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CHAPTER I 

 

INTRODUCTION 

Proteomic difference testing has emerged as a critical tool in biomedical research for elucidating 

the molecular mechanisms underlying complex biological pathways. Biomarker detection, drug 

discovery and studies of variations in biological proteomes provide instances of research areas 

which would benefit from an enhancement in the ability to detect changes in protein abundance. 

While liquid chromatography tandem mass spectrometry (LC-MS/MS) (1, 2) has successfully 

been utilized to achieve this, many challenges remain to be addressed.    

Two separate experimental approaches can be used to achieve protein quantitation: the 

first one involves isotope labeling (3-6) and the second approach utilizes label-free shotgun LC-

MS/MS (7-10). While isotope labeling can provide more reliable results, the tradeoff is higher 

experimental cost and labor.  Label-free shotgun LC-MS/MS reduces the complexity of 

experimental data generation while being statistically less powerful and prone to higher error 

rates than isotopic labeling.  Given that reduction of experimental complexity is highly desirable 

in many situations, improvements in label-free LC-MS/MS difference testing are needed.   

Proteomic difference testing can be approached qualitatively (i.e. which proteins vary 

between different test cases) as well as quantitatively (i.e. how much does a specific protein vary 

under different conditions).  Label-free LC-MS/MS produces two fundamental types of data that 

can answer these questions: peptide precursor ion peak intensities and spectral counts of 

identified MS/MS spectra.  Both types of data can be used separately for qualitative and 

quantitative difference testing. A myriad of different experimental and statistical techniques have 
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been developed in recent years to harness these two data types (3-10).  However, spectral counts 

and precursor intensities follow fundamentally different statistical distributions that have their 

own inherent strengths and weaknesses when applied to difference testing, and neither data type 

can be considered exclusively superior to the other for the purpose of difference testing.  Ideally, 

the information provided by both spectral counts and precursor intensities can be utilized in 

concert to balance their respective strengths and drawbacks.   

We hypothesized that a statistical test integrating spectral count data with precursor 

intensity data could result in improved overall test results.  To test this hypothesis, we developed 

a new tool called IDPQuantify.  IDPQuantify was developed with the following specific aims in 

mind:  

Specific Aim I.  Evaluate the performance of statistical difference testing using precursor 

intensities or spectral counts.  In particular, we were interested in establishing the degree of 

independence (orthogonality vs. mutual information) between statistical difference tests using 

either count data or intensity data alone.      

Specific Aim II.  Evaluate a new statistical model for label-free qualitative difference 

testing that combines precursor ion intensities with spectral count data.  The model uses Fisher‟s 

Method for combining p-values into a single p-value using the p-values from a precursor 

intensities-based test and a spectral count-based test.       

Specific Aim III.  Establish the validity of conducting difference testing at the peptide 

group-level.  Protein difference testing is typically performed at the protein-level.  Peptide group 

difference testing segregates peptides into peptide groups that are associated with a single protein 

group or shared across multiple protein groups.  We wanted to show that difference testing at the 

peptide group-level is effective at reducing the noise associated with shared peptides. 
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This study is structured as follows:  In Chapter II, we review the published literature on 

label-free LC-MS/MS quantitation and the relationship between spectral count data and 

precursor ion intensities.  In Chapter III, IDPQuantify and our combined model are introduced 

and defined.  IDPQuantify‟s features are explained along with our combined statistical model.  

The existing statistical tests are used to evaluate and compare the performance of our combined 

model as well as assess the viability of peptide group-level difference testing.  Chapter IV 

introduces our evaluation data set.  The results of the statistical test comparative analysis are 

described and discussed.  Chapter V contains the final conclusions of this study and future 

directions. 
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CHAPTER II 

 

BACKGROUND AND SIGNIFICANCE 

 

Proteomic difference testing falls into two general categories:  qualitative difference testing 

(which proteins changed in abundance) and quantitative difference testing (how much did the 

proteins change in abundance).  When LC-MS/MS data is used to conduct the difference testing, 

the data available for difference testing also falls into two general categories:  MS/MS spectral 

counts and MS precursor ion intensities.  When isotopic or mass-tag labeling is used, the internal 

standard‟s signal is also available.  Label-free quantitation lacks an internal standard signal but 

remains appealing due to its lower cost and ease of implementation.  As such, improving 

quantitative methods which eliminate the need for internal standards by relying exclusively on 

spectral counts or precursor ion intensities is highly desirable.   

The choice of one of these metrics (spectral counts or precursor ion intensities) over the 

other for label-free quantitation depends on the type of difference testing question under 

investigation (which proteins changed vs. what was the fold change).  But neither spectral counts 

nor precursor ions can be considered the clearly superior choice of data for either qualitative or 

quantitative difference testing.  In 2004, Liu et al. established the viability of spectral count totals 

(per protein) as a statistically useful metric that was both randomly sampled and directly 

proportional to protein abundance over two orders of magnitude (10).   

A 2005 study by Old et al. (11) investigated how precursor ion intensities and spectral 

counts differ in their abilities to detect the identities of the proteins which changed in abundance 

and what was the fold change across cohorts. Using isotopic labeling as their control, Old et al. 
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found that spectral counts and precursor intensities both perform comparably for either the 

qualitative or quantitative forms of difference testing.  But they also observed that spectral count-

based methods tended to be more reliable for answering the question of which proteins changed 

in abundance, whereas precursor intensities were generally better for determining the fold-

change in abundance between cohorts.  This is in keeping with a more recent study by Park that 

also found better agreement between the fold-changes found using LC-MS precursor peaks 

versus spectral counts (12). 

The comparable, but still distinct, performance of spectral counts and precursor ion 

intensities for quantitation is also reflected in differences in their dynamic ranges and 

vulnerabilities to error.  For instance, Old et al. found that both spectral count and precursor 

intensity methods suffered from erroneous fold change estimates for low abundance proteins(11).  

Spectral counts suffered from a lack of continuity as counts approached zero in one or both 

cohorts, leading to an overestimation of ratios.  Precursor intensities, on the other hand, tended to 

underestimate ratios for low intensity precursors due to baseline intensity noise contributing to 

precursor signals.   

On the high end of the abundance range, Old et al. found the most accurate fold-change 

estimates for proteins when measuring highly abundant proteins with large numbers of spectral 

counts in both cohorts(11).  At the same time, Old et al. found an under-sampling of spectral 

counts for the most abundant proteins which they attributed to the data dependent acquisition 

exclusion lists.  Precursor intensities may also become non-linear for the most abundant peptides 

when electrospray ionization is used, due, in part, to the impact of ion suppression (13).  

The correlation between spectral counts and precursor ion intensities for relative 

abundance measurements has also been investigated (16).  Using 
14

N/
15

N metabolic labeling as a 
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control, Zybailov et al. found a strong positive Pearson product moment correlation of 0.64 

between abundance ratios calculated using spectral counts vs. precursor intensities.  When 

minimum spectral count (per protein) filters and minimum precursor ion signal-to-noise filters 

were employed, the correlation was even stronger, highlighting the difficulties both spectral 

counts and precursor intensity methods face when dealing with less concentrated peptides.  Also 

similar to the findings of Old and others (14, 15), Zaibalov et al. found that spectral count-based 

methods were more reproducible and had a larger dynamic range than precursor intensity 

methods.  But the larger dynamic range of spectral counts was attributed, in part, to the 

respective zero-boundary issues (e.g. spectral count-based methods yielding higher ratios when 

one cohort has near-zero counts vs. baseline noise contributing to lower ratios when low 

abundant precursor ions are compared).  More recently, Park et al. also found that both spectral 

counts and LC-MS precursor intensities could be used for abundance ratio approximation, but 

they found precursor peak areas under the curve to be a more reliable approach than spectral 

counts (12). 

The larger dynamic range of protein abundance ratios when using spectral-count vs. 

precursor intensities observed by both Old et al. and Zybailov et al. also highlights the 

differences in the constraints required to conduct the different types of statistical tests available 

for count data vs. normally distributed area/volume data.  For example, when assessing how 

spectral counts compared to precursor intensities for qualitative difference testing, Old et al. used 

minimum thresholds for determining whether a protein was viable for statistical difference 

testing using either spectral counts or precursor intensities.  Proteins that had at least 4 spectra 

(found amongst all peptides across replicates) in either cohort were deemed viable for spectral 

count difference testing using a modified G-test.  But when precursor intensities were used, 
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Student‟s t-test was employed, and their methodology required proteins to have at least three 

peptides shared between cohorts for difference testing.  The threshold of four unpaired spectral 

counts per protein is much easier to meet than three shared peptides across cohorts, and thus 

nearly 10-fold more proteins were tested using spectral counts than were tested using precursor 

intensities.   

Not surprisingly, the range of ratios seen in proteins found to be differentially abundant 

using spectral counts, alone, was ~4 fold greater than the range of ratios in proteins found to be 

differentially abundant using precursor intensities alone (11).  So in addition to the tendency of 

spectral count to overestimate abundance ratios (due to zero-bound continuity issues), the larger 

range of ratios seen in proteins found to be differentially abundant using spectral counts is 

expected, given the much larger number of spectral count-based tests conducted.   

The distributions of spectral counts and precursor peak intensities are fundamentally 

different.  Precursor peak intensities are a measure of how much of a given peptide is observed.  

Intensities follow an exponential decay distribution within a given run but are, ideally, normally 

distributed across replicates for a given peptide (at a specific charge state).  Appropriate 

statistical tests for normally distributed data (e.g. Student‟s t-test) depend on repeated measures 

per cohort (at least three) in order to approximate both the mean and variance.  Spectral counts, 

on the other hand, are a measure of how frequently we observe a given protein‟s peptides.  Count 

data follows a Poisson distribution and can therefore be applied to non-parametric statistical tests 

such as Fisher‟s exact test and the G-test.  Non-parametric tests are potentially quite useful for 

proteomic LC-MS/MS data sets.  They are more robust against outliers compared to their 

parametric counter parts and because Fisher‟s exact test and the G-test do not require more than 

one replicate per cohort and are more robust against missing data.  Thus, the substantially larger 
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number of differentially abundant peptides identified by Old et al. when using spectral counts 

was indeed partially caused by the different thresholds employed for spectral counts and 

precursor intensities, but those different thresholds were reflective of the more relaxed 

constraints available to frequency-based statistical tests compared to the intensity-based 

parametric tests (16).   

Spectral counts are not exclusively applicable to non-parametric tests.  The Normalized 

Spectral Abundance Factor (NSAF), developed by Zybailov et al., first normalizes each protein‟s 

spectral counts by the length of the protein and penalizes the total spectral count for larger 

proteins due to the greater number of peptides generated by longer proteins (16).   The resulting 

Spectral Abundance Factor (SAF) for a given protein is further normalized to the entire data set 

by dividing the SAF by the sum of SAFs for all identified proteins to get the NSAF.   The natural 

log of these NSAF values turns out to be normally distributed, making parametric tests like 

Student‟s t-test available for spectral count data (16, 17).   

By using a normalization factor that takes into account the different sizes of proteins that 

could have generated the same peptides, the NSAF metric also begins to address another key 

challenge in quantitative proteomics:  how to account for shared peptides.  The “bottom up” 

approach of shotgun proteomics gathers data at the peptide level while researchers are interested 

in protein identification and quantitation.  This introduces multiple ambiguities in the 

interpretation of LC-MS/MS data.  Consider a peptide A that that could have come from two 

proteins of differing lengths:  protein 1 (longer) and protein 2.  If protein 1 and protein 2 were 

both at equal abundance we would expect the longer of the two to generate more peptides and 

contribute more spectral counts.  As such, if the spectral counts for peptide A are contributing to 

protein 1‟s total count, each individual spectral count is being drawn from a larger pool of 
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theoretical counts and should be given less weight than if the counts were being attributed to the 

shorter protein 2.  

  The original NSAF approach helped to address how to weight peptide spectral counts 

when attributing the same peptide‟s counts to proteins of differing lengths, but it left unresolved 

the issue of attributing the same spectral counts to multiple proteins.  By adding the spectral 

counts of shared peptides to each potential parent protein, we are assuming that each of those 

proteins contributed equal numbers of precursor ions to each identified MS/MS spectra, a clearly 

erroneous assumption.  The greater the number of proteins that could have contributed to a given 

peptide, the greater the ambiguity in the identity of the protein which contributed the peptide and 

the greater the number of extra counts that will be erroneously applied if  shared peptide counts 

are equally applied to all of the possible protein contributors.  For complex proteomes, shared 

peptides can be particularly troublesome.  The human genome, for instance, is estimated to have 

~1,000,000 protein isoforms, with 5-7 isoforms on average per open reading frame (18).  

Distinguishing between post-translationally modified proteins and their unmodified forms 

presents another source of shared peptide ambiguity.  And the lower the abundance of a given 

protein, the greater the relative error for each erroneously attributed spectral count.   

 The best way to deal with all of these complications arising from shared peptides 

remains an open area of research.  Zhang et al. recently compared the original NSAF method to 

several alternative approaches that accounted for shared peptides in the normalization process 

(19).  They found the normalized spectral counts from the original NSAF method to have the 

worst linearity due, in part, to the multiple counting of shared peptides causing a systematic 

overestimation of the concentrations of less concentrated proteins.   The top performing method 

they observed for addressing shared peptides involved distributing all of the spectral counts from 
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shared peptides to their potential parent proteins.  The fraction of the shared spectral count that 

each potential parent protein receives is equal to the fraction of spectral counts from unshared 

peptides that a given protein received amongst the total number unshared spectral counts for that 

set of potential parent proteins. Zhang et al. (19) also evaluated the approach by simply 

discarding shared peptides from consideration.  While this method had a superior dynamic range 

to that of the original NSAF method, it also tended to underestimate less abundant proteins.   

 Usaite et al. (15) also found a loss of linearity for spectral counts from low abundance 

proteins and demonstrated that shared peptides give much more variable and unreliable 

abundance ratios if the parent proteins are expressed at different levels (15).  Using the spectral 

count data from two highly homologous proteins expressed at different levels, they calculated the 

abundance ratios for each separate peptide from the two proteins (using the original NSAF 

method for normalization).  The abundance ratios of the unshared peptides clustered around two 

distinct population levels, whereas the shared peptides gave highly variable ratios.  When they 

statistically difference tested several thousand proteins from a yeast proteome between Wild 

Type (WT) and Knockout (KO) cohorts, they found that 12% of the proteins had statistically 

different results depending on whether or not shared peptides were used.   

An early metric similar to the NSAF, the Protein Abundance Index (PAI), was based not 

on spectral counts, but on the percentage of a protein‟s theoretical sequence that was identified in 

the runs.  The PAI normalization factor simply divided the total number of unique peptides 

measured for a given protein by the theoretical number of unique peptides that could be 

generated from the protein (20).  This led to the creation of the Exponentially Modified Protein 

Abundance Index (emPAI) by Ishihama et al. for use with precursor intensity-based quantitation 

based on the observation of a linear relationship between the PAI values and the natural log of 
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protein abundances (21).  As would be expected, they also observed a linear relationship between 

a protein‟s spectral counts and its abundance but also observed that the number of unique 

peptides identified for a protein was linearly correlated with the log of the protein‟s abundance, 

suggesting a linear increase in observed sequence coverage corresponds to an exponential 

increase in protein abundance.  The emPAI index is the exponential of the PAI and was shown to 

be strongly correlated with protein abundance (2.1): 

 

 emPAI = 10
PAI 

– 1   (2.1) 

 

 Interestingly, while sequence coverage may be the highest for the most abundant 

proteins, Ishihara et al. also found a reduced correlation between protein abundance and the 

emPAI metric for the most abundant proteins, highlighting how the most abundant proteins may 

be the easiest to identify but not necessarily the easiest to quantify (21).     

A third normalization technique, the Protein Abundance Factor (PAF) developed by Link 

et al., constitutes a mix of the NSAF and emPAI normalization techniques by factoring in both 

the extent of sequence coverage by non-redundant MS/MS spectra and the molecular weight of 

the candidate protein when normalizing protein concentrations (22).  This approach can be used 

in the freely available tool BigCat (23).   

NSAF, emPAI, and the PAF are examples of normalization and analytical approaches 

that are conducted at the protein level.  An alternative approach to dealing with shared peptides 

is to first segregate peptides and proteins into peptide groups and protein groups, and conduct 

quantitative analysis at the group level instead of at the individual peptide level.  Peptide groups 

consist of all peptides that can be explained by the same set of proteins, whereas protein groups 
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are defined as all proteins that can be explained by the same set of peptide groups (Figure 1). 

Protein groups and peptide groups are already used for assembling identified proteins from 

observed peptides via parsimonious analysis (i.e. restrict identified proteins to the smallest set of 

proteins required to explain the presence of all identified peptides) (24, 25).  Instead of 

addressing shared peptides between unique proteins at the protein-level and peptide-level, group-

level analysis segregates between unique peptide groups and shared peptide groups.  All peptides 

in a given peptide group are considered to be shared between all of the proteins in each protein 

group associated with the peptide group.     

 Quantitative peptide group-

level analysis instead of protein-

level analysis assumes a high degree 

of similarity in the relative 

expression levels of different 

proteins in the same protein group.  

This is not an entirely unreasonable 

assumption since proteins in the 

same protein group presumably 

share a high degree of sequence homology and are likely in the same protein family.  Increased 

sequence homology (i.e. the number of peptides in a peptide group) confers greater likelihood of 

shared transcription factors and other regulatory mechanisms (26).  Jin et al. tested this 

assumption and found that proteins in the same protein group do, indeed, appear to be 

functionally related and experience similar changes in relative abundance when the biological 

system is perturbed (27).  They also found that the addition of shared peptides (within a given 

 

Figure 1.  A schematic of the relationship between protein 

groups and peptide groups as defined in this study.  “Shared 

Peptides” are considered to be peptides in a peptide group 

shared between two protein groups. 

 Prot1, Prot2, 
Prot3 

 Prot4, Prot5 

 PepA, PepB, 
PepC 

 PepD, PepE 

 
PepF, PepG, 
PepI, PepJ 
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protein group) did not negatively impact abundance calculations.  This observation can be 

reconciled with previous findings by noting that Usaite et al. segregated peptides based on 

whether or not they were shared or unique to the candidate protein(15).  Jin et al. took a different 

approach by segregating peptides based on whether or not they were shared between different 

sets of functionally related proteins or shared between different sets of functionally unrelated 

proteins.  Overall, their findings suggest that shared peptides within an unshared peptide group 

should not be discarded, whereas the peptides in a shared peptide group may be more 

problematic for quantitation.      

If the peptides found within a given unshared peptide group are exclusively used to 

conduct quantitative analysis, NSAF or some other normalization methods could presumably be 

applied separately for each protein in the associated protein group.   Alternatively, protein-

specific normalization could be skipped and each protein in the protein group could be treated 

equally.  There are tradeoffs to both approaches.  Normalizing each protein separately has the 

obvious advantage of factoring in differences in protein length and/or sequence coverage.  But 

testing each protein separately comes at the cost of conducting a separate statistical test for each 

individual protein whereas group-level analysis requires only a single test per protein in a group.  

The fold-change reduction in the number of statistical tests would be equal to the average 

number of proteins in each protein group tested.  Thus, type I and type II errors may be 

simultaneously reduced by protein-specific normalization but also increased due to additional 

testing vs. protein-group testing.   

Whether or not proteins are tested at the protein or protein group level has the potential to 

impact the application of multiple testing correction methods.  These methods skew results 

towards fewer false positives at the cost of more false negatives.  Independence between separate 
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tests that generate a p-value is a requirement for many multiple testing correction methods.  

Proteins in the same protein group that are normalized separately have a clear violation of 

independence, complicating the application of multiple testing corrections.  Similar problems 

arise if difference testing is restricted to the protein group-level using, all peptides from shared or 

unshared peptide groups associated with a given protein group. 

Difference testing at the peptide group-level is a third alternative.  It has the obvious 

disadvantage of reducing the overall amount of data used for a given protein‟s or protein group‟s 

testing.  But by splitting the signal between shared and unshared peptide groups, the unshared 

peptide groups provide units of peptide signal grouped for greater sequence homology.  This is 

because the proteins in a given protein group tend to be more homologous to each other than 

with randomly selected identified proteins.  And as already mentioned, greater sequence 

homology is associated with a greater likelihood of shared transcription factors, and greater 

similarity change in expression in response to stimulus (26).   

The issue of multiple testing correction is also a challenge in the field of mRNA 

microarray analysis, where thousands of genes are tested simultaneously, often on few replicates.  

Not surprisingly, LC-MS/MS proteomic analysis has borrowed a number of the data 

normalization and statistical testing techniques developed for microarray techniques (17, 28).  

One existing tool, QSpec, uses the hierarchical Bayes methodology for approximating false 

discovery rates following statistical analysis on spectral counts (29).  Another technique, the 

empirical Bayes t-test, was designed for addressing the problem of type I and type II errors 

randomly arising from multiple tests on too few replicates.  First developed by Lonnstedt and 

Speed (30), it uses Student‟s t-test with a modified t-statistic calculated using pooled variances 

empirically derived from the standard deviations observed over the entire data set.   
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A variant of the empirical Bayes t-test was made available in the “limma” package for R 

by Smyth (31, 32) and has already been employed in the label free LC-MS proteomic difference 

testing software package Corra (33).  Corra uses LC-MS precursor intensity data to conduct its 

difference testing.  In addition to using the empirical Bayes t-test to minimize false positives, 

Corra also addresses a problem not faced with spectral-count-based quantitation:  peak 

alignment.  Determining which MS1 peaks correspond to which peptide can be complicated 

because not all peptides are isolated and identified in each run.  Elution profiles can change from 

one run to the next and therefore peak area normalization or inference of an unidentified 

precursor peak‟s peptide can require complex, computationally expensive algorithms.   

Rosetta‟s “Elucidator,” a commercially available software tool, is another software 

platform designed for label free or labeled quantitation using LC-MS or LC-MALDI precursor 

intensities and peak alignment algorithms (34).  Elucidator groups MS1 precursor peaks based on 

their chromatographic parameters (retention time, m/z, inferred charge state, etc).  Following 

peak alignment (using PeakTeller) and normalization, Elucidator conducts analysis of variance 

(ANOVA) on grouped peaks in order to identify candidates of differentially abundant peptides 

for subsequent MS/MS identification.  This stands in contrast to spectral count-based label-free 

methods that group spectral counts based on identified peptides (and associated proteins).  This 

highlights a fundamentally different aspect between MS and MS/MS data.  MS data for all 

peptides are collected in profiling mode, but the specific peptides that contributed to each peak‟s 

intensity are ambiguous without MS/MS data.  MS/MS spectral count data, on the other hand, is 

only collected for some peptides, but it also doesn‟t suffer from the ambiguity of precursor peaks 

because only identified MS/MS spectra are used for spectral counting.  As such, de-noising 

steps, such as deconvolution of peak intensities of precursor peptide isotopic distributions (PIDs) 
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from their neighbors, are requirements for MS1 quantitation, but not for spectral count-based 

methods.   

Another way in which the grouping of data points for quantitation can differ between 

precursor intensity-based methods  and spectral count-based methods is the need for the exact 

same peptide (often at the same charge state) to be identified in multiple runs across cohorts.  

When precursor intensity methods are used, whether isotopic or label free methods are chosen, 

each individual peptide‟s precursor peaks are paired across runs and analyzed separately.  Label 

free, spectral count-based methods group all spectral counts for a given protein or peptide group 

together within a given cohort or technical replicate, regardless of whether the same peptides 

were found across runs.  Consequently, missing data is potentially a much larger issue when 

conducting precursor intensity-based methods because it may limit the number of peptides (and 

proteins, indirectly) that are viable candidates for a given statistical test available for precursor 

intensity analysis (i.e. Student‟s t-test requires three data points per cohort). 

QuasiTel, a tool recently developed for spectral count-based analysis by Li et al., was 

designed to address complications that can arise during quantitation of less abundant peptides 

using spectral counts (35).  As discussed above, count-based based methods can be problematic 

for low abundance proteins, partly due to the lack of continuity as counts approach zero.  Like 

precursor intensities, Poisson distributions are exponential and equal variances across the range 

of values cannot be assumed based on empirical evidence, limiting the statistical methods 

available for analysis.  Like the NSAF normalization method, which was shown to exhibit equal 

variance when the natural log of the NSAF was used (16), QuasiTel‟s developers proposed the 

use of a quasi-Poisson likelihood maximization function to be used to fit spectral count data to 

linear models that assume equal variance (e.g. a Poisson regression).  They spiked proteins at 
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different ratios to compare the performance of their quasi-likelihood model to detect 

differentially abundant proteins with the performance of classical difference tests (e.g. Fisher‟s 

exact test).  They found their new model to perform comparably to the classical tests but not 

identically.  In particular, when the spiked protein ratios were high (ratio 27) their quasi-

likelihood performed quite similarly to the other tests, but when the ratios were at the lowest  

levels tested (ratio 3), the quasi-likelihood model demonstrated a clearly superior ability to detect 

differentially abundant proteins, albeit at the cost of more false positives. As the authors pointed 

out, an advantage of their model over classical non-parametric tests is the flexibility to adapt 

spectral counts to the fitted models to include additional parameters, such as the type of 

instrument used.    

The observation of the QuasiTel authors that their model performed better at detecting 

differentially abundant proteins that were close in abundance, but at the cost of more false 

positives, is a reminder that different statistical methodologies present a different set of tradeoffs 

between sensitivity and specificity.  Which test a researcher finds appropriate depends, in part, in 

the researcher‟s goals.  If candidate proteins based on differential abundance are desired for 

subsequent analysis where the cost of false positives is not high (e.g. biomarker detection), a test 

like the QuasiTel model that yields more true positives at the expense of additional false 

positives may be the optimal choice.  On the other hand, if there is a high cost for false positives, 

a more conservative test like Fisher‟s exact test may be desired.  Such tradeoffs apply to the 

choice of precursor intensities over spectral count data for quantitation.  Based on published 

studies, if a researcher is most interested in calculating abundance ratios between cohorts, both 

spectral counts and precursor intensities can accomplish this, but precursor intensities would 

probably provide the more accurate results.  If the researcher desires to know which proteins 
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changed in abundance regardless of the fold-change, a spectral count-based approach would be 

recommended.    

The published research on LC-MS quantitation provides a vast array of methods available 

for quantitation, but these are proposed as “either/or” options from which a researcher should 

choose just one to conduct their analysis.  Some of the numerous tools available, such as Census, 

are capable of quantitative analysis using either spectral counts or precursor intensities (12).  A 

fascinating question raised by the wide variety of data types and methods available for 

quantitation is whether or not there is a method for combining the information from both 

precursor intensities and spectral counts into a single model for quantitation.   

Spectral count and precursor intensity quantitation represent two different methods of 

viewing the same underlying system.  This suggests the possible use of meta-analysis techniques 

for combining the separate quantitative statistical test results on the same protein (or peptide 

group) from separate spectral count and precursor intensity tests.  A number of different meta-

analysis techniques exist for combining the results of multiple statistical tests.  One method, the 

Winer method (36), involves the combination of t-statistics and degrees of freedom to generate a 

single new Z-statistic.  This method however, approximates the variance of the Z-statistic using 

the degrees of freedom from the underlying combined tests and suffers if the tests were 

conducted on small numbers of samples (e.g. ≤ 10).    Similarly, Stouffer‟s method generates 

new Z-statistics from the separate Z-statistics of the combined tests but it also suffers from 

reduced degrees of freedom, which is commonplace in LC-MS/MS data with few replicates (36).   

The original meta-analysis method proposed by R. A. Fisher (referred to as “Fisher‟s 

Method”) is rooted in the observation that the p-values from continuously distributed test 

statistics will have a uniform distribution under the null hypothesis for any underlying data 
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distribution (37).  Fisher‟s Method is sometimes called the Inverse Chi-squared method because 

it uses a relationship between the uniform distribution and chi-squared distribution, namely that  

-2 * log of a uniformly distributed value will follow a chi-squared distribution on 2-degrees of 

freedom.  Additionally, the sum of chi-squared distributed values will also follow a chi-squared 

distribution (37).  These observations allow for the combination of the product of multiple p-

values into a single test statistic, X
2

 that follows a chi-squared distribution with 2k degrees of 

freedom, where k is the number of separate tests (2.2):     

 

       ∑   (  )                    (   )
 
    

 

We can then generate a one-tailed p-value for X
2
 given the 2k degrees of freedom.  Fisher‟s 

Method of meta-analysis is generally considered the most powerful and widely recommended 

meta-analysis technique(37).  The application of Fisher‟s Method to LC-MS/MS quantitation is 

an intriguing possible approach to building a statistical model that incorporates both spectral 

counts and precursor intensities. 

 

Significance 

 

The goal of this study was to test the hypothesis that proteomic difference testing could 

be improved by combining spectral count and precursor intensity data into a single test.  We also 

wanted to compare the performance of the combined model to an array of classical statistical 

tests as well as the newer empirical Bayes t-test.  Our combined model consists of using Fisher‟s 

Method of combining the p-values of two of our candidate tests.  In Chapter III, we describe the 
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new combined statistical model and candidate tests in greater detail.  We also describe 

IDPQuantify, a new module of the IDPicker protein identification software suite used to generate 

the spectral count and precursor intensity data to conduct the statistical testing.  IDPQuantify 

reads protein and peptide identification results from IDPicker, a tool designed to confidently 

assemble identified proteins from peptide searches on shotgun proteomic data.  IDPicker can 

take advantage of multiple scores per peptide and decoy FDR techniques for confident peptide 

identification coupled (38).  Protein assembly with IDPicker includes bipartite analysis at the 

peptide group and protein group level for parsimonious scoring of candidate protein 

identification (24).   

IDPQuantify extends the IDPicker pipeline by providing quantitative data for the 

peptides and proteins from IDPicker‟s protein identification results.  IPDQuantify writes spectral 

count and precursor intensity data at the peptide and peptide group level (where “peptide group” 

is defined as all peptides shared by the same protein group).  Unlike precursor intensity 

quantitation tools which conduct precursor intensity analysis on peaks prior to peptide 

identification, IDPQuantify restricts precursor ion intensities to those peaks that generate an 

identified spectrum.   

IDPQuantify can also be configured to feed its quantitative output files to user-written R 

scripts for automated statistical analysis. In Chapter IV we describe our use of the 2009 

Proteome Informatics Research Group (iPRG) E. coli data set, along with IDPQuantify and R, to 

compare and contrast multiple statistical difference tests using either spectral count data or 

precursor intensity data.  These results were then compared to our combined model.  Using the 

F1-measure and ROC curves as our metrics, we show a significant improvement is possible by 
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combining both spectral count data and precursor intensity into a single statistical model 

conducted at the peptide group level. 

In this study we also introduce difference testing at the peptide group level instead of at 

the protein level as is normally done.  By grouping data (spectral counts or precursor intensities) 

at the peptide group level we are using observations made by Jin et al. that proteins in protein 

groups tend to be functionally related and also tend to change in abundance in a positively 

correlated manner (27).  Thus, we are addressing the issue of spectral counts from shared 

peptides differently than the various shared peptide normalization techniques described above.  

Unlike approaches like NSAF or emPAI, our approach does not attempt to distribute the signal 

of shared peptides between potential parent proteins or normalize that signal separately for each 

protein as long as those proteins are in the same protein group and therefore assumed to be 

functionally related and likely to change in abundance similarly.  In doing so, we lack the added 

accuracy potentially obtained by normalizing each protein‟s spectral count to the protein length, 

but we gain several important advantages.  First, by not distributing the signal of spectral counts 

from shared peptides between the potential protein parents, we add to the power of our tests by 

using more information (in the form of spectral counts) for each statistical test.   Combining 

counts at the peptide group level also helps address the problems discussed above that spectral-

count based quantitative methods tend to have when counts are low.  We also avoid 

complications associated with multiple testing corrections and the requirement for independence 

between tests.  Proteins within the same protein group that are statistically tested separately are 

clearly not independent given their shared peptide signals.  Additionally, significantly more 

statistical tests will have to be conducted if done at the protein level instead of the protein group 

level.  By quantitating at the peptide group level we are reducing the overall number of tests, and 
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thus reducing the likelihood of type I errors, while increasing the independence between tests 

which makes the results amendable to multiple testing correction procedures. 
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CHAPTER III 

 

IDPQUANTIFY AND STATISTICAL DIFFERENCE TESTING 

 

Introduction 

 

We introduce IDPQuantify, a new component of the IDPicker pipeline that generates output of 

precursor ion intensities from identified spectra at the peptide group level.  IDPQuantify 

calculates precursor ion intensities using input files generated by two third-party tools built by 

the MacCoss group, Hardklör and Bullseye (39, 40).  IDPQuantify is also capable of running 

user-written scripts in R for automated difference testing at the peptide group-level with 

precursor ion intensities and/or spectral counts  (41).   

 

Utility of IDPQuantify 

 

IDPQuantify is a new open source module written in C# for use in the IDPicker 

proteomics pipeline (38).  IDPQuantify reads idpXML files created by IDPicker, along with 

spectral source files in the .mzXML or .Raw formats, and generates output files containing 

spectral count data and precursor ion intensities for each peptide group found in each replicate.  

The output files are designed for easy extraction of peptide group-level for use in statistical 

difference testing in third party tools such the statistical package R. In addition, IDPQuantify 

produces a variety of normalized precursor intensity files (described below) that can alternatively 

be used for difference testing.   
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Users can also set up IDPQuantify to automate any number of difference tests written in 

R via the “analysis_config” text file.  Within the “analysis_config” file, the idpXML input files 

used to generate the spectral count and PPID files are then assigned to cohort 1 or cohort 2 for 

difference testing.  Users can create custom-made R scripts written to accept IDPQuantify‟s 

PPID and spectral count files and output the test results in a specified format (see Supplemental 

Materials File 4).  Which PPID and/or spectral count files are to be processed by which R script 

is defined in the “analysis_config” file.  

 

Hardklör, Bullseye, and Persistent Peptide Isotopic Distributions for Precursor Intensity 

Information Extraction  

 

To generate ms1 precursor intensity data, IDPQuantify uses input files generated by two 

third-party tools, Hardklör (39) and Bullseye (40), both developed by the Hoopman et al.. 

Hardklör reads spectral data files (.RAW, .ms1, or .mzXML) and uses a novel algorithm to 

rapidly identify peptide isotopic distributions (PIDs) within ms1 scans.  For each ms2 scan, 

Bullseye attempts to identify persistent PIDs found across sequential ms1 scans for the selected 

precursor peptide (Figure 2). 

 

Hardklör for Isotopic Deconvolution and Precursor Peak Intensity Estimation 

 

Hardklör uses a novel approach to deconvoluting neighboring isotopic distributions by 

using an efficient single-pass charge state inference algorithm.  As the Hardklör authors point 

out, efficient charge state inference is useful in quantitative applications because it allows for a 

combinatorial approach to deisotoping overlapping PIDs that can be otherwise computationally 

prohibitively expensive (39).  The number of theoretical combinations of overlapping PIDs that 
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must be considered when using the combinatorial approach grows exponentially with the number 

of charge states to be considered for the overlapping PIDs.  Hardklör‟s efficient elimination of 

charge states from consideration for a given set of PIDs can significantly reduce the computation 

costs of the combinatorial approach, making it available when less computationally expensive 

methods might otherwise be used.  Those include choosing a single PID to start the analysis with 

and iteratively subtracting computed PID signals from the remaining signal to be analyzed.  

These alternative approaches are vulnerable to the cascading effects of errors introduced early in 

the chain of analysis, which can be particularly harmful to quantitative studies.  The ability to use 

the combinatorial approach for more accurate approximation of PID peak intensities is especially 

useful when analyzing complex samples that have had limited separation, such as one dimension 

LC separation, as opposed to multidimensional separation involving strong cation exchange 

(SCX) or isoelectric focusing (IEF).   

Hardklör writes .hk files that contain summary information for each PID found in each 

MS1 scan in a given spectral data file.  The intensity of the base peak of each PID is included in 

that output.   As part of Hardklör‟s peak-picking algorithm, base peak signal is de-noised using 

the THRASH algorithm (39, 42).  The THRASH algorithm defines baseline noise in a given m/z 

window as the mode of the distribution of peaks observed at that window and subtracts that from 

the measure base peak‟s area under the curve (AUC).   

 

Bullseye for Precursor Peak Quantitation Using PPIDs 

 

Peptides eluting from the column over a long enough chromatographic window can be 

captured by multiple sequential MS1 scans.  If precursor intensities are to be used for 
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quantitation, we need to estimate the precursor peak intensities across the entire chromatographic 

window of a given peptide.  Bullseye, a companion tool built to work with Hardklör, 

accomplishes this task.  Bullseye was written for the purpose of more accurately estimating 

precursor ion m/z values than is typically done by instrument hardware/software.  A given PID 

eluting over time that is measured in multiple MS1 scans may have slightly different m/z values 

in each MS1 scan, reflecting the noise in precursor m/z values used in peptide identification.  

Bullseye assumes PIDs that appear in sequential MS1 scans with approximately the same 

monoisotopic mass all come from the same peptide.  As Hoopman et al. demonstrated, the 

average m/z of the precursor PID monoisotopic peaks observed over the entire peptide elution 

profile can yield a more accurate estimation of precursor monoisotopic m/z values than from a 

single scan alone (39).  Bullseye‟s ability to accurately estimate precursor monoisotopic m/z 

values resulted in more accurate peptide identifications even when compared to the m/z values 

provided by a high-resolution Orbitrap (39).  

Bullseye reads Hardklör‟s output files along with an ms2 spectral data file (.RAW or 

.mzXML).   For each identified MS2 spectrum, Bullseye locates ms1 persistent PIDs (PPIDs) for 

the precursor ions corresponding to each MS2 spectra.  Bullseye defines a PPID as the same PID 

in three out of four subsequent MS1 scans.  PPID intensity values consist of the summation of 

the de-noised and baselined peak AUCs of the PID‟s base peak for each ms1 scan in the PPID.  

Thus, each PPID is a Volume Under Curve (VUC) calculation of the PPID‟s base peak (Figure 

2).    Users can generate Hardklör/Bullseye files on their own or let IDPQuantify automate the  
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generation of the Hardklör and Bullseye files.  IDPQuantify‟s basic unit of quantitation at the 

peptide level is the corresponding PPID generated by Hardklör and Bullseye.  

Low intensity PIDs can result in atypical isotopic packets that make PID identification 

difficult and result in missing data points in our PPID analysis.  When an identified MS/MS 

spectrum does not have a corresponding PPID, IDPQuantify attempts to construct a PPID using 

the mass and charge of the identified peptide and the precursor triggering ms1 scan peaks.  If an 

incomplete PID is detected within a user-set retention time window (e.g. +/- 10 seconds around 

triggering ms1 scan), IDPQuantify reattempts to construct a PPID for that peptide using the 

incomplete PID as a starting point.   

It is important to note that Bullseye identifies a PPID in a given replicate only if that 

PPID was selected for MS/MS identification.  The tradeoff between this approach and other 

 

Figure 2.  Precursor intensity information extracted by IDPQuantify consists of the volume under the curve 

(VUC) of the base peak of a persistent peptide isotopic distribution.  IDPQuantify uses two third party tools 

to obtain PPIDs.  First, peptide isotopic distributions (PID) in each MS scan are deconvoluted and identified 

by Hardklör.  Next, for each MS/MS scan, Bullseye examines the triggering ion‟s PID and attempts to 

identify a corresponding persistent PID (PPID).  The sum of the areas under the curve of the PIDs base peak 

is reported by Bullseye and used by IDPQuantify. 
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methods that use peak alignment to identify unidentified precursor ions is that IDPQuantify‟s 

PPID data will include more missing data points, but also a reduced likelihood of 

misaligned/misidentified precursor peaks. 

 

Output Files Generated by IDPQuantify 

 

IDPQuantify generates a variety of output files containing spectral count and PPID data 

at the peptide and peptide group levels.  The generation and use of these files is handled by 

IDPQuantify.  The “Distinct peptides per peptide group per replicate” file contains the number 

of distinct peptides observed in each replicate in each peptide group.  The cohort-level totals and 

all-replicate-level total counts are simple summations of the replicate-level unique peptides.  The 

“Unique peptides per peptide group per cohort/run” file contains the number of unique peptides 

observed in each replicate in each peptide group and the unique peptides across each cohort and 

all replicates.   

          The “Spectral count per peptide group” file contains the number of MS/MS spectra that 

identified a peptide in a given peptide group in each replicate and across each cohort and all 

replicates.  Similarly, the “Spectral count per peptide” file simply contains the number of 

spectral counts per peptide for each replicate.  A related file is the “Num peptide hits per peptide 

group with a PPID observed” file contains the count of peptides in a peptide group that had at 

least one PPID observed in a given replicate.  If multiple spectral counts are observed for a given 

peptide in a given replicate, that peptide will add only one to the count as long as at least one of 

those spectral hits had a corresponding PPID found. 
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The “PPID intensity per peptide file” file contains the total PPID intensity per individual 

peptide per replicate.  If multiple MS/MS spectral hits are observed for a given peptide in a given 

replicate, the intensity values of observed PPIDs are summed.  If no PPID is observed but at least 

one spectral hit is seen for a peptide in a given replicate and error code of -2 is listed.  If no PPID 

is observed and no spectral hit is seen, an error code of -4 is listed.  The “Total PPID intensity 

per peptide group” file contains the total PPID intensity for a given replicate for all peptides in a 

peptide group.   

 

 

 
Figure 3: An overview of the PPID data file generation workflow utilized by IDPQuantify.  
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Statistical Difference Testing of LC-MS/MS Data 

 

The E. coli data set used for evaluating test performance is described in greater detail in 

Chapter IV.  The data set was difference tested using a variety of candidate statistical tests.  The 

tests fall under general categories of classic statistical tests, the empirical Bayes tests, and hybrid 

tests using the geometric mean of spectral count and PPID-derived p-values combined using 

Fisher‟s Method.  We refer to the use of Fisher‟s Method in this manner as the “Combined 

Model” throughout the rest of this study.     

Two methods for weighting PPID values were tried for each PPID-based test, along with 

no weighting.  PPID or spectral count-based tests also had two optional filters applied to 

eliminate low-information peptide groups from consideration.  Each candidate test was run for 

all available combinations of weighting and filtering methods (and at different filtering levels).  

See below for details on weighting and filtering methods. 

 

Classic Statistical Tests 

 

We used three spectral count-based tests: Fisher‟s exact test, the Mann-Whitney U test, 

and a normalized Mann-Whitney U test (see below).  Student‟s t-test and Welch‟s t-test were run 

using PPID data, while Fisher‟s exact test used spectral counts.  The modified Mann-Whitney U 

test was chosen in order to minimize the occurrence of tied spectral counts.  It was conducted as 

follows:  First, spectral counts were summed for each replicate.  The first replicate in cohort 1 (as 

specified in the “analysis_config” file) is chosen as a reference replicate for normalization.  Next, 
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for each peptide group tested, the spectral count for each replicate is multiplied by the 

normalization factor:  

 

                     
(                                      )

(                                          )⁄ (   ) 

 

The modified Mann-Whitney U test is run on these normalized spectral counts. We also tested 

the Mann-Whitney U test using PPID values normalized on a 0-101 scale (see “Normalization 

Approaches” below). 

 

Limma and the Empirical Bayes t-test 

 

The “Linear Models for Microarray” (Limma) package for R was designed for 

microarray data sets (43).  We used the empirical Bayes test in Limma using a variety of data 

normalization and transformations described below. Limma‟s empirical Bayes test uses a 

moderated t-statistic based on estimated sample variances derived using the entire microarray 

probe set data.  The moderated t-statistic is calculated using posterior residual standard 

deviations in place of the normally derived standard deviations, shrinking variances towards a 

pooled estimated variance.  The pooled variance, in turn, reduces the probability of under-

estimated sample variances for a given gene (or peptide group) that will result in false positives 

from artificially high t-statistics. 

 

The Combined Model:  Fisher‟s Method for Combining p-values from Spectral Count and 

PPID Data 
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The final statistical technique evaluated in this study was the generation of a single p-

value from the p-values of two separate tests using Fisher‟s Method for combining extreme 

probabilities.  Any number of p-values could be combined using this method, and given the 

number of different tests evaluated in this study using a variety of weighting and filtering 

methods, the possible combinations of p-values that could be exhaustively combined is 

enormous.  In order to explore this novel approach in a controlled manner, we limited our 

combined model to two p-values and always chose Fisher‟s exact test on spectral counts as one 

of the two inputs.  As discussed in Chapter IV, Fisher‟s exact test was chosen as our 

“benchmark” test due to its ease of implementation, robustness against missing data, and 

published track record as a high-performance statistical test for spectral count data. 

In order to derive a p-value using Fisher‟s Method, we first generate an X
2
 statistic from 

our two (or more) p-values: 

 

      ∑  (  )                    (   )

 

   

 

 

The X
2 

statistic follows a χ
2
distribution with 2k degrees of freedom, where k is the number of 

combined p-values.  We can then generate a one-tailed p-value for X
2
 given the 2k degrees of 

freedom using a built-function in R.   

For each candidate test, its p-value (for a given peptide group) was paired with the p-

value generated by Fisher‟s exact test.  For candidate tests conducted on spectral count data, this 

resulted in two p-values based on spectral counts being combined using Fisher‟s Method, which 

raises an important caveat in the application of Fisher‟s Method in this context: Fisher‟s Method 
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assumes that the combined p-values are independent of each other.  This assumption is clearly 

invalid when both p-values are derived from the same set of spectral counts using different 

statistical tests.  This assumption is also violated, though to a lesser extent, when combining p-

values from PPIDs and p-values from spectral counts if the PPIDs are generated only from 

identified spectra (e.g. PPIDs generated using Hardklör/Bullseye).   

If precursor intensity values were derived independently of spectral counts (as is the case 

for many precursor intensity-based quantitation approaches), the degree to which the two data 

types would be independent is an intriguing question.  For instance, more intense precursors are 

correlated with higher probability of peptide identification from MS/MS spectra.  To partially 

address the question of independence between spectral count and precursor intensity data, we 

explored the differences in performance biases between the PPID and spectral count-based 

statistical tests evaluated in this study in Chapter IV. 

 

Multiple Testing Correction 

 

Due to the large number of tests conducted on each set of replicates, multiple testing 

correction is needed to minimize false positives.   In this study, we applied the Benjamini-

Hochberg correction for all statistical tests when using the iPRG E. coli training data set.  

Adjusted p-values of 0.05 were treated as significant (41).  The Benjamini-Hochberg correction 

is designed to maximize the per-comparison error rate (PCER) rather than at controlling the 

family-wise error rate (FWER).  Controlling for the PCER instead of the FWER makes this 

procedure appropriate for this study because we are applying the same procedure to a variety of 

different statistical tests and cannot select the optimal test to control each.   
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The Benjamini-Hochberg correction is an FDR controlling procedure that relaxes the 

Bonferroni procedure iteratively by setting the following constraint: 

 

For hypothesis tests 1…m, order all the respective p-values from smallest to largest.  

Find the largest p-value that satisfies the following condition (3.3): 

 

 ( )  (  ⁄ ) 
         (   ) 

 

Where    is the desired FDR rate.  Once the condition is satisfied, reject the null-

hypothesis for 1…i.  

 

This method was shown by Benjamini and Hochberg to grow in power as the number of tests 

increased.  This was also the case as the number of null hypotheses to be discarded increases 

(44).  These qualities make the Benjamini-Hochberg procedure useful for a data set with a 

potentially large number of proteins tested (or peptide groups tested) that should truly have the 

null hypothesis rejected.  As is discussed in Chapter IV, the data set “answer key” generated for 

use in this study contains ~10% (115) peptide groups for which the null hypothesis can be truly 

rejected, so we are not to be concerned about imposing this procedure with too few truly 

rejectable null hypotheses.  

As discussed in Chapter II, we are conducting our difference testing at the peptide group-

level instead of the protein level, which impacts the use of the Benjamini-Hochberg procedure in 

multiple ways.  First, we are increasing the degree of independence between p-values that is 

clearly not upheld when conducting difference testing at the protein-level using the same 
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underlying quantitative data (e.g. spectral counts) that is renormalized for each protein.  

Independence between tests is a requirement of the Benjamini-Hochberg procedure in its attempt 

to control for the PCER instead of the FWER.  A second point regarding the reduction in the 

number of tests conducted is that the Benjamini-Hochberg procedure‟s FDR controlling power 

increases with the number of tests conducted (44),  so the benefit of reducing the number of tests 

is somewhat negated when using the Benjamini-Hochberg procedure to control the FDR.     

 

Missing/Observed PPID Weighting 

 

Not all identified spectra are matched to a PPID, resulting in errors that may arise from 

missing data.   In order to maximize the potential value of Bayesian estimated variance,  we 

investigated the use of weighting peptides based on the number of observed PPIDs or missing 

PPIDs for each peptide within a given peptide group.   

 For each 

peptide group in a 

replicate, the 

reported intensity 

consists of the sum 

of the PPIDs for each individual peptide in the peptide group.  The first optional filter we tested 

involved the weighting of PPID intensities for each peptide based on the number of missing or 

observed PPIDs for each individual peptide seen across all replicates.  First, we counted the 

number of replicates that included a PPID for that peptide vs. the number of replicates with no 

PPID for that given peptide.  If a PPID is observed for a given peptide/replicate pair we assign a 

Table 1.  The contingency table used to calculate the probabilities of observing the 

number of matched and unmatched PPIDs across all replicates.  Numbers in table 

assume five replicates per cohort and 32,174 out of 127,500 peptide/replicate pairs 

have at least one PPID. 

 This peptide All other peptides Total 

Matched PPIDs 2 32,174-2 = 32,172 32,174 

Unmatched PPIDs 8 95,326-8= 95,318 95,326 

Total 10 127,490 127,500 
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+1 to the “matched” count and assign a +1 to the “unmatched” count if no PPID is seen.  Using 

these “matched” and “unmatched” counts across all replicates, we then calculated the 

hypergeometric distribution of PPID observations across all replicates for a given peptide (e.g. 0-

10 PPIDs assuming 5 replicates per cohort) (Table 1).  Next, for each peptide, IPDQuantify 

computes the p-value associated with observing fewer PPIDs across all replicates based on the 

hypergeometric distribution defined above.  For instance, if a given peptide has three PPIDs 

observed across all 10 replicates, we calculate its p-value by summing the probabilities in the  

hypergeometric distribution for observing 0, 1, and 2 replicates (Table 2).  

These p-values are then used to 

weight the contribution of each peptide 

group.  Thus, when a given peptide group‟s 

total PPID intensity is calculated for a 

given replicate by summing the PPIDs of 

each of the individual peptide PPIDs, the 

peptides with only one or two PPIDs 

observed across all replicates will 

contribute less than peptides with six or 7 

observed PPIDs.  This results in stronger weighting of those peptides for which we have 

observed the most evidence. 

We also employed a similar filter using missing PPIDs per peptide.  In this case, we 

counted the number of peptides that have at least one spectral count (in any charged state) that 

could not be matched to a PPID.  This represents an instance where Bullseye was unable to find 

a PPID for a given identified peptide in a given replicate.  The total number of “matched” and 

Table 2.  The probabilities and corresponding p-values 

from the hypergeometric distribution of  32,174 

“matched” and 95,326 “unmatched” PPIDs 

Matched PPIDs probability p-value 

0 0.105372895 0.000 

1 0.265922106 0.105 

2 0.301978191 0.371 

3 0.203205768 0.673 

4 0.089732319 0.876 

5 0.0271699 0.966 

6 0.005712784 0.993 

7 0.000823633 0.999 

8 7.79242E-05 1.000 

9 4.36868E-06 1.000 

10 1.10211E-07 1.000 
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“unmatched” PPIDs across all peptides and all replicates are calculated as above.  Using these 

“unmatched” and “matched” counts we calculate the hypergeometric distribution of unmatched 

PPID observations for a given peptide (across all replicates) and subsequent p-values for the 

possibility of observing fewer missing but expected PPIDs across all replicates.  We then use (1 - 

p-value) to weight the contribution of each peptide‟s PPID when calculating the peptide group 

PPID.   

 

PPID Count/Spectral Count Filtering 

 

A second category of filter evaluated in this paper involved simply removing from 

consideration those peptide groups that had less than the threshold value of PPIDs (or spectral 

counts) observed across all replicates.  The “minimum PPID per peptide group” filter counts the 

total number of PPIDs observed across all replicates (in both cohorts) for a given peptide group 

and removes that peptide group from further consideration if the total number PPIDs is than the 

minimum threshold.  This filter is applied before subsequent normalization steps (e.g. percentile 

normalization, see below), thus possibly altering the distribution of normalized values.  The 

second filter we tried is a “minimum PPID in at least one cohort per peptide group” filter.  This 

filter counts the total number of PPIDs observed in both cohorts for a given peptide group.  If 

neither one of the cohorts meets the minimum PPID threshold, that peptide group is removed 

from further consideration.  The minimum PPID filters used in this study were 0, 5, 10, 15, 20, 

and 25 for both filters.  For statistical tests based on spectral counts, we employed peptide group 

spectral count filters analogous to the PPID filters described above. 
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Normalization Approaches  

 

The distribution of PPID intensities within a given replicate closely matches the typical 

exponential decay distribution of spectral intensity data.  While the distributions of different 

replicates tend to be similar, the raw intensity values can vary significantly from replicate to 

replicate, necessitating the need for normalization. Following peptide group-level PPID 

calculations, and optional missing PPID weighting and/or filtering, two different normalization 

approaches were tested:  replicate-level percentile normalization, and maximum value per 

replicate normalization. 

 When percentile normalization was used, each replicate‟s peptide group-level intensities 

are percentile normalized separately.  First, non-zero PPIDs are separated from the zero-values.  

Each non-zero PPID is ranked highest to lowest and assigned a percentile value, with 0 being the 

most intense and 99 being the least non-zero intensity.  Next, the peptide groups which have 

PPID intensities of 0 but spectral counts greater than 0 are assigned a value of 100.  Finally, 

peptide groups where no PPIDs were observed and none were expected are assigned a value of 

101.  This has the result of creating a flat, uniform distribution of non-zero PPID values for 

subsequent analysis. For maximum value normalization, we simply divided each peptide group 

PPID by the maximum PPID value in its replicate.  This results in a distribution between 0 and 1 

for subsequent analysis that retains its exponential decay distribution. 

 

PPID Data Transformations 
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Following normalization and/or minimum PPID filtering, two different transformations 

were tested:  the Tukey-Freeman arcsine transformation (45) and a log transformation. The 

Tukey-Freeman arcsine transformation is simply the arcsine of the square root of data 

normalized from 0-1, requiring division by 101 for percentile normalized PPID data.  For 

uniformly distributed data, the Tukey-Freeman transformation results in a roughly Gaussian 

distribution with values between 0 and  /2, centered around  /4.  When the arcsine is performed 

on exponential decay distributions (i.e. when replicates have been normalized by the maximum 

PPID value/replicate), we observe a modest shifting and broadening of the distribution away 

from the extremely low values. The second data transformation optionally tested was the log 

transformation, which has the effect of converting an exponential decay to an approximation of a 

normal distribution.  PPIDs with a value of 0 are assigned a post-log transformed value of 0.  
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CHAPTER IV 

 

IPRG E. COLI TRAINING SET 

 

Introduction 

 

In order to evaluate and compare the performance of the candidate statistical tests and our 

combined model, we used a pair of LC-MS/MS data sets consisting of two E. coli proteomes, 

each with a different segment of their proteomes removed to create sets of differentially 

abundant proteins.  The data set, the iPRG2009 Study data set, was generated by the Proteome 

Informatics Research Group iPRG, a part of the Proteomics Standards Research Group (sPRG) 

under the Association of Biomolecular Research Facilities (ABRF).  It was designed to provide 

researchers with LC-MS/MS data known to contain a significant number of differentially 

abundant proteins that can be separately verified, yielding an “answer key” for use in difference 

testing method evaluation. 

 

Materials and Methods 

 

Experimental Data Sources 

 

This data set includes two samples of LC-MS/MS data derived from E. coli lysates 

(labeled “Red” and “Yellow”), with five technical replicates for each sample.  In addition, the 

Red/Yellow samples both had complementary “Blue” and “Green” answer key samples 

consisting of three LC-MS/MS technical replicates (Figure 4).  The “Red” and “Yellow” 
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replicates were derived from the same E. coli lysate sample run on two halves of one gel with a 

single region excised from each half (The “Blue” and “Green” proteomic data sets).  The Red, 

Yellow, Blue, and Green gels were all analyzed on an LTQ-Orbitrap, and the resulting data sets 

are freely available at proteomecommons.org. 

 

  

 
source:  http://www.abrf.org/ResearchGroups/ProteomicsInformaticsResearchGroup/Studies/iPRG2009_presentation.pdf 

Figure 4: The “Red/Yellow” iPRG 2009 LC-MS/MS data set with “Blue/Green” LC-MS/MS answer keys.  

Differential proteomic analysis of the Blue/Green samples yields “true positives” of peptides up or down.  

 

 

Peptide Identification 

 

Raw spectral files were converted to the mzML format (46, 47) using msConvert (48).  Searches 

were conducted on the 20080728-Sprot-ECOLI-BSA-Cntms-reverse.fasta protein database, which 

contained forward and reverse sequences for FDR estimations.  Searches were configured to allow tryptic 

and semitryptic peptides and a static mass shift of 57.0125 Da for alkylated cysteines.  Optional allowable 

modifications were oxidation of methionine (+15.996 Da), N-terminal acetylation (+42.013 Da),   N-

terminal pyroglutamate formation (−17.0265 Da).  Search configuration parameters are shown in 

Supplemental Materials File 1.  Peptides were filtered at a 5% FDR using IDPicker. 
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Results and Discussion 

 

LC-MS/MS Data Set Summary Statistics 

 

The iPRG “Red/Yellow” E. coli spectral files were first searched for peptides using MyriMatch 

(versions 1.3.2) (49) followed by peptide group and protein group assembly using IDPicker (version 

2.6.129).  Each cohort consisted of five technical replicates.  A summary of the search results at the 

peptide, peptide-group, and protein-group-level of spectral counts and PPID measurements for the iPRG 

E. coli data sets are shown using in Table 3.   

Peptide hits were determined using MyriMatch.   Measured PPIDs and missing PPIDs were 

roughly equal between the two cohorts.  The “Protein Groups/Peptide groups” ratio was 1.1, indicating 

that the only ~10% of peptide groups were shared between two or more protein groups.   Bullseye (40) 

was able to find a PPID for 74% of identified spectra.   

 
                                                

Table 3:  MS Search Summary for E. coli Red/Yellow data set.  The cohort labels are:  R=Red, Y=Yellow  

 
 
“Blue/Green” Answer Key  

 

The iPRG E. coli “Blue/Green” data set was used as the answer key for which peptides 

were differentially present in the “Red/Yellow” samples.  Peptide groups found to be 

differentially present in “Blue/Green” samples are also assumed to be differentially present in the 

 Protein 

groups 

Unique 

peptides 

Peptide 

groups 

Spectral 

count  

PPID 

measured 

Missing 

PPID 

Protein 

database 

E. coli 

R/Y 

1,403 9,124 1,275 43,687 

(21,987R / 

21,700 Y) 

32,174 

 (16,399 R / 

15,737 Y) 

11,551  

(5,588 R / 

5,963 Y) 

20080728-

Sprot-ECOLI-

BSA-Cntms-

reverse.fasta 
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“Red/Yellow” samples.  As above, peptides were searched for using MyriMatch (v. 1.3.2) using 

the same configuration as described above for the “Red/Yellow” search, followed by peptide 

group and protein group assembly using IDPicker (v 2.6.129).  Summary results are shown in 

Table 4.   

 

 

 

 

 

 

 

Table 4.  MS Search Summary for E. coli Blue/Green data set.  The cohort labels are:  B=Blue, G=Green.  

 

The “Blue/Green” data set had significantly fewer peptides, proteins, and spectral hits 

compared to its “Red/Yellow” counterpart.  This was expected because of the fewer technical 

replicates per cohort (3 vs. 5) and the fact that the excised gel regions used to generate this data 

contained protein mixtures with lower diversity than the remaining Red/Yellow gels (See figure 

4). 

 
 

“Blue/Green” Answer Key Creation 

 

Following peptide identification and peptide/protein group assembling, the answer key 

needed to be generated from the data sets.   The “Blue” and “Green” data sets each consisted of 

different, but overlapping, segments of the E. coli proteome.  A given protein found in the Blue 

or Green gel bands is presumably up or down in the Red and Yellow gel bands unless the same 

amount of protein is removed from both the Red and Yellow bands.  As such, we defined our 

answer key as those proteins found to be differentially abundant between the Blue and Green gel 

 Protein 

groups 

Unique 

peptides 

Peptide 

groups 

Spectral 

count  

Protein 

database 

E. coli 

B/G 

492 3,870 522 14,740 

(7,374 B / 

7,366 G) 

20080728-

Sprot-ECOLI-

BSA-Cntms-

reverse.fasta 
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bands using an established, safe difference test.  We chose to use spectral counts for Blue/Green 

difference testing.  Spectral count-based methods tend to be better at determining which proteins 

changed in abundance than precursor intensity-based tests (see Chapter II), and our precursor 

intensities consist of a novel, untested metric (i.e. PPID intensity values from Bullseye for 

identified spectra only).  With three replicates per cohort, the “Blue/Green” data set is potentially 

a candidate for non-parametric analogues to Student‟s t-test, such as the Mann-Whitney U test.  

But three replicates are the minimum allowable for such tests, making such a choice somewhat 

less sensitive.   Fisher‟s exact test, on the other hand, combines the data from all replicates for 

each cohort, making it a safer choice when a few replicates are available.   

After selecting the difference test to populate our answer key, we needed to determine 

whether or not multiple testing corrections were needed when defining the final set of “true 

positive” differentially present proteins.  In this comparative study, protein quantitation is done 

at the peptide group level (See Chapter III). 522 peptide groups were tested on the “Blue/Green” 

data across three replicates per cohort.  This is clearly a case of many tests on few replicates, 

necessitating proactive FDR control.  On the other hand, the Blue and Green gel bands were 

excised at different locations in the “Red/Yellow” gels, so we should expect a large of number 

differentially present peptide groups and we may risk biasing the measured performance of the 

various statistical tests run on the “Red/Yellow” training data in favor of more conservative tests 

if we erroneously retain the null hypothesis for too many truly differentially present peptide 

groups in the “answer key.”   

Running Fisher‟s exact test without multiple testing correction (for a significance level of 

p=0.05), results in the identification of 170 out of the 522 peptide groups as significantly 

different.  When the Benjamini-Hochberg correction is used, we lose approximately a third of the 
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peptide groups deemed significantly different. However, in spite of this correction, we have a list 

of 115 “true positives,” i.e. fewer than 10% of the 1,275 peptide groups found in the 

“Red/Yellow” data set compared to 13% without correction.  Because of the small number of 

replicates in our Blue/Green data sets, we chose the more conservative approach of using 

Benjamini-Hochberg correction for the answer key generation.  In addition, we observed that 

many of the peptide groups removed by the Benjamini-Hochberg correction were among the 

least abundant of the pre-corrected set of “true positives” (TPs).  Additionally, the well-

established difficulties of spectral count-based tests on low abundance proteins (See Chapter II) 

suggests that these less abundant peptide groups are more likely to be false positives.  All peptide 

groups in the Red/Yellow data set identified by IDPicker that were not in the set of “true 

positives” were assigned as “true negatives” in the answer key.   

   

Benchmark Test vs. Classic Statistical Test 

 

Using the “Blue/Green” answer key to evaluate statistical test performances and the 

“Red/Yellow” E. coli data as our data set, we compared Fisher‟s exact test on spectral counts to 

the following classical difference tests using either spectral counts or PPIDs:  Student‟s t-test on 

PPIDs (with and without log transformation), Welch‟s t-test on PPIDs (with and without log 

transformation, the Mann-Whitney U test on spectral counts (modified and unmodified), and the 

Mann-Whitney U test on PPIDs (See Chapter III for details on candidate tests).  Fisher‟s exact 

test was chosen as our benchmark due to its robustness in the face of noise/missing data and 

because it has already been evaluated and deemed effective for LC-MS/MS difference testing 

(50).   But it should also have an inherent advantage over the other selected tests because we 
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used Fisher‟s exact test to define the “answer key,” and it will therefore share the same 

hypothesis testing biases (e.g. the same family-wise error rate).  Because our multiple testing 

correction procedure, the Benjamini-Hochberg correction (44), does not attempt to control for 

the family-wise error rate (FWER) but instead focuses on the per-comparison error rate (PCER), 

this may also give our benchmark test an advantage over the candidate tests if a larger amount of  

the error for our benchmark test will arise from the PCER compared to our candidate tests. 

Due to the large number of tests conducted over the 10 replicates (1,275 peptide group 

tests), we started off using the Benjamini-Hochberg correction to reduce false positives.  Due to 

a significant loss in sensitivity by both the Mann-Whitney U test and the modified Mann-

Whitney U tests, when used in conjunction with the Benjamini-Hochberg correction, multiple 

 

                                                                       F1-Measure 
Figure 5.  The F1-measures for the classical difference tests vs. the Benchmark test on the Red/Yellow data 

sets.  Results for Mann Whitney U tests did not include the Benjamini-Hochberg correction.  No 

PPID/Spectral Count filtering or weighting methods were used for the results shown.    
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testing correction was not applied for those tests in future analyses (data not shown).  This is not 

unexpected based on sharply reduced statistical power than the Mann Whitney U test suffers as 

the number of replicates falls below 10 (51).   

 

 

The ROC curves and F1-measure for each classical test were initially calculated using the 

answer key without any PPID/Spectral count filtering or weighting (see Chapter III).  Results are 

shown in Figures 5 and 6.  The ROC curve of Fisher‟s exact test clearly outperformed all other 

tests in terms of accuracy.  The PPID-based tests (Student‟s t-test and Welch‟s t-test) showed the 

lowest accuracy, but the highest potential sensitivity if more FPs are to be tolerated.  The F1-

 

Figure 6.  The ROC curves for the classical difference tests vs. the Benchmark test on the Red/Yellow data 

sets.  Results for Mann Whitney U tests did not include the Benjamini-Hochberg correction.  No 

PPID/Spectral Count filtering or weighting methods were used for the results shown.  Our benchmark test, 

Fisher‟s exact test (Black), showed the greatest specificity but reduced sensitivity if higher false discovery 

rates were accepted. 
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measure, which equally balances the value of a test‟s precision and recall, showed a clear 

advantage to using Fisher‟s exact test on spectral counts based compared to the other tests.  

Next, we examined how PPID and spectral count filtering and weighting impacted the 

performance of these tests.  Each test was run separately using a “minimum PPID/Spectral Count 

in at least one cohort” and a “minimum PPID/Spectral Count across all cohorts” filter.  Filter 

values of 5, 10, 15, 20, and 25 were used for both filters applied.  F1-measures and AUC values 

are available in the Supplemental Materials Files 3 and 4.  A PPID or spectral count filter of 5 

slightly improved AUC values, but filter cutoffs above 5 did not help and began to hurt 

performance as the cutoff was increased.  Similarly, F1-measures improved with “minimum 

PPID/Spectral Count in at least one cohort” filter thresholds set at 5 or 10 PPID/Spectral counts 

before showing a negative impact with higher thresholds.   The “minimum PPID/Spectral Count 

across all cohorts” filter did not appear to help for these tests.  For the tests run on PPIDs, neither 

weighting method tried (“observed PPID” or “missing PPID” weighting) appeared to have 

consistently positive or negative impact. 

 

Benchmark Test vs. Empirical Bayes t-test 

 

Next, Fisher‟s exact test (on spectral counts) was used as a benchmark for comparing 

different empirical Bayes t-test methodologies.   The empirical Bayes t-test was run using either 

PPIDs or spectral counts (See Chapter III).  Results for the un-weighted/unfiltered tests are 

shown in Figures 7 and 8. 
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                                                                  F1-Measure 
Figure 7.  The F1-measures for the empirical Bayes t-tests vs. the Benchmark test (Fisher‟s exact test on 

spectral counts) on the Red/Yellow data sets.   

 

Fisher‟s exact test outperformed the empirical Bayes t-tests when either F1-measures or 

ROC analysis was used.  As with the classical test comparisons, the ROC plots showed a much 

higher accuracy for the benchmark test, but a greater potential sensitivity amongst the empirical 

Bayes t-tests if more false positives are to be tolerated.  The top performing tests based on the F1-

measure were: a) the empirical Bayes t-test using un-normalized spectral counts and b) the 

empirical Bayes t-test on PPIDs with percentile normalization and the empirical Bayes t-test on 

PPIDs with the arcsine(sqrt) transformation in addition to percentile normalization.  When 

spectral count/PPID filtering was applied, only the minimum PPID/spectral count filtering 

appeared to have any sort of consistent positive impact, with a mild improvement when the 

“minimum PPID/Spectral Count in at least one cohort” filter is set to 5 or 10, and otherwise the 

impact was detrimental to performance (See AUC/F1-Measure tables in Supplemental Materials 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

empirical Bayes PPID + max value norm + log transformation

empirical Bayes PPID + max value norm

empirical Bayes PPID + (%+arcsin) norm

empirical Bayes PPID + % norm

empirical Bayes PPID + log norm

empirical Bayes PPID no norm

Fisher's exact test
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Files 3 and 4).  Neither PPID weighting methods showed a consistent positive or negative 

impact. 

 

 

 

Benchmark Test vs. Combined Model 

 

 Our combined model that incorporates information from both precursor intensity and 

spectral count information for improved quantitation consists of using Fisher‟s Method to 

combine the p-values of a single test evaluated in this study (classical or empirical Bayes) with 

 
Figure 8.  The ROC curves for the empirical Bayes t-test vs. the Benchmark test (Fisher‟s exact test on 

spectral counts) on the Red/Yellow data sets.  All empirical Bayes tests were run using PPIDs, except the test 

coded in purple which was run using un-normalized spectral counts.   Our benchmark test, Fisher‟s exact test 

(Black), showed the greatest specificity but reduced sensitivity if higher false discovery rates were accepted. 
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the p-values of the benchmark test (Fisher‟s exact test on spectral counts at the peptide group 

level).  This model was applied for all tests evaluated in this study. While the intent of this study 

was to combine precursor and spectral count data into a single statistical test for LC-MS/MS 

quantitation, we included candidate tests using spectral counts so PPID/Spectral Count and 

Spectral Count/Spectral Count combinations were examined.  The combination of two tests on 

spectral counts is a reminder that independence is being violated to some extent in the 

application of Fisher‟s Method, although, as will be discussed below, the PPID and spectral 

count-based approaches appear to select for overlapping, but distinct sets of peptides.  

 

Benchmark Test vs. Combined Model Using Classical Tests 

 

The combined model on the classical tests showed a sharp rise in the F1-measures that 

virtually matched that of the benchmark test in all cases (Figure 9).  The ROC curves clustered 

around the benchmark test‟s ROC (Figure 10).  The Student‟s t-test and Welch‟s t-test compared 

best to the benchmark test, both showing a higher sensitivity than the benchmark if more false 

positives are accepted.  Table 5 shows the F1-Measures of the candidate tests before and after the 

application of the combined model.  In general, the worst performing tests showed the largest 

improvement.  For example, the Welch‟s t-test on PPIDs, which performed the worst alone, showed the 

greatest rise after the combined model was applied (47%). 
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Table 5.  Percentage Change in F1-Measures of Classical Candidate Tests Following Application of 

Combined Model 

Candidate Test Candidate Test Alone 
Combined Model (Candidate 

Test + Benchmark) % Change 

Student's t-test on PPIDs 0.60 0.71 18% 

Student's t-test log transformation on 

PPIDs 0.55 0.70 27% 

Welch's t-test on PPIDs 0.49 0.72 47% 

Welch's t-test log transformation on 

PPIDs 0.55 0.70 27% 

Mann Whitney U test on Spectral 

Counts 0.58 0.70 21% 

Modified Mann Whitney U test on 

Spectral Counts 0.64 0.71 11% 

Mann Whitney U test on PPIDs 0.58 0.72 24% 

                                                                  F1-Measure 
Figure 9.  The F1-measures for the combined model using the classical tests combined with the Benchmark 

test (Fisher‟s exact test on spectral counts) on the Red/Yellow data sets.   

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mann Whitney U test on PPID

Modified Mann Whitney U test on Spectral Counts

Mann Whitney U test on Spectral Counts

Welch's t-test log transformation

Welch's t-test log transformation

Student's t-test log transformation

Student's t-test

Fisher's exact test



53 
 

 

Benchmark Test vs. Combined Model Using Empirical Bayes t-tests 

 

The combined model on the empirical Bayes t-tests showed a sharp rise in the F1-

measures that matched or surpassed that of the benchmark test in all but two cases (Figure 11). 

The ROC curves clustered around the benchmark test‟s ROC (Figure 12).  Similar to the 

combined model on the classical test, the combined model on the empirical Bayes ROC curves 

indicated a mild tradeoff of more false positives for fewer false negatives relative to the 

benchmark test.  Table 6 shows the percentage change in F1-Measures following application of 

the combined model for example tests (no weighting or filtering applied).  Like the classical 

 
Figure 10.  The ROC Curves for the classical difference test methods after combination with benchmark test 

(Fisher‟s exact test with spectral counts).  The ROC curve for our benchmark test did not have the combined 

model applied.   Our benchmark test, Fisher‟s exact test (Black), showed the greatest specificity but reduced 

sensitivity if higher false discovery rates were accepted. 
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tests, the empirical Bayes t-tests with the worst initial F1-Measures (the tests employing “max 

value normalization”) showed the greatest percentage increase. 

 

 

 
Table 6.  Percentage Change in F1-Measures of Empirical Bayes t-test Candidate Tests Following 

Application of Combined Model 

Candidate Test 

Candidate 

Test Alone 
Combined Model (Candidate 

Test + Benchmark) % Change 

empirical Bayes on PPIDs 0.63 0.73 16% 

empirical Bayes on PPIDs + log normalization 0.58 0.7 21% 

empirical Bayes on PPIDs + percentile normalization 0.66 0.74 12% 

empirical Bayes on PPIDs + percentile+arcsine(sqrt) 

normalization 0.65 0.72 11% 

empirical Bayes on PPIDs + max value normalization 0.49 0.61 24% 

empirical Bayes on PPIDs + max value normalization 

+ log transformation 0.56 0.73 30% 

empirical Bayes on PPIDs + max value 

normalization+arcsine(sqrt) 0.5 0.6 20% 

empirical Bayes on Spectral Counts 0.67 0.73 9% 

 

 

 

 

                                                      F1-Measure 
Figure 11.  The F1-measures for the empirical Bayes difference test methods after combination with Fisher‟s 

exact test 
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Venn Analysis 

 

The improved performance for virtually every test using Fisher‟s Method to combine 

Fisher‟s exact test with the candidate test can be partially explained by examining the overlap 

and differences in the difference test‟s ability to find true positives (TP), false positives (FP), 

false negatives (FN), and true negatives (TN).  In order to analyze the similarity in performance 

and discriminatory bias amongst the statistical tests examined in this study, Venn charts were 

created comparing the sets of TP, FP results for the benchmark test (Fisher‟s exact test on 

 
Figure 12.  The AUC-measures for the combined model using the empirical Bayes t-test combined with the 

benchmark test (Fisher‟s exact test on spectral counts) test methods.  The ROC curve for our benchmark test 

did not have the combined model applied.  The benchmark test (Black) showed the specificity, with reduced 

sensitivity if higher false discovery rates were allowed. 
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spectral counts).   The FN and TN plots can be inferred from the TP and FP plots and are not 

shown. 

 

Venn Analysis for Classical tests vs. Benchmark Test  

 

Venn charts of TPs and FPs generated by the classical tests vs. the benchmark test are 

shown in Figure 13.  The Student‟s t-test had a strong overlap with the benchmark test, with each 

test sharing the same group of 60 TPs and only 11 and 9 unique TPs found by each test, 

respectively.  The Welch‟s t-test, which performed the worst amongst the classical tests 

evaluated, found only 46 TPs overall (vs. 69 for the benchmark) and only 6 of those TPs were 

not also found by the benchmark test.   

 

The Mann Whitney U tests (on spectral counts or PPIDs) found significantly more TPs 

than the benchmark test, including virtually all of the same TPs found by the benchmark test.  

 

                                      True Positives                False Positives 
Figure 13.  Venn charts of the true positives and false positives generated by the classical candidate tests vs. 

the benchmark test.  A total of 115 true positives existed in the blue/green “answer key”.  The Mann Whitney 

U tests had no Benjamini-Hochberg procedure applied. 
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The high sensitivity of the Mann Whitney U tests was not unexpected.  Likewise, the Mann 

Whitney U tests showed 10-fold (or greater) more FPs compared to the benchmark test.  This 

was not unexpected as the Mann Whitney U tests were the only candidate tests to have the 

Benjamini-Hochberg correction removed in this study, highlighting the tradeoff between 

sensitivity and accuracy that multiple testing corrections offer.   

The Student‟s t-test and Welch‟s t-test had ~6 and 3-fold more FPs respectively than the 

benchmark test (43 vs. 7 and 19 vs. 7, respectively).  Interestingly, while the benchmark test had 

a very small number of false positives (7), the Student‟s t-test and Welch‟s t-test shared only 4 

and 3 FPs, respectively, of the 7 FPs found by the benchmark test.  

 

Venn Charts for Empirical Bayes t-tests vs. Benchmark Test  

 

Example Venn charts of TPs and FPs generated by the empirical Bayes t-tests vs. the 

benchmark test are shown in Figure 14.  Overall, the empirical Bayes t-test appeared to find most 

or all of the same TPs found by the benchmark test with 12-18 TPs not found by the benchmark 

test.  Using the log transformation on PPID data worsened performance relative to un-normalized 

PPIDs, percentile normalized PPIDs, or even un-normalized spectral counts.  This is in keeping 

with the relative performance of the classical tests, where the log transformation of PPID data for 

both the Student‟s t-test and Welch‟s t-test underperformed tests conducted on the raw PPID data 

(based on F1-measure and ROC analysis).  The negative impact of the log transformation on 

these candidate tests suggest the need for variance analysis on PPID data grouped at the peptide 

group level in order to explore the distribution and the most appropriate data normalization and 

transformations.  The lower sensitivity of the empirical Bayes t-test on log transformed PPIDs 
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was coupled with an overall lower level of FPs relative to the other empirical Bayes t-tests, 

similar to the Welch‟s t-test.   

 

  

It is worth noting that the empirical Bayes t-test on spectral counts appeared to perform 

much more similarly to its PPID counter-parts than the benchmark test on spectral counts.  

Likewise, the Mann Whitney U test on spectral counts performed much more similarly to the 

Mann Whitney U test on PPIDs than to Fisher‟s exact test on spectral counts.  This suggests that 

the degree of independence between the performances of different candidate tests depend both 

on difference in the data type chosen (e.g. spectral counts vs. PPIDs) and also the inherent 

systematic biases specific to each test.   

 

Venn Charts for Combined Model vs. Benchmark Test  

 

  

                                     True Positives               False Positives 
Figure 14.  Venn charts of the true positives and false positives generated by the empirical Bayes candidate 

tests vs. the benchmark test.  A total of 115 true positives existed in the blue/green “answer key” 
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Next, Venn charts of TPs and FPs generated by the combined model vs. the benchmark 

were analyzed.  Figure 15 shows the impact of using the combined model with each of the 

example classical tests.  In every case, both the TPs and FPs generated by the combined model 

showed a strong shift towards the TPs and FPs of the benchmark test.  The combined models on 

the Mann Whitney U tests (with either spectral or PPIDs) showed a mild drop in TPs coupled 

with an even sharper drop in FPs relative to the Mann Whitney U tests alone.  The combined 

model using Student‟s t-test on PPIDs showed a slight rise in TPs and a significant drop in FPs.  

Welch‟s t-test, which had fewer TPs than the benchmark test, showed the greatest increase in 

TPs (46 to 68) while also seeing a drop in FPs when used in the combined model from 19 to 6 

FPs.  This was the only instance where the combined model had fewer FPs than the benchmark 

test alone (which had 7 FPs).   

 

 

 

                                                                 True Positives                               False Positives 
Figure 15.   Venn charts of true positives and false positives.  For both true positives and false positives, the 

Venn Chart of the candidate test vs. the benchmark followed by a Venn chart comparing the benchmark test 

with the combine model (candidate test + benchmark test).   
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Figure 16 shows the impact of using the combined model with each of the example 

empirical Bayes tests.  As with the classical tests, the combined model shifted both TPs and FPs 

strongly towards that of the benchmark test, resulting in a moderate drop in TPs and a much 

sharper drop in FPs.  The impact of the combined model on TPs and FPs was similar whether 

PPIDs or spectral counts were used for the empirical Bayes test. 

 

 

Venn Chart Analysis Summary 

 

Overall, the Venn chart analysis was consistent with the F1-measure and ROC analysis in 

terms of overall test performance while highlighting an apparent partial orthogonality between 

the behavior candidate tests and the benchmark test.  On the basis of TPs, FPs, TNs and FNs, the 

benchmark test (Fisher‟s exact test on spectral counts) demonstrated a generally reduced 

 

                                                                 True Positives                               False Positives 
Figure 16.  Venn charts of the true positives and false positives generated by the classical candidate tests vs. 

the benchmark test.  A total of 115 true positives existed in the blue/green “answer key” 
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sensitivity from our candidate tests, but with a dramatically higher precision (e.g. 7 FPs for the 

benchmark test vs. 55 for empirical Bayes t-test vs. 115 maximum FPs seen for the Mann 

Whitney U test on PPID).  The benchmark also showed a moderate tendency to select for 

different TPs than the candidate tests, although the most sensitive (and least accurate) tests 

tended to identify all of the same TPs as the benchmark test.   

The Venn charts of the combined model demonstrated an ability to dramatically reduce 

the number of FPs at a minimal cost to sensitivity when the combined model is used to combine 

the candidate test with our highly precise benchmark test.  In every case, the combined model 

had more TPs than the benchmark test alone (ranging from 4 -19 more TPs than the benchmark).  

The combined model still had more FPs than the benchmark test (which only had 7 FPs) in all 

but one case (when combined with Welch‟s t-test).  Thus, the extra TPs acquired vs. the 

benchmark test by using the combined model still came at the cost of reduced precision relative 

to the benchmark test alone.   

The single case where the combined model had fewer FPs than the benchmark test alone 

helps highlight the importance of selecting tests with different performance biases when using a 

meta-analysis procedure like Fisher‟s Method.  Welch‟s t-test on PPIDs had the lowest 

sensitivity, with only 46 TPs, 40 of which were shared with the benchmark test.  Of the 19 FPs 

found by Welch‟s t-test, only one was shared with the benchmark test, leaving 6 FPs found by 

the benchmark test not found by Welch‟s t-test.  Overall, Welch‟s t-test appeared to have the 

least overlap with the benchmark test amongst all the candidate tests used in the Venn chart 

analysis.  When the two tests are combined using Fisher‟s Method, the combined model yielded 

72 TPs and only 6 FPs.  That we were able to obtain more TPs and fewer FPs by combining 
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them using Fisher‟s Method than achieved with either test alone indicates the value of using tests 

with different performance biases when using Fisher‟s Method.   

Available techniques for meta-analysis, including Fisher‟s Method, presume that the 

different classes of tests being combined are independent of each other.  If changes in protein (or 

peptide group) abundance is the topic being studied using LC-MS/MS, this would require that 

the two tests combined using Fisher‟s Method are independent of each other.  This raises the 

question of the degree of independence between the different statistical tests combined in this 

study using Fisher‟s Method.  As discussed in Chapter II, published studies comparing the use of 

spectral counts with precursor intensities for LC-MS/MS quantitation observed that both spectral 

counts and precursor intensities were potentially useful but they have different strengths and 

weaknesses (e.g. spectral counts are better for asking which proteins changed in abundance, 

precursor intensities are better at asking how much they changed in abundance).  Both methods 

suffered from erroneous abundance ratios for low-intensity proteins, albeit in different directions 

(spectral counts tended to overestimate abundance ratios while precursor intensities tended to 

overestimate abundance ratios).   

Based on those observations, spectral count-based tests and precursor ion-based tests 

could be considered at least somewhat independent of each other although the degree of 

independence remains ambiguous.  In this study, the precursor intensity data used (PPIDs) is 

directly dependent on peptide identifications, so our precursor intensity values are clearly less 

independent of the spectral count data than if we had relied exclusively on LC-MS data to 

conduct precursor intensity quantitation (as is done with tools like Corra (33)).   

In some of the cases, our combined model used p-values from two tests using spectral 

counts (e.g. the Mann Whitney U test and empirical Bayes t-test on spectral counts), and yet we 
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still observed a distinct difference between the performance of those tests and the benchmark 

test.  This suggests that some degree of independence between the tests used in our combined 

models may also arise from different biases in the statistical tests.  For instance, robustness in the 

face of missing data will vary between tests.  How the power of statistical tests changes as the 

number of replicates grows is another factor that will contribute to differences in systemic test 

biases.  All of the candidate tests in this study were parametric or non-parametric variants of the 

t-test and would therefore suffer much more from missing data points and limited replicates than 

Fisher‟s exact test which consolidates all cohort replicates into a single sum.  This could be 

particularly troublesome for the PPID-based tests in our study that would experience 

significantly more missing data points since ~25% of spectral counts were unable to be matched 

to a correlated PPID.      

 

Independence Between Candidate Tests and the Benchmark Test  

 

In order to further explore the independence and different biases of the candidate tests 

with our benchmark test, we created log2-scale plots of the ratio of spectral counts vs. the ratio of 

percentile normalized PPIDs for the Red and Yellow cohorts for each peptide group tested 

(counts and PPIDs summed for each cohort for ratio calculations).  Separate plots were created 

for each candidate test, highlighting the TP and FP peptide groups found using that test.  The TPs 

and FPs of the benchmark test are also highlighted, where the red circles indicate a TP/FP 

peptide group found only using the candidate test, a blue circle indicates a TP/FP peptide group 

found only using the benchmark test, and a purple circle shows peptide groups found using both 

the candidate and benchmark tests.   
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Example plots are 

shown in Figure 17 for 

Welch‟s t-test, the Mann 

Whitney U test (using 

percentile normalized PPIDs, 

unnormalized spectral counts, 

and normalized spectral 

counts), and  

the empirical Bayes t-

test (using PPIDs and spectral 

counts).  All tests in the 

example plots below had no 

PPID weighting or 

PPID/spectral filtering 

applied.  The plots are 

somewhat asymmetric due to 

our handling of instances 

when the Red cohort values 

(the denominator) were 0 vs. 

Yellow cohort (numerator) 

values of 0.  We chose a 

default ratio of 20 when the 

Red cohort was zero, 

 Mann Whitney U test 

(Spectral Counts) 
 Mann Whitney U test  

(% norm PPID) 

    
 PPID Log2(Yellow/Red)  PPID Log2(Yellow/Red) 

  

Mann Whitney U test 

(Normalized Spectral Counts) 

  

Welch‟s t-test  
(PPID) 

 

 

 

 

 PPID Log2(Yellow/Red)  PPID Log2(Yellow/Red) 

 Empirical Bayes t-test 
(Spectral Counts) 

 Empirical Bayes t-test 
 (PPID) 

    
 PPID Log2(Yellow/Red)  PPID Log2(Yellow/Red) 

Figure 17.  TPs for example candidate tests.  For each peptide group, the log2 

scaled ratios of the total spectral count in Red vs. Yellow cohorts (Y-axis) and the 
ratio of the total percentile normalized PPID values in Red vs. Yellow cohorts (X-
axis) was plotted.  Peptide groups accurately identified as differentially abundant 
(true positives) for both the candidate test and the benchmark test  (Fisher’s 
exact test on spectral counts) are color coded as follows:  Red = TP found only by 
the candidate test.  Blue = TP found only by the benchmark test.  Purple = TP 
found by both tests.  Relative sizes of highlighted peptide groups correspond to 
the average percentile normalized PPID values.  
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corresponding to a log2(20) ratio of ~4.3 (on either axis).  A value of zero (on either axis) 

indicates the Yellow cohort had a value of zero (spectral counts or PPIDs).   

The distribution of the TPs tended fell into two general categories:  1. Peptide groups that 

had a value of zero in either the Red or Yellow cohorts (those points at the [0,0] or laying at [0, -

log2(20)] or [log2(20), log2(20)]), and 2. Peptide groups with a non-zero value in both cohorts but 

a relatively strong difference between cohorts (i.e. peptide groups not clustered around the 

 Mann Whitney U test 

(Spectral Counts) 
 Mann Whitney U test 

(Normalized Spectral Counts) 
 Empirical Bayes t-test 

(Spectral Counts) 
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(PPID) 

  

Empirical Bayes t-test 
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 PPID Log2(Yellow/Red)  PPID Log2(Yellow/Red)  PPID Log2(Yellow/Red) 

Figure 18.  FPs for example candidate tests.  For each peptide group FP, the log2 scaled ratios of the total spectral 
count in Red vs. Yellow cohorts (Y-axis) and the ratio of the total percentile normalized PPID values in Red vs. 
Yellow cohorts (X-axis) was plotted.  Peptide groups inaccurately identified as differentially abundant (false 
positives) for both the candidate test and the benchmark test  (Fisher’s exact test on spectral counts) are color 
coded as follows:  Red = FP found only by the candidate test.  Blue = FP found only by the benchmark test.  
Purple = FP found by both tests.  Relative sizes of highlighted peptide groups correspond to the average 
percentile normalized PPID. 
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center).  Because the set was generated by excising different gel bands from two E. coli 

proteomes, we would expect many of the proteins in the answer key to have sharply different 

abundances.  In addition, the construction of our “answer key” using the “Blue/Green” data set 

used a fairly conservative test (Fisher‟s exact test using the Benjamini-Hochberg correction).   

The FPs (Figure 18) also tended to fall into two general categories:  1. Low abundance 

peptide groups with a 0 value for either the Red or Yellow, and 2. High abundant peptide groups 

with abundance ratios close to 1 (close to 0 in log2 scale).  It is not surprising that we would find 

false positives from low abundant peptides with a cohort containing a 0 value from spectral 

counts given the well-established issues spectral counts face as counts approach zero.  In our 

study, the PPIDs will have additional zero-boundary complications due to the fact that 

IDPQuantify searches for PPIDs based on spectral counts and could not find a PPID ~25% of the 

time.   

 The FPs from moderate to high abundance peptide groups with log2 abundance ratios 

close to 0 seem to represent a qualitatively different type of FP than the low abundance peptide 

groups.  Peptide groups with log2 abundance ratios close to 0 are likely to be at equal or near 

equal abundance.  Such peptide groups would be expected to yield FPs because they lie at the 

boundary separating the “no difference” peptide groups from the “mildly different” peptide 

groups.   

Interestingly, the FPs exhibited a consistent pattern between the spectral count-based tests 

and the PPID-based tests.  The PPID-based tests tended to show FPs with relatively higher PPID 

ratios than spectral count ratios (Figure 18, bottom row), whereas the spectral count-based tests 

tended to show the opposite clustering with FPs that had somewhat higher spectral count ratios 

than PPID ratios (Figure 18 top row).  This pattern was apparent when comparing the same test 



67 
 

run on either PPIDs or spectral counts (e.g. the empirical Bayes t-test and the Mann Whitney U 

test), indicating that different biases in the candidate tests were not the sole cause of this pattern.  

This observation suggests a partial degree of independence between the information provided by 

spectral counts and precursor intensities.   

It is worth noting that sets of TPs and FPs both had a large number of peptide groups with 

zero spectral counts or PPIDs in either the Red or Yellow cohorts, but the TPs with a zero-cohort 

tended to be moderately more abundant than the FPs (larger circles in the TP plots at the center 

or ~4.3 on either axis vs. tiny circles in the FP plots).  This is consistent with the observation 

above that minimum PPID/spectral filtering tended to mildly improve test performance when a 

filter of 5 or 10 PPID/spectral counts was applied but higher filters began to detrimentally impact 

the candidate tests‟ performance.   

 

Evaluation of Peptide Group-Level Difference Testing 

 

For Specific Aim III, we sought to establish the validity of difference testing at the 

peptide group-level.  Because difference testing at the peptide group-level avoids the step of 

normalizing spectral counts (or PPIDs) for each individual protein in a protein group (which may 

vary in size or sequence coverage), we would like to show that peptide group-level difference 

testing will be able to appropriately handle the issue of peptides in a given peptide group being 

shared amongst the proteins in their respective associated protein groups.   

Bipartite graphs of the peptide groups and protein groups from four example candidate 

tests are shown below (Figure 19).  Each graph is shown for the candidate test alone, without the 

combined model applied.  Each candidate test‟s graph shows the peptide groups and protein 
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groups from all protein group clusters that contain a single peptide group found to be 

differentially abundant (TPs and FPs).  Unshared peptide groups and associated protein groups 

are not shown.  Circles represent protein groups, triangles represent peptide groups (TP, FN, 

TN), and squares represent FP peptide groups.  White triangles accepted the null hypothesis.  

Triangles and squares that reject the null hypothesis (i.e. TPs and FPs) are colored yellow-to-

black, with yellow the least significant and black most significant of the declared TPs.  As shown 

in the figures, the differentially abundant peptide groups were almost exclusively amongst 

unshared peptide groups.   

Of the four bipartite graphs shown in Figure 19, only four shared peptide groups rejected 

the null hypothesis.  Three out of those four shared peptide groups were FPs, with the sole TP 

shared peptide group found by Fisher‟s exact test.  If a shared peptide group is found to be 

differentially abundant, than we would expect at least one of associated protein groups to have an 

unshared peptide group that also rejects the null hypothesis.  This was not the case for the either 

of the unshared peptide groups connected to the protein groups associated with the shared 

peptide group identified by Fisher‟s exact test.  These unshared peptide groups were not FNs 

either (FN data not shown), raising the possibility that this peptide group is in the “answer key” 

erroneously.  Regardless, that three out of four of the shared peptide groups were FPs suggests  

that unshared peptide groups are a far less error prone than shared peptide groups, as would be 

expected.  
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An additional observation is that the FPs tended to be among the least significant of those 

peptide groups that rejected the null hypothesis (i.e. more yellow than black).   This may 

partially explain the apparent gains in performance that came from applying Fisher‟s Method in 

our combined model.  If FPs tend to have less significant p-values, they are more prone to being 

eliminated by a technique like Fisher‟s Method. 

 

 

 

 

Figure 19.  The peptide groups and associated protein groups from example candidate tests showing p-values 

significance levels and FPs for each protein group cluster contain at least one peptide group yielding a 

significant test result.  Circles represent protein groups, triangles represent peptide groups (TP, FN, TN), and 

squared represent FP peptide groups.  White triangles accepted the null hypothesis.  TPs and FPs are colored 

yellow-to-black, with yellow the least significant and black most significant of the declared TPs.   

Fisher‟s exact test Welch‟s t-test 

Empirical Bayes t-test (spectral counts) 
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Summary and Further Discussion 

 

In this chapter, we used the iPRG 2009 Study E. coli LC-MS/MS data set to compare and 

contrast the performance of statistical difference testing at the peptide group level using either 

spectral counts or precursor ion intensities separately.  We also examine the use of two PPID-

weighting techniques to account for missing PPIDs and two spectral count/PPID filtering 

techniques to eliminate peptide groups with few data points.  Using the F1-measure and ROC 

analysis as our performance metrics and Fisher‟s exact test (on spectral counts) as our 

benchmark, we first observed that no test could surpass the benchmark test‟s ability to identify 

69 out of 115 TPs with only 7 FPs.  Most of the candidate tests were able to find more TPs, but 

at the cost of significantly more FPs.  Both weighting techniques showed moderate increases or 

decreases to test performance inconsistently.  The filtering methods both showed mildly positive 

results when filters were set to exclude only those peptide groups with fewer than 5 or 10 PPIDs 

or spectral counts per cohort (or across both cohorts) 

When candidate tests were combined with the benchmark test using Fisher‟s Method (our 

combined model), we observed a sharp drop in FPs with only a moderate drop in TPs relative to 

the candidate tests alone.  These promising results required further investigation because Fisher‟s 

Method, or other meta-analysis techniques, requires the separate p-values to be independent of 

each other.  The PPID values used in this study were generated using identified spectra as a 

starting point, so the PPIDs and spectral count values could not be fully independent in our 

study.  At the same time, the extremely high precision of the benchmark test compared to the 

candidate tests suggests the benchmark test had a distinctly different bias towards not accepting 
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FPs exhibited by the other candidate tests when either spectral counts or PPIDs were used for the 

candidate tests.  Venn chart analysis comparing the TPs and FPs of candidate tests with our 

benchmark test also indicate that the benchmark test was also selecting for an overlapping, but 

still distinctly different TPs than then other tests.  These observations indicate that spectral count 

and PPID data contain both mutual information but also orthogonal information since there are 

some TPs and FPs found exclusively using spectral counts and some found only using PPIDs.      

The partial independence between PPIDs and spectral counts may results in moderately 

different abundance ratios, but that moderate difference can result in qualitatively different 

statistical test results.  This is highlighted by the plots of the log2 ratio between the Red and 

Yellow cohorts of spectral counts (y-axis) and PPIDs (x-axis).  The log2 ratio plots of FPs 

demonstrated a tendency of PPID-based statistical tests to yield FPs with low PPID ratios, but 

even lower spectral count ratios.  Similarly, spectral count-based candidate tests yielded FPs with 

low spectral count ratios, but even lower PPID ratios.  For these peptide groups with equal or 

nearly equal abundances, a modest independence in the spectral count data and PPID data may 

result in a rejection of the null hypothesis with one data type and acceptance of the null 

hypothesis with the other.   

Old et al. observed a similar pattern when they statistically tested for differentially 

abundant proteins using either precursor intensities or spectral counts.  They found most of 

proteins that were found to be differentially abundant when using precursor intensities but not 

when using spectral counts were proteins with low abundance ratios.  They also found that a 2.3 

fold change was the smallest fold change they could identify with 95% confidence using 

precursor peak abundance(11).  Their findings underscore the greater difficulty in difference 

testing faced as the abundance ratio approaches 1.   
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Our results strongly suggest that our combined model can give researchers a powerful 

new approach of combining the results from two statistical tests with different biases into a 

single hybrid test that exhibits properties of both constituent tests.  In particular, we 

demonstrated that combining the results of a conservative test (high precision, lower sensitivity) 

with more sensitive but less precise tests resulted in hybrid tests that exhibited enhanced 

sensitivities with a moderate cost to precision over the conservative test.  This approach could be 

useful in experiments where researchers are willing to accept a moderate level of FPs in order to 

identify more TPs but still want to avoid the large numbers of TPs yielded by many quantitative 

methods.   

 It is also worth noting that the performance of our candidate tests was similar to the 

results of iPRG 2009 Study.   In the study, the iPRG 2009 E. coli data set was distributed to 

multiple proteomics groups (52).  Each group was asked to identify the differentially abundant 

proteins using any method of their choice and return their results the study authors to compare 

the performances of the different approaches.  Each group‟s test performance was evaluated at 

multiple error rate thresholds (1%, 5%, 10%, and 25%).  The authors found that groups using 

spectral counts consistently correctly identified more differentially abundant proteins at all 

thresholds due to the high error rates seen for groups using precursor intensities.  The one 

exception was at the 25% error rate threshold where a group using precursor intensities had the 

top performance.  As the authors pointed out, the use of precursor intensities also requires more 

experience than spectral count methods and many of the protein differences in the iPRG 2009 

Study data set were much stronger than would be expected for biological samples.  Both of these 

points suggest that the number of FPs generated by precursor intensity-based methods in 

biomarker studies will be an ongoing challenge going forward.  Consistent with the iPRG 2009 
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Study, our evaluations of the separate candidate tests found our benchmark test, Fisher‟s exact 

test on spectral counts, to be more conservative than any of the PPID-based tests.  Fisher‟s exact 

test is thus an excellent statistical test to pair with precursor intensity-based tests for researchers 

interested in a statistical test less conservative than Fisher‟s exact test but more conservative than 

available the is cat precursor intensity-based methods.   

We also addressed the feasibility of difference testing at the peptide group-level as 

opposed to the protein level as is normally done, as specified in Specific Aim III.  We found few 

shared peptides groups that yielded rejected null hypotheses, and those that did reject the null 

hypothesis were largely false positives.  We also observed that the false positives tended to have 

less significant p-values than that the true positives.  This demonstrates the utility of peptide 

group analysis when using the combined model if false positives tend to have the less significant 

p-values amongst the peptide groups with rejected null hypothesis.  Overall, it appears that 

peptides belonging to shared peptide groups should be ignored in quantitative analysis, whereas 

quantitative data from peptides belonging to an unshared peptide group should be retained and 

used for quantitative analysis.  The peptides in an unshared peptide group are still shared 

peptides, but shared only between the proteins in a single protein-group (unless there is only a 

single peptide or single protein in the peptide group and protein group).  This method of rejecting 

quantitative peptide data from shared peptide groups and only using unshared peptide group data 

represents a novel form of grouping and filtering quantitative data from shared peptides. 
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CHAPTER V 

 

CONCLUSION AND FUTURE WORK 

 

Advances in mass spectrometry have resulted in enormous improvements in both the 

quality and quantity of LC-MS/MS data.  But unlocking the full biological knowledge that can 

be learned from that data will require new methodologies of quantitative analysis and statistical 

techniques.  We hypothesized that enhanced proteomic difference testing can be achieved by 

combining spectral count data with precursor intensity data (labeled our “combined model” in 

this study).  We also hypothesized that difference testing at the peptide group-level provided a 

viable means of group peptides and filtering out noise from shared peptides.   To achieve this, we 

had three specific aims:  I. To compare performance and independence of difference testing 

using spectral count and precursor intensities alone; II. To compare the performance of 

difference testing using Fisher‟s Method to combine p-values of PPID and spectral count-based 

statistical tests vs. difference testing using each data type alone; and III. To establish the validity 

of difference testing at the peptide group-level vs. the protein level.  All three specific aims were 

accomplished in this study and both of our hypotheses were validated.   

Specific Aim I was enabled by the development of IDPQuantify (Chapter III), which 

provided peptide group-level spectral count and precursor intensity data in the form of PPIDs.  

The iPRG 2009 E. coli data set with a known “answer key” was then used to evaluate and 

compared the statistical test alone (Chapter IV).   A variety of candidate statistical tests using 

either PPIDs or spectral counts were chosen for this analysis.  We found that spectral count-

based testing using our benchmark test (Fisher‟s exact test on spectral counts) provided superior 
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specificity, but reduced sensitivity compared to PPID-based tests.  The PPID-based test, 

conversely, had greater potential sensitivity, but at the cost of far more FPs than Fisher‟s exact 

test.   

The orthogonality and mutual information contained in spectral count and PPID data was 

further characterized using Venn chart analysis and cohort abundance ratio analysis.  Venn chart 

analysis showed distinctly different sets of TPs and FPs that were likely to be yielded using 

spectral count or PPID-based tests.  Using the abundance ratio plots, we observed that the set FPs 

for all tests contained a large number of low-abundant peptide groups, regardless of whether 

spectral counts or PPIDs were used.  Among the more abundant FPs, however, a pattern emerged 

distinguishing the spectral count tests and PPID tests.  The more abundant FPs generated by 

spectral count-based tests tended to have a low spectral count ratio, but an even lower PPID 

ratio.  For PPID-based tests, the opposite pattern was seen.  This suggested that a given LC-

MS/MS data set is going to contain a mix of peptide groups that are likely to trigger FPs from 

spectral count methods, but not precursor intensity methods, and vice versa.   

For Specific Aim II, we then evaluated our combined model for difference testing to the 

candidate tests alone.  This model was shown to create hybrid statistical results that tended to 

eliminate weakly rejected null hypotheses from either test, while retaining the most strongly 

rejected null hypotheses.  When candidate statistical tests were combined with the more 

conservative Fisher‟s exact tests, the results were a modest drop in sensitivity but much sharper 

drop in the error rate (relative to the candidate test alone).  This appears to be due, in part, to the 

erroneously rejected null hypothesis (FPs) tending to have less significant p-values (e.g. closer to 

0.05 than 0) (Figure 19).  Thus, FPs generated by the candidate tests were more likely to be 

discarded when using Fisher‟s method than true positives (TPs).   
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For Specific Aim III, the analysis of peptide group-level difference testing in place of 

protein-level difference testing, consisted of viewing the tendency of shared peptide groups and 

unshared peptide groups to yield FPs.  In the four candidate test examples shown in Figure 31, 

there were a total of four shared peptide groups total with rejected null hypotheses, three of 

which were FPs.  This indicates that peptides that are shared across multiple protein groups are a 

greater source of error than peptides shared only across proteins in a single protein group. and 

calls for relying primarily on peptides from unshared peptide groups for difference testing.  

While we conducted our difference testing without normalizing each protein individually (such 

as using NSAF or emPAI), peptide group level analysis may still be useful to researchers that 

desire protein-specific normalization.   Following the grouping of peptides into peptide groups 

and the discarding of quantitative data from shared peptide groups, researchers are still free to 

further normalize each protein individually.  As discussed previously, however, conducting a 

separate test for each protein in a protein group raises issues of independence and expands the 

total number of tests conducted.  A greater number of tests can lead to additional type I errors 

and conflicts with multiple testing correction procedures, such as the Benjamini-Hochberg 

procedure. 

Independence of tests is also a requirement for the application of Fisher‟s Method.  Our 

spectral count and precursor intensity data were clearly not independent since precursor 

intensities, in the form of PPIDs, were derived from spectral counts.  But while the spectral count 

and PPID data in this study may not have been fully independent, the behavior of spectral count 

and PPID-based tests explored in Specific Aim I suggests that spectral counts and PPIDs were 

independent enough for our combined model to yield useful results.     
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Overall, we established that the use of spectral count or precursor intensities for 

difference testing involves a tradeoff between the more sensitive precursor-based approach and 

the more accurate spectral count-based approach.  These differences in test performance were 

due, in part, to differences the underlying data but also the types of tests available for each data 

type (e.g. parametric vs. non-parametric).  We also established that these differences in test 

performance included overlapping, but still distinct sets of TPs and FPs obtained when using 

either metric.  We then demonstrated that our combined model gives researchers a tool for 

creating hybrid statistical result sets that tended to have a slight drop in sensitivity from the 

PPID-based tests along with a sharp drop in FPs.  The FPs, in turn, tended to have the least 

significant p-values among the rejected null hypotheses, making them more likely to be 

discarded upon application of our combined model.  We also demonstrated that peptide group-

level analysis is effective at segregating peptides into noisier shared peptide groups and less 

noisy unshared peptide groups.  

An obvious area for future work involves using precursor intensities that were truly 

generated independently from spectral counts.  This could involve the use of peak alignment 

strategies on LC-MS data to extract precursor intensities without any knowledge of peptide 

identification.  In addition to making the two types of data more independent of each other, peak 

alignment strategies for precursor intensity generation would likely improve the performance of 

tests relying on precursor intensities given the difficulty many parametric tests face with missing 

data points.  Any method that improves either precursor intensity-based testing or spectral count-

based testing alone will also improve the results from our combined model.  Thus, the 

performance of the combined model using improved de-noising, normalization, or data 

imputation strategies for missing data is something to be explored.   
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Another issue needing further analysis is the use of our combined model on more 

complicated data sets with less striking differences in abundance.  As discussed in Chapter IV, 

the method for creating the iPRG 2009 Study data set resulted in more pronounced differences in 

abundance for the TPs than would be normally expected.  In data sets involving fewer TPs with 

less prominent changes, many TPs found by a single test may be only weakly significant (i.e. a 

p-value close to 0.05) and Fisher‟s Method may result in the erroneous rejections.  In such a 

case, the pairing of two sensitive, but less conservative, tests using Fisher‟s Method may be 

advised.   

Alternatively, more than two tests could be combined to provide a larger number of p-

value “votes” for each peptide group.  Three or more tests will result at least two tests sharing 

either precursor intensities or spectral counts, so this approach would come with the added 

caveat of a lack of independence.  Two tests using the same data type, however, may still be 

partially independent if the tests follow very different statistical assumptions or biases.  For 

instance, while the Mann Whitney U test and Fisher‟s exact test can both be run on spectral 

counts, the Mann Whitney U test suffers much more from few replicates than Fisher‟s exact test.  

The extent to which different statistical tests behave independently when run on the same data is 

an important question for applying this combined model to proteomic quantitation. 

The application of the combined model to protein-level difference testing rather than 

peptide group difference testing could also be evaluated.  One of the disadvantages of peptide 

group-level difference testing over protein-level difference testing is that peptide group-level 

difference test will generally use less information (i.e. less peptide-specific quantitative data 

points) than if the test was conducted at the level of individual proteins and shared peptides are 

accounted handled instead of discarded.  The impact of the peptide group-level information 
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dilution needs to be addressed with for species with more complex proteomes.  Humans, for 

instance, will have far more shared peptide groups than E. coli and more overall protein 

identifications.  This dilutes the amount of sampling that can be conducted per-protein, resulting 

in fewer proteins per peptide group.  At the same time, because human proteins tend to have 

more isoforms than E. coli, the protein groups will likely consist of more individual proteins.  

Thus, strategies that divide spectral count data between shared proteins may end up with little 

signal for each of the separate protein tests.    In addition, the potential lack of independence if 

quantitative data is shared for multiple proteins (as in the original NSAF method) would need to 

be addressed.  Applying the combined model to protein-level difference testing also raises the 

issue of extra non-independent tests compared to peptide group-level testing when employing 

multiple testing correction procedures.   

The potential lack of independence between tests begs for more understanding of how to 

best control the FDR using our combined model.  The Benjamini-Hochberg procedure used in 

this study assumed independence and focuses on controlling for the PCER instead of the FWER.  

Non-independent tests may end up causing more extreme p-values after Fisher‟s Method is 

applied, in particular if more than two non-independent p-values are to be combined and multiple 

p-values rely on the same data (spectral counts or precursor intensities).  In such a case, using a 

more conservative FWER procedure to control the FDR may be in order.    

Another approach may be to use a procedure that does not assume independence, such as 

the positive False Discovery Rate (pFDR) method using q-values developed by Storey et. al (53). 

As the authors pointed out, an advantage of the pFDR over the Benjamini-Hochberg correction is 

that the Benjamini-Hochberg correction attempts to control the FDR for all tests, whereas the 

pFDR procedure only attempts to control for FDR among those tests that resulted in a rejected 
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null hypothesis.  This makes the pFDR much less conservative in instances when few null 

hypotheses are rejected.  For more complex data sets with subtler shifts in abundance the pFDR 

procedure may be a better choice than Benjamini-Hochberg.   

Biomarker detection is an area where our combined model could be especially useful.  

Striking a balance between sensitivity and accuracy is important for such studies and our model 

could enable researchers with greater flexibility in modulating the performance characteristics of 

their tests.  Our combined model assumes two tests, one on spectral counts and one on precursor 

intensities, leaving a great deal of discretion to the researcher in determining which statistical 

tests to use and what type of normalization and FDR controlling procedures are employed.  For 

each of the two tests, there is a tradeoff between the sensitivity and power of the tests coupled 

with the strength of the FDR controlling procedure.  The results of these choices are further 

coupled when the test p-values are combined using Fisher‟s Method.  Just this simple two-test 

scenario leaves many possible permutations of pairs of tests coupled with FDR methods that 

have yet to be evaluated.   

Another possible application of our combined model is the improved detection of low 

concentration proteins that change in abundance.  As described in Chapter II, published studies 

indicate that both spectral count and precursor intensity-based methods suffer higher error rates 

for low-abundant proteins.  Our combined model may be able to reduce that error rate by 

providing a second piece of evidence for each protein testing.  Furthermore, by conducting 

difference testing at the peptide-group level, we may be better suited to accurately test low-

abundance proteins.  Peptide group-level difference testing separates the less-reliable data from 

shared peptide groups from the more reliable data from unshared peptide groups.  Subsequent 
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testing of the unshared peptide group data together, instead of diluting it further as shared 

peptides, could be particularly useful for low abundance proteins where the signal is limited.   

Label-free proteomic quantitation using LC-MS/MS data has been a challenging area of 

research for many years.  The data acquired are noisy and complex and are nowhere near as 

noisy or complex as the biological systems being studied.  For LC-MS/MS to remain an 

invaluable tool to researchers, new methods will need to be developed to keep pace with the new 

investigative demands of the research community.  In this study we presented two such new 

methods and a new tool enabling those methods.  It is hoped that the methods introduced in this 

study will enable researchers to gain more real insights from their data with fewer errors.   
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Supplemental File 1.  MyriMatch Search Configuration Parameters 

 

MyriMatch search parameters for iPRG 2009 E. coli LC-MS/MS data set were as follows: 

 

CleavageRules = [|[M|K|R . . ] 

NumMinTerminiCleavages = 1 

CalculateRelativeScores = 0 

DynamicMods = M * 15.994915 (Q! % -17.026549 C & 57.021464 

AdjustPrecursorMass = true  

MinPrecursorAdjustment = -1.008665  

MaxPrecursorAdjustment = 1.008665  

PrecursorAdjustmentStep = 1.008665  

NumSearchBestAdjustments = 3 

PrecursorMzTolerance = 0.1 

FragmentMzTolerance = 0.5 

TicCutoffPercentage = 0.95 

UseAvgMassOfSequences = 0 

UseChargeStateFromMS = 1 

NumChargeStates = 5 
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Supplemental File 2.  F1-Measures for Candidate Tests  

 

Table S2.1  F1-Measures For Classical Tests Using the “Minimum Spectral Count/PPID in at least 

one cohort” filter 

 
Minimum Spectral Count/PPID in at least one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark Test) 0.70 0.70 0.70 0.70 0.64 0.62 

Student's t-test on PPIDs 0.60 0.60 0.61 0.58 0.52 0.46 

Student's t-test log transformation on 

PPIDs 0.55 0.55 0.58 0.50 0.44 0.38 

Welch's t-test on PPIDs 0.49 0.49 0.50 0.43 0.41 0.31 

Welch's t-test log transformation on 

PPIDs 0.55 0.55 0.55 0.46 0.42 0.36 

Mann Whitney U test on Spectral 

Counts 0.58 0.60 0.65 0.66 0.62 0.59 

Modified Mann Whitney U test on 

Spectral Counts 0.64 0.65 0.70 0.72 0.67 0.63 

Mann Whitney U test on PPIDs 0.58 0.59 0.65 0.67 0.65 0.61 

 

 

Table S2.2  F1-Measures For Classical Tests Using the “Minimum Spectral Count/PPID across 

both cohorts” filter 

 

Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark Test) 0.70 0.70 0.70 0.70 0.70 0.70 

Student's t-test on PPIDs 0.60 0.60 0.61 0.59 0.56 0.46 
Student's t-test log transformation on 

PPIDs 0.55 0.55 0.58 0.52 0.47 0.40 

Welch's t-test on PPIDs 0.49 0.49 0.50 0.46 0.45 0.34 
Welch's t-test log transformation on 

PPIDs 0.55 0.55 0.54 0.46 0.43 0.38 
Mann Whitney U test on Spectral 

Counts 0.58 0.58 0.58 0.58 0.58 0.58 
Modified Mann Whitney U test on 

Spectral Counts 0.64 0.64 0.64 0.64 0.64 0.64 

Mann Whitney U test on PPIDs 0.58 0.60 0.61 0.62 0.64 0.61 

 

 
Table S2.3  F1-Measures For Combined Model (Classical Tests + Benchmark) Using the 

“Minimum Spectral Count/PPID in at least one cohort” filter 

 
Minimum Spectral Count/PPID in at least one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.64 0.62 

Student's t-test on PPIDs 0.71 0.70 0.72 0.71 0.69 0.67 

Student's t-test log transformation on 

PPIDs 0.70 0.70 0.71 0.69 0.68 0.66 
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Welch's t-test on PPIDs 0.72 0.72 0.72 0.71 0.69 0.67 

Welch's t-test log transformation on 

PPIDs 0.70 0.70 0.70 0.68 0.68 0.66 

Mann Whitney U test on Spectral 

Counts 0.70 0.70 0.73 0.73 0.71 0.68 

Modified Mann Whitney U test on 

Spectral Counts 0.71 0.71 0.73 0.73 0.72 0.69 

Mann Whitney U test on PPIDs 0.72 0.72 0.74 0.74 0.73 0.70 

 

 

 
Table S2.4  F1-Measures For Combined Model (Classical Tests + Benchmark) Using the 

“Minimum Spectral Count/PPID across both cohorts” filter 

  Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.70 0.70 

Student's t-test on PPIDs 0.71 0.70 0.72 0.72 0.71 0.69 

Student's t-test log transformation on 

PPIDs 0.70 0.70 0.72 0.70 0.70 0.68 

Welch's t-test on PPIDs 0.72 0.72 0.72 0.71 0.71 0.69 

Welch's t-test log transformation on 

PPIDs 0.70 0.70 0.70 0.69 0.69 0.68 

Mann Whitney U test on Spectral 

Counts 0.70 0.70 0.70 0.70 0.70 0.70 

Modified Mann Whitney U test on 

Spectral Counts 0.71 0.71 0.71 0.71 0.71 0.71 

Mann Whitney U test on PPIDs 0.72 0.72 0.74 0.74 0.72 0.70 

 

 
Table S2.5  F1-Measures For Empirical Bayes t-test Using the “Minimum Spectral Count/PPID in 

at least one cohort” filter 

  Minimum Spectral Count/PPID in at last one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.64 0.62 

empirical Bayes on PPIDs 0.63 0.65 0.66 0.63 0.59 0.49 

empirical Bayes on PPIDs + missed 

PPID weighting 0.61 0.66 0.63 0.62 0.57 0.50 

empirical Bayes on PPIDs + observed 

PPID weighting 0.62 0.66 0.65 0.62 0.58 0.49 

empirical Bayes on PPIDs + log 

normalization 0.58 0.58 0.61 0.53 0.50 0.42 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.57 0.58 0.62 0.56 0.51 0.44 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.56 0.59 0.62 0.55 0.51 0.45 
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empirical Bayes on PPIDs + 

percentile normalization 0.66 0.65 0.69 0.64 0.59 0.49 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.69 0.65 0.67 0.64 0.58 0.49 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.64 0.65 0.71 0.67 0.62 0.51 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.65 0.66 0.70 0.66 0.59 0.49 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.67 0.66 0.69 0.64 0.58 0.49 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.66 0.66 0.72 0.67 0.61 0.51 

empirical Bayes on PPIDs + max 

value normalization 0.49 0.49 0.49 0.49 0.48 0.43 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.50 0.50 0.50 0.50 0.49 0.44 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.45 0.44 0.47 0.48 0.48 0.43 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.56 0.53 0.54 0.51 0.49 0.43 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.55 0.53 0.54 0.52 0.50 0.45 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.56 0.51 0.53 0.49 0.48 0.43 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.50 0.48 0.50 0.49 0.47 0.42 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.50 0.48 0.52 0.50 0.49 0.43 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.44 0.44 0.48 0.48 0.48 0.43 

empirical Bayes on Spectral Counts 0.67 0.69 0.72 0.70 0.65 0.60 
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Table S2.6  F1-Measures For Empirical Bayes t-test Using the “Minimum Spectral Count/PPID 

across both cohorts” filter 

  Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.70 0.70 

empirical Bayes on PPIDs 0.63 0.65 0.64 0.63 0.60 0.53 

empirical Bayes on PPIDs + missed 

PPID weighting 0.61 0.63 0.64 0.62 0.59 0.52 

empirical Bayes on PPIDs + observed 

PPID weighting 0.62 0.66 0.65 0.63 0.60 0.52 

empirical Bayes on PPIDs + log 

normalization 0.58 0.59 0.61 0.55 0.52 0.44 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.57 0.59 0.61 0.55 0.51 0.44 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.56 0.56 0.60 0.57 0.53 0.45 

empirical Bayes on PPIDs + 

percentile normalization 0.66 0.65 0.65 0.63 0.59 0.51 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.69 0.65 0.66 0.62 0.58 0.52 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.64 0.65 0.69 0.62 0.62 0.53 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.65 0.65 0.65 0.65 0.66 0.62 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.67 0.64 0.65 0.65 0.66 0.62 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.66 0.64 0.65 0.65 0.66 0.60 

empirical Bayes on PPIDs + max 

value normalization 0.49 0.49 0.48 0.47 0.46 0.42 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.50 0.49 0.49 0.48 0.46 0.42 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.45 0.44 0.45 0.45 0.44 0.40 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.56 0.53 0.54 0.50 0.47 0.44 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.55 0.53 0.54 0.50 0.47 0.45 

empirical Bayes on PPIDs + max 

value normalization+log 0.56 0.54 0.52 0.49 0.47 0.42 



90 
 

transformation + observed PPID 

weighting 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.50 0.48 0.49 0.47 0.45 0.41 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.50 0.48 0.49 0.47 0.46 0.42 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.44 0.44 0.45 0.44 0.44 0.40 

empirical Bayes on Spectral Counts 0.67 0.67 0.67 0.67 0.67 0.67 

 

 
Table S2.7  F1-Measures For Combined Model (Empirical Bayes t-test + Benchmark) Using the 

“Minimum Spectral Count/PPID at least one cohort” Filter 

  Minimum Spectral Count/PPID across at least one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.64 0.62 

empirical Bayes on PPIDs 0.73 0.72 0.72 0.71 0.69 0.67 

empirical Bayes on PPIDs + missed 

PPID weighting 0.71 0.72 0.72 0.71 0.68 0.67 

empirical Bayes on PPIDs + observed 

PPID weighting 0.70 0.70 0.69 0.70 0.69 0.67 

empirical Bayes on PPIDs + log 

normalization 0.70 0.69 0.73 0.71 0.70 0.67 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.69 0.68 0.71 0.71 0.70 0.67 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.68 0.69 0.72 0.71 0.69 0.68 

empirical Bayes on PPIDs + 

percentile normalization 0.74 0.72 0.74 0.72 0.69 0.67 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.74 0.72 0.75 0.73 0.70 0.68 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.74 0.72 0.74 0.73 0.72 0.69 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.72 0.70 0.74 0.72 0.69 0.67 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.72 0.71 0.75 0.73 0.71 0.68 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.71 0.72 0.75 0.73 0.72 0.69 

empirical Bayes on PPIDs + max 

value normalization 0.61 0.62 0.61 0.62 0.62 0.61 
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empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.61 0.61 0.61 0.61 0.62 0.61 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.58 0.57 0.59 0.60 0.61 0.59 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.73 0.69 0.69 0.68 0.66 0.64 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.72 0.68 0.67 0.65 0.65 0.64 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.72 0.67 0.69 0.66 0.66 0.65 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.60 0.59 0.62 0.62 0.63 0.61 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.60 0.58 0.62 0.61 0.62 0.60 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.59 0.57 0.59 0.59 0.60 0.58 

empirical Bayes on Spectral Counts 0.73 0.74 0.75 0.74 0.73 0.69 

 
 

Table S2.8  F1-Measures For Combined Model (Empirical Bayes t-test + Benchmark) Using the 

“Minimum Spectral Count/PPID across both cohorts” Filter 

  Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.70 0.70 0.70 0.70 0.70 0.70 

empirical Bayes on PPIDs 0.73 0.71 0.71 0.72 0.71 0.68 

empirical Bayes on PPIDs + missed 

PPID weighting 0.71 0.71 0.72 0.71 0.70 0.68 

empirical Bayes on PPIDs + observed 

PPID weighting 0.70 0.70 0.71 0.69 0.68 0.67 

empirical Bayes on PPIDs + log 

normalization 0.70 0.70 0.73 0.72 0.72 0.69 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.69 0.69 0.72 0.70 0.70 0.68 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.68 0.69 0.72 0.70 0.71 0.68 

empirical Bayes on PPIDs + 

percentile normalization 0.74 0.72 0.74 0.74 0.71 0.68 

empirical Bayes on PPIDs + 

percentile normalization + missed 0.74 0.73 0.74 0.74 0.71 0.70 
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PPID weighting 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.74 0.73 0.73 0.73 0.71 0.70 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.72 0.72 0.73 0.73 0.72 0.69 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.72 0.72 0.74 0.74 0.72 0.71 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.71 0.73 0.72 0.71 0.71 0.70 

empirical Bayes on PPIDs + max 

value normalization 0.61 0.62 0.61 0.61 0.61 0.60 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.61 0.60 0.60 0.61 0.60 0.60 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.58 0.57 0.58 0.58 0.59 0.58 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.73 0.68 0.71 0.70 0.68 0.66 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.72 0.69 0.69 0.68 0.66 0.64 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.72 0.69 0.68 0.67 0.67 0.65 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.60 0.60 0.61 0.61 0.61 0.60 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.60 0.59 0.61 0.61 0.60 0.59 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.59 0.58 0.59 0.58 0.58 0.57 

empirical Bayes on Spectral Counts 0.73 0.73 0.73 0.73 0.73 0.73 
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Supplemental File 3.  ROC curve AUCs for Candidate Tests  
 

Table S3.1  AUCs For Classical Tests Using the “Minimum Spectral Count/PPID in at least one 

cohort” filter 

  Minimum Spectral Count/PPID in at least one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

Student's t-test on PPIDs 0.87 0.88 0.87 0.83 0.80 0.77 

Student's t-test log transformation on 

PPIDs 0.86 0.88 0.86 0.83 0.81 0.77 

Welch's t-test on PPIDs 0.87 0.88 0.86 0.83 0.80 0.77 

Welch's t-test log transformation on 

PPIDs 0.86 0.87 0.86 0.82 0.80 0.76 

Mann Whitney U test on Spectral 

Counts 0.84 0.88 0.89 0.87 0.84 0.82 

Modified Mann Whitney U test on 

Spectral Counts 0.84 0.88 0.89 0.87 0.83 0.82 

Mann Whitney U test on PPIDs 0.84 0.88 0.88 0.86 0.84 0.82 

 

Table S3.2  AUCs For Classical Tests Using the “Minimum Spectral Count/PPID across both 

cohorts” filter 

  Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.85 0.85 0.85 0.85 0.85 

Student's t-test on PPIDs 0.87 0.89 0.88 0.83 0.82 0.79 

Student's t-test log transformation on 

PPIDs 0.86 0.88 0.87 0.83 0.81 0.79 

Welch's t-test on PPIDs 0.87 0.88 0.86 0.83 0.81 0.84 

Welch's t-test log transformation on 

PPIDs 0.86 0.87 0.86 0.83 0.81 0.79 

Mann Whitney U test on Spectral 

Counts 0.84 0.84 0.84 0.84 0.84 0.84 

Modified Mann Whitney U test on 

Spectral Counts 0.84 0.84 0.84 0.84 0.84 0.84 

Mann Whitney U test on PPIDs 0.84 0.85 0.85 0.86 0.86 0.83 

 

 

 

 



94 
 

Table S3.3  AUCs For Combined Model (Classical Tests + Benchmark) Using the “Minimum 

Spectral Count/PPID at least one cohort” Filter 

  Minimum Spectral Count/PPID in at least one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

Student's t-test on PPIDs 0.89 0.90 0.90 0.90 0.89 0.89 

Student's t-test log transformation on 

PPIDs 0.88 0.90 0.90 0.90 0.90 0.89 

Welch's t-test on PPIDs 0.89 0.90 0.90 0.89 0.90 0.89 

Welch's t-test log transformation on 

PPIDs 0.88 0.90 0.90 0.90 0.90 0.89 

Mann Whitney U test on Spectral 

Counts 0.85 0.89 0.90 0.90 0.90 0.89 

Modified Mann Whitney U test on 

Spectral Counts 0.85 0.89 0.90 0.90 0.90 0.90 

Mann Whitney U test on PPIDs 0.86 0.90 0.90 0.90 0.90 0.89 

 

Table S3.4  AUCs For Combined Model (Classical Tests + Benchmark) Using the “Minimum 

Spectral Count/PPID at across both cohorts” Filter 

  Minimum Spectral Count/PPID across both cohorts 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

Student's t-test on PPIDs 0.89 0.90 0.88 0.83 0.82 0.79 

Student's t-test log transformation on 

PPIDs 0.88 0.90 0.90 0.90 0.90 0.89 

Welch's t-test on PPIDs 0.89 0.90 0.88 0.83 0.82 0.79 

Welch's t-test log transformation on 

PPIDs 0.88 0.90 0.90 0.90 0.90 0.90 

Mann Whitney U test on Spectral 

Counts 0.85 0.85 0.85 0.85 0.85 0.85 

Modified Mann Whitney U test on 

Spectral Counts 0.85 0.85 0.85 0.85 0.85 0.85 

Mann Whitney U test on PPIDs 0.86 0.86 0.87 0.87 0.87 0.86 

 

Table S3.5  AUCs For Empirical Bayes t-test Using the “Minimum Spectral Count/PPID in at 

least one cohort” filter 

  Minimum Spectral Count/PPID in at last one cohort 

Candidate Test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

empirical Bayes on PPIDs 0.88 0.89 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + missed 

PPID weighting 0.87 0.89 0.87 0.84 0.81 0.78 
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empirical Bayes on PPIDs + observed 

PPID weighting 0.88 0.89 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + log 

normalization 0.86 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.85 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.86 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization 0.85 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.85 0.88 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.85 0.87 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.84 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.84 0.89 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.83 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization 0.86 0.87 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.86 0.87 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.87 0.87 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.87 0.88 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.87 0.88 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.86 0.87 0.86 0.83 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.88 0.89 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.88 0.89 0.87 0.84 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.88 0.89 0.87 0.84 0.81 0.78 
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empirical Bayes on Spectral Counts 0.86 0.89 0.87 0.84 0.81 0.78 

 

 

 

Table S3.6  AUCs For Empirical Bayes t-test Using the “Minimum Spectral Count/PPID across 

both cohorts” filter 

  Minimum Spectral Count/PPID across both cohorts 

candidate test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.85 0.85 0.85 0.85 0.85 

empirical Bayes on PPIDs 0.88 0.89 0.88 0.83 0.82 0.79 

empirical Bayes on PPIDs + missed 

PPID weighting 0.87 0.89 0.88 0.83 0.81 0.79 

empirical Bayes on PPIDs + observed 

PPID weighting 0.88 0.89 0.88 0.83 0.82 0.79 

empirical Bayes on PPIDs + log 

normalization 0.86 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.85 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.86 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization 0.85 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.85 0.88 0.87 0.83 0.81 0.78 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.85 0.87 0.87 0.82 0.81 0.78 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.84 0.85 0.86 0.87 0.87 0.84 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.84 0.84 0.85 0.86 0.86 0.83 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.83 0.83 0.84 0.85 0.86 0.83 

empirical Bayes on PPIDs + max 

value normalization 0.86 0.87 0.86 0.83 0.81 0.79 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.86 0.87 0.86 0.82 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.87 0.87 0.86 0.83 0.81 0.79 
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empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.87 0.88 0.87 0.82 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.87 0.88 0.87 0.82 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.86 0.87 0.86 0.82 0.81 0.78 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.88 0.89 0.88 0.83 0.82 0.79 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.88 0.89 0.88 0.83 0.81 0.79 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.88 0.89 0.87 0.83 0.82 0.79 

empirical Bayes on Spectral Counts 0.86 0.86 0.86 0.86 0.86 0.86 

 

Table S3.7  AUCs For Combined Model (Empirical Bayes t-test + Benchmark) Using the 

“Minimum Spectral Count/PPID in at least cohorts” filter 

  Minimum Spectral Count/PPID in at last one cohort 

candidate test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

empirical Bayes on PPIDs 0.89 0.91 0.91 0.90 0.90 0.90 

empirical Bayes on PPIDs + missed 

PPID weighting 0.89 0.91 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + observed 

PPID weighting 0.89 0.91 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + log 

normalization 0.87 0.90 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.87 0.90 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.87 0.90 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + 

percentile normalization 0.87 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.87 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.86 0.89 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.86 0.90 0.90 0.90 0.90 0.89 
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empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.85 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.85 0.89 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization 0.89 0.90 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.89 0.90 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.89 0.90 0.90 0.89 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.89 0.91 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.90 0.91 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.89 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.90 0.91 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.90 0.91 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.89 0.90 0.90 0.89 0.89 0.89 

empirical Bayes on Spectral Counts 0.86 0.90 0.90 0.90 0.90 0.90 

 

Table S3.8  AUCs For Combined Model (Empirical Bayes t-test + Benchmark) Using the 

“Minimum Spectral Count/PPID across both cohorts” filter 

  Minimum Spectral Count/PPID across both cohorts 

candidate test 0 5 10 15 20 25 

Fisher's exact test on Spectral Counts 

(Benchmark) 0.85 0.88 0.87 0.85 0.82 0.81 

empirical Bayes on PPIDs 0.89 0.91 0.91 0.90 0.90 0.90 

empirical Bayes on PPIDs + missed 

PPID weighting 0.89 0.91 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + observed 

PPID weighting 0.89 0.91 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + log 

normalization 0.87 0.90 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + log 

normalization + missed PPID 

weighting 0.87 0.90 0.90 0.90 0.90 0.90 
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empirical Bayes on PPIDs + log 

normalization + observed PPID 

weighting 0.87 0.90 0.90 0.90 0.90 0.90 

empirical Bayes on PPIDs + 

percentile normalization 0.87 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile normalization + missed 

PPID weighting 0.87 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile normalization + observed 

PPID weighting 0.86 0.89 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile+arcsine(sqrt) 

normalization 0.86 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

missed PPID weighting 0.85 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + 

percentile+arcsine normalization + 

observed PPID weighting 0.85 0.89 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization 0.89 0.90 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + missed PPID 

weighting 0.89 0.90 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + observed PPID 

weighting 0.89 0.90 0.90 0.89 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization + log 

transformation 0.89 0.91 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + missed PPID 

weighting 0.90 0.91 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+log 

transformation + observed PPID 

weighting 0.89 0.90 0.90 0.90 0.90 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) 0.90 0.91 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

missed PPID weighting 0.90 0.91 0.90 0.90 0.89 0.89 

empirical Bayes on PPIDs + max 

value normalization+arcsine(sqrt) + 

observed PPID weighting 0.89 0.90 0.90 0.89 0.89 0.89 

empirical Bayes on Spectral Counts 0.86 0.90 0.90 0.90 0.90 0.90 
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Supplemental File 4.  Analysis Config File 

When run from the command line, IDPQuantify takes a single argument, “-

idpAnalysisConfigFile“, that specifies the pathway to analysis config file.  Users configure 

IDPQuantify using the “analysis_config” file.  Each line in the file contains an attribute and a 

value in the following format: 

-attribute_name “attribute_value” 

There are two types of attributes, Global Attributes and Per Statistical Run Attributes.  Global 

Attributes are only defined once.  Per Statistical Run Attributes are specified for each separate R-

script to be run.  When Per Statistical Run Attributes are declared in the analysis_config file the 

attribute name should be followed by a unique number.   

The attributes are as follows: 

Table S4.1 Global attribute name and values for „analysis_config‟ file 

Attribute Name Attribute Meaning 
resultOutputFilesRootFolder Pathway to folder where files will be created. 

resultFilesConfigFileFullPath Pathway to „files_config‟ file defining the two cohorts to be 

analyzed (See Supplemental File 5). 

resultSpcCntPerPepPerRep File name of file written by IDPQuantify listing the spectral 

counts per peptide per replicate. 

resultPPIDPerPepUnnorm File name of file written by IDPQuantify listing the PPID per 

peptide per replicate. 

resultPPIDObservedPerPepPerRep File name of file written by IDPQuantify listing the presence 

or absence (1 or 0) of at least one PPID observed per peptide 

per replicate. 

resultPPIDMissingPerPepPerRep File name of file written by IDPQuantify listing a “1” if 

IDPQuantify expected a PPID but could not find one per 

peptide per replicate.  Otherwise a “0” is listed. 

resultPPIDPerPep_missingPPIDWeight File name of file written by IDPQuantify containing the 

PPID per peptide weighted according to missing PPIDs. 

resultPPIDPerPep_foundPPIDWeight File name of file written by IDPQuantify containing the 

PPID per peptide weighted according to observed PPIDs. 

resultPPIDPerPep_unweighted File name of file written by IDPQuantify containing the 

PPID per peptide with no weighting. 

resultPPIDPerPepGrp_missingPPIDWeight File name of file written by IDPQuantify containing the 

PPID per peptide group weighted according to missing 

PPIDs. 

resultPPIDPerPepGrp_foundPPIDWeight File name of file written by IDPQuantify containing the 

PPID per peptide group weighted according to observed 

PPIDs. 

resultPPIDPerPepGrp_unweighted File name of file written by IDPQuantify containing the 
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PPID per peptide group with no weighting. 

resultSpcCntPerPepGrp File name of file written by IDPQuantify containing the 

Spectral Count per peptide group. 

resultPPIDCountPerPepGrp File name of file written by IDPQuantify containing the 

number of PPIDs observed per peptide group. 

resultPPIDPercentileNorm_foundPPIDWeight File name of file written by IDPQuantify containing the 

percentile normalized PPID per peptide group weighted 

according to observed PPIDs. 

resultPPIDPercentileNorm_missingPPIDWeight File name of file written by IDPQuantify containing the 

percentile normalized PPID per peptide group weighted 

according to missing PPIDs. 

resultPPIDPercentileNorm_noPPIDWeight File name of file written by IDPQuantify containing the 

percentile normalized PPID per peptide group with no 

weighting. 

resultSpcCntMinusPPIDPerPepGrp File name of file written by IDPQuantify containing the 

number of observed spectral counts, observed PPIDs, and 

missing PPIDs per peptide group per cohort. 

resultUniqPepSeqPerPepGrp File name of file written by IDPQuantify containing the 

number of unique peptide sequence per peptide group. 

resultNumPepSeqPerPepGrp File name of file written by IDPQuantify containing the 

number of total peptide sequences, including duplicate 

sequences, per peptide group.  Sequences are summed per 

replicate per peptide group. 

resultPhenotypeDataFileForRCohort The filename of the “phenotype.txt” data file used for R 

scripts that utilize the Limma package in R.  The pathway of 

this file is fed to each auto-run R script as one of the 

parameters. 
pathwayToRScriptExe Pathway to the RScript.exe executable. 

pathwayToIDPProtGrpToPepGrpFiles Pathway to IDPicker result file containing the protein group-

to-peptide group mapping. 

 

Table S4.2 Per Statistical Run Attribute Name and Values for „analysis_config‟ File 

Attribute Name Attribute Meaning 
resultRpvalsfile# File name of file name fed by IDPQuantify into R script for 

the resulting statistical test output file. 

resultRpvalsPPIDFile# Filename of quantitative data file to be fed into R script for 

statistical analysis.  Can be PPID or spectral count file 

generated by IDPQuantify (see Table S4.1).   

resultRpvalsfileTestLabel# Label to be used to describe this statistical test run in 

summary files and constructing output file names. 

resultPvalRScript# Pathway to R script to be run for this statistical run 
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Supplemental File 5.  Files Config file 

Users specify the location of IDPicker result files and spectral files (e.g. .RAW files) using the 

“files_config” file.  Each line in the file contains an attribute and a value in the following format: 

-attribute_name “attribute_value” 

There are two types of attributes, Global Attributes and Per Replicate Attributes.  Global 

Attributes are only defined once.  Per Replicate Attributes are specified for each separate MS run 

that is to be included in one of the two cohorts.  When Per Replicate Attributes are declared in 

the analysis_config file the attribute name should be followed by a unique number.   

Table S5.1 Global Attribute Name and Values for „files_config‟ File 

Attribute Name Attribute Meaning 
idpQuanCohort1 A comma-delimited list of numbers corresponding to the 

unique identifiers for each MS run in cohort 1.  The unique 

identifiers correspond to the “#” following the “Per 

Replicate” attributes for a given replicate (See Table S5.2). 

idpQuanCohort2 A comma-delimited list of numbers corresponding to the 

unique identifiers for each MS run in cohort 1.  The unique 

identifiers correspond to the “#” following the “Per 

Replicate” attributes for a given replicate (See Table S5.2). 

hardklorPathway Pathway to Hardklör executable. 

bullseyePathway Pathway to Bullseye executable. 

 

Table S5.2 Per Replicate Attribute Name and Values for „files_config‟ File 

Attribute Name Attribute Meaning 
idpXMLFile# Pathway to .idpXML for this replicate. 

hkFilePath# Pathway to Hardklör output file for this replicate.  If file does 

not exist, IDPQuantify will attempt to create it when run. 

bullseyeFoundFile# Pathway to Bullseye output file of MS/MS spectra with 

matching PPIDs for this replicate.  If file does not exist, 

IDPQuantify will attempt to create it when run. 

bullseyeMissedFile# Pathway to Bullseye output file of MS/MS spectra with 

missing PPIDs for this replicate.  If file does not exist, 

IDPQuantify will attempt to create it when run. 

spectralInputFile# Pathway to spectral file (e.g. .RAW) for this replicate. 

bullseyeMS2DataFile# Pathway to file containing MS/MS data for use when 

generating Bullseye files. 

hardklorMS2DataFile# Pathway to file containing MS data for use when generating 

Hardklör files. 

idpQuan# The pathway to the .idpQuan file generated by IDPQuantify 

containing PPIDs per peptide group. 

 


