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CHAPTER I

INTRODUCTION

This thesis belongs both to the group theory and probability. In the past 20 years there

has been a growing interest in the use of probability in finite groups and in infinite groups

given by defining relations. The first motivation for study generic properties of infinite

groups is the effort to understand how a typical group looks like, what properties typical

elements and subgroups of a given group have. One of the first statements is that “most”

groups are hyperbolic, by Gromov. Later the result was made precise and the density

model of random group was introduced, by Gromov and Ol′shanskĭı [34]. The model of

random group refers to a random presentation, where the lengths of relators are long enough

and approximately the same. Using random groups Gromov [19] obtained a probabilistic

proof that there exists a finitely presented group that is not uniformly embeddable into a

Hilbert space. It also turns out that random group-theoretic objects exhibit various kinds

of algebraic rigidity properties. In particular, Kapovich, Schupp and Shpilrain [24] proved

that random one-relator groups satisfy a strong Mostow-type rigidity.

Arzhantseva and Ol′shanskĭı [2] showed that, generically, for most groups given by m

generators and n defining relators, any subgroup with fewer than m generators is free. In

subsequent work Arzhantseva applied this approach to prove a number of other results

about “generic” properties of finitely presented groups. Kapovich and Schupp [23] showed

that this approach can be combined with other techniques to yield precise results about

subgroups of bounded rank in some well-known classes of groups, namely, Coxeter groups,

Artin groups and one-relator groups with torsion.

The notion of genericity in the work cited above concerns the collection of finitely pre-

sented groups. Kapovich, Myasnikov, Schupp and Shpilrain [22] considered generic proper-

ties of algorithmic problems in individual groups with respect to asymptotic density. They

showed that for a very large class of finitely generated groups the classical decision prob-

lems of group theory - the word, conjugacy and membership problems - all have linear-time

generic-case complexity. This was used to organize successful attacks on group theory based

cryptography protocols.

Other connection between group theory and probability includes probability measures

and random processes on Cayley graphs. Properties of random walks, percolation, Ising

model or other random processes are determined in part by the underlying group structure.

First important result was made by Kesten [26] showing the connection between random

walks and amenability. Various models of statistical physics was originally studied on

cubic lattice Zd and later generalized to other graphs, see [30]. Benjamini, Lyons, Peres,

and Schramm [5] introduced group-invariant percolation and showed a connection between

Cheeger constant, spectral radius and the threshold value. They also proved that critical
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percolation on any non-amenable Cayley graph has no infinite clusters.

The main part of this thesis treats two random models on a special class of graphs. We

define a tree-like structure of a graph and prove basic properties of these graphs in Chapter

II. Then we present algorithms for finding values of the critical probability of the percolation

and the critical temperature of the Ising model. The background on these models and

statements of the results can be found in the following sections of the introduction.

In the last chapter we study random one-relator groups. We show that almost all one-

relator groups with more than two generators are residually finite. It is a joint work with

Mark Sapir. The background and formulation of the result are in the last section of this

introductory chapter.

I.1 Percolation

We will use the notation G = (V,E) for a graph with the vertex set V and the edge set E.

All graphs are assumed to be locally finite (vertices have finite degrees) and transitive (for

any two vertices there exists an automorphism of G mapping one vertex to the other). We

fix one vertex of the graph and call it the origin.

For every p ∈ (0, 1), the Bernoulli bond percolation on G is a product probability measure

Pp on the space Ω = {0, 1}E , the subsets of the edge set E. The product measure is defined

via Pp(ω(e) = 1) = p for all e ∈ E. The σ-algebra of Pp-measurable sets does not depend

on p. We denote the σ-algebra by Σ and the expected value by Ep.

For any realization ω ∈ Ω, open edges form a random subgraph of G. The percolation

function is defined to be the probability that the origin is contained in an infinite cluster.

The behavior of the percolation model depends strongly on the value of probability p. There

is a critical value pc of the probability p such that for 0 ≤ p < pc all clusters are finite, and

if pc < p ≤ 1 there is an infinite cluster Pp-almost surely (see Grimmett [18]).

Explicit values of pc have been known only for some special cases. In particular, for

lattices in R2 the value of pc is obtained using dual graphs (for Rd with d ≥ 3 the values of

pc are not known). For the square lattice, Kesten ([25]) proved pc = 1/2, for the triangular

lattice pc = 2 sin(π/18), and for the hexagonal lattice pc = 1 − 2 sin(π/18) (see Grimmett

[18]). Ziff and Scullard [40] found pc for a larger class of lattices in R2 (they considered

graphs that can be decomposed onto certain self-dual arrangements). The value of critical

probability is also known for trees (pc = 1/branching number) and Cayley graphs of virtually

cyclic groups, where pc = 1. The critical probability can also be found in case of a free

product of finite transitive graphs ([27]). As far as we know these are the only known graphs

where pc for the bond percolation has been computed exactly.

If we change the generating set of a group, the graph changes dramatically, and there

have been no examples of groups (except virtually cyclic) where pc was known for all gen-

erating sets. It is expected that many properties of percolation (behavior at the critical

value) are invariant with respect to changing the generating set, so it is useful to know how
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pc depends on the generating set of a group.

In this article we study the critical probability pc for a class of graphs that admit the so-

called tree-like structure. Roughly speaking, such a graph can be decomposed into a rooted

tree of edge-disjoint pieces that intersect by the so-called border sets, which are cut-sets of

the graph. We always assume that there are finitely many isomorphism classes of pieces.

This class of graphs includes, for example, all transitive graphs with more than one end,

Cayley graphs of amalgamated products and HNN extensions (for example: SL(2,Z) =

Z4 ∗Z2 Z6). In the case of an amalgamated product the pieces correspond to the Cayley

graphs of factors and the border sets consist of vertices from cosets of the amalgamated

subgroup. The precise definition of the tree-like structure is contained in Chapter II and

several examples, including the grandparent tree, can be found in Chapter V.

Consider a realization of the percolation on a graph G with a tree-like structure. For

each piece Pi that is not the root, let Bi be the border set that is the intersection of Pi with

its parent in the tree.

Since Bi is a cut set, we can define an equivalence relation on it, by saying that two

vertices of Bi are equivalent if they are connected by an open path inside the union of

all pieces that are not descendants of Pi. The data consisting of the equivalence relation

and the distinguished equivalence class connected to the origin is called the color of the

piece Pi. If no vertex of the border set is connected to the origin we say that this piece

has white color. Since the pc of the whole graph does not exceed the pc of any subgraph,

we can assume that the probability p is smaller than the minimum of all pc’s of pieces.

Then it is easy to see that the percolation process dies if and only if the tree of non-white

pieces is finite. The fact that the pieces form a tree suggests using a branching process

with individuals corresponding to the colored pieces, such that the distribution of children

is induced by the percolation process. Unfortunately the color of a piece depends not only

on the color of its parent (as required for branching process), but also on the colors of the

siblings and their descendants.

Nevertheless, we define a different distribution on the colors of the children, and we

obtain a branching process that has finite population size if and only if the expected size of

the percolation cluster is finite. The next statement is the main result.

Theorem I.1. Assume the graph G has a tree-like structure.

(i) For a percolation with parameter p there exist a branching process on the tree of pieces,

such that the expected size of its population is finite if and only if the expected size of

the percolation cluster at the origin is finite.

(ii) If all the border sets are finite, then the branching process has finitely many types, and

the first moment matrix is of finite size. In this case pc is the smallest value of p such

that the spectral radius of the first moment matrix is 1.
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(ii) If in addition the pieces are finite, then the entries of the first moment matrix are

algebraic functions in p. Therefore pc is an algebraic number.

There exists an algorithm that, given the pieces and their border sets, computes a finite

extension K of the field Q(p) and an algebraic function f in K such that pc is the

smallest positive root of f .

The theorem is proved in Section III.2.

We list here two corollaries of Theorem I.1. The first one is already proved in [27]

by the author using different method. The second corollary answers a question of M.

Sapir (personal communication) about the special linear group SL(2,Z), which is an simple

example of a group that is not free product. Both corollaries are proved in Chapter V.

By the expected sub-critical cluster size χi(p) we mean Ep(|C|), where C is the cluster

containing the origin and p < pc.

Corollary I.2. Let G be a free product of (transitive) graphs. Denote by χi(p) the expected

(sub-critical) cluster size in the i-th factor graph. The critical probability pc of G is the

infimum of positive solutions of

n∑

j=1

n∏

i=1,i6=j

χi(p) − (n− 1)
n∏

i=1

χi(p) = 0.

Note that in the case of free products (with respect to natural set of generators) the

border sets consist of one vertex and so the branching process has just one type of individual

(for more details see Section V.1). It is in fact also a special case of Theorem I.4 below.

We explicitly compute the critical probabilities of several Cayley graphs. In particular

we prove the following.

Corollary I.3. The critical probability pc of the special linear group SL(2,Z) given by

presentation 〈a, b|a4, b6, a2b−3〉 is an algebraic number that is equal to .4291140496 . . .

The critical probability pc of the projective special linear group PSL(2,Z) given by pre-

sentation 〈a, b|a2, b3〉 is an algebraic number equal to .5199 . . .

The critical probability pc of the grandparent tree is an algebraic number equal to .1587 . . .

The general case of Cayley graphs of amalgamated products and HNN extensions is

covered by the following theorem. Consider a group G acting on a simplicial tree T . The

standard generating set of the group G is any generating set consisting of elements in the

vertex stabilizers and free letters. It follows from the Structure theorems of Bass-Serre

theory (see for example [38] or [11]) that the group G is the fundamental group of a graph

of groups (see Section II.2.3).

Theorem I.4. Let G be a group acting on a simplicial tree and let G be its Cayley graph

with respect to a standard generating set. Then G has a tree-like structure whose pieces
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correspond to the Cayley graphs of the vertex stabilizers and border sets correspond to the

edge stabilizers.

In the Section II.3, we prove that every transitive graph with more than one end has a

tree-like structure with finite border sets. We use a strong result of Dunwoody [15] about

existence of special cut sets. This can be applied to, say, Cayley graphs of free groups with

arbitrary finite generating sets. Moreover, the pieces obtained from the general construction

are finite in this case, and are explicitly described in Section V.5.

Theorem I.5. Let G be a virtually free group, that is, it acts on a simplicial tree with

finite vertex stabilizers. Then its Cayley graph with respect to any finite generating set has

a tree-like structure with finite border sets and finite pieces. Given a finite generating set,

the pieces of the tree-like structure are algorithmically constructed.

Therefore the pc is an algebraic number and one can use the algorithm from Theorem

I.1 (iii) to compute pc, given any finite generating set.

This theorem is proved in Section II.2.4.

This gives the first example of a class of Cayley graphs closed under quasi-isometry

where we can algorithmically find the value of pc for every graph in the class (besides the

graphs with 0 and 2 ends where pc = 1).

I.2 Ising model

In the Ising model of ferromagnetism, spins (±1) are assigned randomly to vertices of a

(transitive, locally finite) graph G = (V,E). The strength of interactions along the edges is

given by the inverse temperature β in such a way as to favor alignment of the spins. Any

probability measure on {−1, 1}E satisfying locally the condition about interactions is called

a Gibbs state. For the precise definition see Section IV.1.

The model was introduced by Lenz and Ising as a simple model for magnetization.

The inverse temperature stands for Kb/T , where Kb is Boltzmann’s constant and T is the

temperature. The model was first studied for cubic lattices Zd, where the existence of phase

transition was shown by Dobrushin [13]. It means that there is a critical inverse temperature

βc such that at an inverse temperature lower than βc, there is only one Gibbs state, while

at inverse temperature above βc, there are at least two - we say that the phase transition

occurs.

The value of critical temperature is known for example for Z1, where it is infinity.

Much more difficult result, which started with work by Onsager [36], is that for Z2 the

critical temperature βc = 1
2 ln(1+

√
2). A rigorous calculation of the critical value in higher

dimensions is beyond current knowledge.

The following result gives an algorithm for finding the critical inverse temperature for

Cayley graphs of virtually free groups and similar graphs.
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Theorem I.6. Consider a graph G, which has a tree-like structure with finite pieces. There

is a system of polynomial equations that has more than one solution if and only if the phase

transition occurs. Assuming there is only one Gibbs state at the critical inverse temperature

for the Ising model, the value of exp(βc), the exponent of the critical inverse temperature, is

an algebraic number, which can be found as a solution of a system of polynomial equations.

These equations depend on the chosen tree-like structure.

We assumed that the interaction strength is the same along all edges. Nevertheless a

similar result can be obtained assuming that the interaction strength varies. Note that the

value of the critical inverse temperature is found using Jacobian of the system of equations.

In the Chapter V we compute the critical inverse temperature for the grandparent tree

and prove the following corollary. The expected magnetization M = M(β) of a graph is the

expected sum of spins on the graph provided the origin has a positive spin, at an inverse

temperature β.

Corollary I.7. Let G be a free product of N (transitive) finite graphs. Denote by Mi the

expected magnetization in the i-th factor graph. The critical inverse temperature βc of G is

the infimum of positive solutions of

(N − 1)
∏

i

E(Mi) −
∑

j

∏

i6=j

E(Mi) = 0.

In case of the N -regular tree this leads to the critical inverse temperature βc = coth−1(N−1).

The special case of trees was previously shown by Lyons [29].

A natural generalization of the Ising model is the Potts model, where a larger (finite)

set of spins is considered. Similar system of equations can be obtained for the Potts model

on graphs with tree-like structure. But the value of the critical inverse temperature for the

Potts model can not be obtained by the above method. The underlying reason for this is

that the Gibbs state at the critical temperature is unique for Ising model and is not unique

for the Potts model, shown for homogeneous trees in [20].

The connection between percolation and Ising model is rather strong. They are linked

via the random-cluster model, which is a two-parameter family of processes introduced by

Fortuin and Kasteleyn [17]. Study of the random-cluster model has so far been limited to

finite graphs, lattices Zd and homogeneous trees. The random-cluster model on graphs with

tree-like structure is a natural option for future research.

I.3 One-relator groups

Residual finiteness of 1-related groups is one of the main topics in combinatorial group

theory since 1960s. The first non-residually finite examples were given in [4] (say, the

Baumslag–Solitar groups BS(p, q) = 〈a, b | b−1apb = aq〉 where p and q are different primes).
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Possibly the strongest “positive”, non-probabilistic result so far is the result by D. Wise

[39]: any one-relator group whose relator is a positive word satisfying the condition C ′(1/6)

is residually finite. The strongest “negative” result appeared recently in the paper by

Baumslag, Miller and Traeger [3]: Let G = 〈a, b, . . . |r = 1〉 be a one-relator group with at

least two generators and let G(r, w) = 〈a, b, . . . |rrw

= r2〉 where w is an element of a free

group with free generators a, b, . . . that does not commute with r. Then [3, Theorem 1]

asserts that the group G(r, w) is not residually finite. Note that the length of the relator of

G(r, w) is at most a constant multiple of the length of the relator of G.

In [7], Borisov and Sapir reported a result of computations saying that, apparently, more

than 94% of 1-related groups with 2 generators and a relator of size n ≫ 1 are ascending

HNN extensions of free groups (that is represented as HNN extensions of a free group where

one of the associated subgroups is the free group itself). By the main result of [7], such

groups are residually finite. Borisov and Sapir used the Monte-Carlo method for n ≈ 106.

Schupp and later Dunfield and Thurston [14] conducted similar experiments on their own

and came to the same conclusion. At the same time, Dunfield and Thurston noticed [14]

that a 2-generated 1-related group is not almost surely an ascending HNN extension of a free

group (that is the probability that a 2-generated 1-related group with a relator of size n is

an ascending HNN extension of a free group is bounded away from 1 as n→ ∞). Recently,

Borisov and Sapir [8] strengthened their result from [7] by proving that every ascending

HNN extension of a free group is virtually residually (finite p-)group for every sufficiently

large prime p. Thus many 1-related groups with two generators satisfy this property as

well.

Note that by the result of Feighn and Handel [16], ascending HNN extensions of free

groups are coherent that is every finitely generated subgroup of them is finitely presented.

Coherence is a very important property of groups also. Coherence of all one-relator groups

is a long-standing open problem.

In this paper, we consider two natural models of choosing a random 1-related group.

Model NR. For every r ≥ 0, consider the set Sr of all group words R of length r ≥ 1

in a free group Fk = 〈x1, ..., xk〉. On that set, we choose the uniform probability measure.

By a random 1-related group with k generators of complexity r we mean the group with

presentation 〈x1, ..., xk | R = 1〉 where R is a random word from Sr.

Model CR. In this model, we consider the set CSr of cyclically reduced words in Fk of

length r and consider the uniform probability measure on that set. Then a random 1-related

group with k generators of complexity r is a group 〈x1, ..., xk | R〉 where R is a random word

from CSr.

Now given any property P of groups, consider the probability pr that a random k-

generator 1-relator group of complexity r has property P . If pr has a limit p, we say that

a random k-generator 1-relator group has this property with probability p.

We prove below (see Lemma VI.9) that if the limit of probabilities pr exists in the
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random model CR, then it coincides with the limit in model NR.

In this paper, we mostly study 1-related groups with at least 3 generators. By Brown’s

result [9, Page 490] such a group is never an ascending HNN extension of a free group.

Nevertheless by using some deep results of Ol′shanskĭı [35] from combinatorial group theory

together with some deep results from the probability theory (more specifically, the theory

of Brownian motions in Rk) we prove the following

Theorem I.8. A random k-generator 1-relator group, k ≥ 3, can be embedded into an

ascending HNN extension of a finitely generated free group with probability 1. In particular,

almost surely, such a group is residually finite, virtually residually (finite p-)group for every

sufficiently large prime p, and coherent.

Note that almost all (with probability tending to 1) 1-related groups of complexity

r ≫ 1 satisfy the small cancellation condition C ′(1/6). Hence they are hyperbolic almost

surely. It is still a major open question in group theory whether every hyperbolic group is

residually finite. The positive answer would of course imply a part of Theorem I.8. On the

other hand, Theorem I.8 gives a new large class of residually finite hyperbolic groups.

As an immediate corollary of Theorem I.8, we deduce that one cannot replace a mul-

tiplicative constant in the result of Baumslag-Miller-Troeger [3, Theorem 1] mentioned

above by an additive constant: if n ≥ 3, then there exists no maps φ : Fn → Fn such that

|φ(R)| − |R| is bounded from above by some constant C and such that for every non-trivial

R ∈ Fn, the group 〈Fn | φ(R) = 1〉 is not residually finite. Indeed, it is easy to see that if

such a map exists, the probability of a 1-related group with n generators to be residually

finite would be bounded away from 1 as |R| tends to ∞.

Let us present the main ideas of the proof of Theorem I.8. Let G = 〈a1, a2, ..., ak | R = 1〉
be a 1-related group. Consider the Cayley graph Γk of Zk viewed as the abelianization of

the free group 〈a1, ..., an〉. Then there is a path w in Γk starting at O = (0, 0, ..., 0) and

reading the word R. Let P be the end point of w. By a result of Brown [9], if k = 2

and a support line of w that is parallel to the vector ~OP intersects w at a single vertex or

a single edge, then G is an ascending HNN extension of a free group. If k > 2 then one

needs to consider the convex hull H of w and its projections onto the hyperplane Rk−1 that

is perpendicular to ~OP . The projection is a (convex) polyhedron L in Rk−1. We prove,

using a result of Ol′shanskĭı [35] about factor-groups of hyperbolic groups, that if one of the

vertices of L is visited exactly once by the projection of w onto Rk−1, then G is embeddable

into a 2-generated 1-related group that is an ascending HNN extension of a free group, i.e.

the conclusions of Theorem I.8 hold. It remains to prove that a random walk w in Γk of

length r satisfies that condition with probability tending to 1 as r → ∞. In case of two

generators the projection L is an interval, and so there are only two vertices in L, hence the

projection of w visits each of these vertices several times with probability bounded away

zero (that is essentially proved in [14]). But if k > 2, then the number of vertices of L grows

with the length of the relator. In order to prove that, we use the fact that the boundary of
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the convex hull of a Brownian motion in R2 is a smooth curve [12]. Therefore it is “very

likely” that one of the vertices of L is visited only once by the projection of the random

walk w onto Rk−1.
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CHAPTER II

GRAPHS WITH TREE-LIKE STRUCTURE

In this chapter we study a class of graphs that admit the so-called tree-like structure.

We show that this class of graphs includes all transitive graphs with more than one end and

Cayley graphs of virtually free groups. Several examples, including the grandparent tree

and SL(2,Z), can be found in Chapter V.

Recall that the Cayley graph of a group G with respect to the finite set of generators

S is the (nonoriented) graph G with vertex set V = G and edges {g, h} ∈ E if and only if

g−1h ∈ S (with the appropriate multiplicity). We equip the Cayley graph with the usual

graph metric.

Definition II.1. A tree-like structure on a (transitive, locally finite, connected, infinite)

graph G is a triple (P, J, γ), where P consists of pairs of non-empty subgraphs (Pi, Bi) of

G, i ∈ I (Pi are called the pieces, Bi are called the border sets), J is a finite subset of I, γ

is a model map from I to J , and the following conditions are satisfied.

(1) For every i ∈ I, Pi is a subgraph of G and Bi ⊆ V (Pi).

(2) For every i 6= j, E(Pi) ∩ E(Pj) = ∅ and
⋃

i∈I E(Pi) = E(G).

(3) There is a partial order on the pieces with maximal element P0, such that its graphical

representation is a tree with a root P0. Moreover, if Pi is a child of Pj, then Pi∩Pj =

Bi.

Denote by U(Pi) the union of the pieces in the descendant subtree of Pi (Pi including), for

all i ∈ I.

(4) For every i 6= j, if Pi 6⊆ U(Pj), then Pi ∩ U(Pj) ⊆ Bj.

(5) For every i ∈ I, there is an isomorphism between U(Pi) and U(Pγ(i)) taking pieces to

pieces and border sets to border sets, respecting the order on the pieces.

We say that there is a finite number of isomorphism classes of pairs (Pi, Bi)’s. And for

j ∈ J the pieces Pj are called the model pieces.

If there is a piece Pi with no edges, then it consists only of vertices and we can remove

such a piece (and add the vertices to the parent piece) and change the tree-like structure

accordingly. Therefore we will assume that each Pi contains at least one edge. Clearly

the tree-like structure can be degenerated in the sense that the whole graph is just one

piece or the number of pieces is finite. In what follows we will always assume that it is

non-degenerated, that is, the number of pieces is infinite. In all cases considered in this

paper, the pieces have at most finitely many components (this simplifies the computations).
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For every i ∈ I, denote by Λi ⊂ I the set of indices of children of Pi (given by part (3)

of Definition II.1). Now we will present several basic properties of the tree-like structure.

Lemma II.2. For every i, the set U(Pi) is covered by Pi and the collection of U(Pλ) for

λ ∈ Λi. Moreover, pairwise intersections of U(Pλ)’s for λ ∈ Λi consist only of vertices of

Pi.

Proof. By property (2) each edge is included in exactly one piece and therefore if Pk ⊂
U(Pλ1), then Pk 6⊂ U(Pλ2), provided λ2 6= λ1. Therefore by property (4) the intersection

U(Pλ1) ∩ U(Pλ2) is included in Bλ1 ∩ Bλ2 . Since each Bλ ⊂ Pi by property (3), the claim

follows.

Lemma II.3. Every border set (except possibly B0, the border set of the root) is a vertex

cut set of graph G. In particular, let a subgraph U(Pi)
c of G be induced by the edges E(G) \

E(U(Pi)). Then U(Pi) ∪ U(Pi)
c = G and U(Pi) ∩ U(Pi)

c = Bi.

Proof. If the complement U(Pi)
c satisfies U(Pi)∩U(Pi)

c = Bi, then Bi is indeed a cut set.

By property (4) for any Pk ⊂ U(Pi)
c we have Pk ∩ U(Pi) ⊂ Bi so the claim follows.

II.1 Changing the generating set

The following lemmas apply to the Cayley graphs of groups. In that case the group itself

acts on its Cayley graph (by multiplication from the right) and so it is a subgroup of the

automorphism group Aut(G). If the isomorphisms of part (5) of Definition II.1 are (almost)

in the group G, we can make the generating set smaller or slightly bigger and still obtain a

tree-like structure.

Lemma II.4. Let S be a finite generating set of a group G. Suppose that there is a tree-like

structure of the Cayley graph G of G with respect to S, and that each of the isomorphisms

from part (5) of Definition II.1 can be extended to the whole G, and that these extensions

form a subgroup H of Aut(G). If G ∩ H has finite index in H, then for any generating

subset S′ ⊂ S the Cayley graph G′ of G with respect to S′ has a tree-like structure with

pieces containing the same vertices (and fewer edges).

Proof. If we restrict the isomorphisms in part (5) of Definition II.1 from H to G ∩H, we

will increase the number of isomorphism classes by finitely many because G ∩H has finite

index in H. Thus we can assume that H ⊂ G.

The graph G′ is obtained from G by removing edges with labels in S \ S′. The pieces

P ′
i of the tree-like structure on G′ are obtained in the same way (just by removing edges

with labels in S \ S′). Let us verify the conditions of Definition II.1 Every edge belongs to

exactly one piece, thus property (2) follows. Conditions (1),(3),(4) depend only on vertices

of pieces. Since vertices do not change, these conditions are satisfied.
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It remains to show property (5). Since the isomorphisms between U(Pi)’s in G are given

by elements in G, they are also isomorphisms of U(P ′
i )’s in G′. Thus there are finitely many

isomorphism classes between pieces of G′.

Lemma II.5. Let S, S′ be finite generating sets of a group G. Suppose that there is a

tree-like structure with pieces Pi of the Cayley graph G of G with respect to S, and that the

isomorphisms from part (5) of Definition II.1 form a subgroup H of Aut(G). Assume that

G ∩H has finite index in H and that the following condition is satisfied:

(∗) for all x ∈ S′ \ S and g ∈ G there is a piece Pi containing both vertices labeled by g

and gx.

Then the Cayley graph G′ of G with respect to S′ has a tree-like structure with pieces P ′
i ,

where P ′
i contains the same vertices as Pi.

Proof. Again we can assume that H ⊂ G. If we prove the claim for S′′ = S ∪ S′, then for

S′ it follows from Lemma II.4. Therefore we can assume that S ⊂ S′.

The graph G′ is obtained from G by adding edges labeled by elements in S′ \ S. In the

tree-like structure, we add each new edge to the oldest (i.e. the maximal in the partial order)

piece Pi containing both its endpoints. Such a piece exists by assumption (∗). Suppose that

there are two such oldest pieces Pi and Pj containing end points of an edge e. Then none

of them is a descendant of the other and their intersection is in Bi ∪ Bj by condition (4).

Therefore e should be added to their predecessor that is older than both of them. Therefore

there is a unique such oldest piece for each edge. This implies property (2). Conditions

(1),(3),(4) now depend only on vertices of pieces that have not been changed. Therefore

these conditions hold as in the tree-like structure on G.

It remains to prove property (5). Consider an isomorphism from property (5) of the

graph G. Let h ∈ H ⊂ G such that U(Pi) = hU(Pj), and h takes pieces to pieces and border

sets to border sets (we can assume i, j 6= 0). We will show that the descendant trees of the

modified pieces P ′
i and P ′

j in G′ can be mapped by the same isomorphism h, and it takes

the modified pieces to pieces and border sets to border sets as well. The vertices of pieces

have not been changed so a difficulty can arise only for edges. By contradiction, assume

that U(P ′
i ) 6= hU(P ′

j) respective that there is a descendant P ′
k of P ′

i and P ′
l of P ′

j such that

Pk = hPl but P ′
k 6= hP ′

l . There exists an edge e in P ′
k that is missing in hP ′

l (or vice versa).

If e /∈ hP ′
l , then there is a older (in the ordering) piece than P ′

l containing both endpoints

of h−1e. Therefore these endpoints are in the border set B′
l. Consequently the endpoints of

e are in B′
k, and so the edge must be included in some ancestor of P ′

k, a contradiction.

Lemma II.5 can be applied only if the pieces are large enough to make the condition

(∗) satisfied. The following lemma allows us to enlarge pieces. The new piece P ′
i is a union

of the children pieces of the piece Pi. If we started with finite pieces, then the constructed

pieces are again finite. Moreover, the tree of pieces (partial order) remains unchanged.
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Lemma II.6. Assume graph G admits a tree-like structure with pieces Pi and border sets

Bi. Define new pieces P ′
i and border set B′

i as follows

P ′
0 = P0 ∪

⋃

k∈Λ0

Pk, B′
0 = B0,

P ′
i = V (Pi) ∪

⋃

k∈Λi

Pk, B′
i = V (Pi), for i 6= 0.

Define the partial order on the pieces P ′
i to be the same as on the original pieces Pi. Then

the modified pieces P ′
i and border sets B′

i form a new tree-like structure of G.

Proof. We need to verify conditions of Definition II.1.

(1)-(2) Clearly follow from the definition of P ′
i and B′

i.

(3) Let P ′
j be a child of P ′

i . Then P ′
i ∩P ′

j contains vertices of Pj , that is B′
j . If k ∈ Λj , then

by property (4) of the original tree-like structure, U(Pk) ∩ P ′
i ⊂ Bk ⊂ V (Pj) = B′

j .

Therefore P ′
i ∩ P ′

j = B′
j .

(4) Assume P ′
i is not a descendant of P ′

j and i 6= j. Then Pi is not a descendant of Pj and

no child of Pi is a descendant of Pj (it can be Pj itself). Therefore using property (4)

of the original tree-like structure we see that P ′
i ∩ U(Pj) ⊂ Pj . Since the intersection

contains only vertices (by (2)), we can write

P ′
i ∩ U(P ′

j) = V ((Pi ∪
⋃

k∈Λi

Pk) ∩ U(Pj)) ⊂ V (Pj) = B′
j .

(5) Assume that there exists an isomorphism from property (5) between U(Pi) and U(Pj)

such that the pieces and border sets are respected. The modification of the piece

Pi into P ′
i uses the children of Pi that are preserved by the isomorphism. Thus the

modified pieces and their border sets are also preserved by this isomorphism between

U(P ′
i ) and U(P ′

j). Thus there are finitely many isomorphism classes.

II.2 Fundamental groups of graphs of groups

In this section we will generalize the example of SL(2,Z) to arbitrary graphs of groups by

showing that the Cayley graphs of fundamental group of graphs of groups have the tree-like

structure. To make the transition simpler, we first consider amalgamated products and

HNN extensions before proceeding to arbitrary graphs of groups.
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II.2.1 Amalgamated products with standard generating sets

Recall that an amalgamated product G1 ∗H G2 is obtained from two groups G1 and G2

provided monomorphisms ik : H → Gk, k = 1, 2. The group G1 ∗H G2 is a quotient of

the free product G1 ∗G2/N , where N is the smallest normal subgroup containing elements

i1(h)i
−1
2 (h), h ∈ H.

Consider the right Cayley graph G of an amalgamated product G1 ∗H G2 with respect

to the generating set S1 ∪S2, where G1 = 〈S1〉 and G2 = 〈S2〉. The structure of the Cayley

graph G is the following. First consider the copies of the Cayley graph G1 of G1 and the

Cayley graph G2 of G2 containing the origin. These subgraphs intersect by the vertices of

H, which we consider as a border set. Each coset of H inside G1 is another border set

connecting G1 with another copy of G2; each coset of H inside G2 is a border set connecting

it with another copy of G1. The copies of G1 and G2 form a tree, it is a G-tree (see [11]

Section 8.6) which is usually called the Bass-Serre tree of the amalgamated product.

Let us pick one of the pieces, say G1, and call it a root P0. It contains [G1 : H] border

sets Bλ, λ ∈ Λ1. All of these Pλ, λ ∈ Λ1, are in the same isomorphism class, say I2, because

there exists an isomorphism that takes Pλ to Pλ′ with λ, λ′ ∈ Λ1, and carries descendants

to descendants. This isomorphism is just a left multiplication by an element of G1 ∗H G2.

Children of pieces in the isomorphism class I2 are in the same isomorphism class again,

denote it by I1. So the isomorphism class of a piece depends only on the parity of the

generation. More precisely there are three isomorphism classes: the root, the set of pieces

of odd generations and the set of pieces of even generations. The root differs from an even

generation piece by the number of children, but it is only one such exceptional piece.

II.2.2 HNN extensions with standard generating sets

Recall that an HNN extension G is constructed from a base group G1 having a presentation

G1 = 〈S | R〉, and from an isomorphism α between two subgroups H and K of G1. Let t be

a new symbol not in S (free letter), and define G = G1∗α = 〈S, t | R, tht−1 = α(h),∀h ∈ H〉.
Consider the Cayley graph G of this HNN extension G with respect to the generating

set S ∪ {t}. The Cayley graph G1 of G1 is a part of the Cayley graph G. Each coset of

H (resp. K) is attached to another copy of G1, the attachment is done by edges labeled

by t, these edges correspond to the isomorphism α. Therefore the piece G1 is connected

to [G1 : H] + [G1 : K] other pieces. This way we obtain the Bass-Serre tree of the HNN

extension.

Let us denote by P0 a subgraph of G containing the graph G1 and all t-edges incident

to at least one vertex in G1 (and we also add its other endpoint). In G, the that contains

the copy of G1 at v and all t-edges incident to at least one vertex in this copy that are not

in P0. The border set B1 consists of vertices in H in the copy of G1. Repeating this for

all t-edges emerging from P0 we obtain [G1 : K] pieces in the first generation. Similarly by
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following edges labeled by t−1 emerging from P0 we obtain [G1 : H] other pieces in the first

generation. Then we do the same for next generations. This procedure, gives the tree-like

structure of the graph. Each piece Pi contains a copy of G1 and some t-edges connected

to it (in fact it contains all such t-edges except the |K| edges that connect the border set

Bi and the parent). There are three isomorphism classes of pieces: the root, pieces whose

border sets are copies of K and pieces whose border sets are copies of H.

II.2.3 Graphs of groups

Let us recall the definition of the fundamental group of a graph of groups [11].

Definition II.7. A graph of groups G consists of

(i) a connected graph X with vertex set V (X) and edge set E(X),

(ii) for each vertex v of X a group Gv, and for each edge e of X a group Ge, and

(iii) for each edge e = (v1, v2) monomorphisms τ : Ge → Gv1 and σ : Ge → Gv2.

Denote by E the free group with basis {te; e ∈ E(X)}. Let F (G) be the quotient group

(E∗ ✻v∈V (X)Gv)/N , where N is the normal closure of the subset {t−1
e τ(a)teσ(a)−1 : e ∈

E(X), a ∈ Ge}.
Let T be a maximal tree in X. We define the fundamental group π(G, X, T ) to be F (G)/M ,

where M is the normal closure of {te, e ∈ E(T )}.

Note that the groups π(G, X, T ) are independent of T up to isomorphism.

We will consider the Cayley graph G of the fundamental group π(G, X, T ) with the

following generators: (
⋃

v∈V (X) Sv)∪{te : e ∈ E(X)\E(T )}, where Gv = 〈Sv〉 for v ∈ V (X).

This set of generators depends on T . We call this set of generators standard. In order to

obtain locally finite graph we will consider only finite sets of generators, in particular this

restricts us to finite graphs X of finitely generated groups.

Observe that ifX consists of one edge between two distinct vertices, then its fundamental

group is an amalgamated product of the vertex groups. If the two vertices coincide, then

the fundamental group is a HNN extension. The tree-like structure we described for these

specific cases will be now generalized to the Cayley graph of any (finite) graph of groups.

Theorem I.4. The Cayley graph of the fundamental group of a graph of groups has a

tree-like structure.

Proof. We will define the pieces and verify the conditions (1)-(5) in Definition II.1.

First observe that the Cayley graph G is covered by translates of the Cayley graphs

Gv of the vertex groups Gv, v ∈ V (X) by left multiplications by elements of G, and edges

labeled by te, e ∈ E(X) \ E(T ). For each e = (v1, v2) ∈ E(X) \ E(T ) denote by Re the

set of edges labeled by te such that they start at a vertex of Gv1 and end at a vertex of the
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translate of Gv2 by te. Then we denote by gGv the translate of the subgraph Gv by g, the

representative of a coset in π(G, X, T )/Gv. Denote by ghRe the translate of the set Re by

gh, where g is a representative of a coset in π(G, X, T )/Gv1 and h is a representative of a

coset in Gv1/τ(Ge). These sets will be used in the construction of pieces of the tree-like

structure.

Consider the quotient map π(G, X, T ) → π1(X) taking all Gv to identity. The funda-

mental group π1(X) of a finite graph X is free of rank |E(X) \ E(T )|. Every translate of

Re is a preimage of one edge in the Cayley graph of π1(X), thus it is an edge cut set of G.

Moreover, if e = (v1, v2) ∈ E(T ), then any translate gτ(Ge) by g ∈ π(G, X, T ) → π1(X) is

a vertex cut set.

We say that g1Gv1 and g2Gv2 are neighbors if there is an edge e = (v1, v2) ∈ E(T ) (or

e = (v2, v1)) and g1Gv1 ∩ g2Gv2 6= ∅. We say that g1Gv1 and g2Gv2 are delayed neighbors if

there is an edge e = (v1, v2) ∈ E(X) \ E(T ) (e = (v2, v1) resp.) and there is translate hRe

of a set of edges labeled by te connecting a vertex of g1Gv1 to a vertex of g2Gv2 , we say the

neighbors are delayed by hRe.

Consider a graph with vertices gGv and edges between neighbors and delayed neighbors.

This graph is a tree. Assume not and let there be a cycle. If some edge of the cycle arises

from delayed neighbors, then this Re is not a cut set. If all edges in the cycle are neighbors,

they induce a loop in T , which is also a contradiction. We choose a root of this tree to be

Gvo for some v0 ∈ V (X).

Now we are ready to define pieces and border sets. We take the tree from above and

define the pieces: For the root Gv0 we define a piece Pv0,o to be a union of Gv0 and sets hRe

for all its delayed neighbors. For any other gGv we define a piece Pv,g to be a union of Gv0

and sets hRe for all its delayed neighbors that are not parent of gGv in the above tree order.

Define the border sets of a piece Pv,g to be its intersection with the parent piece. For the

root define the border set to contain only the origin.

Let us now verify the conditions in Definition II.1:

(1) The Cayley graphs Gv are connected and the pieces remain connected after adding

the incident edges te. The intersection of Pv1,g1 with its parent Pv2,g2 is a translate of

τ(Ge) (σ(Ge) resp.) inside Pv1,g1 provided e = (v1, v2) ( e = (v2, v1) resp.). Thus the

border set is indeed subset of the vertex set of the piece.

(2) We need to show that every edge e ∈ E(G) is in exactly one Pi. Clearly this holds

for edges labeled by s ∈ Sv. Every edge labeled by te has endpoints in two different

pieces, which by the construction become parent and child, and thus it is included

only in the parent piece.

(3) The tree was defined above, such that the border sets satisfy required condition (3).

(4) For all j 6= 0 the border set Bj is a cut set. Using the notation U(Pi)
c for the subgraph

16



induced on edges in E(G) \ E(U(Pi)), we obtain U(Pi) ∩ U(Pi)
c = Bi. So claim (4)

follows.

(5) Now we want to show that there are only finitely many isomorphism classes of pieces.

The root is a unique piece of its class and we exclude it from the following considera-

tion. Assume Pi was obtained from translate of Gv1 and its parent from Gv2 that are

neighbors due to an edge e = (v1, v2) ∈ E(X). This edge together with its direction

characterizes the isomorphism class of Pi. Indeed if Pj is characterized by the same

edge e = (v1, v2) ∈ E(X), then clearly there is an element g ∈ π(G, X, T ) acting

on the Cayley graph as an isomorphism f such that f(Pi) = Pj and f(Bi) = Bj .

Therefore f(U(Pi)) = U(Pj) as well. Moreover, since the pieces (and border sets)

are identified in each subtree by the same procedure, this isomorphism respects the

structure of pieces in the subtree.

Corollary II.8. For the Cayley graph of a fundamental group of a finite graph of finite

groups, with the natural generating sets, the pc is an algebraic number.

Proof. It follows from Theorem I.1 (iii) and Theorem I.4.

Remark II.9. A fundamental group of a graph of groups with trivial edge groups is a free

product of its vertex groups and copies of Z, so the first moment matrix M can be expressed

as in the example V.1.

II.2.4 Groups acting on trees with finite vertex stabilizers

The goal of this section is to prove Theorem I.5. To this end, we combine the result about

standard generating sets (Theorem I.4) with the general results from Chapter II.

Theorem I.5. Let G be a virtually free group, that is, it acts on a simplicial tree T with

finite vertex stabilizers. Then its Cayley graph with respect to any finite generating set has

a tree-like structure with finite pieces. Given a finite generating set of G, the pieces of the

tree-like structure are algorithmically constructed.

Proof. The group G in this case is a fundamental group of a finite graph of finite groups.

Recall that the standard generating set, as defined in Section II.2.3, consists of generators

of the vertex groups and free letters corresponding to the edges outside the spanning tree

of the factor graph T/G. Assume S1 is maximal generating set such that it contains all

elements of the vertex groups and free letters. In Section II.2.3 we constructed a tree-like

structure for the Cayley graph, with pieces corresponding to vertex groups. This tree of

pieces Pi is a starting point of our generalization to an arbitrary generating set.
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Denote by m the number of vertex groups in T/G. Elements of an arbitrary (finite)

generating set S can be represented by reduced words in S1 of bounded length (depending

on S). Denote the maximal length by N .

The next step is to apply Lemma II.6 several times, so that the piece P ′
i contains all its

descendants up to n-th generation. Every application of that lemma enlarge the pieces by

one generation. We will find n large enough to guarantee that there exists a piece containing

both endpoints of each edge labeled by an element in S.

Let P ′
i be a piece in the n-times “enlarged” tree-like structure. Then the vertex set

V (P ′
i ) =

⋃

k∈Λi(n) V (Pk), where Λi(0) = {i} and Λi(n + 1) = {i} ∪⋃s∈Λi(n) Λs. Since the

original pieces were finite, Λj ’s are finite and so are the modified pieces P ′
i . An intuitive

picture of how such enlarged pieces look like, comes from the free groups, see Corollary V.3.

Recall that the pieces Pi correspond to transitions of vertex groups gGv, and they are

connected in the tree of pieces if they are so-called neighbors (corresponding to edge in

spanning tree) or delayed neighbors (corresponding to other edges in the graph of groups),

see Section II.2.3. Now we can use a graph distance between pieces. Let s ∈ S1 and x be a

vertex in some piece g1Gv1 . How far is a piece containing the vertex xs?

Assume s ∈ Gv2 , so it is in some vertex stabilizer. There is a path between v1 and v2

in the spanning tree of the graph T/G, visiting vertices v1 = u1, u2, . . . , uk = v2. The size

of the spanning tree is equal to the the number of vertex groups minus 1, that is m − 1.

For every i there is gi ∈ G such that x ∈ giGui
. Therefore there is a path in the tree of

pieces through vertices g1Gu1 , g2Gu2 , . . . , gkGuk
. Moreover, xs ∈ gkGv2 . Thus the distance

between pieces containing x and xs is at most m− 1.

Assume s is a free letter. Then it corresponds to an edge e in the graph of groups outside

the spanning tree, starting at vertex v2 and terminating at vertex v3. As before there is a

path from g1Gv1 to a piece gkGv2 , and xs ∈ gk+1Gv3 a delayed neighbor of gkGv2 . Thus the

distance between pieces containing x and xs is at most m, in this case. Similarly for s−1.

Let x ∈ G with word length (in S1) at most N . The distance between pieces containing

g and gx is at most mN , for any g ∈ G. If the distance between two pieces is at most

mN , then their closest common ancestor differs from them by less than mN generations.

In particular, if dist(Pi, Pj) ≤ mN , then there is Pk, such that P ′
k contains vertices of Pi

and Pj provided n > mN .

Now we can apply Lemma II.5 to conclude that the Cayley graph with respect to S∪S1

has a tree-like structure with finite pieces. Consequently by Lemma II.4 the Cayley graph

with respect to S has also a tree-like structure with finite pieces.

II.3 Transitive graphs with more than one end

In what follows we will generalize the above decomposition into the tree-like structure,

which was natural for amalgamated products and HNN extensions, to the case of transitive

graphs with more than one end.
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Recall that the number of ends of a graph is the supremum of the number of connected

components of any of its subgraphs that was obtained by removing a finite set of vertices.

An infinite transitive graph can have one, two or infinitely many ends.

First let us recall the notation and a result obtained by Dunwoody in [15].

Let G be an infinite connected graph with more than one end. Let c be a subset of

vertices of G, denote by c∗ = V (G) \ c and by ∂Ec the set of edges having one endpoint in c

and the other in c∗. Denote by ∂V c the set of vertices in c having a neighbor in c∗. A set

of vertices c such that ∂Ec is finite is called a cut. A cut is said to be non-trivial if both c

and c∗ are infinite.

Lemma II.10 (Dunwoody). Let G be a graph with more than one end and let H ⊂
Aut(G). There exists a non-trivial cut d such that for any g ∈ H one of the inclusions

d ⊂ gd, d ⊂ gd∗, d∗ ⊂ gd, d∗ ⊂ gd∗ holds.

Let d be a cut satisfying the above lemma and for any other cut b we denote

Tb = {gd|g ∈ Aut(G), gd ( b, and there is no h ∈ Aut(G)

such that gd ( hd ( b or gd ( hd∗ ( b},
T ∗

b = {gd∗|g ∈ Aut(G), gd∗ ( b, and there is no h ∈ Aut(G)

such that gd∗ ( hd ( b or gd∗ ( hd∗ ( b},
Q1 = d ∩

⋂

c∈Td∪T ∗

d

(c∗ ∪ ∂V c),

Q2 = d∗ ∩
⋂

c∈Td∗∪T ∗

d∗

(c∗ ∪ ∂V c). (II.1)

If there is g ∈ Aut(G) such that gd = d∗ the above definition gives us Td = T ∗
d . In order

not to consider each cut twice, we set T ∗
d = ∅ in this case.

Now we will decompose the graph into pieces isomorphic to Q1 and Q2.

Lemma II.11. Let c1, c2 ∈ Td ∪ T ∗
d and c1 6= c2. Then the distance from c1 \Q1 to c2 \Q1

in G is at least 2. Moreover, d = Q1∪̇ ˙⋃
c∈Td∪T ∗

d
(c \ ∂V c). Similarly for d∗.

Proof. From the property that there is no h ∈ Aut(G) such that ci ( hd ( d or ci ( hd∗ ( d

for i = 1, 2 it follows that c1 6⊂ c2 and c∗1 6⊂ c∗2. Since d∗ ⊂ c∗i , we have c∗1 6⊂ c2. Therefore

by Dunwoody’s result in Lemma II.10 c1 ⊂ c∗2 and c2 ⊂ c∗1. If ∂V ci ⊂ Q1 the claim would

follow.

Assume c ∈ Td ∪ T ∗
d such that ∂V c 6⊂ Q1. It means that there is c′ ∈ Td ∪ T ∗

d such that

(c′∗ ∪ ∂V C
′) ∩ d does not contain ∂V c, and therefore (c′ \ ∂V c

′) ∩ ∂V c 6= ∅. But from above

we have that c′ ⊂ c∗, what is a contradiction.

Theorem II.12. Every transitive graph with more than one end admits a tree-like structure

with finite border sets.
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Proof. The pieces we consider are Q1, Q2 and their translates. Assume d is a cut satisfying

the above Dunwoody’s Lemma II.10 and that the origin is in ∂V d
∗. Let the root piece P0

be a subgraph of G induced on the vertices Q2 ∪ ∂V d
∗.

Now with each translate of d (d∗ resp.) we have a translate of Q1 (Q2 resp.). Consider

the cuts in Td∗ ∪T ∗
d∗ and the translates of Q1 and Q2 corresponding to them. The pieces of

the first generation are subgraphs induced by the vertices of these translates of Q1 and Q2

(we include all the edges that are not already in P0). Let the first generation also contain

a piece induced by edges in the original Q1.

The whole tree of pieces is constructed inductively. We always consider translates of

Q1 and Q2 corresponding to the cuts in Tb ∪ T ∗
b , where b are the cuts used in the previous

generation. The piece is a subgraph induced on the vertices of the appropriate translate of

Q1 and Q2, and we exclude all edges which are already in some piece of previous generation.

The border set Bi is defined as the intersection of Pi with its parent (B0 := {o}).
Now we can start verifying the properties of Definition II.1.

(1) The pieces and border sets such that Bi is a subset of vertex set of Pi.

(2) Every edge is in exactly one piece - in the first appearing in the construction and

containing both endpoints of the edge.

(3) The partial order of the elements follows from the construction, as well as the property

that border set is the intersection of the piece with its parent.

(4) If we remove a border set Bi the graph falls apart. In particular U(Pi) is the subgraph

induced by vertices of c′ and by Lemma II.11 it intersects the U(Pi)
c only by vertices

in ∂V c, which are in Bi.

(5) There are two isomorphism classes of pieces (excluding the root), based on whether

Pi arises from transition Q1 or Q2.
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CHAPTER III

PERCOLATION ON TREE-LIKE GRAPHS

III.1 Partitions of the border sets

Consider a graph G with a tree-like structure as above and take a realization ω ∈ Ω of a

percolation process on G. Some pairs of vertices of the border set B0 can be connected

by open paths in G. In this way the realization determines a partition of the set B0: two

vertices are in the same class of the partition if they are connected by an open path in G.

The percolation process induces a probability measure on the set of all partitions of B0.

Similarly we obtain a partition of each Bj by looking at the open paths in the subgraph

U(Pj). We call this a descendant partition of the border set Bj . We say a partition of a set

B is induced by percolation on H, if H is a subgraph of G, B is a subset of vertices of H,

and two vertices of B are in the same class of the partition if and only if they are connected

by an open path in H.

In this section, we will use the decomposition into pieces to find the measure on the set

of descendant partitions of border sets using recurrent relations.

Let Z(i) be the set of all partitions of the border set Bi that can be induced by the

percolation on U(P − i). Let qi : Ω → Z(i) be a map assigning to each realization ω ∈ Ω

the partition on the border set Bi. We consider only partitions induced by percolation

on U(P − i) and thus the map qi is surjective. The measure on Z(i) is a pullback of the

percolation measure Pp by qi. Thus A ⊂ Z(i) is measurable if and only if q−1
i (A) ∈ Σ. For

simplicity we use the same notation Pp for the probability measure on partitions and denote

the σ-algebra of measurable sets of partitions by Z(i).

For every finite subset F of Bi and every partition z(i) of Bi, denote by z(i)(F ) the set

of all partitions that coincide with z(i) on F . These sets are obviously in Z(i).

If the subgraphs U(Pi) and U(Pj) are isometric (by an isomorphism from part (5) of the

definition), then the σ-algebras of partitions Z(i) and Z(j) are isomorphic and the measures

induced by the same percolation process are preserved.

Lemma III.1. A descendant partition of Bi is determined by the state of the edges in Pi

and by the descendant partitions of border sets Bλ, λ ∈ Λi (which are children of Pi).

Proof. Indeed using property (2) of Definition II.1 and Lemma II.2 we see that every edge

of an open path connecting two vertices of Bi in U(Pi) is in exactly one of the following

graphs: Pi or U(Pλ), λ ∈ Λi. We can split the path into several segments, each of them

being in some U(Pλ) or Pi. A segment in U(Pλ) starts at some point of Bλ and ends at

some other point of Bλ. Therefore the existence of the open segment is determined by

the partition on Bλ. Thus in order to decide whether there is an open path connecting
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certain vertices in Bi it is sufficient to know the states of edges in Pi and the partitions of

Bλ, λ ∈ Λi.

For every measurable set A ∈ Z(i) and every vector ζ ∈ ∏λ∈Λi
Z(λ) of partitions on

Bλ’s, λ ∈ Λi, we denote the conditional probability of A provided ζ by Pp(A|ζ). Denote by

µ
(i)
p the product measure on

∏

λ∈Λi
Z(λ) such that the measure on each Z(λ) is given by Pp.

Then we can write:

Pp(A) =

∫

ζ∈
∏

λ∈Λi
Z(λ)

Pp(A|ζ)dµ(i)
p (ζ). (III.1)

Note that since for pieces of the same isomorphism class we have isomorphic σ-algebras

of the set of partitions and measures on them, we can consider only one such equation for

each model border set (of index in the finite set J from the definition).

This defines an operator on the space of all measures on the direct product of Z(i)’s.

More precisely, let Xj be the space of the probability measures on Z(j) with the σ-algebra

Z(j). In fact Xj ⊂ [0, 1]Z
(j)

. Denote
∏

j∈J Xj by X.

For x = (x1, . . . , x|J |) ∈ X denote by µ
(j)
x the product measure on the space

∏

λ∈Λj
Z(λ)

such that the measure on each Z(λ) is given by xγ(λ) ∈ Xγ(λ).

Define an operator Ψp : X → X (where Ψp(x) = (Ψp(x)1, . . . ,Ψp(x)|J |)) by

Ψp(x)j(A) =

∫

ζ∈
∏

λ∈Λj
Z(λ)

Pp(A|ζ)dµ(j)
x (ζ), for all A ∈ Z(j). (III.2)

For any p ∈ (0, 1) the measure on Z(j), j ∈ J induced by the percolation on U(Pj) is a

fixed point of this operator Ψp, indeed compare (III.2) with (III.1).

If the pieces are finite, then the equations (III.1) form a finite system of polynomial

equations in the unknown variables Pp(z
(j)). The probabilities of partitions are important

for evaluating the first moment matrix of the branching process defined in Section III.2.5.

We can endow each Z(j) with a topology generated by the cylindrical sets z(j)(F ). This

topological space is second countable and Hausdorff. Moreover, the space is compact since

each sequence has an accumulation point. (Indeed let Fi, i = 1, . . . be an increasing sequence

of finite subsets of Bj , and
⋃
Fi = Bj . In order to find an accumulation point of a sequence

xk, we can consider a set of partitions that agree on Fi with infinitely many xk’s, and let i

go to infinity.)

The space X of the probability measures on a compact metric space is a convex compact

metric space in the weak* topology induced by continuous functions (follows from the Riesz

representation theorem). Then a continuous operator on X has a fixed point. The set of

its fixed points is closed and since the operator Ψp is linear, the set is also convex. The

operator Ψp acts linearly on the space of measures and has norm at most one because it

preserves the subset of probability measures. Therefore the set of its fixed points is convex,
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compact.

III.2 Branching processes

III.2.1 Preliminaries

Recall that a multi-type branching process is a Markov process that models a population

in which each individual in generation n produces some random number of offspring of the

various types in generation n+1, according to a fixed probability distribution that depends

only on the type of the individual.

Assume S is a set of types of individuals and that a type s individual produces children

of different types according to a probability distribution ps on NS
0 , where N0 = {0, 1, 2, . . . }.

Assume that all individuals produce offspring independently of each other and of the history

of the process. Let vector Xn ∈ NS
0 represent the n-th generation, where each coordinate

Xn[s] represents the number of individuals of type s in the n-th generation. It is given by

the recurrent relation

Xn+1 =
∑

s∈S

Xn[s]
∑

i=1

ξi
ns, (III.3)

where ξi
ns are independent random variables with the distribution ps. The sequence {Xn}∞0

is called a multi-type Galton-Watson branching process with initial population size X0 ∈ NS
0

and offspring distribution ps, s ∈ S.

Let es ∈ NS
0 be a vector with 1 at the position s ∈ S and zeros at other positions. Let

Mn(es, B) be the expected number of individuals of the n-th generation of types in B ⊂ S.

For any fixed initial es, Mn(es, .) is a measure on S given by

Mn(es, B) = E

(
∑

s∈B

Xn[s]|X0 = es

)

. (III.4)

The initial population can be given by any vector a in NS
0 (usually it is some es, an

atomic measure). We will give some properties of the Mn’s using a notation from the book

of Nummelin [33]. Assume the expected size of the first generation is bounded, we can

condition on the states in the first generation and obtain:

Mn(a,B) =

∫

s∈S
Mn−1(s,B)dM1(a, s). (III.5)

EachMn : (S, P (S)) → R+ is a kernel acting as an operator M̃n on the space of measures

on S by

M̃n(µ)(B) =

∫

s∈S
Mn(s,B)dµ(s).
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The product of two kernels is defined as in expression (III.5), thus M̃n is the n-th iterate

kernel of M̃1.

A branching process is called singular if each individual has exactly one offspring almost

surely. M is irreducible if and only if there exist a σ-finite measure φ on S such that for all

φ-positive sets B ⊂ S and s ∈ S, Mn(es, B) > 0 for some n.

If a non-singular branching process is irreducible, then the population becomes extinct or

explodes exponentially. The irreducibility condition is very important here. The branching

process we will construct can be reducible in general. This prevents us from making claims

about the extinction of the process in general. If we restrict ourself to the finite set of types,

we can make further claims, see Section III.2.5.

If S is finite, then the operators Mn are matrices. The expected size of the first gener-

ation (the first moment matrix M) is given by

mrs = E(X1[s]|X0 = er). (III.6)

Two types r and s are said to be in the same class if an individual of type r is in

the offspring of an individual of type s with positive probability and vice versa (i.e. for

some n, the (r, s) entry of Mn, m
(n)
rs , is positive). Now the multi-type branching process is

irreducible if all types are in the same class.

The process is positively regular if there exists n such that all elements of Mn are strictly

positive. If the process is irreducible but non-positively regular, then it is periodic. The

period of a branching process is a number d such that the matrix M may be represented,

after reordering the types of individuals, in the form

M =












0 M(1, 2) 0 . . . 0

0 0 M(2, 3) . . . 0
...

...
...

. . .
...

0 0 0 . . . M(d− 1, d)

M(d, 1) 0 0 . . . 0












,

where M(i, i+ 1) denotes a non-zero matrix.

We will need the following result from the theory of branching processes.

Lemma III.2. If an irreducible multi-type Galton-Watson process with finite number of

types is non-singular, then the population becomes extinct with probability one, whenever

the maximal eigenvalue of the first moment matrix M is at most one.

For the proof see Mode [32], Theorem 7.1 on page 16 and Theorem 2.1 on page 54. Note

that by The Perron-Frobenius theorem the maximal (in absolute value) eigenvalue of M

will always be a non-negative real number.
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III.2.2 Coloring of the tree of pieces according to the percolation

Next we will relate the percolation cluster size to the population of a multi-type branching

process. The number of types will be as small as possible in order to simplify the computa-

tion at the cost that the population size will not match, only approximate the cluster size,

in particular it will be finite if and only if the percolation cluster was also finite.

Assume that there is a distinct vertex o called the origin in the border set B0. Each

realization of a percolation gives rise to a coloring of the tree of pieces in the following way.

Consider a piece Pi that is not the root. Consider a subgraph U(Pi)
c of G induced by

the edges E(G)\E(U(Pi)). Note that the intersection of U(Pi)
c and U(Pi) is the border set

Bi, and it is a cut set by Lemma II.3. The subgraph U(Pi)
c contains the origin. Vertices

of the border set Bi may be connected by open paths in U(Pi)
c. This gives a new partition

on Bi and one class of the partition may be connected to the origin. We assigned a color

to a piece based on the data consisting of the partition and the distinct origin-connected

class (which may be empty). Say that a piece is white if the class connected to the origin

is empty. All other possible partitions and origin-connected classes give rise to a new color.

Denote all possible colors y(i) by Y (i), that is all colors that appear for some realization of

percolation ω ∈ Ω. Observe that in this model the colors of pieces depend not only on the

parent but on the colors of its siblings and the whole subtree of their descendants. This

does not give us a branching process directly, but this last difficulty is to be overcome.

Consider the maps q′i : Ω → Y (i) assigning to each realization a color of the piece Pi. We

can pullback the percolation probability measure Pp to Y (i). This determines a σ-algebra

Y(i) on Y (i). We can identify colors of the pieces Pi and Pγ(i) (γ is the model map from

part (5) of Definition II.1) because the spaces Y (i) and Y (γ(i)) are isomorphic.

Lemma III.3. For every i ∈ I and υ ∈ Λi, U(Pυ)c is covered by Pi, U(Pi)
c and the

collection of U(Pλ) for υ 6= λ ∈ Λi. So the color of Pυ is determined by the state of the

edges in Pi, the color of Pi and descendant partitions of border sets Bλ for υ 6= λ ∈ Λi.

Proof. The argument is identical to the one used in Lemma II.2, and Lemma III.1.

Note that only a finite number of children will be non-white if p < min{pc(Pi)}, and all

children of a white piece will be white as well.

III.2.3 The complete branching process

In the previous sections we assigned to each piece Pi (or its border set Bi) a descending

partition and a color based on the realization of the percolation process, that is a pair

(z(i), y(i)) ∈ ⋃j∈J(Z(j) × Y (j)). Denote
⋃

j∈J(Z(j) × Y (j)) by Θ.

Assume a piece Pj with border set Bj has a descendant partition z(j) and a color y(j).

The descendant partitions and the colors of the pieces Pλ, λ ∈ Λj (the offspring pieces of

Pj) are random variables taking values in Z(λ) × Y (λ). Denote by (ζ, η) the vector of these
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random variables, with values in
∏

λ∈Λj
Z(λ) ×∏λ∈Λj

Y (λ). Let Q be a random variable

representing all the colors and descending partitions of pieces in U(Pj)
c.

Lemma III.4. We claim that the distribution of the descendant partitions and colors of

the offspring pieces depends only on the parent, in particular

Pp((ζ, η) ∈ A|(z(j), y(j))&Q) = Pp((ζ, η) ∈ A|(z(j), y(j))), (III.7)

for any measurable set A ⊂∏λ∈Λj
Z(λ) ×∏λ∈Λj

Y (λ).

Proof. From Lemma III.3 and Lemma III.1 we have that (ζ, η) is independent of Q for a

given (z(j), y(j)). Therefore the claim follows.

In other words, the descendant partition and the color of the parent encodes every

connectedness relation coming from U(Pj)
c. So given the descendant partition and the

color of the piece Pi, the descendant partitions and the colors of pieces in U(Pj)
c and of

pieces in U(Pj) are independent.

The purpose of this claim becomes clear after the following definition.

Let us define a measure D(z(i), y(i)) on
∏

λ∈Λi
Z(λ) ×∏λ∈Λi

Y (λ) according to the prob-

abilities in Lemma III.4. We identify the space Zi × Yi with Zγ(i) × Y γ(i) and we count the

number of repetitions of each (z(j), y(j)), j ∈ J among the offspring. In this way we define

a map
∏

λ∈Λj
Z(λ) ×∏λ∈Λi

Y (λ) → NΘ
0 . For any i ∈ J , we can pull back the distribution

D(z(i), y(i)) to a distribution D′(z(i), y(i)) on NΘ
0 .

Definition III.5. The complete multi-type Galton–Watson branching process induced by

the percolation with parameter p on a graph with a tree-like structure is given by the following

conditions.

The type of an individual is given by the color and the descendant partition. The set of

types is Θ =
⋃

j∈J(Z(j) × Y (j)).

There is one initial individual of type (z0, y0), where z0 is the diagonal descendant par-

tition of B0 (i.e. all classes are of size 1) and y0 is the color with the diagonal partition of

B0 with only the origin in the distinct origin-connected class.

Every individual of some type (z(j), y(j)) gives birth to |Λj | individuals, with the distri-

bution of types D′(z(j), y(j)).

We can represent this branching process by a tree. Clearly it will match the tree of

pieces of the graph.

Lemma III.6. The coloring of the tree of pieces according to the percolation has the same

distribution as the above defined complete branching process.

Proof. Let us represent the coloring of the tree of pieces by a random process (Xn), where

Xn ∈ NΘ
0 . The colors and the descendant partitions are represented by elements of Θ and
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each coordinate of Xn gives a number of pieces with a specific color and a specific descending

partition in the n-th generation of the tree of pieces .

By Lemma III.4 the distribution of the offspring of an individual in the n-th generation

is independent of the other individuals (in generation at most n) and depends only on its

type (z(j), y(j)). The distribution is D′(z(j), y(j)).

Therefore the process Xn coincides with the complete branching process above.

III.2.4 The branching process with a reduced number of types

Next we will reduce the number of types and obtain a different branching process. We will

also impose an independency condition on the offspring of every individual, that is, the

joint distribution of the offspring D(y(j)) will be a product measure. Nevertheless we will

show that the expected population size of this reduced branching process contains enough

information about pc.

Using Lemma III.3 we can make the following observation about the coloring of the tree

of pieces. We look at the piece Pi and evaluate the conditional probability of a specific piece

Pυ having color y(υ) (resp. y(γ(υ))) assuming the descendant partitions of the other border

sets are given by the vector ζ ∈ ∏λ∈Λi
Z(λ) (note that the descendant partition on Pυ has

no influence). Taking an expected value of these conditional probabilities over all possible

descendant partitions gives us the probability Pp(y
(υ)|y(i)) of having a child piece of a given

color y(υ) from a piece of color y(i). These probabilities are the same for the piece Pi as for

its model piece Pγ(i), so we can write for j ∈ J

Pp(y
(γ(υ)) ∈ B|y(j)) =

∫

ζ∈
∏

Λj
Z(λ)

Pp(y
(γ(υ)) ∈ B|y(j)&ζ)dµ(j)(ζ), (III.8)

where υ ∈ Λj and B ∈ Y(γ(υ)), a measurable set of colors. These conditional probabilities

may differ for different children υ1 and υ2 ∈ Λj even if γ(υ1) = γ(υ2) (that is if the set of

possible colors coincide).

Denote by Y ′(j) the subset of Y (j) such that y(j) ∈ Y ′(j) if and only if it is not white.

Let Y =
⋃

j∈J Y
′(j). Then Y is the set of all non-white colors. Let the σ-algebra Y on Y

be generated by the intersections of sets in Y(j) with Y ′(j).

Definition III.7. The reduced multi-type Galton-Watson branching process induced by the

percolation with parameter p on a graph with a tree-like structure is given by the following

conditions.

The types of individuals are colors in Y.

There is one initial individual with color y
(0)
0 that is the diagonal partition of B0 with

only the origin in the distinct origin-connected class.

Every individual of some color y(j) gives birth to possibly |Λj | individuals, each of which

is born and has its color assigned independently of the others. The distribution of the color
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y(γ(λ)) of a child indexed by λ ∈ Λj follows the law in formula (III.8).

Note that white is no longer a legitimate color. A child indexed by λ ∈ Λj is not born

in the reduced branching process with the same probability as the probability, that the

corresponding piece is white in the percolation, that is Pp(y
(γ(υ)) iswhite|y(j)). This is not

the only difference between the reduced branching process and the coloring of the tree of

pieces according to the percolation. The joint distribution of the offspring of an individual

is different (because of the independence), and only the first moment is the same. But the

first moment is all we need.

Remark III.8. In the definition of the tree-like structure we allowed some isomorphism

classes of pieces to be finite. In particular very often the root is not isometric to any

other piece. In such case, it is useful to start the branching process not at the root (with

one element), but with a generation that already consists only of pieces that are in infinite

isomorphism classes. This gives us the initial measure on the colors. Therefore we consider

only a subset J ′ of J such that j ∈ J ′ if and only if |γ−1(j)| = ∞. Then Y =
⋃

j∈J ′ Y ′(j).

Theorem I.1 (i). For a percolation with parameter p the reduced branching process on the

tree of pieces has the property that the expected size of its population is finite if and only if

the expected size of the percolation cluster at the origin is finite.

Proof. Note that, by the result of Aizenman and Barsky [1], the sub-critical phase on

transitive graphs is equivalently characterized by the finiteness of the expected cluster size

(they proved this for Zd, the generalization to all transitive graphs was pointed out by Lyons

and Peres [31]).

Clearly pc(G) ≤ pc(Pi). If there is an infinite cluster at the origin for p, such that

p < pc(Pi), then the cluster has to intersect infinitely many border sets almost surely.

Therefore the number of border sets connected to the origin is finite if and only if the

original cluster was also finite. In what follows we will always assume p ≤ pc(Pi) (if Pi is

finite, then we set pc(Pi) = 1).

Given a realization of percolation we have introduced a coloring of the tree of pieces. The

percolation cluster at the origin is infinite if and only if the non-white colored component

of the tree of pieces is infinite (by the assumption that p is smaller than pc of the pieces).

The expected size of the colored component is a sum of the probabilities that a piece is

non-white over all pieces of the tree.

The branching process from Definition III.7 can be naturally illustrated by a tree iso-

morphic to the tree of pieces. The distribution of colors of a specific individual in this

branching process equals to the distribution of non-white colors of the related piece in the

percolation. Therefore the expected population size of this branching process equals the

expected number of non-white colored pieces in the percolation.

Therefore p < pc if and only if the related branching process has finite expected popu-

lation size.
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The branching process is not singular because for p < 1 (and some non-white color

y) there is no color, which appears as an only child of y almost surely (i.e. with positive

probability there are less or more children with different colors). Assume the initial measure

is ν : Y → R+ (it can be the atomic measure from Definition III.7 or distribution of the

first generation of pieces with infinite isomorphism classes from Remark III.8). Then the

expected population size of the branching process is
∑∞

n=0 M̃nν(Y). The critical probability

pc is then a supremum of all p such that
∑∞

n=0 M̃nν(Y) < ∞. In general, the convergence

of
∑∞

n=0 M̃nν(Y) may depend strongly on the initial measure ν. But we will show that if

the border sets are finite, then it actually depends only on the spectral radius of M1.

III.2.5 The case of finite border sets

If the border sets are finite, then the space of partitions is finite and so is the space of colors

Y. Denote by M = [mab]a,b∈Y the first moment matrix of the branching process, that is

the matrix of expected number of offspring of each color mab = Ep(#b|a), where

Pp(y
(γ(υ))|y(j)) =

∫

ζ∈
∏

Λj
Z(λ)

Pp(y
(γ(υ))|y(j)&ζ)dµ(j)(ζ)

Ep(#y
(k)|y(j)) =

∑

λ∈Λj ,γ(λ)=k

Pp(y
(γ(λ))|y(j)). (III.9)

The expected number of individuals of the n-th generation is then given by the n-th power

of M .

Theorem I.1 (ii). If all the border sets are finite, then the branching process has finitely

many types, and the first moment matrix is of finite size. In this case pc is the smallest

value of p such that the spectral radius of the first moment matrix is 1.

Proof. Assume the graph G has a tree-like structure such that the border sets Bi’s are finite.

Using the already proved part (i) of Theorem I.1 we need to decide for which p the expected

population size of the constructed branching process is finite.

This branching process is non-singular for p < 1 because if a piece has more than one

child, then the offspring size is bigger than one with positive probability, and if every piece

has exactly one child, then it has no offspring (only white) with positive probability. The

expected population size is
∑
Mn applied to the initial measure. If the spectral radius is less

than 1, then the sum
∑
Mn is always finite. If the spectral radius is at least 1, then there

exists a possible initial measure, for which the expected population size is infinite (follows

from The Perron-Frobenius theorem). If the process is irreducible, then it is independent

of the choice of initial measure.

In case M is irreducible the result follows directly from Lemma III.2. In the other case

there are several classes of types and we denote by M1,. . . , Mk the first moment matrices
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of each class. We can reorder the types in Y such that M has diagonal blocks equal to Mi’s

and all entries above these diagonal blocks are zero. Thus the spectral radius of M is the

spectral radius of some Ms. There is a type (color from Y) in the s-th class such that with

positive probability there is a piece Pi with this color (because we considered only those

colors that are realized by percolation). The process starting at this Pi will have infinite

cluster size whenever the spectral radius of Ms is at least one. Therefore the expected size

of the percolation cluster is finite whenever the maximal eigenvalue of M is less than one.

Note that det(M − 1) = 0 if 1 is an eigenvalue of M and for p = 0 all eigenvalues of M

are zero. The eigenvalues depend continuously on the matrix entries, which are continuous

functions of p. Therefore pc is the first positive value of p such that det(M − 1) = 0.

Theorem I.1 (iii). If all the pieces are finite, then the entries of the first moment matrix

of the reduced branching process are algebraic functions in p. Therefore pc is algebraic.

There exists an algorithm that, given the model pieces and their border sets, computes

a finite extension K of the field Q(p) and a function f in K such that pc is the smallest

positive root of f .

Proof. If the pieces are finite, then the probabilities of the descending partitions, Pp(z
(j)),

can be found as solutions of the system of equations (III.1) introduced in the previous

section. Let us index the partitions on Bj by natural numbers 1, . . . , |Z(j)|. Denote by xj,i

the probability of the i-th possible partition on the border set of model piece Pj , that is

xj,i = Pp(z
(j)
i ). Then we have the following system of equations in the unknown variables

xj,i.

xj,i =
∑

k

(
∑

Γ∈L

α(Γ)

)
∏

λ∈Λj

xγ(λ),k(λ), (III.10)

where

• k is a map that assigns partitions to the border sets Bλ’s. That is k : Λj → N, and

for all λ ∈ Λj , k(λ) ∈ {1, 2, . . . , |Z(λ)|}. We sum over all such possible functions k.

• For a given k, L is the set of subgraphs of Pj such that Γ ∈ L if and only if the

following holds: provided the partitions on the children pieces are z
(λ)
k(λ) and the open

edges of Pj are given by Γ, the partition on Bj (induced by U(Pj)) equals z
(j)
i . Note

that by Lemma III.1 the partition on Bj is uniquely determined by the provided

informations.

• α(Γ) is the probability of the subgraph Γ in the percolation, that is α(Γ) = pE(Γ)(1−
p)E(Pi)−E(Γ).
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The number of equations is equal to the number of variables. The degree in p of each

equation (III.10) is equal to the number of edges in a piece and the degree in the unknown

variables xj,i’s is |Λj |, the number of offspring of the piece Pj . Denote by K the algebraic

extension of Q(p) containing roots of this system of equations.

Similarly as above we can rewrite the formulas (III.9) as follows

P (y(γ(υ))|y(j)) =
∑

k

(
∑

Γ∈L′

α(Γ)

)
∏

λ∈Λj

xγ(λ),k(λ), (III.11)

where

• k and α(Γ) are defined as above, and

• L′ depends on k and it is the set of subgraphs of Pj such that Γ ∈ L′ if and only if the

color on Bυ is y(γ(υ)) provided the color of the parent is y(j), the descendant partitions

on the children pieces are z
(λ)
k(λ) and the open edges of Pj are given by Γ (by Lemma

III.3 these uniquely determine the color on Bυ).

Consequently the entries of the first moment matrix M , given by formula (III.9), are

polynomial functions in p and xj,i’s. The critical probability pc is the first positive value of

p such that det(M − 1) = 0. The function det(M − 1) is an element of the field K, and pc

is an algebraic number in this case.
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CHAPTER IV

ISING MODEL ON TREE-LIKE GRAPHS

IV.1 Preliminaries

Consider a finite subgraph W of G and a boundary condition δ ∈ {−1, 1}∂W , where ∂W

is the outside vertex boundary of W . The finite volume Gibbs state on W at inverse

temperature β and with boundary condition δ is a probability measure νδ
W,β on {−1, 1}W

given by

νδ
W,β(ω) =

1

Zδ
W,β

exp



β
∑

u,v∈W :u∼v

ω(u)ω(v)



 , (IV.1)

where ω ∈ {−1, 1}W and Zδ
W,β is a normalizing constant.

LetWn be an increasing sequence of finite subgraphs of the graph G such that
⋃
Wn = G.

Denote by δn a boundary condition on the outside vertex boundary of Wn. Any weak sub-

sequential limit of νδn

Wn,β as n→ ∞ is a Gibbs state.

The following discussion is based on Liggett [28] and Jonasson and Steif [21]. Consider

a sequence of boundary conditions δn ≡ +1 and δn ≡ −1. By the monotonicity of the Ising

model, for J, β > 0 and for any other boundary condition δn, ν−Wn,β ≤ νδn

Wn,β ≤ ν+
Wn,β . The

limits ν+
β = limn→∞ ν+

Wn,β and ν−β = limn→∞ ν−Wn,β exist and are independent of the choice

of Wn. Therefore the phase transition occurs (i.e. the Gibbs state is not unique) if and only

if ν+
β 6= ν−β . Note that ν+

J and ν−J are invariant under all graph automorphisms of G.

IV.2 Recurrent relation

In this section we will prove Theorem I.6.

It might be useful to keep in mind a simple example. Consider a rooted binary tree

and its subgraph Wn containing vertices up to level n. Denote by xn the probability that

there is a positive spin at the origin in the measure νδn

Wn,β for some boundary condition δn.

Assume we know xn−1, we can write:

xn = (e2βx2
n−1 + 2xn−1(1 − xn−1) + e−2β(1 − xn−1)

2)/d,

where d is a normalizing constant, in this case:

d = (eβxn−1 + e−β(1 − xn−1))
2 + (e−βxn−1 + eβ(1 − xn−1))

2.

Any limiting invariant Gibbs state has to satisfy this recurrent equation (with xn = xn−1).

It remains to decide for which values of β it has more than one solution. Figure IV.1 shows
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the extreme solutions for different values β. Using the Jacobian of the equation we can

show that the critical temperature for binary tree is 1
2 ln(3) = .5493 . . . .

Figure IV.1: Values of the solution x in dependency on β.

Let us present the argument in greater generality. Recall the statement of the result

which covers virtually free groups:

Theorem I.6. Consider a graph G, which has a tree-like structure with finite pieces. There

is a system of polynomial equations that has more than one solution if and only if the phase

transition occurs. Assuming there is only one Gibbs state at the critical inverse temperature

for the Ising model, the value of exp(βc), the exponent of the critical inverse temperature, is

an algebraic number, which can be found as a solution of a system of polynomial equations.

These equations depend on the chosen tree-like structure.

Proof. Given a piece P with a border set B and a subtree U(P ), denote by νδ
B,β a restriction

of the measure limn→∞ νδn

U(P )∩Wn,β to {−1, 1}B for δ = ±1. Given two pieces Pi, Pj in the

same isomorphism class we have that νδ
Bi,β

= νδ
Bj ,β .

The measure νδ
Bi,β

is determined by the structure of the piece Pi and measures νδ
Bλ,β ’s

for λ ∈ Λi, the children of the piece Pi. This leads to a finite system of equations, which are

polynomial (in exp(β)) for finite pieces (see Chapter V for examples). The phase transition

occurs, i.e, there is more than one Gibbs state, if and only if ν+
Bo,β 6= ν−Bo,β . Since every

positive solution of the system of equations leads to a Gibbs state, the phase transition

occurs if and only if the system of equation has more than one solution.

For an ω ∈ {−1, 1}B denote by −ω an element with all spins inverted. If νδ
Bλ,β is

a solution of the above equations then νδ
Bλ,β(−ω) is also a solution (corresponding to

an inverted boundary). In particular for any β there is a symmetric solution, such that

νo
Bλ,β(ω) = νo

Bλ,β(−ω).

The following discussion is an application of the Implicit function theorem and properties
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of the Jacobian. If there is only one Gibbs state at the critical inverse temperature for the

Ising model, then for the inverse temperature lower or equal to βc the equations has only

one solution. Therefore these equations implicitly define a function [0, βc] → νδ
∗,β . This

solution is symmetric. Since the equations are polynomial, all the solutions are continuous

in β and as soon as there is more than one solution, by the symmetry, there are at least

three of them. As β approaches βc from above, the solutions approach the symmetric one.

Therefore at βc the Jacobian of the system of equations is 0. Conversely, if the Jacobian

is zero at β, then there is no neighborhood of the point β, such that the equation would

implicitly define a function. In other words, in any neighborhood of β, there is a value of

the inverse temperature for which there is more than one solution.

Thus the critical inverse temperature βc is the minimal value of β such that the Jacobian

is equal to 0 at the point of symmetric solution of the system of equations.
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CHAPTER V

EXAMPLES

All examples illustrates the tree-like structure. Most detailed analysis of the percolation

process can be found in the section about SL(2,Z). The computation for Ising model is

carried out in details for the grandparent tree. The free products are considered for both,

percolation and Ising model.

V.1 Free products of (transitive) graphs

The free product G of transitive graphsG1, . . . , Gn is an infinite connected graph constructed

as a union of copies of Gi’s such that each vertex of G belongs to exactly one copy of each

Gi, and every simple closed path in G is included in one copy of some Gi. In particular,

if G1 = 〈S1〉 and G2 = 〈S2〉, a Cayley graph of G1 ∗ G2 with respect to S1 ∪ S2 is a free

product of Cayley graphs of G1 and G2 with respect to S1 and S2 respectively.

First we show the result from percolation.

Corollary I.2. Let G be a free product of transitive graphs G1, . . . ,Gn. Denote by χi(p) the

expected sub-critical cluster size in the i-th factor graph Gi. The critical probability pc of G
is the infimum of positive solutions of

n∑

j=1

n∏

i=1,i6=j

χi(p) − (n− 1)
n∏

i=1

χi(p) = 0.

Proof. The tree-like structure is very natural in this case. The copies of factor graphs

G1, . . . ,Gn are pieces (thus J = {1, . . . , n}) and each vertex is in fact a border set.

The partitions of border sets are trivial (the spaces of partitions have size 1) in this case.

For the coloring we need only two colors Y (i) = {y(i)
1 , y

(i)
2 }. Assuming that y

(i)
2 is white,

then Y = {y(1)
1 , . . . , y

(n)
1 }.

Denote by bi the border vertex of piece Pi and by τ
(i)
p (a↔ b) the probability that a and

b are connected in Gi. Denote by χi(p) the expected cluster size in Gi. Now we are ready

to compute the matrix M = (mij).

Pp(y
(γ(λ))
1 |y(j)

1 ) = τ (j)
p (bj ↔ bλ)

Ep(#y
(k)
1 |y(j)

1 ) = χj(p) − 1

mij = χi(p) − 1 , for i 6= j (V.1)

mii = 0

In order to find for which p the spectral radius of M equals 1 we solve the equation

det(M − 1) = 0 by Theorem I.1 (iii). The determinant is computed as follows (we subtract
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the first column from all the others and then expand the determinant along the first row):

det(M − 1) = det









−1 χ1(p) − 1 . . . χ1(p) − 1

χ2(p) − 1 −1 . . . χ2(p) − 1
...

...
. . .

...

χn(p) − 1 χn(p) − 1 . . . −1









det(M − 1) = det












−1 χ1(p) χ1(p) . . . χ1(p)

χ2(p) − 1 −χ2(p) 0 . . . 0

χ3(p) − 1 0 −χ3(p) . . . 0
...

...
...

. . .
...

χn(p) − 1 0 0 . . . −χn(p)












= −
n∏

i=2

(−χi(p)) +
n∑

j=2

(χj(p) − 1)
n∏

i=1,i6=j

(−χi(p))

= (−1)n





n∑

j=1

n∏

i=1,i6=j

χi(p) − (n− 1)
n∏

i=1

χi(p)



 (V.2)

Therefore pc is the infimum of positive solutions of

n∑

j=1

n∏

i=1,i6=j

χi(p) − (n− 1)

n∏

i=1

χi(p) = 0.

The projective special linear group PSL(2,Z) is an example of a free product, namely

it is Z2 ∗ Z3. To find its pc we need to evaluate the expected cluster size in a cyclic groups

Z2 and Z3. As obtained by the author in [27] the cluster size in cyclic group of size m,

denoted by |C|Zm
satisfies

Ep(|C|Zm
) =

1 + p

1 − p
− pm(m+ 1) − pm+1(m− 1)

1 − p
. (V.3)

Therefore the critical probability on PSL(2,Z) is equal to .5199 . . . .

Now we shift our attention to the Ising model. Recall that the expected magnetization

M = M(β) of a graph is the expected sum of spins on the graph provided the origin has a

positive spin, at an inverse temperature β.

Corollary I.7. Let G be a free product of (transitive) finite graphs. Denote by Mi(β) the

expected magnetization in the i-th factor graph. The critical inverse temperature βc of G is
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the infimum of positive solutions of

(N − 1)
∏

i

E(Mi) −
∑

j

∏

i6=j

E(Mi) = 0.

In case of the N -regular tree this leads to the critical inverse temperature βc = coth−1(N−1).

Proof. Assume the graph G is a free product of N transitive graphs and consider the tree-

like structure as above. Denote by xi (resp. yi) the probability that border set (root vertex)

in the i-th piece has a positive (resp. negative) spin. Denote by Mi the magnetization of

the i-th piece assuming the root has positive spin.

Then the equations takes following form:

xi =

ni∑

j=1

P(Mi = 2j − ni)
∏

k 6=i

xj−1
k yni−j

k /d,

yi =

ni∑

j=1

P(Mi = 2j − ni)
∏

k 6=i

yj−1
k xni−j

k /d,

where d is a sum of the right sites. The number of solution does not change if we set

d = 1. Then xi = yi = 1 is always a solution. The Jacobian of the system of equations is

determinant of the following matrix

















−1 0 b1 − 1 n1 − b1 . . . b1 − 1 n1 − b1

0 −1 n1 − b1 b1 − 1 . . . n1 − b1 b1 − 1

b2 − 1 n2 − b2 −1 0 . . . b2 − 1 n2 − b2

n2 − b2 b2 − 1 0 −1 . . . n2 − b2 b2 − 1
...

...
...

...
. . .

...
...

bN − 1 nN − bN bN − 1 nN − bN . . . −1 0

nN − bN bN − 1 nN − bN bN − 1 . . . 0 −1

















,

where bi = (E(Mi) + ni)/2, the expected number of positive spins. Using few row and

column transformations we get that the Jacobian equals

det

















−1 0 n1 − 1 0 . . . n1 − 1

0 −1 0 E(M1) − 1 . . . 0 E(M1) − 1

n2 − 1 0 −1 0 . . . n2 − 1 0

0 E(M2) − 1 0 −1 . . . 0 E(M2) − 1
...

...
...

...
. . .

...
...

nN − 1 0 nN − 1 0 . . . −1 0

0 E(MN ) − 1 0 E(MN ) − 1 . . . 0 −1,

















.

Now we can move odd rows up and odd columns left to obtain a block diagonal matrix. So
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the Jacobian is equal to



(N − 1)
∏

i

ni −
∑

j

∏

i6=j

ni







(N − 1)
∏

i

E(Mi) −
∑

j

∏

i6=j

E(Mi)



 . (V.4)

Therefore the critical inverse temperature is a solution of the following equation involving

the expected magnetization of the pieces:

(N − 1)
∏

i

E(Mi) −
∑

j

∏

i6=j

E(Mi) = 0.

Note that in case G ∗G it simplifies to E(M) = 2.

Consider a regular tree of degree N , we have

P(M = 2j −N) =

(
N − 1

j − 1

)

γj−1γ−(N−j)/d,

d =
N∑

j=1

(
N − 1

j − 1

)

γj−1γ−(N−j) = (γ + γ−1)N−1,

E

(
M +N

2

)

=

∑N
j=1

(
N−1
j−1

)
jγj−1γ−(N−j)

(γ + γ−1)N−1
=
nγ + γ−1

γ + γ−1
, (V.5)

where γ = exp(β). The critical inverse temperature βc is then obtained as a solution of the

following equation:

nγ + γ−1

γ + γ−1
=
N

2
+ 1,

γ2 =
N

N − 2
.

Therefore βc = 1
2 ln

(
N

N−2

)

= coth−1(N − 1) as proved before by Lyons [29] (in fact his

result covers more general trees).

Consider again the projective special linear group PSL(2,Z). The expected magnetiza-

tion E(Mn) of a cyclic group of size n is

E(Mn) =
nenβ +

∑⌊n
2 ⌋

s=1

∑n−s
k=s(2k − 1)

(
k
s

)(
n−k−1

s−1

)
e(n−4s)β

∑⌊n
2 ⌋

s=0

(
n
2s

)
e(n−4s)β

. (V.6)

Thus the critical inverse temperature βc = 1
4 ln(4 + sqrt(17)) = 1.688 . . . .
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V.2 SL(2,Z)

The easiest example of a Cayley graph with a tree-like structure that is not a free product,

is SL(2,Z). It is the amalgamated product Z4 ∗Z2 Z6 with standard generating set {a, b} so

that Z4 = 〈a〉 and Z6 = 〈b〉. We can illustrate the general method here because the required

computations (for obtaining pc) are relatively simple, or at least doable.

Corollary I.3. The critical probability pc of the special linear group SL(2,Z) given by

presentation 〈a, b|a4, b6, a2b−3〉 is an algebraic number equal to .4291140496 . . .

Proof. The Cayley graph has the tree-like structure with pieces of two isomorphism classes

(squares P1 and hexagons P2) corresponding to the factor groups, see Figure V.1. The

hexagonal pieces consist of six-tuples of vertices connected by bold lines in Figure V.1 and

squares contain dashed edges. Each vertex is contained in exactly one square and one

hexagon and each neighboring square and hexagon share two vertices - the border sets.

o a
2 = b

3

a a
3

bb
2

b
4

b
5

Figure V.1: The Cayley graph of SL(2,Z) with one border set circled

First we need to find the distribution of the descendant partitions of the border sets.

There are two possible descendant partitions on each border set, B1 and B2. Denote them

by Z(1) = {z(1)
1 , z

(1)
2 } and Z(2) = {z(2)

1 , z
(2)
2 }, where z

(i)
1 means that the two vertices of

the border set Bi are connected and z
(i)
2 means that they are not connected. Let us use a

simplified notation: S = Pp(z
(1)
1 ) and H = Pp(z

(2)
1 ) (note that then Pp(z

(1)
2 ) = 1 − S and

Pp(z
(2)
2 ) = 1 − H). Now we will find the system of equations for x1,1 = S and x2,1 = H

given by formula (III.10). In particular, we can write

S =




∑

Γ∈L1

α(Γ)



H +




∑

Γ∈L2

α(Γ)



 (1 −H),

where Li is the set of subgraphs of the square, such that Γ ∈ Li if and only if the vertices

39



of the border set of the square are connected by an open path under the condition that

the partition on the children is z
(2)
i and the open edges of the square are given by Γ. In

fact,
∑

Γ∈L1
α(Γ) is the probability that the vertices of the border set of the square are

connected under the condition that the vertices of the border set of its child (hexagon) are

connected. It means that at least one edge emerging from each vertex of the border set

has to be open, which happens with probability (2p − p2)2. If the children border set has

descendant partition z
(2)
2 (not connected), then the probability of connected parent is equal

to 2p2 − p4. Therefore we get the following expression of S.

S = (2p− p2)2H + (2p2 − p4)(1 −H) (V.7)

H = ((2p− p2)3 + (1 − p)2(2p2 − p4))S2 + 2(p+ p2 − p3)2S(1 − S) (V.8)

+ (2p3 − p6)(1 − S)2

The second equation for H is obtained in a similar way. These formulas lead to a quadratic

equation and if we choose a root in [0,1] we obtain

S =
4p4(2p2 + 2p+ 1)(1 − p)4 − 1 +

√
D

4p5(5p− 2)(1 − p)4
, (V.9)

where

D = 1 − 8p4(p− 1)4(2p12 − 8p11 + 18p10 − 32p9 + 38p8

− 28p7 + 17p6 − 2p5 − 12p4 + 4p3 + 2p2 + 2p+ 1).

This give us the measure on the set of partitions of the border sets.

In Section III.2 we introduced the coloring of a tree. For a border set of size two there

are three non-white colors: either both vertices are connected to the origin or exactly one of

them is connected to the origin. The two different situations when exactly one vertex of the

border set is connected to the origin are symmetric, i.e. there is an obvious isomorphism

of U(Pi) to itself such that each vertex of Bi is mapped onto the other one. Therefore

these two colors have the same distribution of offspring. This simplification is special for

the Cayley graph of SL(2,Z), because this new symmetry is not one of the isomorphisms in

condition (5) of the definition of the tree-like structure. Since the distribution of offspring

does not depend on which of the two vertices is connected to the origin, we identify these

two colors as one.

The set of colors becomes Y (i) = {y(i)
r , y

(i)
b , y

(i)
w } where r (red) means that both vertices

of the border set are connected to the origin, b (blue) means that exactly one vertex is

connected to the origin (thus the border set is disconnected) and w stands for white - no

vertex connected to the origin. We evaluate the probabilities of getting a child of a given

color, according to formula (III.11). Again thanks to the symmetry of the hexagon, the
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probabilities for both children (Pλ0 , Pλ1) are the same.

Pp(y
(λ)
r |y(1)

r ) = (1 − (1 − p)2)2

Pp(y
(λ)
b |y(1)

r ) = 2(1 − (1 − p)2)(1 − p)2

Pp(y
(λ)
w |y(1)

r ) = (1 − p)4

Pp(y
(λ)
b |y(1)

b ) = 2p(1 − p)(1 − p2)

Pp(y
(λ)
r |y(1)

b ) = p4 + 4p3(1 − p) + p2(1 − p)2

Pp(y
(λ)
w |y(1)

b ) = (1 − p)2

Pp(y
(λ)
r |y(2)

r ) = (1 − (1 − p2)(1 − p))2(1 − S) + ((2p− p2)3

+ (1 − p)2(p(1 − (1 − p)(1 − p2)) + (1 − p)p3))S

Pp(y
(λ)
b |y(2)

r ) = 2(1 − (1 − p)(1 − p2))(1 − p)(1 − p2)(1 − S)

+ 2((1 − p)2p(1 − p)(1 − p2) + (2p− p2)2(1 − p)2)S

Pp(y
(λ)
w |y(2)

r ) = (1 − p)2(1 − p2)2(1 − S)

+ (1 − p)4(1 + 2p− p2)S

Pp(y
(λ)
r |y(2)

b ) = (p3 + p4(1 − p2) + p5(1 − p))(1 − S)

+ (p3 + 3p2(1 − p))(1 − (1 − p)(1 − p2))S

Pp(y
(λ)
b |y(2)

b ) = (1 − p3)(p(1 − p2) + p2(1 − p))(1 − S)

+ p(3p+ 1)(1 + p− p2)(1 − p)2S

Pp(y
(λ)
w |y(2)

b ) = (1 − p)(1 − p2)(1 − S)

+ (1 − p)(1 − p(1 − (1 − p)2(1 − p2)))S

Let us illustrate the derivation of the above expressions on Pp(y
(λ)
r |y(2)

r ). We will work

with the hexagon. Its boundary consists of three border sets. One is the parent and one is

the new child in question Bλ. Now Pp(y
(λ)
r |y(2)

r ) is the probability that this child is red if the

parent is red. The third border set of this hexagon has two possible descendant partitions,

the vertices of that border set are either connected outside the piece with probability S or

not connected with probability 1 − S.

Let us first assume they are not connected. Each vertex in the child border set can be

connected to the parent either by a single edge or by a pair of edges and these two events

are independent. Therefore the probability that a given vertex of the child border set is not

connected to the parents is (1 − p)(1 − p2). Thus the probability that both vertices of the

child border set are connected to the parent is (1 − (1 − p2)(1 − p))2.

Assume now that the vertices in the third border set are connected in the descendant

partition. This happens with the probability S. Then the hexagon can be contracted as in

Figure V.2, i.e. we contract the border sets with connected vertices into one vertex. There
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are several ways how to have both vertices in the border set Bλ connected to the parent:

1. If the dashed edges are open, then the probability that both vertices of the child border

set are connected to the parent in this situation is (2p− p2)3.

2. If the dashed edges are closed and the dash-dotted edge is open, then the probability of

this situation is (1 − p)2p(1 − (1 − p)(1 − p2)).

3. If all dashed and dash-dotted edges are closed, then all the remaining edges must be

open in order to connect both vertices of the child border set to the parent. The probability

of this event is (1 − p)3p3.

o ≡ b
3(parent)

b ≡ b
4

b
5

b
2

Bλ

Figure V.2: Contracted hexagon

Now Y = {y(1)
r , y

(1)
b , y

(2)
r , y

(2)
b } and the first moment matrix M takes the following form.

M =









0 0 Pp(y
(λ)
r |y(1)

r ) Pp(y
(λ)
b |y(1)

r )

0 0 Pp(y
(λ)
r |y(1)

b ) Pp(y
(λ)
b |y(1)

b )

2Pp(y
(λ)
r |y(2)

r ) 2Pp(y
(λ)
b |y(2)

r ) 0 0

2Pp(y
(λ)
r |y(2)

b ) 2Pp(y
(λ)
b |y(2)

b ) 0 0









. (V.10)

If we solve the equation det(M − 1) = 0 we obtain pc = .4291140496 . . .

V.3 Grandparent tree

An interesting example of a transitive graph with infinitely many ends that is not a graph is

the grandparent tree. It is obtained from the three-regular tree. We pick one end and add

an extra edges connecting every vertex with the vertex at graph distance 2 in the direction

of the chosen end. The obtained graph is called grandparent tree. This graph has infinitely

many ends and it is not unimodular. Nevertheless it has a tree-like structure.

In the suggested decomposition bellow, we obtain pieces of size four with border sets of

size two. Note that in the Figure V.3 the graph is oriented so that the distinguished end

is to the top. In the right picture we see that the border set of a piece consist of the two

upper vertices and each of its two children intersects it by a pair of vertices - the middle

one and the left (resp. right) one.

Note that the pieces that lie on the path from the root to the distinguished end have

different orientation - the border set is a different pair of vertices inside the piece (exercise

to the reader).

A careful analysis of the branching process can be carried out as in the case of SL(2,Z).
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Figure V.3: Part of the grandparent tree and its piece with cycled border sets.

The pc obtained is .158656326 . . .

Let us treat the Ising model in more details.

Denote the probability of each element in {−1, 1}B by a new variable (the number of

variables needed is 22 = 4.) Let x (resp. u) be the probability that both vertices of the

border set have positive (resp. negative) spins. Let y (resp. t) be the probability that the

upper (resp. lower) vertex has a positive spin while the other has a negative one. Then we

can write

x = (γ2x+ γ−2y)2/d,

y = (t+ u)2/d,

t = (x+ y)2/d,

u = (γ2u+ γ−2t)2/d,

d = (γ2x+ γ−2y)2 + (t+ u)2 + (x+ y)2 + (γ2u+ γ−2t)2,

where γ = exp(β).

The measures ν±Bλ,β have to satisfy the above system of equations. We can ”rescale” the

equations by setting d = 1. This does not change the number of solutions. For any value

of γ this system of equations has exactly one solution such that x = u and y = t.

The Jacobian of the rescaled system of equations is determinant of the following matrix









2γ2(γ2x+ γ−2y) − 1 2γ−2(γ2x+ γ−2y) 0 0

0 −1 2(t+ u) 2(t+ u)

2(x+ y) 2(x+ y) −1 0

0 0 2γ−2(γ2u+ γ−2t) 2γ2(γ2u+ γ−2t) − 1









.

Setting the determinant equal zero we obtain that the critical inverse temperature βc is

equal to ln(1
3(72

√
6 − 27)1/4).
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V.4 An example with infinite pieces

Consider an amalgamated product G1 ∗Z2 G2 with G1 = Z2 × Z and G2 = Z4. Its Cayley

graph with respect to natural generators can be decomposed similarly as above, with border

sets of size two. Therefore the set of partition Z(i) has two elements, and the set of colors

Y has four elements as for the Cayley graph of SL(2, Z). The first moment matrix M has

again two anti-diagonal blocks.

Let A (B resp.) be the probability that the two vertices of the border set in G1 (G2

resp.) are connected (in the descendant subtree). Then A and B satisfy:

A = 2p− p2 + (1 − p)2(2C − C2),

B = (2p− p2)2A+ (2p2 − p4)(1 −A),

C = p2(1 − (1 − p)2(1 −B) + (1 − p)2(1 −B)C),

C =
p2(1 − (1 − p)2(1 −B))

1 − p2(1 − p)2(1 −B)
.

In order to express A, we split the piece Z2 × Z into three parts, the first one containing

only two edges between vertices of Bi. Then we split the rest at the Bi and obtain two

other (identical) parts (corresponding to Z2 × N, see for example the last block in Figure

V.4). The probability that vertices of Bi are connected in one of these two latter parts is

equal to C .

These formulas lead to a cubic equation, and exactly one of the solutions is real and

in [0, 1]. Now we are ready to express the entries of first moment matrix M . There are

two anti-diagonal blocks M12 and M21, again the one corresponding to Z4 is already known

from previous example. For the other factor group Z2 × Z we denote by Tn the transition

matrix from the parent to the n-th child (order them by distance from the origin). In order

to obtain the transition matrix, we split the graph of Z2 ×Z into several blocks, see Figure

V.4. For each block we express the transition probabilities and thus Tn is composition of

these probabilities, in particular it is a product of matrices corresponding to each block.

. . . . . .. . .

(n−1)−times
︷ ︸︸ ︷

B0 B1 B2 Bn

Figure V.4: Blocks of the Cayley graph of Z2 × Z

The first block consists of vertices to the left from the parent and including the parent.

The probability of the connection in the left part is C and the probability that the two

vertices in B0 are connected is 2p− p2. This gives the first matrix in formula (V.11). The

second block is used to express matrix T i.e. the transition to the first child B1 from
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the parent B0. The third one is repeated (n − 1)-times in order to reach the n-th child.

It differs from T by the factor of B coming from the descendant partition on the sibling

border set (this connection is drawn by the dash-dotted line). The last factor in the product

corresponds to the rightmost part of the picture and equals the probability of connection

on the right side of the child in question (it is again equal to C).

Tn =

[

Pp(rn|r) Pp(bn|r)
Pp(rn|b) Pp(bn|b)

]

=

[

1 0

1 − (1 − C)(1 − p)2 (1 − C)(1 − p)2

]

T (V.11)

·
([

1 0

B 1 −B

]

T

)n−1 [

1 0

C (1 − C)

]

,

T =

[

Pp(r|r) Pp(b|r)
Pp(r|b) Pp(b|b)

]

=

[

p2 + 2p(1 − p)(2p− p2) 2p(1 − p)3

p(2p− p2) p(1 − p)2

]

,

M21 =

[

Ep(r|r) Ep(b|r)
Ep(r|b) Ep(b|b)

]

= 2
∞∑

n=1

Tn (V.12)

= 2

[

1 0

C (1 − C)

][

1 0

2p− p2 (1 − p)2

]

T

·
(

1 −
[

1 0

B 1 −B

]

T

)−1 [

1 0

C (1 − C)

]

Again we can solve the equation det(M − 1) = 0 and we obtain pc = .2951 . . .

V.5 Free groups with non-standard generators

The simplest example of a transitive graph with infinitely many ends is a regular tree.

The Cayley graph of free group with respect to free generators is a regular tree and the

percolation on it is well understood. The result of this section gives us a simple way to find

pc for any finite generating set.

Assume Fn = 〈x1, . . . , xn〉. Let G be its Cayley graph with respect to the standard (free)

generators. Denote by H the subgroup of Aut(G) generated by left translations by elements

in Fn and isomorphisms arising from permutations of the generators.

The following lemma shows that the the cut d satisfying the condition in Dunwoody’s

Lemma II.10 can be found explicitly.

Lemma V.1. Consider the free group Fn with any finite set of generators. Denote by d the

set of vertices labeled by words starting with letter x1 (one element of any free generating

set). Then d is such that for any g ∈ H one of the inclusions d ⊂ gd, d ⊂ gd∗, d∗ ⊂ gd,
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d∗ ⊂ gd∗ holds.

Proof. For any finite generating set, d and d∗ are infinite with finite boundaries. Indeed for

any m there are only finitely many pairs (a, b); a ∈ d, b ∈ d∗ with the word distance less

than m. Without loss of generality we assume that the generating set is symmetric on the

permutation of generators, so the whole group H acts on the Cayley graph by isomorphisms.

Now for any h ∈ H, if the origin 1 is contained in hd, then there is a word x such that

all vertices in hd∗ are labeled by reduced words starting with x and x ∈ d∗. If the origin is

in hd∗, then hd has a similar property. Assume that for a given h ∈ H such a word is w and

the origin is in hd (or in hd∗ respectively). Then if w starts with letter x1, then d∗ ⊂ hd∗

(or d∗ ⊂ hd respectively), otherwise d ⊂ hd (or d ⊂ hd∗ respectively).

The following theorem is a special case of Theorem I.5. We include here a different,

more hands-on proof. We present here the pieces of the tree-like structure of free groups

explicitly. They are constructed using a cut set satisfying Dunwoody’s Lemma II.10. We

could as well use the Lemma II.6 (starting with pieces that are single edges of Cayley graph

of free group with respect to free generators), the pieces obtained would be exactly the

same.

Theorem V.2. The Cayley graph of free group Fn (with n free generators) with respect

to any finite generating set has a tree-like structure with finite pieces. Therefore its pc is

an algebraic number and one can use the algorithm from Theorem I.1 (iii) to compute pc,

given any finite generating set.

Proof. Recall that we want to show that the Cayley graph of Fn with respect to any finite

set of generators has a tree-like structure with finite pieces.

Any finite set of generators is contained in some ball Sk, i.e. the set of all words of

length at most k (in the standard word metric). Therefore, using Lemma II.4, it is enough

to find the tree-like structure with finite pieces for the generating set Sk. The isomorphisms

will be from the group H, which admits the group Fn as a finite index subgroup.

Consider the cut d from Lemma V.1. We observed that always either hd or hd∗ is a set

of all vertices labeled by a reduced word starting with some x. We denote such a cut Dx

and its complement (containing the origin) by D∗
x. For example for d we write Dx1 .

Applying the construction in the proof of Lemma II.12 to the cut d we obtain the

following tree-like structure. The pieces are isomorphic to Q1 and Q2. Since d and d∗ are

isomorphic, it is enough to describe just one of them, say Q2 (general formula (II.1)).

Td∗ ∪ T ∗
d∗ = {Dx : |x| = 1, x 6= x1}
Q2 = D∗

x1
∩

⋂

|x|=1,x 6=x1

(D∗
x ∪ ∂VDx)
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If a vertex is labeled by a reduced word longer than k, then it is in Dx \ ∂VDx for some

|x| = 1, thus not in Q2. Therefore Q2 ⊂ Sk, hence it is finite.

Note that since |Td∗ ∪ T ∗
d∗ | = 2n − 1 the branching number of the tree of pieces is

2n− 1.

The tree-like structure is explicitly given by the procedure of Lemma II.12. For the

Cayley graph of F2 with respect to S2 it results in pieces as in Figure V.5. In the picture

we see that the whole Q2 splits into three parts. For the tree-like structure we can take

pieces corresponding to these thirds of Q2. In particular the middle piece Pi (with labeled

vertices in the picture) has border set Bi = {o, a}, and its children pieces (three of them)

share with Pi the middle vertex a and one of the remaining three vertices (ab, a2, ab−1).

The value of the critical probability is .139 . . . in this case.

o
a a

2

ab

ab
−1

Bi

Figure V.5: Piece in Cayley graph of F2 with respect to S2

If the generating set is a general ball Sk we can identify the following tree-like structure.

Corollary V.3. Consider the free group F2 = 〈a, b〉 and its Cayley graph with respect to

the generating set S containing all words of length at most k (in the standard word metric).

There is a tree-like structure with border sets of size 3k−1+1
2 , pieces of size 3k+1

2 , and the

tree of pieces has branching number 3.

Proof. The root piece P0 is a subgraph induced by vertices of Sk−1 with border set containing

the origin. The vertices of each of the four pieces of first generation form a subset of Sk

that contains the origin and vertices labeled by words starting with a specific letter. The

children of the piece corresponding to the letter x are induced by subsets of xSk containing

x and vertices labeled by words starting with xy, where x 6= y ∈ {a, a−1, b, b−1}. Clearly

each such piece has exactly three children. Since |Sk| = 4 ∗ (3k − 1)/(3 − 1) + 1 we can see

|Pi| = (|Sk| − 1)/4 + 1 = (3k + 1)/2 for all i 6= 0. Again we included every edge in exactly

one piece, that is in the oldest one containing both its endpoints. The border set is defined
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as the intersection of a piece with its parent. It is not difficult to see that Bi coincides with

vertices of a piece in Cayley graph with respect to Sk−1, and thus |Bi| = (3k−1 + 1)/2.
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CHAPTER VI

ONE RELATOR GROUPS WITH MORE THAN TWO GENERATORS

VI.1 The theory of 1-related groups

VI.1.1 The case of two generators

Let G = 〈a, b | R = 1〉 be a 1-related group, R is a cyclically reduced word in F2 = 〈a, b〉.
Consider a square lattice Γ in R2, the Cayley graph of Z2. We assume that horizontal

edges are labeled by a and the vertical edges are labeled by b. Let ψ : F2 → Z2 be the

abelianization map. Let w be the path in Γ starting at the origin (0, 0) and reading the

word R. This w is called the trace of the relator R. Note that w can visit every vertex

(edge) many times. Vertices (edges) visited only once are called simple. A line L in R2 is

said to be a supporting line of w if the path w lies on one side of L and has a common

vertex with L.

Theorem VI.1. (Brown [9, Theorem 4.4]) Let G = 〈a, b|R = 1〉, where R is a nontrivial

cyclically reduced word in the free group on {a, b} and R /∈ [F2, F2]. Let w be the trace of

R, ending at a point (m,n).

G is an ascending HNN extension of a free group if and only if one of the two supporting

lines of w parallel to the vector (m,n) intersects w in one simple vertex or one simple edge.

VI.1.2 Embedding into 2-generated groups

Let G = 〈x1, ..., xk | R = 1〉. If the sum of exponents of xi in R is 0, then we can apply the

Magnus rewriting to R. It consists of

• removing all occurrences of xi in R;

• replacing every occurrence of a letter xj in R by the letter xj,p where p is the sum of

exponents of xi in the prefix of R before that occurrence of xj .

Let R′ be the resulting word. The second indices p of letters in R′ will be called the Magnus

xi-indexes. We say that certain Magnus index is unique if it occurs only once in R′.

We are going to use the following statement, which can be deduced from, say, a general

result in [35] about hyperbolic groups. Recall that words w1, ..., wk satisfy small cancellation

condition C ′(1/k) if and only if whenever u is a subword of word wi and at the same time

a subword of word Wj (if j = i then the subword should appear at two different places of

wi), then |u| < 1/k|wi|.

Lemma VI.2. Let w1, ..., wk be words in the free group Fn satisfying C ′( 1
12). Then the

subgroup H = 〈w1, ..., wk〉 of Fn satisfies the congruence extension property, that is for
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every normal subgroup N of H, the intersection of the normal closure NG of N in F2 with

H is N . In particular, the natural homomorphism H/N → G/NG is injective.

Let φ be the map Fk → Fn (where Fn = 〈x1, ..., xn〉) given by xi 7→ wi, i = 1, ..., k where

w1, ..., wk satisfy C ′( 1
12). Lemma VI.2 immediately implies

Lemma VI.3. The map φ induces an injective homomorphism from G = 〈x1, ..., xk | R =

1〉 to the 1-related n-generated group 〈x1, ..., xn | φ(R) = 1〉.

Theorem VI.4. Consider a group G = 〈x1, x2, . . . , xk|R = 1〉, where R is a word in the

free group on {x1, x2, . . . , xk}, k ≥ 2. Assume the sum of exponents of xk in R is zero

and that the maximal Magnus xk-index of x1 is unique. Then G can be embedded into an

ascending HNN extension of a finitely generated free group.

Proof. We may assume that the maximal Magnus xk-index of x1 is bigger than the one of

xi, for 1 < i < k, otherwise apply automorphism xi → x−m
k xix

m
k , xj → xj(j 6= i) for m

large enough.

Let n≫ 1. Consider the following words w1, ..., wk ∈ F2.

w1 = aba2b...anban+1ba−n−1ba−nb...a−2ba−1b

wi = abia2bi...anbia−nbi...a−2bia−1bi, for 1 < i < k

wk = abka2bk...anbka−nbk...a−2bk

These words satisfy the following conditions

(1) For a large enough n, these words and their cyclic shifts satisfy the small cancellation

condition C ′( 1
12). Indeed, the maximal length of a subword repeating twice as a prefix

of cyclic shifts of wi does not exceed 2n+ 3 + k, and the length of each wi is at least

n2. For a large enough n, we have 2n+3+k
n2 < 1

12 .

(2) The sum of exponents of a in wi, i < k, is equal to 0, the sum of exponents of a in

wk is 1.

(3) The maximal Magnus a-index of b in w1 is (n+1)(n+2)
2 , and this index is unique. The

maximal Magnus a-indices of b in all other words are strictly smaller than the one in

w1.

By Lemma VI.3, the group G embeds into the two-generated one-relator group with

presentation 〈a, b | R(w1, ..., wk) = 1〉.
It remains to prove that word R(w1, ..., wk) satisfies the conditions of Lemma VI.1. Let

R′ = R(w1, ..., wk). Clearly the sum of exponents of a in R′ is zero. Every letter b with

maximal Magnus a-index in R′ comes from some occurrence of a word wi substituted for

letter xi. The sum of exponents of a is nonzero only in wk. Therefore the Magnus a-index of
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a letter b is a sum of the Magnus xk-index of the letter xi in R, for which it was substituted,

and the Magnus a-index of b in wi. The Magnus xk-index in R is maximal for the letter x1

and the maximum is unique in R. The maximal Magnus a-index of b in w1 is also unique

(and bigger than in all other wi’s). This gives a uniqueness of the maximal Magnus a-index

in R′. Therefore there is a supporting line parallel to the b-axes that intersects the trace

of R′ in one simple edge corresponding to the letter b with the maximal Magnus a-index.

Therefore by Lemma VI.1 the group 〈a, b|R′ = 1〉 is an ascending HNN extension of a

finitely generated free group.

VI.1.3 More than 2 generators and walks in Zk

In the case of more than two generators we generalize the notion of supporting line in the

following way. Given a relator R, a nontrivial word in the free group on {x1, x2, . . . , xk},
let w be its trace in the lattice Zk. For a letter t ∈ {x1, x2, . . . , xk}, let wt be a set of edges

labeled by t in w. A vertex on wt is called simple if it does not belong to two edges of wt.

In particular, if w contains two consecutive edges with labels t, t−1, then the endpoints of

these edges are not simple vertices.

Definition VI.5. A hyperplane P is a supporting hyperplane of wt if the trace wt lies on

one side of P and has a common vertex with P . A hyperplane P is said to be touching w if

• P is parallel to the line containing the origin and the endpoint of w,

• there is t ∈ {x1, x2, . . . , xk}, such that P is a supporting hyperplane of wt,

• the intersection of P and wt consists of one simple vertex or one simple edge.

Lemma VI.6. Let G = 〈x1, x2, . . . , xk|R = 1〉, where R is a word in the free group on

{x1, x2, . . . , xk}, k ≥ 2. Let w be a trace of R in the lattice Zk. If there is a hyperplane P

touching w, then G can be embedded into an ascending HNN extension of a free group.

Proof. We will embed G into a one-relator group on k + 1 generators that satisfies the

condition of Theorem VI.4.

If the normal vector of P has irrational entries, then there is a hyperplane P ′ whose

normal vector has rational entries that is also touching w. Thus we can assume the normal

vector of P pointing toward the half-space not containing wt is (n(1), n(2), ..., n(k)) with

integer entries.

Consider the following substitution φ:

xi 7→ xiz
n(i), i = 1, . . . , k.

Let H = 〈x1, x2, . . . , xk, z|φ(R)〉. Then G is embedded into H by φ. Since the normal

vector of P is orthogonal to the line connecting the origin and the endpoint of w, the sum

of exponents of z in φ(R) is zero.
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It remains to show that the maximal Magnus z-index of xt in φ(R) is unique.

We can assume that the edge in wt intersecting P corresponds to the first letter of R.

Assume that there is another letter xt (at position j) in φ(R) with at least the same Magnus

z-index as the first letter xt in the word. Let m(i) be the total sum of exponents of letter

xi between these two occurrences of xt (note that it is the same in R as in φ(R)). If the

exponent of the first letter xt is 1, then add 1 to m(t). If the exponent of the other letter

xt (at position g) is −1, then subtract 1 to m(t). The Magnus z-index of the latter letter

xt differs from the Magnus z-index of the first letter by precisely m(1)n(1) + m(2)n(2) +

· · · +m(k)n(k).

Consider the edge corresponding to the first letter xt and the edge of letter xt at position

j. Connect their initial points in Zk by a vector (the vector connecting their terminal points

is the same). It is easy to see that the coordinates of this vector are (m(1),m(2), . . . ,m(k)).

If the scalar product of this vector with the normal vector of P is non-negative, then one

of the endpoints of the edge of letter xt at position g lies at P or on the other side than wt.

This is impossible, because P is a hyperplane touching w (with respect to xt).

Remark VI.7. Let R be a non-reduced word in {x1, ..., xn}, and let R′ be the cyclically

reduced form of R. Let w,w′ be the walks corresponding to R and R′ respectively. If there

exists a touching plane for w, then there exists a touching plane for w′. The proof easily

proceeds by induction on the number of reductions.

Let w be the walk in Zk corresponding to R. Let ξ be the vector connecting the initial

and the terminal points of w. Let t ∈ {1, ..., k}. For every supporting plane P of wt let P+

be the closed half-space of Rk bounded by P and containing wt. The intersection of all P+

is a convex polyhedron in Rk. We shall call ∆0(t) the projection of the boundary ∆(t) of

that polyhedron onto the hyperplane orthogonal to ξ. Then ∆(t) is the right cylinder with

base ∆0(t), i.e. the direct product ∆0(t) × R. A vertex of the random walk projected to

a 0-cell of ∆0(t) is called a corner. For every vertex x that is a 0-cell of a ∆0(t), the line

x+ Rξ ⊆ ∆(t) will be called the support line of wt.

Lemma VI.6 immediately implies

Lemma VI.8. If one of the support lines of wt intersects wt in a simple vertex or a simple

edge, then G is embeddable into an ascending HNN extension of a free group.

VI.2 Random walks in Zk

VI.2.1 Preliminaries

Denote by PNR
n the (uniform) measure on simple random walks of length n (not necessary

reduced) and by PNB
n the uniform measure on non-backtracking simple random walks of

length n. To model cyclically reduced words, we denote by PCR
n the uniform measure on

non-backtracking simple random walks with last edge that is not inverse of the first edge of
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the walk (note that asymptotically this happens with probability (2k− 1)/2k). In all cases

we can consider the sample space Ω containing all walks of any finite length.

We say that an event A depends only on the cyclically reduced path of the random walk

if w ∈ A if and only if w′ ∈ A, where w′ is the cyclically reduced path of w. An example

of such event is an event that a support line of the cyclically reduced path w′ of a random

walk w intersects w′ in a simple vertex or a simple edge.

Lemma VI.9. Let A be an event depending only on the cyclically reduced path of the

random walk. Assume limn→∞ PCR
n (A) exists, then

lim
n→∞

PNR
n (A) = lim

n→∞
PCR

n (A).

Proof. Let limn→∞ PCR
n (A) = a and assume n0 is such that for all n > n0

|PCR
n (A) − a| < ǫ.

If an event A depends only on the cyclically reduced path w′ of a random walk w, then

conditioning on the length of the cyclically reduced path |w′| we see that PNR
n (A||w′| =

k) = PCR
k (A), provided PNR

n (|w′| = k) > 0. Let n1 be such that for all n > n1, P
NR
n (|w′| <

n0) ≤ ǫ.

Then

PNR
n (A) =

n∑

k=0

PNR
n (|w′| = k)PCR

k (A),

and we can split the sum in two parts (k ≤ n0 and k > n0) and obtain for n > n1

(1 − ǫ)(a− ǫ) < PNR
n (A) < ǫ+ (a+ ǫ).

Therefore limn→∞ PNR
n (A) = a.

Next we will need a modified version of The Donsker’s invariance principle. Denote by

C the space of all continuous function f : [0, 1] → Rk such that f(0) = 0, equipped with

the sup norm.

Theorem VI.10Donsker’s Theorem modified. Consider a piecewise linear function

Yn(t) : [0, 1] → Rk, where the line segments are connecting points Yn(t) = Snt/
√
n for

t = 0, 1/n, 2/n, . . . , n/n = 1, where (Sn) has a distribution according to PCR
n . Then Yn(t)

converges in distribution to a Brownian motion, as n→ ∞.

Proof. First we prove that conditioning on the first step of non-backtracking random walk

has asymptotically no influence on Yn(t), which allows us to switch between PNB and PCR.
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Next, we basically repeat the proof of the Donsker’s Theorem in [6, Theorem 10.1]. The

Central Limit Theorem for non-backtracking walks that we will use was proved in [37].

Let (Rn) be a non-backtracking random walk. We cut the walk at time ln(n), splitting

the walk into two (dependent) parts
(

R
(1)
ln(n)

)

and
(

R
(2)
n−ln(n)

)

. Define piecewise linear

functions X(t) and Z(t) connecting points X(t) = Rnt/
√
n and Z(t) = R

(2)
nt /
√

n− ln(n)

respectively. Clearly, the distance (in the sup norm) between X(t) and Z(t) goes to 0, as

n → ∞. Moreover the latter part of the walk
(

R
(2)
n−ln(n)

)

tends to be independent of the

first step of (Rn), as n→ ∞. Therefore the piecewise linear functions obtained from walks

with measures PNB and PCR have the same limit in distribution.

Next we show that the finite-dimensional distribution of Yn(t) converges to the one of

Brownian motion. By the result of Rivin [37, Theorem 5.1] the probability distribution of

Sn/
√
n converges to a normal distribution on Rk, whose mean is 0 and covariance matrix

is diagonal, with entries

σ2 =
1√

2k − 1

[

1 +

(
c+ 1

c− 1

)1/2
]

,

where c = k/
√

2k − 1. By the previous paragraph this holds for Rn/
√
n as well.

Consider now the two-dimensional distribution, that is the position at two time points,

s < t. It is enough to show that Sns/
√
n and (Snt−Sns)/

√
n) are asymptotically independent

(the normal distribution of each of them was already established). The first step of (Snt −
Sns) is not independent of (Sns), but asymptotically the distribution of (Snt − Sns)/

√
n is

independent of the first step. The convergence of finite-dimensional distribution for more

time points can be proved in the same way.

It remains to show the tightness of the process. We refer ourselves to the proof in

Billingsley [6, Page 69], and here we prove only the lemma needed. The claim is:

PNB
n

(

max
i<n

|Si| ≥ λσ
√
n

)

≤ PNB
n

(

|Sn| ≥ (λ−
√

2)σ
√
n
)

.

In order to prove this, we define events Ei = {maxj<i |Sj | < λσ
√
n ≤ |Si|}. Now we have:

PNB
n

(

max
i<n

|Si| ≥ λσ
√
n

)

≤ PNB
n

(

|Sn| ≥ (λ−
√

2)σ
√
n
)

+
n−1∑

i=1

PNB
n

(

Ei ∩
{

|Sn| < (λ−
√

2)σ
√
n
})

,

PNB
n

(

Ei ∩
{

|Sn| < (λ−
√

2)σ
√
n
})

≤ PNB
n

(

Ei ∩
{

|Sn − Si| ≥ σ
√

2n
})

= PNB
n (Ei)P

NB
n

(

|Sn − Si| ≥ σ
√

2n
)

.

The last equality follows from the fact that the length of Sn −Si is independent of the walk
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up to the time i. Now by Chebyshev’s inequality PNB
n

(
|Sn − Si| ≥ σ

√
2n
)
≤ 1/2. The

claim follows from

n−1∑

i=1

PNB
n

(

Ei ∩
{

|Sn| < (λ−
√

2)σ
√
n
})

≤ 1

2

n−1∑

i=1

PNB
n (Ei)

≤ 1

2
PNB

n

(

max
i<n

|Si| ≥ λσ
√
n

)

.

VI.2.2 Corners of random walk

Let (Sn) be a non-backtracking random walk in Zk of length n with last edge that is not

inverse of the first edge (according to the measure PCR
n ). Recall that ∆0 is the projection

of the boundary of the convex hull of the random walk (Sn) onto the hyperplane orthogonal

to ξ, the vector connecting the initial and the terminal points of the random walk. Denote

by Hn, the set of corners, which are the vertices of the random walk that project to the

0-cells of ∆0. We count the corners with their multiplicities.

Lemma VI.11. Let (Sn) be a non-backtracking random walk in Zk of length n with last

edge that is not inverse of the first edge (according to the measure PCR
n ). Let Hn be the set

of its corners as defined above. Then for any integer m

PCR
n (|Hn| < m) → 0 as n→ ∞.

Proof. Consider a piecewise linear function Xn(t) : [0, 1] → Rk, where the line segments

are connecting points Xn(t) = Snt/
√
n for t = 0, 1/n, 2/n, . . . , n/n = 1. Recall that C is

the space of all continuous function f : [0, 1] → Rk such that f(0) = 0, equipped with the

sup norm. By Theorem VI.10, Xn(t) converges in distribution to a Brownian motion, as

n→ ∞. Denote by Am a subset of C such that f ∈ Am if the convex hull of the projection

of f to a hyperplane orthogonal to f(1) is a k − 1-dimensional (convex) polytope with at

most m 0-cells. We will show that the set Am is a closed subset of C in the sup norm

and that the Wiener measure of Am is zero. It follows from the weak convergence that

P(Xn(t) ∈ Am) → 0 as n→ ∞.

First show that Am is closed. Let f /∈ Am be a limit (in the sup norm) of fn ∈ Am. Let

pn (resp. p) denotes a projection on a hyperplane at the origin orthogonal to fn(1) (resp.

f(1)). For any ǫ > 0 and for all but finitely many n, we have |p(f(t))−p(pn(fn(t)))| < ǫ for

all t. If the convex hull of pn(fn) is a polytope with at most m 0-cells, then the same holds

for p(pn(fn)). Denote by Bn (resp. B) the convex hull of p(pn(fn)) (resp. p(f)). Then for

any ǫ > 0 the boundary of B is in Hausdorff ǫ-neighborhood of the boundary of Bn for all

but finitely many n. We need to prove that if a convex body in Rk is arbitrarily close to some

polytope with at most m 0-cells, then the body itself is such a polytope. To prove that,
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enumerate the 0-cells of Bn somehow {vn,1, ..., vn,m} (the last few 0−cells may coincide

if the total number of 0−cells is smaller than m). Choose one convergent subsequence

{vnj(i),i}j=1,2,... of {vn,i} for each i in such a way that the set {nj(i + 1), j = 1, 2, ...} is a

subset of {nj(i), j = 1, 2, ...}. Let N (0) be the sequence {nj(m), j = 1, 2, ...}. There exists

a subset N (1) of N (0) such that for every i, j ∈ {1, 2, ...,m} either vt,i and vt,j span a 1-cell

in all Bt, t ∈ N (1) or they don’t span a 1-cell in all Bt, t ∈ N (1). Proceeding by induction

on the dimension of a cell, we can find an infinite subset N of natural numbers such that

for every subset M ⊂ {1, 2, ...,m} either vertices vt,i, i ∈M , span a cell in Bt for all t ∈ N

or they span a cell in none of these Bt. For every M ⊆ {1, 2, ...,m} such that vt,i, i ∈ M ,

span a cell FM (t) of dimension j in all Bt, t ∈ N , the limit limt∈N FM (t) exists and is an

Euclidean convex polytope of dimension j spanned by the 0-cells vi, i ∈ M . Hence the

convex hull B of p(f) is a convex polytope with at most m 0-cells. To see that Am has

measure 0 we introduce the following set D of continuous functions [0, 1] → Rk. A function

f ∈ C is in D if a convex hull of its projection to some 2-dimensional plane orthogonal to

f(1) has a smooth boundary, i.e. it is a C1 curve in the plane. Clearly D ∩ Am is empty

for all m. Let Xt be a standard Brownian motion in Rk. Then X(t)− tX(1) is a Brownian

bridge in Rk. All projections of this Brownian bridge to R2 are equivalent in distribution

and give Brownian bridges in R2. To conclude that D has Wiener measure 1, it is enough

to show that the convex hull of a planar Brownian bridge has a smooth boundary almost

surely. For Brownian motions, that is proved in [12]. We are going to use almost the same

argument.

Consider a Brownian bridge and pick any of its extreme points. Move the beginning of

the time from 0 to this extreme point and rotate the plane so that the path is in the upper

half plane. The obtained process Yt is a Brownian excursion, i.e. it stays in the upper half

plane and return to the starting point. The same is true for Y1−t. Then the transformation

Vt := (1 + t)Yt/(1+t) is a Brownian meander (see for example [6], p.68, exercise 3). Let

Vt = (Vt(1), Vt(2)), by [10], for any c > 0, we have

P(inf{t : t > 0, |Vt(2)| ≤ c|Vt(1)|} = 0) = 1.

By reversing the transformation we obtain the same property for Yt and Y1−t. Now the

claim follows using the argument from Theorem 1 in [12].

We say that a random walk is bad if there is no 0-cell of ∆0 such that only a single

vertex is projected to it.

Lemma VI.12. The probability that a k-dimensional non-backtracking simple random walk

(with last edge that is not inverse of the first edge of the walk) is bad in the above sense

tends to 0, for k > 2.

Proof. Let (Sn) be a k-dimensional non-backtracking simple random walk (with last edge
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that is not inverse of the first edge of the walk), k > 2. The number of all cyclically reduced

walks, |Tn|, equals asymptotically (2d− 1)n. Let Bn be a set of all “bad” walks, i.e. for all

0-cells of ∆0 we have at least two vertices projected to it.

Define a map τi : Bn → Tn+4 that inserts a commutator at an i-th corner of the random

walk in such a way that it produces a new corner. For example, if the corner is between

letters xixj , we can insert xix
−1
j x−1

i xj in between them, so that the second vertex of these

three new vertices projects outside of ∆0 of the original walk. Note that the new walk is

not bad anymore.

This map τi is injective. Moreover images of the same walk under τi for different i are

disjoint. The set of bad walks with more than K corners, UK := {w|w ∈ Bn, Hn(w) > K},
is mapped by τ1, τ2, . . . τK into Tn+4. The union of their images

⋃K
i=1 τi(UK) is of size

K|UK |.
For any integer K we can write:

|Bn| = |Bn \ U | + |U |

≤ P(Hn < K)|Tn| +
|Tn+4|
K

|Bn|
|Tn|

≤ P(Hn < K) +
1

K

|Tn+4|
|Tn|

|Bn|
|Tn|

≤ P(Hn < K) +
(2d− 1)4

K
→ (2d− 1)4

K

This holds for K arbitrarily large. The first summand tends to 0, as n → ∞, by Lemma

VI.12. It implies that the probability of a bad walk is less than any positive number.

Remark VI.13. Using Lemma VI.9, the same result as in Lemma VI.12 follows for a

simple random walk (we consider corners of its reduced form).

Proof of Theorem I.8. Let G = 〈x1, x2, . . . , xk|R = 1〉 be a random k-generator 1-relator

group, k > 2. If the trace of R is not bad in the above sense, then there is a hyperplane

touching its cyclic reduction. Thus, by Lemma VI.12, there is a hyperplane touching R with

probability tending to 1. By Lemma VI.6, this implies that the group can be embedded

into an ascending HNN extension of a free group almost surely.
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