeng F, Xiao C. Tumor 
cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT 
promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing 
approach. Cancer Biol Ther. 2008 Nov;7(11):1839-48. Epub 2008 Nov 26.  

Xu Y, Zhang T, Tang H, Zhang S, Liu M, Ren D, Niu Y. Overexpression of PIM-1 is a 
potential biomarker in prostate carcinoma. J Surg Oncol. 2005 Dec 15;92(4):326-30. 



115 
 

Yan B, Wang H, Kon T, Li CY. Pim-1 kinase inhibits the activation of reporter gene 
expression in Elk-1 and c-Fos reporting systems but not the endogenous gene expression: 
an artifact of the reporter gene assay by transient co-transfection. Braz J Med Biol Res. 
2006 Feb;39(2):169-76. Epub 2006 Feb 2. 

Yan Y, Sheppard PC, Kasper S, Lin L, Hoare S, Kapoor A, Dodd JG, Duckworth ML, 
Matusik RJ. Large fragment of the probasin promoter targets high levels of transgene 
expression to the prostate of transgenic mice. Prostate. 1997 Jul1;32(2):129-39. 

Yao M, Taylor RA, Richards MG, Sved P, Wong J, Eisinger D, Xie C, Salomon R, 
Risbridger GP, Dong Q. Prostate-regenerating capacity of cultured human adult prostate 
epithelial cells. Cells Tissues Organs. 2010;191(3):203-12.  

Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, 
Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R.  A 
signalling pathway controlling c-Myc degradation that impacts oncogenic transformation 
of human cells. Nat Cell Biol. 2004 Apr;6(4):308-18. 

Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: 
neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat 
Cancer. 2007 Sep;14(3):531-47. Review.  

Zemskova M, Lilly MB, Lin YW, Song JH, Kraft AS. p53-dependent induction of 
prostate cancer cell senescence by the PIM1 protein kinase. Mol Cancer Res. 2010 
Aug;8(8):1126-41. Epub 2010 Jul 20. 

Zhang X, Lee C, Ng PY, Rubin M, Shabsigh A, Buttyan R. Prostatic neoplasia in   
transgenic mice with prostate-directed overexpression of the c-myc oncoprotein. Prostate. 
2000 Jun 1;43(4):278-85. 

Zhang XQ, Kondrikov D, Yuan TC, Lin FF, Hansen J, Lin MF. Receptor proteintyrosine 
phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine 
differentiation of androgen-sensitive LNCaP human prostate cancer  cells. Oncogene. 
2003 Oct 2;22(43):6704-16. 

Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc 
degradation. Oncogene. 2008 Aug 14;27(35):4809-19. Epub 2008 Apr 28. 

Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P, Nikitin 
AY. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic 
prostate cancer. Cancer Res. 2006 Aug 15;66(16):7889-98. 

Zippo A, De Robertis A, Serafini R, Oliviero S. Nat Cell Biol. PIM1-dependent 
phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional 
activation and oncogenic transformation. 2007 Aug;9(8):932-44. Epub 2007 Jul 22. 


	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	TABLE OF FIGURES
	LIST OF ABBREVIATIONS
	Abstract
	Chapter I
	Introduction
	Overview
	Prostate gland anatomy
	Prostate gland development
	Prostate structure
	Cell types in prostate gland

	Prostate cancer
	Prostate cancer diagnosis
	Prostate cancer treatment
	Model of prostate cancer progression

	Mouse models of prostate cancer
	Genetically engineered mouse models
	Transgenic models
	Knockout models

	Xenograft models
	Tissue recombination models

	Prostate stem cell and cancer stem cell
	Normal prostate stem cell
	Cancer stem cell

	c-MYC
	Pim1 kinase
	Pim1 structure
	Pim1 activation and cytokine signaling
	Pim1 and cell survival
	Pim1 and cell cycle
	Pim1 is a potential diagnostic biomarker
	Pim1 is a potential therapeutic biomarker

	Pim1 and Myc synergism

	Chapter II
	Pim1 kinase synergizes with c-MYC to promote prostate cancer progression
	Introduction
	Materials and Methods
	Lentiviral constructs
	Lentiviral preparation
	Tissue recombination
	Histology and immunohistochemistry
	Western blot analyses
	Statistical analysis

	Results
	Co-expression of MYC and Pim1 in human prostate cancer
	Pim1 and MYC synergize to accelerate prostate cancer progression
	Evidence of neuroendocrine differentiation in MYC/Pim1 tumors
	MYC/Pim1 induced NE tumors arise from transdifferentiation of adenocarcinoma
	Chronic Pim1 overexpression leads to the development of low grade PIN lesions
	Chronic MYC overexpression results in adenocarcinoma and carcinoma with neuroendocrine differentiation
	Pim1 may inhibit MYC-induced apoptosis
	Pim1 may increase MYC target gene expression and MYC protein stability

	Discussion

	Chapter III
	Pim1 is required to maintain the tumorigenic potential of prostate carcinoma cells
	Introduction
	Materials and Methods
	Cell lines and constructs
	Stable knockdown of Pim1with shRNA
	Western blot analysis
	Proliferation assay
	Active caspase 3 staining
	Colony formation assay
	Soft agar assay
	In vivo tumorigenicity assay

	Results
	Knockdown of Pim1 expression in MYC and Pim1 overexpressing tumor-derived cell lines
	Pim1 knockdown impairs prostate tumor cell proliferation and survival
	Pim1 knockdown impairs prostate tumor cell tumorigenicity
	Pim1 knockdown impairs ERK signaling pathway activation

	Discussion

	Chapter IV
	General discussion and future directions
	Some limitations regarding a tissue recombination model coupled with lentiviral-mediated gene transfer
	Prostate neuroendocrine cancer
	Clinical significance of MYC/PIM1 synergism in human prostate cancer
	Potential cancer stem cells in MYC/Pim1 tumors
	Potential conjunction of PIM1 kinase and ERK inhibitors in the treatment of prostate cancer
	Possible mechanisms of Pim1 and Myc cooperation
	Pim1 enhances Myc stability and activity
	ERK/MAPK signaling activation may be involved in Myc and Pim1 synergism
	Other potential mechanisms of Pim1 and Myc cooperation


	Reference

