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 CHAPTER I 

 

INTRODUCTION 

 

The purpose of this research work is to explore how to improve robot-assisted 

rehabilitation of upper extremity impairment following stroke. The background, literature 

survey, scope and summary of current research work will be presented in this chapter. 

 

Stroke & Stroke Rehabilitation  

Upper extremity impairment is a prevalent outcome for a variety of neuromuscular 

disorders, such as stroke. According to the American Stroke Association, each year about 

795,000 Americans experience a new or recurrent stroke; i.e., every 40 seconds in the 

United States, someone suffers a stroke [1]. 60-75% of these patients will live beyond 

one year after the incidence, resulting in an estimated stroke population of 7 million [1-3]. 

Arm function is acutely impaired in a large majority of those diagnosed with stroke [4-6]. 

Furthermore, acute hemiparesis presages chronic hemiparesis in over 40% of individuals 

[5, 6] suffering from stroke. Chronic deficits are prevalent in the distal upper extremities, 

especially with regard to finger extension [7]. Anything that could help patients regain 

useful functions of upper limbs, help with activities of daily living, and make them more 

independent, would be useful. 

Clinical results have indicated that movement assisted therapy can have a significant 

beneficial impact on a large segment of the population affected by stroke. In recent years, 

new techniques adopting a task-oriented approach have been developed to encourage 
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active training of the affected limb, which assume that control of movement is organized 

around goal-directed functional tasks [8, 9]. “Shaping” is one of the task oriented 

behavioral training techniques employed in Constraint-Induced Movement (CI) therapy 

[8-10], which has the effect of placing optimal adaptive task practice procedures into a 

systematic, standardized and quantified format. The availability of such training 

techniques, however, is limited by the amount of costly therapist’s time they involve, and 

the ability of the therapist to provide controlled, quantifiable and repeatable assistance to 

complex arm and hand motion.  

Consequently, robot assisted rehabilitation could be used to automate labor-intensive 

training technique, to provide programmable levels of assistance to the patients, and to 

quantitatively monitor and adapt to the patient’s progress during rehabilitation. 

 

State-of-the-Art in Robotic Systems and Devices for Upper Extremity Rehabilitation 

Robot-assisted physical rehabilitation has been an active research area for the last few 

years to assist, enhance and quantify rehabilitation. The robot-assisted therapies provide 

autonomous training where patients are engaged in repeated and intense practice of goal-

directed tasks leading to improvements in motor function. Rehabilitation robotic devices 

and systems are being developed to automate therapy for the arm, wrist and hand 

following stroke. The MIT-Manus (Massachusetts Institute of Technology Manus) [11, 

12] (Figure I-1.a), Assisted Rehabilitation and Measurement (ARM) Guide [13, 14] 

(Figure I-1.b), Mirror Image Movement Enabler (MIME) [15-17] (Figure I-1.c) and 

GENTLE/s [18] (Figure I-1.d) are developed to facilitate the arm movement of stroke 

patients. Robotic devices designed for wrist rehabilitation have been reported in [19-21]. 
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New rehabilitation therapy environments are developed to permit the training of real-life 

functional tasks involving reaching and grasping [22]. In recent years, a number of 

devices have been developed expressly for or applied to hand rehabilitation. These 

include both commercial products, such as CyberGrasp (Immersion Corporation, San 

Jose, CA) [23], the Hand Mentor (Kinetic Muscles Inc., Tempe, AZ) [24], and the 

Amadeo Hand System (Tyromotion GmbH, Graz, Austria) [25]. Experimental devices 

include Rutgers Master II-ND [26], HWARD [27], and HandCARE [28], among others 

[29-31].  

 

 

Figure I-1 Robotic Systems for Arm Rehabilitation 
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The CyberGrasp [23] is a commercial hand assistive device which is built to provide 

extension forces to the tips of the fingers and the thumb for grasping (Figure I-2). 

However, this device cannot provide flexion forces. The CyberGrasp is developed as part 

of a CyberGlove for interactions with virtual environments, and has been successfully 

used in medical applications and remote handling of hazardous materials. 

 

 

Figure I-2 CyberGrasp 
 

The Hand Mentor [24] (Figure I-3) is an exercise therapy device that encourages the 

patient to extend their wrist and fingers as much as possible on their own. When 

maximum self extension is achieved the Mentor engages a pneumatic actuator and assists 

the movement of the wrist and fingers to full extension. In addition to recruitment of hand 

function, the Mentor actively stretches the hand in an effort to reduce spasticity. 
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Figure I-3 Hand Mentor 
 

The Amadeo Hand System [25] (Figure I-4) is the only mechatronic finger 

rehabilitation device available on the market that allows each individual finger, including 

the thumb, to move independently and separately (Figure I-4). It moves the fingers and 

thumb according to a given pattern determined by the software. The finger carriages can 

be adjusted to make either a consecutive or simultaneous movement of flexion and 

extension.  

 

Figure I-4 The Amadeo Hand System 
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The Rutgers Master II-ND (Figure I-5) is one of the hand assistive devices designed 

for dexterous interactions with virtual environments [26] developed at Rutgers University 

in New Jersey. It has a unique design to actuate the tips of three fingers as well as the 

thumb (Figure I-5) and uses custom-made pneumatic cylinders to push the fingertips out 

from the palm. The Rutgers Master II-ND is an example of a lightweight and palm-

mounted finger manipulator. It is still not clear whether it is possible to pull the fingers in 

toward the palm. 

 

Figure I-5 The Rutgers Master II-ND 
 

The Hand-Wrist Assisting Robotic Device (HWARD), shown in Figure I-6, has been 

developed to assist repetitive grasping and releasing movements while allowing the 

patient to feel real objects during therapy [27]. HWARD is a pneumatically-actuated 

back-drivable robotic device with 3 degrees-of-freedom (DOF). 
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Figure I-6 The HWARD 
 

The HandCARE [28] is a cable-actuated rehabilitation system (Figure I-7), in which 

each finger is attached to an instrumented cable loop allowing force control and a 

predominantly linear displacement. This device can assist the subject in both opening and 

closing movements. Main features of the interface include a differential sensing system, 

and a clutch system which allows independent movement of the five fingers with only 

one actuator.  
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Figure I-7 The HandCARE System 
 

 

Figure I-8 Other Hand Devices  

 

State-of-the-Art in Robot-Assisted Rehabilitation Strategies 

There are significant research activities in the development of new methodologies for 

robot-assisted rehabilitation in the last few years. The promising results of the above-
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mentioned rehabilitation robotic systems indicate that the robots could be used as 

effective rehabilitation tools. Those with the most success to date tend to focus on intense 

and repetitive practice of the affected limb with cognitive processing as a means for 

motor program reorganization, during which patients not only make repetitive movement 

but also pay attention to tracking accuracy. However, the patients may not be able to 

track the desired motion because of their impairments during the task execution. Thus 

robotic assistance is provided to help the patients complete the task in different manners. 

Several strategies for robot-assisted rehabilitation therapies have been developed, 

including passive [32, 33], active-assistance [13, 14, 19, 32-35], active-constrained [33], 

counterpoise control [36], resistive [35], error-amplifying [36-39], and bimanual modes 

[33, 40, 41] . Of these strategies, the primary therapy strategies tested so far is active 

assistance [13, 14, 19, 32-35], a clinical term that refers to exercises in which the patient 

attempts a movement (active) and in which a therapist manually helps complete the 

movement if the patient is unable (assistance) [42]. Such active assistance may improve 

recovery by enhancing proprioceptive input, reducing spasticity, restoring soft tissue 

suppleness, improving self-confidence, or by simply making exercise psychologically 

more tolerable, but it is labor intensive and time consuming. It was a logical target when 

engineers and clinicians were presented with weak patients and force-generating robots.  

Meanwhile, it has been suggested that in robot-assisted rehabilitation, assisting every 

movement of a patient is not as beneficial compared to assistance as needed [43]. 

Performance-based therapies have showed better results in improving patients’ 

impairment scores than conventional therapies [13, 14, 44]. Thus, a robot-assisted 

rehabilitation system could be more efficient if the robotic assistance provided to the 
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patient is given as and when needed based on the performance of the patient, which is 

called assist-as-needed training in this manuscript. 

Meanwhile, recent research has demonstrated that movement tracking training that 

requires cognitive processing achieved greater gains in performance than that of 

movement training that did not require cognitive processing [45]. Moreover, recent 

research in many models and artificial learning systems such as neural networks suggest 

that error drives sensorimotor learning of a person, so that one can learn adaptation more 

quickly if the error is augmented to a certain degree [46]. Such error-driven learning 

processes are believed to be central to adaptation and the acquisition of skill in human 

movement [44, 47]. It has been shown that visual error augmentation can improve the 

rate and extent of motor learning in healthy participants [38] and elicit functional 

improvements in patients with chronic stroke and traumatic brain injury [39]. Thus, it is 

desirable to integrate the visual feedback and visual error augmentation strategy in 

rehabilitation training. 

 

Scope and Summary of the Dissertation 

The purpose of my research work is to explore how to improve robot-assisted 

rehabilitation for upper extremity disability following stroke. We have probed this 

question in three different approaches including system enhancement (Manuscript I), 

evaluation of novel training strategies (Manuscript II) and design of new hardware 

(Manuscript III and IV). The dissertation is organized as follows: 

First in Chapter II, development of a robotic system incorporating verbal feedback for 

arm rehabilitation is described. This robotic system is able to recognize the participant’s 
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verbal commands and adjust the rehabilitation training online accordingly. A high-level 

supervisory controller is designed to monitor the task execution, make task adjustment 

according to the recognized verbal feedback from the participant during the task 

execution to impart effective therapy to the participant in an automated manner. This 

enhancement will keep the patients in the loop and reduce the intervention and workload 

of the therapists.   

Next in Chapter III, an investigation of a novel rehabilitation strategy in improving the 

efficacy of robot-assisted arm rehabilitation is presented. Two rehabilitation training 

strategies, assist-as-needed and visual error augmentation, are implemented on the 

existing robotic system. A crossover study is designed to assess the impact of the 

integrated training method of these two strategies on robot-assisted arm rehabilitation. 

The experimental results show that the integrated training method has improved the 

rehabilitation training efficacy compared to the assist-as-needed method. This 

improvement is statistically significant. 

While existing robotic systems may be able to provide the hardware platforms for arm 

rehabilitation, the same is not currently true for the hand. There are several technical 

challenges, such as designing an articulated system to accommodate the many joints of 

the hand and controlling these joints independently, while providing the necessary levels 

of power, speed, and reliability. Existing hand devices do not provide the complete range 

of speed, force, and independence of joint control to thoroughly explore the space of 

different training algorithms and environments [23]-[31]. 

Thus, in Chapter IV and V, the design of an actuated hand exoskeleton (AHX) is 

presented. The AHX, consisting of an actuated finger exoskeleton (AFX) and an actuated 
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thumb exoskeleton (ATX), has the potential to serve as a test-bed to facilitate hand 

rehabilitation and motor control study for stroke patients. In Chapter IV, the performance 

of a real-time control system for the AFX with both position and torque control is shown. 

The AFX exhibited high speed and torque capacity with good backdrivability. Then, in 

Chapter V, the design and control of an ATX with 5 active degree-of-freedoms (DOF) 

and 3 passive DOF that allows individual actuation of each DOF for the human thumb 

are described. The ATX showed independent actuation of each thumb joint with high 

speed and torque capacity and good backdrivability.  

The proposed research work is presented in 4 manuscripts as follows: 

Manuscript 1: Incorporating Verbal Feedback into a Robot-Assisted Rehabilitation 

System 

Background 

In the last few years, robot-assistance for physical rehabilitation of stroke survivors 

has been an active area of research [11]-[31]. There are two important roles that a robotic 

rehabilitation system needs to fulfill. First, robotic rehabilitation systems need to monitor 

the task and safety issues, provide assessment of progress, and alter the task parameters to 

impart effective therapy. Second, robotic rehabilitation systems need to alter the 

presentation of the rehabilitation therapy task based on patients’ feedback. A robotic 

system that is able to monitor the task and safety, recognize the patients’ feedback and 

alter the presentation of the rehabilitation therapy in an automated manner will greatly 

facilitate robot-assisted rehabilitation. 
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Summary of Contribution 

The main contributions of this work are to augment the capabilities of a robotic 

rehabilitation system by enabling it to: 1) comprehensively monitor the task and safety 

issues, provide assessment of the progress, and alter the task parameters to impart 

effective therapy during the execution of the task in an automated manner; and 2) 

recognize patient’s verbal feedback such that it can address his/her concern.  This work is 

built upon the preliminary work [48, 49] on an intelligent control framework for robotic 

rehabilitation to incorporate patient feedback within the overall control architecture. My 

main contributions to this work are: 1) to establish the real-time communication interface 

between the robotic system and voice recognition system, and 2) to develop the high-

level supervisory controller for the robotic system that monitors the task execution and 

safety, provides assessment of the progress, alters the rehabilitation therapy according to 

the recognized voice feedback of the subjects. 

 Barkana, D.E.; Wang, F.; Das, J.; Sarkar, N.; Groomes, T.E., "A step toward 

increasing automation in robot-assisted rehabilitation," Biomedical Robotics and 

Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International 

Conference on, pp.930-935, 19-22 Oct. 2008. 

 Duygun Erol Barkana, Jadav Das, Furui Wang, Thomas E. Groomes and Nilanjan 

Sarkar, “Incorporating verbal feedback into a robot-assisted rehabilitation system”. 

Robotica, 2011, vol. 29, issue 3, pp 433-443. 
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Manuscript 2: Impact of Visual Error Augmentation When Integrated with Assist-

as-needed Training Method in Robot-assisted Rehabilitation 

Background 

Robot-assisted rehabilitation has been an active research topic in recent years [11]-

[31]. Various rehabilitation training strategies have been proposed to improve the 

efficacy of robot-assisted rehabilitation training [42]. Two novel strategies, assist-as-

needed and visual error augmentation, have been individually investigated in literatures 

and suggested to be beneficial for upper-limb rehabilitation [11, 36]. However, none of 

the work has investigated the combination of these two training strategies, which could 

be integrated in robot-assisted rehabilitation, with the potential to take the advantages of 

both training strategies. 

 

Summary of Contribution 

There are two contributions in this work. The first contribution is to enhance the 

functionality of the existing robotic system for arm rehabilitation with the assist-as-

needed and visual error augmentation training method, and design a controller that could 

execute the two training methods in an integrated manner. The second contribution is to 

design a crossover study to investigate the assist-as-needed only and the integrated 

training methods, and to conduct statistical analysis to compare the training efficiency of 

these two methods. The experimental results show that: 1) the robotic system is able to 

provide the designed training methods; and 2) the integrated training method shows 

improved training efficiency compared to the assist-as-needed only training method.  
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 Furui Wang; Barkana, D.E.; Sarkar, N., "Impact of Visual Error Augmentation 

When Integrated With Assist-as-Needed Training Method in Robot-Assisted 

Rehabilitation," Neural Systems and Rehabilitation Engineering, IEEE Transactions 

on , vol.18, no.5, pp.571-579, Oct. 2010. 

 Furui Wang; Barkana, D.E.; Sarkar, N., "Integration of error augmentation training 

method to an assistive controller for rehabilitation robotic systems," Rehabilitation 

Robotics, 2009. ICORR 2009. IEEE International Conference on, pp.463-468, 23-

26 June 2009. 

 Furui Wang; Barkana, D.E.; Sarkar, N., "Evaluation of a robot-assisted 

rehabilitation system with assist-as- needed and visual error augmentation training 

methods," Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ 

International Conference on, pp.3555-3560, 10-15 Oct. 2009. 

 

Manuscript 3: Design and Development of an Actuated Finger Exoskeleton for 

Hand Rehabilitation following Stroke 

Background 

Finger impairment following stroke results in significant deficits in hand manipulation 

and the performance of everyday tasks. Recent advances in rehabilitation robotics have 

shown improvement in efficacy of rehabilitation [50], [51]. Current devices [23]-[31], 

however, lack the capacity to accurately interface with the human finger at levels of 

velocity and torque comparable to the performance of everyday hand manipulation tasks.  
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Summary of Contribution 

The main contributions of this work are the design and control of the Actuated Finger 

Exoskeleton (AFX), a three DOF robotic exoskeleton for the index finger. The AFX 

improves on current rehabilitation robotics solutions by providing a versatile framework 

with high performance, real-time control, and forces and speeds comparable to normal 

human function. The AFX will allow for normal task execution in a rehabilitation or 

motor study environment. My main contributions to this work are to analyze the 

kinematics of the AFX model and to develop and implement the position and torque 

control system in real-time. 

 Jones, C.L.; Furui Wang; Robert Morrison; Sarkar, N.; Kamper, D.G., "Design and 

development of an Actuated Finger Exoskeleton for hand rehabilitation following 

stroke,", submitted to IEEE/ASME Transaction on Mechatronics. 

 Jones, C.L.; Furui Wang; Osswald, C.; Xuan Kang; Sarkar, N.; Kamper, D.G., 

"Control and kinematic performance analysis of an Actuated Finger Exoskeleton for 

hand rehabilitation following stroke," Biomedical Robotics and Biomechatronics 

(BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, pp.282-287, 

26-29 Sept. 2010. 

 

Manuscript 4: Design and Development of an Actuated Thumb Exoskeleton for 

Hand Rehabilitation following Stroke 

Background 

Hand impairment is a prevalent outcome for a variety of neuromuscular disorders, 

such as stroke. Loss of hand function due to neuromuscular disorders frequently prevents 
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effective self-care and limits employment opportunities. A number of devices have been 

developed expressly for or applied to hand rehabilitation [23]-[31]. As such, they 

typically do not allow for independent control of the joints, especially for the thumb with 

five degrees-of-freedom (DOF). Others may insufficient torque or overly restrict thumb 

movement. Thus, these devices are not suitable to serve as a test-bed for studying the 

thumb motor control and thumb rehabilitation. 

 

Summary of Contribution 

The main contributions of this work are to design and develop an actuated thumb 

exoskeleton (ATX), with five active DOF and 3 passive DOF, which allows independent 

actuation of each DOF of the thumb. The ATX is able to provide individual actuation for 

each thumb DOF, while possessing sufficient torque to overcome possibly excessive 

coactivation and increased stiffness in the affected thumb and high speed joint motion 

comparable to the natural motion of the human thumb joints. This ATX has the potential 

to serve as a test bed to evaluate thumb rehabilitation therapies and motor learning 

paradigms. My contributions in this work are the mechanical design, kinematics analysis, 

actuation and sensory systems development, instrumentation and real-time control system 

design and implementation. 

 Wang, Furui; Shastri, Milind; Jones, Christopher L.; Kamper, Derek G.; Sarkar, 

Nilanjan, "Design and control of an actuated thumb exoskeleton for hand 

rehabilitation following stroke," Robotics and Automation (ICRA), 2011 IEEE 

International Conference on , pp.3688-3693, 9-13 May 2011. 
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 Wang F, Jones C, Shastri M, Gupta V, Osswald C, Kang X, Kamper D, Sarkar N, 

“Design and development of an actuated thumb exoskeleton for hand rehabilitation 

following stroke,” in preparation for submission to IEEE/ASME Transaction on 

Mechatronics. 
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Abstract  

This paper presents a control architecture, which has the potential to monitor the task, 

safety issues, to provide assessment of the progress and alter the task parameters, and to 

incorporate patient’s feedback in order to make the necessary modifications to impart 

effective therapy during the execution of the task in an automated manner. Experimental 

results are presented to demonstrate the efficacy of the proposed control architecture. 

Keywords – rehabilitation system, human intention recognition system, hybrid systems 

 

Introduction 

Stroke is a highly prevalent condition especially among the elderly that results in high 

costs to the individual and society [1]. In the last few years, robot-assisted rehabilitation 

for physical rehabilitation of the stroke patients has been an active research area to assist, 

monitor, and quantify rehabilitation therapies [4]-[11]. Robot-assisted rehabilitation has 

shown to provide repetitive movement exercise and standardized delivery of therapy with 

the potential of enhancing quantification of the therapeutic process for stroke patients [4]-

[11]. Studies in this field suggest that robot-assisted rehabilitation results in improved 

performance of functional tasks.  

There are two important issues that a robotic rehabilitation system needs to address. 

First, robotic rehabilitation systems need to comprehensively monitor the task and safety 

issues, provide assessment of the progress, and alter the task parameters to impart 

effective therapy. Generally, a therapist administers the therapy where he/she monitors 

the progress of the tasks as well as patient’s safety, and assesses whether the task needs to 

be updated based on the need of individual patient. As a result, a robotic system will 
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likely reduce the amount of time of the therapist as well as decrease his/her workload, 

and consequently, decrease the cost of treatment. MIT-MANUS [4], MIME [5] and 

GENTLE/s [6] were among the first rehabilitation robotic systems to implement safety. 

Second, robotic rehabilitation systems need to alter the presentation of the rehabilitation 

therapy task based on patients’ feedback. Altering the presentation of the rehabilitation 

therapy is an important issue since patients or therapists should be able to express how 

they feel about the task, and necessary modifications need to be performed about the 

therapy. Recently developed rehabilitation devices like ARMin [7], ADLER [8], T-

WREX [9], HenRiE [10] and HARMiS [11] provide assistance to the patients as needed 

based on the patients’ position, velocity and force feedback. However, this feedback only 

provides information about patient’s motion capabilities, and it does not directly 

represent the feelings of the patient or the therapist about the task execution. For example, 

if the patient does not feel comfortable in moving his/her arm at a specified speed, then 

the therapist or the robot-assisted system may need to change the task execution to slow 

down. Note that, when a therapist manually administers rehabilitation therapy, he/she 

keeps the patient in the loop and adjusts the therapy. Therefore, it is important for a 

robot-assisted rehabilitation system to alter the presentation of the rehabilitation therapy 

task automatically considering patients and therapists feedback. To our knowledge none 

of the existing robot-assisted rehabilitation systems use feedback of both patient’s and 

therapist’s to modify the presentation of the task. Spoken words of stroke patients or 

therapists can be one of the available options to incorporate their verbal feedback into the 

robot-assisted rehabilitation system so that the necessary modifications on the robot-

assisted rehabilitation can be made immediately. 
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In this work, we attempt to address how to augment the capabilities of a robotic 

rehabilitation system by enabling it to: 1) comprehensively monitor the task and safety 

issues, provide assessment of the progress, and alter the task parameters to impart 

effective therapy during the execution of the task in an automated manner; and 2) 

recognize patient’s verbal feedback such that it can address his/her concerns.  This work 

is built upon our preliminary work on an intelligent control framework for robotic 

rehabilitation [12]-[16] to incorporate patient’s feedback within the overall control 

architecture. The paper is organized into the following sections. It first presents the 

intelligent control architecture in Section II. A rehabilitation robotic system, a human 

intention recognition system, and one of the rehabilitation tasks that are used to 

demonstrate the versatility of the presented control architecture are presented in Section 

III. Results of the experiments are presented in Section IV to demonstrate the efficacy of 

the control architecture. Section V discusses potential contributions of this work and 

possible directions for future work.   

 

Control Architecture 

Let us first present the proposed framework in the context of one of the rehabilitation 

tasks, called the reaching task. The reaching task designed in this work requires a 

combination of shoulder and elbow movements, which could increase the active range of 

motion (AROM) in the shoulder and the elbow in preparation for later functional 

reaching activities in rehabilitation. In this task, the participants are asked to move their 

arms in the forward direction to reach a desired point in space and then bring it back to 

the starting position repeatedly within a specified time.  
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Stroke survivors, in general, may not be able to track the desired motion trajectory in 

this reaching task because of their motor impairment. A low-level assistive controller will 

be used to provide robotic assistance to a patient’s arm movement as and when needed to 

help him/her to complete the reaching task. In this architecture, an intention recognition 

system recognizes the patient’s spoken words (e.g., fast, slow, continue and stop) using a 

microphone and a voice-recognition technique and then converts the spoken words into 

control commands (Figure II-1). The control commands, which represent his/her 

intention during the task execution, are sent to the high-level supervisory controller. Once 

the high-level supervisory controller receives the commands, the decision-making 

module of the high-level supervisory controller generates sequences of control actions 

using its decision rules. Additionally, the high-level supervisory controller monitors the 

safety events during the execution of the reaching task to decide the necessary 

modifications of the task. The high-level supervisory controller presented in this work 

ideally plays the role of a human supervisor (therapist) who would otherwise monitor the 

patient’s verbal feedback and safety and then assess whether the task needs to be updated. 

The high-level supervisory controller is designed considering the requirements of the 

therapy, and it can be easily modified and extended for new task requirements. The 

decision of the high-level supervisory controller is sent to the low-level assistive 

controller to update the task. The updated task is then executed by the low-level assistive 

controller. This cycle continues to complete the therapy. 
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Figure II-1 Control Architecture of a Voice Activated Robotic Rehabilitation System 
 

 

Methodology 

 

Rehabilitation Robotic System ---- A Test-bed 

In order to present the efficacy of the proposed control architecture, we have used a 

PUMA 560 robotic manipulator as the robotic assistive device. The manipulator is 

augmented with a hand attachment device (Figure II-2).  The microcontroller board of the 

PUMA is replaced to develop an open architecture system to allow implementation of the 

advanced controllers (e.g., low-level assistive and high-level controllers). The technical 

specifications of the robotic manipulator can be found in [17]. We interface the robot 

with MATLAB/Realtime Workshop to allow fast and easy system development. A 

computer monitor is placed in front of the subject to provide visual feedback about 

his/her motion trajectory during the execution of the task. The detailed discussion about 

the rehabilitation robotic system can be found in our previous work [12]- [16], [18].  
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Since in this work we are primarily interested in effecting assistance to the upper arm, 

we design a hand attachment device where the subject’s arm is strapped into a splint. The 

PUMA 560 is attached to that splint to provide assistance to the upper arm movement 

using the assistive controller (Figure II-2). We further design a steel plate with proper 

grooves that hold two small flat-faced electromagnets (from Magnetool Inc.) that are 

screwed on it (Figure II-2). We attach a light-weight steel plate under the splint, which is 

then attached to the electromagnets of the plate. An automatic release (AU) rectifier 

controller (Magnetool Inc.) is used to provide a quick release of these electromagnets. A 

push button, which is connected to the AU Rectifier Controller, is used to magnetize and 

demagnetize the electromagnets when the subject wants to remove the hand attachment 

device from the robotic manipulator in a safe and quick manner. Ensuring safety of the 

subject is a very important issue when designing a rehabilitation robotic system. Thus, in 

case of emergency situations, therapists can press an emergency button. The patient 

and/or the therapist can quickly release the subject’s arm from the PUMA 560 by using 

the quick-release hand attachment device (as described above) to deal with any physical 

safety related events. This quick-release mechanism is identical to the mechanism used in 

GENTLE/s [6] and ADLER [8]. When the push button is pressed, electromagnets are 

demagnetized instantaneously and the subject is free to remove the splint from the robot. 

The safety mechanism in MIME is similar although the implementation is different in 

some cases (e.g., we introduce joint limits as a hyper-surface in our high-level controller 

whereas in MIME it is implemented as a limit check since the control architecture is 

different from ours).   
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Figure II-2 Subject Arm attached to Robot 
 

In this work, a proportional-integral-derivative (PID) position control is used as a low-

level arm assistive controller for providing robotic assistance to a subject to complete the 

movement task. The subject receives visual feedback of both their actual position and the 

desired position trajectories on a computer screen, which is placed in front of them. Then 

the subject is asked to pay attention to tracking the desired position trajectory as 

accurately as possible, which keeps them focused on the task. If the subject deviates from 

the desired motion, then low-level assistive controller provides robotic assistance to 

complement the subject’s effort to complete the task as required.  

 

Human Intention Recognition System 

Stroke patients may have difficulties to complete the rehabilitation tasks because of 

their limited upper extremity movements. It is important to include patient’s feedback 
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into the robot-assisted rehabilitation system so that it can immediately make the 

necessary modifications without therapist’s intervention.  Recognizing stroke patients’ 

spoken words may be one of the available options to incorporate their feedback into the 

robot-assisted system.    

Various speech recognition techniques have been developed over the years such as a 

grammar builder from the Microsoft Speech SDK 5.1 [19], fuzzy command interpreter 

[20], Adaptive Input Neural Network (AINN) [21], [22]. MICROEAR (voice activated 

hardware) is developed in [23] to recognize a word and then it returns a string which is 

then converted to a numerical code. Later, the code is compared with the listed words and 

sets the respective flags. Then the relevant functions form the character strings to be 

passed on to the robot controller to activate the robot motors using ASCII string. Hidden 

Markov Model (HMM) based automatic speech recognizers are developed to recognize 

the human voice in [24]. The spoken word from the human is translated in the form of a 

quantified desired action for a robot system. New concepts of fuzzy coach-player system 

and sub-coach to control robots with natural language commands are presented in [25]. A 

probabilistic neural network based learning method is used to acquire the knowledge 

from such commands and then implemented in a Mitsubishi PA-10 redundant 

manipulator.  

In our target application domain, we want to incorporate feedback from stroke patients. 

It is likely that many of the stroke patients may not have sufficient control over their 

articulatory muscles to communicate long and clear sentences. Moreover, the range of 

distortion of spoken words could be an issue in stroke patients. Considering these issues, 

we choose to develop a speech recognition system that is capable of robustly identifying 
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a few short phrases or words that have relevance with respect to the rehabilitation therapy. 

We use a well-known voice recognition method, called Mel-frequency cepstral 

coefficients (MFCCs) in this work [26], [27].  

In this work, however, we have used a deterministic approach to speech recognition. 

Since in this application we have restricted the number of spoken words and since we 

have employed an individual-specific approach, such a deterministic approach is 

preferred to a more versatile learning approach. The subject informs his/her intention 

using simple words such as "fast", "slow", "stop" and "continue" during the rehabilitation 

task. However, these words can not be used directly as commands for the high-level 

controller in the control architecture. Initially, each subject is asked to speak each of the 

selected words three times. The signal is acquired using the Data acquisition toolbox of 

MATLAB R2007a [28] with 8 KHz sampling frequency. An arithmetic average is 

computed from these three samples of the same word to account for within person 

variation of spoken words.  The resultant sample is normalized and broken down into a 

series of frames each of which contains 256 data points. We compute 12 mel-frequency 

cepstral coefficients (MFCCs) for each frame. The frames and their MFCCs for each 

word for each person are stored in a set of 2-dimensional arrays as reference. During the 

execution of the rehabilitation task, as the subject speaks any of the selected words, the 

start and end points of the sampled speech signal are detected and only the speech portion 

of the signal is sent to the feature extraction module. The end point determination concept 

used here is originally proposed in [29] based on two features: short-term root-mean-

square-energy and zero crossing rate measures of the signal. The feature extraction 

module receives the speech portion of the signal and computes the same 12 MFCCs of 
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the speech by splitting it into frames of 256 samples. The MFCCs are then sent to the 

pattern matching module to compare the MFCCs of the spoken word with those of the 

reference MFCCs of all the stored words and finds the best match using the least 

Euclidean distance measure among the MFCCs between the spoken word and the 

reference words. Then the pattern matching module generates a command signal for the 

high-level controller. In order for the high-level controller to receive the generated 

command, the command is initially sent to the microcontroller (Adapt 9S12D -

Technological Arts Company). The microcontroller transmits the command signal to the 

computer of the robotic rehabilitation system through a RS232 serial port. The command 

is used by the high-level controller to decide the next plan of action during the execution 

of the rehabilitation task.  

 

Modeling of a Rehabilitation Task using Hybrid System Modeling Technique 

The proposed control architecture, as described in a previous section, consists of a 

low-level arm assistive controller that is used to provide assistance to the subject’s arm 

movement and a high-level supervisory controller to monitor the task and the patient’s 

safety and to detect the patient’s verbal feedback (intention) in order to make the 

necessary modifications to the task.  In this work, we use hybrid system modeling 

technique to design the proposed control architecture.  A hybrid system model has three 

parts, a “Plant”, a “Controller” (supervisor) and an Interface [19], [30], [31] (Figure II-3). 

A similar hybrid system model has previously designed for same rehabilitation system 

and the details can be found in [12]-[16]. First we present the theory of the hybrid control 
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systems. Then the design details of the hybrid control system used for one of the 

rehabilitation tasks, a reaching task, is given. 

The hybrid control systems consist of a plant which is generally a continuous system 

to be controlled by a discrete event controller (DES) connected to the plant via an 

interface in a feedback configuration [30], [31]. If the plant is taken together with the 

interface, then it is called a DES plant model. The DES controller, which is called the 

high-level supervisory controller in this work, controls the DES plant. Let us first present 

the DES plant and then describe the DES controller (high-level supervisory controller).  

 

Figure II-3 Control Architecture 
 

DES Plant Model 

The DES plant model is a nondeterministic finite automaton, which is represented 

mathematically by ),,R
~

,X
~

,P
~

(G  . Here, P
~ is the set of discrete states; X

~ is the set of 
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plant symbols generated based on the events; and R
~  is the set of control symbols 

generated by the high-level supervisory controller. P
~

R
~

P
~

: 2 is the state transition 

function. The output function, x~P
~

P
~

: 2 , maps the previous and current plant states to 

a set of plant symbols. The set of DES plant model states P
~  is based upon the set of 

hypersurfaces that separates different discrete states.  

The hypersurfaces defined in this work can be classified into two classes: i) the 

hypersurfaces describing subject’s capability to complete the task; ii) the hypersurfaces 

describing the capability of the rehabilitation robotic system in order to ensure the 

execution of the rehabilitation task in a safe manner. The hypersurfaces are defined as 

follows: ,h,eh,vvh,vvh itlimlowhigh   4321 here, v is the actual speed of the 

robotic device, lowv and highv  are the lower and upper limits of the subject’s desired speed 

range. e  is binary variable representing the subject’s intention to stop or continue the task. 

  is the actual robotic device configuration vector and itlim  is the limit vector of the 

configurations. 1h  detects if the current task is too fast for the subject and he/she may 

want to decrease the speed; 2h  detects if the current task is too slow for the subject and 

he/she may want to increase the speed; 3h detects whether the subject wants to continue or 

to stop the task; 4h detects whether the robotic system configurations, joint angles, torque 

etc. are working in safe range.  

The DES plant model is demonstrated in Figure II-4. Here, ix~ is the plant symbol, ir
~ is 

the control symbol and iP
~ is the plant state.  Note that a temporary state 'P0000 is introduced 

to distinguish the current state from the initial state. A plant event occurs when a 

hypersurface is crossed, which means the plant enters a new state. These plant events 
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need not be distinct for each distinct hypersurface. A plant event generates a plant symbol 

to be used by the high-level supervisory controller. The plant symbol, x~ , is generated as 

an output function of the current and the previous plant state. We define the following 

plant symbols considering the hypersurfaces discussed before: i) 1x~ , the subject wants to 

continue the task execution with the current speed; ii) 2x~ , the subject wants to slow down 

and says the word “slow”; iii) 3x~ , the subject wants to speed up and says the word “fast”; 

iv) 4x~ , the subject wants to stop and says the word “stop” v) 5x~ , the subject wants to 

continue the task and says the word “continue”; and vi) 6x~ , safety related issues happened 

such as the robot configurations are out of limits. Thus }x~,x~,x~,x~,x~,x~{X
~

654321  is the set of 

plant symbols. However, the plant symbol 5x~  needs to be further subdivided to uniquely 

identify the exact plant state where the task execution is paused. If the subject says 

“continue” while performing the task with the initial conditions in the last state, then 51x~  

is generated. If the subject says “stop” while performing the task with slow speed, then 

52x~  is generated. Similarly, if the subject says “stop” while performing the task with fast 

speed, then the plant symbol 53x~  is generated.  

 

Figure II-4 DES plant for Control Architecture 
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High-level Supervisory Control 

The high-level supervisory controller is a discrete event system that is modeled as a 

deterministic finite automaton specified by ),,R
~

,X
~

,S
~

(D  . Here, S
~ is the set of 

controller states, X
~ is the set of plant symbols generated by the event in plant, R

~ is the set 

of controller symbols generated by the high-level supervisory controller, S
~

X
~

S
~

:  is 

the state transition function, and R
~

S
~

:   is the output function. The high-level 

supervisory controller for the reaching task is shown in Figure II-5. 

 

Figure II-5 High-level Supervisory Controller for Reaching Task 
 

In Figure II-5, the convention of labeling the arcs is to list the plant symbols, which 

enable the transition; the convention in the ellipse is to list the control states, followed by 

“/”, and then the control symbols, which can be generated once the system enters the 

corresponding states. The control states and control symbols are defined in Table II-1.  
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Table II-1 Control States and Control Symbols 

 
 

Interface in this application is designed to recognize the above-mentioned plant 

symbols and control symbols. It is clear from the above discussion that the design of the 

various elements of the DES plant and the DES controller is not unique and is dependent 

on the task, the sensory information available from the robot-assisted rehabilitation 

system, and the subject’s verbal feedback. 

 

Results 

The main focus of this paper is to present the control architecture and the high-level 

supervisory controller design which was shown in Figure II-5. However, the human 

intention recognition system is an important part of this new control framework that is 

responsible for generating the commands to the high-level controller based on patient’s 

verbal feedback to modify the task requirements. Hence we first summarize the 

validation of the evaluation of human intention recognition system.  

 

Validation of Human Intention Recognition System 

Recognition accuracy of human intention recognition system has been checked with 

both healthy subjects and stroke patients. First, 10 healthy subjects were invited to our 
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laboratory to record the voice signals of the four words which were “slow”, “fast”, “stop” 

and “continue”.  4 females and 6 males, 20-32 years old, right-handed, unimpaired 

subjects participated in this study. Voice from each subject was captured by a 

microphone and then it was sampled by the data acquisition module in Matlab R2007a at 

a sampling rate of 8 kHz using a sound card installed in the PC. Each single word was 

recorded three times and was then normalized for every sample to an equivalent level to 

find the arithmetic average. Then the MFCCs of average signals of each word for each 

subject were computed to be used as the reference set for pattern matching.  

Subsequently, each subject was asked to speak any of these four words 10 times in a 

random order and the output speech signal was recorded. We then analyzed how many 

times the voice recognition system correctly identified the spoken words for the healthy 

subjects (Table II-2). In general, it can be seen that the human intention recognition 

system successfully recognized the spoken words for all 10 subjects with high accuracies. 

Additionally, we evaluated the recognition accuracy of the proposed human intention 

recognition system with stroke patients. 1 female and 3 male subjects within the age 

range of 65-78 years took part in the study. Each patient was asked to speak any of these 

four words 5 times in a random order. The experiments were conducted at the Vanderbilt 

Stallworth Rehabilitation Hospital under the supervision of an occupational therapist. The 

stroke patients who participated in this study had no aphasia or language deficits 

interfering output of the speech. However, the quality and clarity of spoken words could 

be an issue. We then analyzed how many times the voice recognition system correctly 

identified the spoken words for the stroke patients (Table II-3). As can be seen from 
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Table II-3, the proposed human intention recognition system successfully recognized the 

spoken words of stroke patients with recognition accuracy between 90% and 100%.  

Table II-2 Human Intention Recognition System Accuracy (%) for Healthy Subjects 
 

Subject
Accuracy (%) 

Slow Fast Stop Continue

1 90 100 100 100 

2 80 100 100 100 

3 100 100 90 100 

4 90 100 80 100 

5 90 100 90 100 

6 90 100 100 100 

7 100 100 100 100 

8 100 90 100 100 

9 100 100 100 100 

10 90 100 100 100 

 

Table II-3 Human Intention Recognition System Accuracy (%) for Stroke Subjects 
 

Subject
Accuracy (%) 

Slow Fast Stop Continue

1 100 100 90 100 

2 90 100 100 100 

3 100 100 90 100 

4 100 100 100 100 
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Evaluation of the Proposed Control Architecture  

Experiment Procedure 

Subject is seated in a height adjusted chair as shown in Figure II-2. The height of the 

PUMA 560 robotic manipulator has been adjusted for the subject to start the 

rehabilitation task in the same arm configuration. The starting arm configuration is 

selected as shoulder at neutral 0 position and elbow at 90 flexion position. The task 

requires moving the arm in forward flexion to approximately 60 in conjunction with 

elbow extension to approximately 0. Subject is asked to place his/her forearm on the 

hand attachment device as shown in Figure II-2 when the starting arm configuration is 

fixed. The push button has been given to the subject that can be used during the task 

execution in case of emergency situations. The subject receives visual feedback of their 

position on a computer monitor on top of the desired position trajectory which is placed 

in front of him/her. Subject is asked to practice the tracking rehabilitation task (described 

in previous section) 10 times to familiarize him/herself with the task.  

 

Results 

Since we experiment with unimpaired subjects who could ideally do the reaching task 

by themselves (unlike a real stroke patient), we instructed the subjects to be passive so 

that we can demonstrate that the proposed control architecture was solely responsible for 

the modification of the task based on subject’s verbal feedback. Such an experimental 

condition is not only helpful to unambiguously demonstrate the efficacy of our proposed 

control architecture but also could occur when a low functioning stroke survivor 



42 
 

participates in a rehabilitation therapy who will initially need continuous robotic 

assistance to perform the required rehabilitation task. 

We had conducted two experiments to demonstrate the feasibility and usefulness of 

the proposed control architecture in enabling robotic assistance to a subject to complete 

the tracking task based on subject’s verbal feedback (intention). The subjects were asked 

to express their intention using one of the following words: “fast”, “slow”, “stop” and 

“continue” during the execution of the task. We only presented one set of the subjects’ 

data to demonstrate the efficacy of the proposed control architecture. Initial desired 

velocity was selected as 0.02m/s, which was chosen in consultation with an occupational 

therapist who works with stroke patients at the Vanderbilt Stallworth Rehabilitation 

Hospital.  

In the first experiment (E1), the subject was instructed to modify the tracking task only 

once. When the tracking task started, 1s~  became active and the initially defined task 

requirements were used to define the desired trajectory for the subject to be followed 

(Figure II-6 I-middle). If the subject is comfortable with the initial task requirements then 

the task execution will be completed with the initially defined parameters (Figure II-6 I-

right). However if at point A, the subject said “slow” (he might feel the required motion 

is too fast for him) (Figure II-6 II-left) and then the human intention recognition system 

compared the spoken word with the reference ones using the pattern matching module (as 

described in previous Section) and detected hypersurface 2h  was crossed then 2x~  was 

generated. This event was recognized by the high-level controller through the 

microcontroller. When 2x~ was generated while 1s
~ was active, then 2s~  state became active 

and 2r
~  was generated and sent to low-level controller to change the speed of the task 



43 
 

(Figure II-6 II-middle).  Then the subject was required to continue the tracking task with 

a slower movement (Figure II-6 II-right solid line). If the subject’s intention to slow 

down the movement was not considered then the desired motion trajectory that the 

subject was required to follow would be the dashed line in Figure II-6 II-right. This could 

create an unsafe operating condition because the subject could not continue the task 

execution with a high speed. Later, the subject said “fast” (he thinks the movement was 

too slow for him) (Figure II-6 III-left) and then human intention recognition system 

detected 3h  was crossed then 3x~  was generated. When 3x~ was generated while 1s
~ was 

active, then 3s~  state became active and 3r
~  was sent to low-level controller (Figure II-6 

III-middle). Now the subject was required to move faster to complete the tracking task 

(Figure II-6 III-right solid line). If the subject’s intention to move faster was not 

considered then the desired motion trajectory that the subject was required to follow 

would be the dashed line in Figure II-6 III-right. This could limit the subject’s movement 

and affect the efficiency of the therapy because he/she was able to move faster than initial 

speed. The increment and decrement level of the desired motion trajectory was selected 

as 25% more and less, respectively. The range could be increased or decreased based on 

the subject’s movement ability.  
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Figure II-6 Experiment 1 Results 
 

The corresponding actual motion trajectories of the subject were shown in Figure II-7. 

It could be seen from Figure II-7 that the subject was able to track the modified desired 

motion trajectories. Thus, the actual motion trajectory was same as the desired motion 

trajectory because the subject was passive and the arm low-level assistive controller 

provided necessary robotic assistance to follow the desired motion trajectory to complete 

the task as required.   
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Figure II-7 Actual Velocity Trajectories for Experiment 1 
 

In the second experiment (E2), we asked the subjects to perform the same task as in 

Experiment 1; however, in this case, the subjects were asked to modify the task more 

than once. This was done to simulate the movement of a stroke patient who may 

experience difficulty in performing the task with initially defined requirements. In this 

experiment, the subject started performing the execution of the task. Then at point A, the 

subject said “fast” (Figure II-8 I) then 3x~  was generated, 3s~  state became active and 3r
~  

was sent to low-level controller (Figure II-8 II). Then the subject did not feel comfortable 

and he said “slow” at point B (Figure II-8 I). When the subject said “slow” then 2x~  was 

generated, 2s~  state became active and 2r
~  was sent to low-level controller (Figure II-8 II). 

Additionally, we had assumed a safety event had occurred when the subject was 

performing the task. In this experiment, at some point of time during the task the subject 

wanted to pause for a while by saying “stop” word and then said “continue” word to 

restart the task execution where he resumed for completion of the rest of the task (Figure 
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II-8 I). When the subject said “stop” at point C, then 4x~  was generated and 4s~  state 

became active and 4r
~  is generated (Figure II-8 II). Later when the subject said “continue” 

at point D, then 5x~  was generated and 5s~  state became active and instantaneously 52x~  

was generated to go back to state 2s~  so that subject could continue the task execution 

where he resumed (Figure II-8 II). This scenario might represent when a stroke patient 

wanted to pause for a while due to some discomfort. The corresponding desired motion 

trajectories had been generated dynamically as shown in Figure II-8 III. On the other 

hand, if we did not use the proposed high-level controller, the desired motion trajectory 

would not have been automatically modified to register the intention of the subject to 

pause task execution, to move faster or slower. As a result, the motion trajectory would 

have followed the dashed line in Figure II-8 III. In such a case, when subject wanted to 

move faster he would still move with initially defined speed at point A’ (Figure II-8 III-

dashed line). Furthermore, the desired motion trajectory would start at point C’ with non-

zero velocity (Figure II-8 III, dashed line), which could create an unsafe operating 

condition. In addition, since the desired motion trajectory computation would not have 

included the pause action, restarting the task at point C’ would not allow the completion 

of the task as desired. 

High-level controller monitored the progress of the task and the subject’s verbal 

feedback to make decisions on the modification of the task parameters. The 

corresponding actual motion trajectories of the subject were shown in Figure II-8 IV. It 

could be seen from Figure II-8 IV that the subject was able to track the modified desired 

motion trajectory to complete the task in a desired manner. The actual motion trajectory 

given was same as the desired motion trajectory because the subject was passive and the 
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arm low-level assistive controller provided necessary robotic assistance to follow the 

desired motion trajectory to complete the task as required. 

 
Figure II-8 Experiment 2 Results 

 

Discussion and Conclusion  

In this paper we have designed an intelligent control architecture, 1) to monitor the 

task, safety issues, provide assessment of the progress and alter the task parameters, and 2) 

to incorporate patient’s feedback in order to make the necessary modifications to impart 

effective therapy during the execution of the task in an automated manner. The control 

architecture is based on hybrid control that provides theoretical solidity to the existing 

rehabilitation approach. This architecture provides flexibility so that new safety features 

as well as new task requirements can be incrementally added to the system by designing 

new events either by adding new sensors or by further analyzing the current sensory 

information and by adding new decision rules in the high-level controller.  
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It is also important to include patient’s feedback inside the control architecture 

because patients should be able to express how they feel about the task, which will then 

be used to make the necessary modifications about the presentation of the task to 

accommodate any problem patients perceive during the execution of the task. However, it 

is not possible to integrate spoken words into the system directly. Thus, we include 

patient’s feedback as words in terms of events like other sensor events inside the control 

architecture.  

As could be seen from the above discussion, hybrid system based control architecture 

could be useful in robot-assisted system in terms of monitoring safety, assisting patient, 

and incorporating patient’s feelings, which are actually actions of the therapists during 

the therapy. Thus, the presented control architecture will be helpful to automate some of 

the actions of the therapists. During the therapy, if a task requirement changes or if the 

patient does not feel comfortable to move his/her arm at a specified speed, then he/she 

may speak out and, then a therapist/technician would need to adjust the computer code to 

reflect these changes. It is conceivable that one cannot anticipate all possible events that 

might occur during a rehabilitation task. The proposed hybrid system based control 

architecture provides a systematic procedure to effect changes such that the task 

execution could be automated. Instead of preprogramming numerous static trees based on 

if-then-else rules, it provides a dynamic mechanism of generating events that leads to 

necessary high-level decisions.  

We have conducted experiments with unimpaired subjects to demonstrate the efficacy 

of the proposed control architecture. The results have shown that the task parameters can 

be determined dynamically based on subject’s spoken words and safety-related events to 
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generate the necessary motion trajectories at the required time using the proposed control 

architecture. The speed of motion is used as the task parameter in this paper. However, 

note that sometimes patients cannot move to the initially defined target positions because 

of their limited movement ability. Thus, in the case the proposed control architecture can 

be used to determine other task parameters such as a desired reaching position. Subjects 

can express their intention to move further away from the initially defined target position 

or closer to themselves using spoken words. In such a case, for example, the high-level 

controller in the control architecture can determine the target position based on the 

subject’s verbal feedback while monitoring the safety-related events. Thus, new spoken 

words such as “further”, “closer” etc can be included inside the human intention 

recognition system and then related events and their decision-rules can be defined inside 

the control architecture as new events. 

The proposed control architecture, although implemented on a PUMA 560 robot, is 

independent of any particular robot and thus can be easily integrated into other existing 

robot-assisted rehabilitation systems.  

As a future work, it is planned to investigate the efficacy of human intention 

recognition included methodology with severely impaired stroke patients and how it will 

influence patients’ participation in the therapy regime.  
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Abstract 

This paper investigates the impact of the integration of the visual error augmentation 

training method with the assist-as-needed training method in robot-assisted rehabilitation 

training of upper extremity. A robot-assisted rehabilitation system is developed that 

integrates an assistive controller, which can provide robotic assistance to the participant 

as and when needed, with a visual error augmentation mechanism, which amplifies the 

tracking error to heighten the participant’s motivation to improve tracking accuracy.  A 

crossover study is performed to evaluate the impact of the integration of the visual error 

augmentation method with the assist-as-needed training method. The experimental results 

on unimpaired participants demonstrate that improved performance has been achieved in 

the integrated training method. 

Keywords: assistive controller, movement tracking training, robot-assisted 

rehabilitation, assist-as-needed training method, visual error augmentation training 

method 

 

Introduction 

Stroke is a highly prevalent condition [1], especially among the elderly, that results in 

high costs to the individual and society [2]. According to the American Heart Association 

(2009), in the U.S., approximately 795,000 people suffer a first or recurrent stroke each 

year [1]. It is a leading cause of disability, commonly involving deficits of motor function. 

Recent clinical results have indicated that movement assisted therapy can have a 

significant beneficial impact on a large segment of the population affected by stroke or 
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other motor deficit disorders. Experimental evidence suggests that intensive movement 

training of new motor tasks is required to induce long-term brain plasticity [3]. In recent 

years, robot-assisted rehabilitation of stroke patients has been an active research area, 

providing repetitive movement exercise and standardized delivery of therapy with the 

potential of enhancing quantification of the therapeutic process [4]-[14].  

Various robot-assisted rehabilitation systems are developed for the upper-limb 

rehabilitation such as MIT-MANUS [4]-[6], Mirror Image Movement Enabler (MIME) 

[7], [8], Assisted Rehabilitation and Measurement (ARM) Guide [9], [10] and GENTLE/s 

[11]. Similarly robotic systems for wrist rehabilitation have also been reported in recent 

years [12]-[14]. Studies with these robotic devices verified that robot-assisted 

rehabilitation results in improved performance of functional tasks. The promising results 

of robot-assisted rehabilitation systems indicate that robots could be used as effective 

rehabilitation tools.  

Recent research in [15] has suggested that in robot-assisted rehabilitation, assisting 

every movement of a patient is not as beneficial compared to no assistance or assistance 

as needed, although it is equivalent in some situations.  It has also been proposed in [10], 

[16] that performance-based therapy showed better results in improving patients’ 

impairment scores than conventional therapies. Thus, a robot-assisted rehabilitation 

system could be more efficient if the robotic assistance provided to the patient is given as 

and when needed based on the performance of the patient, which is called assist-as-

needed training method. It has also been demonstrated that movement tracking training 

that requires cognitive processing achieved greater gains in performance than that of 

movement training that did not require cognitive processing [17]. Meanwhile, latest 
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research in many models and artificial learning systems such as neural networks suggest 

that error drives sensory-motor learning of a person, so that one can learn adaptation 

more quickly if the error is larger [18]. Such error-driven learning processes are believed 

to be central to adaptation and the acquisition of skill in human movement [19], [20]. It 

has been shown that visual error augmentation can improve the rate and extent of motor 

learning in healthy participants and may facilitate neuro-rehabilitation strategies that 

restore function in brain injuries such as stroke [21].  Feedback distortion has also been 

utilized to augment the controllability of human limb motion [22] and shown to elicit 

functional improvements in patients with chronic stroke and traumatic brain injury [23]. 

As can be seen from the above discussion, both assist-as-needed and visual error 

augmentation training methods separately have shown promising results in robot-assisted 

rehabilitation of upper extremity. However, none of the existing robot-assisted 

rehabilitation system, to our knowledge, is designed to integrate these two training 

methods together. The objective of this work is to investigate the impact of the 

integration of these two training methods in robot-assisted rehabilitation of upper 

extremity. A robot-assisted rehabilitation system that was developed previously by the 

authors [24] is further enhanced to integrate an assistive controller, which can provide 

robotic assistance to the participant as and when needed, with a visual error augmentation 

mechanism, which amplifies the tracking error to heighten the participant’s motivation to 

improve tracking accuracy for this work. Twenty unimpaired participants performed a 

reaching task in two sessions with only assist-as-needed training method and the 

integration of the assist-as-needed with the visual error augmentation training methods in 

different sequences. Nineteen out of twenty participants showed significantly improved 
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performance in the integrated training session. Thus, it is reasonable to believe that the 

integration of the visual error augmentation with the assist-as-needed training methods 

has improved the outcome of the training performance on healthy participants.  

This paper is organized as follows. It first presents the robot-assisted rehabilitation 

system in Section II. The task description, training paradigms, experimental protocol and 

task parameters are presented in Section III. Experimental results and analysis are given 

in Section IV. Section V is the discussion of the experimental results and the potential 

contribution of this work. Section VI concludes the paper and gives the possible future 

research directions. 

 

The Robot-Assisted Rehabilitation System 

A PUMA 560 robotic manipulator is used as the main hardware platform in this work. 

The manipulator is augmented with a force-torque sensor and a hand attachment device 

(Figure III-1). An assistive controller is developed to provide robotic assistance to the 

participants. 
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Figure III-1 The Robotic System 
 

Robot Platform 

The PUMA 560 manipulator is a 6 degrees-of-freedom (DOF) device consisting of six 

revolute axes. Each major axis (joints 1, 2 and 3) is equipped with electromagnetic brake, 

which is activated when power is removed from the motors, thereby locking the robot 

arm in a fixed position. The technical specifications of this robotic device can be found in 

[25]. In order to record the force and torque, an ATI Gamma force/torque sensor is used. 

The robot has been interfaced with Matlab Simulink/Realtime Workshop to allow fast 

and easy system development. The force values recorded from the force/torque sensor are 

obtained using a National Instruments PCI-6031E data acquisition card with a sampling 

rate of 1000Hz. The joint angles of the robot are measured by encoders and received by 

the computer through a Measurement Computing PCIQUAD04 card with a 1000Hz 

sampling rate. The torque output calculated by the Simulink model is sent to the robot 

through a Measurement Computing PCIM-DDA06/16 card with the same sample rate. A 
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computer monitor is placed in front of the participant to provide visual feedback about 

his/her motion trajectory during the execution of the task. Design details of the system 

can be found in [24]. 

 

Hand attachment device 

In order to provide robotic assistance to the participant’s upper arm, a hand attachment 

device (Figure III-1 bottom) is designed where the participant’s arm is strapped into a 

splint that restricts wrist and hand movement. The PUMA 560 manipulator is coupled 

with the hand attachment device to provide assistance to the upper arm movement. An 

ATI gamma force/torque sensor is placed between the manipulator and the aluminum 

plate to provide a rigid connection and force measurement. The hand attachment device 

consists of an aluminum plate with two small flat-faced electromagnets (from Magnetool 

Inc.) fixed on it, and a forearm padded splint (from MooreMedical) attached to the 

aluminum plate by the magnetic power. These electromagnets are rated for continuous 

duty cycle (100% duty cycle) at normal room temperature. Pull rating of each magnet is 

40lbs. Two electromagnets are installed to generate sufficient pulling force to keep the 

splint attached to the hand attachment device. An automatic release (AU) rectifier 

controller (Magnetool Inc.) has been used to provide a quick, clean release of these 

electromagnets. A handheld controller, which has been connected to the AU Rectifier 

Controller, is used to magnetize and demagnetize the electromagnets when the participant 

wants to remove the hand attachment device from the robotic manipulator in a safe and 

quick manner.  
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Assistive Controller Design 

The assist-as-needed controller designed in this work is responsible for providing 

robotic assistance to the participant to complete the movement tracking task in the task-

space in an accurate manner. In this controller, an outer force feedback loop is designed 

around an inner position loop (Figure III-2). The tracking of the reference trajectory is 

guaranteed by the inner motion control [29]. The desired force, which is given as a force 

reference to the controller, is computed by a planner. The proposed controller is similar to 

an impedance controller; however it allows specifying the reference time-varying force 

directly.  The details of the assistive controller can be found in [30], [31]. However, since 

this controller is integrated with the visual error augmentation module in this work, a 

brief discussion on the controller is presented below. 

The equations of the motion for the robot are given by:  

)(),()()( qGqqVqqMFqJu T                                                       (1) 

where )q(M represents the inertia matrix, )q,q(V  is the summation of the Coriolis 

torques and centrifugal torques, and )(qG  is the vector of gravity torques.   is the 

generalized joint force which is calculated using FqJu T )(- , where u is the input to the 

manipulator, )(qJ  is the Jacobian matrix and F  is the contact force exerted by the 

manipulator. 

Using inverse dynamics control, the manipulator dynamics are linearized and 

decoupled via feedback. Control input u to the manipulator is designed as follows: 

FJqGqqVyqMu T )(),()(                                        (2) 



61 
 

Here, qy  represents a new input. The new control input y is designed so as to allow 

tracking of the desired force dF . For this purpose, the control law is selected as follows: 

                          )),()(()( 11 qqqJdMxfxpKxdKdMqJy                                              (3) 

where fx is a suitable reference to be related to force error; dM (mass), dK (damping) 

and pK (stiffness) matrices specify the target impedance of the robot; x and x are the 

position and velocity of the end-effector in the Cartesian coordinates, respectively. The 

relationship between the joint space and the task space acceleration is used to determine 

position control equation: 

qqqJyqJqqqJqqJ  ),()(),()(x                                             (4) 

xx ,
fx

dFdx

xx ,

 

Figure III-2 The Assistive controller 
 

By substituting Equation (3) into Equation (4),  

      
)xfx(pKdMxdKdMx

q)q,q(J]}q)q,q(JdM)xfx(pKxdK[dM)q(J){q(Jx









11

11




          (5) 

             fppdd xKxKxKxM                                               (6) 

Equation (6) shows the position control tracking of x with dynamics specified by the 

choices of Kd, Kp and Md matrices.  Impedance is attributed to a mechanical system 

characterized by these matrices that allows specifying the dynamic behavior. Let Fd be 

the desired force reference, which is computed using a PID loop: 
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



dt

)xx(d
Ddt)xx(I)xx(PF d

dddddd             (7) 

where dx , x , dP , dI and dD are the desired position, actual position, the proportional, 

integral and derivative gains of the PID position loop, respectively. The relationship 

between fx and the force error is expressed in Equation (8) as: 

  dtFFIFFPx ididf )()(                                                 (8) 

where P and I are the proportional and integral gains, respectively. The P, I, gains are 

tested in our previous work to guarantee a smooth and sufficient assistance to the 

participant [31]. Fi is the force applied by the human. Equations (6) and (8) are combined 

to obtain below equation: 

)dt)FF(I)FF(P(KxKxKxM ididppdd                              (9) 

From Equation (9), the desired force response is achieved by controlling the position 

of the manipulator.  

 

Smooth Switching 

Note that in the proposed rehabilitation task, the assistive controller switches on and 

off to provide robotic assistance to the participant only when needed. In order to avoid 

rough pushing and ensure smooth switching, a switching mechanism is introduced to 

guarantee smooth switching for satisfactory force response [30]. This mechanism defines 

the position reference at the time right after the switching occurs, which is also the input 

for the inner loop of the assistive controller, to be equal to the position reference at the 
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time right before the switching occurs, so that no sudden change in position will happen 

during the switching.  

The control action in Equation (8) can be modified as below: 

         )x)t(x(*I)t(e*P)t(x),t(x)t(x ioiffffp                          (10) 

where xfp(t) is the position reference when the assistive controller is not active, which 

is equal to the current position of the human/robot x(t). xff(t) is the position reference 

determined using the P and I gains when the controller is active. xi(t) represents the error 

integral action   dtFF id )( , and xio is the initial condition of the error integrator. ef(t) is the 

force error defined as id FF   . If ts is the time of switching, the position reference just 

before and after the time of switching can be found using (11), respectively: 

                    
)x)t(x(*I)t(e*P)t(x

),t(x)t(x

iosisfsff

ssfp








                                   (11) 

where 
st is moment just before the switching occurs, 

st is the moment just after the 

switching occurs. The integral action associated with the assistive controller is reset 

during the switching so 0)( 
si tx . The initial condition of the integrator is set as

Itxx sio /)(  . The force error )( 
sf te is set to zero just after the time of the switching so

0)(* 
sf teP . When these conditions are substituted in Equation (11), we get Equation 

(12). Equation (12) ensures that the position reference is indeed continuous during 

switching, which guarantees smooth activation and deactivation of the controller. 

       )t(x)t(x sfpsff
                                                      (12) 
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Safety Consideration of the Robotic System 

Ensuring safety of the participant is a very important issue when designing a robot-

assisted rehabilitation system. Thus, in case of emergency situations, the therapist can 

press a power button to stop the PUMA robot. With the quick-release hand attachment 

device, the patient and/or the therapist can also quickly release the patient’s arm from the 

PUMA 560 by pressing the handheld controller, which comes with the hand attachment 

device, to deal with any physical safety related events. When the controller is pressed, the 

electromagnets are demagnetized instantaneously and the participant is free to remove the 

splint from the robot. The controller can also be operated by the therapist. Moreover, 

rotation angle and torque limits of each joint of the robot are monitored inside the 

software to disable the robot motion to satisfy both joint and torque limits. The switching 

mechanism described above guarantees smooth switching between activation and 

deactivation of the robotic assistance. 

 

Methods 

Task Design 

We choose a reaching task that is commonly used for rehabilitation of upper extremity 

after stroke. In this task, the participant is asked to move his/her arm in the forward 

direction to reach a desired point in space and then bring it back to the starting position 

repeatedly within a specified time, i.e., to follow a desired position trajectory. The 

reaching task designed here requires a combination of shoulder and elbow motion which 

could increase the active range of motion (AROM) in the shoulder and the elbow in 

preparation for later functional reaching activities in rehabilitation. The allowable motion 
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is restricted only to the direction of the task. For example, if the task requires the 

participant to move his/her arm in the Y-direction, then he/she will not be able to move 

the arm in X or Z directions. The idea here is to improve the ability of the participant’s 

arm movement in one direction at a time by helping him/her improve his/her ability to 

complete a desired reaching task, which is an important everyday activity.  

It has been shown in the literature that a movement tracking task that required 

cognitive processing achieved greater gains in performance than that of movement 

training that did not require cognitive processing [26]-[28]. In order to include cognitive 

processing within this reaching task, the participant is asked to follow a visually 

presented desired motion trajectory that is intended to command his/her concentration. 

The participant receives visual feedback of both the actual and the desired position 

trajectories on a computer screen, which is placed in front of him/her. The participant is 

asked to pay attention to tracking the desired position trajectory as accurately as possible, 

which keeps him/her focused on the task. The visual feedback is used not only to inform 

the participant of how closely he/she is tracking the desired motion but also as a 

motivational factor to keep him/her focused on the task. During the execution of the 

reaching task, the number of times the participant needed robotic assistance to track the 

desired motion is recorded.  

 

Assist-As-Needed: Decision of Robotic Assistance Activation during Task Execution 

It is intuitive that a robotic system that provides continuous assistance without 

considering the patient’s actual performance will not be as effective as the one that does. 

Assisting every movement of a patient has been shown to be not beneficial compared to 
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no assistance or assistance as needed, although it is equivalent in some situations [15]. It 

has also been suggested in [16] that performance-based therapy showed better results in 

improving patients’ impairment scores than conventional therapies. In the active-

assistance therapy with the ARM Guide system reported in [10], the stroke patients who 

received robotic assistance when the tracking performance of their upper limbs fell 

outside a predefined deadband showed significant improvement in the time to complete 

functional tasks and in supported reaching range and velocity [10]. Thus, a robot-assisted 

rehabilitation system could be more efficient if the assistance provided to the patient is 

given only as and when needed. In our robot-assisted rehabilitation system, the assistive 

controller is designed to provide robotic assistance based on the participant’s actual 

performance of the tracking task. The idea of the assistive controller in our robotic 

system is to assist the participant when his/her arm position goes out of the predefined 

acceptable position band. A similar therapy algorithm was implemented with the ARM 

Guide system in [10]. 

Initially, a desired trajectory xd is defined and then the acceptable position band 

(Figure III-3) with the upper bound xupper and the lower bound xlower are calculated using 

Equation (13). 

       
)percentage*x(xx

),percentage*x(xx

ddlower

ddupper




                                                 (13) 

where percentage is the value chosen to set the upper and lower bounds for the 

defined position trajectory. In order to define the task position trajectories xd, a generator 

block using Matlab/Simulink Blockset is developed. This block generates the minimum-

jerk position and velocity trajectories with a specified distance, maximum velocity and 
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acceleration using user defined function. If the actual position x(t) lies within the 

acceptable band, then the participant is considered to be able to track the trajectory 

without robotic assistance. If the actual position x is not between the upper bound xupper 

and the lower bound xlower , then the assistive controller is activated to provide assistance 

to bring the participant’s position back into the desired range.  

However, note that each participant requires a certain amount of time (settling time) to 

generate the desired motion, thus the controller should not be activated until it is 

determined that the participant is not able to generate the required motion by his/her own 

effort. Thus, the averages of the participant’s actual position xave (which is different from 

the instantaneous position in [10]), the upper bound xupper, and the lower bound xlower are 

calculated in a given time interval. These averages are used to decide whether the robotic 

assistance is needed. xave, xupper_ave and xlower_ave are calculated using the equations: 
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(14) 

where tf , ti and ts are the final time, starting time and sampling time, respectively. The 

participant’s actual position at time t is x(t).  
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Figure III-3 The Acceptable Position Band 

If condition: ave_upperaveave_lower xxx   is satisfied, then the assistive controller is not 

activated and the participant continues the tracking task without robotic assistance. If 

condition is not satisfied, then the assistive controller is activated to provide robotic 

assistance.  

 

Visual Error Augmentation 

It has been shown that visual error augmentation training makes small errors more 

noticeable to the participant and motivates the participant to make faster responses to 

correct the error [21]. Faster responses may lead to larger changes in performance of the 

participant. Additionally, amplified error can also increase signal-to-noise ratios which 

may improve cognitive processing and self-evaluation [21]. It has been previously 

verified that training performance of the patients had been improved only when the 

original errors had been magnified, but not when the errors were reduced or absent [32]. 

Hence visual error amplification training may be an effective way to promote functional 
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motor recovery for people after stroke. However, it is important to select a proper gain K 

in the visual error amplification. If the gain is too small, the effect of error augmentation 

will be quite limited; if the gain is too large, it is possible that the sensory-motor learning 

will become unstable, which may cause sensor inaccuracy, over-correction, and even 

frustration and anxiety in the participants.  

In this work, the gain is selected as 2, which is shown to elicit the best experimental 

result in [21].  A gain of 2 means any deviation from the desired trajectory will be 

displayed as twice the real distance from the desired trajectory (Figure III-4). The error e 

is calculated by equation (15). Here, x(t) is the actual arm position.  

)()()( txtxte d                                                                             (15) 

 

Figure III-4  Illustration of the Visual Error Augmentation.  
Figure Notes: The thick line is the actual position trajectory, which is not shown on the 
monitor.  The thin solid line is the desired position trajectory and the dotted line is the 
augmented position trajectory. Those two lines are shown on the monitor. 

The participant’s performance is expected to be better when visual error augmentation 

training is applied. However, for stroke patients, it may still happen that the patient is not 

capable of completing the task by himself/herself. In this case, the assistive controller 
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described in the previous section will be activated so that the robot will help the patient 

come back into the acceptable band to continue the task execution. Note that the errors 

fed back to the assistive controller are not amplified, which guarantees the robotic system 

works in an accurate manner.  

 

Participants 

Two groups of 10 right-handed participants between the ages of 25-35 took part in the 

experiment. Both groups consisted of 7 males and 3 females. None of the participants had 

any motor impairment in their arms. 

 

Protocol 

Participants were seated in a height adjustable chair as shown in Figure III-1 (top left) 

and were required to place their forearm on the hand attachment device as shown in 

Figure III-1 (bottom left) when the starting arm configuration was fixed. The height of 

the PUMA 560 robotic manipulator was adjusted for each participant to start the tracking 

task in the same arm configuration. The starting arm configuration was selected as 

shoulder at neutral 0º position and elbow at 90º flexion position. The task required 

moving the arm in forward flexion to approximately 60º in conjunction with elbow 

extension to approximately 0º and then coming back to the starting position. The release 

button of the hand attachment device was given to the participants in case of emergency 

situations during the task execution (Figure III-1 bottom middle). The participants 

received visual feedback of the task trajectories and their own position trajectories on a 

computer monitor in front of them (Figure III-1 top right). 
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We conducted two sessions of the experiment to evaluate the proposed robot-assisted 

rehabilitation system with only assist-as-needed training method (AAN Session) and the 

integration of the assist-as-needed with the visual error augmentation training methods 

(INT Session). In both sessions, the participants used their non-dominant arms to perform 

the task. This was done in order to create imperfect tracking condition so that the robotic 

training had some room to elicit improvement. In the AAN Session, the aim was to 

evaluate the outcome of the system with the assist-as-needed training method. 

Participants were required to perform the tracking task with the robotic assistance but 

without the visual error augmentation training. In INT Session, the aim was to evaluate 

the outcome of the enhanced system when the visual error augmentation training was 

integrated. Since the eventual aim is to apply the robot-assisted rehabilitation system to 

stroke patients who are not likely to complete the task by their own efforts and may need 

robotic assistance, we make robotic assistance available in both sessions in these 

experiments. 

In order to make a comparison of the two presented training methods, a crossover 

study was performed to evaluate the difference of the training effects between the two 

sessions. Group A were asked to participate in the AAN Session first and then followed 

by the INT Session, while Group B were asked to participate in the INT Session first and 

then followed by the AAN Session. The two sessions of both groups were conducted with 

at least two weeks of interval as a washout period. The crossover design is able to 

increase the precision of comparison because each participant serves his/her own control, 

so the comparisons of treatment effect are based on within-participant variability (which 

is usually less than the between-participant variability). Meanwhile, the carryover effect 
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between the two sessions is also investigated by the between group comparison [33]. This 

study was approved by the Institutional Review Board of Vanderbilt University (IRB 

#90736).  

Before each session, the participant took part in a trial practice first, during which the 

participant executed the same tracking task several times to get a basic understanding of 

the task execution. Typically, a participant practiced 3 forward and backward motions 

requiring no more than 3 minutes. Once the session started, the participants were asked to 

execute the forward and backward tracking task 25 times, which was distributed into 5 

training groups. Thus the participant performed the required task 5 times in each training 

group without a break. The participant took a 3 to 5 minute break between two training 

groups. Additionally, after finishing the INT Session, the participant took part in 

additional practice without visual error augmentation to wash out the possible sensor-

motor distortion.  

 

Task Parameters 

The maximum velocity of the task was defined as 0.02m/s and the maximum 

acceleration was 0.008m/s2. These two parameters were chosen in consultation with an 

occupational therapist who works with stroke patients at the Vanderbilt Stallworth 

Rehabilitation Hospital. The task distance was selected from 0.2m, 0.25m or 0.3m based 

on the length of participants’ arms. All three parameters were necessary in creating a 

desirable tracking task for each participant. Once these task parameters were decided, dx ,

dx , upperx  and lowerx  trajectories were generated by reference blocks in Simulink. Since the 

participants were healthy subjects, the percentage of position error band was chosen as 
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5%; avex , aveupperx _  , and avelowerx _  were calculated every 4 seconds ( 4
if

tt ) using 

Equation (14); then the criterion aveupperaveavelower xxx __   was checked to decide the 

activation of the assistive controller. Once activated, the robotic assistance would 

continue for 4 seconds. The P and I gains in Equation (8) of the assistive controller were 

properly selected, which guaranteed that sufficient robotic assistance was provided to 

move the arm position back within the acceptable position band in 4 seconds. 

These parameters were chosen to challenge the participants and train them to make 

fast responses to errors and make the tracking more accurate. It is quite possible that the 

time interval to determine the activation of robotic assistance and the acceptable position 

band need to be adjusted in clinical application with stroke patients to encourage the 

patients without frustrating them to complete the training. 

 

Experimental Results 

During the experiments, the numbers of times of robotic assistance needed by 

participants and the actual position trajectories were recorded. For better representation of 

the experimental results, the participants were sorted in descending order based on their 

average position errors in the AAN session, i.e., Participant 1 had the largest average 

position error while Participant 10 had the smallest average position error in the AAN 

Session of Group 1; Similarly, Participant 11 had the largest average position error while 

Participant 20 had the smallest average position error in the AAN Session of Group 2. 

The participant labels were consistent for all the results presented in this work. 
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Activation of Robotic Assistance 

The assistive controller of the robot-assisted rehabilitation system monitored the actual 

arm position and provided robotic assistance to keep the actual arm position within the 

acceptable position band when needed in both sessions. The activation of the assistive 

controller to provide robotic assistance for each participant was recorded.  

A segment of the activation of the assistive controller for Participant 4 (as an example) 

is shown in Figure III-5. When the average actual position calculated over a period of 4 

seconds using Equation (14) was out of the position band, the controller initiated robotic 

assistance, which brought the arm position back into the acceptable range within one 

period (4s).  The position error during this period is shown in Figure III-6.  

 

Figure III-5 Calculated Average Position Points for Participant 4 in Experiment 1.  
Figure Notes: The robotic assistance was provided when the average position was out of 
the acceptable position band. The average positions were calculated at t=1s, 5s, 9s, 13s… 
in this plot. 
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Figure III-6 The Position Error during Robotic Assistance for Participant 4  
Figure Notes: Once activated, robotic assistance continued for 4 seconds and was 
sufficient to bring the arm position back into the acceptable error band. Note that, for 
example, around t=30, the robotic assistance was not activated until t=33s when it was 
determined that the average position error in 4s interval (t=29~33s) was out of acceptable 
error band.  
 

 

Times of Assistance Needed 

The total numbers of times of assistance needed by each participant in two training 

sessions for both Group A and Group B are shown in Figure III-7 and Figure III-8, 

respectively.  

Comparing the numbers of times of assistance needed in two sessions of group A, who 

participated in the AAN Session followed by the INT Session, participants significantly 

improved their tracking performance (i.e., the participants needed less numbers of times 

of robotic assistance) when the assist-as-needed training method was integrated with the 

visual error augmentation training method in the INT Session (Figure III-7). The total 

number of times of robotic assistance needed by each participant decreased significantly, 
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for P1 (33.3%), P2 (56.41%), P3 (39.47%), P4 (76.67%), P5 (75.86%), P6 (23.81%), P7 

(16.67%), P8 (36.84%), P9 (60%) and P10 (17.65%), in the INT Session compared to the 

AAN Session. The paired t-test, which compared the group mean of the numbers of times 

of robotic assistance needed by the participants in the AAN Session with that in the INT 

Session, showed that the difference was statistically significant (p<0.001).  

 

Figure III-7 Comparison of Two Sessions of Group A  
Figure Notes: Each participant needed less numbers of times of robotic assistance in the 
INT Session. 

Comparing the total numbers of assistance needed in the two sessions of Group B, 

who participated in the INT Session followed by the AAN Session, 9 out of 10 

participants’ achieved better tracking performance (i.e., the participants needed less 

numbers of times of robotic assistance) when the assist-as-needed training method was 

integrated with the visual error augmentation training method in the INT Session (Figure 

III-8), except for Participant 15, who showed a slight decrease in times of robotic 

assistance needed (9.52%). The total number of times of robotic assistance needed by 
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each participant increased, for P11 (17.78%), P12 (25%), P13 (8.33%), P14 (20%), P16 

(27.27%), P17 (26.92%), P18 (16%), P19 (31.58%) and P20 (52.17%), from the INT 

Session to the AAN Session. The paired t-test showed that the difference of times of 

robotic assistance needed by all participants between the INT Session and the AAN 

Session was statistically significant (p<0.001). 

 

Figure III-8 Comparison of Two Sessions of Group B  
Figure Notes: 9 out of 10 participant needed less numbers of  times of robotic assistance 
in the INT Session. 
 

Note that the carryover effects, which are the training residuals from the first training 

session into the second training session, might have affected the training performance in 

the second training session. Thus further analysis of the crossover study was performed to 

make a comparison of the difference of times of robotic assistance needed by the 

participants between the two sessions with the existence of carryover effects. Table III-1 

shows the number of times of robotic assistance needed by each participant in each 
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session. The steps and analysis of a general two-period crossover study are briefly 

described in the Appendix.  

Table III-1 Number of Times of Robotic Assistance Needed by Each Participant in Each 
Session 

 
Group A Group B 

ID AAN INT Sum 
(T1i)

Difference 
(D1i)

ID INT AAN Sum 
(T2j) 

Difference 
(D2j)

P1 57 38 95 19 P11 37 45 82 -8 

P2 39 17 56 22 P12 24 32 56 -8 

P3 38 23 61 15 P13 22 24 46 -2 

P4 30 7 37 23 P14 28 35 63 -7 

P5 29 7 36 22 P15 21 19 40 2 

P6 21 16 37 5 P16 16 22 38 -6 

P7 24 20 44 4 P17 19 26 45 -7 

P8 19 12 31 7 P18 21 25 46 -4 

P9 25 10 35 15 P19 13 19 32 -6 

P10 17 14 31 3 P20 11 23 34 -12 

 

First, an unpaired t-test was carried out between T1i and T2j to test the equality of 

carryover effect. The result of the unpaired t-test showed that the difference was not 

significant (p=0.813). So the carryover effect between the AAN Session followed by the 

INT Session in Group A had no significant difference from that between the INT Session 

followed by the AAN Session in Group B, which indicated that the carryover effect was 

consistent between the two groups.  

To test the difference of the numbers of times of robotic assistance needed by 

participants in two sessions, knowing that the carryover effect was not significantly 

different between the two groups, an unpaired t-test was performed between D1i and D2j. 

The result of one-sided unpaired t-test showed that the difference of training effects was 
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statistically significant (p<0.001), which indicated that better training performance were 

achieved by participants in the INT Sessions than in the AAN Sessions.  

 

Analysis of Position Error 

The average absolute position errors of each participant in both groups in two sessions 

were calculated using Equation (16). 
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where i is the i-th training group, isT ,  and ifT ,  are the starting and final times of i-th 

training group. )(, tx id and )(txi  are the desired and actual positions in the i-th training 

group. 

In Group A, the average absolute position errors of each participant in the INT Session 

was much smaller than that in the AAN Session, which meant more accurate tracking 

performance was achieved by the participants in the INT Session (Figure III-9). The 

paired t-test, which compared the group mean of average absolute position errors of the 

participants in the AAN Session with that in the INT Session, showed that the difference 

of average absolute position errors was statistically significant (p < 0.001). 
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Figure III-9 The Average Absolute Position Errors in Two Sessions of Group A 
Figure Notes: The average absolute position errors of all participants are smaller in the 
INT Session. Error bar is the standard error of the mean. 
 

Meanwhile, in Group B, the average absolute position errors of each participant in the 

INT Session was still smaller than that in the AAN Session, except for Participant 15, 

which meant that for 9 out of 10 participants of Group B, more accurate tracking 

performance was achieved in the INT Session (Figure III-10). The paired t-test showed 

that the difference of average absolute position errors between the AAN Session and the 

INT Session was statistically significant (p = 0.0014).  

3.5
4.5
5.5
6.5
7.5
8.5
9.5

10.5
11.5
12.5

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
rr

or
 (

m
m

)

Participant

AAN Session

INT Session



81 
 

 

Figure III-10 The Average Absolute Position Errors in Two Sessions of Group B  
Figure Notes: The average absolute position errors of 9 out of 10 participants are smaller 
in the INT Session. Error bar is the standard error of the mean. 

The analysis of the crossover design was performed to test the difference of position 

error between two training sessions. Table III-2 shows the average error of each 

participant in both sessions. The unpaired t-test between T1i and T2j showed that there 

was no significant difference of carryover effect between the two groups (p = 0.747). The 

result of one-sided unpaired t-test between D1i and D2j showed that the difference of 

training effect between the two groups was statistically significant (P<0.001), which 

implied the participants were able to perform the tracking task more accurately in the INT 

Sessions.   

 
Table III-2 Average Absolute Position Error of Each Participant in Each Sessions 

Group A Group B 

ID INT AAN Sum (T1i) 
Difference 

(D1i) 
ID INT AAN Sum (T2j) 

Difference 

(D2j) 

P1 11.53±0.80 8.11±0.78 19.64 3.42 P11 9.75±0.54 9.98±0.80 19.73 -0.23 

P2 9.24±0.50 5.90±0.21 15.15 3.34 P12 7.61±0.77 8.10±0.38 15.71 -0.49 

P3 8.60±1.11 6.01±0.27 14.62 2.59 P13 7.36±0.65 7.67±0.46 15.04 -0.31 
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P4 8.48±0.39 4.74±0.52 13.22 3.74 P14 6.88±0.63 7.54±0.45 14.42 -0.67 

P5 7.81±1.12 4.54±0.72 12.35 3.26 P15 7.49±0.67 7.31±0.48 14.80 0.18 

P6 7.41±0.68 6.36±0.53 13.76 1.05 P16 5.93±0.75 6.51±0.42 12.44 -0.57 

P7 6.80±0.64 5.78±0.44 12.58 1.02 P17 5.47±0.57 6.47±0.35 11.95 -1.00 

P8 6.78±0.61 4.85±0.46 11.63 1.93 P18 5.80±0.56 6.31±0.61 12.11 -0.51 

P9 6.54±0.31 5.41±0.51 11.95 1.13 P19 5.88±0.61 6.16±0.52 12.04 -0.28 

P10 6.45±0.40 4.84±0.46 11.29 1.61 P20 5.48±0.45 6.13±0.37 11.61 -0.65 

Note: Values are mean ± standard error of the mean (SEM).  Units: mm.  

 

Discussion 

The primary goal of this study was to explore the impact of visual error augmentation 

training method, when it was integrated with assist-as-needed training method in robot-

assisted rehabilitation. Both assist-as-needed [10], [16] and visual error augmentation 

[21], [23], [32] training methods have been investigated separately on healthy subjects 

and stroke patients for upper extremity. While the algorithmic details differ in these 

studies, the overall ideas have been similar. In all these studies, improved performances 

have been achieved across training sessions. We began our investigation knowing that 

both these training methods, individually, had the potential to improve the rehabilitation 

outcome. We wanted to extend the understanding of the impact of these two training 

methods when they were integrated together in robot-assisted rehabilitation. In this study, 

significant improvements were observed in both AAN Session and INT Session, which 

was in agreement with the results of the prior works [10], [16], [21], [23]. The detailed 

performance in each training session was reported in our previous work [34]. Moreover, 

regardless of the sequence of the two sessions, 19 out of 20 participants needed fewer 

times of robotic assistance to complete the task in the INT Session. This result indicated 
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that the participants became more capable of executing the task when the visual error 

augmentation training method had been integrated with the assist-as-needed training 

method in the robot-assisted rehabilitation system. It was also observed that the tracking 

performances were better in terms of smaller average position errors for 19 out of 20 

participants in the INT Session. Only one participant in Group B, who took part in the 

INT Session followed by the AAN Session, showed a better performance in the assist-as-

needed session.  

Comparing the participants’ overall performances in the INT Session with that in the 

AAN Session within the same groups, improved training performances were achieved in 

the INT Session in both groups (i.e., less times of robotic assistance needed and smaller 

average position errors), and differences in the improvements between two sessions were 

statistically significant (Figure III-11 and Figure III-12, Comparison 1 and 2). Thus, it is 

reasonable to believe that the integration of the visual error augmentation training method 

with the assist-as-needed training method has contributed towards the improved training 

performance.   

On the other hand, the unpaired t-tests for the training performances in the same 

training sessions of different groups did not show statistically significant differences, 

which means no matter conducted with or without the influence of carryover effect 

(Figure III-11 and Figure III-12, Comparison 3 and 4), the training effects in either 

training session were consistent between groups. Meanwhile, no statistically significant 

difference in carryover effects was observed between the two groups, which indicated the 

influence of carryover effects was consistent between groups.  
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Table III-3 Average Value for Each Group in Each Session 
 Group A Group B 

Variable 
AAN Session 

(AAN1) 
INT Session 

(INT1) 
INT Session 

(INT2) 
AAN Session 

(AAN2) 

Robotic 
Assistance 

Needed 
29.93.81 16.42.92 21.22.37 272.57 

Average Error 
(mm) 

7.960.50 5.650.34 6.770.43 7.220.38 

Note: Values are mean ± standard error of the mean (SEM). 

 

 

Figure III-11 The Average Number of Times of Robotic Assistance Needed in Each 
Session  

Figure Notes: Error bars are the SEM. Note that Comparison 1 and 2 are the paired t-tests 
for the different sessions in the same group. Comparison 3 and 4 are the unpaired t-tests 
for the same sessions in different groups. 
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Figure III-12 The Average Position Error in Each Session (Error bars are the SEM)  
Figure Notes: Note that Comparison 1 and 2 are the paired t-tests for the different 
sessions in the same group. Comparison 3 and 4 are the unpaired t-tests for the same 
sessions in different groups. 
 

Note that this is a preliminary investigation on complex research questions such as -- 

what is the best training method for stroke rehabilitation? Do these training methods need 

to be applied separately, or are they more effective when integrated in a specific manner? 

Although our initial research does not address these issues in relation to stroke patients 

directly, the findings with unimpaired participants do suggest that an integration of visual 

error augmentation with assist-as-needed training methods improve the tracking 

performance significantly. Based on the experimental results presented here, it is 

reasonable to suggest that integrating visual error augmentation training method with the 

assist-as-needed training method might have the potential to improve the performance of 

stroke rehabilitation and should be explored. 
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Conclusion 

An enhanced robot-assisted rehabilitation system, with the assist-as-needed and the 

visual error augmentation training methods, is evaluated with two groups of unimpaired 

participants in two experimental sessions. As a crossover design, Group A participants 

took part in the AAN training session followed by the INT training session, while the 

Group B participants took part in the INT training session followed by the AAN training 

session. The experimental results demonstrate that improved performance, in terms of 

times of robotic assistance needed and average position errors, are achieved in the 

integrated training session on unimpaired participants. The integration of visual error 

augmentation training method with the assist-as-needed training method might have the 

potential to improve the performance of stroke rehabilitation and should be further 

explored. 

As future work, a new assistive controller, which can adaptively choose the proper 

control gains for participants with different levels of motor abilities, will be developed so 

that participants can achieve better training performance with appropriate robotic 

assistance. Our previous work [31] has proposed a technique that predicts proper control 

gains based on parameter estimation and neural network prediction methods for each 

participant. It is also possible to test various error amplification gains or error offset 

values in the visual error augmentation training method to achieve a comprehensive 

understanding of this training method. Additionally, an important direction for future 

development involves testing the usability of the enhanced robot-assisted rehabilitation 

system with stroke patients. Functional magnetic resonance imaging (fMRI) procedure 

can also be introduced to investigate whether the robot-assisted rehabilitation system that 
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integrates visual error augmentation with assist-as-needed training methods result in 

long-term brain reorganization. 
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Appendix: Analysis of the crossover design 

Table III-4 lists all the possible effects in a two-period crossover design [33]. 

Table III-4 possible effects in a general two period crossover design 
 Period  

Sequence 1 2 Sum Difference 

AB µ+ π1+τ1 µ+ π2+τ2൅ρ1 1T  1D  

BA µ+ π1+τ2 µ+ π2+τ1൅ρ2 2T  2D  

 

Where μ denotes the overall mean, πi denotes the i-th period effect regardless of 

treatment, τi denotes the i-th treatment effect, ρi  denotes the first treatment’s residual or 

carryover effect into the second treatment in sequence i.  
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From the table, expectation of sum 1T  and 2T ,    

E( 1T ) = 2μ + π1+τ1+ π2+τ2൅ρ1,  E( 2T ) =2μ + π1+τ1+ π2+τ2൅ρ2 .             (16) 

Therefore, an unbiased estimator of ρ1− ρ2, which measures the difference in carryover 

effects, is,           

(ρ1− ρ2)est = 1T − 2T .                                                                           (17) 

If ρ1=ρ2, the unbiased estimator of τ1െ  τ2,  which measure the average difference 

between treatment 1 and treatment 2, is, 

(τ1− τ2)est = ( 1D − 2D )/2.                                                                      (18) 

If ρ1≠ρ2, the expectation of an unbiased estimator of τ1െ τ2 is, 

E((τ1− τ2)est) = (τ1− τ2) – (ρ1− ρ2)/2.                                                        (19) 

In this case, an unbiased estimator of τ1− τ2 is, 

(τ1− τ2)corrected est =   11 YX                                                                                      (20) 

where 1X , 1Y are the measurements in Period 1 of each sequence. 

So the analysis is conducted in three steps:   

1) Test the equality of carryover effect between two groups with hypothesis ρ1=ρ2;  

2) If the carryover effect is not equal, use only the data from the first session to test the 

difference of times of assistance needed by participants in two sessions;  

3) If the carryover effect is equal, use data from both sessions.  

 

References 

[1] American Heart Association: Heart and Stroke Statistical Update, 
http://www.Americanheart.org/statistics/stroke.htm, (2009). Updates, vol. 5, pp. 9-
12, 1994. 



89 
 

[2] Matchar D.B., Duncan P.W., “Cost of stroke”, Stroke Clin Updates, 5, 9-12 (1994). 

[3] Judith D. Schaechter, “Motor rehabilitation and brain plasticity after hemiparetic 
stroke”, Progress in Neurobiology 73 (2004) 61–72. 

[4] Krebs H. I., Hogan N., Aisen M.L., Volpe B.T., “Robot–aided neurorehabilitation”, 
IEEE Trans. on Rehab. Eng. 6, 75-87 (1999). 

[5] Krebs H.I., Palazzolo J.J., Dipietro L., Ferraro M., Krol J., Rannekleiv K. , Volpe 
B.T. , Hogan N., “Rehabilitation Robotics: Performance-Based Progressive Robot-
Assisted Therapy”, Autonomous Robots, 15(1), 7-20 (2003). 

[6] Krebs H. I, Ferraro M., Buerger S.P, Newbery M. J., Makiyama A., Sandmann M., 
Lynch D., Volpe B. T., Hogan N., “Rehabilitation robotics: pilot trial of a spatial 
extension for MIT-Manus”, Journal of NeuroEngineering and Rehabilitation. 1(5), 
1-15, (2004). 

[7] Burgar C.G., Lum P.S., Shor P.C., Van der Loos H.F.M., “Development of robots 
for rehabilitation therapy: The Palo Alto VA/Stanford experience”, J. of Rehab. 
Research & Development, 37(6), 663-673 (2000). 

[8] Lum, P.S.; Burgar, C.G., Van der Loos, H.F.M., Shor, P.C., Majmundar M., Yap R. 
“MIME robotic device for upper-limb neurorehabilitation in suacute stroke subjects: 
A follow-up study”, J. of Rehab. Research & Development, 43(5):631-642 (2006). 

[9] Reinkensmeyer D. J., Kahn L. E., Averbuch M., McKennaCole A., Schmit B.D., 
Rymer W.Z., “Understanding and treating arm movement impairment after chronic 
brain injury: Progress with the Arm Guide”, J. of Rehab. Research & Development. 
37(6), 653-662 (2000). 

[10] Kahn L.E., Zygman M.L.Rymer W.Z, Reinkensmeyer D.J, “Robot-assisted 
reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: 
a randomized controlled pilot study”, Journal of NeuroEngineering and 
Rehabilitation, 3(12), 1-13 (2006). 

[11] Loureiro R., Amirabdollahian F., Topping M., Driessen B., Harwin W., “Upper 
limb mediated stroke therapy - GENTLE/s approach”, Autonomous Robots, 15, 35-
51 (2003) 

[12] Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A. and Werner, C., “Robot-
assisted arm trainer for the passive and active practice of bilateral forearm and wrist 
movements in  hemiparetic subjects” Arch Phys Med Rehabil, 84(6), 915–20, 
(2003).  

[13] Charles, S., Krebs, H., Volpe, B., Lynch, D. and Hogan, N., “Wrist rehabilitation 
following stroke: initial clinical results,” in Proc. IEEE International Conference on 
Rehabilitation Robotics (ICORR’2005), Chicago, IL, USA, 13–16, (2005).  



90 
 

[14] Gupta, A., O'Malley, M. K., Patoglu, V. and Burgar, C., “Design, control and 
performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and 
training” The International Journal of Robotics Research, 27, 233-251, (2008).    

[15] Reinkensmeyer D.J., Emken J.L., Cramer S.C. “Robotics, motor learning, and 
neurological recovery”, Ann Rev Biomed Eng., 6, 497–525, (2006). 

[16] Kahn L.E., Lum P.S., Rymer W.Z., Reinkensmeyer D.J., “Robot-assisted 
movement training for the stroke-impaired arm: Does it matter what the robot 
does?”, J Rehabil Res Dev, 43, 619-30 , (2006). 

[17] Carey, J.R.; Bhatt, E. and Nagpal, A., “Neuroplasticity Promoted by Task 
Complexity”, Exercise and Sport Science Review, 33, 24-31, (2005). 

[18] Rumelhart D. E., Hinton G. E., and Williams R. J., “Learning representations by 
back-propagating errors”, Nature (London), 323, pp. 533-536, (1986). 

[19] Kawato M., “Feedback-error-learning neural network for supervised learning, 
Advanced neural computers”, R. Eckmiller, Ed. Amsterdam: North-Holland, 365-
372, (1990). 

[20] Wolpert D. M., Ghahramani Z., and Jordan M. I., “An internal model for 
sensorimotor integration, Science, 269, 1880-1882, (1995). 

[21] Wei Y., Bajaj P,Scheidt R. and Patton J., “Visual Error Augmentation for 
Enhancing Motor Learning and Rehabilitative Relearning”, IEEE  Intl. Conf. on 
Rehabilitation Robotics, 505-510, Chicago, USA, (2005). 

[22] Dellon, B., and Matsuoka, Y. “Feedback Distortion to Augment Controllability of 
Human Limb Motion,” in Proceedings of Virtual Rehabilitation, 2008. 

[23] Brewer, B.; Klatzky, R.; Matsuoka, Y., “Visual feedback distortion in a robotic 
environment for hand rehabilitation”, Brain Research Bulletin 75, 804, (2008).  

[24] Erol D. and Sarkar N., “Coordinated control of assistive robotic devices for 
activities of daily living tasks”, IEEE Transaction on Neural and Rehabilitation 
Engineering, 16(3), 278-285, (2008). 

[25] PUMA 560 Related Sites on the Internet, Available from: 
www.ee.ualberta.ca/~jasmith/puma/pumasites.html. 

[26] Carey J.R., Kimberley T.J., Lewis S.M., Auerbach E., Dorsey L., Rundquist P., 
Ugurbil K., “Analysis of fMRI and Finger Tracking Training in Subjects with 
Chronic Stroke”, Brain, 125, 773-788,  (2002). 

[27] Carey J.R., Anderson K.M., Kimberley T.J., Lewis S.M., Auerbach E.J., Ugurbil K., 
“fMRI anaysis of ankle movement tracking training in Subjects with Stroke”, Exp 
Brain Res., 154, 281-290,  (2004). 



91 
 

[28] Carey J., Durfee W., Bhatt E., Nagpal A., Weinstein S., Anderson K., Lewis S., 
“Tracking vs. movement Telerehabilitation training to change hand function and 
brain reorganization in stroke”, Neurorehabilitation and Neural Repair, (2006). 

[29] Sciavicco, L. & Siciliano, B. , “Modeling and Control of Robot Manipulators”, 
McGrawHill, (1996). 

[30] Erol D. and Sarkar N., “Intelligent Control for Robotic Rehabilitation after Stroke”, 
Journal of Intelligent and Robotic Systems, 50(4), 341-360, (2007). 

[31] Erol D. and Sarkar N., “Smooth Human-Robot Interaction in Robot-Assisted 
Rehabilitation”, IEEE 10th Intl. Conf. on Rehabilitation Robotics, 5-12, (2007), 
Netherlands. 

[32] J. L. Patton, M. E. Phillips-Stoykov, M. Stojakovich, and F. A. Mussa-Ivaldi, 
"Evaluation of robotic training forces that either enhance or reduce error in chronic 
hemiparetic stroke survivors," Experimental Brain Research, vol. Accepted pending 
revisions, 2004. 

[33] Fleiss J. L., “The Design and Analysis of Clinical Experiments”, John Wiley & 
Sons Publication, (1986), ISBN-10: 0-471-82047-4. 

[34] Furui Wang; Barkana, D.E.; Sarkar, N.; , "Evaluation of a robot-assisted 
rehabilitation system with assist-as- needed and visual error augmentation training 
methods," Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ 
International Conference on , pp.3555-3560, 10-15 Oct. 2009 

 



 

92 
 

 

 CHAPTER IV 

 

MANUSCRIPT III: DESIGN AND DEVELOPMENT OF AN ACTUATED 

FINGER EXOSKELETON FOR HAND REHABILITATION FOLLOWING 

STROKE 

 

Christopher L. Jones, Furui Wang, Robert Morrison, Nilanjan Sarkar and Derek Kamper 

 

(This work has been partially published in the IEEE International Conference on 

Biomedical Robotics and Biomechatronics, BioRob 2010, and submitted to the IEEE 

Transactions on Mechatronics.) 

 



 

93 
 

 

Abstract 

Finger impairment following stroke results in significant deficits in hand manipulation 

and the performance of everyday tasks.  While recent advances in rehabilitation robotics 

have shown promise for facilitating functional improvement, it remains unclear how best 

to employ these devices to maximize benefits.  Current devices for the hand lack the 

capacity to fully explore the space of possible training paradigms.  Particularly, they 

cannot provide the independent joint control and levels of velocity and torque required.  

To fill this need, we have developed a prototype for one digit, the Actuated Finger 

Exoskeleton (AFX), a three degree-of-freedom robotic exoskeleton for the index finger.  

This paper presents the design and development of the AFX, with performance testing 

results. 

Keywords: Actuated Finger Exoskeleton, Hand rehabilitation, Robot-assisted 

Rehabilitation System 

 

Introduction 

Precise finger and thumb interactions are fundamental to human motor control.  These 

movements are used constantly in everyday tasks. Neurological disorders such as stroke 

greatly impair this core function [1], directly impacting quality of life [3]. 

Stroke is the leading cause of serious, long-term disability in the United States [4]. Out 

of an estimated 7 million stroke survivors in the U.S. [5], 30-50% will require ongoing 

care or experience chronic impairment [4]. The economic costs of stroke, including direct 

and indirect expenses, exceeded $73 billion for 2010 in the U.S. alone [5].     
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Thus, current research focuses on improving the efficacy of rehabilitation. Recent 

studies have shown that repetitive practice of desired movement leads to promising 

recovery. For example, promotion of use of the paretic upper limb through constraint-

induced therapy has led to improved motor control [6]-[8]. Practice has been shown to 

improve plasticity and incite cortical functional reorganization leading to improved motor 

control following stroke [9], [10]. 

Because of the complexity of the hand, with 21 mechanical degrees-of-freedom (DOF) 

and even more muscles, and the need for lengthy and consistent repetition of movement, 

researchers have begun to implement robotics for rehabilitation. Robot-assisted 

rehabilitation has been demonstrated to enable longer training sessions while reducing the 

workload on therapists [11].   

In recent years, a number of devices have been developed expressly for, or applied to, 

hand rehabilitation. These include both commercial products, such as CyberGrasp 

(Immersion Corporation, San Jose, CA) [12], the Hand Mentor (Kinetic Muscles Inc., 

Tempe, AZ), and the Amadeo System (Tyromotion GmbH, Graz, Austria) and 

experimental devices, including the Rutgers Master II-ND [13], HWARD [14], and 

HandCARE [15], among others [16]-[19].   

A fundamental question, however, is how to best use these devices for rehabilitation. 

The extent to which rehabilitation robots should assist, resist, or otherwise alter 

movement of the user is unclear and requires further study. Unfortunately, existing 

devices do not provide the complete range of speed, force, and independence of joint 

control to thoroughly explore the space of different training algorithms and environments. 

For example, stroke survivors may generate substantial coactivation, especially during 
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intended finger extension [20], such that significant joint torques may need to be 

provided by the exoskeleton to overcome the misapplied joint torques of the user. 

Abnormalities in impedance and motor control may vary from joint to joint such that 

independent control of each joint through the exoskeleton may be beneficial for training.  

Additionally, to examine and mitigate power deficits [21] and peak tracking limitations, 

high joint rotational velocity may be needed.  

A device possessing these capabilities would greatly facilitate the scientific 

investigation of hand function and therapy following stroke.  In accordance with these 

goals, we have developed a prototype for a single finger.  The Actuated Finger 

Exoskeleton (AFX), presented here, will improve on current rehabilitation robotics 

solutions by providing a versatile framework with high performance, real-time control, 

individual actuation of each of the finger joints, and forces and speeds comparable to 

normal human function. The AFX will allow for normal task execution enabling direct 

comparisons between distinct rehabilitation strategies and motor control studies within a 

single platform. This paper describes the AFX and analyzes preliminary kinematic and 

torque control performance.   

 

Finger Exoskeleton Design 

Design Requirements 

To enable the exploration of rehabilitation and motor control strategies of the finger, 

the AFX must satisfy several design criteria. A device meeting these criteria would 

enable detailed analysis of index finger control through interaction with its joints across 

the range of normal, dynamic movements. 
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First, the exoskeleton must be biomechanically compatible with an individual’s natural 

joint rotation and provide independent actuation of each of the joints of the finger. In 

order to implement the rehabilitation training algorithms and create natural joint rotation 

for the affected finger, it is necessary to provide individual actuation for each of the 

finger joints, as alterations in impedance and motor control may vary from joint to joint 

following stroke. 

Next, to reduce impedance of normal movement, the exoskeleton must be lightweight, 

have low inertia and have a relatively small physical profile with respect to the index 

finger.  

Third, for application to practical finger manipulation tasks, the device must support 

peak angular velocities on the order of 1000°/s [23], representative of the speeds we have 

observed in normal movements. This speed requirement is also necessary for the study of 

sensory perception as the finger movement ranges from low to high speed.   Similarly, 

requirements for maximum sustained torques were set to 2.0, 0.75 and 0.25 N-m at the 

MCP, PIP and DIP joints, respectively. These values, equaling roughly half of the 

average maximal torque found in normal individuals (unpublished data), are sufficient to 

overcome the unwanted flexion torques which can be unintentionally generated by stroke 

survivors due to excessive coactivation of finger flexor muscles during task performance 

(Kamper et al., Muscle Nerve, 2003). 

Finally, to control finger manipulation tasks, the AFX must support both position and 

torque control at each joint. Thus, both joint angle and torque measurements are required 

for feedback control and for data collection.  
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From these requirements, the exoskeleton was designed, fabricated, actuated and 

instrumented as described in the following sections. 

 

Mechanical structure 

To achieve biomechanical compatibility with an individual’s natural joint rotation, the 

rotational movement of the device must match that of the digit. While this can be 

achieved with a remote center of rotation [24], the most direct means is to align the joints 

of the device with the rotational axes of the user’s finger, avoiding off axis forces and 

moments that would otherwise be present. In the AFX, this is achieved with a serially-

segmented exoskeleton that runs along the radial side of the index finger (Figure IV-1). 

The three rotational joints of the exoskeleton are aligned with the flexion/extension axes 

of the metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal 

interphalangeal (DIP) joints. Pairs of parallel bars connect the structure to the proximal, 

middle, and distal segments of the finger. Rotation of the exoskeleton produces 

equivalent rotation of the finger joint across large ranges of motion: -15 to 75°, 0 to 90° 

and 0 to 90° for the MCP, PIP and DIP joints, respectively.   

 
Figure IV-1 AFX located on radial side of the index finger with parallel bars interfacing 
with each finger segment. Transmission pulleys above the corresponding joint transmit 
force from the appropriate cable to the target joint. Guide pulleys direct cables over each 
joint toward distal targets.  
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For application across users, the AFX must be able to accommodate finger segments 

of different lengths and thicknesses while maintaining proper alignment. This is achieved 

through interchangeable linkages connecting each joint of the exoskeleton. A set of 

linkages have been fabricated for each joint so that the appropriate linkage can be 

matched to the finger. The contact rod brackets are sized to accommodate a wide range of 

the population, with shims for adjustment between users.  

To reduce impedance and inertia, the mass of the exoskeleton was minimized. All 

components were fabricated from aluminum or steel as necessary to withstand the 

relatively high torques required of the device. The portion of the exoskeleton that actually 

moves with the finger has a mass of 138 g. Physical dimensions were minimized 

wherever possible while maintaining mechanical rigidity and safety for the wearer.  The 

maximum width of the structure running along the finger is only 8mm. 

Thrust bearings at the MCP and PIP joints serve to accommodate potentially 

significant off-axis moments. Mechanical stops limit the range of motion of each joint to 

prevent accidental injury. These stops can be adjusted to match the passive range of 

motion of the user.  

The complete exoskeleton is attached to a plate on a fiberglass cast which encases the 

wrist and thus maintains its posture (Figure IV-2). The device is externally supported to 

remove weight from the user [26].  

 

Actuation 

To achieve independent movement/torque production at each joint, separate actuators 

are employed at each joint of the AFX.  DC servomotors were chosen due to their 



 

99 
 

 

performance in all four quadrants of the torque-velocity space. To maximize 

backdrivability, motors were selected which could meet the requirements of joint angular 

velocities on the order of 1000°/s and sustained joint torques of 2.0, 0.75 and 0.25 N-m at 

the MCP, PIP and DIP joints, respectively, without any gearing. Specifically, AKM 

motors (Kollmorgen, Munkekullen, Sweden) are being used, with AKM13C, AKM12C 

and AKM11C for the MCP, PIP and DIP joints, respectively.  

In order to reduce the added mass on the hand, the DC motors are located on the 

forearm. Cables (Spectra kite line) transmit motor torque to the exoskeleton joints. The 

cable drive design reduces friction and backlash in comparison with standard 

transmissions, thereby allowing the motors to be located a significant distance from the 

joints. Cable transmissions have been successfully implemented in commercial robots 

such as the Phantom (SensAble Technologies, Woburn, MA) and WAM (Barrett 

Technologies, Cambridge, MA). As these cables can only pull, similar to muscles, two 

cables and thus two motors are used for each joint for a total of 6 cables and motors 

(Figure IV-2).  

 
Figure IV-2 AFX attached to mounting plate on forearm cast. AFX joints (A-C) and 
motor pulleys (D) are indicated. The vertical plate is adjustable with slots which allow 
accurate translational placement of the MCP joint. 
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Primary gear reduction from motor cable to exoskeleton joint occurs directly at the 

joint. Namely, the cables are connected to pulleys which subsequently drive a section of a 

gear fixed to a rotating segment of the exoskeleton. This gear reduction directly at the 

joint reduces the tension in the cables from the motors, thereby providing as much 

bandwidth for control as possible [25]. Total reduction is 11.8, 3.7, and 1.4 at the MCP, 

PIP, and DIP joints, respectively. A set of bearing and pulley cable guides leads each 

cable across more proximal joints to its proper transmission pulley, as necessary.  

 

Sensing 

Joint angles are computed from the motor shaft rotations, as measured from optical 

encoders (2000 counts per revolution, Kollmorgen, Munkekullen, Sweden) integrated 

into each motor. Motor shaft rotation is converted to joint rotation through consideration 

of the pulley and gear reduction between the motor and the joint.   

Joint torque is computed from the contact forces measured at each finger segment. The 

custom contact rods consist of two horizontal beams, one above and one below the user’s 

digit (Figure IV-3). Each aluminum beam is configured with four strain gauges (SGT-

1/350-TY13, Omega, Stamford, CT) oriented at 45° from the principle bending axis of 

the beam and connected in a full Wheatstone bridge. This strain gauge configuration 

rejects the bending moment and measures only the perpendicular shear force in the beam 

[27], allowing for accurate contact force measurement regardless of finger size, contact 

location, shear forces or off axis moments. The signal from the Wheatstone bridge is 

amplified by a gain of 1000, and subsequently filtered by a low-pass filter at 400Hz, 

before input to the controller. 
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Figure IV-3 Schematic of the finger contact rods with strain gauges. In this configuration, 
45° from the neutral axis, the gauges reject the bending moment and transduce the precise 
contact force. 
 

Control System 

Control of either position or torque can be implemented at each joint. 

Joint Position Control 

The joint position controller is responsible for executing the target joint trajectory in 

an accurate manner.   

At each joint, two cables act on the joint pulley in opposite directions, one for flexion 

and one for extension.  These agonist-antagonist cables must be adjusted simultaneously 

to achieve the desired torque differential to actuate the joint. One motor actively winds its 

cable and the antagonist motor passively unwinds its cable while a baseline tension 

torque is provided to both motors. Critically, tension must be maintained in both cables to 

keep either from going slack.    

In this configuration, one motor is selected as the driving motor and the other is 

selected as the following motor by a planner in the controller. For example, if net flexion 

is desired, the motor providing counter-clockwise joint rotation is designated as the 

driving motor and the motor providing clockwise rotation is designated as the following 

motor.   
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Both feed-forward and PI feedback control is instituted at each joint (Figure IV-4). PI 

parameters were tuned heuristically to produce a stable motion when no external 

resistance is applied. Joint angle is computed from the signals from the quadrature 

encoders at the motor shafts. Each motor in the pair for a given joint independently tracks 

joint angle, wherein for a given movement of the joint, one encoder will increase and the 

opposing encoder will decrease. The differential between two encoder values is then 

divided by two and taken as the actual angle of the joint.   

With cables driving three joints in series, the cables for the distal joints PIP and DIP, 

must first cross the more proximal joints. The cable lengths to these distal joints will be 

affected by the motion of the joints they cross. As the routing of each cable varies slightly, 

the impact of the rotation of the more proximal joint(s) on cable length will differ for 

each cable.  Thus, a linear mapping is generated to actively compensate for the 

discrepancies in cable routing and applied through feed-forward control. 
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Figure IV-4 PI angular position controller for the AFX. The driving and following motors 
are selected by the planner according to the control command ݑሬറ. 
 

Friction is unavoidable in cable transmission. To improve the performance of the 

controller, friction compensation is integrated into the controller. The friction 

compensation block (as shown in Figure IV-4) is a 2D look-up table with velocity and 
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position indices. The friction factors corresponding to the velocity and position indices 

were calibrated in our experiments.  

 

Joint Torque Control  

A torque controller with PI loops and feed-forward compensation was developed for 

all three joints (Figure IV-5). The feedback signal for each PI loop is the joint torque 

calculated from the contact force measured by the strain gage oh the parallel bar brackets. 

As the contact bars reside at a fixed distance from the preceding joint, net torque may be 

computed from the measured force. As with position control, a planner again selects the 

driving and following motors based on intended torque direction. One motor provides 

flexion torque while the other creates extension torque.  Similarly, one beam from each 

bracket measures the flexion contact force while the other beam provides the extension 

contact force relative to the desired output.   

Of course, for the open-link chain configuration of the exoskeleton, torque production 

at more distal joints requires compensation at more proximal joints, in accordance with 

the system Jacobian. Feed-forward compensation was instituted to deliver these torques 

to more proximal joints. 

The controller also includes a predictive feed-forward term that is adjusted to reduce 

delay and achieve rapid-onset torques as might be required for perturbation experiments.  
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Figure IV-5 PI torque controller for the AFX. The driving and following motors are 
selected by the planner according to the target torque. The appropriate feedback signal 
from the AFX contact rods is also selected to match the driving motor.  
 

Real-time Control Implementation 

The control system of the finger exoskeleton is implemented using the MATLAB xPC 

Target. The xPC Target is a real time kernel that runs on an independent computer 

allowing for real-time control. Executable code is loaded onto this target PC from the 

host PC running MATLAB Simulink software [29]. The data signals are acquired in real-

time by the target PC and uploaded to the host PC over a direct crossover Ethernet cable. 

The experimenter can monitor the signal data and tune the model parameters on the host 

computer (Figure IV-6). 
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Download Code

Finger exoskeleton

Data 
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Control 
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Figure IV-6 Real-time control system using xPC Target. The host PC manages the 
control program, visual feedback and data storage; the target PC runs the real-time 
control and acquires sensor data. 
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A PCI-6220 ADC board (National Instruments, Austin, TX) is installed on the target 

PC to perform analog-digital conversion of the signals from the tension sensors. The 

CNT32-8M encoder board (CONTEC, Sunnyvale, CA) records the digital encoder 

signals and the PCI-6703 DAC board (National Instruments) converts digital command 

signals into the analog signals which drive the S200 motor amplifiers (Kollmorgen). All 

signals are sampled at 10 kHz.  

 

Safety Consideration 

For safety, an over-damped or critically damped behavior in the joint angle control is 

preferred to an under-damped system. The joint angles and torques are continuously 

monitored by the control program to ensure that pre-defined limits are not exceeded.  

Mechanically, guide slots restrict the range of motion of each joint and can be adjusted 

to limit joint range as needed. In our design, differently sized motors are used for the 

different joints. In this manner, peak motor torque can be better matched to peak 

voluntary subject torque and the potential for excessive torque is minimized. An 

emergency switch immediately terminates all power to the motors. 

 

Performance Testing  

Experiments were designed to test the performance of the AFX, including kinematic 

control performance and force control performance.  

Testing of Kinematic control performance 

A two-camera setup employing high-resolution, monochrome CCD cameras (IPX-

1M48, Imperx, Inc., Boca Raton, FL) was employed to examine kinematic performance 
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of the AFX. Namely, the cameras were used to measure exoskeleton joint angles to 

compare with the desired angles. Markers were attached to the exoskeleton to record 

movement. The markers were covered with ultraviolet- sensitive fluorescent paint 

(Wildfire, Modern Masters, Inc., N. Hollywood, CA) and illuminated with a UV light 

source.  

Motion capture and analysis were performed using a digital motion analysis suite 

(DMAS7, Spica Technology, Co., Maui, HI). The cameras were calibrated using the 

software provided in DMAS7 and a custom calibration form. An average calibration error 

of < 0.6 mm between cameras was achieved. During motion capture, the 3-dimensional 

position of each marker was recorded and these positions were used to compute joint 

angles.   

To test the exoskeleton’s ability to appropriately track a desired position trajectory, 

both ramp and sinusoidal inputs were employed.  Separate ramp inputs were specified for 

the MCP, PIP and DIP joints, respectively. The exoskeleton began each trial at either the 

extension or flexion limit of the joint.   

To examine the ability of the AFX to achieve high rotational speed, a desired 

sinusoidal trajectory was generated for the MCP joint with an amplitude of 30º and an 

angular frequency of 10π. This results in a theoretical maximum instantaneous velocity of 

942°/s. The AFX began in a central posture to allow room for the tracking task.  

Finally, to examine the ability of the AFX to simultaneously control each joint 

independently, target sinusoidal trajectories were generated with 20° amplitude  for 4 

seconds, at distinct angular frequencies for each joint: π/4 (MCP), π/2 (PIP), and π (DIP). 

The AFX began in a central posture to allow room for oscillations.  
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Testing of torque control performance 

Calibration of the custom force beams was first performed by comparing the voltage 

output of the strain gage bridge with known loads.  Isometric joint torque generation was 

then examined for a desired step input in torque.   For this study, a rigid link was used to 

represent a finger, with the rotational joint of the link aligned with the AFX MCP joint. 

An external load cell (20E12A, JR3, Inc., Woodland, CA) was employed to further verify 

the torque control performance of the AFX. The load cell was attached at the tip of the 

rigid link in order to measure the end-point force. The reflected torque at MCP joint was 

then calculated from the tip force. The torque was also measured from the signals in the 

force beam. 

Maximum joint torque was then examined by increasing the output joint torque in a 

series of 0.5V motor command steps. MCP joint torque was computed form the force 

measured at the tip of the link with the load cell.  

 

Analysis 

The position data during ramp tracking and simultaneous sinusoids tracking were 

processed by aligning the camera data with the command signals for the desired 

trajectories. To quantify the accuracy of the tracking performance, the actual position 

data were regressed against the target position data for each trial. We calculated the 

sample correlation and the root mean square error (RMSE) between observed and desired 

trajectories.  

Accuracy of the encoder readings was then confirmed by comparing the encoder 

outputs to the camera data for movements within the tracking capabilities of the camera 
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system (with its peak sampling speed of 48 Hz). The sample correlation between the 

encoder angles in relation to the camera angles was computed for each trial. Once the 

accuracy of the encoder readings was confirmed, the encoder readings were then used to 

evaluate device performance at higher speeds.   

For torque control experiments, calibration curves were first formulated for the strain 

gage beams. Then the actual joint torque, derived from both the beam and load cell, was 

compared with the desired torque step to examine the control performance. The RMS 

steady-state error between the desired torque and the actual achieved torque was 

calculated to show the control accuracy. Maximal torque was computed from load cell 

recordings as the load cell was calibrated beyond the desired capacity of our device.   

 

Results 

Both position and force control experiments were conducted to evaluate the 

capabilities of the device. In the position control experiments, we recorded the desired 

position generated by the controller and the actual position as measured by motor encoder 

and observed by the external camera. In the force control experiments, we recorded the 

desired joint torque generated by the controller and the actual joint torque computed from 

the contact force at contact rods measured by strain gage. The contact force at the tip of 

the rigid link measured by the external load cell was also recorded for validation of the 

joint torque. 
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 Kinematic Tracking 

For ramp experiments, we examined encoder and camera observed angles for ramp 

trajectories with the joint speed of 10°/s, 15°/s, and 15°/s for MCP, PIP and DIP, 

respectively. For three example trials, R2 values were greater than 0.99, the slope values 

were within 3% of the desired value of 1, and the mean squared error for each joint was 

0.657°, 0.972°, and 2.043° for the MCP (Figure IV-7), PIP and DIP, respectively.  

 
Figure IV-7 Target angle (x-axis) vs. camera observed angle (y-axis) for the MCP joint 

during constant velocity movement. 

 
Figure IV-8 Example of camera (x-axis) vs. encoder (y-axis) validation during constant 

MCP angular movement 
 

Joint angles computed from the motor encoders closely matched the angles measured 

with the camera system (see Figure IV-8 for an example). The sample correlations 

between encoder and camera observed position were greater than 0.99 for all three 
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trajectories and the regression slope values fell within 4.2 % of the desired value of 1 

across 5 independent trials (Table IV-1). The encoder data were subsequently used to 

analyze the kinematic performance at a higher speed.   

Table IV-1 Encoder vs. observed joint angle correlations for individual ramp angular 
trajectories at each joint demonstrating encoder validity 

Joint MCP PIP DIP 

Slope 0.976 1.010 1.042 

r2 0.995 0.999 0.993 

 

 

Figure IV-9 MCP sinusoid at angular frequency 10π and amplitude 30° demonstrating a 
peak velocity of 940°/s for this trial 

 

Namely, a sinusoidal input frequency of 10π was sent to the MCP joint. The AFX was 

able to track this trajectory even as the rotational speed reached 940°/s (Figure IV-9). For 

this high-speed sinusoid, the average phase lag is 0.009s with an average overshoot of 

1.11°. Considering the high speed and angular frequency, this tracking performance is 

satisfactory.  
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The desired and measured (camera system) trajectories for MCP, PIP and DIP in the 

tracking of three simultaneously applied sinusoids were then compared (Figure IV-10). 

Sample correlation coefficients between observed and desired angular positions were 

greater than 0.99 for all joints. Phase lag was less than 0.3s and average overshoot was 

less than 1.1° for each joint during the simultaneous movement (Table IV-2). These 

results demonstrated the capability of the AFX to provide individual actuation to all three 

finger joints. 

 

Figure IV-10 Camera observed MCP (blue), PIP (red), and DIP (green) joint angles 
versus target (black) joint angles during simultaneous tracking of sinusoids with different 
frequencies at each joint, π/4 (MCP), π/2 (PIP), and π (DIP). All correlation coefficients 
are greater than 0.99. 
 

Table IV-2 Average phase lag and overshoot for each joint during a 6 second 
simultaneous sinusoidal movement of all three joints. 

Joint MCP PIP DIP 

Phase Lag (s) 0.029 0.013 0.013 

Overshoot (°) -0.251 -0.262 -1.094 

 

Kinetic Control 

The calibration curve of the strain gage force sensor was highly linear (R2 > 0.999). 

Importantly, hysteresis was minimal. Force readings were largely invariant to position 

along the beam.  
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We conducted step torque experiments to evaluate the torque control of the system. 

The torque controller was left slightly underdamped to improve rise time. The output 

torque reached the target torque of 0.57 N-m (corresponding to a 20 N flexion force on 

the finger) in less than 0.06 seconds for a single trial (Figure IV-11). The RMS error of 

the contact beams at steady-state is 5.3*10-3 N-m (0.93% of the target torque) with an 

average error of 6.0*10-3 N-m (0.1%) for the same trial. Contact beam differed from the 

load cell measurement by a RMS steady-state error of 2.3%.  

 

Figure IV-11 Example 0.572 Nm step torque at the MCP joint with desired torque step 
(black), external load cell (blue) and contact rod (red) measurements.   

 

To test the torque capacity, the motor command voltage was increased until the output 

torque exceeded the design torque of 2.0 N-m at the MCP joint (Figure IV-12). This 

isometric output was achieved at stall around a motor excitation of 2V, 20% of the 

maximum possible excitation. Taken together, these results demonstrated the capability 

of the AFX to promptly provide the required joint torque. 
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Figure IV-12 Flexion torque at the MCP in response to steps in motor voltage. The torque 
output surpasses the design requirement at less than 2 V. 

 

Discussion 

While adding only 138 g of mass to the finger, the AFX is capable of moving at 

substantial speeds and providing considerable joint torque while retaining much of its 

backdrivability. With active control input, further compensation for the device can be 

provided to lessen its effects on voluntary movement. Thus, the AFX can be employed to 

examine the impact of a number of different control algorithms, from full assistance 

(position servo) to no interference (zero impedance). This flexibility is valuable for 

testing the efficacy of rehabilitation strategies and pursuing the study of motor control. 

The high level of backdrivability is made possible by the implemented cable actuation 

system. The cable transmission, with gearing located directly at the joints, permits the 

actuators to be placed proximal to the hand while minimizing the frictional losses that are 

inherent to other transmissions, such as Bowden cables. Of course, a trade-off must be 

made in terms of control complexity and additional hardware.  

Namely, two motors are needed to control each joint, as each cable is only capable of 

pulling. These motor pairs must act in concert to allow joint movement while maintaining 

tension in all cables. Additionally, the cables to more distal joints must respond to 
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movement of more proximal joints; cable length is a function of all preceding joint angles 

as well as the joint the cable controls. A benefit of this biomimetic actuation is the ability 

to set the joint stiffness, as can be done in the human finger, as the agonist-antagonist 

cable co-activation can be adjusted in tandem. Thus, impedance control can be 

implemented, in addition to position or torque control. 

Kinematic testing confirmed the ability of the AFX to track desired angle trajectories 

over time. Tracking of the desired ramps was quite good, with R2 values of 0.99 or 

greater. Tracking of the independent sinusoids simultaneously with each digit was also 

successful as evidenced by correlation factors exceeding 0.99. Precise control could be 

maintained even at velocities approaching maximum values in humans. 

Examination of kinetic control confirmed the ability of the AFX to precisely provide a 

desired isometric torque to finger joints. Even with a rapid rise time of 60 ms, RMS 

steady state error was only 0.93% with an average error of 0.1%. The exoskeleton also 

proved to be quite strong. Almost 3.5 N-m of torque (well exceeding the 2.0 N-m 

requirement) could be achieved at the MCP joint without damage to the exoskeleton.  

The sensory feedback provided by the AFX was accurate and reliable. Joint angles 

derived from the encoders were in close agreement with those obtained from an external 

camera system (R2 = 0.999). This suggests that inconsistencies in cable winding around 

the pulleys and motor spools have minimal effect on joint angle. The torque 

measurements obtained with strain gages on the contact beams closely match with the 

commercial load cell (2.3% RMS steady-state error). 

The AFX achieved excellent tracking of kinematic trajectories oscillating at 5 Hz and 

reaching speeds close to 1000°/s. Additionally, independent trajectories could be tracked 
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with each joint simultaneously. Joint torques greater than 2 N-m could be attained.  The 

AFX is also contained in a platform allowing for a wide finger workspace, low 

interference and arm mobility as necessary. These capabilities, which exceed those of 

other current exoskeletons in power, control and feedback resolution, and impedance to 

movement, will permit careful evaluation of the motor control of stroke survivors and of 

different rehabilitation strategies. For example, the high achievable speeds will permit 

assessment of spasticity [31] and isokinetic strength and power. The large torque 

capabilities will permit evaluation of peak strength. High backdrivability with the 

capacity for large perturbation forces permits implementation of force fields, such as 

viscous curl fields [32], [33], for motor learning paradigms.   

Future advancement of the control system will include a high-level supervisory 

controller to provide different training tasks. Additional training strategies, e.g., assist-as-

needed, resist-as-needed, visual error augmentation will be integrated in this high-level 

supervisory control to enhance the functionality of the AFX. Performance of the device 

with human subjects will be examined next.  
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Abstract 

 Chronic hand impairment is a common target for rehabilitation following stroke. This 

paper presents an actuated thumb exoskeleton (ATX) to facilitate research in hand 

rehabilitation therapy. The ATX presented in this work permits independent bi-

directional actuation in each of the 5 degrees-of-freedom (DOF) of the thumb using a 

mechanism that has 5 active DOF and 3 passive DOF. The ATX is able to provide 

considerable joint torques for the user while still allowing backdrivability through 

flexible shaft transmission. A prototype was built and experiments were conducted to 

evaluate the closed-loop position control. Further improvement and future work are 

discussed. 

 

Introduction 

Hand impairment is a prevalent outcome for a variety of neuromuscular disorders, 

such as stroke. Up to 795,000 people in the U.S. experience a stroke each year [1]. Of 

these, 60-75% will live beyond one year after the incidence, resulting in a current stroke 

population of 7 million [1]-[3]. Arm function is acutely impaired in a large majority of 

those diagnosed with stroke [4]-[6]. Furthermore, acute hemiparesis presages chronic 

hemiparesis in over 40% of individuals [4], [5]. Chronic deficits are prevalent in the 

distal upper extremities, especially with regard to finger extension [7].  

This distal limb impairment can be especially disabling, as proper hand function is 

crucial to manual exploration and manipulation of the environment. Indeed, loss of hand 

function due to neuromuscular disorders frequently prevents effective self-care and limits 

employment opportunities. One study reported that more than half of the subjects they 
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observed were dependent on others for help in the activities of daily living six months 

post-stroke [8].  

An assortment of interventions has been tried in an effort to improve function or to 

treat the resulting peripheral alterations following stroke. Those with the most success to 

date tend to focus on repetitive practice. Indeed, numerous studies employing the 

constraint-induced technique, in which focus is placed on intensive practice with the 

impaired arm without using the less impaired arm, have shown improvement in hand 

capabilities [9]-[11]. This supports the observations in animal models of stroke in which 

practice appears to be the primary factor leading to synaptogenesis and brain plasticity 

[12]-[14]. Indeed, imaging performed during constraint-induced training studies has 

shown evidence of cortical plasticity following the training [15], [16]. 

Unfortunately, many stroke survivors do not possess sufficient sensorimotor control to 

practice the desired movements. For the upper extremity, robots have been created to 

assist with therapeutic training of the wrist, arm and shoulder [17]-[21]. It has been 

reported that robot-delivered sensorimotor training enhanced the motor performance of 

the exercised shoulder and elbow with improved functional outcomes [22] and that 

practicing with a robot that assisted reaching movements helped the users learn how to 

generate smoother unaided reaching trajectories [23]. 

A fundamental question, in robot-assisted rehabilitation, is how to best use these 

robotic devices to facilitate rehabilitation. Should the device assist or resist movement? 

Should movement error actually be augmented, as some have suggested [24]? Should 

emphasis be placed on practice of movement of individual joints [25] or on the 
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coordination of multiple joints? In order to answer these questions for rehabilitation of 

the hand, a device is needed to provide precise control of individual hand joint. 

In recent years, a number of devices have been developed expressly for or applied to 

hand rehabilitation.  These include both commercial products, such as CyberGrasp 

(Immersion Corporation, San Jose, CA) [26], the Hand Mentor (Kinetic Muscles Inc., 

Tempe, AZ) and the Amadeo System (Tyromotion GmbH, Graz, Austria), and  

experimental devices, such as Rutgers Master II-ND [27], HWARD [28] and HandCARE 

[29], among others [30]-[33]. 

However, the majority of the developed systems do not provide individual control of 

the thumb. The thumb is a unique digit in the hand typically modeled with five degrees-

of-freedom (DOF) [34]-[37]. The role of thumb is crucial in hand function as it is 

involved in 40-50% of hand function, which is almost equivalents the function of all 

other fingers. Some devices allow individual control of the thumb [30], [33], however, 

these devices do not have sufficient speed or torque to thoroughly explore the space of 

different training algorithms and environments. For example, stroke survivors may 

generate substantial coactivation, especially during intended thumb extension [38], such 

that significant joint torques may need to be provided by the exoskeleton to overcome the 

misapplied joint torques of the user. Abnormalities in impedance and motor control may 

vary from joint to joint such that independent control of each joint through the 

exoskeleton may be beneficial for training. Additionally, to examine and mitigate power 

deficits [39] and peak tracking limitations, high joint rotational velocity may be needed. 

Thus, in this work, we present the design and development of an actuated thumb 

exoskeleton (ATX). The ATX provides individual actuation at each thumb joint with 
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high joint torque and speed capacities that are necessary for rehabilitation research. The 

transmission through flexible shafts offers good backdrivability and permits the natural 

motion of the thumb. The ATX will facilitate direct comparisons between various 

rehabilitation strategies and motor control studies within a single platform.  This paper is 

organized as follows: Section II presents the mechanical design of the ATX; Section III 

introduces the kinematic analysis; Section IV shows the analysis of the flexible shaft 

transmission and instrumentation of torque and position sensors; Section V presents 

results of the kinematic and kinetic performance testing; Section VI discusses the ATX 

design and experimental results; Section VII concludes the paper and proposes future 

work. 

 

The ATX Design 

In this section, we present the design considerations and their rationales in the ATX 

design. 

Independent Actuation of Each Thumb DOF 

The human thumb is generally modeled as a five DOF manipulator with the virtual 

links connected by revolute joints, in accordance with anatomical models of the thumb 

[34]-[37]. The 5 DOF are: flexion/extension (F/E) of the carpometacarpal (CMC) joint 

followed by abduction/adduction (Ab/Ad) of the CMC joint, then Ab/Ad followed by F/E 

of the metacarpophalangeal (MCP) joint, and finally by F/E of the interphalangeal (IP) 

joint. Consecutive rotational axes may be non-orthogonal and non- intersecting. The 

orientation of the axes of rotation in the thumb model follows the anatomical descriptions 

(Figure V-1). The anatomy-based kinematic model of the thumb has been converted into 
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a robotics-based description with the standard Denavit-Hartenberg (D-H) parameters in 

[37], thus, it is possible to approximate thumb kinematics using an exoskeleton with 

hinged linkages. 

 

Figure V-1 A Virtual Five-link Model of the Thumb [37] 
 

In order to achieve independent actuation of each thumb joint, the ATX presented in 

this paper has 5 active DOF and 3 Passive DOF. The five active joints produce F/E of the 

CMC, MCP and IP joints, and Ab/Ad of the CMC and MCP joints (Figure V-2). The 

exoskeleton physically attaches to the distal, proximal, and metacarpal segments of the 

thumb.  The attachment points which actuate the MCP and IP joints are connected 

through two-bar linkages, which accommodate the variation in segment lengths across 

the population. The F/E and Ab/Ad of the CMC joint are directly actuated; the rotational 

axes of the ATX can be adjusted to align them with the axes of the user (Figure V-2). 

Note that because the thumb joints are non-orthogonal and non-intersecting, an axial 

rotation will be observed between the metacarpal and proximal segments when MCP 

Ab/Ad occurs. Thus a universal joint, which has 2 passive DOF, is developed for the 

thumb exoskeleton to allow this axial rotation (Figure V-3). This motion is important for 

thumb opposition.  
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Figure V-2 ATX Solidworks Model (left) and Current Prototype (Right) 
 

 

Figure V-3 The Universal Joint connecting CMC and MCP joints 
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Figure V-4 The simplified thumb and ATX models 
 

Joint Range of Motion 

Each joint of the thumb has a wide range of motion. The individual joints themselves 

do not have a significant amount of mobility on their own but when added together they 

are able to move in unique ways. The way in which each joint in the thumb can move 

varies from thumb to thumb. Table V-1 lists comparative data from three different 

researchers, quantifying the range of motion in the different thumb joints. A few of the 

values are close to each other but the majority has a significant amount of variance.  

Table V-1 Thumb Joint Range of Motion (Unit: Degree) 
Thumb Axis Cooney [40] Buchholz [41] Katarincic [42] 

IP F/E  85 80 

MCP F/E 5615 50 70 

MCP Ab/Ad 198.8 30 30 

CMC F/E 5311 50 45 

CMC Ab/Ad 424 40 40 

With properly designed lengths of the linkages for each joint, the current ATX is able 

to produce equivalent joint motion on the thumb across full ranges of thumb motion: -30 

to 60° for CMC F/E, -30 to 30° for CMC Ab/Ad, -10 to 75° for MCP F/E, -20 to 20° for 

MCP Ab/Ad, and -10 to 90° for IP F/E. 
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Joint Velocity Capacity 

The maximum angular velocity of thumb movement has been recorded at the level of 

1000°/s for thumb-tip motion [43]. So in our design, the maximum angular velocity of 

the equivalent thumb-tip motion produced by the ATX is also targeted at 1000°/s.  The 

capability to produce high speed motion is necessary for the application to practical 

thumb manipulation task and the implementation of sensory perception study as the 

thumb movement ranges from low to high speed. 

 

Joint Torque Capacity 

In order to implement thumb rehabilitation algorithms for stroke patients, the ATX 

needs to be able to generate sufficient torque to overcome the excessive coactivation and 

increased stiffness in the affected thumb. To estimate the output torques of the actuators 

for the ATX, experiments were carried out to gauge the maximum forces generated at the 

thumb-tip by stroke survivors and neurologically intact individuals. Nine subjects with 

severe hand impairment and nine subjects with moderate hand impairment, as rated by 

the Stage of Hand section of the Chedoke-McMaster Stroke Assessment [45] participated, 

along with ten control subjects. 

In the experiments, subjects were required to generate isometric thumb-tip force in 6 

intended directions: distal/proximal, adduction/abduction, flexion/extension (Figure V-5). 

The configuration of the thumb posture was 50° for CMC extension, 20° for CMC 

abduction, 20° for MP flexion, 10° for MCP Abduction and 30° for IP flexion. Details of 

the experimental setup and procedure are in preparation for a separate publication. The 

experiment was approved by the Institutional Review Board of Northwestern University. 
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Figure V-5 Directions of Applied Thumb-tip Force 
 

The measured thumb-tip forces were converted into joint torques using  

 fJT
                                                                                                                        (1) 

Here, 15 is the vector of joint torques; J is the Jacobian matrix of the thumb model; 

13f 


 is the vector of the thumb-tip force recorded by the force. The D-H parameters 

used in the Jacobian matrix were obtained from literature (Table V-2). Table V-3 shows 

the maximum torque calculated for each joint for all subject groups. 

Table V-2 D-H parameters for the thumb model [37] 

 

 θ d (cm) a (cm) 
α 

(degree) 

Z6 to Z7 0 3.42 0.03 0 

Z5 to Z6 θ5 -0.71 0 94.89 

Z4 to Z5 θ4 -1.16 3.99 106.43 

Z3 to Z4 θ3 0.85 0.31 -110.37 

Z2 to Z3 θ2 0.51 4.45 88.41 

Z1 to Z2 θ1 0.21 1.31 -86.86 

Zo to Z1 0 0.59 -0.12 -93.86 

 
Table V-3 Calculated Maximum Joint Torques of the Thumb (Nm) 

Thumb Joint 
Subjects 

Control Stroke - Moderate Stroke - Severe 
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CMC F/E 5.59 2.66 0.99 

CMC Ab/Ad -4.81 -2.40 -0.91 

MCP F/E 3.67 1.54 0.94 

MCP Ab/Ad -3.09 -1.78 -0.85 

IP F/E 1.85 0.58 0.48 

 

To accommodate the majority of our target population, we chose the peak joint torque 

outputs of the exoskeleton to be comparable to those of moderate stroke subject, which 

are 2.5 Nm at CMC F/E, 2 Nm at Ab/Ad joints, 1.5 Nm at MCP F/E and Ab/Ad joints, 

0.5 Nm at IP F/E joint. 

 

Actuation System 

The ATX is actuated by DC motors (AKM Series Motor, Kollmorgen, Munkekullen, 

Sweden). DC motors were chosen due to their high torque and velocity performance in 

all four quadrants of the torque-velocity space. To minimize the weight of the 

exoskeleton carried by the user, the motors are located remotely from the thumb 

exoskeleton, and supported by an external platform.  This is made possible by the use of 

flexible shafts to transmit motor torque to the ATX. The flexible shaft, coupled to both 

the motor shaft and the driving shaft on the ATX joint (Figure V-6), transmits rotary 

motion between the motors and the exoskeleton while allowing flexibility in its shape 

between its two ends. The flexible shaft can change shape to accommodate variations in 

distance between the motor and the exoskeleton as the digit moves. This flexibility makes 

the system backdrivable. As the flexible shaft provides rigid couplings to the motor shaft 

and the driving shaft of the ATX at its two ends, it can rotate the joint in either the 
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clockwise or the counter-clockwise direction, thus, only one motor is needed for each 

DOF.  To maximize backdrivability, the motor for IP joint has no gearing and motors for 

CMC and MCP joints have only 3:1 gearing ratio.  

 
Figure V-6 The ATX with flexible shaft connected 

 

Sensory System 

To control thumb manipulation tasks, the ATX must support both position and torque 

control at each joint. Thus, both joint angle and torque measurements are required for 

feedback control and for data collection. Joint angles and torques are measured directly at 

the joints of the ATX. The joint angles are measured by potentiometers (Precision 

Electronics Corp., Toronto, Canada) affixed to the shafts of the ATX with gear sets 

(Figure V-7). The motors also have integrated encoders, however, due to the flexible 

shaft transmission, the values measured at the motor shafts and the ATX shafts may 

deviate. The deviation between the two measurements can be used to detect mechanical 
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failure. The joint angles of the thumb can be calculated by the joint angles of the ATX 

through kinematic equations.  

Joint torque is measured through full-bridge strain gages attached on the cylindrical 

driving shafts of the ATX (Figure V-7). Namely, two rosettes of strain gauges are 

attached (one in front and on in back) of each cylindrical drive shaft and these gauges are 

then incorporated into a Wheatstone bridge. The full-bridge strain gage circuit is able to 

eliminate nonlinearity and hysteresis in the torque measurement. 

 

Figure V-7 Potentiometer and strain gages on one ATX joint with flexible shaft 
connected 

 

The Real-time Control System 

The angular position and torque signals are used to implement low level feedback 

control of each joint. Depending on the application, either position control or force 

control may be required. Position controller enables the tracking of specific trajectories 

while force control is needed in order to implement virtual interactions with the user, as 

well as during periods when we want the user to perform tasks with little or no 

impedance from the exoskeleton.  

All control programs is developed in MATLAB Simulink. The real-time control of the 

thumb exoskeleton is implemented using MATLAB xPC Target software [46]. The xPC 
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Target is a real-time environment running on a designated PC for real-time applications. 

The control system of the ATX consists of two parts (Figure V-8): a host PC with 

MATLAB Simulink software, to create the controller model using Simulink blocks and 

then compile the model to the executable code; and a target PC running the xPC Target 

real-time kernel, which downloads the executable code from the host PC and runs it in 

real-time. The data signals are acquired in real-time by the target PC and uploaded to the 

host PC through Ethernet. The experimenter can monitor the data signal in the host scope 

and tune the parameters in the Simulink model created in the host PC.  

A PCI-6229 ADC board (National Instruments, Austin, TX) is installed on the target 

PC to perform analog-digital conversion of torque sensor signals and potentiometer 

signals. A CNT32-8M encoder board (CONTEC, Sunnyvale, CA) records quadrature 

encoder signals and a PCIM-DDA06/16 DAC board (Measurement Computing, Norton, 

MA) converts digital command signals into the analog signals which drive the S200 

motor amplifiers (Kollmorgen, Munkekullen, Sweden). All signals are sampled at 1 kHz.  

 
Figure V-8 The Real-time Control System using xPC Target. The host PC manages the 
control program, provides visual feedback and stores experimental data; the target PC 
runs the real-time control program and acquires sensor data. 
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Safety and Limitations 

A number of safety mechanisms are implemented to ensure safe interaction with the 

individual’s hand. The lever linkages restrict the angular position of each joint of the 

ATX in the acceptable range. An emergency kill switch is provided to immediately 

disable all motors. Software monitoring of both joint position and motor torque, will 

continuously check to see if specified limits are exceeded and will immediately disable 

the system should this occur. 

In our design, individually sized motors and flexible shafts are used for the different 

joints. In this manner, peak motor torque can be better matched to peak voluntary subject 

torque and thus the potential for excessive torque is minimized. 

 

Kinematic Analysis 

In this section, we analyze the kinematics of the coupled system of the ATX model 

and the thumb model.  

The thumb and the ATX can be modeled as chains of rigid links as shown in Figure 

V-4. Both the thumb and the ATX models have individual kinematic redundancy for the 

3 DOF of their tip locations, as the thumb model has 5 DOF and the ATX has 5 active 

DOF and 3 passive DOF in the joint-space (orientation of the end-effectors is not 

considered for the current application). Thus, for a given task-space trajectory, there will 

be an infinite number of possible joint-space trajectories for either the thumb or the ATX 

model. One concern of this redundant system is whether a unique mapping can be 

established between the joint-space trajectories of the thumb and the ATX models. 
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The task-space trajectories of the thumb model and the ATX model are represented by 

the joint-space trajectories using forward kinematics: 

),(f)(fX),(fX paexoexoexothumbthumb 


                                                         (2) 

where thumbX


, exoX


  3X1 are the thumb-tip position and the end-effector position of 

the ATX model in the Cartesian space, respectively. 

 5X1 is the vector of the joint 

angles of the thumb model; a

 5X1, a=1, 2, 3, 4 and 5, and p


 3X1, p=6, 7 and 8, 

are the vectors of the active and the passive joint angles of the ATX model, respectively.  

The position of the attachment points can be written as, 
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where 1F


, 1G


 2X1, 32 F,F


, 32 G,G


 3X1 are the functions of the positions at 

constraint points. 

Since the functions  321pa F;F;F),(F


 and  321 G;G;G)(G


  represent the 

positions of the same set of constraint points,  

 0  GF),,(H pa


, H

 8X1.                                                                           (5) 

It is unrealistic to solve Equation (6) to obtain the joint angle of the thumb from the 

measured joint angle of the ATX directly as those equations are highly nonlinear. Thus, 

Equation (6) is differentiated once to obtain the mapping at the velocity level,  
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Let 


















pa

HH








 =
HJ ,  






H

 =
HJ , then Equation (7) can be written as, 

a1aH
1

H JJ)J( 


                                                                                       (8) 

where  



 H

1
H1 JJJ .  

Equation (8) gives the constraints between the angular velocities of the ATX joints 

and the thumb joints. Note that the coupled system of the thumb model and the ATX 

model has a total of 13 DOF in the joint-space while Equation (8) introduces 8 constraint 

equations, which means once the joint-space trajectories of the ATX model are defined, 

the corresponding joint-space trajectories for the thumb model will be determined by the 

constraint equations, and vice versa. Thus, there is a unique mapping between the joint-

space trajectories of the thumb and the ATX models. Details of the kinematic analysis 

can be found at [44]. 

 

Instrumentation  

Flexible Shaft Transmission Testing 

In our design, the transmission through the flexible shafts allows the actuators to be 

placed remotely from the ATX. Our major concerns regarding the flexible shaft 

transmission are the transmission loss of both motion and torque; the off-axis 

forces/torques in unintended directions and the helixing of the flexible shaft under high 
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load. Preliminary tests were performed to investigate the transmission performance of the 

flexible shafts (Figure V-9). The flexible shaft was bent with a 90° curvature in the tests. 

Bending with this curvature had been tested to render good flexibility at its two ends. The 

flexible shafts in the ATX use the same curvature. 

 

Figure V-9 (a) Schematics of motion transmission test; (b) Schematics of torque 
transmission test 

 

First, we analyzed the mapping between rotation at one end of the shaft and the 

corresponding rotation produced at the other end of the shaft (Figure V-9 (a)). With no 

external resistance imposed on the flexible shaft, the rotation produced by the shaft was 

equivalent to that imposed on it (within the precision limit of the encoder we were using 

to measure rotation at one end: 0.25°). Thus, there were no losses within the shaft under 

voluntary motion (Figure V-10 (a)). When external resistance was imposed, however, 

output rotation produced by the flexible shaft was less than the angular displacement put 

into the shaft in the open-loop tests (Figure V-10 (b)).  Some of the input produced 

twisting, or “helixing”, of the shaft rather than rotation of the other end. The tendency to 

helix can be mitigated by placing an outer casing around the shaft. Thus, in closed-loop 
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control under high torque, the angular position measurements have to be measure directly 

at the exoskeleton end rather than the motor end.  

 

Figure V-10 Kinematic transmission through the flexible shaft: (a) motion transmission 
under no torque load; (b) motion transmission under torque. 

 

Torque transmission performance through the flexible shaft was examined as well 

(Figure V-9 (b)). Figure V-11 shows the torque transmission performance of the flexible 

shaft. Output torque at the distal end of the shaft stayed within 10% error of the input 

torque imposed at the proximal end of the shaft for input torques up to 1 Nm. Shaft 

efficiency is dependent upon the shape of the shaft. With a straighter shaft, as opposed to 

the curved posture we used in our tests, correspondence between input and output torque 

improves. Thus, in closed-loop control, torque needs to be measured directly at the 

driving shaft for the actuated joint of the ATX.  



 

138 
 

 

 
Figure V-11 Torque transmission through flexible shaft 

 

We also tested off-axis forces and torques produced by the flexible shaft at its distal 

attachment point (Figure V-9 (b)). In addition to the desired torque that was transmitted 

about the z-axis, small residual moments could be present about other axes and small 

forces could be produced as well, depending on the shaft configuration. Figure V-12 and 

Figure V-13 show the experimental results of the tests. When the input torque manually 

applied along the shaft axis (z-axis) was low (up to 0.5 Nm), which was more than 

sufficient for free motion, the off-axis forces and torques in other directions were 

minimal (<1.5N, Figure V-12). When the input torque was increased to around 1.5 Nm 

(the maximum torque required for the MCP and IP joints of the ATX), the maximum off-

axis force was about 6N, directed along the z-axis, and the maximum off-axis torque was 

less than 0.3 Nm, about the x-axis. No significant helixing of the flexible shafts was 

observed during the experiments. Note that this high torque is only needed when the user 

applies force on an object or has exceptionally high stiffness in the thumb joint. In such 

cases, the effect of off-axis forces and moments will be minimized due to the structural 

rigidity of the ATX. Moreover, the structure of the exoskeleton is designed to reject some 

0 5 10 15 20 25 30
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Time (s)

T
or

qu
e 

(N
-m

)

 

 

input torq
output torq



 

139 
 

 

of these unwanted moments/forces. The pin joints only allow rotation about the desired 

axis and strong coupling between the ATX and the hand resists the small off-axis forces. 

 

Figure V-12 Off-axis force/torque with 90° shaft bending under low input torque 
 

 
Figure V-13 Off-axis force/torque with 90° shaft bending under high torque 
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Strain Gage Torque Sensor Calibration 

The strain gage torque measurement was calibrated with an external load cell (Figure 

V-14). In the calibration, torque was applied manually at one end of the shaft with strain 

gage attached; the other end of the shaft was connected to a 6-axis load cell. The output 

voltage signal of the strain gage and the torque measured by the load cell were plotted 

together for the calibration. The calibration results in Figure V-15 showed that the strain 

gage torque measurement was highly linear (R2 > 0.999) with negligible hysteresis (RMS 

error = 0.0083 Nm).  

6 axis loadcell
strain gage

r i g i d  s h a f t



 

Figure V-14 Strain Gage Torque Sensor Calibration Setup 
 

 

Figure V-15 Strain Gage Torque Measurement Calibration 
 

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01
-4

-3

-2

-1

0

1

2

3

4

5

6

Voltage (V)

T
o

rq
u

e
 (

N
-m

)

 

 

 
y = - 261.5*x - 1.106

data
linear fitting



 

141 
 

 

Potentiometer Calibration 

The potentiometer was calibrated with an encoder (Figure V-16). In the calibration, the 

shaft was manually rotated in both the clockwise and the counterclockwise directions for 

10 times. The output voltage signal of the potentiometer and the rotating angle measured 

by the encoder were plotted together for the calibration Figure V-17. The calibration 

results showed that the strain gage torque measurement was highly linear (R2 > 0.999) 

with minimal measurement inaccuracy. (RMS error = 0.215°).  



 

Figure V-16 Potentiometer Calibration Setup 
 

 

Figure V-17 Potentiometer Calibration 
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Performance Testing and Experimental Results 

In this section, we present results of the experiments conducted to test the kinematic 

and kinetic performance of the ATX. For readability, we use J1, J2, J3, J4 and J5 as short 

for CMC F/E, CMC Ab/Ad, MCP F/E, MCP Ab/Ad and IP F/E, respectively. 

 

Kinematic Performance Testing 

Experiments were conducted to perform closed-loop joint position control with PI 

controllers on an artificial thumb. This artificial thumb has 5 DOF, corresponding to the 

human thumb DOF. For testing purpose, the axes of rotation of artificial thumb are 

orthogonal. The feedback signal to the PI controller was the joint angle of the thumb 

computed from the joint angle of the ATX, as measured with the potentiometer. The 

ATX was actuated by DC motors.  

 

Ramp Trajectory Tracking 

The first experiment was to examine the ability of the ATX to track a ramp trajectory 

for each individual joint. One joint was tested at a time. Table V-4 shows the parameters 

of the desired trajectory for each joint in these trials. 

Table V-4 Parameters of Desired Ramp Trajectories 
Joint J1 J2 J3 J4 J5 

Starting Position 0 0 0 0 0 
End Position 30° 30° 45° 10° 30° 

Velocity 30°/s 30°/s 25°/s 8°/s 25°/s 
 

The experimental results of each joint in the trials are shown in Figure V-18. The 

tracking performance was good for all 5 joints. The root mean square (RMS) errors at 
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steady state were 0.098°, 0.105°, 0.124°, 0.118° and 0.140° from J1 to J5, respectively. 

Response delay was observed in the experiment ranging from 0.08 to 0.2 second. 

 

Figure V-18 Tracking of ramp trajectory for individual joint. Each joint was tested 
separately in different trials.  

 

Velocity Capacity Testing 

The second experiment was to examine the capability of the ATX to provide high 

instantaneous velocity at each joint. A smooth trajectory with maximum instant velocity 

of 1000°/s or more was created for each joint to track. One joint was tested at a time. 
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Figure V-19 shows the position and velocity trajectories for each joint in the trials. The 

maximum velocities observed were 450°/s, 550°/s, 650°/s, 520°/s and 900°/s from J1 to 

J5, respectively. 
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Figure V-19 Examination of peak instantaneous velocity at individual joint 

 

Sinusoidal Trajectory Tracking 
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trajectory for each joint. The desired trajectories were sinusoidal trajectories with the 

amplitude of 10° (Figure V-20).  The frequency of the sinusoids was 2 Hz for all joints 

expect for the CMC Ab/Ad, which was 1.5 Hz. Response delay of 0.05 to 0.08 seconds 

was observed in the experiment. 
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Figure V-20 Tracking of sinusoidal trajectory at individual joint 
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Figure V-21 Tracking of ramp trajectories at all F/E joints 
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actively controlled. The RMS errors at steady state were 0.169° and 0.263° for J2 and J4, 

respectively. The RMS variation in J3 and J5 were 0.097° and 0.043°, respectively. 

 

Figure V-22 Tracking of ramp trajectories at all Ab/Ad joints 
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J5. The experimental results are shown in Figure V-23. The RMS errors at steady state 

were 0.110°, 0.298° 0.303°, 0.114° and 0.148° from J1 to J5, respectively.  

 

 

Figure V-23 Control of all 5 joints from one configuration to another 

 

Kinetic Performance Testing 

Joint torque control performance was also evaluated in experiments. The desired 

torque was 0.5 Nm for J1 and J2 joints, and 0.4 Nm for all other three joints. The 
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experimental results are shown in Figure V-24, all 5 joints were able to provide the 

desired torque accurately. The errors at steady state were minimal (under 0.005 Nm). 

 

Figure V-24 Experimental results for individual joint torque control 
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In the next experiment, the F/E joints were controlled to apply a 0.2 Nm torque 

simultaneously. The actual joint torque are shown in Figure V-25 and the resulting 

contact force was shown in Figure V-26.  

 

Figure V-25 Experimental Results on Multiple Joint Torque Control 
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Figure V-26 Thumb-tip Force Measured by Loadcell in Multiple Joint Torque Control 
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Figure V-27 Torque Capacity Testing at CMC F/E Joint 
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shaft and the driving shaft of the ATX, it can rotate the joint in either the clockwise or the 

counter-clockwise direction, and thus, only one motor is needed for each DOF.  

Kinematic and kinetic transmission performance of the flexible shaft was tested in our 

experiments. Transmission loss in motion was not observed under low torque while it did 

exist when the torque load went beyond 0.5 Nm. Transmission loss in torque was also 

observed as the torque went up. These observations confirmed the need to measure the 

joint position and joint torque directly at the exoskeleton joint by potentiometer and strain 

gages, respectively. The potentiometer and strain gages were calibrated for all joints and 

showed strong linearity and minimal hysteresis. 

We also examined the off-axis forces and torques produced by the flexible shaft at its 

distal attachment. In addition to the desired torque that was transmitted about the z-axis, 

small residual moments were present about other axes and small forces were produced as 

well, with magnitudes dependent upon the shaft configuration. These residual forces and 

moments could be mitigated by placing an outer casing around the shaft to reduce the 

helixing of the shaft. Note that the relatively high torque is only needed when the user 

applies force on an object or has exceptionally high stiffness in the thumb joint. In such 

cases, the effect of off-axis forces and moments will be minimized due to the structural 

rigidity of the thumb. Moreover, the structure of the exoskeleton is designed to reject 

some of these unwanted moments/forces. The pin joints only allow rotation about the 

desired axis and strong coupling between the ATX and the hand resists the small off-axis 

forces. We tested our prototype on several subjects and they were largely unaware of any 

off-axis moments or forces. 



 

157 
 

 

The kinematic performance of the ATX was examined in a set of experiments 

including: the tracking of a ramp trajectory, examination of peak instantaneous velocity 

and tracking of sinusoidal trajectory for each individual joint, and the tracking of 

different ramp trajectories for multiple joints simultaneously.  

The tracking of the ramp trajectory for individual joint was successful for all 5 joints. 

The RMS error at steady state was under 0.33° for all 5 joints. As the minimum 

displacement for perception of movement by human is 1° [47], this level of accuracy is 

sufficient. There was, however, a delay in the kinematic response. This might result from 

the flexible shaft having to undergo an initial winding up before beginning to transmit 

movement. The static friction in the transmission would also cause some delay and this 

effect could be reduced by adding friction compensation in the control loop. 

The tracking of trajectories with high instantaneous velocity was also tested. The 

maximum velocities observed were 450°/s, 550°/s, 650°/s, 520°/s and 900°/s from J1 to 

J5, respectively. These joint velocities together will be sufficient to produce the angular 

velocity at the thumb-tip at the level of 1000°/s, which meets our design requirement. 

Moreover, in the next experiment, the ATX was able to track sinusoidal trajectories with 

angular frequency of 4π (2 Hz) for J1, J3, J4 and J5, and 3π (1.5 Hz) for J2. These two 

experiments demonstrate the high speed and response capacity of the ATX. 

The tracking of different ramp trajectories for multiple joints showed some impressive 

results. In the trial of controlling all F/E joints, all active F/E joints were able to track the 

desired trajectories while no motion was observed at the passive Ab/Ad joints. On the 

other hand, in the trial of controlling all Ab/Ad joints, all active Ab/Ad joints were able to 

track the desired trajectories while no motion was observed at the passive F/E joints of 
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MCP and IP. Although the CMC F/E joint showed 8° degree of flexion, it is reasonable 

as this joint took the overall load of the ATX. This motion could be minimized by 

actively control the CMC F/E joint. These results indicate the F/E and the Ab/Ad motion 

of the ATX is independent and minimal off-axis force/torque is produced in the flexible 

shaft transmission. In the next trial, all 5 joints were controlled to track different ramp 

trajectories. The results show that the ATX can produce independent position control at 

each joint simultaneously. 

The kinetic performance of the ATX was also examined in our experiments. All 5 

joints were able to produce the desired torque accurately. The torque capacity tested at 

CMC F/E joint showed that the ATX was able to produce 2.5 Nm torque. However, due 

to the helixing observed in the experiment, the maximum torque transmitted by the 

current flexible shaft should not exceed 2 Nm to avoid excessive off-axis force caused by 

the helixing. In this case, the torque capacity of this joint is 20% lower than our goal of 

torque capacity. But the 2.0 Nm torque capacity is still much more than those reported by 

other devices. Moreover, as the CMC F/E joint is the first joint and is supported by the 

external platform, we can choose a thicker flexible shaft with higher torque rating to 

provide the 2.5 Nm torque. 

From the experimental results and analysis, we believe that the current design comes 

close to our design requirements and is able to provide controllable independent actuation 

to each thumb joint with high speed and torque capacities. These capabilities, which 

exceed those of other current exoskeletons in power, speed, and actuated DOF, will 

permit careful evaluation of the motor control of stroke survivors and of different 

rehabilitation strategies. For example, the high achievable speeds will permit assessment 
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of spasticity [48] and isokinetic strength and power. The large torque capabilities and 

individual actuation of each DOF will be able to overcome the coactivation in the 

affected thumb and permit evaluation of peak strength.  

 

Conclusion and Future Work 

This work presents the design and performance testing of an actuated thumb 

exoskeleton (ATX) that permits independent bi-directional actuation in each of the 5 

DOF of the thumb using a mechanism that has 5 active DOF and 3 passive DOF. The 

transmission system using flexible shaft is able to transmit considerable joint torques to 

the user while still allowing backdrivability. Independent control of each thumb joint and 

the ability to provide sufficient torque to overcome the excessive coactivation and 

increased stiffness in the affected thumb are important criteria in designing a general 

platform to implement thumb rehabilitation therapies and motor learning paradigms. 

Experiments of closed-loop position and torque control were conducted and the results 

showed that both the position and torque control performance was satisfying. 

In the future work, we will implement different rehabilitation strategies on the ATX, 

e.g., low-impedance, force perturbation, passive, active and assist-as-needed strategies. A 

high-level supervisory controller will be developed to coordinate these rehabilitation 

strategies. Further, the ATX will be coupled with an actuated finger exoskeleton (AFX) 

[49] that we have developed for the index finger to implement rehabilitation strategies in 

restoring control of pinch movements following stroke.   
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Appendix 

Inverse Kinematics of the Artificial Thumb 

The artificial thumb can be modeled as a 5 DOF manipulator connected by revolute 

joints. The D-H parameters of the artificial thumb is  

i αi-1 (Degree) ai-1 (Inch) θi di 

1 0 0 θ1 0 

2 90 0.55 θ2 0 

3 -90 2 θ3 0 

4 90 0.375 θ4 0 

5 -90 1.275 θ5 0 

6 0 1.25 0 0 
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The thumb-tip position is, 
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The inverse kinematics of the thumb model can be obtained by solving θi  in Equation 

(a1). However, this equation is highly nonlinear and difficult to solve the analytical 

solutions. Instead, we solve inverse kinematics at the velocity level using the Jacobian 

matrix.  

Differentiate Equation (a1) once, we get, 
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where, 
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 is the Jacobian matrix of the thumb model. 

Thus, the velocity of each of the thumb joint is, 

vJ 1                                                                                                                   (a3) 

This is the inverse kinematics of the thumb model at velocity level. Note, the Jacobian 

matrix J is a non-square matrix, so J-1 in Euqation (a3) is the pseudoinverse of the 

Jacobian matrix. 

Mapping of Joint Position between ATX and Thumb 

In Section III, we present that the ATX and the thumb has a unique mapping in joint 

position. Now we will analyze the mapping of joint position of the ATX and the artificial 

thumb in detail. 

The CMC F/E and Ab/Ad joints of the ATX are aligned with the corresponding joints 

of the thumb, so the joint positions of these two joints are the same for both the ATX and 

the thumb. 
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The IP joint has only 1 DOF of the F/E, so the motion of the ATX and the thumb is 

always in the same plane (Figure V-28). The mapping of IP joint angle between the ATX 

and the thumb can be solved by trigonometric equation. The joint angle of the thumb 

(alpha) versus the ATX (theta) is shown in Figure V-29. This curve matches well with the 

angle manually measured on the artificial thumb and the ATX. The RMS error of 

measured theta angles from the theta angles computed from the same alpha angles is only 

0.192°. 





 

Figure V-28 Schematics of IP Joint Mapping 

 

Figure V-29 Thumb versus ATX at IP F/E joint 
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The MCP joint of the artificial thumb has two 2 DOF, F/E and Ab/Ad, while the MCP 

joint of the ATX has 2 active DOF and 2 passive DOF. As the artificial thumb has no 

axial rotation, the passive joint for axial rotation of the ATX will have no motion, either. 

So the coupled system of the thumb and the ATX can be modeled as shown in Figure 

V-30. 

1
2

3

1

2

 

Figure V-30 Schematics of the MCP Joint Mapping. In this coupled system, h0 is 
considered part of the MCP of the ATX and h1 is considered part of the MCP of the 
artificial thumb. 

The D-H parameters for the MCP joint of the artificial thumb is, 

Table V-5 D-H Parameters for MCP joint of Artificial Thumb  
i αi-1 (Degree) ai-1 (Inch) θi di 

1 0 a0 α1 0 

2 90 a1 α2 0 

3 -90 a2 90 0 

4 0 h1 0 0 

The transformation matrix for the MCP joint of the artificial thumb is, 

t
4
3t

3
2t

2
1t

1
0thumb TTTTT                                                                                            (a4) 

The D-H parameters for the MCP joint of the ATX from θ1 is, 
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Table V-6 D-H Parameters for MCP joint of the ATX 
i αi-1 (Degree) ai-1 (Inch) θi di 

1 90 0 θ1 0 

2 -90 l0 θ2 0 

3 0 l1 θ3 0 

4 0 l2 0 0 

The transformation matrix for the MCP joint of the ATX is, 

x
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2
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1
0z0yATX TTTT)10(R)h(DT                                                         (a5) 

The endpoint positions of both transformation matrices are identical as the two models 

are connected at C, 
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 The mapping between α and θ needs to be solved at velocity level as the Equation (a6) 

is highly nonlinear. Differentiate (a6) once, 
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Thus, the mapping of angular velocities of the MCP Joint for the ATX and the 

artificial thumb is 

  


t
1

x JJ                                                                                                          (a8) 

From the discussion above, the complete mapping of all joint positions is established 

between the ATX and the artificial thumb. For a given set of joint-space trajectories of 
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the artificial thumb and initial configuration of the artificial thumb and the ATX, the 

corresponding joint-space trajectories of the ATX will be obtained, and vice versa. 
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 CHAPTER VI 

 

CONTRIBUTIONS AND FUTURE WORK 

 

Contributions 

The research work presented in this dissertation focuses in the area of robot-assisted 

upper extremity rehabilitation following stroke. We have worked towards improving 

robot-assisted upper extremity rehabilitation in three different approaches: enhancement 

of existing robotic systems, implementation and evaluation of novel rehabilitation 

training strategies, and design and development of new robotic systems. The main 

contributions of this work are: 

1) Design of a high-level supervisory controller for the existing rehabilitation robotic 

system to automatically adjust the rehabilitation therapy according to the user’s verbal 

feedback. This high-level supervisory controller monitors the task execution and safety, 

and makes task adjustment according to the recognized verbal feedback from the user 

during the task execution to impart effective therapy an automated manner. This 

enhancement allows the user-robot direct interaction, and reduces the intervention and 

workload of the therapists. 

2) Evaluation of the impact of the integrated training method of assist-as-needed and 

visual error augmentation in upper limb rehabilitation. A new training strategy is 

proposed which integrates the assist-as-needed and visual error augmentation strategies. 

This new strategy is implemented in the existing robotic system. A crossover study with 

20 subjects is designed to assess the impact of the integrated training method of these two 
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strategies on robot-assisted upper limb rehabilitation. Statistical analysis of the 

experimental results has demonstrated the proposed integrated training strategy has the 

potential to improve the efficacy of the robot-assisted upper limb rehabilitation. 

3) Control of an actuated finger exoskeleton (AFX). The real-time control system is 

developed for the AFX with position and torque control. The position and force controller 

is PI controller with friction compensation and feedforward compensation. A planner is 

designed to distribute the control command to the appropriate motor in the motor pair. 

Experimental results show the AFX has independent actuation of each joint with full 

range of finger motion, high backdrivability, high speed and torque capacities that will 

facilitate the scientific research of finger rehabilitation and motor control of stroke 

survivors.  

4) Design and development of an actuated thumb exoskeleton (ATX). An ATX that 

has 5 active degree-of-freedoms (DOF) and 3 passive DOF is designed to provide 

independent actuation for each DOF of the human thumb. Sensory, actuation and control 

systems are developed to permit real-time control. The ATX is tested in experiments and 

the performance comes close to all the design goals. The ability to provide independent 

actuation of each DOF of the thumb with high torque and speed capacity will allow the 

ATX to serve as a test bed to facilitate the thumb rehabilitation and motor control study. 

 

Future Work 

The future work remains focused on improving the robot-assisted rehabilitation. 

Building on the results in this dissertation, there are many exciting research directions 

that will promote this research area and benefit the stroke population as follows: 
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1) Implementation and evaluation of various rehabilitation strategies and motor 

control paradigms for the hand with the AFX and ATX. The capabilities of the AFX and 

ATX permit the implementation of various rehabilitation strategies and motor control 

paradigms. Systematically experiments on human subjects will demonstrate the 

differences in efficacy of these strategies in improving hand rehabilitation, thus help 

therapist find the more efficient way to conduct rehabilitation. 

2) Coordinated control of the AFX and ATX. With both the AFX and ATX being 

controlled separately, the next step is to coordinately control these two devices to conduct 

practical hand tasks, e.g., pinching and rolling tasks. A high-level supervisory controller 

will be needed to coordinate the two separate devices and generate reference task for both 

devices. 

3) Design of a full hand exoskeleton for all four fingers and the thumb. The human 

hand has 21 DOF in total, namely, 4 DOF for each finger and 5 DOF for the thumb. A 

full hand exoskeleton will be able to provide rehabilitation therapies to each digits of the 

hand and retrain the full hand function of the stroke survivors. This exoskeleton can also 

facilitate research in sensorimotor control, especially as it relates to integration of 

proprioception. This kinesthetic sense is fundamental to control of movement, and could 

be further incorporated into user control of assistive technology, such as robotic or 

prosthetic hands or neuromuscular stimulation systems. 

 


