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CHAPTER I 

INTRODUCTION 

Today, healthcare has become a data driven enterprise involving the analysis and 

storage of information in large data repositories.  This universal need spans from basic 

biomedical research to clinical care.   One type of data is the scientific literature, and the 

evaluation of the literature is an increasingly integral part of biomedical research and 

evidence-based medicine [1, 2].  Basic science researchers have used the literature for 

entity recognition, information extraction, and hypothesis generation [3].  Data mining 

techniques have also been applied to the literature for drug discovery [4].  On the other 

hand, clinicians have used the literature to answer questions as part of clinical care [5-

11].  Both researchers and clinicians face the daunting task of identifying high quality 

articles among the existing and growing literature.  It is impractical for them to manually 

monitor the literature, and automated tools have been developed to perform this task.  

The focus of this work was to improve the performance and usability of existing tools by 

applying machine learning methods.  The thesis consisted of three specific aims: 

• Analyze the topic-sensitivity of evaluation methods for journals, articles, 

and websites 

• Examine the feasibility of predicting future citation counts with 

information available only at the time of publication 

• Examine the feasibility of automatically discriminating between 

instrumental and non-instrumental citations 
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A Comparison of Evaluation Metrics for Journals, Articles, and Websites in Terms 

of Sensitivity to Topic 

Popular evaluation methods include journal impact factor for journals [12], 

PubMed’s clinical query filters and machine learning-based filter models for articles [13, 

14], and PageRank for websites [15].   Previous work has focused on the average 

performance of these methods without considering topic.  This section focused on a 

subtle but important property: stability over topics.  It is unknown how performance 

varies for specific topics or focused searches.   A method with excellent average 

performance may fail in a focused domain, and users should be aware if a method’s 

performance diverges from expected average performance.  This section studied the 

performance of citation metrics (i.e., journal impact factor and PageRank), Boolean 

queries, and machine learning methods to quantify their variability for different topics.  

Machine Learning Models for Predicting and Explaining Citation Count of 

Biomedical Articles 

The most popular method for evaluating the impact and quality of an article is the 

citation count which is the number of citations received by an article within a pre-

specified time horizon [16].  A limitation of citation count is that it is unavailable at 

publication time.  This section investigated the feasibility of predicting future citation 

counts with information available only at the time of publication.  The main benefit is 

improving the usability of citation counts which could accelerate the assessment of 

research impact and dissemination of new knowledge.  Support vector machine (SVM) 

models were trained on a combination of content-based and bibliometric features.    

Content features were terms from the title, abstract, and MeSH terms of an article.  

Bibliometric features included information about the journal or authors.  In addition to 
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the model-building effort, the models were analyzed to identify factors that correlate 

strongly and potentially determine the chances of an article being cited by many 

subsequent articles. 

Machine Learning Models for Automatic Classification of Instrumental Citations 

The use of citation count as an evaluation metric assumes that a citation is an 

indicator of quality.  This is not necessarily true since a citation may serve many purposes 

unrelated to recognizing the value, rigor, or authority of a cited paper [17-19].  Cited 

papers may provide background information or acknowledge prior work that influenced 

the current work.  Moreover, citations may serve non-scientific purposes due to social-

psychological factors [16, 20, 21].  Thus, a citation is an indirect metric of impact without 

a single unambiguous use.  If instrumental citations can be reliably distinguished from 

non-essential ones, it may be possible to improve the performance of existing evaluation 

methods by excluding non-instrumental citations.  For the purposes of this work, a 

citation was operationally defined as instrumental if either of the following were true: the 

hypothesis of the citing work was motivated by the cited work, or the citing work could 

not have been completed without the cited work.  This section focused on examining the 

feasibility of automatically classifying citations as instrumental or non-instrumental.  A 

learning approach similar to the one used for predicting citation count was used.  SVM 

models were trained on content and bibliometric features, and performance was evaluated 

on a manually labeled corpus. 
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The remainder of the thesis is organized as follows.  Chapter II provides a brief 

review of citation analysis.  Chapters III-V present work for each of the three main 

focuses.  Each chapter contains introduction, methods, results, and discussion sections.  

Chapter VI presents a summary and discussion of the work as a whole. 
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CHAPTER II 

BACKGROUND: REVIEW OF CITATION ANALYSIS 

A document may cite another document for a variety of reasons: to acknowledge 

prior work, identify methodology, or provide background reading.  The citing document 

may be a comprehensive review that attempts to cite the most recent documents on the 

topic, or the cited article may be highly controversial.  On the other hand, a citation may 

criticize another work and not be an endorsement.  Garfield created one of the earliest 

lists for the many possible reasons for a citation [22]: 

1. Paying homage to pioneers 

2. Giving credit to related work 

3. Identifying methodology, equipment, etc. 

4. Providing background reading 

5. Correcting one’s own work 

6. Correcting the work of others 

7. Criticizing previous work 

8. Substantiating claims 

9. Alerting to forthcoming work 

10. Providing leads to poorly disseminated, poorly indexed, or uncited work 

11. Authenticating data and classes of fact (physical constants, etc.) 

12. Identifying original publications in which an idea or concept was 

discussed 
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13. Identifying original publication or other work describing an eponymic 

concept or term 

14. Disclaiming work or ideas of others (negative claims) 

15. Disputing priority claims of others (negative homage) 

Researchers have estimated the frequencies of various types of citations by 

creating classification schemes.  Two approaches for classifying citations are analyzing 

the articles and interviewing the authors.  Article analysis involves examining document 

text to determine the nature of the relationship between the citing and cited articles.  

Moravcsik and Murugesan manually reviewed 30 articles in theoretical high energy 

physics and classified articles in each of the following 5 categorizations [23]: 

• Was the article cited for a concept/theory or for a tool/technique? 

• Is the cited work necessary for understanding or is it merely an 

acknowledgment of prior related work?  

• Did the cited work provide a foundation for the citing work, or is it an 

alternative? 

• Are the claims of the cited work confirmed or disputed? 

• Is the citation essential or redundant? 

In their study, most citations were necessary for understanding, provided a 

foundation for the citing work, and were essential. Chubin and Moitra [24] performed 

another context analysis study on Physics articles.  In their corpus, most citations were 

categorized as “basic essential” (cited papers were central to the reported research), 

“subsidiary essential” (not directly related but still essential), or “additional 

supplementary” (independent supportive observations). 
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The second approach for identifying the motivation of a citation is interviewing 

the original author.  A questionnaire or personal interview is typically used.  Brooks [25] 

interviewed 20 authors and classified citations into three categories.  The first one was 

persuasiveness, positive credit, currency, and social consensus.  The second category was 

negative credit, and the third category was reader alert and operational information.  

Brooks found that persuasiveness was the predominant reason for a citation.  Cano [26] 

used Moravcsik and Murugesan’s classification scheme to create a questionnaire for 

authors in structural engineering.  In this study, the most popular citation type was a 

perfunctory citation that acknowledged other work in the same general area as the citing 

article. 

Analyzing the article text and interviewing the authors both have limitations [16].  

Article analysis requires much time and effort if it is manually performed.  Also, it may 

be difficult or impossible to identify an author’s motivation from the text alone.  Author 

interviews may not reveal the original motivations, and authors may not remember 

correctly since much time has passed after writing the article.  Also, they may not be 

honest about the purpose of a citation, or there may be inconsistencies between authors 

[16]. 

There are other drawbacks to using citation count as a quality metric in addition to 

the lack of a single unambiguous use of a citation.  Citation counts are unavailable at 

publication since citations accumulate over time.  Other problems include the inaccuracy 

and incompleteness of citation databases as well as the variable citation rates between 

fields [17-19].  As a result, the validity of citation count as useful metric for the quality of 

scientific work has been debated. 
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There are two major theories for explaining the motivations of citations [27].  The 

normative theory of citing behavior claims that authors cite a paper to indicate that it was 

an intellectual or cognitive influence on their work [28].  Citations allow scientists to 

credit colleagues whose work has been useful to them.  The theory claims that citations 

are an indicator of the quality of the cited content and that science is a normative 

institution built upon internal rewards and sanctions.  Merton argued that scientific 

contributions are evaluated by a set of norms that involve the open communication of 

ideas, emotional neutrality in the evaluation of one’s ideas, and the acknowledgment of 

intellectual debt to a piece of scholarship [28].  This theory supports the use of 

bibliometric metrics such as citation count for assessing the quality of research and 

impact of scientific work.  

The social constructivist theory argues that the content of an article has little 

influence on how it is cited [16].  The theory asserts that scientific knowledge is socially 

constructed through the manipulation of political and financial resources and that the 

main purpose of citations is persuasion or rhetoric.  Authors can be motivated by factors 

independent of the quality of the cited work.  Examples include defending their claims 

against attack, advancing their interests, convincing others, or promoting themselves in 

the scientific community.  Supporters of this theory believe that citations cannot 

accurately measure the quality of papers. 

An important question is whether citation count can still provide a useful measure 

for the impact of a work despite the many motivating factors for a citation.  Empirical 

studies have shown that citations are in fact an informative measure.  Cronin [29] 

reviewed studies that demonstrated the correlation between citation count and other 
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metrics for the impact of scientific work such as research funding, academic prestige, and 

peer assessment.  Cronin believed that most of the evidence “seems to suggest that 

scientists typically cite the works of their peers in a normatively guided manner, and that 

these signs (citations) perform a mutually intelligible communicative function” [29].  

White echoed the same sentiment by stating that “results are better explained by Robert 

K. Merton’s norm of universalism, which holds that citers are rewarding use of relevant 

intellectual property, than by the constructivists’ particularism, which holds that citers are 

trying to persuade through manipulative rhetoric” [30]. 
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CHAPTER III 

A COMPARISON OF EVALUATION METRICS FOR JOURNALS, ARTICLES, AND 

WEBSITES IN TERMS OF SENSITIVITY TO TOPIC 

Introduction 

The size of the biomedical literature and the web make it difficult to find high-

quality documents among the large number of articles, journals, and websites.  

Automated methods have been developed since manually monitoring the literature and 

web is impractical.  Journal quality is typically measured with impact factor [12].  High-

quality articles are identified with PubMed clinical query filters [14] which are a 

methodological and content criteria-based approach.  Machine learning methods such as 

polynomial support vector machine (SVM) models have been recently introduced as 

pattern recognition query filters for identifying high-quality articles [13].  The most 

popular way to rank web pages is PageRank [15]. 

The methods can be classified as query-independent or query-dependent methods.  

Query-independent methods are built independently of the learning task and do not 

consider the query topic.  Impact factor, clinical query filters, and PageRank are 

examples.  Impact factor and PageRank are also citation-based methods which are 

flexible, efficient, and easy to use since they count the number of citations received.  

However, the flexibility of these approaches can also be a limitation.  A document may 

cite another document for a variety of reasons: to acknowledge prior work, identify 

methodology, provide background reading, disclaim work of others, or dispute priority 
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claims [22].  Thus, the citation may not necessarily be an endorsement.  For a more 

thorough discussion of citation analysis, see Chapter II. 

Query-dependent methods consider the search topic and are built for the learning 

task.  Two examples are machine learning filter models and the topic-specific impact 

factor which is presented in this work.  Machine learning methods have outperformed 

citation-based methods in finding high-quality articles [31], and they have several 

advantages over clinical query filters.  They have superior performance, are automatically 

generated, and allow users to specify a desired sensitivity or specificity.  On the other 

hand, clinical query filters are easier to understand and are more suitable for standard 

PubMed interfaces. 

Previous studies have measured the performance of these methods for all topics, 

and the variability of these methods for different topics is unknown.  It is possible for a 

method with excellent average performance to fail in a focused domain.  Suppose we 

have a set of articles about two topics (A and B) where 90% of the articles relate to topic 

A and the remaining articles are about topic B.  If a method has a sensitivity of 1 for topic 

A and .1 for topic B, overall performance would be relatively high.  However, a 

researcher interested only in topic B would unknowingly experience much worse than 

expected performance.   

Topic sensitivity in web-related research is known as topic drift [32] where the 

highest ranked results are not necessarily related to the query topic.  For example, 

PageRank-based rankings may not yield the best results for a specific topic.  Suppose we 

are interested in topic A and have two web pages with different degrees of relevance to 

topic A.  The first page has a high PageRank, is only marginally relevant to topic A, and 
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receives most of its links for its discussion of topic B (i.e. most of its links come from 

pages related to topic B).  The second page has a slightly lower overall PageRank, but the 

majority of its links are related to topic A.  PageRank scores the first page higher than the 

second page although the second page is a better resource for the topic of interest.  Topic 

drift is important since it may lead to sub-optimal results for queries focused on a specific 

topic or condition in a health-related search.  Previous research has discussed topic drift 

for link analysis algorithms such as PageRank and HITS [32-34].  These approaches rank 

pages prior to a query and analyze the link structure without considering the topic of a 

page or the reason for the link.  Consequently, high ranking pages are not necessarily 

related to the query topic.  Haveliwala, Richardson, and Nie modified PageRank to 

consider topic while evaluating webpages [35-37].  

The purpose of this work was to determine if performance varies for different 

topics when evaluating journals, articles, and websites.  The specific methods studied 

were journal impact factor, clinical query filters, machine learning pattern recognition 

filters, and PageRank.  It is possible for a method to perform excellently on average but 

struggle significantly in a restricted domain.  Furthermore, it is unknown how much 

performance varies for specific topics or focused searches.  This issue may affect many 

clinicians, researchers, and users who are unaware of it. 
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Methods 

This section will present methods for evaluating journal, articles, and websites.  

For each document type, there will be three sections.  First, each method will be 

explained.  Second, the experimental setup and analysis of topic-sensitivity will be 

discussed.  Third, details will be presented on how the corpus or experimental data sets 

were compiled. 

Evaluation Methods for Journals 

Journal Impact Factor 

The journal impact factor evaluates journal impact regardless of publication size 

or frequency [12, 38, 39].  It affects journal readership and helps researchers determine to 

which journal they submit their work.  Essentially, it is the average number of citations 

received per article published in the journal.  It is defined for a year y as the quotient of 

two terms [12]: 

 

Impact Factor =          (1) 

 

The numerator is the number of citations received in a given year to journal items 

published in the previous two years.  The denominator is the number of journal articles 

from the previous two years.  Items in the numerator include articles, editorials, and 

letters to the editor, while the denominator consists only of articles [12].  For example, 

the impact factor of the New England Journal of Medicine (NEJM) for 2004 is the 

Number of citations in year  to journal items
published in years ( 1) and ( 2)

Number of journal articles
published in years ( 1) and ( 2)

y

y - y -

y - y -
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number of citations in 2004 to its published items from 2002 and 2003 divided by the 

number of articles from 2002 and 2003. 

Topic-Specific Impact Factor 

Prior work considered the impact factor of topics irrespective of journal by 

computing the number of citations received by articles in a topic area (e.g. asbestos) [40, 

41].  However, this metric does not assess journals.  A formula is needed to isolate the 

contribution of a specific topic from the overall impact factor to study the sensitivity of 

impact factor to topic.  A topic-specific impact factor (TIF) can be calculated for a 

journal in year y by considering only publications related to a given topic: 

 

TIF =  (2) 

 

For example, the numerator of the cardiology-specific impact factor of NEJM in 2004 is 

the number of citations in 2004 to cardiology-related items published in NEJM from 

2002 and 2003.  The denominator is the number of cardiology-related articles.  

Determining topic relevance is topic-specific. For example, we can consider an item 

relevant to cardiology if its MEDLINE record contains the MeSH term “Cardiology”, a 

related topic such as “Cardiovascular Diseases” that is specified in the “See Also” field of 

the MeSH record, or a term residing in a sub-tree of these terms [42].   When specifying 

topics, the topics do not need to be exclusive or cover all items for the adjustment to be 

meaningful. 

Number of citations in year  to items published in
years ( 1) and ( 2) that were relevant to topic

Number of journal articles published in
years ( 1) and ( 2) that were relevant to topic

y

y - y -

y - y -
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Topic-Mix Adjusted Impact Factor 

Impact factor can be adjusted for a mix of topics by computing a weighted 

average of the topic-specific impact factors.  The topic-mix adjusted impact factor for k 

topics can be defined as: 

 

Topic-mix adjusted impact factor =   (3) 

 

TIFi is the topic-specific impact factor of topic i, and wi is a weight proportional to the 

importance of topic i normalized such that the sum of all weights equals one and each 

weight is between 0 and 1.  For example, a researcher interested in gastroenterology 

twice as much as hematology would weight the topic-specific impact factors of 

gastroenterology and hematology by 2/3 and 1/3 respectively.  If all topics are weighted 

equally, the topic-mix adjusted impact factor is the arithmetic mean of the topic-specific 

impact factors for all topics. 

Analysis for Journal Methods 

When computing topic-specific impact factors, there were no p-values or 

confidence intervals since they were population totals and not point estimates.  

Variability was analyzed by calculating the absolute difference of impact factor to topic-

specific impact factor.  The minimum, median, maximum, and interquartile ranges of the 

differences were computed to assess the skewness and spread of the values.  Interquartile 

range measures dispersion and is the difference of the third and first quartiles.  There 

1

k

i i

i

w TIF×

=

∑
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should be little discrepancy between the methods if citations are evenly distributed over 

topics. 

A Bland-Altman plot [43] was used to determine whether topic-specific impact 

factors coincide with impact factors or if they are significantly different.  This plot shows 

whether a new measurement method agrees with another method by plotting the 

measurement differences against their mean and illustrating any dependence between the 

values.  The correlation coefficient was considered but was determined to be an 

inappropriate method since it can be misleading [43]. 

Another consideration was whether variation was randomly caused by smaller 

sample sizes independently of topic.  By definition, journal impact factor is calculated on 

a larger number of publications than the topic-specific impact factor.  To determine 

whether the difference between the two measures is associated with sample size, 

regression coefficients were computed for the following regression model:  

 

Diff(TIF,IF) = β0+β1*(sample size difference) + β2*topic + β3*year + β4*journal   (4) 

 

where Diff(TIF, IF) is the difference between topic-specific impact factor and impact 

factor, and “sample size difference” is the difference between the number of articles used 

in each calculation.  The “topic”, “year”, and “journal” variables are categorical variables 

representing different values for the topic, year, and journal.  They were included in the 

model to account for any possible confounding effects. 
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Experimental Data Set for Journal Methods 

A data set was created by identifying all articles for a set of journals, topics, and 

time periods.  Six journals were chosen: Annals of Internal Medicine (AIM), American 

Journal of Medicine (AJM), British Medical Journal (BMJ), Journal of the American 

Medical Association (JAMA), Lancet, and New England Journal of Medicine (NEJM).  

These journals were selected since they are a collection of well-known journals with a 

wide range of impact factors.  Eight general topics of internal medicine were used along 

with a randomly selected set of narrowly-defined subtopics.  The topics were defined by 

the MeSH vocabulary.  The eight topics were Cardiology, Endocrinology, 

Gastroenterology, Hematology, Medical Oncology, Nephrology, Pulmonary Disease, and 

Rheumatology.  The narrowly-defined subtopics were Esophageal Diseases, 

Gastroenteritis, Gastrointestinal Neoplasms, Hernia, Intestinal Diseases, and Stomach 

Diseases.  For each journal and topic, all relevant MEDLINE records were retrieved for 

2003 and 2004, and citation counts and journal impact factors were obtained from the ISI 

Web of Knowledge [44]. 

Evaluation Methods for Articles 

Clinical Query Filters 

Clinical query filters were originally designed by Haynes and colleagues [14] and 

are the most widely available method for identifying high-quality articles through 

PubMed.  These filters are semi-manually constructed Boolean queries of MeSH terms, 

publication type, or text word fields of the MEDLINE record.  All articles that match a 
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given combination of terms are returned.  Performance is measured by sensitivity and 

specificity.  Filters are defined for diagnosis, etiology, prognosis, and treatment with 

queries optimized for sensitivity and specificity [45].  For example, the specificity-

optimized filter for therapy is: (randomized controlled trial [Publication Type] OR 

(randomized [Title/Abstract] AND controlled [Title/Abstract] AND trial 

[Title/Abstract])).  This query returns all articles with publication type “randomized 

controlled trial” or with all three words in the title or abstract. 

Support Vector Machine Models 

Machine learning methods provide another approach to identifying high-quality 

articles.  In previous research, polynomial support vector machine models had superior 

performance compared to the clinical query filters [13].  These models preprocess fields 

and text from MEDLINE records for use as features during learning.  A kernel function 

maps the input space to a “feature” space where a hyperplane is calculated to separate the 

classes of data.  The models learned from a previous study were used [13].  Performance 

was measured by area under the receiver operating curve (AUC).   

Analysis for Article Methods 

Absolute differences were computed between the performance when ignoring 

topic (i.e., all articles included) and the performance for a subset of articles related to a 

given topic.  Evaluation metrics were sensitivity and specificity for clinical query filters, 

and the metric was AUC for the SVM models.  The minimum, median, maximum, and 

interquartile ranges of these differences were also computed.  Second, Wilcoxon signed 
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rank tests were performed which test the difference between paired measurements.  They 

compare repeated measurements after an experimental manipulation to determine if a 

value has changed.  The null hypothesis is that the difference is zero.  A p-value less than 

.05 means that the difference is significantly different from zero, which implies that the 

method does not retain performance for individual topics. 

Experimental Data Set for Article Methods 

The experimental corpus was the same as the corpus used in previous work to 

compare clinical query filters and SVM models [13].  The gold standard was the ACP 

Journal Club [46].  It is a meta-publication where experts review internal medicine 

journals on a monthly basis to identify high-quality articles for categories such as 

diagnosis, etiology, prognosis, and treatment.  All MEDLINE articles from the ACP 

Journal club during the study period were positive cases or considered high-quality.  The 

remaining articles from the journals during the same period were negative cases or not 

considered high-quality.  For the treatment and etiology categories, there were 15,786 

MEDLINE records from July 1998 to August 1999.  For prognosis and diagnosis, there 

were 34,938 MEDLINE records from July 1998 to August 2000.  The longer timeline 

enabled a sufficient number of positive cases.  Articles were converted into a format 

suitable for the learning methods by extracting and encoding terms from the abstract, 

title, MeSH terms, and publication type. 

A set of 18 MeSH terms was randomly selected to cover a range of topics.  The 

topics were: Bone Diseases, Cardiovascular Diseases, Cysts, Diabetes Mellitus, 

Endocrine System Diseases, Gastroenteritis, Gastrointestinal Diseases, Heart Diseases, 
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Hematologic Diseases, Hernia, Infection, Kidney Diseases, Lung Neoplasms, Myocardial 

Infarction, Muscular Diseases, Neoplasms, Respiratory Tract Diseases, and Rheumatic 

Diseases.  Articles were relevant to a topic if its MEDLINE record contained the MeSH 

term or a term residing in a sub-tree. 

Evaluation Method for Websites 

PageRank 

PageRank is a citation-based method for evaluating the quality of web pages [15].  

It is motivated by the intuition that high quality pages will link to other high quality 

pages.  Specifically, it is calculated by modeling user behavior as a random surfer 

ignoring page content by either following a link arbitrarily or jumping randomly to 

another page.  The PageRank of a page is proportional to the likelihood that the surfer 

will visit it.  The PageRank of a page u is calculated as follows: 

 

 

 

where N is the total number of web pages in the network, Bu is the set of pages linking to 

page u, and Fv represents the set of pages to which page v links.  The term α is a 

parameter specifying the probability of following a link or randomly jumping to a page.  

The surfer will jump to a random page with probability 1 - α and follow an outlink with 

probability α.  It is usually 0.85 but can be any value between 0 and 1.  The first term of 

the equation is the probability of randomly jumping to a given page.  The second term is 
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the sum of all PageRanks for its incoming links.  For each inlink, the PageRank of the 

original page is divided by the number of outlinks for that page.  These values are 

summed over all incoming links and weighted by α.  A vector of PageRank values is 

defined over all pages in the network, and each page is initialized with an equal value.  

PageRank calculations are performed iteratively as matrix operations until the PageRank 

values converge, which is guaranteed by adding links to pages without any links and 

having the random jumps. 

There have been of number of modifications to PageRank to address topic drift.  

Haveliwala computed topic-sensitive PageRank scores by calculating a score for each 

page with respect to a number of topics [35].  The topics were top level categories from 

the Open Directory Project.  The topic-sensitive PageRanks were computed by biasing 

the random jump to favor pages related to a given topic, and the final PageRank values 

were computed at query time by weighting each topic-sensitive PageRank according to 

how similar a topic was to the query.  Richardson [37] used an intelligent surfer model to 

analyze the content of a webpage.  The probability of following a link or jumping to a 

page was proportional to the relevance of a page to the query.  Nie [36] augmented the 

random surfer model by using a topical random surfer that considered topics while 

surfing.  When a surfer follows an outlink, it can stay on the same topic or change the 

topic of interest. 
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Analysis for Websites 

Experimental Considerations for Websites 

Web-related research is challenging since it is difficult to replicate real-world 

conditions.  The size of the web makes experiments computationally intensive, and web 

crawlers cannot determine if they have detected all incoming links to a page.  

Researchers typically sample pages to create a static snapshot of the web.  PageRank 

values are affected when pages are removed during sampling since the network topology 

changes as links are removed.  It is not completely understood how sampling affects the 

stability of rankings [33, 47, 48]. 

Studying the topic-sensitivity of PageRank required understanding the 

ramifications of sampling to ensure that any observed variability was not caused by 

sampling.  The first consideration was sampling networks by selecting pages from the 

same domain.  Kamvar demonstrated that most pages link to pages from the same domain 

[49].  He found that 83.9% of links connected pages from the same domain in the January 

2001 Stanford WebBase crawl.  WebBase is a collection of crawls of websites used for 

web research.  The percentage rose to 95.2% after pages without outlinks were removed.  

Sampling pages from the same domain appears to minimize the effect on PageRank. 

Another sampling criterion was to select high-ranking pages.  Ng [48] showed 

that removing pages with low PageRank did not affect the stability of the top 10 results.  

My study investigated whether rankings are stable for all results since users may be 

interested in more than 10 results.  Four domains were chosen from WebBase [50]: the 

National Diabetes Education Program (NDEP), the National Eye Institute (NEI), the 
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National Heart Lung and Blood Institute (NHLBI), and the Centers for Disease Control 

and Prevention (CDC).  These domains were selected to provide biomedically relevant 

samples of various sizes. 

PageRanks were first computed for all pages within a domain.  Then the pages 

with the lowest PageRanks were removed, and PageRanks were computed for the 

remaining pages.  The stability of the rankings was measured with Haveliwala’s Ksim 

metric [35], which is based on Kendall’s τ distance measure.  Ksim is the fraction of 

pairwise ranking comparisons that are consistent between two rankings lists.  If page A is 

ranked higher than page B in one ranking set, Ksim checks if page A is ranked higher 

than page B in the other set.  For example, a Ksim value of .9 means that 90% of the 

pairwise comparisons are consistent in both rankings.  The two steps of removing pages 

and calculating PageRanks were repeated until no pages remained.  The number of pages 

removed per iteration depended on the original number of pages in the domain because of 

computational limitations.  Running time became prohibitive for a large number of 

pairwise comparisons.  For the NHLBI and CDC sites, the starting set consisted of the 

2000 highest ranked pages, and 100 pages were removed per iteration.  For the NEI site, 

all pages were included, and 10 pages were removed per iteration.  For the NDEP site, all 

pages were included, and pages were removed individually. 

Studying the Topic-sensitivity of PageRank 

The variability of PageRank for different topics was assessed by removing pages 

unrelated to a given topic.  An initial network included a mixture of topics.  If highly-

ranked pages in the original network received many links from pages unrelated to a given 
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topic, then they could decrease in rank within a topic-specific network.  First, PageRanks 

were computed for all pages.  Then, pages unrelated to a specific topic were removed, 

PageRanks were re-computed on this subset, and the similarity between the two rankings 

sets was measured with Ksim. 

As mentioned previously, removing links affects the network topology and 

PageRank values.  Sampling topic-specific networks can alter rankings due to the topic or 

random fluctuations from the changing topology.  The effect of random fluctuations was 

first determined as a baseline for comparison.  Random subsets were generated with the 

same number of pages as the topic-specific subset and   PageRanks were computed for 

the random subset.  Then, the similarity between the original and random subsets was 

measured with Ksim.  If the similarities in rankings for topic-specific subsets were higher 

than the random subset values, the increase was attributed to topic rather than random 

changes in the network connectivity. 

Two health-related domains were chosen: the Centers for Disease Control and 

Prevention (CDC) and the National Cancer Institute (NCI).  A number of well-

represented topics were selected for each domain.  For the CDC site, these topics were 

Genomics, National Center on Birth Defects and Developmental Disabilities 

(NCBDDD), National Center for Infectious Diseases (NCIDOD), National Immunization 

Program (NIP), and Tobacco.  For the NCI site, the topics were Breast, Cervix, Colon, 

Lung, and Prostate.  Topic relevance was determined by searching the website address 

for the topic or a related word.  For example, a NCI page was included in the “lung” topic 

if “lung” or “pulm” was in the address.  The CDC site was organized in a directory 

structure based on the topics.  
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Experimental Data Set for PageRank 

The September 2006 crawl from the Stanford WebBase [50] was the source of 

web pages for this study.  The general crawl contained about 90 million pages.  WebBase 

provided link and html information, but only the link structure was needed for the study.  

The similarity between two sets of rankings was measured with Haveliwala’s Ksim 

metric [35]. 

Results 

Variability of Journal Ranking for Different Topics 

The variability of impact factor over topics and journals was measured by 

adjusting it for topic with equation (2) from the Methods section.  Table 1 and Table 2 

show that rankings based on impact factor and topic-specific impact factor were not 

equivalent.  A higher impact journal did not always have a higher topic-specific impact 

factor for a given topic.  For example, NEJM had a higher impact factor than JAMA but 

had a lower cardiology-specific impact factor.  There were 10 reversals (8.33% of the 

comparisons, 95% confidence interval 3.39% to 13.28%) for the 120 comparisons among 

the 15 journal pairs and 8 topics.  There were 3 extreme cases where a journal impact 

factor was 1.5 times greater than another journal while the other journal’s topic-specific 

impact factor was 1.5 times greater.  The topics were nephrology (AJM, BMJ), 

gastroenterology (NEJM, JAMA), and rheumatology (Lancet, NEJM). 
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Table 1: Journal impact factor and topic-specific impact factors for general topics in 2004 and 2003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Journal impact factor and topic-specific impact factors for general topics in 2004 and 2003 

 

 Journal Topic-specific Impact Factors for General Topics 
Impact 
Factor 

  Cardiology Endocrinology Gastroenterology Hematology  

 AIM 16.07 13.85 16.92 7.94 13.11 

 AJM 4.09 3.44 2.73 6.38 4.18 

BMJ 7.55 6.48 7.37 5.73 7.04 
2004 

JAMA 42.18 28.27 60.55 13.87 24.83 

 Lancet 33.8 47.7 18.86 11.98 21.71 

 NEJM 37.46 54.31 37.68 33.71 38.57 

       

 AIM 14.37 19.83 12.73 10.63 12.43 

 AJM 4.21 5.82 2.43 4.3 4.4 

BMJ 7.95 6.84 4.98 5.57 7.21 
2003 

JAMA 38.12 28.24 70 13.38 21.46 

 Lancet 24.42 34.33 17.91 8.34 18.32 

 NEJM 38.05 55.78 33.66 28.78 34.84 

 Journal Topic-specific Impact Factors for General Topics 
Impact 
Factor 

  
Medical 

Oncology 
Nephrology 

Pulmonary 
Disease 

Rheumatology  

 AIM 12.49 23.17 12.66 15.4 13.11 

 AJM 3.95 4.31 3.1 6.29 4.18 

BMJ 5.57 2.37 7.94 8.77 7.04 
2004 

JAMA 35.58 20.32 36.47 13.4 24.83 

 Lancet 23.16 14.3 27.41 52.5 21.71 

 NEJM 44.8 27.93 37.97 24.08 38.57 

       

 AIM 12.14 23.06 13.21 14.5 12.43 

 AJM 3.98 5.33 3.44 5.82 4.4 

BMJ 5.76 4.00 5.37 12.25 7.21 
2003 

JAMA 39.27 18.94 30.13 12.8 21.46 

 Lancet 17.78 14.61 14.12 17.94 18.32 

 NEJM 40.46 39.51 22.42 45.33 34.84 
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Table 3: The minimum, median, maximum, and interquartile ranges for the absolute differences 

between impact factor and topic-specific impact factor in 2004 

The absolute differences 

between the two measures and the 

Bland-Altman plot also indicate 

that the methods are not 

equivalent.  Table 3 shows the 

minimum, median, maximum, and interquartile ranges of these differences for all 

journals and topics.  The values were unstable since the maximum differences ranged 

from about 10 to 35.  In Figure 1, the Bland-Altman plot showed that the difference in 

impact factor and topic-specific impact factor depended on their values, and the 

divergence increased as the values increased.  Also, the difference did not depend on 

Topic Min. Median Max. IQR 

Cardiology 0.09 2.04 17.35 11.58 

Endocrinology 0.56 2.09 25.99 15 

Gastroenterology 0.33 2.15 35.72 2.92 

Hematology 1.31 5.02 10.96 7.53 

Medical Oncology 0.23 1.46 10.75 5.61 

Nephrology 0.13 6.04 10.64 5.55 

Pulmonary Disease 0.45 0.99 11.64 5.1 

Rheumatology 1.73 6.86 30.79 12.38 

Figure 1: Bland-Altman plot for the differences between Impact Factor and Topic-

Specific Impact Factor 
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specialty since all topics showed some difference.  If the methods were in agreement, all 

values would lie between horizontal lines at -22.17 and 17.7, which is the range of two 

standard deviations from the mean difference of -2.24.  Three values fall outside this 

range. 

The observations for the eight general topics from internal medicine were also 

evident for gastroenterology subtopics as shown in Table 4.  There were a number of 

ranking reversals as with the general topics.  The variation increased for more specialized 

topics and was most pronounced in the 3 highest impact journals.   JAMA had the 

greatest variability with a maximum topic-specific impact factor that was over 13 times 

larger than its minimum.  For increasingly specialized topics, the overall impact factor 

became less meaningful.  In 2004, JAMA had an impact factor of 24.83, 

gastroenterology-specific impact factor of 60.55, and topic-specific impact factors for 

gastroenterology-based subtopics ranging from 6 to 80.07.  These results suggest that 

researchers studying a specific disease should not rely on overall impact factor for journal 

evaluation. 

Table 4: Topic-specific impact factors for the narrowly defined topics, journal impact factor, and 

topic-specific impact factor for Gastroenterology in 2004. Empty entries had less than 5 articles. 

Journal Topic-specific Impact Factors for Narrowly Defined Topics 
Impact 
Factor 

TIF for 
Gastro. 

 
Esophageal 

Diseases 
Gastro- 
enteritis 

Gastrointestinal 
Neoplasms 

Hernia 
Intestinal 
Diseases 

Stomach 
Disease 

  

AIM - 20.00 17.64 - 18.00 15.25 13.11 16.92 

AJM 1.94 7.80 2.82 - 4.82 - 4.18 2.73 

BMJ 5.43 4.50 5.90 7.00 6.90 2.33 7.04 7.37 

JAMA 9.00 20.00 79.43 - 80.07 6.00 24.83 60.55 

Lancet 15.86 28.08 21.26 2.50 19.95 18.60 21.71 18.86 

NEJM 20.33 29.83 60.21 7.50 37.48 44.00 38.57 37.68 
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Additional experiments were performed to ensure that variation was not a random 

occurrence unique to a single year.  First, the experiments were replicated for 2003 and 

yielded consistent results as shown in Table 1 and Table 2.   Many of the relative 

rankings for journals were retained, and some of the same reversals existed.  Also, ranges 

of topic-specific impact factors were comparable.  Next, the regression model in equation 

(4) verified that variation was not randomly caused by sampling.  The regression 

coefficient for sample size difference, β1, was .0021 and not significantly different from 

zero (p-value = .6062).  The difference between topic-specific impact factor and impact 

factor did not appear associated with differences in sample size. 

Data from 2004 was used to provide an example of a topic-mix adjusted impact 

factor with a topic mix where cardiology was weighted three times more than pulmonary 

disease.  JAMA had a topic-mix adjusted impact factor of 40.75 while NEJM was 37.59.  

In this case, JAMA had a higher cardiology-specific impact factor, while NEJM had a 

higher pulmonary disease-specific impact factor.  Due to the emphasis on cardiology in  

this example, JAMA had a higher topic-mix adjusted impact factor despite the fact that 

NEJM had a higher overall impact factor.  This example shows that the unadjusted 

impact factor may not be the best guide in evaluating journals for topic mixes. 
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Table 5: The minimum, median, maximum, and interquartile ranges for the absolute differences 

between overall and topic-specific sensitivity/specificity. 

Variability of Article Evaluation Methods for Different Topics 

Performance of the clinical query filters differed for specific topics.  Table 5 

summarizes the differences between the overall sensitivity/specificity and the observed 

values.  There was considerable variability for some categories.  For example, the 

sensitivity-optimized prognosis filter had a median difference of 0.1, maximum 

difference of 0.57, and an interquartile range of 0.15 for sensitivity.  These values are 

relatively large since sensitivity ranges from 0 to 1.  The Wilcoxon signed rank tests 

suggested that performance was unstable for most categories.  The p-values were less 

than .05 for all cases except sensitivity with the sensitivity-optimized diagnosis filter and 

both values for the sensitivity-optimized prognosis filter. 

The SVM models were more stable over topics as shown in Table 6.  The AUC 

values cannot be compared directly with the Haynes’ filters results since they are not 

sensitivity or specificity values.  However, AUC values also range from 0 to 1.  

Differences were much smaller since the largest interquartile range is .065, and the 

  Sensitivity Specificity 

Optimized 
for 

Category Min Median Max IQR Min Median Max IQR 

 Diagnosis 0.02 0.02 0.15 0.0013 0.015 0.087 0.23 0.097 

Etiology 0.028 0.07 0.07 0 0.00047 0.059 0.22 0.10 
Sensitivity 

Prognosis 0.031 0.1 0.57 0.15 0.0029 0.053 0.18 0.042 

 Treatment 0.0035 0.01 0.026 0.0025 0.0027 0.030 0.17 0.053 

          

 Diagnosis - - - - - - - - 

Etiology 0.16 0.34 0.49 0.28 0.0066 0.13 0.31 0.086 
Specificity 

Prognosis 0.11 0.24 0.52 0.33 0.030 0.099 0.22 0.035 

 Treatment 0.034 0.053 0.07 0.023 0.00037 0.048 0.13 0.033 
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largest maximum difference was 0.13.  The Wilcoxon tests for the SVM models showed 

that all categories except for diagnosis did not differ significantly from the overall AUC 

values.  These results imply that the SVM models are less sensitive to topic and more 

stable for specific topics.  One important observation for the diagnosis category is that it 

had few positive documents.  A number of the topics had no positive documents, and 

most of the topics had fewer than 4 positive cases out of several hundred or thousand 

articles.  The diagnosis results may be consistent with the results for the other categories 

with more positive cases. 

Table 6: The minimum, median, maximum, and interquartile ranges for the absolute differences 

between AUC values 

Category Minimum Median Maximum IQR 

Diagnosis 0.0083 0.038 0.04 0.012 

Etiology 0.0027 0.028 0.13 0.05 

Prognosis 0.0041 0.045 0.10 0.065 

Treatment 0.00054 0.0040 0.041 0.0078 
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Sampling Web Pages with High PageRank Values 

Before analyzing the topic-sensitivity of PageRank, it was verified that sampling 

websites with high PageRank values maintained stable rankings in the remaining pages.  

Subsets were created by repeatedly removing pages with low PageRanks and re-

computing PageRanks.  Figures 2-5 show that rankings did not fluctuate dramatically 

when low ranking pages were removed.  All domains had Ksim values over 0.8 after the 

first removal.  The values gradually decreased with fewer pages until a small number 

remained.  The results indicated that samples of high-ranking pages yield subsets with 

relatively stable rankings. 
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Figure 2: Similarity in rankings for the CDC domain as pages were removed 

Figure 3: Similarity in rankings for the NDEP domain as pages were removed 
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Figure 4: Similarity in rankings for the NEI domain as pages were removed 

Figure 5: Similarity in rankings for the NHLBI domain as pages were removed 
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Variability of PageRank for Different Topics 

The topic-sensitivity of PageRank was measured by removing pages unrelated to 

a topic and measuring the stability of rankings.  Random subsets were generated to 

estimate the effect of sampling on rankings.  Table 7 displays the Ksim values for all 

topics.  For both domains, Ksim values for the topic subsets were larger than the values 

for the random subsets.  The larger values imply that the rankings were dependent on 

topic and varied over topics.  The CDC topics had higher Ksim values than the NCI 

topics which meant there was less variability in the CDC rankings.  Removing unrelated 

pages for each topic affected the CDC rankings less than the NCI rankings.  This result is 

explained by the prevalence of intra-topic linking in the original network.  Removing 

unrelated pages does not drastically affect the topology or rankings if pages link mostly 

to pages within the same topic.  Removing unrelated pages will greatly influence the link 

structure and rankings if most links connect to pages outside the topic. 

Table 7: Similarity of rankings for topic-isolated and random subsets along with the percentage of 

links remaining after topic isolation 

Domain Topic 
Number 
of Pages 

Ksim for  
Topic subset 

Ksim for 
Random subset 

Fraction of links 
within same topic 

 Genomics 647 0.97 0.58 0.85 

NCBDDD 725 0.87 0.63 0.71 

NCIDOD 1185 0.79 0.68 0.76 CDC 

NIP 357 0.87 0.49 0.83 

 Tobacco 482 0.94 0.53 0.87 

      

 Breast 219 0.71 0.31 0.32 

Cervix 204 0.74 0.24 0.42 

Colon 199 0.72 0.20 0.37 NCI 

Lung 254 0.76 0.32 0.36 

 Prostate 151 0.70 0.24 0.32 



 36 

 

Table 7 shows that the Tobacco and Genomics topics in the CDC site had the 

greatest percentage of intra-topic links (.87 and .85 respectively) as well as the highest 

Ksim values (.94 and .97).  The Breast and Prostate topics in the Cancer site had the 

lowest percentage of intra-topic links and two of the lowest Ksim values.  Rankings were 

more stable with a greater proportion of links to related pages, and rankings were more 

unstable with links to unrelated pages. 

Discussion 

This work studied the variability of evaluation metrics for the scientific literature 

and web when considering different topics.  Previous research studied the average 

performance of impact factor, clinical query filters, and SVM-based models over all 

topics.  The present study builds on prior work by analyzing the stability of these 

methods for specific topics.  Experimental results demonstrated that impact factor, 

clinical query filters, and PageRank are sensitive to topic and vary widely for different 

subjects.  Researchers should realize that average performance cannot always be expected 

for focused searches.  Approaches that adjust for topic or are insensitive to topic should 

be used if available.  The topic-specific impact factor and SVM models are two viable 

options.  

Two aspects of PageRank’s behavior for evaluating web pages were also 

investigated as part of this study.  First, it was demonstrated that removing pages with 

low PageRanks is a reasonable sampling method.  Experiments showed that the rankings 

of the remaining pages were relatively stable.  Prior work had focused on the stability of 
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the top 10 results.  Second, rankings based on PageRank vary depending on the 

proportion of links from unrelated pages.   

Impact factor, clinical query filters, and PageRank are unstable over topics since 

they are query-independent methods built separately from the learning task.  Citation-

based metrics, including impact factor and PageRank, suffer since a citation is not 

necessarily an endorsement related to a topic of interest.  An article may cite another 

article for many reasons.  Even if the citation is an endorsement, the reason for the 

citation may not be relevant to the query topic and distort topic-specific rankings. 

The topic-sensitivity of clinical query filters may be due to their manual creation.  

Experts choose terms that reflect their expertise.  The coverage of terms may not be 

exhaustive since research areas use different jargon and vocabulary, and some topics may 

lack adequate consideration.  On the other hand, SVM models automatically learn terms 

for all topics from the corpus, and the machine learning methods should not perform 

poorly for topics included in the corpus. 

This work’s findings have practical implications.  Relying on topic-sensitive 

methods can provide misleading conclusions.  For example, researchers interested in 

gastrointestinal diseases would believe that NEJM is the best journal according to impact 

factor.  However, JAMA may be a better choice since it has higher topic-specific impact 

factors for gastroenterology and gastrointestinal diseases.  The variability could result in 

queries of lower than expected sensitivity or specificity.  Similarly, someone interested in 

finding websites about gastrointestinal diseases could receive less than optimal results if 

PageRank is used for ranking.  The top results may be prominently ranked for their 

coverage of other topics.  Taken together, these consequences represent the potential for a 
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habitually flawed evaluation of the literature and web.  Researchers’ work may not be 

reaching as large an audience as possible, and articles and web sites may frequently be 

misidentified with respect to quality. 

The topic-sensitivity of the methods was not as extensive as the hypothetical 

examples in the introduction.  However, it is still present and should be considered when 

using the studied methods.  For articles and journals, this work was the first step in 

characterizing the application of these approaches for specific domains. 

Aphinyanaphongs and colleagues previously showed that it is naive to believe that 

citation-based metrics can describe all clinical uses [31].  Similarly, this work shows that 

it is unrealistic to expect impact factor, clinical query filters, and PageRank to exhibit 

average performance for all clinical contexts.  The results support the use of specialized 

learning methods for focused searches on a given topic.  Although this approach can be 

computationally intensive, there has been evidence that methods designed specifically for 

a given query or learning task can outperform non-specific or query-independent methods 

in finding high-quality articles in the literature [31]. 
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CHAPTER IV 

MACHINE LEARNING MODELS FOR PREDICTING AND EXPLAINING 

CITATION COUNT OF BIOMEDICAL ARTICLES 

Introduction 

The most popular method for evaluating the impact and quality of an article is the 

citation count which is the number of citations received by an article within a pre-

specified time horizon [16].  One limitation of citation count is its unavailability before 

this horizon expires (typically several years after publication).  This delay renders citation 

counts primarily useful for historical assessment of the scientific contribution and impact 

of papers.  Other problems include the inaccuracy and incompleteness of citation 

databases, variable citation rates between fields, and multiple purposes of citations 

unrelated to quality [17-19].  For a more complete discussion of citation analysis in 

general, see Chapter II. 

Automatic prediction of citation counts could provide a powerful new method for 

evaluating articles while alleviating many difficulties associated with the explosive 

growth of the biomedical literature.  Faster identification of promising articles could 

accelerate research and dissemination of new knowledge.  Accurate models for citation 

count prediction could also improve our understanding of the factors that influence 

citations. 

Predicting and understanding article citation counts is however a challenging 

problem both on theoretical grounds and on the basis of several decades of related 
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empirical work.  In fact, the bulk of the literature concerning citation counts addresses the 

motivating factors for article citations rather than predicting them [16].  

From a theoretical point of view, it has been found that citation prediction is 

difficult because of the nature and dynamics of citations [51, 52].  Predictions based on 

current data assume that citation behavior will not change in the future, and this 

assumption may be violated in fast-paced research fields such as biomedicine.  Citations 

are a noisy, indirect quality measure, and accumulation rates vary unpredictably between 

articles.  Breakthrough papers can stop receiving citations after review articles replace 

them or the subject matter becomes common knowledge [51].  Redner identified four 

major categories for citation behavior [53].  “Sleeping beauties” are highly-cited articles 

receiving most of their citations long after publication, “major discovery papers” 

demonstrate a spike of citations after its contribution is recognized, “classic publications” 

are cited over long periods of time, and “hot papers” increase their citation rate over time.  

Another difficulty in making accurate predictions is the sparseness of a citation network 

[52].  Fitting a reliable statistical model is difficult since the number of links is small 

compared to the number of nodes, and negative cases (i.e., non-connected nodes) grow 

much more rapidly than positive cases (i.e., connected nodes) [54].  Another contributing 

factor is that citation rates may have a degree of randomness.  For example, a high-

impact journal paper may increase the citation rate of papers within the same issue [55]. 

Previous empirical research predicted long-term citation counts from citations 

accumulated shortly after publication.  In the Knowledge Discovery and Data (KDD) 

Mining Cup competition of 2003 [56], researchers predicted the evolution of the number 

of citations received by a set of 441 articles in high-energy physics from arXiv.org during 
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successive three month periods.  arXiv.org is a collection of e-prints for Physics, 

Mathematics, Computer Science, Quantitative Biology, and Statistics.  Accuracy was 

calculated as the sum of the differences between the predicted and true values for all 

articles.  The winning entry used a k-nearest neighbors approach [57].   

There have been a number of papers focused on the same prediction task besides 

this competition.  Csárdi [58] predicted citation counts by studying the evolution of a 

citation network as documents were added to an existing network.  The probability of a 

new paper citing a specific paper depended on its age and citation count.  Recent papers 

with more citations were more likely to be cited.  Csárdi replicated the KDD Cup 

prediction task although this method was not specifically designed for the prediction task.  

Probabilities were estimated from the initial document set, and the growth of the network 

was simulated.   The number of citations was averaged over multiple simulations to 

determine the final prediction.  Performance was slightly worse than the best 

performance from the KDD Cup.  Castillo et al. [59] used linear regression and citation 

count after 6 months to predict citation count after 30 months.  They incorporated author-

related information (i.e., the number of previous citations, publications, and co-authors 

for an author) to improve predictions. The resulting model had a correlation coefficient of 

0.81 between the true and predicted number of citations for 1500 articles from Citeseer, a 

database of computer science articles.  The correlation coefficient was 0.57 without 

author information which demonstrated that author data improved prediction. 

Lokker [60] recently presented a regression model for predicting citation counts 

two years after publication using information available within three weeks of publication.  

This study performed multiple regression on 17 article-specific features and 3 journal-
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specific features.  Nine article-specific predictors were statistically significant including 

the number of authors, the number of pages, the number of references, and whether the 

article was abstracted in an evidence-based medicine journal.  Significant journal-specific 

features were the number of databases that indexed the journal and the proportion of 

articles that were abstracted.  The training set contained 1274 articles published in 105 

journals from January to June 2005.  Lokker’s model predicted 56% of the variation for a 

holdout test set (R
2
 = 0.56).  The sensitivity and specificity of the model were 83.3% and 

71.5% for the top half of cited papers.  The values were 66.1% and 82.2% for the top 

third.  The area under the receiver operating characteristic curve (AUC) was 0.76 for a 

median threshold of 7 citations.  

Other work focused on slightly different learning tasks.  Feitelson [51] modeled 

the citation rate of authors with a multiplicative model. The link prediction task predicts 

new links in a fixed network of nodes without adding new documents [61, 62].  Popescul 

[61] used author names, the citation graph, publication venue, and word count to predict 

unobserved links for a fixed set of documents.  Taskar [62] defined a probabilistic model 

over the link graph by applying a relational Markov network.  He predicted the relation 

type of links within a website and friendship links between students in an online 

community.  Liben-Nowell [63] studied social networks and predicted new collaborations 

between researchers.  Similarity was measured with topological features such as the 

number of common neighbors or paths between nodes.  Al-Hasan considered the same 

prediction task but considered non-topological features such as the number of previous 

publications by an author and paper keywords [64]. 
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Despite the apparent difficulties in citation prediction, the goal of this work was to 

examine the feasibility of citation count prediction in the biomedical literature.  Support 

vector machine models were trained with the full content terms of the MEDLINE abstract 

and MeSH keywords as well as bibliometric information about the authors, journals, and 

institutions.  The topic and subject matter of the article were included because heavily 

cited topics may be predictive of future citations.  Bibliometric features were included 

since social factors may affect citation rates.  This approach differed from previous 

methods since only information available at publication time was used.  In addition to the 

model-building effort, the models were analyzed to identify factors that correlate strongly 

and potentially determine the chances of an article being cited by many subsequent 

articles. 



 44 

 

Methods 

Predictive Features and Response Variable 

 

Table 8: Features included in each model for citation count prediction 

 

Table 8 lists the input features used to construct a learning corpus for predictive 

modeling. The number of articles or citations for first and last authors was counted for 

10 years prior to publication. Publication type indicates if a paper was identified as an 

article or review by the Institute of Scientific Information’s (ISI) Web of Science (WOS) 

bibliometric database [44]. The Academic Ranking of World Universities (ARWU) [65] 

was used to measure the quality for the first author’s institution.  ARWU was compiled 

by the Shanghai Jiao Tong University and ranked the top 500 universities in the world.  

Ranking criteria included the number of Nobel Prize and Fields Medal recipients among 

its alumni and faculty, the number of “highly-cited researchers” according to ISI [66], 

number of articles published in Nature and Science, the number of articles indexed in the 

Science Citation Index and Social Science Citation Index, and the size of the institution.  

Feature 
Complete 

model 
Content 
model 

Bibliometric 
model 

Impact Factor 
model 

Article title x x   
Article abstract x x   
MeSH terms x x   

Number of articles for first author x  x  
Number of citations for first author x  x  
Number of articles for last author x  x  
Number of citations for last author x  x  

Publication type x  x  
Number of authors x  x  

Number of institutions x  x  
Journal impact factor x  x x 

Quality of first author’s institution x  x  
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Number of institutions refers to unique home institutions for all authors. All other 

variables are self-explanatory.  

 The response variable was defined by a set of citation thresholds to determine if 

an article was labeled positive or negative. For a given threshold, a positive label meant 

an article received at least that number of citations within 10 years of publication. 

Thresholds were chosen (before analysis) to be 20, 50, 100, and 500 citations. In the 

space of topics covered by the corpus (see next subsection), papers with at least 20, 50, 

100, and 500 citations within 10 years can be interpreted to be at least mildly influential, 

relatively influential, influential, and extremely influential respectively.  

Predictions were made for a binary response variable rather than a continuous one 

because error metrics for discrete values are easier to interpret than continuous ones. 

Continuous loss functions such as mean square error or percent variation explained are 

more difficult to interpret in terms of practical significance. 

Corpus Construction 

The corpus was built for model training and evaluation by specifying a set of 

topics, journals, and dates.  Eight topics were chosen from internal medicine as defined 

by the MeSH vocabulary: Cardiology, Endocrinology, Gastroenterology, Hematology, 

Medical Oncology, Nephrology, Pulmonary Disease, and Rheumatology. An article was 

operationally considered relevant to a topic if its MEDLINE record contained one of the 

eight MeSH terms, a related topic from the “See Also” field of the MeSH record, or a 

term from a sub-tree of one of these terms [42]. For example, an article was Cardiology-
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related if it contained the MeSH heading “Cardiology”, a related term like 

“Cardiovascular Diseases”, or a term from a sub-tree.  

Articles were included from six journals: American Journal of Medicine, Annals 

of Internal Medicine, British Medical Journal, Journal of the American Medical 

Association, Lancet, and New England Journal of Medicine. The journals were selected 

to include popular journals with a broad range of impact factors. The corpus contained 

articles published between 1991 and 1994 to collect citation data for a 10 year period 

after publication of the most recent articles. The window length was chosen so that 

citation rates would have sufficient time to stabilize. 

PubMed was queried for all desired articles, and additional information was 

downloaded from the bibliometric database, the ISI Web of Science (WOS) [44]. 

Documents were excluded if bibliometric data was unavailable, and the final corpus 

contained 3788 documents. The complete model consisted of 20005 total features, and 

information was downloaded in May 2007. Positive-to-negative class ratios for each 

threshold were as follows: 2705/1083 for threshold 20, 1858/1930 for threshold 50, 

1136/2652 for threshold 100, and 100/3688 for threshold 500 citations.  Figure 6 shows 

that citations followed a power law distribution where most papers received a small 

number of citations. 
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Articles were formatted for learning by text preprocessing and term weighting.  

The title, abstract, and MeSH terms were extracted from MEDLINE records.  PubMed 

stop words (such as “the” or “a”) [67] were removed from the title and abstract.  Multiple 

forms of the same word were eliminated with the Porter stemming algorithm [68] to 

reduce the dimensionality of the input space. 

Terms were weighted using log frequency with redundancy [69].  First, the 

number of times a term appeared in a document was transformed into a log frequency.  

Then it was multiplied by an importance weight (i.e. redundancy).  Redundancy 

measured how uniformly distributed a term was throughout a corpus.  A term appearing 

in all documents is not helpful for classification.  A term appearing many times in one 

article while occurring once in each of the remaining articles is more discriminative [69].   

Figure 6: Distribution of citations for papers in the corpus (n = 3788 papers) 
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The redundancy value for term k, kr , is: 

 

 

 

where N is the number of documents in the corpus, ( , )k if w d  is the number of 

occurrences of term k in document i, and ( )kf w  is the number of occurrences of term k 

in the corpus.  The final step was L2-normalization to account for different text lengths.  

The vector of feature weights for a document i, xi, is: 

 

 

 

where li  is a vector of the log frequencies for all terms in document i, r is a vector of 

redundancy values for all terms in the corpus, l ri∗  signifies component multiplication, 

and 2l r Li∗  is the L2-norm of the resultant vector.  Each weight was a value between 0 

and 1.  In the end, the corpus was represented as a matrix where rows corresponded to 

documents and columns represented terms.  Bibliometric features were scaled linearly 

between 0 and 1. 

Learning Method 

Support vector machine (SVM) models were used as the learning algorithm.  

They are a supervised learning method where a kernel function maps the input space to a 

higher-dimensional feature space, and a hyperplane is calculated to separate the classes of 

data [70].  The optimal hyperplane is the solution to a constrained quadratic optimization 
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problem.  SVM models are usually sparse since the solution depends on the support 

vectors or points closest to the hyperplane [71].  Most features have zero weights, and the 

number of support vectors will be much smaller than the number of instances in most 

cases.  This property makes SVMs suitable for representing text which typically involves 

high-dimensional data.  Prior research has demonstrated that they perform well in 

categorizing text and identifying high-quality articles [13, 69]. In this application, input 

features were the weighted terms from MEDLINE records and the Web of Science.   

Model Selection and Error Estimation 

Models were selected with 5-fold nested cross validation.  Parameters were 

optimized for cost and degree in the inner loop while the outer loop produced an unbiased 

estimate of model predictivity. The set of costs was [.1, .2, .4, .7, .9, 1, 5, 10, 20], and the 

set of degrees was [1, 2, 3, 4, 5, 8].  Performance was measured by area under the 

receiver operating characteristic curve (AUC). AUC was chosen instead of accuracy 

since AUC is not dependent on the ratio of positive and negative cases. Recall that an 

AUC of 0.5 describes a random classifier, AUC of ~.75 a mediocre classifier, AUC of 

~0.85 a very good classifier, and AUC > 0.9 an excellent classifier (while an AUC of 1 

denotes perfect classification). 

Prospective validation was performed to analyze the models’ ability to predict 

citation counts for future unseen articles.  Articles from 1993 and 1994 were set aside for 

independent validation purposes, and articles from 1991 and 1992 were used to derive 

predictive models using the nested cross-validation procedure described. 
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Analysis of Influential Features 

After fitting the complete models (i.e., with all features) and estimating their 

performance, the most influential features were identified using three types of analysis. 

First, reduced-feature models were trained for each threshold based only on the content, 

bibliometric data, or impact factor. Table 8 shows the features included in each model. 

Performance of these models revealed whether one type of feature was more important 

than the others. 

A second feature-specific analysis was performed as follows: the total number of 

features was reduced by selecting the Markov Blanket of the response variable (i.e., 

number of citations received). The Markov Blanket is the smallest set of features 

conditioned on which all remaining features are independent of the response variable.  It 

excludes irrelevant and redundant variables without compromising predictivity, and it 

provably results in maximum variable compression under broad distributional 

assumptions [72]. The specific algorithm used was semi-interleaved HITON-PC without 

symmetry correction which is an instance of the Generalized Local Learning class of 

algorithms [72].  It was verified that the reduced feature set predicted citation counts as 

well as the original model. After this variable selection and verification step, logistic 

regression estimated the magnitude of each feature’s effect and its statistical significance 

on predicting citation counts while controlling for all other features in the logistic 

regression model. The raw SVM weights or Recursive Feature Elimination (RFE) 

weights in the polynomial SVM case cannot be used for the same purpose.  SVMs do not 

control for the effect of all other variables on the weight of each feature in the SVM 
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model contrary to logistic regression. SVMs “spread” weights to otherwise conditionally 

independent features in order to implicitly model a smoother decision function. 

The third method for identifying important features was SVM-based feature 

selection where features were ranked by linear SVM weights [73].  Features with the 

largest weights exert the greatest influence in defining the decision boundary.  The 

majority of features have weights of zero, while the features with non-zero weights are 

support vectors.  Cost was optimized for a linear SVM model, the model was re-trained, 

and each feature was ranked according to its linear SVM weight. 

Implementation Details 

Corpus construction and feature weighting were implemented with custom Python 

scripts.  For text-based features, the scripts constructed PubMed queries, retrieved desired 

articles, downloaded MEDLINE records, and preprocessed text. For bibliometric 

features, the WOS database was queried with the title, author, and journal of each article. 

If a match was found, a user session was simulated by navigating through the website and 

extracting desired information about the document and authors. 

The remainder of the code was written in MATLAB. LIBSVM was used to train 

SVM models, and it included a MATLAB interface [74]. Scripts were written to perform 

cross-validation and estimate performance. A custom MATLAB implementation for 

HITON was used as well as the logistic regression implementation of the MATLAB 

statistics toolbox. 
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Figure 7 shows the performance of four different types of models: the complete 

model with all features, models with only content features, models with only bibliometric 

features, and models with only the impact factor. The complete model accurately 

predicted whether a publication received a given number of citations for each citation 

threshold. AUC values range from 0.857 to 0.918 depending on threshold.  The SVMs 

were able to learn useful models from the combination of content and bibliometric 

information. 

Figure 7: Performance for models based on all features, content, 

bibliometric features, and impact factor 
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Testing for Overfitting 

 Table 9: Cross-validation and prospective validation AUC results for citation count prediction 

 

Table 9 shows the prospective validation results with the cross-validation 

estimates.  Each row corresponds to a model for a given citation threshold.  The second 

column shows estimated cross-validation performance in the full corpus (years 1991 to 

1994). The third column shows performance of models built from years 1991-1992 when 

applied to documents from years 1993-1994.  The models should generalize well since 

the cross-validation estimates are similar to the prospective validation results. 

Another analysis was performed to further verify that the results were not 

overfitted.  The method was borrowed from state-of-the-art analysis of high-throughput 

data [75].  Citation counts were randomly reshuffled, and all models were rebuilt on the 

reshuffled data exactly as was done for non-shuffled data. This procedure yielded AUC 

estimates of 0.5 since reshuffling eliminated the predictive association of the features to 

the outcome. This result verified that the original analysis was not overfitted. 

Predictivity by Feature Type 

After establishing that model performance was not due to overfitted analysis, the 

next analysis focused on estimating predictivity when learning with feature subsets.  As 

Citation 
Threshold 

AUC cross-validated 
estimates (1991-1994) 

Models built from 1991-2, 
tested on 1993-4 

20 0.877 0.865 
50 0.857 0.844 
100 0.857 0.831 
500 0.918 0.871 
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shown in Figure 7, the consistent trend in all thresholds was: AUC(complete model) ≥ 

AUC(content only features) ≥ AUC(bibliometric only features) ≥ AUC(impact factor 

only).  Of the three reduced-feature models, no single model outperformed the other two 

for all thresholds.  Impact factor had the lowest performance for all thresholds and was 

much lower than that of the complete model (differences in AUCs range from 0.065 to 

0.154). The results also show that both content and bibliometric features had individually 

high predictivity.  They both contributed to the accuracy of the complete model since 

AUC was maximized only when all types of predictive features were combined. 

The Impact Factor model performed surprisingly well considering it is a poor 

predictor of citation count and does not correlate strongly with it [19].  In this corpus, the 

Pearson’s correlation coefficient between Impact Factor and citation count was .429, and 

Spearman’s rank correlation coefficient was .570.  The predictive ability of Impact Factor 

was investigated by analyzing the distribution of citation counts for each journal shown 

in Figures 8-13.  Citation counts followed a power law distribution for the entire corpus 

but did not retain this distribution in each journal.  AJM and BMJ followed a power law 

distribution where most articles received a small number of citations.  The distribution 

was more spread out for the other journals.  NEJM had many articles that were highly 

cited.  This behavior may partially explain why Impact Factor was a reasonably effective 

predictor by itself with this corpus. 
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Figure 8: Distribution of citations over papers in American Journal of Medicine  

Figure 9: Distributions of citations over papers in Annals of Internal Medicine 
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Figure 10: Distribution of citations over papers in the British Medical Journal 

Figure 11: Distribution of citations over papers in JAMA 
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Figure 12: Distribution of citations over papers in Lancet 

Figure 13: Distribution of citations over papers in New England Journal of Medicine 
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Analysis of Influential Features 

As explained in the methods section, the Markov Blanket only includes non-

redundant and relevant features, and logistic regression estimated feature importance and 

statistical significance of the selected features. The original set of 20,005 features was 

reduced to 169, 125, 132, and 138 features for thresholds 20, 50, 100, and 500 

respectively.  Performance did not degrade substantially when the HITON set of features 

was used for learning rather than the full set.  Tables 10-12 show the top 25 ranked 

features according to absolute values of regression coefficients for citation thresholds 20, 

50, and 100.  Features with p-values greater than 0.05 were removed.  There is no table 

for threshold 500 since all p-values were greater than 0.05.  Features with the label 

“[MeSH]” were MeSH term headings in the MEDLINE records, features with “[Title]” 

were words from the title, and features with “[WOS]” were bibliometric features.  

Features without labels were terms from the abstract. 

Recall that a positive unit change in a regression coefficient β for a feature 

corresponds to e
β
 increase in the odds of exceeding the citation count threshold for which 

the model is built. For example, “First Author Citations” had the largest coefficient of 

5.753 for citation threshold 100. This value indicates that an article with the greatest 

number of first author citations was about 315 times (e
 5.753

 ≈ 315) more likely to receive 

100 citations than an article with no first author citations.  A one-unit change for interval-

based features corresponds to a difference between the largest and smallest values since 

interval variables were scaled in the [0,1] range. 

The feature-specific analysis points to several important conclusions: (a) certain 

“hot” topics were associated with high citation rates (e.g., smoking:mortality [MeSH] 
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was 68 times more likely to exceed 100 citations when controlling for other factors); (b) 

other topics or types of practice indicated smaller citation probability (e.g., splenectomi* 

and family practice were about 33 and 17 times less likely to receive 50 and 100 

citations); (c) citation history of first and last author played a significant role in citation 

rates by increasing the chances of exceeding 100 and 50 citations by 315 and 23 times 

when comparing the best and worst citation histories; (d) For each threshold, different 

sets of content features were selected (and ranked differently in the top positions) which 

indicates that the importance of content changed for different levels of citation impact. 

On the other hand, bibliometric features and impact factor were predictive and always 

had large positive effects for all thresholds studied. 
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Table 10: Top 25 features sorted by absolute value of regression coefficient (threshold 20). A 

regression coefficient ββββ for a feature corresponds to e
ββββ increase in the odds of an article receiving 

more than 20 citations. “[WOS]” refers to bilbiometric features, “[MeSH]” refers to MeSH terms, 

“[Title]” refers to terms occurring in an article’s title. 

 

Feature 
Regression 
Coefficient  

P-value 
Standard 

Error 

Cardiac Tamponade [MeSH] -4.939 0.000 1.282 

splenomegali -4.927 0.007 1.832 

Journal Impact Factor [WOS] 4.040 0.000 0.252 

supply & distribution [MeSH] -3.966 0.002 1.257 

ectopi -3.585 0.007 1.324 

Thrombocytopenia:immunology [MeSH] -3.560 0.008 1.335 

Internal Medicine [MeSH] -3.537 0.001 1.023 

Lung Neoplasms:etiology [MeSH] -3.438 0.001 1.000 

Cholelithiasis [MeSH] -3.274 0.010 1.272 

Kidney Failure, Chronic:metabolism [MeSH] -3.108 0.004 1.087 

Ventricular Fibrillation [MeSH] -2.962 0.001 0.878 

tomographi [Title] -2.935 0.028 1.332 

increment 2.892 0.040 1.411 

gradual -2.767 0.001 0.842 

history [MeSH] -2.688 0.003 0.891 

Oxygen:blood [MeSH] -2.655 0.024 1.180 

tachycardia [Title] -2.578 0.000 0.671 

periton [Title] -2.481 0.047 1.252 

clinicopatholog [Title] -2.424 0.011 0.952 

Clinical Protocols [MeSH] -2.096 0.017 0.878 

sucralf -2.029 0.002 0.645 

european [Title] -1.807 0.007 0.673 

transmiss 1.792 0.022 0.783 

present [Title] -1.792 0.031 0.831 

liver [Title] -1.644 0.003 0.549 
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Table 11: Top 25 features sorted by absolute value of regression coefficient (threshold 50). A 

regression coefficient ββββ for a feature corresponds to e
ββββ increase in the odds of an article receiving 

more than 50 citations. “[WOS]” refers to bilbiometric features, “[MeSH]” refers to MeSH terms, 

“[Title]” refers to terms occurring in an article’s title. 

 

Feature 
Regression 
Coefficient  

P-value 
Standard 

Error 

splenectomi -3.406 0.006 1.243 

Journal Impact Factor [WOS] 3.342 0.000 0.164 

Last Author Citations [WOS] 3.147 0.001 0.914 

ciprofloxacin -2.858 0.019 1.223 

Anemia, Sickle Cell [MeSH] -2.760 0.000 0.681 

Rural Health [MeSH] -2.668 0.015 1.097 

brain 2.574 0.000 0.635 

history [MeSH] -2.442 0.046 1.227 

Zidovudine:therapeutic use [MeSH] 2.424 0.030 1.114 

Death, Sudden [MeSH] -2.329 0.014 0.948 

catecholamin -2.210 0.026 0.996 

uncompl -2.167 0.014 0.884 

hypoglycaem -2.143 0.048 1.084 

inappropri -1.857 0.038 0.894 

ambulatori [Title] -1.777 0.020 0.765 

took 1.708 0.003 0.574 

Molecular Sequence Data [MeSH] 1.589 0.006 0.583 

Atrial Fibrillation [MeSH] 1.567 0.010 0.612 

pylori 1.522 0.007 0.566 

output -1.517 0.003 0.514 

Article Type [WOS] 1.480 0.000 0.179 

Pilot Projects [MeSH] -1.355 0.033 0.637 

chain 1.300 0.006 0.474 

thrombosi 1.081 0.007 0.403 

asthma 0.957 0.000 0.262 
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Table 12: Top 25 features sorted by absolute value of regression coefficient (threshold 100). A 

regression coefficient ββββ for a feature corresponds to e
ββββ increase in the odds of an article receiving 

more than 100 citations. “[WOS]” refers to bilbiometric features, “[MeSH]” refers to MeSH terms, 

“[Title]” refers to terms occurring in an article’s title. 

 

Feature 
Regression 
Coefficient  

P-value 
Standard 

Error 

First Author Citations [WOS] 5.753 0.000 1.469 

Smoking:mortality [MeSH] 4.224 0.018 1.785 

offset 3.347 0.007 1.232 

Journal Impact Factor [WOS] 3.320 0.000 0.180 

Last Author Citations [WOS] 3.023 0.001 0.872 

Birth Weight [MeSH] 2.954 0.000 0.770 

Pilot Projects [MeSH] -2.912 0.013 1.173 

Autoantibodies:blood [MeSH] 2.783 0.001 0.810 

Family Practice [MeSH] -2.746 0.016 1.140 

gy 2.647 0.006 0.959 

person [Title] 2.576 0.002 0.828 

Mycobacterium tuberculosis [MeSH] 2.466 0.009 0.945 

tran 2.458 0.041 1.203 

Immunohistochemistry [MeSH] 2.375 0.011 0.931 

Endothelium, Vascular [MeSH] 2.257 0.002 0.740 

pylori 2.246 0.000 0.606 

meta [Title] 1.947 0.002 0.637 

quantifi 1.877 0.001 0.575 

Kidney Diseases [MeSH] -1.842 0.009 0.708 

apolipoprotein 1.598 0.007 0.596 

mutat [Title] 1.544 0.022 0.676 

heparin 1.527 0.001 0.460 

unselect 1.401 0.003 0.480 

endogen 1.222 0.008 0.458 

largest 1.183 0.043 0.586 

 

A heatmap was created in Figure 14 and Figure 15 to visually display the relative 

importance of the features.  The p-values were log transformed and negated to increase 

the spread of values.  Features that were not present for a threshold were assigned a p-

value of .05. 
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Figure 14: Heatmap of log transformed p-values (1 of 2) 
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Figure 15: Heatmap of log transformed p-values (2 of 2) 
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Important features were also identified by ranking them with linear SVM weights.  

It was verified that performance did not degrade significantly when the degree parameter 

was not optimized.  Tables 13-16 display the twenty-five features with the largest weights 

for each threshold.  The SVM weights confirmed the importance of some of the features 

from the regression analysis.  Content features such as “heparin” and “pylori” were 

influential in both sets of rankings.  Also, bibliometric features such “Journal Impact 

Factor”, “Last Author Citations”, and “First Author Citations” were among the top 

features according to linear SVM weights. 
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Table 13: Top 25 features sorted by SVM weights (threshold 20). “[WOS]” refers to bilbiometric 

features, and “[MeSH]” refers to MeSH terms. 

 

Feature Weight 

Journal Impact Factor [WOS] 1.898 

object 1.734 

main 1.681 

outcom 1.505 

design 1.487 

associ 1.335 

set 1.308 

subject 1.230 

symptom 1.181 

measur 1.123 

trends [MeSH] 1.115 

receiv 1.100 

infect 1.080 

sucralf 1.079 

occur 1.072 

variabl 1.058 

hospit 1.045 

17 1.042 

popul 1.040 

antihypertens 1.027 

conclus 1.019 

increas 1.017 

risk 1.016 

patient 1.011 

syndrom 1.003 



 67 

 

 

Table 14: Top 25 features sorted by SVM weights (threshold 50). “[WOS]” refers to bilbiometric 

features, and “[MeSH]” refers to MeSH terms. 

 

Feature Weight 

Journal Impact Factor [WOS] 1.867 

associ 1.816 

Last author citations [WOS] 1.672 

p 1.277 

object 1.256 

outcom 1.206 

stroke 1.189 

ratio 1.157 

ischaem 1.105 

control 1.100 

main 1.090 

Number of institutions [WOS] 1.050 

wave 1.039 

adjust 1.007 

tachycardia 1.006 

trial [Title] 0.995 

babi 0.984 

cardiogen 0.968 

1 0.960 

mean 0.949 

year 0.947 

chain 0.936 

statistics & numerical data [MeSH] 0.932 

anti 0.924 

Asthma:epidemiology [MeSH] 0.923 
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Table 15: Top 25 features sorted by SVM weights (threshold 100). “[WOS]” refers to bilbiometric 

features, and “[MeSH]” refers to MeSH terms. 

 
Feature Weight 

percent 3.223 

Last author citations [WOS] 1.927 

First author citations [WOS] 1.672 

drug 1.574 

anti 1.545 

Journal Impact Factor [WOS] 1.521 

hcv 1.363 

month 1.323 

trial [Title] 1.318 

heparin 1.315 

particip 1.297 

p 1.246 

main 1.167 

up 1.155 

diseas 1.155 

prostat 1.137 

Number of authors [WOS] 1.135 

low 1.122 

1 1.119 

randomis 1.102 

odd 1.082 

Evaluation Studies [MeSH] 1.076 

specif 1.070 

carri 1.057 

allergen 1.044 
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Table 16: Top 25 features sorted by SVM weights (threshold 500). “[WOS]” refers to bilbiometric 

features, and “[MeSH]” refers to MeSH terms. 

 
Feature Weight 

Number of authors [WOS] 0.133 

Number of institutions [WOS] 0.102 

estrogen 0.087 

percent 0.072 

pylori 0.064 

c7e3 0.060 

enalapril 0.058 

Stomach Neoplasms:etiology [MeSH] 0.057 

First author citations [WOS] 0.056 

prostat 0.056 

apc 0.055 

Shock, Septic [MeSH] 0.053 

gastric 0.052 

grade 0.052 

immedi 0.048 

Pancreatic Neoplasms:therapy [MeSH] 0.048 

Helicobacter Infections:complications [MeSH] 0.047 

metastasi 0.046 

concentr 0.046 

reduc 0.044 

intensifi 0.044 

69 0.044 

Tuberculosis [MeSH Main Heading] 0.043 

placebo 0.043 

Tuberculosis [MeSH] 0.042 
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Discussion 

Limitations 

The experimental corpus was restricted to internal medicine articles from 6 

journals, and these articles were over ten years old.  The limited coverage of topics and 

journals was chosen since this work was designed as a feasibility study.  Also, the ten 

year window was chosen to allow sufficient time to pass so that citation rates would 

stabilize.  Since the corpus only covered a small portion of the literature, it is unknown if 

the models will be useful for different time periods, journals, or topics.  Citation 

prediction assumes that past citation behavior will remain unchanged in the future, and 

influential factors may no longer be relevant today.  Over time, citation behavior may 

have changed significantly.  For example, technological advancements have enabled the 

electronic distribution of the literature which may have changed how articles are cited.  

Also, the open access of journals could have affected citation behavior.  Thus, the true 

usefulness of the models has yet to be determined. 

Future Work 

A logical continuation of this work would be studying the generalizability of the 

models.  It is unknown how performance would change for different time periods, 

journals, and topics.  Performance may improve with more recent publications.  

Shortening the timeframe for predicted impact would make this modification possible.  

Also, there are a number of possible refinements for improving the models.  The number 

of publications or citations for an author could be weighted since some items may be a 
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better indicator of quality than others.  Learning could improve by including the full text 

of articles into the content features along with the title and abstract [76].  In addition, 

alternative data sources could improve prediction.  Citation databases such as Google 

Scholar and Scopus may be more accurate or comprehensive than the Web of Science 

[77].  Also, download counts and web access logs could be incorporated into the models 

since they may be useful in predicting impact [78].   

Conclusion 

The experiments showed that citation count can be accurately predicted for 

several distinct levels of citation performance with information strictly available at 

publication time.  Recent developments in classifier technology have enabled the success 

of this method compared to previous approaches.  These advances allow the use of all 

content terms in article titles, abstracts, and MeSH terms without suffering from the 

increased dimensionality.  It is important to note that using content terms limits this 

method to journals indexed by PubMed. 

This approach is very different from Lokker’s method both in design and results 

[60]. Specifically, a longer time horizon was used for predictions, and a very large 

predictive feature space was used.  Machine learning and feature selection algorithms 

identified predictive patterns while narrowing down the required features.  Initial features 

included content and bibliometric information while Lokker’s method used structural and 

systematic review criteria.  The models produced in this work achieved predictivity that 

exceeded Lokker’s model by about 0.10 to 0.16 AUC depending on the model.  Notably, 

Lokker’s model reported an AUC of 0.76 which should be no better (as evidenced in 
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these experiments with different feature sets) than a single relatively weak variable: the 

impact factor, which was not used in their models.   Note that the results for the two 

studies cannot be conclusively compared because of the differences in chosen journals 

and time horizons.  Because the two studies were independently conducted during 

roughly the same period,
1
 the corpus and features set used by Lokker were not available 

for a direct comparison as part of this evaluation. This is clearly an area of interesting 

future research. 

In conclusion, the results of the present work pave the way for practical models to 

predict future citations without requiring citations to build over time. Such models have 

the potential to render citation counts a more practical tool for evaluating long-term 

impact of recent work.  Another advantage is providing an alternative to less accurate 

heuristics such as impact factor. Finally, analysis of the relative importance of various 

input variables for citation counts suggests that several factors may causatively influence 

or even bias citation practices.  

                                                 
1
 R.Brian Haynes, personal communication, November 2007 
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CHAPTER V 

MACHINE LEARNING MODELS FOR AUTOMATIC CLASSIFICATION OF 

INSTRUMENTAL CITATIONS 

Introduction 

Evaluating the quality and impact of the scientific literature with citation count 

assumes that a citation is an indicator of quality.  This is not necessarily true since a 

citation may serve many purposes unrelated to recognizing the value, rigor, or authority 

of the cited paper [17-19].  Cited papers may provide background information or 

acknowledge prior work that influenced the current work.  Moreover, citations may serve 

non-scientific purposes due to social-psychological factors [16, 20, 21].  Thus, a citation 

is a subjective, indirect quality measure that does not have a single unambiguous use.  

For a more thorough discussion of the many motivating factors for a citation, see Chapter 

II. 

Previous work has attempted to automatically classify citations according to the 

purpose of the citation [79-81].  Teufel automatically classified citation function based on 

cue phrases and a part-of-speech based recognizer [81].  Citations were assigned to one 

of twelve categories that reflected whether the citation described a weakness in the cited 

paper, compared or contrasted the work, praised or described an influential aspect of the 

work, or was neutral.  The corpus contained conference articles in computational 

linguistics from the Computation and Language E-Print Archive 

(http://xxx.lanl.gov/cmp-lg), and the evaluation corpus contained 2829 citations from 116 

articles.  The corpus was manually labeled according to a classification scheme of 12 
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categories, and performance was evaluated by using the IBk algorithm as the learning 

method which is a k-nearest neighbor classifier.  The results yielded Kappa and Macro-F 

values of .57, and percentage accuracy was .77.  When the classifications were combined 

into the four general categories, Kappa was 0.59, Macro-F was 0.68, and percentage 

accuracy was 0.79. 

Garzone and Mercer [79] proposed another method for automatically classifying 

citations.  They believed that scientific writing utilizes certain phrases for persuasion that 

indicate the underlying rhetorical purpose of a citation and that citations can be classified 

with these phrases.  Linguistic cues or phrases were manually identified from Physics and 

Biochemistry articles.  For example, a citation in the results section containing the words 

“postulated”, “reads”, or “reported” was classified into a specific category.  Their parser 

consisted of lexical rules based on cue words and grammar-like parsing rules to match 

sophisticated patterns.  The classification scheme contained 35 categories with 195 

lexical rules and 14 parsing rules. 

Automatically classifying citations could improve citation indexers since the 

nature of the relationship between articles would be known.  Researchers and users could 

determine if an article criticizes, praises, builds upon, or compares itself to a cited article 

[81].  Current indexers find articles citing a given article but would be more helpful if 

they could identify articles using similar techniques or ones presenting conflicting results 

[80].  Automatic classification could also make large databases of articles more 

manageable by identifying related articles and performing information extraction or text 

summarization [80].   
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Another potential benefit of classifying citations is improving citation metrics 

such as journal impact factor and article citation count.  The performance of existing 

evaluation methods may improve if instrumental citations could be reliably distinguished 

from non-essential ones.  For the purposes of this work, a citation was considered 

instrumental if either of the following rules were true: the hypothesis of the citing work 

was motivated by the cited work, or the citing work could not have been completed 

without the cited work.  In other words, modified versions of citation count and journal 

impact factor could be better quality metrics if they only counted citations to papers that 

played a central role in the generation of the hypothesis or provided necessary 

foundational knowledge. 

This portion of the thesis determined the feasibility of automatically 

differentiating between instrumental and non-instrumental citations using machine 

learning methods.  The learning approach was similar to the one used for predicting 

citation count in Chapter IV.  Support vector machine models were trained on content 

and bibliometric features.  Content features included the citation text, title, abstract, and 

MeSH terms.  Bibliometric features included the number of times a reference was cited in 

each section (i.e., introduction, methods, etc.) as well as the publication history of the 

first and last authors.  Previous approaches used manually generated rules which can be 

labor intensive or subject to human bias.  Machine learning models are automatically 

generated and not susceptible to these limitations. 

This study was designed as a proof-of-concept with the potential to lead to later 

development of practical models if the method proved successful.  The classification task 

was designed as a binary task for instrumental and non-instrumental citations since it 



 76 

 

would be simpler than the one attempted by previous methods with multiple categories 

[79-81].  This choice was made since it was not known if machine learning models could 

effective classify citations or if the article content and bibliometric information provided 

useful information for classifying citations. 

Methods 

Definitions 

This section provides specific definitions for terms used during subsequent 

discussion.  An article that cites another work is called the citing work.  The article that 

receives a citation is called the cited work or reference.  A citation is the location in the 

text where a reference is cited which is typically denoted with a reference number in 

superscript or brackets.  The citation text is the text surrounding the citation.  

Furthermore, a reference may be cited multiple times within the same article.  

Equivalently, a citing article may contain many citations to the same reference.  The 

citation text for each citation is unique and consists of the text surrounding each citation. 

For a specific example, consider the first citation in the introduction to this 

chapter: “This is not necessarily true since a citation may serve many purposes unrelated 

to recognizing the value, rigor, or authority of the cited paper [17-19].”  This thesis is the 

citing work, and references [17-19] are the three cited works.  The citation text is the 

sentence “This is not necessarily true…”  The citation text can include any number of 

words before or after the citation. 
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A definition for an instrumental citation was required for labeling the corpus.  For 

the purposes of the study, a citation was operationally defined as instrumental if either of 

the following rules was true for a citation: 

I. The hypothesis of the citing work was motivated by the cited work 

II. The citing work could not have been completed without the cited work 

An example of a reference motivating the hypothesis of a work is shown in this excerpt 

[82]: 

 

Recently, it has been suggested that
 
endothelium-dependent dilatation of 

resistance vessels in coronary
 
and other vascular beds is impaired in 

hypertension and hypercholesterolemia
10,11,12,13

.
 

Therefore, altered 

endothelium-dependent vasomotion of coronary
 
resistance vessels may 

contribute to the cause of angina-like
 
chest pain in patients with normal 

coronary arteries. The present
 

study attempted to determine whether 

endothelium-dependent vasodilatation
 
of coronary resistance vessels was 

impaired in patients with
 
this syndrome. 

In this case, the citing paper investigated whether endothelium-dependent vasodilatation 

of the coronary vasculature was impaired in patients with microvascular angina [82].  The 

citation text states that references 10-13 stimulated the hypothesis of the article and that 

the article builds on the cited work.  Therefore, these citations were labeled instrumental. 

For the second rule, there are many ways to interpret that a reference was 

necessary for completing a paper.  A reference was instrumental if it provided 

foundational knowledge.  A good example is reference 7 in an article investigating the 

connection between secondhand smoke and lung cancer [83].  The study exposed non-

smokers to secondhand smoke and found metabolites of the tobacco-specific
 

lung 

carcinogen NNK in their urine.  A reference had shown that NNK induced tumors in rats: 

“NNK is a powerful pulmonary carcinogen, inducing predominantly
 
adenocarcinomas in 
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the lungs of rats, mice, and hamsters regardless
 
of the route of administration

5,6,7
” [83].  

The relationship between NNK and lung cancer is necessary to prove the hypothesis of 

the citing work which makes the citation instrumental.  

Other criteria for crucial references included if the citing work used the same 

experimental design or dataset as the references, addressed the weaknesses or limitations 

of prior work as part of its hypothesis, or used an experimental technique that was 

essential for completing the study.  Also, the reference could have conducted related 

work involving other animals, diseases, or organ systems that led to findings applicable 

to the citing work. 

An example of a non-instrumental citation was one related to a statistical method 

or computer software.  These tools likely did not motivate the hypothesis, and the study 

probably could have been completed with alternative methods.  Non-instrumental 

citations were also identifiable if the article explicitly made it clear that the cited work 

did not influence the hypothesis or the design of the study such as reference 28 in this 

citation: “We examined several potential mechanisms that might explain
 

our 

results
27,28,29

” [84].  The citation indicated that the references were considered after the 

experiments were completed which meant they did not motivate the hypothesis and did 

not enable its testing. 
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Input Features and Response Variable 

 

Table 17: Features included in models for automatically classifying citations 

 

Feature 
PubMed indexed 

reference 
Non-PubMed 

indexed reference 

Title of cited article x x 
Abstract of cited article x  

MeSH terms of cited article x  
Citation text within citing article x x 

Number of times cited in Introduction of citing article x x 
Number of times cited in Methods of citing article x x 
Number of times cited in Results of citing article x x 

Number of times cited in Discussion of citing article x x 
Citation count of cited article x  

Number of articles for first author of cited article x  
Number of citations for first author of cited article x  
Number of articles for last author of cited article x  
Number of citations for last author of cited article x  

Number of authors for cited article x  
Number of institutions for cited article x  

Quality of first author’s institution for cited article x  

 

 

Table 17 lists the input features used to construct a learning corpus.  The citation 

text included a window of 25 words before and after each citation for a total of 50 words.  

The number of times a reference was cited in each section was included since it could 

indicate the relative importance of a reference.  For example, an essential reference may 

be cited more frequently in the discussion rather than the introduction or vice versa.  The 

citation count of the cited article was calculated for 10 years after publication or until the 

citing article was published depending on whichever occurred first.  For example, if the 

cited paper was published in 1981 while the citing paper was published in 1994, citations 

were counted for 1981-1991.  If the cited paper was published in 1990 while the citing 

paper was published in 1994, citations were only counted from 1990 until 1993.  This 
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adjustment ensured that only information available at publication time was used.  The 

number of articles or citations for first and last authors was counted for 10 years prior to 

publication.  The number of institutions refers to unique home institutions for all authors.  

The Academic Ranking of World Universities (ARWU) [65] was used as the measure of 

quality for first author’s institution. All other variables are self-explanatory.  PubMed and 

ISI did not index all references including books, reports, guidelines, and articles from 

some journals.  In this case, references had input features of the article title, number of 

times cited in each section, and the citation text. 

The response variable was determined by manual review.  Each citation was 

labeled either instrumental or non-instrumental based on its relevance to the hypothesis of 

the citing work.  The citation was labeled instrumental if the reference motivated the 

hypothesis or the citing work could not have been completed without the reference.  

More details were provided in the Definitions subsection of this Methods section.  

Corpus Construction 

The corpus was defined for a set of topics and dates.  Eight topics were chosen to 

cover a wide range of topics from internal medicine as defined by the MeSH vocabulary: 

Cardiology, Endocrinology, Gastroenterology, Hematology, Medical Oncology, 

Nephrology, Pulmonary Disease, and Rheumatology.  An article was relevant to a topic if 

its MEDLINE record contained one of the eight MeSH terms, a related topic from the 

“See Also” field of the MeSH record, or a term in a sub-tree of these terms [42].  For 

example, an article was Cardiology-related if its record contained the MeSH heading 

“Cardiology”, a related term such as “Cardiovascular Diseases”, or a sub-term of one of 
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these terms.  The corpus consisted of all New England Journal of Medicine articles 

related to internal medicine that were published in 1993 and 1994.  Articles from other 

journals were not included since the full text of articles was not accessible online for this 

time period. 

The full text of the articles was downloaded from the New England Journal of 

Medicine website.   Reviews and special articles without an obvious hypothesis were 

removed since it was not possible to identify instrumental citations according to the 

operational definition.  Three references were randomly selected from each article, and 

all citations to these references were identified.  Corresponding records were found in the 

Institute of Scientific Information (ISI) Web of Science (WOS) [44] if they were indexed, 

and all desired bibliometric information was downloaded.  The final corpus contained 

1310 citations from 272 articles.  Each citation was manually reviewed and labeled as 

instrumental or non-instrumental according to the definition at the beginning of the 

Methods section of this chapter.  The ratio of instrumental to non-instrumental citations 

was 949 to 361. 

Document Representation and Learning Method 

Articles were formatted with the same procedure used for predicting citation 

counts.  Content terms were derived from the title, abstract, MeSH terms, and citation 

text.  Stop words were removed, Porter stemming [68] was performed to remove multiple 

formats of the same word, and terms were weighted by log frequency with redundancy.  

For further details, refer to the Document Representation portion of the Methods section 

in Chapter IV.   



 82 

 

Support vector machine (SVM) models were used as the learning method.  As 

with the citation count prediction task, the models were trained with a combination of 

content and bibliometric features.  Additional details were provided in the Learning 

Method portion of the Methods section in Chapter IV. 

Model selection and error estimation 

Models were selected with 5-fold nested cross validation.  Parameters were 

optimized for cost and degree in the inner loop while the outer loop produced an unbiased 

estimate of model predictivity. The set of costs was [.1, .2, .4, .7, .9, 1, 5, 10, 20], and the 

set of degrees was [1, 2, 3, 4, 5, 8]. Performance was measured by area under the receiver 

operating characteristic curve (AUC). 

Experiments were repeated with 3 variations.  First, the corpus was separated by 

publication year (i.e., articles from 1993 and 1994) to see if performance was 

significantly different between the two years.  Second, a hold out data set was excluded 

before training.  Cross-validation and model training were performed on the training 

examples, and performance was evaluated on the hold out set.  The hold out set was 

randomly selected as 30% of the citations, and results were averaged over 5 runs.  

Prospective validation was also performed where the models were trained on the 1993 

articles and tested on the 1994 articles.  The results for the hold out sets and prospective 

validation indicated whether the models are able to classify citations in unseen articles.  If 

these results were similar to the cross-validation results, the models should be able to 

handle unseen cases. 
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The third experimental variation was randomly selecting one citation per 

reference and excluding the remaining citations from the analysis.  This decision ensured 

that the data was independently and identically distributed.  In the original experiments, 

citations to the same reference could occur in the training set as well as the testing set.  

This could be problematic since citations to the same reference are not independent.  A 

citation is more likely to be instrumental if another citation to the same reference is 

instrumental.  Furthermore, citations from the same reference would never occur in both 

the training set and unseen articles.  This restriction resulted in a corpus of 816 citations. 

Analysis of Influential Features 

 

Table 18: List of features included in the content and bibliometric models 

 

Feature Content Model 
Bibliometric 

Model 

Article title x  
Article abstract x  
MeSH terms x  
Citation text x  

Number of times cited in Introduction  x 
Number of times cited in Methods  x 
Number of times cited in Results  x 

Number of times cited in Discussion  x 
Citation count of reference  x 

Number of articles for first author  x 
Number of citations for first author  x 
Number of articles for last author  x 
Number of citations for last author  x 

Number of authors  x 
Number of institutions  x 

Quality of first author’s institution  x 
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After estimating the model’s performance in classifying instrumental citations, 

influential features were identified using two methods.  First, reduced-feature models 

were trained only on the content or bibliometric data.  Table 18 shows the features 

included in each model.  Performance of these models would reveal if one type of feature 

was more important than the other.  The second type of analysis involved Markov 

Blanket induction and logistic regression.  The Markov Blanket excludes irrelevant and 

redundant variables to produce a reduced set of features.  Logistic regression analysis 

estimated for each feature the magnitude of its effect and statistical significance while 

controlling for all other features in the logistic regression model.  For further details, refer 

to the Analysis of Important Features portion of the Methods section of Chapter IV. 

Implementation Details 

Corpus construction and feature weighting were implemented in custom Python 

scripts.  For text-based features, the scripts constructed PubMed queries, retrieved desired 

articles, downloaded MEDLINE records, and preprocessed text. For bibliometric 

features, the WOS database was queried with the title, author, and journal of each article. 

If a match was found, a user session was simulated by navigating through the website and 

extracting desired information about the document and authors. 

The remainder of the code was written in MATLAB. LIBSVM was used to train 

SVM models, and it included a MATLAB interface [74]. Scripts were written to perform 

cross-validation and estimate performance. A custom MATLAB implementation for 

HITON was used as well as the logistic regression implementation of the MATLAB 

statistics toolbox. 
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Results 

Classification Performance 

 

 Table 19: Cross-validation AUC results for the classification of citations experiments  

 

The cross-validation results in Table 19 show that it is possible to accurately 

classify instrumental citations.  The model trained on the full corpus had an AUC of 

0.858.  Comparable performance was shown when the corpus was split up by year.  AUC 

values were 0.867 and 0.814 for the 1993 and 1994 articles.  Additional experiments 

were performed which excluded test cases before learning.  Performance decreased 

slightly when a hold out test set was used.  Cross-validation results decreased from 0.858 

to 0.846 for the full corpus, from 0.867 to 0.842 for 1993 articles, and from 0.814 to 

0.812 for 1994 articles. 

The slight overfitting probably resulted from excluding test set information during 

feature weighting and scaling.  Cross-validation weighted and scaled features with all 

corpus items without excluding the test set.  For the text features, feature weighting 

calculated term distributions for redundancy values.  Cross-validation included the test 

set in these computations while hold-out experiments did not.  For the bibliometric data, 

 
Corpus 

Cross-validation 
AUC 

Hold Out Test Set 
AUC 

 

 Full Corpus 0.858 0.846  

 1993 articles 0.867 0.842  

 1994 articles 0.814 0.812  

 Train 1993, 
Test 1994 

N/A 0.776 
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cross-validation scaled features over the range of values for all articles, while hold out 

experiments only considered training cases. 

Another observation is that the models appear to be time dependent.  Performance 

decreased between the 1993 and 1994 articles.  Also, there was a larger performance 

decrease when training on 1993 articles and testing on 1994 articles.  It is unclear if a 

larger training corpus would make the models more robust over time or if the models 

need to be built on a yearly basis. 

 

Table 20: Results for classification of citations after restricting corpus to one citation per reference 

 

In the previous experiments, it was possible for citations to the same reference to 

occur both in the training and testing sets.  Experiments were repeated after limiting the 

corpus to one citation per reference.  Table 20 shows that learning with one citation per 

reference reduced classification performance.  Cross-validation results decreased from 

0.858 to 0.815 for the full corpus, from 0.867 to 0.858 for 1993 articles, and from 0.814 

to 0.77 for 1994 articles.  This finding is not surprising since citations to the same 

reference are not independent, and classification is probably easier when citations to the 

same reference occur in both the training and testing sets. 

 
Corpus 

All Citations 
(AUC) 

1 Citation  
per Reference 

(AUC) 

 

 Full Corpus 0.858 0.815  

 1993 articles 0.867 0.858  

 1994 articles 0.814 0.770  
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Analysis of Influential Features 

Learning was performed on feature subsets to investigate whether content or 

bibliometric features were more important for classification.  AUC performance was 

0.858 for the complete model, 0.827 for the content model, and 0.771 for the bibliometric 

model.  The content model slightly outperformed the bibliometric model, but they both 

performed relatively well in isolation.  It appeared that both types contributed to the 

accuracy of the complete model. 

Another method for studying influential features involved Markov Blanket 

induction and Logistic Regression.  Markov Blanket induction selected only non-

redundant and relevant features, and Logistic Regression estimated feature importance 

and statistical significance of the selected features.  Cross-validation with the full corpus 

yielded 12912 features which were reduced to 67 features.  Performance did not degrade 

substantially when learning with the HITON set of features.  Table 21 ranks the features 

by absolute values of regression coefficients.  Features with p-values greater than 0.05 

were removed.  Features with the label “[MeSH]” were MeSH term headings in the 

MEDLINE records, and features with “[WOS]” were bibliometric features.  Features 

without labels were terms from the abstract or citation text. 
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Table 21: Top features sorted by absolute value of regression coefficients. A regression coefficient ββββ 

for a feature corresponds to e
ββββ increase in the odds of a citation being considered instrumental. 

“[WOS]” refers to bilbiometric features, and “[MeSH]” refers to MeSH terms. 

 

Feature 
Regression 
Coefficient 

P-value 
Standard 

Error 

Number of times cited in 
introduction[WOS] 

5.650 0.0000 0.704 

24 -4.634 0.0005 1.338 

von -3.418 0.0088 1.305 

mammographi -2.902 0.0204 1.252 

Cytarabine[MeSH] -2.699 0.0008 0.804 

Arrhythmias, Cardiac [MeSH] -2.428 0.0127 0.974 

complex -2.380 0.0007 0.705 

eject -2.195 0.0027 0.732 

visual -1.966 0.0023 0.645 

underestim -1.891 0.0058 0.686 

classification[MeSH] -1.813 0.0011 0.556 

vari -1.556 0.0143 0.635 

adjust -1.278 0.0380 0.616 

comparison -1.264 0.0058 0.458 

genetics[MeSH] 0.991 0.0097 0.383 

mean -0.987 0.0405 0.482 

3 -0.921 0.0141 0.375 

model -0.905 0.0479 0.457 

test -0.840 0.0072 0.313 

two -0.695 0.0084 0.264 

Female[MeSH] 0.511 0.0070 0.189 

studi 0.406 0.0382 0.196 

 

A positive unit change in a regression coefficient β for a feature corresponds to e
β
 

increase in the odds of being an instrumental citation. For example, “Number of times 

cited in introduction” had the largest coefficient of 5.650.  This value indicates that a  

reference with the most citations in the introduction was about 284 times (e
 5.65

 ≈ 284) 

more likely to be instrumental than one with no citations in the introduction.  A one-unit 

change for interval-based features corresponds to a difference between the largest and 

smallest values since interval variables were scaled in the [0,1] range.  The majority of 
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the features were negatively correlated with an instrumental citation.  Features with 

positive associations included “genetics [MeSH],” “Female [MeSH],” and “studi,” but 

they had smaller effects than the number of times a reference was cited in the 

introduction. 

Discussion 

Limitations 

The experimental design was limited by the fact that the corpus contained only 

articles from one journal.  Results and conclusions may not hold true for other journals.  

This restriction was due to the unavailability of full text articles for many journals during 

the studied time period.  Another limitation was that the corpus was labeled by a single 

individual.  Multiple subjects were not used since manually labeling the corpus required a 

significant amount of time and effort.  However, the important result of the study is that 

the SVM models were able to accurately classify citations according to the provided gold 

standard.  In this case, the gold standard was the individual rater’s notion of an 

instrumental citation.  In the future, it would be interesting to determine the method’s 

ability to model another gold standard. 

Future Work 

Important future work would be to thoroughly evaluate the generalizability of the 

learning method by increasing the scope of the corpus.  A larger corpus with articles from 

different journals, longer time periods, and more topics would be useful in evaluating the 
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ability of the models to classify instrumental citations.  Other possible work could be 

studying whether other categorizations can be learned besides instrumental vs. non-

instrumental citations.  For example, it could be useful to identify all negative citations or 

citations contrasting the cited work.  If the models can handle other categories, they may 

be able to classify citations into multiple categories instead of two. 

The motivation for classifying citations was to improve citation indexers and 

citation metrics.  The models should be integrated into citation indexers to determine if 

they can automatically identify articles that are related, use similar techniques, or contrast 

the citing work.  The ability of the models for other related tasks such as information 

extraction and text summarization should also be investigated.  Also, modified versions 

of journal impact factor and citation count should be computed by using the models to 

ignore non-instrumental citations.  These modified versions should be compared to other 

accepted impact measures to see how well they correlate.  Also, modified metrics could 

be computed using the classification schemes by Teufel and Mercer [80, 81], and their 

performances could be compared to modified metrics based on the SVM models. 

Conclusion 

The learning method presented in this work was significantly different from 

previous methods for automatic classification of citations.  Teufel and Mercer [80, 81] 

devised methods based on human review of articles to generate rules, phrases, and cues 

for identifying citations.  These methods are labor-intensive and subject to human bias or 

error.  The models presented in this work are automatically generated and avoid these 

limitations. 
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This work was successful in demonstrating the feasibility of machine learning 

methods for automatically classifying instrumental citations.  SVM models analyzed the 

textual content of articles along with bibliometric data to classify instrumental citations in 

a manually labeled corpus.  Efforts were made to study the generalizability of these 

models and their ability to classify unseen instances.  The results were encouraging, but 

further work is necessary to see if practical tools can be developed to improve journal 

impact factor and citation count in real-world applications. 



 92 

 

CHAPTER VI 

DISCUSSION 

Summary of Results 

The purpose of this dissertation was to improve the usability and performance of 

existing information retrieval techniques in biomedicine with machine learning methods.  

The first focus was analyzing evaluation methods for journals, articles, and websites and 

measuring the variability of their performance for specific topics.  Query-independent 

methods such as journal impact factor, clinical query filters, and PageRank were 

relatively unstable for different topics.  Topic-specific impact factor and SVM-based 

models were less sensitive to topic.  It is important for users to be aware of this issue 

since topic-sensitive methods could provide misleading conclusions and lead to a flawed 

evaluation of the literature.  Methods that consider the topic of the query or are 

insensitive to topic should be used whenever possible. 

The second focus was examining the feasibility of predicting citation count with 

SVM models which could evaluate an article at the time of publication.  Models were 

trained on the article content as well as bibliometric data.  These models were able to 

accurately predict whether an article would surpass a given citation count for a range of 

thresholds.  Experiments with reduced feature sets showed that both the content and 

bibliometric features contributed to the accuracy of the models.  Unique content features 

were influential for different citation thresholds, and important bibliometric features 

included journal impact factor and the number of citations received by the first and last 
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authors.  Prospective validation was performed where models were evaluated on 

examples that were excluded during training.  Results were comparable to cross-

validation results which suggest that the models can predict citation counts for unseen 

articles. 

The third focus was investigating the ability of SVM models to automatically 

classify instrumental citations.  This could increase the functionality of citation indexers 

and improve citation metrics such as journal impact factor and citation count by 

excluding unimportant citations.  Models were trained on content and bibliometric 

features, and citation text was incorporated into the content features.  A manually labeled 

corpus was used for evaluation.  Citations were considered instrumental if the cited work 

motivated the hypothesis of the citing work, or the citing work could not have been 

completed without the cited work.  Additional experiments were conducted by excluding 

test cases prior to model induction as well as restricting the corpus to one citation per 

reference.  In all cases, SVM models were capable of classifying instrumental citations in 

the manually labeled corpus. 

Limitations  

Although this work provided encouraging results, more generalizability studies 

are needed.  Efforts were made to evaluate the models on unseen cases, but the 

experimental corpus was restricted to a small number of journals, topics, and years.  The 

citation behavior within this subset of the literature may differ from the literature as a 

whole.  Results and conclusions from this work may not necessarily apply to other 

articles, and additional experiments should be conducted with articles from a larger 
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collection of journals for a wider range of dates and topics.  Also, training sets should 

include more recent articles since citation behavior may have changed over time.  If the 

results of these new experiments are consistent with the findings presented here, this 

would provide strong evidence that the models are truly generalizable. 

Through the course of this work, it became apparent that the data sources dictated 

what types of experiments could be completed.  For example, the corpus for classification 

of instrumental citations only included one journal because full text articles were not 

available for other journals during the time period studied.  Also, the set of candidate 

features was limited by the available features in the Web of Science.  Bibliometric 

research would benefit greatly if there were a citation database or data repository 

designed for research purposes that could handle large queries.  It required a significant 

amount of time and effort to write the code to collect the data from the Web of Science 

and download the information.   

Future Work and Open Questions 

The models for predicting citation count and classifying instrumental citations 

were a first attempt at demonstrating the feasibility of the learning approach with the 

given input features.  SVM models were previously used to identify high-quality articles.  

However, it was unknown if they could predict citation count or automatically classify 

citations.  Furthermore, it was not known if the article content and bibliometric 

information were suitable input features for the prediction and classification tasks.  Since 

this work has shown that the learning method and features are suitable for the task, the 

performance of the models may improve with further refinements such as incorporating 
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additional features.  For example, the full-text of an article could be incorporated into the 

content terms of an article when predicting citation count.  Download counts and web 

access logs have been shown to correlate with impact, and they could potentially provide 

useful information for the models. 

 Along with the prior work in identifying high-quality articles, the success of the 

SVM models here provides strong support for the suitability of SVM models for text 

categorization tasks in general.  The models are able to handle high-dimensional data and 

combine multiple types of data (i.e., content and bibliometric data).  Furthermore, the 

learning method could be useful for other learning tasks related to citation analysis. 

In addition to the generalizability of the models and improvement of their 

performance, there are a number of open questions to investigate.  The models should be 

compared directly to the methods of Lokker [60], Teufel [81], and Mercer [80].  

Bornmann’s review of citation analysis noted that many studies varied widely in design, 

presented unreliable results that could not be replicated, and suffered methodological 

weaknesses [16].  In order to compare the machine learning methods to alternative 

methods, their performances should be compared directly to each other on the same 

corpus for an identical learning task with the same evaluation metric. 

There are a number of considerations that need to be solved to develop practical 

tools based on these models for regular use.  The experiments were conducted on a static 

subset of the literature, and applying the models in real-world situations will present new 

complications.  The durability of the models is unknown since important features may 

change over time.  It will be necessary to figure out how to update the models with new 

cases as more articles are published.  For example, how often should the models be 
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updated?  Should the training set be limited to a number of recent years or include as 

many past articles as possible?  If the training set is limited, how many years should be 

included?  There are many considerations that need to be resolved to optimize the models 

with respect to performance and efficiency. 

Conclusion 

The main goal of this work was to improve the usability and performance of 

citation metrics for information retrieval within the biomedical literature by applying 

machine learning methods.  This work raised awareness of the topic-sensitivity of several 

evaluation methods.  Furthermore, it demonstrated the feasibility of SVM learning with 

content and bibliometric features for predicting citation count and classifying 

instrumental citations.  The models appeared to generalize for some unseen cases, but 

additional experiments need to be performed on more journals, topics, time periods 

before general conclusions can be made.  The results of this work indicate that it may be 

possible to develop practical applications and tools for use by researchers, clinicians, and 

consumers. 
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