
 

ALGORITHMS FOR DISCOVERY OF MULTIPLE MARKOV BOUNDARIES: 

APPLICATION TO THE MOLECULAR SIGNATURE MULTIPLICITY PROBLEM 

 

 

By 

Alexander Romanovich Statnikov 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Biomedical Informatics 

December, 2008 

Nashville, Tennessee 

 

Approved: 

Professor Constantin F. Aliferis 

Professor Gregory F. Cooper 

Professor Douglas P. Hardin 

Professor Daniel R. Masys 

Professor Ioannis Tsamardinos 

 

 



ii 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Copyright © 2008 by Alexander Romanovich Statnikov 
All Rights Reserved 

  



iii 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

To mankind and science 



iv 
 

ACKNOWLEDGEMENTS 

 

 I am especially indebted to my academic advisor, Dr. Constantin F. Aliferis. Without his 

colossal commitment and contribution to this project, this work would probably never exist. I 

would also like to acknowledge members of my Ph.D. committee, Dr. Gregory F. Cooper, Dr. 

Douglas P. Hardin, Dr. Daniel R. Masys, and Dr. Ioannis Tsamardinos, who were very supportive 

of my research and contributed significantly to it. I am also grateful to Dr. Dean Billheimer, 

Laura E. Brown, Dr. Frank E. Harrell, Dr. Isabelle Guyon, and Dr. Subramani Mani for providing 

me with feedback, advice, references, and software relevant to my project. In addition, I would 

like to acknowledge Dr. Cynthia S. Gadd and Dr. Nancy Lorenzi for their ongoing support of my 

studies and research in the Biomedical Informatics Ph.D. program. 

Finally, I would like to express my gratitude to my wife, Kristina Statnikova, my son, 

Grigory Statnikov, my parents, Roman Statnikov and Yelena Feofilova, my sister, Irina 

Statnikova, and my mother-in-law, Ludmila Morozyuk. Their encouragement and support were 

crucial for my Ph.D. studies and dissertation. 



v 
 

TABLE OF CONTENTS 

                                                                                                                                                     Page 

ACKNOWLEDGEMENTS ............................................................................................................ iv 

LIST OF TABLES ......................................................................................................................... vii 

LIST OF FIGURES ........................................................................................................................ ix 

Chapter 

I. INTRODUCTION ........................................................................................................................ 1 

Preamble .................................................................................................................................... 1 
The molecular signature multiplicity problem and its computational dissection ...................... 2 
Thesis organization .................................................................................................................... 5 

II. MARKOV BOUNDARY CHARACTERIZATION OF MOLECULAR SIGNATURE 
MULTIPLICITY ............................................................................................................................. 6 

Key definitions .......................................................................................................................... 6 
Markov boundary and its connection with the signature multiplicity phenomenon ................. 7 
A fundamental assumption for the analysis of signatures ....................................................... 12 

III. NOVEL ALGORITHM ........................................................................................................... 14 

IV. THEORETICAL ANALYSIS OF THE NOVEL ALGORITHM AND ITS ADMISSIBLE 
INSTANTIATIONS ...................................................................................................................... 18 

Proof of correctness of the generative algorithm TIE* ........................................................... 18 
Admissibility analysis of the Markov boundary algorithms ................................................... 19 
Admissibility analysis of the criteria to verify Markov boundaries ........................................ 24 
Admissibility analysis of the strategies to generate subsets of variables to that have to be 
removed to identify new Markov boundaries .......................................................................... 27 
On the choice of admissible input components for TIE* ........................................................ 28 
On the computational complexity of TIE* .............................................................................. 29 

V. EMPIRICAL EVALUATION IN ARTIFICIAL SIMULATED DATA .................................. 31 

Experiments with discrete networks TIED1 and TIED2 ......................................................... 32 
Experiments with linear continuous network LIND ................................................................ 35 
Experiments with discrete network XORD .............................................................................. 37 

VI. EMPIRICAL EVALUATION IN RESIMULATED MICROARRAY GENE EXPRESSION 
DATA ............................................................................................................................................ 40 

VII. EMPIRICAL EVALUATION IN REAL HUMAN MICROARRAY GENE EXPRESSION 
DATA ............................................................................................................................................ 49 

Independent-dataset experiments ............................................................................................ 49 
Single-dataset experiments ...................................................................................................... 58 



vi 
 

VIII. DISCUSSION ....................................................................................................................... 63 

On related methods from the field of statistics ........................................................................ 63 
What are the factors contributing to molecular signature multiplicity? .................................. 65 
Analysis of multiple signature extraction methods ................................................................. 67 
Directions for future research .................................................................................................. 68 
Conclusion ............................................................................................................................... 69 

Appendix 

A. NOTATION AND KEY DEFINITIONS FROM THE THEORY OF LEARNING 
GRAPHICAL STRUCTURES ...................................................................................................... 71 

B. FAITHFULNESS ASSUMPTION AND EXTENSIONS ........................................................ 74 

C. REVISED PROOFS OF CORRECTNESS FOR TWO MARKOV BOUNDARY 
ALGORITHMS ............................................................................................................................. 77 

D. TIED1 AND TIED2 NETWORK STRUCTURE AND PARAMETERIZATION .................. 80 

E. LIND NETWORK STRUCTURE AND PARAMETERIZATION .......................................... 84 

F. XORD NETWORK STRUCTURE AND PARAMETERIZATION ........................................ 86 

G. STATE-OF-THE-ART ALGORITHMS FOR MULTIPLE SIGNATURE IDENTIFICATION 
USED IN COMPUTATIONAL EXPERIMENTS ........................................................................ 88 

H. GENERATION OF RESIMULATED MICROARRAY GENE EXPRESSION DATA ......... 90 

I. CRITERIA FOR MICROARRAY GENE EXPRESSION DATASET ADMISSIBILITY AND 
PROTOCOL FOR QUALITY ASSURANCE AND PROCESSING ........................................... 92 

J. AN EXAMPLE OF SIGNATURE MULTIPLICITY DUE TO SMALL SAMPLES ............... 94 

K. AN EXAMPLE OF SIGNATURE MULTIPLICITY DUE TO HIDDEN VARIABLES ....... 96 

REFERENCES .............................................................................................................................. 97 

 



vii 
 

LIST OF TABLES 

 
Table                            Page                         

1. Results of experiment 1 with artificial dataset from TIED1 network. Performance metrics 
are averaged over 10 samples of each size. 72 true Markov boundaries (i.e., maximally 
predictive and non-redundant signatures) exist in this distribution. ........................................ 33 

2. Results of experiment 2 with artificial dataset from TIED1 network (with 30 variables). 
72 true Markov boundaries (i.e., maximally predictive and non-redundant signatures) 
exist in this distribution. The predictive performance is measured by the weighted 
accuracy metric. The optimal Bayes classification performance is 0.9663 (weighted 
accuracy). ................................................................................................................................ 34 

3. Results of experiment 2 with artificial dataset from TIED2 network (with 1,000 
variables). 72 true Markov boundaries (i.e., maximally predictive and non-redundant 
signatures) exist in this distribution. The predictive performance is measured by the 
weighted accuracy metric. ....................................................................................................... 34 

4. Results of experiments with artificial dataset from LIND network (with 41 variables). 
Performance metrics are averaged over 10 samples of each size. 12 true Markov 
boundaries (i.e., maximally predictive and non-redundant signatures) exist in this 
distribution. ............................................................................................................................. 36 

5. Results of experiments with artificial dataset from XORD network. Performance metrics 
are averaged over 10 samples of each size. 25 true Markov boundaries (i.e., maximally 
predictive and non-redundant signatures) exist in this distribution. ........................................ 39 

6. Analysis of stability of TIE* to the choice of initial signature M. Metric λ denotes a 
proportion of signatures output by TIE* run with the seed signature that belong to the 
output of TIE* run with the initial signature M. The reported values of metric λ are first 
averaged over 5 seed signatures of each size and then either averaged or minimized or 
maximized over 5 samples as shown in the table. ................................................................... 43 

7. Total number of unique signatures output by algorithms (averaged over 5 samples). ............ 46 

8. Number of genes in an average signature output by algorithms (averaged over 5 samples). . 46 

9. Average holdout validation predictive performance (AUC) of signatures output by 
algorithms (averaged over 5 samples). .................................................................................... 47 

10. Comparison of TIE* + Wrapping1 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and 
specificity = 1 in the ROC space) for detection of the set of maximally predictive and 
non-redundant signatures. The reported results are averaged over 5 samples of size 1,000. .. 47 

11. Comparison of TIE* + Wrapping2 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and 
specificity = 1 in the ROC space) for detection of the set of maximally predictive and 
non-redundant signatures. The reported results are averaged over 5 samples of size 1,000. .. 48 



viii 
 

12. Comparison of TIE* + Wrapping3 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and 
specificity = 1 in the ROC space) for detection of the set of maximally predictive and 
non-redundant signatures. The reported results are averaged over 5 samples of size 1,000. .. 48 

13. Gene expression microarray datasets that were used in independent-dataset experiments. .... 45 

14. Results for the number of output signatures (total/unique/unique and non-reducible), 
number of genes in a signature, and phenotypic classification performance in discovery 
and validation microarray datasets for independent-dataset experiments. The length of 
highlighting corresponds to magnitude of the metric (number of genes in a signature or 
classification performance) relative to other multiple signature extraction methods. The 
95% intervals correspond to the observed [2.5 - 97.5] percentile interval over multiple 
signatures discovered by the method. Uniqueness and non-reducibility of each signature 
is assessed relative to the corresponding signature extraction method.................................... 52 

15. Number of common genes in 50%, 60%, …, 100% of signatures discovered by TIE* 
algorithm for each dataset. ...................................................................................................... 56 

16. Gene expression microarray datasets that were used in single-dataset experiments. For the 
task of Lymphoma Subtype Classification II, a version of this dataset with 32,403 genes 
(obtained by excluding gene probes absent in all samples) is used. For the Bladder 
Cancer Stage Classification task, a version of this dataset processed by its authors with 
only 1,381 genes is used. ......................................................................................................... 60 

17. Results for the number of output signatures (total/unique/unique and non-reducible), 
number of genes in a signature, and phenotypic classification performance in discovery 
and validation microarray datasets for single-dataset experiments. The length of 
highlighting corresponds to magnitude of the metric (number of genes in a signature or 
classification performance) relative to other multiple signature extraction methods. The 
95% intervals correspond to the observed [2.5 - 97.5] percentile interval over multiple 
signatures discovered by the method. Uniqueness and non-reducibility of each signature 
is assessed relative to the corresponding signature extraction method.................................... 61 

18. Parameterization of the TIED1 network. Only nonzero probabilities are shown in the 
table. ........................................................................................................................................ 82 

19. Parameterization of the LIND network. N(0,1) denotes a random Normal variable with 
mean = 0 and standard deviation = 1. ...................................................................................... 85 

20. Parameterization of the XORD network. OR and XOR denote corresponding binary 
functions. ................................................................................................................................. 87 

 
  



ix 
 

LIST OF FIGURES 

 
Figure                Page 

1. Graph of a Bayesian network with four variables (top) and constraints on its 
parameterization (bottom). Variables A, B, T take three values {0, 1, 2}, while variable C 
takes two values {0, 1}. Red dashed arrows denote nonzero conditional probabilities of 
each variable given its parents. For example, P(T=0 | A=1) ≠ 0, while P(T=0 | A=2) = 0. ...... 10 

2. Graph of a Bayesian network used to demonstrate that the number of Markov boundaries 
can be exponential to the number of variables in the network. The network 
parameterization of is provided below the graph. The response variable is T. All variables 
take values {0, 1}. All variables Xi in each group provide exactly the same information 
about T. .................................................................................................................................... 11 

3. Graph of an example dataset with two genes X1 and X2 and a phenotypic response 
variable T. Two classes of signatures exist in the data: signatures with maximal 
predictivity of the phenotype relative to their genes and ones with worse predictivity. 
There is an infinite number of signatures in each class. .......................................................... 13 

4. TIE* generative algorithm. ...................................................................................................... 15 

5. An example of instantiated TIE* algorithm for gene expression data analysis. ..................... 15 

6. Admissibility rules for inputs X, Y, Z of the TIE* algorithm. .............................................. 16 

7. Graph of a Bayesian network used to trace the TIE* algorithm. The network 
parameterization is provided below the graph. The response variable is T. All variables 
take values {0, 1} except for B that takes values {0, 1, 2, 3}. Variables A and C contain 
exactly the same information about T and are highlighted with the same color. Likewise, 
two variables {D, E} jointly and a single variables B contain exactly the same 
information about T and thus are also highlighted with the same color. ................................. 17 

8. IAMB algorithm. ..................................................................................................................... 19 

9. HITON-PC algorithm (without “symmetry correction”). ....................................................... 21 

10. Graph of a Bayesian network used to motivate a more restrictive faithfulness assumption 
for admissibility of HITON-PC in the TIE* algorithm. The network parameterization is 
provided below the graph. The response variable is T. All variables take values {0, 1}. 
Two variables {A, B} jointly and a single variables H contain exactly the same 
information about T and thus are also highlighted with the same color. ................................. 21 

11. Criterion Independence to verify Markov boundaries. ............................................................ 25 

12. Criterion Predictivity to verify Markov boundaries. ............................................................... 26 

13. Strategies IncLex, IncMinAssoc, and IncMaxAssoc to generate subsets of variables that 
have to be removed from V to identify new Markov boundaries of T. “Inc” in the name of 
the strategy stands for incremental generation of subsets; “Lex” stands for lexicographical 



x 
 

order; “MinAssoc” stands for minimal association with T; and “MaxAssoc” stands for 
maximal association with T. .................................................................................................... 27 

14. Number of maximally predictive signatures output by TIE* as sample size grows. The 
inner figure is a magnified region of the main figure. ............................................................. 42 

15. Plot of classification performance (AUC) in the validation dataset versus classification 
performance in the discovery dataset averaged over 6 pairs of microarray gene expression 
datasets. Axes are magnified for better visualization. The classification performance of a 
signature produced by HITON-PC (which is included in the output of TIE*) is very 
similar to an average signature produced by TIE*. Specifically, the performance of 
HITON-PC signature in discovery and validation data is 0.850 and 0.860 AUC, 
respectively. The performance of an average TIE* signature in discovery and validation 
data is 0.848 and 0.850, respectively. ...................................................................................... 54 

16. Plot of classification performance (AUC) in the validation dataset versus classification 
performance in the discovery dataset for each signature output by each method for the 
Leukemia 5 yr. Prognosis task. Each dot in the graph corresponds to a signature (SVM 
computational model of the phenotype). ................................................................................. 55 

17. Graphical visualization of a discrete artificial network TIED1 with 30 variables 
(including a response variable T). Variables that contain exactly the same information 
about T are highlighted with the same color, e.g. variables X12, X13, and X14 provide 
exactly the same information about T and thus are interchangeable for prediction of T. ........ 81 

18. Graphical visualization of a continuous artificial network LIND with 41 variables 
(including a response variable T). Variables that contain exactly the same information 
about T are highlighted with the same color, e.g. variables X8, X3, and X17 provide exactly 
the same information about T and thus are interchangeable for prediction of T. Similarly, 
variable X7 and a variable set {X1, X2} provide the same information about T. ....................... 84 

19. Graphical visualization of a discrete artificial network XORD with 41 variables 
(including a response variable T). All variables take binary values {0, 1}. Variables that 
contain exactly the same information about T are highlighted with the same color, e.g. 
variables X1 and X5 provide exactly the same information about T and thus are 
interchangeable for prediction of T. Similarly, variable X9 and each of the four variable 
sets {X5, X6}, {X1, X2}, {X1, X6}, {X5, X2} provide the same information about T. .................. 86 

20. Graph of a Bayesian network used to illustrate signature multiplicity due to small sample 
sizes. The network parameterization is provided below the graph. The response variable 
is T. All variables take values {0, 1}. ...................................................................................... 95 

21. Graph of a Bayesian network used to illustrate signature multiplicity due to hidden 
variables. The network parameterization is provided below the graph. The response 
variable is T. All variables take values {0, 1}. ........................................................................ 96 



1 
 

CHAPTER I 

 

INTRODUCTION 

 

Preamble 

The problem of variable/feature selection is of fundamental importance in machine 

learning and applied statistics, especially when it comes to analysis, modeling, and discovery 

from high-dimensional data (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition to 

the promise of cost-effectiveness, two major goals of variable selection are to improve the 

prediction performance of the predictors and to provide a better understanding of the data-

generative process (Guyon and Elisseeff, 2003). An emerging class of algorithms proposes a 

principled solution to the variable selection problem by identification of a Markov blanket of the 

response variable of interest (Aliferis et al., 2008a; Aliferis et al., 2003; Tsamardinos and Aliferis, 

2003; Tsamardinos et al., 2003b). A Markov blanket is a set of variables conditioned on which all 

the remaining variables excluding the response variable are statistically independent of the 

response variable. Under assumptions about the learner and loss function, a Markov blanket is the 

solution to the variable selection problem (Tsamardinos and Aliferis, 2003). A related useful 

concept is Markov boundary (or non-redundant Markov blanket) that is a Markov blanket such 

that no proper subset of it is a Markov blanket. 

An important theoretical result states that if the distribution satisfies the intersection 

property, then it is guaranteed to have a unique Markov boundary of the response variable (Pearl, 

1988). However, many real-life distributions contain multiple Markov boundaries and violate the 

intersection property. For example, the multiplicity of molecular signatures (Azuaje and Dopazo, 

2005; Somorjai et al., 2003), a phenomenon ubiquitous in analysis of high-throughput molecular 

data, suggests existence of multiple Markov boundaries in these distributions. 
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There are at least two practical benefits of an algorithm that could systematically extract 

all Markov boundaries of the response variable of interest: First, it would improve discovery of 

the underlying mechanisms by not missing causative variables. Second, it would shed light on the 

molecular signature multiplicity phenomenon and how it affects the reproducibility of signatures. 

Even though there are several well-developed algorithms for learning a Markov boundary 

(Aliferis et al., 2008a; Aliferis et al., 2003; Tsamardinos et al., 2003b), little research has been 

done in development of algorithms for identification of multiple Markov boundaries from the 

same dataset. Most notable advances in the field are described in the next subsection. In 

summary, there are currently no practical methods that can provably identify all Markov 

boundaries from the data without restrictions on the distribution. 

The main focus of this thesis is development of a general theory and novel algorithms for 

identification of all Markov boundaries that exist in the underlying distribution. These algorithms 

can be applied to any type of data, independent of the distribution. In this thesis, I apply the novel 

algorithms to indentify the set of maximally predictive and non-redundant molecular signatures. I 

chose this application domain because of its importance and implications for biomedicine and 

personalized medicine. However, I would like to emphasize that the new algorithms by design 

can be applied to any type of data and problem domain, and I plan to explore this in the future. 

The experiments reported in the present thesis suggest that the new algorithms have excellent 

theoretical and empirical properties compared to the existing state-of-the-art methods. 

 

The molecular signature multiplicity problem and its computational dissection 

A molecular signature is a computational/mathematical model that predicts a phenotype 

of interest (e.g., diagnosis or outcome of treatment in human patients) from microarray gene 

expression or other high-throughput assay data inputs (Ramaswamy et al., 2003; Golub et al., 

1999). Multiplicity is a special form of statistical instability in which different data analysis 

methods used on the same data, or different samples from the same population lead to different 
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but apparently maximally predictive signatures (Azuaje and Dopazo, 2005; Somorjai et al., 2003). 

This phenomenon has far-reaching implications for biological discovery and development of next 

generation patient diagnostics and personalized treatments. Multiplicity in the best case implies 

that generation of biological hypotheses (e.g., discovery of potential drug targets) is very hard 

even when signatures are maximally predictive of the phenotype since thousands of completely 

different signatures are equally consistent with the data. In the worst case this phenomenon 

entails that the produced signatures are not statistically generalizable to new cases, and thus not 

reliable enough for translation to clinical practice. 

Some authors attribute signature multiplicity to the small sample size of typical 

microarray gene expression studies (Ein-Dor et al., 2006) and have conjectured that it leads to 

non-reproducible predictivity when the signatures are applied in independent data (Michiels et al., 

2005). Related to the above, it has been suggested that building reproducible signatures requires 

thousands of observations (Ioannidis, 2005). Other authors proposed that the phenomenon of 

signature multiplicity is a byproduct of the complex regulatory connectivity of the underlying 

biological system leading to high predictive redundancy (Dougherty and Brun, 2006). This 

position implies that larger sample sizes may not reduce the number of maximally predictive 

molecular signatures. A third possible explanation of signature multiplicity is implicit in 

previously described artifacts of data pre-processing. For example, normalization may inflate 

correlations between genes, making some of them interchangeable for prediction of the 

phenotype (Qiu et al., 2005; Gold et al., 2005; Ploner et al., 2005). 

A few computational methods have been recently introduced in an attempt to extract 

multiple signatures from the data aiming thus to provide practical tools for studying multiple 

maximally predictive signatures and the reasons for their existence. The methods encompass four 

algorithm families. The first family is resampling-based signature extraction. It operates by 

repeated application of a signature extraction algorithm to resampled data (e.g., via 

bootstrapping)  (Roepman et al., 2006; Ein-Dor et al., 2005; Michiels et al., 2005). This family of 
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methods is based on the assumption that multiplicity is strictly a small sample phenomenon. To 

extract all true signatures an infinite number of resamplings is required in the worst-case. The 

second family is iterative removal, that is repeating signature extraction after removing from the 

data all genes that participate in the previously discovered molecular signatures (Natsoulis et al., 

2005). This approach is agnostic as to what causes multiplicity. The third family is stochastic 

gene selection techniques (Peña et al., 2007; Li et al., 2001). The underlying premise of the 

method of (Peña et al., 2007) is that in a specific class of distributions every maximally predictive 

and non-redundant signature will be output by a randomized algorithm with non-zero probability 

(thus all such signatures will be output when the algorithm is applied an infinite number of 

times). Similarly, the method of (Li et al., 2001) will output all signatures discoverable by a 

genetic algorithm when it is allowed to evolve an infinite number of populations. The fourth 

family is brute force exhaustive search (Grate, 2005). This approach is also agnostic as to what 

causes multiplicity, and requires exponential time to the total number of genes, thus it is 

computationally infeasible for signatures with more than 2-3 genes (as almost all maximally 

predictive signatures are in practice). 

The present work provides a theoretical framework based on Markov boundary induction 

that enables probabilistic modeling of multiple signatures and formally connects it with the causal 

graph of the data generating process (Guyon et al., 2007; Tsamardinos and Aliferis, 2003; Pearl, 

2000; Pearl, 1988). The thesis introduces a provably correct algorithm (termed TIE*) that outputs 

all Markov boundaries (and by extension all maximally predictive and non-redundant signatures) 

independent of data distribution. I present experiments with real and resimulated microarray gene 

expression datasets as well as with artificial simulated data that verify the theoretical properties of 

TIE* and showcase its advantages over state-of-the-art methods. In particular, it is shown that 

TIE* having excellent sample and computational efficiency not only extracts many more 

maximally predictive and non-redundant signatures than all other available methods, but also that 

TIE* signatures reproduce in independent datasets whereas signatures produced by previous 
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methods are often not reproducible (i.e., they are overfitted). The theoretical and experimental 

results obtained in the present study also suggest that some of the previous hypotheses about the 

causes and implications of signature multiplicity have to be reevaluated. 

 

Thesis organization 

The remainder of this thesis is organized as follows: Chapter II presents a Markov 

boundary characterization of molecular signature multiplicity. Chapter III introduces the 

generative algorithm TIE* that outputs all Markov boundaries (and thus all maximally predictive 

and non-redundant signatures). Chapter IV provides a proof of correctness of the generative 

algorithm and proves admissibility of its instantiations. Chapter V describes results of empirical 

experiments with artificially simulated data where all Markov boundaries are known. Chapter VI 

presents results of empirical experiments with resimulated gene expression data that closely 

resembles real human gene expression data. Chapter VII presents results of an empirical 

evaluation of TIE* in real human microarray gene expression data. The thesis concludes with 

chapter VIII that reviews related methods from the field of statistics, discusses possible causes of 

the molecular signature multiplicity phenomenon, analyzes multiple signature extraction methods 

used in the thesis, provides directions for future research, and summarizes findings of this work. 

Supplementary materials are provided in the appendices. 
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CHAPTER II 

 

MARKOV BOUNDARY CHARACTERIZATION OF MOLECULAR SIGNATURE 
MULTIPLICITY 

 
 

Key definitions 

Below I present three definitions that are essential for this thesis: 

Definition of molecular signature: A molecular signature is a mathematical/ 

computational model (e.g., classifier or regression model) that predicts a phenotype of interest 

(e.g., diagnosis or response to treatment in human patients) given values of molecular variables 

(e.g., gene expression values).  

Definition of maximally predictive molecular signature: A maximally predictive 

molecular signature is a molecular signature that maximizes predictivity of the phenotype relative 

to all other signatures that can be constructed from the given dataset. 

Definition of maximally predictive and non-redundant molecular signature: A 

maximally predictive and non-redundant molecular signature based on variables X is a maximally 

predictive signature such that any signature based on a proper subset of variables in X is not 

maximally predictive. 

The latter signatures that satisfy two critically desirable optimality properties (they are 

maximally predictive of the phenotype, and they do not contain predictively redundant genes) are 

the main focus of this thesis. Every suboptimal signature (i.e., one that is either not maximally 

predictive or contains redundant genes) can be discarded from consideration when studying 

multiplicity. 
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Markov boundary and its connection with the signature multiplicity phenomenon 

Notation and basic definitions from the theory of learning graphical structures from data 

are states in Appendix A. Below I provide only definitions for key concepts that are required for 

understanding the theory. 

First, I define the concept of Markov blanket and a related concept of Markov boundary. 

Definition of Markov blanket: A Markov blanket M of the response variable T ∈ V in 

the joint probability distribution P over variables V is a set of variables conditioned on which all 

other variables are independent of T, i.e. for every }){\\( TX MV∈ , M|XT ⊥ . 

Trivially, the set of all variables V excluding T is a Markov blanket of T. Also one can 

take a small Markov blanket and produce a larger one by adding arbitrary (predictively 

redundant) variables. Hence, only non-redundant Markov blankets are of interest. 

Definition of Market boundary (non-redundant Markov blanket): If M is a Markov 

blanket of T and no proper subset of M satisfies the definition of Markov blanket of T, then M is 

called a Markov boundary (non-redundant Markov blanket) of T. 

The following theorem states that variable sets that participate in the maximally 

predictive signatures of T are precisely the Markov blankets of T. 

Theorem 1: If M is a performance metric that is maximized only when P(T | V \ {T}) is 

estimated accurately and L is a learning algorithm that can approximate any probability 

distribution, then M is a Markov blanket of T if and only if the learner’s model induced using 

variables M is a maximally predictive signature of T. 

Proof: First I prove that the learner’s model induced using any Markov blanket of T is a 

maximally predictive signature of T. If M is Markov blanket of T, then by definition it leads to a 

maximally predictive signature of T because P(T | M) = P(T | V \ {T}) and this distribution can be 

perfectly approximated by L, which implies that M will be maximized. 
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Now I prove that any maximally predictive signature of T is the learner’s model induced 

using a Markov blanket of T. Assume that X ⊆ V \ {T} is a set of variables used in the maximally 

predictive signature of T but it is not a Markov blanket of T. This implies that, P(T | X) ≠ P(T | V \ 

{T}). By definition, V \ {T} is always a Markov blanket of T. By first part of the theorem, V \ {T} 

leads to a maximally predictive signature of T similarly to X. Therefore, the following should 

hold: P(T | X) = P(T | V \ {T}). This contradicts the assumption that X is not a Markov blanket of 

T. Therefore, X is a Markov blanket of T. (Q.E.D.) 

Since the notion of non-redundancy is defined in the same way for maximally predictive 

signatures and for Markov blankets, under the assumptions of Theorem 1 it follows that M is a 

Markov boundary of T if and only if the learner’s model induced using variables M is a 

maximally predictive and non-redundant signature of T. 

The next theorem provides a set of useful tools for theoretical analysis of probability 

distributions and proofs of correctness of Markov boundary algorithms. It is stated similarly to 

(Peña et al., 2007) and its proof is given in (Pearl, 1988). 

Theorem 2: Let X, Y, Z, and W be any1 four subsets of variables from V. The following 

four properties hold in any joint probability distribution P over variables V: 

• Symmetry: ZYX |⊥  ⇔ ZXY |⊥  

• Decomposition: ZWYX |)( ∪⊥  ⇒ ZYX |⊥  and ZWX |⊥  

• Weak union: ZWYX |)( ∪⊥  ⇒ )(| WZYX ∪⊥  

• Contraction: ZYX |⊥  and  )(| YZWX ∪⊥  ⇒ ZWYX |)( ∪⊥  

If P is strictly positive, then in addition to the above four properties a fifth property holds: 

• Intersection: )(| WZYX ∪⊥  and )(| YZWX ∪⊥ ⇒ ZWYX |)( ∪⊥  

                                                 
1 Pearl originally provided this theorem for disjoint sets of variables X, Y, and Z (Pearl, 1988). However, he mentioned 
that the disjoint requirement is made for the sake of clarity, and that the theorem can be extended to include 
overlapping subsets as well using an additional property ZZX |⊥  (denoted in this work as “self-conditioning 
property”). 
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If P is faithful to G, then P satisfies the above five properties and: 

• Composition: ZYX |⊥  and ZWX |⊥  ⇒ ZWYX |)( ∪⊥ . 

The following theorem states a sufficient assumption for the uniqueness of Markov 

boundaries.  

Theorem 3: If a joint probability distribution P over variables V satisfies the intersection 

property, then for each V∈X , there exists a unique Markov boundary of X (Pearl, 1988). 

Since every joint probability distribution P that is faithful to G satisfies the intersection 

property (Theorem 2), then there is a unique Markov boundary in such distribution according to 

Theorem 3. However Theorem 3 does not say anything about distributions that do not satisfy the 

intersection property. I hypothesize that a joint probability distribution P that does not satisfy the 

intersection property can have multiple Markov boundaries. 

The following two examples and a theorem provide graphical structures and related 

probability distributions where multiple Markov boundaries (and equivalently multiple 

maximally predictive and non-redundant signatures) exist. These examples also demonstrate that 

multiplicity of signatures exists even in large samples and thus it is not an exclusively small-

sample phenomenon. 

Example 2.1: Consider a joint probability distribution P described by a Bayesian network 

with graph A → B → T where A, B, and T are binary random variables that take values {0, 1}. 

Given the local Markov condition, the joint probability distribution can be defined as follows: 

P(A=0) = 0.3, P(B=0 | A=1) = 1.0, P(B=1 | A=0) = 1.0, P(T=0 | B=1) = 0.2, P(T=0 | B=0) = 0.4. 

Two Markov boundaries of T exist in this distribution: {A} and {B}. 
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Example 2.2: Figure 1 shows a graph of a Bayesian network and constraints on its 

parameterization. The following hold in any joint probability distribution of a Bayesian network 

that satisfies the constraints in the figure:  

• There exist two Markov boundaries of T: {A, C} and {B, C}; Furthermore, {A, C} and 

{B, C} remain Markov boundaries of T even in infinite samples from that distribution; 

• Variables A and B are not deterministically related, yet they convey individually the same 

information about T; 

• If an algorithm selects only one Markov boundary of T (e.g., {B, C}), then there is danger 

to miss causative variables (i.e., parent A) and focus instead on confounded ones (i.e., B); 

• The union of all Markov boundaries of T includes all variables located in the local 

neighborhood around T (i.e., A, C); 

• In this example the intersection of all Markov boundaries of T contains only variables in 

the local neighborhood of T (i.e., C). 

Also notice that the network in Figure 1 has very low connectivity (e.g., max in-degree = 1 

and max out-degree = 2). 

 

 

Figure 1: Graph of a Bayesian network with four variables (top) and constraints on its
parameterization (bottom). Variables A, B, T take three values {0, 1, 2}, while variable C takes
two values {0, 1}. Red dashed arrows denote nonzero conditional probabilities of each variable
given its parents. For example, P(T=0 | A=1) ≠ 0, while P(T=0 | A=2) = 0. 
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Theorem 4: The number of Markov boundaries can grow exponentially with the number 

of variables. 

Proof: I prove this theorem constructively by providing an example network and 

probability distribution where the number of Markov boundaries grows exponentially with the 

number of variables. Consider a Bayesian network shown in Figure 2. It involves n+1 binary 

variables: X1, X2, ..., Xn, and a response variable T. Variables Xi (i = 1,…,n) can be divided into m 

groups such that any two variables in a group contain exactly the same information about T. Since 

 

 
 
P(T | X1,  
Xn/m+1,…  

X(m-1)n/m+1) 

(X1= 0,  
Xn/m+1 = 0,… 
X(m-1)n/m+1 = 0) 

(X1= 0,  
Xn/m+1 = 0,…  
X(m-1)n/m+1 = 1) … 

(X1= 1,  
Xn/m+1 = 1,…  
X(m-1)n/m+1 = 1) 

T = 0 0.2 0.8 0.2 
T = 1 0.8 0.2 0.8 

 
          For any pair of variables Xj and Xk belonging to the same group i: 
 

P(Xj | Xk) Xk = 0 Xk = 1 
Xj = 0 1.0 0.0 
Xj = 1 0.0 1.0 

 
Figure 2: Graph of a Bayesian network used to demonstrate that the number of Markov 
boundaries can be exponential to the number of variables in the network. The network 
parameterization of is provided below the graph. The response variable is T. All variables take 
values {0, 1}. All variables Xi in each group provide exactly the same information about T.  

T

X1X2X3…Xn/m-1Xn/m

Xn/m+1Xn/m+2Xn/m+3…X2n/m-1X2n/m

X(m-1)n/m+1X(m-1)n/m+2X(m-1)n/m+3…Xn-1Xn

Group 1

Group 2

Group m

…
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there are n/m variables in each group, the total number of Markov boundaries is (n/m)m. Now 

assume that m = kn, where k < 1. Then the total number of Markov boundaries is (1/k)kn. Since 1/k 

> 1 and kn = O(n), it follows that the number of Markov boundaries grows exponentially with the 

number of variables in this example. (Q.E.D.) 

The above discussion is concerned with the large sample case. In practice, one deals with 

small samples where statistical inferences have to be made about large sample predictivity and 

redundancy. This creates an additional source of error and concomitant multiplicity as illustrated 

in chapter VI (experiment 1) and Appendix J. 

 

A fundamental assumption for the analysis of signatures 

To simplify analysis, and without loss of generality, from now on instead of considering 

all possible signatures derivable from a given dataset (via a potentially infinite variety of 

classifier algorithms), I only consider the signatures that have maximal predictivity for the 

phenotypic response variable relative to the genes (variables) contained in each signature. In 

other words, I exclude from consideration signatures that do not utilize all predictive information 

contained in their genes. This allows to study signature classes by reference only to the genes 

contained in each class. Specifically, for a gene set X there can be an infinite number of 

classifiers that achieve maximal predictivity for the phenotype relative to the information 

contained in X. Thus, for the remainder of this thesis when I say “signature X” I refer to one of 

these predictively equivalent classifiers. This reduction is justified whenever the classifiers used 

can learn the minimum error decision function2 given sufficient sample. Most practical classifiers 

employed in this domain as well as classifiers used in the present experiments (SVMs) satisfy the 

above requirement either on theoretical (Shawe-Taylor and Cristianini, 2004; Hammer and 

                                                 
2 For a given set of genes S, the minimal error decision function minimizes the error of predicting the phenotypic 
variable T given S over all possible decision functions. 
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Gersmann, 2003) and/or empirical grounds (Statnikov et al., 2008; Statnikov et al., 2005; Furey et 

al., 2000). 

Figure 3 provides an example of a dataset with two genes X1 and X2 and a phenotypic 

response variable T. There are two classes of signatures: ones that have maximal predictivity of 

the phenotype relative to their genes (e.g., signatures S3, S4, S5 that predict T without errors) and 

ones with worse predictivity (e.g., signatures S1, S2). Each of the classes contains an infinite 

number of signatures. When I say “signature {X1, X2}” in this thesis, I mean one of the 

predictively equivalent classifiers with maximal predictivity of the phenotype, e.g. S3, or S4, or 

S5,, etc. 

 

 

 

 
 

Figure 3: Graph of an example dataset with two genes X1 and X2 and a phenotypic response
variable T. Two classes of signatures exist in the data: signatures with maximal predictivity of the
phenotype relative to their genes and ones with worse predictivity. There is an infinite number of
signatures in each class. 
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CHAPTER III 

 

NOVEL ALGORITHM 

 

The TIE* algorithm pseudocode is provided in Figure 4. It is a generative algorithm that 

is instantiated differently for different distributions (an example of instantiated TIE* algorithm 

for gene expression data analysis is provided in Figure 5). On input the generative algorithm 

receives (i) a dataset D (a sample of distribution P) for variables V, including a response variable 

T; (ii) a Markov boundary algorithm X; (iii) a strategy Y to generate subsets of variables that 

have to be removed from V to indentify new Markov boundaries of T; and (iv) a criterion Z to 

verify Markov boundaries of T. The input components X, Y, Z are selected to be suitable for the 

distribution in hand and should satisfy admissibility rules stated in Figure 6 for correctness of the 

algorithm. The algorithm outputs all Markov boundaries (i.e., all maximally predictive and non-

redundant signatures) of T. 

 In line 1, TIE* uses a Markov boundary algorithm X to learn a Markov boundary M of T 

from data D for variables V (i.e., in the original distribution).  Then M is output in line 2. In line 

4, the algorithm uses a strategy Y to generate a subset G whose removal may lead to 

identification of a new Markov boundary of T. Next, in line 5 the Markov boundary algorithm X 

is applied to a version of the dataset D in which a subset of variables G has been removed (I refer 

to this as embedded distribution), resulting in a Markov boundary Mnew in the embedded 

distribution. If Mnew is also a Markov boundary of T in the original distribution according to 

criterion Z, then Mnew is output (line 6). The loop in lines 3-7 is repeated until all subsets G 

generated by strategy Y have been considered. 
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An example of instantiated algorithm TIE* for gene expression data analysis 
 

Inputs: dataset D (a sample of distribution P) for variables V, including a response variable T; 
 

Output: all Markov boundaries (i.e., maximally predictive and non-redundant signatures) of T. 
 
1. Use algorithm HITON-PC to learn a Markov boundary M of T from data D for variables 

V (i.e., in the original distribution) 
2. Output M 
3. Repeat 
4. Generate the smallest subset G of the so far discovered Markov boundaries of T such 

that (i) it was not considered in the previous iteration of the algorithm, and (ii) it does 
not properly include any subset that was generated in the previous iteration of the 
algorithm when Mnew was found not to be a Markov boundary of T 

5. Use algorithm HITON-PC to learn a Markov boundary Mnew of T from data D for 
variables V \ G (i.e., in the embedded distribution) 

6. If the holdout validation estimate of predictivity of T for the SVM classifier model 
induced from data D using variables Mnew is statistically indistinguishable from the 
respective predictivity estimate for variables M, then Mnew is a Markov boundary of T in 
the original distribution and it is output by the algorithm 

7. Until no subset G can be generated in line 4. 
 

Figure 5: An example of instantiated TIE* algorithm for gene expression data analysis. 

Generative algorithm TIE* 
 

Inputs: 
• dataset D (a sample of distribution P) for variables V, including a response variable T; 
• Markov boundary algorithm X; 
• strategy Y to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T; 
• criterion Z to verify Markov boundaries of T. 

 

Output: all Markov boundaries (i.e., maximally predictive and non-redundant signatures) of T. 
 
1. Use algorithm X to learn a Markov boundary M of T from data D for variables V (i.e., in 

the original distribution) 
2. Output M 
3. Repeat 
4. Use strategy Y to generate a subset of variables G whose removal may lead to 

identification of a new Markov boundary of T 
5. Use algorithm X to learn a Markov boundary Mnew of T from data D for variables V \ 

G (i.e., in the embedded distribution) 
6. If Mnew is a Markov boundary of T in the original distribution according to criterion Z, 

output Mnew 
7. Until all subsets G generated by strategy Y have been considered. 

 
Figure 4: TIE* generative algorithm. 
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 Consider running TIE* algorithm on data D generated from the example Bayesian 

network shown in Figure 7. The response variable T is directly caused by C, D, E, and F. The 

underlying distribution is such that variables A and C contain exactly the same information about 

T; likewise two variables {D, E} jointly and a single variable B contain exactly the same 

information about T. In line 1 of TIE* (Figure 4), a Markov boundary algorithm X is applied to 

learn a Markov boundary of T: M = {A, B, F}. Then M is output in line 2. In line 4, the strategy 

Y generates a subset G = {F} whose removal may lead to identification of a new Markov 

boundary of T. Then in line 5 the Markov boundary algorithm X is run on data D for all variables 

but F (i.e., in the embedded distribution). This yields a Markov boundary of T in the embedded 

distribution Mnew = {A, B}. The criterion Z in line 6 does not confirm that Mnew is also Markov 

boundary of T in the original distribution; thus Mnew is not output. The loop is run again. In line 4 

the strategy Y generates another subset G = {A}. The Markov boundary algorithm X in line 5 

yields a Markov boundary of T in the embedded distribution Mnew = {C, B, F}. The criterion Z in 

line 6 confirms that Mnew is also a Markov boundary in the original distribution, thus it is output. 

Similarly, when the Markov boundary algorithm X is run on data D for all variables but G = {B} 

or G = {A, B}, two more Markov boundaries of T in the original distribution, {A, D, E, F} or {C, 

D, E, F}, respectively, are found and output. The algorithm terminates shortly. In total, four 

Admissibility rules for inputs X, Y, Z of the TIE* algorithm  
 

I. The Markov boundary algorithm X correctly identifies a Markov boundary of T both in 
the original distribution (i.e., for variables V) and in every embedded distribution that is 
obtained by removing from V a subset of variables generated by Y. 

II. The strategy Y to generate subsets of variables is complete, i.e. it will generate every 
subset G that is needed to be removed from V to identify every Markov boundary of T. 

III. The criterion Z can correctly identify that Mnew is a Markov boundary of T in the 
original distribution. 

 
Figure 6: Admissibility rules for inputs X, Y, Z of the TIE* algorithm. 
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Markov boundaries of T are output by the algorithm: {A, B, F}, {C, B, F}, {A, D, E, F} and {C, 

D, E, F}. These are exactly all Markov boundaries of T that exist in this distribution. 

 
 

P(A)      P(B)  
A = 0 0.6     B = 0 0.3 
A = 1 0.4     B = 1 0.2 

      B = 2 0.3 
P(C | A) A = 0 A = 1    B = 3 0.2 
C = 0 0.0 1.0      
C = 1 1.0 0.0    P(F)  

      F = 0 0.3 
P(D | B) B = 0 B = 1 B = 2 B = 3  F = 1 0.7 
D = 0 1.0 1.0 0.0 0.0    
D = 1 0.0 0.0 1.0 1.0    

        
P(E | B) B = 0 B = 1 B = 2 B = 3    
E = 0 1.0 0.0 1.0 0.0    
E = 1 0.0 1.0 0.0 1.0    

 

P(T | C, D, E, F) (C=0, D=0, 
E=0, F=0) 

(C=0, D=0, 
E=0, F=1) 

(C=0, D=0, 
E=1, F=0) 

… 

(C=1, D=1, 
E=1, F=1) 

T = 0 0.9 0.1 0.9 0.1 
T = 1 0.1 0.9 0.1 0.9 

 
Figure 7: Graph of a Bayesian network used to trace the TIE* algorithm. The network 
parameterization is provided below the graph. The response variable is T. All variables take 
values {0, 1} except for B that takes values {0, 1, 2, 3}. Variables A and C contain exactly the 
same information about T and are highlighted with the same color. Likewise, two variables {D, 
E} jointly and a single variables B contain exactly the same information about T and thus are also 
highlighted with the same color.  

T

D E F

A

C
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CHAPTER IV 

 

THEORETICAL ANALYSIS OF THE NOVEL ALGORITHM AND ITS ADMISSIBLE 
INSTANTIATIONS 

 
 

Proof of correctness of the generative algorithm TIE* 

Theorem 5: The generative algorithm TIE* outputs all and only Markov boundaries of T 

if the input components X, Y, Z are admissible. 

Proof: TIE* will trivially output only Markov boundaries of T when the input 

components X and Z are admissible (Figure 6). Assume that there exists a Markov boundary W 

that is not output by TIE*. Also assume that W does not overlap with any other Markov boundary 

output by TIE* (the proof is similar if W has such an overlap). Because of admissibility of input 

components X and Z (Figure 6), Mnew = W was never identified in line 5 of the algorithm. This 

can happen if and only if iT MW |⊥  where Mi is some Markov boundary that was previously 

discovered by TIE* (either in line 1 or 5). However, because of admissibility of input component 

Y (Figure 6) in some iteration of the algorithm in line 4 the subset G = Mi (and similarly all other 

subsets that render W independent of T) will be generated and removed from the dataset in line 5. 

Thus W will be discovered in line 5 and output in line 6. Therefore, a contradiction is reached, 

and TIE* would never miss Markov boundaries. (Q.E.D.) 

I also note that the above proof of correctness holds when the admissibility criterion for 

Markov boundary algorithm X is relaxed in such a way that X may not correctly identify a 

Markov boundary Mnew in the embedded distribution when there is no Markov boundary in the 

embedded distribution that is also a Markov boundary in the original distribution. 
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Admissibility analysis of the Markov boundary algorithms 

First, I prove admissibility of the Markov boundary algorithm IAMB (Tsamardinos and 

Aliferis, 2003; Tsamardinos et al., 2003a) that is described in Figure 8. To do this, I need to 

define a relaxed version of the composition property: 

 Definition of local composition property with respect to a variable: Let X, Y, Z be any 

three subsets of variables from V. The joint probability distribution P over variables V satisfies 

the local composition property with respect to T if ZX |⊥T  and ZY |⊥T  ⇒ 

ZYX |)( ∪⊥T . 

Originally the IAMB algorithm was shown to be correct (i.e., that it identifies a Markov 

boundary) if the joint probability distribution P is DAG-faithful to G (Tsamardinos and Aliferis, 

2003; Tsamardinos et al., 2003a). The following theorem originally proven in (Peña et al., 2007)3 

shows that IAMB is correct when only the local composition property with respect to T holds. 

 
                                                 
3 Peña et al. originally proved correctness of IAMB when the (global) composition property holds. 

Algorithm IAMB 
 
Input: dataset D (a sample of distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 
 
  Phase I: Forward 

1. Initialize M with an empty set 
2. Repeat 
3. Y  argmaxX∈(V \ M \ {T})Association(T,  X | M) 
4. If M|YT ⊥/  then 
5. M  M ∪ {Y} 
6. Until M does not change 

 
   Phase II: Backward 

7. For each X ∈ M 
8. If }){\(| XXT M⊥/  then 
9. M  M \ {X} 
10. End 
11. Output M 

 
Figure 8: IAMB algorithm. 
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 Theorem 6: IAMB outputs a Markov boundary of T if the joint probability distribution P 

satisfies the local composition property with respect to T. (The proof is given in Appendix C). 

The proof of admissibility of IAMB follows below. 

Theorem 7: IAMB is admissible Markov boundary algorithm for TIE* if the joint 

probability distribution P satisfies the local composition property with respect to T. 

Proof: Since (i) all variables from each embedded distribution belong to the original one 

and (ii) the joint probability distribution of variables in each embedded distribution is the same as 

marginal in the original one, the local composition property with respect to T also holds in each 

embedded distribution. Therefore according to Theorem 6, IAMB will correctly identify a 

Markov boundary in every embedded distribution. (Q.E.D.) 

Next, I prove admissibility of the Markov boundary algorithm HITON-PC (Aliferis et al., 

2008a; Aliferis et al., 2003) that is described in Figure 9. Originally this algorithm was shown to 

correctly identify a set of parents and children of T if the joint probability distribution P is DAG-

faithful to G and the so-called “symmetry correction” is not required (Aliferis et al., 2008a). 

Below I prove correctness of this algorithm for identification of Markov boundaries when the 

intersection property may be violated. This proof requires revisiting the assumption of 

faithfulness and introducing several new definitions, see Appendix B. 

Theorem 8: HITON-PC outputs a Markov boundary of T if (i) the joint probability 

distribution P and directed or ancestral graph G are locally adjacency faithful with respect to T 

with the exception of violations of the intersection property; (ii) P satisfies the global Markov 

condition for G; (iii) the set of vertices adjacent with T in G is a Markov blanket of T. (The proof 

is given in Appendix C). 

It is worthwhile to note that the so-called “symmetry correction” is not needed for 

correctness of HITON-PC because the condition (iii) of the theorem subsumes it. 
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P(A)   P(B)  
A = 0 0.5  B = 0 0.5 
A = 1 0.5  B = 1 0.5 

 
P(H | A, B) (A=0, B=0) (A=0, B=1) (A=1, B=0) (A=1, B=1) 

H = 0 1 0 0 1 
H = 1 0 1 1 0 

 
P(T | H) H = 0 H = 1 

T = 0 0.3 0.8 
T = 1 0.7 0.2 

 
Figure 10: Graph of a Bayesian network used to motivate a more restrictive faithfulness 
assumption for admissibility of HITON-PC in the TIE* algorithm. The network parameterization 
is provided below the graph. The response variable is T. All variables take values {0, 1}. Two 
variables {A, B} jointly and a single variables H contain exactly the same information about T 
and thus are also highlighted with the same color.  

TA
B H

Algorithm HITON-PC (without “symmetry correction”) 
 
Input: dataset D (a sample of distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 
 

1. Initialize M with an empty set 
2. Initialize the set of eligible variables E  V \ {T} 
3. Sort in descending order the variables in E according to their pairwise association with 

response variable T 
4. Remove from E all variables X with zero association with T, i.e. when XT ⊥  
5. Repeat 
6. X  first variable in E 
7. Add X to M and remove it from E 
8. If ∃ Z ⊆ M \ {X}, such that Z|XT ⊥ , remove X from M 
9. Until E is empty 
10. For each X ∈ M 
11. If ∃ Z ⊆ M \ {X}, such that Z|XT ⊥ , remove X from M 
12. Output M 

 
Figure 9: HITON-PC algorithm (without “symmetry correction”). 
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Before I actually prove admissibility of the Markov boundary algorithm HITON-PC for 

TIE*, I will demonstrate why HITON-PC is not admissible for TIE* under the assumptions of 

Theorem 8 and why more stringent assumptions are needed.  

One of the assumptions for correctness of HITON-PC is that P and G are locally 

adjacency faithful with respect to T with the exception of violations of the intersection property. 

Consider a Bayesian network shown in Figure 10. It follows that P and G are locally adjacency 

faithful with respect to T. However, when the variable H is removed, the resulting embedded joint 

probability distribution defined over {T, A, B} will not be locally adjacency faithful with respect 

to T to any directed or ancestral graph. Therefore, HITON-PC would not discover that {A, B} is a 

Markov boundary of T in the embedded distribution. 

Another assumption for correctness of HITON-PC is that the set of vertices adjacent with 

T in G is a Markov blanket of T. Consider a Bayesian network specified by the graph G: T → H 

→ A ← B and the joint probability distribution P that is DAG-faithful to G. When the variable H 

is removed, the resulting embedded joint probability distribution defined over {T, A, B} will be 

DAG-faithful to the graph T → A ← B. However, notice that {A} (the set of vertices adjacent 

with T) is not a Markov blanket of T, because the variable B is also present in the Markov blanket 

of T. In such case, HITON-PC would incorrectly discover that {A} is a Markov boundary of T in 

the embedded distribution. 

The proof of admissibility of HITON-PC follows below. 

Theorem 9: HITON-PC is admissible Markov boundary algorithm for TIE* if (i) the 

joint probability distribution P and DAG G are locally path faithful with respect to T with the 

exception of violations of the intersection property; (ii) P satisfies the global Markov condition 

for G; and (iii) the set of vertices adjacent with T both in DAG G and corresponding MAG G* of 

the embedded distribution is a Markov blanket of T (in the respective distribution). 
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Proof: First I prove that HITON-PC correctly identifies a Markov boundary of T in the 

original distribution (i.e., for variables V). To do this, I need to demonstrate that assumptions of 

Theorem 8 are satisfied. Since local path faithfulness with respect to T implies local adjacency 

faithfulness with respect to T (with the exception of violations of the intersection property), and 

the other two assumptions (ii) and (iii) are same for both Theorems 8 and 9, HITON-PC correctly 

identifies a Markov boundary of T in the original distribution. 

Now I need to prove that HITON-PC also correctly identifies a Markov boundary of T in 

the embedded distribution, after removing an arbitrary subset of variables from V. Again, I need 

to demonstrate that assumptions of Theorem 8 are satisfied for every embedded distribution. 

Consider an embedded distribution defined over variables V* = V \ S (where S is a subset of V 

that is hidden/removed) with the joint probability distribution P*=P(V*) and graph G*=<V*, E*>. 

Given a DAG G of the original distribution and the subset of hidden variables S, G* is defined as 

follows: for every pair of variables X and Y, put an edge between them if and only if they are not 

d-separated in G by any subset of variables V* \ {X, Y}; the arrowhead of the edge is pointed at X 

(Y) if it is not an ancestor of Y (X) in G. G* is a maximal ancestral graph (MAG) and has the 

property that for any two non-adjacent vertices there is a set of vertices that m-separates them 

(Zhang and Spirtes, 2005). 

• Assumption (i): Assume that P* and G* are not locally adjacency faithful with respect to 

T, excluding violations of the intersection property. In other words, there is a variable Y 

that is adjacent with T in G* and T can be rendered independent of Y given some subset 

of variables V* \ {T, Y}. Since Y is adjacent with T in G*, it should be connected to T by a 

path in G that does not contain any colliders. Assume that this path is T – X1 – X2 – … – 

XN – Y and there are no other paths without colliders that connect T and Y in G (the proof 

is similar when there are multiple paths). The local path faithfulness with respect to T in 

the original distribution implies that T cannot be rendered independent of Y given any 
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subset of V \ {X1, …, XN}. If V* ∩ {X1, …, XN} = ∅, then a contradiction of the 

assumption that T can be rendered independent of Y given some subset of variables V* \ 

{T, Y} is reached. Otherwise when V* ∩ {X1, …, XN} ≠ ∅, a contradiction of the 

assumption that Y is adjacent with T in G* is reached, because Y will be adjacent with Xi 

and not with Y (where i is the minimal index of the variable Xi that belongs to V* ∩ {X1, 

…, XN}). Therefore, P* and G* will be locally adjacency faithful with respect to T with 

the exception of violations of the intersection property. 

• Assumption (ii): The global Markov condition holds in the embedded distribution since 

all variables from the embedded distribution belong to the original one and the joint 

probability distribution of variables in the embedded distribution is the same as marginal 

in the original one. 

• Assumption (iii) is satisfied by design because the set of vertices adjacent with T in MAG 

G* is a Markov blanket of T in the embedded distribution. 

Since all assumptions of Theorem 8 are satisfied, HITON-PC correctly identifies a 

Markov boundary of T in every embedded distribution. Thus, HITON-PC is an admissible 

algorithm for TIE*. (Q.E.D.) 

 

Admissibility analysis of the criteria to verify Markov boundaries 

Theorem 10: Criterion Independence to verify Markov boundaries (Figure 11) is 

admissible for TIE*.  

Proof: Consider that there exists a set of variables Mnew ⊆ V \ {T} such that 

newT MM |⊥ . Since M is a Markov boundary of T in the original distribution, it is also a 

Markov blanket of T in the original distribution. By definition of the Markov blanket, 

MMV |}){\\( TT ⊥ . By the self-conditioning property, it follows that MV |}){\( TT ⊥ . 

Since (V \ {T}) = (V \ {T}) ∪ Mnew and according to the weak union property, 
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)(|)\}{\( newnewTT MMMV ∪⊥ . By the self-conditioning property, it follows that 

)(|}){\( newTT MMV ∪⊥ . Since newT MM |⊥  and )(|}){\( newTT MMV ∪⊥ , the 

contraction property implies that newTT MMV |)}){\(( ∪⊥ . Since (V \ {T}) = (V \ {T}) ∪ M, 

it follows that newTT MV |}){\(⊥ . By the decomposition property this implies that Mnew is a 

Markov blanket of T in the original distribution. Since Mnew is a Markov boundary of T in the 

embedded distribution and it is a Markov blanket of T in the original distribution, it is also a 

Markov boundary of T in the original distribution. (Q.E.D.) 

The above proof implicitly assumes correctness of statistical decisions about 

independence. In practice, this assumption may be violated when the sample size is small or the 

sampling of the dataset D is not i.i.d. 

 

Theorem 11: Criterion Predictivity to verify Markov boundaries (Figure 12) is 

admissible for TIE* if the following conditions hold: 

• learning algorithm L can accurately approximate any probability distribution; 

• performance metric M is maximized only when P(T | V \ {T}) is estimated accurately; 

• performance estimator E is unbiased; 

• procedure C to compare performance estimates of metric M has negligible error. 

Criterion Independence to verify Markov boundaries  
 

Inputs: 
• dataset D (a sample of distribution P) for variables V, including a response variable 

T; 
• Markov boundary M of T in the original distribution; 
• Markov boundary Mnew of T in the embedded distribution; 

      

Output:  
• TRUE if Mnew is a Markov boundary of T in the original distribution; 
• FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 
If newT MM |⊥ , output TRUE; otherwise output FALSE. 

 
Figure 11: Criterion Independence to verify Markov boundaries. 
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Proof: The proof that this criterion can identify whether Mnew is a Markov blanket of T in 

the original distribution or not follows from Theorem 1. Since Mnew is a Markov boundary of T in 

the embedded distribution and if it is a Markov blanket of T in the original distribution, it is also a 

Markov boundary of T in the original distribution. (Q.E.D.)  

 

 
 
 

  

Criterion Predictivity to verify Markov boundaries  
 

Inputs: 
• dataset D (a sample of distribution P) for variables V, including a response variable 

T; 
• Markov boundary M of T in the original distribution; 
• Markov boundary Mnew of T in the embedded distribution; 
• learning algorithm L (to build a prediction model for T given data D for some subset of  

variables V); 
• performance metric M (to assess the prediction model obtained by L; larger values of 

this performance metric correspond to better predictivity of the model); 
• unbiased performance estimator E (to estimate metric M for prediction model obtained 

by L in data D); 
• statistical hypothesis test or another formal criterion C (to compare performance 

estimates of M). 
 

Output:  
• TRUE if Mnew is a Markov boundary of T in the original distribution; 
• FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 
1. Apply performance estimator E to compute estimate 1M̂ of performance metric M for 

prediction model obtained by L in data D using variables M 
2. Apply performance estimator E to compute estimate 2M̂ of performance metric M for 

prediction model obtained by L in data D using variables Mnew 
3. If the hypothesis 21 ˆˆ MM >  can be rejected according to criterion C, output TRUE; 

otherwise output FALSE. 
 

Figure 12: Criterion Predictivity to verify Markov boundaries. 
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Admissibility analysis of the strategies to generate subsets of variables to that have to be 
removed to identify new Markov boundaries 

 
Theorem 12: Strategies IncLex, IncMinAssoc, and IncMaxAssoc to generate subsets of 

variables that have to be removed from V to identify new Markov boundaries of T (Figure 13) are 

admissible for TIE*. 

 

Proof: Consider that the strategy in Figure 13 generated a subset U
n

i
i

1

'
=

⊆ MG  leading to 

identification of a Markov boundary Mnew in the embedded distribution in line 5 of the TIE* 

algorithm. Assume that Mnew is not a Markov blanket in the original distribution. Thus, it is not a 

Markov boundary in the original distribution. Since removal of G' does not lead to a Markov 

boundary in the original distribution, the strategy dictates not to generate supersets of G'. 

Strategies IncLex, IncMinAssoc, and IncMaxAssoc to generate subsets of variables that have to 
be removed from V to identify new Markov boundaries of T  
 

Inputs: 
• dataset D (a sample of distribution P) for variables V, including a response variable T; 
• Markov boundaries nMM ,...,1 of T (in the original distribution) obtained so far by the 

TIE* algorithm and ordered by the time of discovery from latest to earliest; 
• subsets nGG ,...,1  that were removed from V (in line 5 of TIE*) to obtain the above 

Markov boundaries (G1=∅); 
• subsets **

1 ,..., mGG that were removed from V (in line 5 of TIE*) and did not lead to 
Markov boundaries in the original distribution (in line 6 of TIE*). 

      

Output: U
n

i
i

1=

⊆ MG  

 
Generate a subset of variables ii GMG ∪⊆  (i = 1, .., n) with the smallest number of 
variables and the smallest lexicographical order (for strategy IncLex) or the smallest 
association with T (for strategy IncMinAssoc) or the largest association with T (for 
strategy IncMaxAssoc) such that:  

iGG ⊃ , *
jGG ⊇/ , and kGG =/  for j =1, …, m and k =1, …, n. 

 
Figure 13: Strategies IncLex, IncMinAssoc, and IncMaxAssoc to generate subsets of variables 
that have to be removed from V to identify new Markov boundaries of T. “Inc” in the name of the 
strategy stands for incremental generation of subsets; “Lex” stands for lexicographical order; 
“MinAssoc” stands for minimal association with T; and “MaxAssoc” stands for maximal 
association with T. 
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Assume that there is a set W that is a Markov boundary of T in the original distribution 

and it is not output by TIE* because G'': G'' ⊃ G' was not generated. 

• Since W is a Markov blanket of T in the original distribution and Mnew is not, Theorem 1 

implies that performance of a learning algorithm L that can approximate any probability 

distribution for prediction of T measured by metric M that is maximized only when P(T | 

V \ {T}) is estimated accurately is larger for W than for Mnew. 

• Since W satisfies WWV |}){\\( TT ⊥  by the definition of Markov blanket, 

decomposition property implies that WGWV |})'\{\\( TT ⊥ , i.e. W similarly to Mnew 

is a Markov blanket of T in the embedded distribution after removal of G'. Therefore by 

Theorem 1, performance of a learning algorithm L that can approximate any probability 

distribution for prediction of T measured by metric M that is maximized only when P(T | 

V \ {T}) is estimated accurately should be the same for W and Mnew. 

The above two points are contradictory, thus W does not exist. (Q.E.D.) 

 

On the choice of admissible input components for TIE*  

The above subsections presented several examples of admissible input components for 

the TIE* algorithm that satisfy rules given in Figure 6. I would like to reiterate that the input 

components are selected to be suitable for the distribution in hand and should satisfy admissibility 

rules for correctness of the TIE* algorithm. 

If the underlying distribution satisfies the local composition property, then IAMB can be 

used as an admissible Markov boundary learner (input component X). If the distribution satisfies 

a relaxed version of the faithfulness and other assumptions of Theorem 9, then HITON-PC can be 

used. Many other Markov boundary learners can also be proven admissible given specific 

distributional assumptions. The next chapter presents empirical results of using a Markov 

boundary learner that does not require faithfulness assumption. 
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The choice of the strategy to generate subsets of variables that have to be removed to 

identify new Markov boundaries (input component Y) is also dependent on the distribution. In 

general, the admissible strategies outlined in Figure 13 should be suitable for all distributions, but 

they are not necessarily the most computationally efficient ones. For example, in some 

distributions it may be sufficient to consider only subsets of the Markov boundary M that is 

discovered in line 1 of the TIE* algorithm. For other distributions, it may be sufficient to consider 

subsets of variables limited up to certain size. Other distributions may also require for additional 

computational efficiency removal of subsets that are not limited to the Markov boundary 

members. 

Finally, the criterion for verification of Markov boundaries (input component Z) has also 

to be selected for the distribution in hand. I outlined and proved admissibility for two such 

criteria: one uses conditional independence tests (Figure 11) and the other applies a learning 

algorithm and assesses predictivity using a formal statistical test (Figure 12). The choice between 

these two criteria can be dictated by available sample size, size of the Markov boundaries, 

difficulty of the learning problems, and so on. Other domains may also require use of different 

verification criteria. 

 

On the computational complexity of TIE* 

The computational complexity of the TIE* algorithm depends both on the specific 

instantiations of the input components (X, Y, Z) and on the underlying distribution. One of the 

most computationally expensive steps of TIE* is learning Markov boundaries (i.e., using input 

component X). In the above subsections, I have described two Markov boundary learning 

algorithms, IAMB (Figure 8) and HITON-PC (Figure 9). The computational complexity of these 

algorithms is usually measured by the number of conditional independence tests. The average-

case complexity of IAMB is O(|V||M|), and the complexity of HITON-PC is O(|V|2|M|), where 
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|V| is the number of variables in the dataset and |M| is the number of variables in the tentative 

Markov boundary which is typically of the same order as the number of variables in the true 

Markov boundary. Assuming that there are t true Markov boundaries in the distribution, that each 

of them has |M| variables, and that it takes TIE* O(t) runs of the Markov boundary learner to find 

these Markov boundaries, the overall computational complexity of TIE* is O(t|V||M|) and 

O(t|V|2|M|) conditional independence tests when using IAMB and HITON-PC, respectively. The 

above estimates do not take into account computational expenses incurred by using input 

components Y and Z in the TIE* algorithm. However, in practical applications >95-99% of CPU 

time is spent on learning Markov boundaries which justifies use of the above estimates. 
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CHAPTER V 

 

EMPIRICAL EVALUATION IN ARTIFICIAL SIMULATED DATA 

 

Before applying TIE* to real data, I test its behavior in artificially simulated datasets 

where all Markov boundaries (and thus all maximally predictive and non-redundant signatures) 

are known. This allows to test whether the algorithm behaves according to theoretical 

expectations and study its empirical properties. This also provides clues about the behavior of 

TIE* and the baseline comparison algorithms in the experiments with real human microarray 

data. 

Many of the reported experiments involve the following four performance metrics: 

• γ = total number of Markov boundaries output by the algorithm (not necessarily 

correctly);  

• ω = number of Markov boundaries that were correctly discovered (relative to the gold 

standard) with no false negative variables but with possible false positive (redundant) 

variables; 

• φ = average number of false positive variables in discovered Markov boundaries that 

were used for computation of ω; 

• δ = penalized proportion of discovered Markov boundaries that is computed as follows: 

For every true Markov boundary iΘ  (i = 1, …, N), find a Markov boundary output by the 

algorithm that maximizes the product of sensitivity and specificity for identification of 

this true Markov boundary: ⎟
⎟
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α , where 

Mk is a Markov boundary output by the algorithm. Once such Markov boundary is 
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identified, it is not considered again for computation of iα  for the next true Markov 

boundary. Finally, δ is defined as ∑
=

N

i
iN 1

1 α . 

 

Experiments with discrete networks TIED1 and TIED2 
 

There are two goals of the experiments reported in this section: (i) to analyze behavior of 

the TIE* algorithm as a function of sample size using data generated from a discrete network 

(experiment 1) and (ii) to compare TIE* to state-of-the-art algorithms and examine sensitivity of 

the tested methods to high dimensionality (experiment 2). 

Two discrete networks denoted as TIED1 and TIED2 were constructed with 30 and 1,000 

variables, respectively. Both networks have the same 72 Markov boundaries. The details about 

network structure and parameterization are provided in Appendix D. 

The following instantiation of the TIE* algorithm was used in experiments. It can be 

described by a tuple of input components (X, Y, Z): 

• X (Markov boundary algorithm) = HITON-PC that uses G2 test with α = 0.05 (Figure 

9); 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13); 

• Z (criterion to verify Markov boundaries) = Independence that uses G2 test with α = 0.05 

(Figure 11). 

In experiment 2, eight state-of-the-art algorithms were used to compare to TIE* as 

described in Appendix G. 

Experiment 1: This experiment involved running TIE* to discover all Markov 

boundaries of T in training datasets of different sample sizes generated from the TIED1 network. 

Ten samples of each size were used to reduce variability in the reported results.  
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As can be seen in Table 1, the algorithm identifies all 72 true Markov boundaries with 

very few false positive variables and with ~30 false positive Markov boundaries when the sample 

size is 500; and when the sample size is ≥ 1,000 the algorithm outputs all 72 true Markov 

boundaries exactly. In fact, even when the sample size is 750, the algorithm does not make any 

errors in its output (data not shown).  

Experiment 2: This experiment involved running TIE* and baseline comparison 

algorithms to discover all Markov boundaries of T (i.e., maximally predictive and non-redundant 

signatures) in two training datasets with 750 samples each, generated from TIED1 and TIED2 

networks. Once variables that participate in the signatures were identified, a one-versus-rest 

multicategory linear SVM classifier (Schölkopf et al., 1999; Vapnik, 1998) was trained in the 

training dataset and tested in the non-overlapping 3,000 sample independent validation dataset. 

The predictive performance was measured by the weighted accuracy metric (Guyon et al., 2006). 

Tables 2 and 3 present results of the experiment. The following are observed: (i) TIE* 

perfectly identifies all 72 true Markov boundaries (maximally predictive and non-redundant 

signatures) in the datasets with either 30 or 1,000 variables; (ii) Iterative Removal identifies only 

1 signature because all other signatures have common variables and thus cannot be detected by 

this method; (iii) KIAMB fails to identify any true signature due to its sample inefficiency, and 

because of the same reason its signatures have poor predictivity; (iv) resampling-based methods 

either miss many true signatures and/or output many redundant variables in the signatures. 

Metric 
Sample size 

200 300 500 1000 2000 5000 
γ 43.2 21.6 101.2 72 72 72 
ω 21.6 16.2 72 72 72 72 
φ 4.4 3 0.1 0 0 0 
δ 0.391 0.208 0.996 1 1 1 

 
Table 1: Results of experiment 1 with artificial dataset from TIED1 network. Performance 
metrics are averaged over 10 samples of each size. 72 true Markov boundaries (i.e., maximally 
predictive and non-redundant signatures) exist in this distribution. 
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Method 

Total 
number of 

output 
signatures

(γ) 

Number 
of 

variables 
in an 

average 
output 

signature

Number of Markov 
boundaries (i.e., true 

signatures) 

Average 
number of 
redundant 
variables in 

identified true 
signatures 

(φ) 

Average 
predictive 

performance 
in validation 

data 

CPU 
time in 
minutesidentified 

exactly 

identified 
with 

redundant 
variables 

(ω) 

TIE* 72 5.00 72 72 0.00 0.957 0.46 

Iterative Removal 3 5.67 0 1 2.00 0.959 0.04 

KIAMB1 5000 2.82 0 0 N/A 0.798 285.42

KIAMB2 5000 2.81 0 0 N/A 0.796 285.45

KIAMB3 5000 2.80 0 0 N/A 0.796 285.48

Resampling+Univariate1 5000 11.10 0 72 12.29 0.942 5999.64

Resampling+Univariate2 5000 5.58 0 0 N/A 0.934 6000.41

Resampling+RFE1 5000 8.70 0 72 6.38 0.952 6235.28

Resampling+RFE2 5000 4.24 0 29 5.76 0.947 6235.93
 
Table 3: Results of experiment 2 with artificial dataset from TIED2 network (with 1,000 
variables). 72 true Markov boundaries (i.e., maximally predictive and non-redundant signatures) 
exist in this distribution. The predictive performance is measured by the weighted accuracy
metric.  

Method 

Total 
number of 

output 
signatures

(γ) 

Number of 
variables 

in an 
average 
output 

signature

Number of Markov 
boundaries (i.e., true 

signatures) 

Average 
number of 
redundant 
variables in 

identified true 
signatures 

(φ) 

Average 
predictive 

performance 
in validation 

data 

CPU 
time in 
minutesidentified 

exactly 

identified 
with 

redundant 
variables 

(ω) 

TIE* 72 5.00 72 72 0.00 0.951 0.39 

Iterative Removal 3 4.67 0 1 1.00 0.946 0.01 

KIAMB1 5000 2.83 0 0 N/A 0.776 11.55 

KIAMB2 5000 2.82 0 0 N/A 0.772 11.69 

KIAMB3 5000 2.81 0 0 N/A 0.774 11.62 

Resampling+Univariate1 5000 17.87 0 72 12.00 0.949 84.56 

Resampling+Univariate2 5000 7.54 0 25 12.12 0.924 85.50 

Resampling+RFE1 5000 14.25 0 72 5.01 0.954 78.71 

Resampling+RFE2 5000 5.80 1 44 4.25 0.939 79.26 
 
Table 2: Results of experiment 2 with artificial dataset from TIED1 network (with 30 variables). 
72 true Markov boundaries (i.e., maximally predictive and non-redundant signatures) exist in this 
distribution. The predictive performance is measured by the weighted accuracy metric. The 
optimal Bayes classification performance is 0.9663 (weighted accuracy). 
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Experiments with linear continuous network LIND 
 

There are two goals of the experiments reported in this section: (i) to analyze behavior of 

the TIE* algorithm as a function of sample size using data generated from a continuous network 

and (ii) to compare criteria Independence (Figure 11) and Predictivity (Figure 12) for verification 

of Markov boundaries in the TIE* algorithm. 

A continuous network denoted as LIND was constructed with 41 variables. There are 12 

Markov boundaries in the network. The details about network structure and parameterization are 

provided in Appendix E. 

The following two instantiations of the TIE* algorithm were used in experiments. They 

can be described by tuples of input components (X, Y, Z1) and (X, Y, Z2), respectively: 

• X (Markov boundary algorithm) = HITON-PC (Figure 9) that uses Fisher’s Z test with α 

= 0.05; 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13); 

• Z1 (criterion to verify Markov boundaries) = Independence (Figure 11) that uses G2 test 

with α = 0.05; 

• Z2 (criterion to verify Markov boundaries) = Predictivity (Figure 12) that uses: 

o L = linear SVM classifier (Vapnik, 1998); 

o M = area under ROC curve (AUC) performance metric (Fawcett, 2003); 

o E = holdout validation performance estimator; 

o C = nonparametric method to compare estimates of AUC with α = {0.1, 0.05, 

0.01, 0.005, 0.001} (DeLong et al., 1988). 
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γ 
Sample  

size  

Criterion 
Independence 

(Z1) 

Criterion Predictivity (Z2) with α for Delong’s test = 

0.1 0.05 0.01 0.005 0.001 

200 10.4 26.7 36.1 56.4 64.6 77.4 
300 11.7 24.3 27.9 39.4 47.3 63.6 
500 10.8 12.3 15.6 20.6 24.8 40.7 

1000 11.1 10.2 12 12 12 16.3 
    ω      

Sample 
size  

Criterion 
Independence 

(Z1) 

Criterion Predictivity (Z2) with α for Delong’s test = 

0.1 0.05 0.01 0.005 0.001 

200 10.4 10.8 11.4 11.4 11.4 11.4 
300 11.4 11.4 12 12 12 12 
500 10.8 10.5 12 12 12 12 

1000 11.1 10.2 11.4 11.4 11.4 12 
     φ       

Sample 
size  

Criterion 
Independence 

(Z1) 

Criterion Predictivity (Z2) with α for Delong’s test = 

0.1 0.05 0.01 0.005 0.001 

200 0.09 0.05 0.05 0.05 0.05 0.05 
300 0.33 0.25 0.25 0.25 0.25 0.25 
500 0.15 0.1 0.1 0.1 0.1 0.1 

1000 0 0 0 0 0 0 

       δ       

Sample 
size  

Criterion 
Independence 

(Z1) 

Criterion Predictivity (Z2) with α for Delong’s test = 

0.1 0.05 0.01 0.005 0.001 

200 0.81 0.93 0.99 0.99 0.99 0.99 
300 0.93 0.98 1 1 1 1 
500 0.85 0.84 1 1 1 1 

1000 0.89 0.81 0.94 0.94 0.94 1 
 
Table 4: Results of experiments with artificial dataset from LIND network (with 41 variables). 
Performance metrics are averaged over 10 samples of each size. 12 true Markov boundaries (i.e., 
maximally predictive and non-redundant signatures) exist in this distribution. 
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Both instantiations of the TIE* algorithm were run to discover all Markov boundaries of 

T in training datasets of different sample sizes generated from the LIND network. Ten samples of 

each size were used to reduce variability in the reported results. 

Table 4 shows results of the experiments. The following are observed: (i) as sample size 

increases, the performance of both instantiations of TIE* (as measured by ω and φ) generally 

improves and the algorithms discover up to 11 or 12 (all) true Markov boundaries; (ii) the α-level 

in the criterion Predictivity significantly affects the number of Markov boundaries output by the 

TIE* algorithm: the smaller is α, the more Markov boundaries are output; (iii) TIE* with the 

criterion Predictivity typically leads to a larger number of output Markov boundaries than with 

the criterion Independence; (iv) TIE* with the criterion Predictivity in most cases and on average 

leads to superior performance (as measured by ω, φ, and δ) compared to the criterion 

Independence.  

The latter finding suggests use of TIE* with the criterion Predictivity in experiments with 

microarray gene expression data, especially given that the criterion Independence may be based 

on unreliable statistical tests when the sample size is small. 

 

Experiments with discrete network XORD 

The experiments reported in this section seek to evaluate TIE* when popular Markov 

boundary learners such as IAMB (Figure 8) and HITON-PC (Figure 9) are not applicable due to 

violations of their fundamental assumptions. Specifically, the behavior of TIE* is examined when 

the local composition property with respect to response variable T (and thus faithfulness) is 

violated. The generative nature of the TIE* algorithm allows to select and use a Markov boundary 

learner suitable for the distribution in hand. 
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A discrete network denoted as XORD was constructed with 41 variables. There are 25 

true Markov boundaries in the network. The details about network structure and parameterization 

are provided in Appendix F.  

The following instantiation of the TIE* algorithm was used in experiments. It can be 

described by a tuple of input components (X, Y, Z): 

• X (Markov boundary algorithm) = heuristic algorithm SVM-FSMB (Tsamardinos and 

Brown, 2008) that uses HITON-MB (Aliferis et al., 2008a) with G2 test and α = 0.05 in 

the SVM feature space; 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13); 

• Z (criterion to verify Markov boundaries) = Predictivity (Figure 12) that uses: 

o L = polynomial SVM classifier of degree 3 (Vapnik, 1998); 

o M = area under ROC curve (AUC) performance metric (Fawcett, 2003); 

o E = holdout validation performance estimator; 

o C = nonparametric method to compare estimates of AUC with α = 0.14 (DeLong 

et al., 1988). 

TIE* was run to discover all Markov boundaries of T in training datasets of different 

sample sizes generated from the XORD network. Ten samples of each size were used to reduce 

variability in the reported results. 

Table 5 reports results of the experiments. The following are observed: (i) TIE* can 

discover all 25 true Markov boundaries when the sample is ≥ 2,000; (ii) there is ~1 false positive 

variable in each discovered Markov boundary for large sample sizes; (iii) TIE* discovers only 

                                                 
4 I experimented with several α-levels {0.1, 0.05, 0.01, 0.005, 0.001} for the Delong’s test. The results appear to be 
insensitive to the choice of α-level, and thus I report results only for a single α-level. The reason for this insensitivity is 
dramatic difference of observed classification AUC’s: e.g. when a true Markov blanket is discovered its AUC ≈ 1, 
otherwise AUC ≈ 0.5. 
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one Markov boundary with the smallest number of variables {X9, X10, X11} when sample size is 

300 due to inability of SVM-FSMB to output more Markov boundaries for that sample size. 

 

 

 Metric 
Sample size 

300 500 1000 2000 5000 

γ 1 1.2 9.3 58.7 43 
ω 1 1.2 5.2 25 25 
φ 0 0.13 0.33 1.11 0.58 
δ 0.04 0.05 0.23 1 1 

 
Table 5: Results of experiments with artificial dataset from XORD network. Performance metrics 
are averaged over 10 samples of each size. 25 true Markov boundaries (i.e., maximally predictive 
and non-redundant signatures) exist in this distribution. 
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CHAPTER VI 

 

EMPIRICAL EVALUATION IN RESIMULATED MICROARRAY GENE EXPRESSION 
DATA 

 
 

The experiments in the previous chapter demonstrated excellent empirical properties of 

TIE* in several artificial simulated datasets. However, one can argue that these distributions may 

be different from real microarray gene expression data. Therefore, I extend evaluation of the TIE* 

algorithm to resimulated microarray gene expression data that by design closely resembles real 

microarray data. The knowledge of a generative model for this dataset allows to generate 

arbitrary large samples from the distribution and study the behavior of TIE* as a function of 

sample size. However, unlike the experiments with the artificial simulated datasets, all maximally 

predictive and non-redundant signatures are not known. 

There are five goals of the experiments reported in this chapter: (i) to examine whether 

the signature multiplicity phenomenon vanishes as the sample size grows (experiment 1); (ii) to 

assess stability of TIE* to the initial signature M that is obtained in line 1 of the algorithm 

(experiment 2); (iii) to experiment with several wrapping strategies as an additional post-

processing step for the TIE* signatures in order to increase their number and maximize their 

parsimony (experiment 3); (iv) to compare TIE* with baseline algorithms (also experiment 3); 

and (v) to examine the relative contribution of other signatures to the ones output by TIE* (also 

experiment 3). 

A resimulated gene expression network with 1,000 variables (999 genes and a phenotypic 

response variable) was reverse-engineered and the data was generated as described in Appendix 

H.  
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The following instantiation of the TIE* algorithm was used in experiments. It can be 

described by a tuple of input components (X, Y, Z): 

• X (Markov boundary algorithm) = HITON-PC (Figure 9) that uses Fisher’s Z test with α 

= 0.05; 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13) with the maximum size of subset G 

limited to 5 genes (in experiments 1 and 3) or 4 genes (in experiment 2)5.  

• Z (criterion to verify Markov boundaries) = Predictivity (Figure 12) that uses: 

o L = linear SVM classifier (Vapnik, 1998); 

o M = area under ROC curve (AUC) performance metric (Fawcett, 2003); 

o E = holdout validation performance estimator; 

o C = nonparametric method to compare estimates of AUC with α = 0.1 (DeLong 

et al., 1988). 

In experiment 3, eight state-of-the-art algorithms were used to compare to TIE* as 

described in Appendix G. 

 Experiment 1: TIE* was applied to resimulated gene expression data with sample sizes: 

300, 450, …, 1,500, 2,250, 3,000, … 30,000. The number of unique signatures and the number of 

unique non-reducible6 signatures discovered by the algorithm for each sample size is shown in 

Figure 14. The discovered signatures were maximally predictive of T as confirmed by holdout 

validation. As sample size increases, the number of output signatures drops but then remains 

constant in the range 160-644 (or 53-279 for non-reducible signatures) for datasets with ≥ 4,500 

samples. This shows the existence of at least two sources of multiplicity: one is small sample size 

                                                 
5 Note that this can lead to recovery of only a fraction of all maximally predictive and non-redundant signatures while 
making the experiments computationally feasible. 
6 A signature is called non-reducible if it is not properly included in any other output signature (i.e., it is a proxy of 
having no redundant genes). For example, if a method outputs 3 signatures with the following genes: {A, B, C}, {A, B, 
X}, and {A, B}, only signature {A, B} is non-reducible.  
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and the other is multiplicity intrinsic to gene-gene and gene-phenotype relations. As sample size 

grows, the first source vanishes and only the second one remains. Since the resimulated data 

distribution closely resembles the real-life distribution (see Appendix H), this experiment 

supports the hypothesized existence of multiple signatures in very large samples (>10,000) 

contrary to the theoretical model of (Ein-Dor et al., 2006). 

 It is also worthwhile to note that the resimulated network from this experiment was 

obtained from real microarray data using methods that rely on the faithfulness assumption and 

therefore induce only a single local neighborhood for each variable. Thus, the true multiplicity of 

signatures may be much larger than the results presented in Figure 14. 

 

 
Figure 14: Number of maximally predictive signatures output by TIE* as sample size grows. The
inner figure is a magnified region of the main figure.  
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 Experiment 2: In this experiment TIE* was first applied to a sample of the size 1,000 to 

discover all maximally predictive and non-redundant signatures. The majority of discovered 

signatures contained 9-13 genes, and the initial signature M that is obtained in line 1 of the 

algorithm contained 12 genes. For each of the five most common sizes of signatures {9, 10, 11, 

12, 13} five signatures (“seeds”) were randomly selected from the output of TIE*. These seed 

signatures were then used in TIE* instead of the initial signature M (i.e., TIE* algorithm was 

rerun for each seed signature starting from line 2). The above experiment was repeated on five 

samples of the size 1,000 to minimize variability in the reported results.  

 In Table 6 I assess stability of TIE* to the choice of initial signature M by computing a 

proportion of signatures output by TIE* run with the seed signature that belong to the output of 

TIE* run with the initial signature M (I denote this proportion by λ). As can be seen, TIE* 

exhibits exceptional stability, therefore the choice of seed signature does not affect the output of 

the algorithm. This is a very important finding because Markov boundary algorithms such as 

HITON-PC and IAMB guarantee to output a maximally predictive and non-redundant signature 

which can potentially be any of such multiple signatures that exist in the distribution. 

 

 Experiment 3: This experiment first involved running TIE* and baseline comparison 

algorithms to discover all maximally predictive and non-redundant signatures in five samples of 

Metric λ 
Size of seed signature 

9 10 11 12 13 

average  99.32% 99.54% 99.51% 99.44% 99.52% 

min  97.69% 98.60% 98.33% 98.20% 98.21% 

max  100.00% 100.00% 100.00% 100.00% 100.00% 
 
Table 6: Analysis of stability of TIE* to the choice of initial signature M. Metric λ denotes a 
proportion of signatures output by TIE* run with the seed signature that belong to the output of 
TIE* run with the initial signature M. The reported values of metric λ are first averaged over 5 
seed signatures of each size and then either averaged or minimized or maximized over 5 samples 
as shown in the table. 



44 
 

sizes {200, 300, 500, 1,000} each. Once TIE* has output signatures, they were post-processed 

with one of the following three wrapping strategies (Kohavi and John, 1997): 

• Wrapping1: For each output TIE* signature, sort its genes by univariate association with 

response variable and perform backward wrapping to create a new signature. Output 

unique signatures; 

• Wrapping2: For each output TIE* signature, sort its genes randomly and perform 

backward wrapping to create a new signature. Output unique signatures; 

• Wrapping3: For each output TIE* signature, sort its genes randomly 50 times and 

perform backward wrapping for each random ordering to create new signatures. Output 

unique signatures. 

The above three wrapping procedures give rise to the methods denoted as TIE* + 

Wrapping1, TIE* + Wrapping2, and TIE* + Wrapping3, respectively. Once genes that constitute 

the signatures were identified, a linear SVM classifier (Vapnik, 1998) was trained and tested by 

holdout validation. The predictive performance was measured by area under ROC curve (AUC) 

metric (Fawcett, 2003). 

The results for the total number of unique signatures, number of genes in an average 

signature, and average holdout validation predictive performance of signatures output by each 

algorithm are provided in Tables 7, 8, and 9, respectively. As can be seen: (i) all wrapping 

strategies applied to TIE* result in more parsimonious signatures at the expense of a slight 

decrease of predictive performance that is not statistically significant in each dataset; (ii) TIE* + 

Wrapping3 results in more signatures compared with TIE* when the sample size is ≥ 500; and 

(iii) all other methods typically output signatures that are either less parsimonious and/or have 

inferior predictive performance. 

The remainder of this experiment is devoted to assessing the value of other signatures 

relative to the ones output by TIE* or TIE*+Wrapping. All unique signatures output by tested 

methods were considered. The signatures that have statistically maximal predictive performance 
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and that are also non-reducible relative to all output signatures were denoted as “positives”. All 

other signatures were denoted as “negatives”. This allowed computation of sensitivity and 

specificity for each algorithm.  

The results for TIE* + Wrapping1, TIE* + Wrapping2, TIE* + Wrapping3 for sample 

size 1,000 are reported in Tables 10, 11, 12 respectively. As can be seen: (i) all TIE* algorithms 

are much closer to the point with sensitivity = 1 and specificity = 1 than other non-TIE* methods; 

(ii) TIE* + Wrapping1 maximizes specificity (=0.99) while having sensitivity (=0.77) superior to 

other methods; (iii) TIE* + Wrapping3 maximizes sensitivity (=0.99) and has very good 

specificity (=0.64); and (iv) TIE* + Wrapping2 simultaneously achieves excellent sensitivity 

(=0.96) and specificity (=0.94). 

These findings suggest that signatures output by tested non-TIE* methods are either 

redundant or have inferior predictivity compared to signatures output by TIE* techniques. In 

general, use of wrapping algorithms on top of TIE* signatures may not be needed if (i) the sample 

size is large enough for conditional independence tests to be reliable (otherwise a Markov 

boundary learner may include redundant variables in its output as demonstrated in Appendix J) 

and (ii) the predictive performance metric is maximized only when P(T | V \ {T}) is estimated 

accurately.  
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Algorithm 
Sample size 

200 300 500 1000 
TIE* 6.92 7.78 9.99 10.85 
TIE* + Wrapping1 1.42 1.53 2.68 4.09 
TIE* + Wrapping2 1.65 1.83 3.21 4.47 
TIE* + Wrapping3 3.02 3.54 4.89 6.13 
Iterative Removal 7.33 7.73 11.6 12.2 
Resampling + RFE1 15.4 15.66 16.47 36.32 
Resampling + RFE2 1.86 2.26 2.38 4.48 
Resampling + UAF1 19.35 20.09 24.67 55.19 
Resampling + UAF2 1.66 2.15 2.24 4.32 
KIAMB1 21.21 24.18 25.18 31.22 
KIAMB2 12.57 15.16 18.94 24.62 
KIAMB3 7.2 9.57 11.89 18.01 

 
Table 8: Number of genes in an average signature output by algorithms (averaged over 5 
samples). 

Algorithm Sample size 
200 300 500 1000 

TIE* 796 1180.8 2957.6 3926.2 
TIE* + Wrapping1 22.4 61.6 129.8 300.8 
TIE* + Wrapping2 102.6 204.2 763.6 1365.8 
TIE* + Wrapping3 326.2 614.6 3090.2 7148 
Iterative Removal 2.2 2.2 1 1 
Resampling + RFE1 3260.8 3503.6 3468 4505.6 
Resampling + RFE2 663.4 732.4 537.8 1207.2 
Resampling + UAF1 2313.2 2444.6 2361.6 3136.4 
Resampling + UAF2 328 322 201.2 377.6 
KIAMB1 1151.6 1107.4 655.8 420.6 
KIAMB2 182.8 224.6 208.6 139 
KIAMB3 14.2 27.2 34 28.6 

 
Table 7: Total number of unique signatures output by algorithms (averaged over 5 samples). 
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Algorithm Sensitivity Specificity Distance 

TIE* + Wrapping1 0.77 0.99 0.23 
Iterative Removal 0.00 1.00 1.00 
Resampling + RFE1 0.02 0.53 1.09 
Resampling + RFE2 0.26 0.88 0.75 
Resampling + UAF1 0.01 0.68 1.04 
Resampling + UAF2 0.05 0.96 0.95 
KIAMB1 0.00 0.96 1.00 
KIAMB2 0.00 0.99 1.00 
KIAMB3 0.00 1.00 1.00 

 
Table 10: Comparison of TIE* + Wrapping1 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and specificity = 1 
in the ROC space) for detection of the set of maximally predictive and non-redundant signatures. 
The reported results are averaged over 5 samples of size 1,000.  

Algorithm 
Sample size 

200 300 500 1000 
TIE* 0.985 0.988 0.997 0.999 
TIE* + Wrapping1 0.929 0.930 0.968 0.988 
TIE* + Wrapping2 0.920 0.920 0.967 0.987 
TIE* + Wrapping3 0.927 0.927 0.969 0.988 
Iterative Removal 0.986 0.971 1.000 1.000 
Resampling + RFE1 0.975 0.984 0.992 0.999 
Resampling + RFE2 0.908 0.919 0.942 0.984 
Resampling + UAF1 0.964 0.977 0.991 0.999 
Resampling + UAF2 0.908 0.930 0.942 0.985 
KIAMB1 0.987 0.993 0.998 0.999 
KIAMB2 0.978 0.994 0.998 0.999 
KIAMB3 0.982 0.994 0.997 0.999 

 
Table 9: Average holdout validation predictive performance (AUC) of signatures output by 
algorithms (averaged over 5 samples). 
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Algorithm Sensitivity Specificity Distance 

TIE* + Wrapping3 0.99 0.64 0.36 
Iterative Removal 0.00 1.00 1.00 
Resampling + RFE1 0.00 0.69 1.04 
Resampling + RFE2 0.03 0.92 0.98 
Resampling + UAF1 0.00 0.79 1.02 
Resampling + UAF2 0.00 0.98 1.00 
KIAMB1 0.00 0.97 1.00 
KIAMB2 0.00 0.99 1.00 
KIAMB3 0.00 1.00 1.00 

 
Table 12: Comparison of TIE* + Wrapping3 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and specificity = 1 
in the ROC space) for detection of the set of maximally predictive and non-redundant signatures. 
The reported results are averaged over 5 samples of size 1,000.  

Algorithm Sensitivity Specificity Distance 

TIE* + Wrapping2 0.96 0.94 0.07 
Iterative Removal 0.00 1.00 1.00 
Resampling + RFE1 0.01 0.55 1.09 
Resampling + RFE2 0.07 0.88 0.94 
Resampling + UAF1 0.00 0.69 1.04 
Resampling + UAF2 0.01 0.96 0.99 
KIAMB1 0.00 0.96 1.00 
KIAMB2 0.00 0.99 1.00 
KIAMB3 0.00 1.00 1.00 

 
Table 11: Comparison of TIE* + Wrapping2 with all other non-TIE* methods in terms of 
sensitivity, specificity, and Euclidian distance (from point with sensitivity = 1 and specificity = 1 
in the ROC space) for detection of the set of maximally predictive and non-redundant signatures. 
The reported results are averaged over 5 samples of size 1,000.  
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CHAPTER VII 

 

EMPIRICAL EVALUATION IN REAL HUMAN MICROARRAY GENE EXPRESSION 
DATA 

 
 

The results of experiments in several simulated artificial datasets and the resimulated 

microarray dataset described in the previous two chapters showcase excellent empirical 

performance of the TIE* algorithm and its advantages over state-of-the-art methods. In the 

current chapter I extend the evaluation of multiple signature extraction methods to real human 

microarray gene expression data where maximally predictive and non-redundant signatures are 

not known a priori, and the data generative functions are not known as well. The major emphasis 

of this chapter are independent-dataset experiments than involve two microarray datasets either 

from different laboratories or different platforms; one is used for discovery of signatures and 

another is used for their validation. Even though evaluation of multiple signature extraction 

methods using independent-dataset design can be considered convincing by many practitioners, it 

is challenging due to potential differences in sample populations between the two datasets. That is 

why I also included experiments with relatively large sample size microarray datasets that can be 

used both for discovery and validation of signatures. 

 

Independent-dataset experiments 

The primary goal of experiments reported in this section is to compare TIE* and baseline 

algorithms for extraction of multiple signatures in terms of maximal predictivity of induced 

signatures and reproducibility in independent data. Operationally, I define maximal predictivity 

(classification performance) for each dataset as follows: I apply all tested methods for extraction 

of multiple signatures to some dataset; then for each method I compute average predictivity of the 

phenotype (over all identified signatures by this method) measured by area under ROC curve; 
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finally I compute the maximum value of the above average predictivity estimates and refer to it as 

maximal predictivity. 

In these experiments, I adopted an independent-dataset design where one microarray 

dataset (“discovery dataset”) was used for identification of signatures and estimation of their 

predictivity by holdout validation, and another independent dataset (“validation dataset”) 

originating either from a different laboratory or from a different microarray platform was used 

for validation of predictivity of the signatures. No overlap of samples between discovery and 

validation dataset analyses occurs in this design. The criteria for dataset admissibility and 

protocol for quality assurance and processing of pairs of datasets are described in Appendix I. In 

total, 6 pairs of gene expression microarray datasets covering both human cancer diagnosis and 

clinical outcome prediction were used (listed in Table 13).  

The following instantiation of the TIE* algorithm was used in experiments. It can be 

described by a tuple of input components (X, Y, Z): 

• X (Markov boundary algorithm) = HITON-PC (Figure 9) that uses Fisher’s Z test with α 

= 0.05; 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13) with the maximum size of subset G 

limited to 5 genes. 

• Z (criterion to verify Markov boundaries) = Predictivity (Figure 12) that uses: 

o L = linear SVM classifier (Vapnik, 1998); 

o M = area under ROC curve (AUC) performance metric (Fawcett, 2003); 

o E = holdout validation performance estimator; 

o C = nonparametric method to compare estimates of AUC with α = 0.1 (DeLong 

et al., 1988). 



 

Task 
Discovery dataset Validation dataset Number 

of 
common 

genes Reference Sample 
size 

Samples per 
class 

Number 
of genes

Microarray 
platform Reference Sample 

size 
Samples per 

class 
Number 
of genes 

Microarray 
platform 

Lung Cancer Diagnosis: lung 
tumors vs. normals (non-tumor lung 
samples) 

(Bhattacharjee 
et al., 2001) 203 

lung tumors 
(186) 
normals (17) 

12600 Affymetrix 
U95A 

(Beer et al., 
2002) 96 

lung tumors 
(86) 
normals (10) 

7129 Affymetrix 
HuGeneFL 7094 

Lung Cancer Subtype 
Classification: adenocarcinoma vs. 
squamous cell carcinoma lung 
tumors 

(Bhattacharjee 
et al., 2001) 160 

adenocarcinoma 
(139) 
squamous (21) 

12600 Affymetrix 
U95A 

(Su et al., 
2001) 28 

adenocarcinoma 
(14) 
squamous (14) 

12533 Affymetrix 
U95A 12533 

Breast Cancer Subtype 
Classification: estrogen receptor 
positive (ER+) vs. ER- breast 
tumors; untreated patients 

(Wang et al., 
2005) 286 ER+ (209) 

ER- (77) 22283 Affymetrix 
U133A 

(Sotiriou et 
al., 2006) 119 ER+ (85) 

ER- (34) 22283 Affymetrix 
U133A 22283 

Breast Cancer 5 Yr. Prognosis: 
ER+ patients who developed distant 
metastases within 5 years (poor 
prognosis) vs. ones who did not 
(good prognosis) 

(Wang et al., 
2005) 204 

poor prognosis 
(66) 
good prognosis 
(138) 

22283 Affymetrix 
U133A 

(Sotiriou et 
al., 2006) 72 

poor prognosis 
(13) 
good prognosis 
(59) 

22283 Affymetrix 
U133A 22283 

Glioma Subtype Classification: 
grade III vs. grade IV glioma tumors 

(Phillips et al., 
2006) 100 grade III (24) 

grade IV (76) 22283 Affymetrix 
U133A 

(Freije et al., 
2004) 85 grade III (26) 

grade IV (59) 22283 Affymetrix 
U133A 22283 

Leukemia 5 Yr. Prognosis: patients 
with disease-free survival < 5 years 
(ones who had relapse or competing 
events within 5 years) vs. > 5 years 

(Yeoh et al., 
2002) 164 

survival < 5 yr. 
(29) 
survival > 5 yr. 
(135) 

12625 Affymetrix 
U95A 

(Ross et al., 
2003) 79 

survival < 5 yr. 
(18) 
survival > 5 yr. 
(61) 

22283 Affymetrix 
U133A 10507 

 
Table 13: Gene expression microarray datasets that were used in independent-dataset experiments. 
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Table 14 (continued on the next page): Results for the number of output signatures
(total/unique/unique and non-reducible), number of genes in a signature, and phenotypic
classification performance in discovery and validation microarray datasets for independent-
dataset experiments. The length of highlighting corresponds to magnitude of the metric (number
of genes in a signature or classification performance) relative to other multiple signature
extraction methods. The 95% intervals correspond to the observed [2.5 - 97.5] percentile interval
over multiple signatures discovered by the method. Uniqueness and non-reducibility of each
signature is assessed relative to the corresponding signature extraction method. 

 Lung Cancer Diagnosis

mean 95% interval mean 95% interval mean 95% interval
TIE* 348/348/187 6 [4 - 8] 0.999 [0.994 - 1.000] 0.998 [0.988 - 1.000]
Resampling+SVM-RFE1 5000/2966/48 9 [1 - 43] 0.987 [0.919 - 1.000] 0.989 [0.949 - 1.000]
Resampling+SVM-RFE2 5000/341/61 1 [1 - 2] 0.967 [0.861 - 1.000] 0.962 [0.633 - 1.000]
Resampling+Univaria te1 5000/2199/19 19 [1 - 62] 0.99 [0.919 - 1.000] 0.992 [0.949 - 1.000]

Resampling+Univaria te2 5000/294/58 1 [1 - 2] 0.969 [0.861 - 1.000] 0.973 [0.887 - 1.000]
KIAMB1 985/985/985 41 [39 - 42] 0.999 [0.990 - 1.000] 0.995 [0.984 - 1.000]
KIAMB2 1489/1320/1246 48 [12 - 68] 0.999 [0.990 - 1.000] 0.995 [0.978 - 1.000]
KIAMB3 5000/271/157 9 [6 - 15] 0.996 [0.981 - 1.000] 0.997 [0.992 - 1.000]

Iterative Removal 51/51/51 7 [5 - 10] 0.987 [0.919 - 1.000] 0.977 [0.880 - 1.000]

Lung Cancer Subtype Classification

mean 95% interval mean 95% interval mean 95% interval
TIE* 668/668/413 7 [5 - 8] 0.987 [0.973 - 1.000] 0.973 [0.929 - 1.000]
Resampling+SVM-RFE1 5000/4267/20 392 [1 - 5037] 0.98 [0.909 - 1.000] 0.978 [0.888 - 1.000]
Resampling+SVM-RFE2 5000/1206/107 2 [1 - 5] 0.925 [0.650 - 0.985] 0.914 [0.668 - 0.995]
Resampling+Univaria te1 5000/4590/55 528 [1 - 8703] 0.98 [0.903 - 1.000] 0.98 [0.883 - 1.000]
Resampling+Univaria te2 5000/917/81 3 [1 - 6] 0.922 [0.839 - 0.988] 0.916 [0.770 - 0.985]
KIAMB1 994/968/965 26 [24 - 26] 0.986 [0.967 - 1.000] 0.982 [0.923 - 1.000]
KIAMB2 1006/1005/1005 48 [47 - 50] 0.99 [0.973 - 1.000] 0.982 [0.923 - 1.000]
KIAMB3 3520/1364/1209 16 [8 - 31] 0.98 [0.948 - 0.997] 0.982 [0.923 - 1.000]
Iterative Removal 29/29/29 8 [5 - 12] 0.978 [0.867 - 1.000] 0.972 [0.882 - 1.000]

Breast Cancer Subtype Classification

mean 95% interval mean 95% interval mean 95% interval
TIE* 2776/2776/1602 17 [14 - 21] 0.847 [0.824 - 0.873] 0.887 [0.852 - 0.916]
Resampling+SVM-RFE1 5000/4601/22 1627 [1 - 10746] 0.845 [0.821 - 0.888] 0.812 [0.604 - 0.893]
Resampling+SVM-RFE2 5000/2033/65 18 [1 - 135] 0.858 [0.736 - 0.930] 0.761 [0.554 - 0.874]
Resampling+Univaria te1 5000/4122/15 3560 [1 - 22283] 0.857 [0.826 - 0.920] 0.823 [0.771 - 0.877]
Resampling+Univaria te2 5000/794/22 7 [1 - 18] 0.873 [0.754 - 0.930] 0.814 [0.725 - 0.874]
KIAMB1 983/970/960 31 [30 - 32] 0.85 [0.804 - 0.883] 0.68 [0.427 - 0.846]
KIAMB2 994/964/962 28 [27 - 29] 0.85 [0.802 - 0.884] 0.685 [0.418 - 0.850]
KIAMB3 943/570/493 14 [12 - 15] 0.856 [0.786 - 0.884] 0.694 [0.432 - 0.851]
Iterative Removal 34/34/34 19 [14 - 23] 0.833 [0.793 - 0.866] 0.834 [0.720 - 0.899]

Classification performance  (AUC)Number of genes in a 
signature

Number of genes in a 
signature

Method to induce 
multiple  signatures

Number of 
signatures

Number of genes in a 
signature

Method to induce 
multiple  signatures

Number of 
signatures In discovery d ataset In validation dataset

Classification performance  (AUC)
In discovery d ataset

Method to induce 
multiple  signatures

Number of 
signatures

Classification performance  (AUC)
In discovery d ataset In validation dataset

In validation dataset
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Table 14 (continued from the previous page) 

 Breast Cancer 5 Yr. Prognosis

mean 95% interval mean 95% interval mean 95% interval
TIE* 5342/5342/3321 84 [81 - 89] 0.671 [0.658 - 0.686] 0.697 [0.674 - 0.720]
Resampling+SVM-RFE1 5000/4755/42 4687 [2 - 22283] 0.684 [0.541 - 0.746] 0.64 [0.487 - 0.752]
Resampling+SVM-RFE2 5000/3407/350 56 [1 - 404] 0.586 [0.413 - 0.719] 0.598 [0.398 - 0.822]
Resampling+Univaria te1 5000/4002/29 5791 [1 - 22283] 0.685 [0.573 - 0.741] 0.645 [0.468 - 0.801]
Resampling+Univaria te2 5000/2573/139 44 [1 - 162] 0.62 [0.467 - 0.712] 0.628 [0.411 - 0.807]
KIAMB1 986/552/550 14 [14 - 14] 0.596 [0.507 - 0.693] 0.562 [0.399 - 0.716]
KIAMB2 988/969/955 28 [27 - 29] 0.595 [0.482 - 0.708] 0.562 [0.390 - 0.713]
KIAMB3 1182/916/889 23 [12 - 28] 0.596 [0.483 - 0.704] 0.567 [0.394 - 0.724]
Iterative Removal 31/31/31 28 [12 - 82] 0.69 [0.589 - 0.794] 0.606 [0.434 - 0.735]

Glioma Subtype Classification

mean 95% interval mean 95% interval mean 95% interval
TIE* 5753/5753/4588 46 [45 - 53] 0.871 [0.860 - 0.885] 0.844 [0.830 - 0.860]
Resampling+SVM-RFE1 5000/4255/43 301 [2 - 3599] 0.808 [0.630 - 0.915] 0.74 [0.528 - 0.880]
Resampling+SVM-RFE2 5000/2055/126 3 [1 - 13] 0.694 [0.545 - 0.890] 0.637 [0.463 - 0.830]
Resampling+Univaria te1 5000/4751/63 925 [2 - 17022] 0.84 [0.690 - 0.905] 0.818 [0.554 - 0.919]
Resampling+Univaria te2 5000/1926/117 3 [1 - 15] 0.74 [0.495 - 0.900] 0.65 [0.450 - 0.860]
KIAMB1 973/658/654 15 [15 - 15] 0.765 [0.675 - 0.865] 0.71 [0.558 - 0.811]
KIAMB2 974/964/964 30 [29 - 30] 0.781 [0.685 - 0.880] 0.732 [0.610 - 0.832]
KIAMB3 1408/786/746 21 [6 - 30] 0.77 [0.685 - 0.865] 0.728 [0.588 - 0.821]
Iterative Removal 58/58/58 24 [15 - 44] 0.847 [0.744 - 0.921] 0.842 [0.743 - 0.914]

Leukemia 5 Yr. Prognosis

mean 95% interval mean 95% interval mean 95% interval
TIE* 1804/1804/1561 22 [20 - 28] 0.714 [0.647 - 0.805] 0.711 [0.631 - 0.784]
Resampling+SVM-RFE1 5000/4643/158 1984 [1 - 8756] 0.631 [0.422 - 0.741] 0.612 [0.440 - 0.725]
Resampling+SVM-RFE2 5000/2537/570 15 [1 - 92] 0.543 [0.341 - 0.749] 0.55 [0.356 - 0.725]
Resampling+Univaria te1 5000/3897/116 4024 [1 - 10507] 0.649 [0.431 - 0.756] 0.606 [0.419 - 0.717]
Resampling+Univaria te2 5000/2516/465 48 [1 - 329] 0.539 [0.235 - 0.756] 0.529 [0.342 - 0.725]
KIAMB1 988/984/984 31 [29 - 31] 0.515 [0.351 - 0.681] 0.603 [0.445 - 0.735]
KIAMB2 1213/1131/1127 46 [13 - 56] 0.517 [0.341 - 0.687] 0.602 [0.460 - 0.732]
KIAMB3 4485/30/30 7 [6 - 10] 0.438 [0.348 - 0.632] 0.563 [0.530 - 0.760]
Iterative Removal 2/2/2 21 [19 - 23] 0.673 [0.630 - 0.716] 0.652 [0.550 - 0.753]

Number of genes in a 
signature

Classification performance  (AUC)
In discovery d ataset In validation dataset

Number of genes in a 
signature

Classification performance  (AUC)
In discovery d ataset In validation dataset

Number of genes in a 
signature

Classification performance  (AUC)
In discovery d ataset In validation dataset

Method to induce 
multiple  signatures

Number of 
signatures

Method to induce 
multiple  signatures

Number of 
signatures

Method to induce 
multiple  signatures

Number of 
signatures
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Figure 15: Plot of classification performance (AUC) in the validation dataset versus
classification performance in the discovery dataset averaged over 6 pairs of microarray gene
expression datasets. Axes are magnified for better visualization. The classification performance
of a signature produced by HITON-PC (which is included in the output of TIE*) is very similar to
an average signature produced by TIE*. Specifically, the performance of HITON-PC signature in
discovery and validation data is 0.850 and 0.860 AUC, respectively. The performance of an
average TIE* signature in discovery and validation data is 0.848 and 0.850, respectively.  
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Figure 16: Plot of classification performance (AUC) in the validation dataset versus
classification performance in the discovery dataset for each signature output by each method for
the Leukemia 5 yr. Prognosis task. Each dot in the graph corresponds to a signature (SVM
computational model of the phenotype). 
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Eight state-of-the-art algorithms for multiple signature extraction were used to compare 

to TIE* as described in Appendix G. 

The experiments first involved running TIE* and baseline comparison algorithms on 

discovery datasets to identify all maximally predictive and non-redundant signatures and estimate 

their predictivity by holdout validation. Then reproducibility of all identified signatures was 

assessed in independent validation datasets. A linear SVM classifier (Vapnik, 1998) was used in 

all experiments to build signatures from the selected genes. The predictive performance of 

resulting signatures was measured by area under ROC curve (AUC) metric (Fawcett, 2003). 

Statistical comparisons of predictivity between methods in the same dataset were accomplished 

by Wilcoxon rank sum test with α = 0.05 (Hollander and Wolfe, 1999). 

The detailed results of experiments are provided in Table 14. As can be seen, TIE* 

achieves maximal classification performance in 5 out of 6 validation datasets. Non-TIE* methods 

achieve maximal classification performance in 0 to 2 datasets depending on the method. In the 

dataset where TIE* has predictivity that is statistically distinguishable from the empirical 

maximal (Lung Cancer Subtype Classification), the magnitude of this difference is <0.009 AUC 

on average over all discovered signatures, thus this particular deviation from maximal predictivity 

may be considered negligible for most practical purposes. 

 

Task Number of genes common in X% of discovered signatures 
50% 60% 70% 80% 90% 100% 

Lung Cancer Diagnosis 4 0 0 0 0 0 
Lung Cancer Subtype 
Classification 5 0 0 0 0 0 

Breast Cancer Subtype 
Classification 15 11 4 1 0 0 

Breast Cancer 5 Yr. 
Prognosis 85 85 84 84 84 1 

Glioma Subtype 
Classification 48 48 48 47 41 0 

Leukemia 5 Yr. 
Prognosis 23 23 23 20 1 0 

 
Table 15: Number of common genes in 50%, 60%, …, 100% of signatures discovered by TIE* 
algorithm for each dataset. 
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Figure 15 plots predictivity estimated in the discovery dataset (using an unbiased error 

estimator and protocol) against predictivity verified in the validation dataset for each method 

averaged over all datasets and all discovered signatures. Recall that validation datasets originate 

from different laboratories and/or using different microarray platforms than discovery datasets. 

The horizontal distance of each method to the diagonal measures the magnitude of overfitting 

defined as the difference (ε1-ε2), where ε1 = expected performance in the validation data obtained 

by holdout validation in the discovery dataset, and ε2 = observed validation dataset performance. 

TIE* rests slightly right of the diagonal denoting no overfitting, or equivalently perfect statistical 

reproducibility on average. However all other methods exhibit varying degrees of non-

reproducibility. Depending on method the average magnitude of overfitting varies from 0.02 to 

0.03 AUC. 

Figure 16 plots predictivity in the validation dataset versus predictivity in the discovery 

dataset for each signature output by each method for the Leukemia 5 yr. Prognosis task. As can 

be seen, multiple signatures output by TIE* have maximal predictivity both in the discovery and 

validation datasets and low variance. On the other hand, multiple signatures output by other 

methods typically have lower predictivity and/or high variance. Similar trends can be also 

observed in other datasets. 

Finally, analysis of the signatures output by TIE* reveals that they share many genes in 

common. Table 15 shows the number of common genes in 50%, 60%, …, 100% of output 

signatures for each dataset. Genes differ in the percentage of signatures they participate in. A 

heuristic that genes that belong to the higher fractions of signatures are localized closer to the 

pathway(s) affecting and being affected by the phenotypic response variable may be useful in 

exploratory studies, however this does not hold in all distributions (Aliferis et al., 2006b). 
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Single-dataset experiments 

The experiments reported in this section are primarily concerned with an additional 

evaluation of TIE* and baseline algorithms for multiple signature extraction in terms of maximal 

predictivity in datasets with relatively large sample size. 

Seven human gene expression microarray datasets used in the experiments are described 

in Table 16. None of these datasets was used in experiments from the previous section. The 

following experimental design was adopted: A large portion of the dataset (with >100 samples, 

referred to as “discovery dataset”) was used for signature extraction and performance estimation 

by holdout validation and another non-overlapping large portion (with 100 samples, referred to as 

“validation dataset”) was used for an additional performance estimation. To minimize variance 

due to splitting of the data into non-overlapping discovery and validation datasets, I performed 10 

balanced splits of the data and ran all algorithms on each split. Therefore, the experiments were 

10 times more computationally expensive than the independent-dataset evaluation. 

The following instantiation of the TIE* algorithm was used in experiments. It can be 

described by a tuple of input components (X, Y, Z): 

• X (Markov boundary algorithm) = HITON-PC (Figure 9) that uses Fisher’s Z test with α 

= 0.05; 

• Y (strategy to generate subsets of variables that have to be removed to identify new 

Markov boundaries of T) = IncLex (Figure 13) with the maximum size of subset G 

limited to 5 genes. 

• Z (criterion to verify Markov boundaries) = Predictivity (Figure 12) that uses: 

o L = linear SVM classifier (Vapnik, 1998); 

o M = area under ROC curve (AUC) performance metric (Fawcett, 2003); 

o E = holdout validation performance estimator; 
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o C = nonparametric method to compare estimates of AUC with α = 0.1 (DeLong 

et al., 1988). 

Eight state-of-the-art algorithms for multiple signature extraction were used to compare 

to TIE* as described in Appendix G. 

The experiments first involved running TIE* and baseline comparison algorithms on 

discovery datasets to identify all maximally predictive and non-redundant signatures and estimate 

their predictivity by holdout validation. Then, reproducibility of all identified signatures was 

assessed in non-overlapping validation datasets. A linear SVM classifier (Vapnik, 1998) was used 

in all experiments to build signatures from the selected genes. The predictive performance of 

resulting signatures was measured by area under ROC curve (AUC) metric (Fawcett, 2003). 

Statistical comparisons of predictivity between methods in the same dataset were accomplished 

by Wilcoxon rank sum test with α = 0.05 (Hollander and Wolfe, 1999). 

The detailed results of experiments are provided in Table 17. It is worth noting that TIE* 

achieves maximal classification performance in 6 out of 7 validation datasets while non-TIE* 

methods achieve maximal classification performance in 0 to 1 datasets depending on the method. 

In the dataset where TIE* has predictivity that is statistically distinguishable from the empirical 

maximal (Breast Cancer Subtype Classification II), the magnitude of this difference is <0.01 

AUC on average over all discovered signatures, which can be considered negligible for most 

practical purposes.  
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Task Reference Sample 
size Samples per class Number 

of genes 
Microarray 

platform 

Lymphoma Subtype Classification I: Diffuse 
large-B-cell lymphoma (DLBCL) vs. Burkitt's 
lymphoma (BL) patients 

(Dave et al., 
2006) 303 DLBCL (258) 

BL (45) 2745 

Human 
LymphDx 

2.7k 
GeneChip 

Lymphoma Subtype Classification II: Diffuse 
large-B-cell lymphoma (DLBCL) vs. 
mediastinal large B-cell (MLBCL) patients 

(Savage et al., 
2003) 210 DLBCL (176) 

MLBCL (34) 
32403 

(44928) 

Affymetrix 
U133A and 

U133B 

Breast Cancer Subtype Classification I: p53 
mutant vs. wild-type breast tumors 

(Miller et al., 
2005) 251 p53 mutant (58) 

p53 wild-type (193) 22283 Affymetrix 
U133A 

Breast Cancer Subtype Classification II: 
estrogen receptor positive (ER+) vs. ER- 
breast tumors 

(Miller et al., 
2005) 247 ER+ (213) 

ER- (34) 22283 Affymetrix 
U133A 

Breast Cancer Subtype Classification III: 
progesterone receptor positive (PgR+) vs. 
PgR- breast tumors 

(Miller et al., 
2005) 251 PgR+ (190) 

PgR- (61) 22283 Affymetrix 
U133A 

Breast Cancer 5 Yr. Prognosis: ER+ patients 
who developed distant metastases within 5 
years (poor prognosis) vs. ones who did not 
(good prognosis) 

(van de 
Vijver et al., 

2002) 
215 poor prognosis (51) 

good prognosis (164) 24496 Agilent 
Hu25K  

Bladder Cancer Stage Classification: stage 
Ta. vs. other stages (T1, T2, T3, T4) of 
bladder tumors 

(Dyrskjot et 
al., 2007) 404 stage Ta (189) 

other stages (215) 
1381 

(3072) 
MDL 

Human 3k 

 
Table 16: Gene expression microarray datasets that were used in single-dataset experiments. For 
the task of Lymphoma Subtype Classification II, a version of this dataset with 32,403 genes 
(obtained by excluding gene probes absent in all samples) is used. For the Bladder Cancer Stage 
Classification task, a version of this dataset processed by its authors with only 1,381 genes is 
used.  



61 
 

 

 
Table 17 (continued on the next page): Results for the number of output signatures
(total/unique/unique and non-reducible), number of genes in a signature, and phenotypic
classification performance in discovery and validation microarray datasets for single-dataset
experiments. The length of highlighting corresponds to magnitude of the metric (number of genes
in a signature or classification performance) relative to other multiple signature extraction
methods. The 95% intervals correspond to the observed [2.5 - 97.5] percentile interval over
multiple signatures discovered by the method. Uniqueness and non-reducibility of each signature
is assessed relative to the corresponding signature extraction method. 

 Lymphoma subtype classification I

mean 95% interval mean 95% interval mean 95% interval
TIE* 2767/2767/1439 10 [8 - 13] 0.992 [0.982 - 0.999] 0.983 [0.971 - 0.992]
Resampling+SVM-RFE1 5000/4012/58 65 [1 - 495] 0.987 [0.954 - 0.999] 0.974 [0.925 - 0.993]
Resampling+SVM-RFE2 5000/1117/82 2 [1 - 5] 0.957 [0.839 - 0.995] 0.934 [0.827 - 0.985]
Resampling+Univariate1 5000/3476/22 168 [2 - 1223] 0.988 [0.970 - 0.997] 0.972 [0.949 - 0.987]
Resampling+Univariate2 5000/536/36 1 [1 - 3] 0.971 [0.910 - 0.993] 0.949 [0.888 - 0.984]
KIAMB1 1129/1107/1088 73 [23 - 82] 0.993 [0.982 - 0.999] 0.983 [0.970 - 0.992]
KIAMB2 5000/2860/2587 26 [12 - 72] 0.992 [0.980 - 0.999] 0.98 [0.966 - 0.991]
KIAMB3 5000/274/212 9 [7 - 13] 0.991 [0.980 - 0.999] 0.978 [0.965 - 0.989]
Iterative Removal 30/30/30 10 [7 - 13] 0.987 [0.967 - 0.998] 0.974 [0.949 - 0.991]

Lymphoma subtype classification II

mean 95% interval mean 95% interval mean 95% interval
TIE* 5140/5140/3399 18 [15 - 22] 0.818 [0.738 - 0.881] 0.791 [0.738 - 0.833]

Resampling+SVM-RFE1 5000/4756/82 2696 [1 - 19554] 0.821 [0.577 - 0.928] 0.79 [0.579 - 0.887]

Resampling+SVM-RFE2 5000/2862/371 13 [1 - 59] 0.669 [0.357 - 0.900] 0.655 [0.390 - 0.846]

Resampling+Univariate1 5000/3464/55 6635 [2 - 31863] 0.811 [0.605 - 0.919] 0.785 [0.611 - 0.885]

Resampling+Univariate2 5000/2068/231 84 [1 - 221] 0.682 [0.379 - 0.884] 0.679 [0.403 - 0.856]

KIAMB1 977/895/870 20 [19 - 20] 0.751 [0.561 - 0.906] 0.747 [0.631 - 0.843]

KIAMB2 973/724/706 17 [16 - 18] 0.75 [0.564 - 0.899] 0.749 [0.633 - 0.844]

KIAMB3 1188/309/296 10 [6 - 13] 0.753 [0.560 - 0.896] 0.753 [0.624 - 0.840]

Iterative Removal 17/17/17 13 [9 - 20] 0.788 [0.667 - 0.890] 0.729 [0.641 - 0.844]

Breast cancer subtype classification I

mean 95% interval mean 95% interval mean 95% interval
TIE* 4343/4343/4250 91 [90 - 98] 0.871 [0.862 - 0.882] 0.857 [0.850 - 0.865]

Resampling+SVM-RFE1 5000/4776/63 1140 [1 - 9974] 0.843 [0.693 - 0.917] 0.823 [0.703 - 0.879]

Resampling+SVM-RFE2 5000/2972/212 10 [1 - 67] 0.747 [0.497 - 0.905] 0.731 [0.521 - 0.873]

Resampling+Univariate1 5000/4475/64 2449 [1 - 19192] 0.857 [0.737 - 0.917] 0.837 [0.745 - 0.879]

Resampling+Univariate2 5000/2063/132 10 [1 - 46] 0.775 [0.592 - 0.907] 0.764 [0.598 - 0.875]

KIAMB1 977/902/899 29 [28 - 29] 0.76 [0.639 - 0.861] 0.756 [0.661 - 0.833]

KIAMB2 980/913/910 28 [27 - 28] 0.76 [0.641 - 0.863] 0.755 [0.662 - 0.834]

KIAMB3 1012/590/569 17 [10 - 18] 0.755 [0.646 - 0.852] 0.754 [0.665 - 0.826]

Iterative Removal 24/24/24 56 [38 - 97] 0.867 [0.807 - 0.916] 0.838 [0.788 - 0.879]

Method to induce 
multiple signatures

Method to induce 
multiple signatures

Method to induce 
multiple signatures

Number of 
signatures

Number of 
signatures

Number of 
signatures

Number of genes in a 
signature

Number of genes in a 
signature

Number of genes in a 
signature

Classification performance (AUC)
In discovery dataset In validation dataset

Classification performance (AUC)
In discovery dataset In validation dataset

Classification performance (AUC)
In discovery dataset In validation dataset
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Table 17 (continued from the previous page) 

 Breast cancer subtype classification II

mean 95% interval mean 95% interval mean 95% interval
TIE* 4312/4312/2718 15 [11 - 20] 0.902 [0.858 - 0.939] 0.858 [0 .819  - 0.894]

Resampling+SVM-RFE1 5000/4289/54 479 [1  - 4090] 0.89 [0.766 - 0.947] 0.854 [0 .747  - 0.904]

Resampling+SVM-RFE2 5000/2341/224 6 [1 - 38] 0.816 [0.501 - 0.946] 0.784 [0 .501  - 0.906]

Resampling+Univaria te1 5000/3856/43 833 [1 - 11196] 0.911 [0.812 - 0.950] 0.868 [0 .788  - 0.908]

Resampling+Univaria te2 5000/1460/125 3 [1 - 13] 0.857 [0.648 - 0.949] 0.814 [0 .607  - 0.903]

KIAMB1 982/978/973 31 [31 - 32] 0.837 [0.701 - 0.934] 0.814 [0 .696  - 0.888]

KIAMB2 980/972/967 31 [30 - 31] 0.838 [0.706 - 0.932] 0.814 [0 .698  - 0.889]

KIAMB3 997/564/543 15 [10 - 16] 0.833 [0.710 - 0.930] 0.816 [0 .700  - 0.886]

Iterative Removal 26/26/26 14 [10 - 21] 0.896 [0.811 - 0.942] 0.852 [0 .787  - 0.899]

Breast cancer subtype classification III

mean 95% interval mean 95% interval mean 95% interval
TIE* 6306/6306/4638 75 [73 - 79] 0.809 [0.794 - 0.824] 0.79 [0 .781  - 0.798]

Resampling+SVM-RFE1 5000/4733/93 1025 [1  - 8298] 0.765 [0.583 - 0.854] 0.74 [0 .590  - 0.808]

Resampling+SVM-RFE2 5000/2570/436 10 [1 - 83] 0.656 [0.418 - 0.831] 0.641 [0 .447  - 0.784]

Resampling+Univaria te1 5000/4424/73 2265 [1 - 19448] 0.785 [0.645 - 0.862] 0.753 [0 .629  - 0.809]

Resampling+Univaria te2 5000/2056/270 8 [1 - 27] 0.694 [0.476 - 0.843] 0.669 [0 .495  - 0.786]

KIAMB1 984/977/974 30 [29 - 30] 0.713 [0.595 - 0.826] 0.698 [0 .597  - 0.788]

KIAMB2 976/799/793 24 [23 - 24] 0.708 [0.589 - 0.821] 0.697 [0 .601  - 0.781]

KIAMB3 1071/616/595 19 [10 - 22] 0.71 [0.595 - 0.819] 0.693 [0 .597  - 0.778]

Iterative Removal 38/38/38 35 [19 - 71] 0.81 [0.741 - 0.870] 0.774 [0 .714  - 0.824]

Breast cancer 5 yr. prognosis

mean 95% interval mean 95% interval mean 95% interval
TIE* 5800/5800/4999 39 [37 - 43] 0.65 [0.612 - 0.689] 0.72 [0 .694  - 0.750]

Resampling+SVM-RFE1 5000/4675/132 962 [1  - 9727] 0.621 [0.421 - 0.756] 0.682 [0 .518  - 0.779]

Resampling+SVM-RFE2 5000/2369/573 5 [1 - 29] 0.561 [0.333 - 0.771] 0.59 [0 .405  - 0.743]

Resampling+Univaria te1 5000/3801/81 1684 [1 - 18370] 0.626 [0.426 - 0.758] 0.697 [0 .535  - 0.790]

Resampling+Univaria te2 5000/1876/366 7 [1 - 29] 0.563 [0.349 - 0.771] 0.61 [0 .441  - 0.753]

KIAMB1 980/967/963 27 [26 - 27] 0.596 [0.427 - 0.757] 0.62 [0 .516  - 0.730]

KIAMB2 979/775/764 20 [14 - 21] 0.592 [0.424 - 0.751] 0.617 [0 .515  - 0.729]

KIAMB3 2891/261/237 9 [4 - 19] 0.593 [0.443 - 0.724] 0.611 [0 .529  - 0.715]

Iterative Removal 68/68/68 19 [12 - 37] 0.664 [0.537 - 0.787] 0.69 [0 .603  - 0.766]

Bladder cancer stage classification

mean 95% interval mean 95% interval mean 95% interval
TIE* 5125/5125/4550 34 [32 - 39] 0.831 [0.823 - 0.840] 0.823 [0 .815  - 0.830]

Resampling+SVM-RFE1 5000/4555/88 281 [2  - 1293] 0.793 [0.698 - 0.837] 0.792 [0 .702  - 0.830]

Resampling+SVM-RFE2 5000/2688/99 12 [1 - 88] 0.727 [0.587 - 0.825] 0.728 [0 .581  - 0.818]

Resampling+Univaria te1 5000/4104/22 181 [2  - 1037] 0.799 [0.747 - 0.838] 0.799 [0 .750  - 0.831]

Resampling+Univaria te2 5000/1219/20 4 [1 - 10] 0.757 [0.674 - 0.826] 0.759 [0 .679  - 0.819]

KIAMB1 5000/291/220 10 [6 - 16] 0.794 [0.752 - 0.829] 0.791 [0 .756  - 0.820]

KIAMB2 5000/85/64 6 [4 - 9] 0.793 [0.760 - 0.817] 0.79 [0 .762  - 0.812]

KIAMB3 5000/22/17 3 [3 - 4] 0.783 [0.759 - 0.804] 0.777 [0 .759  - 0.803]

Iterative Removal 38081 35 [30 - 40] 0.819 [0.808 - 0.833] 0.807 [0 .790  - 0.823]

Method to induce 
multiple  signatures

Number of genes in a 
signature

Number of genes in a 
signature

Number of 
signatures

Classification performance  (AUC)

In discovery d ataset In validation dataset

Method to induce 
multiple  signatures

Method to induce 
multiple  signatures

Method to induce 
multiple  signatures

Classification performance  (AUC)

In discovery d ataset In validation dataset

Number of 
signatures

Number of 
signatures

Number of genes in a 
signature

Number of genes in a 
signature

Classification performance  (AUC)
In discovery d ataset In validation dataset

Number of 
signatures

Classification performance  (AUC)

In discovery d ataset In validation dataset



63 
 

CHAPTER VIII 

 

DISCUSSION 

 

On related methods from the field of statistics 

The present section provides an overview of related methods from the field of statistics. 

The methods listed below were not used in numerical experiments of the present thesis because 

they do not output multiple Markov boundaries and are not designed to do so. 

The discipline of classical statistics offers several methods for diagnostics of regression 

and generalized linear models and identification of the sources of multicollinearity. 

Multicollinearity occurs when there is a linear relationship among some of the predictor variables 

in the data. This in turn can lead to existence of multiple Markov boundaries. Notable works in 

the field are (Belsley et al., 1980), (Stewart, 1987), (Hadi and Velleman, 1987), and (Weissfeld 

and Sereika, 1991). These methods typically build on the observation that small eigenvalues of 

the cross-products data matrix XTX indicate multicollinearity. As far as the problem of 

identification of multiple Markov boundaries is concerned, an obvious shortcoming of this 

methodology is inability to detect cases when variables are not multicollinear (or nearly 

multicollinear) but still provide equivalent information about the response variable (e.g., variables 

A and B in Figure 1). In addition, the above methods cannot detect nonlinear relations among 

predictor variables. 

Several researchers propose to use clustering techniques to identify groups of highly 

correlated variables. The works (Meinshausen, 2008), (Park et al., 2007), and (Hastie et al., 2001) 

apply unsupervised hierarchical clustering methods to identify variables that are highly 

correlated. On the other hand, the works (Hastie et al., 2000), (Jornsten and Yu, 2003), (Dettling 

and Buhlmann, 2004), and (Dettling and Buhlmann, 2002) propose a solution to the similar 
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problem using supervised clustering techniques that take into account information about the 

response variable. The methods based on unsupervised clustering besides having other limitations 

will fail to group variables that are similar only when the response variable is considered (as are A 

and B in Figure 1). The methods based on supervised clustering are typically complex multi-stage 

algorithms that are heuristic and sometimes use unsupervised methods (e.g., k-means clustering, 

PCA) in a semi-supervised fashion. 

 Most recent research proposes to use objective functions in the statement of 

regression/classification problems that will assign the same coefficients to highly correlated 

variables that are important for prediction of the response variable. The work (Zou and Hastie, 

2005) proposes LARS-EN regression algorithm that uses an L2-norm loss and elastic net penalty 

which is a mixture of the L1 and L2-norm penalties. Similarly, (Wang et al., 2006) proposes the 

DrSVM classification algorithm that uses a hinge loss function and elastic net penalty. The elastic 

net penalty allows to obtain sparse solutions by setting to zero coefficients of predictor variables 

that are not relevant for prediction of the response variable (which is a property of the L1-norm 

penalty). At the same time, it encourages to select (or remove) together highly correlated 

variables (which is a property of the L2-norm penalty). The work (Bondell and Reich, 2008) 

introduces the OSCAR regression algorithm that uses an L2-norm loss and a penalty that is a 

mixture of the L1 and pairwise L∞-norms. Again, the L1-norm encourages sparseness of solutions 

and pairwise L∞-norm encourages equality of coefficients. As it is illustrated in (Bondell and 

Reich, 2008), the grouping property of OSCAR penalty in much stronger than that of elastic net 

penalty.  

In some restricted distributions the algorithms LARS-EN, DrSVM, and OSCAR can 

identify members of multiple Markov boundaries (by assigning them nonzero coefficients) and 

provide information on how specifically to construct multiple Markov boundaries (by assigning 

the same coefficient to variables that are interchangeable for maximal prediction of the response 

variable). However, this is not the case in general, and there are many situations when the above 
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algorithms will fail. For example, consider a generative model with response variable Y and 

predictor variables X1, …, X10 that are distributed as N(0,1). All variables except for X3 are 

generated at random, and X3 = 13/1  (3X1 + 2X2). The response variable is defined as Y = X3 + ε, 

where ε is distributed as N(0,0.025). There are 2 Markov boundaries of Y in this distribution: 

{X3} and {X1, X2}. A sample of the size 10,000 was generated from this distribution, and LARS-

EN and OSCAR algorithms were applied to it. Indeed, both algorithms assign 0 coefficients to 

variables X4, …, X10 that do not participate in Markov boundaries. However, OSCAR assigns 

nonzero coefficient only for variable X3 and variables X1 and X2 receive 0 coefficients. Thus, the 

algorithm implies that X1 and X2 do not participate in a Markov boundary. On the other hand, 

LARS-EN assigns nonzero coefficients to all variables X1, X2, and X3. However, the magnitudes 

of these coefficients are different (they are 0.623, 0.417, 0.750 for X1, X2, X3, respectively), thus it 

is not possible to construct multiple Markov boundaries from the output of this algorithm. In 

general, the expressivity of an algorithm that outputs a coefficient for each predictor variable is 

not sufficient to provide information on how to construct multiple Markov boundaries. 

 
What are the factors contributing to molecular signature multiplicity? 

The results of this thesis refute or suggest that modifications are needed to several 

widespread positions about signature multiplicity. For example, the model in Figure 1 

demonstrates that signature reproducibility neither precludes multiplicity nor requires sample 

sizes with thousands of subjects. It also shows that that multiplicity of signatures does not require 

dense connectivity. Similarly, it shows that noisy measurements or normalization are not 

necessary conditions for signature multiplicity. The resimulation experiment suggests that 

networks modeled after real microarray data can exhibit signature multiplicity even in large 

sample sizes and that in this type of data signature multiplicity is produced by a combination of 

small sample size-related variance and intrinsic multiplicity in the underlying network (due to 

gene-gene and gene-phenotype relations). The results with real human microarray datasets show 
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that multiple signatures output by TIE* are reproducible even though they are derived from small 

sample, noisy, and heavily-processed data. 

Overall, the results of this work are consistent with the hypothesis that signature 

multiplicity in real-life microarray gene expression datasets is created by a combination of several 

factors that include the following:  

1. intrinsic information redundancy due to gene-gene and gene-phenotype relations 

(Dougherty and Brun, 2006); 

2. variability in the output of gene selection and classification algorithms especially in small 

sample sizes; 

3. small sample statistical indistinguishability of signatures with different large sample 

predictivity and/or redundancy characteristics (e.g., see Appendix J); 

4. presence of the hidden/unobserved variables (e.g., see Appendix K);  

5. correlated measurement noise components that introduce a bias in gene expression 

profiles (e.g., noise that is localized in regions of microarray chips) (Balazsi and Oltvai, 

2007);  

6. RNA amplification techniques that systematically distort measurements of transcript 

ratios (e.g., double-round T7-based amplification protocol) (Wagner and Radelof, 2007); 

7. cellular aggregation and sampling from mixtures of distributions that affect inference of 

conditional independence relations and thus decisions about redundancy characteristics of 

the signatures (Chu et al., 2003); 

8. normalization and other data pre-processing methods that artificially increase correlations 

among genes (e.g., multivariate normalization in microarrays) (Qiu et al., 2005; Gold et 

al., 2005; Ploner et al., 2005); 

9. engineered redundancy in the assay technology platforms (e.g., multiple probes for the 

same gene). 

 



67 
 

Analysis of multiple signature extraction methods 

The signature multiplicity discovery problem is by its nature a combinatorial one and 

worst-case exponential since distributions exist where the number of maximally predictive and 

non-redundant signatures is exponential to the number of variables (see Theorem 4). Thus any 

correct algorithm that finds all such signatures will be also worst-case exponential. A more 

practical consideration is the average-case performance of a sound algorithm in real data. In the 

experiments with resimulated and real human gene expression microarray data, TIE* was run 

efficiently by constraining the cardinality of subset G in line 4 of the algorithm (Figure 4) trading 

off completeness for execution speed.  For example it takes TIE* <1 minute in artificial simulated 

dataset TIED2 with 1,000 variables to extract all signatures and up to several hours for real gene 

expression data using a single Intel Xeon 2.4 GHz CPU. 

With regard to non-TIE* baseline comparison algorithms, I note that resampling-based 

methods that use bootstrap samples to extract signatures may stop producing multiple signatures 

in large sample sizes. This is expected because resampling methods are designed to address 

directly only the small sample multiplicity and not the intrinsic multiplicity which persists in 

large samples. Iterative removal, on the other hand, by its design always fails to identify all 

maximally predictive and non-redundant signatures that have genes in common. KIAMB among 

the baseline algorithms has the strongest theoretical motivation because it was shown to discover 

all Markov boundaries for specific but not all distributions. However, the algorithm exhibits 

several limitations. A major limitation of KIAMB is that it has sample size requirements that 

range from at least linear to exponential to the number of genes in a signature (depending on test 

of independence employed). This makes the algorithm not only computationally inefficient but 

also prone to statistical errors in small sample sizes. This leads to its substantial observed 

overfitting in the independent-dataset experiments with real data and inability to find the 

maximally predictive and non-redundant signatures in simulated data. KIAMB, being a 

randomized search algorithm, also guarantees to output all signatures that satisfy its distributional 
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requirements, but only after an infinite number of runs in the worst-case. The method by design 

will discover the same signatures over and over again further compounding its computational 

inefficiency. 

In molecular high-throughput datasets produced by dissimilar underlying biological 

mechanisms, assayed with different platforms and pre-processed and modeled with a variety of 

algorithms, the relative contributions of the factors contributing to signature multiplicity will 

vary. As a result, methods that rely on a specific cause of multiplicity or combination of causes 

will not output all maximally predictive and non-redundant signatures in all types of high-

throughput data. 

Dealing with molecular signature multiplicity using a Markov boundary framework and 

the TIE* algorithm does not require a particular combination of factors causing signature 

multiplicity in order to be able to discover all maximally predictive and non-redundant signatures. 

Because of efficient heuristics TIE* can extract the signature set very efficiently when the 

connectivity is locally sparse, and the number of true optimal signatures is low-order polynomial 

or smaller to the number of variables. A very important factor for performance of TIE* is the 

choice of a Markov boundary algorithm to discover non-redundant and maximally predictive 

signatures in the distribution at hand. Latest developments in Markov boundary discovery provide 

such tools for high-throughput data. One of the key advantages of these methods is ability to 

implicitly control for false discovery rate (Aliferis et al., 2008a; Aliferis et al., 2008b). 

 

Directions for future research 

The experiments used real data exclusively from human cancer gene expression 

microarray datasets because of pragmatic reasons: known identity of observed variables, number 

and size of available datasets, and maturity of standardization protocols that allow for multiple 

independent-dataset validation experiments. The methods introduced here are in principle directly 

applicable to any type of data and problem domain, and future research in this direction is 
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warranted. The successful results of application of several Markov boundary techniques used in 

this work to numerous problems outside development of molecular signatures (e.g., information 

retrieval, predicting bankruptcy, drug discovery, image recognition, ecological modeling) 

promise very broad applicability of the TIE* algorithm. 

Another interesting direction for future research is development of multiple signature 

extraction algorithms for special distributions. Consider Figure 2 and assume that there are 3 

groups of variables with 1000 variables in each (i.e., m = 3, n = 3000). Thus, there are 10003 

maximally predictive and non-redundant signatures (Markov boundaries) in this distribution. 

TIE* would discover all of them, however, it will take very long time. A more efficient solution 

approach is to learn a single Markov boundary, use statistical methods from the section “On 

related methods from the field of statistics” to group variables into three clusters/groups, and then 

simply enumerate all remaining 10003-1 Markov boundaries. Even though the above approach 

provides significant computational savings for such distribution, it will not work in general, e.g. 

because variables in the cluster may not be members of a Markov boundary. 

 

Conclusion 

The contributions of this thesis are four-fold: First, I developed a Markov boundary 

characterization of molecular signature multiplicity. Second, I designed a generative algorithm 

(termed TIE*) that can correctly identify all Markov boundaries (and by extension all maximally 

predictive and non-redundant molecular signatures) independent of data distribution. The 

generative algorithm is provably correct given admissible input components and can be 

instantiated in many ways. Third, I conducted an empirical evaluation of the novel algorithm and 

compared it to existing state-of-the-art methods. Three sources of data were used for this 

evaluation: artificial simulated data where all maximally predictive and non-redundant signatures 

are known a priori, resimulated microarray gene expression data, and real human microarray gene 

expression data. The TIE* algorithm demonstrated excellent empirical performance: it identified 
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exactly the set of true signatures in artificial datasets, and its signatures have superb predictivity 

and reproducibility in real human gene expression data. On the other hand, baseline comparison 

methods either fail to extract most of true signatures in artificial data or incur large number of 

false positive variables in the discovered signatures. In experiments with real gene expression 

data, baseline comparison methods either output non-reproducible signatures or signatures with 

inferior predictivity compared to TIE*. Finally, in experiments with resimulated microarray gene 

expression data, TIE* discovered the overwhelming majority of maximally predictive and non-

redundant signatures output by other methods, thus demonstrating that other techniques typically 

have very little (if any) contribution to the signatures output by TIE*. Fourth, I tested several 

hypotheses about the causes of molecular signature multiplicity. This led to refinement of several 

wide-spread hypotheses about this phenomenon. 
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APPENDIX A 

 

NOTATION AND KEY DEFINITIONS FROM THE THEORY OF LEARNING 
GRAPHICAL STRUCTURES 

 
 

In this thesis upper-case letters in italics denote random variables (e.g., A, B, C) and 

lower-case letters in italics denote their values (e.g., a, b, c). Similarly, upper-case bold letters 

denote random variable sets (e.g., X, Y, Z) and lower-case bold letters denote their values (e.g., x, 

y, z). The terms “variables”, “genes”, and “vertices” are used interchangeably in this work. If a 

graph contains an edge X → Y, then X is a parent of Y and Y is a child of X. A vertex X is a spouse 

of Y if they share a common child. An undirected edge X – Y denotes adjacency relation between 

X and Y (i.e., presence of an edge directly connecting X and Y). A path p is a set of consecutive 

edges (independent of the direction) without visiting a vertex more than once. A directed path p 

from X to Y is a set of consecutive edges with direction “→” connecting X with Y, i.e. X → …→ 

Y. X is an ancestor of Y (and at the same time Y is a descendant of X) if there exists a directed 

path p from X to Y. A directed cycle is a nonempty directed path that starts and ends on the same 

vertex X. Four classes of graphs are considered in this work: 

• Directed graphs: Directed graphs where vertices can be connected only with an edge 

“→”. 

• Directed acyclic graphs (DAGs): Directed graphs without directed cycles where vertices 

can be connected only with an edge “→”. 

• Ancestral graphs: Directed graphs7 without directed cycles where vertices can be 

connected with one of the two edges: “→” or “↔”. For any two vertices X and Y, if there 

is an edge X ↔ Y, then X is not an ancestor of Y and Y is not an ancestor of X. In other 

                                                 
7 Notice that I follow (Zhang and Spirtes, 2005) and consider only directed ancestral graphs. 
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words, X and Y have a hidden confounder (Zhang and Spirtes, 2005; Richardson and 

Spirtes, 2002). 

• Maximal ancestral graphs (MAGs): Ancestral graphs with the following property: for 

any two non-adjacent vertices there is a set of vertices that m-separates them (the 

definition of m-separation is given below) (Zhang and Spirtes, 2005; Richardson and 

Spirtes, 2002). 

Definition of conditional independence: Two sets of variables X and Y are conditionally 

independent given a set of variables Z in the joint probability distribution P (denoted as 

ZYX |⊥ ) if P(X=x | Y=y, Z=z) = P(X=x | Z=z) whenever P(Y=y, Z=z) > 0. 

For notational convenience conditional dependence is defined as absence of conditional 

independence and denoted as ZYX |⊥/ . When two sets of variables X and Y are conditionally 

independent given an empty set, I simply say that they are independent and denote this by 

YX ⊥ . Similarly the dependence of X and Y is defined and denoted as YX ⊥/ . 

Definition of collider: A vertex W on the path p is a collider if p contains two incoming 

edges into W (i.e., ∃ X and Y: X → W ← Y, or  X ↔ W ← Y, or  X → W ↔ Y, or  X ↔ W ↔ Y and 

{X, W, Y} ⊆  p). 

Definition of blocked path: A path p from X to Y is blocked by a set of vertices Z if there 

is a vertex W on the path p for which one of the two conditions hold: (i) W is not a collider and W 

∈ Z, or (ii) W is a collider and neither W nor its descendants are in Z. 

Definition of d-separation: X is d-separated from Y given Z in directed graph G if every 

path in G from X to Y is blocked by Z. 

Definition of m-separation: X is m-separated from Y given Z in ancestral graph G if 

every path in G from X to Y is blocked by Z. 

Definition of local Markov condition: The joint probability distribution P over variables 

V satisfies the local Markov condition for a directed acyclic graph (DAG) G = <V, E> if and only 
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if for each W in V, W is independent of all variables in V excluding descendants of W and parents 

of W given parents of W (Richardson and Spirtes, 1999). 

The definition below extends Markov condition to any directed and ancestral graphs, not 

necessarily DAGs: 

Definition of global Markov condition: The joint probability distribution P over 

variables V satisfies the global Markov condition for a directed graph (ancestral graph) G = <V, 

E> if and only if for any three disjoint subsets of variables X, Y, Z from V, if X is d-separated 

(m-separated) from Y given Z in G then X is independent of Y given Z in P (Richardson and 

Spirtes, 2002; Richardson and Spirtes, 1999). 

It follows that if the underlying graph G is a DAG, then the global Markov condition is 

equivalent to the local Markov condition (Richardson and Spirtes, 1999). 

Definition of Bayesian network: N = <G, P> is a Bayesian network if P satisfies the 

local Markov condition for a DAG G. 
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APPENDIX B 

 

FAITHFULNESS ASSUMPTION AND EXTENSIONS 

 

Definition of DAG-faithfulness: If all and only conditional independence relations true 

in P defined over variables V are entailed by the local Markov condition applied to a DAG G = 

<V, E>, then P and G are DAG-faithful to one another (Spirtes et al., 2000). 

The definition below extends faithfulness to any directed or ancestral graphs, not 

necessarily DAGs: 

Definition of graph-faithfulness: If all and only conditional independence relations true 

in P defined over variables V are entailed by the global Markov condition applied to a directed or 

ancestral graph G = <V, E>, then P and G are graph-faithful to one another. 

Alternatively, P and G are DAG-faithful to one another if the following two conditions 

hold (Neapolitan, 2004): (i) P satisfies the local Markov condition for G; and (ii) the only 

conditional independencies in P are those entailed by the local Markov condition for G. 

Similarly, P and G are graph-faithful to one another if: (i) P satisfies the global Markov condition 

for G; and (ii) the only conditional independencies in P are those entailed by the global Markov 

condition for G. It follows that if G is a DAG, then DAG-faithfulness and graph-faithfulness are 

equivalent.  

A relaxed version of the faithfulness assumption is given below: 

Definition of adjacency faithfulness: Given a directed or ancestral graph G = <V, E> 

and a joint probability distribution P defined over variables V, P and G are adjacency faithful to 

one another if every adjacency relation between X and Y  in G implies that X and Y are 

conditionally dependent given any subset of V \ {X, Y} in P (Ramsey et al., 2006). 
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 Consider the following example given in (Ramsey et al., 2006). A Bayesian network is 

specified by the graph A → B → C and the joint probability distribution where only two 

independence relations hold: BCA |⊥  and CA ⊥ . Clearly, this graph is not DAG-faithful (or 

graph-faithful) to the joint probability distribution because the independence relation CA ⊥  is 

not entailed by the local (or global) Markov condition. On the other hand, the adjacency 

faithfulness is not violated in this example. Also, notice that unlike DAG-faithfulness or graph-

faithfulness, adjacency faithfulness does not imply that the Markov condition holds. 

 The adjacency faithfulness assumption can be further relaxed to focus on the specific 

response variable of interest: 

 Definition of local adjacency faithfulness with respect to a variable: Given a directed or 

ancestral graph G = <V, E> and a joint probability distribution P defined over variables V, P and 

G are locally adjacency faithful with respect to T if every adjacency relation between T and X in 

G implies that T and X are conditionally dependent given any subset of V \ {T, X} in P. 

 Next, I introduce another relaxed version of faithfulness: 

 Definition of path faithfulness: Given a directed or ancestral graph G = <V, E> and a 

joint probability distribution P defined over variables V, P and G are path faithful to one another 

if for every path p without colliders: Y – X1 – X2 – … – XM, the following condition holds for 

every k = 1,…, M: Y and Xk are conditionally dependent given any subset of V \ {Y, X1, …, Xk} in 

P. 

 The above definition does not imply that the Markov condition holds. Also notice that if 

P and G are path faithful to one another, then they are also adjacency faithful to one another. 

However, the converse may not be true in general. 

 The path faithfulness assumption is further relaxed to focus on the specific response 

variable of interest: 
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 Definition of local path faithfulness with respect to a variable: Given a directed or 

ancestral graph G = <V, E> and a joint probability distribution P defined over variables V, P and 

G are locally path faithful with respect to T if for every path p without colliders that involves a 

variable T: T – X1 – X2 – … – XM, the following condition holds for every k = 1,…, M: T and Xk 

are conditionally dependent given any subset of V \ {T, X1, …, Xk} in P. 
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APPENDIX C 

 

REVISED PROOFS OF CORRECTNESS FOR TWO MARKOV BOUNDARY 
ALGORITHMS 

 
 

 Theorem 6: IAMB outputs a Markov boundary of T if the joint probability distribution P 

satisfies the local composition property with respect to T. 

Proof: First I prove that M is a Markov blanket of T at the end of Phase I. Suppose it is 

not, i.e. MMV |}){\\( TT ⊥/ . By the local composition property with respect to T, there exists 

}){\\( TX MV∈  such that M|XT ⊥/ . This contradicts the exit condition from the loop in 

line 6 that states that M should not change in the present iteration which can be the case if and 

only if for every }){\\( TX MV∈ , M|XT ⊥ . Therefore, M is a Markov blanket of T at the 

end of Phase I. 

 Next I prove that M remains a Markov blanket of T at the end of Phase II. Assume that a 

variable X ∈ M can be rendered independent from T by conditioning on the remaining variables 

in M, i.e. }){\(| XXT M⊥ . From Phase I it follows that MMV |}){\\( TT ⊥ . The above 

two independence relations by the contraction property imply that 

}){\(|}){\}){\(\( XTXT MMV⊥ . Thus, M is a Markov blanket of T at the end of Phase II 

of the algorithm. 

 Finally I prove that M is a Markov boundary of T at the end of Phase II. Suppose it is not 

and thus there exists N ⊂ M that is a Markov blanket of T. Let NM \∈X  and 

}){\}{\\( XTNVY ⊆ . By definition of the Markov blanket, NNV |}){\\( TT ⊥ . By the 

decomposition property, NY |}){( XT ∪⊥ . The latter independence relation implies 

)(| YN ∪⊥ XT  by the weak union property. Therefore, any variable NM \∈X  would be 
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removed by the algorithm in line 9 which contradicts the assumption that the algorithm output M 

and N ⊂ M is another Markov blanket of T. Therefore, M is a Markov boundary of T at the end 

of Phase II. (Q.E.D.) 

Theorem 8: HITON-PC outputs a Markov boundary of T if (i) the joint probability 

distribution P and directed or ancestral graph G are locally adjacency faithful with respect to T 

with the exception of violations of the intersection property; (ii) P satisfies the global Markov 

condition for G; (iii) the set of vertices adjacent with T in G is a Markov blanket of T. 

 Proof: First I prove that the set M is a Markov blanket of T in line 12 of the algorithm. 

Assumptions (i) and (iii) imply that all Markov blanket members will be in the set E after line 4. 

Notice that violations of the intersection property do not affect the above statement. In lines 8 and 

11, X can be removed from M because it is either a non-Markov boundary member or the 

intersection property is violated. The former case does not compromise the Markov blanket 

property of M, thus I consider only the latter case. Since the intersection property is violated, the 

following relations hold in P: Z|XT ⊥ , XT |Z⊥  and )}({ Z∪⊥/ XT . Below I show that if 

X is a member of some Markov blanket }{1 X∪= NM  , then ZNM ∪=2  is also a Markov 

blanket where X ∉ N and Ο/=∩ NZ . Since M1 is a Markov blanket, 

}){(|})){(\}{\( XXTT ∪∪⊥ NNV . By the self-conditioning property, it follows that 

}){(|}){\( XTT ∪⊥ NV . The previous independence relation is equivalent to 

}){(|))\}{\(( XTT ∪∪⊥ NZZV . By the weak union property, it follows that 

)}{(|)\}{\( ZNZV ∪∪⊥ XTT . By the self-conditioning properly, it follows that 

)}{(|}){\( ZNV ∪∪⊥ XTT . Equivalently, ))(}){((|}){\( ZNNV ∪∪∪⊥ XTT . Since, 

Z|XT ⊥ , by the self-conditioning property )(|}){( ZNN ∪∪⊥ XT . By the contraction 

property, ))(}){((|}){\( ZNNV ∪∪∪⊥ XTT  and )(|}){( ZNN ∪∪⊥ XT  imply that 

)(|})){(}){\(( ZNNV ∪∪∪⊥ XTT . This is equivalent to )(|}){\( ZNV ∪⊥ TT . By the 



79 
 

decomposition property this implies that ZNM2 ∪=  is a Markov blanket of T. Therefore the 

set M is a Markov blanket of T after line 12 of the algorithm. 

 Now I prove that the set M retuned by HITON-PC is a Markov boundary of T. Suppose it 

is not and thus there exists N ⊂ M that is a Markov blanket of T. Let NM \∈X  and 

}){\}{\\( XTNVY ⊆ . By the definition of Markov blanket, NNV |}){\\( TT ⊥ . By the 

decomposition property, NY |}){( XT ∪⊥ . The latter independence relation implies 

)(| YN ∪⊥ XT  by the weak union property. Therefore, any variable NM \∈X  would be 

removed by the algorithm in line 11 which contradicts the assumption that the algorithm output 

M and N ⊂ M is another Markov blanket of T. Therefore, HITON-PC outputs a Markov 

boundary of T. (Q.E.D.) 

 The proofs of correctness provided above for Markov boundary algorithms implicitly 

assume that the base statistical decisions about dependence and independence are correct. This 

requirement is satisfied when the dataset D is a large i.i.d. (independent and identically 

distributed) sample of the underlying probability distribution P. When the sample size is small, 

the statistical test of null hypothesis of independence will incur type I and II errors. This may 

affect correctness of the algorithm’s output Markov boundary. 
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APPENDIX D 

 

TIED1 AND TIED2 NETWORK STRUCTURE AND PARAMETERIZATION 

 

Using the principles from Figure 1 of the thesis, a discrete artificial network TIED1 with 

30 variables (including a response variable T) was constructed. Figure 17 shows the network 

structure and specifies which variables contain the same information about T by the color of 

highlighting. For example, variables X12, X13, and X14 provide exactly the same information about 

T and thus are interchangeable for prediction of T. The parameterization of the network is 

provided in Table 18. The network contains 72 Markov boundaries of T. Each of these Markov 

boundaries contains 5 variables: (i) X10, (ii) X5 or X9, (iii) X12 or X13 or X14, (iv) X19 or X20 or X21, 

and (v) X1 or X2 or X3 or X11.  

A discrete artificial network TIED2 with 1,000 variables (including a response variable 

T) was constructed by augmenting TIED1 network with a total of 970 variables such that the 

resulting network has exactly the same 72 Markov boundaries. Out of 970 variables that were 

added to the prior network, 110 variables have a path to T and 860 variables do not. 
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Figure 17: Graphical visualization of a discrete artificial network TIED1 with 30 variables
(including a response variable T). Variables that contain exactly the same information about T are
highlighted with the same color, e.g. variables X12, X13, and X14 provide exactly the same
information about T and thus are interchangeable for prediction of T. 
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X1: P(X1=0) = 0.25 
      P(X1=1) = 0.25 
      P(X1=2) = 0.25 
      P(X1=3) = 0.25 

X6: P(X6=0|X5=0) = 0.6 
      P(X6=1|X5=0) = 0.2 
      P(X6=2|X5=0) = 0.2 
      P(X6=0|X5=1) = 0.5 
      P(X6=1|X5=1) = 0.25 
      P(X6=2|X5=1) = 0.25 
      P(X6=0|X5=2) = 0.8 
      P(X6=1|X5=2) = 0.1 
      P(X6=2|X5=2) = 0.1 

X11: P(X11=0|X3=0) = 1.0 
       P(X11=0|X3=1) = 1.0 
       P(X11=1|X3=2) = 0.3 
       P(X11=2|X3=2) = 0.7 
       P(X11=3|X3=3) = 1.0 

X2: P(X2=0|X1=0) = 0.8 
      P(X2=1|X1=0) = 0.2 
      P(X2=0|X1=1) = 0.1 
      P(X2=1|X1=1) = 0.9 
      P(X2=2|X1=2) = 1.0 
      P(X2=3|X1=3) = 1.0 

X7: P(X7=1|X5=0) = 0.5 
      P(X7=2|X5=0) = 0.5 
      P(X7=0|X5=1) = 0.8 
      P(X7=1|X5=1) = 0.2 
      P(X7=0|X5=2) = 0.2 
      P(X7=1|X5=2) = 0.3 
      P(X7=2|X5=2) = 0.5 

X12: P(X12=0|T=0) = 1.0 
       P(X12=0|T=1) = 1.0 
       P(X12=0|T=2) = 1.0 
       P(X12=1|T=3) = 0.5 
       P(X12=2|T=3) = 0.5 
 

X3: P(X3=0|X2=0) = 0.3 
      P(X3=1|X2=0) = 0.7 
      P(X3=0|X2=1) = 0.8 
      P(X3=1|X2=1) = 0.2 
      P(X3=2|X2=2) = 1.0 
      P(X3=3|X2=3) = 1.0 

X8: P(X8=0|X5=0) = 0.9 
      P(X8=1|X5=0) = 0.1 
      P(X8=0|X5=1) = 0.7 
      P(X8=1|X5=1) = 0.2 
      P(X8=2|X5=1) = 0.1 
      P(X8=0|X5=2) = 0.6 
      P(X8=1|X5=2) = 0.3 
      P(X8=2|X5=2) = 0.1 

X13: P(X13=0|X12=0) = 1.0 
       P(X13=1|X12=1) = 0.5 
       P(X13=2|X12=1) = 0.5 
       P(X13=1|X12=2) = 0.5 
       P(X13=2|X12=2) = 0.5 

T: P(T=0|X11=0) = 1.0 
     P(T=0|X11=1) = 1.0 
     P(T=0|X11=2) = 1.0 
     P(T=1|X11=3) = 0.3 
     P(T=2|X11=3) = 0.3 
     P(T=3|X11=3) = 0.4 

X9: P(X9=1|X5=0) = 1.0 
      P(X9=2|X5=1) = 1.0 
      P(X9=0|X5=2) = 1.0 

X14: P(X14=0|X13=0) = 1.0 
       P(X14=1|X13=1) = 0.5 
       P(X14=2|X13=1) = 0.5 
       P(X14=1|X13=2) = 0.5 
       P(X14=2|X13=2) = 0.5 

X5: P(X5=1|T=0) = 0.9 
      P(X5=2|T=0) = 0.1 
      P(X5=0|T=1) = 0.8 
      P(X5=1|T=1) = 0.1 
      P(X5=2|T=1) = 0.1 
      P(X5=0|T=2) = 0.1 
      P(X5=1|T=2) = 0.8 
      P(X5=2|T=2) = 0.1 
      P(X5=0|T=3) = 0.1 
      P(X5=1|T=3) = 0.1 
      P(X5=2|T=3) = 0.8 

X10: P(X10=0|T=0) = 0.1 
       P(X10=1|T=0) = 0.8 
       P(X10=2|T=0) = 0.1 
       P(X10=1|T=1) = 0.1 
       P(X10=2|T=1) = 0.9 
       P(X10=0|T=2) = 0.1 
       P(X10=1|T=2) = 0.8 
       P(X10=2|T=2) = 0.1 
       P(X10=0|T=3) = 0.2 
       P(X10=1|T=3) = 0.7 
       P(X10=2|T=3) = 0.1 

X15: P(X15=0|X1=0) = 0.8 
       P(X15=1|X1=0) = 0.1 
       P(X15=2|X1=0) = 0.1 
       P(X15=0|X1=1) = 0.1 
       P(X15=1|X1=1) = 0.8 
       P(X15=2|X1=1) = 0.1 
       P(X15=0|X1=2) = 0.8 
       P(X15=1|X1=2) = 0.1 
       P(X15=2|X1=2) = 0.1 
       P(X15=0|X1=3) = 0.1 
       P(X15=1|X1=3) = 0.1 
       P(X15=2|X1=3) = 0.8 

 
Table 18 (continued on the next page): Parameterization of the TIED1 network. Only nonzero 
probabilities are shown in the table. 
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X16: P(X16=0|X15=0) = 1.0 
       P(X16=0|X15=1) = 1.0 
       P(X16=1|X15=2) = 0.5 
       P(X16=2|X15=2) = 0.5 

X21: P(X21=0|X20=0) = 1.0 
       P(X21=1|X20=1) = 1.0 
       P(X21=2|X20=2) = 1.0 

X26: P(X26=0) = 0.5 
       P(X26=1) = 0.5 
 

X17: P(X17=0|X1=0) = 0.2 
       P(X17=1|X1=0) = 0.6 
       P(X17=2|X1=0) = 0.2 
       P(X17=0|X1=1) = 0.1 
       P(X17=1|X1=1) = 0.3 
       P(X17=2|X1=1) = 0.6 
       P(X17=0|X1=2) = 0.5 
       P(X17=1|X1=2) = 0.1 
       P(X17=2|X1=2) = 0.4 
       P(X17=0|X1=3) = 0.3 
       P(X17=1|X1=3) = 0.5 
       P(X17=2|X1=3) = 0.2 

X22: P(X22=0|X6=0) = 0.2 
       P(X22=1|X6=0) = 0.6 
       P(X22=2|X6=0) = 0.2 
       P(X22=0|X6=1) = 0.1 
       P(X22=1|X6=1) = 0.3 
       P(X22=2|X6=1) = 0.6 
       P(X22=0|X6=2) = 0.5 
       P(X22=1|X6=2) = 0.1 
       P(X22=2|X6=2) = 0.4 

X27: P(X27=0|X26=0) = 0.1 
       P(X27=1|X26=0) = 0.9 
       P(X27=0|X26=1) = 0.3 
       P(X27=1|X26=1) = 0.7 

X18: P(X18=0) = 0.25 
       P(X18=1) = 0.25 
       P(X18=2) = 0.25 
       P(X18=3) = 0.25 

 X23: P(X23=0|X7=0) = 0.3 
        P(X23=1|X7=0) = 0.2 
        P(X23=2|X7=0) = 0.5 
        P(X23=0|X7=1) = 0.8 
        P(X23=1|X7=1) = 0.1 
        P(X23=2|X7=1) = 0.1 
        P(X23=0|X7=2) = 0.6 
        P(X23=1|X7=2) = 0.2 
        P(X23=2|X7=2) = 0.2 

X28: P(X28=0|X26=0) = 0.4 
       P(X28=1|X26=0) = 0.6 
       P(X28=0|X26=1) = 0.8 
       P(X28=1|X26=1) = 0.2 

X19: P(X19=1|T=0) = 0.1 
       P(X19=2|T=0) = 0.9 
       P(X19=0|T=1) = 0.1 
       P(X19=2|T=1) = 0.9 
       P(X19=0|T=2) = 0.8 
       P(X19=1|T=2) = 0.1 
       P(X19=2|T=2) = 0.1 
       P(X19=0|T=3) = 0.1 
       P(X19=1|T=3) = 0.8 
       P(X19=2|T=3) = 0.1 

X24: P(X24=0|X8=0) = 0.5 
       P(X24=1|X8=0) = 0.1 
       P(X24=2|X8=0) = 0.4 
       P(X24=0|X8=1) = 0.6 
       P(X24=1|X8=1) = 0.3 
       P(X24=2|X8=1) = 0.1 
       P(X24=0|X8=2) = 0.7 
       P(X24=1|X8=2) = 0.1 
       P(X24=2|X8=2) = 0.2 

X29: P(X29=0) = 0.33 
       P(X29=1) = 0.33 
       P(X29=2) = 0.33 
 

X20: P(X20=1|X19=0) = 1.0 
       P(X20=2|X19=1) = 1.0 
       P(X20=0|X19=2) = 1.0 

X25: P(X25=0|X9=0) = 0.8 
       P(X25=1|X9=0) = 0.1 
       P(X25=2|X9=0) = 0.1 
       P(X25=0|X9=1) = 0.6 
       P(X25=1|X9=1) = 0.2 
       P(X25=2|X9=1) = 0.2 
       P(X25=0|X9=2) = 0.5 
       P(X25=1|X9=2) = 0.3 
       P(X25=2|X9=2) = 0.2 

X30: P(X30=0|X16=0) = 1.0 
       P(X30=1|X16=1) = 0.5 
       P(X30=2|X16=1) = 0.5 
       P(X30=1|X16=2) = 0.5 
       P(X30=2|X16=2) = 0.5 

 
Table 18 (continued from the previous page) 
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APPENDIX E 

 

LIND NETWORK STRUCTURE AND PARAMETERIZATION 

 

Figure 18 shows the network structure and specifies which variables contain the same 

information about T by the color of highlighting. Table 19 provides details about 

parameterization. For example, variables X8, X3, and X17 provide exactly the same information 

about T and thus are interchangeable for prediction of T. Similarly, variable X7 and a variable set 

{X1, X2} provide the same information about T. The network contains 12 Markov boundaries of T. 

Each of these Markov boundaries contains 3 or 5 variables: (i) X7 or {X1, X2}, (ii) X8 or X3 or X17, 

and (iii) X9 or {X4, X5}. 

 

 
 
Figure 18: Graphical visualization of a continuous artificial network LIND with 41 variables
(including a response variable T). Variables that contain exactly the same information about T are
highlighted with the same color, e.g. variables X8, X3, and X17 provide exactly the same
information about T and thus are interchangeable for prediction of T. Similarly, variable X7 and a
variable set {X1, X2} provide the same information about T.  
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X1 = N(0,1) X8 = 0.9X3 X15 = 0.7X13 + 0.2N(0,1) 

X2 = N(0,1) X9 = 0.9X4 + 0.7X5 X16 = 0.9X13 + 0.2N(0,1) 

X3 = 0.9X17 X10 = N(0,1) X17 = N(0,1) 

X4 = N(0,1) X11 = N(0,1) X18 = 0.6X11 + 0.2N(0,1) 

X5 = N(0,1) X12 = 0.7X11 + 0.3X9 + 0.1N(0,1) X19 = 0.9X11 + 0.1N(0,1) 

X6 = 0.8X10 + 0.4X1 + 0.1N(0,1) X13 = 0.7X6 + 0.1N(0,1) X20 = 0.8X19 + 0.1N(0,1) 

X7 = 0.7X1 + 0.8X2 X14 = 0.8X13 + 0.1N(0,1) X21,…,X40 = N(0,1) 

T = (0.8X7 + 0.9X8 + 0.8X9+0.2N(0,1)) > 0 

 
Table 19: Parameterization of the LIND network. N(0,1) denotes a random Normal variable with 
mean = 0 and standard deviation = 1. 
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APPENDIX F 

 

XORD NETWORK STRUCTURE AND PARAMETERIZATION 

 

Figure 19 shows the network structure and specifies which variables contain the same 

information about T by the color of highlighting. Table 20 provides details about 

parameterization. For example, variables X1 and X5 provide exactly the same information about T 

and thus are interchangeable for prediction of T. Similarly, variable X9 and each of the four 

variable sets {X5, X6}, {X1, X2}, {X1, X6}, {X5, X2} provide the same information about T. The 

network contains 25 Markov boundaries of T. Each of these Markov boundaries contains 3 or 5 

variables: (i) X9 or {X5, X6} or {X1, X2} or {X1, X6} or {X5, X2}, (ii) X10, and (iii) X11 or {X7, X8} or 

{X3, X4} or {X3, X8} or {X7, X4}. 

 

 
 
Figure 19: Graphical visualization of a discrete artificial network XORD with 41 variables
(including a response variable T). All variables take binary values {0, 1}. Variables that contain
exactly the same information about T are highlighted with the same color, e.g. variables X1 and X5
provide exactly the same information about T and thus are interchangeable for prediction of T.
Similarly, variable X9 and each of the four variable sets {X5, X6}, {X1, X2}, {X1, X6}, {X5, X2}
provide the same information about T.  
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X1: P(X1=0) = 0.5 X8 = X4 
X15: P(X15=0|X12=0) = 0.3 
       P(X15=0|X12=1) = 0.1 

X2: P(X2=0) = 0.5 X9 = OR(X5, X6) 
X16: P(X16=0|X13=0) = 0.2 
       P(X16=0|X13=1) = 0.5 

X3: P(X3=0) = 0.5 X10: P(X10=0) = 0.5 X17: P(X17=0|X13=0) = 0.6 
       P(X17=0|X13=1) = 0.4 

X4: P(X4=0) = 0.5 X11 = OR(X7, X8) X18: P(X18=0) = 0.5 

X5 = 1 – X1 

X12: P(X12=0|X18=0, X9=0) = 0.4 
       P(X12=0|X18=0, X9=1) = 0.5 
       P(X12=0|X18=1, X9=0) = 0.5 
       P(X12=0|X18=1, X9=1) = 0.6 

X19: P(X18=0) = 0.5 

X6 = X2 

X13: P(X13=0|X11=0, X19=0) = 0.4 
       P(X13=0|X11=0, X19=1) = 0.6 
       P(X13=0|X11=1, X19=0) = 0.5 
       P(X13=0|X11=1, X19=1) = 0.5 

X20: P(X20=0|X12=0) = 0.5 
       P(X20=0|X12=1) = 0.2 

X7 = 1 – X3 
X14: P(X14=0|X12=0) = 0.2 
       P(X14=0|X12=1) = 0.4 Xi: P(Xi=0) = 0.5, i = 21,…,40. 

T = XOR(X9, X10, X11) 

 
Table 20: Parameterization of the XORD network. OR and XOR denote corresponding binary 
functions. 
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APPENDIX G 

STATE-OF-THE-ART ALGORITHMS FOR MULTIPLE SIGNATURE 
IDENTIFICATION USED IN COMPUTATIONAL EXPERIMENTS 

 
 

Eight state-of-the-art methods to extract multiple signatures and compare to TIE* were 

used in experiments. These algorithms were executed on Intel Xeon 2.4 GHz CPUs for up to one 

week of single-CPU time or to produce up to 5,000 signatures (per method and dataset), 

whichever termination criterion was met first. 

Four methods were resampling-based techniques that apply a signature extraction 

algorithm to bootstrap samples of the original dataset. The following signature extraction 

algorithms were used: (i) SVM-based recursive feature elimination (SVM-RFE) (Guyon et al., 

2002); (ii) SVM-RFE with additional application of a formal statistical comparison test8 to 

identify the most parsimonious signature with predictivity statistically indistinguishable from the 

observed best one; (iii) backward wrapping based on univariate ranking of variables by Kruskal-

Wallis non-parametric ANOVA (Statnikov et al., 2005; Hollander and Wolfe, 1999); and (iv) 

backward wrapping based on Kruskal-Wallis ANOVA with additional statistical comparison step, 

as in (ii). The above four methods are denoted as Resampling-SVM-RFE1, Resampling-SVM-

RFE2, Resampling-Univariate1, Resampling-Univariate2, respectively. 

Three other methods were representatives of stochastic variable selection algorithms. 

Three instantiations of KIAMB algorithm (Peña et al., 2007) were used. KIAMB was applied 

with Fisher’s Z-test for continuous data (gene expression data) and G2 test for discrete data 

(artificial simulated data), parameter K = 0.8, and three statistical thresholds α = 0.01, α = 0.005, 

and α = 0.001 (denoted as KIAMB1, KIAMB2, KIAMB3, respectively). The first threshold was 

                                                 
8 Delong’s test (DeLong et al., 1988) was used to compare AUC point estimates in experiments with real and 
resimulated gene expression data where the response variable had two categories. McNemar’s test (Everitt, 1977) was 
used to compare accuracies in experiments with simulated data where the response variable had more than two 
categories and AUC measure was not applicable. 
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used by inventors of the method in the paper that introduced it (Peña et al., 2007), while the latter 

two often lead to more parsimonious signatures without loss of predictivity based on prior 

experiments. A standard statistical threshold α = 0.05 in most cases did not lead to termination of 

the algorithm, that is why it was not used in this work. To make experiments computationally 

tractable and robust to outlier runs of KIAMB, a 10 minute time limit was imposed for a single 

run of the algorithm (i.e., to extract one signature). 

Finally, an Iterative Removal method (Natsoulis et al., 2005) was also applied. The 

implementation of this method used a signature extraction algorithm HITON-PC (Aliferis et al., 

2008a; Aliferis et al., 2003) since it typically yields more compact signatures with predictivity 

comparable or better to the other gene selection methods (Aliferis et al., 2006a). Statistical 

comparison tests to compare predictivity of the signatures (DeLong et al., 1988; Everitt, 1977) 

were also utilized. 
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APPENDIX H 

GENERATION OF RESIMULATED MICROARRAY GENE EXPRESSION DATA 

 

The ability to produce realistic simulated data is a critical component of evaluating 

multiple signature identification algorithms in a systematic manner. In order to obtain large, 

realistic networks and data capturing the characteristics of human gene expression data, I applied 

a High-Fidelity Data Resimulation technique that generates synthetic data from a causal process 

that is induced from the real data and guarantees that the synthetic data is indistinguishable from 

the real data. The method and its application are briefly outlined below, more details can be found 

in (Aliferis and Statnikov, 2007). 

The High-Fidelity Data Resimulation technique involves 6 steps9. First, a gene network 

is reverse-engineered from a real gene expression dataset. This step is performed by (a) obtaining 

an undirected graph by running HITON-PC algorithm for each gene and a phenotypic response 

variable, (b) orienting the graph using greedy search-and-score learning with Bach’s metric (Bach 

and Jordan, 2003), and (c) learning densities of each gene and phenotypic response variable using 

SVM regression (Schölkopf et al., 1999) and classification (Vapnik, 1998), respectively. Second, 

synthetic data is generated from the above network using logic sampling (Russell and Norvig, 

2003). Third, a power-law relationship between genes and their connectivity is examined in the 

simulated network (Barabasi and Bonabeau, 2003; Jeong et al., 2000). Fourth, a powerful 

classifier is applied to distinguish real from simulated data. The harder it is to perform this 

classification task, the better is the quality of resimulation. Fifth, Fisher’s Z-test is used to ensure 

that statistical dependencies and independencies true in the real data are preserved in simulated 

data and vice-versa. Sixth, the existence of multiple maximally predictive and non-redundant 

signatures in simulated data is demonstrated empirically. 
                                                 
9 Notice that steps 3-6 are used only for quality assurance purposes. 
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 The above process was applied to 1,000 variables (999 randomly selected genes and a 

phenotypic response variable) from the 12,600 gene probes in the Affymetrix U95A array lung 

cancer gene expression data of (Bhattacharjee et al., 2001). The phenotypic response variable 

denotes whether a subject has adenocarcinoma or squamous cell carcinoma. Once the network 

was reverse-engineered (step 1), a set of 30,000 samples was generated from this network (step 

2). The synthetic network and data passed validation steps 3-6. More details are given in (Aliferis 

and Statnikov, 2007). 
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APPENDIX I 

CRITERIA FOR MICROARRAY GENE EXPRESSION DATASET ADMISSIBILITY 
AND PROTOCOL FOR QUALITY ASSURANCE AND PROCESSING 

 
 

Recall that discovery and validation microarray gene expression datasets either originate 

from different laboratories or from different assay platforms. The following criteria for dataset 

admissibility are imposed in the independent-dataset experiments of this thesis: same phenotype 

and same or very similar patient population in both datasets, both datasets produced by 

microarray gene expression platforms from Affymetrix, sample size in discovery dataset ≥ 100, 

and sample size in discovery dataset ≥ sample size in validation dataset. Once candidate pairs of 

discovery and validation datasets that satisfy the above criteria are identified, I use the following 

quality assurance and processing procedure: (i) remove all patients/samples that are common 

between discovery and validation datasets (if applicable); (ii) for clinical outcome prediction 

tasks, remove censored patients/samples; (iii) if different microarray platforms are used, include 

only matching probes (obtained by using Affymetrix Array Comparison Spreadsheets: 

http://www.affymetrix.com/support/technical/comparison_spreadsheets.affx); (iv) ensure same or 

comparable normalization of both datasets; (v) verify presence of at least moderate predictive 

signal of the phenotype (>0.6 area under ROC curve) by using a signature based on all genes, and 

finally (vi) ensure same or statistically indistinguishable performance of the signature based on all 

genes when trained and tested by holdout validation in the discovery dataset and when trained in 

the discovery dataset and tested in the validation dataset. The last step is used to ensure that the 

populations of patients/samples are comparable between two datasets. To perform statistical 

testing in this step, a 95% confidence interval is built around each of the two point estimates10 of 

                                                 
10 One point estimate is obtained when a classifier is trained and tested by holdout validation in the discovery dataset, 
and another one is obtained when a classifier is trained in the discovery dataset and tested in the validation dataset. 
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area under ROC curve (DeLong et al., 1988) and it is verified that at least one of these confidence 

intervals includes a point estimate from another dataset. 
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APPENDIX J 

AN EXAMPLE OF SIGNATURE MULTIPLICITY DUE TO SMALL SAMPLES 

 

Consider a Bayesian network shown in Figure 20. It involves 5 variables including a 

response variable T. This network econdes a faithful distribution and thus only one Markov 

boundary exists in large samples, which is {C, D}. Now consider that one has access to three 

small samples from this distribution such that: in sample #1 one cannot reliably establish that 

},{| DCAT ⊥ , in sample #2 one cannot reliably establish that },{| DCBT ⊥ , and in sample #3 

one cannot reliably establish either },{| DCAT ⊥  or },{| DCBT ⊥ . Three Markov boundaries 

can be identified in the above samples, {C, D, A}, {C, D, B}, and {C, D, A, B}, respectively, 

assuming that neither A nor B significantly decreases the predictivity of T in given samples. 
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P(T | C, D) (C = 0, D = 0) (C = 0, D = 1) (C = 1, D = 0) (C = 1, D = 1) 
T = 0 0.2 0.5 0.7 0.4 
T = 1 0.8 0.5 0.3 0.6 

     
P(C | A, B) (A = 0, B = 0) (A = 0, B = 1) (A = 1, B = 0) (A = 1, B = 1) 

C = 0 0.3 0.7 0.9 0.4 
C = 1 0.7 0.3 0.1 0.6 

     
P(D | A, B) (A = 0, B = 0) (A = 0, B = 1) (A = 1, B = 0) (A = 1, B = 1) 

D = 0 0.6 0.7 0.8 0.4 
D = 1 0.4 0.3 0.2 0.6 

     
P(A)   
A = 0 0.6   
A = 1 0.4   

     
P(B)     
B = 0 0.4    
B = 1 0.6    

 
Figure 20: Graph of a Bayesian network used to illustrate signature multiplicity due to small 
sample sizes. The network parameterization is provided below the graph. The response variable is 
T. All variables take values {0, 1}.  

T
C

D

A

B
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APPENDIX K 

AN EXAMPLE OF SIGNATURE MULTIPLICITY DUE TO HIDDEN VARIABLES 

 

Consider a Bayesian network shown in Figure 21. It involves 4 variables including a 

response variable T. In the distribution with all variables observed, there is only one Markov 

boundary of T, which is {H}. Now consider that variable H is not observed. Because H is not 

observed and variables X1 and X2 contain exactly the same information about T, two Markov 

boundaries, {X1} and {X2}, can be indentified in this distribution. Notice that all these Markov 

boundaries have reproducible but suboptimal (relative to the original distribution with H 

observed) predictivity of the response variable T. 
 

 
 

P(T | H) H = 0 H = 1 
T = 0 0.9 0.2 
T = 1 0.1 0.8 

   
P(X1 | H) H = 0 H = 1 

X1 = 0 0.9 0.1 
X1 = 1 0.1 0.9 

   
P(X2 | X1) X1 = 0 X1 = 1 

X2 = 0 1.0 0.0 
X2 = 1 0.0 1.0 

  
P(H)  
H = 0 0.3 
H = 1 0.7 

 
Figure 21: Graph of a Bayesian network used to illustrate signature multiplicity due to hidden 
variables. The network parameterization is provided below the graph. The response variable is T. 
All variables take values {0, 1}. 

T

H

X1 X2
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