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CHAPTER I

INTRODUCTION

The unprecedented growth in smartphone technology is giving rise to new applications

that illustrate non-conventional usage of smartphones [1]. For example, these applica-

tions may include situational awareness in military-centric operations (e.g., the DARPA

Transformative Apps program), emergency services, disaster search-and-recovery, and in-

telligent transportation. Consider, for example, natural disasters of 2010 like the Haiti

earthquake or the massive flooding in the state of Tennessee. In both these situations, most

of the infrastructure, such as the roads and phone services (both landline and cellular), and

utilities, such as gas and electricity, were rendered unavailable. A number of instances

of smartphone usage for survival have come to light in the days following the calamity.

It is conceivable, therefore, to think of forming ad hoc networks of smartphones carried

by search-and-rescue teams as the best means in these circumstances to identify survivors

trapped under the debris or those trapped in their houses due to raging flood waters, and

coordinate the rescue operations.

To operationalize smartphone-based search-and-rescue missions, it is necessary for the

collection of smartphones involved in the mission to be able to support a group of real-time

services that provide distributed sensing operations, data correlation capabilities stemming

from acquisition of distributed streams of images, audio and video, and location-based ser-

vices. However, since these smartphones have limited battery life and hardware resources,

keeping the collective set of services that make up the mission capabilities up and running

for the maximum amount of time is crucial for maximizing the chances of finding more

survivors. Maximizing the mission lifespan is important because the smartphones oper-

ated by first responders are often deployed in environments where readily replenishing the
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resources, such as batteries, is infeasible. Despite these constraints, key quality of service

(QoS) requirements of real-time and reliable dissemination of information to the concerned

stakeholders, such as first responders in search-and-rescue missions, must be met.

The requirements outlined above can be met by effectively deploying the services that

make up the mission on the collection of smartphones involved in the mission. Here ad hoc

network can be formed by smartphones which is self-configuring and self-organizing as

no physical infrastructure is available for forming centrally administered wireless network.

Hence we are assuming that the appropriate ad hoc routing protocols like AODV [12],

DYMO [13], etc are available for routing of data to/from ad hoc network. Also, each node

in the ad hoc network has equal probability of acting as hosts as well as routers to route

data to/from other nodes in the network. The reason is that considerable amount of battery

power is consumed in routing data to/from network to/from the outside network. Thus if

a particular node has a higher probability of acting a router, then its battery power will be

drained out faster, which can render the entire distributed application unoperational earlier

than its maximized service uptime. However, such a deployment problem is hard for two

reasons. First, assuring the timely and reliable dissemination of information in operating

environments where availability of resources, such as networks, is unpredictable requires

deploying the individual services on the collection of smartphones in a way that will ensure

the schedulability of the services while efficiently using the scarce resources. Secondly, the

rate of drain of smartphone battery charge adds a new dimension of challenges to an already

challenging problem because battery drain is often dictated by the amount of computation

and communication activities.

In this thesis we focus on solving the service uptime maximization problem, which is

the problem of ensuring that the operational capability of the mission provided by the col-

lection of services deployed on the group of smartphones remains up and running for the
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maximum duration of time. In other words, it is necessary to minimize the rate at which

the smartphone batteries drain themselves. Since every service (and its software compo-

nents) of the mission consumes different computational and communication resources of

the smartphone, battery drain is impacted differently. Hence, the service uptime maxi-

mization problem requires solving the deployment problem that minimizes battery drain

(or preserves the battery charge) while also satisfying the QoS requirements.

To address these challenges, we present a deployment framework called SmartDeploy,

which extends the earlier work on ScatterD [8] done in the group. ScatterD combined bin-

packing heuristics with evolutionary algorithms to minimize power consumption in nodes.

It overcame the limitations of applying each of these algorithms in isolation. In particu-

lar, ScatterD provided a first-fit heuristic bin packer which places each item into the first

available bin in which it will fit. In the case of maximizing service uptime, the software

components of the services must be deployed in a way that minimizes battery drain on each

smartphone. A first-fit heuristic may not necessarily find the right solution to our problem.

Consequently, SmartDeploy provides a framework that can be strategized with the desired

bin packing heuristic along with a strategizable framework to plug in the desired evolution-

ary algorithm so that a variant of the hybrid algorithm can be synthesized.

To solve the service uptime maximization problem, SmartDeploy is strategized with the

worst-fit bin packer which ensures that services are load balanced across the collection of

smartphones used in the mission in a way that minimizes battery drain while also delivering

the QoS. The evolutionary algorithm generates initial random vectors and evaluates them

using a fitness function. In this thesis we limit ourselves to off line deployment of services

assuming that the rescue missions and their parameters are planned a priori. The case of

determining an effective deployment at runtime is orthogonal to the focus of this thesis and
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is the focus of future work, which will require additional runtime protocols involving mes-

sage exchanges among participating smartphones. We believe that the polynomial runtime

complexity of SmartDeploy can make it a promising approach even at runtime.
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CHAPTER II

RELATED WORK

Heuristic techniques are commonly used for large size optimization problems. They

are used to generate good solutions without exhaustive search which is time consuming.

These techniques work iteratively where each step depends on the previous step and hence

are called heuristic. Hill Climbing algorithms use local information about a search space to

find optima. However, for large problem sizes and complicated functions, they tend to get

stuck in local optima. Simulated annealing is a heuristic technique for global optimization

where it starts with a random state (solution) and iteratively moves towards better solution.

However, in each iteration it compares one solution with the previous ones. Evolutionary

algorithms which are also heuristic algorithms use pool of solution in each iteration for

comparison. Hence there is a better chance of achieving a good result.

Xiaoling et al are amongst the first to use evolutionary algorithm for deployment opti-

mization problem [15] in ad-hoc sensor network. They optimized the coverage in sensor

network. They compared particle swarm optimization (PSO) with the genetic algorithm

in terms of faster convergence rate. However, they did not address performance of the

evolutionary algorithms used when design space and constraints increases. Our goal is

maximizing service uptime of distributed applications comprising a large design space of

hundreds of nodes and hundreds of software components. Moreover, the design space in

our case is tightly constrained based on hardware and software resources availability.

François et al developed Choco [11], a Java library for constraint satisfaction prob-

lems (CSP) and constraint programming (CP). It is built on an event-based propagation

mechanism with backtrackable structures. Since it is based on CSP approach, it leads to

exhaustive search in the worst case. Hence, it is not scalable with problem sizes handled

by SmartDeploy.
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Howard et al developed an algorithm [6] for deploying members of a robot team into

an unknown environment. However they assumed unavailability of GPS sensors on robots

and required maintaining line-of-sight contact amongst the team members. In our case we

consider a network of smartphones, which involves availability of GPS and other sensors.

Thus we do not need to maintain line-of-sight with the other devices.

Howard et. al. also developed an incremental and greedy algorithm [7] for mobile

sensor network. Their test results, however, assumed the nodes to be homogeneous and

the scalability of the algorithm was tested up to 50 nodes. In our case we consider hetero-

geneous devices in terms of power capacity, memory, CPU, etc. Moreover, we consider

deployment of hundreds of software components on hundreds of devices.

Dougherty et. al. developed a deployment algorithm called BLITZ [4] that minimizes

the computing infrastructure required to host real-time systems. The algorithm uses first-fit

heuristics of bin packing algorithm that minimizes number of processors. However, the

service uptime maximization requires the use of worst-fit bin packing heuristics.

White et. al. developed a spatial deployment algorithm called ScatterD [8] that min-

imizes power consumption in real-time systems. It is a hybrid algorithm that combines

first-fit bin packing heuristics with evolutionary algorithms (genetic and particle swarm

optimization algorithms). The first-fit bin packing algorithm places the items on to the

first available bin till it gets exhausted and then selects the next bin. This heuristic does

not place item on the emptiest existing bin which is more suitable for maximizing service

uptime. SmartDeploy extends ScatterD to provide a strategizable framework and applies

worst-fit bin packing for the Service Uptime Maximization problem.
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CHAPTER III

MOTIVATING EXAMPLE

Figure III.1: A Distributed Video Recognition Service for Disaster Monitoring

In this section we use an example of a video recognition service for disaster moni-

toring as a case study to highlight the challenges in maximizing the service uptime for

smartphone-based distributed, real-time systems. Figure III.1 shows an example of a dis-

tributed video recognition service used in disaster monitoring and recovery. The service

comprises of different software components like video capturing (C1), segmentation (C2),

feature extraction (C3), tracking (C4), activity analysis (C5) and information dissemination

(C6). Each of these software component has different hardware resource requirements,
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such as memory and CPU, and different power consumption rate. For simplicity, we have

shown one such distributed service (video recognition) consisting of six software compo-

nents and four smartphones for disaster monitoring. Out of four smartphones used, two

of them are Android-based HTC phones and the other two are iPhones. Software compo-

nents C1, C4, and C5 can be executed only on Android-based smartphones, while software

components C2, C3, and C6 can be executed only on iPhones.

In general, a disaster monitoring service can be composed of a combination of ser-

vices such as distributed image recognition and distributed location-based services. Such a

comprehensive service can consist of hundreds of software components deployed onto hun-

dreds of smartphones. The deployment plan, which comprises a mapping of the software

components of the services to the smartphones, should meet both the hardware resources

constraints and power constraints such that the service can last for as much time as possible

while also meeting the real-time application requirements.
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CHAPTER IV

CHALLENGES IN MAXIMIZING SERVICE UPTIME FOR SMARTPHONES

In this chapter we use our motivating example of the distributed video recognition ser-

vice (see Chapter III) to highlight the challenges in finding the deployment plan which

maximizes service uptime. Although the mobile environment made up of smartphones is

attractive to realize distributed disaster management services, multiple systemic issues im-

pede the total lifetime of such services making it hard to design and deploy the services. In

this section we delve into understanding these impediments.

Challenge 1: Dealing with Complex hardware/software design constraints In our case

study example of the distributed video recognition service, its software components have

different hardware and software resource requirements. For example, the video capturing

component requires high memory and communicational power as it stores the captured

video and sends it to the phone hosting feature extraction and segmentation components.

The feature extraction and segmentation components require high CPU and computational

power as they run complex algorithms based on extraction and segmentation on the video.

The tracking and activity analysis components are involved in significant communication

activities that consume battery power as they constantly communicate with the phone host-

ing information dissemination component. A disaster monitoring system comprises many

distributed applications consisting of hundreds of smartphones and hundreds of software

components hosted on them. How these software components are deployed on these smart-

phones will determine how long the overall mission will last because the uptime of the

mission depends on how long the batteries will last.

In general, network embedded devices like smartphones have limited battery power
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and limited hardware resources like CPU and memory. Moreover, the software compo-

nents deployed on these devices consume power at different rates, which is governed by

the computation and communication activities induced by the software components. The

amount of time a software component runs is directly proportional to the amount of battery

power available to it with sufficient hardware resources. Thus, the power consumption rate

of these software components, and what devices they get deployed on are the key factors

that affects the service uptime.

Given that a mission is realized by distributing its services across a group of smart-

phones, keeping the entire distributed application up for a longer duration is challenging

because even if one of the smartphone’s battery is exhausted, then the software compo-

nents deployed on it are no longer available which makes the overall distributed system no

longer work. Thus, a deployment plan should be generated such that each of the software

components gets maximum available power and sufficient hardware resources which will

maximize the overall service uptime of the mission. In generating such a deployment plan,

we must consider both the computational and communication power consumption rates of

the software components. Some components may have higher power consumption rate due

to high amount of computations involved, while some components engage in more commu-

nication activities that impacts the power consumed. The frequency of interaction between

software components affects the amount of bandwidth consumed by them, which in turn

affects their power consumption rate.

Challenge 2 : Dealing with heterogeneity of available resources and execution con-

straints Our case study example illustrates heterogeneity in the smartphone hardware and

operating systems. It is conceivable that embedded devices such as smartphones used in

mission-critical applications such as disaster search and rescue management have differ-

ent available hardware resources like CPU type, available memory, and lifetime of battery.
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Due to this heterogeneity, certain software can execute on only certain devices. For exam-

ple, smartphone apps developed for iPhones cannot execute on Android-based phones. As

outlined in Challenge 1, the deployment topology of these mission-critical systems must

address various design constraints like power capacity, memory, and CPU, which is a hard

problem. The problem becomes even harder with the heterogeneity of the platforms and

the software execution constraints. In the case study example, there are two Android-based

HTC phones and the other two are iphones. Moreover, independent software components

for video capturing, tracking and analysis can execute only on Android-based phones. Sim-

ilarly, feature extraction, segmentation and information dissemination can execute only on

iPhones. Such constraints affect the deployment plan which in turn affects maximizing

service uptime.

Challenge 3: Dealing with scale of the system The case study example of distributed

video recognition service is comprised of four devices hosting six software components

which means there exist 64 possible deployment plans. Several optimization techniques

are available to solve the deployment challenges explored in Challenges 1 and 2 described

above. The solutions can be characterized and solved using constraint satisfaction pro-

gramming (CSPs) [14], integer programming [3] and Bender’s decomposition [5].

Although our case study represents a very small problem size which can be solved by

bin-packing heuristics, integer programming or evolutionary algorithms, typical mission

critical applications will comprise several hundreds of devices and many more software

components. Thus, when the problem size scales to 300100 or even more and moreover

considering additional hardware and software design constraints, as outlined in Challenges

1 and 2, many of the known techniques cannot readily scale to hundreds of software com-

ponents and hundreds of devices. In other words, the solutions are computationally very

expensive to obtain.

Bin packing heuristics have been developed to overcome these challenges to produce
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valid deployment plans, however, these plans do not necessarily produce the optimal solu-

tions for large problem sizes. Evolutionary algorithms are commonly used in deployment

optimization problems. However their performance degrades when the solution space is

huge and has tight constraints that leads a large number of invalid points in the search space.

The criticality of the application scenario we are investigating and the fact that we focus

on offline solutions to finding the right deployment topologies, it is desirable to achieve a

near-optimal solution. Moreover, formulating the objective function and the constraints is

yet another challenge system developers will face.
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CHAPTER V

BIN-PACKING HEURISTICS FOR SERVICE UPTIME MAXIMIZATION

In this chapter, bin-packing heuristics and its variants are described. The problem of

packing a set of items into a number of bins such that the total weight or volume does

not exceed some maximum value is called bin-packing problem. Various heuristics of bin-

packing algorithms are used for solving bin-packing problem like first-fit, worst-fit, and

best-fit.

First-fit bin packing algorithm : The First-fit algorithm places a new object in the first

available bin that still has room.

Best-fit bin packing algorithm : The Best-fit algorithm places a new object in the fullest

bin that still has room.

Worst-fit bin packing algorithm : The Worst-fit algorithm places a new object in the

emptiest existing bin.

For the service uptime maximization problem, we use the worst-fit heuristic of bin

packing algorithm. The reason is that in order to maximize the service uptime, the software

components should be deployed onto the device on which it can run for maximum amount

of time. Thus the worst-fit bin packing algorithm defines the placement of items into the

largely empty existing bin. In this way the software components are deployed evenly across

the available devices such that they get maximum available power along with sufficient

hardware resources. As a result maximized service uptime is achieved. However, as the

problem size increases, it tends to give a valid solution but not necessarily an optimal one.
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CHAPTER VI

EVOLUTIONARY ALGORITHMS FOR SERVICE UPTIME MAXIMIZATION

Evolutionary algorithms [2], are meta-heuristic optimization algorithms which are generic

population based, i.e., they involve a search from a population of solutions, not from a sin-

gle point. The individuals in the population are candidate solutions of the optimization

problem. In each iteration, a fitness function is used to evaluate the candidate solutions

and propagates the evolution of the population. Particle swarm optimization(PSO) [9] and

genetic algorithm [10] are two such evolutionary algorithms.

1. Particle swarm optimization (PSO) It is a stochastic optimization technique based on

population. Here, each particle is a random initial solution in the search space, i.e., ran-

dom initial topology vector ~vi. In each iteration, the particles are evaluated using fitness

function (objective function) F(~vi) and the best value of each particle is maintained. Each

particle’s best value is compared with the global best value. The global best value gives the

solution for the fitness function. At the end of each iteration, each particle’s position and

velocity is updated based on the global best value. This process is repeated till the number

of iterations are reached or the process converges to a single solution. Figure VI.1 shows

the PSO algorithm.

2. Genetic algorithms It is also a stochastic technique based on population. Here, the

initial random solutions are candidate solutions (individuals or creatures) that are encoded

by population of strings (chromosomes). In each generation, the individuals are evaluated

using fitness function F(~vi), multiple individuals are stochastically selected from current

population on the basis of fitness function, reproduced by crossover or mutation which
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Figure VI.1: Particle swarm optimization (PSO)

forms new population. This new population is evaluated using fitness function and the pro-

cess continues till the number of iterations are reached or the process converges to a single

solution. Figure VI.2 shows the genetic algorithm.

In general, as shown in Figure VI.3 [8], members of solution topologies (particles or

genes) are represented as vectors where the vector components denote the position of par-

ticles or genes. The spatial deployment topology as shown in the figure is represented as

~V = [1,2,2] which in turn represents the index positions of the software components de-

ployed onto the hardware node, i.e., software components 1, 2, and 3 are deployed onto

device 1, 2 and 2, respectively. As the evolution proceeds, the deployment topology vector
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Figure VI.2: Genetic Algorithm

is evolved to ~T = [2,1,2] which changes the deployment topologies. However, the perfor-

mance of this algorithm degrades when the search space contains large number of points

that corresponds to solutions that do not meet design constraints.
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Figure VI.3: Representing a Spatial Deployment Topology as a Vector
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CHAPTER VII

INTEGRATING BIN PACKING HEURISTICS WITH EVOLUTIONARY
ALGORITHM

To address the challenges described in Chapter IV, we propose using a hybrid algo-

rithm that integrates bin packing heuristics with evolutionary algorithms so that we can

reap the benefits of both while overcoming the limitations of individual techniques. More-

over, rather than fixing a specific heuristic or an evolutionary algorithm, we propose to

provide a framework that enables a deployment planner to strategize the framework with

the desired techniques. The advantage of using bin-packing heuristics is that they produce

a valid deployment topology while the advantage of using evolutionary algorithms is that

they explore multiple solutions in the design space.

This chapter describes SmartDeploy, which is a strategizable framework for deploy-

ment planning that addresses the three challenges described in Section ??. We show how

the SmartDeploy framework is applied to solve the Service Uptime Maximization problem.

Figure VII.1 shows the SmartDeploy framework combining worst-bin packer and PSO al-

gorithm. It shows a generic interface to encode objective functions and constraints, and the

hybrid algorithm to solve design-time constraint optimization problems. The algorithm for

combining worst-fit bin packer and genetic algorithm is also similar. The white colored

blocks shows the newly added features by Smartdeploy, blue colored blocks shows the in-

tegration between original and new features and the grey colored blocks show the original

features of the ScatterD.

To concretely describe our solution, we use our case study example in Figure III.1. Here

phones P1 and P3 are Android-based HTC phones while phones P2 and P4 are iPhones.
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Figure VII.1: SmartDeploy framework

Software components C1, C4, and C5 can be executed only on Android-based phones while

software components C2, C3, and C6 can be executed only on iPhones. The hardware and

software resource requirements of the components are shown in the figure. The configura-

tion of phones is also shown in the figure. One of the possible deployment topologies is

~V1 = [1,2,2,3,3,4].

Since there are four phones, they can run for different amount of times based on power

consumption rate of the software components deployed on to them. The uptime for the

phones of ~V1 is represented by

~st1 = [24,17.1,33.3,25]

which represents the index positions of the phones and the values at the index positions

indicate the service uptime of the respective phones. The service uptime of the ~V1 is
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t1 = Min(~sti) = 17.1 hours.

Here we take the minimum value from ~st1 as we are considering that the entire distributed

application is operational only if all the phones are running. There can be many combina-

tions of topologies like ~V2 = [1,2,4,3,1,2] and so on. The uptime for the phones of ~V2 is

represented by

~st2 = [13.3,50,20,50] and thus its service uptime is t2 = 13.3 hours.

The maximum service uptime of all the topologies is calculated as Max(t1, t2,...), which is

t1 = 17.1 hours in this case.

The more generalized formula for service uptime maximization function is defined as

follows:-

P(~Vi) = r(~Vi)+ s(~Vi)+ l(~Vi)

F(~Vi) =


e(~Vi) if P(~Vi) = 0,

−1∗P(~Vi) otherwise.
(VII.1)

where r(~Vi) is a function of resource constraints like CPU and memory. s(~Vi) is a func-

tion of scheduling constraint. l(~Vi) is the execution platform constraint, i.e., requirement

of the software components to be deployed on a specific execution platform. The output

of constraint functions is equal to 0 if the constraints are satisfied, else it gives the number

of the constraints violated. Here F(~Vi) is equal to objective function e(~Vi) if the values of

hardware resource constraint and scheduling constraint functions are 0, i.e., the constraints

are satisfied. Here, the objective function e(~Vi) is that of maximizing service uptime as

explained using the case study example. Constraint functions can be added or removed as

required. If the summation of constraint functions as represented by P(~Vi), is not 0, then an

invalid topology is produced. The invalid topologies are scored on the basis of number of
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constraints violated. The valid topologies are always ranked higher than the invalid topolo-

gies. We need to minimize the generation of invalid initial random vectors and the evolved

vectors to realize valid deployment plan. To achieve this a subset of deployment topology

is sent to bin-packer. The heuristics of bin-packer has more probability to generate a valid

deployment topology. However, it produces a single valid solution which is not necessarily

optimized for service uptime maximization. The constraints in the bin packing algorithm

are varied by a semi-random vector produced by evolutionary algorithms. Thus the evolu-

tionary algorithms act as catalyst for exploring the solution space through semi-randomized

executions of a bin packing algorithm.

A concrete manifestation of the SmartDeploy framework that combines the worst-fit

heuristic bin packing algorithm with evolutionary algorithm to solve the Service Uptime

Maximization problem can be described as follows:-

1. Each population member in the evolutionary search process is assigned a random

initial vector, ~Vi = ~random. This is represented by blocks 1 and 2 in Figure VII.1.

2. For i = 0, i < |Vi|, a worst-fit bin-packing algorithm takes the software component

referred to by position i and places it on a hardware node. The node that each com-

ponent is placed on is recorded in the deployment topology vector, T = dVi. The

software components that are not placed on a node in Step 2 are placed into a list, L.

This is represented by block 3 in Figure VII.1

3. The software components in are sorted using a bin-packing heuristic, such as mem-

ory. Each software component in L is placed on a hardware node using a standard

bin-packing algorithm. Here we do not take all the components in L as it is compu-

tationally expensive. The node that each component is placed on is recorded in the

deployment topology vector, dVi. This is shown as blocks 4 and 5 in Figure VII.1
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4. The score for each population member is calculated using a fitness metric as a func-

tion of the deployment plan F( ~dVi), and not directly from the population member’s

vector, ~Vi. This is shown represented by block 6 in Figure VII.1

5. An evolutionary operator, evolve(~Vi), is applied to each population member to pro-

duce the population members for the next iteration of the algorithm. This is shown

represented by block 7 in Figure VII.1

6. Steps 2-5 are repeated until either the maximum number of steps is reached or the

process converges on a single solution. The highest scoring deployment topology,

dVi, is returned as the result. This is shown represented by block 8 in Figure VII.1
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CHAPTER VIII

EVALUATING THE MERITS OF SMARTDEPLOY FOR SERVICE UPTIME
MAXIMIZATION

This section compares the projected lifespan of an experimental mission based on its

deployment plan generated by SmartDeploy PSO, SmartDeploy Genetic, PSO, Genetic

and worst-fit bin packing algorithms. First we describe the experimental setup. Next we

describe results of the different experiments we conducted.

VIII.1 Experimental Strategies and Execution Platform

We compared the deployments produced by five different deployment techniques. The

five techniques we compared are:

1. Worst-fit bin packing - A worst-fit heuristic of bin-packing algorithm.

2. PSO - Only PSO algorithm from SmartDeploy framework.

3. SmartDeploy PSO - The PSO variant of SmartDeploy which combines worst-fit

bin-packer with PSO algorithm.

4. Genetic - Only Genetic algorithm algorithm from SmartDeploy framework.

5. SmartDeploy Genetic - The genetic variant of SmartDeploy which combines worst-

fit bin-packer with genetic algorithm.

The experiments were conducted on a single Windows XP desktop with 2.19 G Hz

Intel Core 2 Duo processor and 2 GB RAM. Java Virtual Machine (JVM) version 1.6 was

used for the experiments. For both PSO and genetic algorithm, a population size of 20,

local learning coefficient of 0.5, global learning coefficient of 2, and 20 search iterations

(generations) were used. The genetic algorithm allowed a total of 10% of the population to

be passed through to the next generation, selected the top 25% of solutions for mating, and
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applied a mutation probability of 5%. A uniform distribution for generating initial random

vectors is used to cover more area and not inadvertently bias our search to a specific region.
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VIII.2 Experiments

Experiments 1 and 2 described below were conducted using 100 nodes and 100 software

components. The number of nodes tested for the experiment ranges from 30 to 100. The

number of software components are kept constant.

Experiment 1: Homogeneous nodes, heterogeneous software components –

Figure VIII.1: Homogeneous nodes, Heterogeneous software components

The first experiment was conducted using homogeneous nodes, i.e., each of them hav-

ing the same amount of memory and power capacity on them. The software components

deployed on them were heterogeneous, i.e., each of them requiring different amount of

memory and power consumption capacity. Here the constraints based on the amount of

memory available on all nodes and the amount of memory required by all the software

components are used, i.e., total hardware and software resource requirements should not

exceed their total availability.
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Hypothesis SmartDeploy should provide significant increase in service uptime compared

to the bin-packing algorithm and PSO. Here although the nodes have homogeneous proper-

ties for the amount of memory and the battery power capacity, the heterogeneous properties

of the software components i.e., each of them requiring different amount of memory and

power consumption capacity causes SmartDeploy to produce better results than the worst-

fit bin packer and and evolutionary algorithms alone.

Analysis of results As seen in the Figure VIII.1, SmartDeploy algorithms show 94% and

58% improvement in maximizing service uptime over PSO and genetic algorithms, respec-

tively. However, it gives only 20% improvement over worst-fit bin packer. After careful

analysis, it can be seen that due to the homogeneous properties of the nodes, the worst-first

bin packer gives better results as compared to both the evolutionary algorithms, and are

close to that of SmartDeploy.

Experiment 2: Heterogeneous nodes, heterogeneous software components –

Figure VIII.2: Heterogeneous nodes, Heterogeneous software components

The second experiment was conducted using heterogeneous nodes, i.e., half the number
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of nodes have one set of properties while the other half have another set of similar prop-

erties. For lack of space we do not report on other variations. The software components

deployed on them were also heterogeneous, i.e., each of them requiring different amount

of memory and power consumption capacity. Here the constraints based on the amount

of memory available on all nodes and the amount of memory required by all the software

components were used, i.e., total hardware and software resource requirements should not

exceed their total availability.

Hypothesis SmartDeploy should provide significant improvement in service uptime com-

pared to the bin-packing algorithm and evolutionary algorithms. Here the nodes having

heterogeneous properties for the amount of memory and the battery power capacity, the

heterogeneous properties for the software components, i.e., each of them requiring differ-

ent amount of memory and power consumption capacity should cause the SmartDeploy

algorithms to produce better results than the worst-fit bin packer and evolutionary algo-

rithms alone.

Analysis of results As seen in Figure VIII.2, due to the heterogeneous properties of nodes

and software components, and large problem size, the performance of evolutionary algo-

rithms degrades. PSO gives invalid topologies in this scenario. Genetic algorithm gives

invalid topologies when software components are tightly packed onto devices. Even when

the number of devices increases, SmartDeploy algorithms provide up to 162% better ser-

vice uptime. They also provide up to 75% more service uptime than worst-fit bin packer.

Experiment 3: Varying the number of software components (heterogeneous) deployed

on fixed number of heterogeneous nodes –

The third experiment was conducted by varying the number of heterogeneous software

components being deployed on fixed number of heterogeneous nodes. The number of

software components varied from 100 to 200 with increments of 20. Here the constraints

were based on the amount of memory available on all nodes and the amount of memory
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Figure VIII.3: Varying the number of software components(heterogeneous)

required by all the software components are used, i.e., total hardware and software resource

requirements should not exceed their total availability.

Hypothesis As the number of software components increases, the topologies become tightly

constrained. If the solution space increases, then it should cause the bin-packer to provide

a less than optimal value. The tightly constraint solution space should cause evolutionary

algorithms to degrade in their performance.

Analysis of results As seen in the Figure VIII.3 the devices become tightly packed with

increasing number of software components and constraint on memory requirements. The

evolutionary algorithms degrade in performance and give invalid deployment topologies.

The SmartDeploy algorithms give up to 50% more service uptime as compared to worst-fit

bin packer.

Experiment 4: Heterogeneous nodes (different OS) and heterogeneous software com-

ponents –
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Figure VIII.4: Heterogeneous nodes(different OS), Heterogeneous software compo-
nents

The fourth experiment was conducted using heterogeneous nodes, i.e., 30% of nodes

have one set of properties while the 70% of nodes have another set of similar properties.

Also, different OS (Android-based and iphone) was used for either set. The software com-

ponents deployed on them were also heterogeneous, i.e., each of them requiring different

amount of memory and power consumption capacity and execution platform(OS). Here the

constraints based on the execution platform (OS), amount of memory available on all nodes

and the amount of memory required by all the software components were used, i.e., total

hardware and software resource requirements should not exceed their total availability.

Hypothesis SmartDeploy should provide significant improvement in service uptime com-

pared to the bin-packing algorithm and evolutionary algorithms. Here the nodes having

heterogeneous properties for the amount of memory, the battery power capacity and execu-

tion platform(OS), the heterogeneous properties for the software components, i.e., each of

them requiring different amount of memory and power consumption capacity and execu-

tion platform(OS) should cause the SmartDeploy algorithms to produce better results than

the worst-fit bin packer and evolutionary algorithms alone.
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Analysis of results As seen in Figure VIII.4, due to the heterogeneous properties of nodes

and software components, and large problem size, the performance of evolutionary algo-

rithms degrades. PSO gives invalid topologies in this scenario. Genetic algorithm gives in-

valid topologies when software components are tightly packed onto devices.SmartDeploy

algorithms give higher service uptime than bin-packer and the evolutionary algorithms.

Experiment 5: Comparison of service uptime by all the algorithms with that of brute-

force algorithm –

Table VIII.1: Time taken to run Brute-force algorithm for service uptime

Nodes Software components Service uptime(m sec)
5 5 78
5 7 1219(1.2 secs)
5 9 33312(33.3 secs)
5 11 1261211(21 minutes)

We attempted to obtain the optimum service uptime using brute-force algorithm which

tries each and every combinations of deployment topologies. However, we observed that

running the brute-force algorithm even for even small problem sizes takes significant time.

So it was not practical to run it for large problem sizes of hundreds of nodes and hundreds

of software components. Table VIII.1 shows the running time for brute-force algorithm

over a small problem size.

Experiment 6: Comparison of computation time taken by each of five algorithms to

execute –

The sixth experiment was conducted to observe the average time taken by each of the

five algorithms to execute. Here the experimental values used in experiment 2 were used,

i.e., heterogeneous nodes and heterogeneous software components. The average values for
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Figure VIII.5: Time taken by each of five algorithms to run

service uptime for the entire range of nodes were taken. As seen in Figure VIII.5, worst-

fit bin packer takes least amount of time to run, i.e., 47 milliseconds. The SmartDeploy

algorithms take most amount of time to run, i.e., between 2,000 milliseconds to 3,200

milliseconds. Since we are considering an offline solution for deployment topology, a delay

in few seconds is tolerable to achieve better service uptime. Hence the use of SmartDeploy

algorithms is desirable in such situations.
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CHAPTER IX

CONCLUDING REMARKS AND LESSONS LEARNED

Service uptime maximization in distributed applications hosted on a network of smart-

phones can be achieved through effective deployment. Several optimization techniques are

commonly used for deployment problems in distributed real-time and embedded (DRE)

systems. Algorithms with exponential runtime complexity like integer programming are

not scalable when the problem size increases up to hundreds of devices. Bin-packing

heuristics tend to generate valid deployment topologies, but they may not give optimal

solutions when problem size increases. Evolutionary algorithms are commonly used for

deployment problems since they explore a variety of design solutions. However, as the

number of constraints and the problem size increases, they tend to degrade in performance.

The thesis described a framework called SmartDeploy that provides a hybrid deploy-

ment technique to achieve service uptime maximization. It builds upon the earlier work

done in the group, called ScatterD, which combines first-fit bin packer with the evolu-

tionary algorithm to reduce power consumption in DRE systems. SmartDeploy enables a

user to strategize both the evolutionary algorithm as well as the bin packing heuristic. A

concrete manifestation of SmartDeploy using the worst-case bin packer along with evo-

lutionary algorithms is presented to solve the service uptime maximization problem for

smartphone-based mission critical applications.

Using worst-fit bin packer heuristic, the software components of the distributed appli-

cation can be evenly deployed on the available devices such that they can obtain maximum

available battery power and sufficient hardware resources. The experimental results show

that SmartDeploy framework increased service uptime from 20% to 162% beyond that

provided by worst-fit bin packer and evolutionary algorithms used independently. The fol-

lowing lessons were learned conducting this research:
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• Since the running time of the SmartDeploy algorithms is only slightly more than

the algorithms we compared against, it is practical to use the hybrid algorithm. In

future work we intend to investigate the use of SmartDeploy framework in runtime

deployment decisions.

• We also intend to investigate other distribution techniques for generation of initial

random topologies of evolutionary algorithms like Gaussian distribution to see if

they can achieve better solutions.

• We intended to run the brute-force optimal algorithm to compare the service uptime

solutions from each of the five algorithms we used in our experiments to see how our

solutions compare to the optimal one. However, we observed that running the brute-

force algorithm even for small problem sizes takes considerable amount of time.

Hence it was not practical to test it out for the large problem size that we use.
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