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ABSTRACT

FERMIONS AND BOSONS IN LOOP QUANTUM GRAVITY AND

ITS COSMOLOGICAL IMPLICATIONS

RUPAM DAS

Dissertation under the direction of Robert J. Scherrer and Martin Bojowald

Canonical gravity in real Ashtekar–Barbero variables is generalized by extend-

ing Holst’s original vacuum analysis to allow for both fermionic and bosonic matter.

For fermions, the effects of emerging torsion on parity and the known canonical (loop)

quantization of gravity are discussed on the basis of the classical analysis by eliciting

the necessity for adaptations. Then the role of these matter fields in homogeneous

models of loop quantum cosmology is explored by discussing their influence on the

behavior of the Wheeler-deWitt equation for the wave function of the universe. Next,

quantum gravity corrections to equation of state parameters for Maxwell and Dirac

fields arising from the discrete geometry of loop quantization are computed to in-

vestigate its effect on Big Bang Nucleosynthesis (BBN) to place bounds on these

corrections and especially the patch size of discrete quantum gravity states. Finally,

an example of the effects of these corrected equation of state on the evolution of dark

energy, in particular k-essence and quintessence, is presented.
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CHAPTER I

INTRODUCTION

Loop Quantum Gravity (LQG) is a non-perturbative, background-independent and

canonical quantum theory of gravity, a theoretical endeavor to combine two empiri-

cally successful yet apparently incompatible theories of the twientieth century: Quan-

tum Mechanics and General Relativity (GR). The central idea in this approach is to

find a gauge theory for GR similar to Yang-Mills theory which respects the crucial

lesson of GR that gravity is geometry and then possibly promote this reformulation

to a quantum theory by taking advantage of the mathematical machinery available to

quantize Yang-Mills theory. An immediate consequence of a successful implementa-

tion of this idea is the emergence of a non-perturbative and background-independent

classical framework which in turn opens a door for a possible quantization scheme for

gravity.

It is obvious that any splitting of the space-time metric, gµν = ηµν + Ghµν

with ηµν being a flat space Minkowski metric, hµν being assigned the role of dynam-

ical variable and Newton’s constant G playing the role of the coupling constant, as

used in the perturbative approaches developed by particle physicists, disregards the

important lesson that gravity is geometry, i.e. the space-time metric plays a dual role:

it determines geometry as well as encodes the physical gravitational field. Therefore,

a prior background structure or stage on which the dynamics of the gravitational field

takes place must be avoided. Hence, a demand of a theory without any metric yet one

that captures the dynamics of the very stage ensues. Fortunately, LQG appears to

meet this demand with the success of the canonical formulation of general relativity

in the real Ashtekar-Barbero variables [1] since this formulation recasts gravity as a

gauge theory similar to Yang-Mills theory, which in turn allows one to formulate a

1



quantum theory. A brief review of the basic elements of LQG is presented in this

chapter.

1.1 Connection Theory of GR

How can GR be recast as a dynamical theory of connections so that it can be

brought closer to gauge theories? Let us recall that the concept of connections enters

gauge theories through the local gauge symmetries. The local gauge symmetry, i.e.

the invariance of a gauge theory like Yang-Mills theory under local gauge transforma-

tions demands an introduction of a gauge connection Aµ in the covariant derivatives

of space-time fields such as fermion fields in the following manner

Dµ ≡ ∂µ − igAI
µTI , (1.1)

where AI
µ are the gauge connections, TI are hermitian generators for infinitesimal

gauge tranformations and g is the coupling constant of the theory. Here µ, ν, . . .

denote space-time indices and I, J, . . . internal indices for the gauge group. Also, TI ’s

satisfy [TI , TJ ] = ifK
IJTK with fK

IJ being the structure constant of the corresponding

Lie algebra. Most importantly, the connections Aµ themselves transform under the

corresponding gauge group as A → g−1Ag + g−1dg for g ∈ G (gauge group) with dg

implying the exterior derivative1. The connections take values in the Lie algebra of

G since they help to describe infinitesimal transformations. Intuitively, a connection

can be interpreted as a gauge field or potential which connects geometric objects like

vectors or one-forms at two local points on a manifold, e.g. a genralization of the

electromagnetic potential. A similar construction may be made for GR such that,

in the Hamiltonian framework, all theories share the same kinematics. However, the

major difference lies in the dynamics since the dynamics of the connection framework

for GR does not require any background while that for the gauge theories for other

1Exterior derivatives are defined on differential forms. A differential p-form is a totally anti-
symmetric tensor of type (0,p), and the exterior derivative d maps p forms onto (p+1) forms.
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interactions does.

Furthermore, it is important to note that all gauge theories are necessarily

constrained or sometimes called singular systems; please see [9, 10] for details. In

general, some redundancy in the solutions stemming from the same initial conditions

is present in a singular system, and thus the local symmetries relate these apparently

different solutions. In other words, some additional restrictions on the initial con-

ditions must be imposed in order to remove the redundancy and these restrictions

appear as constraints, not as the form of equations of motion. This always happens

as long as the initial data surface is not affected by the local gauge transformations.

Thus the constraints are functionals on the phase space of the relevent theory and

must be zero for being independent of the time evolution. Therefore, an attempt

to find a connection theory for gravity2 necessarily yields a singular system which is

briefly presented below.

The starting point for the connection theory of GR is a classical space-time

manifold M which is assumed to be topologically Σt × R, equipped with a fixed

orientation and Σt an oriented, compact or asymptotically flat3 3-manifold. Now,

some background independent space-time fields must be introduced to capture the

gravitational interaction, and it turns out that the tetrad4 formalism is convenient

for this purpose since even the standard model, in particular- fermions, require this

formalism, which is explored in detail in Chapter II. Thus, the basic space-time fields

consist of a pair, (eµ
I , ω

IJ
µ ), of a tetrad eµ

I and a Lorentz connection one-form5 ω IJ
µ

in the convention for the index notations defined above. With these definitions, the

2GR must be invariant under space-time diffeomorphisms or covariant under coordinate trans-
formations which are local symmetry transformations.

3The complement of a compact set in Σ is diffeomorphic to the complement of a closed ball in
R3

4A tetrad or vierbein is a frame field or an orthonormal set of four vector fields, one timetike and
three spacelike

5The connection one-form ω IJ
µ takes values in the Lie algebra so(3, 1) via map ω : V → so(3, 1)

by definition.

3



Hilbert-Palatini action, a first order6 action that encodes GR, is given by [4]

SP [e, ω] =
1

32πG

∫

M

ǫIJKLe
I ∧ eJ ∧ ΩKL

=
1

16πG

∫

M

d4x eeµ
I e

ν
JF

IJ
µν (ω) , (1.2)

where the first line is written in terms of differential forms and the second line in

components. Here, ǫIJKL is an alternating tensor on the fixed 4-D vector space V

(internal space of tetrads) equipped with a fixed metric ηIJ of Lorentzian signature

(−,+,+,+) such that its orientation agrees with that fixed on Σ and Ω := dω+ω∧ω

is the curvature of the connection one-form ω IJ
µ . The advantage of using differential

forms is that they can be integrated without any background structure such as a met-

ric and thereby render this formalism background-independent. In the components,

FKL
µν (ω) = 2∂[µω

IJ
ν] +[ωµ, ων ]

IJ is the curvature and e is the determinant of co-tetrad eI
µ

needed to make the action integral invariant under general coordinate transformations

since the co-tetrads provide an isomorphism between the tangent space TxM and V

at each point x ∈ M for the chosen topological structure on M . Most importantly,

the co-tetrad determines the familiar space-time metric gµν = ηIJe
I
µe

J
ν , which implies

that the space-time metric is a derived (not fundamental) quantity. This gives rise

to a much desired background-independent formalism. This action SP is invariant

under diffeomorphisms on M and local SO(3, 1) transformations, i.e.,

(e, ω) 7−→ (ge, geg−1 + gdg−1) for g ∈ SO(3, 1) . (1.3)

Now, the Einstein’s vacuum equation can be retrieved by extremizing this action

with respect to variations in ω IJ
µ and eµ

I . While the variations in ω IJ
µ yield that the

connection is completely determined by the tetrad, the variations in eµ
I reproduce the

Einstein’s vacuum equation; please see [7] for details.

6A first order formalism treats tetrad eµ
I and the connection ω IJ

µ independently in the variation
while the second order formalism treats ω[e], i.e. the connection as a function of the tetrads. This
distinction is shown to be important in Chapter II.
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At this point, one can perform a Legendre transform of this action by carrying

out a 3+1 decomposition presented in section 2.2 to obtain the same set of constraints

as those derived in the triad version of the ADM formulation, which unfortunately

results in losing all reference to connection-dynamics. Most importantly, a passage to

a possible quantum theory of gravity in the ADM formulation has been unsuccessful

because of the complicated forms of the constraints as they are non-polynomial in the

canonical variables. This in turn necessitates the reformulation of canonical gravity in

terms of the self-dual7 (complex) connections known as the Ashtekar variables. The

main idea in the Ashtekar formulation is the use of complex variables such as com-

plex tetrads, and Lorentz connections, hence the complex action, yields algebraically

simple constraints [7]. Then the real GR can be recovered by imposing appropriate

reality conditions.

This reformulation of gravity, expressed in Ashtekar variables as a dynamical

theory of complex-valued connections, has the advantage of obtaining algebraically

simple constraints. However, rather complicated reality conditions have to be imposed

on the basic canonical variables in order to recover real, Lorentzian general relativ-

ity. Moreover, since holonomies8 of the complex Ashtekar connections take values

in the non-compact gauge group SL(2,C), this approach prevents one from taking

advantage of much of the available mathematical arsenal of gauge theory built upon

compact gauge groups. Therefore, real su(2) valued Ashtekar-Barbero connections,

that is, Ai
a = Γi

a + γKi
a (with the spin connection Γi

a, K
i
a being a 1-form derived from

extrinsic curvature and the Barbero–Immirzi parameter γ [3, 11] taking any non-zero

real value), have mainly been used for the passage to a quantum theory of gravity.

The Ashtekar-Barbero connections Ai
a appear naturally in the canonical analysis as

projections of real Lorentz connection ωIJ
a on Σt, which is shown in details in section

2.2.

7A self-dual connection is a connection which satisfies ωIJ
a = − i

2
ǫIJ

KLωKL
a .

8Please see section 1.2.
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Real variables were initially introduced by Barbero in a purely canonical for-

malism [3] which left the relation of the real connection to possible pull-backs9 that

of space-time objects unclear. Holst, motivated by this issue, carried out an analysis

in [2] to re-derive Barbero’s canonical formulation from an action which generalizes

the ordinary Hilbert-Palatini action (1.2) and the Holst action is given by

SH [e, ω] =
1

16πG

∫

M

d4x eeµ
I e

ν
J

(
F IJ

µν (ω) − 1

2γ
ǫIJ

KLF
KL

µν (ω)

)
. (1.4)

Notice that the Holst action differs from the Hilbert-Palatini action (1.2) by the

presence of the second term in (1.4). It turns out that the inclusion of this second

term endows the Holst action with a desired property suited to our current purpose.

Namely, the addition of the second term does not change the classical equations of

motion for GR, yet it seems indispensable for formulating a quantum theory. More

precisely, extremizing the Holst action with respect to variations in the real Lorentz

connection ωIJ
µ still results in the Levi-Civita spin connection, i.e. ωIJ

µ = eI
ν∇µe

νJ ,

which is completely determined by the tetrads; please see section 2.1. Then upon

inserting this connection in the action and using the Bianchi identity, the second

term vanishes identically and thus the equations of motion remain unchanged [2].

Therefore, the Holst action differs from the Hilbert Palatini action by at most a

canonical transformation, yet it is most suitable for the passage to a quantum theory

of GR.

Now, a canonical analysis or the Legendre transform of this action is required

for the passage to quantization. An extensive analysis of the Einstein-Cartan action

describing fermions coupled to gravity is explored in Chapter II, and it follows that all

the necessary classical results for quantization, e.g. canonical variables, symplectic

structures, and the first class constraints discussed below, for the vacuum case, as

9A pull-back is an induced map between two vector spaces. Let F : W → V be a linear map and
φ : V → R be a one-form, then the pull-back of φ by F is defined naturally by F ⋆φ := φ ◦ F . Thus,
the differential forms are pulled back by a linear map between vector spaces or manifolds. On the
other hand, tangent spaces are pushed forward between manifolds.

6



presented in [2], can easily be recovered in the limit of a vanishing matter field.

Therefore, only the main results, without any detail, necessary for loop quantization

of GR are presented below.

The Legendre Transform

The basic canonical variables that emerge after the Legendre transformations,

as evident from (2.35), are the Ashtekar-Barbero connection Ai
a = Γi

a + γKi
a and

the densitized10 triad (of density weight 1) P a
i =

√
|det(Ea

i )| Ea
i /γκ with triads Ea

i

and κ = 8πG. Here, Γi
a is the su(2)-valued 3-D spin connection compatible with

the co-triad ei
a and γKi

a the su(2)-valued extrinsic curvature with i, j, . . . denoting

the SO(3) internal indices and a, b, . . . the purely spatial indices. It is interesting

to note that the results from the Ashtekar formulation with self-dual (or anti self-

dual) connections can be retreived by merely setting γ = ±i respectively in the above

definition of Ai
a or in the Holst action (1.4). Thus, the Holst analysis generalizes the

Ashtekar’s self-dual formalism of gravity.

Next, in terms of these configuration variables, the symplectic structure can

be expressed as:

Ω(δ1, δ2) =

∫

Σ

d3x (δ1P
a
i δ2A

i
a − δ2P

a
i δ1A

i
a) (1.5)

for all tangent vectors δ1 and δ2 to the canonical phase space Γ consisting of pairs

(Ai
a, P

a
i ) of fields on the 3-manifold Σ. Note that the symplectic framework ge-

ometrizes the Hamiltonian description of classical systems, thus making it coordinate

independent. A symplectic structure or form is a closed and non-degenerate 2-form.

The availability of the symplectic form on a symplectic manifold like the phase space

Γ enables one to construct vector fields that generate canonical transformations from

functions such as the Hamiltonian on that phase space; please see [8] for an extensive

10Let us recall that the metric determinant q = det(qab) is a scalar density of weight +2. Here,√
|det(Ea

i )| =
√

q makes P a
i a densitized triad of weight +1 with a factor 1/γκ.

7



discussion. Therefore, these phase space functions that generate canonical transfor-

mations encode the symmetries of classical systems or, more precisely, constrained

systems like GR and thus they are the constraints of the classical system. The smeared

constraints for GR in the real Ashtekar-Barbero connection are given by the following

relations.

Gauss Constraint:

CG[Λ] :=

∫

Σ

d3x ΛiGi with Gi := DbP
b
i := ∂bP

b
i + ǫ k

ij A
j
bP

b
k (1.6)

and for any smooth field Λi ∈ su(2) on Σ .

Diffeomorphism Constraint:

CDiff [ ~N ] :=

∫

Σ

d3x NaCa =

∫

Σ

d3x Na
(
P b

j F
j
ab − Ai

aGi

)
(1.7)

for each smooth vector field Na on Σ and F j
ab = 2∂[aA

j
b] + ǫjklA

k
aA

l
b is the curvature

of the Ashtekar-Barbero connection. Here we have used (1.6) to remove the part

that generates internal gauge transformations which is shown below. And finally,

Hamiltonian or scalar Constraint:

C[N ] :=
γ2κ

2

∫

Σ

d3x N
P a

i P
b
j√

|q|
(
ǫij kF

k
ab − 2(γ2 + 1)Ki

[aK
j
b]

)
. (1.8)

It turns out that these are first class11 constraints and, as expected, generate canonical

transformations. Hence, let us briefly explore the canonical transformations these

constraints generate, which play crucial roles in dynamics of loop quantization.

Now, it follows from the Poisson algebra12 that the Poisson brackets of the

canonical variables (Ai
a, P

a
i ) with each of these constraints will reflect the action they

will have on these variables. For example, in classical mechanics, the Poisson bracket

{q,H(q, p)} = q̇ reflects the time evolution of the generalized coordinate q generated

11By definition, the first class constraints of a classical system weakly Poisson commute with each
other; more practically, the Poisson brackets of the first class constraints can be expressed as linear
combinations of themselves[9].

12A Poisson algebra is a commutative ring with elements such as constraints or phase space
functions with the Poisson bracket {, } as the binary action.
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by the Hamiltonian. Once the transformations of the canonical variables induced by

these constraints are known, the behavior of any phase space function can be obtained

by computing the Poisson brackets of the function and the constraints.

The effects of Gauss constraint can be seen from the following relations

{
Ai

a, CG(Λ)
}

= −(∂aΛ
i + ǫi jkA

j
aΛ

k) and {P a
i , CG(Λ)} = ǫ k

ij ΛkP a
i , (1.9)

Clearly, CG(Λ) generates the internal rotations along Λi since the above Poisson

bracket imply the infinitesimal gauge transformations of Ai
a and P a

i , which can easily

be derived from (1.3) by using g = eiΛi

. Next, the Diffeomosphism constraint implies,

as can be deduced from the following Poisson brackets

{
Ai

a, Cdiff( ~N)
}

= L ~NA
i
a and

{
P a

i , Cdiff( ~N)
}

= L ~NP
a
i , (1.10)

that it generates diffeomorphisms13 along ~N . An important distinction between the

actions of these two constraints is that while the Gauss constraint rotates the fields

at a single point locally on Σ, the diffeomorphism constraint moves the fields from

one point to another on Σ implying intrinsic non-locality. Finally, the Hamiltonian

constraint generates time evolution ‘off’ Σ as one might expect. With these, the

complete Poisson algebra can be computed with some lengthy computations to show

that these constraints are indeed first class [4]. This completes the brief review of the

connection theory of GR. The next step is to carry out canonical quantization of this

reformulation of GR, which is briefly reviewed in the next section.

1.2 Elements Of Loop Quantization

Quantization of a classical system is the search for a corresponding quantum

system with the correct classical limit. There is no a priori reason for the existence

of a unique quantum system for a given classical system, thus causing the possibility

13A diffeomorphism f : Σ → Σ is a bijection with smooth f and f−1.
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of ’quantization ambiguity.’ In general, the simplest quantization of a given classical

system seems to be the physically correct one. Therefore, the fundamentals of the

currently existing (perhaps the simplest) non-perturbative, background-independent

and canonical quantization, known as loop quantization, of gravity is presented; see

[4, 5, 6, 21, 25] for details.

A standard quantization program for an unconstrained classical system usually

begins with the identification of the phase space, Γ, of the corresponding classical

system. The phase space can naturally be endowed with a mathematical (differential)

structure of a cotangent bundle14 over a smooth, orientable manifold C, known as the

configuration space of the system. The state of the classical system is completely

determined by a point (q, p) on Γ for each q ∈ C. Next, the dynamical variables are

defined by smooth real-valued functions on Γ since these functions are known to induce

vector fields with the help of the natural symplectic structure on Γ[8]. The flows or the

integral curves generated by these vector fields represent the dynamical trajectories

of the system. Thus, a subset S of the set of smooth real-valued functions on Γ

containing the elementary variables, such as configuration and momentum variables,

must be chosen judiciously for the quantization purpose since they are to be promoted

to self-adjoint quantum operators directly. This subset has to be large enough to

generate the full algebra of functions on Γ to encompass the correct number of degrees

of freedom in the theory, and at the same time, small enough to be closed under

Poisson brackets. Then finding a representation of the elements of S by operators on

a Hilbert space such that the Poisson bracket between any two elementary variables

is represented by i~ times the commutator of the corresponding operators is known as

quantization. Also, real elementary variables are represented by symmetric operators

to ensure self-adjointness[7].

So far, the quantization program described above applies to systems without

14A cotangent bundle, dual of the tangent bundle, of a smooth manifold may be thought of the
collection of all the cotangent vactor spaces at every point in the manifold.
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constraints only; it cannot be immediately extended to constrained systems. In the

presence of constraints, not all points of Γ are accessible to the physical system.

Only those points (configurations and momenta) which satisfy the constraints, i.e.

points in the reduced phase space, are allowed, which in turn makes the selection of

the elementary variables crucial to a successful quantization. In order to quantize

the constraint systems, one usually adopts the two successful quantization strategies:

the reduced phase space method and the Dirac quantization procedure. In the re-

duced phase space method, the constraints are eliminated classically to quantize the

resulting constraint-free Hamiltonian system. However, there is no guarantee that

the reduced phase space will support a cotangent bundle structure, thereby making

the above procedure ineffective for quantization. On the other hand, the elemen-

tary variables on the full phase space, hence the contangent bundle, that generate

a suitable Poisson algebra are identified first in Dirac’s procedure. Then, finding a

representation of this algebra on some complex vector space V offers a quantization

of the unconstrained system. In order to obtain the physical states satisfying the

constraints, the quantum analogs of the classical constraints are constructed from the

elementary operators first and then the quantum constraints are solved to pick out

the physical states. Finally, one extracts physics from the physical states by defining

an appropriate Hermitian inner product on the space of physical states, Vphys. Alter-

natively, a Hermitian inner product may be defined appropriately on the full complex

vector space V and then Vphys is obtained by solving the constraints. Next, since

Vphys is a subspace of V , an inner product on Vphys may be automatically obtained.

Now, it is evident from section 1.1 that the constraints for the connection

theory of gravity are complicated and thus difficult to solve classically. Therefore,

the Dirac’s quantization procedure is adopted for quantizing gravity. Moreover, a

Hermitian inner product is defined on the full kinematic vector space of cylindrical

functions as shown below. The physical states are obtained by solving the quantum

11



constraints.

Kinematics

First, as discussed above, the classical configuration variables for gravity are

SU(2)-connections on a principal fiber bundle15 over the spatial manifold Σ, repre-

sented by smooth su(2)-valued local 1-forms Ai
a; the space A of all such 1-forms

is the classical configuration space. The phase space is coordinatized by the pair

(Ai
a, P

a
i ), where P i

a is the conjugate momentum, an su(2)-valued vector density on Σ

proportional to the densitized triad. Then the only non-vanishing Poisson bracket is

{
Ai

a(x), P
b
j (y)

}
= δi

jδ
b
aδ(x, y) . (1.11)

Now it is tempting to quantize the theory by promoting these basic variables to quan-

tum operators and then turning their Poisson bracket into a commutator. However,

such scheme does not work in this case since the commutator between them implies an

operator-valued distribution16 due to the presence of the delta function on the right

side as encountered in infinite dimensional field theories, which in turn makes these

elementary operators ill-defined at a point. Thus no well-defined quantum analogs

for these canonical variables are known in a direct form mainly due to the infinite

number of degrees of freedom.

Fortunately, borrowing the techniques from lattice gauge theory, this problem

with finding well-defined basic operators can be overcome by smearing the configura-

tion variable Ai
a over some finite number of one dimensional edges and its conjugate

momenta P a
i over two dimensional surfaces. It then becomes possible to build the in-

finite dimensional quantum theory from these new finite dimensional smeared canon-

ical variables. Thus the elementary classical variables that have well-defined quan-

15A principal fiber bundle has a fiber identical to the structure group G = SU(2).
16A distribution can be thought of a continuous linear functional on the space of well-behaved

test functions.
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tum analogs are instead given by (complex valued) matrix elements of holonomies17

he(A) ∈ SU(2) along paths e in Σ and fluxes P (S, f) :=
∫

S
fiΣ

i, where f are su(2)-

valued functions across 2-surfaces S in Σ and Σi
ab = ǫabcP

ci is the 2-form dual to the

densitized triad.

With these elementary quantities, it is natural to construct quantum states

known as ‘cylindrical functions’ on A through holonomies he(A) along edges e of a

graph α (a finite set of edges) in Σ. If a graph α has n edges, then, given a C∞

complex-valued function ψ on SU(2)n, a cylindrical function Ψα on A can be defined

as

Ψα(A) := ψ(he1
(A), . . . , hen

(A)) , (1.12)

where the holonomies he1
(A), . . . , hen

(A) associate to every connection A ∈ A an

n-tuple (g1, . . . , gn) of elements of SU(2). Let Cylα denote the space of such functions

as Ψα with respect to the graph α and let Cyl = ∪αCylα denote the space of all

cylindrical functions. A natural inner product on Cylα can be introduced by defining

a suitable measure dµα by

〈Ψα,Φα〉 =

∫
dµαψαφα :=

∫

SU(2)n

dµn
Hψα(he1

, . . . , hen
)φα(he1

, . . . , hen
) (1.13)

with the Haar measure18 dµH on SU(2). The Cauchy completion19 of Cylα with

respect to this inner product gives rise to a Hilbert space Hα := L2[Aα, dµα], where

Aα := Aα/G0
α is the space of smooth connections restricted to the graph α modulo

all local gauge transformations gα ∈ G0
α which are the identity on the vertices.

17The holonomy is the parallel transport of the connection Ai
a along an edge e defined by

d

dt
he(t, t1; A) = −Aa(e(t)) ėa(t)h(t, t1;A), and h(t1, t1;A) = I ,

where ėa(t) is the tangent to the curve with the parameter t of the curve. The formal solution of
this equation is given by he(A) = Pexp

∫
e
dtAi

a(e)ėa(t)τi, where P denotes the path ordered integral
and τi the basis in su(2).

18The Haar measure is a way to assign ’invariant volume’ under left or right translations to subsets
of locally compact topological groups such as SU(2) and subsequently define an integral of functions
on these groups.

19A space X is Cauchy complete if every Cauchy sequence of elements in X converges to an
element in X.
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In Cylα, cylindrical functions are defined on a finite set of given edges, and

thus they do not capture the full gauge invariant information in A. In order to

capture the full information, we must consider all possible graphs in Σ, which in

turn necessitates the introduction of an inner product on the space of all cylindrical

functions in Cyl by extending (1.13). An immediate consequence of this generalization

is that the same cylindrical function may be seen as associated with two or more

different graphs. For instance, a given edge can be split in two, such that a function

cylindrical with respect to the original graph now becomes a cylindrical function

with the same connection dependence but is associated with a new graph containing

the two separate halves of the split edge instead of the full edge. The above inner

product then formally depends on the graphs used to perform the integral, which

in turn imposes restrictions on the choice of suitable measures on SU(2)n. All these

so-called cylindrical consistency conditions are satisfied if one uses the Haar measure

to define integrations of holonomies [13].

The measure then extends to the full space Cyl and, by completion, defines

the full Hilbert space H := L2[A, dµAL] where dµAL is the Ashtekar–Lewandowski

measure constructed in this way and A the space of generalized connections. The

latter space represents the quantum configuration space as an enlargement from the

classical configuration space A of connections by distributions. Via the action on

graphs embedded in Σ, the Hilbert space carries a unitary action of the spatial dif-

feomorphism group.

An orthonormal basis on H is constructed by coloring each edge e of a graph

α with a non-trivial irreducible representation je of SU(2) and an invariant tensor

(a map from the tensor product of all edge representations to the trivial representa-

tion) lv, called an intertwiner, at each vertex v. The intertwiner defines the way to

contract in a gauge-invariant way all the matrices obtained by evaluating the edge

holonomies for edges incident at v in their assigned representations. Intertwiners for
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a given vertex with incident edge representations in general allow different indepen-

dent choices, forming a finite-dimensional vector space whose dimension equals the

multiplicity by which the trivial representation occurs in the tensor product of inci-

dent representations.20 Choosing a basis of the intertwiner spaces, the set of all such

colored graphs provides an orthonormal basis21 of H known as the spin-network basis

[14]. Let |S〉 = |α, jn, lm〉 denote a spin-network state for a graph α with n edges and

m vertices. Then a corresponding cylindrical function as a functional of connections

A is written as

ΨS[A] = 〈A|S〉 , (1.14)

and thus the connection representation of the Poisson algebra is completed. However,

historically, the loop representation, hence the name LQG, of the Poisson algebra was

originally constructed from Wilson loops (edges with the same end points); for in-

stance, see [12] for details. It has been shown that these two representations are equiv-

alent and the connection representation generalizes the loop states to spin-network

states to allow for edges with different end points.

After these preliminaries, the elementary quantum operators on H and their

actions on the cylindrical functions can be defined by computing the Poisson brackets

between the new elementary variables, namely the holonomy he(A) and the smeared

densitized triad P (S, f). It turns out that the Poisson bracket of the new elementary

variables {he(A), P (S, f)} implies that the bracket vanishes if e and S do not intersect

or e lies within the closure of S. However, if they have a simple intersection, then

the bracket results in a linear combination of the configuration variables with the

coefficients determined by the value of the smearing field f at the intersection point.

On the other hand, the Poisson bracket between the momentum observables fails

to commute since the vector fields X(S,f) on the configuration space used to define

20An example of a normalized interwiner for a vertex in a trivalent graph is the familiar Wigner
3j symbol used in the coupling of angular momenta.

21It follows from the Peter-Weyl theorem that a basis on the Hilbert space of L2 functions on
SU(2) is given by the matrix elements of the irreducible representations of this group.
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P (S, f) := X(S,f) · P do not commute in general. This definition of the momentum

variables follows from a similar construction of quantum mechanics on a compact Lie

group G[7, 4].

It follows that every smooth function f on G defines a configuration variable

and every smooth vector field X i, a momentum variable PX := X ipi on the cotangent

bundle T ⋆(G). As on any cotangent bundle, (non-trivial) Poisson brackets between

them mirrors the action of vector fields on functions and the Lie bracket between

vector fields:

{PX , f} = −LXf ; and {PX , PY } = −P[X,Y ]. (1.15)

Most importantly, these observables have unambiguous quantum analogs. In the

same spirit, classical configuration variables for the connection theory of gravity are

represented by complex-valued, cylindrical functions f on Ā. The corresponding

quantum operators f̂ are defined to act by multiplication:

(f̂ Ψ)(Ā) = f(Ā) Ψ(Ā) (1.16)

Next, the momentum operators P̂(S,f), labelled by a 2-surface S and su(2)-valued

smearing fields f i on S, are defined by using left (right) invariant vector fields22 Li

and Ri on Ā respectively; the subscript i denotes the basis τi ∈ su(2). The use of left

(right) invariant vector fields makes the action of the momentum operators depend

only on the Lie derivatives with respect to Li (Ri), and the corresponding momentum

operators are denoted by L̂i = Ĵ
(L)
i (R̂i = Ĵ

(R)
i ). The notation Ĵi makes sense since it

implies a generalization of the familiar ‘angular momentum’ operator which acts on

the irreducible representations of SU(2) on the edges and the vertices of spin-network.

In fact, a more explicit notation of the operator associated with the edge e and the

vertex v connected to the edge e can be denoted by Ĵ
(v,e)
i , which can be regarded as

the angular momentum operator associated with the edge e. Note that the vertex v

22A left (right) invariant vector field is a vector field which is invariant under left (right) translation.
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determines if the action of this operator is through the left or right invariant vector

field, i.e. L̂i = Ĵi if the vertex v is the origin of the edge and R̂i = Ĵi if v is the

target of e. Similarly, operators on each vertex of α can also be defined, which can

be regarded as the total angular momentum arriving at the corresponding vertex.

Finally, following (1.15), the action of P̂(S,f) is given just by the Poisson brackets

between the classical momentum and configuration observables: For all Ψ ∈ Cyl, we

have:

(P̂(S,f)Ψ)(Ā) = −i~LXΨ(Ā) = i~{P (S, f), Ψ}(Ā) , (1.17)

with X being a left or right invariant vector field. More explicitly, if Ψ ∈ Cylα, we

have

P̂(S,f) Ψ =
~

2

∑

v

f i(v)

[∑

e at v

κ(S, e)Ĵ
(v,e)
i Ψ

]
, (1.18)

where κ(S, e) = 0 if S ∩ e = ∅ or S ∩ e = e modulo the end points, +1 if e lies

above S, and -1 if e lies below S. The momentum operators (also known as the flux

operator since it can be interpreted as the flux of the electric field through S) P̂(S,f)

in (1.18) are essentially well-dfined self-adjoint operators on Cyl because only a finite

number of terms in the uncountable sum are non-zero when it acts on a cylindrical

function. Furthermore, a little reflection reveals that the spin-network states are

the eigenstates of this operator and it possesses a discrete spectrum containing zero,

arising from the first condition κ(S, e) = 0, i.e. if no intersection exists between the

suface S and the edges of the spin-network states. This fact makes the quantization

of the Hamiltonian constraint trickier since it contains inverse densitized triads q−
1

2 ,

which will be discussed later.

At this stage, the surprising discrete nature of the fundamental structure of

space can be shown to emerge since the spectra of the spatial geometric operators

such as area and volume [16, 17, 18] have discrete spectra containing zero. This is

shown by building the quantum operators corresponding to the phase space functions
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representing area and volume from the flux operator P̂(S,f). For example, a well-

defined self-adjoint area operator ÂS for each surface S ∈ Σ can be constructed from

the phase space function for area A(S) =
∫

S
d2x

√
h, where h is the determinant of

the intrinsic 2-metric hab on S. Here, S is assumed to be either a closed 2-dimensional

sub-manifold of Σ or an open 2-dimensional sub-manifold without boundary.

Now, a suitable ‘regularized area function’ can be obtained by dividing S into

a large number of elementary cells, SI , with I = 1, 2, . . . N . Next, on each cell,

let us introduce an internal triad τ i to use its elements as test fields f i such that

P (SI , τ
i) := P i(SI). Then the area function can be approximated by

[AS]N = γκ

N∑

I=1

√
P i(SI)P j(SI)ηij , (1.19)

with ηij = −2tr(τiτj) is the Cartan-Killing metric for all τi, τj ∈ su(2), as the number

of cells goes to infinity such that the coordinate size of the cells SI goes to zero

uniformly in I, i.e.

lim
N→∞

[AS]N = AS . (1.20)

Now, since each P i(SI) gives rise to an unambiguously defined quantum operator,

P̂ i(SI)P̂
j(SI)ηij is a positive definite self-adjoint operator on H with a well-defined

(positive) square-root for each I. Thus the corresponding area operator is given by

[ÂS]N := γκ
N∑

I=1

√
P̂ i(SI)P̂ j(SI)ηij . (1.21)

The total area operator ÂS can be obtained in the limit N → ∞, which corresponds

to the operation of removing the regulator. This operator is self-adjoint on H and

also gauge invariant and diffeomorphism covariant.

Next, since (1.18) implies that the flux operators P̂ i(SI) have well-defined

action on spin-networks, the area spectrum can be calculated from the action of

[ÂS]N on twice differential cylindrical functions on Ā. Again, a non-zero contribution

to the sum (1.21) arises only from those SI which intersect α. For instance, fixing a
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surface S and considering only those states in Cyl for which the graph has no edge

which lies within S and which are gauge invariant at each vertex where S intersects

the graph, (in particular if all intersections of S with the graph are at simple bi-valent

vertices) the area spectrum is computed to be

aS = γℓ2Pc
−3
∑

I

√
jI(jI + 1), (1.22)

where ℓ2P = κ~ defines the Planck’s length ℓP and c is the speed of light in vacuum.

Then the smallest nonvanishing eigenvalue for γ = 1 turns out to be ∼ 10−66 cm2.

A more general spectrum can be calculated by relaxing the above restrictions on the

cylindrical functions.

Similarly, a well-defined, self-adjoint and non-negative volume operator V̂R

corresponding to the phase space function,

VR = (
√
κγ)3

∫

R

d3x
√
| detP |

= (
√
κγ)3

∫

R

d3x

√
| 1
3!
ǫijk ǫabc P a

i P
b
j P

c
k | (1.23)

for an open subset R ∈ Σ, can be constructed. Furthermore, as shown in Chapter

III, a well-defined V̂R is crucial to the quantization of the Hamiltonian constraint.

However, since VR is a rather complicated non-polynomial function of the densitized

triads, the problem with regularization turns out to be considerably more complicated

than that for area operators. Hence, the method for constructing V̂R and finding the

volume spectrum turns out to be technically more subtle; please see [18, 4] for details.

Nonetheless, V̂R possesses discrete spectrum with contributions only from the nodes

of a spin-network,23 while the area operator receives contributions only from the

links that intersect S. Thus, the intertwiners associated with the nodes are quantum

23It follows from the presence of ǫabc in (1.23). The anti-symmeterization forced by ǫabc on suitably
regulated VR in (1.23) demands that the flux operators P̂ i(Sa)’s be independent for non-vanishing
contribution and this is satisfied only if each regulated cubic cell contains a node. Intuitively, a node
can be imagined as a source so the absence of a source in a cube has vanishing contribution of the
total flux across the boundary of the cube.
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numbers of the volume and the spins associated with the links are quantum numbers of

the area. This enables a spin-network with n nodes to be interpreted as an ensemble

of n quanta of volume separated from each other by quanta of area of elementary

surfaces. In other words, loop quantization brings about the cellular decomposition

of physical space, each cell representing a quantum of volume. Therefore, our physical

space appears to be fundamentally discrete in LQG.

So far, the discussion has been focused only on the kinematical Hilbert space

H = L2[A, dµAL] spanned by the cylindrical functions in Cyl. This Hilbert space is

too large and non-separable because it contains redundancy engendered by the diffeo-

morphism gauge, i.e. it contains states which are not invariant under diffeomorphism.

However, GR demands that the physical states be invariant under internal gauge (en-

coded in the Gauss constraint) and diffeomorphism. It turns out that the physical

Hilbert space Hphys obtained by factoring away both internal and diffeomorphism

gauge is indeed separable. In addition, the evolution or the dynamics of the physical

states must also satisfy the quantum Hamiltonian constraint. In other words, the

physical states must be in the kernel of the quantum constraint equations, which are

briefly discussed below.

Dynamics

Since the classical constraints (1.6-1.8) are phase space functions of the canon-

ical variables (Ai
a, P

a
i ), the well-defined quantum analogs of these constraints are con-

structed from the holonomies and the flux operators. However, such a procedure to

find well-defined operators on the kinematic Hilbert space H constructed above is

not as straightforward as it may seem, thus leading to one of the major challenges of

quantum gravity.

The Gauss Constraint:
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The cylindrical functions that are solutions to the quantum Gauss constraint

are gauge-invariant under local gauge transformations, i.e. under SU(2). One can

solve the quantum Gauss constraint by first promoting CG(Λ) in (1.6) to a well-

defined operator ĈG(Λ) on H and then finding the states that belong to the kernel

HG
inv of ĈG(Λ) for all Λ ∈ su(2). In other words, the set of Ψα ∈ Cyl(1)α for any

α that satisfies ĈG(Λ)Ψα = 0 constitutes the gauge-invariant subspace HG
inv of H.

Now, the gauge-invariant cylindrical functions can be constructed from holonomies

and intertwiners on a given graph α by observing the behavior of holonomies and

interwiners under such local gauge transformations. Fortunately, given a local SU(2)

rotation g : Σ → SU(2), despite the inhomogeneous transformation behavior of the

Ashtekar-Barbero connection Ai
a in (1.3), holonomies transform homogeneously as

g · he(A) = g(vi)he(A) (g(vf ))
−1, (1.24)

for all edges e in Σ with source vi and target vf . This follows from the requirement

that the definition of holonomy be independent of the choice of bases, meaning the

gauge transformations and the parallel translations should commute. Thus, the gauge

transformations of holonomies depends only on the end points of edges, i.e. at the

vertices. Finally, choosing an invariant intertwiner at each vertex to contract all

the incident holonomies makes the spin-network states and therefore the cylindrical

functions gauge-invariant by construction.

However, the choice of non-invariant or covariant intertwiners at vertices is

also admissible insofar as the gauge-invariant states can be obtained upon imposing

necessary conditions on the operators at the vertices. These conditions naturally

follow from the quantum Gauss constraint. More explicitly, for any Ψα ∈ Cyl(1)α , the

quantum Gauss constraint24 becomes [4]

ĈG(Λ) Ψα = ~
∑

v

∑

e

(Λi(v)Ĵ
(v,e)
i ) Ψα (1.25)

24This follows from using the heuristic ansätz P → −i~δ/δA in the Gauss constraint (1.6).
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where the first sum extends over all vertices v of α and the second over all edges

e meeting at v. Now, the condition for gauge invariance of cylindrical functions is

that these elements of Cyl have zero eigenvalues for every vertex operator, implying
∑

e Ĵ
(v,e)
i = 0, i.e. the total angular momentum at each vertex must be zero. There-

fore, it follows that either H (by construction) or HG
inv ⊂ H are the home for the

gauge-invariant states.

The Diffeomorphism Constraint:

The imposition of the diffeomorphism constraint is more complicated due to

the following difficulties. First, the shift vector Na used to obtain smeared constraint

in (1.7) is a spatial vector field, so the values of its components depend on spatial

coordinates. However, the spatial coordinates have no meaning on the Hilbert space,

so what values Na should take are undetermined, implying Na cannot be quantized.

As a result, the smeared diffeomorphism constraint (1.7) cannot be promoted to a

quantum operator and hence finding the home for the diffeomorphism invariant states

seems challenging. Second, since diffeomorphisms move graphs, the only element of

H left invariant by the action of all diffeomorphisms is the constant function on

Ā. More precisely, the cylindrical functions in Cylα becomes orthogonal to those

in Cylϕ·α defined on the new graph if the diffeomorphism ϕ : Σ → Σ moves α.

Thus, the infinitesimal generator of ϕ̂(λ) corresponding to the 1-parameter family

ϕ(λ) fails to exist since this family fails to be weakly continuous in λ. However,

these difficulties can be overcome by working directly with finite diffeomorphisms and

demand that physical states be invariant under the induced action ϕ̂ of appropriate

diffeomorphisms ϕ on Σ.

Now, how can the home for diffeomorphism-invariant states be found? A

natural strategy is to use the ‘group averaging procedure’, generally available for

such constraints[19, 20]. Physical states are obtained by averaging elements of Cyl
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over the group of diffeomorphisms Diff(Σ). Formally, the diffeomorphism-invariant

states can be written as

Φ̄ :=

∫

Diff

[dϕ]ϕ ⋆ Φ , (1.26)

where dϕ is a measure on Diff(Σ) and ϕ ⋆ Φ denotes the pull-back of Φ under ϕ.

Now, the problem is that since the group Diff(Σ) is too large, the above integral may

not converge to an element in Cyl. Thus Φ̄ does not belong to H since it is not

normalizable.25 However, it can be shown that a well-defined (linear) action of Φ̄ on

a dense subset26 H′

of H in the following sense that, for every Ψ ∈ H′

,

Φ̄ · Ψ :=

∫

Diff

[dϕ] 〈ϕ ⋆ Φ|Ψ〉 , (1.27)

implies that the home for diffeomorphism-invariant states is the topological dual (if

equipped with suitable topology) Cyl⋆diff of Cyl. Therefore, the elements of Cyl⋆diff are

the linear functionals on the elements of Cyl and thus they are genuine distributions

on Ā rather than functions. Also, since the the scalar product on H is invariant under

diffeomorphism, the group averaging procedure naturally endows the solution space

with a Hermitian inner product,

〈Φ̄ | Ψ̄〉 := Φ̄ · Ψ . (1.28)

Finally, the Cauchy completion of Cyl⋆ is the Hilbert space Hdiff for diffeomorphism-

invariant states. Thus, the passage to the diffeomorphism-invariant Hilbert space is

given by Cyl ⊂ H ⊂ Cyl⋆diff ⊂ Hdiff .

The Scalar Constraint:

While the canonical transformations generated by the Gauss and the diffeo-

morphism constraints are kinematical gauge symmetries of the classical theory since

25Similar situation arises even in simple quantum mechanical systems such as a particle in R3 with
a constraint px = 0. Solutions to the constraint fail to have finite norm in the kinematic Hilbert
space L2(R3) and belong to a larger space, e.g. the space of distributions in R3.

26A is dense in X if the only closed subset of X containing A is X itself, i.e. the closure of A is
X.
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they operate on the 3-D spatial manifold Σ at a ‘fixed time’, the heart of quantum

dynamics lies in the scalar constraint. Implementing it in the quantum theory also by

a group averaging procedure is difficult to adopt because the finite canonical trans-

formations generated by this constraint are not well-understood even at the classical

level. Therefore, the procedure of constructing a quantum operator Ĉ(N), similar

to that used for the Gauss constraint, corresponding to the classical, smeared scalar

constraint function (1.8) and then seeking its kernel is adopted. However, because

of the intricate form of this constraint, its implementation is yet to be as clean and

complete as that of the other two constraints.

As with area and volume operators, the quantization begins with regularizing

the classical expression for the scalar constraint, which is usually achieved by intro-

ducing an appropriate partitioning of Σ with a regularization parameter δ. Then

the scalar constraint is re-expressed as a Riemann sum under this regularization,

involving only those phase space functions which have direct quantum analogs. Fi-

nally, the regulator is removed after replacing the classical quantities in the reg-

ularized expression by their quantum counterparts. More precisely, if CRδ
(N) de-

notes the regularized scalar constraint, the regulator is removed by taking the limit,

limδ→0 CRδ
(N) = C(N). However, there is considerable freedom in the choice of

a permissible classical regulator that satisfies the above limit. Therefore, genuine

ambiguities, along with the ambiguities with factor ordering, arise in the regulariza-

tion procedure and distinct avenues have been pursued to give rise to the existence

of well-defined strategies. It turns out that the quantum operators corresponding

to different choices of the regulators differ from each other and thus define distinct

quantum dynamics. Whether any of them is fully viable from a physical perspective

is still an open issue[22, 23, 24, 25, 26, 27, 28, 29]. A detailed loop quantization of

the scalar constraint is presented in Chapter III.

Again, once the quantum operator for the scalar constraint is obtained, the
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next step is to find the home for its solutions by solving Ĉ(N)|Ψ〉 = 0. As one

might expect, due to the similar difficulties that arise in the case of diffeomorphism

constraints, the true home for the states which are in the kernel of Ĉ(N) is the

topological dual of Cyl, i.e. Cyl⋆. However, since physical states must be in the kernel

of all three constraints, the home for the diffeomorphism-invariant states Cyl⋆diff may

also be considered as the home for the physical states. Unfortunately, the attempt

to obtain the physically viable space for all physical states which have the correct

semi-classical limit has been so far unsuccessful. This problem, known as the low

energy problem, is currently under serious investigation.

This concludes the review of the fundamentals of LQG. The rest of this paper

is devoted to the discussions on various applications, namely the matter like the

fermions and bosons in LQG and its cosmological implications. It is important to

note that matter fields are put in by hand in the theory. While Chapter II embodies

the recount of the canonical formulation of both Dirac’s and Maxwell’s fields coupled

to gravity, Chapter III encompasses the loop quantization of these matter fields. In

addition, Chapter IV entails the homogeneous (anisotropic) models of our universe in

LQG and the role of parity, and Chapter V delineates the possible observable effects

of LQG on Big Bang Nucleosynthesis. Finally, Chapter VI provides an example of an

application of the effects from other approaches to quantum gravity including LQG

to mainstream cosmology, in particular, dark energy.
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CHAPTER II

CANONICAL FORMULATION

When matter is considered coupled to classical or quantum gravity, several

important issues arise for fermions. This is, e.g., related to the chirality and possible

parity violation of spinors or the fact that they contribute torsion to the space-time

geometry. In loop quantum gravity, fermions have been treated occasionally but not

yet, as detailed below, in a complete manner. They are therefore revisited here espe-

cially with a canonical analysis in mind. In addition, a canonical analysis of Maxwell’s

field theory is presented to derive some interesting cosmological implications in the

latter part of this article.

In this chapter, we further generalize Holst’s analysis for pure gravity, as sum-

marized in section 1.1, to allow for fermionic matter. In other words, we present

a detailed derivation of the Hamiltonian formulation of the Einstein–Cartan action,

which incorporates Holst’s action for the gravitational part. This issue has been

considered in the literature several times, but the available discussions appear incom-

plete. In addition to filling this gap in the classical analysis, details of the canonical

formulation are crucial for a proper quantization of gravity in the presence of fermions.

In particular, non-zero torsion arising from the coupling of fermionic matter

to gravity through the spin connection requires an analysis in terms of more general

connections than used in Holst’s analysis, which inherit torsion contributions. In our

canonical analysis, we derive two sets of constraints: constraints in which variables

have been split in their torsion-free terms and explicit torsion contributions, and

constraints with torsion implicitly contained in the canonical gravitational variables.

These splittings will turn out to be important to understand the canonical structure.

To the best of our knowledge, our results for the given Einstein–Cartan action, despite
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some resemblance to those in [31, 21, 30], are complete and new. Moreover, we

generalize the canonical treatment to arbitrary non-minimal coupling of fermions

without any inconsistencies as they occur in other approaches.

We present those derivations in a detailed classical part in this paper, which

can serve as a guide through some of the tedious but structurally important construc-

tions underlying canonical quantum gravity. These details will show us the crucial

changes implied by torsion for the general form of dynamics, and thus also play a

role for any quantization based on a formulation in Ashtekar variables. Here our

distinction between the two sets of variables, one with explicit torsion terms and one

with implicit torsion dependence, will be crucial to show the parity invariance of the

non-minimally coupled action. Thus, a discussion of classical parity transformations

is also presented.

2.1 Lagrange Formulation

For fermions, one has to use a tetrad eI
µ rather than a space-time metric gµν ,

related by eI
µe

I
ν = gµν , in order to formulate an action with the appropriate covariant

derivative of fermions. This naturally leads one to a first-order formalism of gravity

in which the basic configuration variables are a connection 1-form and the tetrad. In

vacuum the connection would, as a consequence of field equations, be the torsion-free

connection compatible with the tetrad. In the presence of matter fields which couple

directly to the connection, such as fermions, this is no longer the case and there is

torsion [33]. For completeness, we start by demonstrating this well-known origin of

torsion in the theory of gravity non-minimally coupled to fermionic matter1.

1Although we closely follow the derivation presented in [34, 35, 31] our presentation adds details
to certain key issues.
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Einstein–Cartan Action

The basic configuration variables in a Lagrangian formulation of fermionic

field theory are the Dirac bi-spinor Ψ = (ψ η)T and its complex conjugate in Ψ =

(Ψ∗)T γ0 with γα being the Minkowski signature Dirac matrices. We note that ψ and

η transform with density weight zero and are spinors according to the fundamental

representations of SL (2,C). Then the non-minimum coupling of gravity to fermions

can be expressed by the total action

S [e, ω,Ψ] = SG [e, ω] + SF [e, ω,Ψ] (2.1)

=
1

16πG

∫

M

d4x eeµ
I e

ν
JP

IJ
KLF

KL
µν (ω)

+
1

2
i

∫

M

d4x e

[
ΨγIeµ

I

(
1 − i

α
γ5

)
∇µΨ −∇µΨ

(
1 − i

α
γ5

)
γIeµ

I Ψ

]
,

where α is the parameter for non-minimal coupling. Note that we are using the

notation of [30] for easier comparison. Also the action is composed of the gravitational

contribution SG and the matter contribution SF resulting from the fermion field. Here,

again I, J, . . . = 0, 1, 2, 3 denote the internal Lorentz indices and µ, ν, . . . = 0, 1, 2, 3

the respective space-time indices. For simplicity, we ignore fermionic mass terms or

potentials as they do not provide further complications.

The first term in (2.1) is the Holst action [2] of gravity as presented in (1.4),

eµ
I is the tetrad field, e is its determinant, and eI

µ its inverse. The Lorentz connection

in this formulation is again denoted by ωIJ
µ and FKL

µν (ω) = 2∂[µω
IJ
ν] + [ωµ, ων ]

IJ is its

curvature. In order to write the Holst action in a compact form, we have used the

following tensor and its inverse

P IJ
KL = δ

[I
Kδ

J ]
L − 1

γ

ǫIJ
KL

2
(2.2)

P−1
IJ

KL
=

γ2

γ2 + 1

(
δ
[K
I δ

L]
J +

1

γ

ǫ KL
IJ

2

)

where γ is again the Barbero–Immirzi parameter. Finally, the covariant derivative
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∇µ of Dirac spinors is defined by

∇µ ≡ ∂µ +
1

4
ωIJ

µ γ[IγJ ] , [∇µ,∇ν ] =
1

4
F IJ

µν γ[IγJ ] (2.3)

in terms of Dirac matrices γI (which will always carry an index such that no confusion

with the Barbero–Immirzi parameter should arise). Note that we are ignoring the

gauge connection required for describing an interaction between charged fermions in

the definition of the covariant derivative (2.3). However, this analysis can easily be

generalized to incorporate such interactions.

At this point, it is noteworthy that we intend to use the signature (− + ++)

(instead of (+ −−−) which is common in QFT) for both gravity and fermions since

this is the signature most prevalent in the literature for canonical gravity. This

demands certain modifications in the representations of the Clifford algebra, where it

turns out that changing the signature from (+ −−−) to (− + ++) only requires all

the Dirac matrices to be multiplied by i (the imaginary unit); see Appendix 0.1 for

details.

Now the variation of the first-order action (2.1) with respect to the connection

gives rise to the equation of motion for the connection. Using δF IJ
µν = 2∇[µδω

IJ
ν]

and the anticommutator [γK , γ[IγJ ]]+ = +2iǫIJKLγ
5γL (note the plus sign due to the

signature-change) and the commutator [γK , γ[IγJ ]]− = 4ηK[IγJ ], we obtain

δSG

δωIJ
µ

=
1

8πG
∇ν(ee

[µ
Ke

ν]
L )PKL

IJ (2.4)

δSF

δωIJ
µ

=
ieeµ

K

8
Ψ[γK , γ[IγJ ]]+Ψ − eeµ

K

8α
Ψγ5[γK , γ[IγJ ]]−Ψ

= −1

4
eeµ

KǫIJKLΨγ5γLΨ − 1

2α
eeµ

KΨγ5ηK[IγJ ]Ψ . (2.5)

Note that the first line of the expression (2.5) is also invariant under the above

signature-change. In other words, the Einstein-Cartan theory before proceeding to

a canonical formulation is independent of the signature. Thus we finally obtain the
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equation of motion from varying the connection from (2.4) and (2.5)

∇µ(ee
[µ
I e

ν]
J ) = 2πGeP−1

IJ

KL
(
Jν

KL +
2

α
eν

KJL

)
, (2.6)

where Jµ
KL := eµ

I ǫ
I
KLJJ

J with the axial fermion current JL = −Ψγ5γLΨ (the mi-

nus sign appears due to the signature-change). It is immediate from (2.6) that the

presence of a fermion field in the coupled action introduces a torsion component in

the connection arising from the fermion current and thus the connection is no longer

torsion free, that is, ∇[µe
I
ν] 6= 0. In terms of connection variables, this issue has been

explored in details in [34, 35, 30]. In order to solve for the connection, let us express

it in the form ωIJ
µ = ω̃[e]IJ

µ + CIJ
µ , where ω̃[e] is the torsion free connection deter-

mined by the tetrad and CIJ
µ is the tetrad projection of the contorsion tensor, Cρσ

µ ,

i.e., CIJ
µ = Cρσ

µ eI
[ρe

J
σ]. Then the action of the corresponding covariant derivatives on

vectors with internal indices are related as follows:

(
∇µ − ∇̃µ

)
VI = C J

µI VJ , (2.7)

where ∇̃µ is the covariant derivative compatible with the tetrad and hence the corre-

sponding connection is torsion-free and VJ is an internal vector field. Now it follows

from (2.7) that the two corresponding curvatures satisfy

F IJ
µν = F̃ IJ

µν + 2∇̃[µC
IJ

ν] + [Cµ, Cν ]
IJ (2.8)

where F̃ is the curvature of the torsion-free connection. Inserting (2.8) in (2.1) and

using (2.7), we obtain an action composed of the following torsion-free part and an

30



interacting fermion contribution due to torsion:

S [e, ω,Ψ] = SG [e, ω̃] + SF [e, ω̃,Ψ] + Sint [e, C,Ψ]

=
1

16πG

∫

M

d4x eeµ
I e

ν
JP

IJ
KLF̃

KL
µν (ω̃)

+
1

2
i

∫

M

d4x e

(
ΨγIeµ

I

(
1 − i

α
γ5

)
∇̃µΨ − ∇̃µΨ

(
1 − i

α
γ5

)
γIeµ

I Ψ

)

+
1

4

∫

M

d4x e

(
eµ

IC
JK

µ ǫI JKLJ
L +

2

α
C JK

µ eµ
JJK

)

+
1

16πG

∫

M

d4x eeµ
I e

ν
JP

IJ
KL[Cµ, Cν ]

KL (2.9)

Notice that the middle term on the right hand side in (2.8) is ignored since

it can be expressed as a total derivative and therefore does not contribute to the

variation. The first two terms are just the torsion-free Holst and Dirac action while

the last two terms include torsion. With the use of (2.7), the contorsion tensor C J
µI

can be solved by expressing the equation of motion (2.6) as

∇µ(ee
[µ
I e

ν]
J ) = eC K

µI e
[µ
Ke

ν]
J + eC K

µJ e
[µ
I e

ν]
K (2.10)

= 2πGe
γ

γ2 + 1

(
βǫ KL

IJ eν
KJL − 2θδM

[I δ
N
J ]e

ν
MJN

)
,

where β := γ + 1
α

and θ := 1 − γ
α
. Now the following equation can be obtained by

contracting equation (2.10) with eI
νe

J
ρ :

C K
µJ eµ

Ke
J
ρ := S µ

µJ eJ
ρ = 6πG

γθ

γ2 + 1
eJ

ρJJ . (2.11)

Since the tetrads eI
µ are invertible, this equation implies that S µ

µJ = C K
µJ eµ

K =

6πG γθ
γ2+1

JJ . Upon inserting this solution in equation (2.10) the equation of motion

becomes

eµ
IS

ν
µJ − eµ

JS
ν

µI = 2S ν
[IJ ] (2.12)

= 4πG
γ

γ2 + 1

(
βǫ KL

IJ eν
KJL + θδM

[I δ
N
J ]e

ν
MJN

)
.

Again contracting with eM
ν , we obtain

S M
[IJ ] = 2πG

γ

γ2 + 1

(
βǫ ML

IJ JL + θηM
[I JJ ]

)
. (2.13)
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Notice that CµIJ = Cµ[IJ ] implies that SIJK = S M
IJ ηMK = eµ

ICµJK = SI[JK]. The

following combination of the cyclic permutations of the indices I, J , and K finally

yields the expression for CµIJ :

eµ
ICµJK = S[IJ ]K − S[JK]I + S[KI]J = SIJK (2.14)

= 2πG
γ

γ2 + 1

(
βǫIJKLJ

L − 2θηI[JJK]

)

which depends on the Immirzi parameter γ unless α = γ.

The following useful identities can be derived after a straightforward but

lengthy calculation using the above expression for CµIJ :

1

16πG
eµ

I e
ν
JP

IJ
KL[Cµ, Cν ]

KL =
3πG

2

γ2

γ2 + 1

(
1 − 1

α2
+

2

γα

)
JLJ

L,

1

4

(
eµ

IC
JK

µ ǫI JKLJ
L +

2

α
C JK

µ eµ
JJK

)
= −3πG

2

γ

γ2 + 1
2

(
β +

θ

α

)
JLJ

L . (2.15)

In (2.9), we thus obtain a simple interacting term in the total action:

S [e, ω,Ψ] = SG [e, ω̃] + SF [e, ω̃,Ψ] + Sint [e, C,Ψ]

=
1

2κ

∫

M

d4x eeµ
I e

ν
J F̃

IJ
µν (ω̃) +

1

2
i

∫

M

d4x e
(
ΨγIeµ

I ∇̃µΨ − ∇̃µΨγIeµ
I Ψ
)

+
3κ

16

γ2

γ2 + 1

(
1

α2
− 2

αγ
− 1

)∫

M

d4x e(Ψγ5γLΨ)(Ψγ5γLΨ), (2.16)

where κ = 8πG is used from now on. Notice that the second term in the gravitational

Holst action containing γ and the term involving non-minimal coupling α in Dirac

action are dropped from the above effective action since both these terms can be

expressed as boundary terms; please see [2] for details for the second term in Holst

action. The non-minimally coupled term in Dirac action can be cast into a boundary
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term after inserting the solution as follows:

1

2α

∫

M

d4x e
(
ΨγIeµ

I γ5∇̃µΨ − ∇̃µΨγ5γ
Ieµ

I Ψ
)

=
1

2α

∫

M

d4x eeµ
I

(
ΨγIγ5∂µΨ − (∂µΨ)γ5γ

IΨ − 1

4
ω̃MN

µ Ψγ5

[
γI , γ[MγN ]

]
−

Ψ

)

=
1

2α

∫

M

d4x eeµ
I

(
(∂µΨγIγ5Ψ) − 1

4
ω̃MN

µ Ψγ5

[
γI , γ[MγN ]

]
−

Ψ

)

=
1

2α

∫

M

d4x e
(
eµ

I (∂µJ
I) + ω̃MN

µ eµ
MJN

)

=
1

2α

∫

M

d4x
(
∂µ(eeµ

IJ
I) − JND̃µ(eeµ

N)
)

=
1

2α

∫

M

d4x
(
∂µ(eeµ

IJ
I)
)
. (2.17)

The last term in the simplified action (2.16) describes a four-fermion inter-

action mediated by a non-propagating torsion. Note that the coupling constant of

this interaction depends on the Immirzi parameter in addition to α. The resulting

four-fermion interaction term reduces to that for minimal coupling as α → ∞ and is

independent of the Immirzi parameter for α = γ as shown in [30]. However, unlike

in [30], the effective action (2.16) is parity invariant for any value of α, which will be

explicitly shown in section 4.33. This discrepency arises from the mismatch between

the signature and the Holst action used in [30] and those used in this paper.

From this action (2.16) it is not clear whether it can be consistently formulated

canonically. First, equations of motion have been used and solutions were inserted in

the original action. As a consequence, its first term is the Holst action for pure gravity

(without torsion) and the second term is the Dirac action. This makes the formulation

difficult to interpret as a first order theory since variations of the combined action

would tell us that the connection cannot be torsion-free although its gravitational part

is suggestively written as the free Holst action. Similarly, a canonical formulation of

the first two terms together would result in a Gauss constraint that has contributions

both from gravity and matter as we will write explicitly in the next section. Also

here, fermion contributions through torsion change the expression that one would

expect from the torsion-free Holst action. Therefore, we do not use (2.16) as the
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t

na

a
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Figure 2.1: Decomposition of the evolution vector field ta in terms of the normal na

to spatial slices and a spacelike part Na.

starting point of a canonical treatment, although at first sight it looks simpler, but

the original Einstein–Cartan action (2.1). Avoiding the use of partial solutions to

classical equations of motion also has advantages for the quantization procedure.

2.2 Canonical Formulation for Fermions

We present our analysis in a form which differs slightly from Holst’s one in

the vacuum case. In particular, we put a stronger emphasis on details of the Dirac

procedure for constrained systems.

A canonical formalism (Hamiltonian framework) is achieved by performing

a Legendre transform of this action SM , replacing time derivatives of configuration

variables by momenta. This, as always, requires one to treat space and time differ-

ently and is the reason why the canonical formulation is not manifestly covariant.

We introduce a foliation of the space-time (M, gab) by a family of space-like hypersur-

faces Σt : t = constant in terms of a time function t on M as illustrated in Fig. 2.1.

Canonical variables will depend on which time function one chooses, but the result-

ing dynamics of observable quantities will remain covariant. Furthermore, let ta be

a timelike vector field whose integral curves intersect each leaf Σt of the foliation

precisely once and which is normalized such that ta∇at = 1. This ta is the ‘evolution

vector field’ along whose orbits different points on all Σt ≡ Σ can be identified. This

allows us to write all space-time fields in terms of t-dependent components defined on
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a spatial manifold Σ. Lie derivatives of space-time fields along ta are identified with

‘time-derivatives’ of the spatial fields.

Also, since we are using the Lorentzian signature, the vector field tµ is required

to be future directed. Let us decompose tµ into normal and tangential parts with

respect to Σt by defining the lapse function N and the shift vector Na as tµ =

Nnµ + Nµ with Nµnµ = 0, where nµ is the future directed unit normal vector field

to the hypersurfaces Σt. The space-time metric gµν induces a spatial metric qµν by

the formula gµν = qµν − nµnν . Since contractions of qµν and Nµ with the normal

nµ vanish, they give rise to spatial tensors qab and Na. Here, the lower case roman

letters, a, b, c, . . . , are used to imply spatial tensorial indices.

Moreover, since we are using a tetrad formulation, in addition to the above

foliation of the space-time manifold we need to perform a partial gauge fixing on

the internal vector fields of the tetrad to decompose it into an internal unit time-

like vector and a triad. Let us fix a constant internal vector field nI = −δI,0 with

nInI = −1. Now we allow only those tetrads which are compatible with the fixed

nI in the sense that na := nIea
I must be the unit normal to the given foliation. This

implies that ea
I = Ea

I − nanI with Ea
I na = Ea

I n
I = 0 so that Ea

I is a triad 2.

Now using na = N−1(ta − Na) to project fields normal and tangential to Σt,

one can decompose the Einstein–Cartan action (2.1) as

S [e, ω,Ψ] =
1

2κ

∫

M

d4x N
√
q(Ea

I Eb
JP

IJ
KLF

KL
ab (ω) − 2N−1nIt

aEb
JP

IJ
KLF

KL
ab (ω)

+2N−1NanIEb
JP

IJ
KLF

KL
ab (ω))

+
i

2

∫

M

d4x N
√
q(ΨγI

(
Ea

I −N−1(ta −Na)nI

)(
1 − i

α
γ5

)
∇aΨ

−∇aΨ

(
1 − i

α
γ5

)
γI
(
Ea

I −N−1(ta −Na)nI)Ψ
)
, (2.18)

where we have used |e| = N
√
q with |det(ei

a)| =
√
q and the decomposed tetrad

2While using a partial gauge fixing may be questionable for general gauge transformations, Barros
e Sa showed in [48] that such a partial gauge-fixing is harmless in our context (as in Holst’s) since
only the gauge parameter without any time derivatives appears in the analysis, corresponding to a
canonical gauge.
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ea
I = Ea

I − nanI . (We assume positively oriented triads at this stage, thus ignoring

sign factors. However, including sign factors yields an overall sign factor before the

action, which will reveal nothing new about the parity transformations discussed

later)

To proceed with the canonical formulation we need to expand each term in

this Holst action into spatial and temporal components of tensors, as well as expand

the Dirac spinors of the fermion action in the Weyl representation. The second term

in the gravitational part of (2.18) provides the Lie derivative of

+A
j
b := ω j0

b +
1

2γ
ǫjklω

kl
b (2.19)

along tµ. Only this combination of the Lorentz connection is dynamical and has a

non-vanishing momentum. The other independent combination

−A
j
b := ω j0

b − 1

2γ
ǫjklω

kl
b (2.20)

is non-dynamical and will appear in Lagrange multipliers. The momentum of the

dynamical connection +A
i
a is then given by −√

qEa
i /κ. It is, however, traditional to

perform a minor canonical transformation and use the canonical pair

Ai
a := −γ +A

i
a , P a

i :=
1

γκ

√
qEa

i (2.21)

since, as we will see shortly, Ai
a is the Ashtekar–Barbero connection. Moreover, we

define

Γi
b := −γ

2
( +A

i
b − −A

i
b) = −1

2
ǫiklω

kl
b ,

Ki
b := −1

2
( +A

i
b + −A

i
b) = −ωi0

b (2.22)

such that Ai
a = Γi

a +γKi
a. We will from now on use the variable P a

i as the momentum

to avoid confusion about the different triads used, but will keep referring to ±A
i
a as long

as it is of interest to use both the dynamical as well as non-dynamical connections.
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In addition to the gravitational canonical pair (2.21), from (2.18) we can easily

identify (ψ,−i√qψ†) and (η,−i√qη†) as the dynamical variables and their conjugate

momenta for matter fields. On the other hand, the lapse function N , the shift vector

Nd as well as ω i0
t , ω ij

t , and −A
i
a are non-dynamical variables. (It is interesting to

note that all the terms involving −A
i
a disappear for γ = ±i to reproduce Ashtekar’s

formulation in the (anti-)self dual connection formulation, respectively.)

Following Dirac’s procedure, we thus obtain primary constraints from all the

vanishing momenta of non-dynamical variables. They generate secondary constraints

which turn out to be of mixed type and are not purely first class. Variations by

N and Na will, as we will see, give the usual diffeomorphism and Hamiltonian con-

straints, but several secondary constraints resulting from variations by non-dynamical

connection components remain:

δL
δω m0

t

= −γ∂bP
b
m − γǫ j

miP
b
j

(
1 − γ2

2γ
+A

i
b +

1 + γ2

2γ
−A

i
b

)
− 1

2α

√
qJm = 0 ,(2.23)

δL
δω mn

t

= −ǫ
j
mn

2
∂bP

b
j − γP b

[m
+A|b|n] +

√
q

4
ǫkmnJk = 0 (2.24)

and

δL
δ( −Al

c)
=

1 + γ2

2
ǫjlkP

c
j ω

k0
t +

1 + γ2

2
ǫjklP

[c
j N

a]( +A
k
a + −A

k
a) (2.25)

+sgn(ei
a)

1 + γ2

2γκ
ǫacd∂a(edlN) +

γ2(1 + γ2)κ

2
√

q

N

κ
Pa

[kP
c
l](

+A
k
a − −A

k
a)

+
N c

4

√
q

(
γ +

1

α

)
Jl −

γκN

4
P c

l

(
γ +

1

α

)
J0 − γκN

4
ǫjlkP

c
j

(
1 − γ

α

)
Jk = 0 ,

where J i := ψ†σiψ + η†σiη, J0 := ψ†ψ − η†η and P a
i P

b
j ǫ

ijk = sgn(ei
a)γ

2κ2√qǫabcek
c is

used at several stages. This agrees with Holst’s equations for the case J i = 0 = J0.

Here and in Appendix 0.2, the sign factors are included appropriately since they are

crucial for determining the parity transformations proposed in section 2.3.

As seen shortly, these equations can be solved for the non-dynamical ωkl
t and

−A
l
c, which demonstrates that there are second class constraints. After solving these,
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(2.24) remains as the Gauss constraint in addition to the diffeomorphism and Hamil-

tonian constraints. These remaining constraints must then be first class because their

number and generated symmetries correspond to the known local symmetries of the

action. In what follows, we will solve for the non-dynamical variables which are de-

termined by second class constraints and insert the solutions back into the action

rather than formally computing Dirac brackets. Varying the resulting Hamiltonian,

which turns out to be totally constrained, then results in the dynamical equations to

be solved on the surface where second class constraints are satisfied.

Solving (2.23), (2.24) and (74) also provides some information on the appear-

ance of torsion terms. We first express (2.24) as

∂bP
bj =

1

2

√
qJ j − γǫjmnP

bm +A
n
b . (2.26)

and insert it into (2.23):

ǫijkP
bj( +A

k
b + −A

k
b ) =

βγ

1 + γ2

√
qJi, (2.27)

where we are using β (and θ below) as defined in the previous section. On the other

hand, first solving (2.24) for +Aj
b and then inserting into (2.23), we obtain

∂bP
bj − γǫjmnP

bm −A
n
b =

γ

2(1 + γ2)

(
1 − γ2

2γ
− 1

α

) √
qJ j. (2.28)

which combined with (2.26) and (2.28) gives

2∂bP
bm − γǫ m

ij P bj( +A
i
b − −A

i
b) =

θ

1 + γ2

√
qJm. (2.29)

In terms of Γi
a and Ki

a, (2.27) and (2.29) take the form

ǫijkK
j
bP

bk = [Kb, P
b]i =

γβ

2(1 + γ2)

√
qJi , (2.30)

and

DbP
bm ≡ ∂bP

bm + ǫ m
ij Γi

bP
bj =

θ

2(1 + γ2)

√
qJm . (2.31)
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Without fermions, Ki
b and Γi

b would be identified with extrinsic curvature and the spin

connection respectively. The non-vanishing commutator of Ki
b with the densitized

triad and the non-vanishing covariant derivative of P a
i by Γi

b emphasize the existence

of torsion due to the fermion current as expected from the last section. In particular,

Kab := ei
bK

i
a cannot be symmetric since its antisymmetric part vanishes only if the

commutator

[Kb, P
b]k = ǫijkKi

bP
b
j = Kabǫ

ijkEa
i P

b
j = γκK[ab]ǫ

ijkP a
i P

b
j

vanishes. Moreover, that the definition of Γi
a and Ki

a is meaningful can be seen

by further manipulating (74) and comparing it with the computation of the spin

connection in the presence of torsion (see App. 0.2) which results in

Γk
b = Γ̃k

b +
γκ

4(1 + γ2)

(
θ ǫ k

ij e
i
bJ

j − βek
bJ

0
)
, (2.32)

where Γ̃k
b is the torsion-free su(2)-valued spin connection as derived in (70). The

second part here is precisely the torsion contribution which can be obtained from the

tetrad projection of the contorsion tensor CIJ
µ in (2.14):

Cj
a :=

1

2
qν
aǫ

IJ
KLnIC

KL
ν

=
γκ

4(1 + γ2)

(
θ ǫjkle

k
aJ

l − βej
aJ

0
)
, (2.33)

where qν
a := δν

a +nan
ν is the spatial projection and again nI = −δ0

I . As a consistency

test, we observe that the expressions for Cj
a derived from the two different methods,

through the spin connection in the appendix and through the triad projection of the

contorsion tensor, are in complete agreement.

Recalling the definition of Γi
a in (2.22), (2.32) can be expressed as

−A
k
b = +A

k
b +

2

γ
Γ̃k

b +
κ

2(1 + γ2)

(
θ ǫ k

ij e
i
bJ

j − βek
bJ

0
)

=: +A
k
b +

2

γ
(Γ̃k

b + Ck
b ) =: +A

k
b +

2

γ
Γk

b . (2.34)

39



This provides a solution for the non-dynamical −A
k
b in terms of dynamical fields. One

can directly determine ω k0
t = ω k0

t ( −A,Γ, N,Na) from (74), but we will not require

this because it turns out to drop out of the action once second class constraints are

solved. Only ωmn
t then remain free as undetermined multipliers of the Gauss con-

straint. This completes the solution of second class constraints, which we can now

use in the action to analyze the remaining first class system.

First class constraints

Let us first look at the Gauss constraint in more detail. After (2.34) is inserted

into the second term of (2.18) and integrated by parts, we obtain

−γ
∫

Σ×R

dx3dtnIt
aP b

JP
IJ

KLF
KL
ab (ω)

=

∫

Σ×R

dx3dt

(
P b

j LtA
j
b − ΛiDbP

b
i − 1 + γ2

γ
ω k0

t ǫ j
kl C

l
b P

b
j

)
. (2.35)

We have used (2.32) and (2.33) together with ǫkljΓ
l
bP

b
j = ǫkljΓ̃

l
bP

b
j + ǫkljC

l
bP

b
j

and defined Λl := 1
2
ǫl mn ω mn

t − 1
γ
ω l0

t . The covariant derivative Da refers to the

Ashtekar connection in (2.21).

This equation again demonstrates that (Ai
a, P

a
i ) is the new canonical pair

where the Ashtekar–Barbero connection Ai
a inherits torsion contributions from the

spin connection term as well as the extrinsic curvature term. The remaining terms

provide the gravitational contribution to the Gauss constraint. Similarly, the contri-

bution to the Gauss constraint from fermionic matter can be obtained as

i

2

√
qta
(

Ψγ0

(
1 − i

α
γ5

)
∇aΨ − c.c.

)

= −i√q(θL(ψ†ψ̇ − η̇†η) − θR(ψ̇†ψ − η†η̇)) +
1

4
ǫimnω

mn
t

√
qJi −

√
q

2α
ω k0

t Jk

where θL := 1
2

(
1 + i

α

)
and θR := 1

2

(
1 − i

α

)
. All terms containing ωmn

t or ωm0
t con-
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tribute to the Gauss constraint

G[Λi] =

∫
d3xΛi

(
DbP

b
i − 1

2

√
qJi

)
(2.36)

=

∫
d3xΛi

(
γ[Kb, P

b]i −
γβ

2(1 + γ2)

√
qJi

)
(2.37)

using (2.33) with (2.30) and (2.31).

With (2.30) and (2.31), this takes the form

Λi(DbP
b
i − 1

2

√
qJi) =

1

2
ǫimnω

mn
t (DbP

b
i − 1

2

√
qJi) (2.38)

such that all terms containing ω k0
t indeed disappear when solutions to the second class

constraints are used. (Moreover, after splitting the connection completely in torsion-

free components and torsion contributions, one can see that the Gauss constraint just

takes the usual torsion-free form D̃bP
b
i without any torsion contributions. For this

decomposition, however, also equations of motion must be partially solved as done

later.)

The diffeomorphism constraint is obtained by varying the action by Na, whose

gravitational part is thus given by the last term in (2.18):

Dgrav[N
a] =

∫
d3xNaP b

j

(
F j

ab − (γ2 + 1)ǫjklK
k
aK

l
b

)
, (2.39)

where F j
ab = 2∂[aA

j
b] + ǫjklA

k
aA

l
b is the curvature of Aj

a and Ki
a is understood as a

functional of Ai
a and the other fields through (2.32). The contribution from the

fermion action is

DDirac[N
a] =

∫
d3xNa

(
−i√q

(
θL(ψ†Daψ −Daηη) − c.c.

)
+
β

2
Ki

a

√
qJi

)
, (2.40)

where we have employed the covariant derivatives, e.g., Da = ∂a + Al
aτl, related to

Ai
a. Combined, the total diffeomorphism constraint is

Ca = P b
j (F j

ab − (γ2 + 1)ǫjklK
k
aK

l
b) − i

√
q
(
θL(ψ†Daψ −Daηη) − c.c.

)

+
β

2
Ki

a

√
qJi (2.41)

= P b
j F

j
ab − i

√
q
(
θL(ψ†Daψ −Daηη) − c.c.

)
− γ2 + 1

γ
Kj

aGj (2.42)
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where the Gauss constraint has been used.

As a secondary constraint from varying N , we have the Hamiltonian constraint

with gravitational contribution

Hgrav[N ] =

∫
d3x

κ

2
√
q
NP a

i P
b
j ǫ

ij
k

(
F k

ab − (1 + γ2)Rk
ab

)

where F k
ab and Rk

ab denote curvatures of Ak
a and Γk

a respectively. This can be expressed

more dircetly in terms of Ai
a and Ki

a using

P IJ
KLF

KL
ab (ω) = F ij

ab − 1

γ
ǫjklF

k0
ab

= −
(
ǫij kF

k
ab − 2(γ2 + 1)Ki

[aK
j
b]

)
− 2

γ2 + 1

γ
ǫij kD[aK

k
b] ,(2.43)

where we used the covariant derivative D of Γi
a. This appears multiplied with P a

i P
b
j ,

such that the last term can, using the Gauss constraint, be reexpressed as

−γ
2 + 1

γ
ǫij kP

a
i P

b
jD[aK

k
b] =

γ2 + 1

γ
ǫij kP

a
i P

b
j

(
D̃[aK

k
b] + ǫkmnC

m
a K

n
b

)

=
β

2
P b

jK
j
b

√
qJ0 +

βP a
i

2
D̃a(

√
qJ i) − θ

4

√
qǫijkK

i
bP

b
j J

k

+
1 + γ2

γ

√
qD̃a

(
P a

i G
i

√
q

)
, (2.44)

where we have used (2.33) and (2.37) in the last step. It is clear that there are extra

terms compared to the constraint in the absence of torsion. For later comparison we

point out that this is the main source of disagreements with other approaches. In the

absence of torsion, however, the whole set of extra terms in the last equation vanishes

and only contributions from the Gauss constraint are left.

The fermionic Hamiltonian is

HF = γκNiP a
i

(
θL(ψ†σiDaψ + Daησ

iη) − c.c.
)
− γκθ

2
ǫimnP

a
i K

m
a J

n

−γκβ
2
P a

i K
i
aJ

0 . (2.45)
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Combining (2.44) and (2.45) we obtain the total Hamiltonian constraint

C =
γ2κ

2
√
q
P a

i P
b
j

(
ǫij kF

k
ab − 2(γ2 + 1)Ki

[aK
j
b]

)

+
γκβ

2
√
q
P a

i Da(
√
qJ i) + (1 + γ2)κD̃a

(
P a

i G
i

√
q

)

+iγκP a
i

(
θL(ψ†σiDaψ + Daησ

iη)) − θR(η†σiDaη + Daψσ
iψ)
)

+
κ

4

(
3 − γ

α
+ 2γ2

)
ǫlknK

l
aP

a
k J

n . (2.46)

Having derived all variations, it is clear that the total Hamiltonian

H =

∫
d3x

(
(ωi · t)Gi +NaCa +NC

)
(2.47)

with ωi · t := 1
2
ǫijkωt

jk is completely constrained. The constraint algebra is lengthy,

but it is clear from the number of local symmetries that the remaining constraints

must form a first class set. This concludes the canonical analysis.

At this point, we want to emphasize that we have not imposed any restric-

tion on either the non-minimal coupling parameter, α, or the Immirzi parameter, γ.

The previously available derivation of the constraints in [30], by contrast, used an

intermediate decomposition of the real connection into its (complex-valued) self- and

anti-selfdual contributions. The much simpler vacuum constraints for these connec-

tions were then combined to yield constraints for the real connection. In order to have

the same self- or anti-selfdual connections in the gravitational terms as well as the

covariant derivatives in the fermion contributions, this approach requires that α = γ.

The case α = γ is indeed of particular interest as it has a special behavior under

parity transformations 3, but it is not the most general possibility. For instance, our

derivations also include the constraints for minimal coupling as α→ ∞.

3Note also that the action with minimal coupling was called inconsistent in [30], while our analysis
is consistent for any value of α. To clarify potential confusion, one should first note that the viewpoint
of [30] is different from our’s. While [30] starts from the Einstein–Cartan action with minimal
coupling and aims to reproduce its equations of motion from an action involving the Holst term,
we only analyze the latter for any type of coupling. What [30] observes is that minimal coupling of
the action with the Holst term does not reproduce minimal coupling in the Einstein–Cartan action.
From this point of view, one thus has to use non-minimal coupling in the presence of the Holst term
to cancel unwanted terms in the coupling for the Einstein–Cartan action. This, however, does not
mean that using minimal coupling in the presence of the Holst term would be inconsistent. Since
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However, even for α = γ, the above constraints do not agree with those in [30].

The source of this disagreement, barring calculational mistakes, is not obvious at first

sight since the combination of weighted self-dual and anti self-dual gravitational con-

straints in [30] does indeed give rise to the set of constraints in real Ashtekar-Barbero

variables for a torsion-free system. But this happens rather by coincidence, and there

is no guarantee that this procedure works because one is combining non-linear expres-

sions out of a linearly decomposed connection. As seen in [30], this combination pro-

vides the corrected term in (2.43) quadratic in extrinsic curvature. However, it does

not produce the last term in (2.43). In the torsion-free case, the su(2)-commutator of

Ki
a and P a

j vanishes which makes this last term vanish when contracted with P b
j as it

appears in the constraint. This in turn reduces the vacuum Hamiltonian constraint

for gravity to the standard expression for a torsion-free system, containing only the

first term in (2.44) as it was used in [30]. (The same is true for the diffeomorphism

constraint if one wants to arrive at the final expression (2.42) from (2.41).)

In the presence of torsion, ǫi
jkKi

aP
a
j does no longer vanish and thus gives

rise to extra terms in the Hamiltonian constraint as explicitly displayed in (2.44). In

Sec. 2.3, we will see that these terms are necessary for consistency with the Lagrangian

derivation of the self-interaction term. (As for the diffeomorphism constraint, the

extra term in (2.41) automatically disappears to give (2.42).) The shortcut approach

presented in [30] to derive the constraints overlooks this term and is not consistent

in the presence of fermions. This explains the disagreements between our derivations

and some of the results of [30].

non-minimal coupling terms introduce parity violation, one could say that the minimal coupling in
the presence of the Holst action is inconsistent with parity preservation. But this again is not an
inconsistency of the overall framework, unless one explicitly requires parity preservation.
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2.3 Parity transformation of the classical theory

In the presence of fermions, the parity behavior is not fully obvious even in

the absence of explicitly parity violating interaction terms. A detailed analysis of

transformation properties is then required.

The Torsion Contribution to Extrinsic Curvature

Torsion components play an indirect but important role in the behavior under

parity. During the constraint analysis, second class constraints provide the torsion

contribution to the connection as seen in (2.32). However, althoughKi
a is restricted by

the Gauss constraint, constraints do not provide its complete torsion contribution. On

the other hand, the transformation properties of the Ashtekar-Barbero connection Ai
a

under parity cannot be determined without the knowledge of the torsion contribution

to Ki
a, or at least its parity behavior. Thus the splitting of extrinsic curvature into

torsion-free and torsion parts is inevitable in order to arrive at a set of consistent

parity transformations for gravity with fermions. As in the case of (2.14), we have to

solve partially equations of motion for the connection to derive the expression for the

torsion part ki
a of Ki

a = K̃i
a + ki

a.

For the canonical pair (Ai
a, P

a
i ) the equations of motion are LtA

i
a = {Ai

a, H} =

δH/δP a
i and LtP

a
i = {P a

i , H} = −δH/δAi
a where H is the total Hamiltonian con-

straint (2.47). While the first equation of motion entails all the dynamics of grav-

ity coupled with matter, the second one yields the expression for the connection.

Therefore, our focus will be on solving the second equation of motion. After longer

calculations, it takes the form

LtP
c
j + (ωi · t)ǫijkP c

k − P c
j ∂aN

a −Na∂aP
c
j + P b

j ∂bN
c

+Naǫi jkP
c
i A

k
a +N cGj + sgn(ei

a)
ǫabc

γ2κ
∂b(Neaj) (2.48)

+
N
√
q

γ2κ
(eb

je
c
k − eb

ke
c
j)A

k
b =

1

2
κNǫi jkP

c
i J

k +
Nκ

2α
P c

j J
0 .
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In order to solve for ki
a, we use a technique similar to that used above to solve for Ci

a.

First, the use of (2.30) eliminates the term involving Gj. Next, we contract (2.48)

with el
c and, as an internal tensor with indices l and j, derive its trace and symmetric

parts. Combined, this gives

el
cLtP

c
j + ej

cLtP
c
l − δl

je
k
cLtP

c
k +Na(P c

j ∂ae
l
c + P c

l ∂ae
j
c) + el

cP
b
j ∂bN

c + ej
cP

b
l ∂bN

c

− sgn(ei
a)

(
δl
j

ǫabc

γ2κ
Nel

c∂b(eaj) −N
ǫabc

γ2κ
(el

c∂beaj + ej
c∂beal)

)

+
N
√
q

γ2κ
(eb

jA
l
b + eb

lA
j
b) = −N

√
q

2α
δl
jJ

0 . (2.49)

The extrinsic curvature contribution is contained in

√
q

γκ
(eb

jA
l
b + eb

lA
j
b) = (P b

j Γ̃l
b + P b

l Γ̃j
b) + (P b

jC
l
b + P b

l C
j
b )

+γ(P b
j K̃

l
b + P b

l K̃
j
b ) + γ(P b

j k
l
b + P b

l k
j
b) , (2.50)

where we have used the decomposition Ai
a = Ãi

a + A
i

a into the torsion-free part

Ãi
a = Γ̃i

a + γK̃i
a and a torsion contribution A

i

a = Ci
a + γki

a.

To complete the splitting, the torsion-free extrinsic curvature from the usual

expression K̃ab = 1
2N

(q̇ab − 2D̃(aNb)) satisfies

P b
j K̃

l
b + P b

l K̃
j
b = − 1

N
γ((el

cLtP
c
j + ej

cLtP
c
l − δl

je
k
cLtP

c
k ) + (Na(P c

j ∂ae
l
c + P c

l ∂ae
j
c)

+el
cP

b
j ∂bN

c + ej
cP

b
l ∂bN

c)) (2.51)

for K̃i
a = eb

iK̃ab. Combining this with (77), (2.50), (2.33), we find eb
jk

l
b+e

blkbj =

κγθδl
jJ

0/2(1+γ2). On the other hand, (2.30) as obtained by solving the second class

constraints gives kj
be

bl − kl
be

bj = κγβǫ jl
i J i/2(1 + γ2). Thus,

km
a =

κγ

4(1 + γ2)

(
βǫ m

ij ei
aJ

j + θem
a J

0
)
. (2.52)

is the contribution which provides the antisymmetric part of Kab, but also adds to

the symmetric term.
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The expression for km
a can independently be verified by computing it from

(2.14):

km
a = −Cm0

a = −qν
anJC

JM
ν

=
κγ

4(1 + γ2)

(
βǫ m

ij ei
aJ

j + θem
a J

0
)
. (2.53)

With (2.33) and (2.52), the Ashtekar–Barbero connection as split into its torsion and

torsion-free parts is

Ai
a = Ãi

a + A
i

a = (Γ̃i
a + γK̃i

a) +
κγ

4
ǫikle

k
aJ

l − κγ

4α
ei

aJ
0 , (2.54)

where the first term is completely torsion-free and only the J-terms represent the

torsion contribution.

Parity transformation

In this section, we first define the parity trasnformation for both canonical

gravitational variables and fermionic matter fields such that it respects the back-

ground independence of a theory of gravity non-minimally coupled with fermions.

Parity conservation can then be determined by testing either whether the effective

action (2.16) in the Lagrangian formulation, or constraints as well as the symplectic

structure of the Hamiltonian formulation are left invariant. As we will see, the torsion

contributions to the connection play an important role in this, and we will be led to

split all the constraints into their torsion-free and torsion parts to verify the parity

behavior.

In a background-independent setting, we cannot refer to spatial coordinates

changing their sign under parity reversal. Instead, as usually in formulations on

curved manifolds we use the fact that triads change their orientations under parity

reversal as one of the primary contributions to the parity transformation: ea
i → −ea

i
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4. For Dirac spinors, we use the conventional field theory definition Ψ → γ0Ψ. These

basic definitions imply

J0 = Ψγ0γ5Ψ → −J0 , J i = Ψγiγ5Ψ → J i,

Γi
a = Γ̃i

a + Ci
a → Γ̃i

a −
γκ

4(1 + γ2)

(
θ ǫ k

ij e
i
bJ

j + βek
bJ

0
)
,

Ki
a = K̃i

a + ki
a → −K̃i

a −
γκ

4(1 + γ2)

(
β ǫ k

ij e
i
bJ

j − θek
bJ

0
)
. (2.55)

Here we have used K̃i
a = K̃abe

bi → −K̃i
a. It is interesting to note that both Γi

a and

Ki
a transform like torsion-free Γ̃i

a and K̃i
a for α = γ, a result expected from [30]. Also

note that the Ashtekar-Barbero connection Ai
a does not transform like either Γi

a or

Ki
a due to their different transformation properties. In other words, Ai

a transforms

as follows:

Ai
a =

(
Γ̃i

a −
γκ

4α
ei

aJ
0
)

+ γ
(
K̃i

a +
κ

4
ǫi jke

j
aJ

k
)
→
(
Γ̃i

a −
γκ

4α
ei

aJ
0
)

−γ
(
K̃i

a +
κ

4
ǫi jke

j
aJ

k
)
. (2.56)

It is obvious from (2.56) that Ai
a transforms like the combination of torsion-free Γ̃i

a

and K̃i
a. Next, the symplectic structure transforms as

∫

Σ

d3xP a
i LtA

i
a =

∫

Σ

d3xP a
i Lt

((
Γ̃i

a −
γκ

4α
ei

aJ
0
)

+ γ
(
K̃i

a +
κ

4
ǫi jke

j
aJ

k
))

→ −
∫

Σ

d3xP a
i Lt

(
Γ̃i

a −
γκ

4α
ei

aJ
0
)

+γ

∫

Σ

d3xP a
i Lt

(
K̃i

a +
κ

4
ǫi jke

j
aJ

k
)

= γ

∫

Σ

d3xP a
i Lt

(
K̃i

a +
κ

4
ǫi jke

j
aJ

k
)

=

∫

Σ

d3xP a
i LtA

i
a, (2.57)

where we have used the fact that
{
P a

i , Γ̃
i
a − γκ

4α
ei

aJ
0
}

PB
= 0. Therefore, the sym-

plectic structure is invariant under the proposed parity transformations.

4More generally, the triads can be allowed to transform as ea
j → Λi

je
a
i , where Λi

j is an orthogonal

transformation matrix with determinant −1. Also, the gamma matrices transform like γ0 → γ0and
γi → − Λi

jγ
j . It is easy to check that the torsion-free spin connection and the extrinsic curvature

transform as Γ̃i
a → −Λi

jΓ̃
j
a and K̃i

a → Λi
jK̃

j
a. Finally, the transformation of Ai

a can be obtained from
these two one-forms. Our arguments about parity invariance remain unchanged if this more general
transformation is used.
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Now, we present the split constraints to further check consistency of the above

parity transformations. As seen, the Gauss constraint can already be split in this way

and formulated in torsion-free variables without using equations of motion. It is easy

to check that the split Gauss constraint, G̃i = γǫ k
ij K̃

j
a, P

a
k = 0, is easily satisfied.

Splitting the diffeomorphism constraint into torsion and torsion-free components is

more involved, and after a long computation we obtain

Ca = P b
j (F̃ j

ab + 2∂[aA
j

b] + ǫjlmA
l

aA
m

b + ǫjlmA
l

aÃ
m
b + ǫjlmÃ

l
aA

m

b ) − 1 + γ2

γ
Ki

aGi

−1

2
i
√
q(ψ†D̃aψ + η†D̃aη − c.c.) − 1

2
Ci

a

√
qJi −

γ

2
Ki

a

√
qJi (2.58)

= 2γP b
j D̃[aK̃

j
b] + sgn(ei

a)
γκ

4
ǫ b
ca P c

l D̃b(
√
qJ l) − 1

2
i
√
q(ψ†D̃aψ + η†D̃aη − c.c.)

+sgn(ei
a)P

f
l

(
ǫ b
cf Γc

ba − ǫ b
ca Γc

bf

)√
qJ l

+

(
γκ

4
ǫjklJkeal −

γκ

4α
ej

aJ
0 − 1 + γ2 − γ3

γ
Kj

a

)
G̃j ,

where Γc
ab is the torsion-free Christoffel connection which can be expressed in terms of

triads and co-triads as in (69) and we have used (2.54) and γ[K̃b, P
b]i = G̃i to arrive

at the final expression. Again, it is obvious that the split diffeomorphism constraint

(2.58) (modulo Gauss constraint) is invariant under parity transformations.

Finally, the Hamiltonian constraint, after a lengthy calculation, turns out to
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be

C =
κγ2

2
√
q
P a

i P
b
j (ǫij k(F̃

k
ab + 2∂[aA

k

b] + ǫklmA
l

aA
m

b + ǫklmA
l

aÃ
m
b + ǫklmÃ

l
aA

m

b )

−2(γ2 + 1)Ki
[aK

j
b]) +

1

2
iγκP a

i (ψ†σiD̃aψ − η†σiD̃aη − c.c.) +
γ2κP a

i

2
√
q
D̃a(

√
qJ i)

+
γ2κ

2
P b

jK
j
bJ

0

+
γκ

2
[Ka, P

a]jJ
j − 3κ

8
√
q

γ2

1 + γ2
q(J0)

2 + (1 + γ2)κD̃a

(
P a

i G
i

√
q

)
(2.59)

=
κγ2

2
√
q
P a

i P
b
j

(
ǫij kR̃

k
ab − 2K̃i

[aK̃
j
b]

)
+

1

2
iγκP a

i (ψ†σi∂aψ − η†σi∂aη − c.c.)

+
γκθ

2
P b

j Γ̃j
bJ

0 +
γ3κ2

4α
√
q
ǫij kP

a
i e

k
bJ

0∂aP
b
j +

3κ

16

γ2

1 + γ2

(
1

α2
− 2

αγ
− 1

)√
q(J0)

2

−3κ

16

γ2

1 + γ2

(
1

α2
− 2

αγ
− 1

)√
qJlJ

l + κD̃a

(
P a

i G̃
i

√
q

)
+
κ

2
(1 +

γ2

2
)G̃iJ

i .

It is easy to check that the Hamiltonian constraint (2.59) (modulo Gauss

constraint) is also parity invariant. In fact, this is expected since the the usual torsion-

free gravitational and Dirac contributions to the effective action (2.16) requires it to

be parity invariant. Comparing the interaction term in (2.16) with the following

interaction term in (2.59),

Hint =
3κ

16

γ2

1 + γ2

(
1

α2
− 2

αγ
− 1

)√
q(J0)

2

−3κ

16

γ2

1 + γ2

(
1

α2
− 2

αγ
− 1

)√
qJlJ

l , (2.60)

we conclude that our canonical formulation of gravity with fermions is consistent with

the Lagrangian formulation. In other words, splitting the constraints into torsion-

free/torsion parts allows us to perform a non-trivial cross-check by comparing our

constraints with the interaction Hamiltonian of the effective action.

It is obvious that the above Hamiltonian constraint reduces to that of the

vacuum theory if the current and charge density vanish since the interaction term

disappears. A comparison of the interacting Hamiltonian constraint (2.60) with (2.16)

(for minimal coupling, i.e. α → ∞) reveals that the corresponding interacting terms
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are in complete agreement. Thus, the derivations in this subsection provide a cross-

check of the canonical calculations performed so far. Ignoring the interaction term

in (2.60), on the other hand, provides the Hamiltonian constraint of a second-order

formalism which can be compared directly with the Appendix of [36] (for γ = 1).

Notice that the derivation sketched in [36] does not work purely in real variables and

assumes properties of the projection from complex variables. As the comparison with

our results shows, the calculations of [36] leave some extra terms in the constraint

which are absent in a complete derivation based only on real variables.

2.4 Canonical Formulation for Maxwell’s field

In this section, a relatively simple canonical formulation for Maxwell’s field is

presented. The basic configuration variable in a Lagrangian formulation of Maxwell’s

field theory is the vector potential Aa which determines the field strength tensor

Fab = ∇aAb −∇bAa , (2.61)

where ∇a is the covariant derivative operator. Notice that ∇a can be replaced by

the partial derivative operator ∂a even on a curved space-time since the field strength

tensor Fab is antisymmetric. The action for the free Maxwell field in an arbitrary

background space is given by

SM = − 1

16π

∫
d4x

√−gFabF
ab

= − 1

16π

∫
d4x

√−gFabFcdg
acgbd (2.62)

where g is the determinant of the Lorentzian space-time metric gab. From the action

one obtains Maxwell’s equations as the Euler–Lagrange equations extremizing SM .

However, the total action can be obtained from adding this action to the Holst ac-

tion (1.4) and, as a consequence, background-independent Maxwell’s equations are

obtained by extremizing the total action.
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One crucial difference between the above action (2.62) and the Einstein-Cartan

action (2.1) lies in the manner each corresponding field couples to gravity. While

Dirac fields couple to gravity through connection as well as metric, Maxwell’s fields

couple only through metric, which can be seen from the covariant derivatives in (2.62).

Therefore, an important ramification of coupling of Maxwell’s field to gravity only

through metric is the absence of torsion in the theory. Extremizing the Maxwell’s

action with respect to variations in the Lorentz connection yields

∇µ(ee
[µ
I e

ν]
J ) = 0 , (2.63)

which is the same as the one derived from the Holst action alone, thus implying no

torsion.

Maxwell Hamiltonian

Let us again recall, as illustrated in Fig. 2.1, the decomposition of ta into

normal and tangential parts with respect to Σt by defining the lapse function N and

the shift vector Na as ta = Nna + Na with Nana = 0, where na is the unit normal

vector field to the hypersurfaces Σt. The space-time metric gab induces a spatial

metric qab by the formula gab = qab − nanb. Now using na = N−1(ta − Na) and

qab = gab + nanb to project fields normal and tangential to Σt, we can decompose the

field strength tensor Fab and the action SM as follows:

Fabn
a =

1

N
(Fabt

a −NaFab)
1

N

(
Ȧb − ∂b (Aat

a) −NaFab

)
, (2.64)

FabF
ab = FabFcdg

acgbd

= FabFcd (qac − nanc)
(
qbd − nbnd

)
= FabFcdq

acqbd − 2FabFcdn
ancqbd

= FabFcdq
acqbd − 2

N2

(
Ȧb − ∂b (Aat

a) −NaFab

)
×

(
Ȧd − ∂d (Aat

a) −N cFcd

)
qbd , (2.65)
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where Ȧb = LtAb = ta∂aAb + Aa∂bt
a, and the action takes the form

SM = − 1

16π

∫
d4x

√−gFabF
ab = − 1

16π

∫
dt

∫

Σt

d3xN
√
qFabF

ab

= − 1

16π

∫
dt

∫

Σt

d3xN
√
q(− 2

N2

(
Ȧb − ∂b (Aat

a) −NaFab

)
×

(
Ȧd − ∂d (Aat

a) −N cFcd

)
qbd + FabFcdq

acqbd)

=

∫
dt

∫

Σt

d3x(

√
q

8πN

(
Ȧb − ∂b (Aat

a) −NaFab

)

(
Ȧd − ∂d (Aat

a) −N cFcd

)
qbd − N

√
q

16π
FabFcdq

acqbd). (2.66)

It follows that the conjugate momentum πa to the configuration variable Aa

is given by

πe =
δSM

δȦe

=

√
q

4πN

(
Ȧd − ∂d (Aat

a) −N cFcd

)
qed, (2.67)

which is a densitized vector field because of the presence of
√
q. Its physical inter-

pretation is as the electric field measured by an observer with 4-velocity na. Now the

action can be expressed in terms of the canonical variables Aa and πa,

SM (Aa, π
a) =

∫
dt

∫

Σt

d3x

(
2πN√
q
πaπbqab −

N
√
q

16π
FabFcdq

acqbd

)
. (2.68)

We can cast the action in equation (2.68) into the desired form

SM =
∫

dt
[∫

Σt
d3xπaȦa −HM

]
by writing the integrand in the following manner:

SM (Aa, π
a) =

∫
dt

∫

Σt

d3x

[
4πN√
q
πaπbqab −N

(
2π√
q
πaπbqab +

√
q

16π
FabFcdq

acqbd

)]

=

∫
dt

∫

Σt

d3x[πa
(
Ȧa − ∂a

(
Adt

d
)
−N cFca

)
−N(

2π√
q
πaπbqab

+

√
q

16π
FabFcdq

acqbd)]

=

∫
dt

∫

Σt

d3x[πaȦa +
(
Adt

d
)
∂aπ

a −N cπaFca −N(
2π√
q
πaπbqab

+

√
q

16π
FabFcdq

acqbd)] (2.69)

having integrated by parts in the second term. This completes the Legendre transform

and we can read off the equations of motion from equation (2.69). First, since the

53



momentum conjugate to the time component of Aa is absent, extremization of the

action with respect to Aat
a results in

G = ∂aπ
a = 0 (2.70)

as the usual Gauss constraint. The total Hamiltonian of the Maxwell field then is

HM =

∫

Σt

d3x[−
(
Adt

d
)
∂aπ

a +N cπaFca

+N

(
2π√
q
πaπbqab +

√
q

16π
FabFcdq

acqbd

)
] (2.71)

with two contributions

Dc = πaFca (2.72)

and

H =
2π√
q
πaπbqab +

√
q

16π
FabFcdq

acqbd (2.73)

which, when added to the gravitational Hamiltonian (1.7) and (1.8), give matter

contributions to the diffeomorphism and Hamiltonian constraint, respectively. From

(2.73) we obtain the usual expression
∫

d3xH for the energy of the electromagnetic

field.

2.5 Conclusion

This chapter presents a detailed derivation of the complete canonical formula-

tion of gravity non-minimally coupled to fermions in Ashtekar variables. This includes

generalizations of basic results in the recent and some older literature, such as the

torsion-mediated four-fermion interaction, and puts them on a firm canonical basis.

In particular, we have used this for a demonstration of parity invariance of classical

solutions, which required us to derive all contributions to the Ashtekar connection

explicitly and to write several new versions of the canonical constraints, with explicit

or implicit torsion contributions. The different forms of the constraints are needed
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to understand the parity behavior, and they also facilitate comparisons with earlier

derivations and allow crucial cross-checks of the results. Here, we have noticed that

our analysis fills in several gaps of previously available derivations and generalizes

them to arbitrary non-minimal coupling.

We have also presented a detailed canonical analysis of the Maxwell theory

coupled to gravity through metric only. This canonical formulation of gravity coupled

to fermions as well as photons will enable us to proceed with loop quantization , which

is discussed in the next chapter.
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CHAPTER III

LOOP QUANTIZATION

After extending the canonical formulation of gravity to incorporate matter

fields like Dirac’s and Maxwell’s fields in the previous chapter, the natural next step

is to discuss loop quantizations of these matter fields. Therefore, in this chapter, the

quantization of fermions non-minimally coupled to gravity, followed by a summary

of the quantization of bosons, is presented to explore the possibility of interesting

physical effects in the following chapters.

3.1 Quantization of Dirac Fields

Quantizations of fermions in canonical gravity have already been developed

in [25, 36] (see also [41, 42, 43] for earlier work). However, these developments were

not based on a systematic derivation of the canonical formulation from a Holst-type

action and several features related to the torsion-dependence of the Ashtekar–Barbero

connection were overlooked or remained implicit. Corresponding adaptations which

become necessary in a consistent quantization could thus appear to draw suspicions

about the validity of the basic strategy of a loop quantization as used in [25, 36].

(Some concerns have, for instance, been voiced in [37].) In addition to that, we here

raise the question of parity invariance of the quantum theory which may be a concern

given that the classical verification of parity required us to partially solve equations

of motion to see the correct transformation behavior.

Before starting the quantization, the first question concerns the choice of basic

variables. We have two sets, given by the canonical variables (Ai
a, P

b
j ) in the presence

of torsion as well as the torsion-free components (Ãi
a, P

b
j ) with explicit expressions for

torsion in terms of the fermion current in (2.54). However, as we have seen, equations
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of motion are required to find the torsion contribution to extrinsic curvature in explicit

form. The use of classical equations of motion is not suitable for a quantization, and

there is thus no choice but to use the canonical variables with implicit torsion terms.

Half-densitized fermions

In addition to torsion terms, there will be a further contribution to the con-

nection once we formulate the fermions in terms of half-densities as required for

consistency [36]. For fermions, we have the canonical pair (ψ, π) with π = −i√qψ†.

These canonical variables cannot be promoted to operators on a Hilbert space with

a suitable inner product in a way incorporating the reality condition π† = i
√
qψ

by satisfying π̂† = i
√̂
qψ̂: First, if f(A) is a non-trivial real valued function of the

connection A, then the inconsistent relation

0 = 0† = ([π̂, f(A)])† = i[
√̂
q, f(A)]ψ̂ 6= 0 (3.1)

ensues. Here the first commutator is expected to vanish since the corresponding

classical Poisson bracket vanishes. On the contrary, the classical Poisson bracket

corresponding to the second commutator is non-zero; hence the inconsistency arises.

A second problem can be seen to arise from the symplectic structure obtained from

the fermion Liouville form

Θ = −i
∫

Σt

d3x
√
q
(
θLψ

†ψ̇ − θRψ̇†ψ
)

=

∫

Σt

d3x

(
πψ̇ − i

2
θRγκψ

†ψei
cṖ

c
i

)

−
∫

Σt

d3xθRLt(πψ) . (3.2)

Here, it follows from the second term of the first integral that the connection Ai
a

acquires an imaginary correction term 1
2
iθRψ

†ψei
a, which endows the theory with

a complex connection. This, in turn, would require the use of a complexification

of SU(2) in holonomies, for which, due to the non-compactness, none of the loop

quantization techniques relying on the existence of a normalized Haar measure would

be available (see e.g. [13]).
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Both problems were solved by Thiemann who observed in [36] that, in order to

obtain a well-defined canonical loop quantization with a real Ashtekar–Barbero con-

nection also in the presence of fermions, one should cast fermion fields into Grassmann-

valued half-densities. Thus ξ := 4
√
qψ instead of ψ (and χ := 4

√
qη instead of η) is

considered to be the classical canonical variable, and πξ = −iξ† is the conjugate mo-

mentum for ξ. The inconsistencies in (3.1) are naturally removed as the new canonical

variables imply the reality condition π†
ξ = iξ without any appearance of

√
q.

In half-densities, the symplectic structure becomes

Θ = −i
∫

Σt

d3x
√
q
(
θL(ψ†ψ̇ − η̇†η) − θR(ψ̇†ψ − η†η̇)

)

=

∫

Σt

d3x
(
πξ ξ̇ + πχχ̇

)
+

∫

Σt

d3x
γκ

4α
P c

i Lt(e
i
cJ

0) , (3.3)

where we have ignored total time derivatives which would drop out of the action for

appropriate boundary conditions. The classical anti-Poisson brackets for Grassmann-

valued fields are {ξA(x), πξB(y)}+ = δABδ(x, y). Moreover, as the extra term shows,

4
√
q can be absorbed in spinors without changing the symplectic structure of the

gravitational variables only when α → ∞, i.e. for minimal coupling. Combining the

last term in (3.3) with the gravitational Liouville term
∫

d3xP c
i LtA

i
c, a real-valued

correction term γκ
4α
ei

aJ
0 must be added to the Ashtekar-Barbero connection Ai

a. This

is a new feature that is present in the non-minimally coupled theory if the fermion

fields are expressed in terms of half-densities. Therefore, the new canonical connection

can be written as

Ai
a := Ai

a +
γκ

4α
ei

aJ
0 = Γ̃i

a + Ci
a + γKi

a , (3.4)

where

Ci
a :=

θγ2κ

4(1 + γ2)

(
1

γ
ǫjkle

k
aJ

l − ej
aJ

0

)
. (3.5)

Absorbing the correction term into the torsion contribution to the spatial spin connec-

tion allows one to keep Ki
a unchanged in the course of expressing all the constraints in
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terms of the corrected connection. Note that the corrected torsion contribution, Ci
a,

to the spin connection vanishes for α = γ. (If one would use the fully split connection

(2.54) based on partial solutions of the equations of motion, the new contribution in

the presence of half-densities would cancel the J0-dependence of Ai
a completely.)

In terms of the corrected connection and half-densities, the total Dirac Hamil-

tonian constraint (modulo the Gauss constraint) in (2.46) takes the smeared form

Htotal =

∫

Σt

d3x N
( γ2κ

2
√
q
P a

i P
b
j

(
ǫij kFk

ab − 2(γ2 + 1)Ki
[aK

j
b]

)

−γκβP
a
i√

q
Da

(
πξτ

iξ + πχτ
iχ
)
− i

2γκP a
i√

q

(
θLπξτ

iDaξ − θRπχτ
iDaχ− c.c.

)

+
γκβ

2
√
q(1 + γ2)

(
3 − γ

α
+ 2γ2

)
(πξτlξ + πχτlχ)(πξτ

lξ + πχτ
lχ)

+i
γ3κ2

4αq
ǫij kP

a
i e

k
b (πξξ − πχχ)DaP

b
j +

3γκθ

8α
√
q
(πξξ − πχχ)(πξξ − πχχ)

)
,(3.6)

where Fk
ab is the curvature and D, now and in the rest of the paper, is the covariant

derivative related to the corrected connection A.

Quantum representation

The ordinary kinematical constructions of loop quantum gravity do not refer

to torsion or torsion-freedom and thus go through unchanged. We thus present only

the bare concepts relevant for the construction of constraint operators.

Fermion fields

The space of all Grassmann-valued half-densitized 2-component spinors ξ(x)

and χ(x) constitutes the classical configuration space F for fermion fields. The loop

quantization [36] then promotes smeared objects

ΞA(x) :=

∫

Σt

d3y
√
δ(x, y)ξA := lim

ǫ→0

∫

Σt

d3y

√
χǫ(x, y)

ǫ3
ξA

to operators, where χǫ(x, y) is the characteristic function of a box of Lebesgue mea-

sure ǫ3 centered at x. Note that ΞA are scalar Grassmann valued functions since
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the δ distribution is a density of weight one. It is also easy to see that Ξ and

their adjoint satisfy anti-Poisson brackets similar to those presented above for ξ.

Upon quantization, the anti-Poisson bracket is replaced by the anti-commutator

[Ξ̂A(x), π̂B(y)]+ = i~δABδx,y with δx,y being the Kronecker symbol (rather than a

δ-distribution thanks to the smearing involved in ΞA).

This algebra can be represented on a non-separable Hilbert space HF =

L2(S, dµF ) =
⊗

v∈Σ L
2(Sv, dµv) where each copy Hv for any point v in space is an or-

dinary Grassmann-valued Hilbert space of multi-linear functions of ΞA(v) and Ξ̄A(v)

of two-component spinors in their Grassmann space Sv, with integration measure

dµv = dΞvdΞve
ΞvΞv . The full space of the fields can then be written as S :=

⊗
v∈Σ Sv

with measure dµF (Ξ,Ξ) =
∏

v∈Σ dµv. On this space, Ξ̂A acts as a multiplication

operator, and its momentum π̂B = −i~∂/∂ΞB by a derivative. In addition, we have

a second copy of these point-wise Hilbert spaces for χ smeared to X.

A dense subset of functions in this Hilbert space is formed by cylindrical

functions which are superpositions only of products of finitely many vertex-wise

Grassmann-factors. These functions can be seen to arise if one starts with a cyclic

state independent of Ξ and X and uses the Ξ̂v and X̂v as “creation” operators. Since

all the constraints depend on the fermion only via currents, which are polynomials

in ΞA and XA, they can easily be represented on this subspace of cylindrical functions.

Gravitational variables

Classical configuration variables and the corresponding loop quantization for

torsion-free gravity are discussed in section 1.2. It follows from section 2.2 that

classical configuration variables for gravity with torsion are also SU(2)-connections

on a principal fiber bundle over the spatial manifold Σ, represented by smooth su(2)-

valued local 1-forms Ai
a from (3.4); the space A of all such 1-forms is the classical

configuration space. The phase space is coordinatized by the pair (Ai
a, P

a
i ), where P i

a
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is the conjugate momentum, an su(2)-valued vector density on Σ proportional to the

densitized triad. Then the only non-vanishing Poisson bracket is

{
Ai

a(x), P
b
j (y)

}
= δi

jδ
b
aδ(x, y) . (3.7)

No well-defined quantum analogs for these canonical variables exist in a direct form

without smearing. The elementary classical variables that have well-defined quantum

analogs are rather given by (complex valued) matrix elements of holonomies he(A) =

P exp(
∫

e
Ai

aτiė
adt) ∈ SU(2) along paths e in Σ and fluxes F

(f)
S (P ) :=

∫
S
finaP

a
i d2y,

where f are su(2)-valued functions across 2-surfaces S in Σ and na is the (metric-

independent) co-normal to the surface.

Furthermore, all the fundamental constructions of cylindrical functions, spin-

network states and Hilbert space remain unchanged in the presence of torsion. By

construction, the Ashtekar-Barbero connection inherits the total torsion contribution

and thus the effect of torsion on the system is concealed in holonomies which are

used in states and as basic multiplication operators of loop quantum gravity. Conse-

quently, the functions of connections that represent the quantum state of the system

and operators containing holonomies are endowed with all contributions from torsion

in quantum kinematics. A complete split of torsion-free and torsion components is

possible only once equations of motion are partially used. This is not available at

the kinematical level, which thus has no choice but to refer to the unsplit torsion

connection.

Combined Hilbert space of gravity and fermions

For the combined system, we simply take the tensor product H ⊗HF as the

Hilbert space, which acquires the tensor product of the basic representations. All

cylindrical states can be written in the form ψ(he1
, · · · , hem

,Ξv1
, · · · ,Ξvm

, Xw1
, · · · , Xwl

)

with integer n, m and l. Especially for the gravitational dependence it is useful to use

special cylindrical states based on spin networks [14, 15]: graphs together with a la-
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beling je of their edges by irreducible SU(2)-representations ρ(je), and of vertices with

spinor representations σv of SU(2) (obtained from tensor products of the fundamen-

tal representation given by the basic 2-spinors) as well as contractors Cv in vertices

to contract the matrix-represented holonomies of edges incoming and outgoing at v.

Such states take the form

∏

v,e

C
νv
1
,...,νv

nv
,νv

v µv
1
,...,µv

mv
,µvρ(je)(he(A))µe

νe
σv(Ξv, Xv)

µv

νv (3.8)

where for all vertex labels νv
i are to be contracted with indices νe on represented

matrices ρ(je)(he(A))µe
νe

of all nv outgoing edges as well as the spinor index νv, and µv
i

with indices µe of all mv incoming edges as well as the spinor index µv.

Constraints

General relativity is a background independent theory and is fully constrained

in the canonical formulation. Thus the quantization of the constraints is necessary

to obtain physical states. Having identified elementary operators and their quantum

representation, this kinematical structure is now used to construct a set of quan-

tum operators corresponding to constraints relevant for the system. Subsequently,

these quantum constraints have to be solved to obtain physical states. The existence

of torsion may change the form of each of the quantum constraint operators and

consequently influence their solutions. Here, we will show that extra terms can be

quantized consistently.

Kinematical constraints

We first express the Gauss constraint in terms of half-densities and the new

canonical connection Ai
a:

Gi := DbP
b
i − 1

2

√
qJi = DbP

b
i + πξτiξ + πχτiχ . (3.9)
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Upon smearing the constraint with an su(2)-valued function Λi on Σ, it is easy to see,

as shown in section 1.1 for the torsion-free case, that G[Λi] =
∫

Σ
d3x ΛiGi generates

internal SU(2) rotations on the phase space of general relativity:

{
Ai

a, G[Λ]
}

= −DaΛ
i and {P a

i , G[Λ]} = ǫ k
ij ΛjP a

k

together with a spinor transformation in the fundamental representation of SU(2).

Thus, the quantization of the Gauss constraint is carried out in a similar fashion as it

is done in the torsion-free case, restricting gauge invariant states to be supported on

A/G. For our configuration variables, we have the transformations he 7→ ge(0)heg
−1
e(1),

Ξv 7→ gvΞv and Xv 7→ gvXv under a gauge transformation g : v 7→ gv ∈ SU(2).

A spin network state, when gauge transformed, acquires at each vertex v factors

of ρ(je)(g−1
v ) from all incoming edges, ρ(je)(gv) from outgoing edges and fv(gv) from

spinor factors in the state. For a gauge invariant state, these factors must cancel

each other when contracted with the Cv in (3.8), which implies that representation

matrices (including the spinor) must be multiplied by contraction with an intertwiner

of all relevant representations to the trivial one. The resulting gauge invariant states

satisfy the quantum constraint equation Ĝ[Λi]Ψα = 0 for all Λi.

Similarly, one can use the action of the spatial diffeomorphism group on

the phase space by computing infinitesimal canonical transformations generated by

D[Na] =
∫

Σ
d3x NaCa. In terms of half-densities and the corrected connection, the

constraint turns out to be

D[Na] =

∫

Σ

d3x Na
(
2P b

j ∂[aAj
b] −Ai

a∂bP
b
i

+
1

2
(πξ∂aξ − (∂aπξ)ξ + πχ∂aχ− (∂aπχ)χ)

)
(3.10)

up to contributions from the Gauss constraint. Again, as in the torsion-free gravity

shown in section 1.1, this constraint generates transformations

{
Ai

a, D[Na]
}

= N bF i
ba + Da(N

cAi
c) = L ~NAi

a
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and

{P a
i , D[Na]} = N b∂bP

a
i − P b

i ∂bN
a + P a

i ∂bN
b = L ~NP

a
i

as well as the correct Lie derivative δξ = Na∂aξ+ 1
2
ξ∂aN

a of half-densitized fermions.

Hence, this constraint can be quantized as in the torsion-free case via the finite action

of the diffeomorphism group. A finite diffeomorphism ϕ is represented on cylindrical

states by

D̂ϕψ(he1
, . . . , hem

,Ξv1
, . . . ,Ξvn

, Xw1
, . . . , Xwl

)

= ψ(hϕ(e1), . . . , hϕ(em),Ξϕ(v1), . . . ,Ξϕ(vn), Xϕ(w1), . . . , Xϕ(wl)) (3.11)

simply by moving the graph (which presents a unitary transformation with respect

to the Ashtekar–Lewandowski measure). Thus, invariant states can be determined

by constructing a new, diffeomorphism invariant Hilbert space via group averaging.

Hamiltonian constraint

While the Gauss and diffeomorphism constraints generate the canonical trans-

formations that represent the well-known kinematical gauge symmetries in the clas-

sical phase space independently of torsion, the scalar constraint entails the essence

of dynamics of the theory. Hence the scalar quantum operator describes quantum

dynamics of the physical states which must be in accordance with the presence of

torsion. Unfortunately, a complete quantization of this scalar constraint is yet to

be satisfactorily realized. Therefore, we present only the necessary adaptations to

the existing quantization attempts. In this approach, it is essential to re-express the

classical expression of the scalar constraint in terms of those phase space functions

which can be promoted to well-defined operators.

Our starting point is expression (3.6) of the Hamiltonian constraint in half-

densitized fermions. The fermion terms in the Dirac Hamiltonian coupled with grav-

ity, can be quantized using the strategy developed by Thiemann in [25]. Note that
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this Dirac Hamiltonian is different from the one presented in [25] (which took a sec-

ond order viewpoint) in two aspects: the covariant derivative D now contains the

Ashtekar–Barbero connection with torsion and the interaction term is new. Also the

gravitational term has torsion contributions which have to be taken into account when

applying the standard quantization strategy of [21].

As usual, the expression involving extrinsic curvature Ki
a would vanish for γ =

1 in Euclidean signature which in turn implies that the first term in the gravitational

constraint reduces to the scalar constraint HE[N ] of Euclidean general relativity.

Then let us write the scalar constraint for gravity alone as

H[N ] =
√
γHE[N ] − 2(1 + γ2)T [N ], (3.12)

where

T [N ] :=

√
γ

4κ

∫

Σt

d3x N
P a

i P
b
j√

| detP |
Ki

[aK
j
b] . (3.13)

In order to quantize the scalar constraint for gravity, it is first necessary to

express it in terms of classical phase space functions which have well-defined quantum

analogs. In this regard, the following classical objects and relationships are crucial as

building blocks: The total volume V = (γκ)3/2
∫

Σ
d3x
√

| detP | of Σ, the co-triad

ei
a(x) :=

√
κγ

2
sgn det(el

d)ǫabcǫ
ijk

P b
j P

c
k√

det P
=

2

γκ

{
Ai

a(x), V
}
, (3.14)

the integrated trace of extrinsic curvature

K := γκ

∫

Σ

d3x Ki
aP

a
i . (3.15)

as well as expansions

he(A) = 1 + δsaτiAi
a +O(δ2) (3.16)

hαIJ
(A) = 1 + δ2sa

Is
b
JFk

abτk +O(δ3) (3.17)

of holonomies along small open edges e in direction sa of coordinate length δ or small

square loops αIJ of coordinate area δ2 with sides in the directions sa
I .
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The first step in a regularization of a spatial integral is to introduce a triangu-

lation of Σ as the union of tetrahedra with edges of coordinate length δ and edges at a

given vertex pointing in directions sa
I , I = 1, 2, 3. To use this for a construction of op-

erators, the positions and directions of tetrahedra are usually adapted to vertices and

edges of the graph underlying a state to be acted on. The coordinate volumes of tetra-

hedra then replace the integration measure: ǫabcd3x → δ3ǫIJKsa
Is

b
Js

c
K . Moreover, in-

ternal tensors can be written in terms of Pauli matrices, such as ǫkmn = −4tr(τkτmτn).

The tangents sa
I , factors of δ and Pauli matrices can then be combined with Poisson

brackets to obtain

τkδs
a
I{Ak

a, O} → − 1

i~
hsI

[h−1
sI
, Ô] (3.18)

in terms of holonomies with their well-defined quantization, where O could be the

volume if (4.37) is used, or the integrated trace of extrinsic curvature K. For fine

triangulations, δ ≪ 1, the error in replacing connection components by holonomies

is small, and it goes to zero in the limit where all edge lengths of tetrahedra vanish.

Similarly, covariant derivatives can be combined to δsa
IDa and then regularized to a

difference of values at the endpoints of a small edge in direction sa
I . If there are always

three factors where δ can be absorbed and the quantized contributions vanish only

when acting on vertices of a graph, a well-defined operator results even in the limit

when the regulator is removed because for finite graphs finitely many terms remain

in the triangulation sum.

We first turn to the matter terms which arise in (3.6). Some of them agree

with the Dirac Hamiltonian used in [25], and can thus be quantized along the same

lines. However, our analysis has provided extra terms which must be ensured to have

well-defined quantum expressions, too. The current interaction terms can directly be
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quantized with fermion operators and using

sgn det(ei
a)√

q
=

1

6q
ǫabcǫijke

i
ae

j
be

k
c

=
36ǫabcǫijk
γ3κ3

{Ai
a, V

1/3}{Aj
b, V

1/3}{Ak
c , V

1/3}

for a quantizable expression in terms of commutators of holonomies and the volume

operator. Edge tangents of the holonomies for the three Poisson brackets provide the

elementary coordinate volumes of the triangulation, while half-densitized fermions in

the current products will simply be vertex-wise operators.

Terms of the form q−1/2P a
i DaO where O is an expression of fermions can be

reformulated using γκP a
i = sgn det(ei

a)
2

ǫabcǫijke
j
be

k
c in which we can again absorb the

inverse
√
q after expressing the co-triads as Poisson brackets. Here, we will have two

holonomies requiring an edge tangent vector as well as the covariant derivative which

will become a directional derivative once the triangulation volumes are expressed via

edge vectors: we use the expansion he(δ)O(e(δ)) − O(e(0)) ≈ δėaDaO where he(δ)

is a holonomy along an edge e of coordinate length δ. Also these terms can thus be

quantized by standard techniques, which involves a discretization of the derivative.

Finally, we have to turn q−1ǫijkP a
i e

k
bDaP

b
j into an expression which can be

quantized. We first rewrite this as

γ2κ2

q
ǫijkP a

i e
k
b∂aP

b
j = −γ

2κ2

q
ǫijkP a

i P
b
j ∂ae

k
b

= −sgn det(ei
d)√

q
ǫabcek

c∂ae
k
b = −sgn det(ei

d)ǫ
abc e

k
c

q1/4
∂a

ek
b

q1/4

which provides two factors of co-triads and one partial derivative. Each of them will be

combined with a tangent vector to provide either holonomies or a discretized deriva-

tive. The inverse powers of q1/4 can be absorbed by choosing appropriate positive

powers of volume in Poisson brackets expressing the co-triads. (Note that this is the

reason why we had to move one q−1/4 past the partial derivative, because absorbing

a single q−1/2 would require the ill-defined logarithm of volume.)
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For the gravitational part of the constraint, the curvature components Fk
ab

appear in a term which can be expressed as
∫

d3xǫabcF k
abǫcdeǫ

ijkP d
j P

e
k/
√

| detP |. After

triangulation, this takes the form ǫIJKsa
Is

b
Js

c
Ktr(F k

abτkτl{Al
c, V }) which can be written

in terms of holonomies via ǫIJKtr(hIJhK{h−1
K , V }).

It remains to quantize the extrinsic curvature terms, where our goal is to ex-

press Ki
a in terms of Poisson brackets such as {Ai

a, K} and {Ai
a, V } which can be

promoted to commutators of well-defined operators. In the torsion-free case the in-

tegrated extrinsic curvature is used in the expression Ki
a = 1

κγ
{Ai

a, K} for extrinsic

curvature components. This relation, proven e.g. in [38], turns out to be one of the

main places where torsion changes the quantization procedure of the Hamiltonian con-

straint. Viewing (3.15) as a functional of the canonical pair (Ai
a, P

b
j ), i.e. expressing

Ki
a in terms of Ai

a and Γi
a, yields

{Aj
b(y), K} = κ(Aj

b(y) − Γj
b(y)) − κ

∫

Σ

d3x P a
i (x)

δΓi
a(x)

δP b
j (y)

= κγKj
b (y) +

κ2γ2θ

4(1 + γ2)

(
1

γ
ǫj kle

k
b (y)J

l(y) +
1

2
ej

b(y)J
0(y)

)
.(3.19)

Here, we have used Γi
a = Γ̃i

a + Ci
a (which only requires solutions to second class

constraints) in the second step together with (2.33) and the fact that

κ

∫

Σ

d3x P a
i (x)

δΓ̃i
a(x)

δP b
j (y)

= 0

, which can be proven by a direct calculation or using the fact that

F̃ := κγ

∫

Σ

d3x P a
i (x)Γ̃i

a(x)

is the generating functional of Γ̃. (Due to the presence of torsion, unless θ = 0 the

functional F := κγ
∫

Σ
d3x P a

i (x)Γi
a(x) no longer generates a canonical transformation

to (Ki
a, P

j
b ) since {Ai

a, F} 6= Γi
a. Many of the differences between torsion and torsion-

free canonical gravity are reflected in this property of the canonical structure.)
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Together with (4.37) it is then straightforward to show that

Ki
a =

1

γκ

{
Ai

a, K
}
− θ

2γ(1 + γ2)
√
q
ǫi kl

{
Ak

a, V
}√

qJ l

− θ

4(1 + γ2)
√
q

{
Ai

a, V
}√

qJ0 . (3.20)

With these classical identities, the contributions HE[N ] and T [N ] to the Hamiltonian

constraint become

HE[N ] =
1

κ2γ
3

2

∫

Σ

d3x N(x)ǫabcFk
ab(x)

{
Ak

c (x), V
}

sgn det(el
d) , (3.21)

and

T [N ] =
1

2κ2γ

∫

Σ

d3x N(x)ǫabcǫkmn

{
Ak

a(x), V
}
Km

b K
n
c sgn det(el

d)

=
1

2κ4γ3

∫

Σ

d3x N(x)ǫabcǫkmn

{
Ak

a(x), K
}
{Am

b (x), K}

{An
c (x), V } sgn det(el

d) (3.22)

− 2θ

γ3κ3(1 + γ2)

∫

Σ

d3x N(x)ǫabc ǫkmn ǫ
n

ij

{
Ak

a(x), V
1

2

}
{Am

b (x), K}
{
Ai

c(x), V
1

2

}√
qJ jsgn det(el

d)

− θ

γ3κ2(1 + γ2)

∫

Σ

d3x N(x)ǫabc ǫkmn

{
Ak

a(x), V
1

2

}
{Am

b (x), K}
{
An

c (x), V
1

2

}√
qJ0sgn det(el

d)

+
27θ2

8γ2κ2(1 + γ2)2

∫

Σ

d3x N(x) ǫabc ǫkmn ǫ
m

ij

{
Ak

a(x), V
1

3

}{
Ai

b(x), V
1

3

}

{
An

c (x), V
1

3

}√
qJ j√qJ0sgn det(el

d)

+
27θ2

32γκ2(1 + γ2)2

∫

Σ

d3x N(x) ǫabc ǫkmn

{
Ak

a(x), V
1

3

}{
Am

b (x), V
1

3

}

{
An

c (x), V
1

3

}√
qJ0√qJ0sgn det(el

d)

+
27θ2

8γ3κ2(1 + γ2)2

∫

Σ

d3x N(x) ǫabc ǫmkn

{
Aj

a(x), V
1

3

}

{
Am

b (x), V
1

3

}{
Ak

c (x), V
1

3

}√
qJn√qJjsgn det(el

d) .

Here, we have already absorbed inverse powers of
√
q in the Poisson brackets, while

keeping one factor of
√
q with each current component to make the product quadratic

in half-densities of fermions without other metric components.
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It is thus clear that the presence of torsion introduces non-trivial additional

terms in the gravitational Hamiltonian constraint when it is written in a form suitable

for quantization.

While no changes to the torsion-free construction of the Hamiltonian constraint

are required for expressing F i
ab and Ai

a in terms of holonomies, there is a further

difference to the treatment of K in [21]. This quantity is not directly related to a

basic variable, but can be obtained from a Poisson bracket {HE[1], V } where both

ingredients are already written as quantizable functions of basic quantities. With Γi
a

having contributions from torsion, we obtain, using (71) and the trace of (2.33),

{
HE[1], V

}
=

√
γ
γκ

2

∫

Σ

d3x
(
ǫij kP

a
i e

c
j∂ae

k
c + 2P b

n(Γn
b + γKn

b )
)

= γ3/2κ

∫

Σ

d3x
(
P b

nCn
b + γP b

nK
n
b

)

= γ
3

2K − 3θ

4
γ

3

2

γ

1 + γ2

∫

Σ

d3x
√
qJ0, (3.23)

which implies

K = γ−
3

2

{
HE[1], V

}
− i

6α2γκθ

(1 + γ2)(1 + α2)

∫

Σ

d3x (θRπξξ − θLπχχ) . (3.24)

Again, the presence of torsion implies that K can no longer be expressed just as

the Poisson bracket of HE[1] and V ; the extra term involving the fermion charge

density in (3.24) is necessary if the torsion is included in the connection. This result

is consistent since splitting the torsion contribution from Ki
a and taking the trace of

(2.52) reducesK to the Poisson bracket γ−
3

2

{
HE[1], V

}
without any extra terms. The

additional term in (3.24), however, does not have much effect since it only depends

on the canonical fermion half-densities, and thus drops out of the Poisson bracket

with Ai
a in (3.22) which is the only form in which K appears.

It is interesting to note that, for α = γ, the equations (3.20), (3.22), (3.23), and

(3.24) take the standard forms of the torsion-free case (without any extra terms) since

θ vanishes. This results since the torsion contribution to the spatial spin connection,
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Ci
a, vanishes for α = γ when the fermion fields are expressed in half-densities as

shown in (3.5). Therefore, except for the extra terms in (3.6), the strategy for a loop

quantization of the gravitational sector of gravity non-minimally coupled to fermions

is exactly the same as that in vacuum for α = γ. Although this is the case which

was also addressed in [30], we emphasize that the complete canonical derivation for

real variables has to be done to recognize the roles of all possible contributions to the

variables and constraints. In particular, there are extra terms in (3.6) whose correct

form must be used to quantize the Hamiltonian constraint.

For α 6= γ, the quantization of the scalar constraint of gravity with fermions

demands the quantization of the non-trivial extra terms in (3.22) in addition to the

terms appearing in (3.6). This can be carried out using the standard strategy: All

extra terms have the structure
∫

d3xNǫabcǫkmn{Ak
a, O1}{Am

b , O2}{Ai
c, O3}On

i where

O1, O2 and O3 are either powers of V or K, and On
i is ǫnij

√
qJ j, δn

i

√
qJ0, ǫnijqJ

0J j,

δn
i q(J

0)2 and qJnJi, respectively, in all the required terms. The operators Ôi are

obtained either as the volume operator or its commutator with the Euclidean part of

the Hamiltonian constraint. The current terms also provide vertex operators directly

in terms of the smeared fermion operators Ξ̂v and X̂v. For J0, this can directly be

multiplied with the commutators, while J i can be inserted into the trace through τiJ
i.

We do not list the long expressions for complete operators here, but it is clear now that

well-defined quantizations exist for all the extra terms. This provides quantizations

of all terms in (3.22), completing the quantization of the gravitational constraint in

the presence of torsion.

Parity

In loop quantum gravity, the parity behavior is not manifest because the

Ashtekar connection transforms as Γi
a+γKi

a 7→ Γi
a−γKi

a under parity, which does not

result in a straightforward transformation of its holonomies. For states in the connec-
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tion representation, there is thus no simple parity transformation on the Hilbert space

for which one could check invariance of the theory. Sometimes the relation between

Ki
a and extrinsic curvature is changed in the definition of basic variables, making use

of sgn det(ej
c)Kabe

b
i with a sign factor which would make the redefined Ki

a and thus the

whole Ashtekar connection invariant under a reversal of the triad orientation. How-

ever, the symplectic structure would be invariant under this transformation only if a

corresponding sign factor is included in the momentum, now being det(ej
b)P

a
i instead

of P a
i . This momentum would also be invariant under orientation reversal. With all

the basic gravitational variables being invariant under orientation reversal, one would

simply loose any possibility to implement non-trivial parity transformations at all.

Thus, the only possibility is to work with a theory whose parity behavior is rather

concealed.

While this may appear only as a technical problem in vacuum or with non-

fermionic matter, it becomes acute in the presence of fermions and torsion. (Note

that a second order formalism, where fermions would not imply torsion contributions

to the connection and thus allow a parity behavior as in the vacuum theory, is unnat-

ural for the connection variables of the Ashtekar formulation as it underlies the loop

quantization.) As our classical discussion in Sec. 2.3 showed, the precise behavior of

the variables and constraints under parity transformations is no longer obvious in the

presence of torsion. Even classically, the behavior is fully determined only on-shell,

making use not only of the constraints but also of some equations of motion. While

the classical solution space turns out to be parity invariant for any α, specific torsion

contributions to Γi
a and Ki

a acquire a behavior different from the torsion-free parity

behavior unless α = γ. This observation, consistent with [30], indicates that the

situation of parity after quantization, where information about solutions of equations

of motion cannot be used, may be much more involved.

In fact, now the non-trivial parity behavior is hidden in holonomies used as
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basic operators. At the kinematical level, there is no way of knowing what unitary

transformation could possibly represent a change in parity, given that even classically

one would have to make use of constraints and equations of motion to determine that.

In the classical case, the behavior of the theory under parity became obvious only

after explicitly splitting off the torsion contributions from the basic variables — a

procedure which we are denied in the quantum theory. Triads have a much simpler

(and obvious) behavior under parity, but this, too, is difficult to implement at the

quantum level because no triad representation exists in the full theory [44]. Thus,

the triad transformation cannot simply be implemented at the state level.

It is thus quite likely that loop quantum gravity provides for parity violating

effects especially once fermions are included, even if the classical fermion interactions

used preserve parity. With the hidden nature of torsion contributions and parity in

the quantum formulation, the precise form and magnitude of those parity violating

effects is not easy to discern. But some implications can be explored either with

effective equations (in their canonical form as described in [55, 39]) which would

allow one to perform some of the steps required in the classical analysis of parity,

or with symmetry reduced models. An advantage of the latter would be that some

models exist (such as those introduced in [67, 72, 74, 59, 81]) which do allow a triad

representation and thus a more direct implementation of parity transformations.

3.2 Quantization of Maxwell’s Fields

Quantizations of Maxwell’s fields have already been developed in [25, 4], so the

following summary is presented for the sake of completeness and of its relevence to the

applications explored in the following chapters. Since Maxwell’s field Aa is a U(1)

connection, the kinematical constructions here closely mirror that of gravitational

sector presented in section 1.2, albeit a bit simpler in this case due to abelian U(1).
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Quantum representation

It follows from (2.66) that the canonical variables in the Maxwell’s theory are

given by (Aa, π
a), where Aa is the Maxwell vector potential and πa, the Maxwell

electric field. As usual, the only non-vanishing Poisson bracket is

{
Aa(x), π

b(y)
}

= δb
a δ(x, y). (3.25)

The basic configuration variables are holonomies hMax(e) := exp(−i
∫

e
Aaė

adt) and

its momenta are smeared along 2-surfaces S in Σ as PMax(S, g) :=
∫

S
d2y gaπ

a(y)

for all test 1-forms ga on S, e.g. (metric-independent) co-normal na to the surface.

Note that holonomies are now elements of U(1). The Poisson bracket between these

elementary variables is given by:

{hMax(e), PMax(S, g)} = −i(
∫

e

g)hMax(e) , (3.26)

implying the Poisson algebra of elementary variables is closed as needed.

Convenient orthonormal basis states Fα,~n, called flux networks, that span the

Hilbert space for Maxwell’s theory HMax := L2[Āu(1), dµAL(u(1))] can be constructed

as follows. Given a graph α, let us assign an orientation to the edges (e1, . . . , eN),

label them by integers (n1, . . . , nN) (corresponding to the irreducible representation

of U(1)) and set

Fα,~n(hMax(e)) = [hMax(e1)]
n1 . . . [hMax(en)]nN . (3.27)

Note that if the orientation of an edge eI is reversed, the state is unchanged if nI is

replaced by −nI . Also, notice from (3.27) that since the U(1) elements are complex

numbers of unit modulus, these elements incident at each vertex can be multiplied

easily with a constant intertwiner to obtain well-defined cylindrical functions. Next,

the Poisson bracket relation (3.26) leads to the definition of the smeared electric

operator P̂Max(S, g):

P̂Max(S, g)Ψ = i~ {PMax(S, g),Ψ} , (3.28)
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capturing the expectation that P̂Max(x) should be represented by i~δ/δhMax(x). On

the flux network states, the action reduces to:

P̂Max(S, g)Fγ,~n = −~

(∑

I

nI

∫

eI

g

)
Fγ,~n. (3.29)

If the surface S (support of g) has non-trivial intersection just with a single edge eI

of α, then the flux network Fα,~n is an eigenstate of P̂Max(S, g) and the eigenvalue just

measures nI , the ‘electric flux carried by the oriented edge eI ’. Thus the electric flux

is quantized and each edge of the flux network Fα,~n can be interpreted as carrying an

integral multiple of the fundamental quantum.

With these constructions, the combined Kinematical Hilbert space of the

Einstein-Maxwell theory is given by the tensor product HEM = H ⊗ HMax cor-

responding to the group G = SU(2) × U(1).

Constraints

As expected, the Einstein-Maxwell theory again has a set of three first class

constraints, which are obtained by combining the gravitational constraints (1.6-1.7)

with the smeared Maxwell’s constraints (2.70-2.72). It is straightforward to show that

the Maxwell’s Gauss constraint,

CMax
G [Λ] :=

∫

Σ

d3x ΛGMax

with GMax := ∂bπ
b for any smooth test function Λ on Σ, generates the familiar

infinitesimal gauge transformation Aa → Aa + ∂aΛ. Hence, the action of the Gauss

constraint for the group SU(2)×U(1) naturally factors on HEM = H⊗HMax: ĈEM
G =

ĈG ⊗ ĈMax
G , where ĈG is the Gauss constraint operator on the quantum geometry

Hilbert space H and ĈMax
G that on the Maxwell Hilbert space. Imposition of this

constraint selects the gauge invariant sub-space of HEM. While the gauge invariant

subspace of H has already been obtained in section 1.2, the invariant subspace of the
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Maxwell Hilbert space HMax is obtained by simply restricting the flux network states

as follows: at each vertex the sum of the labels nI assigned to the incoming edges

is equal to the sum of the labels assigned to the outgoing edges. This is expected

since it reflects the Gauss’s law in electromagnetism. Note that the solution space is

a sub-space on HEM.

Similarly, it can be shown that the Maxwell’s diffeomorphism constraint

CMax
diff ( ~N) :=

∫
d3xNaCMax

a =

∫

Σ

d3x Na
(
πbFab − AaG

Max
)

generates diffeomorphisms, which can be seen from the following relations

{
Aa, C

Max
diff ( ~N)

}
= L ~NAa and

{
πa, CMax

diff ( ~N)
}

= L ~Nπ
a . (3.30)

The total diffeomorphism constraint
∫

d3xNa(CG
a + CMax

a ) can also be imposed using

the general procedure described in section 1.2. Again, the solutions lie in the dual

Cyl⋆EM of CylEM = [Cyl⊗CylMax] where CylMax is the space of the cylindrical functions

of U(1) connections. Note that a typical cylindrical function on graph γ in CylEM is

denoted by [Ψγ ⊗ Fγ,~n].

Finally, the scalar constraint CEM(N) :=
∫

d3xN(CG + CMax) is imposed by

solving the constraint equation, ĈEM(N)|Ψ〉 = 0 for Ψ ∈ HEM. In order to solve this

equation, the classical scalar constraints have to be promoted to well-defined quan-

tum operators. Since the construction of a quantum operator for the gravitational

Hamiltonian is discussed in details in section 4.3, the construction of an operator for

smeared Maxwell’s Hamiltonian expressed in terms of the magnetic field Ba = ǫabcFbc

(see section 5.3),

CMax(N) =

∫

Σ

d3x N

(
2πqab√

q
πaπb +

qab

8π
√
q
BaBb

)
, (3.31)

is presented below. Notice that the Maxwell’s fields couple to gravity through the

term qab/
√
q. Now, it follows from section 4.3 that the quantization of this term can
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be carried out by expressing it in terms of the Poisson brackets as follows:

qab(x)√
det q(x)

=
16

κ2γ2

{
Ai

a(x),
√
V (x)

}{
Ai

b(x),
√
V (x)

}
. (3.32)

Next, the operator for product of electric fields πaπb at the same point is ill-defined

since the electric field becomes an operator-valued distribution. Hence, a well-defined

operator for this product can be obtained by point-splitting the product by introduc-

ing a two-point smearing function χ(x, y) = 1 if y ∈ R (an arbitrary open neighbor-

hood of x), or 0 otherwise. On the other hand, magnetic field Ba = ǫabcFbc can be

quantized by expressing Fbc by U(1) holonomies around small closed loops. With a

suitable regularization similar to the one described in section 4.3, the electric fields

can be regularized to be elevated to the operator P̂Max(S, g) furnished by (3.28) and

the magnetic field to hMax(α) for small loops α. Thus, the electric part of Maxwell’s

Hamiltonian can be promoted to a well-defined self-adjoint operator ĈMax
elec (N) and

similarly the magnetic part to a well-defined self-adjoint operator ĈMax
mag (N); please

see [4] for details. Finally, as expected, the solutions to scalar constraint equation lies

in the dual Cyl⋆EM of CylEM.

3.3 Conclusion

The main purpose of the paper, however, is to provide a better and more

complete foundation for the loop quantization of gravity coupled to fermions than can

be found in the existing literature. Also this requires knowledge of the details given

in the derivation of the canonical formalism to appreciate which of the established

quantization steps of the torsion-free case go through in the presence of torsion, and

where adaptations may be necessary. Overall, we find that the quantization of fermion

fields and their dynamics given by Thiemann and others goes through in a well-defined

manner. In details, however, we have clarified several steps where previously gaps

existed, although they were not always realized. For all values of the non-minimal
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coupling parameter α there are new terms in the constraints due to torsion which are

derived here in complete form. We have shown that torsion contributions and terms

which arise from using half-densitized spinors cancel in the connection for the case

where the non-minimal coupling parameter α equals the Barbero–Immirzi parameter

γ. As a consequence, the presence of fermions does not change the quantization

procedure much in this case, although there are still additional terms. For α 6= γ, on

the other hand, several additional adaptations to the usual construction steps of the

Hamiltonian constraint operator are necessary.

While our results do not challenge the previous claims that all fields necessary

for the standard model of particle physics can be quantized by loop techniques, some

of the details of a specific quantization have to be corrected. As such Hamiltonians

may become relevant for phenomenological considerations, e.g. in cosmology [46, 45],

a precise understanding of the quantum states and dynamical operators is not only

necessary for a complete quantization but even for potential physical applications. In

particular, we have highlighted the fact that current constructions of loop quantum

gravity do not suffice to show that it exactly preserves parity.

By contrast, the quantization of the Maxwell theory parallels that of gravity

but possesses much technical simplifications due to U(1). This completes the discus-

sion on quantizations of Dirac and Maxwell fields in the full theory of LQG. In the

following chapters, concrete examples of such quantizations in the reduced theory are

presented to provide some interesting applications in cosmology.
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CHAPTER IV

QUANTUM COSMOLOGY

Until now, the domain of our exploration has been the full theory of LQG

extended to incorporate fermionic and bosonic matter. Because of the mathematical

complexity arising from the infinite degrees of freedom, it is difficult to test ideas

and constructions illustrated in the full theory. Fortunately, mathematical simplifica-

tions can be achieved by imposing physical symmetries such as spatial homogeneity

and/or isotropy. The process of symmetry reduction generally freezes all but a finite

number of degrees of freedom, e.g. the number degrees of freedom in cosmology is

taken to be finite. Therefore, the arena of early cosmolgy provides a suitable test

bed for analyzing ideas and constructions introduced in the full theory both at the

classical and quantum levels. Cosmological models that exploit the quantum nature

of geometry have been explored to make some remarkable discoveries of the nature of

the initial singularity and its fate[51]-[94]. The branch of cosmology which specializes

loop quantum gravity [6, 4, 5] to cosmological regimes is known as loop quantum cos-

mology. In this chapter, these cosmological models are extended to allow for matters

represented by Dirac’s fields followed by Maxwell fields.

4.1 Cosmological models with Fermions

Most cosmological models — classical or quantum — introduce the matter

ingredients of the universe as bosonic fields, in particular scalar ones. While this

provides a good measure for the implications of matter energy on space-time, some

effects of realistic fermionic particles may be overlooked. Especially in homogeneous

models of quantum cosmology there is an important difference between bosonic and

fermionic models: the exclusion principle forbids large matter energies when symme-
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try reduction leaves only a few, finitely many fermionic degrees of freedom. A massive

universe can then be obtained by only two possibilities: a homogeneous description

with many different fermionic species, or inhomogeneity with many local degrees of

freedom of a few species (as in [49]).

Both options differ from what is modeled by large values of homogeneous

bosonic fields which rather resemble a Bose–Einstein condensate of many identical

excitations. In fact, fermion condensates have been suggested for such a purpose,

with characteristic effects [50, 46]. This is an effective picture starting from an in-

homogeneous perspective in which fermions condense under certain conditions, after

which a symmetry reduction can be done. It differs from a fundamental description

from fermions in quantum cosmology where constraints due to the exclusion principle

cannot as easily be avoided. Potentially fundamental mechanisms which rely on a

large amount of bosonic matter, such as bounce scenarios to avoid the big bang sin-

gularity, have to be reanalyzed if matter is fermionic. A truly microscopic description

will then be achieved. Here, we perform an analysis of the role of fermions in loop

quantum cosmology.

Loop quantum cosmology [51] provides a general mechanism for fundamental

singularity resolution [64, 65]. Commonly in quantum cosmology, when volume is

used as an intrinsic measure of time, evolution must stop at the classical singularity

where the volume vanishes. In loop quantum cosmology, by contrast, the timeline is

naturally extended, first at the kinematical quantum level, by including orientation

into the basic variables: The (densitized) triad knows about the size as well as the

orientation of the universe which make it take all real values, not just positive ones.

Vanishing size is then no longer a boundary but an interior point of minisuperspace.

What is more, even dynamically the classical singularity is removed because

the quantized Hamiltonian constraint equation uniquely extends any wave function

defined on minisuperspace across the subset of vanishing sizes. Dynamics is dictated
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by a difference equation [66, 67] which remains regular where classical relativity and

Wheeler–DeWitt quantum cosmology would reach their limits. Rather than being

singular, the big bang transition then appears as a place where space flips its orien-

tation — turning its inside out — while it changes from being contracting to being

expanding.1 Still, the region of vanishing volume does remain special in the under-

lying recurrence scheme. Some coefficients of the difference equation can vanish at

labels corresponding to zero volume, which leads to consistency conditions implied

by the dynamical law [70, 71]. This is welcome because, at least partially, it frees one

from having to pose initial values for a wave function independently of the dynamics.

The wave function of the universe is restricted by the theory alone, relaxing the need

to pick one solution among many which could correspond to our universe.

While the set of configurations of vanishing volume is not a boundary within

the theory, in the presence of ordinary matter one may choose to consider parity

transformations as large gauge transformations which complete the gauge group of

triad rotations to all orthogonal transformations. Then, one would restrict solutions

to only those states which are either even or odd under parity reversal. This would

essentially factor out the orientation degree of freedom introduced by the use of triad

variables, and again demote the set of vanishing sizes to a boundary rather than an

interior regime. This factoring has indeed been assumed in recent constructions of

physical Hilbert spaces for specific isotropic models and the corresponding intuitive

bounce pictures based on [75].

But if this is used crucially for the constructions, what happens if more re-

alistic matter is included which, as we know from particle physics, cannot be parity

invariant? Do properties of the specific solutions based on the assumption of reflec-

1Sometimes it is suggested that this small-volume regime is avoided altogether because wave
packets may turn around in a bounce at some minimal non-zero volume. This indeed happens for
homogeneous models containing sufficiently much kinetic energy of matter [68, 69]. However, this
does not appear as a general mechanism which would be valid in this form for generic quantum
states or for inhomogeneous situations. Fundamental singularity resolution which deals with the
wave function right at vanishing volume is thus required.
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tion symmetry depend on the conservation of parity by matter, and if so, how reliable

are the conclusions drawn from this assumption? Only the inclusion of parity vio-

lating terms, at least as a possibility, can provide a sufficiently general mechanism of

singularity resolution.

It may also give rise to new effects related to the role of parity violation in the

big bang transition. If this were to happen, an intriguing new link between particle

physics and quantum gravity would result. Seeing whether this is indeed the case

requires the introduction of fermions, which is available in loop quantum gravity [36,

25, 40] (see also [41, 42, 43]). In general, however, the parity behavior of loop quantum

gravity is highly non-trivial due to the fact that the basic variable conjugate to the

densitized triad, namely the Ashtekar–Barbero connection, is the sum of a parity-

even and a parity-odd term. It does not have a simple parity behavior and, moreover,

it appears in quantized expressions only non-linearly through holonomies. Even in

vacuum, this makes a direct demonstration of parity invariance of loop quantum

gravity — or the lack thereof — very complicated [40].

Here, we introduce a homogeneous model which allows one to analyze the

parity behavior in a clear-cut way. At the same time, the model is amenable to the

techniques which have been proven useful for explicit constructions of Hamiltonian

constraint equations through the difference equations of loop quantum cosmology

[66, 67, 72]. The microscopic nature of fermions due to the exclusion principle is

explicitly realized. As we will see, quantization of this model does not introduce

unexpected parity violations in the absence of classical parity violations. But the

inclusion of parity violating matter interactions is possible, which can be used to

illustrate the role of parity for singularity removal. Then indeed, wave functions

change under triad reflections. The big bang transition through vanishing sizes is a

non-trivial event, which represents true local evolution in internal time rather than

merely the application of a symmetry transformation.
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4.2 Classical Symmetry Reduction

In this section, we provide the formulation of symmetry reduced cosmological

models which may have torsion due to the presence of fermions. We follow the

symmetry reduction of torsion-free Bianchi class A models [73, 72, 74], combined

with the canonical formulation of gravity with fermions [36, 25, 30, 40]. Here, we

combine these research lines and explore the symmetry reduction of gravity coupled

to fermions in a first-order formalism, implying a theory with torsion. As we will

see, there are non-trivial changes in the underlying equations, such that the analysis

done here provides a crucial consistency test of the robustness of existing models. At

the same time, we clarify the constructions of loop quantum cosmology [51] from the

viewpoint of some recent developments.

Diagonalization

Bianchi class A models constitute all homogeneous models with a symmetry

group S acting freely on the space manifold Σ ∼= S and for which standard Hamil-

tonian formulations exist. The symmetry group is characterized by its structure

constants CI
JK , which for class A models satisfy CI

IJ = 0 [76] and can be parameter-

ized as CK
IJ = ǫKIJn

(K) with three coefficients nI which either vanish or take values

±1. Some of these models can be reduced further by imposing rotational symmetry

with one axis (where S has isotropy group F = U(1)) or even isotropy (F = SO(3)).

Later in this paper we will present a locally rotationally symmetric (LRS [77]) model

with torsion in detail.

The action of a symmetry group S on Σ provides invariant 1-forms ωI
a which

are used for the reduction of Ashtekar–Barbero variables. For each s ∈ S, they

satisfy s∗ωI
a = Ad(s)I

Jω
J
a or, in terms of the Lie-algebra valued 1-form Ωa := ωI

aTI

with generators TI of S, s∗Ωa = s−1Ωas. The left invariant 1-forms then yield the

decomposition Ai
a = V

−1/3
0 φi

Iω
I
a of an invariant connection with spatially constant

83



coefficients φi
I (see the Appendix of [51] for more details on invariant connections).

Here, we have explicitly included a factor of V0 =
∫

d3x| det(ωI
a)| of the spatial co-

ordinate volume (or the volume of any finite region used to define the homogeneous

variables) as it will be convenient later on. A corresponding decomposition of the

densitized triad is given by Ea
i = V

−2/3
0 pI

iX
a
I with Xa

I being densitized left invariant

vector fields dual to the 1-forms: ωI
aX

a
J = δI

J | det(ωK
b )|. The symplectic structure of

the reduced model is given by

{
φi

I , p
J
j

}
= γκδi

jδ
J
I (4.1)

as it follows from (γκ)−1
∫

d3xȦi
aE

a
i = (γκ)−1φ̇i

Ip
I
i .

For the purpose of loop quantization, it is useful to further reduce the number

of independent components of the invariant connection and its conjugate momentum.

In some cases, this will allow very explicit calculations of matrix elements of the

Hamiltonian constraint and the difference equation it implies for physical states [72].

Both the connection and the densitized triad can be cast into diagonal form

Ai
a = V

−1/3
0 c(K)Λ

i
Kω

K
a , Ea

i = V
−2/3
0 p(K)ΛK

i X
a
K (4.2)

with six spatially constant coefficients cI and pI which are considered as the only

dynamical components while Λ ∈ SO(3) is fixed up to gauge transformations. Using

the same Λi
I for Ai

a and Ea
i is consistent with the Gauss constraint for diagonal torsion-

free Bianchi class A models which is then solved identically. From the diagonal

densitized triad, moreover, we find the co-triad ei
a = V

−1/3
0 a(K)Λ

i
Kω

K
a with |a1| =

√
|p2p3/p1| and cyclic. It determines the diagonal anisotropic spatial metric

qab = ei
ae

i
b = V

−2/3
0 a2

(I)δIJω
I
aω

J
b = qIJω

I
aω

J
b

with three independent scale factors V
−1/3
0 |aI |.

By construction, cI , p
I and aI are independent of coordinates as long as the

diagonalized homogeneous form is respected. In particular in a Bianchi I model
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where ωI
a = ∂ax

I = δI
a in terms of Cartesian coordinates xI , spatial coordinates can

be rescaled arbitrarily without affecting the basic variables. However, the specific

values do depend on V0 and the choice of the integration volume. Obviously, the

V0-dependence is a consequence of the symmetry reduction to homogeneity, since V0

does not occur at all in an inhomogeneous framework. Thus, the dependence has

to be interpreted with care especially after quantization where, fundamentally, the

relation to coordinates is lost. As a consequence, the role of V0 cannot be properly

understood if considerations are limited to purely homogeneous models because only

the reduction from inhomogeneity shows how V0 enters; see [78] for a discussion from

the point of view of inhomogeneous states.

Note that pI and aK are allowed to take negative values to represent different

triad orientations while the orientation of Λ ∈ SO(3) is fixed. A parity transforma-

tion then simply implies pI 7→ −pI for the triad components (leaving coordinates

unchanged), while the transformation of the cI is in general more complicated. In

fact, we have Ai
a = Γ̃i

a + γKi
a with the parity-even torsion-free spin connection

Γ̃i
a =

1

2
ǫijkeb

k(2∂[be
j
a] + ec

je
l
a∂be

l
c) (4.3)

and the odd extrinsic curvature Ki
a = Kabe

b
i . In the torsion-free case, it follows from

(4.3) that the homogeneous spin connection can be expressed as Γ̃i
a = Γ̃(K)Λ

i
Kω

K
a [74]

with

Γ̃I =
1

2

(
aJ

aK

nJ +
aK

aJ

nK − a2
I

aJaK

nI

)
for indices such that ǫIJK = 1 (4.4)

and the same Λi
I as used for the densitized triad. Similarly Ki

a = K(I)Λ
I
iω

i
a also with

the same Λi
I . Then, cI = Γ̃I + γKI does not have a straightforward parity behavior

unless Γ̃I = 0 (as in the Bianchi I model).

The diagonalization is sufficient to capture the crucial dynamical behavior of

Bianchi models, such as the approach to a singularity. For the quantization, it has the

advantage that it reduces SU(2) to U(1)3: holonomies of a homogeneous connection,
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computed along curves generated by the invariant vector fields Xa
I , take the form

h
(µ)
I = exp(µφi

Iτi) with a real number µ depending, e.g., on the coordinate length of

a curve used to compute the holonomy. For φi
I = c(I)Λ

i
I , we have

h
(µI)
I = exp(µIc(I)Λ

i
Iτi) = cos

(
1
2
µIc(I)

)
+ 2Λi

Iτi sin
(

1
2
µIc(I)

)
. (4.5)

While any SU(2)-holonomy along Xa
I can be written in this way,2 the diagonalization

implies that Λi
I becomes a mere background quantity not subject to dynamics. Thus,

it is sufficient to consider only the simple commuting exponentials exp(iµIc(I)) to

separate diagonal connections. After a loop quantization, as we will see in detail

below, this will have the implication that a triad representation exists, which simplifies

the analysis of dynamics considerably. In fact, triad operators will simply be p̂I =

−iγℓ2P∂/∂cI , with the Planck length ℓP =
√
κ~, which form a complete commuting

set. Their eigenstates

〈c1, c2, c3|µ1, µ2, µ3〉 = exp
(

1
2
i(µ1c1 + µ2c2 + µ3c3)

)

(written here in the connection representation) form an orthonormal basis such that

the coefficients in

|ψ〉 =
∑

µ1,µ2,µ3

sµ1,µ2,µ3
|µ1, µ2, µ3〉

form the triad representation of arbitrary states. This explicit representation, which

becomes available only after diagonalization [72], has been the basis of all investiga-

tions so far in homogeneous loop quantum cosmology. As we will see in this article,

arriving at such a representation is less trivial in the presence of torsion.

2General curves do not provide this simple form. For instance, along Xa
1

+ Xa
2

holonomies are
not of the (almost) periodic form in c1 or c2 (but in

√
c2

1
+ c2

2
). If curves are considered which are

not even straight with respect to the given symmetry, the behavior is more complicated due to path
ordering and do not give rise to almost periodic functions [79]. However, such curves do not play a
role in the kinematical symmetry reduction, which uses the given set of Xa

I to introduce particular
quantum geometries, just like classical symmetric metrics which are used in adapted coordinates but
can look complicated in arbitrary coordinates.
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Torsion effects

This scheme of diagonalization of the basic torsion-free gravitational variables

relies on the fact that both the connection and its conjugate momentum can be

diagonalized with the same Λi
I . In other words, the su(2) valued connection and its

conjugate momentum are parallel to each other in the tangent space of the internal

symmetry group. This can be seen from the torsion-free Gauss constraint which

expressed in terms of the diagonalized variables takes the form p(I)c(I)ǫijkΛ
j
IΛ

I
k = 0

and is identically satisfied. However, the presence of torsion via the axial fermion

current Ji enters the Gauss constraint (2.36) implying that

φj
Ip

I
kǫijk =

1

2

√
| det(pI

j)|Ji . (4.6)

(We only discuss the case where torsion is implied by the coupling to fermions. The

implications of torsion on the diagonalizability of basic variables are, however, more

general.) For φi
I = c(I)Λ

i
I and pI

i = p(I)ΛI
i as above, this would only allow vanishing

spatial components of the fermion current and severely restrict the allowed models.

This situation becomes more obvious if we try to express the spin connection including

its torsion contribution as Γi
a = Γ(K)Λ

i
Kω

K
a with the same ΛI

i as used for the triad:

One can easily verify that the partial torsion contribution (3.5) to the connection

cannot be expressed as Ci
a = C(K)Λ

i
Kω

K
a if J i 6= 0. Then also the Ashtekar–Barbero

connection cannot be diagonal in the same basis. Therefore, our first result is that

the presence of torsion does not allow us to diagonalize both canonical variables, i.e.

the connection and the densitized triad, simultaneously.

Moreover, fermion terms require us to use a connection Ai
a in (3.4) which

carries an extra term compared to the Ashtekar–Barbero connection, depending on

the fermion current. We then write the new diagonal variables as

Ai
a = V

−1/3
0 c(K)Λ

i
Kω

K
a , Ea

i = V
−2/3
0 p(K)TK

i X
a
K (4.7)

where in general T I
i 6= Λi

I . Not both Λi
I and T I

i can be fixed because partially they are
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determined by dynamical fields as, e.g., per the Gauss constraint (4.6). This has an

immediate implication for the symplectic structure because cI and pI will no longer

be canonically conjugate:

∫

Σ

d3xEa
i LtA

i
a = p(I)T I

i Lt

(
c(I)Λ

i
I

)
= p(I)Lt

(
c(I)Λ

i
IT

I
i

)
− c(I)p

(I)Λi
ILtT

I
i . (4.8)

Thus, it is not cI which is conjugate to pI but c(I)Λ
i
IT

(I)
i . This is not a pure connection

component but depends on the relative angles between the connection direction Λi
I

and the triad direction T I
i in internal space. (It is not possible to fix both Λi

I and

T I
i because this would require six parameters while the Gauss constraint allows one

to fix only three.) Moreover, some of the angles enter the symplectic structure as

independent variables. We can, for instance, (Euler) parameterize T I
i as the matrix

T (φI) = exp(φ3T3) exp(φ2T1) exp(φ1T3) using generators TI of SO(3). Inserting this

in (4.8) shows that the angles φI acquire canonical momenta given in terms of the

angles in Λi
I , e.g. φ1 being conjugate to −tr((c · Λ)(p · T (φ1 + π/2, φ2, φ3))), where

c and p here denote the diagonal matrices with components cI and pI , respectively.

(Taking a derivative of T (φI) amounts to switching sines and cosines, which is the

same as shifting an angle by π/2.)

The corresponding phase space and the constrained system defined on it is

rather involved, and so we consider a more special case which still allows the non-

trivial implications of torsion to be seen: We are interested in the case where the

presence of a fermion current is the sole reason for anisotropy, while the 2-dimensional

space transversal to the spatial current is rotationally invariant. We can then assume

that there are bases for Ai
a and Ea

i , respectively, such that

Λj
J =




1 0 0
0 cosρ −sinρ
0 sinρ cosρ


 , T J

j =




1 0 0
0 cosφ sinφ
0 −sinφ cosφ


 , (4.9)

where ρ and φ are the only non-vanishing rotation angles. As we will demonstrate

below, this allows non-trivial solutions where the fermion current is aligned in the
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1-direction. The Liouville term in the action can then be expressed as

1

γκ

∫

Σ

d3xEa
i LtA

i
a =

1

γκ
p(I)Lt

(
c(I)Λ

i
IT

I
i

)
− c(I)p

(I)Λi
ILtT

I
i

=
1

γκ

(
ċ1p

1 + Lt(c2cos(ρ− φ))p2 + Lt(c3cos(ρ− φ))p3

−φ̇(c2p
2 + c3p

3)sin(ρ− φ)
)

=
1

γκ

(
ċ1p

1 + ˙̃c2p
2 + ˙̃c3p

3 + φ̇pφ

)
, (4.10)

where we introduced

c̃2 = c2cos(ρ− φ) , c̃3 = c3cos(ρ− φ) , pφ = −(c2p
2 + c3p

3)sin(ρ− φ) . (4.11)

In these components, the symplectic structure is

{
c1, p

1
}

= γκ ,
{
c̃2, p

2
}

= γκ ,
{
c̃3, p

3
}

= γκ , {φ, pφ} = γκ . (4.12)

Notice that the presence of torsion at this stage introduces a new kinematical degree

of freedom φ. It will be removed after solving the Gauss constraint (4.6), which is

now non-trivial.

There is a useful interpretation of the canonical variables in the presence of

torsion: We can write, e.g.,

c̃2 = c2 cos(ρ− φ) = c2Λ
i
2T

2
i = φi

2T
2
i

in terms of the general homogeneous coefficients φi
I = c(I)Λ

i
I . Since T I

i gives the

direction of Ea
i , we can interpret c̃2 as a component

V
−1/3
0 c̃2 = Ai

aE
b
i

Xa
2ω

2
b

V
−2/3
0 p2

of the projection of Ai
a onto Ea

i . In the absence of torsion, this would be a pure

connection component because Ai
a and Ea

i would be parallel. With torsion, however,

c̃2 is only part of an Ai
a-component: Using the expression (3.4), the projection removes

the term ǫikle
k
aJ

l perpendicular to Ea
k which happens to be the torsion contribution
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to extrinsic curvature. Moreover, the projection transversal to Ea
i is just (half of) the

variable pφ due to the sine, which thus takes a value equal to the torsion contribution.

This agrees with the solution of the Gauss constraint (4.14) below. Recall that the

identification of the torsion contribution to extrinsic curvature used in (3.4) cannot be

completed without partially solving equations of motion. In the projection defining

c̃2 and c̃3, on the other hand, no equations of motion have been used. Thus, these

canonical variables which we are naturally led to at the basic kinematical level present

torsion-free contributions without explicitly splitting off torsion. (Something similar

happens in inhomogeneous models such as spherical symmetry [80] or Gowdy models

[81]. There it is spin connection contributions that are split off by a natural definition

of canonical variables which then allows a manageable loop quantization.)

Reduced constraints

In terms of the diagonal variables the Gauss constraint (2.36) becomes

Gi =
1

γκ
ǫijkc(I)p

(I)Λj
IT

I
k − 1

2

√
|p1p2p3|T I

i JI = −ǫi23
γκ

(c2p
2 + c3p

3)sin(ρ− φ)

−
√
|p1p2p3|

2
T I

i JI = 0 . (4.13)

For i = 2, 3, it thus implies J2 = 0 = J3 while the remaining condition

ǫi23pφ =
γκ

2

√
|p1p2p3|T I

i JI

relates J1 to pφ:

pφ =
γκ

2

√
|p1p2p3|J1 =:

1

2
γκJ1 , (4.14)

where Ji = ξ†σiξ + χ†σiχ denotes the densitized axial fermion current (which is bi-

linear in half-densitized fermions ξ and χ). The form (4.14) of the Gauss constraint

together with the expression for the densitized fermion current in terms of canonical

fermion fields makes it clear that the new connection components remain gauge in-

variant: c1 and c̃2 commute with pφ as well as with fermion fields. With the choice
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(4.9) of bases the fermion current Ji is aligned along the first (fixed) internal direction:

J2 = J3 = 0. This defines a specific class of models with a non-trivial spatial fermion

current, as J1 may be non-zero.

Similarly, the diffeomorphism constraint (3.10) can be written as

DaN
a = −cKIJφ

i
Kp

J
i N

I = N1(n2c2p
2 + n3c3p

3)sin(ρ− φ) = 0 , (4.15)

where Na = N IXa
I with N I constant and CK

IJ = ǫKIJn
(K) to specify different Bianchi

class A models are used. We have also imposed that the partial derivatives of spinor

fields vanish in a homogeneous model, e.g. ∂aψ = 0. A conclusion to be drawn from

(4.13) and (4.15) is that torsion is strongly restricted in Bianchi Class A models with

n2 +n3 6= 0 since this implies that pφ = γκJ1/2 = 0, and thus all spatial components

of the axial vector current vanish.

Finally, the Hamiltonian constraint (3.6) is

HBianchi =
κ−1

√
|p1p2p3|

(
n1c1p

2p3 + n2c2p
1p3cos(ρ− φ) + n3c3p

2p1cos(ρ− φ)
)

− κ−1γ−2

√
|p1p2p3|

(
c1p

1c2p
2cos(ρ− φ) + c1p

1c3p
3cos(ρ− φ) − c2p

2c3p
3
)

+
κ−1γ−2(1 + γ2)√

|p1p2p3|
(
(c1 − Γ̃1)p

1(Γ̃2p
2 + Γ̃3p

3)cos(ρ− φ)

−(c2 − Γ̃2)p
2Γ̃3p

3
)

+
1

2
√

|p1p2p3|

(
γ(c2p

2 + c3p
3)sin(ρ− φ)J1

+θ
(
Γ̃1p

1 + (Γ̃2p
2 + Γ̃3p

3)cos(ρ− φ)
)
J 0

)

+
γ

4α

(
n1

∣∣∣∣
p2p3

p1

∣∣∣∣+ n2

∣∣∣∣
p1p3

p2

∣∣∣∣+ n3

∣∣∣∣
p2p1

p3

∣∣∣∣
)
J 0

− 3γκθ

16
√

|p1p2p3|

(
2

α
+

γθ

1 + γ2

)
J 2

0

+
κ

16
√
|p1p2p3|(1 + γ2)

(
2γβ

(
3 − γ

α
+ 2γ2

)
− θ2

)
J 2

1 (4.16)

where α, β and θ are defined in Chapter II. It is important to emphasize that since Γi
a

is not diagonalized in either Λi
I or T I

i in the presence of torsion, the Hamiltonian con-

straint in (3.6) expressed in terms of Γ̃i
a by splitting torsion from the spin connection
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is essential to obtain a controlled loop quantization as will be shown below.

The Bianchi I LRS Model with Torsion

If there is an isotropy group F = U(1) for the action of the symmetry group

S, one obtains locally rotationally symmetric (LRS) models. Therefore, two of the

diagonal components of the connection as well as of the triad, e.g. the second two

for definitiveness, have to equal each other and only two degrees of freedom are left

which we choose to be (c1, p
1) and (c̃2, p

2) embedded into the general Bianchi model

by

(c1, c̃2) 7→ (c1, c̃2, c̃3) = (c1, c̃2, c̃2) , (p1, p2) 7→ (p1, p2, p3) = (p1, p2, p2) .

The symplectic structure can be pulled back by this embedding providing Poisson

brackets

{
c1, p

1
}

= γκ,
{
c̃2, p

2
}

=
1

2
γκ, {φ, pφ} = γκ (4.17)

from (4.12), where pφ is now pφ := −2c2p
2sin(ρ − φ). (Solutions of this symmetry

type in the presence of torsion due to spin fluids have been studied in [82, 83].)

For the LRS model, the diffeomorphism and the Hamiltonian constraints,

(4.15) and (4.16) respectively, further reduce to

DaN
a = − 1

2γκ
N1(n2 + n3)pφ = 0 (4.18)
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and

HLRS =
κ−1

|p2|
√

|p1|

(
n1c1

(
p2
)2

+ n2c̃2p
1p2 + n3c̃2p

2p1

−γ−2

(
2c1p

1c̃2p
2 +

(
c̃2p

2
)2

+
1

4
p2

φ

))

+
κ−1γ−2(1 + γ2)

|p2|
√
|p1|

(
(c1 − Γ̃1)p

1(Γ̃2p
2 + Γ̃3p

3)
2|c̃2p2|√

p2
φ + 4(c̃2p2)2

−
(

sgn(c̃2p
2)

2

√
p2

φ + 4(c̃2p2)2 − Γ̃2p
2

)
Γ̃3p

3

)

− 1

2|p2|
√
|p1|


γpφJ1 − θ


Γ̃1p

1 + (Γ̃2p
2 + Γ̃3p

3)
2|c̃2p2|√

p2
φ + 4(c̃2p2)2


J 0




+
γ

4α

(
n1 (p2)2

|p1| + (n2 + n3)|p1|
)
J 0 − 3γκθ

16|p2|
√

|p1|

(
2

α
+

γθ

1 + γ2

)
J 2

0

+
κ

16|p2|
√
|p1|(1 + γ2)

(
2γβ

(
3 − γ

α
+ 2γ2

)
− θ2

)
J 2

1 , (4.19)

where we have used the definitions of c̃2 and pφ to write

cos(ρ− φ) =
2|c̃2p2|√

p2
φ + 4(c̃2p2)2

. (4.20)

To allow a non-vanishing J1 and to be specific, we work from now on with

the Bianchi I model. Here, the diffeomorphism constraint (4.18) vanishes identically

and does not impose any restriction on pφ. This has the additional advantage that

the resulting Hamiltonian constraint will be free of terms such as
√
p2

φ + 4(c̃2p2)2,

which lack simple quantizations. (While there are well-defined operators with this

classical limit, given that both p2
φ and (c̃2p

2)2 would be mutually commuting positive

operators whose square root can be taken after summing them, not all the operators

involved have discrete spectra. Thus, it would not be straightforward to compute

explicit matrix elements of the square root operator which would be required for the

quantized Hamiltonian. Once the square root is quantized, its inverse in (4.20) could

easily be obtained from 2γκp2 cos(ρ− φ) = {
√
p2

φ + 4(c̃2p2)2, p2}.)

For the Bianchi I LRS model, we then have Γ̃I = 0 and thus the Hamiltonian
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constraint is finally given by

HI LRS = − κ−1γ−2

|p2|
√

|p1|

(
2c1p

1c̃2p
2 +

(
c̃2p

2
)2

+
1

4
p2

φ

)
− γ

2|p2|
√

|p1|
pφJ1

− 3γκθ

16|p2|
√
|p1|

(
2

α
+

γθ

1 + γ2

)
J 2

0

+
κ

16|p2|
√

|p1|(1 + γ2)

(
2γβ

(
3 − γ

α
+ 2γ2

)
− θ2

)
J 2

1 . (4.21)

This concludes the classical symmetry reduction of canonical gravity non-

minimally coupled to fermions.

Parity behavior

Because we are mainly concerned about the role of parity in loop quantum

cosmology, we end this section on the classical equations with a discussion of parity

invariance. As pointed out in [40], parity invariance in loop quantum gravity is not

guaranteed. The Ashtekar connection is a sum of a parity-even and a parity-odd

term and thus does not have a straightforward parity behavior. This already occurs

in the absence of fermions and torsion, but is aggravated by the parity-mixing terms

of torsion contributions due to a fermion current (see (3.5), noting that J1 is even and

J0 is odd). Classically, one can explicitly split these contributions, which essentially

amounts to replacing the Ashtekar connection with extrinsic curvature. However, a

complete splitting requires equations of motion to be used, which will not be possible

after quantization. It is then not guaranteed that quantum corrections due to the loop

quantization will preserve parity even in vacuum or in the absence of parity-violating

matter.

The model introduced here provides a clear view on parity in the classical

theory as well as after quantization, as we will see below. One key property is that

the canonical variables (4.11) we are led to do, in hindsight, perform the splitting

into torsion-free and torsion components without using equations of motion. Thus, in

the new variables every single term in the Hamiltonian constraint (4.21) has a clear
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and simple behavior under parity: Among the gravitational variables, only c1 and p1

change sign under parity (reversing orientation) while the rest remains unchanged.

(Since changing the sign of p2 in an LRS model implies a reflection of both directions

related by the rotational symmetry, it is equivalent to a triad rotation and thus mere

gauge.) This is accompanied by the usual parity transformation of the fermions

present, which implies that J1 is parity invariant while J0 changes sign as these

are space and time components of an axial vector. In particular, it is immediately

clear from (4.21) that the Hamiltonian constraint is parity invariant for free fermions.

Parity violation will only result if suitable interactions are introduced to the model,

which can easily be done by adding e.g.
√− det gVµJ µ with the vector current Vµ to

the action. We will avail ourselves of this possibility in what follows to understand

the role of parity in the loop quantized model.

4.3 Quantization of the Bianchi I LRS model

Loop quantum cosmology allows one to complete many of the constructions

of full loop quantum gravity in simplified and explicit forms, which then provides

indications toward the physical implications of the theory. In this section, we provide

a self-contained description of anisotropic models with an emphasis on the effects of

fermions, torsion and parity.

Quantum Kinematics

We start with basic variables according to the Poisson structure (4.17). As

in any loop quantization, states in the connection representation are constructed by

taking exponentials

exp(µ1c1Λ
i
1τi) ∈ SU(2) , exp(µ2c̃2Λ

i
2τi) ∈ SU(2) , exp(ikφ) ∈ U(1)

for all µI ∈ R, k ∈ Z,Λi
I ∈ SO(3) (4.22)
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as they arise in holonomies. Using holonomies in the general setting is important

for a background independent basic algebra of variables. This crucial feature is then

reflected also in symmetric models based on exponentials of connection components.

The parameters µI can take any real value, corresponding to evaluating holonomies

along straight edges (tangential to Xa
I ) of arbitrary length. The variable φ, on the

other hand, was introduced as a periodic angle in (4.9), such that only strictly periodic

functions exp(ikφ) with k ∈ Z are allowed. This unphysical degree of freedom, which

we were led to introduce due to the presence of torsion, will be removed after solving

the Gauss constraint.

Matrix elements of the exponentials in (98) form a C∗-algebra of (almost)

periodic functions, as seen from (4.5). Any function generated by this set can be

written as

g(c1, c̃2, φ) =
∑

µ1,µ2,k

ξµ1,µ2,k exp
(

1
2
iµ1c1 + 1

2
iµ2c̃2 + ikφ

)
, (4.23)

with coefficients ξµ1,µ2,k ∈ C, where the sum is over finitely many µ1, µ2 ∈ R and

k ∈ Z. Note that while g(c1, c̃2, φ) is almost periodic in c1 and c̃2, it is exactly periodic

in φ. This provides a complete set of continuous functions on RBohr × RBohr × S1,

where RBohr is the Bohr compactification of the real line. (By definition, RBohr is

the compactification of R such that the set of all continuous functions on it is just

the set of almost periodic functions. See e.g. [84] for a recent discussion of further

properties.) All spaces in the product are compact Abelian groups and carry a unique

normalized Haar measure dµ(c) in the case of RBohr, where

∫
f(c)dµ(c) := lim

T→∞

1

2T

∫ T

−T

f(c)dc ,

and dφ for S1.

By Cauchy completion, we obtain the Hilbert space as a tensor product Hgrav =

H⊗2
Bohr⊗HS1 with the Hilbert spaces HBohr = L2(RBohr, dµ(c)) and HS1 = L2(S1, dφ) of

square integrable functions on the Bohr compactification of the real line and the circle,
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respectively. Orthonormal bases for these spaces are given by 〈c|µ〉 = exp(iµc/2),

µ ∈ R, and 〈φ|k〉 = exp(ikφ), k ∈ Z, respectively, with

〈µ|µ′〉 = δµ,µ′ , 〈k|k′〉 = δk,k′ . (4.24)

The configuration variables act in the obvious manner: For all g1 and g2 of the

form (4.23), we have

(ĝ1g2) (c1, c̃2, φ) = g1(c1, c̃2, φ)g2(c1, c̃2, φ) (4.25)

and the momentum operators are represented by

p̂1 = −iγℓ2P
∂

∂c1
, p̂2 = −iγℓ

2
P

2

∂

∂c̃2
and p̂φ = −iγℓ2P

∂

∂φ
, (4.26)

where ℓ2P = κ~. (The densitized triad in general is quantized via fluxes, i.e. 2-

dimensional integrations over surfaces. In a homogeneous context, however, this is

not required and densitized triad components can directly be promoted to operators.

This simple representation exists only due to our use of variables; had we used c2

instead of c̃2, the operator p̂2 and thus the volume operator would have been more

complicated.) Common eigenstates of all triad operators p̂I are

|µ1, µ2, k〉 := |µ1〉 ⊗ |µ2〉 ⊗ |k〉 , (4.27)

with

p̂1|µ1, µ2, k〉 =
γℓ2Pµ1

2
|µ1, µ2, k〉 , p̂2|µ1, µ2, k〉 =

γℓ2Pµ2

4
|µ1, µ2, k 〉

and p̂φ|µ1, µ2, k〉 = γℓ2Pk|µ1, µ2, k〉 . (4.28)

From triad operators we construct the volume operator:

V̂ |µ1, µ2, k〉 = |p̂2|
√
|p̂1| |µ1, µ2, k 〉 =

γ
3

2 ℓ3P
4
√

2
|µ2|
√

|µ1| |µ1, µ2, k〉 . (4.29)

The full Hilbert space is a further tensor product of Hgrav with the fermionic

Hilbert space Hfermion. We represent the latter as the space of functions f(Θα) of
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four independent half-densitized Grassmann-valued variables Θα, α = 1, . . . , 4, for

the four components contained in the fermion fields ξ and χ in this order. The

fermionic momenta πξ = −iξ† and πχ = −iχ† then give rise to components Θα

which are represented as ~∂/∂Θα. In particular, for the axial current components

J 0 = ξ†ξ − χ†χ and J1 = ξ†σ1ξ + χ†σ1χ we have operators

Ĵ 0 = ~
∂

∂Θ1

Θ1 + ~
∂

∂Θ2

Θ2 − ~
∂

∂Θ3

Θ3 − ~
∂

∂Θ4

Θ4 (4.30)

Ĵ1 = ~
∂

∂Θ2

Θ1 + ~
∂

∂Θ1

Θ2 + ~
∂

∂Θ4

Θ3 + ~
∂

∂Θ3

Θ4 . (4.31)

(The component Ĵ0 is subject to ordering ambiguities which we can ignore here.)

The currents are easy to diagonalize: Each 2-spinor copy has eigenstates of

∂
∂Θ2

Θ1 + ∂
∂Θ1

Θ2 given by f0(Θ) = 1 and f 0(Θ) = Θ1Θ2 of eigenvalue zero, f±(Θ) =

Θ1 ± Θ2 of eigenvalue ±1. The tensor product of both 2-spinor copies ξ and χ then

gives eigenstates of eigenvalues zero, ±~ and ±2~ for Ĵ1. The time component Ĵ 0

has the same eigenstates.

A general state in H = Hgrav ⊗ Hfermion can then be written in a form using

fermion dependent coefficient functions in the triad eigenbasis (4.27):

|s〉 =
∑

µ1,µ2,k

sµ1,µ2,k(Θ)|µ1, µ2, k〉 . (4.32)

One can define the coefficients sµ1,µ2,k(Θ) for all values of µ1, µ2 ∈ R and k ∈ Z in

this way. However, gauge invariance implies that the state must be invariant under

changing the sign of µ2 because this corresponds to a triad rotation (without changing

orientation). Thus, we require sµ1,µ2,k(Θ) = sµ1,−µ2,k(Θ).

The remaining sign freedom, sgnµ1, is physical and crucial because it deter-

mines the relative orientation of the triad. Thus, we have a simple action

sµ1,µ2,k(Θ1,Θ2,Θ3,Θ4)
Π̂−→ s−µ1,µ2,k(Θ3,Θ4,Θ1,Θ2) (4.33)

of the parity operator Π̂ on states. For the fermion dependence, we have represented

the parity action Π̂Ψ = γ0Ψ for Dirac spinors by switching the fermion values Θα
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corresponding to ξ and χ, respectively. This implies

Π̂Ĵ0Π̂
−1 = −Ĵ0 , Π̂Ĵ1Π̂

−1 = Ĵ1 . (4.34)

For gravitational operators, a direct calculation shows

Π̂p̂1Π̂−1 = −p̂1 , Π̂p̂2Π̂−1 = p̂2 (4.35)

Π̂ ̂exp(iµ1c1/2)Π̂−1 = ̂exp(−iµ1c1/2) , Π̂ ̂exp(iµ2c̃2/2)Π̂−1 = ̂exp(iµ2c̃2/2)(4.36)

as required.

Finally, we can directly solve the Gauss constraint which requires p̂φ = 1
2
γκĴ1

and thus allows us to eliminate k as an independent quantity. Using the spectra of the

operators already determined, this provides solutions with either k = 0 or k = ±1. In

the second case, there is a non-vanishing value of the spatial axial current J1 of size

±2~. The values ±~ for the fermion current, which do exist as eigenvalues, are ruled

out because they do not correspond to integer k. Both 2-spinors present must thus

have the same or opposite Ĵ1-eigenvalues, which allows them to be parity eigenstates.

The parity behavior of the full state according to (4.33), however, is determined by

the µ1-dependence, which required the dynamics of quantum gravity coupling the

triad to fermions.

The allowed values for the current are only microscopic and may not seem of

interest to describe a macroscopic universe of large matter content; they all vanish

in the classical limit ~ → 0. Nevertheless, this provides an interesting model where

one can study the effects of fermions and parity in loop quantum gravity. Physi-

cally, it is also clear why the matter contribution can only be microscopic: As always

in homogeneous quantum cosmological models, each field component is reduced to

a single degree of freedom for all of space. For the fermion, this allows only one

excitation per component due to Pauli’s principle. Unlike with scalar matter, one

cannot simply make the matter content large by choosing a high “occupation” such

as a large momentum of the scalar. Significant fermionic matter can only be included
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by adding more independent spinor fields, or by introducing inhomogeneity which

provides independent field values at different points (represented by fermions at dif-

ferent vertices of a spin network state in loop quantum gravity). Rather than being a

limitation, we consider this as an important physical property of quantum cosmology

in the presence of realistic fermionic matter.

Quantum Dynamics: The Hamiltonian Constraint

A useful feature of the torsion-free Bianchi I model is that the Lorentzian

Hamiltonian constraint is related to the Euclidean part simply by H = −γ−2H(E)

thanks to Ki
[aK

j
b] ∝ F k

abǫijk, making use of homogeneity as well as the fact that the

spin connection vanishes. This has been used in almost all investigations of loop

quantum cosmology so far. If this relation is not used, one can still quantize the

Lorentzian constraint following techniques of the full theory [21]. This results in a

more complicated constraint operator [67], but without crucial differences.

However, in the presence of torsion, such a simple relationship can be obtained

only after splitting the torsion contribution from the spin connection as shown in (3.6),

which is now to be quantized: even for the Bianchi I model, Γi
a is no longer zero due to

torsion. Fortunately, torsion contributions to Γi
a, namely Ci

a in (3.5), are completely

determined by second class constraints. They can thus be split off and quantized

separately together with the matter terms. For the Bianchi I LRS model, one can

use a further key simplification which, as pointed out above, allows us to project

out torsion contributions without directly computing them. All we need to do is use

the new variable c̃2 instead of c2. The resulting contribution to the gravitational

Hamiltonian constraint is the same as the torsion-free one and thus can be quantized

in the same way.

Mimicking the steps done in the full theory [21, 25], one writes curvature

components F i
ab as a product of (point) holonomies hI = cos(1

2
δIcI)+2Λi

Iτisin(1
2
δIcI)
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forming a closed loop, whose “edge lengths” are denoted as δ1 and δ2 for the two

independent directions. Moreover, using

1

2
ǫabcǫ

ijk
Eb

jE
c
k√

det(Ed
l )

= ei
a =

2

γκ

{
Ai

a(x), V
}

(4.37)

relevant products of triad components, including their inverse powers, are reduced to

a Poisson bracket of the general form hI{h−1
I , V } where V is the spatial volume and

hI again a holonomy. This allows one to write an operator in compact form, which

corresponds to a densely defined operator in the full theory:

ĤG = −4isgn(p̂1p̂2p̂3)

γ3κℓ2Pδ1δ2δ3

∑

IJK

ǫIJKtr
(
hIhJh

−1
I h−1

J hK [h−1
K , V̂ ]

)
. (4.38)

We can now compute the product of holonomies and take the trace explicitly, using

the basic properties of Pauli matrices. We do this directly for LRS variables with

only two independent holonomies such that δ2 = δ3. Moreover, the sign factor is now

solely determined by sgnp̂1 since p̂2p̂3 cannot be negative. This results in [72]

ĤG = −32isgn(p̂1)

γ3κℓ2Pδ1δ
2
2

(
2 sin(1

2
δ1c1) cos(1

2
δ1c1) sin(1

2
δ2c̃2) cos(1

2
δ2c̃2)

(
sin(1

2
δ2c̃2)V̂ cos(1

2
δ2c̃2) − cos(1

2
δ2c̃2)V̂ sin(1

2
δ2c̃2)

)

+ sin2(1
2
δ2c̃2) cos2(1

2
δ2c̃2)

(
sin(1

2
δ1c1)V̂ cos(1

2
δ1c1)

− cos(1
2
δ1c1)V̂ sin(1

2
δ1c1)

))
. (4.39)

Because we have implicitly eliminated the torsion contributions from holonomies by

our choice of basic variables, we can directly use this expression as it is known from

torsion-free models. The torsion contribution will then be added to the constraint

operator via the fermion current.

We emphasize that the meaning and form of the parameters δ1 and δ2 cannot

be fully elucidated purely in homogeneous models. In the absence so far of a derivation

from a full, inhomogeneous constraint (which itself is currently subject to changes in

its general form depending on ongoing developments) it appears best to refrain from
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specific, heuristic arguments as to what values they may take. (For instance, there is

currently no firm basis for a relation of those parameters to an eigenvalue of the area

operator of the full theory, as initially proposed in [85].) We therefore follow a more

general route which allows whole classes of these parameters, and confine attention

to effects which are insensitive to the specific form. To us, this seems most advisable

given that it is not just the numerical values of these parameters but even their

possible functional dependence on basic variables which remains open; see Sec. 4.6

for further discussions.

In order to quantize the matter Hamiltonian, we must in particular quantize

the inverse volume 1/p2
√
|p1|. Here, we use the standard procedure [25], first writing

1√
| det(Ea

i )|
=

sgn det(ei
a)

6| det(Ed
l )
ǫabcǫijke

i
ae

j
be

k
c

=
36

γ3κ3
sgn det(ei

a)ǫ
abcǫijk{Ai

a, V
1/3}{Aj

b, V
1/3}{Ak

c , V
1/3} (4.40)

based on (4.37), which is then quantized to

(̂
1

V

)
=

144isgn(p̂1p̂2p̂3)

γ3ℓ6Pδ1δ2δ3

∑

IJK

ǫIJKtr
(
hI [h

−1
I , V̂ 1/3]hJ [h−1

J , V̂ 1/3]hK [h−1
K , V̂ 1/3]

)

= −32 · 81sgn(p̂1)

γ3ℓ6Pδ1δ
2
2

(
sin(1

2
δ1c1)V̂

1/3 cos(1
2
δ1c1) − cos(1

2
δ1c1)V̂

1/3sin(1
2
δ1c1)

)

(
sin(1

2
δ2c̃2)V̂

1/3 cos(1
2
δ2c̃2) − cos(1

2
δ2c̃2)V̂

1/3 sin(1
2
δ2c̃2)

)2

. (4.41)

The action of this operator as well as the Hamiltonian constraint is easily

computed using the action of sin(1
2
δ1c1) and cos(1

2
δ1c1) on the triad eigenstates,

cos(1
2
δ1c1)|µ1, µ2, k〉 =

1

2
(|µ1 + δ1, µ2, k〉 + |µ1 − δ1, µ2, k〉)

sin(1
2
δ1c1)|µ1, µ2, k〉 = −1

2
i(|µ1 + δ1, µ2, k〉 − |µ1 − δ1, µ2, k〉) , (4.42)

and the volume operator (4.29). From matrix elements of the Hamiltonian constraint

one can then write the constraint equation (ĤG + Ĥmatter)|s〉 = 0 as a difference

equation for coefficients sµ1,µ2,k(Θ) of the state in the triad representation. We do

102



this immediately on states solving the Gauss constraint which determines k in terms

of the action of Ĵ1. Dropping the label k on those states, we have

2(|µ2 + 3δ2| − |µ2 + δ2|)
(
|µ1 + 2δ1|1/2sµ1+2δ1,µ2+2δ2(Θ)

−|µ1 − 2δ1|1/2sµ1−2δ1,µ2+2δ2(Θ)

)
+ 2(|µ2 − δ2| − |µ2 − 3δ2|)

(
|µ1 − 2δ1|1/2sµ1−2δ1,µ2−2δ2(Θ) − |µ1 + 2δ1|1/2sµ1+2δ1,µ2−2δ2(Θ)

)

+(|µ1 + δ1|1/2 − |µ1 − δ1|1/2)

(
|µ2 + 4δ2|sµ1,µ2+4δ2(Θ)

−2|µ2|sµ1,µ2
(Θ) + |µ2 − 4δ2|sµ1,µ2−4δ2(Θ)

)

=
81

16
|µ1|1/3|µ2|1/3(|µ1 + δ1|1/6 − |µ1 − δ1|1/6)(|µ2 + δ2|1/3 − |µ2 − δ2|1/3)2

×
((

1 + 4γ2 − 2γβ

1 + γ2

(
3 − γ

α
+ 2γ2

)
− θ2

1 + γ2

) Ĵ 2
1

~2

+3γθ

(
2

α
+

γθ

1 + γ2

) Ĵ 2
0

~2

)
sµ1,µ2

(Θ) . (4.43)

This equation is based on a non-symmetric constraint operator because in

(4.39) we ordered all holonomy factors to the left and kept the commutator terms

with the volume operator to the right. It is sometimes useful to have a symmetric

ordering, although this is not strictly required for constraints. (But it is required by

some methods to derive the physical Hilbert space.) There is only one way to order

the constraint symmetrically, namely by introducing 1
2
(Ĥ + Ĥ†). Other possibilities

have been suggested, such as splitting the sines and cosines and writing some to

the left, others to the right of the commutator term. They are, for instance, useful

to prove self-adjointness [86]. However, this corresponds to splitting the holonomy

product hIhJh
−1
I h−1

J into different factors, which cannot be done in a general setting

where there would rather be a single holonomy hα around a closed loop α. The direct

symmetrization, on the other hand, is always possible and in our case results in a
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difference equation

2
(
(|µ2 + 3δ2| − |µ2 + δ2|)|µ1 + 2δ1|1/2 + (|µ2 + δ2| − |µ2 − δ2|)|µ1|1/2

)

× sµ1+2δ1,µ2+2δ2(Θ)

−2
(
(|µ2 + 3δ2| − |µ2 + δ2|)|µ1 − 2δ1|1/2 + (|µ2 + δ2| − |µ2 − δ2|)|µ1|1/2

)

× sµ1−2δ1,µ2+2δ2(Θ)

+2
(
(|µ2 − δ2| − |µ2 − 3δ2|)|µ1 − 2δ1|1/2 + (|µ2 + δ2| − |µ2 − δ2|)|µ1|1/2

)

× sµ1−2δ1,µ2−2δ2(Θ)

−2
(
(|µ2 − δ2| − |µ2 − 3δ2|)|µ1 + 2δ1|1/2 + (|µ2 + δ2| − |µ2 − δ2|)|µ1|1/2

)

× sµ1+2δ1,µ2−2δ2(Θ))

+
(
|µ1 + δ1|1/2 − |µ1 − δ1|1/2

)(
(|µ2| + |µ2 + 4δ1|)sµ1,µ2+4δ2(Θ)

−4|µ2|sµ1,µ2
(Θ) + (|µ2| + |µ2 − 4δ1|)sµ1,µ2−4δ2(Θ)

)

=
81

8
|µ1|1/3|µ2|1/3(|µ1 + δ1|1/6 − |µ1 − δ1|1/6)(|µ2 + δ2|1/3 − |µ2 − δ2|1/3)2

×
((

1 + 4γ2 − 2γβ

1 + γ2

(
3 − γ

α
+ 2γ2

)
− θ2

1 + γ2

) Ĵ 2
1

~2

+3γθ

(
2

α
+

γθ

1 + γ2

) Ĵ 2
0

~2

)
sµ1,µ2

(Θ) . (4.44)

4.4 Cosmological models with Electromagnetism

A similar investigation of the role Maxwell fields play in loop quantum cosmol-

ogy can be carried out. However, a thorough investigation is yet to be complete, so,

for the sake of completeness, only a brief discussion on electromagnetism in Bianchi

models, along with some remarks on the future directions for further interesting re-

search, is presented in this section. First, it is straightforward to derive the equations

of motion for the canonical variables Aa and πa from the Poisson brackets of each of

these variables with the matter Hamiltonian HM . Then

Ȧa = {Aa, HM} =
δHM

δπa
= ∂a (Act

c) +N cFca +
4πN√
q
πcqca, (4.45)
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and

π̇a = {πa, HM} = −δHM

δAa

= ∂c (N cπa) − ∂d

(
Naπd

)
− 4∂c

(
N
√
qFefq

ecqfa
)
. (4.46)

The modified Hamiltonian gives rise to the following new set of equations of motion:

Ȧa = {Aa, Heff} =
δHeff

δπa
= ∂a (Act

c) +N cFca +
4πN√
q
α (q)πcqca, (4.47)

and

π̇a = {πa, Heff} = −δHeff

δAa

= ∂c (N cπa) − ∂d

(
Naπd

)
− 4∂c

(
Nβ (q)

√
qFefq

ecqfa
)
, (4.48)

where α and β are the correction functions derived in Chapter IV and Heff is the

effective Hamiltonian of the Maxwell’s field (HM with α and β inserted).

Reduced Constraints

Now, with the choice of reduced gravitational variables in SU(2) presented in

section 4.2, the canonical variabes for Maxwell fields in U(1) can be written as

Aa = φEM
I ωI

a, πa = pI
EMX

a
I . (4.49)

Then the reduced constraints take the following forms

GEM = −pJ
EMC

L
JL

√
g0 = 0, (4.50)

DcN
c = −φEM

M pI
EMC

M
ILN

I = −n(M)φEM
M pL

EMǫ
M

ILN
I , (4.51)

HM =
V

−2/3
0√
q
a2

(I)

(
2πα(q)δIJp

I
EMp

J
EM +

n(I)n(J)

2π
g0β(q)δIJφEM

I φEM
J

)
, (4.52)

where g0 = det(ωI
a)

2. The equations of motion become

φ̇EM
K =

2πV
−2/3
0√
q

(
a2

(K) + a2
(I)

)
α(q)δIKp

I
EM , (4.53)

ṗK
EM = −V

−2/3
0

2π
√
q
n(I)n(K)

(
a2

(K) + a2
(I)

)
β(q)δIKφEM

I . (4.54)
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It follows immediately from (4.50) that torsion is absent in the presence of photons.

For Bianchi I models (n(I) = 0), the diffeomorphism constraint (4.51) vanishes iden-

tically and so is the magnetic part of the Hamiltonian constraint (4.52). Also, the

relation (4.54) implies that the electric fields are constant in time. Therefore, Bianchi

I models with electromagnetism do not seem to be interesting cosmological models.

Now, solutions to the equations of motion will depend on the background

evolution of the aI , which is complicated in a Bianchi IX model. However, by taking

the ratio of the two equations the aI-dependence drops out. This provides a closed

differential equation for φEM
K (pK

EM), which can be solved easily to give

(φEM
K )2 ∝ (pK

EM)2 + cK (4.55)

with constants of integration cK . The constants determine the type of the wave:

if they vanish, the electric and magnetic field (whose components are φEM
K ) point

in the same direction, but choosing cK non-zero allows arbitrary relative directions

between the fields. The system can thus be used as a model for the local behavior of

electromagnetic waves and the role of anisotropy. At least for long wave lengths, the

homogeneity assumption should still be valid. (Putting similar corrections directly

into the inhomogeneous equations would first have to ensure anomaly-freedom, which

is possible at a perturbative level but tedious. The homogeneous approximation would

provide indications for possible effects quicker.)

Quantum corrections presented in Chapter V can then be seen to have a po-

tential influence: For inverse volume corrections, for instance, the ratio of φ̇EM
K and

ṗK
EM then depends on the aI if the two correction functions α and β depend differ-

ently on the geometry. This might have consequences for anisotropies in the radiation

spectrum. Solutions will be difficult to find analytically, but numerical investigations

might be of interest.

Another application would use the resulting matter terms in the difference

equation presented below. Since we now have the typical matter ingredients included
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(fermions, radiation), one could do a general survey of the behavior in anisotropic

models and discuss stability, lattice refinement, possible constraints on the Barbero–

Immirzi parameter, which we do not pursue here.

4.5 Difference equation for Maxwell fields in Bianchi IX models

For Bianchi IX models, the difference equation for vacuum gravity is derived in

[114]. Following the same formalism both for gravity and Maxwell fields, we provide

a derivation of the bosonic (photonic) matter terms in the difference equation in this

section. Since the quantization of the Maxwell’s theory in anisotropic models can

be carried out in the same manner as that of the Einstein-Dirac theory presented in

section 4.3, we collect the basic elements of loop quantization of the Maxwell’s theory

in Appendix 0.5.

Now, Since Bianchi IX models with non-vanishing intrinsic curvature must

have non-zero spin connection Γi
a which, thanks to homogeneity, cannot be made to

vanish. While the presence of non-vanishing spin connection in models with fermions

makes quantization difficult, it is relatively much easier for photons with the help

of the formalism presented in [114]. Therefore, without giving any details for the

quantization of the gravitational Hamiltonian for Bianchi IX models, we only offer

the qunatization of the matter Hamiltonian below.

The Maxwell Hamiltonian constraint operator turns out to be

ĤEM = 16(γℓ2p)
−2
∑

IJ

tr

[{
hI(A)

[
h−1

I (A), V̂
1

2

]
hJ(A)

[
h−1

J (A), V̂
1

2

]}

×
(
4πp̂I

EMp̂
J
EM + π−1n(I)n(J)φ̂I

EMφ̂
J
EM

)]
, (4.56)

where

φ̂I
EM := φ̂EM

M δMI (4.57)

It is important to note that (4.57) is redefined, without loss of generality, for notational

convenience and represents the point holonomy for the U(1) connection. Moreover, it
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is easy to show that the Maxwell Hamiltonian operator (4.56) reproduces the reduced

classical Maxwell Hamiltonian (4.52) in the appropriate classical limit. The first term

in the braces of (4.56) comes from qab/
√
q in classical Maxwell Hamiltonian, which

can be reexpressed as

qab√
q

= ηij
ei

ae
j
b√
q

=
16

γ2κ2
ηij

{
Ai

a, V
1

2

}{
Aj

b, V
1

2

}
, (4.58)

with the Cartan-Killing metric ηij = −2tr(τiτj). Further, we propose that the follow-

ing approximation for the U(1) holonomy,

φ̂EM
M ≈ sin

(
φEM

M δM(pI)
)

δM(pI)
, (4.59)

reproduces the expected classical limit.

Now, in order to obtain the difference equation, let us first make an observation

that the operator ĥK(A)[ĥ−1
K (A), V̂

1

2 ] is diagonal in the triad basis, i.e. using (106),

(111) and (112), we obtain

ĥK(A)
[
ĥ−1

K (A), V̂
1

2

]
=

{
V̂

1

2 − cos(
1

2
cK)V̂

1

2 cos(
1

2
cK) − sin(

1

2
cK)V̂

1

2 sin(
1

2
cK)

}

−2ΛK

{
sin(

1

2
cK)V̂

1

2 cos(
1

2
cK) − cos(

1

2
cK)V̂

1

2 sin(
1

2
cK)

}
(4.60)

implies
(
V̂

1

2 − cos(1
2
c3)V̂

1

2 cos(1
2
c3) − sin(1

2
c3)V̂

1

2 sin(1
2
c3)
)
|µ1, µ2, µ3〉 =

(
V

1

2 (µ1, µ2, µ3) −
1

2
V

1

2 (µ1, µ2, µ3 + 1) − 1

2
V

1

2 (µ1, µ2, µ3 − 1)

)
|µ1, µ2, µ3〉 (4.61)

(
sin(1

2
c3)V̂

1

2 cos(1
2
c3) − cos(1

2
c3)V̂

1

2 sin(1
2
c3)
)
|µ1, µ2, µ3〉 =

i

2

(
V

1

2 (µ1, µ2, µ3 + 1) − V
1

2 (µ1, µ2, µ3 − 1)
)
|µ1, µ2, µ3〉 . (4.62)

Hence, let us first express the proposed Maxwell’s Hamiltonian operator (4.56) as

follows

ĤEM = 32(γℓ2p)
−2
∑

IJ

ĥI ĥJ

(
4πp̂I

EMp̂
J
EM

+π−1 sin
(
φEM

I δI(p̂
K)
)

δI(p̂K)

sin
(
φEM

J δJ(p̂K)
)

δJ(p̂K)

)
, (4.63)
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where

ĥI := ĥK(A)
[
ĥ−1

K (A), V̂
1

2

]
. (4.64)

Next, inserting (4.61) and (4.62) in (4.63), we obtain the matter part of the difference

equation as follows

(
ĤEMs

)
µ1,µ2,µ3;n1,n2,n3

= 2(γℓ2p)
−2

(
16π
(
V2

1p
1
EM

2
+ V2

2p
2
EM

2
+ V2

3p
3
EM

2
+ 2V12p

1
EMp

2
EM + 2V23p

2
EMp

3
EM

+2V31p
3
EMp

1
EM

)
sµ1,µ2,µ3;n1,n2,n3

−π−1

(V2
1

δ2
1

(sµ1,µ2,µ3;n1+2δ1,n2,n3
+ sµ1,µ2,µ3;n1−2δ1,n2,n3

)

+
V2

2

δ2
2

(sµ1,µ2,µ3;n1,n2+2δ2,n3
+ sµ1,µ2,µ3;n1,n2−2δ2,n3

)

+
V2

3

δ2
3

(sµ1,µ2,µ3;n1,n2,n3+2δ3 + sµ1,µ2,µ3;n1,n2,n3−2δ3)

+2
V12

δ1δ2
(sµ1,µ2,µ3;n1+δ1,n2+δ2,n3

− sµ1,µ2,µ3;n1+δ1,n2−δ2,n3

−sµ1,µ2,µ3;n1−δ1,n2+δ2,n3
+ sµ1,µ2,µ3;n1−δ1,n2−δ2,n3

)

+2
V23

δ1δ2
(sµ1,µ2,µ3;n1,n2+δ2,n3+δ3 − sµ1,µ2,µ3;n1,n2+δ2,n3−δ3

−sµ1,µ2,µ3;n1,n2+δ2,n3−δ3 + sµ1,µ2,µ3;n1,n2−δ2,n3−δ3)

+2
V31

δ1δ2
(sµ1,µ2,µ3;n1+δ1,n2,n3+δ3 − sµ1,µ2,µ3;n1+δ1,n2,n3−δ3

−sµ1,µ2,µ3;n1−δ1,n2,n3+δ3 + sµ1,µ2,µ3;n1−δ1,n2,n3−δ3)

))
, (4.65)

where, e.g.

V2
1 := 4V (µ1, µ2, µ3) +

(
V

1

2 (µ1 + δ1, µ2, µ3) + V
1

2 (µ1 − δ1, µ2, µ3)
) 1

2

+
(
V

1

2 (µ1 + δ1, µ2, µ3) + V
1

2 (µ1 − δ1, µ2, µ3)
)

(
V

1

2 (µ1 + δ1, µ2, µ3) + V
1

2 (µ1 − δ1, µ2, µ3) − 4V
1

2 (µ1, µ2, µ3)
)
, (4.66)
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V12 := 4V (µ1, µ2, µ3) +
(
V

1

2 (µ1 + δ1, µ2, µ3) + V
1

2 (µ1 − δ1, µ2, µ3)
)

(
V

1

2 (µ1, µ2 + δ2, µ3) + V
1

2 (µ1, µ2 − δ2, µ3)
)
− 2V

1

2 (µ1 − δ1, µ2, µ3)

×
(
V

1

2 (µ1 + δ1, µ2, µ3) + V
1

2 (µ1 − δ1, µ2, µ3)

+V
1

2 (µ1, µ2 + δ2, µ3) + V
1

2 (µ1, µ2 − δ2, µ3)

)
. (4.67)

4.6 Lattice refinement

So far, we have left the increments δ1 and δ2 unspecified. It is clear that as

constants they would not influence the recurrence behavior of the difference equation,

although specific solutions certainly depend on their values. However, in general δ1

and δ2 may not be constant but be functions of µ1 and µ2; this captures the way in

which the discrete structure of a state underlying spatial expansion and contraction

in loop quantum gravity is being refined dynamically [78, 87, 118]: at larger µI , an

increment of the total size by a Planck-scale amount has a weaker relative influence

on the geometry. As a consequence, δI decrease with increasing spatial extensions.

This can also be seen from more direct considerations of holonomies in inhomogeneous

states and how they appear in Hamiltonian constraint operators. Since this involves

the dynamical relation between models and a full non-symmetric theory, the precise

behavior of lattice refinement has not been completely determined. (Since the param-

eters δI are related to edge lengths of spin network states, a derivation would require

one to construct specific inhomogeneous states which correspond to an anisotropic

geometry. Then, the action of a full Hamiltonian constraint operator would have

to be projected to the homogeneous states; see [87] for further details.) However,

consequences of different behaviors can be explored in several models. Sometimes,

this is already quite restrictive even though it is impossible to derive a unique form

of lattice refinement based solely on homogeneous models.

Non-trivial functions, such as power laws, have a much stronger influence than

110



constants because they make the difference equation non-equidistant. Solutions are

then more difficult to analyze and find, even numerically (but see [89, 90]). Only

in the special cases where δ1 ∝ µx1

1 and δ2 ∝ µx2

2 can the equation be mapped to

an equidistant one by a redefinition of independent variables. However, such cases

have been ruled out [91] because they do not provide the correct semiclassical be-

havior near a horizon of Schwarzschild black holes, whose interior is treated as a

homogeneous Kantowski–Sachs model. (The analysis in [91] uses corrections to clas-

sical equations due to the use of holonomies in the loop quantization, but ignores

other effects such as quantum back-reaction [55, 56]. This type of phenomenological

equations may not capture correctly the behavior of strong quantum regimes such

as the black hole singularity. However, if these equations do not provide the correct

semiclassical behavior in classical regimes, this cannot be corrected by the inclusion

of quantum back-reaction. The fact that some refinement schemes are ruled out is

thus a reliable feature.) In general, one has to expect functions of the form δ1(µ1, µ2)

and δ2(µ1, µ2) with a non-trivial dependence on both arguments (which may not be

of power-law form).

As we will see below, a discussion of fundamental singularity resolution only

involves the recurrence near µ1 = 0. This is, fortunately, insensitive to the particular

refinement scheme and thus presents a result of much wider generality than anything

which applies at larger volume where the specific refinement can be crucial. The

constructions and results of this article are thus valid for any functional behavior of

the µI on phase space variables, even though finding explicit or numerical solutions

to the difference equation would be more complicated in general.

4.7 Cosmological Implications

It follows immediately from the difference equation (4.43) or (4.44) that it is

parity invariant since all its terms change sign under (4.33). Thus, if sµ1,µ2
(Θ1,Θ2,Θ3,Θ4)
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is a solution, so is s−µ1,µ2
(Θ3,Θ4,Θ1,Θ2). In particular, any solution can be written as

a combination of even and odd solutions sµ1,µ2
(Θ1,Θ2,Θ3,Θ4)±s−µ1,µ2

(Θ3,Θ4,Θ1,Θ2).

This is no longer the case if we had matter interactions violating parity, such as a

term proportional to V0J0. In this case, no parity-even or odd solutions would exist.

Wave functions for µ1 > 0 generically differ from their form for µ1 < 0, even though

those values are deterministically related via the difference equation. At this stage,

the precise form of parity violations in the matter system is crucial to determine the

behavior of the wave function near the classical singularity at µ1 = 0.

To complete the construction, one would solve the difference equation and

determine a physical inner product on the solution space. Ideally, one could then

compute the behavior of observables of the system and derive detailed cosmological

scenarios including the role of quantum effects. Unfortunately, such complete de-

scriptions at an exact level are possible only in rare, specific models. While such

models are instructive mathematically, conclusions drawn are difficult to interpret

because one could not be certain about the robustness of results: If specific results

are available only in a few special models where exact mathematical solutions in the

physical Hilbert space can be found, there is no guarantee that they are not just the

very result only of demanding this high mathematical control.

In this context, an aspect of particular interest is the fact that most models

of loop quantum cosmology where physical Hilbert spaces have been constructed

explicitly [75, 92, 93] specifically assume parity invariance in some form and make

use of the corresponding restriction of states when parity is considered as a large

gauge transformation. As we have seen here, physical states of quantum cosmology

are neither even nor odd in triad reflections if parity violating matter is present. It

may thus be misleading to treat parity as a large gauge transformation even in cases

where matter preserves parity. Results based on this assumption may be spurious,

and one has to re-analyze the constructions of physical Hilbert spaces without the
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assumption of parity invariant states. Fortunately, the intuitive pictures of bounces

which have sometimes been derived from physical observables are insensitive to the

specific construction of the physical Hilbert space: They can be derived analytically

in a representation independent formalism based on effective equations [69, 94]. Then,

the assumption of parity as a large gauge transformation is not necessary, and it can

be dropped without affecting the bounce result.

At a fundamental level, singularity resolution is also insensitive to the physical

Hilbert space construction and can directly be determined using the difference equa-

tion (4.43) or (4.44). (Here, it is important that all solutions are non-singular, which

then also includes physical ones.) In general, coefficients of a difference equation of

the type obtained in loop quantum cosmology may vanish and prevent certain values

of sµ1,µ2
from being determined in a recurrence starting from initial values. This hap-

pens for the non-symmetric equation (4.43) where none of the values ψ0,µ2
— right

at the classical singularity — is determined by initial values because their coefficients

in the difference equation vanish. (The corresponding states |0, µ2〉 are mantic [65].)

However, for the difference equations realized such undetermined values, if they arise,

drop out completely of the recurrence. In particular, even though values for µ1 = 0

remain undetermined by initial values in the non-symmetrized version of the equation,

coefficients at µ1 < 0 follow deterministically from coefficients at µ1 > 0.

In parity preserving models the wave function sµ1,µ2
for µ1 < 0 could simply

be the mirror image of its cousin at µ1 > 0, and it had to be symmetric if parity

is considered a large gauge transformation. However, if there is parity violation,

the transition through µ1 = 0 constitutes true evolution since values at µ1 < 0

must now differ from the mirror image at µ1 > 0. The wave function at µ1 < 0

cannot be determined simply by reflection, but it has to be derived by local evolution

through all intermediate values of µ1. In this case, the region of µ1 < 0 can by no

means be removed from considerations but must be considered as a physical domain
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on equal footing with that at µ1 > 0. In particular, the orientation-reversing big

bang transition thus becomes physical and cannot be argued away as a large gauge

transformation.

For both forms of difference equations derived here, there are consistency con-

ditions arising due to vanishing coefficients around µ1 = 0, analogous to dynamical

initial conditions [70, 71]. If we evaluate any of the difference equations at µ1 = 0,

matter terms drop out and we obtain the universal relation

(|µ2 + 3δ2| − |µ2 + δ2|) s2δ1,µ2+2δ2 − (|µ2 − δ2| − |µ2 − 3δ2|) s2δ1,µ2−2δ2

= (|µ2 + 3δ2| − |µ2 + δ2|) s−2δ1,µ2+2δ2 − (|µ2 − δ2| − |µ2 − 3δ2|) s−2δ1,µ2−2δ2 (4.68)

valid for all µ2. In particular, at µ2 = 2δ2 we have s2δ1,4δ2 = s−2δ1,4δ2 . At odd integer

multiples of µ2 = 2δ2, we obtain a recurrence relation which requires s2δ1,2(2n+1)δ2 =

s−2δ1,2(2n+1)δ2 for all integer n.

There are thus reflection symmetry conditions which directly follow from the

dynamical law even in the presence of parity-violating terms. (This symmetry has

been observed first in the vacuum case [95].) However, evolution away from µ1 = ±1

depends on whether µ1 is positive or negative if parity is not preserved: Unlike

Eq. (4.68), the matter Hamiltonian then enters the recurrence and for parity violating

matter the coefficients of the difference equation at negative and positive µ1 differ.

Thus, the wave function is not mirror symmetric even though the dynamical initial

condition closely ties the values s±2δ1,µ2
to each other.

4.8 Conclusion

We have introduced fermions into the framework of loop quantum cosmology

which gave rise to several non-trivial changes due to the presence of torsion and po-

tential parity non-invariance. We have observed several key features which have a

bearing on cosmological scenarios and which do not arise for bosonic matter such as
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scalar fields as they are used commonly in cosmological models. First, the amount of

matter is limited for each fermionic degree of freedom due to the exclusion principle.

Thus, large matter contents as they are sometimes used to bring a quantum cosmo-

logical model into a semiclassical regime where it may bounce more easily cannot

straightforwardly be achieved. The only possibilities are to allow many copies of in-

dependent fermions or inhomogeneity where fermionic components at different points

will be independent. Physically, both possibilities are quite different from having a

single bosonic field of high occupation. The methods used here may also be of interest

for a supersymmetric version of loop quantum cosmology along, e.g., the lines of [96]

(see also [97]). Fermions in quantum cosmology also play a role for decoherence [98].

This shows that it is crucial to consider the small-volume regime of a quantum

cosmological model which cannot be avoided in the absence of much matter energy.

Here, the recurrence scheme of an underlying difference equation of loop quantum

cosmology becomes essential to determine whether the model is singular or not. As we

showed, the singularity resolution mechanism of loop quantum cosmology [65] remains

unchanged under the inclusion of fermionic matter even if it violates parity. At the

same time, the model we used allows us to show that in its realm parity violations

can only arise due to matter interactions, not due to pure gravity. In other models or

the full theory, this situation may be different because the basic objects quantized, in

particular holonomies, do not transform straightforwardly under parity. The model

introduced here thus also serves the purpose of providing one example where parity

invariance of pure gravity can be demonstrated after a loop quantization.

If one introduces parity-violating interactions, wave functions cannot be mirror

symmetric. Then, the branches at the two opposite orientations of triads are inde-

pendent of each other, and joined through degenerate geometries by the dynamics of

loop quantum cosmology. The big bang transition now becomes a non-trivial event

where space turned its inside out in a quantum process which in general cannot be
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described by an intuitive geometrical picture such as a simple bounce.
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CHAPTER V

BIG BANG NUCLEOSYNTHESIS AND LQG

After the discussion of the role of matter fields in loop quantum cosmology in

the previous chapter, an application to mainstream cosmology is much desired at this

stage. The effects discrete geometry and different matter ingredients on Big Bang

Nucleosynthesis (BBN) may be considered one such application, which is presented

in this chapter.

In theoretical cosmology, many insights can already be gained from spatially

isotropic Friedmann–Robertson–Walker models

ds2 = −dτ 2 + a(τ)2

(
dr2

1 − kr2
+ r2(dϑ2 + sin2 ϑdϕ2)

)
(5.1)

with k = 0 or ±1. The matter content in such a highly symmetric space-time can only

be of the form of a perfect fluid with stress-energy tensor Tab = ρuaub +P (gab +uaub)

where ρ is the energy density of the fluid, P its pressure and ua the 4-velocity vector

field of isotropic co-moving observers. Once an equation of state P = P (ρ) is specified

to characterize the matter ingredients, the continuity equation ρ̇ + 3H(ρ + P ) = 0

with the Hubble parameter H = ȧ/a allows one to determine the behavior of ρ(a)

in which energy density changes during the expansion or contraction of the universe.

This function, in turn, enters the Friedmann equation H2 + k/a2 = 8πGρ/3 and

allows one to derive solutions for a(τ).

In general, one would expect the equation of state P = P (ρ) to be non-linear

which would make an explicit solution of the continuity and Friedmann equations dif-

ficult. It is thus quite fortunate that in many cases linear equations of state P = wρ

with w constant are sufficient to describe the main matter contributions encountered

in cosmology at least phenomenologically. The influence of compact objects on cos-

mological scales is, for instance, described well by the simple dust equation of state
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P (ρ) = 0. Relativistic matter, mainly electromagnetic radiation, satisfies the linear

equation of state P = 1
3
ρ. The latter example is an exact equation describing the

Maxwell field, rather than an approximation for large scale cosmology. It is thus, at

first sight, rather surprising that the dynamics of electromagnetic waves in a universe

can be summarized in such a simple equation of state irrespective of details of the

field configuration. The result follows in the standard way from the trace-freedom of

the electromagnetic stress-energy tensor and is thus related to the conformal symme-

try of Maxwell’s equations. That the availability of such a simple equation of state

is very special for a matter field can be seen by taking the example of a scalar field

φ with potential V (φ). In this case, we have an energy density ρ = 1
2
φ̇2 + V (φ) and

pressure P = 1
2
φ̇2 − V (φ). Unless the scalar is free and massless, V (φ) = 0 for which

we have a stiff fluid P = ρ, there is no simple relation between pressure and energy

density independently of a specific solution.

Often, one can assume the equation of state parameter w to be constant during

successive phases of the universe evolution, with sharp jumps between different phases

such as w = −1 during inflation, followed by w = 1
3

during radiation domination and

w = 1 during matter domination. Observationally relevant details can depend on

the precise values of w at a given stage, in particular if one uses an effective value

describing a mixture of different matter components. For instance, during big bang

nucleosynthesis one is in a radiation dominated phase mainly described by photons

and relativistic fermions. Unlike photons, the general equation of state for fermions

is more complicated and non-linear, but can in relativistic regimes be approximately

given by the same value w = 1
3

as for photons. In contrast to the case of Maxwell

theory, however, there is no strict symmetry such as conformal invariance which would

prevent w to take a different value. It is one of the main objectives of the present

chapter to discuss possible corrections to this value.

For big bang nucleosynthesis, it turns out, the balance between fermions and
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photons is quite sensitive. In fact, different values for the equation of state parameters

might even be preferred phenomenologically [99]. One possible reason for different

equations of state could be different coupling constants of bosons and fermions to grav-

ity, for which currently no underlying mechanism is known. In this chapter, we will

explore the possibility whether quantum gravitational corrections to the equations of

state can produce sufficiently different values for the equation of state parameters. In

fact, since the fields are governed by different actions, one generally expects different,

though small, correction terms which can be of significance in a delicate balance.

Note that we are not discussing ordinary quantum corrections of quantum

fields on a classical background. Those are expected to be similar for fermions and

radiation in relativistic regimes. We rather deal with quantum gravity corrections in

the coupling of the fields to the space-time metric, about which much less is known a

priori. Thus, different proposals of quantum gravity may differ at this stage, providing

possible tests.

An approach where quantum gravitational corrections can be computed is loop

quantum cosmology [51]. In such a canonical quantization of gravity, equations of

state must be computed from matter Hamiltonians rather than covariant stress-energy

tensors. Quantum corrections to the underlying Hamiltonian then imply corrections

in the equation of state. This program has been carried out here both for the Maxwell

Hamiltonian and Dirac fermions [40, 100]. There are several differences between

the treatment of fermions and other fields, which from the gravitational point of

view are mainly related to the fact that fermions, in a first order formulation, also

couple to torsion and not just the curvature of space-time. After describing the

classical derivation of equations of state as well as steps of a loop quantization and its

correction terms, we use big bang nucleosynthesis constraints to see how sensitively

we can bound quantum gravity parameters. We will start with general remarks on

the physics underlying the problem.
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5.1 The physical setting

Big bang nucleosynthesis happens at energy scales EBBN ∼ MeV which are

large, but still tiny compared to the Planck energy MP. Also the universe has already

grown large compared to the Planck length ℓP at this stage, and space-time curvature

is small. One may thus question why quantum gravity should play any role. There

is certainly a fine balance required for successful big bang nucleosynthesis, but the

expected quantum gravity terms of the order E/MP, obtained based on dimensional

arguments, would have no effect.

However, dimensional arguments do not always work, in particular if more

than two parameters LI of the same dimension, or any large dimensionless numbers

are involved. Then, precise calculations have to be done to determine which geo-

metric means
∏

I L
xI

I with
∑

I xI = 0 may appear as coefficients, or which powers of

dimensionless numbers occur as factors of correction terms. In loop quantum gravity,

we are in such a situation: there is the macroscopic length scale L, which in our case

we can take as the typical wave length of fields during nucleosynthesis, and also the

Planck length ℓP =
√
G~ which arises due to the presence of Newton’s constant G

and Planck’s constant ~. In addition, there is a third and in general independent

scale ℓ given by the microscopic size of elementary spatial patches in a quantum grav-

ity state. This is a new feature of the fundamentally discrete theory, for which the

precise state of quantum gravity plays an important role. Although ℓ must be propor-

tional to the Planck length, its specific value for a given state can differ numerically.

Then, a detailed calculation must show how L, ℓ and ℓP appear in quantum gravity

corrections and which numerical values may arise.

Alternatively, one can work with only two length scales, L and ℓP, but one

has to deal with a large dimensionless parameter N given by the number of discrete

patches of the underlying state in the volume considered, for instance a volume of

the size L3 such that N = L3/ℓ3. Examples of cosmological phenomena are known
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where this does play a role for quantum gravity corrections [115, 116], and here we

analyze which features arise in the presence of fermions and especially for big bang

nucleosynthesis.

There are precedents where such considerations have played important roles.

Best known is the evidence for the atomic nature of matter derived by Einstein from

the phenomenon of Brownian motion. Also here, there are several orders of magnitude

between the expected size of molecules and the resolution of microscopes at that time.

However, there is also a large number of molecules which by their sheer number can

and do leave sizeable effects on much larger suspended particles. There is, of course,

never a guarantee that something analogous has to happen elsewhere. But this is to

be checked by calculations and cannot always be ruled out based only on dimensional

arguments.

The corrections to the equation of state for radiation and fermions must be

derived to check any effects on BBN. Even in relativistic regimes, the coupling of

fermions to gravity differs from other fields, e.g. by torsion contributions which arise

already from the kinetic term of the Dirac action. One could thus expect that quan-

tum corrections for fermions differ from those to radiation and thus, by throwing

off the balance during nucleosynthesis, possibly enhance the effect of quantum grav-

ity corrections. Whether or not this happens cannot be decided without detailed

calculations as they are reported and applied here.

5.2 Equation of state

Let us first derive the equation of state for radiation followed by that for

fermions. The derivations for both species are exactly the same in the canonical

analysis, except with different Hamiltonian.
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Radiation

One can determine energy and pressure from our canonical expressions (see

also [54]) in order to formulate the equation of state. The matter Hamiltonian is

directly related to energy density1 by

ρ =
1√
q

δHM

δN
, (5.2)

and thus, from equation (3.31), it is

ρ =
2π

q
πaπbqab +

1

16π
FabFcdq

acqbd. (5.3)

The canonical formula for pressure is given by

P = − 2

3N
√
q
qab
δHM

δqab

=
2

3N
√
q
qab δHM

δqab
(5.4)

as shown in Appendix 0.3. This gives

P =
2

3N
√
q
qef

(
πN√
q
πaπb (qabqef − 2qaeqbf ) +

√
qN

8π
qacFaeFcf −

√
qN

32π
FabF

abqef

)

=
2

3N
√
q

(
πN√
q
πaπbqab +

√
qN

32π
FabF

ab

)
=

1

3

[
2π

q
πaπbqab +

1

16π
FabF

ab

]
. (5.5)

Finally, the equation of state can easily be obtained from (5.3) and (5.13):

w =
P

ρ
=

1

3
(5.6)

which is the standard result.

Fermions

Let us first write the fermion dependent terms, i.e. the Dirac Hamiltonian,

resulting from the gravitational action non-minimally coupled to fermions. It follows

from (3.6) that the Dirac Hamiltonian is given by derivative terms and self-interaction

1This is the usual term for energy per volume, and does not mean that ρ is a geometrical density.
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terms:

HDirac =

∫

Σt

d3xN

(
−βE

a
i√
q
Da

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

−i2E
i
a√
q

(
θLπ

T
ξ τ

iDaξ − θRπ
T
χ τ

iDaχ− c.c.
)

+
γκβ

2
√
q(1 + γ2)

(
3 − γ

α
+ 2γ2

)
(πT

ξ τlξ + πT
χ τlχ)(πT

ξ τ
lξ + πT

χ τ
lχ)

+
3γκ

8α
√
q
(1 − γ

α
)(πT

ξ ξ − πT
χχ)(πT

ξ ξ − πT
χχ)

)
(5.7)

again with β := γ + 1
α
. The top line of this expression is the most important one

because its derivative terms are dominant in relativistic regimes. In addition to those,

we highlight the presence of four-fermion interactions in the second line, which we

summarize as

B :=
γκβ

2(1 + γ2)

(
3 − γ

α
+ 2γ2

)
(πT

ξ τlξ + πT
χ τlχ)(πT

ξ τ
lξ + πT

χ τ
lχ)

+
3γκ

8α
(1 − γ

α
)(πT

ξ ξ − πT
χχ)(πT

ξ ξ − πT
χχ) (5.8)

as it multiplies q−1/2. Thus, from (6.33) and (5.7), the energy density is

ρ =
2Ea

i

q

(
−β

2
Da

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

+ i
(
−θLπ

T
ξ τ

iDaξ + θRπ
T
χ τ

iDaχ− c.c.
))

+
B

q
(5.9)

The canonical formula for pressure is

P = − 2

3N
√
q
Ea

i

δHDirac

δEa
i

(5.10)

as shown by a straightforward adaptation of the calculation done in [100] for metric

variables. Now using the functional derivative

δ
√
q(x)

δEa
i (y)

=
1

2
ei

aδ(x− y) , (5.11)

and thus

δ

δEb
j (y)

(
2Ea

i (x)√
q(x)

)
=

1√
q
(2δa

b δ
j
i − ea

i e
j
b)δ(x− y) , (5.12)
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and inserting (5.12) in (5.10), we obtain the pressure

P =
2Ea

i

3q

(
−β

2
Da

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

+ i
(
−θLπ

T
ξ τ

iDaξ + θRπ
T
χ τ

iDaχ− c.c.
))

+
B

q
(5.13)

This results in an equation of state

wDirac =
P

ρ
=

1

3
− 2B

3ρ
. (5.14)

In relativistic regimes, the kinetic term involving partial derivatives ∂a con-

tained in Da is dominant, which leaves us with an equation of state

w =
P

ρ
=

1

3
+ ǫ (5.15)

whose leading term agrees with the parameter for a Maxwell field. But there are

clearly correction terms for fermions already in the classical first order theory. They

do not arise for the Maxwell field, implying a difference in the coupling to gravity due

to torsion, which is present even in relativistic regimes. The order of magnitude of

the additional term depends on the fermion current density and is thus not expected

to be large unless regimes are very dense. We will not consider this correction further

in this article, but highlight its role as a consequence of torsion. Next, we discuss

the quantum corrections arising from the discrete geometry for each of these matter

fields.

5.3 Quantum Corrections

Being interested in effects from quantum gravity, we have to quantize the grav-

itational components such as metric qab, densitized triad P a
i , and

√
q in the matter

Hamiltonians, not just the matter fields themselves. As noted in Chapter I, an imme-

diate consequence of loop quantization is that fluxes and spatial geometrical operators

such as area and volume [16, 17, 18] have discrete spectra containing zero. Hence,
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their inverses do not exist as densely defined operators. However, a quantization of the

matter Hamiltonian such as (3.31) and (5.7) demands the quantization of such inverse

expressions since, e.g., q−
1

2 or the metric qab which can only be obtained by inverting

the densitized triad, appear in the matter Hamiltonian. Therefore, the quantization

of the matter Hamiltonians seem, at first, to be seriously problematic. However, as

shown in Chapter III, a well-defined quantization is possible after noticing that the

Poisson bracket of the volume with connection components,
{
Ai

a,

∫ √
|detE|d3x

}
= 2πγGǫijkǫabc

Eb
jE

c
k√

|detE|
= 4πγGei

a , (5.16)

amounts to an inverse of densitized triad components [21]. Thus, the gravitational

components in the matter Hamiltonians can be quantized using the techniques of loop

quantization. Leading to well-defined operators, this quantization process implies

characteristic modifications of the classical expressions such as (3.31) and (5.7) on

small scales, where densitized triad components are small. Moreover, since there are

many different but classically equivalent ways to rewrite expressions like (5.16) for

which the quantization would give different results, there are quantization ambiguities.

However, several characteristic effects occur for any quantization choice such that they

can be studied reliably with phenomenological applications in mind.

In loop quantum gravity, there are three main effects which imply correction

terms in effective matter equations. Despite a proper quantization of the matter

Hamiltonians, along the lines of [25], that gives a well-defined operator with the

correct semiclassical limit, there are deviations from the classical behavior on small

length scales, which are the first source of correction terms.

In addition, there are qualitatively different correction terms. First, loop quan-

tum gravity is spatially discrete, with states supported on spatial graphs. Quantiza-

tions of Hamiltonians thus lead to a discrete representation of any spatial derivative

term as they also occur for fermions. The classical expression arises in a continuum

limit, but for any given state the discrete representation implies corrections to the
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classical derivatives as the leading terms in an expansion. Secondly, the connection is

quantized through holonomies rather than its single components. Thus, the quantum

Hamiltonians are formulated in terms of exponentials of line integrals of the con-

nection which also give the leading classical term plus corrections in an expansion.

Finally, whenever a Hamiltonian is not quadratic, there are genuine quantum effects

as they occur in typical low energy effective actions. They can be computed in a

Hamiltonian formulation as well [55, 56], contributing yet another source of correc-

tions.

One certainly needs to know the relative magnitude of all corrections in order

to see which ones have to be taken into account. For all of them, the magnitude

depends on details of the quantum state describing the regime. Here, properties

of states have to be taken into account, and dimensional arguments are no longer

sufficient. For instance, discretization and curvature corrections depend on the patch

size occurring in the discrete state underlying quantum gravity. This patch size

is typically small compared to scales on which the matter field changes, even in

relativistic regimes assumed here. Thus, such corrections can be ignored in a first

approximation. What remains are corrections from inverse powers. While other

corrections shrink in the continuum limit where the patch size becomes small, inverse

corrections actually grow when the patch size approaches the Planck length. The

regimes where the two classes of corrections are dominant are thus neatly separated,

and we can safely focus on inverse triad corrections only. A brief summary of the

origin of such corrections is presented below ; see also [57]. A detailed and complete

derivation is not yet available since precise properties of a quantum gravity state

would be required. Still, many general qualitative insights can be gained in this way.
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Perturbative loop quantum cosmology

Hamiltonian operators of a quantum theory can, in semiclassical regimes, be

approximated by effective expressions which amend the classical ones by quantum

correction terms. The general procedure, detailed in [55, 56], requires one to evaluate

expectation values of the Hamiltonian in suitable semiclassical states. A crucial in-

gredient in loop quantum gravity is the discrete, non-local nature of states written in

terms of holonomies as basic objects. Although Hamiltonian operators on such dis-

crete lattice states are quite complicated, expectation values can often be evaluated

explicitly in perturbative regimes where one assumes the geometry to be close to a

symmetric one. This is certainly allowed in our applications to derive the effective

equation of state of radiation in a flat FRW universe. The background symmetry

implies the existence of three approximate spatial Killing vector fields Xa
I generating

transitive isometries. We will only make use of this translational symmetry, not of

the additional rotations in the construction of states. These vector fields can be used

as a tangent space basis, thus denoting tensor indices for components in this basis by

capital letters I, J, . . .

The background symmetry also has implications for the selection of states of

the quantum theory. A general quantization has to consider arbitrary states, but

for effective equations one computes expectation values only in states suitable for

a semiclassical regime. For perturbative inhomogeneities, one can restrict lattices

as they occur in general graphs to regular cubic ones and thus simplify geometrical

operators. This has been developed recently in [57] for metric perturbations as well

as for a scalar field, and we can directly apply the same techniques to the Maxwell

and the Dirac Hamiltonian. We refer the reader to this paper for more details.

127



Gravitational variables and lattice states

In a perturbative regime around a spatially flat isotropic solution, one can

choose the canonical variables to be given by functions (p̃I(x), k̃J(x)) which deter-

mine a densitized triad by Ea
i = p̃(i)(x)δa

i and extrinsic curvature by Ki
a = k̃(i)(x)δ

i
a.

Thus, one can diagonalize the canonical variables compared to the general situation

where all matrix elements of Ea
i and Ki

a would be independent. As seen in many sym-

metric models, this simplifies the calculations considerably: it allows one to replace in-

volved SU(2) calculations by much simpler U(1) calculations [58, 59]. SU(2) matrices

arise because loop quantum gravity is based on holonomies he = P exp(
∫

e
dtėaAi

aτi)

of a connection Ai
a related to extrinsic curvature. For unrestricted connections,

holonomies can take any SU(2) value, but a diagonalization implies that all quan-

tities can be reduced to a maximal Abelian subgroup U(1). Matrix elements of

Hamiltonians and other operators can then be computed in explicit form.

Using properties of the general loop representation mentioned before, basic

variables of the quantum theory are, for a chosen lattice, U(1) elements ηv,I attached

to a lattice link ev,I starting at a vertex v and pointing in direction Xa
I , and their

conjugate fluxes Fv,I . The U(1) elements ηv,I appear as matrix elements in SU(2)

holonomies hv,I = Reηv,I + 2τIImηv,I along edges ev,I . Following the construction of

the Hilbert space using holonomies as “creation” operators by acting on a state which

is constant on the space of connections, a general state is a functional | . . . , µv,I , . . .〉 =
∏

v,I η
µv,I

v,I . Allowing all possible values of assignments of integers µv,I ∈ Z to the lattice

edges ev,I , this defines an orthonormal basis of the Hilbert space. Basic operators are

represented as holonomies

η̂v,I | . . . , µv′,J , . . .〉 = | . . . , µv,I + 1, . . .〉 (5.17)

for each pair (v, I) where all labels other than µv,I remain unchanged, and fluxes

F̂v,I | . . . , µv′,J , . . .〉 = 2πγℓ2P(µv,I + µv,−I)| . . . , µv′,J , . . .〉 (5.18)
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where ℓP =
√

~G is the Planck length and a subscript −I means that the edge

preceding the vertex v in the chosen orientation is taken. These and the following

constructions are explained in more detail in [57].

Effective equations are obtained by taking expectation values of the Hamilto-

nian operator and computing a continuum approximation of the result (similar to a

derivative expansion in low energy effective actions). The result is a local field theory

which includes quantum corrections. This is done by relating holonomies

ηv,I = exp(i ∫
ev,I

dtγk̃I/2) ≈ exp(iℓ0γk̃I(v + I/2)/2) (5.19)

to continuum fields k̃I through mid-point evaluation on the edges ev,I (denoted by an

argument v + I/2 of the fields), and similarly for fluxes

Fv,I =

∫

Sv,I

p̃I(y)d2y ≈ ℓ20p̃
I(v + I/2) . (5.20)

Although the non-local basic objects do not allow us to define continuum fields at all

spatial points, in a slowly-varying field approximation the mid-point evaluations are

sufficient to define the continuum fields by interpolation. Here, ℓ0 is the coordinate

length of lattice links. It does not appear in the quantum theory which only refers

to states and their labels µv,I . This is independent of coordinates and only makes

use of an abstract, labelled graph. The parameter ℓ0 only enters in the continuum

approximation since it is classical fields which are integrated and related to holonomies

and fluxes. These continuum fields, or tensor components p̃I and k̃I , must depend

on which coordinates are chosen to represent them. For the situation given here, the

combinations pI := ℓ20p̃
I and kI := ℓ0k̃I , as they appear in holonomies and fluxes

evaluated for slowly-varying fields, are coordinate independent.

A further operator we can immediately define is the volume operator. Using

the classical expression V =
∫

d3x
√
|p̃1p̃2p̃3| ≈ ∑

v ℓ
3
0

√
|p̃1p̃2p̃3| =

∑
v

√
|p1p2p3|,

we introduce the volume operator V̂ =
∑

v

∏3
I=1

√
|F̂v,I | which, using (5.18), has
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eigenvalues

V ({µv,I}) =
(
2πγℓ2P

)3/2
∑

v

3∏

I=1

√
|µv,I + µv,−I | . (5.21)

This operator is not only interesting for geometrical purposes, but also for making

use of the identity (5.16) or, more generally,

{Ai
a, V

r
v } = 4πγG rV r−1

v ei
a (5.22)

which gives inverse powers of the densitized triad for any 0 < r < 2 often appearing in

matter Hamiltonians. When quantizing this expression using holonomies, the volume

operator and a commutator for the Poisson bracket, we obtain

V̂ r−1
v ei

I =
−2

8πirγℓ2Pℓ0

∑

σ∈{±1}

σ tr(τ ihv,σI [h
−1
v,σI , V̂v

r
])

=
1

2ℓ0
(B̂

(r)
v,I − B̂

(r)
v,−I)δ

i
(I) =:

1

ℓ0
Ĉ

(r)
v,I . (5.23)

For symmetry, we use both edges ev,I and ev,−I touching the vertex v along direction

Xa
I . The operator B̂

(r)
v,I is obtained by taking the trace in (5.23) and using hv,I =

Reηv,I + 2τIImηv,I ,

B̂
(r)
v,I :=

1

4πiγG~r

(
sv,I V̂

r
v cv,I − cv,I V̂

r
v sv,I

)
(5.24)

with

cv,I =
1

2
(ηv,I + η∗v,I) and sv,I =

1

2i
(ηv,I − η∗v,I) .

Maxwell Hamiltonian

Such expressions can be used for the electric field part of the Maxwell Hamil-

tonian (3.31) where the metric factor to be quantized is

qab

ℓ0
√
q

=
ei

ae
i
b

ℓ0
√
q
≈ ℓ20e

i
ae

i
b

Vv

in terms of the volume Vv ≈ ℓ30
√
q(v) of a lattice site. This can then be quantized,

using (5.23) with r = 1/2, to

q̂IJ

ℓ0
√
q

=
̂

(ℓ0V
−1/2
v ei

I)
̂

(ℓ0V
−1/2
v ei

J) = Ĉ
(1/2)
v,I Ĉ

(1/2)
v,J . (5.25)
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Noticing that the momentum πa of the electromagnetic field is quantized, just as the

densitized triad, by a flux operator Πv,I :=
∫

Sv,I
d2ynaπ

a ≈ ℓ20π
I(v), the whole electric

field term can be written as

Hπ = 2π

∫
d3xN(x)

qab√
q
πaπb ≈ 2π

∑

v

N(v)ℓ30
qab√
q
πaπb

= 2π
∑

v,I,J

N(v)
qIJ

ℓ0
√
q
Πv,IΠv,J

which is then quantized to

Ĥπ = 2π
∑

v

N(v)Ĉ
(1/2)
v,I Ĉ

(1/2)
v,J Π̂v,IΠ̂v,J . (5.26)

For the magnetic field term in (3.31), at first sight, a different metric expression

arises:
√
qqacqbd which also involves inverse components when expressed in terms of

the densitized triad. The term appears different from the electric field term and could

thus be quantized differently. However, noting

FabFcdq
acqbd = BeBfǫeabǫfcdq

acqbd

= ǫeabB
eBfqfdǫ

abdq−1 = 2q−1qabB
aBb

in terms of the magnetic field Ba = ǫabcFbc shows that the metric dependence is the

same as in the electric part. We thus expect the same metric operator and corre-

spondingly the same quantum gravity corrections in both terms, although different

ones are mathematically possible owing to quantization ambiguities. The magnetic

contribution to the Maxwell Hamiltonian then is

HB =
1

8π

∫
d3xN(x)

qab√
q
BaBb ≈ 1

8π

∑

v

N(v)ℓ30
qab√
q
BaBb

=
1

8π

∑

v,I,J

N(v)
qIJ

ℓ0
√
q
Bv,IBv,J

with the magnetic flux Bv,I :=
∫

Sv,I
d2ynaB

a ≈ ℓ20B
I(v). Magnetic flux components

Bv,I are quantized using U(1) holonomies of the electromagnetic vector potential along
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closed loops transversal to the direction I:

B̂v,I =
1

4

∑

J,K

∑

σJ ,σK∈{±1}

σJσKǫ
IJKλv,σJJ,σKK .

We use the symbol λ to distinguish an electromagnetic holonomy λ from a gravita-

tional one, η. The loop holonomy λv,±J,±K is then computed around an elementary

lattice loop starting in v in direction ±Xa
J and returning to v along ±Xa

K . Summing

over J , K and the two sign factors σJ and σK accounts for all four loops starting in

v transversally to ev,I . The resulting quantized magnetic part of the Hamiltonian is

Ĥπ =
1

8π

∑

v

N(v)Ĉ
(1/2)
v,I Ĉ

(1/2)
v,J B̂v,IB̂v,J (5.27)

with the same gravitational operator Ĉ
(1/2)
v,I Ĉ

(1/2)
v,J as in the electric term. It is thus

natural to use the same quantum operators and corresponding corrections in both

terms, even though mathematically it is possible to quantize them differently. This

aspect will be used in the derivations for the effective equation of state.

Dirac Hamiltonian

The Dirac Hamiltonian can be quantized in the similar fashion presented in

Chapter III and IV. Since our goal is the derivation of the quantum correction

functions arising from the quantization of the gravitational components, we avoid the

explicit quantization of the total Dirac Hamiltonian. Therefore, we focus only on the

gravitational components in the Dirac Hamiltonian. In the Dirac Hamiltonian (5.7)

the factor to be quantized containing inverse powers of the densitized triad is

2Ea
i

ℓ0
√
q

= ǫabcǫijk
ej

be
k
c

ℓ0
√
q
≈ ǫabcǫijk

ℓ20e
j
be

k
c

Vv

in terms of the volume Vv ≈ ℓ30
√
q(v) of one discrete patch at a point v. We can

already notice the close resemblance to the Maxwell Hamiltonian, where the corre-

sponding expression is qab/ℓ0
√
q = ei

ae
i
b/ℓ0

√
q which differs only by the additional
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ǫ-tensors. This close relation will, in the end, lead to quite similar quantum correc-

tions for photons and fermions.

We proceed using (5.22) for r = 1/2, and write

2Ea
i

ℓ0
√
q

=

(
ℓ0

2πGγ

)2

ǫabcǫijk{Aj
b, V

1

2
v }{Ak

c , V
1

2
v }, (5.28)

which can then be quantized by turning Poisson brackets into commutators of oper-

ators. This results in

2̂Ea
i

ℓ0
√
q

= ǫKIJǫijk
̂

(ℓ0V
−1/2
v ej

I)
̂

(ℓ0V
−1/2
v ek

J) = ǫKIJǫijkĈ
(1/2)
v,I Ĉ

(1/2)
v,J δj

(I)δ
k
(J) (5.29)

with Ĉ
1/2
v,I defined in (5.23).

Correction functions

As in [57] we can include effects of the quantization of metric coefficients by

inserting correction functions in the classical Hamiltonian which follow, e.g., from the

eigenvalues [57]

C
(1/2)
v,I ({µv′,I′}) = 2(2πγℓ2P)−1/4|µv,J + µv,−J |1/4|µv,K + µv,−K |1/4

(
|µv,K + µv,−K + 1|1/4 − |µv,K + µv,−K − 1|1/4

)
(5.30)

(where indices J and K are defined such that ǫIJK 6= 0) of operators Ĉ
(1/2)
v,I . Although

for large µv,I these eigenvalues approach the function

C
(1/2)
v,I ({µv′,I′})C(1/2)

v,J ({µv′,I′}) ∼ (2πγℓ2P)−1/2

∏3
K=1

√
|µv,K + µv,−K |

|µv,I + µv,−I ||µv,J + µv,−J |

expected classically for qIJ/
√
q =

√
|p1p2p3|/pIpJ with a densitized triad Ea

i = p(i)δa
i

and using the relation (5.18) between labels and flux components, they differ for values

of µv,I closer to one. This deviation can, for an isotropic background, be captured in

a single correction function

αv,K =
1

3

∑

I

C
(1/2)
v,I ({µv′,I′})2 ·

√
2πγℓ2P(µv,I + µv,−I)

2

∏3
J=1

√
|µv,J + µv,−J |

(5.31)
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which would equal one in the absence of quantum corrections. This is indeed ap-

proached in the limit where all µv,I ≫ 1, but for any finite values there are correc-

tions. If all µv,I > 1 one can directly check that corrections are positive, i.e. αv,K > 1

in this regime. Expressing the labels in terms of the densitized triad through fluxes

(5.18) results in functionals

α[pI(v)] = αv,K(4πγℓ2Pµv,I) (5.32)

which enter effective Hamiltonians.

Furthermore, for a nearly 2 isotropic background geometry α only depends

on the determinant q of the spatial metric and thus qabδα/δqab = −3qdα/dq =

−1
2
adα/da with the scale factor a related to q by q = det(qab) = a6. In this case the

quantum gravitational expectation for α(q), as per Eqs. (5.30) and (5.31), simplifies.

To use these expressions, we have to relate the scale factor to quantum gravitational

excitation levels as they occur in calculations of loop quantum gravity. In the above

notation, an elementary discrete patch in a nearly isotropic space-time has, on the

one hand, an area of ℓ20a
2 if ℓ0 is the coordinate diameter of the patch. This can be

expressed as ℓ20a
2 = (VV/NV)2/3 where NV is the number of patches in a box V of

volume VV . On the other hand, using (5.18) the quantum gravity state assigns a value

of 4πγℓ2Pµv to this patch via the flux operator, where µv is the quantum number of

the geometrical excitation of this patch. Thus, we obtain

µv =
V

2/3
V

4πγℓ2PN
2/3
V

=:
a2

a2
disc

where

adisc = 2
√
πγℓP

(NV

V0

)1/3

(5.33)

with the coordinate volume V0 of the box V . The numerical value of adisc depends on

coordinates via V0, or on the normalization of the scale factor. (It does not depend

2We are not assuming strict isotropy to compute quantum corrections of inhomogeneous Maxwell
and fermion fields. Nevertheless, in leading order corrections one can use the background geometry.

134



1
a/adisc

0

1

α(
a/

a d
is

c)

Figure 5.1: The correction function (5.34) as a function of the scale factor (solid
line). The asymptotic form (5.35) for large a is shown by the dashed line. (The sharp
cusp, a consequence of the absolute value appearing in (5.34), is present only for
eigenvalues as plotted here, but would disappear for expectation values of the inverse
volume operator in coherent states. This cusp will play no role in the analysis of this
paper.)

on the choice of the box V because a change would multiply NV and V0 by the same

factor.) But it is important to note that adisc is not just determined by the Planck

length ℓP, which appears for dimensional reasons, but also depends on the large

number NV of discrete patches per volume as given by the quantum gravity state.

This is exactly a parameter as expected in the discussion of Sec. 5.1. Replacing µv in

the equations of the appendix, we obtain

α(a) = 8
√

2(a/adisc)
2
(
(2(a/adisc)

2 + 1)1/4 − |2(a/adisc)
2 − 1|1/4

)2
(5.34)

where adisc appears, influencing the size of quantum gravity corrections.

The function is plotted in Fig. 5.1. One can easily see that α(a) approaches

the classical value α = 1 for a ≫ adisc/
√

2, while it differs from one for small a. For

a > adisc/
√

2, the corrections are perturbative in a−1,

α(a) ∼ 1 +
7

64

(adisc

a

)4

+ · · · . (5.35)
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This is the first correction in an asymptotic expansion for eigenvalues. If semiclassical

states rather than volume eigenstates are used, powers of a−1 in the leading corrections

can be smaller. Moreover, via NV the discreteness scale adisc is expected to be not

precisely constant but a function of a itself because the underlying spatial discreteness

of quantum gravity can be refined dynamically during cosmological evolution [78, 87].

(Indeed, dynamical refinement is also required for several other phenomenological

reasons [117, 118, 119, 120, 121].) In our following analysis we will thus assume a

functional form

α(a) = 1 + c(a/a0)
−n (5.36)

where we traded the fundamental normalization by adisc for normalization with respect

to the present-day value of the scale factor a0. From the derivation, n is likely to be

a small, even integer and c is known to be positive. The constant c depends on adisc

and inherits the NV-factor. It can thus be larger than of order one. We will treat this

parameter as phenomenological and in the end formulate bounds on c as bounds for

NV .

Effective Hamiltonians and the equation of state

The above correction functions will appear in a Hamiltonian operator and thus

also correct expressions for energy density and pressure or the equation of state, which

is presented below.

Maxwell Hamiltonian

The general expression for the effective Maxwell Hamiltonian one can expect

is thus

Heff =

∫

Σ

d3xN

[
α[qcd]

2π√
q
πaπbqab + β[qcd]

√
q

16π
FabFcdq

acqbd

]
(5.37)

with two possibly different correction functions α and β depending on the lattice

values µv,I . As shown before, the case α = β is preferred, and we will see soon that this

has implications for the effective equation of state. (In [25] a Hamiltonian operator
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was introduced which did not use the same quantizations for metric coefficients in

the electric and magnetic parts, thus giving α 6= β. A quantization as described here,

using the same quantization in both parts, was formulated in [60]. Phenomenological

implications of a quantization of the latter type, concerning Lorentz invariance, are

discussed in [61].) There are other possible sources for corrections, such as higher order

powers and higher derivatives of the electric and magnetic fields. But these terms

would not be metric dependent and are thus not crucial for the following arguments.

Now using (5.37), we get the modified expression

1

N
qab δHM

δqab
= −qab

N

δHM

δqab

=
π√
q
πcπdqcd

(
α+ 2qabδα/δqab

)

+

√
q

32π
FcdF

cd
(
β + 2qabδβ/δqab

)
, (5.38)

depending on α and β. For a nearly isotropic background geometry, for instance,

α only depends on the determinant q of the spatial metric and, from Appendix B,

qabδα/δqab = −3qdα/dq, which we assume in what follows.

The modified energy density and pressure then are

ρeff =
2π

q
πaπbqabα+

1

16π
FabFcdq

acqbdβ (5.39)

3Peff =
2π

q
πaπbqab (α− 6qdα/dq)

+
1

16π
FabF

ab (β − 6qdβ/dq)

=
2π

q
πaπbqabα

(
1 − 6

d logα

d log q

)

+
1

16π
FabF

abβ

(
1 − 6

d log β

d log q

)
. (5.40)

It follows easily from (5.38), (5.39) and (5.40) that the classical behavior is reproduced

for α = β = 1. Interestingly, for α = β, the equation of state w can easily be computed

and is modified as

weff =
1

3
− 2

d logα

d log q
. (5.41)
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This modification is independent of the specific matter dynamics as in the classical

case, and it results in an equation of state which is linear in ρ, but depends on the

geometrical scales (and the Planck length) through α.

Dirac Hamiltonian

Thus the general expression one can expect for a phenomenological Dirac

Hamiltonian including corrections from inverse powers of the triad is

Hphen =

∫

Σt

d3xN

(
Ea

i√
q
α(Eb

j )
(
−βDa

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

−2i
(
θLπ

T
ξ τ

iDaξ − θRπ
T
χ τ

iDaχ− c.c.
))

+
θ(Eb

j )√
q
B

)
(5.42)

with two possibly different correction functions α and θ. This also affects the energy

density and pressure terms, derived by the general expressions (5.2) and (5.10). We

are mainly interested in the correction to the one-third in the equation of state (5.14),

so we focus on the first term in (5.42) in what follows. Energy density and the pressure

then are, ignoring the classical interaction term B,

ρeff =
2Ea

i

a6
α(a)

(
−βDa

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

+i
(
−θLπ

T
ξ τ

iDaξ − θRπ
T
χ τ

iDaχ− c.c.
))

(5.43)

and

3Peff =
2Ea

i

a6
α(a)

(
1 − d log α

d log a

)(
−βDa

(
πT

ξ τ
iξ + πT

χ τ
iχ
)

+i
(
−θLπ

T
ξ τ

iDaξ − θRπ
T
χ τ

iDaχ− c.c.
))
. (5.44)

From this, the equation of state w can easily be computed:

weff =
1

3

(
1 − d log α

d log a

)
. (5.45)

This quantum gravity correction is independent of the specific matter dynamics as in

the classical relativistic case. It results in an equation of state which is linear in ρ,

but depends on the geometrical scales (and the Planck length) through α. This is the
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same general formula derived above for radiation, i.e., (5.41). Thus, on an isotropic

background radiation and relativistic fermions are not distinguished by the form of

quantum corrections they receive.

Finally, let us derive the correction to the evolution of energy density in an

isotropic and homogeneous universe, i.e. Friedmann-Robertson-Walker (FWR) uni-

verse. It follows from the FRW metric and Einstein’s equation that the evolution of

the energy density is given by the continuity equation, i.e.,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (5.46)

where a is the scale factor and the dot indicates a proper time derivative. Using the

definition of the equation of state and eliminating the time derivative, this equation

can be cast into the following useful form:

d log ρ(a)

d log a
= −3 (1 + w(a)) . (5.47)

Here we have shown the dependence of the equation of state on the scale factor

explicitly. It can easily be shown that the solution to the above equation is

ρ(a) = ρ0 exp

[
−3

∫
(1 + w(a)) d log a

]
, (5.48)

where ρ0 is the integration constant. Now by inserting the modified equation of state

in the radiation era, (5.45) with q = a6, we obtain

ρ(a) = ρ0α(a)a−4. (5.49)

Again, for α = 1, we retrieve the classical result ρ(a) ∝ a−4. Therefore, loop quantum

gravity corrections induced by discreteness of the flux operator are reflected even in

the evolution of the FRW universe.

5.4 Effect on Big Bang Nucleosynthesis

Following baryosynthesis, i.e. after a suitable condition for the production

of stable protons and neutrons is finally created, the relative abundances of these
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particles depend on the competition between the weak-interaction rate to reach the

thermodynamically favored equilibrium values and the expansion rate, H = ȧ/a, that

causes the rate of change in the mean temparature of the universe. Therefore, the

production of elements in the early universe is highly sensitive to the expansion rate,

given by

ȧ

a
=

(
8

3
πGρ

)1/2

, (5.50)

where ρ is the total density, thus including radiation and fermions. As we have

seen here for fermions and in [100] for radiation, the effect of loop quantum gravity

corrections is to multiply the effective ρ(a) by a factor α(a). Most importantly, we

find that α(a) is the same for both bosons and fermions (up to possible quantization

ambiguities), so a separate treatment of the two types of particles in the early universe

(as in Ref. [99]) is unnecessary here.

In the standard treatment of the thermal history of the universe, the density

of relativistic particles (bosons or fermions) is given by

ρ =
π2

30
g∗T

4, (5.51)

where g∗ is the number of spin degrees of freedom for bosons, and 7/8 times the

number of spin degrees of freedom for fermions, and T is the temperature, which

scales as

T ∝ a−1. (5.52)

The equation of state parameter is

w = 1/3. (5.53)

Clearly, equations (5.51)–(5.53) are inconsistent with equations (5.45) and (5.49).

There is some ambiguity in determining the correct way to modify the expressions

for ρ(T ) and w. We have chosen to assume that the modifications are contained in

the gravitational sector, so that the density is given by

ρ = α(a)
π2

30
g∗T

4, (5.54)
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with the temperature scaling as in equation (5.52), and the equation of state w is

given by equation (5.45). This guarantees that the standard continuity equation

(5.46) continues to hold. Note that this is not the only way to incorporate equation

(5.49) into the calculation, but it seems to us the most reasonable way. This issue

requires a consideration of thermodynamics on a quantum space-time, which is a

fascinating but not well-studied area. Instead of entering details here, we note that

we interpret the α-correction as a consequence of a quantum gravity sink to energy

and entropy. Thus, quantum gravity implies a non-equilibrium situation which would

otherwise imply that ρ must be proportional to T 4 without any additional dependence

on a ∝ T−1.

With these assumptions, we can simply treat α(a) as an effective multiplica-

tive change in the overall value of G. Note that this simplification is only possible

because we explicitly derived by our canonical analysis that, unexpectedly, quantum

corrections of radiation and fermions appear in similar forms. This makes possible a

comprehensive derivation of implications for BBN, bearing on earlier work. In fact, a

great deal of work has been done on the use of BBN to constrain changes in G (see,

e.g. Refs. [101, 102, 103, 104, 105]). The calculation is straightforward, if one has

a functional form for the time-variation in G. For the loop quantum gravity correc-

tions considered here, the most reasonable functional form is (5.36). Note that this

expression is by construction valid only in the limit where α(a) − 1 << 1. In terms

of the effective gravitational constant, G, one can then write

G(a) = G0[1 + c(a/a0)
−n], (5.55)

where G0 is the present-day value of the gravitational constant.

In order to constrain the values of c and n, we calculate the predicted ele-

ment abundances with the indicated change in G and compare with observational

constraints. Big Bang nucleosynthesis proceeds first through the weak interactions
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that interconvert protons and neutrons:

n+ νe ↔ p+ e−,

n+ e+ ↔ p+ ν̄e,

n ↔ p+ e− + ν̄e. (5.56)

When T & 1 MeV, the weak-interaction rates are faster than the expansion rate,

ȧ/a, and the neutron-to-proton ratio (n/p) tracks its equilibrium value exp[−∆m/T ],

where ∆m is the neutron-proton mass difference. As the universe expands and cools,

the expansion rate becomes too fast for weak interactions to maintain weak equilib-

rium and n/p freezes out. Nearly all the neutrons which survive this freeze-out are

converted into 4He as soon as deuterium becomes stable against photodisintegration,

but trace amounts of other elements are produced, particularly deuterium and 7Li

(see, e.g., Ref. [106] for a review).

In the standard model, the predicted abundances of all of these light elements

are a function of the baryon-photon ratio, η, but any change in G alters these pre-

dictions. Prior to the era of precision CMB observations (i.e., before WMAP), Big

Bang nucleosynthesis provided the most stringent constraints on η, and modifications

to the standard model could be ruled out only if no value of η gave predictions for

the light element abundances consistent with the observations. However, the CMB

observations now provide an independent estimate for η, which can be used as an

input parameter for Big-Bang nucleosynthesis calculations.

Copi et al. [104] have recently argued that the most reliable constraints on

changes in G can be derived by using the WMAP values for η in conjuction with

deuterium observations. The reason is that deuterium can be observed in (presumably

unprocessed) high-redshift quasi stellar object (QSO) absorption line systems (see

Ref. [107] and references therein), while the estimated primordial 4He abundance,

derived from observations of low metallicity HII regions, is more uncertain (see, for
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example, the discussion in Ref. [108]). While we agree with the argument of Copi et

al. in principle, for the particular model under consideration here it makes more sense

to use limits on 4He than on deuterium, in conjunction with the WMAP value for η.

The reason is that the 4He abundance is most sensitive to changes in the expansion

rate at T ∼ 1 MeV, when the freeze-out of the weak interactions determines the

fraction of neutrons that will eventually be incorporated into 4He. Deuterium, in

contrast, is produced in Big Bang nucleosynthesis only because the expansion of the

universe prevents all of the deuterium from being fused into heavier elements. Thus,

the deuterium abundance is most sensitive to the expansion rate at the epoch when

this fusion process operates (T ∼ 0.1 MeV). The importance of this distinction with

regard to modifications of the standard model was first noted in Ref. [109], and a very

nice quantitative analysis was given recently in Ref. [110]. Note that our estimate for

the behavior of G(a)/G0 − 1, equation (5.55), is a steeply decreasing function of a.

Thus, the change in the primordial 4He abundance will always be much larger than

the change in the deuterium abundance. Therefore, we can obtain better constraints

on this model by using extremely conservative limits on 4He, rather than by using

the more reliable limits on the deuterium abundance. For the same reason, we can

ignore any effect on the CMB, since the latter is generated at a much larger value

of a, and any change will be minuscule. Hence, we can confidently use the WMAP

value for η.

WMAP gives [111]

η = 6.116+0.197
−0.249 × 10−10. (5.57)

Because the estimated errors on η are so small, we simply use the central value for

η; the bounds we derive on c in equation (5.36) change only slightly when η is varied

within the range given by equation (5.57). Since c in equations (5.36) and (5.55) is

thought to be positive, the effect of LQG corrections is to increase the primordial

expansion rate, which increases the predicted 4He abundance. We therefore require
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an observational upper bound on the primordial 4He abundance. As noted earlier,

this is a matter of some controversy. We therefore adopt the very conservative upper

bound recommended by Olive and Skillman [108]:

YP ≤ 0.258, (5.58)

where YP is the primordial mass fraction of 4He. For a fixed value of n in equation

(5.55), we determine the largest value of c that yields a primordial 4He abundance

consistent with this upper limit on YP . Since we are essentially bounding the change

in G at a/a0 ∼ 10−10, it is convenient to rewrite equation (5.36) as

α = 1 + c̃/an
10 (5.59)

where a10 ≡ 1010(a/a0). This upper bound on c̃ as a function of n is given in Fig. 5.2.

For the special case n = 4, we can use these results to place a bound on adisc in

equation (5.35). We obtain

adisc

a0

< 2.4 × 10−10 . (5.60)

This is not a strong bound for the parameters of quantum gravity, but clearly demon-

strates that quantum corrections are consistent with successful big bang nucleosyn-

thesis.

In terms of more tangible quantum gravity parameters, we have

N 1/3
V <

1.2 · 10−10

√
πγ

a0V
1/3
0

ℓP
(5.61)

for the number of patches at the time of big bang nucleosynthesis. In terms of the

volume VV = (10−10a0)
3V0 at this time, we have NV < 3VV/ℓ

3
P with the value γ ≈ 0.24

of the Barbero–Immirzi parameter as derived from black hole entropy calculations.

More meaningfully, if we view 2
√
πγℓP as the basic length scale as it appears in

the spectrum (5.18) of loop quantum gravity, the bound becomes more interesting:

This gives N 1/3
V < 2.4V

1/3
V /(2

√
πγℓP). This upper limit is already quite close to
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Figure 5.2: The solid curve gives an upper bound on c̃ as a function of n, for the
assumed form for α: α = 1 + c̃/an

10, where a10 is the value of the scale factor in units
for which a10 = 1010 at present.

what one expects for elementary patch sizes in loop quantum gravity, which would

provide N 1/3
V < V

1/3
V /(2

√
πγℓP) as a fundamental upper limit. Given that these

values are close to each other, we see a clear potential of improvements by more

precise observational inputs. Moreover, other correction terms from quantum gravity

could be used to obtain a lower bound for NV such that the allowed window would

be reduced to a smaller size.
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5.5 Conclusion

We have derived here the equation of state of the Maxwell as well as the Dirac

field in a canonical form, including corrections expected from loop quantum gravity.

In the canonical derivation, the reason for a linear equation of state of Maxwell field,

which is trace-freedom in the Lagrangean derivation, is the fact that the same metric

dependent factor qab/
√
q multiplies both terms in the Hamiltonian. The Maxwell

Hamiltonian is thus simply rescaled if the metric is conformally transformed, which

explains the conformal invariance of Maxwell’s equations. This is special for the

Maxwell field and different from, e.g., a scalar field with a non-vanishing potential.

The same fact allows one to quantize the Hamiltonian in a way which affects

both the electric and magnetic term in the same way, at least as far as the metric

dependence is concerned. One then obtains a single correction function α = β which

only corrects the metric dependence of the total scale of the Hamiltonian. In this

sense, conformal invariance is preserved even after quantization. (But this would not

be the case if a quantization is used which results in α 6= β.)

This preservation of the form of the Hamiltonian explains why we are still able

to derive an equation of state independently of the specific field dynamics and that

it remains linear. However, the classical value w = 1
3

is corrected due to quantum

effects in the space-time structure. This modification is also understandable from a

Lagrangean perspective, together with basic information from the loop quantization.

Employing trace freedom of the stress-energy tensor to derive the equation of state,

we have to use the inverse metric in gabTab. But from loop quantum gravity we know

that, when quantized, not all components of the inverse metric agree with inverse

operators of the quantization. For the scale factor of an isotropic metric, for instance,

we have â−1 6= “â−1” since the right hand side is not even defined [52]. While the

left hand side is defined through identities such as (5.16), it satisfies â−1â 6= 1 and

thus shows deviations from the classical expectation a−1a = 1 on small scales which
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were captured here in correction functions. As derived in detail, this implies scale

dependent modifications to the equation of state parameter weff .

The result can also be interpreted in more physical terms. The classical be-

havior ρ(a) ∝ a−4 can be understood as a combination of a dilution factor a−3 and an

additional redshift factor a−1 for radiation in an expanding universe. As we have seen,

this is corrected to α(a)a−4 where α(a) corrects the metric factor qab/
√
q ∼ a−1δab.

Since this is only a single inverse power of a for an isotropic solution, we can interpret

the result as saying that only the redshift receives corrections due to quantum effects

on electromagnetic propagation. The dilution factor due to expansion is unmodified,

except that the background evolution a(t) itself receives corrections. This agrees with

the result for dust, which is only diluted and has an unmodified equation of state even

after quantization 3. Unlike dust, for radiation one has to refer to the inhomogeneous

field and its quantum Hamiltonian to derive a reliable equation of state, as presented

here.

On the other hand, there are corrections to the simple equation of state w = 1
3

for fermions even classically. One observation made here is that the interaction term

derived in [34] leads to such a correction and might be more constrained by big

bang nucleosynthesis than through standard particle experiments [35]. We have not

analyzed this further here because more details of the behavior of the fermion current

would be required.

A second source of corrections arises for fermions from quantum gravity. Re-

markably, while quantum gravity effects on an isotropic background do correct the

equations of state, they do so equally for photons and relativistic fermions. Initially,

this is not expected for both types of fields due to their very different actions. How-

ever, a possible scenario for the same corrections for both fermions and photons is

big bang nucleosynthesis since BBN is a highly relativistic regime which, to a good

3But it disagrees with [63] both for dust and radiation, where a direct quantization of energy
densities exclusively for isotropic fields was attempted.

147



approximation, implies identical equations of state for both. Thus, quantum gravity

effects do not spoil the detailed balance required for the scenario to work and bounds

from big bang nucleosynthesis obtained so far are not strong. But there are interest-

ing limits for the primary parameter, the patch size of a quantum gravity state. It

is dimensionally expected to be proportional to the Planck length ℓP but could be

larger. In fact, current bounds derived here already rule out a patch size of exactly

the elementary allowed value in loop quantum gravity. With more precise estimates,

these bounds can be improved further.

We have made use of quantum gravity corrections in a form which does not dis-

tinguish fermions from radiation. Although the most natural implementation, quite

unexpectedly, provides equal corrections as shown here, there are several possibilities

for differences which suggest several further investigations. Small deviations in the

equations of state and thus energy densities of fermions and radiation are possible.

First, there are always quantization ambiguities, and so far we tacitly assumed that

the same basic quantization choice is made for the Maxwell and Dirac Hamiltoni-

ans. Such ambiguity parameters can be explicitly included in specific formulas for

correction functions; see e.g. [112, 113, 57]. Independent consistency conditions for

the quantization may at some point require one to use different quantizations for

both types of fields, resulting in different quantum corrections and different energy

densities. Such conditions can be derived from an analysis of anomaly-freedom of

the Maxwell field and fermions coupled to gravity, which is currently in progress. As

shown here, if this is the case it will become testable in scenarios sensitive to the

behavior of energy density such as big bang nucleosynthesis. Moreover, assuming the

same quantization parameters leads to identical quantum corrections for photons and

fermions only on isotropic backgrounds. Small-scale anisotropies have different effects

on both types of fields and can thus also be probed through their implications on the

equation of state.
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For this, it will be important to estimate more precisely the typical size of

corrections, which is not easy since it requires details of the quantum state of ge-

ometry. The crucial ingredient is again the patch size of underlying lattice states.

On the other hand, taking a phenomenological point of view allows one to estimate

ranges for patch sizes which would leave one in agreement with big bang nucleosyn-

thesis constraints. Interestingly, corrections studied here provide upper bounds to the

patch size, and other corrections from quantum gravity are expected to result in lower

bounds. A finite window thus results, which can be shrunk with future improvements

in observations.
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CHAPTER VI

DARK ENERGY

In the previous chapter, quantum gravity corrections to the equation of state

of both fermions and photons have been derived and its effect on BBN have also

been explored as an application. It turns out that similar corrections also appear

in other approaches to quantum gravity, for example, string theory. Therefore, an

example of the effects of such corrections on the evolution of dark energy, k-essence

and quintessence, is presented in this chapter.

The universe appears to consist of approximately 30% nonrelativistic matter,

including both baryons and dark matter, and 70% dark energy (see Ref. [122] for

a recent review, and references therein). The evolution of the dark energy density

depends on its equation of state, which is usually parametrized in the form

pDE = wρDE, (6.1)

where pDE and ρDE are the pressure and density of the dark energy. Then the density

of the dark energy scales as

ρDE ∝ R−3(1+w). (6.2)

The simplest model for the dark energy is a cosmological constant, for which w = −1

and ρDE = constant. More complex models have been proposed, in which the dark

energy arises from a scalar field φ; these are called quintessence models [123, 124,

125, 126, 127]. These models generally give rise to a time-varying wφ and more

complex behavior for ρDE. One advantage of such models is that certain classes of

quintessence potentials lead to tracker behavior, in which the evolution of the scalar

field is independent of the initial conditions. The conditions for such tracking behavior

have been worked out in detail by Steinhardt, et al. [127].
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A second class of models generalizes quintessence to allow for a non-standard

kinetic term. These models, dubbed k-essence, have also been explored in great

detail [128, 129, 130, 131, 132, 133, 134, 135, 136]. These models can also lead to

tracking behavior, and the conditions necessary for such behavior have been discussed

by Chiba [133].

Both quintessence and k-essence can be generalized to modified versions of the

Friedmann equation. In the standard Friedmann equation, the relation between the

scale factor a (or, alternatively, the Hubble parameter H) and the density is

H2 =

(
ȧ

a

)2

=
ρ

3
. (6.3)

where we set 8πG = 1 throughout. However, various proposals have been put forward

to modify this equation at high energy. In type II Randall-Sundrum models, for

example, one has [137, 138]

H2 ∝ ρ2, (6.4)

in the limit of large ρ, while Gauss-Bonnet models can give [139]

H2 ∝ ρ2/3. (6.5)

The Cardassian model [140] assumes an expansion law of the form

H2 =
ρ

3
+Bρn (6.6)

with n < 2/3.

Motivated by these examples, numerous authors have examined the evolution

of various dark energy models in the context of non-standard expansion laws [141, 142,

143, 144, 145, 146]. The most general treatments are given in Refs. [144]-[146]. Sami

et al. [144] examine quintessence with constant wφ for a power-law modification to the

Friedmann equation (H2 ∝ ρq). Copeland et al. [145] discuss “scaling” quintessence

models, i.e., models for which wφ = wB, with an arbitrary expansion law, H2 ∝ f(ρ).
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Here wB is the ratio of pressure to density for the dominant, “background” fluid, e.g.,

wB = 0 for a matter-dominated universe, and wB = 1/3 for a radiation-dominated

universe. Tsujikawa and Sami [146] examine arbitrary scalar field models (including

both quintessence and k-essence) with scaling behavior (wφ = wB) in models with a

power-law modification to the Friedmann equation, H2 ∝ ρq.

Here we generalize this earlier work by examining tracking solutions for both

quintessence and k-essence in a general cosmological background characterized by

H2 ∝ f(ρ). Although we adopt the approach of Steinhardt et al. [127] for quintessence

and Chiba [133] for k-essence, our formalism encompasses tracking solutions not only

for a wide range of potentials but also for a wide range of f(ρ). We derive sufficient

conditions for both V (φ) and f(ρ) to obtain tracking solutions with a constant wφ.

This formalism provides us with a generic method to study these solutions for a wide

variety of scalar field models such as quintessence, tachyon, k-essence, and phantom

models.

6.1 Quintessence

Tracking solutions

The equation of motion for the φ-field is

φ̈+ 3Hφ̇+ Vφ = 0, (6.7)

where

Vφ ≡ dV/dφ, (6.8)

and

H2 =

(
ȧ

a

)2

= f(ρ). (6.9)

Here a is the Robertson-Walker scale factor, and ρ is the total density, given by

ρ = ρB + ρφ, (6.10)
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where ρB is the background (radiation + matter) density, and ρφ is the scalar field

energy density. The standard Hubble expansion law corresponds to equation (6.9)

with f(ρ) = ρ; in this paper we allow f(ρ) to have an arbitrary functional form.

By definition, the tracking solutions are the solutions to which the evolution

of the scalar field φ converges for a wide range of initial conditions for φ and φ̇. We

follow the approach prescribed by Steinhardt et al. [127] for quintessence, but now

generalize it to the arbitrary expansion law given by equation (6.9). For tracking

solutions, wφ is nearly constant [127], where wφ is given by

wφ =
pφ

ρφ

=
1
2
φ̇2 − V

1
2
φ̇2 + V

. (6.11)

It follows from equation (6.9) that

Ḣ =
3

2
H2η[(wφ − wB)(1 − Ωφ) − (1 + wφ)], (6.12)

where η encodes the information on the generalized expansion law in equation (6.9):

η =
d ln f(ρ)

d ln(ρ)
. (6.13)

For the standard Hubble expansion, η = 1. In this paper, we will confine our attention

to the case η > 0, and our conclusions will be valid only for this case. However, we

note that η < 0 can lead to interesting types of behavior (e.g., a phantom-like future

singularity in a matter-dominated universe). Several specific models of this type are

mentioned in Ref. [147].

By combining these relations, it is useful to cast the equation of motion into

the following form:

Vφ√
V

= ±3H

√
1 − w2

φ

2
(1 +

x′

6
), (6.14)

where x = (1 + wφ)/(1 − wφ) = 1
2
φ̇2/V is the ratio of the kinetic to potential energy

for φ, and x′ ≡ d ln x/d ln a. The ± sign depends on whether Vφ > 0 or Vφ < 0,

respectively. It follows from equation (6.14) that the tracker condition (ẇφ ≈ 0)
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becomes

Vφ

V
η+1

2

≈
(

1

Ωφ

) η
2

. (6.15)

This is the generalization of the Steinhardt et al. [127] tracking condition to an

arbitrary expansion law.

As in Ref. [127], we define the function

ΓV ≡ VφφV/(Vφ)
2, (6.16)

whose properties determine whether tracking solutions exist. By taking the time

derivative of equation (6.14) and combining with the equation (6.12) and (6.14) itself,

we obtain the following equation:

ΓV − 1 + η

2
=
η(wB − wφ)ΩB

2(1 + wφ)

−η(wB − wφ)ΩB + η + (η − 2)wφ

2(1 + wφ)

x′

6 + x′

− 2

(1 + wφ)

x′′

(6 + x′)2
. (6.17)

where x′′ ≡ d2 lnx/d ln a2. As expected, equation (6.17) reduces to the corresponding

equation in Ref. [127] for η = 1. In a universe dominated by a background fluid

(ΩB ≈ 1) with wφ ≈ constant and nearly constant ΓV , the above equation becomes

ΓV ≈ η + 1

2
+
η(wB − wφ)

2(1 + wφ)
,

≈ 1

2
+
η

2

(
1 + wB

1 + wφ

)
. (6.18)

In deriving the above equation, the plausibility of the condition that ΓV ≈ constant

has been discussed in detail in Ref. [127]. The crucial point is that this condition

encompasses a wide range of potentials including inverse power law potentials and

combinations of inverse power law terms to give rise to tracking solutions.

We must know the appropriate restrictions on η, i.e., on f(ρ) to extract the

tracking solutions from equation (6.17). Since the left-hand side of equation (6.18) is
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nearly constant, it follows that η must be nearly constant during background dom-

ination, i.e., the function f(ρ) must satisfy (6.13) for a nearly constant η. Thus we

require an extra condition, in addition to the conditions on ΓV , to derive tracking

solutions for both quintessence and k-essence. It is obvious that this extra condition

arises from the extra “degree of freedom” in choosing a different cosmological back-

ground. The only case for which η is exactly constant is f(ρ) ∝ ρn for a constant

n. This power-law behavior includes both the Randall-Sundrum and Gauss-Bonnet

models as special cases, and it was studied in detail in Ref. [144]. Of course, more

general conditions can produce an expression for f(ρ) that is roughly constant over a

wide range in the scale factor. For instance, a sum of power laws, e.g., as in equation

(6.6), gives a value for η that is nearly constant over most of the evolution of the

universe, i.e., at all times except for the epoch when the two contributions to f(ρ)

are roughly equal.

Note that there are a few trivial special cases for which this argument breaks

down. In particular, if V is a constant, the right hand side of equation (6.14) must

be zero; this can be achieved by taking wφ = ±1. The case wφ = −1 corresponds to

a non-zero constant potential, while wφ = 1 is the solution for V = 0. Both of these

results are independent of the value of H on the right-hand side of equation (6.14)

and are therefore independent of η.

The validity of equation (6.18) may be checked by comparing with the results

obtained by Sami et al. [144]. For scaling solutions with a constant wφ in a background

dominated universe, the potential function takes the following form [144]

V (φ) ∝ φ−α, (6.19)

where α is constant. Then we obtain from equation (6.18)

1 + wφ ≈ η(1 + wB)
α

α+ 2
. (6.20)

This solution agrees with the result obtained in Ref. [144].
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Stability of the tracking solutions

So far, we have derived solutions with constant wφ in a general cosmological

background; now we want to check the stability of these solutions with constant wφ.

In order to check the stability, we perturb the tracker value of wφ, which we will call

w0, by an amount δ. Then we expand equation (6.17) to lowest order in δ and its

derivatives to obtain

2δ
′′

+ 3[η(1 + wB) − 2w0]δ
′

+9η(1 + wB)(1 − w0)δ = 0, (6.21)

where the prime means d/d ln a and w0 is the value of wφ derived from equation (6.18).

The solution of this equation is

δ ∝ aγ, (6.22)

where

γ = −3

4
[η(1 + wB) − 2w0]

±3i

4

√
8η(1 + wB)(1 − w0) − [η(1 + wB) − 2w0]

2.

(6.23)

In the derivation of this equation, ΓV and η are assumed to be constant.

In order to have δ decay, the real part of γ has to be negative. Hence, it follows

that

w0 <
η(1 + wB)

2
, (6.24)

provided the quantity under the square root is positive. If the quantity under the

square root is negative (so that both values are real), then the above equation is also

a necessary condition since the first term under the square root is always positive,

provided η > 0 and w0 < 1. Using equation (6.18), the above inequality can be

written in terms of ΓV as

ΓV >
3η(1 + wB) + 2

2η(1 + wB) + 4
. (6.25)
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Therefore, for a nearly constant ΓV , η and wφ, the tracker condition, i.e., equation

(6.15) gives the following possibilities:

a. If wφ < wB, then Ωφ increases with time. Then we conclude from equation

(6.15) that |Vφ/V
n+1

2 | decreases for a tracker solution. However, taking the time

derivative of Vφ/V
η+1

2 , we obtain

d

dt

(
Vφ

V
η+1

2

)
=

V 2
φ

V
η+3

2

φ̇

(
ΓV − η + 1

2

)
. (6.26)

Hence, |Vφ/V
η+1

2 | decreases if ΓV > 1+η
2

. Thus, wφ < wB is observed for

ΓV >
1 + η

2
. (6.27)

Combining this with the condition for stable tracking behavior (equation 6.25), we

obtain

ΓV > max

[
3η(1 + wB) + 2

2η(1 + wB) + 4
,
1 + η

2

]
. (6.28)

This is the most interesting case, as it gives viable models for an accelerating

universe. These conditions encompass more solutions than the ones derived in Refs.

[144, 145, 146]. For example, for the exponential potential, we have ΓV = 1, and the

above conditions are satisfied as long as η < 1 (including, for example, the Gauss-

Bonnet expansion law).

b. If wφ > wB, then tracking behavior is observed for

3η(1 + wB) + 2

2η(1 + wB) + 4
< ΓV <

η + 1

2
. (6.29)

c. If ΓV = (1 + η)/2, then wφ = wB. This is one of the main results (using

somewhat different notation) derived in Ref. [145].

6.2 k-essence

Tracking solutions

In general, k-essence can be defined as any scalar field with non-canonical

kinetic terms, but in practice such models are usually taken to have a Lagrangian of
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the form:

L = V (φ)F (X), (6.30)

where φ is the scalar field, and X is defined by

X =
1

2
∇µφ∇µφ. (6.31)

The pressure in these models is given by

pφ = L, (6.32)

where L is given by equation (6.30), while the energy density is

ρφ = V (φ)[2XFX − F ], (6.33)

where FX ≡ dF/dX. Therefore, the equation of state parameter, wφ ≡ pφ/ρφ, is just

wφ =
F

2XFX − F
. (6.34)

In defining the sound speed, we follow the convention of Garriga and Mukhanov

[129], who argued that the relevant quantity for the growth of density perturbations

is

c2s =
(∂p/∂X)

(∂ρ/∂X)
=

FX

FX + 2XFXX

, (6.35)

with FXX ≡ d2F/dX2.

In a flat Robertson-Walker metric, the equation of motion for the k-essence

field takes the form:

(FX + 2XFXX)φ̈+ 3HFX φ̇+ (2XFX − F )
Vφ

V
= 0. (6.36)

We can express the equation of motion for φ in an alternative form which will be

useful for subsequent analysis:

±Vφ

V

√
2X = H

(
1 + wφ

2

)
(6 + Ay′), (6.37)

158



where

A =
(XFX − F )(2XFXX + FX)

XF 2
X − FFX −XFFXX

=
1 − wφ

c2s − wφ

, (6.38)

y = (1 + wφ)/(1 − wφ) and y′ = d ln y/d ln a, and plus (minus) sign corresponds to

φ̇ < 0 (φ̇ > 0), respectively. The tracker condition (wφ ≈ constant) becomes

± Vφ

V (n+2)/2
≈
(
F

Ωφ

)n/2
1√
2X

. (6.39)

It is not surprising to see that the tracker condition for k-essence has an extra “degree

of freedom” in F (X). The functional form of F (X) plays a crucial role in determining

the tracking conditions for k-essence and we shall consider it in the next section.

After taking the time derivative of equation (6.37) and using equation (6.12),

we obtain

ΓV − (1 +
η

2
) =

η(wB − wφ)ΩB

2(1 + wφ)

− [η(wB − wφ)ΩB + η + (η − 2)wφ]Ay
′

2(1 + wφ)(6 + Ay′)

− 2(1 − wφ)y
′′

(1 + wφ)(6 + Ay′)2(c2s − wφ)

−2 (ẇφ(1 − c2s) − (dc2s/dt)(1 − wφ)) y
′/H

(1 + wφ)(6 + Ay′)2(c2s − wφ)2
, (6.40)

where y′′ = d2 ln y/d ln a2. We note that for η = 1, equation (6.40) reduces to the one

derived in Ref. [133].

For a background-dominated universe with a constant wφ and almost constant

ΓV , the tracker equation (6.40) reduces to

ΓV ≈ η + 2

2
+
η(wB − wφ)

2(1 + wφ)
,

≈ 1 +
η

2

(
1 + wB

1 + wφ

)
(6.41)
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Note that equation (6.41) for k-essence closely resembles equation (6.18) for quintessence;

the only difference is the constant appearing in the first term. For the standard Hub-

ble expansion law (η = 1), we obtain

ΓV ≈ 1 +
1

2

(
1 + wB

1 + wφ

)
, (6.42)

in agreement with the results of Ref. [133].

Stability of the tracking solutions

To determine the stability of the tracking solution, we repeat the calculation

of Sec. II.B. for the case of k-essence. We assume a k-essence field with equation of

state parameter w0 and perturb w0 by an amount δ. Then we expand equation (6.40)

to lowest order in δ and its derivatives to obtain

2δ
′′

+ 3[η(1 + wB) − 2w0]δ
′

+9η(1 + wB)(c2s − w0)δ = 0, (6.43)

where the prime means d/d ln a. The solution of this equation is

δ ∝ aγ, (6.44)

where

γ = −3

4
[η(1 + wB) − 2w0]

±3i

4

√
8η(1 + wB)(c2s − w0) − [η(1 + wB) − 2w0]2.

(6.45)

Again, in order to have δ decay, the real part of γ has to be negative. Hence, it follows

that

w0 <
η(1 + wB)

2
, (6.46)

and

w0 < c2s. (6.47)
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At this point, the above conditions cannot be translated into relations in terms

of ΓV without considering the functional form of F (X), since wφ and c2s both depend

on F (X). Now we discuss the restrictions on the form of F (X) for constant wφ.

A variety of functional forms for F (X) and V (φ) have been considered in k-

essence models (see, e.g., Refs. [131, 132]). However, we will focus on the form of

F (X) responsible for stable tracking solutions for a constant equation of state. In

order to find the functional form of F (X) for stable tracking solutions with constant

wφ, we note that equation (6.34) can be written as

∂lnF (X)

∂lnX
=

1 + wφ

2wφ

. (6.48)

Case 1. The first possibility emerges if we treat equation (6.48) as a differen-

tial equation and derive the general solution, which is

F (X) = Xβ, (6.49)

where β is a constant, and wφ is then

wφ =
1

2β − 1
. (6.50)

By inserting equation (6.49) into equation (6.35), we obtain

c2s =
1

2β − 1
, (6.51)

so that

c2s = wφ. (6.52)

These solutions were previously derived in Ref. [148]; we note here that they are

independent of η, and therefore of the expansion law. These solutions also do not

depend on the form of V (φ).

It is obvious from equation (6.52) that c2s < 0 for any of these models with

negative pressure (wφ < 0). If c2s < 0, then the k-essence fluid is unstable against

perturbation. Moreover, equation (6.49) describes a phantom field for 0 < β < 1/2.
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Case 2. A second class of solutions arises if the field evolves to a state for

which X = X0, where X0 is a constant [134, 130]. In this case, we have [130]

∂ lnF (X)

∂ lnX

∣∣∣∣
X=X0

=
1 + wφ

2wφ

(6.53)

Again, we see that equation (6.53) is independent of η and hence, independent of the

expansion law. However, the condition for a stable solution of the form X = X0 does

depend on η, as we now show.

From equation (6.41), the tracking conditions, equations (6.46)-(6.47), take

the following form in terms of ΓV :

ΓV >
2η(1 + wB) + 2

η(1 + wB) + 2
, (6.54)

and

ΓV > 1 +
η(1 + wB)

2(1 + c2s)
. (6.55)

Therefore, for a nearly constant ΓV , η, and wφ, equation (6.39) gives the following

possibilities:

a. If wφ < wB, then Ωφ increases with time. Then we conclude from equation

(6.39) that |
√

2XVφ/F
η
2V

η+2

2 | decreases for a tracker solution. However, taking the

time derivative of
(√

2XVφ/F
η
2V

η+2

2

)
, we obtain

d

dt

(
Vφ

V
η+2

2

√
2X

F
η
2

)
=

2X

F
η
2

V 2
φ

V
η+4

2

(
ΓV − η + 2

2

)
. (6.56)

In the derivation of this equation, we have used the condition that X = X0.

Hence, |
√

2XVφ/F
η
2V

η+2

2 | decreases if ΓV > (η + 2)/2. Thus, wφ < wB for

ΓV >
η + 2

2
. (6.57)

Combining this with the conditions for stable tracking behavior (equations 6.54-6.55),

we obtain

ΓV > max[
η + 2

2
,
2η(1 + wB) + 2

η(1 + wB) + 2
, 1 +

η(1 + wB)

2(1 + c2s)
]. (6.58)
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b. If wφ > wB, then tracking behavior is observed for

max[
2η(1 + wB) + 2

η(1 + wB) + 2
, 1 +

η(1 + wB)

2(1 + c2s)
] < ΓV <

η + 2

2
. (6.59)

c. If ΓV = (η + 2)/2, then wφ = wB. This case encompasses the solutions

presented in Ref. [146].

6.3 Conclusion

We have extended the formalism in Refs. [127] and [133] to derive the tracker

conditions for quintessence and k-essence, respectively, for an arbitrary cosmolog-

ical expansion law, H2 = f(ρ), when the universe is dominated by a background

fluid. Our main new result is that, with the exception of the special cases discussed

above, tracking solutions for either quintessence or k-essence are possible only for

η = d ln f/d ln ρ ≈ constant, which is the case only when f(ρ) is well-approximated

as a power-law. In fact, such power-law behavior corresponds to most of the models

previously considered for non-standard expansion laws.

We note further that the expressions for wφ for both quintessence and k-

essence, and the conditions for stable tracking behavior, can be derived by replacing

1+wB with η(1+wB) in all of the corresponding equations for the standard expansion

law. This is not surprising, since a given value of wB corresponds to a background

density scaling as ρB ∝ a−3(1+wB). Taking a constant value of η in equation (6.9) then

gives H2 ∝ a−3η(1+wB), so 1 + wB is replaced by η(1 + wB) in the expression for H2

(see also the discussion in Ref. [149]).
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6.4 APPENDIX

0.1 Signature And Weyl Representation

It is a well-known fact that the Dirac matrices, γµ, in any represtation must

satisfy the following relation to form a Clifford algebra, that is,

γµγν + γνγµ = 2ηµν , (60)

where ηµν is the Minkowski metric. In QFT, the representations of the Dirac matrics

are most commonly expressed in the signature (+−−−). In this signature, the above

relation can be decomposed as:

γ2
0 = Î , γ2

i = −Î , γµγν = −γνγµ ∀ µ 6= ν, (61)

where Î is the 4 × 4 unit matrix. Note that γ2
0 = Î and γ2

i = −Î implies that γ0 is

Hermitean and so unitary, but γµ is anti-Hermitean and unitary. Now, changing the

signature from (+ − −−) to (− + ++), the above relations (61) take the following

form:

γ2
0 = −Î , γ2

i = Î , γµγν = −γνγµ ∀ µ 6= ν. (62)

Notice that the Hermiticity of the Dirac matrices has changed under the above

signature-transformation, though the unitarity is preserved. In the new signature

(− + ++), γ0 is unitary and anti-Hermitean while γµ is unitary and Hermitean; in

other words, γ†0 = −γ0 and γ†µ = γµ. Now, let us make this observation that the rela-

tions in (62) can easily be obtained from (61) just by multiplying each of the Dirac

matrices by an i (imaginary). We also need to check the effect the above changes in

the Dirac matrices have on the Lorentz transformation and the Dirac bilinears.

Let us first note that γ5 := iγ0γ1γ2γ3 is invariant under this signature transfor-

mation. Next, a generic Lorentz transformation Λ acting on Ψ can be represented by

S(Λ) = exp(−1
4
iωµνσµν), where ωµν is the antisymmetric tensor with six independent
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components corresponding to the three rotation and three boost parameters, and

σµν is the generator defined as σµν := i
2
[γµ, γν ]. This representation of the Lorentz

transformation, S(Λ) can be derived from infinitesimal Lorentz transformations in the

standard manner presented in QFT, and hence we will not explore this here. However,

we do need to show that ΨΨ is a Lorentz scalar under the above signature transfor-

mation. In order to show this, the transformations of the following expressions are

needed to be computed first. Thus, in the new signature (− + ++),

(
σij
)†

= σij ,
(
σ0j
)†

= −σ0j , (63)

[γ0, σij] = 0 ,
[
γ0, σ0j

]
+

= 0 , (64)

where the bracket and the curly-bracket imply commutator and anti-commutator

respectively, the lower case roman letters i, j indicates the internal spatial indices, and

0 implies time coordinate. We want to emphasize that lowering or raising the time

coordinate change the sign of the gamma matrices. Now, using the above relations

(63), we obtain the following relation after some algebra:

γ0S†γ0 = −S−1, (65)

where

S† = exp

(
i

4
ωijσ

ij − i

2
ω01σ

01

)
. (66)

Finally, writing the equation (65) as S†γ0 = γ0S−1, we obtain the following

desired result:

Ψ
′
(x′)Ψ′(x′) = Ψ′†(x′)γ0Ψ′(x′) = (SΨ)†γ0Ψ′(x′)

= Ψ†(x)S†γ0SΨ(x) = Ψ†(x)γ0S−1SΨ(x)

= Ψ(x)Ψ(x) , (67)

where the primed indices represent the primed frame of reference. Similarly, using

the property, S−1γµS = Λµ
νγ

ν , which arises from the covariance (form invariance) of
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the Dirac equation under Lorentz transformation, one can show that Ψγ5Ψ, ΨγµΨ,

Ψγ5γ
µΨ, and ΨσµνΨ transform like a pseudoscalar, a vector, a pseudovector, and a

second rank tensor respectively. Hence, the set of 16 matrices {1, γµ, σµν , γµγ5, γ5}

forms a complete basis of the space of all 4 × 4 matrices. Therefore, the above

signature-transformation does not change the Clifford algebra; it only changes the

basis of the Dirac matrices.

So far, the analysis has been independent of a specific representation of the

Dirac matrices. However, the Weyl representation of the Dirac matrices is the most

commonly used to describe massless fermions, so we work with the Weyl represen-

tation in this paper. In the new signature (− + ++), the gamma matrices take the

following form in the Weyl representation:

γ0 =

(
0 iÎ2
iÎ2 0

)
, γi =

(
0 −iσi

iσi 0

)
, γ5 =

(
−Î2 0

0 Î2

)
.

0.2 The su(2) Spin Connection Γi
a on Σ

Torsion-free spin connection

In the torsion-free case, an explicit expression for the su(2) valued spin con-

nection Γ̃i
a can be derived from the fact that the covariant derivative of a co-triad

vanishes: Dae
i
b = ∂ae

j
b − Γc

abe
j
c + Γ̃ j

ai e
i
b = 0. Thus, Γ̃ j

ak = −eb
k(∂ae

j
b − Γc

abe
j
c) and

Γ̃i
a =

1

2
ǫij kΓ̃

k
aj = −1

2
ǫij ke

b
j(∂ae

k
b − Γc

abe
k
c ) (68)

where Γc
ab is the usual torsion-free Levi-Civita connection for Γ̃ k

aj := Γ̃l
aǫ

k
jl is used.

With the definition of the Levi-Civita connection and qab := ek
ae

k
b we obtain

ej
cΓ

c
ab =

1

2

(
ejdek

b∂ae
k
d + 2∂(ae

j
b) + edjek

a∂be
k
d − edjek

a∂de
k
b − edjek

b∂de
k
a

)
. (69)
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Inserting (69) into (68) , we finally obtain the desired expression for the spin connec-

tion

Γ̃i
a = −1

2
ǫij kΓ̃

k
aj =

1

2
ǫij ke

b
j(∂ae

k
b − Γc

abe
k
c ) =

1

2
ǫijkeb

k(2∂[be
j
a] + ec

je
l
a∂be

l
c) . (70)

The following expressions are useful for computing Γi
a with torsion from the

variational equations in the presence of fermions:

ea
i Γ̃

i
a = −1

2
ǫijkeb

ke
a
i ∂ae

j
b =

1

2
√
q
ǫabcej

c∂ae
j
b , (71)

and

δk
l ǫ

bcden
c ∂bedn + 2ǫbcdek

d∂be
l
c

= sgn det(ei
a)(

√
q

2
ǫijkǫijlǫ

mnpea
me

b
n∂beap + 2

√
qǫijkea

je
b
i∂be

l
a)

= sgn det(ei
a)
√
qǫijk(2ea

i e
b
l∂[ae

b
b] + ea

je
b
i∂be

l
a) . (72)

Finally, the Gauss constraint DbP
bm = ∂bP

bm + ǫ m
ij Γi

bP
bj = 1

2(1+γ2)

√
qJm for the

densitized triad P a
i implies

Γk
bP

bl − Γl
bP

bk = −ǫ kl
m ∂bP

bm +
1

2(1 + γ2)
ǫ kl
m

√
qJm

=
sgn det(ei

a)

γκ

(
−ǫbcdel

d∂be
k
c + ǫbcdek

d∂be
l
c

)
+

1

2(1 + γ2)
ǫ kl
m

√
qJm . (73)

Connection with torsion

Varying the action by connection components, we obtain

δL
δ( −Al

c)
=

1 + γ2

2
ǫjlkP

c
j ω

k0
t +

1 + γ2

2
ǫjklP

[c
i N

a]( +A
k
a + −A

k
a) +

1 + γ2

2γκ
ǫacd∂a(edlN)

+
γ2(1 + γ2)κ

2
√
q

N

κ
P a

[kP
c
l](

+A
k
a − −A

k
a) +

N c

4

√
q

(
γ +

1

α

)
Jl

−γκN
4

P c
l

(
γ +

1

α

)
J0 − γκN

4
ǫjlkP

c
j

(
1 − γ

α

)
Jk = 0 , (74)
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which in the canonical formulation serves as one of the second class constraints. After

expressing (74) in terms of Γi
a and Ki

a first and then contracting with em
c , we obtain

1 + γ2

2γκ
ǫmlk

√
q ω k0

t − 1 + γ2

2γκ
ǫmkl

√
q NaKk

a +
1 + γ2

2γκ

√
q ea

i e
m
c ǫ

i
klN

cKk
a

+sgn det(ei
a)

1 + γ2

2γκ
ǫbcdem

c edl∂bN + sgn det(ei
a)

1 + γ2

2γκ
ǫbcdem

c N∂bedl

−(1 + γ2)

2γκ

√
q N(ea

i δ
m
l − ea

l δ
m
i )Γi

a

= −βN
cem

c

4

√
qJl +

Nθ

4
ǫmlk

√
qJk +

βN

4
δm
l

√
qJ0 . (75)

Contracting it with δl
m and using the Gauss constraint, this equation simplifies con-

siderably to

sgn det(ei
a)

1 + γ2

2γκ
Nǫbcdel

c∂bedl − (1 + γ2)NP a
i Γi

a =
3

4
βN

√
qJ0 . (76)

Symmetrizing the indices m and l in (75) and using (76) for ea
i Γ

i
a, we obtain the

following symmetric combination of P a
l and Γm

a

γκ(P a
l Γm

a + P a
mΓl

a) = sgn det(ei
a)(δ

m
l ǫ

bcden
c ∂bedn − ǫbcdem

c ∂bedl − ǫbcdecl∂be
m
d )

− βγκ

2(1 + γ2)
δm
l

√
qJ0 . (77)

On the other hand, the second class constraints can be seen to provide an equation

2∂bP
bm + 2ǫi

jmP b
j Γi

b = θ
√
qJm/(1 + γ2), or

γκ(P alΓm
a − P amΓl

a) = sgn det(ei
a)(ǫ

bcdem
d ∂be

l
c + ǫbcdecl∂be

m
d ) +

θγκ

2(1 + γ2)
ǫ ml
j

√
qJ j .(78)

Combining (77) and (78) yields

2γκP alΓk
a = sgn det(ei

a)(δ
klǫbcden

c ∂bedn + 2ǫbcdek
d∂be

l
c)

+
γκ

2(1 + γ2)

(
θ ǫ kl

j

√
qJ j − βδkl√qJ0

)
. (79)

Next, inserting (72) into (79), we find

ec
lΓ

k
c =

1

2
ǫijkea

i (2e
b
l∂[ae

j
b] + eb

j∂aebl) +
γκ

4(1 + γ2)

(
θ ǫ kl

j J j − βδklJ0
)
, (80)

and finally (2.32).
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0.3 Pressure

The general, thermodynamical definition of pressure is the negative change of

energy by volume, which we can write as

P = − 1

N

δH

δ
√
q

(81)

whenever the Hamiltonian H =
∫

d3xN(x)H(x) is depends isotropically on the met-

ric. Otherwise, one has to use all components of the stress tensor δH/δqab which is

not proportional to the identity. The derivative by the determinant of the metric

can be expressed in terms of metric components by using a suitable change of vari-

ables which includes q as an independent one. We thus introduce qab =: q1/3q̄ab with

det q̄ab = 1 such that ∂qab/∂q = 1
3
q−1qab where all components of q̄ab are kept fixed in

the partial derivative. This is exactly what we need to compute pressure since only

the volume but not the shape of the fluid is varied. This change of variables implies

δ

δ
√
q

= 2
√
q
δ

δq
= 2

√
q
∑

ab

∂qab

∂q

δ

δqab

=
2

3
√
q

∑

ab

qab
δ

δqab

and thus

P = − 2

3N
√
q
qab

δH

δqab

. (82)

We can also verify this by comparing the dynamical effects of H on the metric

with the Raychaudhuri equation expressed in terms of the canonical variables which

for simplicity we do for homogeneous metrics. Using the following definitions for the

extrinsic curvature tensor Kab = ∇anb (which turns out to be automatically spatial

and symmetric without projection if homogeneity is used), the expansion parameter

θ = Kabq
ab and the shear σab = K(ab) − 1

3
θqab, the canonical momentum conjugate to

qab derived from the gravitational Lagrangian is

πab =

√
q

16πG

(
Kab −Kc

cq
ab
)

=

√
q

16πG

(
σab − 2

3
θqab

)
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where G is the gravitational constant. Then the Raychaudhuri equation in terms of

the canonical variables takes the following form:

θ̇ = −8πG
d

dt

(
πabqab√

q

)
. (83)

The canonical equations of motion, in the presence of a matter Hamiltonian H added

to the gravitational Hamiltonian to form HTotal, become

q̇ab =
δHTotal

δπab
=

16πGN√
q

(2πab − qabπ
c
c) + 2D(aNb) (84)

and

π̇ab = −δHTotal

δqab

= −N
√
q

16πG

(
(3)Rab − 1

2
(3)Rqab

)
+

8πGN√
q

qab

(
πcdπ

cd − 1

2
π2

)

−32πGN√
q

qab

(
πacπb

c −
1

2
ππab

)
− δH

δqab

+

√
q

16πG

(
DaDbN − qabDcDcN

)

+
√
qDc

(
N cπab

√
q

)
− 2πc(aDcN

b), (85)

where Da is the derivative operator compatible with qab. Variation of the total action

with respect to the lapse function N yields the Hamiltonian constraint equation

−
√
q

16πG
(3)R +

16πG√
q

(
πabπab −

1

2
π2

)
+H = 0. (86)

Upon inserting equations (84), (85), and (86) into equation (83), the Raychaudhuri

equation becomes

θ̇

N
= −1

3
θ2 − σabσab −

4πG

N
√
q
H +

8πG

N
√
q
qab

δH

δqab

(87)

+DaDaN − 8πGDc

(
N cπa

a√
q

)
+

16πG√
q
πcaDcNa ,

which, for a homogeneous universe, reduces to

θ̇

N
= −1

3
θ2 − σabσab −

4πG

N
√
q
H +

8πG

N
√
q
qab

δH

δqab

. (88)

On the other hand, for a perfect fluid distribution, the Raychaudhuri equation is

found to be

θ̇

N
= −1

3
θ2 − σabσab − 4πG (ρ+ 3P ) . (89)
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Now comparing equation (88) with equation (89), we verify the canonical formula for

the average pressure for a perfect fluid distribution in an anisotropic geometry

P = − 2

3N
√
q
qab

δH

δqab

=
2

3N
√
q
qab δH

δqab
. (90)

0.4 Bianchi Models

Bianchi models describe most spatially homogeneous anisotropic cosmologies,

which is presented in this section for completeness. Bianchi classified 3-D Lie algebra

of a symmetry group S for spatial homogeneity to give rise to different inequivalent

cosmological models known as Bianchi models. More precisely, spatial homogeneity

implies that there is a symmetry group S and a time function t such that S acts

transitively1 on each spatial slice Σt. Then, the symmetry group has a Lie algebra of

spatial Killing vector fields (ξa
I )I=1,...,3 such that

[ξI , ξJ ] = −C̃K
IJξK (91)

with structure constant C̃K
IJ ∈ R being antisymmetric in I and J . Given this Lie

algebra, a tangent space basis of invariant spatial vector fields Xa
I can be determined

since the Lie bracket (Lie derivative) of these fields with all symmetry generators ξa
I

must vanish, i.e., by expanding Xa
I = XJ

I ξ
a
J , the following relations

[ξI , XJ ]a =
(
ξb
I∇bX

K
J

)
ξa
K −XK

J C̃
L

IKξ
a
L = 0 (92)

must satisfy for all functions XJ
I . It follows easily from (92) that the invariant vector

fields Xa
I form a closed algebra under Lie brackets:

[XI , XJ ]a = CN
IJX

a
N with CN

IJ := XJ
I X

K
J C̃

M
LK(X−1)N

M . (93)

1The action of S on Σt is transitive if any pair of points p, q ∈ Σt can be connected by an element
of S, i.e., for all p, q ∈ Σt, there exists s ∈ S such that p = sq. However, if simply transitive or free

action (instead of just transitive action) is considered, then Σt can be identified with the symmetry
group S and the action on Σt corresponds to a group automorphism. This is exactly what is needed
for LQG since it is formulated in su(2) valued canonical variables and is therefore followed in section
4.2.
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The new structure constants CN
IJ are equivalent to the original one since XJ

I is

invertible and also they are invariant under the action of S, i.e. ξa
L∇aC

K
IJ = 0 for all

L since {Xa
K} is a basis. Now, given a basis vector fields Xa

I , there is a unique dual

basis of the cotangent space given by 1-forms ωI
a satisfying Xa

Jω
I
a = δI

J . Then, it is

straightforward to show that the dual basis vectors are invariant under the action S,

i.e. LξJ
ωI

a = 0. These invariant 1-forms satisfy the Maurer-Cartan relations

D[aω
I
b] = −1

2
CI

JKω
J
aω

K
b . (94)

With these constructions, one can define invariant tensors which have vanishing Lie

derivatives along the ξI . For example, a class of homogeneous metrics can be defined

as hab = hIJω
I
aω

J
b with a symmetric matrix hIJ with coefficients depending on time

only.

Now, the structure constants cannot be chosen arbitrarily since the symmetry

generators ξI that form a Lie algebra obey antisymmetry of the Lie bracket and the

Jacobi identity. This reduces the possible choice of CI
JK to nine types as classified

by Bianchi. First, using antisymmetry, all the information in the structure constants

can equivalently expressed by a matrix

1

2
CI

JKǫ
JKL =: n(IL) + A[IL] = n(IL) + ǫILKaK . (95)

In the first step, this matric is decomposed into its symmetric and anitsymmetric

parts and then its amtisymmetric part is expressed by its three non-trivial components

gathered in the vector aK . Then, it follows that

aI =
1

2
CK

JK

and CI
JK =

1

2
CI

LMǫ
LMNǫNJK = ǫNJKn

(IN) + δI
KaJ − δI

JaK . (96)

Next, the symmetric matix can be diagonalized by a constant change of basis Xa
I as

n(IJ) = n(I)δIJ (where we are not summing over I on the right hand side as indicated

by the brackets).
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Now, the vector aI splits the Bianchi models into two classes: Bianchi class A

models with aI = 0 and Bianchi class B models with aI 6= 0. Finally, with the use the

Jacobi identity and suitable re-definition of the Lie algebra basis, all components of

the structure constants can be further simplified to have values either zero or ±1 so

only relative signs between the parameters are relevant. The details of the complete

classification can be found in [76].

For the Bianchi class A models discussed in Chapter IV, the structure con-

stants take the following values: CI
JK = ǫIJKn

(I) with n(I) = 0 for Bianchi I models

and n(I) = +1 for Bianchi IX models.

0.5 Quantization of The Bianchi IX with EM

In this section, we provide a construction of kinematical Hilbert space for

anisotropic models with Maxwell’s theory. This construction closely mimics that for

fermions presented in section 4.3.

Quantum Kinematics

We start with basic variables according to the Poisson structure of homoge-

neous models and Maxwell’s theory. Since the geometrical sector has already been

discussed in details in the literature, we mainly focus on Maxwell’s theory. It follows

from (4.49) that the Poisson structure of reduced Einstein-Maxwell’s theory is given

by
{
φEM

I , pJ
EM

}
= δJ

I . (97)

Now, as in any loop quantization, states in the connection representation are
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constructed by taking exponentials

exp(µ1c1Λ
i
1τi) ∈ SU(2) , exp(µ2c2Λ

i
2τi) ∈ SU(2) , exp(µ3c3Λ

i
2τi) ∈ SU(2),

exp(in1φ
EM
1 ) ∈ U(1) , exp(in2φ

EM
2 ) ∈ U(1) , exp(in3φ

EM
3 ) ∈ U(1)

for all µI , nI ∈ R, ,Λi
I ∈ SO(3) (98)

as they arise in holonomies. Using holonomies in the general setting is important

for a background independent basic algebra of variables. This crucial feature is

then reflected also in symmetric models based on exponentials of connection compo-

nents. The parameters µI and nI can take any real value, corresponding to evaluating

holonomies along straight edges (tangential to Xa
I ) of arbitrary length.

Matrix elements of the exponentials in (98) form a C∗-algebra of (almost)

periodic functions. Any function generated by this set can be written as

ggrav(c1, c2, c1) =
∑

µ1,µ2,µ3

ξµ1,µ2,µ3
exp

(
1
2
iµ1c1 + 1

2
iµ2c2 + 1

2
iµ2c3

)
, (99)

and

gEM(φEM
1 , φEM

2 , φEM
3 ) =

∑

n1,n2,n3

χn1,n2,n3
exp

(
1
2
in1φ

EM
1 + 1

2
in2φ

EM
2 + 1

2
in3φ

EM
3

)
,

(100)

with coefficients ξµ1,µ2,µ3
, χn1,n2,n3

∈ C, and µ1, µ2, µ3, n1, n2, n3 ∈ R. This provides

a complete set of continuous functions on RBohr × RBohr × RBohr, where RBohr is the

Bohr compactification of the real line. (By definition, RBohr is the compactification of

R such that the set of all continuous functions on it is just the set of almost periodic

functions.) Again, all spaces in the product are compact Abelian groups and carry

a unique normalized Haar measure dµ(c) in the case of RBohr as described in the

fermion case.

By Cauchy completion, we obtain the total Hilbert space as a tensor product

H = Hgrav⊗HEM = H⊗3
Bohr⊗H⊗3

Bohr with the Hilbert spaces HBohr = L2(RBohr, dµ(c)) of

square integrable functions on the Bohr compactification of the real line. Orthonormal
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bases for these spaces are given by 〈c|µ〉 = exp(iµc/2), µ ∈ R, and 〈φEM|n〉 =

exp(inφEM/2), n ∈ R, respectively with

〈µ|µ′〉 = δµ,µ′ , 〈n|n′〉 = δn,n′ . (101)

The configuration variables act in the obvious manner: For all g1 and g2 of the

form (99) and (100), we have

(ĝ1g2) (c1, c2, c3) = g1(c1, c2, c3)g2(c1, c2, c3) (102)

and

(
ĝEM
1 gEM

2

)
(φEM

1 , φEM
2 , φEM

3 ) = gEM
1 (φEM

1 , φEM
2 , φEM

3 )gEM
2 (φEM

1 , φEM
2 , φEM

3 ) (103)

respectively and the corresponding momentum operators are represented by

p̂I = −iγℓ2P
∂

∂cI
and p̂J

EM = −i~ ∂

∂φEM
J

, (104)

where ℓ2P = κ~. (The densitized triad and electric field in general are quantized via

fluxes, i.e. 2-dimensional integrations over surfaces. In a homogeneous context, how-

ever, this is not required and densitized triad components can directly be promoted

to operators.)

Common eigenstates of all triad operators p̂I and electric field operators p̂J
EM

are

|µ1, µ2, µ3〉 := |µ1〉 ⊗ |µ2〉 ⊗ |µ3〉 and |n1, n2, n3〉 := |n1〉 ⊗ |n2〉 ⊗ |n3〉 (105)

The eigenvalues of the triad operators can be read off from

p̂I |µ1, µ2, µ3〉 =
1

2
γℓ2PµI |µ1, µ2, µ3〉 =: pI |µ1, µ2, µ3〉 (106)

and p̂I
EM|n1, n2, n3〉 =

1

2
~nI |n1, n2, n3〉 =: pEM

I |n1, n2, n3〉 . (107)

Using the basic operators p̂I one can define the volume operator V̂ =
√
|p̂1p̂2p̂3| which

will be used later. Its eigenstates are also |µ1, µ2, µ3〉 with eigenvalues

V (µ1, µ2, µ3) = (
1

2
γℓ2P)

3

2

√
|µ1µ2µ3| . (108)
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A kinematical state |s〉 for the full Hilbert space is described in the triad

representation by coefficients sµ1,µ2,µ3;n1,n2,n3
defined via,

|s〉 =
∑

µ1,µ2,µ3;n1,n2,n3

sµ1,µ2,µ3;n1,n2,n3
|µ1, µ2, µ3〉 ⊗ |n1, n2, n3〉 . (109)

For a state to be gauge invariant under the residual gauge transformations, the coef-

ficients sµ1,µ2,µ3;n1,n2,n3
have to satisfy

sµ1,µ2,µ3;n1,n2,n3
= s−µ1,−µ2,µ3;n1,n2,n3

= sµ1,−µ2,−µ3;n1,n2,n3
= s−µ1,µ2,−µ3;n1,n2,n3

. (110)

These states are left invariant by the gauge invariant triad operators |p̂I | and the

orientation operator sgn(p̂1p̂2p̂3). In calculations it is often easier to work with non-

gauge invariant states in intermediate steps and project to gauge invariant ones in

the end.

Together with the basic derivative operators p̂I we need multiplication oper-

ators which usually arise from (point) holonomies hI = exp(c(I)Λ
i
Iτi) = cos(1

2
cI) +

2Λi
Iτi sin(1

2
cI) with action

cos(
1

2
c1δ1)|µ1, µ2, µ3〉 =

1

2
(|µ1 + δ1, µ2, µ3〉 + |µ1 − δ1, µ2, µ3〉) (111)

sin(
1

2
c1δ1)|µ1, µ2, µ3〉 = −1

2
i(|µ1 + δ1, µ2, µ3〉 − |µ1 − δ1, µ2, µ3〉) (112)

sin(
1

2
φEM

1 δ1)|n1, n2, n3〉 = −1

2
i(|n1 + δ1, n2, n3〉 − |n1 − δ1, n2, n3〉) (113)

and correspondingly for c2,c3,n2 and n3.
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