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CHAPTER I 

 

INTRODUCTION 

 

 Students face misconceptions when learning in a variety of domains. For 

example, students often think that the seasons are caused by earth’s changing distance 

from the sun (Mestre, 1994) and elementary-school children often think that 0.25 is 

greater than 0.8 because 25 is greater than 8 (Resnick et al., 1989). Misconceptions such 

as these can persist over a long period of time, and in order to master a domain, these 

misconceptions need to be overcome (Eryilmaz, 2002). In the current study, we examined 

whether comparison of correct and incorrect examples could help alleviate 

misconceptions and aid students learning about decimal fractions. In the introduction, we 

outline the benefits of using incorrect examples, the potential role of comparison in 

learning from incorrect examples, and common misconceptions in the target domain of 

decimal fractions. 

 

Benefits of Incorrect Examples 

People’s intuition and original behaviorist principles suggest that exposure to 

incorrect examples may reinforce incorrect responses, and therefore should not be used. 

However, research indicates that presenting students with examples of their 

misconceptions can be beneficial for correcting them and for improving knowledge of 

concepts (Eryilmaz, 2002; Huang, Liu, & Shiu, 2008; Van den Broek & Kendeou, 2008) 

and procedures (Große & Renkl, 2007; Siegler, 2002). 
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Presenting students with incorrect examples may allow them to recognize 

misconceptions and consequently improve their knowledge of correct concepts. This has 

been best studied in the physics learning literature. Directly exposing students to physics 

misconceptions was more effective for helping students overcome their misconceptions 

than focusing exclusively on correct concepts (Eryilmaz, 2002; Mestre, 1994). Science 

texts in many domains have sometimes capitalized on this idea with refutation texts 

(Alvermann & Hague, 1989; Diakidoy, Kendeou, & Ioannides, 2003; Van den Broek & 

Kendeou, 2008). These refutation texts place incorrect examples in textbooks along with 

correct examples to teach scientific concepts (although the examples are not directly 

compared). Students who used such refutation texts were more likely to revise incorrect 

knowledge than students who did not see any incorrect examples in their text (Van den 

Broek & Kendeou, 2008). By engaging students’ conflicting correct and incorrect 

concepts, students may create a new mental representation of the material that labels 

incorrect concepts as wrong (Van den Broek & Kendeou, 2008). In addition, using 

incorrect examples may motivate students to think more deeply about the correct 

concepts (VanLehn, 1999). Thus, presenting incorrect examples may help students 

recognize their misconceptions and focus their attention on understanding the correct 

concepts. 

A vast majority of the literature on incorrect examples has focused on scientific 

misconception, but there is limited evidence that exposing students to incorrect 

mathematics examples can help students overcome their misconceptions and increase 

their knowledge of math concepts. In one study, sixth-grade students were exposed to 

incorrect examples when learning about the meaning of decimals (e.g. in 5.4, saying the 
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.4 represents 4 ones instead of 4 tenths). These students retained correct concepts after a 4 

week delay better than students who were not presented with incorrect examples (Huang 

et al., 2008).  

Exposure to incorrect examples may also benefit students by reconciling 

competing procedures and improving the likelihood that correct procedures will be used. 

People use multiple procedures and ways of thinking at any given time, and often people 

continue to use incorrect procedures after correct ones have been learned (see Siegler, 

2002 for a review). For example, the misconception that the equal sign means “add up the 

numbers” is pervasive in elementary school, and it leads many children to use incorrect 

procedures, such as adding all the numbers present in the equation, when solving math 

equivalence problems such as 3 + 4 + 5 = __ + 5 (Carpenter, Franke, & Levi, 2003; 

McNeil, 2008; Perry, 1991). Even after children learn correct procedures for solving 

math equivalence problems, they continue to use their old, incorrect procedures (e.g., 

Alibali, 1999; Rittle-Johnson & Alibali, 1999). Having students explain why incorrect 

procedures are wrong is one way to reduce their use of incorrect procedures. Children 

who explained both correct and incorrect solutions were able to solve more difficult 

problems than those who only explained correct solutions because they were more likely 

to learn and use correct procedures that were applicable to a range of problem types 

(Siegler, 2002). Similar results have been found for college students learning algebra and 

probability (Curry, 2004; Große & Renkl, 2007). Siegler (2002) proposed that explaining 

incorrect examples helps decrease the strength of incorrect procedures, reducing the 

probability that the procedure will be selected in the future. This may occur in part 

because studying incorrect procedures can lead people to verbalize more thoughts, 
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including explanations of why the procedure is wrong and elaborations of correct 

procedures (Große & Renkl, 2007). However, the benefits of studying incorrect examples 

may only arise for learners with sufficient prior knowledge to generate reasonable 

explanations (Große & Renkl, 2007). Although not always effective, presenting people 

with examples of misconceptions and incorrect procedures often helps them recognize 

their incorrect ways of thinking and learn correct concepts and procedures. 

 

Comparison of Incorrect and Correct Examples 

Currently, it is unclear what role comparison plays in learning from incorrect 

examples. It seems likely that comparison of incorrect examples to correct ones is a 

powerful learning process. For example, if incorrect examples promote deeper reflection 

on correct concepts (VanLehn, 1999) and change the relative probability of selecting 

correct over incorrect procedures (Siegler, 2002), incorrect examples are likely being 

compared to correct ones. However, the role of comparison has never been tested in 

studies on incorrect examples. We briefly review the design of past studies on incorrect 

examples and relate these design features to what is known about how to support learning 

from comparison of correct examples. 

In most past research, incorrect examples were presented alone and were not 

directly compared to correct examples (Große & Renkl, 2007; Huang et al., 2008). 

Students may have spontaneously compared the incorrect examples to correct examples, 

but doing so would require good metacognitive skills (recognizing the benefits of doing 

so) and impose high-working memory load (the need to recall a correct example and keep 

it in mind during the comparison process) (Richland, Morrison, & Holyoak, 2006). 
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Indeed, when studying multiple correct examples, sequential presentation of examples 

does not support learning as well as simultaneous presentation of the examples, in part 

because simultaneous presentation greatly increases the frequency of comparison 

(Gentner, Loewenstein, & Thompson, 2003; Rittle-Johnson & Star, 2007; Star & Rittle-

Johnson, 2009). We could only identify one prior study on mathematics learning in which 

an incorrect solution was presented at the same time as a correct solution (Siegler, 2002), 

as well as a few studies on refutation science texts in which incorrect examples were 

presented on the same page as correct examples (Alvermann & Hague, 1989; Diakidoy et 

al., 2003; Van den Broek & Kendeou, 2008). However, in none of these studies were 

students prompted to compare the two – rather, they were prompted to think about each 

example individually. Explicit and focused prompts to compare greatly enhance the 

benefits of studying multiple correct examples (Catrambone & Holyoak, 1989; Gentner et 

al., 2003). We suspect the same is true for incorrect examples. 

Given the potentially important role of comparison in learning from incorrect 

examples, we were interested in the benefits of learners comparing correct and incorrect 

examples, over and above the general benefits of comparison. Comparison is often lauded 

as an effective and important learning process in both cognitive science (Gentner et al., 

2003; Gick & Holyoak, 1983) and in mathematics education (NCTM, 2000). Comparing 

two correct examples can help people create correct knowledge categories, increase 

knowledge of concepts, and increase flexible use of procedures (e.g., Kotovsky & 

Gentner, 1996; Rittle-Johnson & Star, 2009). For example, comparing two correct 

solution procedures improved students’ learning of equation-solving and estimation 

procedures more than examining the same examples one at a time (Rittle-Johnson & Star, 
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2007; Rittle-Johnson, Star, & Durkin, in press; Star & Rittle-Johnson, 2009). In the 

domain of estimation, comparison also improved students’ conceptual knowledge more 

than viewing examples sequentially (Star & Rittle-Johnson, 2009). Comparing correct 

examples may also reduce misconceptions, but this possibility has not been tested. 

Because comparison of two correct examples is an effective route to establishing correct 

concepts and procedures, it should also reduce misconceptions in conflict with them. 

 

The Target Domain and Outcomes 

To evaluate the effectiveness of comparing incorrect examples to correct ones, we 

chose an important mathematical domain with many documented misconceptions. The 

National Mathematics Advisory Panel Report (2008) emphasized the importance of 

students mastering decimal fractions, commonly referred to as decimals (Resnick et al., 

1989). However, the Panel also reported that in general, students receive very poor 

preparation in decimals. Algebra teachers surveyed by the Panel identified their students’ 

lack of knowledge about fractions and decimals as the second largest barrier to learning 

algebra, while also listing fraction and decimal knowledge as the third most important 

skill students need to successfully learn algebra (National Mathematics Advisory Panel 

Subcommittee, 2008). Indeed, it is well documented that students often have difficulty 

understanding decimals (Glasgow, Ragan, Fields, Reys, & Wasman, 2000; Kouba, 

Carpenter, & Swafford, 1989; Rittle-Johnson, Siegler, & Alibali, 2001), and in fact, 

adults frequently have trouble with decimals as well (Putt, 1995; Stacey et al., 2001).  

One reason for these difficulties is that students have common and persistent 

misconceptions involving decimal magnitude (Glasgow et al., 2000; Irwin, 2001; Resnick 
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et al., 1989; Sackur-Grisvard & Leonard, 1985). Students often treat decimals as if they 

are whole numbers (e.g. they think 0.25 is greater than 0.7, since 25 is greater than 7). A 

related misconception is specific to the role of zero, which is different for whole and 

decimal numbers. When a zero is in the tenths place, students will often ignore it and 

treat the following digit as if it is in the tenths place (e.g. students will think 0.08 is the 

same as 0.8). Students will also frequently assume that adding a zero on the end of a 

number increases its magnitude (e.g. 0.320 is greater than 0.32). Again, students are 

incorrectly applying knowledge about whole numbers to decimals (e.g., 08 is the same as 

8 and 320 is greater than 32). Finally, some students think that all decimals less than one 

are less than zero because they start with “0” (Glasgow et al., 2000; Irwin, 2001; Resnick 

et al., 1989). 

These misconceptions interfere with conceptual understanding of decimals and 

manifest themselves in various ways. Without an early knowledge of decimal concepts, 

students have difficulty doing later mathematical tasks involving decimals (Hiebert & 

Wearne, 1985). For example, when asked to add or subtract two decimals, students often 

do not know how to align the numbers properly. This seems to be a result of students 

relying on a set of learned procedures without a solid conceptual foundation (Hiebert & 

Wearne, 1985). The persistent misconceptions evident in students’ decimal knowledge 

must be overcome so that students can become proficient with decimals, as well as go on 

to treat decimal numbers appropriately in more advanced mathematics.  

Number line tasks can serve as a useful way to teach students about decimal 

magnitude (National Mathematics Advisory Panel, 2008; Rittle-Johnson et al., 2001). It 

is a relevant but novel task for most students. Placing fractions and decimals on a number 
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line can help students better understand magnitude relations and link knowledge of 

procedures and concepts (National Mathematics Advisory Panel, 2008). Therefore, we 

focused on children learning to place decimals on number lines, a task that should engage 

their concepts of decimal magnitude as well as support generation and use of procedures 

for placing values on number lines.  

 

Current Study 

 In the current study, students either compared two correct procedures for solving 

a problem or compared an incorrect procedure based on a common misconception to a 

correct one. All students studied worked examples of number line problems and were 

prompted to self-explain because the combination of worked examples and self-

explanation improves learning in a large variety of domains (see Atkinson, Renkl, & 

Merrill, 2003 for a review). We also included practice problems on which students 

received immediate feedback, since such practice is important when learning from 

worked examples (Atkinson, Derry, Renkl, & Wortham, 2000). Before and after the 

intervention, we assessed students’ knowledge of related concepts and procedures, as 

well as their misconceptions of decimal magnitude. In addition, we explored students’ 

explanation quality to gain insights into how different types of comparison impacted 

learning. 

We hypothesized that although both groups would show learning gains, students 

who compared correct and incorrect examples would reduce their misconceptions more, 

would perform better on conceptual and procedural measures and would retain 

knowledge better over a delay than students who were prompted to compare two correct 
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examples. We made this prediction based on evidence for the general benefits of 

exposing students to incorrect examples (e.g., Eryilmaz, 2002; Huang et al., 2008) and 

the expectation that incorrect examples would help flag misconceptions as errors (Van 

den Broek & Kendeou, 2008), would increase attention to correct concepts (VanLehn, 

1999), and would increase the likelihood that correct procedures would be selected over 

incorrect ones (Siegler, 2002). 
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CHAPTER II   

 

METHOD 

 

Participants  

  Consent was attained from 103 fourth- and fifth-grade students from three urban 

parochial schools (59 female, 44 male). Students solving 75% or more of the learning 

problems correctly at pretest were excluded from this study because they had already 

mastered the skills that would be taught in the intervention. 

  The final sample consisted of 74 students (48 female, 26 male):  43 from fourth-

grade classes and 31 from fifth-grade classes. The average age was 10.5 years (range 7.0 

to 12.7 years). At one school, four of the students were actually third graders working at a 

fourth-grade level. The fourth-grade classes used the Saxon Math or Sadlier-Oxford Math 

textbook, and the fifth grade classes used either the Saxon Math or Harcourt Math 

textbook. Most students had not yet received much formal instruction in decimals, 

although some fifth-grade students had had some instruction. 

 

Design 

  Students participated in a pretest-intervention-posttest design, including a two-

week retention test. Students were randomly assigned to one of two intervention 

conditions:  the incorrect condition (n = 37) or the correct condition (n = 37). In both 

conditions, students received the same introductory lesson on decimals and then 

completed a packet with 12 pairs of worked examples. Each pair illustrated two different 
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procedures for placing a decimal value on a number line from 0 to 1, followed by 

questions prompting them to reflect on the two examples (see Figure 1 for examples). 

The students in the incorrect condition compared one correct and one incorrect example 

in each pair, while students in the correct condition compared two different correct 

examples in each pair. During the intervention, students also solved four practice 

problems and received accuracy feedback. After completing the intervention, students 

completed an immediate posttest. Approximately two weeks later, students completed a 

retention test. 

 

Materials 

 

Introductory Lesson 

All students received a five minute lesson on decimals and place value adapted 

from a lesson in the Everyday Mathematics curriculum (Bell et al., 2004). The purpose of 

this lesson was to help students become acquainted with terminology (e.g. tenths, 

hundredths, and thousandths) and understand what different place values meant (e.g. that 

the value in the hundredths place is ten times greater than the value in the thousandths 

place). 

 

Intervention Packet 

  Each packet contained 24 worked examples of decimal number line problems and 

24 corresponding questions, presented in pairs. Each worked example showed where a 

hypothetical student placed a decimal on a number line from 0 to 1 and an explanation of 
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his or her procedure (See Figure 1). The decimals varied in number of digits (tenths, 

hundredths or thousandths), magnitude (greater than or less than 0.5), and whether a zero 

was included. On the first 12 worked examples, the tenths were marked on the number 

line, since tenths marks help students learn about decimal magnitude (Rittle-Johnson et 

al., 2001). On the remaining 12 worked examples, the tenths were not marked since 

fading of instructional supports has been shown to improve the robustness of student 

learning (Atkinson et al., 2003).  

  Three different correct procedures were illustrated across the worked examples, 

based on procedures students have reported using in past research (Irwin, 2001; Rittle-

Johnson et al., 2001). The first focused on the number of tenths in a decimal, placing the 

value close to where that number of tenths would go (e.g., For 0.312, estimating where 3 

tenths would go, and then moving over a little more). A second was imaging the line 

divided into the number of pieces specified by the smallest place value and placing the 

decimals based on this (e.g. For 0.312, imagine dividing the line into 1000 pieces and 

estimating where 312 would be placed). The third was a benchmark procedure in which 

the location was estimated based on knowledge of its magnitude in relation to 0, 0.5, and 

1.  

  Three different incorrect procedures were illustrated in the incorrect condition. 

Each corresponded to common decimal misconceptions (Irwin, 2001; Resnick et al., 

1989). One procedure was to treat decimals like whole numbers (e.g. thinking that 0.9 is 

like 9, a small number, and thus placing 0.9 close to 0). A second procedure was to think 

of all decimals as less than zero and place them before zero. The third procedure 

incorporated a misconception about the role of zero. Specifically, this procedure was to 
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ignore zeros in the tenths place and to think that zeros placed at the end of a decimal 

made its value bigger.  

  In the packet for the incorrect condition, one correct and one incorrect procedure 

was illustrated on each page, with the three correct and three incorrect procedures evenly 

distributed throughout the packet. Each page of the packet also contained two questions 

prompting students to explain why an example was correct or incorrect, explain why a 

decimal should be placed closer to 0 or 1, and/or describe an additional correct procedure 

for solving the problem. 

  In the packet for the correct condition, two different correct procedures were 

illustrated on each page, with the three correct procedures evenly distributed throughout 

the packet. The two questions on each page prompted students to explain why each 

example was correct, explain why a decimal should be placed closer to 0 or 1, describe an 

additional correct procedure for solving the problem, and./or describe one of the correct 

procedures to a new student.  

  After every three pairs of worked examples, a practice problem was presented. 

Students were asked to place a slash on the number line where a decimal would be 

located (i.e., 0.164, 0.89, 0.8, and 0.310) and to justify their answer. Following their 

justification, students were given feedback as to whether their placement was correct and 

to where the slash should have been on the number line. On the first two problems, the 

tenths were marked, and on the second two problems, they were not. 
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Incorrect Condition 
  

 Correct 

 

 

 Incorrect 

  

 

 

1. Why is Tyler’s way of thinking incorrect? 

2. Explain why John’s way of thinking is correct. 

Correct Condition 

   Correct 

 

 

 

 Correct 

 
 
 
 
 

 

1.  How are Kim’s and John’s ways different? 

2. Explain why both ways of thinking are correct. 

Figure 1:  Sample Intervention Packet Page for Each Condition

0 10.9 

0 10.9 

 
John said, “9 tenths is 9 out 
of 10 tenths. Because the 
line is divided into 10 
tenths, I counted over to 9 
tenths.” 

Kim said, "I know 9 tenths 
is only one tenth smaller 
than 1.  So I marked 0.9 a 
little before 1." 

John said, “9 tenths is 9 out 
of 10 tenths. Because the 
line is divided into 10 
tenths, I counted over to 9 
tenths.” 

Tyler said, "9 is a small 
number.  So I’m going to 
put 0.9 close to 0.” 

0 10.9

0 10.9 
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Assessment 

The same assessment was used as a pretest, posttest, and retention test. This 

assessment was designed to measure knowledge of procedures and concepts and was 

adapted from the one used in Rittle-Johnson et al. (2001). Sample items of each 

knowledge type are shown in Table 1. The decimals varied in number of digits (tenths, 

hundredths, and thousandths), magnitude (greater than or less than 0.5), and whether a 

zero was included. The procedural items were four familiar, learning problems and eight 

novel, transfer problems. Target values were specifically chosen to make it easy to 

recognize misconception errors. On the learning problems, students needed to place a 

decimal on a number line from 0 to 1, similar to the problems they completed during the 

intervention. On one kind of transfer problem, students needed to identify from a list 

which decimal was already marked on a number line. Thus, students were asked to do the 

reverse of what they had done during the intervention. The second kind of transfer 

problem involved number lines from zero to ten, and students needed to place a decimal 

greater than 1 in relation to another number marked on the number line (e.g. place 3.8 in 

relation to 3.52). Internal consistency on this measure was good (α = .79).  

The conceptual items were designed to measure students’ understanding of 

fundamental decimal concepts and the four types of items were based on past 

assessments (see Table 1; Irwin, 2001; Rittle-Johnson et al., 2001). Magnitude 

comparison items assessed students’ understanding of the size of various decimals (Irwin, 

2001; Resnick et al., 1989). The continuous nature of decimals items evaluated students’ 

understanding that there are an infinite number of decimals that can come between any 

two numbers (e.g. between 0.76 and 0.77) (Irwin, 2001; Resnick et al., 1989; Rittle-
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Johnson et al., 2001). The role of zero items evaluated students’ understanding of when a 

zero made a difference in a decimal’s magnitude (Irwin, 2001; Rittle-Johnson et al., 

2001). Finally, the greater than zero items assessed students’ knowledge that decimals 

presented were greater than zero (Irwin, 2001). Each item was designed to contain an 

answer choice that fit a misconception error. Internal consistency on this measure was 

very high (α = .91). 
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Table 1:  Sample Assessment Items 

 Example Item Scoring 

Procedural 
Items 

(learning) 
(n = 4) 

Mark about where 0.9 goes on the number 
line. 
 
 
                                                                         

1 point for each 
if within one tenth of the 

correct placement in either 
direction on the number line

Procedural 
Items 

(transfer) 
(n = 4) 

What number tells about where the slash is 
on the number line? 

a)   0.214 
b)   0.84 
c)   0.489 
d)   0.05 

 
 

                                                                          

1 point for each 
correct answer circled 

 

Procedural 
Items 

(transfer) 
(n = 4) 

The number line now goes from 0 to 10. 
3.52 is marked. Mark where 3.8 goes. 
 
 
 

1 point for each 
if properly placed as greater 

or less than the marked 
number and within one tenth 

of the correct placement 

Conceptual 
Items 

(n = 20) 

1. (Magnitude, n = 9) Circle the decimal 
that is greater:    0.87      0.835 
2. (Continuous Nature, n = 5) Write a 
decimal that comes between 0.5 and 0.6. 
3. (Role of zero, n = 4) Circle all the 
numbers that are worth the same  
amount as 0.51: 
         0.5100      0.051      0.510      51 
4. (Greater than zero, n = 2) 0.8 is ______ 0 
      a) greater than 
      b) less than 
      c) the same as 

1 point for each correct 
answer 

 
1 Magnitude item and 1 Role 

of zero item had 2 correct 
answers, each worth 1 point.

 

 

0 1

0 103.52 

0 1
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Procedure 

  Students completed the pretest as a group in a 20 minute session in their 

classroom. Then, each student was pulled out of class individually for the intervention. 

The intervention began with the five minute scripted lesson. Following the lesson, 

students completed the intervention packet, which took about 25 minutes. Students began 

each page by reading the example procedures aloud. Next, the researcher asked the 

student two questions that the student answered verbally. The four practice problems 

were completed when appropriate. Students were audio taped and videotaped so that their 

explanations could be recorded and later transcribed. Immediately after the intervention, 

students were given the posttest. Approximately two weeks later, all students completed 

the retention test together in their classrooms. 

 

Coding 

 

Assessment 

  Items were scored for accuracy using the criteria specified in Table 1. When 

possible, students’ answers on the assessment were also coded for the three 

misconception errors described in the introduction. For the learning number line 

problems, an incorrect answer was considered a whole number misconception if a 

number in the tenths was incorrectly placed on the first third of the number line (e.g., 0.9 

placed at 0.1), a number in the hundredths was placed on the second third (e.g., 0.83 

placed at 0.5), or a number in the thousandths was placed in the final third (e.g., 0.256 

was placed near 1). Recall that target values on the assessment were chosen so that 



19  
 

misconceptions could not lead to a correct answer (e.g., 0.2 was not included). For the 

whole-number transfer problems, an incorrect answer was considered a whole number 

misconception if a number was placed within one unit on the wrong side of the already 

marked decimal (e.g. when 3.52 is marked, placing 3.8 between 2.52 and 3.52). An error 

was considered a role of zero misconception error if a decimal with a zero in the tenths 

was placed as if the zero was not there (e.g. placing 0.07 at 0.7). Students were marked as 

having a less than zero misconception if they placed a decimal anywhere before zero on 

the number line. For the conceptual continuous nature of decimal items, an incorrect 

answer was considered a whole number misconception if it fit between the given 

numbers viewed as whole numbers (e.g. 0.7 comes between 0.5 and 0.52 since 7 comes 

between 5 and 52). The other items were multiple choice, and distracter choices had been 

designed to reflect misconceptions when possible; students’ errors on these items were 

scored for misconceptions accordingly. In all, there were 24 items on which a whole 

number misconception could be detected, 11 items on which a role of zero misconception 

could be detected, and 6 items on which a less than zero misconception error could be 

detected. The total number of misconception errors of each type was tallied for each 

student. 

 

Intervention 

Students’ 24 verbal explanations given during the intervention were coded for 

discussing concepts and endorsing misconceptions. The details of the coding scheme will 

be discussed in the Results section. Inter-rater reliability for 20% of explanations ranged 
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from 87% to 95% (exact agreement). Students’ accuracy on the practice problems was 

coded in the same manner as for the procedural learning problems on the assessment. 

 

Missing Data 

Thirteen students were absent for the retention test. We imputed this missing data 

because imputation has been shown to result in the same conclusions as if there were no 

missing data when the data are missing at random and less than 20% of the data are 

missing (Barzi & Woodward, 2004; Schafer & Graham, 2002). To impute the missing 

data, we used the expectation-maximization algorithm for maximum-likelihood 

estimation via the missing value analysis module of SPSS (Schafer & Graham, 2002). 

The missing data were estimated from all nonmissing values on continuous variables in 

our models.  

   



21  
 

CHAPTER III   

 

RESULTS 

 

We first discuss students’ performance on the pretest. We follow this with a report 

of the effects of condition on students’ posttest performance and then on retention test 

performance. Finally, we explore how condition affected performance on intervention 

activities, including the quality of students’ explanations, and how this related to 

performance on the assessments. 

 

Pretest Knowledge 

All students completed a pretest to assess their knowledge of procedures and 

concepts. Students had some knowledge of decimal magnitude at pretest (see Table 2), 

but it was not extensive. Students in both conditions were best at solving conceptual 

greater than zero items and were worst at solving procedural transfer items. There were 

no significant differences between conditions on conceptual or procedural items.  

 

Misconception Errors 

At pretest, misconception errors were prevalent for students in both conditions, 

and there were not significant differences between conditions (see Table 3). Students in 

both conditions made whole number misconception errors on about half of relevant items. 

Role of zero misconception errors were also prevalent. In contrast, less than zero 

misconception errors were made infrequently. For both conditions, 55% of the errors 
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made on the pretest were misconception errors, with the remaining errors being random 

errors. 

Table 2:  Performance on Outcome Measures by Condition (Proportion Correct) 
 

 Pretest 
 

Posttest 
 

Retention Test 

Outcome M SD 
 

M SD 
 

M SD 

Conceptual Items    
 

  
Correct .33 .20  .41 .26  .39 .27 
Incorrect .29 .20  .42 .28  .45 .29 

Magnitude   
 

  
Correct .28 .29  .34 .33  .36 .33 
Incorrect .21 .25  .36 .36  .39 .34 

Continuous Nature   
 

  

Correct .21 .21  .35 .30  .28 .32 

Incorrect .21 .19  .31 .25  .34 .31 

Role of Zero   
 

  

Correct .39 .37  .43 .40  .43 .40 

Incorrect .32 .35  .42 .39  .53 .40 

Greater than Zero   
 

  

Correct .70 .45  .89 .30  .71 .43 
Incorrect .80 .40  .96 .18  .79 .40 

Procedural Items  
 

  
Correct .21 .18  .43 .23  .38 .27 
Incorrect .20 .15  .51 .25  .41 .26 

Learning   
 

  
Correct .30 .18  .61 .22  .53 .29 
Incorrect .28 .16  .69 .22  .54 .29 

Transfer   
 

  
Correct .16 .22  .34 .28  .31 .31 
Incorrect .16 .18  .42 .30  .34 .30 
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Table 3:  Proportion of Misconception Errors by Condition 
 

 Pretest 
 

Posttest 
 

Retention Test 

Outcome M SD 
 

M SD 
 

M SD 

Whole Number   
 

  

Correct .45 .19 
 

.37 .21 
 

.38* .24 

Incorrect .50 .20 
 

.37 .21 
 

.33 .18 

Role of Zero   
 

  

Correct .42 .23  .42 .22 
 

.39 .23 

Incorrect .38 .17  .40 .27 
 

.34 .24 

Less than Zero   
 

  

Correct .11 .17  .04 .10 
 

.09 .14 

Incorrect .10 .19  .01 .06 
 

.08 .13 

Overall Misconception Errors   
 

  

Correct .39 .15  .33 .17 
 

.34* .18 

Incorrect .41 .14  .32 .19 
 

.30 .16 
 

 

 

Effect of Condition on Posttest Knowledge 

We analyzed differences between conditions on the posttest using analysis of 

covariance, with accuracy on the conceptual items and procedural items at pretest, grade 

level, and school as covariates. We ran separate models for each outcome. 

 

Conceptual Items 

There was no significant effect for condition on conceptual scores at posttest, F 

(1, 67) = 1.21, p = .276. As shown in Figure 2, students in both conditions had similar 

* Conditions differ from each other at p < .05 



24  
 

conceptual scores following the intervention, getting slightly fewer than 50% of the 

problems correct. Exploratory analyses indicated that there were not significant 

differences between the conditions on any of the different types of conceptual items. 

 

 

* Conditions differ from each other at p < .05  

Figure 2:  Effect of Condition on Conceptual Scores 

 

Procedural Items 

There was a significant effect for condition on procedural item scores at posttest, 

F (1, 67) = 4.65, p = .035. As shown in Figure 3, comparing incorrect and correct 

examples led students to have significantly higher procedural scores than those students 

who only compared correct examples. This difference was present for each type of 

procedural item. 

 

*
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* Conditions differ from each other at p < .05  

Figure 3:  Effect of Condition on Procedural Scores 

 

Misconception Errors 

As previously mentioned, we coded students’ answers on the posttest for whether 

or not they fell into three common misconception errors: whole number (e.g. thinking 0.7 

is less than 0.25 because 7 is less than 25), role of zero (e.g. treating 0.08 the same as 

0.8), and less than zero misconceptions (e.g. thinking all decimals are less than 1). From 

pretest to posttest, overall misconception errors decreased significantly across conditions, 

t(73) = 4.48, p < .001 (see Table 3). This was mainly due to a decrease in whole number 

misconception errors from pretest to posttest, t(73) = 4.77, p < .001. Less than zero 

misconception errors also decreased from pretest to posttest, t(73) = 3.66, p < .001. 

However, role of zero misconception errors did not decrease, t(73) = -.19, p = .850. There 

*
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were no significant differences between conditions in misconception errors at posttest. 

Rather, accuracy in the incorrect condition was higher because they made fewer random 

errors (22% vs. 29% of answers).  

On the posttest, students in the incorrect condition had higher procedural scores 

than students in the correct condition. However, they did not have higher conceptual 

scores, and they made similar numbers of misconception errors. 

 

Effect of Condition on Retention Test Knowledge 

Conceptual Items 

On the two week retention test, there was a significant effect for condition on 

conceptual item scores, F (1, 67) = 5.27, p = .025. Students who compared incorrect and 

correct examples had significantly higher conceptual scores than those students who only 

compared correct examples. As shown in Figure 2, from posttest to retention test, 

students who compared correct and incorrect examples maintained their conceptual 

scores, but students who compared correct examples had forgotten some information. 

Exploratory analyses indicated that the difference between conditions at retention test 

was greatest for items examining the role of zero, F (1, 67) = 7.21, p = .009 (see Table 2). 

Comparing incorrect examples to correct examples helped students remember the 

concepts they learned. 
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Procedural Items 

At retention test, there was not a significant effect for condition on procedural 

item scores, F (1, 67) = 0.44, p = 0.511. As shown in Figure 3, students in the incorrect 

condition did not maintain their greater gains in procedural scores. 

 

Misconception Errors 

Across conditions, students made significantly fewer misconception errors from 

pretest to retention test, t(73) = 5.54, p < .001 (see Table 3). This was mostly due to a 

decrease in whole number misconception errors from pretest to retention test, t(73) = 

5.24, p < .001. Furthermore, students in the incorrect condition made whole number 

misconception errors less frequently than students in the correct condition, F (1, 70) = 

4.40, p = 0.040. The decrease in role of zero misconception errors was only marginally 

significant, t(73) = 1.77, p = .081, and there was not a significant decrease in less than 

zero misconception errors, t(73) = .96, p = .340. Although students in the incorrect 

condition made these errors less frequently than those in the correct condition at retention 

test, these differences were not significant for these two error types.  

A greater reduction in misconception errors helped to explain why students in the 

incorrect condition had higher conceptual scores on the retention test. Examining 

misconception errors on only the conceptual items indicated that students in the incorrect 

condition made somewhat fewer role of zero misconception errors (38% vs. 43% of 

possible items), and somewhat fewer whole number misconception errors (46% vs. 51% 

of possible items) than students in the correct condition, F (1, 69) = 3.17, p = .079 and F 

(1, 69) = 3.03, p = .086, respectively.  
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In summary, on the retention test, students in the incorrect condition had higher 

conceptual scores and made fewer misconception errors than students in the correct 

condition. However, they no longer had significantly higher procedural scores. 

 

Effect of Condition on Intervention Activities 

To help understand how learning was impacted by our two intervention 

conditions, we examined students’ responses during the intervention. During the 

intervention, students completed 4 practice problems and answered 24 explanation 

prompts. 

 

Practice Problems 

Accuracy on the four practice problems was higher in the incorrect than in the 

correct condition (M = 0.70, SD= 0.30 vs. M = 0.59, SD= 0.31, respectively), but only 

marginally so, F (1, 67) = 3.02, p = .087.  

We also coded what procedures students used to solve the practice problems 

based on their verbal reports. These procedures included the 3 correct and 3 incorrect 

procedures that were demonstrated in the intervention packets. There were no significant 

differences between conditions in frequency of using the different procedures. Not 

surprisingly, students in both conditions were most likely to use the correct procedures 

modeled in the intervention packets. 
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Explanations on Worked Examples 

 The explanation prompts varied between conditions because they were designed 

to facilitate the appropriate processes in each condition. Therefore, the coding of these 

explanations was used as a manipulation check. We used ANCOVA models, and adopted 

the more conservative alpha value of .005 to determine significance due to the 

exploratory nature of these analyses that required multiple tests. 

 We coded students’ explanations for their correct use of decimal concepts, such as 

correctly explaining a misconception, discussing relative magnitude, or using decimal 

and fraction terminology (see Table 4 for details). Students in the incorrect condition 

were more likely to correctly explain misconceptions and to correctly discuss relative 

magnitude. There were not significant differences between conditions in their use of 

decimal and fraction terminology. We also coded when students made statements that 

endorsed misconceptions, including the less than zero, role of zero, whole number, and 

other misconceptions. Students endorsed misconceptions relatively infrequently, as we 

hoped. However, students in the incorrect condition were more likely to endorse 

misconceptions than students who only saw correct examples. 

 To explore the impact of explanation quality on outcomes, we evaluated which 

explanation features predicted performance on the posttest and retention test. In the 

ANCOVA models, frequency of each of the explanation types was used as a predictor of 

procedural and conceptual scores and whole number misconceptions. Pretest knowledge 

scores were included as covariates.  

Correctly discussing overall decimal concepts positively predicted procedural 

scores at posttest and conceptual scores at retention, F (1, 70) = 5.02, p = .028, η2 = .067 
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and F (1, 70) = 4.26, p = .043, η2 = .057, respectively. The benefit of discussing decimal 

concepts was due in large part to correctly discussing decimal misconceptions, as this 

type of concept explanation positively predicted procedural scores at posttest and 

conceptual scores at retention as well, F (1, 70) = 4.30, p = .042, η2 = .058 and F (1, 70) 

= 6.07, p = .016, η2 = .080, respectively. Recall that students in the incorrect condition 

discussed decimal concepts more often and had greater procedural scores at posttest and 

conceptual scores at retention test, suggesting that their focus on concepts may be one 

reason that comparing incorrect examples to correct ones aided learning. The other 

explanation characteristics were not predictive of outcomes. 

 

Table 4:  Percentage of Intervention Explanations Containing Each Feature, By Condition 
 

Explanation 
Characteristic 

Sample Explanations Correct Incorrect 

Correct concepts     

Correctly discuss  

misconceptions**  a  

“0.08 is not the same as 0.8.” .01 .24 

Discuss relative 

magnitude**  

“0.15 is a little bigger than 0.1.” .15 .26 

Include decimal or 

fraction terms 

“It’s like the fraction 15 over 100.” 

“It’s the same as 15 out of 100.” 

.16 .15 

Any correct 

concept**  a  

 .26 .52 

Endorse 

misconceptions** 

“0.6 is smaller than 0.365.” .03 .11 

 
**Conditions differ from each other at p < .005; a Frequency of this explanation predicted 
outcomes 
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Summary 

Comparing incorrect examples to correct examples led to better performance on 

procedural items on the posttest and on conceptual items on the retention test, in part 

because the incorrect condition reduced misconception errors on the retention test, 

particularly whole number misconceptions. One advantage of the incorrect condition was 

that it focused students’ attention on decimal concepts—both on why misconceptions 

were incorrect and on relative magnitude—which in turn, predicted learning outcomes. 
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CHAPTER IV  

 

DISCUSSION 

 

Presenting students with common misconceptions and contrasting them with 

correct solutions helped focus students’ attention on decimal concepts, aided their short-

term knowledge of procedures and their longer-term retention of decimal concepts, and 

diminished misconceptions. In the discussion, we integrate these findings with findings 

from past research, discuss instructional implications and suggest future directions for 

research in this area. 

 

Integrating With Past Research on Incorrect Examples 

 As past research has suggested, studying correct and incorrect examples improves 

learning (e.g., Eryilmaz, 2002; Große & Renkl, 2007; Huang et al., 2008; Siegler, 2002). 

Importantly, the current findings indicate that this benefit is above and beyond the 

general benefits of comparison. In prior research on incorrect examples, comparison of 

incorrect examples to correct ones was not directly supported, and there were few 

opportunities for comparison in the control condition. In the current study, comparison of 

solution procedures was supported in both conditions, and including incorrect solutions 

promoted greater learning. We consider two important processes underlying the benefits 

of comparing incorrect examples to correct ones: improving formation of correct 

category concepts and decreasing use of incorrect procedures. 
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Comparing correct and incorrect examples may have enhanced students’ learning 

by leading them to create advanced category concepts. Studying conflicting examples 

prompted students to think about concepts more deeply, and this may have helped 

students to create categories for correct concepts as well as misconceptions. Past research 

has suggested that activating opposing ideas simultaneously may get students to think 

about more complex concepts (VanLehn, 1999) and to create more developed categories 

for concepts (Kotovsky & Gentner, 1996). Similarly, studies have suggested that 

comparing correct and incorrect examples can improve students’ knowledge of concepts 

(Eryilmaz, 2002; Van den Broek & Kendeou, 2008), especially after a delay (Huang et 

al., 2008). The current study provides further evidence that studying correct and incorrect 

examples may have led students to form more advanced category concepts. Students in 

the incorrect condition were much more likely to discuss correct concepts during the 

intervention than students in the correct condition. By comparing correct and incorrect 

examples, what makes the correct example right and what makes the incorrect example 

wrong are emphasized, and students may have created a new mental representation of 

concepts that labels incorrect concepts as incorrect (Van den Broek & Kendeou, 2008). 

Though this did not produce immediate differences in conceptual scores, it did help 

students retain the concepts better over a delay, including a reduction in misconceptions.  

Including incorrect and correct examples can also improve procedure selection. 

Learning a correct procedure does not eliminate the use of incorrect ones (Siegler, 2002); 

directly contrasting correct and incorrect examples helped decrease the frequency of 

using incorrect procedures. Comparing correct and incorrect examples may have 

encouraged students to differentiate correct and incorrect procedures, which in turn 
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supported greater selection of correct procedures over incorrect ones immediately after 

the intervention. However, after a two-week delay, use of correct procedures did not 

remain higher for these students. We suspect that additional practice solving problems 

with feedback would be needed to maintain the strength of correct procedures over a 

delay.  

 One reason students in the incorrect condition learned concepts and procedures 

better than those in the correct condition may be that they were provided with more 

noticeable contrast in their example pairs. Indeed, contrast may be a particularly 

important part of comparison (Rittle-Johnson & Star, 2009; Schwartz & Bransford, 

1998). In the past, researchers have often focused on similarities when discussing 

comparison and have not focused on contrast (e.g., Catrambone & Holyoak, 1989; 

Gentner et al., 2003; Gick & Holyoak, 1983; Richland, Holyoak, & Stigler, 2004). 

However, recent evidence suggests that comparing contrasting examples improves 

learning (Schwartz & Bransford, 1998; Waxman & Klibanoff, 2000). For example, for 

young children completing a categorization task, those children who saw examples of 

category members and non-category members (i.e., contrasted correct and incorrect 

examples) learned more than those who saw examples of only category members (i.e., no 

contrast; correct examples only) (Namy & Clepper, under review). In addition, students 

learning algebra benefited most from the type of comparison that had the most contrast—

comparing correct solution methods (Rittle-Johnson & Star, 2009). Providing learners 

with examples that have salient similarities and differences due to contrast appears to 

improve learning more than just providing examples with similarities. In the current 

study, though students in both conditions were asked to explain similarities and 
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differences, the differences between the examples in the incorrect condition were much 

more salient. Perhaps this more salient contrast led to the more frequent discussion of 

misconceptions in the incorrect condition, which in turn may have supported less 

frequent use of incorrect procedures, fewer misconceptions and greater retention of 

concepts.  

The current study provides clues to how comparing correct and incorrect 

examples may improve learning outcomes in mathematics. Comparison with incorrect 

examples improved concept categories and decreased use of incorrect procedures, 

possibly because of increased differentiation between examples due to contrast. 

 

Instructional Implications 

 Having students compare correct and incorrect examples can be beneficial for 

learning, and there are several instructional implications from the current study. Textbook 

publishers and classroom teachers should include more incorrect examples in their 

lessons, along with materials to support comparison to correct examples. As previously 

mentioned, science refutation texts have begun to capitalize on this idea (Alvermann & 

Hague, 1989; Diakidoy et al., 2003; Van den Broek & Kendeou, 2008). However, 

incorrect examples are rarely incorporated in mathematics texts, and only recently have 

researchers begun developing a curriculum that encourages teachers to incorporate 

incorrect examples into their math lessons (Curtis, Heller, Clarke, Rabe-Hesketh, & 

Ramirez, 2009).  

While further use of incorrect examples in math instruction needs to be 

encouraged, simply showing students incorrect examples without proper support seems 
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unlikely to be effective for learning. Several features of the intervention materials in the 

current study may have been especially important. First, a correct and an incorrect 

example were presented simultaneously, side-by-side. Numerous studies on comparing 

correct examples indicate that side-by-side presentation of examples supports learning 

much better than sequential presentation (Gentner et al., 2003; Oakes & Ribar, 2005; 

Rittle-Johnson & Star, 2007; Star & Rittle-Johnson, 2009). Second, students were 

directly prompted to make comparisons between correct and incorrect examples. Asking 

students to identify similarities and differences between examples is often encouraged by 

expert mathematics teachers (Fraivillig, Murphy, & Fuson, 1999; Huffred-Ackles, Fuson, 

& Sherin Gamoran, 2004; Lampert, 1990; Silver, Ghousseini, Gosen, Charalambous, & 

Strawhun, 2005), and has been an important aspect of other mathematics interventions 

using worked examples (e.g., Rittle-Johnson & Star, 2007, 2009). Third, the incorrect 

examples used in this study were illustrating a commonly held misconception. Previous 

research on effectively using incorrect examples for learning science has used incorrect 

examples that directly address students’ misconceptions (Eryilmaz, 2002; Mestre, 1994). 

Simply using incorrect examples that illustrate random errors may not be as effective. 

Students may get the maximal instructional benefit by being presented with a common 

misconception next to a correct example and being asked to identify the similarities and 

differences in the examples. 

 

Future Directions 

Several next steps are necessary to understand the role incorrect examples can 

play in learning. First, it is unknown when in the mastery process incorrect examples may 
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be best able to aid learning. Students in the current study had relatively high prior 

knowledge; students with low prior knowledge might not benefit from studying incorrect 

examples. Past research indicates that inexperienced learners may be best served by 

learning from only correct examples because they do not have enough knowledge to use 

incorrect examples effectively (Große & Renkl, 2007). In this study, college students 

with low prior knowledge provided fewer principle-based explanations and learned less 

when studying correct and incorrect examples than those who studied only correct ones 

(Große & Renkl, 2007). Other studies have also found that learners’ prior knowledge can 

impact the effectiveness of an instructional method (Kalyuga, 2007; Kalyuga & Sweller, 

2004; Rittle-Johnson & Kmicikewycz, 2008; Rittle-Johnson et al., in press; Snow, 1992). 

Consequently, it may be best to initially present students with only correct examples until 

they have some basic understanding of the domain, and then the instructor can move onto 

comparisons between correct and incorrect examples. Students may then be prepared to 

discuss correct concepts and notice meaningful differences between the correct and 

incorrect examples. Further research is needed with students with differing prior 

knowledge levels to determine if prior knowledge influences the effectiveness of 

instruction with correct and incorrect examples.  

In addition, most students in the current study did not achieve mastery at posttest 

or retention test. There may be instructional strategies to further augment the general 

benefits of comparison, particularly with incorrect examples. Such instructional strategies 

may include additional time spent on practice problems. Practice problems with feedback 

can be very useful for learning (Atkinson et al., 2000); however, in the current study, 

students only completed four practice problems. More practice problems should increase 
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students’ opportunities to use correct procedures and to inhibit incorrect procedures 

(Siegler, 1996). Increased explanations from the instructor about decimal concepts might 

also improve students’ abilities to benefit from comparison and incorrect examples. 

Instructional explanations can emphasize important conceptual structures that may help 

eliminate competing incorrect concepts (Renkl, 2002). These conceptual explanations 

may also help increase students’ discussion of concepts in their own explanations and 

increase the benefits of using incorrect examples. Also, further studies should explore the 

effects of comparing incorrect and correct examples on learning in a classroom setting 

over multiple sessions.  

 Comparing correct and incorrect examples helped students reduce their 

misconceptions, learn correct procedures, and remember correct concepts above and 

beyond the general benefits of comparison. Further research should evaluate when in the 

learning process such comparison may be most beneficial for students and how to 

maximize the effectiveness of these comparisons. 
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