
Nonlinear Near-Field Dynamics of Plasmonic Nanostructures

By
Roderick B. Davidson II

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Physics

December, 2016

Nashville, Tennessee

Approved:

Richard F. Haglund Jr., Ph.D.
Sandra J. Rosenthal, Ph.D.
Jason G. Valentine, Ph.D.

Kalman Varga, Ph.D.
Yaqiong Xu, Ph.D.

Benjamin J. Lawrie, Ph.D.



This work is dedicated to my father and my sister.

Their support has enabled me to chase my dreams with reckless abandon.

ii



ACKNOWLEDGMENTS

All of the research presented in this dissertation has benefited from the perfect balance

of guidance and scientific freedom that comes with being a graduate student under Profes-

sor Richard Haglund. I would like to thank him specifically for taking the time to teach

me to find a tree and cut it down. While performing my research at Oak Ridge National

Laboratory I was able to push my horizons into the field of quantum optics with the help of

Dr. Benjamin Lawrie. I thank both of them for being my advisors throughout my graduate

career.

I am fortunate to have an insightful Ph.D. committee composed of Professors Sandra

Rosenthal, Jason Valentine, Yaqiong Xu, and Kalman Varga. I thank them for their guid-

ance and motivation that was crucial to a productive campaign at Vanderbilt University.

I owe a great deal of gratitude to my mentors Professor Sergey Avanesyan, Dr. Jed

Ziegler, and Dr. Raphael Pooser. Their discussions of how to achieve my scientific goals

have not only been pivotal to my success, but have been an unforgettably good time. Grad-

uate school would have been a darker place without them.

I have also worked with a handful of collaborators who have helped to make my grad-

uate career productive. Thanks to Dr. Jordan Hachtel for collaboration using the scanning

transmission microscope and cathodoluminescence systems. Thanks to Dr. Wayne Hess

and Dr. Yu Gong for our collaborations using two-photon photo-electron emission mi-

croscopy.

I have had the good fortune to mentor some incredible students during my time here.

Guillermo Vargas, Ryan Rhodes, Anna Yanchenko, Adele Zhou, and Kevin Miller have

been a delight to mentor and a positive force behind my research. I am also grateful

to several graduate students in the Department of Physics and Astronomy and the In-

terdisciplinary Graduate Program Materials Science departments, past and present. Jon

iii



Ehrman, Austin Oleskie, Kent Hallman, Christina McGahan, Professor Krishen Appavoo,

Dr. Daniel Mayo, Dr. Robert Marvel, Claire Marvinney, and Kristin Engerer. It’s always

nice to have friends in the trenches.

Several staff members of Oak Ridge National Laboratory have been instrumental in

my experiments in plasmon-exciton coupling. Thanks to Dr. Pavel Lougovski for the

assistance with the theoretical development behind my work and to Jason Schaake for help

with fabrication and data analysis. Thanks to Scott Retterer, Jason Fowlkes, Dale Hensley,

Bernadetta Srijanto, and Daryl Briggs for the extensive training at the Center for Nanophase

Materials Sciences.

I have not had to live a single day without the support of my incredible family. My

father’s lectures have resonated throughout my work, but above all his lessons was ‘Non

illegitimi carborundum!’ My sister, Olivia, has been my constant role model through both

fights and mischievous collaborations. My aunt, Pearl, who raised me as though I were her

own, and as far as anyone else is concerned, I was. My love, Emily, who has been a plentiful

source of joy for these past five years. My uncle, Dr. Mirt Davidson, who taught me the

beauty behind the equations at a young age. I learned more from his arguments with his

brother than they might realize. My dear friend, Dr. Rodney Robertson, has always been

there for my father, and he continues to be there for me. And finally, to my cousin, Dr.

Julian Davidson, who was ever vigilant for an opportunity to save the day.

iv



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Nonlinear optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Second-harmonic generation . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Experimental Characteristics of SHG . . . . . . . . . . . . . . . . 10

1.3 Electromagnetic theory of plasmons . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The bulk plasmon . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 The surface plasmon polariton . . . . . . . . . . . . . . . . . . . . 16

1.3.3 The localized surface plasmon . . . . . . . . . . . . . . . . . . . . 17

1.4 Complex plasmonic structures - beyond the sphere and the rod . . . . . . . 19

1.5 Nonlinear plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 The quantum limit of nonlinear optics . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Second-order correlation functions and quantum light sources . . . 27

1.6.2 Quantum optical behavior of nitrogen vacancy centers . . . . . . . 30

2 The Archimedean nanospiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Background of the plasmonic nanospiral . . . . . . . . . . . . . . . . . . . 32

2.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 SHG detection and analysis . . . . . . . . . . . . . . . . . . . . . . 36

v



2.2.2 FDTD simulation of the near field . . . . . . . . . . . . . . . . . . 37

2.2.3 Cathodoluminescence characterization of the near field . . . . . . . 37

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Second-harmonic conversion efficiency . . . . . . . . . . . . . . . 40

2.3.2 Polarization modulation . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.3 SHG polarization analysis . . . . . . . . . . . . . . . . . . . . . . 44

2.3.4 Nanospiral near-field characterization . . . . . . . . . . . . . . . . 48

3 Optical control of SHG in the serrated nanogap . . . . . . . . . . . . . . . . . . 51

3.1 Plasmonic enhancement of harmonic generation in dielectrics . . . . . . . . 52

3.2 The serrated nanogap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Spatial light modulation . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Second-harmonic interferometry . . . . . . . . . . . . . . . . . . . 58

3.4.2 Single optical cycle oscillations . . . . . . . . . . . . . . . . . . . 60

4 Rabi flopping in an electron beam driven nitrogen vacancy center . . . . . . . . . 64

4.1 Electronic dynamics of NV 0 and NV− defects . . . . . . . . . . . . . . . . 66

4.2 Rabi flopping in strongly-driven two-level systems . . . . . . . . . . . . . . 68

4.3 Second-order correlation functions and Rabi flopping . . . . . . . . . . . . 71

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Second-order correlation . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Zero-phonon line statistics . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Rabi oscillation amplitude current dependence . . . . . . . . . . . . 79

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Major achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Archimedean nanospirals . . . . . . . . . . . . . . . . . . . . . . . 80

vi



5.1.2 The serrated nanogaps . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.3 Electron beam induced Rabi flopping in nitrogen vacancy centers . . 81

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 The Archimedean nanospiral . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Spatial light modulation . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Second-harmonic interferometry . . . . . . . . . . . . . . . . . . . 83

5.2.4 Cathodoluminescence photon statistics . . . . . . . . . . . . . . . . 83

Appendix A Finite-difference time-domain simulations . . . . . . . . . . . . . . . 84

Appendix B Calculations for SHG efficiency and d(2)
e f f . . . . . . . . . . . . . . . . 87

B.1 SHG efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2 Effective second-order susceptibility for the Archimedean nanospiral . . . . 88

Appendix C Optical damage in plasmonic antennas . . . . . . . . . . . . . . . . . 90

Appendix D Fabrication details for EBL, FIB, and SiN membranes . . . . . . . . . 92

D.0.1 Nanostructure fabrication . . . . . . . . . . . . . . . . . . . . . . . 92

D.0.2 Silicon nitride membranes . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



LIST OF FIGURES

Figure Page

1.1 (a) A fluorite crystal structure exhibited by calcium fluoride (CaF2) ex-

emplifying a centro-symmetric crystal. (b) A zinc-blende crystal structure

exhibited by gallium arsenide (GaAs) exemplifying a non-centrosymmetric

crystal. GaAs is a strong generator of second-harmonic light. The red and

blue arrows mark the directions of anti-parallel electric fields.[22] . . . . . 9

1.2 (a) Energy states of the second-harmonic generation process. Two pho-

tons are absorbed into virtual states (dashed lines) and emitted as a single

photon as 2ω . (b) and (c) are two instances of sequential two-photon ab-

sorption with a single real state and single virtual state (b), and two real

states (c). This simplified schematic is not generally applicable to atomic

and molecular systems because of parity selection rules. . . . . . . . . . . . 11

1.3 (a) Classic antenna design with an electromagnetic source and radiation

pattern on the macroscale. [27] (b) Plasmonic antenna with a light emit-

ting particle source and directed radiation pattern on the nanoscale.[29] (c)

Regions surrounding an antenna of dimension size D.[27] . . . . . . . . . . 14

1.4 (a)Surface plasmon polariton propagating across a metallic interface.[31]

(b) Dispersion relation of bulk plasmons (solid line) and surface plasmons

(dashed line) [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Metallic spherical nanoparticles under direct optical excitation. . . . . . . . 17

viii



1.6 (a) Varying sizes of plasmonic nanorods and their respective resonances

shown by measuring scattered light. (b) Varying geometries and their res-

onance spectra. Each of these was measured with unpolarized white light

excitation sources. [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 (a) Hybridization of disc and hole plasmons in a composite geometry. (b)

Extinction spectra of the bonding and anti-bonding mode of the ring as a

function of ring thickness. [35, 36] . . . . . . . . . . . . . . . . . . . . . . 21

1.8 FDTD simulations of the near-field profile of plasmonic dimers. (a) Disc

dimer with a 2nm gap, excited by λ = 430nm, (b) triangular dimer with a

2nm gap excited by light at 932 nm. (c)(d) Surface plots of the electric field

enhancement factors shown in (a) and (b).[37] . . . . . . . . . . . . . . . . 22

1.9 Plasmonic antennas engineered for efficient SHG conversion. (a)(b) L-

shaped plasmonic structures arranged in a (a) symmetric and (b) asymmet-

ric pattern. [12] (c) Three-dimensional nanocups with varying tilts about

the polarization axis. [6] (d) Multi-resonant plasmonic coupling between

L-shape and nanorod for exciting resonances at 2ω . [9] (e) Symmetric

discs arranged in a spiral formation to break symmetry at the array level.

[11] (f)(g) Multi-resonant coupled nanorods with near-fields calculated at

(a) the SHG wavelength, λ = 400nm, and (b) the fundamental wavelength,

λ = 800nm. [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



1.10 (a) Plasmonic enhancement of second-harmonic emission from a single

zinc-oxide nanowire placed in the hotspot of a gold disc pentamer. Red

curve shows SHG from plasmonically enhanced nanowire,.black curve shows

normal SHG emission from the nanowire. (Inset) Scanning electron mi-

croscope image of gold pentamers with a single nanowire.[40](b) Multi-

quantum well exposed to the plasmonic field of an offset cross antenna for

the efficient generation of SHG [41] . . . . . . . . . . . . . . . . . . . . . 25

1.11 (a) Characteristic regimes of nonlinear optics with photon number and in-

teraction strength between photons. [43] . . . . . . . . . . . . . . . . . . . 26

1.12 (a) Atomic force microscopy image of a single silver nanowire placed with

one end approximately 200 nm away from a diamond crystal with nitro-

gen vacancy center defects. (b) Fluorescence lifetime measurements of the

diamond crystal with and without plasmonic coupling. (c) Second-order

correlation measurements on the diamond crystal with and without plas-

monic coupling.[54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.13 (a) Electron beam focused in two NV centers at the same time (left) and

a single NV center (right). (b) Second-order correlation curves measure-

ments from multiple NV centers (red) and a single NV center (blue).[56] . . 31

2.1 (a) Nanospiral geometry layout and parameters(b) Scanning electron mi-

croscope (SEM) image of a gold nanospiral fabricated using EBL. Winding

number = 4π , arm spacing = 60 nm, arm width = 40 nm, thickness = 40 nm. 33

x



2.2 Simulated excitation of the 4π nanospiral under plane wave excitation cal-

culated in finite-difference time-domain (FDTD) formalism. Blue shaded

region represents the optical band in which the hourglass plasmon mode is

excited, green - focusing mode, and red - standing-wave mode. [64, 65] . . 34

2.3 (a) High-angle annular dark field (HAADF) image of an EBL fabricated

gold nanospiral. FDTD simulations of the plasmonic near field spatial pro-

file of each major band in the nanospiral.(b) Hourglass mode excited at

λ = 558 nm. (c) Focusing mode excited at λ = 802 nm (d) Standing-wave

mode excited at λ = 1,240 nm[64, 65] . . . . . . . . . . . . . . . . . . . . 35

2.4 Experimental setup used for detecting second-harmonic generation from

plasmonic nanoparticles. QWP quarter-wave plate. LP linear polarizer.

HWP half-wave plate. BPF band pass filter. SPF short pass filter. SLM

spatial light modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Scanning transmission electron microscope with a parabolic mirror for col-

lecting cathodoluminescence (CL). Transmissive detection methods are used

to characterize the mechanical structure of the antenna and the energy lost

by the electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Second-harmonic conversion efficiency as a function of the peak intensity

of the exciting pulse (red triangles). Second-order polynomial fit (blue solid

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



2.7 a) SHG response the axis of a linearly polarized excitation. 0 degrees cor-

responds to the line drawn between the beginning and end of the spiral

(orange arrow). Maximum SHG signal occurs at 30 degrees (red arrow).

Minimum SHG signal occurs at 120 degrees (black arrow). b-e) FDTD

simulations of the electric-field strength for four different linear polariza-

tion states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Conversion efficiency response to eccentricity and handedness of circular

polarization. Horizontal axis corresponds to the two linear polarized states

shown by the purple and orange lines. The vertical axis corresponds to

completely circular polarizations shown by the red and blue traces. . . . . . 43

2.9 Each graph shows SHG as a function of a linear analyzer placed after the

nanoparticles a-c) was analyzed using only a linear polarizer. d) used a

quarter-wave plate before the linear analyzer. These measurements were

fitted to a first order Fourier function to determine the polarization state

of the emitted light. a) shows that linearly polarized incident light creates

linearly polarized harmonic light that was coaxial with the fundamental. b)

shows that right handed circularly polarized incident light creates linear po-

larized harmonic light with a rotation of the polarization axis by 45 degrees.

c) that left handed circularly polarized light creates harmonic light with no

dominant axis of polarization. d) shows that the measurements taken in c)

was a superposition of all polarizations. . . . . . . . . . . . . . . . . . . . 46

2.10 FDTD simulations of the focusing mode of the nanospiral using a right-

handed circularly polarized excitation (a) and left-handed circularly polar-

ized light (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xii



2.11 (a) Dark-field image of a nanospiral suspended on a 50 nm SiN membrane

(b) Unfiltered CL image. (c-e) CL filtered with a (c) 400 nm long pass filter

(d) 495 nm long pass filter and a (e) 565 nm long pass filter. The CL image

in (e) best matches the focusing mode in simulations . . . . . . . . . . . . 49

2.12 (a) Dark field image of a nanospiral (b) Unfiltered CL image (c-e) CL im-

ages filtered by a linear polarizer rotated to (c) 0◦ (d) 45◦ (e) 90◦. The

filtered images match the FDTD simulations of the hourglass mode. . . . . 50

3.1 (a) SHG generation schematic from a plasmonic grating filled with PMMA.

Direct electrical contacts on each side of the grating allow for a direct DC

electric field application. (b) Third-harmonic generation enhancement as

a function of voltage applied across direct electrical contacts shown in

(a).[78] (c) SHG from a ITO particle enhanced by a nanorod dimer. (d)

Peak power dependence of the exciting pulse. The black curve shows a

third-order polynomial fit to the power dependence.[7] . . . . . . . . . . . 52

3.2 (a) Scanning-electron microscope image of a single element of the SNG

array (b) Finite-difference, time-domain simulation of the near-field inten-

sity of the SNG plasmon excited by a pulse polarized perpendicular to the

nanogap or horizontal to the image at λ = 800nm. . . . . . . . . . . . . . . 54

3.3 (a) A mode-locked Ti:sapphire laser is coupled to a spatial light modula-

tor (SLM) for control of temporal pulse shape and polarization. The SLM

generates transform-limited control and probe pulses with orthogonal po-

larizations and variable optical power and temporal delays between each

30 fs, 800 nm pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii



3.4 Two phase masks applied across alternating pixels of the spatial light mod-

ulator in order to generate two temporally separate optical pulses with ap-

proximately identical spectral content.[66] . . . . . . . . . . . . . . . . . . 56

3.5 (a) The SNG structures are excited with a horizontally polarized control

pulse (magenta) and probed with a vertically polarized probe pulse (green),

both incident normally on the SNG array. . . . . . . . . . . . . . . . . . . 58

3.6 (a) SHG as a function of control pulse-probe delay from a bare SNG array.

The SHG intensity is normalized to the SHG signal from the control pulse

alone. (b) SHG from the same structure filled with the PMMA dielectric.

The red solid curve in both graphs represents the temporal envelope of the

control pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 (a) A single interference cycle of the SHG signal from a PMMA covered

SNG for varying control pulse powers overlaid with the normalized electric

field of the control pulse (red). (b) Interference peak height from SHG

maximum to minimum as a function of control pulse power. Measured

interference heights are fitted to a quadratic function with no linear term

with R2 = 0.98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Single diamond nanocrystal on silver pillar for CL spectroscopy; the silver

nanopillar is carved from a single-crystal silver plate by focused-ion beam

milling. Right side is a scanning electron microscope image of a diamond

nanoparticle functionalized silver nanopillar. . . . . . . . . . . . . . . . . . 65

xiv



4.2 (a) An NV center in a diamond lattice consisting of a single nitrogen molecule

adjacent to a missing carbon atom.[85] (b) The electronic structure of the

neutral defect state (NV 0) contains doublet ground and excited states (2E

and 2A) along with a quartet excited state (4A2) (c) The negatively charged

defect state (NV−) contains triplet ground and excited states (3A2 and 3E)

along with two singlet states (1E and 1A1)[84] . . . . . . . . . . . . . . . . 66

4.3 (a) Cathodoluminescence spectrum from a 120 nm single-crystal diamond

with a high density of NV 0 defects, >1200 defects/particle. The green

shaded region is the zero-phonon line (ZPL) and the red-shaded region is

the phonon-assisted emission. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Hanbury Brown-Twiss experimental setup. . . . . . . . . . . . . . . . . . . 72

4.5 Second-order correlation curve for the Hamiltonian shown in equation 4.4

for N excitations. N directly represents the number of NV centers con-

tributing to the cathodoluminescence signal. . . . . . . . . . . . . . . . . . 73

4.6 (a) Total CL signal as a function of electron beam current for an isolated

diamond nanoparticle on SiN (blue) and a diamond nanoparticle on top of a

Ag pillar (red). (b) Enhancement factors for the diamond CL as calculated

as the ratio of total signal from plasmonically enhanced diamond to isolated

diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Second order correlation curves for optically unfiltered cathodolumines-

cence. Rabi flopping oscillations of approximately 1.7 ns in period are

present. This measurement was taken with an electron-beam current of 1 nA. 76

xv



4.8 Second-order correlation curves for cathodoluminescence spectrally filtered

a bandpass filter centered at the ZPL, 575 nm. The same 1.7 ns Rabi flop-

ping period is present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Electron beam current dependence of photon-bunching for unfiltered CL. . . 78

4.10 Electron beam current dependence of photon-bunching for bandpass fil-

tered CL at 575 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 (a) Two-dimensional section of the Yee cell electric field lattice(b) Two-

dimensional section of the Yee cell magnetic field lattice.(c) Three-dimensional

representation of the Yee cell with interlocking electric and magnetic field

lattices. [99] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.2 Finite-difference time-domain (FDTD) simulations of gold nanorods ex-

cited with light polarized in the (a) x-direction at λ = 695nm and (b) y-

direction at λ = 905nm. The color scale represents the electric field en-

hancement factor.[103] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1 Gold nanospiral arrays after being exposed to laser powers exceeding the

melting threshold of the antenna. . . . . . . . . . . . . . . . . . . . . . . . 90

D.1 Electron-beam lithography (EBL) process. . . . . . . . . . . . . . . . . . . 93

D.2 Focused-ion beam milling (FIB) process. . . . . . . . . . . . . . . . . . . . 94

xvi



Chapter 1

Introduction

1.1 Motivation

Nonlinear optics refers to that class of light-matter interactions in which the dielectric

response is not linear in intensity. These effects make up the field termed as nonlinear

optics in which the nonlinearity lies in the relationship between the driving electric field

and the dipole moment per unit volume of the material. Almost all nonlinear optical ef-

fects hold potential for using light to control the state of optical signals. This capacity for

manipulation brings the idea of optically-driven computation a great deal closer to reality

in the same way that the invention of transistors revolutionized the field of electronics. In

order to do this practically we need large efficiencies and low requisite powers. Both of

these ends are served by generating stronger nonlinearities in the medium.

There are two different approaches for increasing the strength of these nonlinearities.

The first method is to generate optical pulses that concentrate light in both time and space to

such a degree that the electric fields associated with those pulses are large enough to drive

these nonlinearities. The second method lies in the choice of the medium in which the opti-

cal pulse is generating nonlinear emissions. Due to asymmetric atomic arrangements, bulk

crystals such as beta-barium borate or lithium niobate boast large optical nonlinearities that

are capable of reaching conversion efficiencies of ∼ 0.8 of the theoretical maximum for

nonlinear processes such as harmonic generation. Even though bulk crystals like BBO can

be efficient generators of nonlinear emission, the optical interaction volume they require to

do this is prohibitively large for many applications in active optical circuitry.[1, 2] Unlike

electronic circuits, optical processes do not generate enough heat to create a thermal bottle-

neck for increasing packing densities in logic units. If nonlinear optical components can be

1



made small enough to compare with existing technology, they will be poised to overcome

fundamental limitations on electronics.[3, 4]

A promising solution to this problem has emerged from the field of plasmonic meta-

surfaces. These are planar arrangements of metallic or dielectric nanostructures with sub-

wavelength physical features. The electron plasmas in these particles are capable of confin-

ing the electric field from an optical source into nanoscale mode volumes. [5] The drastic

increase in the electric field intensity that results from this confinement is ideal for driv-

ing optical nonlinearities. Previous work has demonstrated plasmonic nanoparticles with

stronger nonlinearities per unit volume than that of BBO. [6, 7] However, this is not solely

due to the increase in electric field intensity facilitated by the plasmon. The geometry of

each individual nanoparticle making up the metasurface as well as their arrangement with

respect to one another can be used to engineer an entirely new set of dielectric properties not

associated with the metal or dielectric comprising the particles. This new set of properties

is instead connected to the spatial profile of the electric fields generated at the surface of the

nanoparticle. By manipulating the shape of the metal confining the plasmonic excitation,

the symmetry of the electron oscillation can be controlled with nanoscale precision while

the electrons are also funneled into smaller mode volumes. This means that the nonlin-

ear properties of plasmonic systems can be enhanced simultaneously by increasing electric

field strength and the nonlinearity of the material. [8]

A major advantage of using metasurfaces for nonlinear optical interactions is that the ef-

ficiency per unit volume of a metasurface much higher than that of bulk nonlinear crystals.

With efficiencies upwards of 80%, BBO can approach near unity conversion in a process

such as second-harmonic generation (SHG), but it requires crystals with millimeter spa-

tial dimensions and incident powers of order 100 GW/cm2.[1, 2] Even though plasmonic

systems can achieve impressive conversion efficiencies per unit volume, their total interac-

tion volume is limited to the order of cubic microns by the inherent loss associated with

the optical properties of metals; these dimensional constraints are relaxed somewhat, how-
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ever, for dielectric plasmonic structures. This means that the total conversion efficiency of

any plasmonic system is still many orders of magnitude behind conventional nonlinear op-

tics. Consequently, many iterations of nanoparticle geometries have been designed for both

symmetry breaking properties and electric-field confinement in order to generate stronger

nonlinear conversion efficiencies. [6, 7, 9, 10, 11, 12]

Every advance made in the nonlinear properties of these systems allows us to generate

optical nonlinearities using weaker light sources. The absolute limit of this trend is when

nonlinear metasurfaces are efficient enough to operate using only a few photons as an exci-

tation source. This regime is termed quantum nonlinear optics, and it provides a compelling

solution to the problem of small interaction volumes in plasmonic systems. Experiments in

cavity quantum electrodynamics (CQED) have demonstrated that when dealing with optics

in the quantum regime it is possible to reach large nonlinear conversion efficiencies without

utilizing intense lasers beams. [13] However, CQED experiments need to be done at cryo-

genic temperatures. [14] Since these temperatures require large and expensive equipment,

CQED systems remain impractical even though they have achieved remarkable nonlinear

interaction efficiencies. Nanostructures in the quantum regime may provide a room tem-

perature alternative to performing quantum optical processes. They have not yet reached

sufficient efficiencies to surpass the optical performance of CQED systems, but this branch

of nanoscience still remains largely unexplored.

In this dissertation we demonstrate that by manipulating the near-field radiation

patterns of complex plasmonic nanostructures, we can engineer metasurfaces with

greatly enhanced nonlinear optical properties. By observing the nature of the far-

field radiation patterns both spatially and temporally, we reveal information on how

plasmons can couple to other plasmons, dielectric materials, and two-level quantum

systems.

In chapter 1, we will introduce fundamental concepts of optics and plasmonics that

are necessary to understand the nature of the experiments demonstrated throughout this
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dissertation. Here we will discuss the underlying concepts of nonlinear optics, plasmonics

and the overlap between these two fields. This is followed by a discussion of plasmonics

in the quantum regime.

In chapter 2, we demonstrate the gold Archimedean nanospiral geometry as a non-

linear plasmonic element. We demonstrate unprecedented second-harmonic conversion

efficiency in an all-metallic plasmonic element.[15] The nanospiral is also shown to have

strongly chiral optical effects in the form of polarization conversion associated with its

nonlinear emissions. The near-field plasmon profiles of the distinct resonance modes of

the nanospiral are experimentally investigated using electron-beam induced luminescence

(cathodoluminescence).

In chapter 3, we exhibit the gold serrated nanogap plasmonic geometry in order to

demonstrate ultrafast control over plasmonically induced nonlinearities in a polymer film.

We use spatial light modulation techniques to reveal interferometric data on second-harmonic

emission with attosecond time resolution, and use this enhanced temporal resolution to sep-

arate nonlinear emission from the polymer film from plasmonic scattering. [16]

In chapter 4, we investigate the photon statistics of nitrogen vacancy centers in dia-

mond nanocrystals being excited by an electron beam. We use second-order correlation

measurements to demonstrate Rabi flopping in a strongly driven two-level system. The

diamond nanocrystals are coupled to a plasmonic silver pillar in order to induce stronger

cathodoluminescence signals and therefore greater signal to noise ratios.

Chapter 5 concludes the dissertation with a discussion of the importance of nonlinear

effects for plasmonic applications. We discuss how a fully quantum mechanical model of

plasmonic nonlinearities can lead to the advancement of optically active plasmonic ele-

ments and lead to the realization of practical on-chip devices.

1.2 Nonlinear optics

Several interactions between photons and matter are most easily described by the funda-

mental property known as dielectric susceptibility, which relates the response of the charge
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distribution of the matter to an externally applied electric field. Precisely stated, the dipole

per unit volume, or polarizability, can be expressed in terms of a power series of the local

electric-field as shown in equation.1.1.

Pi = P0 + ε0[χ
(1)
ij Ej +χ

(2)
ijk EjEk +χ

(3)
ijkl EjEkEl + · · · ] (1.1)

where P̃ represents the polarizability tensor of a given material, Pi represents the coordi-

nates of each specific element of that tensor, χ(n) the nth order susceptibility, and Ẽ rep-

resents the external electric field applied to the material. χi jk... are the tensor components

of the nonlinear susceptibilities, with the indices i,j,k,... referring to the anisotropic optical

response of the material referred to Cartesian coordinates.

The first term, P0, represents a ferroelectric which has a permanent electric dipole struc-

ture. While this term is of considerable interest for applications in electronics, it is not

relevant to the experiments described here. The second term in this equation describes the

polarization characteristics of linear optics. Specifically, it states that a materials charge

distribution responds linearly to an externally applied electric field. This can be easily

understood in the case of linear absorption. In most circumstances, the laser energy ab-

sorbed by a material from a laser beam will be directly proportional to the total amount of

energy that the laser applies to the material. Implicit in this linear response theory is the

assumption that the absorbed light does not change the optical properties of the material.

Of course, like many of the assumptions in physics, it can be broken. [17, 18]

Nonlinear optics involves exactly these scenarios in which the dielectric properties of a

material have a strong dependence on the intensity of the light passing through it, and they

can be described using those terms in equation 1.1 that follow the linear term. However,

there are requirements on both the electric fields and susceptibilities for efficient nonlin-

earities. Most bulk materials have an atomic or molecular arrangement such that χ(2) and

higher-order terms are much smaller than χ(1). This means that the electric fields necessary

to generate appreciable nonlinear terms are prohibitively large. Thus, even though multi-
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quantum transitions - such as two-photon absorption - were predicted in 1931, it was not

possible to demonstrate these effects in the laboratory. [19] With the invention of the laser

in 1960, the requisite electric fields became readily available, so that seminal experiments

in nonlinear optics were documented in less than a year afterward.[20, 21] Even in the early

stages of laser technology, it became possible to probe the higher order polarizabilities of

several materials such as quartz and other semiconductor based compounds. [4, 18]

Some of the more important nonlinear effects are the ones that allow for efficient energy

conversion and modulation. Sum- and difference-frequency generation allow for multiple

frequencies of light to interfere with one another to produce frequencies that are linear

combinations of the initial frequencies. The list of specific nonlinear processes is lengthy,

but each of these processes can be attributed to a specific term in equation 1.1. Since a large

portion of the research presented here is centered on second-harmonic generation (SHG),

we will examine more closely the term in which it is rooted: the second-order polarizability,

P(2).

As can be seen in reference [3], if we treat the electric field Ẽ as a complex time-

dependent vector containing two distinct frequencies, ω j and ωk, such that,

Ẽ = Eω je
(−iω jt)+Eωke(−iωkt)+E∗ω j

e(iω jt)+E∗ωk
e(iωkt) (1.2)

where the last two terms are the complex conjugates of the first two, the second order

nonlinear polarizability can be conveniently written in a summation.

P̃2(t) = ∑
j

P(ω j)e−iω jt (1.3)

where the sum is over all values of j, thus over positive and negative frequencies. Under

this convention we can separate each term and derive a unique interaction from each. The

amplitudes of these interactions can then be written as
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P(2ω j) = ε0χ
(2)E2

j (SHG)

P(ω j +ωk) = 2ε0χ
(2)E jEk (SFG)

P(ω j−ωk 6= 0) = 2ε0χ
(2)E jE∗k (DFG)

P(ω j−ωk = 0) = 2ε0χ
(2)(E jE∗j +EkE∗k ) (OR)

(1.4)

These processes in the order listed above are, second-harmonic generation (SHG), sum-

frequency generation (SFG), difference-frequency generation (DFG), and optical rectifica-

tion (OR) where ω1 is always larger then ω2. The physical origin of these interactions is

denoted by the linear combinations of ω j and ωk denoted on the left side of each equation.

And, finally, optical rectification is the generation of a quasi-static polarization resulting

from the destructive interference of two degenerate frequencies.[3]

In order to relate these polarizabilities to measurable quantities, we must relate the inci-

dent electric field to the nonlinear polarizability. We can do this by starting with Maxwell’s

equations and deriving the normal optical wave equation, equation 1.5, under the assump-

tion that the material is nonmagnetic and the space contains no free charges or currents.

∇×∇× Ẽ +
1
c2

∂ 2

∂ t2 D̃ = 0 (1.5)

If we now assume the material properties are nonlinear, we can let the displacement vector,

D̃, have an additional term such that,

D̃ = Ẽ +4πP̃

P̃ = P̃(1)+ P̃(n>1)
(1.6)

After substituting the displacement term in equation 1.5 with the displacement term in
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equation 1.6, we can derive the an inhomogeneous wave equation.

∇×∇× Ẽ +
1
c2

∂ 2

∂ t2 D̃(1) =
−4π

c2
∂ 2

∂ t2 P̃ (1.7)

From here, we can directly represent the tensor components of each nonlinear suscepti-

bility from the nonlinear conversion efficiencies and the incident electric field intensities

nonlinear polarizations, although, it is often easier to reduce this to an effective nonlinear

susceptibility for a given electric field polarization. For the case of second-order nonlinear-

ities, this would entail a simplification of the second order polarizability to,

P̃(2) = ε0d(2)
e f f Ẽ2 (1.8)

Since a large portion of the experiments focus on SHG, we will focus on this particular

nonlinear interaction for the remainder of this discussion of nonlinear optics.

1.2.1 Second-harmonic generation

As seen in equation 1.4, the efficiency with which SHG can produced from a given

material is determined by the second-order susceptibility of the material or the strength of

the electric field applied to the material. Simply increasing the electric field strength using

ever more powerful lasers eventually runs into practical limitations. In order to realize

practical application of SHG we must create materials with larger nonlinear conversion

efficiencies at lower optical excitation densities. If we examine the nature of the second-

order polarizability term, there is an obvious symmetry provided by the Ẽ2 term. To make

the ramifications of this symmetry clear, we will make a few assumptions about the material

and the incoming electric field. Figure 1.1 shows two crystalline structures. The fluorite

crystal geometry in figure 1.1a has a centro-symmetric structure about the axis shown by

a dashed black line. This means that the crystal structure is identical to its mirror image

about this line. The same is not true for the the zinc-blende configuration in figure 1.1b

which has a non-centrosymmetric geometry that can be found in gallium arsenide crystals.
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Gallium arsenide is an efficient generator of even-ordered harmonic emissions for this very

reason.

To understand why we must visualize two anti-parallel electric fields that are orthogonal

to this axis of symmetry, as drawn by the red and blue arrows shown in Figure 1.1. In the

centrosymmetric crystal, the potential experienced by the shift in charge distribution by

either electric field is identical because the mirror image of the crystal structure would not

experience a different local electric field. Therefore it is possible to write the following two

equations:

P̃(2) = ε0χ
(2)Ẽ2 − P̃(2) = ε0χ

(2)[−Ẽ]2 (1.9)

Since the electric field term is positive upon being squared, the only solution to these equa-

tions in the presence of a non-zero polarization is the trivial one. So it follows that,

P̃(2) =−P̃ χ
(2) = 0 (1.10)

As 

(b) 

𝐸 𝑡  

−𝐸 𝑡  

Ca 

F 

(a) 

𝐸 𝑡  

−𝐸 𝑡  

Ga 

Figure 1.1: (a) A fluorite crystal structure exhibited by calcium fluoride (CaF2) exempli-
fying a centro-symmetric crystal. (b) A zinc-blende crystal structure exhibited by gallium
arsenide (GaAs) exemplifying a non-centrosymmetric crystal. GaAs is a strong generator
of second-harmonic light. The red and blue arrows mark the directions of anti-parallel
electric fields.[22]

9



This all changes when considering the non-centrosymmetric crystal. Since we can no

longer make the assumption of identical electrical potentials upon mirror inversion, equa-

tion 1.6 is no longer true and χ(2) can have non-zero values. It is important to note that

the sensitivity χ(2) has to orientation of the incident electric field and the crystal structure

creates a polarization dependence of second-harmonic emissions in almost any experiment.

This dependence can also create properties of the material that would normally be hidden

in linear optics.[3] This fact is a major motivation for the research presented in chapters 2

and 3.

1.2.2 Experimental Characteristics of SHG

A defining characteristic of all of the nonlinear processes listed in equation 1.4 is that

they are parametric processes. This means that the initial and final quantum state of the

material are identical. The state of the material may change during the process, but only

during the short lifetime of the process. These temporary states are known as virtual states,

depicted in Figure 1.2 as dashed lines, and since no actual absorption takes place, their life-

times defined by the uncertainty principle. The lifetime of a virtual state is on the order of

h̄/∆E where ∆E is the energy difference between the virtual state and the closest real state.

For an excitation in gallium arsenide by a photon with an 800 nm wavelength, a virtual

state would have an upper limit on lifetime of approximately 30 fs. These short lifetimes

can be useful for experimentally differentiating SHG from two-photon absorption and hy-

per Raleigh scattering. These are nonlinear processes that are also capable of generating

signals at 2ω , however, since they induce a change in the quantum state of the material

when they occur, they are non-parametric. These processes generally have lifetimes that

are defined by the decay rate of the excited state. These lifetimes are typically on the order

of nanoseconds or longer in isolated atomic or molecular systems, which is several orders

of magnitude longer than the lifetime of typical virtual states. [3, 23]

Another common means of identifying a signal at 2ω as SHG is to observe the de-

pendence of P̃(2)(2ω) on the square of the electric field as shown in equation 1.7. The
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Figure 1.2: (a) Energy states of the second-harmonic generation process. Two photons
are absorbed into virtual states (dashed lines) and emitted as a single photon as 2ω . (b)
and (c) are two instances of sequential two-photon absorption with a single real state and
single virtual state (b), and two real states (c). This simplified schematic is not generally
applicable to atomic and molecular systems because of parity selection rules.

dependence of the SHG conversion efficiency on the intensity of an incident light source

can then be derived utilizing two approximations. The slowly varying envelope approxi-

mation makes the simplification that the envelope of the nonlinear wave changes slowly in

comparison to the wavelength of the light. Given the relationship shown in equation 1.8,

the slowly varying envelope approximation yields the wave equation for 2ω as,

δE(2ω)

δ z
=− iω

n2ωc
de f f E2(ω)ei∆kz (1.11)

where ∆k = k(2ω)−2k(ω).

For small enough conversion efficiencies and relatively weak pump beams,, we can assume

the amplitude of E(ω) remains unchanged throughout the length of the interaction. Com-

bined with the boundary condition that E(2ω) = 0 when z = 0, we can derive the following

two relations.
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E(2ω) ∝ de f f E2(ω) I(2ω) ∝ de f f I2(ω) (1.12)

where the electric field terms are simply exchanged for the intensity terms in the second

equation. Thus, the intensity of a second-harmonic light source must vary as the square

of the input light intensity. Unfortunately, this analysis does not separate measurements of

2ω in the laboratory from other 2ω light sources such as two-photon absorption because

they depend on the square of the input light intensity as well. However, this is useful for

differentiating the true 2ω signal from second-order diffraction effects and fundamental

leakage as well as other problems that can plague a harmonic detection scheme since they

will generally depend linearly on the fundamental intensity.[24]

The importance of SHG in applications of nonlinear optics lies in the fact that it has

relatively high efficiency compared to other nonlinear optical interactions and still allows

for optical modulation. This means that it could be used for data analysis and signal manip-

ulation. Crystals such as beta barium borate (BBO) and potassium dideuterium phosphate

(KDP), boast effective second-order nonlinearity coefficients of up to 2 ·1012m/V. Second-

harmonic conversion efficiencies within these crystals can be larger than 0.1 if provided

enough optical interaction volume. This is typically on the order of cubic millimeters.[25,

1] These volumes prohibit any competitive analogs to active electronic circuitry that is

already operating on the order of 100 nm2.[26]

However, there are still certain aspects of optical circuitry that give it a unique advan-

tage over its electrical counterparts. Heat generation and size limitations are a fast ap-

proaching bottleneck for electronic computing. Optical circuitry would be inherently less

lossy and would generate far less heat. The field of plasmonics has arisen as a potential

solution for the power and size limitations of applications in nonlinear optics. The past

decade has witnessed substantial progress in utilizing nanoscale metallic systems for the

manipulation of light on an unprecedented spatial and temporal scale. However, optical

losses in metals are too high and nonlinear conversion efficiencies are still too low to real-
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ize practical applications. This next section will describe aspects of electromagnetic theory

that are important to understanding the cross-section of nonlinear optics and plasmonics.

1.3 Electromagnetic theory of plasmons

Plasmonics is a branch of optics dealing with the interaction of conductors with size

features on the nanoscale with optical energy sources. These plasmonic systems can be

described in large part by comparison to their macroscale counterpart, antennas. The stan-

dard definition of an antenna is a device for radiating or receiving MHz to GHz radiation.

Most plasmonic structures are designed to resonate in the optical and infrared instead of the

radio bands, however the physical laws that dictate how they manipulate the directionality

and localization of electromagnetic radiation are the same. [27, 28]

An antenna serves to direct radiation by by either converting the motion of electron into

free-space radiation or by coupling radiation to an electron plasma. It follows that the less

resistance the antenna material has the less loss the antenna will suffer. Common materi-

als for radio wave antennas are copper and aluminum because the skin depth decreases so

rapidly with increasing frequency and the resulting power loss is too great. When scaling

these antennas to resonate in the optical band however, these metals begin to incur much

greater loss to both radiative and non-radiative decay paths. This is the source of most

of the differences between optical and radio antenna design. Common materials for op-

tical antennas are metals with the lowest possible resistivity. Gold and silver are perhaps

the most common metals to use in plasmonics. Additionally, the shape of the optimal ge-

ometry of the optical antenna will vary greatly depending on the its specific purpose and

resonant wavelength. Radio wave antennas will either be designed to maximize their elec-

tromagnetic cross-section with respect to their own physical size or direct radiation in a

highly concentrated solid angle. Optical antennas, on the other hand, are not able to reach

the efficiencies of radio antennas for these processes. Instead they excel at localizing and

concentrating of incident radiation. [29]

The diffraction limit constrains the spatial resolution that can be reached by classical
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Figure 1.3: (a) Classic antenna design with an electromagnetic source and radiation pat-
tern on the macroscale. [27] (b) Plasmonic antenna with a light emitting particle source
and directed radiation pattern on the nanoscale.[29] (c) Regions surrounding an antenna of
dimension size D.[27]

optics to the order of λ/2. There are three spatial regions around the antenna, the near

field, intermediate field, and far field. These regions define the amount of information

remaining in an emitters radiation patterns after damping and diffraction terms begin to

take over. These regions are illustrated in figure 1.3c. If we had a detector in the far field

region, also known as the Fraunhofer region, it would be unable to determine the spatial

profile of the antenna as diffraction effects would have become too large for the image to

be recovered. The reactive near-field region lies much closer to the antenna and is what we

refer to by the near field throughout this dissertation. This is the region where a detector

is capable of mapping out the precise spatial profile of the electric fields surrounding the

antenna. In between these two regions is a transitional area known is the radiating near-

field or Fresnel region. The angular distribution of the antenna radiation patterns dominate

this region.[27] The definitions for these regions do not hold for antennas with feature sizes

below the diffraction limit, but they can be understood in terms of what information about

the antennas resonance can be measured with a detector at any point.[30]
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Here we will outline the three major categories of plasmons, bulk plasmons, surface

plasmon polaritons and localized surface plasmons, and the underlying theory of the near-

field radiation of plasmons.

1.3.1 The bulk plasmon

In the free electron gas model, electrons are assumed to be unaffected by either colli-

sions with other electrons or interactions with the crystal lattice potential. The impedance

to electron motion and free charge carrier densities are properties of the specific metal

in question. An important characteristic of any of these metals is the plasma frequency,

ωplasma. It is defined by equation 1.13 and represents the threshold frequency at which the

electrons are unable to respond fast enough to react with light of a higher frequency.

ωplasma =

√
ne2

ε0m
(1.13)

where n is the number density of free moving electrons, e is the charge of a single electron,

and m is the effective optical mass of the electron. The plasma frequency separates two

optical regimes of the conductor where the incident radiation, ω , is either greater or less

than ωplasma. The bulk plasmon can be excited in that region where ω > ωplasma, known as

the transparency regime, where electromagnetic waves can propagate through the volume

of the metal. The dispersion relation for bulk plasmon excitation can be seen in figure 1.4b

and is given by the dispersion of traveling waves, equation 1.14.

ω
2 = ω

2
plasma + k2c2 (1.14)

where K represents the plane-wave components of the wave vector. Bulk plasmons are

typically higher energy than the optical band photons. Sometimes they can extend into

the deep ultraviolet bands. The phase matching conditions of the bulk plasmon precludes

it from being directly excited with optical radiation. They are typically observed in ex-

periments where electrons are used as an excitation source such as electron energy loss
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(a) (b) 

Figure 1.4: (a)Surface plasmon polariton propagating across a metallic interface.[31] (b)
Dispersion relation of bulk plasmons (solid line) and surface plasmons (dashed line) [32]

spectroscopy.[5]

1.3.2 The surface plasmon polariton

While electromagnetic waves with a frequency below ωplasma can not propagate in the

volume of a metal, this does not prevent surface effects. Unlike bulk plasmons, surface

plasmons require some degree of spatial confinement in order to define a resonance effect.

Surface plasmon polaritons (SPP) are such a surface effect where an electromagnetic reso-

nance propagates along an interface between a conductor and a dielectric as can be seen in

figure 1.4a. The confinement here is in the direction normal to the interface. The dispersion

relation for SPPs is shown opposite the light line from the bulk plasmon dispersion in figure

1.4b and is given by equation 1.15.

ωSPP =
ωplasma√

1+ εdielectric
(1.15)

While the phase matching conditions of SPPs are not as restrictive as bulk plasmons,

they still require specific angles of excitation in order to have an appreciably long lifetime,

typically on the order of tens of femtoseconds. [5] A common means of coupling light
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into metallic interfaces is to use a glass prism or metallic gratings to control the angle of

incidence. [5]

1.3.3 The localized surface plasmon

When the metallic surface is confined in three dimensions, a non-propagating surface

plasmon can be excited known as the localized surface plasmon (LSP). The optical proper-

ties of the LSP are defined by the confining geometry of the metallic surface as well as the

surrounding dielectric. This is the type of plasmon that is relevant to the research presented

in this dissertation. So, we will treat the theoretical background of the LSP with more detail

than the previous two types. A major advantage of the LSP is that does not necessitate the

phase matching conditions of the SPP.

The derivation of the LSP resonance will rely on the quasi-static approximation. The

size scale of LSP supporting nanoparticles sufficiently smaller than the exciting wave-

length, λ , such that this approximation yields an accurate answer. In order to derive a

few crucial quantities for LSPs, we will consider the case of the spherical metal particle of

radius a, with air as a surrounding dielectric shown in figure 1.5. We take the direction of

Figure 1.5: Metallic spherical nanoparticles under direct optical excitation.
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propagation of the electromagnetic wave to be ẑ and the direction in which the Poynting

vector of that electric field oscillates to be x̂. If we solve for the electric potential, Φ, using

the Laplacian equation, ~∇2Φ = 0, we can derive solutions for the electric fields in regions

inside and outside the of the metal.

Ein =
3εm

ε +2εm
E0 Eout = E0 +

3n(n ·p)−p
4πε0εmr3 (1.16)

where E0 is the externally applied electric field, n is the unit normal vector from the surface

of the metal, p is the dipole moment as defined by equation 1.17.

p = 4πε0εma3 ε(ω)− εm

ε(ω)+2εm
E0 (1.17)

Here, the wavelength dependent dielectric function of the plasmon is represented by ε(ω).

Since LSPs are a surface effect we are much more concerned with the Eout term. Specif-

ically, it is the induced dipole moment, p, that defines the complex polarizability of the

surface resonance. When the Fröhlich condition is met, Re(ε(ω)) =−2εm, the dipole mo-

ment of the surface plasmon is on resonance. This means that the induced electric field

surrounding the metallic particle is at a maximum. Of course the 1/r3 term means that

the electric field is highly localized close to the surface of the metal, but the enhancement

factors, Einduced/E0, can be as large as 103. [33] This quantity is determined by a number

of experimental parameters and material characteristics such as surface defects, substrate

interfaces, and non-radiative decay. The enhancement factors of metallic nanostructures

have proven to be a powerful tool for interacting with nearby dielectrics. Later in the intro-

duction chapter, we will refer back to this term as it is responsible for strong nonlinearities

and strong coupling between nanoscale systems.

While our previous derivation of the resonant properties of the LSP used a spherical

geometry for simplicity, the boundary conditions placed on this surface resonance can de-

viate from this model in order to create optical antennas with complex dielectric functions

18



(a) (b) 

Sc
at

te
ri

n
g 

(a
rb

it
ra

ry
 u

n
it

s)
 

Wavelength (nm) Wavelength (nm) 

Figure 1.6: (a) Varying sizes of plasmonic nanorods and their respective resonances shown
by measuring scattered light. (b) Varying geometries and their resonance spectra. Each of
these was measured with unpolarized white light excitation sources. [34]

and optical responses. If instead, for example, we consider a rod-shaped nanoparticle like

those in figure 1.6a, two distinct spatial distances are apparent along the short and long axis

of the particle.

Since an electron on the surface of the rod would have to travel a much greater distance

to resonate about the long axis, the wavelengths necessary to excite this resonance will be

of longer wavelength than those that excite resonances about the short axis. Indeed, it can

be seen in figure 1.6a that as the long axis is made longer, the longer wavelength peak in

scattering cross section moves even further towards the infrared. Meanwhile, the shorter

wavelength resonance stays constant if the short axis of the rod also remains constant.

Figure 1.6b also exhibits a few plasmonic geometries that are even more complex, but the

equal lengths of their major axes creates a single peaked resonance spectrum.[34]

1.4 Complex plasmonic structures - beyond the sphere and the rod

These more complex plasmonic geometries are considerably more cumbersome to solve

analytically than the sphere. However, numerical analysis solutions for Maxwell’s equa-
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tions at the nanoscale have been widely used in order to not only determine the resonance

position of arbitrarily complex plasmonic geometries, but also to simulate the spatial pro-

file of the electric field enhancement factors in close proximity to the metallic surface.

Perhaps the most widespread kinds of simulations are finite-difference time-domain sim-

ulations (FDTD). All of the near-field plasmonic simulations shown in Chapters 2-4 are

generated using an FDTD simulation package written by Lumerical Solutions®. There is a

brief discussion of how FDTD simulations relate to the experiments in each chapter in the

respective experimental methods sections.

Even though they provide excellent support for experimental results, the idealized na-

ture of these simulations can easily mask the experimental realities involved with fabricat-

ing and characterizing nanoscale systems. Inherent variations in nanofabrication, surface

roughness, and substrate coupling are a few effects that will cause experiment to stray from

idealized simulations. Regardless, these FDTD simulations provide a starting point for the

time-consuming fabrication procedures.

So far we have only considered the simplest cases of plasmons in geometries the wave-

length response and near field profiles of which are intuitively easy to understand. How-

ever, in order to realize practical plasmonic devices in the numerous branches in which they

show promise, we will have to develop plasmonic structures that are significantly more so-

phisticated than a simple disc. Here we will introduce plasmonic structures with multiple

spatially overlapping resonances as well as complex polarization responses. We will also

discuss how plasmons are capable of coupling to one another and nearby dielectrics.

When a plasmonic structure supports multiple distinct resonances that overlap spatially,

the two plasmons can hybridize to create a dielectric response that is more complex than

a simple summation of the responses of the two plasmon responses alone. Let us consider

the hybridization of the disc and hole illustrated in figure 1.7. These two geometries can

be hybridized in the form of a ring. A plasmonic response similar to the hole structure

can be observed on the interior of the ring while the plasmonic response of the disc can be

20



Disc 

Hole 

Anti-bonding 
mode 

Bonding 
mode 

(a) (b) 

Figure 1.7: (a) Hybridization of disc and hole plasmons in a composite geometry. (b)
Extinction spectra of the bonding and anti-bonding mode of the ring as a function of ring
thickness. [35, 36]

observed on the exterior. The ring structure is capable of forming bonding and anti-bonding

resonances. If the ring resonator is modeled using a coupled oscillator scheme, this is the

equivalent of the oscillators resonating with a zero phase difference (bonding mode) and a

π phase difference (anti-bonding). This complex plasmonic response takes place within a

single continuous particle, but we can also engineer interesting optical phenomenon from

coupling multiple particles via the electric field of the plasmon. [35, 36]

A plasmonic dimer is two particles are placed within interaction range with one another

with mirror symmetry. Figure 1.8 shows two such arrangements using circular and trian-

gular geometries. Plasmonic dimers are particularly useful for creating very large electric

field enhancement factors, and can concentrate energy from a photonic source into an even

smaller mode volume than single plasmonic elements. Figure 1.8b shows a plasmonic ge-

ometry known as the bowtie that is well known for using the its triangular shape to “funnel”

electrons into a small metallic tip to create larger electric field enhancement factors than

many other plasmonic arrangements. [38, 37]
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(a) (b) 

(c) (d) 

Figure 1.8: FDTD simulations of the near-field profile of plasmonic dimers. (a) Disc dimer
with a 2nm gap, excited by λ = 430nm, (b) triangular dimer with a 2nm gap excited by
light at 932 nm. (c)(d) Surface plots of the electric field enhancement factors shown in (a)
and (b).[37]

1.5 Nonlinear plasmonics

So far we have only considered the linear optical property of plasmonic structures,

but just as we are able to control optical phenomena attributed to χ(1) like absorption,

we can control optical effects attributed to higher order polarizabilities. As stated in the

nonlinear optics section, nonlinear effects are sensitive to the strength of the local electric

field and the nonlinear susceptibility of the material. Plasmonic structures are a natural fit

for these studies as they make it possible to simultaneously engineer the materials dielectric

properties and to generate high local electric fields. [8, 39]

Here we will focus on plasmonic examples of second-order nonlinearities, specifically

SHG, using two different strategies for efficient manipulation of light. The first strategy is

to generate large nonlinear susceptibilities within the plasmonic structure by itself. The sec-
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ond strategy is to use the strength of the plasmonically generated electric field to enhance

the nonlinear properties of a dielectric material placed in close proximity to the plasmon

surface. Recalling the equation for the second-order polarizability term responsible for

emission at 2ω ,

P(2ω) = ε0χ
(2)E2 (1.18)

it is evident that a plasmonic structure that serves as an efficient generator of second-

harmonic must have a nonlinear dielectric function with a relatively large χ(2). In order

for this to occur, the the plasmonic structure must have a broken inversion symmetry about

some axis. Figure 1.9 shows several examples of plasmonic structures that utilize asym-

metric boundary conditions on plasmonic resonances in order to enhance SHG conversion

efficiencies.

In each instance illustrated in figure 1.9, some distortion was introduced into the plas-

monic antenna in order to break symmetry about the axis perpendicular to the polarization

axis of the exciting light. This asymmetry can be introduced in a single particle or from

the arrangement of an array of particles. The tilted nanocup, figure 1.9c, shows particu-

larly large SHG signal in comparison to its all metallic plasmonic competitors. It yields

a conversion efficiency of up to 1.8 · 10−9 with an input power of 300µW . This corre-

sponds to a second-order nonlinear susceptibility of 3.2pm/V .[6] When considering the

small volume these plasmonic antennas inhabit, their SHG conversion efficiency per unit

volume can rival that of inorganic crystals with the strongest known nonlinearities. Since

the interaction can not be scaled up without all of the optical signal being lost to non-

radiative decay paths, we must strive to engineer ever more powerful plasmonic harmonic

generators. We can do this by exploring the nature of symmetry breaking in plasmonic res-

onances. Additionally, if these antennas are exposed to optical intensities that are too large,

they will be damaged via melting or ablation, and they will immediately lose their strong

nonlinear properties. So promising plasmonic antennas must be able to make efficient use
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 1.9: Plasmonic antennas engineered for efficient SHG conversion. (a)(b) L-shaped
plasmonic structures arranged in a (a) symmetric and (b) asymmetric pattern. [12] (c)
Three-dimensional nanocups with varying tilts about the polarization axis. [6] (d) Multi-
resonant plasmonic coupling between L-shape and nanorod for exciting resonances at 2ω .
[9] (e) Symmetric discs arranged in a spiral formation to break symmetry at the array
level. [11] (f)(g) Multi-resonant coupled nanorods with near-fields calculated at (a) the
SHG wavelength, λ = 400nm, and (b) the fundamental wavelength, λ = 800nm. [10]
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of low intensity laser pulses or survive stronger optical intensities. Chapter 2 of this dis-

sertation presents experimental results of record breaking SHG conversion efficiencies in

the Archimedean nanospiral geometry. This is a step towards generating optically active

plasmonic elements capable of efficient frequency conversion. [8]

Plasmonic antennas also excel at providing high fields in order to enhance harmonic

conversion efficiency. By concentrating optical energy into a small volume occupied by a

nonlinear material, plasmons are capable of generating much stronger nonlinear emissions

than by bulk materials alone. Figure 1.10 shows two such instances where semiconductor

systems were placed in plasmonic “hotspots” in order to enhance harmonic conversion

efficiencies. In both instances, conversion efficiency enhancements of several orders of

magnitude were observed over non-plasmonic systems. In the case of multi-quantum wells

coupled to plasmonic antennas, figure 1.10b, SHG conversion efficiencies are observed as

high as 2 ·10−6. [42, 41] Chapter 3 of this dissertation describes experiments using a novel

(a) (b) 

Figure 1.10: (a) Plasmonic enhancement of second-harmonic emission from a single zinc-
oxide nanowire placed in the hotspot of a gold disc pentamer. Red curve shows SHG
from plasmonically enhanced nanowire,.black curve shows normal SHG emission from the
nanowire. (Inset) Scanning electron microscope image of gold pentamers with a single
nanowire.[40](b) Multi-quantum well exposed to the plasmonic field of an offset cross
antenna for the efficient generation of SHG [41]
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characterization method for SHG in plasmonically enhanced dielectrics. The plasmonic

nanostructure used in these measurements, the serrated nanogap, creates a platform for

studying the temporal evolution of dielectric nonlinearities under plasmonic exposure with

attosecond resolution.

While the progress made in nonlinear plasmonics in the past few years has been promis-

ing, there is still a long way to go before we can create active optical circuitry based on

plasmonic components. However, recent experiments in quantum nonlinear optics using

nanostructured materials have shown promise for generating large interaction efficiencies

driven by strong driving fields and coupling strengths.

1.6 The quantum limit of nonlinear optics

So far, all of the nonlinear optical experiments demonstrated here have been classical

in nature. In order to drive the efficiencies of these nonlinear interactions higher with-

out necessitating intense excitation sources, we move towards the quantum optical regime,

which deals specifically with the regime where classical fields are replaced by photon oper-

ators. Figure 1.11a shows schematically how light-matter coupling strength and the photon

number define different regimes of linear, classical and quantum optics.[43] The exper-

Figure 1.11: (a) Characteristic regimes of nonlinear optics with photon number and inter-
action strength between photons. [43]
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iments demonstrated in chapter 4 of this dissertation build on a robust field of quantum

many-body nonlinear optics by introducing quantum coherent control with electron-beam

excitation sources in lieu of photonic excitations.

1.6.1 Second-order correlation functions and quantum light sources

Throughout this dissertation we describe the quantum coherent dynamics of nanoscale

systems by analyzing thevsecond-order correlation measurements of the cathodolumines-

cence (CL) generated by an electron beam in a scanning transmission electron microscope.

These measurements determine the temporal statistics of a light source in terms of g(2)(τ)

which can be defined as [44, 45],

g(2) =

〈
â†(t)â†(t + τ)â(t + τ)â(t)

〉
〈â†(t)â(t)〉2

(1.19)

This quantity represents the coherence of the source over time scales represented by τ . For

τ = 0, this can be rewritten as

g(2)(τ = 0) =
〈n̂(n̂−1)〉

n̂2 (1.20)

This correlation can be evaluated for an arbitrary input, |n〉, to show that

g(2)(0) =
n(n−1)

n2 (1.21)

For a single photon state, n = 1, this leads to g(2)(τ = 0) = 0. [17]

In order to define the limitations on classical light sources, we can rewrite equation 1.19

as,

g(2)(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉

(1.22)

where 〈I(t)〉 represents the average intensity of the luminescence as a function of time,
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and τ represents a delay in time. Classical light sources fall into two major statistical

categories: coherent and bunched. Coherent sources such as single-mode lasers exhibit

g(2)(τ) = 1. Incoherent light sources, such as thermal sources, have coherence values at

τ = 0 that are greater than those at τ 6= 0. [17] This is also known as photon bunching.

The first of two limitations on classical light sources can be derived by representing the

time dependence of I(t) as,

I(t) = 〈I〉+∆I(t) (1.23)

where 〈∆I(t)〉= 0. If we apply this to the numerator of equation 1.22, we can write,

〈I(t)I(t + τ)〉
τ>>τc

= 〈I〉2 (1.24)

where τc is the coherence time of the system. So that,

g(2)(τ >> τc) = 1 (1.25)

Conversely, if we take the opposite limit for τ we can write,

g(2)(τ = 0) =

〈
I(t)2〉
〈I(t)〉2

(1.26)

By the Schwarz inequality it follows that

〈
I(t)2〉
〈I(t)〉2

≥ 1 (1.27)

Using this relationship, we can write the first limitation for classical light sources as,

g(2)(0)≥ g(2)(τ). (1.28)

The second limitation can be derived from a slightly different application of the Schwarz

inequality. If we use equation 1.23 again to represent time variance in the intensity of the
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luminescence, we can rewrite the g(2) function as,

g(2)(τ) = 1+
〈∆I(τ)∆I(0)〉

(〈I〉)2 (1.29)

Here, the Schwarz inequality takes the form,

|〈∆I(τ)∆I(0)〉| ≤
〈
(∆I)2〉 (1.30)

From these two equations, we can derive the second limitation on classical light sources,

∣∣∣g(2)(τ)−1
∣∣∣≤ ∣∣∣g(2)(0)−1

∣∣∣ (1.31)

This relation places a lower limit on g(2)(τ) that depends on the value of g(2)(τ = 0).

[46, 44, 45]

A common type of quantum mechanical correlation curve has g(2)(τ = 0) values that are

less than g(2)(τ >> 0). This is termed anti-bunching, and is normally caused by emission

from a single atom or defect. The photons from this type of source must be separated

in time by the lifetime of the excited state. The type of quantum optical source that will

be demonstrated in chapter 4 will exhibit Rabi flopping in the second-order correlation

function. [47, 48]

Rabi-flopping in a two-level system can only happen if the system is being dressed by

the driving electric field. A variety of quantum systems have been dressed by the electro-

magnetic field for frequencies ranging from microwave to visible. [49, 50, 51, 52] Dressing

a two-level system with an optical field in this way results in new eigenstates that are the

entangled states of the emitted photon and driven quantum system. The Rabi flopping de-

scribed in chapter 4 is the first evidence for an electron-beam dressed system, enabling

nanoscale quantum state preparation in an electron microscope.[53]
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1.6.2 Quantum optical behavior of nitrogen vacancy centers

Nanoscale materials and structures designed to work with low photon numbers must

exhibit strong interaction efficiencies with the incoming beam in order to generate strong

nonlinear signals. For these experiments, we chose a nanoscale excitonic system that has

already demonstrated quantum nonlinear behavior under optical excitation, the nitrogen

vacancy, NV, center. [43]

Photoluminescence studies have shown that NV centers in diamond are single-photon

sources with a near zero probability of multi-photon emission. [55] Recent studies on the

cathodoluminescence of a single NV center have also shown anti-bunching[56], whereas,

cathodoluminsecent studies on NV center ensembles have shown photon-bunching statistics.[57]

Figure 1.12a shows an atomic force microscope image of a single diamond crystal with

NV center defects placed near a silver plasmonic nanowire.

The enhanced recombination rate for the plasmonically coupled diamond nanopar-

(a) (b) 

(c) 

Figure 1.12: (a) Atomic force microscopy image of a single silver nanowire placed with
one end approximately 200 nm away from a diamond crystal with nitrogen vacancy center
defects. (b) Fluorescence lifetime measurements of the diamond crystal with and without
plasmonic coupling. (c) Second-order correlation measurements on the diamond crystal
with and without plasmonic coupling.[54]
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ticle, as seen in figure 1.12b, is a result of the Purcell effect driven by the plasmonic

near field.[54] This system serves as an efficient single-photon source as indicated by the

second-order correlation measurements shown in figure 1.12c. [54] Since a single NV cen-

ter is saturated by one photon, it effectively separates the radiated photons in time by the

lifetime of the defect state, resulting in the emergence of anti-bunching.

Optically driven NV centers have been well characterized both as single photon sources

in the weak-driving limit [58, 59, 60, 61, 62] and as dressed systems in the strong driv-

ing limit.[63] NV centers and other two-level systems have also been characterized in the

weak-coupling limit under electron-beam excitation, but no work to date has demonstrated

electron beam dressed states. [56, 57] Figure 1.13b shows anti-bunching for a single NV

center driven by an electron beam. The work described in chapter 4 provides the first

evidence for the electron beam dressing of two-level systems.

(a) (b) 

Figure 1.13: (a) Electron beam focused in two NV centers at the same time (left) and a
single NV center (right). (b) Second-order correlation curves measurements from multiple
NV centers (red) and a single NV center (blue).[56]
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Chapter 2

The Archimedean nanospiral

The past decade has seen several plasmonic geometries presented for the enhancement

of particular nonlinear optical phenomenon. These advances are slowly paving the path

toward nanoscale devices capable of manipulating optical signals using either electron or

photon based excitations. An efficient means of controlling and manipulating optical sig-

nals using plasmonic antennas holds promise for the creation of optical analog circuitry

that can run entirely free from traditional electrical currents. In this chapter we will present

groundbreaking measurements on the Archimedean nanospiral as a plasmonic architecture.

The lack of inversion symmetry of the nanospiral is shown to create stronger second-order

nonlinear susceptibilities than any other fully metallic plasmonic system reported to date.

The rotational order of the spiral is also shown to contribute to the polarization respon-

siveness of nonlinear signals from the nanospiral. We continue to experimentally verify the

electric field profiles of the nanospiral plasmon and their contributions to far-field emission.

Overall, we expand on previous research involving the nanospiral to show that it is not only

a useful plasmonic toolbox for linear optical phenomenon, but also an efficient plasmonic

element for nonlinear optical interactions in a low-volume metasurface geometry.

2.1 Background of the plasmonic nanospiral

The Archimedean nanospiral stands out from the mass of planar plasmonic geometries

for its potential as a single particle toolbox for several optical interactions. The linear prop-

erties of this nanoparticle have yielded results in two-dimensional chirality and complex

polarization responses. The breaking of inversion symmetry coupled with the chiral nature

of this single contiguous particle generate unique near-field electromagnetic patterns that

can be exploited for both the linear and non-linear regime of optical interactions.
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The Archimedean nanospiral is a spiral where each arm is spaced an equal amount from

it neighboring arm regardless of its position. It can be defined by the equation

r = aθ +b (2.1)

Where r is the radius of the nanospiral arm, θ is the angle, and a and b are constant co-

efficients. It can also be intuitively defined by four geometric parameters, as illustrated

in Figure 2.1a, by winding number, arm width, arm spacing, and thickness. Typical di-

mensions for a nanospiral with a winding number of 4π that are designed to have plasmon

resonances in the optical and near-infrared (NIR) band are arm spacings of 60 nm and arm

widths of 40 nm. These nanospirals are fabricated in large arrays of gold particles using

EBL. Gold is an ideal material for the plasmonic experiments presented here due to its

high charge carrier concentration and mobility. Gold also has a resistance to environmen-

tal degradation which allows for repeatable measurements on the same nanoparticle arrays

over an extended period of time. A scanning electron microscope (SEM) can be utilized to
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Figure 2.1: (a) Nanospiral geometry layout and parameters(b) Scanning electron micro-
scope (SEM) image of a gold nanospiral fabricated using EBL. Winding number = 4π ,
arm spacing = 60 nm, arm width = 40 nm, thickness = 40 nm.
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image these particles, Figure 2.1b. When fabricated in large arrays, typically 10x10 parti-

cles or more, optical interactions such as absorption become large enough to detect easily.

Fabrication details for these nanoparticles can be found in appendix D.

In order to better understand the nature of the nanospiral plasmon excitation, finite-

difference time-domain (FDTD) simulations were used to calculate the profile of the elec-

tric field enhancement factors near the surface of the metal. Three striking patterns arose

in the plasmonic near-field of a 4π spiral profile corresponding to optical excitations in

specific wavelength bands. The simulated extinction spectra shown in Figure2.2 illustrates

the spectral position of these wavelengths. The hourglass mode, λ=580 nm, only takes

place at one resonance point in this calculation. The other two patterns, focusing, λ =

650-950 nm, and standing wave mode, λ = 950-1300nm, occur at several resonances with

Figure 2.2: Simulated excitation of the 4π nanospiral under plane wave excitation calcu-
lated in finite-difference time-domain (FDTD) formalism. Blue shaded region represents
the optical band in which the hourglass plasmon mode is excited, green - focusing mode,
and red - standing-wave mode. [64, 65]
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Figure 2.3: (a) High-angle annular dark field (HAADF) image of an EBL fabricated gold
nanospiral. FDTD simulations of the plasmonic near field spatial profile of each major band
in the nanospiral.(b) Hourglass mode excited at λ = 558 nm. (c) Focusing mode excited at
λ = 802 nm (d) Standing-wave mode excited at λ = 1,240 nm[64, 65]

varying degrees of electric field enhancement. These patterns are especially clear at the

resonances shown by the black circles in Figure2.2. Their corresponding near-field profiles

are calculated in the plane crossing the upper surface of the nanoparticle in Figure 2.3.

[64, 65]

While each of these modes holds interest in their specific optical responses, the focusing

mode is the one of most interest to the research presented here. The initial attraction to the

nanospiral geometry for nonlinear optical investigation is the complete lack of inversion

symmetry it has about any axis. As was discussed in the nonlinear optical section of chapter

1, breaking inversion symmetry is a requirement for χ(2) to not be zero. However, the

second term in the second-order polarizability term is Ẽ2. This means that we must also

harness the electric field enhancement factors associated with the plasmon. The focusing
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mode has the smallest mode volume of any of the three major bands, and, consequently,

the largest electric field as well. This is the optical band that is most promising for second-

harmonic generation.

2.2 Experimental methods

2.2.1 SHG detection and analysis

The experimental results on the SHG conversion efficiency of the Archimedean nanospi-

ral were taken with the setup illustrated in Figure 2.4. The excitation source used to mea-

sure the SHG conversion efficiency of planar arrays of the Archimedean nanospiral was

an ultrafast laser manufactured by Kapetyn Murnane Laboratories. This was a Ti:sapphire

oscillator with an output spectrum centered at 800 nm. The laser output pulse width was

approximately 50 f s in duration before pulse compression.

The oscillator beam was directed through a 128-pixel, double-mask, spatial light mod-

ulator (SLM, Biophotonics Solutions) that uses multiphoton intrapulse interference phase

Figure 2.4: Experimental setup used for detecting second-harmonic generation from plas-
monic nanoparticles. QWP quarter-wave plate. LP linear polarizer. HWP half-wave
plate. BPF band pass filter. SPF short pass filter. SLM spatial light modulator.
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scanning (MIIPS) to compress the 50 f s oscillator pulse to a transform-limited duration of

15 f s.[66, 67] The laser pulse was focused on to the nanospiral array using a lens with a nu-

merical aperture of 0.35 to create a focal spot size of 10 µm. This was characterized using

the knife edge technique. The maximum energy per pulse was 0.33 pJ at a repetition rate

of 82 MHz and was varied using a half-wave plate and linear polarizer combination. After

passing through the nanospiral array, the fundamental (800 nm) was filtered out of the sig-

nal using a short-pass filter centered at 625 nm and a band-pass filter centered at 400 nm.

The SHG signal produced by the nanospirals was detected using a solid-state photomul-

tiplier tube (PMT) (Hamamatsu, RU-9880U-110) in connection with a photon-counting

system (Stanford Research Systems). The polarization state of the nonlinear emission from

the nanospiral was analyzed using either a linear polarizer or a quarter-wave plate placed

in front of the detector.

2.2.2 FDTD simulation of the near field

In order to connect the spatial profile of the near-field resonance of the nanospiral plas-

mon, FDTD simulations were made under various optical excitation conditions. All of the

FDTD simulations shown in this chapter were made using periodic boundary conditions in

the x̃ and ỹ directions that were spaced to simulate the dimensions of the nanospiral array.

Two out of phase plane waves were used to simulate circular polarization. Details on using

FDTD simulations for calculating the spatial profile of plasmonic resonances can be found

in Appendix A.

2.2.3 Cathodoluminescence characterization of the near field

Experimentally verifying these spatial profiles associated with the nanospiral presents

some unique challenges. Most near-field measurements techniques for plasmonic struc-

tures require a perturbation to the system. One popular method is known as near-field

scanning optical microscopy, NSOM, where a tip is placed near the plasmonic surface.
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The surface charge distortion on the tip is measured, and a surface charge distribution is

inferred from this measurement as a function of the tip position. The problem with this

method and several others like it when dealing with a complex system such as the nanospi-

ral, is that one can never be sure what effect the perturbation had on the structure of the

resonance.

A reliable method for measuring the spatial profile of plasmonic resonances with nanoscale

precision is by observing the cathodoluminescence (CL) from a scanning transmission elec-

tron microscope. As illustrated in figure 2.5, an electron beam can be rastered across the

surface of the plasmonic antenna while a parabolic mirror above the antenna gathers the

luminescence emitted in the direction of reflection. While this emission is only a direct

measure of the radiative decay of the plasmon, the strength of the CL with respect to the

electron beam position can be directly connected to the local density of states function of

Figure 2.5: Scanning transmission electron microscope with a parabolic mirror for collect-
ing cathodoluminescence (CL). Transmissive detection methods are used to characterize
the mechanical structure of the antenna and the energy lost by the electron.
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the antenna. Since the interactions take place with one electron at a time that is directly

coupling to the dipole moment of the plasmon, there are less perturbations than similar

measurements made with a metallic tip interacting with the antenna in the near-field of the

plasmon.

A crucial quantity in fully characterizing the near-field behavior of plasmonic antennas

is the local density of states (LDOS). This quantity will be discussed in greater detail in

chapter 4, but the experiments characterizing the near-field modes of the nanospiral neces-

sitate an understanding of the connection between electron microscopy measurements and

the spatial profile of plasmon resonance. The LDOS is defined as the density of states that

is available at a given energy for the local electric field. The LDOS has both a radiative

and non-radiative portion. CL measurements are a measure of the radiative portion of the

LDOS. In order to fully characterize the plasmonic response, CL measurements can be

coupled with electron-energy loss which are a measure of the full LDOS. [68]

2.3 Results and discussion

In this section, we describe the second-order nonlinear response from arrays of planar

4π Archimedean nanospirals with sub-wavelength dimensions. The Archimedean nanospi-

ral commends itself as a frequency-conversion architecture due to its unique asymmetry

and two-dimensional chiral response. This geometry has a spectrally complex response

in the visible to the near-infrared region and spatially differentiated, near-field configura-

tions, as well as selectively enhanced optical response to the polarization states of incident

light.[64, 65] These characteristics make the nanospiral a strong candidate for nonlinear

optical applications where a broadband plasmonic element is necessary. Unlike plasmonic

structures with globally broken symmetry created by modifying or arranging nanoparti-

cles with some inherent local symmetry, [7, 69, 6, 11] the nanospiral has no local axes of

symmetry at all so that the nanospiral can generate second-harmonic light from any polar-

ization state. This inherent lack of symmetry therefore makes the nanospiral an attractive
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Figure 2.6: Second-harmonic conversion efficiency as a function of the peak intensity of
the exciting pulse (red triangles). Second-order polynomial fit (blue solid line).

candidate for nonlinear metasurface elements.

2.3.1 Second-harmonic conversion efficiency

Figure 2.6 shows the measured second-harmonic conversion efficiency from the nanospi-

ral array (red triangles) as a function of the incident laser power at 800 nm with linear po-

larization. The result is fit to a second-order polynomial computed in Matlab (continuous

blue curve) with an R2 value of 0.9911 as calculated. Extensive computer simulations of

the spectral distribution of near-field modes of the nanospiral show that the dominant spa-

tial configuration of the plasmon near 800 nm wavelength is the focusing mode, in which

the near-field electromagnetic energy is concentrated in the center of the nanospiral. This

makes the focusing mode ideal for harmonic generation, since second-order nonlinear phe-

nomena depend superlinearly on the strength of the electric field. The focusing mode of
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the nanospiral provides the spatial concentration of optical energy necessary for efficient

conversion to the outgoing second harmonic. The structure of this near-field state also pro-

vides a polarization-sensitive template for quasi-chiral properties that are described later in

this section.

The SHG measurements were not reproducible at powers greater than 280 W per nanopar-

ticle because laser heating deformed the nanospirals, causing them to lose their asymmetric

geometry; the shape of the deformations that occurred due to melting can be seen in Ap-

pendix B. Up until the point of deformation, the second-harmonic beam from the nanospi-

rals showed no sign of saturation due to nonlinear down-conversion processes. After defor-

mation, the nanoparticles exhibit neither second-harmonic response nor the other properties

of the nanospirals. If the nanospirals were coated in a protective silicon layer as shown in

references [7] and [6], the power threshold could be increased beyond an incident power of

280 W per nanoparticle in order to create even higher harmonic-generation efficiencies.

b) 

c) 

d) 

e) 

a) 

Figure 2.7: a) SHG response the axis of a linearly polarized excitation. 0 degrees cor-
responds to the line drawn between the beginning and end of the spiral (orange arrow).
Maximum SHG signal occurs at 30 degrees (red arrow). Minimum SHG signal occurs at
120 degrees (black arrow). b-e) FDTD simulations of the electric-field strength for four
different linear polarization states
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2.3.2 Polarization modulation

Figure 2.7a shows that the SHG signal is modulated in angle as the axis of linear polar-

ization is rotated with respect to the nanospiral axis. This change in signal corresponds to

the changes in the computed near-field electric-field strengths in the center of the nanospi-

ral shown in Figure 2.7(b-e). The maximum SHG signal occurs along the 30◦-210◦ axis

where the peak electric-field amplitude of the plasmon is the strongest; the field strength is

distributed largely within the interior of the spiral and follows the rotation of the spiral arm

through π radians [Fig. 2.7(d)]. The maximum field strength is higher than for other orien-

tations, and the dipoles excited near the center are spatially coherent. Other orientations of

the linear polarization vector correspond to decreasing SHG conversion efficiency due to a

dissipation of the strong focusing mode along the exterior regions of the spiral. The electron

concentrations are spread out well away from the center, and also create incoherent multi-

polar resonances throughout the spiral. The second-harmonic radiation produced by these

physically separate resonances destructively interferes with itself as expected from SHG

produced by a spatially symmetric set of electronic dipole resonators.[11] These symmetry

effects are evident from brighter edges of the spiral in the simulations.

The second-harmonic response to circular polarizations, however, more clearly illus-

trates the effects of intra-particle resonances on the electric field strengths and consequently

the SHG efficiency. The polarization dependence of the SHG intensity in Fig. 3 shows that

for right-handed circular polarization rotating from the outside of the spiral to the inside

- there is a larger enhancement than that observed with linear polarization. When excited

with left-handed circularly polarized light the nanospirals show a significantly reduced

second-order response. The maximum and minimum SHG signals differ by a factor of

four, which occurs for an eccentricity of 0.66, where eccentricity is defined as the ratio of

minor to major axis of the ellipse traced out by the polarization vector. This dependence

on eccentricity arises because the nanospiral is not perfectly circular. The second harmonic

conversion efficiency given by I(2ω)/I(ω) - is thus a maximum for right circular polarized
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RCP 

LCP 

Figure 2.8: Conversion efficiency response to eccentricity and handedness of circular polar-
ization. Horizontal axis corresponds to the two linear polarized states shown by the purple
and orange lines. The vertical axis corresponds to completely circular polarizations shown
by the red and blue traces.

light and has the value 1.3 ·10−8.

The nonlinear polarizability that is responsible for second order phenomenon can be

written in this case as P(2ω) = 2ε0de f f [E(ω)]2 where de f f is the effective second order

susceptibility (normalized to the measured efficiency) and E(ω) is the fundamental pump

field. Using a driven Lorentz oscillator model appropriate for electrons in gold, we find

that de f f ranges from 15.3 pm/V for RCP excitation to 3 pm/V for LCP excitation. These

values are comparable to the de f f measured for tilted gold hemispherical nanoparticles.[6]

Even though the nanospiral extinction varies as a function of the incident polarization state,

there is nevertheless a finite SHG response to all polarizations. This novel property of the
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nanospiral is a consequence of the absence of any local axis of symmetry.

The polarization response of the second harmonic emission is consistent with FDTD

simulations shown in figure 2.3. At a wavelength of 800 nm, the focusing mode is excited,

concentrating the near-field intensity in the center of the spiral to create a single region

of high electric field. Right-handed circularly polarized light assists this electron con-

centration by driving the electrons from the outer regions of the nanoparticle towards the

center. This, in turn, generates increased electric field amplitude and consequently a larger

SHG signal. Left-handed circular polarization causes the opposite effect by driving the

electrons away from the center of the spiral. Three-dimensional chiral geometries exhibit

strong responses to polarization and a geometry that cannot be superimposed upon itself

as discussed, for example, in references [70] and [71]. The existence of two-dimensional

chirality in plasmonic structures has sometimes been debated, because even thin nanos-

tructures such as the nanospirals in our experiment, which have an aspect ratio of order 16

are not rigorously planar. Nevertheless, quasi-two-dimensional plasmonic nanostructures

with chiral boundary conditions in only two dimensions have been shown to rotate linear

polarized light and to convert one polarization state to another.[72, 73, 74] This property

can be identified as one albeit only one characteristic of a chiral system.

2.3.3 SHG polarization analysis

We now show that the second harmonic generated by Archimedean nanospirals reveals

the complex interplay among polarization states that is the hallmark of this quasi-chiral

response. The conversion between linear and circular polarizations was investigated by

placing a second quarter-wave plate and linear polarizer in the path of the SHG emission.

Figure 2.9 (a-c) show the polarization profiles for three types of incident polarization using

only a linear polarizer as an analyzer. The dipolar pattern in Figure 2.9 (a) shows that when

the nanospirals are illuminated by linearly polarized light, the SHG emission is linearly

polarized about the same axis as the exciting fundamental beam. This is not surprising,
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because the localized dipolar plasmon resonance responds to all polarizations. When the

fundamental beam is right-circularly polarized, as in Figure 2.9 (b), the SHG emission is

still linearly polarized, but the SHG axis of polarization is pinned on the axis 135◦ from

horizontal. Lastly, a fundamental beam with left-handed circular polarization, Figure 2.9

(c), does not produce linearly polarized SHG emission at all.

However, the left-handed circular polarization experiment in Figure 2.9 (c) only shows

that the emitted light is not linearly polarized; this result could have occurred either because

the SHG was circularly polarized or because it was essentially depolarized. To resolve this

question, a quarter-wave plate was inserted between the nanospirals and the linear analyzer,

which would have converted any circularly polarized light to the linearly polarized state.

Since no axis of linear polarization was evident in the analyzed SHG signal, it was clear that

left-handed circular polarized light incident on the nanospirals creates depolarized second-

harmonic light. While the signal is lower than SHG from linear or RCP light, it is only a

factor of four lower than the maximum signal observed from the nanospirals. This behavior

seems to be reproduced by the focusing mode simulations shown in Figure 2.10. When

the polarization is driving the electrons towards the center of the nanospiral as shown in

Figure 2.10 (a), the strength of the electric field is enhanced. The surface charge density of

the plasmon must be ordered if it is to maintain the constructively interfering, multipolar

resonance condition that will prevent second-order light from destructively interfering with

itself.

When the polarization is driving the electrons away from the center of the nanospiral, on

the other hand, a disordered plasmon resonance is created that is simulated in Figure 2.10

(b). Depolarization in plasmon emission has been observed in simple nanoparticle geome-

tries having resonances that overlap spectrally and spatially; the coherent emission from

sub-wavelength structures may exhibit partial depolarization in various directions depend-

ing on the relative phases of the light. [75, 76] The near-field structure of the LCP excitation

in the nanospiral shows regions of high-electric field enhancement that are spatially spread
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Figure 2.9: Each graph shows SHG as a function of a linear analyzer placed after the
nanoparticles a-c) was analyzed using only a linear polarizer. d) used a quarter-wave plate
before the linear analyzer. These measurements were fitted to a first order Fourier function
to determine the polarization state of the emitted light. a) shows that linearly polarized
incident light creates linearly polarized harmonic light that was coaxial with the fundamen-
tal. b) shows that right handed circularly polarized incident light creates linear polarized
harmonic light with a rotation of the polarization axis by 45 degrees. c) that left handed
circularly polarized light creates harmonic light with no dominant axis of polarization. d)
shows that the measurements taken in c) was a superposition of all polarizations.
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a)                 RHCP Excitation b)                 LHCP Excitation 

Figure 2.10: FDTD simulations of the focusing mode of the nanospiral using a right-handed
circularly polarized excitation (a) and left-handed circularly polarized light (b)

out over larger parts of the nanospiral than in either RCP or linear excitation. This structure

contains enough smaller resonances with randomly oriented propagation directions that the

resulting SHG emission is completely depolarized. While the polarization conversion ob-

served in nanospirals differs from the polarization rotation that has been demonstrated in

other plasmonic geometries[72, 73, 74], the conversion between linear, circular, and depo-

larized light is evidence of the complex interplay between the second-order response and

the near-field structure of the plasmon resonance.

In summary, the Archimedean nanospiral is shown here to produce second-harmonic

emission at intensities sufficient for nanotechnology devices. The capacity to modulate the

intensity of the SHG by altering the polarization state of the emission, and with efficien-

cies as large as 1.3 · 10−8 at 280 W incident power per nanoparticle, the nanospiral is a

competitive architecture for all-optical control applications. The nonlinear response to the

handedness of circular polarization also reveals the relation between the complex boundary

conditions imposed by the spiral shape of the nanoparticle and the plasmon resonance.

Planar frequency-conversion structures are an essential element of plasmonic circuitry.

[77] By creating more efficient SHG structures that need not satisfy any phase matching
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conditions, and by using localized surface plasmon resonances to further enhance effi-

ciency, we have shown that the nanospiral is potentially significant addition to plasmonic

technology. The complex plasmonic resonance structure inherent in the nanospiral, and its

complex, but selectable, polarization response, bring additional dimensions to the search

for efficient nonlinear plasmonic light sources.

2.3.4 Nanospiral near-field characterization

While previous work have shown strong evidence for the unique near-field profiles of

the plasmon known as the hourglass, focusing, and standing wave modes, there was, to

the best of our knowledge, no experimental evidence that the nanospiral could support

these modes before this work. The nanospirals used in the scanning transmission electron

microscope were fabricated on a suspended 50 nm membrane of silicon nitride (SiN). The

fabrication details for these nanospirals can be found in appendix D.

Figure 2.11 shows unfiltered and spectrally filtered CL measurements gathered by a

PMT made on a 600 nm wide nanospiral with similar dimensions to the nanospiral particles

used for SHG generation. The unfiltered CL image, figure 2.11b, contains a superposition

of each modes LDOS. We applied optical filters to the CL signal that would filter out

increasingly larger portions of the band attributed to the hourglass mode, figure 2.11c-

e. The result showed that after the hourglass mode was eliminated, the focusing mode

was sufficiently dominate to be seen over the standing wave mode. Figure 2.11e shows the

radiative portion of the LDOS that clearly agrees with the FDTD simulation of the focusing

mode, figure 2.3c. [64]

An important thing to note here about the hourglass mode is that it is related to the

excitation polarization in a different manner than the focusing or standing wave modes.

While the hourlgass mode remains structurally the same, it major axis rotates to match

the exciting polarization. This relationship is convenient for verifying the mode via CL.

Instead of spectrally filtering the CL signal, we filter it based on the polarization of the
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Figure 2.11: (a) Dark-field image of a nanospiral suspended on a 50 nm SiN membrane (b)
Unfiltered CL image. (c-e) CL filtered with a (c) 400 nm long pass filter (d) 495 nm long
pass filter and a (e) 565 nm long pass filter. The CL image in (e) best matches the focusing
mode in simulations

CL signal. Figure 2.12 c-e show the CL image using three different orientations of the

filtering polarizer. The near-field map this reveals also matches FDTD simulations shown

in previous work. [64]

The standing wave mode of the nanospiral takes place in the infrared. This has proven

challenging in the current optical detection scheme of our CL microscope. However, a

nitrogen cooled InGaAs detector could easily be used to verify this final near-field profile.

Smaller nanospirals could possible shift the standing wave mode into a more accessible

band.

Overall, we have shown direct evidence supporting the theoretical work previously per-

formed on the nanospiral. [64, 65] We have also established the direct measure of the

radiative LDOS as a mean of determining the spatial profiles of plasmonic antennas with
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Figure 2.12: (a) Dark field image of a nanospiral (b) Unfiltered CL image (c-e) CL images
filtered by a linear polarizer rotated to (c) 0◦ (d) 45◦ (e) 90◦. The filtered images match the
FDTD simulations of the hourglass mode.

nanometer scale resolution. This work is currently unpublished due to an ongoing effort

to fully characterize the nanspiral near-field as well as evidence of the two-dimensional

chirality shown in the optically induced nonlinear emissions.
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Chapter 3

Optical control of SHG in the serrated nanogap

Dielectric materials near the surface of plasmonic nanostructures also exhibit enhanced

nonlinear optical responses proportional to the confinement of the electric field.[3, 4, 41,

42] The short excitation lifetime and nanoscale footprint of metasurface devices hold promise

for replacing macroscopic nonlinear crystals in biophotonic applications and tunable light

sources. While the efficiency of these coupled metal-dielectric systems continues to im-

prove, controlling these systems at timescales that would utilize the ultrashort plasmonic

lifetimes remains an obstacle to fabricating nonlinear plasmonic devices that can be used

for active manipulation of optical signals. Current plasmonic technology has yet to deliver

a method of characterizing and controlling nonlinear signals on the ultrafast timescale.

In this chapter we demonstrate efficient second-harmonic generation (SHG) in a ser-

rated nanogap plasmonic geometry that generates steep electric field gradients on a dielec-

tric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in

a thin-film material with inversion symmetry that, without plasmonic enhancement, does

not exhibit an an even-order nonlinear optical response. The temporal evolution of the

plasmonic near-field is characterized with ∼ 100 as resolution using a novel nonlinear in-

terferometric technique. The nonlinear emission arising from the nonlinear response is also

quantitatively separated from 2ω signal sources originating from plasmonic effects such as

hyper-Rayleigh scattering and two-photon absorption. The ability to manipulate nonlinear

signals in a metamaterial geometry as demonstrated here is indispensable both to under-

standing the ultrafast nonlinear response of nanoscale materials, and to producing active,

optically reconfigurable plasmonic devices. The following experiments use poly-methyl

methacrylate (PMMA) as a dielectric materials for convenience, but these experiments can

easily be expanded to any material that can be deposited in a thin film.
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3.1 Plasmonic enhancement of harmonic generation in dielectrics

There have been several iterations of plasmonic geometries designed for the enhance-

ment of nonlinear optical responses of nearby dielectric materials. Some of them can reach

impressive conversion efficiencies of order 10−6 like one shown in figure 1.10b. In their

current state, plasmonically enhanced dielectric materials are capable of taking advantage

of the small mode volumes and intense electric fields of plasmonic nanoparticles, but they

still do not have the speed of modulation necessary to generate practical on-chip devices

for signal manipulation.

Although active control over nonlinear plasmonic interactions has been achieved by

(a) (b) 

(c) (d) 

Figure 3.1: (a) SHG generation schematic from a plasmonic grating filled with PMMA.
Direct electrical contacts on each side of the grating allow for a direct DC electric field
application. (b) Third-harmonic generation enhancement as a function of voltage applied
across direct electrical contacts shown in (a).[78] (c) SHG from a ITO particle enhanced by
a nanorod dimer. (d) Peak power dependence of the exciting pulse. The black curve shows
a third-order polynomial fit to the power dependence.[7]
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applying DC electric fields[78, 79], the size of contacts and the frequency response of

electrical excitation defeat the principal advantages afforded by plasmonic systems, most

notably nanoscale footprints and femtosecond interaction times. Figure 3.1 shows an ex-

ample of plasmonically enhanced second-harmonic generation from PMMA being actively

controlled by a DC electric field applied by direct electrical contacts. While this is an ef-

fective means of plasmonically inducing nonlinear emissions from a dielectric material,

the modulation speed is incredibly low in comparison with the lifetimes of an LSP. Figure

3.1b shows a nanoscale system for inducing changes in the nonlinearity of indium tin oxide

(ITO).

3.2 The serrated nanogap

The experiments presented in this chapter use a novel plasmonic geometry that was

specifically designed for the purpose generating steep electric field gradients within a di-

electric filled gap. For this purpose we have designed the serrated nanogap (SNG). A

scanning electron microscope image of a gold SNG can be seen in figure 3.2a. These par-

ticles were designed with a large aspect ratio in order to spectrally separate the plasmonic

responses originating from the long and short axes. These particles are similar to a one-

dimensional array of bow-tie shaped dimers with an offset between each side equal to half

of the arrays period. The side of the particles opposite the gap being physically connected

between each triangle gives the SNG a distinct advantage over a bow-tie array. It drastically

reduces electric field enhancement factors that would occur outside of the gap. This allows

for nonlinear spectroscopy performed on this system to probe only the material within the

gap. Figure 3.2b shows the FDTD simulation of the spatial profile of the SNG plasmon.

According the simulation, almost all of the electric field enhancement does indeed occur

within the nanogap. There is still some residual electric field enhancement at the upper and

lower tips of the SNG, but they are minor in comparison the optical energy concentrated

within the gap.
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Figure 3.2: (a) Scanning-electron microscope image of a single element of the SNG array
(b) Finite-difference, time-domain simulation of the near-field intensity of the SNG plas-
mon excited by a pulse polarized perpendicular to the nanogap or horizontal to the image
at λ = 800nm.

The SNG particles were designed and characterized to be resonant at 800 nm about the

short axis. The aspect ratio between the long and short axis of the SNG is approximately

4:1. This puts the long axis plasmon resonance far enough into the infrared band that we

can assume that it does not interact with the optical excitation centered at 800 nm. The SNG

dimensions were length = 600 nm, width = 300 nm, gap width = 100 nm, and separation

between adjacent teeth points = 150 nm. The nanostructures were fabricated using electron-

beam lithography and thermal evaporation of gold. Details on the nanoparticle fabrication

process can be found in appendix D. The SNGs were made in arrays with a pitch of 1 m

in the x-direction and 2 m in the y-direction. A single array consisted of 82 distinct SNGs

covered with PMMA 495A4 electron-beam resist to acquire the data with PMMA filling

the nanogaps.
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Figure 3.3: (a) A mode-locked Ti:sapphire laser is coupled to a spatial light modulator
(SLM) for control of temporal pulse shape and polarization. The SLM generates transform-
limited control and probe pulses with orthogonal polarizations and variable optical power
and temporal delays between each 30 fs, 800 nm pulse.

3.3 Experimental methods

The experimental setup used throughout this chapter is illustrated in figure 3.3. Output

pulses from a Ti:sapphire laser oscillator mode-locked at 83MHz (KMLabs Cascade) were

passed through and compressed by a spatial light modulator (SLM) (Biophotonics Solu-

tions Inc.) in order to achieve a transform-limited pulse 3 fs in duration at the metasurface.

The laser pulse train was focused onto the SNG array with a numerical aperture objective

of 0.35. The beam was then filtered by a set of two optical filters to in order to block sig-

nals from the fundamental wavelengths and processes other than SHG. The first was a high

pass filter (Semrock FF01-440/SP-25) with a cutoff at 440 nm and an optical density of

0.01 at 400 nm and 5.5 at 800nmm. The second was a band pass filter (Thorlabs FB400-

40) with a center wavelength at 400 nm, FWHM of 40 nm, and an optical density of 0.32
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Figure 3.4: Two phase masks applied across alternating pixels of the spatial light modulator
in order to generate two temporally separate optical pulses with approximately identical
spectral content.[66]

at 400 nm and 4.7 at 800nm. The resulting second harmonic signals were detected using

a Hamamatsu PMT (RU-9880U-110) connected to a Photon Counter (Stanford Research

Systems).

3.3.1 Spatial light modulation

The SLM consisted of 128 liquid crystal cells. Pulse pairs were generated by creating

two phase masks from alternating liquid crystal cells to create identical spectral content

as illustrated in figure 3.4.[80] The phase mask was then altered for each measurement to

scan the probe across the control field with a resolution of 100 as. In order to reduce the

power of the control pulse, separate dummy pulses were created with a vertical polarization

and temporal separation from the control of greater than 200 fs. These pulses did not

contribute to the SHG signal, as confirmed by a hundred-fold reduction in the SHG signal

from a purely vertical excitation. This was done due to the inability to control the relative

polarization and amplitudes of the pulses generated by the SLM.

By observing the second-harmonic signal as a function of delay between these two
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pulses, a type spectroscopy is performed that is similar to pump-probe. However, it is

important to note that in traditional pump-probe experiments, the signal from the pump

and probe are completely separated via polarization or propagation paths. This second-

harmonic interferometry differs in that both pulses are contributing to the electric fields

responsible for the SHG emission. These signals can be deconvolved with the inherently

superior temporal resolution of this technique. The major limitation on traditional pump-

probe measurements arises from the pump and probe needing to be non-collinear with one

another. If they were collinear then the signal from the pump would make it impossible to

recover how the probe signal varies as a function of delay. Inevitable mechanical vibrations

in every optic the pump and probe interact with after separation introduce noise between

the phases of the two beams. This prohibits a temporal resolution of less than 100 fs.

The second-harmonic interferometry presented here uses two pulses that are constantly

collinear. This coupled with the attosecond scale resolution of the spatial light modulator

creates a couple of orders of magnitude improvement on the temporal resolution that we

can achieve. The experiments shown here use a resolution of 100 as. A study of the limits

of the temporal resolution of this technique was not done, because the shortest phenomenon

observed here was on the few femtosecond scale.

3.4 Results and discussion

When the nanostructure is excited by a control laser pulse polarized perpendicular to

the gap, regions of high electric field form at the points of the teeth, creating steep electric

field gradients within the nanogap. When the nanogap is filled by spin-coating poly(methyl

methacrylate) (PMMA) onto the sample and the plasmon is excited using an ultrafast laser

pulse, intense electric fields within the dielectric oscillate with a period of approximately

2.7 fs. These oscillations rapidly polarize the electronic structure of the PMMA, causing

large, time-dependent changes in its effective second-order susceptibilities.

In order to demonstrate plasmonic control over the SHG signal and isolate the SHG
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Figure 3.5: (a) The SNG structures are excited with a horizontally polarized control pulse
(magenta) and probed with a vertically polarized probe pulse (green), both incident nor-
mally on the SNG array.

resulting from plasmonic modulation of the dielectric, we employ a spatial light modulator

(SLM) configured as shown in figure 3.3 to generate a collinear, orthogonally polarized

pulse pair to simultaneously control and probe the plasmonic system. As shown in figure.

3.5, the control pulse, polarized perpendicular to the nanogap, excites the plasmon, while

the second pulse probes the state of the polarized dielectric in the nanogaps. The orthogo-

nally polarized pulses generate an interference response at the second harmonic of the input

pulses that is distinctive for structures with and without PMMA. The high aspect ratio (4:1)

of the SNG structure does not allow the probe pulse to be absorbed by the plasmon and

thereby contribute to SHG arising from plasmon scattering.

3.4.1 Second-harmonic interferometry

We demonstrate plasmonic control of the SHG output in two steps. In the first, the

orthogonally polarized pulse pairs are set to equal intensity levels, with a measured average

power of 10 mW in both control and probe beams. The interaction of the two beams

generates characteristic SHG interference responses that differ according to whether or
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Figure 3.6: (a) SHG as a function of control pulse-probe delay from a bare SNG array. The
SHG intensity is normalized to the SHG signal from the control pulse alone. (b) SHG from
the same structure filled with the PMMA dielectric. The red solid curve in both graphs
represents the temporal envelope of the control pulse.

not there is a thin layer of PMMA in the nanogaps, as shown in figure 3.6. The overall

switching contrast for the SHG signal in both cases is 3:1 from peak to valley. The left-

hand axes in both figures. 3.6a and b measure the SHG intensity as a function of delay

between control and probe pulses normalized to the SHG signal from the control pulse in

the absence of the probe.

In figure 3.6a, we see the characteristic SHG interference signature of the bare nanogap

array as a function of control-probe delay time, with interference peaks spaced at time de-

lays of τ=nλ /c. As expected, the envelope of the SHG pattern extends beyond the envelope

of the control pulse (red curves in figure 3.6, indicating that the SHG signal is temporally

broadened. The left and right-hand axes of the graphs show the normalized SHG intensity

and the SHG counts for an integration time of 1 s, respectively. The imperfect linear polar-

ization of the pulse pairs generated in the SLM contributed to the background SHG. There

is a small shoulder near the intensity minima caused by plasmon-probe interference in the

ITO/glass substrate and the air dielectric. Since the evanescent field of the plasmon does

not extend deep into the substrate due to the absorption of the gold nanogaps and the ITO

layer, this signal is relatively small.

When the SNGs are filled by spin-coating the array with PMMA, on the other hand, the

transmitted SHG signal from the SNG array changes dramatically, as shown in figure 3.6b.
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Not only does the overall SHG conversion rate, referred to the right hand axes, increase

four-fold compared to the bare SNG array, but interference peaks are now observed both

at delays of τ=nλ /c and τ=nλ /2c. Peaks at τ=nλ /c correspond to constructive interference

of the control and probe pulses, as before. Peaks at τ=nλ /2c lie where two 800 nm waves

would normally interfere destructively to create an SHG minimum; this second set of peaks

results from the optical interaction of the control beam with the probe-pulse-driven dielec-

tric polarization of the PMMA. Due to the continuous pumping of the plasmon throughout

the fundamental pulse duration, the envelope of this interference pattern is the result of

convolving two 30 fs pulses with the addition of the lifetime of the plasmon, ∼10fs.[81]

This envelope shows us that the resulting SHG pulse is approximately 70 fs in duration. A

small change in the absorption of the plasmon due to the change in the dielectric environ-

ment after PMMA removal can be seen in the Supplementary Information (S1). However,

the total change in absorption was less than 5%, which is not sufficient to account for the

change in SHG conversion efficiencies that follow.

3.4.2 Single optical cycle oscillations

For time dependent external electric fields, the second-order polarizability depends on

the second order susceptibility χ(2) as,

P2ω(E)∼ χ
(2)(Eplasmon)

∫
τp

0
[Eprobe(t + τ)]2dt (3.1)

where Eprobe represents the probe field amplitude from the pulse polarized parallel to

the gap, and Econtrol represents the optical field of the control pulse, polarized perpendicular

to the gap, that drives the plasmon field.[82] In order to properly characterize the power

dependencies of the plasmon driven SHG from the dielectric, it is important to note that the

PMMA dielectric is amorphous ,and therefore, either of these fields can contribute to SHG

conversion.

The second step is to demonstrate explicitly that the plasmon field drives the four-fold
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enhancement in SHG intensity when the gap is filled with PMMA. This is accomplished

by holding the average power of the probe pulse constant at 10 mW, while raising the

control-pulse power in steps from 2.5 to 10 mW. figure 3.7a shows the variation in SHG

yield during the first optical cycle after zero control-probe delay, normalized to the SHG

yield in the absence of the probe pulse. The envelope of a single cycle of the normalized

control pulse is shown in red. At 2.5 mW control-pulse power, there is already a low level

of plasmon-driven SHG developing even in the minimum of the control pulse field. This

rather noisy signal is close to threshold and as a result does not show an obvious coherent

relationship to the control pulse.

However, for control-pulse powers at and above 5 mW, a clear oscillatory pattern in

the plasmon-driven SHG signal that is nearly, but not exactly, π radians out of phase with

the control field and oscillating at 2ω . The maxima in this signal occur at τ=nλ /2c, as

expected from the data in figure 3.6b; the minima in this signal occur very near τ=nλ /4c

and τ=3nλ /4c. The minimum at τ=3nλ /4c shows the additional interesting feature that it

is not as deep, presumably because at this point the control-pulse intensity at frequency

b a 

Figure 3.7: (a) A single interference cycle of the SHG signal from a PMMA covered SNG
for varying control pulse powers overlaid with the normalized electric field of the control
pulse (red). (b) Interference peak height from SHG maximum to minimum as a function of
control pulse power. Measured interference heights are fitted to a quadratic function with
no linear term with R2 = 0.98.
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ω , and with it the plasmon field, is once again increasing toward a maximum. This sub-

femtosecond snapshot of of the SHG signal reveals the dynamics of the plasmon interaction

with the PMMA with unprecedented temporal resolution. A possible explanation for this

distinct asymmetry in the SHG signal is from the response time of the PMMA. Since the

nonlinear properties of the dielectric are being altered at optical frequencies, the polar-

ized material does not fully relax before the plasmon scattering signal associated with the

τ=nλ /c maxima drives a new plasmon excitation. This effect does not appear for lower con-

trol pulse powers because the magnitude of the polarization in the PMMA is not as strong

as for a 10 mW control pulse. Measurements of SHG from a PMMA film of equivalent

thickness showed approximately 102 counts/second at a control pulse power of 10 mW.

Changes in intensity for varying control powers were below the noise threshold for this

measurement system.

Figure 3.7b shows the peak-to-valley amplitude of the interference intensity, measured

as a function of the control pulse power. The lowest values occurring before and after the

plasmonic excitation at τ=nλ /2c have a difference in magnitude of 0.5 ∗ 104. A quadratic

fit (smooth curve) indicates that χ(2) depends on the square of the control field for powers

well below the optical damage threshold. A model describing this second-order depen-

dence as well as characterizing the response of highly nonlinear materials in this plasmonic

geometry remains to be done.

By demonstrating that the SHG efficiency for metamaterial-controlled dielectric scales

quadratically with the control field, we have provided a robust platform for ultrafast switch-

able metasurfaces, efficiently generating nonlinear signals with pulse durations less than

100 fs. The SNG geometry can be used to study the optical properties of thin-film materials

at nanometer length scales taking advantage of the polarizing effects of electric fields oscil-

lating at optical frequencies. The SHG spectroscopy enabled by the spatial light modulator

makes it possible to separate plasmonically induced second-harmonic light within a dielec-

tric material from light scattered by the plasmon. These experiments can be expanded to
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include materials with a larger χ(2) as well as materials with stronger polarizabilities such

as ferroelectrics. This technique is not limited to second-order nonlinearities, which makes

it possible to explore third-order nonlinear effects such as phase conjugation and saturable

absorption on metasurfaces.
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Chapter 4

Rabi flopping in an electron beam driven nitrogen vacancy center

In previous chapters we have shown how we can generate strong nonlinearities by de-

signing the local density of states of plasmonic metasurfaces and dielectric materials. The

experiments shown in this chapter continue this theme with one major change in our ap-

proach. By studying the photon statistics of an ensemble of NV centers in a single diamond

nanocrystal driven by a high-energy electron beam, we enable a combination of high spa-

tial and temporal resolution in the description of nonlinear dynamics in driven quantum

systems. In particular, we show Rabi oscillations in an ensemble of NV centers driven by

an electron beam. This is, to the best of our knowledge, the first report of a dressed state in-

duced by an electron beam, and it has laid a path toward nanoscale engineering of quantum

states in excitonic nanostructures. Most previous research in this area also required cryo-

genic temperatures in order to maintain coherence over long enough time scales to generate

strong coupling between the two-level system and the driving field.[56, 83, 53] This chap-

ter demonstrates coherent quantum oscillations in a nitrogen vacancy center coupled to an

electron beam at room temperature. These oscillations not only maintain coherence over

tens of nanoseconds, but exhibit Rabi oscillation amplitudes that are larger than any known

optically dressed system.

Here we demonstrate room temperature Rabi flopping in a two-level quantum emit-

ter coupled to an electron beam in a scanning transmission electron microscope. This is

done by directly measuring the temporal statistics of the cathodoluminescent signal using a

Hanbury-Brown Twiss interferometer. Neutral NV center defects in diamond nanocrystals

are used as a two-level system. These crystals are placed on a 120 nm silver pillar with a

plasmonic response resonant with the NV center zero-phonon line in order to improve the

signal-to-noise ratio (SNR). The plasmonic response of the diamond nanocrystal mediates
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Figure 4.1: Single diamond nanocrystal on silver pillar for CL spectroscopy; the silver
nanopillar is carved from a single-crystal silver plate by focused-ion beam milling. Right
side is a scanning electron microscope image of a diamond nanoparticle functionalized
silver nanopillar.

the simultaneous coherent excitation of multiple defect sites that lead to measurements that

appear to be nth order nonlinearities in the second-order correlation functions.

Second-order correlation functions are measured for the phonon-coupled and zero-

phonon loss spectral bands. The Rabi flopping observed in these correlation curves violates

the Cauchy-Schwarz conditions for classical light sources, described in equations 1.28 and

1.31, providing the first evidence for electron-beam dressing of NV centers. We describe

a rudimentary model for electron-beam driven two-level systems in analogy to the existing

theory for optical excitations in section 4.2.[83]

Negatively charged NV centers have been identified as potential qubits for quantum in-

formation processing, because of the interaction strength between the optically addressable

electronic transition and the long-lived spin states.[84] An advantage of using neutral NV

defects is that the neutral defect has fewer states to decay through than the negative defect.

This means that there is only one radiative transition that needs to be considered when

measuring the statistical distribution of cathodoluminescence from these color centers.
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4.1 Electronic dynamics of NV 0 and NV− defects

When optically exciting NV defects, it is possible to address a specific electronic tran-

sition by tuning the wavelength of the excitation source. For instance, the non-phonon

assisted transitions that are commonly studied for NV 0 and NV− lie at 575 nm and 637 nm

respectively, as illustrated in figure 4.2a and b. The photoluminescence emission from this

system will then be dominated by the 2A−2 E transition because it is the only radiative tran-

sition in the system if negatively charged defects are not present. The cathodoluminescent

studies shown here excite higher energy transitions such as the EP = 30eV bulk plasmon

mode in addition to the 2A−2 E transition. [86, 87]

The NV center cathodoluminescence generated in a STEM is shown in figure 4.3. The

two main peaks of this emission are the zero-phonon line (ZPL) at 575 nm and the phonon-

broadened emission centered around 650 nm. Both of these spectral features come from

the transition between the 2A and the 2E state shown in figure 4.2b. In the later parts of

(a) (b) (c) 

Figure 4.2: (a) An NV center in a diamond lattice consisting of a single nitrogen molecule
adjacent to a missing carbon atom.[85] (b) The electronic structure of the neutral defect
state (NV 0) contains doublet ground and excited states (2E and 2A) along with a quartet
excited state (4A2) (c) The negatively charged defect state (NV−) contains triplet ground
and excited states (3A2 and 3E) along with two singlet states (1E and 1A1)[84]
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Figure 4.3: (a) Cathodoluminescence spectrum from a 120 nm single-crystal diamond with
a high density of NV 0 defects, >1200 defects/particle. The green shaded region is the
zero-phonon line (ZPL) and the red-shaded region is the phonon-assisted emission.

this chapter we will examine the effects of phonon scattering on the photon statistics by

spectrally filtering out phonon broadened emission, effectively post-selecting the photon

statistics of the zero-phonon line CL. The phonon-assisted emission has a much larger

bandwidth, ∼ 200 nm, than the ZPL, ∼ 10 nm, so that the phonon broadened CL exhibits

higher signal to noise ratios at the expense of reduced coherence.

The diamond nanoparticles used in these experiments were dropcast onto a 50 nm thick

silicon nitride membrane and excited using a VG-601 scanning transmission electron mi-

croscope (STEM). Fabrication details for this membrane can be found in Appendix D. The

diamonds used here are of a nominal size of 120 nm with greater than 1200 defects per par-

ticle and were purchased from Sigma Aldrich®. The diamond nanoparticles were dropcast

onto single crystal silver plates in order to increase the signal to noise ratio of the cathodo-

luminescence. A FEI Novalab 600 Dual-Beam (electron/ion) focused ion beam (FIB) was
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then used to carve out a 4µm ring shaped hole around a single crystal. This created a sil-

ver pillar of ∼ 120 nm diameter with a diamond crystal on top as seen in Figure 4.1. The

Ag crystal plates were on the order of 1 µm thick and 50 µm wide leaving enough empty

space on the 500µm wide SiN membrane for characterizing diamond particles that were

completely isolated from silver.

4.2 Rabi flopping in strongly-driven two-level systems

When a two-level system is driven continuously, the probability of the system existing

in the excited state varies sinusoidally as a function of time. As shown in the reference

[83], this can be seen in the solution of the Hamiltonian for a two-level system driven by

a near-resonant sinusoidal potential such as an optical field. The general solution to the

time-dependent Schrödinger equation can be written as

Ψ(t) = ∑Cn(t)e−iEnt/h̄
φn (4.1)

where Cn(t) represent the time-dependent probability amplitudes. For any real systems

that have several possible transitions, this equation cannot be analytically solved. But,

when only one transition is taken into account, this solution can be simplified to,

Ψ(t) =C1(t)φ1e−iE1t/h̄ +C2(t)φ2e−iE2t/h̄ (4.2)

Under the rotating wave approximation, as described in [88], the solutions to the time-

dependent coefficients can be written as,

C1(t) = eiδ t/2(cos(Ωrt/2)− i(δ/Ωr)sin(Ωrt/2))

C2(t) = i(V0/Ωrh̄)eiδ t/2sin(Ωrt/2)
(4.3)

The sinusoidal terms in this solution describes the Rabi flopping with a transition frequency
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Ωr = [δ 2 +V 2
0 /h̄2]1/2, where δ represents the detuning between the driving field and the

transition wavelength, ωl −ωo, ωl is the perturbation frequency, ωo is the transition fre-

quency, and V0 is the amplitude of the harmonic perturbation.

The semi-classical model used above treats the two-level system quantum mechani-

cally but the driving field classically. While this is sufficient to derive the Rabi flopping

frequency, in order to understand the photon statistics of such a system we will quantize

the optical field, as shown in reference [47], to derive the second-order correlation function

for an optically driven system. While the electron beam cannot be treated as a sinusoidal

potential, the diamond plasmon excited by the electron beam can be described in terms

of raising and lowering operators. [89, 90, 91] We provide a simple model to outline th

differences between the optically driven and electron-beam driven Hamiltonian.

We can write the Hamiltonian for the opticall driven system by treating it as an open

system, HS, coupled to a thermal reservoir, HR.

H = HS +HR +HSR

HS = h̄ω0a†a+
1
2

h̄ω0σz + h̄(κ0a†
σ−+κ

∗
0 aσ+)

HR = ∑
k,λ

h̄ωkb†
k,λ bk,λ HSR = ∑

k,λ
h̄(κk,λ b†

k,λ σ−+κ
∗
k,λ bk,λ σ+)

(4.4)

where a and a† are annihilation and creation operators in an incident beam of frequency ω0

and wave vector k0. The operators b and b† fulfill this role for the vacuum state of frequency

ωk and wave vector, k. σz,+,− are pseudospin operators, κ0 describes the coupling between

the incident beam and the two-level system, and κk,λ describe the coupling between the

two-level system and the vacuum state. The pseudospin operators allow us to treat a two-

level system in an electric potential analogously to a spin in a magnetic field.

The derivation of the master equation in the density-matrix picture for this Hamiltonian

is well known and can be found in reference [92].
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dρ

dt
=

1
ih̄
[HS,ρ]+

γ

2
(2σ−ρσ+−ρσ+σ−−σ+σ−ρ) (4.5)

In this master equation, γ is the decoherence rate. This equation can lead in general to a

large number of coupled equations that can be difficult to solve. However, for the two-level

system interacting with the incident field, the density-matrix elements can be described as,

d
dt



ρ22

ρ11

ρ21

ρ12


=



−1
4γ

1
4γ 0 0

1
4γ −1

4γ 0 0

−1
2γ −1

2γ −(3
4γ +2in̄1/2κ) −1

4γ

−1
2γ −1

2γ −1
4γ −(3

4γ−2in̄1/2κ)





ρ22

ρ11

ρ21

ρ12


(4.6)

where n̄ is the average photon number. In order to evaluate second-order correlation func-

tions for this system, we must evaluate the atomic matrix elements using this system of

equations. We can define the vector,

ρ̃=
1
2



ρ22 +ρ11

ρ22−ρ11

ρ21 +ρ12

ρ21−ρ12


(4.7)

Using this vector, we can write the formal solution,

˜ρ(t)= SeΛtS−1ρ̃(0) (4.8)

where S is represented by,
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S =



S1 0 0 0

0 S2 0 0

− γ2S1
γ2+8n̄κ2 0 S3 −2in̄1/2κS4

γ

4−Ω

2in̄1/2κγ2S1
γ

2 (γ
2+8n̄κ2)

0 2in̄1/2κS3
γ

4−Ω
S4


(4.9)

Λ = D(0,−γ

2
,−3γ

4
+Ω,−3γ

4
−Ω)

Ω = (
γ2

16
−4n̄κ

2)1/2
(4.10)

where Λ is a 4x4 diagonal matrix in the formal solution to the master equation written in

equation 4.8. Once again we can see the origin of the time-dependent oscillations of the

state of the two-level system. When Ω is imaginary it’s clear from eqns 4.8 and 4.10 that

we’re in a strongly driven regime exhibiting Rabi oscillations with frequency −iΩ. This

defines a dressed state limit that can be induced via strong light-matter coupling, κ , or large

photon number, n̄.

4.3 Second-order correlation functions and Rabi flopping

We utilize a Hanbury-Brown Twiss interferometer to observe describe quantum coher-

ent dynamics of the CL generated in the STEM. This interferometer generates a second-

order correlation function, g(2)(τ) that exhibits Rabi flopping violating the Cauchy-Schwarz

conditions on classical light sources as described in equations 1.28 and 1.31.

The experimental schematic for this experiment is shown in figure 4.4. A beam splitter

was used to split the cathodoluminescence signal onto two single-photon counters (Micro

Photon Devices© PDMs). A single-photon event timer (PicoQuant® Hydra Harp 400) was

used to monitor the time of arrival between consecutive photons, or coincidences, with a

resolution of 64 ps. The event timer built histograms over 104s to generate the g(2)(τ)

curves presented here. A 2 meter long cable was used as an artificial delay line on detector
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Figure 4.4: Hanbury Brown-Twiss experimental setup.

A, so that g(2)(τ) could be observed for both the positive and negative values of τ . An

optical bandpass filter (Semrock FF01-575/5-25) was used to single out the ZPL for detec-

tion for a portion of these experiments. Photon bunching from a well known thermal light

source was used to determine the delay point at which τ = 0.

In order to calculate the second-order correlation curve from the raw data, we use a

binomial expansion on equation 1.19,

g(2) =
2P(2)+6P(3)+ . . .

(P(1)+2P(2)+ . . .)2 (4.11)

where P(N) is the probability of detecting N photons simultaneously. For these experi-

ments, we have sufficiently low intensities that we can make the approximation that P(1)>>

P(2)>> P(3). From this we can write,

72



g(2) =
2P(2)

PA(1)PB(1)
(4.12)

For a completely coherent emission source, the g(2) curve has a constant value of one

for all τ . A thermal state has super-poissonian statistics that result in g(2)(τ = 0) > 1 and

g(2)(τ 6= 0) < g(2)(τ = 0). These two photon distributions are characteristic of classical

light sources. Anti-bunched light has a g(2)(τ = 0) < 1 which violates one of the two

conditions placed on classical light sources as described in equation 1.28. While g(2)(τ =

0)< 1 can suggest single-photon behavior, until it reaches 0.5 it can easily be explained by

an interference between two different coherent states or by a source with a small photon

number.

We modify equation 4.4 to include N emitters by replacing σ− with σ−,i and σ+ with

σ+,i and summing over all emitters. The results of this model are shown in the second-order

  

Figure 4.5: Second-order correlation curve for the Hamiltonian shown in equation 4.4 for
N excitations. N directly represents the number of NV centers contributing to the cathodo-
luminescence signal.

73



correlation curves in figure 4.5 for one to five emitters. For large numbers of emitters, g(2)

approaches one because of the stochastic nature of the light-matter interactions.

The electron-beam excitation used here fundamentally alters the Hamiltonian for op-

tically driven systems described in equation 4.4. The diamond nanocrystal has a known

bulk plasmon response at EP = 30eV that can couple to the electron beam. Whereas each

photon in the optically driven system in figure 4.5 can couple to only one of N emitters,

the plasmon coherently decays into up to 14 NV centers. Equation 4.4 can be rewritten to

describe these dynamics by replacing the photon creation and annihilation operators of the

driving field with plasmon creation and annihiliation operators, and by replacing the pseu-

dospin operators with a tensor product of N pseudospin operators describing the N NV

centers excited by the diamond plasmon. In the weakly driven regime, this Hamiltonian is

consistent with the photon bunching observed in [57] as a result of the simultaneous exci-

tation of N emitters. In the dressed state regime, this Hamiltonian describes an effective

Nth order nonlinearity resulting in Rabi flopping with amplitudes that increase with N in

contrast with optically driven systems. These calculations are being numerically modelled

using the quantum toolbox in python (QuTiP) but the results for the electron driven systems

are beyond the scope of this dissertation.[93]

4.4 Results and discussion

In order to achieve sufficient SNR, diamond nanoparticles were placed on silver nanopil-

lars on SiN membranes resulting in almost seven-fold stronger CL intensity. The plasmonic

enhancement can be seen as a function of electron-beam current in figure 4.6.

The enhanced CL intensity may be a result of Purcell related effects or of additional

electron-scattering events or of enhanced NV center excitation mediated by the silver plas-

mon. The increased recombination rate characteristic of a Purcell effect was not observed

in the envelope of the second-order correlation function. This envelope, however, is a

measure of the coherence time of the system which is determined by a combination of
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Figure 4.6: (a) Total CL signal as a function of electron beam current for an isolated dia-
mond nanoparticle on SiN (blue) and a diamond nanoparticle on top of a Ag pillar (red).
(b) Enhancement factors for the diamond CL as calculated as the ratio of total signal from
plasmonically enhanced diamond to isolated diamond.

the recombination rate and phonon-induced dephasing. Because of the significant phonon

population illustrated in figure 4.3, the coherence time is not likely representative the life-

time of the system. Therefore, we did not observe the decreased luminescence lifetime that

would unambiguously confirm that this enhancement was the result of a Purcell effect.

4.4.1 Second-order correlation

Previous work done on NV centers in a STEM were done at cryogenic temperatures

in order to gather enough signal to show anti-bunching behavior from a single defect site.

[56] Here we will look at the statistics of the plasmonically enhanced signal at room tem-

perature. Second-order correlations from plasmonically enhanced NV centers were viewed

in two different spectral regimes. First, we will measure the statistics of the entire emission

without optical filtering. This will include both the ZPL and the phonon-assisted emission.

A completely unfiltered g(2) curve for the plasmonically enhanced NV center is shown

in figure 4.7. The diamond nanocrystals used in this experiment were of comparable defect

density to those used in[57], with greater than 1200 NV centers per particle, but the 1 nA
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Figure 4.7: Second order correlation curves for optically unfiltered cathodoluminescence.
Rabi flopping oscillations of approximately 1.7 ns in period are present. This measurement
was taken with an electron-beam current of 1 nA.

current used was orders of magnitude greater. The maxima of these oscillations violate the

Cauchy-Schwarz condition for classical light sources defined in equation 1.28, but not the

one listed in equation 1.31, suggesting that the large phonon population results in a slight

decoherence of the electron-beam driven system.

The Rabi oscillations in the effective two-level nitrogen vacancy center defect coupling

to the electron beam are qualitatively consistent with the model in section 4.3. The current

used in this measurement is approximately 1 nA which corresponds to an average of one

electron arrival every 160 ps. This excitation rate is below the room temperature lifetime

of neutral NV defects of ∼ 20 ns [94] analogous to a continuous wave photonic excitation

source. The Rabi flopping period is about 1.7 ns, and has a decoherence time on the order

of tens of nanoseconds which is consistent with previous optically driven second-order

correlation measurements.
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Figure 4.8: Second-order correlation curves for cathodoluminescence spectrally filtered
a bandpass filter centered at the ZPL, 575 nm. The same 1.7 ns Rabi flopping period is
present.

4.4.2 Zero-phonon line statistics

This experiment was performed on the same plasmonic system after adding a bandpass

filter centered at the ZPL of 575 nm in front of the beamsplitter in the Hanbury Brown-

Twiss interferometer. Since the ZPL and the phonon-assisted emission are spectrally over-

lapping, this did not completely filter out the phonon assisted emission, but it does allow

the statistics of the ZPL to be the dominant signal in the g(2) curve. The overall Rabi flop-

ping signature retains the same period as with the unfiltered signal, but the amplitude of the

oscillations is significantly larger. By filtering out the phonon-broadened signal, we have

effectively removed a major source of decoherence. This can be seen in the violation of

both of the classical conditions written in equation 1.28 and equation 1.31.

77



Figure 4.9: Electron beam current dependence of photon-bunching for unfiltered CL.

Figure 4.10: Electron beam current dependence of photon-bunching for bandpass filtered
CL at 575 nm.
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4.4.3 Rabi oscillation amplitude current dependence

As seen in both figures 4.10 and 4.11, the magnitude of the Rabi oscillation amplitude

decreased as the electron beam current was increased. This is qualitatively similar to the

reduced bunching with increasing current as seen in NV centers weakly driven by electron

beams.[57] As the current is increased, more diamond plasmons are excited within the

lifetime of a single defect site. Because each plasmon excites fourteen or fewer NV centers,

the system is operating well below saturation and additional NV centers are excited with

each excited plasmon. Increasing the electron-beam current in this scenario is analogous

to increasing the number of emitters in the photonic picture illustrated in figure 4.5. The

Poissonian distribution of electrons within the electron beam drives g(2) towards one with

increasing current similarly to the stochastic nature of light-matter interactions driving g(2)

towards one with increasing N. A complete numerical model of this system is still in

development.

This is the first demonstration of quantum coherent dynamics in an electron micro-

scope. The nth order nonlinearity in the Hamiltonian describing the electron-beam dressed

state suggests that in a sufficiently coherent system the technique described here could

enable the generation of scalable entanglement. With increasing interest in coupling quan-

tum states of light into plasmonic structures [95, 96], particularly for ultratrace plasmonic

sensing [97, 98], the ability to generate scalable entangled states of light on-chip will en-

able parallelizable quantum sensors capable of resolving signatures previously buried in

quantum noise.
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Chapter 5

Conclusion

The overarching goal of this dissertation was to explore the limits of efficiency and

control of nonlinear plasmonic systems. We have demonstrated several methods of us-

ing the plasmonic near-field to enhance optical nonlinearities at the nanoscale. This work

demonstrates a powerful means of engineering χ(2) of plasmonic metasurfaces as well as

generating coupling strengths strong enough to induce novel quantum optical phenomenon.

A key theme throughout this dissertation has been to design optical experiments in order

to gain superior temporal resolution than in previous work. This has allowed us to directly

observe energy dynamics that have to date been, to the best of our knowledge, unobserved.

5.1 Major achievements

These experiments have answered a few questions on the subject of nonlinear plasmon-

ics, but, more importantly, they have opened up an entirely new class of experiments that

will further our fundamental understanding of nonlinear plasmonics. First we will outline

the major achievements of this work.

5.1.1 Archimedean nanospirals

We have demonstrated a novel plasmonic geometry with no planar symmetry with a

stronger χ(2) than any previously reported fully metallic plasmonic antenna. The effec-

tive second-order susceptibilty was de f f = 15.3 pm/V , approximately four times larger

than that of bulk beta-barium borate. We have characterized the chiral characteristics of a

two-dimensional plasmonic antenna via polarization conversion of light as it is converted

into second-harmonic light. This polarization conversion was not only more efficient than
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previous plasmonic elements, but was able to convert between polarizations across the lin-

ear, circular, and depolarized states. STEM-CL measurements experimentally verified the

near-field profile of the nanospiral plasmon that had previously only been simulated. This

also demonstrated a powerful non-perturbative means of measuring the near-field profiles

of complex plasmonic systems.

5.1.2 The serrated nanogaps

We have designed a novel spectroscopy technique involving the interference of an opti-

cal pulse and a plasmonic resonance to probe the changes in the nonlinear susceptibility of

a dielectric material under plasmonic exposure. Using the new type of spectroscopy, real-

time oscillations in the second-order nonlinear susceptibility with a temporal resolution of

100as were observed. This resolution is not the limit of the experimental technique demon-

strated here, but there was no information to gain from this system past this resolution. We

have designed a plasmonic geometry that can serve as a platform for studying the nonlinear

properties of any thin film material that can be deposited within the serrated nanogap.

5.1.3 Electron beam induced Rabi flopping in nitrogen vacancy centers

We have demonstrated Rabi flopping in NV centers coupled to an electron beam at room

temperature with coherence times on the order of tens of nanoseconds. We have observed

the differences between the maximum second-order correlation values of zero-phonon and

phonon-assisted cathodoluminescence.

Each of these contributions has made progress towards a singular goal. We have de-

signed and implemented three unique metasurfaces that have pushed the limits of nonlinear

optical interactions in nanostructured systems.
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5.2 Future work

While these achievements are exciting for the advancement of plasmonics technology,

perhaps what is more exciting is the experiments that are left to be done on each of these

systems.

5.2.1 The Archimedean nanospiral

The SHG experiments using the nanospiral were done by varying the geometry over

a small parameter space. Due to time limitations, we did not fabricate enough nanospiral

arrays to completely optimize nanospiral geometry. While the 4π spiral with the spe-

cific dimensions described in chapter 2 was a particularly good harmonic generator, the

harmonic conversion efficiency could potentially be enhanced by optimizing the winding

number, arm width, and arm spacing. Also, there are many more types of spirals than the

Archimedean one.

5.2.2 Spatial light modulation

The spatial light modulation techniques used in chapters 2 and 3 only scratched the sur-

face of the potential this process has in the study of plasmonics. The temporal control that

the SLM allows over the structure of optical pulses could be a boon to both the study of

plasmonic nonlinearities and material properties. We have preliminary data that shows an

enhancement of the nanospiral harmonic conversion efficiency of about 10% when deviat-

ing from a transform limited pulse using a third order polynomial modulation to the optical

pulse in frequency space. This shows that the optimal light pulse for harmonic generation

is not one that solely generates maximum instantaneous intensities. This process of optical

pulse engineering is not specific to the nanospiral, but the complex spatial profile of the

nanospiral near-field might be particularly well suited to this type of enhancement.
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5.2.3 Second-harmonic interferometry

The interferometry techniques demonstrated here only used PMMA as a dielectric ma-

terial. This was because PMMA has no natural second-order nonlinear response. This

made it easy to detect a change in χ(2) of this material. The technique we have designed

could be used to investigate any material that could be deposited in a thin film within the

gap. With processes such as atomic layer deposition and chemical vapor deposition, this

could easily be done with dielectric materials that have inherent nonlinearities without be-

ing exposed to plasmonic fields. It is already known that plasmons can drive the nonlinear

properties of materials that already have impressive conversion efficiencies. [41, 42] This

technique could reveal the temporal dynamics of these materials and how they respond to

plasmonic fields. The serrated nanogap itself could potentially be coupled to a strongly

nonlinear material such as GaAs in order to generate an efficient nonlinear plasmonic de-

vice.

5.2.4 Cathodoluminescence photon statistics

We have presented exciting results for exploring plasmonic coupling to longer lived

excitations like excitons. The electron beam provided a passive driving field with nanoscale

spatial resolution, but no active control over the quantum dynamics of the coupled system.

Integrating a dynamically tunable optical control field with the existing electron microscope

will enable us to engineer more complex quantum states by introducing active control to the

Hamiltonian of the coupled system. Quantum emitters that are less well known for single

photon behavior than the NV center in diamond will be investigated. The relatively long

lived plasmonic Fano resonance could potentially couple more strongly to these quantum

systems due to an increased quality factor. The Ag pillars that were used in this dissertation

were not tuned with respect to the NV defect emission wavelengths, nor was the mode

volume of the plasmon minimized.
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Appendix A

Finite-difference time-domain simulations

FDTD simulations are centered around two approximations of the exact solutions of

Maxwell’s equations. The first approximation is that the electric and magnetic fields prop-

agate through a cubic lattice known as the Yee cell. This effective quantitization of space,

as seen in Figure 1.7, is composed of two interlocking lattices of the electric and magnetic

portions of the local field. In order for this approximation to yield accurate results, we must

choose a lattice constant for the Yee cell such that the electric and magnetic fields do not

change appreciably over a single lattice increment. This means that the resolution of our

numerical analysis must be smaller than a fraction of the wavelength, ∼ ∆x̂ < λ/10. The

second approximation is referred to as the “leapfrog arrangement”. This means that while

both the calculations for Ẽ and H̃ are coupled to one another via Maxwell’s equations, they

Figure A.1: (a) Two-dimensional section of the Yee cell electric field lattice(b) Two-
dimensional section of the Yee cell magnetic field lattice.(c) Three-dimensional represen-
tation of the Yee cell with interlocking electric and magnetic field lattices. [99]
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are not calculated simultaneously. Instead, they are solved sequentially in time. Ẽ will be

solved for a particular time step using previously stored data for H̃, and then the next time

step will be solved for H̃ using the previous data for Ẽ. The advantage of this leapfrog

time-stepping is that it can calculate the coupling effects between Ẽ and H̃ while avoiding

the time consuming simultaneous solution. [100, 101, 102]

This simulation method can accurately reproduce the far-field emission characteristics

of the plasmon resonance, e.g. scattering and transmission, but it is obviously not limited to

the far-field. Since Ẽ and H̃ were directly calculated as a function of time and space, we can

infer the spatial electric field profile of the plasmonic resonance. This is especially useful

for plasmonic characterization as near-field measurements must involve interaction with

the plasmonic system at a sub-diffraction size scale. There are a few reliable experimental

procedures for doing this, but they are cumbersome and time-consuming in comparison

to a few hours use of a computer simulation. Figure 1.8 shows the results of an FDTD

simulation on the near-field of a plasmonic gold nanorod. From here we can easily infer the

spectral and spatial positions of the plasmon resonance. In short, FDTD simulations allow

(a) (b) 

Figure A.2: Finite-difference time-domain (FDTD) simulations of gold nanorods excited
with light polarized in the (a) x-direction at λ = 695nm and (b) y-direction at λ = 905nm.
The color scale represents the electric field enhancement factor.[103]
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us to accurately fabricate plasmonic structures with dimensions that produce the desired

dielectric functions, as well as probe the near-field of these structures. We can predict how

plasmons will change upon a alteration of their dielectric environment and how they will

couple to nearby charge distributions. Near-field information of these plasmonic structures

has led to several important plasmonic applications such as electromagnetically-induced

transparency and single-molecule detection. [104, 105, 106, 107]
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Appendix B

Calculations for SHG efficiency and d(2)
e f f

When calculating the SHG efficiency for plasmonic metasurfaces, one must be care-

ful to consider all of the experimental parameters that are not essential to the nonlinearity

of the plasmonic antenna but still contribute to the overall nonlinear signal. These effects

constitute a set of correction factors that are necessary to correctly calculate a metasurface

nonlinear conversion efficiency. The correction factors that are used in this calculation are:

• filling factor
• background signal
• fundamental leakage

• detector efficiency
• transmission of optical filters
• SHG from other sources

B.1 SHG efficiency

The equation for harmonic conversion efficiency is quite simple. It’s just the ratio of

the total intensity of the nonlinear emission and the fundamental excitation.

ηSHG =
I(2ω)

I(ω)
(B.1)

Where, ideally, the term 2ω is purely a result of the second-harmonic produced by

the plasmonic antenna. This is, of course, not the case. All of the things listed above

can contribute or diminish the total signal and must be corrected for individually. The

background contribution, fundmental leakage, and SHG from other sources can all be dealt

with by performing an SHG measurement on the bare substrate that is being used to support

the plasmonic particles. This signal can then be subtracted from the SHG signal from the

plasmonic source. There will be an error created by plasmonic enhancement of SHG from

the substrate.
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The other factors are simply a matter of careful measurement and calibration. The

detectors and filters were calibrated using a well known light source. The filling factor of

the nanoparticles was calculated using a scanning electron microscopy image of the particle

array. The final equation used was:

ηSHG =
Imeasured(2ω)− Isubstrate(2ω)

I(ω) · f
(B.2)

Where f is the filling factor of the plasmonic array. I(ω) was calculated based on the laser

power as measured by a silicon photodetector.

B.2 Effective second-order susceptibility for the Archimedean nanospiral

The effective second-order susceptibility is written in [3] as

P(2ω) = 2εde f f E(ω)2 (B.3)

which leads to

de f f =
cnP(2ω)

I(ω)
(B.4)

So the question now becomes how to calculate the dielectric polarization P(2ω) . We

can do so by treating electrons in the nanospirals as Hertzian dipoles, for which, in the

classical model of the one-dimensional oscillator, we have a time-varying polarization

P(2ω) = Nex(t), with x(t) being determined by the oscillation frequency at 2ω . The oscil-

lation frequency at 400 nm is ν = cλ = 0.75 ·1015 Hz. Assume that the electrons can move

at the Fermi velocity, which for gold is νF = 1.4 ·106ms−1. The dipole moment x0 involves

the distance over which the electron can oscillate in one cycle of the electromagnetic field

is x0 = νF/ν = 1.4 · 106ms−1/0.75 · 1015Hz = 1.87nm . From this we can then calculate

(again, still in the classical model) P(2ω) = Nex0 given that the free-electron density in the

gold is N = 5.9 ·1028m3 ,

88



P(2ω) = Nex0 = (5.9 ·1028m−3)(1.6 ·10−19C)(1.87 ·10−9m) = 17.6Cm−2 (B.5)

The energy in a single pulse is 0.33 pJ, with a pulse duration of 15 fs; the focal spot

diameter is nearly diffraction-limited and we assume 10 m. The intensity for a single pulse

is therefore

I =
4P(ω)

πw2
0

= 1.12 ·1012Wm−2 (B.6)

We must then correct for the quantum efficiency (measured to range from 3.6 ·10−9 to

1.4 ·10−8), because not every electron is excited at 400 nm; we do not need to correct for

the filling fraction within the focal volume (0.12) because that is taken into account by the

way we measured overall efficiency. Then for the effective second-order susceptibility, we

have

de f f = ηSHG
cnP(2ω)

I(ω)
(B.7)

Using this formalism for linear polarization and left and right handed circular polariza-

tion, we calculated the effective second-order susceptibilities reported in chapter 2.
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Appendix C

Optical damage in plasmonic antennas

Unlike their macroscale counterparts, optical antennas have a great deal of non-radiative

loss. This causes substantial heating of these antennas. If pumped with intense enough

light, irreversible damage will take place. Figure C.1 shows an SEM image of a nanospiral

that was excited with an optical power exceeding 30 mW. The nanospirals nonlinear and

chiral properties were lost after being overexposed.

In order to avoid this, a linear polarizer and half-wave plate combination were used

to tune the power of the incident laser. It is important to note that there are publsihed

methods for protecting metallic antennas from melting by encasing them in a thin film of

silica or similar transparent materials. This method was not used here, but it could be easily

employed to push the overall efficiency of the nanospiral harmonic conversion efficiency

Figure C.1: Gold nanospiral arrays after being exposed to laser powers exceeding the melt-
ing threshold of the antenna.
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even higher.
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Appendix D

Fabrication details for EBL, FIB, and SiN membranes

D.0.1 Nanostructure fabrication

There are several different methods for fabricating plasmonic nanostructures with vary-

ing degrees of precision on mass-production capacity. There only two that are relevant to

the experiments presented here are electron beam lithography (EBL) and focused ion beam

milling (FIB). Here we will outline the basic procedures that were used to create nanostruc-

tures used throughout this research. The two techniques are similar in that they both use a

charged particle beam in order to mill out a specific geometry. They are unlike chemical

synthesis methods in that each individual nanoparticle is formed in a deterministic man-

ner, however they are limited in their ability to manufacture large numbers of structures

efficiently.

EBL is a process where a resist material is damaged in order create a mask in the shape

of the desired nanostructure geometry. Figure 1.9 shows this process using negative resist

and a glass substrate with a 2 nm indium tin oxide (ITO) layer. ITO covered glass is the

substrate that is used for the majority of the EBL reported here, but the only requirement on

the substrate is that it be conductive. This prevents a build up of charge from the electron

beam current. A resist material is then deposited onto the substrate and then exposed with

the electron beam in the pattern of the desired nanostructure. The exposure causes the

molecular structure of the resist to break down so that it may be more easily removed via

a solvent. After the damaged resist is removed, the metal of choice is deposited across

the entire surface. After the entirety of the resist is removed, all that is left is the metallic

nanostructure. Plasmonic structures made with this process can have feature sizes on the

order of 20 nm. Some simple structures can even push this limit down to a few nanometers.
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Figure D.1: Electron-beam lithography (EBL) process.

This lower limit on resolution is largely due to the effective interaction volume of the

electron. [108, 109, 110]

The other method used in this research for the fabrication of plasmonic structures is

focused ion beam milling. This is where the sample begins as a solid piece of material

such as a metallic or dielectric film and is milled out using an ion source. Some of the pri-

mary elements used for FIB are gallium, argon, and helium. Gallium and argon based FIB

processes can reach spatial resolutions on par with EBL, however helium ion sources can

surpass EBL by approximately a factor of two. Figure 1.10 demonstrates the FIB process

using a thin metallic layer being milled by a gallium ion source. Fabricating plasmonic

structures using FIB is clearly superior to EBL when generating structures where the plas-

mon is defined by the boundary conditions of the vacuum, such as a hole or a grating.

However, when generating geometries that involve individual particles like in Figure 1.9,

this can be time consuming. [111, 112]

Since neither the fabrication nor simulation process is limited to analytical geometries

such as the disc or rod, it is a natural next step to observe the near-field profiles and the

dielectric functions of more complex nanostructures. Here we can begin to observe the
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Figure D.2: Focused-ion beam milling (FIB) process.

effects of curved electron paths and coupling to other systems. These complications will

actually be critical to the nonlinear optical effects that we will report in the experimental

sections.

D.0.2 Silicon nitride membranes

The silicon nitride membranes that were used in the cathodoluminescence experiments

in chapters 1 and 4 were made by a series of etching processes on a 300µm thick silicon

wafer with 50 nm of silicon nitride on both sides. These wafers were fabricated by the

staff at CNMS. Any electron beam lithography on the surface of the silicon nitride was

done beforehand. After EBL, windows were etched into the backside silicon nitride with

reactive ion etching and into the silicon with KOH etching. Afterwards, all that remained

was the front facing silicon nitride window.

Fabrication details such as dosing, CAD files, and etch times can be found in the fabri-

cation CAD computer at CNMS as well as the clean room notebooks there.
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