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CHAPTER I 

 

INTRODUCTION 

 

Image registration is the process of aligning two images such that it is possible to 

determine corresponding points in them.  Image registration is used extensively in the 

medical field for monitoring disease progression, image guided surgery, studying brain 

shift after surgery and developing medical atlases. The process for image registration 

involves two images-the source and the target images - and finding the best deformation 

field to align the two images. Various features like points, line segments and intensities 

can be used as the basis for the registration. A detailed classification can be found in 

Sonka and Fitzpatrick [2000]. Functions used to map the source image to the target image 

are called transformation functions. Image registration is classified as rigid or non-rigid 

based on the transformation function used. The application determines whether rigid or 

non-rigid registration is the most appropriate technique.  

Rigid registrations are those in which the distances between all points remain 

constant before and after the registration. This type of image registration is popular since 

it involves a rotation and translation alone to achieve the mapping between two images. 

Rigid registrations have the advantage of being simple and easy in the sense that it is 

possible to predict how the transformation will perform. The most common application 

for rigid registrations is to register images obtained from same subject over a short 

duration of time.  
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Non-rigid registrations are those in which distance between all points do not 

necessarily remain constant after the registration. Unlike rigid registrations, non-rigid 

registrations involve more complex computations like local stretching and scaling to map 

the two images. Applications requiring some local scaling and stretching cannot use rigid 

registrations and hence use non-rigid registrations. An example of such an application 

would be registering images obtained from two subjects where anatomical differences 

exist or to monitor disease progression [Freeborough and Fox 1998]. 

This thesis focuses on non-rigid registrations, which are still an area of ongoing 

research. The main drawback of non-rigid registration is the unpredictable nature of the 

deformation. It is not possible to exactly specify the mapping of each point in the source 

image to the target image. It is also possible that such registrations can cause certain 

regions, which should remain rigid for underlying physical reasons, to deform due to 

scaling or shearing. It would thus be good to have a non-rigid registration technique that 

produces local deformations only where needed while still preserving the overall rigidity 

of the transformation as much as possible. Such transformations are called as-rigid-as-

possible. Fortunately such techniques exist, and this thesis focuses on a one method 

called the Moving Least Squares (MLS) transformation. This technique is relatively 

recent and is better know for surface reconstruction [Kolluri et al. 2005] and in computer 

graphics for image deformation and morphing [Schaefer et al. 2006] but has not been 

previously applied to medical images previously.  

The goal then, of this thesis is to apply the MLS technique to two and three 

dimensional medical images where rigid transformations are not suitable and compare the 

results to similar non-rigid registration techniques. MLS is a point-based technique in 
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which two images are aligned based on feature points extracted from them, and therefore 

we compare it to another popular point-based non-rigid method, Thin-plate Spline (TPS) 

transformation [Bookstein 1989; Goshtasby 1988]. Thus, this thesis assesses the 

applicability of the MLS technique as a general point based non-rigid registration 

technique and compares it to another widely used technique both qualitatively and 

quantitatively. 

This thesis is organized as follows. Chapter II discusses the related work in non-

rigid registrations and the MLS and TPS techniques. Chapter III describes the theory 

behind the Moving Least Squares and the Thin-plate Spline techniques in detail for 2- 

and 3- dimensional data. Chapters IV and V describe the method and the results for 

registering 2- and 3- D data using the two techniques.  We conclude with a comparison of 

the two methods based on the results and future possibilities of using the MLS method in 

Chapter VI. 
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CHAPTER II 

 

BACKGROUND 

 

This chapter describes previous work in non-rigid image registration. We also describe 

related work in as-rigid-as-possible transformations as well as work in medical image 

registration using the thin-plate splines transformations. 

 

II.1 Non-rigid Image registration 

Medical image registration is a very popular area of image processing with 

applications ranging from monitoring disease progression [Freeborough and Fox 1998], 

building medical atlases [Toga and Thompson 2000], to image guided surgery [Sauer 

2005] to name a few. Maintz and Viergever [1998] provide a survey of the recent 

publication in the field of medical image registration. A detailed theory on the various 

aspects of medical image registration including algorithms their validation and 

applications can be found in Fitzpatrick and Sonka [2000]. More details about the feature 

selection and correspondence, transformation functions and evaluation methods for 2-D 

and 3-D image registration can be found in Goshtasby [2005]. Non-rigid registration in 

an active area of research in the field of medical image registration. This activity is due to 

the fact that one cannot decide on the best algorithm for all applications. Each algorithm 

works well under certain constraints and conditions but may not do so under a different 

set of conditions. Crum [2004] discusses the various types of non-rigid registration 
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algorithms, their concepts, applications and limitations. The paper also provides literature 

references in the area of non-rigid registrations.  

 

The problem faced in non-rigid registrations is the fact that there exists no 

universal solution for the mapping problem [Hajnal et al. 2001]. Another drawback for 

these registrations is the inability to validate results due to the lack of a reference 

standard to compute the exact errors obtained in the registration process [Hajnal et al. 

2001]. The main problem that non-rigid registrations pose is that it is not possible to 

actually predict the deformation field [Crum et al. 2004]. It is true that it is possible to 

map the control points exactly in the source and target images/volume using different 

methods [Schaefer et al. 2006; Goshtasby 1988; Bookstein 1999]. However it is not 

possible to predict where the other points in the source image/volume map onto in the 

target image/volume. This is because non-rigid registration involve more than a rotation 

and a translation as required for rigid registrations [Sonka and Fitzpatrick 2000; Crum et 

al. 2004]. This thesis focuses on evaluating a non-rigid registration technique which 

allows the deformation field to be as-rigid-as-possible while still performing local 

stretching deformations. The following section describes related work in as-rigid-as-

possible shape transformations.  

 

II.2 As-rigid-as-possible Transformations 

The concept of as-rigid-as-possible transformations was first introduced by Alexa 

et al. [2000]. This paper presents an object space morphing technique that blends the 

interiors of objects as a smooth blending. This technique involves triangulating the object 
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before applying the morphing algorithm. This morphing was called as-rigid-as-possible 

because the objects undergo minimum distortion during morphing. The shape 

manipulation technique presented by Igarashi et al. [2005] is also based on as-rigid-as-

possible transformations. This technique also involves triangulating the source object and 

solving a linear system of equations with the number of equation equal to the number of 

vertices in the triangular mesh.  

The non-rigid registration technique evaluated in this thesis, the Moving Least 

Squares transformation is described in [Schaefer et al. 2006]. This paper builds on the 

technique described by Igarashi but aims at achieving faster deformations. This paper 

proposes the transformation of objects by using linear moving least squares. No 

triangulation of the input is needed in this case and the transformation can be computed at 

each point in the image. The transformations achieved using rigidity constraints are as-

rigid-as-possible with minimum non-linear shearing and non-uniform scaling.  Also, the 

system is simple to solve in case of 2D images as it results in a simple linear 2x2 system. 

The MLS technique can also be applied to 3D volumes and this extension though causes 

the system to lose its quadratic nature seen in the 2D case does not involve a lot of 

complex computations. Chapter III contains the detailed theory behind the MLS 

transformation for both 2D and 3D applications. The resulting transformations in both 

applications are smooth and involve the least amount of shearing and non-uniform 

scaling. This property of the MLS algorithm make it a suitable candidate for applications 

in medical image registration where rigid registrations are insufficient and non-rigid 

registrations are necessary to align features of the image. Using the MLS technique 
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ensures that local deformations are achieved while retaining the overall rigidity of the 

object.  

 

II.3 Thin-Plate Spline Transformations 

Thin-plate splines are a part of the spline family with radial basis functions as the 

interpolating function. They produce smooth and closed form transformations and have 

been used extensively in image deformation. The detailed theory behind the TPS 

transformation for 2D and 3D applications can be found in Chapter III. The remaining 

part of this section describes some of the work done in medical image registration using 

the TPS transformation.  

 

Thin-plate Splines have been used in remote sensing for mapping images. 

Goshtasby [1988] describes how the thin-plate splines can be used in image deformation 

for remote sensing images. His book on 2D and 3D registrations also describes the TPS 

transformation function and it applications [Goshtasby 2005]. Though the TPS produces 

smooth transformations, the main disadvantage of the technique is that each control point 

in the image has a global effect on the transformation and thus even if one point is 

perturbed all other points in the image do not get mapped correctly [Crum et al 2004]. 

The work by Bookstein [1999] also describes the theory behind TPS transformations and 

how it can be used in medical image processing. Numerous papers have been published 

in the medical image processing area using the TPS algorithm in image registration. The 

TPS algorithm can be used to obtain an elastic transformation to map the source image to 

the target image. This technique has been described by Rohr et al. [2003]. Building 
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medical atlases is one important application of image registration. The TPS algorithm can 

be used in constructing medical atlases and is described in detail by Park et al. [2003]. 

The TPS technique has also been used with intensity as the control feature to obtain 

consistent registrations and is described in the work by Johnson and Christensen [2001]. 

Rohr [2001] uses the TPS as a technique to obtain elastic registration of brain images 

taking into account the errors at the landmark points in the images. The method proposed 

in this paper is applicable to 2D and 3D MR images.   

 

This thesis establishes that the MLS transformation technique can be used as an 

alternate to the TPS transformation technique and can perform better due to its as-rigid-

as-possible nature. This could enable the MLS technique to be used in applications like 

constructing medical atlases, studying the progression of diseases, post-operative shift of 

brain and other such applications where the TPS technique has been used so far.  
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CHAPTER IIII 

 

THEORY 

 

This chapter discusses the theory behind the moving least squares and thin-plate 

spline techniques. 

 

III.1 Moving Least Squares Transformation 

The moving least squares technique was used in computer graphics initially for 

surface reconstruction [Kolluri et. al 2005]. It can also be used for the deformation of 2D 

and 3D objects [Schaefer et. al 2006; Cuno et. al 2007; Zhu and Gortler 2007]. The 

deformation is carried out by selecting control points on the source image. The points to 

which these control points must be mapped to in the target image are chosen as the 

deformed points. This presents the deformation as a registration problem. A 

transformation function must be computed to map each point in the source image to the 

corresponding point in the target image. The principle of the MLS technique is to 

minimize the least squares error function obtained during this transformation process. A 

transformation function is obtained for each point in the image and is based on a weight 

function included in the least squares error function at each point of evaluation. This 

weight function ensures that the effect of a control point is seen most in the regions 

immediately surrounding it, while its effect is less prominent in far off regions. The 

transformation matrix of the MLS technique can include affine, similarity and as-rigid-as-

possible transformations. Affine transformations are those which preserve the parallel 
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nature of lines in the image and also produce non-uniform scaling and skewing, 

Similarity transformations are a part of the affine transformations but with uniform 

scaling. As-rigid-as-possible transformations are those which are capable of producing 

local deformations while maintaining a global rigidity of the image.  

This thesis focuses on the as-rigid-as-possible transformations. The 

transformation function is smooth and interpolates the control points. The following two 

sections describe the 2D and 3D transformations using MLS.  

 

III.1.1 2D Transformations using Moving Least Squares 

Given a set of control points on the source and target images, the MLS technique 

computes the transformation  that best minimizes the least squares error: ( )vl x

                                                        ( ) 2
v i i

i
l p q−∑                                                        (3.1) 

where ip  and  are the set of control points in the source and target images respectively. 

This transformation however produces a single affine transformation of the entire image 

as there is no control over the scaling or shearing in the image. A weighting function 

included to this least squares error fixes this problem and thus produces a different 

transformation function for each point of evaluation of the image.  

iq

                                                         ( ) 2
i v i

i
w l p q−∑                                                     (3.2) 

The weighting function  is of the form  iw

                                                            2
1

i
i

w
p v α=
−

                                                     (3.3) 
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where v  is the point of evaluation in the image and α  is a parameter of the weighting 

function whose value decides if the weights computed are small or large. The weighting 

function  is dependent on the point of evaluation and thus produces a different 

transformation for each point of the image. Hence the method is called Moving Least 

Squares. We can see that as v  approaches

iw

ip , the weight approaches infinity and the 

transformation function interpolates.  

The transformation function can be solved as a simple linear transformation 

matrix, M and a translation vector, T  as  

                                                           ( )vl x xM T= +                                                     (3.4) 

The transformation matrix M  can be modified to include affine, similarity and rigid 

transformations. To perform as-rigid-as-possible transformations, the matrix, M  must be 

constrained to satisfy the condition for rigidity M M I′ = . The translation component can 

be easily computed by  

                                                              T q p M∗ ∗= −                                                      (3.5) 

where p∗  and  are the weighted centroids of the control points given by q∗

                                                      
i i

i

i
i

w p
p

w∗ =
∑
∑

 and 
i i

i

i
i

w q
q

w∗ =
∑
∑

                                 (3.6)       

The transformation function can now be calculated as  

                                                            ( ) ( )vl x x p M q∗ ∗= − +                                         (3.7) 

The least squares problem can be written as 2ˆ ˆi i i
i

w p M q−∑                                         (3.8) 

where ˆ i ip p p∗= −  and ˆi iq q q∗= −                                                                                  (3.9) 
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The transformation matrix for the as-rigid-as-possible transformations can be 

obtained by eliminating the scaling constant. The solution is simple and closed form. It 

can be obtained easily by a slight modification of the similarity transformation for which 

the transformation matrix must satisfy the condition 2
1 2 1 2M M M M Iλ′ ′= = , where λ  is 

some constant and 1M  and 2M  are the columns of M and are vectors of size 2x1. 1M  

and 2M  have the relationship 2 1M M ⊥=  such that ( ) ( ), ,x y y⊥ = − x . For rigidity 

condition to be satisfied M M I′ = , the scaling constant needs to be removed. By using 

partial derivatives with respect to the free variables in M and substituting the values back 

into the error function the optimum transformation function is obtained as  

                                       (ˆ1 ˆ ˆ
ˆ
i T

i i
i ir

p
M w q q

pμ
⊥

⊥

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

∑ )T
i−                                           (3.10) 

where 
2 2

ˆ ˆ ˆ ˆT
r i i i i i i

i i
w q p w q pμ ⊥⎛ ⎞ ⎛

= +⎜ ⎟ ⎜
⎝ ⎠ ⎝
∑ ∑ T ⎞

⎟
⎠

removes any scaling and thus produces an as-

rigid-as-possible transformation. The detailed derivation for the as-rigid-as-possible 

transformations can be seen in Schaefer et. al 2006. 

 

III.1.2 3D Transformations using MLS 

This section discusses the extension of the MLS technique to 3D volumes. The 

derivation for the transformation matrix involves more complex computations than the 

2D derivations. The inclusion of the third dimension causes the system to no longer be 

quadratic in nature though it is still possible to obtain closed form solutions. The solution 

involves finding the best transformation minimizing the weighted least squares problem 
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( ) 2
i v i

i
w l p q−∑ and finding the optimal axis of rotation and the angular parameters. The 

procedure for selecting points is the same as in the 2D case but the points need to be 

selected in a volume thus including a third coordinate. Control point sets P and Q are 

selected from the source and target volumes. In order to obtain as-rigid-as-possible 

transformations, it is necessary that the transformation ( )vl x  is of the form  

                                                           ( )vl x Mx T= +                                                   (3.11) 

where M is the transformation matrix and T is the translation vector. The translation 

vector can be computed using partial derivatives as seen in section III.1 in equation (3.5) 

as  T q , wherep M∗ ∗= − p∗  and q∗  are the weighted centroids given by equation (3.6). 

The least squares error problem can now be written as 2ˆ ˆi i i
i

w p M q−∑ as seen before in 

equation (3.8). Expanding this summation gives the following of which the second and 

third terms are constants. 

                                       2ˆ ˆ2 T
i i i i i i i

i i i
w q Mp w q w p− + +∑ ∑ ∑ 2ˆ                                  (3.12) 

Thus it can be seen that the minimization is achieved when M can maximize the 

term . ˆ T
i i i

i
w q Mp∑

The transformation matrix M can be defined as a rotation of an angle around an axis. Let 

θ  be the angle of rotation and e  be the axis of rotation. Applying such a rotation to a 

vector v gives 

                     ( ) ( ),

0
cos sin 0

0

z y
T T T T T

e z

y x

e e
T

xM v e ev I e e v e e v
e e

θ θ θ
−

= + − + −
−

              (3.13) 
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Now the problem of maximizing equation 3.14 becomes finding the best axis of rotation 

and angle of rotatione θ  maximizing  

                                  cosθ Trace ( ) ( )1 cos sinT TM eMe Veθ+ − + θ                              (3.14) 

where ˆT
i i i

i
R w q p=∑ and                                                                     (3.15) ˆ ˆi i i

i
V w q= ×∑ p

The solution for the axis of rotation and angle of rotation can be computed by applying 

Kuhn-Tucker optimality conditions to obtain an eigenvalue problem. Solving this 

eigenvalue problem provides the axis of rotation e  as the eigenvector of the matrix 

T TM M cV V+ +  where c is the root of a fourth degree polynomial [Cuno et. al 2007] 

having closed form solution. The angle of rotation can be computed once the axis is 

found as  

2

2

1
cos

1

u

u
θ

−
=

+
 and 2

2
sin

1

u

u
θ

−
=

+
                                                                            (3.16) 

where e is the unit vector of u.  

The detailed derivation for the rotation axis and angle of rotation can be found in Cuno et 

al. [2007].  

 

III.2 Thin-Plate Spline Transformations  

The thin-plate splines are a part of the spline family with radial basis functions as 

the interpolating function. The equation for TPS contains an affine part as well as a non-

affine part with the interpolating function. This section discusses the equations required 

to deform 2D and 3D objects using TPS. 
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III.2.1 2D Thin-plate Spline Transformations 

The 2D thin-plate spline interpolating a set of control points is given by  

                                         2
0 1 2

1
ln

N

i i i
i

2x a a x a y F r r
=

′ = + + +∑                                           (3.17) 

                                         2
0 1 2

1
ln

N

i i i
i

2y b b x b y G r r
=

′ = + + +∑                                           (3.18) 

where ,  represents the number of control points and ( ) ( )2
i

22
i ir x x y y= − + − N ix  and 

 represent the coordinates of the iiy th control point and I ranges from 1 to .  N

The two equations specified above have N +3 unknowns each. The solution to 

obtain the deformation field is simple. N  equations can be formed by substituting the 

coordinates of the control points into the equations (3.17) and (3.18). Apart from these 

there are three constraints used for solving the transformation. 

                                                           

1

1

1

0

0

0

N

i
i

N

i i
i

N

i i
i

F

x F

y F

=

=

=

=

=

=

∑

∑

∑

                                                          (3.19) 

Thus there are now +3 equations to find out the +3 unknowns. The last three 

constraints ensure that the surface being deformed does not rotate under the influence of 

the control points.  With the help of these equations it is possible to solve for the 

transformation which is then applied to deform the source image. It should be noted here 

that the transformation maps the control points in the source image exactly onto the 

control points in the target image. However the other points in the image do not map 

exactly producing errors that become more pronounced in regions away from the control 

N N
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points. TPS have been observed to produce more errors while mapping images having 

local geometric differences. The symmetric nature of the logarithmic function causes the 

errors to be minimal in cases where the fiducial points are distributed symmetrically 

while asymmetrically distributed points produce more errors in the transformation.  

 

III.2.2 3D Thin-Plate Splines 

TPS can be extended to three dimensional volumes as well. In this case the 

transformation requires the computation of three components: x, y and z to accommodate 

the three dimensions.  

The transformation in this case is denoted as follows: 

                                          0 1 2 3
1

N

i i
i

x a a x a y a z F r
=

′ = + + + +∑                                          (3.20) 

                                           0 1 2 3
1

N

i i
i

y b b x b y b z G r
=

′ = + + + +∑                                          (3.21)   

                                            0 1 2 3
1

'
N

i i
i

z c c x c y c z F r
=

= + + + +∑                                          (3.22) 

Where  2 2 2( ) ( ) (i i ir x x y y z z= − + − + − 2)i

This equation has N +4 unknowns. As in the case of 2D splines N  equations can be 

obtained by substituting the control points in the above equation while 4 more equations 

can be obtained from the constraints which ensure the image does not rotate under the 

influence of the loads. The constraints are as follows: 
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1

1

1

1

0

0

0

0

N

i
i
N

i i
i
N

i i
i
N

i i
i

F

x F

y F

z F

=

=

=

=

=

=

=

=

∑

∑

∑

∑

                                                                     (3.23) 

Thus with +4 equations for +4 unknowns it is possible to solve for the deformation 

field to be applied to the image.  

N N

 

III.3 Computational Aspects for MLS and TPS algorithms:  

We implemented both MLS and TPS in MATLAB. The MLS algorithm involves 

finding the transformation at each point in the image or volume and thus has a longer 

computation time than for TPS as seen in table 1. One way to reduce the computation 

time would be to decimate the image or volume using a grid and apply the deformation to 

each vertex of the grid instead of each point and interpolating the other points using 

bilinear interpolation. TPS transformations are computationally less time consuming. 

 

 Table 1. Computational time for MLS and TPS algorithms in seconds for 128x128 image. 

Time for transformation in seconds  No. of Points 
MLS TPS 

11 124 9 
26 236 15 
43 387 24 
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CHAPTER IV 

 

TWO DIMENSIONAL REGISTRATION USING MLS AND TPS 

TRANSFORMATIONS 

 

This chapter presents the method and results for evaluation of two dimensional images 

using the MLS and TPS techniques. We use two dimensional Computed Tomography 

(CT) images and two dimensional Magnetic Resonance images for performing the 

registration. 

 

IV.1 2D CT Images 

We first used whole body CT images of mice to perform registrations using the 

two techniques. CT images show the bone structures more prominently than the soft 

tissue in the body. Since bones are rigid parts of the skeleton, CT images provide an 

excellent data set to evaluate the two techniques. The following sections discuss the 

datasets, the method for selecting the control points and the results obtained for the MLS 

and TPS techniques. 

 

IV.1.1 Method 

The CT images used for registration were obtained from two whole body CT 

volumes of two different mice. The volumes were of size 512x512x512 with a voxel 

resolution of 0.2x0.2x0.2 mm3. A slice showing maximum detail was selected from each 

of the two volumes. These two slices were then used in the registration process. The head, 
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spine and the legs were seen prominently in these two slices. This can be seen in Figure 

4.1(a) and (b). 

Selecting the control points is an important part of the registration process. We 

selected control points manually on the source image. These points were picked on the 

head, spine and legs due to their prominence in the CT image. Similarly points 

corresponding to these points or homologous points, which have same relative position 

on the target image with respect to the control point on the source image, were selected 

manually. This set of control points on the source and target images was used in the 

registration process using the MLS and TPS techniques. Figure 4.1 (a) and (b) shows one 

such set of homologous points on the source and target images. 

 

IV.1.2 Results 

We evaluated the performance of the two registration techniques based on the 

number of points used for registration and the placement of the points. Figure 4.1 (a) and 

(b) show the source and target images with homologous control points placed on the bony 

structures of the head, spine and legs. Figure 4.1 (c) and (d) show the result of the 

registration using MLS and TPS techniques.  Figure 4.2 shows a zoomed in section of the 

spine of the source image of the mouse to show the already existing spacing in the spine. 

From the results we observed that the MLS technique produces a qualitatively better 

result than the TPS technique. The MLS registered result does not show the unnatural 

stretching seen in the spine. We also observed that the resulting transformation for the 

MLS technique maintains the overall rigidity of the image. This was attributed to the as- 
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Figure 4.1: Registration of 2D CT mice. (a) Source image with 35 control points. 
(b) Target image with 35 control points. (c) Registration using MLS method.    
(d) Registration using TPS method. The MLS method performs qualitatively better 
than the TPS method.  

 

 

 

rigid-as-possible nature of the MLS algorithm. The ability to maintain the rigidity 

constraint by limiting the non-uniform scaling produces a deformation field which retains 

the overall rigidity of the image.  
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Figure 4.2. Zoomed section of the source 
showing spacing in the spine. The MLS 
technique does not cause the odd stretching 
of spine seen in the TPS technique as seen 
in Figure 1(d). 

 

 

 

Figure 4.3: Registration of 2D CT mice. (a) Source image with 25 control points. 
(b) Target image with 35 control points. (c) Registration using MLS method.    
(d) Registration using TPS method. The MLS method performs qualitatively better 
than the TPS method.  
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Figure 4.4: Registration of 2D CT mice. (a) Source image with 10 control points. 
(b) Target image with 10 control points. (c) Registration using MLS method.    
(d) Registration using TPS method. The MLS method shows least stretching and 
scaling compared to the TPS method.  

 

 

 

To evaluate the performance of the two techniques based on the placement of 

control points, we selected the control points only on the spine leaving out the head and 

the leg. Figure 4.3 (a) and (b) show the pair of source and target images with homologous 

    22



control points placed only on the spine. The registration result using MLS and TPS 

techniques can be seen in Figure 4.3 (c) and (d).  It was observed that even though 

control points were not placed in the head region, the MLS technique produced a 

qualitatively better result. This technique was not seen to cause any non-uniform scaling 

or stretching and also produces an as-rigid-as-possible transformation. The TPS 

transformation was seen to stretch the image unnaturally. In this case too, we observed 

the stretching caused in the spine region along with the stretching seen near the head 

region. Thus it can be said that non-uniform placement of control points affects the 

deformation field minimally in case of the MLS technique than the TPS technique which 

showed more stretching. 

 To show that MLS can be used as a better technique for non-rigid registration 

while maintaining the overall rigidity of the image we evaluated the two techniques by 

using a limited number of control points. Using more control points will produce equally 

good results for the two methods since this allows more control over the deformation 

field. Figure 4.4 (a) and (b) show the source and target images with 10 control points 

placed on the head and the spine. The results of the two registration techniques can be 

seen in the Figure 4.4 (c) and (d). A visual inspection of the two transformations showed 

that the MLS algorithm produces a qualitatively better image than the TPS method. The 

MLS transformation was observed to map the source to the target image with minimal 

stretching, due to its as-rigid-as-possible transformation ability, while the TPS 

transformation was observed to cause more stretching across the body of the mice.  
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IV.2. 2D MR human brain  

Registering MR brain images from two different patients requires non-rigid 

registration due to the presence of anatomical difference in the brain structures. We 

evaluated the performance of the two techniques by registering two corresponding depth 

two dimensional Magnetic Resonance (MR) image slices of the human brain. MR images 

provide more detail and greater contrast between the soft tissues in the body than CT 

images. The two slices used were 256x256 images of the sagittal view of the brain of two 

subjects. Such image from two subjects presents a lot of anatomical variations and thus 

provides a good dataset for non-rigid registration.  

 

IV.2.1 Method 

 

In case of brain images it is difficult to identify homologous control points in two 

images from different subjects. As these points play the most important role in the 

registration process it becomes necessary to accurately obtain homologous control points 

from the source and target images. We started with two slices S and T’ from two different 

patients. The two slices were registered non-rigidly using the Adaptive Bases Algorithm 

(ABA) [Rohde et al. 2003] an intensity based method for registering two images or 

volumes. The deformation function thus obtained was applied to the source image S to 

get the new transformed image T. T has homologous points to the source S. This new 

image T was used as the target image in our registration process. S and T were registered 

using the MLS and TPS techniques. Figure 4.5 shows the diagrammatic representation of 

the process we followed to obtain the source and target images.  
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               Figure 4.5: Schematic representation of 2D registration of MR brain images  

 

IV.2.2 Results 

 We evaluated the performance of the two techniques qualitatively and 

quantitatively. Figure 4.6 (a) and (b) show the source and target images with homologous 

control points. We placed the control points on the skull, the tip of the nose, mouth and 

few control points were placed on the internal structures of the brain. The control points 

on the source image are shown in light blue color while the control points on the target 

image are shown in dark blue color. The results of the MLS and TPS techniques can be 

seen in Figure 4.6 (c) and (d). Visually both the methods look similar due to the intricate 
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anatomy of the brain and it was noted that both methods perform acceptable 

transformations.  

 Since qualitative comparisons were not sufficient to evaluate the performance we 

performed quantitative evaluations as well. We computed the target registration error 

(TRE) at certain points in the image for both the methods. The target registration error at 

any point, which is nothing but the registration error at that point, is computed as the 

disparity in the position of two corresponding points after registration [Sonka and 

Fitzpatrick 2000; Hajnal et al. 2001]. A lower TRE thus indicates a better method. We 

performed 25 registration trials with 25 sets of control points. This was carried out to 

observe the error obtained in different registrations.  To compute the TRE, we selected 

three points A, B and C at random on the internal structures of the brain. We then 

computed the TRE at these points A, B and C, shown on the source image, by finding the 

points they mapped to on the MLS and TPS registered images. Since the points 

corresponding to A, B and C could be found on the target image by using ABA we were 

able to compare the resulting TREs for the two methods. Table IV.1 shows the mean 

TREs for each of the points A, B and C. It was observed that the average TRE was lesser 

for the MLS method compared to the TPS method. The standard deviation of the error 

can also be seen in Table IV.1 and shows a lower value for the MLS method. We also 

performed a t-test at 95% confidence level to check if the means were statistically 

different. It was found that point A did not have a significant difference but points B and 

C had statistically different means. 
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 Figure 4.6. Registration of 2D MR images of the brain. (a) Source image (b) 
Target image with 19 control points. (c) Registration using MLS method. (d) 
Registration using TPS method.  Points A, B and C are used in computing the 
target registration error for the two methods. 
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Table IV.1.  Mean, standard deviation and T-test results of TRE for points A, B and C 
in Figure 3 for MLS and TPS techniques over 25 registration trials. The t-test analysis 
shows that the mean is significantly different for points B and C. 

  Point A(green*) B(red*) C(yellow*) 

Mean 1.76 3.409 2.7133 MLS 

Std. Dev 1.3533 1.5369 1.4065 

Mean 1.969 5.5942 4.1539 TPS 

Std. Dev 1.6567 2.3689 0.7056 

Different? (t-test, 5%) N Y Y 

 

    

 We also computed the mean and standard deviation of the difference in the TRE 

for the MLS and TPS methods i.e., (TRETPS - TREMLS) as seen in Table IV.2. This was 

done to observe if the overall TRE was lower for the MLS method. To give and idea of 

the spatial variation of the TREs over these trials, we computed the mean TRE for the 

entire image and these values are presented as a color-scaled map onto the brain image as  

 
Table IV.2. Mean and standard deviation of difference (TPS-MLS) in TRE for MLS and 
TPS techniques.  

   Point A(green*) B(red*) C(yellow*) 

Mean 0.209 2.1851 1.4406 

Std. Dev 0.9748 1.8434 1.6039 
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Figure 4.7. Color coded TRE maps superimposed on brain registration results of (a) 
MLS and (b) TPS. The MLS image has lower maximum and average TRE over the 
entire image. 

shown in Figure 4.7. The color-scaled map shows that the TPS method has a larger error 

value for the target registration error which is also confirmed by the computation of the 

TRE values.  This can be seen clearly in base region of the head. The TPS registered 

result has a darker shade of red in this region indicating a higher TRE compared to the 

corresponding region of the MLS registered result which has a lighter red shade. 

While registering the 2D brain images, we used ABA [Rohde et al., 2003] for identifying 

the homologous control points. This opens the discussion as to whether systematic errors 

are present in the quantitative analysis. The adaptive bases algorithm uses compactly 

supported radial basis functions for registering two images. The TPS transformation also 

uses radial basis functions as its interpolating function. It is thus possible some systematic 
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errors exist due to this use of radial basis functions but we have not performed any 

specific tests to confirm the presence or absence of any bias.  

  
In conclusion, we found that the MLS transformation produced better results than 

the TPS technique both qualitatively and quantitatively. We also found that placing 

control points only in certain regions of the image does not cause the remaining regions 

to be non-uniformly deformed in the case of the MLS transformation while the location 

of control points is more important in case of the TPS transformation. The MLS 

transformation technique was found to work well for both CT and MR images.  
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CHAPTER V 

 

EVALUATION OF THREE DIMENSIONAL REGISTRATION USING MLS AND 

TPS ALGORITHMS 

 

This chapter describes the method and results for performing 3D registrations 

using the MLS and TPS methods.  

  

V.1 Method 

We used two whole body CT volumes obtained from two different mice for the 

source and target volumes. The volumes were 512x512x512 in size with 02.x0.2x0.2 

mm3 voxel resolution. To reduce computation time we down-sampled these volumes to 

128x128x128 in size. CT volumes obtained from different mice provides a good dataset 

for non rigid registration due to the presence of anatomical difference in the structures of 

the mice. We performed the evaluation of the two methods first on five slices and then on 

ten slices obtained from the source and target volumes. To obtain the slices we selected 

five consecutive slices from the source volume, which showed maximum detail. We 

selected slices in which the head, spine and legs were most visible. This selection process 

was repeated for the target volumes to obtain the five slices. Control points for the 

registration process were selected manually on all of the five slices of the source volume. 

CT volumes show the bony structures in the body more prominently than soft tissues. 

Thus we selected control points on the bony structures present in head and spine regions 

of the five slices in the source volume. Similarly the homologous control points on the 
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five slices in the target volume were also selected manually on the bony structures in the 

head and spine regions, thus giving a set of homologous control points for the registration 

to be performed. Figure 5.1 (a) and (b) show the four slices of the source and target 

volumes. Figure 5.1 (c) shows the result of registering the two volumes using the MLS 

technique and Figure 5.1 (d) shows the result of registration using the TPS technique.  

The results are discussed in detail in the section V.2. 

 

For our next evaluation we selected ten slices from the source and target volumes 

showing maximum details. In this case we segmented the bony structures from the ten 

slices by setting an intensity threshold value. This made the control point selection easier 

and seemed a natural modality for control point selection. As in the previous case control 

points were picked manually on the source volume across the ten slices. The control 

points were placed in the bone structures of the head and spine. The corresponding 

homologous control points on the target volume were also picked manually giving us a set 

of control point for the source and target volumes. Registration was performed using the 

MLS and TPS techniques. Figure 5.2 (a) and (b) shows four slices from the source and 

target volumes respectively. Figure 5.2 (c) shows the result of the MLS registration 

method superimposed on to the four slices from the target volume and Figure 5.2 (d) 

shows the results of the TPS registration method superimposed on to the four slices of the 

target volume. The superimposed results give a better visual comparison of the two 

techniques.  The results are discussed in detail below.  

 

 

    32



V.2 Results 

 Figure 5.1 (c) and (d) show the result of registration using the MLS and TPS 

techniques. We found that the MLS algorithm performs better than the TPS method 

qualitatively. Comparing the slice one in Figure 5.1 (c) and (d), it was observed that the 

MLS transformation does not show any non-uniform stretching while the TPS 

transformation shows stretching near the head of the mouse as well as in the region near 

the end of the spine and tail. This stretching was observed in all the slices. Observing 

slice one of Figure 5.1(d) showed that head of the mouse to be more stretched than in the 

other slices. This unnatural stretching is not seen in the slices of the MLS registered 

volume. Due to the as-rigid-as-possible nature of transformation of the MLS method the 

overall rigidity is maintained while local deformation is also achieved. It was observed 

that the MLS technique maps the homologous points exactly and aligns the source 

volume as closely as possible to the target volume while retaining the rigidity at the same 

time. The TPS method though maps the homologous points exactly too but does not have 

control over the rigidity of the object and causes a lot of stretching.  

 Figure 5.2 (c) and Figure (d) show four slices from the result of the MLS and TPS 

algorithms along with four slices from the target volume. It was observed that the MLS 

method outperforms the TPS method in this case too. It was easier to compare the two 

methods when only the bony structures were used in the registration. The MLS 

registration result was found to be more in alignment with the target volume. This was 

observed especially in the spine area. Compare slices 2, 3 and 4 from Figure 5.2 (c) to 

Figure 5.2 (d). The TPS versions in 5.2 (d) are stretched in opposite directions 

unacceptably because this is a bony structure and should not deform. Looking at slices 
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two, three and four in Figure 5.2 (c) and (d), the region near the end of the spine showed 

a stretching, that looks like the spine was stretched in opposite directions,  in the TPS 

registered volume. The MLS transformation was observed to map the source volume to 

the target volume without this unnatural stretching. The head regions in both the results 

were found to align equally well. Control points were places only on the head and spine 

regions and hence the leg was not controlled in either method. Quantitative comparisons 

were not carried out as it was difficult to obtain the exact homologous points in the 

course and target volumes. Any error in the homologous points would result in an 

incorrect value of the target registration error.  

 Based on the results obtained we concluded that the MLS algorithm outperforms 

the TPS algorithm qualitatively. The MLS technique is able to preserve the overall 

rigidity of the object while still performing local non-rigid deformations. The TPS 

algorithm was found to cause unwanted stretching. This is unacceptable in cases where 

the rigidity of the object needs to be maintained especially areas such as bones which 

need to maintain their rigid structures. 
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(a) 

(b) 

(c) 

(d) 

 
 
 
 
 

Figure 5.1 Registration of 3D CT volumes of mice. (a),(b): 4 slices from source and 
target volumes (c) 4 slices from MLS registered result volume. (d) 4 slices from TPS 
registered volume. The MLS technique performs better than the TPS technique by 
minimizing the non-uniform scaling and stretching.  
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 (a) 
 

 (b) 
 

 (c) 
 

 
  (d) 

 Figure 5.2 (a) 4 slices from source volume. (b) 4 slices from target volume. (c) 4 slices 
from MLS registered result superimposed on 4 slices of target volume. (d) 4 slices 
from TPS registered result superimposed on 4 slices of target volume. The MLS 
method clearly outperforms the TPS technique which shows a lot of stretching in the 
spine region. Control points were placed on the head and spine (thus the leg was not 
controlled for in either method. 
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CHAPTER VI 

 

CONCLUSION AND FUTURE WORK 

 

We have compared two interpolating non-rigid registration techniques, Moving 

Least Squares (MLS) and Thin-Plate Splines (TPS). Both quantitatively and qualitatively 

we have found that the MLS technique outperforms the TPS technique for a given 

number of control points. A theoretical nicety of the MLS technique is that the 

deformation field is as rigid as possible, given the constraint that the control points are to 

be interpolated. This can offer advantages over other non-rigid registration methods, 

particularly those where bony structures should be minimally deformed during 

registration. Non-rigid registrations often produce unwanted stretching in the images and 

the unpredictable nature of the deformation field poses a major drawback which makes 

an algorithm with the ability to produce as-rigid-as-possible transformations attractive. 

The as-rigid-as-possible nature of the MLS technique thus makes it a suitable candidate 

for non-rigid registrations as it provides a transformation that maintains the rigidity of 

structures that need to remain non-deformed, while producing local deformations.  

Chapters VI present the results of evaluation of the two non-rigid registration 

techniques for 2D CT images of whole body mice and MR images of human brain. The 

results show that the MLS algorithm performs qualitatively better than the TPS algorithm. 

The overall rigidity of the image is maintained better with the MLS method. This can be 

seen clearly in the example of the 2D CT mice images. The bone structures in the head 

and spine of the mouse in the source image is deformed to match the target image while 
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the other regions of the image remain minimally affected thus maintaining the global 

rigidity while performing local deformations. In case of the TPS method, the results show 

unwanted stretching and shearing in the image. This unwanted stretching is caused due to 

the effect of the control points on the overall deformation field. Each point has a global 

effect on the transformation and thus affects the overall rigidity of the image.  

The results for the registration of 2D MR human brain images show that both 

methods perform equally well. It is difficult to judge the better method visually due to the 

numerous structures in the brain. A quantitative evaluation by comparison of the target 

registration error shows that the MLS method has lower error values. The average of the 

target registration errors over 25 trials also show that the MLS algorithm performs better. 

The t-test results for the mean of the TRE values show that the mean is significantly 

different for the MLS method.  

Chapter V presents and discusses the results for the 3D registration using the 

MLS and TPS methods. Again the results show that MLS algorithm outperforms the TPS 

algorithm qualitatively maintaining the rigidity as much as possible but still producing 

non-rigid deformations to map the source and target volumes.  

Selecting the control points forms an important aspect of image registration. Thus 

it becomes necessary to select these control points as accurately as possible.  Any error in 

this placing of points affects the final registration result. This is more pronounced in case 

of the TPS transformation as each point has a global effect on the deformation field. 

From the results obtained for the MLS transformation we observed that the as-rigid-as-

possible nature of transformation produces an acceptable deformation even if one or two 

control points are not placed accurately. This is because of the weighting function on the 
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least squares error function. This weighting function ensures that the effect of the control 

point in regions far away from it is less affected. The MLS transformation involves 

computing the transformation at each point in the image or volume. This leads to a longer 

computation time though it produces good results. One way to reduce the computation 

time would be to decimate the image/volume with a grid and computing the 

transformation only at the grid vertices and interpolating the other point in the image 

using an interpolation technique like bilinear interpolation. 

 The MLS method can be used for producing better registration results. In the 

future we would like to evaluate the performance of the MLS algorithm by modifying the 

weight parameter. The deformation field can be controlled by varying the value of alpha 

in the weight function. We would also like to examine the results by using different 

distance functions, other than the Euclidean distance used here, to see the variation of 

rigidity in the deformation. Another area of interest would be to study the effect of 

perturbation of the control points. It would be interesting to how much the control points 

can be perturbed while still producing a good transformation. Another way to optimize 

the MLS algorithm would be to automate the process of control point selection. This 

work would be on the line of Chui [Chui et al. 2003]. Automating the process would 

result in a better alignment of the registered result and target volume in case of 3D 

applications. Similarly including an iterative approach would also result in optimizing the 

moving least squares algorithm.  
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