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CHAPTER1

INTRODUCTION

Task scheduling in complex embedded systems undergoing mode changes, with tasks
executing on multiple processors is a very important problem. These tasks communicate with
each other through a common medium, the message bus and tasks are executed precisely at
pre-determined time intervals.

A typical control system comprises tasks executing on multiple processors, and the ordering
and the timing of their execution must be precisely scheduled in order to satisfy non-
functional constraints. Scheduling is important, as task execution may depend on results
produced by the execution of other tasks and on the number of resources available. Execution
of tasks depends upon the timing deadlines imposed by the physical system. Scheduling
results in ordering the execution of tasks such that all performance, timing, and serialization
requirements are met.

In task scheduling, it has been observed that quite often there is a lot of replication of tasks.
Proper allocation of resources for these tasks at the correct time instant can reduce the
number of components used in the design of the system, thereby bringing down the cost.
While scheduling tasks, it is more viable to divide the system on the basis of different
operational modes than to consider the system as executing in a single mode. Once the
operation of the system is divided into modes, schedules can be generated for each of these

individual modes. This provides a modular approach to the problem.

1.1 Task Scheduling

Many control systems exhibit mutually exclusive phases of operation called modes, where
each mode describes an operational phase of the physical system in concern. Mode changes
affect the nature of control system in terms of timing requirements and the set of activities to
be carried out. For example, a printer can have different modes like “off” mode, “warming
up” mode, “ready” mode and “printing” mode. The printer also performs specific tasks

during each mode, like “feed paper”, “invert paper”, and “charge drum”. Each mode consists

of a number of these tasks. The tasks executing in the different modes maybe the same or the



new mode may execute some additional tasks. It is also possible that some of the currently
executing tasks may not execute in the new mode. For instance the “stabilize voltage” task
will occur in almost all the modes other than the “off” mode, whereas “feed paper” might
occur only in the “printing” mode. Each of these modes may use multiple processors (e.g.
actuators, sensors), each of which in turn may execute multiple tasks. A printer also changes
modes frequently. For instance from the “off” mode the printer goes into the “warm up”
mode. Once it is warmed up, it can start printing. There is a transition from one mode to
another and this is called a mode change.

Task scheduling and resource allocation under multiple operating modes of a real-time
system is a challenging problem. In real time systems based on time triggered architecture
(TTA) [5], mode changes are the only way to bring about a change in the temporal control
structure (as the execution order of tasks is pre-computed)[22]. Also, mode changes are an
efficient way of providing fault-tolerance in TTA based systems. Recovery from the fault can

be handled by switching into a new mode where the necessary steps are taken.

Figure 1.1 Printer mode transitions



1.2 Problem Description

This thesis aims to solve the problem of scheduling in a time triggered system with mode
changes using constraint programming. A hard real time system continues executing in its
current mode of operation until a change in the environment forces the system to transition to
a new mode of operation. This change can be triggered by factors such as component failure
in the system, change in operational requirement (“off” in a printer) or passage of time (e.g.
in a heating system there could be a condition : shut down heater after 20 minutes of
operation).

Requests for a mode change are time-bounded meaning that the transition from one mode to
another has to be completed within a specified time interval from the time of request.
Transition between modes normally takes some finite non-zero amount of time. Timing
constraints are imposed by the system specification and the class of applications that has
been targeted in this thesis is clock driven. The execution time of the tasks in these
applications is controlled by a global clock. The local clocks in the processors synchronize
their time with this global clock within a specified precision providing a uniform time base
across all processors [14].

The problem of handling mode changes is solved by creating individual schedules for each
mode of operation. The scheduling algorithm [section 3.3] processes the input specifications
to set the start times of each task. The inputs to the scheduling algorithm are the set of tasks
that need to be executed and the messages to be transmitted between the tasks. The individual
schedules generated by the scheduling algorithm are further processed to create an overall
schedule which handles each mode transition.

All tasks within a mode are assumed to be periodic, that is they run repeatedly at the rate
specified by the task period. Furthermore the possible mode changes are known in advance.
A mode change can not occur when a task is still executing. A mode change is possible only
if no task is executing at that given instant.

The thesis is organized in the following manner. Chapter 2 provides an introduction to
constraint programming and constraint programming techniques which have been widely
used to solve similar problems. A brief introduction to time triggered systems, scheduling
and scheduling using constraint programming is included. Constraint programming

techniques are used to solve the scheduling problem and the language in which the



constraints are encoded is called OZ [6, 11]. This chapter ends with a summary of other work
that has been carried out in this field. Chapter 3 provides technical details of the algorithm
used to solve the scheduling problem and the design decisions taken in the process. Terms
used in context with the thesis are also defined here. Chapter 4 shows an example application
of aircraft control and the analysis of the problem and results. Conclusions and future work

related to this thesis are provided in the final chapter.



CHAPTER 1T

BACKGROUNDS

This chapter provides a brief introduction to the various technologies and terminologies used.
The solution presented provides a constraint programming approach for solving scheduling
problems for a class of real time systems (time triggered systems) undergoing mode changes.
A brief introduction to three major concepts: the time triggered systems, scheduling, and the
constraint programming framework is provided. The chapter concludes with a summary of

related work.

2.1 Real Time Systems

A real time system must react to stimuli from the environment within a deadline dictated by
the environment. The correctness of the system depends not only on the computational result
but also on the time instant at which the result becomes available [14]. A deadline is defined
as a time instant at which a valid result must be available, and a system is said to be a hard
real time system if missing a deadline means the system is incorrect.

Real time systems can be broadly classified as event triggered and time triggered [14], where
a trigger is an event that causes some action to take place. An event driven system waits for
an external signal that indicates the occurrence of an event. Whenever an event occurs, it
triggers a corresponding action. This is a reactive system. The problem with this model is
that it considers the lack of an event as the absence of a change in the system, whereas the
very component which senses the event might be damaged. A failure in this system can also
lead to an “alarm shower” [14], i.e., one event rapidly leads to the occurrence of other events

causing a chain reaction, making it difficult to pinpoint the cause of the failure.

Time Triggered Architecture

To avoid the aforementioned problem and improve reliability, the time triggered architecture
(TTA) was developed as another approach to real time systems at the University of Vienna
[14]. The main goal of time triggered architecture is to provide a predictable, reliable, fault

tolerant, distributed real time system. In a time triggered system, activities are initiated at



pre-determined points in time. The driving force is a global clock and the periodic clock
signal is the only control signal in the system. Each processor in the system synchronizes
with the global clock and carries out activities at pre-determined time instants. Aperiodic
activities (events) in the system are handled by polling for them periodically. Results
(observations) from each activity are time-stamped with the global clock. As a result of time
stamping, two observations taken anywhere in the distributed system can maintain their
temporal order. Here the system decides when it wants to sample the environment, rather
than the environment informing the system of a change. Thus when sampling the
environment, the absence of an activity (at the time instant when it is supposed to take place)
or an incorrect output value is interpreted as a fault. As a result, if an output is unavailable,
fault can be detected immediately. The time instant when an action is to be performed by the
system is known a-priori, hence its absence can be used to conclude that a fault has occurred.
The tasks are executed repeatedly and message transmission is based on a time division
multiple access (TDMA) cycle consisting of a sequence of slots corresponding to all the
processors in the system. At any given point of time in the TDMA cycle, there can be only
one processor which can transmit messages in the slot. The TDMA cycle is designed such
that the periodicity of the execution of each task (reading a sensor value or setting a value for
the actuator) allows for any fault to be detected. Fault tolerance in a TTA is provided by
replication. Node failures in TTA are masked by providing actively replicated nodes
(processors). Upon a failure, output from a replicated node is used instead of an output from
the failed node. The replicated nodes mask the occurrence of a fault. Redundancy through
replication is essential to achieve fault tolerance in the case of a permanent fault. This thesis

does not consider the effects of replication in TTA.

2.2 Scheduling

Scheduling problems occur in situations where a set of activities have to be executed by a set
of processors, and each activity has a deadline. Scheduling is the process of fixing the start
times of the activities to be performed while ensuring that the resources required by these
activities are available at that instant. From a resource allocation perspective scheduling is
the allocation of resources (processors and the communication bus in our case) to tasks

(activities) over a period of time. This defines the start and end of each activity to be



performed. Task scheduling, deals with the question of which task executes next. An
example of this is the scheduling of tasks during the construction of a house (e.g.
construction of walls has to be completed before laying the roof).

The scheduling methods can be classified on the basis of “when” a schedule is computed as
an offline/predictive or online/reactive scheduling [1]. Offline or predictive scheduling as the
name suggests is performed before running the system. For this kind of schedule generation,
there needs to be sufficient data at the design phase of the scheduler itself. The schedule
generated is called predictive as the behavior of the schedule, when it executes is already
known.

In online scheduling, the schedule is generated when the system is executing. The nature of
the schedule depends on the changes in the system or on the information that is obtained only
after the data has been processed at run time. For scheduling mode changes, the offline
scheduling technique is used to come up with a predictive schedule. The schedule for the task

execution has to be computed before running the system.

Scheduler
|

Task Resource
duration
Tratne narmne
releaseTime Cartia ot
deadline pacty

TaskList ResourceReq

caracity

PrecedesList Confli sList End sSameList

Figure 2.1 Generic scheduler data structures



A schedule consists of a set of tasks and a set of resources required by these tasks. Tasks
have the following attributes: name, release time, deadline, periodicity, defined as follows.

e Release time: the earliest point in time when the task can start executing on a

processor,

e Deadline: the time by which the task should have completed its execution,

e Periodicity: the rate at which the task should be scheduled to execute.
Execution of a task may be dependent on other tasks. The order of their execution may be
enforced by this relationship. Some common relationships are “Precedes”, “Conflicts With”
“Ends Same”. The relation A precedes B enforces that the task A has to complete its
execution before task B starts. 4 Conflicts with B means that tasks A and B can not execute at
the same time. The system may also have a requirement that two tasks complete their
execution at the same time (“Ends Same”). In our problem, the precedence relationship
between tasks is implicitly enforced by the messages sent between the tasks. If task A sends a
message to task B, then task A has to be scheduled to finish execution before task B starts its
execution. The periodicity of a task also governs the time period within which the task should
be scheduled to execute. Once the start time of one occurrence of a task is fixed, the
following occurrences are governed by its periodicity. Tasks have a start time, duration (time
taken to complete execution) and a host processor on which it executes.
Scheduling tasks requires start times of the tasks to be fixed. The start times are modeled as
finite domain variables (In a finite domain variable, the possible values that the variable can
be assigned are restricted to a finite range [2]). Each task has a duration for which it executes.
Temporal scheduling constraints (Precedes) can be expressed as arithmetic constraints
(constraint is a condition that a correct schedule must satisfy) like

t1.Start + t1.Duration < t2.Start
This means that a second task (t2) does not begin its execution before the completion of a
previously executing task (t1).
Non-overlapping of tasks is described as a disjoint constraint when the task durations are
fixed.
Disjoint (t1.Start, t1.Duration, t2.Start, t2.Duration)

means that t1.Start + t1.Duration < t2.Start + t2.Duration or

t2.Start + t2.Duration < t1.Start + t1.Duration.



Tasks whose start time maybe different but have to complete their executions at the same
time (endsSame) can be specified as
t1.Start + t1.Duration = t2.Start + t2.Duration

More scheduling specific constraints are described in chapter 3.

2.3 Mode Changes

Most scheduling techniques avoid solving mode change problems by assuming that all the
tasks occur in a single schedule (a single mode). If all the tasks execute in a single mode,
then the information about which tasks are coherent is lost. Tasks are said to be coherent if
they contribute towards a single goal. For instance when an aircraft is landing, the tasks
“open wheels”, “landing gear down” are coherent as they contribute towards a single goal
(landing the aircraft). Having multiple modes each consisting of coherent tasks helps design
the system using the “divide and conquer” methodology. It is also easier to test for different
modes individually than for the entire system as a single mode. The thesis solves the mode
change problem by generating schedules for each mode individually and then these schedules
are processed to handle mode changes.

There have been numerous methods for implementing mode changes in various real time
systems [8, 18, 19]. Most of the approaches have focused on event based systems. There
have been few applications which have solved the mode change problem for time driven real
time system [18, 19]. Schedules for time triggered systems are computed at pre-runtime,
hence the system can not adapt to changes at run time. Mode changes are important for TTA
based systems as this is the way by which change in the system conditions at run time can be
handled. Some of the methods solve the problem at the hardware level [22]. Other solutions
do not consider the time taken to switch between modes [18, 21]. In control systems when
there is a switch between modes, there is some delay which is involved in the initialization of
the new mode. Also, some solutions interrupt the task executing at the time of a mode change
request [18]. In this thesis, the mode change problem is solved using constraint programming
techniques and by the use of an offline scheduler for TTA [4]. This method provides a
predictable way of handling mode changes as the time instants when a mode change can

occur in the system are fixed, and also the task schedule that will be executed after a mode



change is pre-computed. Details of the algorithm and the technique used to solve this

problem are presented in Chapter 3.

2.4 Constraint Programming
Schedules in this thesis have been generated using constraint programming techniques, and
this section provides an introduction to constraint programming.
In the words of Eugene C. Freuder —
“Constraint programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it.” [24]
Constraint programming is a problem solving paradigm which establishes the distinction
between precise definition of constraints that define the problem and the algorithms and
heuristics that enable selection and cancellation of decisions to solve the problem [1].
In traditional programming languages, “if A > B then S1” is a conditional statement, which
means “if the value of A is greater than B then execute the statement S1”. In constraint
programming, constraints apart from being used as condition statements are also used to
prune the domain of values of variables. Pruning is carried out by removing the values from
the domain which do not satisfy a constraint.
Let A and B be two variables, initially A can take any value from the set {2, 3,4, 6,9, 11}
and B can take any value from {1, 2, 5, 6, 7, 10} Fig 2.2 and 2.3. Let us say that there is a
new constraint A = B added to the system. Using constraint programming techniques
(discussed in following sections) all the values from the value set which do not satisfy this
relationship are removed. This would return the intersection of sets A and B i.e. {2, 6}. Thus

the constraint reduces the possible values that A and B can be assigned to.
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Figure 2.2 domain of variables A and B

Applying constraint A = B, values that A and B can take reduce to the region depicted by

dashed lines.

Figure 2.3 Applying constraint A =B
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Constraint Programming Languages

For numerous applications, modeling the relationships between objects and searching for
objects that satisfy them are very important. A language which lets the programmer define
the relationships between objects and leave the maintenance of these relationships to the
underlying implementation is called a constraint programming language. These relationships
are called constraints [2]. For example, consider a system with three variables A, B and C,
where the relationship between these variables is given by the constraint A = B+C. This
constraint controls the values that these variables can be assigned. A constraint is said to be
violated if the values assigned to the variable do not satisfy the given constraint. For instance

A=5B=2 C=1 is an incorrect assignment because this violates the rule A=B + C.

Mozart

Mozart is an advanced development platform for intelligent, distributed applications and is
based on the Oz language. Oz is a high-level programming language that is designed for
modern advanced, concurrent, intelligent, networked, soft real-time, parallel, interactive and
pro-active applications [11]. Oz is described as the first high-level constraint language which
allows the developer to program search [6]. It allows the user to program their own search
mechanisms in addition to the already provided strategies like branch and bound or depth-
first search [7]. This thesis uses the constraint programming features of Oz.

Various features of Oz, like propagation and distribution, are described in the following
section [section 2.5]. Apart from the generic, built-in techniques, Oz also allows us to
customize the propagation and distribution algorithms. Utilizing this feature it is possible to

create new heuristics based strategies to solve the constraint satisfaction problem.

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a constraint problem in which the goal is to find a
consistent assignment of values to variables [20]. CSP is formally defined by a finite set of
variables, the set of values that these variables can take and the constraints which restrict the
combination of values that these variables can take. Solving a CSP is equivalent to finding an
assignment for all variables such that all the constraints are satisfied. Revisiting the above

mentioned example, the domain (set of values that the variable can take) of A, B and C is

12



[1..5], implying that the variables A,B and C can take any value from 1 to 5. Suppose the
constraints are A=B+C and A=5. The set of variables, their value domain and the constraints
define the CSP completely. One solution set to the problem is the assignment A=5,B =3, C
=2.

To find a consistent assignment for the variables, the constraints are repeatedly applied to the
domain of the variables to remove values which do not satisfy the constraints. The process of
repeated application of constraints is called propagation, and the domain is said to be
“pruned”. After one round of propagation, the value of A is fixed by the second constraint A
= 5. Thus the domain of A is pruned to 5.

The process of pruning continues till the value of all the variables has been fixed.

The main task of constraint propagation is to remove inconsistent values from the domain of
the variables [3]. In most cases, propagation alone does not necessarily yield a solution as
explained in section 2.5.

The advantage that constraint programming offers over traditional programming languages is
that traditional languages provide very little support for specifying relationships between
objects and entities defined by the programmer and the programmer has to explicitly
maintain these relationships, whereas in a constraint programming language, this is handled
efficiently by the constraints themselves [2] .

For example, to calculate simple interest, the relationship between the principal P,

rate R, time T and the interest [ is given by =P * R * T /100.

Given any three of the unknowns the fourth variable can be calculated. In traditional
programming languages the programmer will have to maintain the relationship explicitly. He
has to encode statements to find the value. Thus, if he has to calculate the principal he has to
use the equation

P=1*100/(R *T).

But if he has to calculate the time period given the other three values, he has to encode
T=P*R/(*100)

The programmer has to encode different statements to get the values of each variable,
whereas in constraint programming the value of the variables in the relationship is

maintained and can be obtained from the relationship itself.

13



Thus, only a single encoding I = P * R * T /100 is needed and the value for any single
unknown can be directly obtained from this relationship.

Constraint programming techniques have been successful as it is easy to model complex
problems and the modeling is done mainly by specifying the constraints between the
variables. As a result of this, changing the model can be done by adding and/or removing
constraints. The use of constraints is becoming popular in the fields of artificial intelligence,
databases, combinatorial optimization, etc. [10]

The drawbacks of constraint programming are that controlling search is still an active
research area and there are few generic, high performance techniques available to facilitate
search. Another drawback is the lack of efficient debuggers. Most constraint programming

languages do not provide a built-in debug facility.

2.5 Techniques of Constraint Solving
There are numerous methods of solving constraints. Techniques commonly used are
simplification, optimization, bounds propagation techniques and integer programming
techniques [2]. Simplification is used to make the implicit information apparent. It is a
process of replacing a constraint by another constraint which has a simpler form [2].
Optimization techniques are used when there is a need to find the best possible solution.
There are also consistency based techniques like arc and node consistency developed by the
Artificial Intelligence community [2]. These have been widely used to solve scheduling and
routing problems [23].
Two techniques that are used explicitly by the OZ programming language are

e Constraint propagation

e Constraint distribution.
Constraint propagation in Oz uses concurrently working propagators which constantly add
information about the variables to a constraint store [11]. A propagator is a concurrent
computational agent that propagates the information represented by a constraint thereby
narrowing the domain of its variables. For example if the domain of a variable A is [1..15], a
constraint A <8, when propagated, would reduce the domain of A to [1..7]. Two propagators
sharing a variable can communicate with each other through the above mentioned store. The

store contains information about the values of variables as a conjunction of the basic
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constraints [10]. These concurrently working propagators reduce the domain of the variables
with the addition of information to the store. In the above example if another constraint A>3
is added, then another propagator will further reduce domain of A to [3..8].

Distribution is a method which splits the problem into complementary cases when the
propagation can not proceed any further [9]. Distribution is explained in a later section on

search.

Propagator 1 . Propagatorn

constraint store

Figure 2.4 A constraint store and n propagators acting on it.

Described below is an example for propagation.
Let us take two constraints

X+Y=9and

2X +4Y =24

The domains of X and Y are [0..9]
The store initially contains the above domain information.
The first propagator doesn’t do anything, but the second propagator reduces the domain to
new values of X and Y such that

X=1[0..8] and Y =[2..6]
This reduction can be explained as follows. If X = 9, then there is no value of Y that can
satisfy the propagator. Similarly for Y = [0, 1, 7, 8, 9] there are no values of X in the domain
that satisfy the above constraint. Hence they are removed from the domain.
Now applying the first propagator again

X=[3..7]and Y =[2..6]
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The second propagator makes it
X =[4..6]and Y = [3..4]

Now the first one becomes active and the domains are further curtailed
X=[5..6]and Y =[3.4]

Now the second propagator fixes the value of the variables as

X=6 andY =3

Figure 2.4 shows the contents of the store at each stage. The status of the store changes as
shown in the figure. The lines from the constraints on the left to the constraint show which

constraint is pruning the store and the final result is X: 6 and Y: 3.

- Stare

X0 [0..9] Y= [0..9]

X [0..8] Y[2..6]

fime
[ 2x+4v=24
| HKo[4.8]Y:[3..4]
X [5.68]Y::[3..4)]
b
XoBY:3 4

Figure 2.5 Constraint store status

16



Techniques of Constraint Propagation

Propagators can be implemented in two ways, either as Interval Propagation or as Domain
Propagation.

In Interval Propagation, the propagator only narrows the domain of the variable. So it only
provides us with a change in either the Upper Bound and/or the Lower Bound.

Domain Propagation removes as many values from the Domain of the variables as possible.

Let us take the propagator

A*B=8
A =10..10]
B =1[0..10]
With interval propagation, the values of A and B can be
A=[1.8]
B=[1..8]
On applying domain propagation
A=1[1,2,4,8]
B=1[1,2,4,8]

In general, domain propagation gives a much finer result but its computation is more
expensive and hence interval propagation is used more often. The default propagator in Oz

uses interval propagation.

Search Techniques

Constraint propagation alone is not enough to solve problems: it is not a complete solution
procedure. This is true in cases where the space becomes stable, but the problem is neither
solved nor has failed and no further propagation is possible with the current constraints. A
space is said to be stable when constraints working on it can no longer prune the domains.
Then it becomes essential to start search. Search proceeds by looking for a solution in a
search tree, which is a representation of the search process. The root of the search tree
represents the state of the search process at start. Leaf of a search tree denotes termination
with a solution (success) or with an inconsistent solution (failure). Intermediate nodes in the
tree represent the intermediate states in the search process (see Figure 2.6). The designer can

control the shape as well as the exploration of the search tree [10]. Distribution (also called
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branching or labeling) is one method by which search can be carried out. Distributing a space
over a constraint C creates two spaces, one by adding the constraint C to the space and
another by adding —C (NOT C). This introduces a branch point in the search tree.
Propagation can take place either in the space created by C or in the space created by —C,
based on the search algorithm. Propagation continues till the space becomes stable or a
solution or failure is reached. If a solution or failure is not reached, then a not yet determined
variable ‘x’ and a value “L” from the domain of ‘x’ is chosen and the space is distributed
over the constraint x = L. This repetitive procedure leads to the exploration of the search tree.
In terms of Oz each node corresponds to a space and a leaf can indicate either a failed space
Or a success space.
There are a few standard possibilities for choosing a value for the variable ‘x’ when
distribution takes place in OZ [11].

e Distribute x = L, such that L is the least possible value for x.

e Distribute x = L, such that L is the largest possible value for x.

e Distribute x = L, such that L is the median of all possible values of x.

e Distribute x <L, such that L is the median of all possible values of x.
The process of selecting which variable to distribute on next is called a distribution strategy.
A naive distribution strategy would select the leftmost undetermined variable (a variable
whose value is not fixed) from the list of variables for distribution. A “first fail” strategy will
select the leftmost undetermined variable in the list of variables which have the smallest
domain in the constraint store. In most cases the first fail strategy yields a smaller search tree.
The order in which a search tree is explored can have an impact on the memory resources
needed to find a solution. In Oz the search tree is explored by default in a depth first manner
and on distributing with constraint C, the space obtained with C is explored first before —C is
explored.
Almost all constraint languages provide a minimal set of search strategies. Many of these
languages do not allow the users to implement their own search mechanism, but in Oz search
can be controlled by specifying user defined distribution and search strategies thus making
the language very powerful. This thesis uses the default built-in strategies for search: the

search mechanism used is depth first search and the distribution strategy is the naive strategy.
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Figure 2.6: search tree with failure and success states in OZ

The above figure shows a sample search tree. The squares denote failed nodes, the diamond
denotes a success state and the triangle denotes a collection of failure nodes. Each circle is a
distribution point.

The search process can be divided into refinement based methods and repair based methods
[12]. Refinement based methods are the most widely used, where each of the variables is
assigned a value until a complete solution is found or a constraint is violated. The method
works by selecting an unassigned variable from the set of variables. A value is assigned to
the variable from its domain. If a constraint is violated, search backtracks to the last
distribution point and tries an alternate path. This process repeats for all unassigned
variables. Repair based methods start with a complete assignment and on encountering a
violation, the assignment is repaired. This repair is done by assigning different values to one
or more variables (which had an inconsistent assignment initially) till a solution is reached.
One heuristic that can be applied is to select the variables that are known to violate the
maximum number of constraints. The repair based technique is not complete and do not
necessarily find an assignment that satisfies all the constraints. The search process in Oz is
based on refinement based techniques.

Some other well known search algorithms are limited discrepancy search (LDS) [13], branch

and bound, best solution search [2]. An Oz implementation of LDS was not available, and
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hence not used in this thesis. Both branch and bound and best solution search optimize the
output, and search for all possible solutions. This search is rather time consuming and hence

not used in our solution.

2.6 Constraint Based Scheduling

Over the years various approaches have been devised to solve practical scheduling problems.
One of the recent techniques has been the development of constraint-solving frameworks and
search procedures to find a solution. Various scheduling-specific constraints and domains
have been developed recently. Variable domains specific to scheduling include interval
domains where each value in the domain is an interval. The corresponding scheduling
specific constraint is interval constraint [12]. An example of scheduling specific propagation
techniques is resource timetables, which maintains a timetable with required and available
capacity at any given time for each resource [17].

Constraint based scheduling techniques are being used in a number of industrial applications,

for e.g. for paper path control in Xerox copiers [12].

2.7 Related Work
As mentioned earlier, there have been a few attempts to solve the mode change problem.

This section provides a brief description of three of the major approaches undertaken.

Implementation in Ada

One of the earlier works in the field of mode changes was carried out by Jorge Real and
Andy Wellings [8]. They suggested an implementation of mode changes with respect to
resource management in Ada. The main goal was to ensure that there was no inconsistent use
of shared resources during mode transitions.

Resources are represented by protected objects in Ada. Each object in the system is assigned
a ceiling priority using the priority ceiling protocol (PCP) [16]. The priority ceiling protocol
is used to schedule a set of periodic tasks that have exclusive access to common resources
protected by semaphores. Let A, B and C be three tasks with A having the highest priority
and C the lowest priority. Tasks A and C require exclusive access to a common resource.

Considering a scenario where C has access to the shared object and then the task A is
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requested. Task A also requires the same object, but it can not start execution as it is being
held by C. In the meanwhile task B is requested and it pre empts C and starts executing. Now
as a result C is delayed, resulting in A the highest priority critical task being delayed. This is
called priority inversion. To solve this, the “priority inheritance protocol” was designed,
where in the lower priority task’s priority is temporarily increased to that of the higher
priority task. This protocol could lead to chained blocking and deadlocks [14]. To overcome
this problem the PCP was developed. The ceiling priority is the highest priority that can be
allotted to tasks using this object. Objects can be assigned different ceiling priorities in
different modes. Difference in the ceiling priority during transitions could lead to an
inconsistent use in the following manner. During a mode change a task still executing in the
old mode could try to access an object with a priority higher than the new ceiling priority
thus violating PCP. As a result the shared resource can be accessed by objects which do not
have sufficient privileges. This indicates that priority ceiling values of the object have been
changed when the object is being accessed. This leads to an inconsistent state in the system
where the priority of an object is higher than its ceiling priority.

Two methods have been suggested to handle this inconsistency. The first method is to abort
currently executing tasks on a mode change or to allow the currently executing task to
complete before doing the mode change. The other method activates the relatively important
tasks in the target mode before the tasks in the old mode complete as long as they do not
conflict. The handling of mode changes and the execution of tasks is handled by an object
with the highest priority called “Mode Manager” [8§].

The drawback of either approach is that, they solve the mode change problem for a single
processor system and not for a distributed system. This overall approach to solve the mode
change problem allows a task which is executing to be interrupted during it execution, and
this can be hazardous in a hard real time system. Also it does not consider the delay that
takes place when switching between modes. In control systems mode transitions always take
some time. The advantage of this implementation in Ada is that it provides a predictable and

offline solution to mode change problem.

21



Giotto

Giotto is a time triggered language for embedded control. It is based on the principle that
time-triggered task invocations plus time-triggered mode switches can form the abstract
essence of programming control systems [21]. It aims to provide flexibility in choosing
control platforms by separating the platform independent concerns from the platform
dependent ones. Platform independent issues are timing and application functionality.
Scheduling and communication are platform dependant issues. Giotto provides an abstract
programmers model decoupling software design from its implementation.

A Giotto program does not specify when, where and how tasks are scheduled [18].

Giotto primarily comprises of periodic task invocations and time-triggered mode switches. A
Giotto program consists of a set of modes and each mode determines the tasks and mode
switches in it. Each task executes at a given frequency as long as the mode is unchanged and
each mode has mode switches which are evaluated periodically at a given frequency. If the
mode switch condition evaluates to true, then a mode change takes place.

Tasks communicate with each other through ports. A port is a persistent typed variable with a
unique location in a globally shared namespace. There are three kinds of ports- sensor ports,
actuator ports and task ports. Data is communicated through task ports. Each task has a set of
input ports and a set of output ports and output ports can be shared with other tasks as long as
they are not invoked in the same mode. Each task has a driver which is a function that
converts the values from sensor and mode ports to values for input ports of the target mode.
During a mode change the mode driver passes values of the ports from one mode to another.
This is carried out with the output port of the current mode as the source and the output ports
of the target mode as the destination. If a task is running at the time of a mode switch, then
the next mode must contain this task. Giotto assumes that mode changes are instantaneous,

i.e. time taken to achieve mode change is zero.

MARS

Work under the MARS project was carried out at the Technical University of Vienna. They
consider a mode to represent an operational phase which is performed by a single schedule
[19]. A transition between modes represents a change in the control information of the

system and the mode change is an instantaneous event. The prerequisites on the system are
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that it should have a deterministic temporal behavior and transitions should have timing
constraints associated with them. Dependencies between tasks and their execution orders are
expressed by precedence constraints. These constraints are represented by directed, acyclic
graphs called precedence graphs [19]. Tasks are represented by nodes and precedence
relations by the arcs. The maximal response time of the graph is the time between the start of
the first task and the completion of the last task. Information about the modes in which these
tasks are applicable is maintained in the edges (arcs). When switching from one mode to
another, transition precedence graphs are made use of, which are executed only once during
the initiation of a mode change. On the other hand, the precedence graphs for the individual
modes run periodically. The transition precedence graph helps in the smooth transition
between two modes. The transition precedence graph is designed by the designer and this
brings up three possibilities.

e The transition graph is empty implying an abrupt change in the modes

e The transition graph is similar to the graph of the old mode, indicating that all
currently executing tasks have to be completed.

e Transition graph which contains some parts of the old mode and parts of the new
mode, indicating that it contains important activities from the old mode as well as the
activities from the new mode needed to initialize the transition.

Changing from one mode to another could involve multiple transition precedence schedules.
All mode changes are designed by specifying a state machine and the user is forced to
specify the precedence graphs with their timing constraints. This state machine also provides
information for testing possible transitions.

In control systems, it is possible that while switching modes, the timing constraints of certain
task executions may need to be maintained across mode changes. The MARS approach does
not provide information as to how the period of a task can be maintained across mode
changes. Also tasks are allowed to be interrupted abruptly during their execution, if a mode

change request is made.
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CHAPTER III

MODE CHANGES IN AN OFF-LINE SCHEDULER

This chapter provides the details of the design for the approach used to solve the scheduling
problem. In the first section of the chapter, the system model is described. This is followed
by a detailed explanation of the method followed to solve the mode change problem and the

chapter ends with a description of the algorithm that was designed.

3.1 Modeling Assumptions

This section describes the system modeling assumptions. The task and message models used
in this thesis and the constraints imposed on them are explained.

Repetition Window

It is an interval of time in which a collection of tasks is executed, in a specific, fixed
sequence, and which is repeated while the system is active. The end of one instance of the
repetition window is followed by the beginning of the next instance. All tasks (a task can be
repeated within the repetition window) must be executed at least once within the repetition
window. A sample repetition window is shown in the figure (3.1). Task T1 is executed twice
within one repetition window. Cycle time is the length of the repetition window and is

calculated as the least common multiple (LCM) of the period of all tasks in the system.
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Repetition Window

Figure 3.1 Repetition window

Task
A task corresponds to the operation executed on a processor and is defined by the tuple
T;={N, H, D, P}

N- Name of the task

H- Host on which the task executes

D- Duration of the task

P — Period of the task
A host is the processor on which the task executes, duration is the time taken to complete
execution, period represents the frequency with which the task must execute, i.e., the task
period is the 10 ms, then its execution must start exactly every 10 ms.
Each task has a period with which it executes and it is possible that in one repetition window
there are multiple occurrences of the task. Only one task can execute on a host at any given
time.
The constraint that encodes the relationship between tasks is shown below.
The start times of the multiple occurrences of the task are given by

ti.start = t;_j.start + Tj.period, for i > 2
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The start time of the current instance of a task differs from the start time of the previous
instance of the same task exactly by the task’s period. This holds for all instances of the task
other than the first instance i.e. t;. tj represents the current instance of the task, t.start denotes
the start time of the i™ task ti and Tj.period is the period of execution of the task Ti;.

The completion time “ti.complete” of the task is the sum of its start time and its duration.
ti.complete = t;.start + Tj.duration

Execution of a task should complete within the cycle time.

ti.complete <= CT

There can be multiple tasks executing on the same processor and the order of tasks has to be
fixed. Also there are constraints that tasks can start execution only after the completion of the
other task, for example, task A completes execution either before task B begins or vice versa.
Thus no two tasks on the same processor can have overlapping executions. This is expressed
by the constraint:
For tasks P and Q

P;.complete < Q.start or Qj.complete < P;.start

whenever P; and Q; (P; # Q;) execute on the same host.
This implies that either task P; finishes its execution before task Q; commences its execution
or task Q; completes its execution before task P; starts its execution.
Message
Execution of tasks may depend upon the information produced by other tasks. Tasks
communicate with each other via messages. The system comprises of only one common
message bus and all tasks communicate using this message bus. Messages are represented by
the tuple
M; = {N, Ts, R, D}

N- Name of the message

Ts- The sender task

R;- The receiver tasks

D- Duration of the message
The sender is the task which puts the message on the message bus. There can be more than

one task receiving the message and once the message is put on the message bus, the bus starts
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transmitting the message immediately. The system requires some time to finish transmitting
the message after the message is placed on the bus and during this time, the message bus is
not available for transmitting other messages. The period of a message is the same as that of
the sender, and a message can have exactly one sender.
Start time of the message is constrained by
m;.start = m;j.start + Tg.period, fori>2
The start time of the current instance of a message differs from the start time of the previous
instance of the message by the period of sender. m;.start denotes the start time of i instance
of the message m. Ts is the task that transmits the message and Ts.period denotes the period
of the sender.
The completion time “mj.complete” of the message is the sum of its start time and its
duration.
mj.complete = mj.start + M;.duration
The execution of a message should complete within the cycle time.
m;.complete < CT
As at any given time there can be only one message on the message bus, the order of
transmission of messages has to be fixed. For two messages m; and n;

m;.complete < nj.start ot n;.complete < m;.start

where m; and n; are inter-processor messages and m; # n.

There is also a relation between the message and the execution of the task. Messages are
transmitted only after the sender finishes its execution

ts.complete < m;.start

The sender tg completes its execution “ts.complete” before the transmission of the message
m; begins.

Latency

There can be relative timing constraints between tasks allocated to different hosts. Latency is
an upper bound on the time that may pass between the start of the execution of the sender of
a message and the completion of the execution of the receiver with the message transmission

taking place in between [6]. This guarantees that the information processing is completed
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within the specified time. Latency between the sender P1 and receiver Q1 is shown in the

figure.

Processor 1 o1
Data bus
b 1 M1
P 2
rocessar i
| Cycle Time | |
<= latencyih, 00 |

time

Figure 3.2 Latency between sender and receiver.

3.2 Mode Changes

A system can have multiple modes where the actions performed can be different in each of
them. A mode is entirely defined by the set of tasks that have to be executed in it. Each mode
also consists of the messages that are passed among these tasks. In our solution, an additional
task called the mode change task is introduced into each mode. A mode change can occur
only when the mode change task is executing in the current mode, but it is not necessary for a
mode change to happen for each occurrence of a mode change task. The notion of a mode
change here is a global one, i.e. the entire system moves from one mode to another: the

execution of the mode change is synchronized across the hosts i.e., the mode change task
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executes on all hosts at the same time within the cycle (see figure 3.3). This allows avoiding

the interruption of the executing tasks.

T MC T2 MAC:
Host 1 : | |
|
I
51 1"’“: 52 MG
| |
Hest 2 I f 1
|
R1 ! Ic R MC
| \
Hest 3 | : |

Figure 3.3 Mode change task execution across multiple hosts

The designer can specify the period of execution of the MC task as an input to the scheduler.
The system is designed such that a request for a mode change is accommodated only when
the system is executing a mode change task. Whenever a MC task is encountered, the system
checks to see if a mode change request has been made. The default period of the MC task is
the period of the most frequently occurring task in that mode and its duration is one time unit.
The responsiveness of the system to a mode change request is dependant on the period of the
MC task. Responsiveness to a mode change request is the maximum delay from the time of
request to the time when the request is handled. This implies that handling any mode change
request will start within a time period equal to that of the mode change task. In control
systems when there is a change from one mode to another, there is some time taken to
initialize the system for the new mode. This time delay is called the mode delay. The

execution in the new mode can not start before this delay.

Mode Change Task and its Periodicity

To provide predictability in the system, the points in time in the system where a mode change
request can be satisfied are fixed by mode change tasks. These mode change tasks are added
to input as additional tasks to be scheduled by the scheduler. The period of the mode change

task can be specified in two ways.
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The first method is to match the period of the MC with the period of task with the least
period, in other words with the same frequency as that of the task which occurs most often.
The reason for this is that the system should be able to handle a mode change request before
the next occurrence of any task. This guarantees that between two consecutive occurrences of
any task, a mode change request will be handled. This design strategy could make it hard for
the scheduler to come up with a schedule even though one existed before the addition of a
mode change task. This implementation is suitable for systems where handling mode changes
is very critical.

The second method allows the designer to specify the periodicity with which he wishes to
check for a mode change request. If the designer has a requirement which stipulates that a
request has to be serviced within a specified time period, he can specify this as an input. The
most suitable period is to take the median of the periods of all tasks. In the system there
maybe a large number of tasks with a given period, then the period of the mode change task
should be set to this value as this guarantees that for the majority of tasks a mode change
request will be serviced before its next occurrence. The designer can use this as a guideline to
decide the period of the mode change task. This methodology requires some preprocessing of
the input data. Also it is possible that due to the introduction of mode change tasks it is not
possible to generate a schedule, but this is accepted as a necessary risk to provide for

predictable handling of mode changes.

3.3 Scheduling Mode Changes
The process of scheduling under mode changes is divided into three parts
1. Preprocess the input to decide the period of the mode change task.
2. Use an offline scheduling algorithm to calculate task schedules for each mode
independently.
3. Process the schedules for all the modes and create a final mode change schedule. The
user can specify a particular task such that it maintains its timing across mode

changes.
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Offline Scheduling Algorithm

This algorithm implements an offline scheduling algorithm for time triggered real time
systems. A potentially indefinite periodic processing has to be mapped onto a single
repetition window [4]. The real time system has the following characteristics:

e Multiple processors: Each processor has tasks executing on it, and each task executes
on only one processor.

e Single data bus: Message communication between processors is carried out through a
single data bus. This communication is synchronous with the period of the executing
tasks.

e Tasks are non pre-emptive and periodic.

e FEach message has only one sender but can have multiple receivers.

The start times for all the messages and the tasks are fixed by the scheduler within the
repetition window. The input to the offline scheduler is a list of tasks, list of messages, list of
processors (hosts) and the latency constraints. The structures for tasks and messages have
been defined in section 3.1. The input data is checked to ensure that all tasks have a period
larger than its duration time. The cycle time is calculated as the LCM of the period of all
tasks. Next, the constraints explained in section 3.1 are asserted. The constraints are
propagated, and a naive distribution strategy is used to search in a depth first manner. The
output of the scheduler is composed of two schedules: one for tasks and the other for
messages. The task schedule contains records of tasks along with the start times of their
execution and the message schedule contains records of messages with the start times of their

execution.

The offline scheduler, with the introduction of the mode change tasks is run for each different
mode, generating independent schedules for each mode. These individual schedules have to
be processed to generate a final schedule which accommodates the mode changes across the
multiple modes. The mode change schedule is generated by calculating the entry point in the
target mode schedule for each mode change task. The algorithm to implement this is shown
in figure 3.9. The entry point holds for all the processors, i.e. in the target mode all the hosts
enter the mode at the same time instant on a mode change. One of the requirements can be to

maintain the timing of a specific, user-selected task (“selectedTask”).
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Figures 3.4 - 3.6 show the possible scenarios when switching modes. Let task A and MD
denote the selectedTask and the mode delay respectively. A' is the first instance of task A in

the target mode and there can be multiple instances of task A in the target mode.

A MC

Current | | |
mode | | | |

Target
moda

|
|
» MDP|< Start (A") P-I

- -

Period (A)

Figure 3.4 Case 1: Start time of task A in new mode exactly matches the period.

Case 1: if A startTime + A.period = MC.startTime + MD + A'.startTime
That is, the period of selectedTask A will be maintained, if execution in the target mode
starts from the beginning of the cycle. Thus upon a mode change, the new mode should start

executing from the beginning of its repetition window.

Currant | | | |
mode | | | |

Target |
mode |

MC A Entry point
|

>
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e

Figure 3.5 Case 2: Start time of A in new mode is lesser than the period.

Case 2: if A startTime + A.period > MC.startTime + MD + A' startTime
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That is, to maintain the period of A, the execution of the schedule should start d time units

before the end of the repetition window, where,
d = (A.startTime + A.period) - (MC.startTime + MD + A'startTime) . The entry point in the
repetition window is show in the figure (3.5).

A MC

Current | | | |
mode | | |

Entry polrit Ad
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Figure 3.6 Case 3: Start time of A in new mode is greater than the period.

Case 3: if A startTime + A.period <MC.startTime + MD + A'startTime
Then, the period of A will be maintained, if the execution of the schedule starts d time units

from the start of the repetition window where,

d = (MC.startTime + MD + A'startTime) - (A.startTime + A.period). This is denoted by
“entry point” in the figure (3.6).

// Returns the start time of the last execution of the task in the given list.
Input : taskList, selectedTask
Output: nextOccurence

for each task in taskList do
if task.name = selectedTask then
nextOccurence := task.startTime + task.period
end if
end for

Figure 3.7 getNextOccurence : to get the next occurence time of a given task
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// Returns a list of tasks on a particular host in the given mode
Input : Mode, hostld
Output: tasksonHost
for each task in Mode do

if task.hostld = hostld then

tasksonHost.add (task)

end if

end for

Figure 3.8 getTasksonHost : returns tasks on a given host

/IThis method calculates the entry point for each MC task in the target mode.
Input : Problem, selectedTask, modeDelay
Output: entryPointinTarget

for each mode in Problem do
taskList := getTasksonHost (mode, hostld)
for each task in taskList do
if task.name = selectedTask.name then
StartTime := task.startTime
taskPresent := true
end if
if task.name = MC then
if StartTime > 0 then
nextOccurence := task.startTime + task.period
else
nextOccurence := getNextOccurence()
end if
if (nextOccurence — (task.startTime + modeDelay)) < 0 then
nextOccurence += selectedTask.period
end if
targetModeTasks := getTasksonHost(nextMode, hostId)
taskFoundinTarget := false
for each targetTask in targetModeTasks do
if (targetTask.name = selectedTask) and (taskFoundinTarget = false) then
startTimeinTarget := targetTask.startTime
taskFoundinTarget := true

end if
end for
entryPointinTarget := (nextOccurence — (task.startTime + startTimeinTarget
+ modeDelay)
end if
end for
end for

Figure 3.9 getEntryPoint : returns the entry point in the target mode
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CHAPTER 1V

CASE STUDY

This chapter provides an example of an aircraft control system. The different modes of
operation in the aircraft control system are described. The input tasks as given to the

scheduler and the schedules generated in each mode are represented as Gantt charts, and the

output from the mode change schedule is explained.

4.1 Aircraft Control System

The aircraft control system consists of four major operational units. The inertial navigation
unit (INU) measures linear and angular acceleration, a global positioning system (GPS) for
measuring position, an air data measurement system (ADMS) for measuring air pressure and

a pilot control system (PCS). These units communicate with each other by means of a

common message bus. The physical system structure is show in figure 4.1.

Inertial Mavigation
Unit

Pilot Control
System

Air Data Measurement
System

Message Bus

Y

Global Positioning
System

Figure 4.1 Aircraft control system physical structure

The tasks that can execute in each of these operational units are shown in the table 4.1. The

table provides information about the period of execution of these tasks, their duration and the
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name with which they are referred to in future tables. The aircraft control system operates in
four different modes namely, Takeoff, Cruise, Auto Pilot and Landing. Initially the system is
in the Takeoff mode from which, the system switches to the Cruise mode. From the Cruise
mode the system moves into the Auto Pilot mode before entering the Landing mode. The
tasks executing in each of these modes are shown by tables 4.2 (a) to 4.5 (a) and the

messages transmitted between these tasks are shown by tables 4.2 (b) to 4.5 (b).

Table 4.1 Tasks in the system, their duration and period.

Host Name Task Name Symbolic Duration | Period
Name
Gyros A 10 100
Accelerometers B 5 50
Aileron 1 C 5 50
INU Pitch Control Al 5 100
Gyro-Astro compass Bl 4 25
Angular Accelerometers Cl 5 50
Reflectometer C2 5 25
Rudder pedal D 10 100
Throttle control E 10 50
PCS Nose landing gear Dl 5 100
Nose wheel steering El 10 50
Main landing gear E2 5 50
Air data transducer 1 F 10 50
Air data transducer 2 F1 10 50
ADMS Barometric altitude F2 5 25
Thermal protection system | F3 10 100
Altimeter G 10 50
Lateral control H 4 25
GPS Tailplane/elevator Gl 5 50
Vertical control G2 5 100
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Table 4.2a Tasks executing in Takeoff mode

Host ID Host 1 (INU) Host 2 (PCS) Host 3 (ADMS) | Host 4 (GPS)
A 10 | 100 | D 10 | 100 G 10 |50

Task Details
B 5 50

(Name,

Duration, C |5 |50 F |10 |50

Period) Al |5 100 | E 10 |50 H |4 25
Bl |4 25

Table 4.2b Messages transmitted in Takeoff mode

Message Name Sender Receivers Duration

Ml A D 2

M2 D A 2

M3 B E,F 2

M4 E B, C 2

M5 C E,F 2

M6 F B, C 2

M7 G F 2

M8 H B1 2

M9 G C 2

Table 4.3a Tasks executing in cruise mode

Host ID Host 1 (INU) Host 2 (PCS) Host 3 (ADMS) | Host 4 (GPS)
A 10 | 100 | D 10 | 100 | F 10 |50

Task Details B 3 30

(Name,

Duration, C |5 |50 G |10 |50

Period) Cl |5 30 E 10 |50 |F1 |10 |50

El1 |10 |50 |F2 |5 25
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Table 4.3b Messages transmitted in cruise mode

Message Name

Sender

Receivers

Duration

Ml

M2

M3

m»>|o

M4

M35

-

M6

almlal=

“

M7

M3

—

M9

MI10

—

MIl1

| o|H| Q™| O|mE|® | T >

goligsliwlleslicsiiveliestlvs)

NN NN NN

Table 4.4a Tasks executing in auto pilot mode

Host ID Host 1 (INU) Host 2 (PCS) Host 3 (ADMS) | Host 4 (GPS)
A 10 | 100 | D 10 | 100

Task Details F 10 |50 |G 10 |50

(Name, B |5 [50 |E |10 |50

Dur'atlon, Al 15 100

Period) G5 T3 El |10 |50 |F2 |5 |25 |H |4 |25
C2 |5 25 |E2 |5 50 [F3 |10 | 100 |Gl |5 50

Table 4.4b Messages transmitted in auto pilot mode

Message Name Sender Receivers Duration

M1 A D 2

M2 D A 2

M3 Cl E,F 2

M4 E ClL,C 2

M5 C E,F 2

M6 F ClL,C 2

M7 G F 2

M8 H F2 2

M9 Gl F 2

M10 F2 C2 2

Ml11 F3 A 2

M12 Al F3 2

M13 El F 2

M14 E2 Cl 2

M15 E2 F 2
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Table 4.5a Tasks executing in landing mode

Host ID Host 1 (INU) Host 2 (PCS) Host 3 (ADMS) | Host 4 (GPS)
A 10 | 100 | D 10 | 100
le;I;etails B 3 30 . o . 0 |so G 10 |50
Duration,
Period) c 5 50 H la 25
Al |5 100
Bl 15 55 | El |10 |50 |F2 |5 25 |Gl |5 50
C2 |5 25 G2 |5 100

Table 4.5b Messages transmitted in landing mode

Message Name Sender Receivers Duration
M1 A D 2
M2 D A 2
M3 B El,F 2
M4 El B, C 2
M5 C El,F 2
M6 F B, C 2
M7 G F 2
M8 H F2 2
M9 Gl F 2
MI10 F2 C2 2
M1l B1 F2 2
M12 C2 H 2
M13 El F 2
M14 C2 F2 2
MI5 DI G2 2
M16 G2 D 2
M17 B1 H 2

4.2 Schedule Generation
Schedules are generated for each mode individually using the offline scheduling algorithm
explained in chapter 3. The input to the scheduler is the data shown in tables 4.2 to 4.5. The

corresponding schedule generated in each mode is shown by a Gantt chart. The Gantt chart
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shows a single repetition window. This schedule is repeatedly executed till a mode change is
requested. The figure shows the names of the tasks executing at a given time instant: each
rectangular colored block in the figure represents a task and the duration of the task is equal
to the width of the block. The horizontal axis represents time and the vertical axis represents
the different processors on which tasks execute.

In figure 4.2 task B executes on host 1, for time duration of 5 milliseconds (ms), followed by
task C for 5 ms and B1 for 4 ms. The mode change task MC executes at time instant 15 ms
for duration of 1 ms. Similarly on host 2, task E executes for 10 ms followed by MC task at
time instant 15. Task B on host 1, task E on host 2 and task H on host 4 execute at the same

time instant.

Mode - Gantt Chart

Date
18:00:00.000 18:00:00.025 18:00:00.050 18:00:00.075 18:00:00.100

(v} Bl MG A AT B1 MG c BT G Bl MG

B B

2 E WG 5] [+ E Wlig WG

3 B F 1+ Tl 7 WG

Host

4 H G MG H G “H 6 MC H 1B
W Wade O

Figure 4.2 Gantt chart of schedule in Takeoff Mode
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Host

=

(5]

18:00:00.000 18:00:00.025

Mode - Gantt Chart

Date
18:00:00.050

18:00:00.075

18:00:00.100

i i

i —

2
Figure 4.3 Gantt chart of schedule in Cruise Mode
Mode - Gantt Chart
Date
18:00:00.000 18:00:00 025 18:00:00.050 18:00:00.075 18:00:00.100
1 III h‘“. Im III h‘ rl‘|
3 I .| I. r‘l|| I ” ru|

M Wode O

Figure 4.4 Gantt chart of schedule in Auto Pilot Mode

41



Mode - Gantt Chart

Date
18:00:00.000 18:00:00.025 18:00:00.050 18:00:00.075 18:00:00.100

1 B c MO B C MC B1 c2 Al WE

81 | c2 A M

2 ME & = D M ME

3 F2 g F G F2 MG F g

Host

4 G1 WD WG &1 MG H 62 WG
M Wade O

Figure 4.5 Gantt chart of schedule in Landing Mode

The above schedules are processed to generate the mode change schedule. On a mode
change, the mode change schedule provides the entry point in the target mode. For the
current data set, there are four instances of the MC task in each repetition window of the
schedule for the Takeoff mode, which, implies that the aircraft control system can change its
mode to the Cruise mode at any of these time instants. The entry point and the task schedule
of the Cruise mode corresponding to each MC task in the Takeoff mode is shown in figures
4.7 to 4.10. The selected task is B (accelerometers) in the INU. The timing of task B is

maintained across mode changes as seen in figures 4.7 to 4.10.
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Mode - Gantt Chart

Date
‘18:00:00.000 18:00:00.010 18:00:00.020 12:00:00.030 18:00:00.040 18:00:00.050 18:00:00.060 18:00:00.070 18:00:00.080 18:00:00.000 18:00:00.100

Host

M iiode 0 Miode 1 W Lode2 M Made3

Figure 4.6 Gantt chart of schedules on all hosts in all modes
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Mode - Gantt Chart

Date
18:00:00.100

18:00:00.000 12:00:00.025 18:00:00.050 18:00:00.075

18:00:00.125 18:00:00.150 18:00:00.175

” II“ | II rum
l I“ Iu

3 (eﬂl 1 I m II Iu
l I ru 1

18:00:00.200

7}

Host

L7}

12

Figure 4.7 Schedule in Cruise mode corresponding to the 1 MC task (Takeoff Mode)

Mode - Gantt Chart

Date
18:00:00.000  12:00:00.025  12:00:00.050 1800000075  18:00:00.100  18:00:00.125  12:00:00.150  18:00:00.175  18:00:00.200
1 [0 II rum Wi

2 WG Wit
W
[=]
3

3 Imllmlmllm

4 o 15 I Wik

Figure 4.8 Schedule in Cruise mode corresponding to the 2" MC task (Takeoff mode)
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Mode - Gantt Chart

Date
18:00:00.000  18:00:00.025

18:00:00.050 18:00:00.075 18:00:00.100

II M“ ru

18:00:00.125 18:00:00.150 18:00:00.175

18:00:00.200

13}

Host

r
B ITHIT
H

I M

Figure 4.9 Schedule in Cruise mode corresponding to the 3" MC task (Takeoff mode)

Mode - Gantt Chart

Date
18:00:00.000  18:00:00.025  18:00:00.050 180000075  18:00:00.100  18:00:00.125  18:00:00.150  18:00:00.175  18:00:00.200
1 [ II rum Wi
2 1] i
£
wr
[=]
3
3 II}II“IWII“
4 o 15 I Wik
M Wlade O

Figure 4.10Schedule in Cruise mode corresponding to the 4™ MC task(Takeoff mode)
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CHAPTER V

CONCLUSION AND FUTURE WORK

Control systems often experience changes in their operational modes. Scheduling the
activities in such systems is very important for the reliable and predictive behavior of the
physical system. A number of control systems today are designed based on the principles of
time triggered architecture as TTA provides a reliable and fault tolerant architecture. With
the increase in TTA implementations of control systems, scheduling in time-triggered
systems undergoing mode changes has been recognized as an important and challenging area
of research. This thesis presented an algorithm to generate a schedule which can handle mode
changes in a predictable manner. The algorithm was implemented using constraint
programming techniques. The implementation of the algorithm was verified by a case study
using an aircraft control system. The aircraft system contains four operational units: the
inertial navigation unit, pilot control system, global positioning system and an air data
measurement system. The system operates in four different modes namely, takeoff, cruise,
auto pilot and landing. The tasks in these different modes were successfully scheduled for
execution. The individual schedules were processed successfully using the mode change

algorithm to generate a mode change schedule.

Future Work

This thesis currently does not consider the role played by replicated nodes in a time triggered
system while creating a schedule. Replicated nodes are used to detect and resolve faults [14].
Another important area for future research is to integrate the mode change schedule with the
generation of schedule itself for individual modes. Work needs to be done to extend the
current algorithm such that all the tasks executing in the previous mode maintain their timing

across mode changes.
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