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CHAPTER I 

 
 

INTRODUCTION 

 

Overview of calcium signaling in nonexcitable cells 

Calcium is a ubiquitous cellular second messenger that is responsible for 

controlling numerous cellular processes including fertilization, gene transcription, 

exocytosis, secretion, cell differentiation and proliferation, and programmed cell death 

(Berridge et al., 2000). Perturbations in normal intracellular Ca2+ concentrations underlie 

many common pathological conditions (Missiaen et al., 2000). 

 

 

Cytoplasmic Ca2+ concentration is tightly regulated 

Intracellular Ca2+ concentration is ~100nM in resting cells and rises to 1M or 

more upon stimulation. The localization, duration and amplitude of intracellular Ca2+ 

changes are tightly regulated and cells extract specific information from details of 

cytoplasmic Ca2+ changes to carry out downstream tasks (Berridge et al., 2000). At any 

moment in time, the level of intracellular Ca2+ is determined by equilibrium between the 

‘on’ reactions that trigger Ca2+ increase in the cytoplasm and the ‘off’ reactions through 

which Ca2+ concentration is lowered by pumps, exchangers and buffers.  

The Ca2+ ‘on’ reactions include pathways that generate Ca2+ signals through 

both internal and external sources. In nonexcitable cells, the major internal Ca2+ stores 

are the endoplasmic reticulum (ER). The major mechanism for mobilizing such stores 
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involves the classical phosphoinositide (PI) pathway. Essentially, the binding of many 

hormones to specific receptors on the plasma membrane leads to the activation of 

phospholipase C (PLC) that hydrolyzes phosphatidylinositol 4, 5-bisphosphate (PIP2) to 

produce the intracellular messenger inositol 1,4,5-trisphosphate (IP3). IP3 is water soluble 

and diffuses into the cell interior where it encounters IP3 receptors on the ER. The 

binding of IP3 changes the conformation of IP3Rs and opens the channel pore, thus 

allowing the Ca2+ stored at high concentrations in the ER to enter the cytoplasm (Figure 

1).  

Calcium that enters the cell from the outside is also a principal source of signal 

during the ‘on’ reactions (Figure 1). Entry of Ca2+ is driven by a large electrochemical 

force created by the ~20,000 fold concentration gradient for Ca2+ across the plasma 

membrane and the hyperpolarized resting membrane potential. Cells use this external 

source of signal Ca2+ by activating various Ca2+ channels with widely different properties. 

Ca2+ is removed from the cytoplasm through various ‘off’ mechanisms. These 

include the reuptake of Ca2+ back to ER through sarcoplasmic reticulum Ca2+ ATPases 

(SERCA) and Ca2+ extrusion via plasma membrane Ca2+ ATPases (PMCA). Calcium is 

also extruded from the cell by transporters such as the Na+/Ca2+ exchangers (NCX) that 

utilizes Na+ gradient to provide the energy to transport Ca2+ up its electrochemical 

gradient out of the cell. Therefore, the termination of intracellular Ca2+ signaling 

generally depends on the inactivation of intracellular and plasma membrane Ca2+ 

channels, as well as Ca2+ removal from the cytoplasm by the reuptake into intracellular 

organelles and plasma membrane extrusion (Figure 1).  

 2



Many cellular proteins can bind to Ca2+ over a wide range of affinity from nM to 

mM. These Ca2+-binding proteins, which become loaded with Ca2+ during the on 

reactions and unload during the off reactions, function to fine-tune the spatial and 

temporal properties of Ca2+ signals.  

Intracellular Ca2+ signaling has high degree of spatial and temporal diversity. 

Many Ca2+-signaling components are organized into macromolecular complexes in which 

Ca2+ signaling functions within highly localized environments. The close association 

between components of the on reactions and their downstream effectors is particularly 

relevant for rapid responses. Ca2+ changes also occur over a diverse range of time scales. 

At the fast end of the scale, for example, at the synaptic junctions, Ca2+ triggers 

exocytosis within microseconds. Moving up the timescale, the Ca2+ transients tend to last 

longer (over minutes to hours) to drive events such as gene transcription and cell 

proliferation. During prolonged stimulation, Ca2+ transients often occur repetitively 

generating Ca2+ oscillations. Continuous Ca2+ oscillations can form intracellular or 

intercellular calcium waves within cells and tissues, respectively.  
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Figure 1. Molecular machinery of intracellular Ca2+ signaling pathways in nonexcitable cells. Ligands 
activate cell surface receptors (GPCR or RTK), which leads to the activation of downstream PLCs 
(PLC and PLC). Activated PLCs then catalyze PIP2 into IP3 and DAG. IP3 binds to and opens IP3R 
located on ER membrane, which induces Ca2+ release from ER. Extracellular Ca2+ entry is mediated 
by plasma membrane Ca2+ channels including SOCCs, ROCCs, and SMOCCs. Ca2+ influx from 
external space may function to contribute to cytoplasmic Ca2+ changes directly, to refill the ER Ca2+ 
store, and/or regulate Ca2+ release from the ER. To terminate the Ca2+ signal, cytoplasmic Ca2+ is 
pumped back to the ER through SERCAs and also extruded out of the cell by PMCA and/or NCX. 
GPCR, G protein coupled receptor; RTK, receptor tyrosine kinase; PLC, phospholipase C; PIP2, 
phosphatidyl inositol-3,4-diphosphate; IP3, inositol trisphosphate; DAG, diacylglycerol; IP3R, IP3 
receptor; ER, endoplasmic reticulum; SERCA, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase; 
SOCCs, store-operated Ca2+ channels; ROCCs, receptor-operated Ca2+ channels; SMOCCs, second 
messenger-operated Ca2+ channels; PMCA, plasma membrane Ca2+ ATPase; NCX, Na+/Ca2+ 
exchanger. 
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Ca2+ entry across the plasma membrane is essential for sustained Ca2+ signaling 

Many key cellular processes require a sustained increase in intracellular Ca2+ that 

can only be accomplished through Ca2+ entry into the cell. Ca2+ mediated events are 

terminated within a few seconds to minutes due to the exhaustion of the finite 

intracellular Ca2+ store when extracellular Ca2+ is unavailable. Resting cells generally 

have a low permeability to Ca2+, but a large electrochemical driving force for Ca2+ entry. 

An increase in Ca2+ permeability by opening Ca2+-permeable ion channels on the plasma 

membrane can result in large Ca2+ influx into the cytoplasm. Ca2+ influx through plasma 

membrane Ca2+ channels plays an important role in generating intracellular Ca2+ signals 

by helping to refill the ER Ca2+ stores, by modulating the frequency of Ca2+ oscillations, 

and/or by directly contributing to the elevation of cytoplasmic Ca2+ levels. 

 

 

Plasma membrane Ca2+ entry pathways in nonexcitable cells 

In excitable cells such as neurons and cardiac myocytes, Ca2+ entry across the 

plasma membrane is mostly through voltage-operated Ca2+ channels (VOCCs) activated 

by membrane depolarization. In electrically nonexcitable cells, Ca2+ entry is mediated by 

other channel types including store-operated Ca2+ channels (SOCCs), second messenger-

operated Ca2+ channels (SMOCCs), and receptor-operated Ca2+ channels (ROCCs).  

Store-operated Ca2+ channels (SOCCs): The study of Ca2+ entry in 

nonexcitable cells has been largely dominated by the so-called store-operated Ca2+ 

channels. Activation of these channels is, by definition, exclusively dependent on the 

depletion of internal ER Ca2+ stores (Putney, Jr., 1986). Although the store-operated 
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mode of Ca2+ entry was first described more than two decades ago, the molecular nature 

of such channels has remained enigmatic. However, recently the stromal interacting 

molecule proteins (STIM1) and the pore forming protein-Orai were identified through 

candidate-based and genome wide RNAi screens in Drosophila S2 cells(Zhang et al., 

2005a; Prakriya et al., 2006). It is now well established that STIM proteins are the ER 

Ca2+ sensors, which primarily locate on ER membrane, sense the depletion of Ca2+ from 

ER, oligomerize, translocate to junctions adjacent to the plasma membrane, organize Orai 

channels into clusters and open the channels to bring about Ca2+ entry(Putney, Jr., 2007). 

Store-operated Ca2+ entry has been observed in almost every type of cell examined, yet 

the roles of SOCCs in physiologically relevant responses have largely been limited to 

studies in lymphocytes (Lewis and Cahalan, 1989)and mast cells (Hoth and Penner, 

1992). Previous studies in our laboratory have also demonstrated that STIM and Orai are 

essential for sheath cell and spermatheca contractile activity required for ovulation and 

knockdown of stim-1 or orai-1 causes complete sterility in C. elegans (Yan et al., 2006; 

Lorin-Nebel et al., 2007). In other cell types, the relevance of SOCCs to actual 

physiological responses is far from clear. SOC entry has been proposed to function as a 

failsafe mechanism to prevent Ca2+ store depletion under pathophysiological and stress 

conditions (Yan et al., 2006). 

Second messenger-operated Ca2+ channels (SMOCCs): One of the most well 

characterized examples of SMOCCs is arachidonate-regulated Ca2+ channels (ARC) 

discovered by T. Shuttleworth and colleagues about 10 years ago (Mignen and 

Shuttleworth, 2000).  Recent studies have demonstrated that the molecular composition 

of the ARC channels also involves members of the Orai proteins. Mammalian Orai1 and 
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Orai3 appear to contribute to form the ARC channel pore (Mignen et al., 2009). ARC 

channels are shown to provide the predominant route of Ca2+ entry, particularly at lower, 

more physiologically relevant, levels of stimulation (Shuttleworth, 2004). Under these 

conditions, activation of the cells often results in the generation of oscillatory Ca2+ 

signals, and here the principal role of Ca2+ entry is to modulate the frequency of Ca2+ 

oscillations (Girard and Clapham, 1993; Bootman et al., 1996; Shuttleworth and 

Thompson, 1996).  

Receptor-operated Ca2+ channels (ROCCs): Activation of hormone-specific 

receptors on the plasma membrane not only leads to generation of second messenger IP3, 

which then mobilizes Ca2+ from internal Ca2+ store, but also can activate plasma 

membrane Ca2+ channels that mediate Ca2+ entry from external space. These channels are 

referred to as receptor-operated Ca2+ channels. The mechanisms through which these 

channels are activated are highly variable and, in some cases, remain controversial. Many 

of these channels belong to the large transient receptor potential (TRP) ion channel 

family.  

 

 

The TRP channel superfamily 

 

 

TRP channels: a brief overview 

The transient receptor potential (TRP) protein superfamily consists of a diverse 

group of cation channels that bear structural similarities to Drosophila TRP. TRP 
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channels appear to assemble as homo- or heterotetramers of subunits containing six 

putative transmembrane domains and cytoplasmic N- and C-terminal tails (Figure 2). 

Based on amino acid homology, the mammalian TRP superfamily can be divided into six 

subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), 

TRPP (polycystin), and TRPML (mucolipin). Despite the structural similarities, TRP 

channels are distinct from the known families of ion channels in that they display a wide 

array of cation selectivities, activation mechanisms, and physiological functions 

(Pedersen et al., 2005; Owsianik et al., 2006; Venkatachalam and Montell, 2007).  

Whereas all functionally characterized TRP channels are cation channels, the 

relative cation selectivity varies among isoforms. Only two TRP channels are exclusively 

permeable to monovalent cations, but not to Ca2+ or Mg2+ (TRPM4 (Launay et al., 2002) 

and TRPM5 (Hofmann et al., 2003)), and two others are highly Ca2+ permeable (TRPV5 

(Nilius et al., 2000) and TRPV6 (Yue et al., 2001)). TRPM6 and TRPM7 are highly 

permeable to Mg2+. TRP channels are activated by a wide range of stimuli including 

intra- and extracellular messengers, physical factors such as temperature, voltage, or 

mechanical stress and chemical factors such as pH or reactive oxygen species (reviewed 

by (Pedersen et al., 2005),(Venkatachalam and Montell, 2007)). TRP channels participate 

in a diversity of cellular functions in both excitable and nonexcitable cells. They play 

critical roles in sensory modalities, such as touch, hearing, taste, olfaction, vision, and 

thermal sensation, in animals ranging from worms to flies, mice, and humans. In addition, 

TRP channels function to regulate fluid and hormone secretion, endothelial cell function 

and vascular tone, neurite outgrowth and growth cone guidance, and epithelial Ca2+ and 

Mg2+ transport. 
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TRP channels are important for human health. At least four channelopathies have 

been identified in which a defect in a TRP channel-encoding gene is the direct cause of 

disease (Table 1). Given their various roles as receptors for noxious temperature, 

chemical compounds, and inflammatory mediators, TRP channels have also been 

connected to a broad range of systemic diseases. For example, TRPV1 channel is shown 

to be involved in neuropathic pain, hyperalgesia, allodynia, and spontaneous burning pain. 

Other indications of the involvement of TRPs in disease come from correlations between 

the levels of channel expression and disease symptoms. For example, TRPM1 has been 

suggested to be a tumor suppressor and a decrease in expression of TRPM1 appears to be 

a prognostic marker for metastasis in patients with localized malignant melanoma 

(Duncan et al., 1998). Expression of TRPM8 (Zhang and Barritt, 2004) and TRPV6 

(Wissenbach et al., 2001)is reported to be up-regulated in prostate cancer.  
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Figure 2. Schematic diagram of a TRP channel subunit (A) which has cytoplasmic N- and C- terminal 
tails and six transmembrane domains with the pore forming region located between S5 and S6 and 
tetrameric assembly (B). 
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Table 1. TRP genes related channelopathies 

 

 Channelopathy References 

TRPC6 Focal and segmental 

glomerulosclerosis 

(Reiser et al., 2005; Winn et al., 2005) 

TRPM6 Hypomagnesemia with secondary 

hypocalcemia (HSH) 

(Schlingmann et al., 2002; Walder et al., 

2002) 

TRPP2 Autosomoal dominant polycystic 

kidney disease 

(Sutter and Germino, 2003) 

TRPML1 Mucolipidosis IV (Raychowdhury et al., 2004) 
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Roles of TRP channels in calcium signaling  

Changes in the cytoplasmic Ca2+ concentrations control numerous fundamental 

cellular processes including muscle contraction, transmitter release, gene transcription, 

cell proliferation and cell death (Berridge et al., 2000). Many TRP channels play an 

important role in Ca2+ signaling and they contribute to intracellular Ca2+ changes by 

providing plasma membrane Ca2+ entry pathways, by modulating the driving force for the 

Ca2+ entry, and also by providing pathways for Ca2+ release from intracellular organelles. 

The Ca2+ influx channels of the TRP family are comprised of all the TRPCs, all 

TRPVs, TRPM1, 2, 3, 6, 7 and 8, TRPA1, TRPP2, 3, and 5 and TRPML1, 2, and 3 

(Pedersen et al., 2005; Owsianik et al., 2006). These TRP channels provide important 

Ca2+ entry pathways across the plasma membrane in various cell types and regulate a 

plethora of Ca2+-dependent cell functions ranging from gene expression to cell death.  

Some TRP channels contribute to cellular Ca2+ changes by modulating the driving 

force for Ca2+ influx. The widely expressed TRPM4 channel appears to function as a 

brake on Ca2+ influx in many nonexcitable cells. TRPM4 channels are voltage-modulated, 

Ca2+ activated and selective for mono-valent cations. Activation of TRPM4 following 

receptor-mediated Ca2+ mobilization was shown to depolarize the membrane potential 

and, with it, decrease the driving force for Ca2+ entry through other calcium channels 

(Launay et al., 2002). Nonselective TRPC3 channels have recently been shown to couple 

to the Na+/Ca2+ exchanger (NCX1) both physically and functionally, such that Na+ entry 

via TRPC3 leads to reverse mode operation of NCX1 resulting in an increase in 

intracellular Ca2+  (Rosker et al., 2004). 
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A number of recent studies indicate that members of the TRP superfamily 

including TRPV1 (Turner et al., 2003), TRPM2 (Lange et al., 2009), and TRPM8 (Zhang 

and Barritt, 2004) may function as intracellular Ca2+  release channels in addition to their 

roles as plasma membrane Ca2+ channels. Some of the less studied TRP channels, 

including TRPML1 (Raychowdhury et al., 2004) and TRPP2 (Koulen et al., 2002), 

appear to be mainly localized on intracellular membranes and have been proposed to 

serve as a new type of Ca2+ release channel.  

 

 

Regulation of TRP channels by PI(4,5)P2 

TRP channels are regulated by a broad variety of stimuli, but recent evidence 

suggests that a common theme is their modulation by lipid messengers, and in particular 

by phosphatidylinositol 4, 5-bisphosphate (PIP2) (Nilius et al., 2008). PI(4,5)P2 is largely 

confined to the cytoplamic leaflet of the plasma membrane, where it constitutes about 1% 

of the total cellular phospholipids and forms the precursors of important signaling 

molecules such as IP3, DAG and PIP3 (McLaughlin and Murray, 2005). Importantly, PIP2 

itself is a signaling molecule that modulates the functions of various ion channels and 

transporters (Gamper and Shapiro, 2007; Suh and Hille, 2008). The first channel shown 

to be modulated by PIP2 was the ATP-inhibited inwardly rectifying K+ (Kir) channel 

(Hilgemann and Ball, 1996). All members of the Kir channel family and the KCNQ 

(Kv7.x) voltage gated K+ channel family have now been shown to require the presence of 

PIP2 for activity (Logothetis et al., 2007; Suh and Hille, 2008). In this section, I will 
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summarize the current knowledge on the modes of modulation of TRPs by PIP2 and the 

mechanisms of interaction between TRPs and PIP2. 

 A large number of TRP channels that have been reported to be regulated by PIP2 

(reviewed by (Nilius et al., 2008)). However, the effects of PIP2 are quite variable 

between members of the TRP superfamily. Below I will discuss the specific roles of PIP2 

in the regulation of TRP channels in detail. 

PIP2 and TRPM channels 

The picture of PIP2 regulation is probably the clearest among TRPM channels, yet 

there are a number of apparent contradictions. Published reports indicate that PIP2 

activates three members of the mammalian TRPM subfamily: TRPM4, TRPM5, and 

TRPM8 (Zhang et al., 2005b; Liu and Liman, 2003b; Liu and Qin, 2005; Zhang et al., 

2005c; Rohacs et al., 2005; Nilius et al., 2006). PIP2 is required for channel activity and 

the breakdown of PIP2 upon activation of PLC leads to current rundown. Application of 

exogenous PIP2 both activates the channels directly and restores current rundown.  

Similar PIP2 regulation of TRPM7 has been proposed by Runnels et al (Runnels 

et al., 2002). They have shown that depletion of PIP2 by Gq coupled receptors inhibits 

TRPM7, and PIP2 stimulates single channel activity. However, Takezawa et al. 

challenged this conclusion by showing that activation of Gq coupled thrombin receptor 

had no effect on TRPM7 activity, which suggests that PLC mediated PIP2 hydrolysis is 

not a major regulator of TRPM7 (Takezawa et al., 2004). This discrepancy may depend 

on TRPM7 expression level as suggested by Takezawa et al. Furthermore, Langeslag et 

al. observed that in perforated patch experiments, stimulation of PLC-activating receptors 
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causes TRPM7 opening rather than closure, which suggests that PIP2 might play dual 

roles in regulating TRPM7 function (Langeslag et al., 2007). 

PIP2 and other TRP channels 

Additional studies have indicated interactions between PIP2 and other TRP 

channels. PIP2 both activates and inhibits TRPV1 and the mode of action is dependent on 

the degree of stimulation by channel agonists such as capsaicin (Lukacs et al., 2007b). 

TRPV5 and TRPV6, on the other hand, were reported to be activated by PIP2 (Lukacs et 

al., 2007b; Lee et al., 2005; Thyagarajan et al., 2008). TRPC channels and their non-

mammalian homologues are activated by G protein coupled receptors that activate PLC 

and hydrolyze PIP2. The exact mechanism of how PLC activates these channels and the 

role of PIP2 are not clear, and both could be diverse with-in the subfamily. Drosophila 

TRPL and mammalian TRPC4 channels were reported to be inhibited by PIP2 (Estacion 

et al., 2001; Otsuguro et al., 2008). TRPC3, 6 and 7 have been shown to be activated by 

PIP2 (Lemonnier et al., 2008; Kwon et al., 2007). However, PIP2 has also been reported to 

have an inhibitory effect on native TRPC6 activity in mesenteric artery myocytes (Albert 

et al., 2008). The effect of PIP2 on TRPC5 is complex. Inclusion of PIP2 in the patch 

pipette inhibited TRPC5 current. Paradoxically, when single channel activity is examined 

in excised patches, the channels are robustly activated by PIP2. The authors proposed that 

PIP2 might have two distinct functions in regulating TRPC5 channel activity (Trebak et 

al., 2009). 

Little data are available on PIP2 regulation of more distantly related TRP channel 

subfamilies. TRPP2 or PKD2 is inhibited by PIP2 and EGF activates TRPP2 by PIP2 

breakdown and the ensuing relief from this inhibition (Ma et al., 2005). The situation is 
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controversial for TRPA1. Two studies have shown that PIP2 activates (Karashima et al., 

2008) or inhibits TRPA1 activity (Kim et al., 2008b), respectively, suggesting that PIP2 

might have a dual effect on TRPA1 activity.  

How does PIP2 interact with TRP channels?  

The head-group of PIP2 has a high negative charge density and therefore it is 

likely to electrostatically interact with proteins that have clustered positive residues. At 

this point, there are experimental data suggesting the existence of multiple distinct types 

of PIP2 interaction sites in the TRP family, all of which are characterized by an 

abundance of positively charged residues (summarized in Figure 3). 

The TRP domain in the proximal C terminus is the most conserved region of TRP 

channels among the TRPC, TRPV and TRPM families. Mutations of positively charged 

residues in this domain reduce in the apparent affinity of PIP2 activation of TRPM8, 

TRPV5 and TRPM5 channels, suggesting that these residues are critical in TRP-PIP 

interactions(Rohacs et al., 2005). 

Neutralization of the equivalent residues in TRPM4 does not have significant 

effects on PIP2 sensitivity of the channel. A more distal C-terminal region, which also 

contains clusters of positively charged residues, was shown to play critical roles in 

channel activation by PIP2 (Zhang et al., 2005b; Zhang et al., 2005c). Similarly, a region 

containing eight positive charges in the C terminus of TRPV1 was identified as a possible 

PIP2 interaction site responsible for PIP2-mediated channel inhibition (Prescott and Julius, 

2003).  

Kwon et al. found that neutralization of basic residues in the calmodulin binding 

site of TRPC6 affected PIPs (including PIP2 and PIP3) binding and channel function, and 
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that PIPs disrupts the interaction between calmodulin and the C-terminus of the channel, 

suggesting that PIPs interact directly with the calmodulin-binding site (Kwon et al., 2007). 

Otsuguro et al studied the effects of PIP2 on two different splice isoforms of TRPC4 and 

found that TRPC4 is inhibited by PIP2, whereas TRPC4, which lacks 84 amino acids 

(84AA) in the C terminus, is PIP2 insensitive. This suggests that this stretch of 84 AA 

contains all or part of a PIP2 interaction site (Otsuguro et al., 2008).  

Clearly, there is a considerable variability in the putative PIP2 interacting sites 

among the TRP channel superfamily, and yet another layer of complexity could be added 

to the mechanisms of TRP-PIP2 interaction. Recent evidence indicates that PIP2-

dependent regulation of TRPV1 occurs through an accessory protein, Pirt. PIP2-binding is 

dependent on a cluster of basic residues in the C terminus of Pirt, and this binding 

enhances TRPV1 channel activity (Kim et al., 2008a). These results indicate that 

mutations that alter the interaction between the channel and a PIP2-binding accessory 

protein would also alter the PIP2 sensitivity of the channel and therefore putative PIP2-

interacting sites defined purely by mutagenesis studies should be carefully interpreted. 

In summary, regulation by PIP2 represents a general mechanism for modulation of 

the majority of TRP channels. There is strong evidence that PIP2 can activate a variety of 

TRP channels (TRPC3, TRPM4, 5, 8 and TRPV5, 6), and possibly also inhibit others 

(TRPC4, TRPP2, dTRPL/TRP). PIP2 may interact with TRP channels through disparate 

PIP2-binding sites or through accessory PIP2-binding proteins. However, we are only 

starting to understand the variety and importance of PIP2-TRP interactions. Little is 

currently known about the physiological implications of PIP2-TRP interactions and how 

binding of PIP2 influences TRP channel gating. Individual TRP channel-PIP2 interactions 
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have to be studied in detail to reveal their physiological roles. We would anticipate 

answers to the latter question arising through the study of reconstituted channel activity 

in pure systems and ultimately by high-resolution structures of TRP channels. 
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Figure 3. Schematic diagram of PIP2 interacting sites on TRP channels. Known binding sites of PIP2 
on TRP channels are shown and their localizations are indicated. 
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IP3-dependent Ca2+ signaling in the nematode C. elegans 

 

 

Functions of the IP3 receptor in C. elegans  

Inositol 1,4,5-trisphosphate (IP3) activates receptors (IP3Rs) that mediate 

intracellular Ca2+ release, thereby modulating intracellular calcium signals and regulating 

important aspects of cellular physiology and gene expression (Berridge, 1993). A single 

gene, itr-1, encodes the IP3R in C. elegans (Dal Santo et al., 1999). The IP3R protein 

(ITR-1) is approximately 42 % identical with known IP3Rs and possesses conserved 

structural features. When the putative IP3 binding domain was expressed in E. coli, 

specific binding of IP3 was detected (Baylis et al., 1999). ITR-1 is strongly expressed in 

the C. elegans intestine, pharynx, nerve ring, excretory cell and gonad (Baylis et al., 1999) 

and it functions to regulate several physiological processes including the defecation cycle 

(Dal Santo et al., 1999), pharyngeal pumping (Walker et al., 2002), ovulation and 

fertility(Yin et al., 2004), epidermal cell migration during embryogenesis (Thomas-

Virnig et al., 2004), and male mating behavior (Gower et al., 2005). The high degree of 

structural and functional conservation of IP3Rs from nematodes to mammals 

demonstrates that C. elegans can be utilized as a model system for studies on IP3R 

mediated signaling.  
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IP3-dependent Ca2+ oscillations in the intestine control rhythmic C. elegans 
defecation  
 

The digestive tract of C. elegans consists of a pharynx, intestine and rectum 

(Figure 4A). C. elegans is a filter feeder and the pharynx is a muscular organ that pumps 

food into the pharyngeal lumen, grinds it up and then moves it into the intestine. Twenty 

epithelial cells with extensive apical microvilli form the main body of the intestine, which 

is approximately 750μm long in a full-grown adult worm. Intestinal cells are filled with 

numerous granules that likely contain lipids, proteins, and carbohydrates. 

C. elegans exhibits a number of relatively simple stereotyped behaviors that have 

formed the bases for powerful forward genetic screens. The defecation cycle is one such 

behavior. While they are feeding, nematodes defecate rhythmically once every 45-50 

seconds with little variation (Figure 4B). Defecation is initiated by contraction of the 

posterior body wall muscles (pBoc). After relaxation of these muscles, the anterior body 

wall muscles contract (aBoc) and then expulsion occurs by enteric muscle contraction 

(Emc)(Thomas, 1990). Laser ablations experiments identified two motor neurons that are 

required for the contraction of the anterior body wall and the enteric muscles(McIntire et 

al., 1993). In contrast, extensive neuronal laser ablation and mutations that disrupt 

neurotransmission have no effect on the posterior body wall contraction, suggesting that 

neuronal mechanisms do not regulate this part of the cycle.   

It is now well established that pBoc rhythm is largely controlled by rhythmic Ca2+ 

oscillations in the C. elegans intestine. A proposed model is illustrated in Figure 5. IP3-

depedent Ca2+ oscillations may control the secretion of protons from the intestinal 

epithelium that act on H+ gated ion channels in neighboring muscle cells and triggers 

 21



contraction of the surrounding posterior body wall muscles (pBoc) that drives defecation 

(Dal Santo et al., 1999; Espelt et al., 2005a; Pfeiffer et al., 2008; Beg et al., 2008). 
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Figure 4. Cartoon illustrating muscle contractions that mediates C. elegans defecation. (A) Schematic 
diagram of the C. elegans digestive tract. Twenty epithelial cells with extensive apical microvilli form 
the main body of the intestine. (B) Diagram illustrating muscle contractions that mediates defecation. 
Cycle is mediated by sequential contraction of the posterior body wall muscles (pBoc), the anterior 
body wall muscles contract (aBoc) and the enteric muscles (Emc). The cycle repeats itself every 45-50 
sec. 
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Figure 5. Role of intestinal Ca2+ oscillations in regulating C. elegans pBoc rhythm. A model has been 
proposed to illustrate possible role of intracellular Ca2+ in regulating defecation cycle. Cyclical 
elevation of cytoplasmic Ca2+ levels is driven by IP3-dependent intracellular Ca2+ release. Increased 
Ca2+ concentration triggers proton secretion through the Na+/H+ exchanger. H+ then acts at proton 
gated ion channels in the muscle cells and induces muscle contraction. The cycle repeated itself once 
every 50 sec. 
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Develop C. elegans intestine as a model system to study the molecular mechanisms 
of Ca2+ oscillations in nonexcitable cells 
 

Genetic model organisms provide a number of powerful experimental advantages 

for defining the genes and genetic pathways involved in biological processes such as Ca2+ 

signaling. The nematode C. elegans is a particularly attractive model system. C. elegans 

is well suited for mutagenesis and forward genetic analysis and has a fully sequenced and 

well annotated genome. Gene expression in nematodes is relatively easy and economical 

to manipulate using RNA interference (RNAi), knockout, and transgenesis (Strange, 

2003). To study oscillatory Ca2+ signaling events directly, we developed an isolated 

intestine preparation that allows physiological access to the intestinal epithelium. We 

have previously shown that isolated intestines exhibit spontaneous, rhythmic Ca2+ 

oscillations that occur with the same frequency as pBoc.  

Physiological and genetic analyses demonstrate that rhythmicity of the intestinal 

Ca2+ oscillations require the combined function of PLC and PLC homologues and the 

IP3 receptor. PLC functions primarily to generate IP3 that regulates IP3R activity while 

PLC function in a separate, yet to be defined pathway. The molecular and genetic 

tractability of C. elegans combined with the physiological accessibility of the isolated 

intestine preparation provides a powerful new model system in which to develop an 

integrated genetic and molecular understanding of oscillatory Ca2+ signaling. Mutations 

in intestine-expressed genes that disrupt the pBoc and Ca2+ oscillation rhythm are likely 

to play a role in IP3-dependent oscillatory Ca2+ signaling in the intestinal cells. 
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C. elegans intestinal cells express store-independent and store-operated Ca2+ 
conductances    
 

As noted above, the C. elegans intestine provides a unique model system in which 

to characterize the molecular details of IP3-dependent oscillatory Ca2+ signaling. Our 

laboratory developed methods to culture C. elegans embryonic cells. Isolated embryonic 

cells differentiate within 24 h into the various cell types that form the newly hatched L1 

larva and this allows direct electrophysiological characterization of C. elegans somatic 

cells (Christensen et al., 2002). Culturing embryo cells from worms expressing cell-

specific GFP reporters allows identification of differentiated cell types. The C. elegans 

elt-2 gene encodes a gut-specific GATA transcription factor. When ectopically 

expressing elt-2::GFP in intact animals, the transgene is only expressed in nuclei of cells 

from the gut lineage (Fukushige et al., 1998). Primary cultures were prepared from 

worms strains expressing elt-2::GFP transgene. Figure 6 shows combined DIC and 

fluorescence micrographs of a transgenic worm expressing elt-2::GFP (left) and an 

intestinal epithelial cell (right) cultured from elt-2::GFP expressing worms (Estevez et al., 

2003). The cytoplasm of the cultured intestinal cells contains numerous granules (Figures 

6A and 6B, arrowheads), which is a prominent characteristic that also allows 

identification of these cells in culture. 
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Figure 6. Primary culture of C. elegans intestinal cells. Images are overlays of differential 
interference contrast (DIC) and fluorescence micrographs of a transgenic worm (A) and a cultured 
intestinal cell (B) expressing elt-2::GFP in the cell nucleus. GFP fluorescence is shown in green. Scale 
bar are 10m and 2.5 m for the whole animal and the cultured intestinal cell, respectively. Em, 
developing embryo in uterus; Oo, oocyte in proximal gonad; IC, intestinal cell; N, intestinal cell 
nucleus. Arrow heads denote refractile granules. 
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To begin defining the functional roles and regulation of calcium channel involved 

in Ca2+ signaling events, Estevez et al. performed patch clamp analysis of intestinal cells 

cultured in vitro and identified two highly Ca2+-selective conductances in the cultured 

intestinal cells (Estevez et al., 2003). One conductance, IORCa, is constitutively active, 

exhibits strong outward rectification, is 60~70-fold more selective for Ca2+ than Na+, is 

inhibited by intracellular Mg2+ with a K1/2 of 692 μM, and is insensitive to Ca2+ store 

depletion. Detailed characterization of the ORCa channel reveals that it has similar 

biophysical properties as TRPM7 channels observed in mammalian cells (Figure 7). The 

biophysical similarities between TRPM7 currents and ORCa suggest that the channels 

may have a common molecular origin. 

Inhibition of IORCa with high intracellular Mg2+ concentrations revealed the 

presence of a small amplitude conductance that is activated by depletion of intracellular 

Ca2+ stores. The store-operated conductance resembles the Ca2+ release activated channel 

(ICRAC) current (Estevez et al., 2003). Recent studies in our laboratory have demonstrated 

that C. elegans CRAC channel activity is mediated by ORAI-1 and STIM-1 proteins. 

RNAi mediated-suppression of either ORAI-1 or STIM-1 fully inhibits ICRAC without 

affecting the pBoc cycle and Ca2+ oscillations in isolated intestine (Yan et al., 2006; 

Lorin-Nebel et al., 2007). This suggests that store-operated calcium entry (SOCE) is not 

essential for intestinal IP3-dependent oscillatory Ca2+ signaling. The focus of this thesis 

work is to determine the molecular identity of the ORCa channel and to define its role in 

oscillatory Ca2+ signaling.  
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Figure 7. Whole cell ORCa current recorded in cultured C. elegans intestinal cells. (A) Whole-cell 
outwardly rectifying Ca2+ (ORCa) currents recorded from a cultured intestinal cell. Currents were 
elicited by stepping membrane voltage from -100 mV to +100 mV in 20 mV steps from a holding 
potential of 0 mV. Voltage steps were 400 msec long. (B) Steady-state I-V relationship for the whole-
cell currents shown in A.  
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Summary of chapter I 

 

Fluctuating intracellular Ca2+ concentrations control numerous cellular processes. 

Keeping this in mind, it is not surprising that abnormal intracellular Ca2+ homeostasis 

leads to a plethora of diseases. Over the last two decades, physiologists have gained 

impressive understanding of Ca2+ signaling events, although many fundamental questions 

remain unanswered. The nematode C. elegans offers substantial experimental advantages 

to study Ca2+ signaling events. C. elegans pBoc is an easily observable and quantifiable 

behavior that is controlled by intestinal Ca2+ oscillations. The central focus of my thesis 

work is to determine the molecular identity of the plasma membrane ORCa channel in C. 

elegans intestinal cells, define its roles in regulating intestinal Ca2+ oscillations, and study 

how the channel is regulated. Given that ORCa current shares similar biophysical 

properties as TRPM currents in mammalian cells, we hypothesized that ORCa may have 

a common molecular origin as mammalian TRPM channels and focused our study on 

characterizing the roles of C. elegans TRPM homologues in regulating IP3-dependent 

oscillatory signaling pathway. Our long-term goal is to utilize the powerful forward and 

reverse genetic screens of pBoc to identify the genes, gene networks, and molecular 

mechanisms that underlie intestinal Ca2+ oscillations, which are common to eukaryotic 

nonexcitable cells. Thorough molecular understanding of Ca2+ signaling will lead to a 

better understanding of numerous diseases related to disruption of Ca2+ homseostasis.  
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CHAPTER II 

 

 

HIGHLY CA2+-SELECTIVE TRPM CHANNELS REGULATE IP3-DEPENDENT 
OSCILLATORY CA2+ SIGNALING IN THE C. ELEGANS INTESTINE.  

 

 

This paper has been published under the same title in J Gen Physiol. 131(3):245-55. 

 

 

Summary 

Posterior body wall muscle contraction (pBoc) in the nematode Caenorhabditis 

elegans occurs rhythmically every 45–50 s and mediates defecation. pBoc is controlled 

by inositol-1,4,5-trisphosphate (IP3)–dependent Ca2+ oscillations in the intestine. The 

intestinal epithelium can be studied by patch clamp electrophysiology, Ca2+ imaging, 

genome-wide reverse genetic analysis, forward genetics, and molecular biology and thus 

provides a powerful model to develop an integrated systems level understanding of a 

nonexcitable cell oscillatory Ca2+ signaling pathway. Intestinal cells express an outwardly 

rectifying Ca2+ (ORCa) current with biophysical properties resembling those of TRPM 

channels. Two TRPM homologues, GON-2 and GTL-1, are expressed in the intestine. 

Using deletion and severe loss-of-function alleles of the gtl-1 and gon-2 genes, we 

demonstrate here that GON-2 and GTL-1 are both required for maintaining rhythmic 

pBoc and intestinal Ca2+ oscillations. Loss of GTL-l and GON-2 function inhibits IORCa
 

70% and 90%, respectively. IORCa is undetectable in gon-2;gtl-1 double mutant cells. 
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These results demonstrate that (a) both gon-2 and gtl-1 are required for ORCa channel 

function, and (b) GON-2 and GTL-1 can function independently as ion channels, but that 

their functions in mediating IORCa are interdependent. IORCa, IGON-2, and IGTL-1 have nearly 

identical biophysical properties. Importantly, all three channels are at least 60-fold more 

permeable to Ca2+ than Na+. Epistasis analysis suggests that GON-2 and GTL-1 function 

in the IP3 signaling pathway to regulate intestinal Ca2+ oscillations. We postulate that 

GON-2 and GTL-1 form heteromeric ORCa channels that mediate selective Ca2+ influx 

and function to regulate IP3 receptor activity and possibly to refill ER Ca2+ stores. 

 

 

Introduction 
 

The genetic model organism Caenorhabditis elegans provides numerous 

experimental advantages for developing an integrative genetic and molecular 

understanding of fundamental physiological processes (Barr, 2003; Strange, 2003). These 

advantages include a short life cycle, forward genetic tractability, a fully sequenced and 

well-annotated genome and relative ease and economy of characterizing gene function 

using transgenic and RNA interference methods.   

C. elegans intestinal epithelial cells generate rhythmic inositol 1,4,5-trisphosphate 

(IP3)-dependent Ca2+ oscillations that control posterior body wall muscle contraction 

(pBoc) (Dal Santo et al., 1999; Teramoto and Iwasaki, 2006; Espelt et al., 2005b; Peters 

et al., 2007). pBoc is part of a motor program that mediates defecation and can be 

observed readily through a dissecting microscope making it amenable to forward and 

reverse genetic screening (Thomas, 1990; Liu and Thomas, 1994; Iwasaki et al., 1995).  

 32



Intestinal Ca2+ signaling can be quantified by imaging methods in isolated intestines 

(Espelt et al., 2005b; Teramoto and Iwasaki, 2006; Peters et al., 2007) or in vivo using 

genetically encoded Ca2+ indicators (Teramoto and Iwasaki, 2006; Yan et al., 2006; 

Peters et al., 2007).  Recent development of primary cell culture methods (Christensen et 

al., 2002; Strange et al., 2007) has made it possible to characterize intestinal ion channels 

using patch clamp methods. The ability to combine direct physiological measurements of 

IP3–dependent oscillatory Ca2+ signals and associated ion channel activity with forward 

and reverse genetic screening is unique to C. elegans. The worm intestinal epithelium 

thus provides a powerful model system in which to define the genetic and molecular 

details and integrative physiology of oscillatory Ca2+ signaling in nonexcitable cells.   

Intestinal Ca2+ oscillations are strictly dependent on Ca2+ release from the 

endoplasmic reticulum (ER) via ITR-1, the single IP3 receptor encoded by the C. elegans 

genome (Dal Santo et al., 1999; Teramoto and Iwasaki, 2006; Espelt et al., 2005b).  

Extensive studies in vertebrate (reviewed by (Hogan and Rao, 2007; Venkatachalam et al., 

2002; Parekh and Putney, 2005) and Drosophila cells (Yeromin et al., 2004) have 

demonstrated that depletion of ER Ca2+ stores activates store-operated Ca2+ channels 

(SOCCs). SOCCs are widely believed to be an essential and ubiquitous component of 

Ca2+ signaling pathways, functioning to refill ER Ca2+ stores and modulate intracellular 

Ca2+ signals (e.g., (Hogan and Rao, 2007; Venkatachalam et al., 2002; Parekh and Putney, 

2005). The most egxtensively studied and characterized SOCC is the Ca2+ release 

activated Ca2+ (CRAC) channel (Parekh and Putney, 2005).  The CRAC channel pore is 

comprised of Orai1/CRACM and channel activation is mediated by STIM1, which 

 33



functions as an ER Ca2+ sensor (reviewed by (Hogan and Rao, 2007; Lewis, 2007; Putney, 

Jr., 2007).   

C. elegans intestinal cells express robust CRAC channel activity (Estevez et al., 

2003). RNAi silencing of orai-1 or stim-1, which encode worm Orai1/CRACM and 

STIM1 homologues, dramatically reduces CRAC channel expression and function, but 

surprisingly has no effect on intestinal Ca2+ signaling (Yan et al., 2006; Lorin-Nebel et al., 

2007). These findings suggest that CRAC channels are not essential components of IP3-

dependent Ca2+ signaling in the intestine and indicate that other Ca2+ entry mechanisms 

must function to maintain intestinal Ca2+ oscillations.   

In addition to CRAC channels, intestinal cells express a store-independent 

outwardly rectifying Ca2+ (ORCa) channel that has biophysical properties resembling 

those of mammalian TRPM channels (Estevez et al., 2003). Three TRPM homologues 

are encoded by the C. elegans genome, GON-2 (abnormal gonad development), GTL-1 

(gon-2 like 1) and GTL-2 (Baylis and Goyal, 2007; Kahn-Kirby and Bargmann, 2006). 

They share approximately 23% identity with TRPM1, TRPM3, TRPM6 and TRPM7 

(Baylis and Goyal, 2007). The conserved structural motifs in these channels are the 

transmembrane domains, the TRP domain and portions of the cytoplasmic N-terminus. 

GFP reporter studies have demonstrated that intestinal cells express gon-2 and gtl-1 

(Teramoto et al., 2005); cited as unpublished observations in (Baylis and Goyal, 

2007)WormBase; http://www.wormbase.org/). The goal of the present study was to 

define the roles these genes play in intestinal Ca2+ signaling. Our results demonstrate that 

GON-2 and GTL-1 are both required for ORCa channel activity and for maintaining 

rhythmic Ca2+ oscillations. We propose that gon-2 and gtl-1 encode the ORCa channel. 
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We also suggest that ORCa channels comprise a major Ca2+ entry pathway in intestinal 

epithelial cells and that they function to regulate IP3 receptor activity and refill ER Ca2+ 

stores.   

 

 

Material and methods 

 

 

C. elegans strains 

Nematodes were cultured using standard methods on Nematode Growth Medium 

(NGM) (Brenner, 1974). Wild type worms were the Bristol N2 strain or elt-2::gfp worms 

that express a transcriptional GFP reporter in intestinal cell nuclei. Worms homozygous 

for the gon-2 loss-of-function allele gon-2(q388) or the gtl-1 deletion allele gtl-1(ok375) 

were used for studies of GON-2 and GTL-1 function. gon-2;gtl-1 double mutant worms 

were generated by crossing the gtl-1(ok375) and gon-2(q388) strains (Teramoto et al., 

2005). The gon-2;gtl-1 double mutant worm strain exhibits greatly slowed larval 

development on NGM. To improve development and fertility sufficiently for experiments 

to be performed, double mutants were grown on NGM supplemented with 20 mM Mg2+ 

(see (Teramoto et al., 2005). All worm strains were maintained at 16-20 C. Growth 

temperatures used in specific experiments are described below.   
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Construction of transgenic worms 

Full-length gtl-1 cDNA was a genenous gift from Dr. Howard Baylis. 

Translational GFP reporter was generated using a PCR-fusion based method (Hobert, 

2002) and expression of the GFP reporter was driven by 2kb of promoter sequence 

upstream of the gtl-1 start codon. This sequence was amplified by PCR from C. elegans 

N2 genomic DNA. Transgenic worms were generated by DNA microinjection as 

described by Mello et al. using rol-6 as a transformation marker (Mello et al., 1991). 

 

 

Characterization of pBoc cycle  

gon-2(q388) is a temperature sensitive allele and the mutant phenotype is 

observed at growth temperatures of 25 C (Sun and Lambie, 1997).  For posterior body 

wall muscle contraction (pBoc) measurements, eggs from wild type and mutant worm 

strains were cultured in a 25 C incubator until adulthood. The times required for wild 

type, gon-2 mutant, gtl-1 mutant and double mutant worms to reach adulthood at 25 C 

were 2-3 days, 3-4 days, 3-4 days and 5 days, respectively.   

pBoc was monitored by imaging worms on growth agar plates using a Zeiss Stemi 

SV11 M2BIO stereo dissecting microscope (Kramer Scientific Corp., Valley Cottage, NY) 

equipped with a DAGE-MTI (Michigan City, IN) DC2000 CCD camera.  A minimum of 

ten pBoc cycles was measured in each animal. Measurements were performed at a room 

air temperature of 22-23 C. Agar temperature was monitored during the course of pBoc 

measurements using a thermistor (Model 4600, Yellow Springs Instruments, Yellow 

Springs, OH) and was 24-25 C.   
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Dissection and fluorescence imaging of intestines 

Worms were cultured as described above for pBoc measurements. Calcium 

oscillations were measured in isolated intestines as described previously (Figure 8) 

(Espelt et al., 2005b). The C. elegans digestive tract consists of a pharynx, intestine, and 

rectum (Figure 8A). Worms were placed in control saline (137 mM NaCl, 5 mM KCl, 1 

mM MgCl2, 1 mM MgSO4, 0.5 mM CaCl2, 10 mM HEPES, 5 mM Glucose, 2 mM L-

asparagine, 0.5 mM L-cysteine, 2 mM L-glutamine, 0.5 mM L-methionine, 1.6 mM L-

tyrosine, 28 mM sucrose, pH 7.3, 340 mOsm) and cut behind the pharynx using a 26-

gauge needle. The hydrostatic pressure in the worm spontaneously extruded the intestine, 

which remained attached to the rectum and the posterior end of the animal. Isolated 

intestines were incubated for 15 min in bath saline containing 5 μM fluo-4 AM and 1% 

bovine serum albumin (BSA). Imaging was performed using a Nikon TE2000 inverted 

microscope, a Superfluor 40X/1.3 N.A. oil objective lens, a Photometrics Cascade 512B 

cooled CCD camera (Roper Industries, Duluth, GA) and MetaFluor software (Molecular 

Devices Corporation, Sunnyvale, CA). Room temperature was maintained at 25-26 C.  

Fluo-4 was excited using a 490-500BP filter and a 523-547BP filter was used to detect 

fluorescence emission. Fluorescence images were acquired at 0.2 or 1 Hz.  Changes in 

fluo-4 intensity were quantified in posterior-to-anterior moving Ca2+ waves using region-

of-interest selection and MetaFluor software (Molecular Devices Corporation). Figure 8B 

shows the differential interference contrast (DIC) micrograph (left, bright field) and 

fluorescence micrograph (right, dark field) of an isolated intestine loaded with fluo-4 AM. 

Under control conditions, isolated intestines from wild type animals exhibit spontaneous 

rhythmic intracellular Ca2+ oscillations with a period of ~ 50s (Figure 8C), which is not 
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significantly (P>0.2) different from the mean pBoc period of 56  1 sec observed in intact 

animals. 
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Figure 8. Isolated C. elegans intestines exhibited spontaneous Ca2+ oscillations. (A) Schematic 
diagrams of worm digestive tract and isolated intestine. (B) Differential interference contrast (DIC) 
and fluorescence micrographs of an isolated intestine loaded with fluo-4 AM. Bar, 20m. (C) 
Intracellular Ca2+ oscillations in an intestine isolated from a wild type worm. Images were acquired at 
5s intervals. The Ca2+ oscillation period for this intestine was 49 s. 
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C. elegans embryonic cell culture and patch clamp electrophysiology 

Newly hatched wild type and mutant worm L1 larvae were cultured at 25 C until 

adulthood. Embryonic cells were cultured for 2-3 days at 25 C on 12 mm diameter acid-

washed glass cover slips using established methods (Strange et al., 2007; Christensen et 

al., 2002). To maximize suppression of GON-2 activity, cells isolated from gon-2 and 

gon-2;gtl-1 double mutant worms were cultured in the presence gon-2 double strand 

RNA (dsRNA) using methods described previously (Yan et al., 2006; Lorin-Nebel et al., 

2007). gon-2 dsRNA was from synthesized from a 640 bp (4041-4681 bp) gon-2 cDNA 

that was amplified from a C. elegans cDNA library.  

Cover slips with cultured embryo cells were placed in the bottom of a bath 

chamber (model R-26G; Warner Instrument Corp., Hamden, CT) that was mounted onto 

the stage of a Nikon TE2000 inverted microscope. Bath temperature was maintained at 

25 C using a Warner Instruments model SC-20 dual in-line heater/cooler, a model CL-

100 bipolar temperature controller, and a PHC series heater/cooler jacket for the bath 

chamber. Cells were visualized by fluorescence and video-enhanced DIC microscopy.  

Intestinal cells were identified in culture by expression of the intestine specific reporter 

elt-2::GFP or by morphological characteristics (Fukushige et al., 1998; Estevez et al., 

2003).   

Patch electrodes were pulled from soft glass capillary tubes (PG10165-4, World 

Precision Instruments, Sarasota, FL) that had been silanized with dimethyl-dichloro silane.  

Pipette resistance was 4-7 M. Bath and pipette solutions contained 145 mM NaCl, 1 

mM CaCl2, 5 mM MgCl2, 10 mM HEPES, 20 mM glucose, pH 7.2 (adjusted with NaOH), 

and 147 mM sodium gluconate (NaGluconate), 0.6 mM CaCl2, 1 mM MgCl2, 10 mM 
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EGTA, 10 mM HEPES, 2 mM Na2ATP, 0.5 mM Na2GTP, pH 7.2 (adjusted with CsOH), 

respectively. The osmolality of bath and pipette solutions were adjusted to 345-350 

mOsm and 325-330 mOsm using sucrose.   

 Whole cell currents were recorded using an Axopatch 200B (Axon Instruments, 

Foster City, CA) patch clamp amplifier. Command voltage generation, data digitization, 

and data analysis were carried out on a 2.79 GHz Pentium computer (Dimension 9150; 

Dell Computer Corp.) using a Digidata 1322A AD/DA interface with pClamp 10 

software (Axon Instruments). Electrical connections to the amplifier were made using 

Ag/AgCl wires and 3 M KCl/agar bridges.   

Currents were elicited using a ramp or step voltage clamp protocol.  For the ramp 

protocol, membrane potential was held at 0 mV and ramped from -80 mV to +80 mV at 

215 mV/sec every 5 sec. Step changes in whole cell current were elicited by stepping 

membrane voltage from -80 to +80 mV in 20 mV steps from a holding potential of 0 mV.  

Voltage steps were maintained for 400 msec. Cell capacitances for all cells studied 

ranged from 1-4 pF.    

As we described previously, IORCa is outwardly rectifying with a strongly positive 

reversal potential (Estevez et al., 2003). In the present study, we also observed that 

currents in gon-2 and gtl-1 mutant cells reversed at strongly positive membrane potentials 

and exhibited outward rectification. Outwardly rectifying currents with reversal potentials 

<10 mV were deemed to be excessively contaminated with non-specific leak current and 

were rejected from final datasets.   

Ion substitution studies were performed by replacement of bath Na+ with various 

test cations. Cells were patch clamped initially in control bath solution until whole cell 
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current had stabilized and then switched to a Ca2+- and Mg2+-free medium containing 1 

mM EGTA.  Changes in reversal potential (Erev) were measured after replacement of 150 

mM bath NaCl with 150 mM NMDG-Cl, 130 mM NMDG-Cl and 10 mM CaCl2 or 130 

mM NMDG-Cl and 10 mM MgCl2. Liquid junction potential changes were calculated 

using pClamp 10.  Reversal potentials during ion substitution experiments were corrected 

for liquid junction potentials. Relative permeabilities were calculated from Erev changes 

as described previously (Estevez et al., 2003). 

 

 

Induction of RNA interference by double strand RNA feeding  

RNA interference was induced by feeding gon-2;gtl-1 double mutant worms 

bacteria producing double stranded RNA (dsRNA) (Figure 9) (e.g., (Kamath et al., 2000; 

Rual et al., 2004) homologous to PLC or PLC. RNAi bacterial strains were engineered 

as described previously (Figure 9) (Yin et al., 2004). Bacterial strains were streaked to 

single colonies on agar plates containing 50 µg/ml ampicillin and 12.5 µg/ml tetracycline.  

Single colonies were used to inoculate LB media containing 50 µg/ml ampicillin and 

cultures were grown at 37 °C for 16-18 h with shaking. Three hundred microliters of each 

bacterial culture were seeded onto 60 mm NGM agar plates containing 20 mM Mg2+, 50 

µg/ml ampicillin and 1 mM IPTG to induce dsRNA synthesis.  After seeding, plates were 

left at room temperature overnight. Eggs were transferred to the RNAi feeding plates and 

grown at 25 °C.   
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Timmons and Fire, 1998  
 
 
Figure 9. Induction of RNA interference following ingestion of dsRNA-expressing bacteria by C. 
elegans. (A) General scheme for dsRNA production. Segments of the target genes were cloned 
between flanking copies of the T7 promoter into a bacterial plasmid. A bacterial strain expressing the 
T7 polymerase gene was used as a host and dsRNA was produced by these bacteria. (B) A GFP-
expressing C. elegans strain (PD4251) fed on a naive bacterial host. Animals show high GFP 
fluorescence in body muscles. (C) GFP fluorescence was significantly reduced in PD4251 animals 
that were reared on bacteria expressing dsRNA corresponding to the gfp coding region  
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Statistical analysis 

Data are presented as means ± S.E.  Statistical significance was determined using 

Student’s two-tailed t test for unpaired means. When comparing three or more groups, 

statistical significance was determined by one-way analysis of variance with a Bonferroni 

post-hoc test. P values of <0.05 were taken to indicate statistical significance. The 

rhythmicity of the pBoc cycle and intestinal Ca2+ oscillations is quantified as coefficient 

of variance (CV), which is the standard deviation expressed as a percentage of the sample 

mean.   

 

 

Results 

 

 

Removal of extracellular Ca2+ causes rapid cessation of intestinal Ca2+ oscillations 

 Calcium is taken up into the ER via the sarco/endoplasmic reticulum Ca2+ ATPase 

(SERCA) while plasma membrane pumps and exchangers continuously extrude Ca2+ 

from the cell (Hogan and Rao, 2007; Berridge et al., 2003). Because of the presence of 

plasma membrane Ca2+ extrusion mechanisms, some Ca2+ will be lost from the cell 

during ER Ca2+ release. Repeated and/or prolonged ER Ca2+ release will eventually 

deplete ER Ca2+ stores and prevent further IP3–dependent Ca2+ signals unless plasma 

membrane Ca2+ entry mechanisms are also active. To determine whether such Ca2+ entry 

mechanisms are required for IP3-dependent Ca2+ signaling in the intestine, we monitored 

Ca2+ oscillations during removal of bath Ca2+. As shown in Figure 10, total intracellular 
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fluo-4 fluorescence dropped and Ca2+ oscillations ceased rapidly when extracellular Ca2+ 

was removed.  Calcium oscillations recovered when Ca2+ was added back to the bath.  

These results demonstrate that Ca2+ entry mechanisms are active in the intestine and that 

Ca2+ oscillations are strictly dependent on extracellular Ca2+ influx. Calcium entry almost 

certainly functions to refill ER stores.  In addition, Ca2+ influx may modulate IP3 receptor 

activity and/or contribute to the total increase in cytoplasmic Ca2+ concentration during 

Ca2+ oscillations.   
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Figure 10. Requirement of intestinal Ca2+ oscillations on extracellular Ca2+. Representative 
experiment showing the effect of extracellular Ca2+ removal on Ca2+ oscillations. Calcium-free 
extracellular solution was buffered with 1 mM EGTA. Removal of bath Ca2+ causes rapid inhibition 
of Ca2+ oscillations and drop in total fluo-4 fluorescence (similar results were observed in 5 out 5 
intestines). Addition of Ca2+ back to the bath causes a rapid increase in fluo-4 fluorescence and 
recovery of Ca2+ oscillations (similar results were observed in 4 out 4 intestines).   
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The TRPM channels GON-2 and GTL-1 are required for normal C. elegan pBocs  

 As discussed in the Introduction, loss of function of CRAC channels and the ER 

Ca2+ sensor STIM-1 has no effect on oscillatory Ca2+ signaling in the C. elegans 

intestines. Other channels must therefore mediate Ca2+ entry. gon-2 and gtl-1 are reported 

to be expressed in the worm intestine (Teramoto et al., 2005)cited as unpublished 

observations in (Baylis and Goyal, 2007)WormBase; http://www.wormbase.org/). We 

have generated transgenic worms expressing full-length GTL-1 fused to GFP. Expression 

was driven by ~ 2 kb of the gtl-1 promoter located upstream of the start codon. Prominent 

expression of GTL-1::GFP was detected in the apical membrane of C. elegans intestine 

(Figure 11). We then quantified pBoc and intestinal Ca2+ oscillations in animals 

harboring loss-of-function mutations in these genes.  gtl-1(ok375) is a 2,714 bp deletion 

allele that deletes all of the predicted transmembrane domains of GTL-1 and is almost 

certainly null.  gon-2(q388) is a point mutation in which glutamate 955 is mutated to 

lysine (West et al., 2001). Glutamate 955 is highly conserved in human, mouse, 

Drosophila and C. elegans TRP channels and mutation to lysine most likely causes 

temperature-sensitive disruption of a step in GON-2 synthesis (West et al., 2001).  The 

E955K mutation induces a severe loss-of-function phenotype when worms are grown at 

25 °C (Sun and Lambie, 1997; Church and Lambie, 2003). As noted earlier, the gon-

2;gtl-1 double mutant was derived from a cross of gtl-1(ok375) and gon-2(q388) worms 

(Teramoto et al., 2005).   

 Figure 12A shows pBoc cycles in individual wild type and channel mutant worms.  

Coefficients of variance were calculated as a measure of cycle rhythmicity.  Wild type 

worms exhibited a highly rhythmic pBoc cycle with coefficients of variance for 

 47

http://www.wormbase.org/)


individual animals ranging from 2-5%. In striking contrast, loss of activity of either 

channel disrupted pBoc rhythmicity. Coefficients of variance ranged from 3-33% and 7-

28% for GTL-1 and GON-2 mutant worms, respectively. Disruption of pBoc was more 

severe in the double mutant worms where coefficients of variance ranged from 10-67%.   

 pBoc cycle data are summarized in Figure 12B. Mean cycle periods and 

coefficients of variance were increased significantly (P<0.05) in gtl-1 mutant, gon-2 

mutant and double mutant worms. In addition, the mean coefficient of variance was 

significantly (P<0.01) greater in the double mutant worms compared to either GTL-1 or 

GON-2 mutant animals.   

 As discussed in the Material and Methods section, double mutant worms develop 

and reproduce poorly unless the Mg2+ concentration in the growth agar is increased to 20 

mM.  To determine whether high Mg2+ has any effect on the pBoc cycle, we grew wild 

type worms for one generation on high Mg2+ plates. Mean ± S.E. pBoc period and 

coefficient of variance were 43 ± 1 sec and 3.5 ± 0.7% (n=6), respectively, and were not 

significantly (P>0.3) different from those of worms grown on standard NGM agar (see 

Figure 12B). 
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Figure 11. GTL-1::GFP expression in the C. elegans intestine. High magnification confocal images of 
a worm intestine. GTL-1::GFP specifically localized in the apical membrane of the intestine. GFP 
micrograph (A), differential interference contrast (DIC) micrograph (B), and overlay image of both 
micrographs (C) of a worm intestine expressing GTL-1::GFP translational reporter are shown.
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Figure 12. Effect of gtl-1 and gon-2 loss-of-function mutations on pBoc period and rhythmicity. (A) 
pBoc cycles in individual wild type, GTL-1 mutant, GON-2 mutant and double mutant worms.  
Different colors and symbols represent different animals. (B) pBoc periods and rhythmicity for wild 
type and GTL-1 and GON-2 mutant worm strains. Cycle rhythmicity is quantified as coefficient of 
variance. Values are means ± S.E. (N=6-23). *P<0.05 and ***P<0.001 compared to wild type worms.  
†P<0.01 compared to GTL-1 mutant worms. ††P<0.001 compared to GON-2 mutant worms.  All worm 
strains were grown at 25 °C.   
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GTL-2 is not required for rhythmic C. elegans pBocs 

As discussed in the introduction, C. elegans have three TRPM channels. GON-2 

and GTL-1 were shown to play essential role in regulating C. elegans pBoc rhythm 

(Figure 12). We then analyzed the pBocs in gtl-2 RNAi worms. Figures 13A and 13B 

show pBoc cycles in individual wild type worms fed control RNAi or gtl-2 RNAi, 

respectively. Coefficients of variance were calculated as a measure of cycle rhythmicity.  

Wild type worms fed with both control and gtl-2 RNAi exhibited a highly rhythmic pBoc 

cycle with coefficients of variance for individual animals ranging from 4-10%. pBoc 

cycle data are summarized in Figure 13C. Mean cycle periods were 47.7 ± 1.8 sec and 

53.1 ± 0.6 sec (means ± S.E., N= 5~6) for control and gtl-2 RNAi worms, respectively. 

Coefficients of variance were 6 ± 1 % and 8 ± 1 % (means ± S.E., N= 5~6) for control and 

gtl-2 RNAi worms, respectively. Both mean cycle periods and coefficient of variance 

were not significantly different between control and gtl-2 RNAi worms. These data 

suggested that GTL-2 activity is not required for rhythmic pBocs. Hereafter, we focused 

our studies on characterizing the functions of GON-2 and GTL-1 in oscillatory Ca2+ 

signaling pathways in the C. elegans intestine. 
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Figure 13. Effect of gtl-2 RNA interference on pBoc period and rhythmicity. (A, B) pBoc cycles in 
individual wild type worms fed with control (A) or gtl-2 RNAi (B). Different colors and symbols 
represent different animals. (C) pBoc periods and rhythmicity for wild type worms feeding control or 
gtl-2 RNAi. Cycle rhythmicity is quantified as coefficient of variance. Values are means ± S.E. (N= 
5~6).
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GON-2 and GTL-1 are required for generating and maintaining rhythmic intestinal 
Ca2+ oscillations in C. elegans 
 
 As discussed in chapter I, C. elegans intestinal IP3-dependent Ca2+ oscillations 

drive pBoc (Figure 5) (Beg et al., 2008; Dal Santo et al., 1999; Teramoto and Iwasaki, 

2006; Espelt et al., 2005b; Peters et al., 2007). To determine whether GTL-1 and GON-2 

function in Ca2+ signaling, we quantified Ca2+ oscillations in intestines dissected from 

wild type and mutant animals. Calcium oscillations were arrhythmic in intestines isolated 

from GTL-1, GON-2 and double mutant worms (Figure 14A). Mean coefficients of 

variance were increased significantly (P<0.05) by 2.3-3.2 fold in the single and double 

mutants (Figure 14B). Due to intracycle and animal-to-animal variability, the mean 

oscillation periods were not significantly (P>0.05) different for the three groups of 

mutant worms and wild type animals (data not shown). Oscillation kinetics as measured 

by oscillation rise and fall times were unaffected (P>0.05) by channel mutations (data not 

shown). We conclude from data shown in Figures 12 and 14 that GTL-1 and GON-2 are 

both required for maintaining the rhythmicity of Ca2+ oscillations in the C. elegans 

intestinal epithelium.   
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Figure 14. Effect of gtl-1 and gon-2 loss-of-function mutations on intestinal Ca2+ oscillation 
rhythmicity.  (A) Calcium oscillations in single intestines isolated from wild type, GTL-1 mutant, 
GON-2 mutant and double mutant worms. (B) Calcium oscillation rhythmicity in wild type and 
mutant worm intestines. Rhythmicity is quantified as coefficient of variance.  Values are means ± S.E. 
(N=6-10).  *P<0.05 and **P<0.001 compared to wild type worms.  All worm strains were grown at 25 
°C.   
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GON-2 and GTL-1 mediate whole cell outwardly rectifying Ca2+ currents 

 We suggested previously that IORCa may play an important role in generating 

intestinal Ca2+ oscillations (Estevez and Strange, 2005; Estevez et al., 2003). To 

determine whether the ORCa channel is encoded by gon-2 and/or gtl-1, we characterized 

whole cell cation currents in intestinal cells cultured from wild type, gon-2 mutant, gtl-1 

mutant and gon-2;gtl-1 double mutant worms. IORCa in wild type intestinal cells is 

constitutively active and undergoes additional slow activation for 1-2 min after whole cell 

recording is initiated (Estevez et al., 2003). Mean ORCa current density at +80 mV 

measured 4-5 min after membrane rupture in wild type cells was 266 pA/pF (Figure 15A).  

The mean ± S.E. reversal potential (Erev) of IORCa was 18 ± 1 mV (n=22). The positive 

reversal potential is expected for a Ca2+-selective channel (Estevez et al., 2003).   

 Whole cell current density was strikingly and significantly (P<0.01) suppressed in 

intestinal cells cultured from both gon-2 and gtl-1 mutant worms. In both groups of cells, 

the majority of currents we observed were outwardly rectifying with a strongly positive 

Erev similar to that of IORCa. In 2 out 11 gon-2 mutant cells, whole cell current exhibited 

an Erev close to zero and a near-linear current-to-voltage relationship. We interpreted 

these observations as indicating that loss of function of gon-2 in these cells completely 

suppressed IORCa and that whole cell conductance was due largely to a non-selective leak 

current. Mean current density was 26.5 pA/pF in gon-2 cells and 83.5 pA/pF in gtl-1 cells 

(Figure 15A).  Currents recorded from all gtl-1 cells showed outward rectification and 

had a mean ± S.E. Erev of 19 ± 1 mV (n=21). The mean ± S.E. Erev value for the 

outwardly rectifying currents observed in gon-2 mutant cells was 18 ± 2 mV (n=9). Mean 
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reversal potentials of outwardly rectifying currents in gon-2 and gtl-1 mutant cells were 

not significantly (P<0.05) different from that observed in wild type cells.   

 In 5 out of 5 gon-2;gtl-1 double mutant cells, a small current with a near-linear 

current-to-voltage relationship was detected. The mean ± S.E. Erev for this current was 1.1 

± 2.7 mV (n=5), which is not significantly (P>0.7) different from 0 (Figure 15B). To 

determine whole cell current properties in the absence of IORCa, we patch clamped wild 

type intestinal cells and bathed them with 100 M La3+, which completely inhibits ORCa 

channel activity (see Figure 17A). A small near-linear current with an Erev (mean ± S.E. = 

-1.6 ± 1.5 mV; n=5) not significantly (P>0.3) different from 0 was recorded in these cells 

(Figure 15B).  We define this current as non-selective leak current. Mean ± S.E. whole 

cell currents measured at -80 mV and +80 mV in gon-2;gtl-1 double mutant cells and 

wild type cells treated with 100 M La3+ were -3.5 ± 1.8 pA/pF and 4.0 ± 1.8 pA/pF (n=5) 

and -1.9 ± 3.2 pA/pF and 3.1 ± 0.4 pA/pF (n=5), respectively, and were not significantly 

(P>0.6) different (Figure 15B). Treatment of gon-2;gtl-1 mutant cells with 100 M La3+ 

had no significant (P>0.2) on whole cell current amplitude (mean ± S.E. whole cell 

currents measured at -80 mV and +80 mV were -4.9 ± 1.0 pA/pF and 8.3 ± 3.8 pA/pF, 

respectively; n=3). These results demonstrate that combined loss of GON-2 and GTL-1 

activity completely suppresses IORCa. We therefore conclude that IORCa is mediated by the 

function of both channels.   
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Figure 15.  Effect of gtl-1 and gon-2 loss-of-function mutations on whole cell ORCa current.  (A) 
Mean whole cell current amplitude in intestinal cells cultured from wild type, gtl-1 mutant and gon-2 
mutant worms. Values are means ± S.E. (N=11-22). *P<0.01 compared to wild type worms.  
**P<0.002 compared to gtl-1 mutant worms.  All worm strains were grown at 25 °C.  (B) Current-to-
voltage relationships of whole cell currents measured in intestinal cells cultured from wild type and 
gon-2;gtl-1 double mutant worms.  Wild type intestinal cells were patch clamped in a bath solution 
containing 100 mM La3+, which completely inhibits IORCa (see Figure 17A).  Remaining current shows 
a near linear current-to-voltage relationship and Erev near 0 mV and is defined as leak current.  
Current-to-voltage relationship of gon-2;gtl-1 double mutant whole cell currents is also near linear 
with a near 0 Erev. Data shown are the means of currents recorded from 4 wild type cells and 5 gon-
2;gtl-1 double mutant cells. Currents were elicited by ramping membrane potential from -80 mV to 
+80 mV at 215 mV/sec. Red symbols and error bars are mean ± S.E. error currents measured at 
holding potentials of -80 mV and +80 mV.  Mean currents measured at -80 mV and +80 mV and Erev 
values were not significantly (P>0.3) different for wild type cells treated with La3+ and gon-2;gtl-1 
double mutant cells.   
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Functional properties of GON-2 and GTL-1 mediated whole cell currents 

The inhibitory effects of loss of GON-2 or GTL-1 alone on IORCa are not additive; 

whole cell current density was reduced ~90% and ~70% in gon-2 and gtl-1 mutant cells, 

respectively (Figure 15A). These results indicate that 1) GON-2 and GTl-1 can function 

independently as ion channels, but 2) their functions in mediating IORCa are somehow 

interdependent (see Discussion). We define the currents observed in gon-2 and gtl-1 

mutant cells as IGTL-1 and IGON-2, respectively.  

To further define the roles of GON-2 and GTL-1 in mediating IORCa, we 

characterized the biophysical properties of IGTL-1 and IGON-2. Figure 16 shows 

representative ORCa (i.e, wild type), GON-2 and GTL-1 currents and relative current-to-

voltage relationships. All three currents show similar outward rectification. However, 

relative inward GTL-1 currents at -20 mV to -80 mV were slightly but significantly 

(P<0.001) greater than that of IORCa (Figure 16B).   
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Figure 16. Current-to-voltage characteristics of IORCa, IGTL-1 and IGON-2.  (A) Representative whole cell 
currents recorded from wild type, gtl-1 mutant and gon-2 mutant worm intestinal cells.  Currents were 
elicited by stepping membrane voltage from -80 mV to +80 mV in 20 mV steps from a holding 
potential of 0 mV. (B) Relative current-to-voltage relationships of IORCa, IGTL-1 and IGON-2. Values are 
means ± S.E. (N=9-22). *P<0.001 compared to IORCa.  IGTL-1 and IGON-2 are currents measured in 
intestinal cells isolated from gon-2 and gtl-1 mutant worms, respectively.  
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IORCa was inhibited by extracellular La3+ with a mean ± S.E. IC50 of 3.7 ± 0.6 M 

(n=6).  The La3+ dose-response relationships for IGON-2 and IGTL-1 were superimposable 

with that of IORCa (Figure 17A). Mean ± S.E. La3+ IC50 values were 5.7 ± 1.8 M (n=6) 

and 5.3 ± 1.5 M (n=4) for IGON-2 and IGTL-1, respectively, and were not significantly 

(P>0.05) different from that of IORCa.   

 Figure 17B shows cation permeabilities measured under bi-ionic conditions of the 

ORCa, GON-2 and GTL-1 channels relative to Na+ (i.e, Pcation/PNa). The PNMDG/PNa, 

PCa/PNa and PMg/PNa for the channels were not significantly (P>0.05) different and ranged 

between 0.07-0.1, 57-66 and 3-6, respectively.   

 Increasing intracellular Mg2+ concentration inhibits IORCa (Figure 17C) (Estevez et 

al., 2003). The Mg2+ dose-response relationships for IORCa, IGON-2 and IGTL-1 were similar 

(Figure 17C). IC50 values derived from fits to mean values in the datasets were 420 M 

for IORCa, 440 M for IGON-2 and 260 M for IGTL-1. Comparison of the fits indicated that 

the three datasets were not significantly (P>0.05) different from one another. 

It has been suggested that GON-2 and GTL-1 play a central role in intestinal Mg2+ 

uptake (Teramoto et al., 2005). The ORCa, GON-2 and GTL-1 channels clearly have 

measurable Mg2+ permeabilities under bi-ionic conditions. However, given that the 

relative Ca2+ permeabilities of the channels are at least an order of magnitude greater than 

that of Mg2+ (Figure 17B and (Teramoto et al., 2005)), a more physiologically relevant 

question is whether significant Mg2+ permeation occurs when Ca2+ is present in the 

extracellular medium. To address this question, we patch clamped wild type intestinal 

cells in a modified standard bath solution containing 130 mM NaCl and 30 mM NMDG-

Cl and the normal Ca2+ and Mg2+ concentrations of 1 mM and 5 mM, respectively. When 
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current amplitude had stabilized, the NMDG-Cl was replaced with 15 mM MgCl2.  In the 

presence of 1 mM bath Ca2+, the mean ± S.E. shifts in Erev and current density at -80 mV 

observed when bath Mg2+ levels were raised 4-fold were 0.7 ± 0.5 mV (n=4) and -1.6 ± 

1.7 pA/pF (n=4), respectively (Figure 18). These values were not significantly (P>0.3) 

different from zero suggesting that Mg2+ permeation through the ORCa channel is very 

low in the presence of Ca2+. Studies designed to directly quantify net Mg2+ influx through 

the ORCa channel under physiologically relevant conditions are needed to fully define its 

role in intestinal Mg2+ uptake and whole animal Mg2+ homeostasis.   
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Figure 17. Lanthanum and Mg2+ sensitivity and relative cation permeabilities of the ORCa, GTL-1 
and GON-2 channels. (A) Dose-response relationship for the inhibitory effect of extracellular La3+ on 
IORCa, IGTL-1 and IGON-2. Data were fit using the equation I = 1/1 + ([La3+]/IC50)

n. Values are means ± 
S.E. (n=4-6). (B) Relative cation permeabilities of the ORCa, GTL-1 and GON-2 channels. Values are 
means ± S.E. (n=4-9). (C) Dose-response relationship for the inhibitory effect of intracellular Mg2+ on 
IORCa, IGTL-1 and IGON-2.  Data were fit using the equation I = 1/1 + ([Mg2+]/IC50)

n.  Values are means ± 
S.E. (n=4-8).  IGTL-1 and IGON-2 are currents measured in intestinal cells isolated from gon-2 and gtl-1 
mutant worms, respectively.   
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Figure 18. Effect of increasing bath Mg2+ concentration on whole cell current amplitude and Erev in 
the presence of 1 mM Ca2+.  No significant (P>0.3) shift in Erev or inward current was detected when 
Mg2+ concentration was raised 4-fold to 20 mM. Values are means ± S.E. (n=4). 
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Physiological roles of GON-2 and GTL-1 

As shown in Figures 12 and 14, loss of gon-2 and/or gtl-1 activity dramatically 

disrupts pBoc rhythmicity and intestinal Ca2+ signaling. Teramoto et al. (Teramoto et al., 

2005) observed that the pBoc cycle was prolonged and apparently arrhythmic in gon-

2;gtl-1 double mutant worms and that the defect was fully rescued by increasing the Mg2+ 

concentration of the growth agar to 40 mM. They suggested that the altered defecation 

cycle was due to an alteration in the physiological state of the intestine resulting from 

Mg2+ deficiency. In our hands, the pBoc defect in double mutant worms was unaffected 

by external Mg2+ levels of either 20 mM (Figure 12) or 40 mM (unpublished 

observations).   

Given the lack of effect we observed of high external Mg2+ concentration on pBoc 

and the high relative Ca2+ permeabilities of the ORCa, GON-2 and GTL-1 channels 

(Figure 17B), it is reasonable to postulate that they play a direct role in regulating and/or 

maintaining IP3-dependent intestinal Ca2+ oscillations. To address this possibility, we 

performed genetic epistasis experiments. Epistatic analysis can be utilized to determine 

interaction among genes that control a common phenotype (Figure 19). PLC and PLC 

homologues function together to regulate pBoc and generate Ca2+ oscillations in the C. 

elegans intestine. Loss of function of either enzyme causes striking arrhythmia of both 

pBoc and oscillatory Ca2+ signaling. Combined loss of function of both enzymes is 

additive giving rise to severe Ca2+ signaling and pBoc defects (Espelt et al., 2005b).  

These results suggest that PLC and PLC function in different signaling pathways. 

Epistasis analysis using mutant alleles predicted to elevate intracellular IP3 levels 

indicates that PLC functions primarily to generate IP3 and regulate IP3 receptor activity 
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whereas PLC functions in a distinct and yet to be defined signaling pathway required for 

normal Ca2+ signaling (Espelt et al., 2005b). The localization of PLC to sites of cell-cell 

contact (Miller et al., 1999) suggests that the enzyme may play a role in regulating 

intestinal Ca2+ waves that coordinate muscle contractions required for defecation (Peters 

et al., 2007).   

To determine whether GON-2 and GTL-1 may play a role in the IP3 receptor 

signaling pathway, we fed gon-2;gtl-1 double mutant worms bacteria expressing dsRNA 

homologous to either PLC or PLC. As shown in Figure 20A, PLC RNAi had no 

additive effect on the pBoc arrhythmia induced by loss of function of both channels.  

Mean ± S.E. pBoc period and coefficient of variance for gon-2;gtl-1;PLC(RNAi) worms 

were 73 ± 7 sec and 49 ± 7% (n=14). These values were not significantly (P>0.09; see 

Figures 12A-B) different from that observed in gon-2;gtl-1 double mutant worms fed 

normal bacteria. In contrast, knockdown of PLC in gon-2;gtl-1 mutant worms induced a 

pBoc defect that was much more severe than that observed with the channel mutations 

alone (Figures 20B-C).  Over a 20 min measurement period, no more than 7 pBocs were 

observed in any of the gon-2;gtl-1;plc(RNAi) worms. The mean number of pBocs 

observed in 20 min in these animals was 3 (n=12). One of the 12 animals examined 

exhibited no pBocs in this time period. This phenotype is remarkably similar to that 

induced by combined loss of function of PLC and PLC (Espelt et al., 2005b) and 

suggests that GON-2 and GTL-1 function together with PLC to regulate IP3 receptor 

activity and ER Ca2+ release.   
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Figure 19. Epistatic analysis can be utilized to determine interaction among genes that control a 
common phenotype. If X and Y function in the same pathway to regulate the same phenotype, loss of 
both X and Y functions has no additive effect (A). If X and Y function in two separate pathways to 
control the same phenotype, loss of both X and Y functions is additive (B).
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Figure 20. Effects of loss of PLC and PLC function on pBoc rhythmicity in gon-2;gtl-1 double 
mutant worms.  (A, B) pBoc cycles in individual gon-2;gtl-1 mutant worms fed bacteria producing 
dsRNA to either PLC (A) or PLC (B) Different colors and symbols represent different animals. (C) 
Number of pBocs measured in 12 gon-2;gtl-1;PLC(RNAi) worms over 20 min observation period.   
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Discussion 

 

 

The ORCa channel is encoded by the TRPM homologues gon-2 and gtl-1 

The TRP cation channel superfamily is subdivided into TRPC, TRPV, TRPM, 

TRPML, TRPP, TRPN and TRPA subfamilies. All TRP channels are comprised of six 

predicted transmembrane domains and intracellular N- and C-termini. Functional TRP 

channels are formed from homomeric or heteromeric association of four TRP subunits.  

TRP channels function in diverse physiological processes including sensory transduction, 

epithelial transport of Ca2+ and Mg2+, Ca2+ signaling and modulation of membrane 

potential (Owsianik et al., 2006; Nilius et al., 2007).   

The mammalian TRPM subfamily consists of TRPM1-8 (Kraft and Harteneck, 

2005).  GON-2 and GTL-1 share approximately 23% identity with TRPM1, TRPM3, 

TRPM6 and TRPM7 (Baylis and Goyal, 2007). The conserved structural motifs in these 

channels are the transmembrane domains, the TRP domain and portions of the 

cytoplasmic N-terminus. 

Amino acids that comprise the pores of TRPM6 and TRPM7 have been identified 

by mutagenesis and patch clamp analysis (Li et al., 2007; Topala et al., 2007; Chubanov 

et al., 2007). The homologous pore domains are nearly identical in GON-2 and GTL-1. 

This is consistent with our findings that the two channels have similar biophysical 

properties (Figures 16-17).   

As shown in Figures 15A and 16A, IORCa is dramatically inhibited by loss-of-

function mutations in either gon-2 or gtl-1. Loss of function of both genes completely 
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eliminates the current (Figure 15B). There are two possible explanations for these results.  

Either the ORCa whole cell current is comprised of independent GON-2 and GTL-1 

currents, or the ORCa channel is a GON-2/GTL-1 heteromer.  Our results suggest that the 

function of GON-2 and GTL-1 are interdependent. The combined inhibition of IORCa 

observed in gon-2 and gtl-1 mutant cells is ~160% (Figure 15A). This finding indicates 

that GON-2 and GTL-1 can function independently as ion channels, but that maximal 

IORCa activity requires a functional interaction between them. One possibility is that the 

ORCa channel is a GON-2/GTL-1 heteromer. Alternatively, loss of either GON-2 or 

GTL-1 alone may disrupt the trafficking, expression and/or regulation of the other 

channel.   

Numerous studies have provided evidence that closely related TRP channels 

heteromultimerize (Owsianik et al., 2006; Nilius et al., 2007). Heteromultimers of 

TRPM6 and TRPM7, homologues of GON-2 and GTL-1, have been described (Li et al., 

2006; Chubanov et al., 2004). At present, we favor the hypothesis that the ORCa channel 

is formed by association of GON-2 and GTL-1 subunits. However, extensive additional 

work including heterologous expression, mutagenesis and subcellular localization of the 

two channels in vivo is required to test this idea.   

 Our electrophysiological findings differ from those of Teramoto et al. (Teramoto 

et al., 2005). These investigators saw no effect of the gtl-1 deletion allele on whole cell 

current whereas the gon-2 mutation reduced La3+-inhibitable outward current at +100 mV 

~75%. Current reduction was similar in intestinal cells cultured from gon-2 and the gon-

2;gtl-1 double mutant worms. They also observed that the IC50 value for inhibition of the 

wild type current by intracellular Mg2+ was 4.7-fold higher than that of the current 
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observed in gtl-1 mutant cells. In contrast, we found that IORCa, IGON-2 and IGTL-1 exhibit 

similar sensitivities to intracellular Mg2+ (Figure 17C). Teramoto et al. (Teramoto et al., 

2005) concluded that GON-2 mainly mediates the outwardly rectifying current and that 

GTL-1 functions mainly to regulate current Mg2+ responsiveness. The reasons for the 

differences in our findings are unclear.   

 

 

Role of GON-2 and GTL-1 in oscillatory Ca2+ signaling 

Most TRP channels described to date have no or relatively low selectivity for 

Ca2+ over Na+ (Owsianik et al., 2006). The exceptions to this generalization are TRPV5 

and TRPV6, which have PCa/PNa values >100 and play important roles in epithelial Ca2+ 

absorption (Vennekens et al., 2000; Yue et al., 2001; Owsianik et al., 2006). GON-2, 

GTL-1 and the ORCa channels exhibit a >60-fold selectivity for Ca2+ over Na+ (Figure 

6B; (Estevez et al., 2003). Mammalian TRPM channels are either impermeable to Ca2+ 

(TRPM4 and TRPM5) or have PCa/PNa values of 0.1-10 (Owsianik et al., 2006). 

Heterologously expressed Drosophila TRP and TRPL have relative Ca2+ permeabilities 

of 10-12 (Xu et al., 1997). Studies of the native TRP current in wild type Drosophila 

photoreceptor cells indicate that the channel(s) responsible for the current are ~40-fold 

more permeable to Ca2+ than monovalent cations (Hardie and Minke, 1992; Reuss et al., 

1997). The endogenous Ca2+ conductances in trp and trpl mutant photoreceptor cells 

have PCa/PNa values of ~4 and ~86, respectively (Reuss et al., 1997; Hardie and Minke, 

1992). Thus, together with mammalian TRPV5/6 and possibly Drosophila TRP, GON-2, 
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GTL-1 and the ORCa channels have the highest Ca2+ selectivity of all characterized 

TRPs.   

 Given their exceptionally high Ca2+ selectivity and essential roles in maintaining 

pBoc and Ca2+ signaling rhythmicity (Figures 12 and 14), what possible functions could 

GON-2 and GTL-1 be performing? Data in Figure 20 suggests that the channels function 

in a signaling pathway together with PLC to regulate IP3 receptor activity.  Our previous 

studies failed to identify a significant role for the canonical store-operated CRAC channel 

in maintaining intestinal Ca2+ oscillations. Thus other Ca2+ channels must provide a Ca2+ 

entry pathway that allows for store refilling. It is conceivable that GON-2 and GTL-1 

function in part to refill ER Ca2+ stores.  However, even in the absence of these channels 

Ca2+ oscillations continue albeit arrhythmically (Figures 12 and 14). This indicates that 

other Ca2+ entry pathways must function in the intestine to refill stores under these 

experimental conditions.   

 An attractive possibility is that the GON-2 and GTL-1 channels play a direct role 

in modulating IP3 receptor activity and controlling oscillation frequency. It is well 

established that IP3 receptors are regulated in a biphasic manner by intracellular Ca2+; 

low levels of Ca2+ activate the channels whereas high Ca2+ levels feedback and inhibit 

channel activity (Foskett et al., 2007). Foskett and co-workers (Mak et al., 1998; Foskett 

et al., 2007) have argued that Ca2+ is a true IP3 receptor agonist and that IP3 functions 

only to relieve Ca2+ inhibition. In excitable cells, plasma membrane Ca2+ influx through 

voltage- and ligand-gated Ca2+ channels can trigger intracellular Ca2+ release through 

ryanodine receptors via a process termed Ca2+-induced Ca2+ release (CICR) (Berridge et 
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al., 2003). Plasma membrane Ca2+ influx can also trigger CICR via IP3 receptors (e.g., 

(Gordienko et al., 2007; Kapur et al., 2001; Kukuljan et al., 1997).   

 The disruption of Ca2+ oscillation rhythmicity in gon-2 and gtl-1 mutants (Figures 

12 and 14) suggests that the channels function as part of the timekeeping apparatus that 

regulates cycle periodicity. We have shown previously that under conditions of low 

intracellular Ca2+ buffering, ORCa channel activity oscillates. Oscillating channel activity 

is due to a Ca2+ feedback mechanism similar to that observed with the IP3 receptor 

(Estevez and Strange, 2005). Such oscillating channel activity could provide a source of 

extracellular Ca2+ that functions to modulate IP3 receptor function. Specifically, Ca2+ 

influx through ORCa channels could trigger IP3 receptor mediated Ca2+ release via CICR.  

Rising cytoplasmic Ca2+ levels would feedback on both the IP3 receptor and ORCa 

channels functioning initially to increase and than eventually inhibit their activity.  

Calcium influx through ORCa channels would raise Ca2+ levels in channel microdomains 

and may also contribute to the overall increase in cytoplasmic Ca2+. Microdomain Ca2+ 

increases as well as the amplitude of the cytoplasmic Ca2+ increase would likely play a 

role in triggering downstream cellular functions.   

 Several TRP channels are known to be regulated by intracellular Ca2+ and play 

important roles in Ca2+ signaling. For example, the nonselective cation channel TRPM4 

is activated by increases in intracellular Ca2+ (Launay et al., 2002). In T cells, TRPM4-

mediated membrane depolarization modulates Ca2+ influx via CRAC channels and 

controls oscillatory Ca2+ signaling (Launay et al., 2004). TRPM5 is activated by Ca2+ 

intracellular concentrations of 0.3-1 M and inhibited by higher Ca2+ levels and may 

function to couple intracellular Ca2+ release to membrane electrical activity (Prawitt et al., 
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2003). TRPC3 shows modest Ca2+ selectivity and initiates Ca2+ oscillations when 

activated by OAG. Increasing intracellular Ca2+ levels inhibit the channel (Grimaldi et al., 

2003). Extensive additional studies utilizing Ca2+ imaging, patch clamp 

electrophysiology, molecular biology and forward and reverse genetics are needed to 

define the precise roles played by GON-2 and GTL-1 in intestinal Ca2+ signaling.   

 In conclusion, we have demonstrated that IORCa requires the combined function 

the TRPM genes gon-2 and gtl-1.  GON-2 and GTL-1 are highly Ca2+ selective channels 

and are essential for maintaining rhythmic Ca2+ oscillations in the C. elegans intestine.  

We postulate that GON-2 and GTL-1 form a heteromeric channel that selectively 

mediates Ca2+ influx and functions primarily to regulate IP3 receptor activity and possibly 

to refill ER Ca2+ stores.   
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CHAPTER III 

 

 

PI(4,5)P2 AND LOSS OF PLC ACTIVITY INHIBIT TRPM CHANNELS 
REQUIRED FOR OSCILLATORY CA2+ SIGNALING 

 

 

This manuscript has been published in American Journal of Physiology-Cell Physiology 
under the same title. 
 

 

Summary 

The C. elegans intestinal epithelium generates rhythmic inositol 1,4,5-

trisphosphate (IP3)-dependent Ca2+ oscillations that control muscle contractions required 

for defecation. Two highly Ca2+ selective TRPM channels, GON-2 and GTL-1, function 

with PLC in a common signaling pathway that regulates IP3-dependent intracellular Ca2+ 

release. A second PLC, PLC, is also required for IP3-dependent Ca2+ oscillations, but 

functions in an independent signaling mechanism. PLC generates IP3 that regulates IP3 

receptor activity. We demonstrate here that PLC via hydrolysis of PI(4,5)P2 (PIP2) also 

regulates GON-2/GTL-1 function. Knockdown of PLC but not PLC activity by RNA 

interference (RNAi) inhibits channel activity ~80%. Inhibition is fully reversed by agents 

that deplete PIP2 levels. PIP2 added to the patch pipette has no effect on channel activity 

in PLC RNAi cells. However, in control cells, 10 M PIP2 inhibits whole cell current 

~80%. Channel inhibition by phospholipids is selective for PIP2 with an IC50 value of 2.6 

M. Elevated PIP2 levels have no effect on channel voltage and Ca2+ sensitivity and 
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likely inhibit by reducing channel open probability, single channel conductance and/or 

trafficking. We conclude that hydrolysis of PIP2 by PLC functions in the activation of 

both the IP3 receptor and GON-2/GTL-1 channels. GON-2/GTL-1 functions as the major 

intestinal cell Ca2+ influx pathway. Calcium influx through the channel feedback 

regulates its activity and likely functions to modulate IP3 receptor function. PIP2–

dependent regulation of GON-2/GTL-1 may provide a mechanism to coordinate plasma 

membrane Ca2+ influx with PLC and IP3 receptor activity as well as intracellular Ca2+ 

store depletion. 

 

 

Introduction 

The genetically tractable model organism Caenorhabditis elegans provides 

numerous experimental advantages for developing integrative genetic and molecular 

understanding of fundamental physiological processes (Barr, 2003; Strange, 2003). We 

have exploited C. elegans as a model for defining the integrative physiology and 

molecular details of oscillatory Ca2+ signaling in non-excitable cells. C. elegans intestinal 

epithelial cells generate rhythmic inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ 

oscillations that control body wall muscle contractions required for defecation (Dal Santo 

et al., 1999; Teramoto and Iwasaki, 2006; Espelt et al., 2005b; Peters et al., 2007; Pfeiffer 

et al., 2008). Intestinal Ca2+ signaling can be readily studied using forward and reverse 

genetic methods (Thomas, 1990; Liu and Thomas, 1994; Iwasaki et al., 1995), in vitro 

(Espelt et al., 2005b; Teramoto and Iwasaki, 2006; Peters et al., 2007; Xing et al., 2008) 

and in vivo (Teramoto and Iwasaki, 2006; Yan et al., 2006; Peters et al., 2007) Ca2+ 

 75



imaging, and patch clamp electrophysiology (Lorin-Nebel et al., 2007; Estevez and 

Strange, 2005; Estevez et al., 2003; Yan et al., 2006; Xing et al., 2008). The ability to 

combine direct physiological measurements of IP3–dependent oscillatory Ca2+ signals 

and associated ion channel activity with forward and reverse genetic analyses is unique to 

C. elegans.   

Intestinal Ca2+ oscillations are strictly dependent on Ca2+ release from the 

endoplasmic reticulum (ER) via ITR-1, the single IP3 receptor encoded by the C. elegans 

genome (Dal Santo et al., 1999; Teramoto and Iwasaki, 2006; Espelt et al., 2005b).  

Calcium oscillations also require Ca2+ influx from the extracellular medium and are 

rapidly and completely inhibited by external Ca2+ removal (Xing et al., 2008; Espelt et al., 

2005b). C. elegans intestinal cells express two highly selective Ca2+ entry pathways, a 

canonical Ca2+ release activated Ca2+ (CRAC) channel (Parekh and Putney, 2005; Hogan 

and Rao, 2007) that is activated by intracellular Ca2+ store depletion and a store-

independent outwardly rectifying Ca2+ (ORCa) channel (Estevez et al., 2003).   

The C. elegans CRAC channel is encoded by orai-1 and regulated by STIM-1 

(Lorin-Nebel et al., 2007; Yan et al., 2006).  ORAI-1 and STIM-1 are homologues of 

mammalian Orai/CRACM and STIM (Hogan and Rao, 2007). RNAi silencing of either 

orai-1 or stim-1 dramatically reduces CRAC channel and STIM-1 expression and 

function, but surprisingly has no effect on intestinal Ca2+ signaling (Lorin-Nebel et al., 

2007; Yan et al., 2006). These findings suggest that CRAC channels are not essential 

components of IP3-dependent Ca2+ signaling in the intestine and indicate that other Ca2+ 

entry mechanisms must function to maintain intestinal Ca2+ oscillations.   
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The TRP cation channel superfamily is subdivided into TRPC, TRPV, TRPM, 

TRPML, TRPP, TRPN and TRPA subfamilies. TRP channels function in diverse 

physiological processes including sensory transduction, epithelial transport of Ca2+ and 

Mg2+, Ca2+ signaling and modulation of membrane potential (Owsianik et al., 2006; 

Nilius et al., 2007). We recently demonstrated that the C. elegans TRPM homologues 

GON-2 and GTL-1 are both required for generating intestinal Ca2+ oscillations. The two 

channels also give rise to the ORCa current and may function together as a 

heteromultimer (Xing et al., 2008).   

GON-2/GTL-1 channels function together with a PLC homolog in a common 

signaling pathway to regulate IP3-dependent intracellular Ca2+ release (Xing et al., 2008).  

PLC generates IP3 that regulates ITR-1 activity (Espelt et al., 2005b). In the present 

study, we demonstrate that PLC via hydrolysis of PI(4,5)P2 (PIP2) also regulates GON-

2/GTL-1 function. Elevated PIP2 levels inhibit GON-2/GTL-1 channel activity in a 

voltage- and Ca2+-independent manner.  Hydrolysis of PIP2 by PLC thus functions in the 

activation of both the IP3 receptor and GON-2/GTL-1 channels, which serve as the major 

cellular Ca2+ influx pathway. Calcium influx through the channel feedback regulates its 

activity (Estevez and Strange, 2005) and likely functions to modulate IP3 receptor 

function and possibly to refill intracellular stores (Xing et al., 2008). Our studies provide 

unique insights into mechanisms of oscillatory Ca2+ signaling and the regulation of 

TRPM channels.   
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Material and methods 
 
 
 
 

C. elegans strains   

Nematodes were cultured using standard methods on Nematode Growth Medium 

(NGM) (Brenner, 1974).  Wild type worms were JR1838 (wIs84), which express an elt-2 

transcriptional GFP reporter (elt-2::GFP) in intestinal cell nuclei. The egl-8(n488) allele 

was used to assess the role of egl-8, which encodes a PLChomolog, in channel 

regulation. Worm strains were maintained at 16-25 C.   

 

 

C. elegans embryonic cell culture and patch clamp electrophysiology   

Newly hatched wild type and EGL-8 (hereafter referred to as PLC) deletion 

mutant L1 larvae were cultured at 25 C until adulthood. Embryo cells from these 

animals were cultured for 2-3 days at 25 C on 12 mm diameter acid-washed glass cover 

slips using established methods (Strange et al., 2007; Christensen et al., 2002).   

plc-3 encodes a PLC homolog.  PLC-3 (hereafter referred to as PLC) and PLC 

expression were knocked down by culturing wild type embryo cells in the presence of 

plc-3 or egl-8 double strand RNA (dsRNA) using methods described previously (Lorin-

Nebel et al., 2007; Yan et al., 2006). dsRNA was synthesized from an 868 bp (2203-3071 

bp) plc-3 cDNA that was amplified from a C. elegans cDNA library. PLC dsRNA was  

synthesized from a ~1 kb DNA template that was amplified from an egl-8 RNAi feeding 

vector carrying 15219-16355 bp of the egl-8 genomic DNA. 
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Cover slips with cultured embryo cells were placed in the bottom of a bath 

chamber (model R-26G; Warner Instrument Corp., Hamden, CT) that was mounted onto 

the stage of a Nikon TE2000 inverted microscope.  Cells were visualized by fluorescence 

and video-enhanced differential interference contrast (DIC) microscopy. Intestinal cells 

were identified in culture by expression of the intestine specific reporter elt-2::GFP or by 

morphological characteristics (Fukushige et al., 1998; Estevez et al., 2003).   

Patch electrodes were pulled from soft glass capillary tubes (PG10165-4, World 

Precision Instruments, Sarasota, FL) that had been silanized with dimethyl-dichloro silane.  

Pipette resistance was 4-7 M.  Bath and pipette solutions contained 145 mM NaCl, 1 

mM CaCl2, 5 mM MgCl2, 10 mM HEPES, 20 mM glucose, pH 7.2 (adjusted with NaOH), 

and 147 mM sodium gluconate (NaGluconate), 0.6 mM CaCl2, 1 mM MgCl2, 10 mM 

EGTA, 10 mM HEPES, 2 mM Na2ATP, 0.5 mM Na2GTP, pH 7.2 (adjusted with CsOH), 

respectively.  The osmolality of bath and pipette solutions were adjusted to 345-350 

mOsm and 325-330 mOsm using sucrose.   

For studies on the effects of intracellular Ca2+ concentration on whole cell current 

activity, cells were patch clamped with pipette solutions buffered using 1 or 10 mM 

BAPTA instead of EGTA.  Calcium concentration was adjusted using CaCl2.  Free Ca2+ 

levels were calculated using MaxChelator software 

(http://www.stanford.edu/~cpatton/webmaxc/webmaxcS.htm).   

 Whole cell currents were recorded using an Axopatch 200B (Axon Instruments, 

Foster City, CA) patch clamp amplifier.  Command voltage generation, data digitization, 

and data analysis were carried out on a Pentium computer (Dimension 9150; Dell 

Computer Corp.) using a Digidata 1322A AD/DA interface with pClamp 10 software 
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(Axon Instruments). Electrical connections to the amplifier were made using Ag/AgCl 

wires and 3 M KCl/agar bridges.   

Whole cell currents were elicited using a ramp or step voltage clamp protocol.  

For the ramp protocol, membrane potential was held at 0 mV and ramped from -80 mV to 

+80 mV at 215 mV/sec every 5 sec. Step changes in whole cell current were elicited by 

stepping membrane voltage from -100 to +100 mV in 20 mV steps from a holding 

potential of 0 mV. Voltage steps were maintained for 400 msec. Cell capacitances for all 

cells studied ranged from 1-4 pF. Measurement of the effects of various experimental 

maneuvers on current amplitude was performed 5 min after obtaining whole cell access 

when current run-up was complete.   

 

 

Drugs, phospholipids and fatty acids 

18:0-20:4 PI(4,5)P2 and inositol-1,4,5-trisphosphate (IP3) were obtained from 

Calbiochem (Gibbstown, NJ). DiC16 PI(3,4,5)P3, arachidonic acid, linolenic acid and 1-

oleoyl-2-acetyl-sn-glycerol (OAG) were purchased from Biomol International (Plymouth 

Meeting, PA). 17:0-20:4 PI(4)P, 17:0-20:4 PI(3,4)P2 and 17:0-20:4 PI(3,5)P2 were 

obtained from Avanti Polar Lipids, Inc. (Alabaster, AL). Poly-L-lysine (molecular weight 

1-5 kD), wortmannin, U-73122 and U-73343 were purchased from Sigma-Aldrich Co. (St. 

Louis, MO).   

PI(4,5)P2 and PI(3,4,5)P3 were dissolved in water and IP3, PI(4)P, PI(3,4)P2 and 

PI(3,5)P2 were dissolved in DMSO to stock concentrations of 10 mM.  Poly-L-lysine was 

dissolved in water as stock solution of 10 mg/ml.  Arachidonic and linolenic acids, OAG, 
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wortmannin, U-73122 and U-73343 were dissolved in DMSO to stock concentrations of 

2-100 mM.  Stocks were divided into aliquots and frozen at -80C. Working solutions 

were prepared daily by dilution of stock aliquots. Patch pipet solution containing 

phospholipids and fatty acids were bath sonicated for 15 min before use. Final DMSO 

concentrations in all solutions were 0.1%. Exposure of cells to 0.1% DMSO alone had no 

effect on current amplitude (data not shown).   

 

 

Statistical analysis   

Data are presented as means ± S.E.  Statistical significance was determined using 

Student’s two-tailed t test for unpaired means. When comparing three or more groups, 

statistical significance was determined by one-way analysis of variance with a Bonferroni 

post-hoc test.  P values of <0.05 were taken to indicate statistical significance.   

 

 

Results 

 

 

Regulation of the gon-2 and gtl-1 encoded ORCa channel by PLC and PIP2 

Two PLCs, a PLC and PLC homolog, function in separate signaling pathways 

to maintain rhythmic Ca2+ oscillations in the C. elegans intestine. PLC functions to 

generate IP3 that regulates IP3 receptor activity. The function of PLC remains to be 

defined, but it may play a role in G-protein signaling events that regulate intestinal Ca2+ 
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oscillations (Espelt et al., 2005b). In recent studies, we demonstrated by epistasis analysis 

that GON-2/GTL-1 function in the same signaling pathway as PLC to regulate IP3 

receptor activity and ER Ca2+ release (Xing et al., 2008). To further characterize this 

relationship, we examined the effect of loss of PLC and PLC activity on whole cell 

currents.   

 Figure 21A shows the current-to-voltage relationship for the intestinal cell 

outwardly rectifying Ca2+ (ORCa) channel current we described in detail previously 

(Estevez et al., 2003) and that is carried by the GON-2 and GTL-1 TRPM channels (Xing 

et al., 2008). Whole cell current amplitude was not significantly (P>0.05) different in 

intestinal cells cultured from wild type and PLC loss-of-function mutant worms (Figure 

21B). In contrast, knockdown of PLC activity by RNAi inhibited whole cell current 

approximately 80% (P<0.01; Figure 21B). 

The egl-8(n488) allele is an 1819 bp deletion mutation.  It has been suggested by 

Bastiani et al. (Bastiani et al., 2003) that this allele may encode a neomorphic protein.  To 

further assess the possible role of PLC in regulating GON-2/GTL-1 then, we knocked 

down its expression by RNAi. As shown in Figure 21B, PLC RNAi had no effect on 

whole cell current amplitude. Data in Figure 21B thus demonstrate that PLC but not 

PLC activity modulates GON-2/GTL-1 function.   

We also examined the effects of acute inhibition of PLC on channel activity 

using the pan-PLC inhibitor U-73122. Incubation of intestinal cells for 10-60 min with 2 

M U-73122 in the bath reduced mean ± S.E. whole cell current to 17 ± 3 pA/pF (n=4).  

This current value was not significantly different (P>0.05) from that observed with PLC 

RNAi (Figure 21B). In contrast, exposure of intestinal cells to 2 M U-73343, which is 
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an inactive analog of U-73122, did not significantly (P>0.05) alter whole cell current 

(mean ± S.E. whole cell current = 78 ± 19 pA/pF; n=4). These results demonstrate that 

both acute and chronic inhibition of PLC activity inhibits GON-2/GTL-1.   

  PLC and PLC hydrolyze PIP2 to IP3 and diacylglycerol (DAG).  DAG in turn 

can be metabolized into arachidonic and other polyunsaturated fatty acids (PUFAs). PIP2, 

DAG and PUFAs are known to modulate the activity of numerous TRP channels (Raghu 

and Hardie, 2009; Beech et al., 2009; Nilius et al., 2008). Loss of PLC activity is 

expected to increase PIP2 levels as well as decrease IP3, DAG and PUFA concentrations.  

Inhibition of GON-2/GTL-1 activity in PLC RNAi cells suggests 1) that IP3, DAG 

and/or PUFAs may function normally to activate the channels or 2) that PIP2 is inhibitory.   

We carried out a series of studies to test these possibilities. PLC RNAi cells were 

patched clamped with pipette solutions containing 100 M OAG, a DAG analog, 10 M 

arachidonic acid, 10 M linolenic acid or 10 M IP3. As shown in Figure 22A, these 

signaling molecules failed to activate (P>0.05) GON-2/GTL-1 channels inhibited by 

PLC RNAi. In contrast, inclusion of 10 M PIP2 in the patch pipette solution inhibited 

whole cell current in control cells to the same extent as knockdown of PLC (Figures 21B 

and 22B). However, PIP2 had no significant (P>0.05) additional inhibitory effect in PLC 

RNAi cells (Figure 22B).   

To further examine the role of PIP2 in regulating channel activity, we treated 

PLC RNAi cells with 20 M wortmannin or 20 g/ml poly-L-lysine in the patch pipette 

solution. Wortmannin depletes cellular PIP2 levels by inhibiting phosphoinositide 4-

kinase and PIP2 synthesis (Nakanishi et al., 1995). Poly-L-lysine is a polyvalent cation 

that binds to PIP2 and has been widely used to deplete cellular PIP2 levels (e.g., (Kozak et 
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al., 2005). In control cells, wortmannin and poly-L-lysine had no significant (P>0.05) 

effect on whole cell current. Mean ± S.E. control cell current densities at +80 mV 

observed in the presence of wortmannin and poly-L-lysine were 112 ± 12 pA/pF (n=3) 

and 88 ± 6 pA/pF (n=4), respectively.   

As shown in Figure 22B, both wortmannin and poly-L-lysine reversed the 

inhibitory effect of PLC RNAi on whole cell current amplitude. Whole cell current 

amplitude in PLC RNAi cells treated with these agents was not significantly (P>0.05) 

different than that observed in control cells. Taken together, the results shown in Figures 

21 and 22 indicate 1) that GON-2/GTL-1 channels are inhibited by loss of PLC activity 

and by PIP2 added to the patch pipette solution, and 2) that the PLC RNAi induced 

inhibition of the channels is mediated by elevation of cellular PIP2 levels.   
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Figure 21. Loss of PLC activity inhibits GON-2/GTL-1 mediated whole cell current.  (A) Current-to-
voltage relationship of whole cell current measured in intestinal cells cultured from wild type worms.  
Values are means ± S.E. (n=11).  (B) Effect of loss of PLC and PLC activity on whole cell current 
amplitude. Values are means ± S.E. (n=4-11). *P<0.01 compared to wild type (WT) worms.   
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Figure 22. Inhibition of GON-2/GTL-1 mediated whole cell current by PLC RNAi is reversed by 
agents that lower cellular PIP2 levels. (A) Whole cell current amplitude in PLC RNAi cells patch 
clamped with a control pipette solution or a solution containing 100 M 1-oleoyl-2-acetyl-sn-glycerol 
(OAG), 10 M arachidonic acid (AA), 10 M linolenic acid (LNA) or 10 M IP3.  Values are means 
± S.E. (n=4-5). (B) Effects of 10 M PIP2, 20 M wortmannin (Wort) or 20 g/ml poly-L-lysine 
(PolyK) on whole cell current in wild type and PLC RNAi cells.  Values are means ± S.E. (n=5-15).  
*P<0.01 and **P<0.001 compared to untreated wild type cells.  Whole cell currents recorded from 
wortmannin and poly-L-lysine treated cells were not significantly (P>0.05) different from those 
observed in untreated wild type cells.  Data in A and B are plotted on the same scale as Figure 21B to 
facilitate comparisons.   
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Sensitivity and specificity of GON-2/GTL-1 to PIP2   

To assess the sensitivity of GON-2/GTL-1 channels to PIP2, we defined the dose-

response relationship for PIP2 inhibition. As shown in Figure 23A, maximal inhibition is 

observed at ~10 M PIP2. The IC50 value for inhibition was 2.6 M with a Hill 

coefficient of 0.6.  PIP2 is largely confined to the plasma membranes and represents ~1% 

of the total anionic phospholipid pool. If dissolved in the cytoplasm, PIP2 concentration 

has been estimated to be 4-10 M (Hilgemann, 2007; Suh and Hille, 2008). Data in 

Figure 23A thus suggest that PIP2 likely plays a physiologically relevant role in 

regulating GON-2/GTL-1 channel activity.   

To assess the specificity of PIP2 inhibition, we quantified the effects of singly 

phosphorylated PI(4)P or triply phosphorylated PI(3,4,5)P3. Cellular PI(4)P levels are 

comparable to those of PIP2 while PIP3 is much less abundant (Vanhaesebroeck et al., 

2001). We also examined the effects of the PIP2 isomers PI(3,4)P2 and PI(3,5)P2. As 

shown in Figure 23B, all four phospholipids had small (~30-50%) inhibitory effects on 

whole cell current amplitude. However, none of these effects achieved statistical 

significance (P>0.05).   
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Figure 23. Sensitivity and specificity of GON-2/GTL-1 to PIP2.  (A) Dose-response relationship for 
the inhibitory effect of PIP2 on GON-2/GTL-1 currents.  Data were fit using the equation I = 1/1+ 
([PIP2]/IC50)

n.  Values are means ± S.E. (n=4-5). (B) Sensitivity of GON-2/GTL-1 currents to 10 M 
PI(4)P, PI(3,4,5)P3, PI(3,4)P2 or PI(3,5)P2. Values are mean ± S.E. (n=5-6). None of the phospholipids 
had a significant (P>0.05) effect on whole cell current amplitude.  
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Functional properties of PIP2 inhibited GON-2/GTL-1 currents  
 

PIP2 alters the functional properties of several different channel types (e.g., 

(Zhang et al., 2005b; Nilius et al., 2006; Wu et al., 2002). To determine whether PIP2 

modulates GON-2/GTL-1 functional characteristics, we quantified current properties in 

control cells and cells treated with 10 M PIP2. Upon obtaining whole cell access, GON-

2/GTL-1 current shows rapid run-up and then stabilizes within 1-2 min (Figure 24A).  

Cells exposed to 10 M PIP2 showed a similar pattern of run-up (Figure 24A). Mean ± 

S.E. rates of current activation were 36 ± 6 pA/pF/min (n=10) in control cells and 35 ± 3 

pA/pF/min (n=4) in cells dialyzed with 10 M PIP2. These rates were not significantly 

(P>0.9) different.   

 GON-2/GTL-1 currents are voltage and time dependent (Estevez et al., 2003).  

Strong depolarization and hyperpolarization activated and inactivated, respectively, 

currents in both control and PIP2 treated cells (Figure 24B). Current activation and 

inactivation were both well fit by double exponentials describing fast (f) and slow (s) 

time constants. Mean ± S.E. f and s at +100 mV were 34 ± 2 ms and 218 ± 34 ms (n=15) 

for control cells and 30 ± 3 ms and 168 ± 84 ms (n=4) for cells patch clamped in the 

presence of 10 M PIP2. At -100 mV, f and s in control cells were 11 ± 4 ms and 191 ± 

25 ms (n=15) and 8 ± 3 ms and 177 ± 46 ms (n=6) in PIP2 treated cells. Neither activation 

nor inactivation time constants were significantly (P>0.4) altered by PIP2.   

 To further assess the effects of PIP2 on channel gating, we quantified the voltage 

dependence of steady-state and tail currents. Whole cell currents were normalized to 

either the maximum steady-state (Imax, steady-state) or maximum tail current (Imax, tail).  

Normalized current-to-voltage relationships determined in the presence and absence of 10 
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M PIP2 were superimposable (Figure 24C). These data and the results discussed above 

demonstrate that PIP2 does not alter the voltage-dependent gating of GON-2/GTL-1.   

 The major physiologically relevant ions that permeate GON-2/GTL-1 channels 

are Ca2+ and Na+ (Estevez et al., 2003; Xing et al., 2008). Mean ± SE current reversal 

potentials (Erev) were 25 ± 1 mV (n=15) and 25 ± 3 mV (n=9) in control and PIP2 cells, 

respectively. These values were not significantly (P>0.9) different suggesting that 

channel selectivity was unaffected by PIP2. To test this directly, we measured relative 

Ca2+ permeability by replacing bath Na+ with 130 mM NMDG+ and 10 mM Ca2+.  

Elevation of bath Ca2+ increased Erev by 29 ± 1 mV (n=6) in PIP2 cells. The calculated 

relative Ca2+ to Na+ permeability was 72 ± 9:1 (n=6) and was not significantly (P>0.4) 

different from that we have reported previously (Estevez et al., 2003; Xing et al., 2008).     
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Figure 24. Effects of PIP2 on current run-up and voltage dependent channel activity.  (A) Current run-
up after obtaining whole cell access in control cells and cells patch clamped with 10 M PIP2.  Data 
are plotted relative to the first measurement recorded after whole cell access was obtained.  Values are 
means ± SE (n=5-12).  (B) Whole cell GON-2/GTL-1 currents recorded from a control intestinal cell 
and a cell dialyzed with 10 M PIP2.  Currents were elicited by stepping membrane voltage from -100 
to +100 mV in 20 mV steps from a holding potential of 0 mV. Voltage steps were held for 400 ms 
long.  Inset shows inactivation behavior observed at hyperpolarized voltages.  (C) Voltage dependence 
of whole cell steady-state and tail currents measured in the presence and absence of 10 M PIP2.  
Currents were elicited by stepping membrane voltage in 20 mV steps from a holding potential of 0 
mV to a test potential between    -100 and +100 mV.  Voltage steps were held for 400 ms.  After the 
test potential, membrane voltage was stepped to -100 mV for 100 ms to inactivate currents.  Cells 
were then stepped to 0 mV and allowed to recover for 20 ms before initiating the next test pulse.  
Steady-state current was defined as the mean current measured during the last 50 ms of the 400 ms 
test pulse. Tail current was the peak current measured during the 100 ms step to -100 mV. Values are 
mean ± S.E. (n=5-6).   
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Combined role of intracellular Ca2+ and PIP2 in regulating GON-2/GTL-1 channel 
activity   
 

A number of studies have demonstrated that intracellular Ca2+ and PIP2 co-

regulate TRP channels. For example, PIP2 activates TRPM5 and increases the sensitivity 

of the channel to intracellular Ca2+ (Liu and Liman, 2003a). The GON-2/GTL-1 current 

is also regulated by intracellular Ca2+ (Estevez and Strange, 2005), suggesting that Ca2+ 

and PIP2 may function synergistically.   

 To begin testing this idea, we characterized the effect of PLC knockdown on 

oscillating channel activity. As we have described previously (Estevez and Strange, 

2005), GON-2/GTL-1 is regulated by Ca2+ influx through the channel and Ca2+ 

accumulation in a space very close to the intracellular pore opening.  Low concentrations 

of Ca2+ activate the channel whereas higher concentrations are inhibitory. These dual 

effects of Ca2+ are manifested as oscillations in whole cell current amplitude when 

intestinal cells are patch clamped with pipette solutions containing low concentrations of 

Ca2+ buffers (Figure 25A). We reasoned that if PIP2 and Ca2+ function synergistically, 

then elevated PIP2 levels may modify Ca2+ dependent channel oscillations. Figure 25B 

shows whole cells current oscillations in PLC RNAi cells patch clamped with a pipette 

solution containing 1 mM BAPTA. The mean ± S.E. number of oscillations detected was 

0.7 ± 0.2 oscillations/min (n=4 cells) in control cells and 0.75 ± 0.1 oscillations/min (n=5 

cells) in PLC RNAi cells, and were not significantly (P>0.9) different.   

The overall characteristics of the current oscillations were qualitatively similar.  

However, peak current amplitude was reduced ~85% (P<0.0001) in cells treated with 

PLC dsRNA. The mean ± S.E. peak current was 691 ± 49 pA/pF (n=16 oscillations) and 

98 ± 15 pA/pF (n=15 oscillations) in control and PLC RNAi cells, respectively.  
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Reductions in peak oscillatory and steady-state current amplitudes (see Figure 21B) 

induced by PLC knockdown were similar. The lack of an obvious effect of PLC RNAi 

on oscillatory channel behavior indicates that the Ca2+ feedback mechanisms regulating 

channel activity remain unchanged even in presence of maximal PIP2 induced inhibition 

and PLC knockdown.   

To test further for possible regulatory interactions between Ca2+ and PIP2, we 

quantified the effect of intracellular Ca2+ on the rate of current run-up observed after 

attaining whole cell access. As described previously (Estevez and Strange, 2005), the 

initial rate of current activation increases with increasing intracellular Ca2+ concentration 

in wild type intestinal cells (Figure 25C). Inclusion of 2.5 M PIP2, which is the 

approximate IC50 value determined from data shown in Figure 23A, in the patch pipette 

solution had no effect on the rate of Ca2+ dependent current activation (Figure 25C).   

The maximal current that is activated after obtaining whole cell access is also 

modulated by cellular Ca2+ levels (Estevez and Strange, 2005). Figure 25D shows the 

relationship between Ca2+ concentration and peak current amplitude.  Inclusion of 2.5 M 

PIP2 in the patch pipette solution inhibited peak current amplitude similarly at all Ca2+ 

concentrations.   

At high intracellular Ca2+ concentrations (>250 nM), whole cell current activation 

is transient (Estevez and Strange, 2005). We quantified the initial rate of current 

inactivation and the final steady-state current levels in cells patch clamped with 500 nM 

intracellular Ca2+ in the presence or absence of 2.5 M PIP2.  Mean ± S.E. relative rates 

of inactivation and steady-state current amplitudes relative to peak current were -2.2 ± 

0.4 %/min (n=6) and 0.27 ± 0.1 (n=7) in the absence of PIP2, and -1.6 ± 0.4 %/min (n=4) 
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and 0.21 ± 0.1 (n=5) with PIP2. Neither the rate nor extent of current inactivation were 

significantly (P>0.3) altered by inclusion of PIP2 in the patch pipette solution. Taken 

together, our results indicate that Ca2+ and PIP2 act independently to regulate GON-

2/GTL-1 channel activity.   
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Figure 25. Effects of PIP2 on Ca2+ dependent GON-2/GTL-1 channel activity. (A, B) Examples of 
whole cell current oscillations in a control and PLC RNAi cell.  Current oscillations were induced by 
patch clamping cells with a pipette solution containing 1 mM BAPTA. (C) Relationship between 
initial rate of current activation after obtaining whole cell access and intracellular free-Ca2+ levels in 
control cells and cell patch clamped in the presence of 2.5 M PIP2. (D) Relationship between peak 
current amplitude and intracellular free-Ca2+ levels in control cells and cell patch clamped in the 
presence of 2.5 M PIP2. Values in C and D are mean ± S.E. (n=4-7).   
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Discussion 

 The TRPM channels GON-2 and GTL-1 are the major pathway for Ca2+ entry 

into C. elegans intestinal cells (Xing et al., 2008) and may also play a role in Mg2+ 

transport (Teramoto et al., 2005). GON-2/GTL-1 function in a common signaling 

pathway with PLC to maintain the rhythmicity of C. elegans intestinal Ca2+ oscillations 

(Xing et al., 2008). Loss of either GON-2/GTL-1 or PLC activity causes arrhythmic 

Ca2+ oscillations and associated contractions of posterior body wall muscles that mediate 

defecation (Xing et al., 2008; Espelt et al., 2005b).  

The current studies demonstrate that PIP2 levels regulated by PLC modulate 

GON-2/GTL-1 channel function. Elevated PIP2 levels inhibit channel activity (Figure 

22B). The mechanism by which PIP2 inhibits GON-2/GTL-1 is unclear. GON-2/GTL-1 

exhibits voltage dependence and is regulated by intracellular Ca2+ levels (Figures 24 and 

25)(Estevez and Strange, 2005). However, unlike other TRPM channels (e.g., (Nilius et 

al., 2006; Liu and Liman, 2003a; Zhang et al., 2005b), PIP2 has no effect on the voltage 

sensitivity or Ca2+ responsiveness of GON-2/GTL-1 (Results and Figures 24 and 25).  

PIP2 most likely modulates channel open probability, single channel conductance and/or 

channel trafficking. Both GON-2 and GTL-1 have multiple positively charged domains 

on their cytoplasmic N- and C-termini that could function as PIP2 binding sites (reviewed 

in (Suh and Hille, 2008)). Single channel studies and molecular and biochemical analyses 

will be needed to define the mode of action of PIP2.   

In addition to its catalytic activity, PLC can also play non-catalytic regulatory 

roles. For example, PLC binds to TRPC3 and regulates membrane expression of the 

channel (van Rossum et al., 2005). The Na+/H+ exchanger NHE3 also interacts with 
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PLC.  This interaction is dynamic and regulated by changes in Ca2+ levels (Zachos et al., 

2009).  Elevated Ca2+ reduces NHE3 activity in part by decreasing membrane expression 

(Li et al., 2004) suggesting that changes in PLC/NHE3 interaction control transporter 

trafficking. Our data indicate that the regulatory role of PLC on GON-2/GTL-1 is 

mediated through its catalytic activity. Normal channel activity is restored in PLC RNAi 

cells by wortmannin or poly-L-lysine, agents that function to lower PIP2 levels (Figure 

22B).   

Numerous ion channels including members of the TRP superfamily (reviewed by 

(Nilius et al., 2008) have been shown to be regulated by PIP2. For example, PIP2 activates 

TRPM4 channels by increasing voltage and Ca2+ sensitivity such that channels open at 

physiologically relevant membrane voltages and intracellular Ca2+ levels (Nilius et al., 

2006). TRPP2 is inhibited by PIP2 (Ma et al., 2005). PIP2 both activates and inhibits 

TRPV1 and the mode of action is dependent on the degree of stimulation by channel 

agonists such as capsaicin (Lukacs et al., 2007a).    

In most cases, the physiological relevance of PIP2 regulation of ion channel 

activity is uncertain or inferred from knowledge of channel function. Similarly, the 

physiological role of PIP2 regulation of GON-2/GTL-1 is unclear at present. However, 

our current understanding of Ca2+ signaling in the C. elegans intestine allows us to 

propose a working model (Figure 26). As we have shown previously (Espelt et al., 

2005b), PLC generates IP3 that regulates intracellular IP3 receptor activity and Ca2+ 

release. It is well established that IP3 receptors are also regulated by Ca2+. Low 

intracellular Ca2+ concentrations activate IP3 receptor Ca2+ channels while high Ca2+ 

levels inhibit intracellular Ca2+ release (Foskett et al., 2007). In excitable cells, Ca2+ 
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influx through voltage- and ligand-gated Ca2+ channels regulates intracellular Ca2+ 

release via both IP3 and ryanodine receptors (e.g., (Gordienko et al., 2007; Kapur et al., 

2001; Kukuljan et al., 1997). Similarly, Ca2+ influx through GON-2/GTL-1 may control 

IP3 receptor activity in C. elegans intestinal cells.   

 Regulation of GON-2/GTL-1 by PIP2 may function to coordinate PLC activity, 

IP3 levels and IP3 receptor activity with plasma membrane Ca2+ influx. Foskett and co-

workers have shown that the Ca2+ sensitivity of IP3 receptors varies with IP3 

concentration. As IP3 levels rise, the concentration of Ca2+ required to feedback inhibit 

IP3 channels increases (Mak et al., 1998; Foskett et al., 2007). Thus, IP3 channels activate 

and remain active in the presence of higher local Ca2+ concentrations when IP3 levels are 

elevated. Under conditions where PIP2 levels are high and IP3 concentration is 

presumably low, the reduced Ca2+ influx through PIP2–inhibited GON-2/GTL-1 may be 

insufficient to activate IP3 receptors. As PIP2 is hydrolyzed to IP3, increased Ca2+ influx 

through GON-2/GTL-1 could now serve to stimulate IP3 receptor activity and trigger a 

rise in intracellular Ca2+ concentration (Figure 26).   

In addition to its role in regulating IP3 receptor function, Ca2+ also modulates 

GON-2/GTL-1 activity. As with the IP3 receptor, low Ca2+ concentrations activate and 

high Ca2+ levels inhibit the channel (Estevez and Strange, 2005). Feedback regulation of 

GON-2/GTL-1 activity by local Ca2+ levels may also serve to coordinate intracellular 

Ca2+ release and plasma membrane Ca2+ influx (Figure 26).   

The nature of the signal that triggers an intestinal Ca2+ spike is unknown. No 

intestinal Ca2+ signaling agonist has been identified. Since Ca2+ oscillations continue for 

long periods of time in vitro after isolation of the intestine (Espelt et al., 2005b), it is 
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likely that Ca2+ oscillations are independent of extracellular signaling events. It is 

conceivable that extracellular Ca2+ is the agonist that triggers intracellular Ca2+ 

oscillations. Low levels of Ca2+ influx through PIP2–inhibited GON-2/GTL-1 channels 

could increase the activity of PLC. Increasing PLC activity would lower PIP2 levels 

and relieve channel inhibition. Increasing Ca2+ influx through GON-2/GTL-1 would 

further stimulate channel activity (Estevez and Strange, 2005) and modulate IP3 receptor 

function (Figure 26). Such a mechanism is analogous to that proposed for the PIP2–

dependent regulation of TRPM8 (Rohacs et al., 2005) and TRPV6 channels (Thyagarajan 

et al., 2008). However, for these channels PIP2 is required for normal activity. Calcium 

influx through the channels is postulated to activate PLC thereby depleting PIP2, which 

leads to channel inactivation (Rohacs et al., 2005; Thyagarajan et al., 2008).   

It is generally accepted that changes in intracellular Ca2+ levels regulate the 

activity of the -isoforms of PLCs. However, all PLC isoforms require Ca2+ for normal 

catalytic function (Rebecchi and Pentyala, 2000) and at least one report has shown that 

PLC1 is also activated, albeit less than PLC1, by increasing Ca2+ levels (Allen et al., 

1997). Extensive additional studies are needed to determine whether C. elegans PLC is 

regulated by Ca2+ changes and whether such regulation contributes to oscillatory Ca2+ 

signaling in the intestine.   

We have shown previously that canonical store-operated Ca2+ channels do not 

appear to be required for generating intestinal Ca2+ oscillations (Lorin-Nebel et al., 2007; 

Yan et al., 2006). GON-2/GTL-1 channels may thus play a role in refilling intracellular 

Ca2+ stores.  PIP2 regulation of the channel would provide a means of coupling store Ca2+ 

levels to plasma membrane Ca2+ influx. Under conditions of low PLC activity and IP3 
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levels, store Ca2+ release would presumably be low and hence there would be no need for 

high rates of plasma membrane Ca2+ influx. Intracellular Ca2+ release triggered by 

increased PLC activity and IP3 levels would occur concomitantly with falling PIP2 levels 

and increased Ca2+ influx through GON-2/GTL-1.   

 In conclusion, PLC and GON-2/GTL-1 function in a common signaling pathway 

to maintain the rhythmicity of IP3–dependent Ca2+ oscillations (Xing et al., 2008). The 

current studies demonstrate that GON-2/GTL-1 is regulated by PLC in a PIP2 dependent 

manner. Hydrolysis of PIP2 functions to both activate plasma membrane Ca2+ entry and 

intracellular Ca2+ release. PIP2–dependent regulation of GON-2/GTL-1 may provide a 

mechanism to coordinate plasma membrane Ca2+ influx with PLC and IP3 receptor 

activity and intracellular Ca2+ store depletion. 
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Figure 26. Working model illustrating the established and putative roles of PLC, GON-2/GTL-1 and 
Ca2+ in oscillatory Ca2+ signaling in the C. elegans intestine. Graphs at bottom show expected 
intracellular Ca2+ changes. (A) PIP2 partially inhibits GON-2/GTL-1 channels under resting conditions.  
Calcium entering through GON-2/GTL-1 accumulates in a microdomain near the channel mouth and 
stimulates channel activity. Local Ca2+ accumulation may also activate PLC. (B) PLC hydrolyzes 
PIP2 relieving GON-2/GTL-1 inhibition. IP3 and enhanced Ca2+ influx through GON-2/GTL-1 
activate IP3 receptor mediated Ca2+ release from intracellular stores generating the rising phase of a 
Ca2+ spike. (C) Elevated intracellular Ca2+ feedback inhibits both IP3 receptor and GON-2/GTL-1 
channels. Cytoplasmic Ca2+ levels are lowered by reuptake of Ca2+ into intracellular stores and 
extrusion across the plasma membrane. Green arrows and red lines indicate activation and inhibition, 
respectively.   
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CHAPTER IV 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Fluctuating intracellular Ca2+ concentration is a ubiquitous signaling mechanism 

that controls numerous cellular processes including fertilization, gene transcription, 

exocytosis, secretion, cell differentiation, and apoptosis (Berridge et al., 2000). Keeping 

this in mind, it is not surprising that abnormal intracellular Ca2+ homeostasis underlies 

many common pathological conditions and human diseases, such as cardiac hypertrophy 

and heart failure, ataxia and certain types of epilepsy (Missiaen et al., 2000). The 

nematode C. elegans offers substantial experimental advantages for defining the 

molecular mechanisms of Ca2+ signaling. These advantages include a fully sequenced and 

well-annotated genome; a short life cycle and a number of stereotyped behaviors that 

allow forward genetic screening; relative ease of generating transgenic animals and 

manipulating gene expression by RNA interference; and numerous freely available 

reagents including worm strains and cosmid and YAC clones spanning the genome (Barr, 

2003; Strange, 2003). Direct physiological measurements can be combined with genetic 

and molecular analyses in C. elegans, which make it a unique system for studying 

oscillatory Ca2+ signaling (Espelt et al., 2005b; Estevez et al., 2003; Yan et al., 2006; 

Lorin-Nebel et al., 2007; Xing et al., 2008). 
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Posterior body wall muscle contraction (pBoc) in C. elegans drives worm 

defecation and occurs in a rhythmic fashion once ever 45~50 sec(Thomas, 1990). Genetic 

and physiological analyses have demonstrated that the pBoc cycle is regulated by 

inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in the intestinal epithelium 

(Dal Santo et al., 1999; Espelt et al., 2005b). Mutations in two intestinal TRPM channel 

encoding genes gon-2 and gtl-1 disrupt the pBoc rhythm, suggesting that they are likely 

to play a role in regulating Ca2+ oscillations in the intestinal cells. The central goal of 

studies carried out in this dissertation is to characterize the roles of GON-2 and GTL-1 in 

oscillatory Ca2+ signaling pathways in the C. elegans intestine, and to determine how 

these channels are regulated. Results from this study provide new insights into our 

understanding of the molecular identity of plasma membrane Ca2+ channels and their 

roles in controlling rhythmic Ca2+ oscillations in C. elegans intestinal cells. Moreover, 

this study is an important step toward our long-term goal to utilize the C. elegans 

intestine as a model system to develop an integrated molecular understanding of 

oscillatory Ca2+ signaling pathways in nonexcitable cells. 

This final chapter summarizes my conclusions. Studies carried out in this 

dissertation demonstrated that: (1) Two C. elegans TRPM channels GON-2 and GTL-1 

are required for rhythmic pBocs and rhythmic Ca2+ oscillations in the C. elegans intestine; 

(2) GON-2 and GTL-1 function together to generate the outwardly rectifying Ca2+ (ORCa) 

current and mediate selective Ca2+ influx in intestinal cells; (3) Epistasis analyses indicate 

that GON-2/GTL-1 function in the common signaling pathway with PLC and IP3 

receptors to regulate C. elegans pBoc rhythm and intestinal Ca2+ oscillations; (4) Loss of 

PLC activity inhibits GON-2/GTL-1 current in C. elegans intestinal cells by increasing 
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PIP2 concentration; (5) Application of exogenous PIP2 also inhibits GON-2/GTL-1 

current in C. elegans intestinal cells and PIP2 regulates GON-2/GTL-1 channel activity in 

a voltage and calcium independent manner.  

These key findings allow us to propose a working modeling illustrating how 

GON-2/GTL-1 may function together with PLC and IP3 receptors to generate rhythmic 

Ca2+ oscillations in the C. elegans intestine that drive worm defecation. Under resting 

conditions, PIP2 partially inhibits GON-2/GTL-1 channels and calcium entering through 

GON-2/GTL-1 accumulates in a microdomain near the channel mouth and stimulates 

channel activity. Local Ca2+ accumulation may also activate PLC. Activated PLC 

hydrolyzes PIP2 relieving GON-2/GTL-1 inhibition. IP3 and enhanced Ca2+ influx 

through GON-2/GTL-1 activate IP3 receptor mediated Ca2+ release from intracellular 

stores increasing cytoplasmic Ca2+ levels. Elevated intracellular Ca2+ feedback inhibits 

both IP3 receptors and GON-2/GTL-1 channels. Cytoplasmic Ca2+ levels are lowered by 

reuptake of Ca2+ into intracellular stores and extrusion across the plasma membrane. Ca2+ 

influx through GON-2/GTL-1 may also play a role in refilling the ER Ca2+ stores and 

PIP2 regulation of the channel may provide a means of coupling store Ca2+ levels to 

plasma membrane Ca2+ entry (Xing et al., 2009). 
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Future directions 

 

 

GON-2 and GTL-1 function together to mediate selective Ca2+ current (ORCa) in 
cultured C. elegans intestinal cells. Do they form heterotetrameric channels? 
 

We have identified two C. elegans TRPM homologues that mediate the outwardly 

rectifying Ca2+ (ORCa) current in intestinal cells. Our results demonstrate that the 

function of GON-2 and GTL-1 are interdependent. One possibility is that the ORCa 

channel is a GON-2/GTL-1 heteromer. Alternatively, loss of either GON-2 or GTL-1 

alone may disrupt the trafficking, expression and/or regulation of the other channel.   

The ability of different TRP channels to interact physically and functionally is 

well known. Numerous studies have provided evidence that a number of TRP channel 

family members form homo- and/or hetero- tetramers including TRPC1 (Barrera et al., 

2007), TRPP2 and TRPC1 (Kobori et al., 2009), and TRPV1 (Moiseenkova-Bell et al., 

2008). Heteromultimers of TRPM6 and TRPM7, homologues of GON-2 and GTL-1, 

have also been described (Li et al., 2006; Chubanov et al., 2004). Interactions among 

different TRP channels have been detected by co-immunoprecipitation and fluorescence 

resonance energy transfer (FRET), and through the demonstration that co-expression of 

two different subunits produces channels with properties distinct from those formed after 

expression of either subunit alone (Li et al., 2006; Chubanov et al., 2007). In most cases, 

these studies have been performed in heterologous expression systems. Future studies 

including generating transgenic worms co-expressing GON-2/GTL-1 tagged with 

different fluorophores and FRET analyses in vivo may provide meaningful insights into 

our understanding of possible TRPM heterotetramers in their native environments.  
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Identify novel endogenous regulators of C. elegans TRPM channels 

My studies have discovered that GON-2 and GTL-1 mediate ORCa current in C. 

elegans intestinal cells and the activity of GON-2/GTL-1 is required for rhythmic pBocs 

(Xing et al., 2008). Mutations in genes that are required for normal GON-2/GTL-1 

channel activity are likely to disrupt pBoc rhythm in C. elegans. Further characterization 

of whole cell ORCa current in intestinal cells carrying these mutations would allow us to 

determine whether GON-2/GTL-1 activity is affected in these mutant cells. This may 

provide basis for genetic screens to identify novel endogenous regulators of GON-

2/GTL-1 channels.  

Novel regulators of GON-2/GTL-1 channels may directly modulate channel 

activity or may disrupt the trafficking, and/or expression of the two channels. GTL-1 has 

been shown to specifically localize to the apical membrane of the intestine using 

transgenic worms expressing GTL-1::GFP translational reporter (Xing, unpublished 

data), whereas the subcellular localization of GON-2 is still uncharacterized. Future 

studies using transgenic worms expressing GON-2 translational reporters would provide 

the basis for RNAi screens to identify novel signaling molecules that regulate the 

trafficking of GON-2 and/or GTL-1. 

 

 

Identify PIP2 interacting domains on GON-2 and GTL-1 and characterize the 
mechanism underlying PIP2 inhibition of the two channels  
 

We have demonstrated that application of exogenous PIP2 significantly inhibits 

the activity of the ORCa current, which is mediated by gon-2 and gtl-1 in C. elegans 

intestinal cells. What is the specific role of PIP2 in regulating GON-2 and GTL-1? Are 

 107



there PIP2 binding sites on the channels? Both GON-2 and GTL-1 have multiple 

positively charged domains on their cytoplasmic N- and C-termini that could function as 

PIP2 binding sites. Biochemical analyses using purified proteins will be needed to 

identify possible PIP2 interacting domains on GON-2 and/or GTL-1.  

PIP2 has no effect on the voltage sensitivity or Ca2+ responsiveness of GON-

2/GTL-1 and it most likely modulates channel open probability, single channel 

conductance, and/or channel trafficking. Single channel studies will be needed to define 

the mode of action of PIP2 inhibition. However, single channel analysis is not yet 

technically feasible in primary cultured C. elegans cells. Alternatively, characterization 

of PIP2 regulation of heterologously expressed GON-2 and/or GTL-1 may be useful in 

addressing this question. To determine whether PIP2 affects channel trafficking, cell 

surface expression of fluorescence protein tagged GON-2 and GTL-1 can be monitored 

by total internal reflection fluorescence (TIRF) microscopy while cellular PIP2 levels are 

manipulated through different maneuvers. 

 

 

Final remarks 

The work described in this dissertation greatly expands our knowledge of the 

oscillatory Ca2+ signaling pathways in the C. elegans intestine. My study identified that 

the plasma membrane ORCa current in C. elegans intestinal cells is mediated by two 

TRPM channel genes, gon-2 and gtl-1, and discovered that these channels are regulated 

by PLC activity and PIP2 in vivo. Our results indicate that Ca2+ influx through GON-2 

and GTL-1 is essential for maintaining the rhythmicity of intestinal Ca2+ oscillations.  
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The C. elegans intestine provides unique tools that allow us to combine genetic 

analysis with direct electrophysiological measurements and Ca2+ imaging methods to 

develop an integrated understanding of oscillatory Ca2+ signaling pathways. The genetic 

power of C. elegans makes it well suited for identification of the molecular components 

of signaling pathways. Forward genetic analysis can be used to screen for abnormal 

phenotypes and/or suppression of mutant phenotypes. Reverse genetic methods can be 

used to knockdown the expression of specific genes. My work has identified phenotypes 

that can be useful for forward and reverse genetic screens in C. elegans to search for 

signaling proteins that function together with GON-2/GTL-1. For example, GTL-1 is 

specifically localized in the apical membrane of the C. elegans intestine, which could be 

used as the basis for RNAi screens to identify novel endogenous regulators of TRPM 

channel trafficking. 

In summary, the work described in this dissertation has expanded our 

understanding of the physiological roles and regulation of TRPM channels in vivo and 

the molecular mechanisms underlying the oscillatory Ca2+ signaling pathways in 

nonexcitable cells. Given the highly conserved nature of Ca2+ signaling, insights gained 

from C. elegans will likely provide new and important understanding of the Ca2+ 

signaling mechanisms in mammals.  
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