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CHAPTER I

INTRODUCTION

Research Motivation

Liver transplantation has become the standard of care for end-stage liver disease in the 

United States in the past  two decades.  During this time however, the waiting list  of candidates 

awaiting transplantation has increased dramatically, while the size of the organ donor pool has 

increased more slowly [1,2].  As shown in figure 1, the national allocation system is currently not 

in equilibrium, with the quantity of liver grafts demanded exceeding the available supply.  As a 

result of this deficit, more than 2,000 patients die annually while awaiting liver transplantation.  

Liver transplantation ranks among the most  expensive medical services available, costing 

hundreds of thousands of dollars [3].  In light of the scarcity of both organs and money, careful 

allocation of liver grafts is critical in order to maximize survival and quality of life for liver 

transplant patients.  

History of Liver Transplantation

The first  successful human liver transplant was performed by Dr. Thomas Starzl in 1967.  

The surgical foundation necessary for liver transplantation had been established, but 

underdeveloped technology for immunosuppression made long-term survival after liver 

transplantation rare during the 1960’s and 1970’s.  Because of this, liver transplantation remained 

an experimental form of therapy until the 1980’s.  The advent  of cyclosporine represented a 

breakthrough for liver transplantation, and it became a successful and established form of 

treatment. 

In 1984, the U.S. Congress passed the National Organ Transplant Act  (NOTA) [4].  It 

specified the framework for a national system of organ transplantation.  Among its other 

provisions, it  called for the establishment of the Organ Procurement and Transplantation Network 
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(OPTN), which represents the logistical infrastructure for transplantation in this country.  On 

September 30, 1986, the United Network for Organ Sharing (UNOS) was awarded the initial 

contract to administer the OPTN, and the contract has been continuously renewed to the present 

time [5].  The UNOS is responsible to facilitate the matching of organ donors and recipients, to 

collect data for every transplant  that occurs in the country, and to develop organ transplantation 

policy.  

At the present time there are 122 health care institutions in the country currently offering 

liver transplantation, and a total of 6,164 transplants were performed in 2004 alone [2].  There are 

currently more than 18,000 candidates awaiting liver transplantation.  Approximately 95% of all 

liver transplants performed use cadaveric liver grafts.  While living donor liver transplantation is 

technically possible, this widespread use of this technique has been limited in part  by the risk to 

the donor.  Thus, the procurement of cadaveric livers is the primary limitation on the number of 

liver transplants that  can be performed.  

Allocation Policy

The current mechanism for allocating cadaveric livers is based on the Model for End-

Stage Liver Disease (MELD) [6,7].  It was implemented in February 2002, with the goal of 

creating a “sickest-first” system in which the patients could be ranked by an objective, continuous 

scale according to the severity of liver disease.  Changes in allocation policy are made by the 

UNOS, with oversight  from the U.S. Department of Health and Human Services.  

The UNOS provides a framework of principles for making policy decisions about  organ 

allocation.  There are two specific and sometimes competing goals that must be considered for 

decision making in transplantation: Utility and Justice [8].  Utility is defined as “allocating organs 

to those individuals who will make the ‘best’ use of them,” and Justice is defined as “allocation of 

organs to those patients in the most immediate need.”  The UNOS Liver Committee proposes 

allocation policy in accordance with these goals.  Policy changes are proposed based upon a 
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combination of the clinical expertise of the committee members and experimental inference 

provided by the Scientific Registry of Transplant Recipients (SRTR).  

Predicting Outcomes

A means to help clinicians and policy-makers predict  the outcomes of liver 

transplantation could prove beneficial both in the clinical and in the research setting.  For clinical 

purposes, a model with good predictive ability may help to distinguish between transplants most 

likely to result  in good outcomes and transplants most  likely to result in poor outcomes.  Avoiding 

futility in transplantation was noted in the desiderata for an organ allocation system [9].  If even a 

small percentage of futile transplants could be avoided each year, the effect  on outcomes of 

patients receiving liver transplants could be substantial both in terms of life-years saved and 

quality of life gained.  

Furthermore, when a liver graft  is offered to a transplant center, clinicians may need to 

select among multiple candidates, all of whom are eligible for the donor liver.  A good survival 

model could be employed to aid matching between donors and recipients.  Beyond the issue of 

the liver shortage, a survival model could also help select the ideal course of therapy for 

individual patients.  Some patients might experience greater benefit from treatments other than 

transplantation, such as hepatic resection or medical therapy, and a survival model may help 

clinicians to identify these patients.  Thus, individual transplant  centers could use a survival 

model as an adjunct  to clinical judgment in selecting candidates for transplantation.  

Finally on the research side, the SRTR is responsible for answering inferential requests 

from the UNOS.  An accurate survival model could help policy-makers to assess a priori the 

likely effects of proposed changes in policy.  For instance, a model could be employed as a 

component  of a simulation process to model the aggregate effects of changes in allocation policy, 

before the changes are implemented.  Because the utility of a survival model lies in its ability to 

make predictions at the time of decision-making – that is, just  prior to transplantation – this thesis 

will focus on pre-transplant models.
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A variety of measures exist to evaluate the success of a liver transplant.  The measures 

most common to the field are patient survival and graft survival.  Patient  survival refers to the 

amount of time that  a patient lives following the date of transplantation, while graft survival is 

defined as the number of days from transplantation to either patient death or retransplantation.  

Functional performance, as manifested by a patient’s ability to perform the activities of daily 

living or return to work, can be used to represent  the quality of life achieved after transplantation 

[10].  Patients may also report  on health-related quality of life using a variety of instruments, such 

as the SF-36 inventory [11].  Quality-adjusted life years could be used to measure patient  survival 

and quality of life simultaneously.  

When dealing with the problem of allocation, the goal is to optimize the utilization of 

scarce cadaveric organs.  Thus, focusing on graft survival allows one to consider both the life of 

the patient and the use of an organ.  The Kaplan-Meier survival curve for graft  survival following 

liver transplantation, shown in figure 2, reveals a steep decline in the number of survivors in the 
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early post-operative period.  As time progresses after transplantation, the slope of the curve 

flattens and stabilizes.  Because of this, 90-day graft survival was adopted as the outcome metric 

of interest for this thesis.  

Specific Aims

Aim 1: To determine whether informatics techniques can improve upon Cox regression in 

predicting outcomes following liver transplantation. 

Aim 2: To simplify the machine learning model by identifying the key factors necessary for 

robust prediction of outcomes. 

Aim 3: To evaluate the practical significance of a refined model in a clinical setting. 

The motivation and context  for the proposed research is described in Chapter I.  Chapter 

II describes a systematic literature review to identify the relevant  literature on modeling survival 

after liver transplantation.  Chapter III presents methodology that  will be shared by multiple 

studies in this thesis.  The following four chapters detail the experiments that  address the Specific 

Aims.  Chapter IV presents a Bayesian network model that  was created and validated to address 

Specific Aim 1.  Chapter V describes a variable selection experiment, which will address Specific 

Aim 2.  Chapter VI examines the complexity of the problem in a manner that  partially addresses 

both Specific Aims 1 and 2.  Chapter VII describes research on how well clinicians predict 

survival in comparison to mathematical models.  The practical significance of a survival model 

lies in its ability to improve upon the current  standard of care, which is the use of clinical 

judgment to predict survival.  In this way, the study will address Specific Aim 3.  The thesis 

concludes in Chapter VIII with a discussion of the key findings, together with the resulting policy 

implications.  
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CHAPTER II

SYSTEMATIC LITERATURE REVIEW

Purpose

The goal of the systematic literature review was to identify articles dealing with the use 

of statistical models to predict  survival after liver transplantation.  I will note the strengths and 

weaknesses of articles written to address this problem.  The research described later in this thesis 

will represent an effort to address the gaps that  are identified in the body of past research.  

Methods

Relevant articles were defined to be those “dealing with the creation or validation of a 

general, pre-transplant, human, adult, statistical model to predict graft  or patient survival 

following liver transplantation.”  Terms within this definition were defined by the following: 

“General” was defined to refer to a model that was intended for use on the whole 

population of adult liver transplant recipients, rather than a specific sub-population based on 

disease etiology or retransplantation.  When studies listed specific exclusion criteria, such as 

patients with fulminant hepatic failure, the studies were deemed relevant  as long as the exceptions 

represented a minority of transplants performed.  

“Pre-transplant” was defined to refer to a model that  could be evaluated at  the time of 

transplantation; in other words, it  does not  require the availability of intra-operative or post-

operative information.  

“Statistical model” was defined as a mathematical entity that  was created or used for the 

purpose of making predictions.  

Articles that adhere to the above definition should address three general concepts: (1) 

liver transplantation in humans, (2) an outcome measure, and (3) statistical modeling.  I identified 

all possible medical subject heading (MeSH) terms that fell into any of the three categories using 
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the MeSH browser [12].  These three concepts, together with the MeSH terms that apply to them 

are described as follows:

The concept of liver transplantation in humans was described by the MeSH terms "Liver 

Transplantation" and "Humans".

The concept  of an outcome measure was described by the MeSH terms "Treatment 

Outcome"; “Survival Rate"; "Graft  Survival"; "Prognosis"; "Mortality"; "Liver Transplantation/

mortality"; “Host vs Graft  Reaction"; "Graft  Rejection"; and "Graft Survival".

The concept of statistical modeling was described by the MeSH terms "Proportional 

Hazards Models"; "Neural Networks (Computer)"; "Models, Statistical"; "Survival Analysis"; 

"Models, Theoretical"; "Computing Methodologies"; "Artificial Intelligence"; and "Bayes 

Theorem".

I traced the set  of MeSH terms up the hierarchy and identified common parents whenever 

possible, with the goal of making the search very broad and thorough.  Lastly, the search was 

limited to English articles that  were published prior to March 31, 2005.  No beginning publication 

date for the search was specified.  The final PubMed search strings are shown in table 1.  

Two reviewers independently examined all abstracts returned by the search and identified 

all potentially relevant  articles using the title and abstract.  Disagreement  was resolved by 

8

Table 1. PubMed search strings for systematic literature review on 8/25/2005

Search String # of Abstracts

1. Search "Liver Transplantation"[MeSH] 25494

2. Search #1 AND "Humans"[MeSH] 21753

3. Search #2 AND ("Mortality"[MeSH] OR "Liver Transplantation/mortality"[MeSH] OR 
"Survival"[MeSH] OR "Prognosis"[MeSH] OR "Host vs Graft Reaction"[MeSH]) 8094

4. Search #2 AND ("Statistics"[MeSH] OR "Models, Theoretical"[MeSH] OR "Computing 
Methodologies"[MeSH]) 3782

5. Search #3 AND #4 2112

6. Search #5 AND "English"[la] 1980

7. Search #6 AND Limit Publication Date up to 2005/03/31 1937

Note: Search #7 denotes the final set of abstracts examined by the reviewers. 



consensus opinion.  When the correct  classification was ambiguous based solely on the abstract, it 

was included for examination of the full-text  article.

The full-text  articles were retrieved, and their relevance was examined to obtain the final 

list of articles that fit the inclusion definition provided above.  Aspects of the methodology of 

each article were abstracted: (1) the data source used, (2) the model validated, (3) the 

performance measure used; and for articles that created an original model, (4) the modeling 

technique used, and (5) the experimental design for validation. 

Results

The PubMed search described above returned 1937 abstracts.  The two reviewers 

narrowed the list  to 49 abstracts for which the full-text was retrieved.  After review of the full-text 

articles, 22 fit  the inclusion criteria 

[13-34].  The relevant  articles are 

summarized in table 2.  Among 

these articles, 10 focused on 

validating existing models that had 

been created for other purposes, and 

the remaining 12 detailed the 

creation of original models.  Three 

of the articles were published 

before 2000, and the remaining 19 

articles were published between 

2000-2005, as shown in figure 3. 

Data Sources

Eight  of the relevant  articles used a large multi-center data source, and 15 used data from 

a single transplanting institution.  One study created a model using data from a single center and 
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then validated it using data from a multi-center database.  The median sample size used, in 

number of transplant  events, was 228 (range: 31-827) for the single-center studies and 11,878 

(range: 1,510-38,876) for the multi-center studies.  Five of the multi-center studies used data from 

the UNOS, two used data from the UK and Ireland Liver Transplant Audit, and one used data 

from the European Liver Transplant Registry.  

Models

Existing models that were validated by a number of articles included MELD (9 articles), 

Child-Turcotte-Pugh (CTP) score (2 articles), and UNOS status (2 articles).  Other existing 

indexes were each validated for survival prediction in one article and included Acute Physiology 

and Chronic Health Evaluation (APACHE) II/III, Canadian Waitlisting Algorithm in 

Transplantation (CanWAIT), Child-Pugh class, Simplified Acute Physiology Score (SAPS), delta-

MELD, and activation status.  

Among the articles that dealt  with the creation of original models, various techniques of 

statistical modeling were used, including Cox proportional hazards regression (5 articles), logistic 

regression (2 articles), neural networks (2 articles), product-limit estimate (1 article), non-specific 

risk profile (1 article), and “trial-and-error” (1 article).  

Validation

The relevant studies used various methods of model validation.  Among the studies that 

created original models, five used the same data set for model derivation and validation, six used 

an independent data set for model validation, and one performed no validation.  The validation 

statistics employed included measures of simple association (8 articles), discriminatory power (8 

articles) including area under the receiver operating characteristic curve (AUC) [35], operating 

characteristics (2 articles), aggregate mortality (2 articles), and qualitative “separation” (1 article).  
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Synopses

Brief synopses of the relevant articles follow, in chronological order of publication.  The 

first  model to predict survival after liver transplantation was reported by Shaw et  al. in 1985 [13].  

They used a cohort  of patients transplanted at Pittsburgh to identify key risk factors and develop 

an empirical scoring system using “trial-and-error”. They assessed the prognostic value of their 

model for 6-month survival by qualitatively assessing the “separation” attained.  

Maggi et al. established the predictive value of the traditional Child-Pugh classification 

with a set of patients transplanted in Milan, Italy [14].  They found no significant difference in 

survival between patients of the three Child-Pugh classifications A, B, and C at an alpha level of 

0.01, and concluded that  no definite prognostic value of the Child-Pugh classification could yet 

be assigned.  

Selberg et  al. assessed the ability of nutritional and metabolic parameters to predict 

outcomes of liver transplantation [15].  They studied transplant candidates at the Medical School 

of Hannover, Germany and noted that resting energy expenditure and body cell mass could be 

used as a “risk profile” that  showed a significant  difference in terms of Kaplan-Meier survival 

curves.  

Chung et al. correlated pre-transplant  activation status, SAPS, and APACHE II/III with 

post-transplant survival [16].  Activation status was defined as a four-category ordinal variable 

that denoted whether a patient was at  home, in the hospital, in intensive care, or being 

mechanically ventilated at the time an organ was offered.  They studied 31 patients transplanted at 

Vancouver Hospital in Canada, and found no significant  correlation between any of the risk 

scores and survival.  They concluded that  detailed physiological scoring systems were of no 

greater value in predicting outcome than activation status.  

Adam et  al. used patients from the European Liver Transplant  Registry to develop two 

original models [17].  Their adult  model is described below, and their pediatric model was not 

relevant to the present  study.  They selected variables using Cox regression and derived the model 

using the product-limit estimate.  The model included 11 variables and 8 two-way interactions 
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between variables.  They concluded that  the “normalized intrinsic mortality risk” predicted by the 

model was similar to that seen in the whole population. 

Parmanto and Doyle used recurrent  neural networks trained with the backpropagation-

through-time algorithm to predict 90-day graft  survival for adults transplanted at Pittsburgh [18].  

They validated the model by 6-fold cross validation, and reported model performance in terms of 

“total performance”, defined as (sensitivity + specificity) / 2.   They developed a series of models 

beginning at  the time of transplantation, and sequentially including 1, 2, 3, 4, 5, and 6 post-

operative days.  They showed that model performance improves with each day of post-operative 

information provided, and nearly perfect classifications, in terms of the total performance metric, 

may be made with 6 days of post-operative information.  

Ghobrial et al. expanded on a model that  had been previously developed to predict 

survival in hepatitis C patients [19].  They used the UNOS database and Cox regression to 

develop an 8-factor model that included recipient age, donor age, creatinine, total bilirubin, 

prothrombin time, retransplantation, cold ischemia time, and warm ischemia time.  They 

validated the model with the same data used to derive the model and reported c-statistics of 0.69, 

0.68, and 0.67 for 3-month, 6-month, and 1-year patient  survival, respectively.  

Onaca et  al. validated the use of the pre-transplant  MELD score to predict  mortality 

within 2 years after transplantation [20].  They studied patients who underwent transplantation at 

Baylor in Dallas, Texas.  The patients were divided into strata of MELD < 15, MELD 15-24, and 

MELD > 24.  They were also categorized by disease: hepatitis C, cholestatic liver disease, and 

non-cholestatic liver disease.  They found significant  differences in survival at  3, 6, 12, 18, and 24 

months for patients in the high MELD strata.  

Fernandez-Aguilar et al. examined the use of the MELD score and CTP score in 

predicting post-transplant  survival [21].  They included adults receiving liver transplants at a 

single hospital in Spain.  Using the chi-square test, a MELD score ≥ 18 was not  significantly 

associated with 1-year survival, but a CTP  score ≥ 10 was significant  at an alpha level of 0.01.  

They concluded that  the MELD score adds no prognostic advantage to the CTP score.  
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Saab et  al. assessed the association of MELD with 1-year patient  survival on a cohort of 

adult  liver transplant recipients at  the University of California in Los Angeles [22].  They used 

Cox regression for the purpose of identifying independent risk factors of mortality and 

demonstrated an independent  association between MELD strata and outcome.  

Thuluvath et  al. developed “user-friendly” models to predict  post-transplant  survival [23].  

They used a very large cohort  of patients from the UNOS database and used 2/3 of them, 

randomly selected, to derive logistic regression models, and the remaining 1/3 to validate the 

models.  They converted the regression coefficients of the resulting models into integers that 

could be added to obtain a “severity score” ranging from 1 to 30.  This calculation was easy to 

perform by hand, hence their designation as a “user-friendly” model.  Their models for 1-month 

and 1-year patient survival included age, body mass index, UNOS status, diagnosis, total 

bilirubin, and creatinine.  Their model for 5-year patient  survival included race in addition to the 

other predictors.  They reported AUC values of 0.7, 0.7, and 0.63 for 1 month, 1 year, and 5 years, 

respectively.    

Bilbao et al. reviewed the literature for predictors of post-transplant survival after liver 

transplantation [24].  They developed an original model using patients transplanted in Barcelona, 

Spain.  They used logistic regression to predict  3-month patient survival using four variables: 

Child-Pugh class, renal insufficiency, need for cross-clamping, and malnutrition.  The model 

operating characteristics were 75% sensitivity, 75% specificity, 30% positive predictive value, 

and 94.4% negative predictive value on the training set; and 80% sensitivity, 88% specificity, 

61.5% positive predictive value, and 95.3% negative predictive value on an independent 

validation set.  

Desai et  al. used MELD and an original model to predict  survival [25].  They used 

patients from the UNOS database to create a Cox regression model that included age, ventilation, 

dialysis, and retransplantation.  They reported an AUC performance for 3-month survival of 0.54 

(95% confidence interval [CI]: 0.50-0.59) for MELD.  Their original model achieved AUC 
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performance of 0.65 (95% CI: 0.61-0.69) on the training set  and 0.60 (95% CI: 0.58-0.63 on the 

validation set. 

 Santori et al. evaluated the use of UNOS status and MELD score for predicting patient 

survival at 3 months [26].  They examined patients who were transplanted in Genoa, Italy, and 

reported c-statistics of 0.524 (95% CI: 0.410-0.636) for UNOS status and 0.677 (95% CI: 

0.527-0.762) for MELD.  There was no significant  difference between the c-statistics for UNOS 

status and MELD score.  

 Austin et  al. examined whether there was a difference in mortality between veterans and 

non-veterans after liver transplantation [27].  They compared two cohorts of patients receiving 

liver transplants at Oregon Health & Science University, including 285 university patients and 

149 veterans.  Their initial analysis found that  veteran status was not  a significant predictor of 

outcome.  Next  they created a Cox proportional hazards model using the entire study cohort that 

included gender, donor age, recipient  age, and MELD score.  They also created an alternate 

model that  avoided the politically charged variables of recipient  age and gender, and this model 

included donor age, alcoholism, and MELD score.  They validated the models using the study 

cohort for predicting 1-year graft  survival and reported an AUC of 0.71 for the 4-variable model 

and 0.66 for the 3-variable model.  

Roberts et  al. created a library of disease-specific models to predict post-liver transplant 

survival [28].  They used a cohort of patients from the UNOS database and grouped patients into 

disease categories determined by the National Clinical Oversight Committee.  They built Cox 

regression models for each of ten disease categories.  The models showed that different variables 

were significant predictors for different diseases. They compared model-predicted Kaplan-Meier 

survival curves for a standardized patient with actual Kaplan-Meier survival curves and noted 

similarity between the two.  They concluded that disease etiology is a stronger predictor of 

outcome than MELD score.  

 Jacob et  al. assessed the ability of the MELD score to predict  90-day patient survival 

[29].  They used data from the UK and Ireland Liver Transplant  Audit  and evaluated predictive 
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ability of the model using the c-statistic.  They also re-estimated the coefficients of MELD using 

Cox regression and validated the modified model.  The c-statistic for MELD was 0.58 (95% CI: 

0.54-0.61), and this value remained less than 0.60 after re-estimating coefficients and considering 

non-linearity.  They concluded that the MELD score might  be appropriate to predict pre-

transplant outcomes but not  post-transplant outcomes.  

Bazarah et al. compared the ability of the MELD score, the CTP score, and CanWAIT  to 

predict post-transplant  survival [30].  They used patients transplanted at  the Queen Elizabeth II 

Health Sciences Hospital in Canada.  They noted significant  correlations between all three 

models’ predictions and 90-day graft survival.  They calculated c-statistics of 0.67 for MELD, 

0.65 for CTP score, and 0.71 for CanWAIT.  They concluded that there is no substantiated reason 

to consider replacing the currently used CanWAIT system for liver transplantation in Canada.  

Northup et al. evaluated the utility of pre-transplant delta-MELD score as a predictor of 

post-transplant survival [31].  The delta-MELD score was defined as the change in a patient’s 

MELD score during the 30 days prior to transplantation.  They examined liver transplant 

recipients from the UNOS database.  Using logistic regression, they concluded that absolute 

MELD score was significantly associated with 90-day survival, but delta-MELD was not. 

Santori et  al. compared UNOS status with the MELD score for predicting patient  survival 

at  1 month, 3 months, 6 months, and 1 year; and graft survival at 1 week, 1 month, 3 months, 6, 

months, and 1 year [32].  This was similar in nature to their 2004 study described above, except 

that their study cohort  was reduced and they examined additional endpoints. They assessed 

performance by AUC, and performance of both models at almost all endpoints was less than 0.6.  

They reported a trend of better performance for the MELD score, but  this was not  statistically 

significant.  

Haydon et al. used self-organizing maps, a variant  of neural networks, to predict 

transplant survival [33].  They studied patients transplanted at Queen Elizabeth Hospital in the 

United Kingdom.  Their network contained 37 recipient and 18 donor variables, and it  was 

trained to predict  3-month and 1-year patient  survival.  The model was validated using a national 
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multi-center database, and they showed that  there was a significant difference by chi-square test 

in survival for the different  output  neurons.  

 Moore et  al. simplified previous survival models that  had been reported in the literature 

[34].  They studied patients that  underwent liver transplantation at Vanderbilt University Medical 

Center.  They used Cox regression to identify three recipient, donor, and technical factors as 

independent  predictors of graft and patient survival: UNOS status 1/2A versus 2B/3, donor age ≥ 

60 years, and cold ischemia time ≥ 12 hours. 

Discussion

The literature review included 22 articles published between 1985 and 2005.  Recent 

years have seen a surge of interest in predicting survival after liver transplantation, possibly due 

to the increasing scarcity of liver grafts.  Great  diversity exists among the articles discussed in 

terms of data sources and methodology employed.  Survival modeling is well developed in the 

literature using Cox regression and logistic regression.  A variety of machine learning techniques 

exist  for developing statistical models, yet  only two papers have used neural networks [18,33], 

and no papers have reported the use of other established techniques.  Despite the efforts that 

researchers have made, no well-validated survival model currently exists with discriminatory 

power greater than 0.7 AUC.  

One limitation of the present  review is that I did not  judge the quality of the studies 

discussed.  This review instead focused on a historical summary of methodology, because a 

review has already been reported that  incorporated qualitative judgment of each article [36].  

Jacob et al. performed a systematic literature review similar to ours, except that  after identifying 

the body of relevant literature, they used an assessment tool to judge the quality of the studies.  

The tool was based on published instruments and was modified for the purpose of their review 

[37].  Using the tool, they found that  five articles fulfilled the instrument’s quality criteria to be 

included in the review [17,19,23-25].  Of the models in these articles, three were based in the 
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United States and therefore can be easily re-evaluated using the UNOS data set  [19,23,25].  These 

three models will be used later in this research for the purpose of comparative validation.  

My research will represent  an attempt  to improve upon past  research in two specific 

ways.  First, all methods of statistical modeling make certain assumptions about  the data or the 

underlying process that generated them, and models perform optimally when those assumptions 

hold true.  The Cox assumptions are not stringent, and the successful use of such techniques is 

widespread in the medical literature.  However, the computational approaches germane to 

informatics allow for great  flexibility and power in selecting model hypotheses, possibly resulting 

in improved performance.  Thus, freedom from the assumptions inherent  in Cox regression may 

allow for the construction of improved models for post-transplant outcomes using alternative 

techniques.  Second, careful validation of a survival model is essential if conclusions are to be 

made about  its generalizable performance.  Not all models proposed in the literature were 

externally validated, and this may lead to overly optimistic conclusions about  model performance.  

Conclusion

Various pre-existing and original models have been employed to try to predict  survival 

after liver transplantation.  However, there may be room for improvement in the performance of 

these proposed models [36].  The use of established techniques from machine learning has not 

been thoroughly explored in this context.  Furthermore, the validation techniques employed for 

some published models may limit  the conclusions that  may be made about  their generalizable 

performance.  

18



CHAPTER III

GENERAL METHODOLOGY

The UNOS Database

The UNOS operates the national system for organ transplantation.  As mandated by 

policy, all transplanting institutions must report certain information for each transplant  performed.  

The UNOS Liver Committee selects the relevant  set of variables to be reported, which are  

collected on standardized forms made available by the UNOS.  The UNOS makes the information 

publicly available in a de-identified electronic format.  The UNOS database was selected for my 

research, which was approved by the local Institutional Review Board (IRB #040419: “Liver 

Transplant  Outcomes: Bayesian Analysis and Other Artificial Intelligence Techniques”).  

The provided distribution of the UNOS database contains 372 fields for 62,676 

transplants, representing every liver transplant performed in the country since the mid-1980’s.  

The precise beginning date is unknown, because all of the dates contained are consistently shifted 

by an unknown amount, plus or minus six months.  The UNOS database is large and 

comprehensive; however, certain aspects made it  challenging to work with.  As common for 

large-scale databases, the included elements need to be examined for errors and inconsistencies.  

For one patient, the wrong scale appears to have been used when the height was reported to be 

1.85 centimeters, rather than 1.85 meters.  Another patient  was reported to have a survival time of 

negative 91 days.  Moreover, many fields in the database contain varying proportions of missing 

values, and the reason for this is unknown.  

Moreover, there is a selection bias inherent  in the UNOS database, because each patient 

is selected for transplantation not  randomly, but  according to a specific allocation policy.  Those 

candidates deemed by clinicians to be too sick for transplantation are removed from the waiting 

list, and thus are not represented in the set  of transplant events.  Despite some limitations, the 
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UNOS database was considered to be the best available information source for my experiments, 

due to its large sample size compared with single-center databases.  

Database Scrubbing

All variables were inspected and cleaned prior to analysis using a Perl script.  Every data 

field was verified to contain interpretable information.  In other words, each field in the database 

was verified to contain a number where expected; a string of the form MM/DD/YYYY where a 

date was expected; or a string of the form HH:MM:SS where a time was expected.  Many fields 

contained meaningless information; for example, many binary yes/no variables were marked ‘U’ 

or ‘Uncertain’.  Similarly, some serological tests were marked as ‘Indeterminate’ or ‘Cannot 

Disclose’.  Ambiguous or meaningless values were treated as if they were missing.  

Discrete variables with many categories were abstracted into fewer categories in a 

clinically justifiable fashion, thus allowing for larger sample sizes within each category.  For 

example, the home state of the donor, which was represented by more than 50 categories, was 

consolidated into 11 transplant regions defined by the UNOS.  Range checking was performed for 

all continuous variables to verify that  they lay within a reasonable range, determined by clinical 

experts, and outliers were removed and as missing values.  As an example, all ages were ensured 

to be non-negative values.  Complete details of the database cleaning process can be found in 

appendix A.  

Overview of Modeling Techniques

The following is a brief survey of major statistical modeling techniques, each of which 

has its own strengths and weaknesses.  As discussed previously, many studies in the literature 

proposed Cox regression models to predict  liver transplant  survival [19,25,27,28,34].  The use of 

machine learning modeling techniques, some of which have different or more relaxed 

assumptions than Cox regression, or which do not  require a priori preference for some functional 

form, may result in improved performance for the prediction of liver transplant outcomes.  A 
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variety of modeling techniques exist  in the field of machine learning, and these have been 

successful in a variety of tasks ranging from stock market prediction to facial recognition [38-39].  

Machine learning methods have also been applied successfully to some difficult  problems in 

medicine, such as classification and prognosis of cancer for example [40].  

Cox Proportional Hazards Regression

The Cox proportional hazards model has experienced widespread application in 

predicting survival.  Three central assumptions exist  in this regression technique [41]:  

The linearity assumption states that the relationship between a predictor and the outcome 

takes a linear functional form.  For variables that  have a skewed distribution, as laboratory values 

commonly do, the axis may be transformed by a square root  or logarithmic function so that  the 

transformed variable may adhere better to the linearity assumption.  

The additivity assumption states that  the total effect  of different  predictors may be 

estimated simply by summing the individual effects.  In cases where a more complex variable 

interaction is believed to exist, the experimenter may create a composite variable by joining two 

individual variables together in a single term.  

The proportional hazards assumption states that the impact of each predictor on survival 

does not change over time.  Extensions to the Cox model exist, such as the use of time-dependent 

covariates, to allow for situations where this assumption does not hold [42].  

In summary, the Cox assumptions are not  rigid, and some methods exist  to account for 

situations when they are violated.  These methods tend to require a priori preference for some 

functional form by the experimenter.  

Decision Trees

A decision tree is a schematic of sequential decisions that  branch to arrive at  some 

outcome [43-44].  A decision tree can be easily represented by a flowchart, in which each node 

involves testing some condition, and the path of questions followed subsequently depends on the 
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answer to each question before it, until some conclusion node is reached.  This series of steps 

allows a decision tree to make inferences based on data.  A variety of algorithms exist  for 

constructing a decision tree from raw data, and for the most part  decision trees tend to generate 

models in accordance with Occam’s Razor, preferring simpler explanations over more complex 

ones.1  

Decision trees have the advantage that  they lead to human-interpretable models.  

However, they also have a tendency to generate models that over-fit  a given data set, although 

pruning mechanisms may be used to simplify a decision tree to combat  this shortcoming.  

Moreover, decision trees assume that the data set  can be appropriately split at  every node by 

considering only one data feature.  This assumption does not  hold for many complex problems.  

Bayesian Models

Bayesian reasoning takes a probabilistic approach to model induction.  It is founded on 

the principle that, given a set  of attributes together with prior conditional probabilities, Bayes’ 

theorem is used to assign a certain probability to various hypotheses [45].  Bayesian methods tend 

to operate more efficiently if the input data are discrete.  Many techniques exist to convert 

continuous variables into discrete ones, and the choice of discretization technique may have a 

large impact  on model performance [46].  The Bayesian approach to modeling is tolerant  to 

missing data values.  Different  flavors of Bayesian modeling exist: the naïve Bayesian classifier, 

the optimal Bayesian classifier, and Bayesian networks [43].  

A naïve Bayesian classifier assumes that various outcomes are mutually exclusive, and 

that the effects of all predictors are conditionally independent of all other predictors.  While these 

assumptions seem relatively stringent, the naïve Bayesian classifier has been shown to perform 

very well in many circumstances [47].  
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praeter necessitatem.”  Loosely interpreted, this means that when facing multiple explanations, all other things being 
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The optimal Bayesian classifier relaxes the assumptions of the naïve Bayesian classifier, 

but its need for a huge table of conditional probabilities means that  it may only achieve optimality 

with a nearly infinite sample size, and with nearly infinite computational power to estimate the 

probabilities.  Because of this, the optimal Bayesian classifier is impractical to use for many 

complex problems [48].  

A Bayesian network represents a structure of statistical associations between variables, so 

it creates a human-interpretable directed acyclic graph of relationships.  A conditional probability 

table is populated for each node in the network.  A Bayesian network assumes that  the data are 

generated from a faithful distribution, which means that there is a Bayesian network structure that 

can describe the joint  distribution [49,50].  

k-Nearest Neighbors

The k-nearest neighbors algorithm takes a set  of known data points, and it  makes a 

decision about an unknown data point  using the k data points closest to the unknown point 

[43,51].  It  operates under the assumption that the appropriate prediction for a given data point is 

denoted by the outcomes of data points “nearest” to it.  In this regard, it  has some common 

ground with clustering techniques.  A variety of distance measures may be employed.  The most 

common approach is to plot  all data points in hyperspace and measure the Euclidean distance 

between them to determine their similarity.  

This assumes that  every dimension in the set  of features is equally important in making a 

prediction for novel data.  This is known as the “curse of dimensionality” [52], and is considered 

to be a major weakness in k-nearest neighbors modeling.  To compensate for the curse of 

dimensionality, some extensions have been proposed that  involve weighting individual axes 

according to their impact  in predicting the outcome.  Moreover, the k-nearest neighbors algorithm 

assumes that the scale of every axis in the data is identical, and this assumption may be satisfied 

by normalizing and scaling each variable.  Lastly, this technique does not  tolerate missing data, so 

either missing fields must be imputed, or data points with missing variables must be eliminated.  
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Neural Networks

Neural networks are inspired by the biological process of neurons in the brain [43,53].  A 

given neuron fires a signal when it  is stimulated above some threshold.  Its output may be sent to 

other neurons, where it has a stimulatory or inhibitory effect on each of the neurons that  it 

innervates.  Collectively, a network of such neurons may exhibit  complex reactions to different 

stimuli.  The presentation of various stimuli over time, together with a feedback mechanism, 

results in those neurons being trained for certain responses.  The computational analog of this 

process can result  in the creation of highly complex but powerful models.  Artificial neurons may 

be combined in multiple layers or other structures as desired for some learning task.  

The chief assumption in neural networks is that  of reinforcement learning – repeated 

presentation of some stimulus to a neuron, as manifest by patterns in a data set, will result in the 

pattern becoming recognizable to the network [54].  Otherwise, neural networks are relatively 

free from assumptions about the functional form of a model.  A network with at  least two layers 

and adequate neurons within each layer is capable of learning any arbitrary function.  

The power of neural networks carries with it  certain disadvantages – first, neural 

networks are very prone to over-fitting; and second, the model becomes a “black box” that shows 

predictive power without  revealing useful information about  the underlying process [55].  

Missing data may be either imputed or encoded using dummy input neurons for each variable.  

Moreover, multiple local optima may be encountered in the training process, potentially 

preventing the model from achieving a globally optimal state.  Finally, training a neural network 

may be extremely intensive from a computational standpoint.  

Support Vector Machines

Support  vector machines are a relatively novel and very popular development in the 

machine learning community [56,57].  They have achieved success in many modeling tasks, and 

they rectify some shortcomings of neural networks.  A support vector machine plots data points in 

multi-dimensional space and draws a separating hyperplane to distinguish between various 
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outcomes.  This space need not be linear, and various functional forms may be modeled through 

the use of kernel functions.  The selection of a kernel function represents an a priori preference 

for some functional form, although these functions are quite versatile and hence not very 

restrictive.  Kernel functions implicitly map each data point into a transformed, higher-

dimensional space.  This mapping is implicit  because, due to the use of mathematical identities, 

the precise location of each data point is not  calculated – only the dot  product  of two vectors in 

the transformed space must  be known.  

The support vector machine formulation has a unique optimum, and training always 

converges at this optimum.  Due to the implicit transformation of input data, this optimum may be 

solved in a computationally efficient manner.  Moreover, support vector machines perform 

relatively well in the context of noisy data.  However, like neural networks they have the 

disadvantage of being a “black box” – a model may perform very well while revealing little 

explanatory information about  the process that it is modeling.  Also similar to neural networks, 

missing values must be either imputed or encoded using dummy variables.  

Experimental Design

Statistical modeling experiments must  be carefully designed in order to make conclusions 

about the generalizability of resulting models.  When a model is derived using one data set and 

validated using that  same data set, valid conclusions may be drawn about how well the model fits 

that data set; i.e., the experimenters may conclude that “our model fits these data with x predictive 

ability.”  However, no conclusions may be drawn regarding the generalizability of the model; that 

is, how well the model can make predictions based on unforeseen data points.  When the 

experimenter wishes to assert that “our model fits other data with x predictive ability” – as is 

often the case in research involving statistical modeling – different approaches must  be used.  

Two experimental designs that  can be employed to reach conclusions about  model 

generalizability are cross-validation and independent validation [58].  Cross-validation refers to 

the process of taking a single set of data and randomly dividing it  into a number of balanced 
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splits, with each containing a representative sample of the whole data set.  The first  split  is 

designated the validation set, and all of the other splits are used as a training set.  A model is 

derived using the training set, and its performance is estimated using the validation set.  Next, the 

second split is designated as the validation set, and all other splits as the training set.  The process 

is repeated once for each of the splits, so that each split serves as a validation set  once during the 

experiment.  The process of cross-validation can be further extended to include an inner 

optimization loop when parameters must be selected for a modeling technique.  The inner loop 

involves using a nested experiment of cross-validation on each of the training sets employed, thus 

allowing the model parameters to be selected in a manner that is relatively free of bias.  The final 

result of a cross-validated experiment  is generally reported as an average of performance for all 

splits. 

Independent validation refers to the process of generating a model using a training set, 

and then validating the model using an independent  source of data.  The data may come from a 

different  population, a different  time, or a different  geographical location.  For example, a model 

to predict  survival after liver transplantation could be derived using data from the United States 

and subsequently validated using data from Europe.  This would allow the researcher to conclude 

that the observed model performance does not depend on a specific process that is unique to the 

United States.  Consequently, there would be reason to believe that the model will perform 

similarly when presented with other previously unseen data.  

26



CHAPTER IV

BAYESIAN NETWORK

Purpose

I am unaware of previous attempts to use Bayesian networks to model outcomes 

following liver transplantation.  The purpose of the present experiment  was to evaluate the 

feasibility and suitability of Bayesian networks for predicting 90-day graft survival.  I 

hypothesize that  a Bayesian network can be created using expert  knowledge in the field of liver 

transplantation to model post-transplant  survival, and that this Bayesian network will have better 

discriminatory power than other survival models in the literature.  

Methods

This study included all liver transplant  events in the UNOS database occurring between 

2000-2002, and which involved an adult (≥ 18 years) recipient  and an adult donor (n = 12,239).  

Some patients received multiple liver grafts, and thus may be represented in the data by more 

than one transplant  event.  The binary outcome variable of interest was 90-day graft survival, 

where the endpoint of graft survival is defined as death or retransplantation.  Transplant events 

were eliminated if the patient  was lost to follow-up prior to 90 days (n = 132).  A set  of 258 

variables in the database were identified as being available by the time of transplantation, so these 

were used as independent variables in the pool of candidate predictors for survival.  These factors 

included demographic information, such as recipient  and donor age, gender, and race; clinical 

information, such as laboratory values, medical condition, and functional status; and technical 

information, such as cold and warm ischemia time.  

As described briefly in the general methodology (Chapter III), a Bayesian network 

describes a system of interest by specifying relationships of conditional dependence between its 

variables [43,49,50].  These relationships are represented by a directed acyclic graph, and this, 
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together with a joint  probability distribution for the nodes it  contains, creates a model that can be 

used for making inferences.  Bayesian networks are being used for a variety of medical problems 

that involve reasoning with uncertainty.  For example, Heckerman et al. developed a system to aid 

in diagnosis of diseases of the lymph nodes [59].  Domain knowledge drawn from clinical 

expertise and relevant literature was used to select  key predictors of survival from the pool of 

available pre-transplant variables, and subsequently to construct the relationships between nodes 

in the network [24,60,61].   

All data processing and performance analysis was done with Matlab (version 6.5, http://

www.mathworks.com), while the Bayesian network was created and simulated using the Netica 

development  environment  (version 1.12, http://www.norsys.com).  Different  network structures 

were examined to determine the appropriate degree of model complexity.  Both continuous and 

discrete variables were represented in the network, and all continuous variables were discretized 

into seven equal-width intervals.  The Netica software tolerates missing values in data, so no 

imputation was performed.  

I employed a three-fold cross-validated experimental design.  All data points from 

2000-2001 were randomly split  into three stratified folds.  Three iterations of model training and 

validation were conducted, each time estimating model parameters using two-thirds of the data 

and determining its performance using the remaining third.  A final model was created using all 

data points from 2000 and 2001, and I validated its performance using an independent set 

consisting of the data from 2002.  

Model performance was determined using the receiver operating characteristic (ROC) 

curve.  This curve plots the sensitivity and 1 - specificity levels achieved across all possible 

thresholds in a binary classification task.  The AUC represents the overall discrimination power 

of a given test, where a value of 0.5 denotes random guessing and 1.0 demonstrates perfect 

classification [35].  All AUC analyses was performed using ROCKIT  (http://www-

radiology.uchicago.edu/krl/KRL_ROC/software_index.htm).  For the final independent validation 
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step, I calculated AUC as well as 

specificity and positive and negative 

predictive value for fixed sensitivity levels 

of 95% and 90%.  

To compare the performance of 

my Bayesian network to other models 

published in the literature, I selected three 

Cox regression models from the literature 

[19,23,25].  These studies were used 

because they were identified as “high-

quality” articles in a recent systematic 

literature review [36].  I ran the 

independent  validation set  from 2002 

through these three models.  Because these 

models are not  tolerant to missing data, I imputed missing values in the independent validation set 

using close linear surrogates where possible.2   For other variables no linear surrogate was 

available, so I used mean imputation to fill in the other missing values.  The discriminatory power 

of these models was estimated in terms of AUC.  I performed three pairwise comparisons of AUC 

between the Bayesian network and each of the other three models.  The Bonferroni correction 

was applied to the significance level as appropriate, resulting in an alpha level of 0.0033.  

Results

The descriptive statistics from some key variables in the data set  were compared between 

the study populations from 2000-2001 and 2002, and they are summarized in table 3.  The 

proportion of patients achieving 90-day graft  survival improved between 2000-2001 and 2002.  

The age of patients receiving liver transplants was not  significantly different between the two 
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2 Specifically, when necessary, prothrombin time was estimated by multiplying the international normalized ratio by a 
factor of 12.  

Table 3. Demographics of the study population

2000-2001
(n = 7,887)

2002
(n = 4,220)

90-Day Graft Survival*

   Yes

   No

Age

   Mean ± SD (in years)

Gender*

   Female

   Male

Diagnosis*

   Acute Hepatic Necrosis

   Cholestatic

   Malignant

   Metabolic

   Non-Cholestatic

   Other

86.6%

13.4%

50.8 ± 10.0

34.7%

65.3%

8.6%

11.0%

3.6%

3.0%

68.5%

5.3%

89.2%

10.8%

51.1 ± 9.7

31.2%

68.8%

6.7%

10.8%

7.8%

2.7%

66.6%

5.4%

Note: Data represent transplant events, so unique 
patients may be represented more than once.  Asterisk 
denotes a significant difference between the 
populations from 2000-2001 and 2002, p < 0.01.



groups.  Gender of liver transplant patients showed a small but statistically significant difference 

in favor of more males being transplanted in 2002.  The diagnostic categories were mostly similar 

between the two study populations, excepting that  the percentage of patients being transplanted 

for malignancy doubled from 2000-2001 to 2002.  In both groups, non-cholestatic liver disease, 

including alcoholic liver disease and hepatitis C, accounted for a significant  majority of liver 

transplants performed.  

The Bayesian network consisted of 30 nodes, including 29 nodes representing pre-

transplant variables and a single dichotomous outcome node for 90-day graft  survival.  Only 

seven of the most important predictors of survival were designated as parents of the outcome 

node, ensuring that  its conditional probability table would not  grow too large and contain many 

structural zeros.  The other nodes in the network were connected either as grandparents or as 

children of the outcome node, and the relationships between different predictor nodes were 
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Figure 4. Structure of the final  Bayesian network, created using domain knowledge from clinical expertise and 
literature review.  The outcome node is shown in  the center and is highlighted with pink.  Recipient variables are 
shown in blue, donor variables are shown in green, and technical variables are shown in orange.  



founded on clinical rationale.  A total of 39 links connected the network, and the joint  probability 

distribution across all nodes consisted of 2,049 conditional probabilities.  The final network 

structure is shown in figure 4.  

The mean performance of the three cross-validated folds as measured by AUC was 0.674, 

and the AUC for the independent 

validation set  was 0.681 (95% CI: 

0.654-0.707).  The ROC curves are 

shown superimposed in figure 5.  

Using a threshold that fixed the 

sensitivity level at  95%, the model 

specificity was 18%, with a positive 

predictive value of 91% and a 

negative predictive value of 30%.  

These operating characteristics are 
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Figure 5.  Receiver operating characteristic curves of Bayesian network performance.  Area under curve values are 
shown for the three cross-validated splits using the training set from 2000-2001, as well as for the independent 
validation set from 2002, shown in red.

Table 4. Bayesian network classification at fixed 95% sensitivity

Actual outcome

Survivor Non-survivor

Predicted 
outcome

Survivor 3578 373

Non-survivor 188 81

Sensitivity:

Specificity:

Positive Predictive Value:

Negative Predictive Value:

Likelihood Ratio (+):

Likelihood Ratio (–):

95% (fixed)

18%

91%

30%

1.16

0.28



summarized in table 4.  When the sensitivity level was fixed at 90%, the resulting specificity was 

27%, and the positive predictive value remained at  91% while the negative predictive value was 

24%.  

The AUC performance for predicting 90-day graft  survival was 0.617 (95% CI:

0.588-0.646) for the Desai model, 0.616 (95% CI: 0.588-0.643) for the Ghobrial model, and 

0.605 (95% CI: 0.576-0.633) for the Thuluvath model.  Multiple pairwise comparisons of the 

alpha level between my model and each of the three others showed that  the Bayesian network had 

significantly greater discriminatory power than the others (p < 0.0033).  The ROC curves from 

the four models on the independent validation set are shown in figure 6.  

Discussion

A Bayesian network model may be constructed using domain expertise to predict 

outcomes following liver transplantation.  My network for predicting 90-day graft  survival 

performed modestly well, according to the AUC.  Performance was found to be highly consistent 
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between the training and independent  validation sets.  Model performance was also examined 

using a fixed threshold that  yielded a sensitivity level of 95%, and the resulting specificity level 

was low.  The model showed a very good positive predictive value (91%), whereas the negative 

predictive value was relatively low.  I interpreted this to mean that  the model performs very well 

at  the task of identifying good survivors.  However, the model does not  perform well at 

recognizing poor survival candidates for liver transplantation.  One limitation of the study is that 

132 transplant events were eliminated from analysis due to inadequate follow-up information; it 

is plausible that many of these represented poor outcomes, so a bias may have been introduced to 

the research.  

Of noteworthy mention is the fact  that  the UNOS instituted a major allocation policy 

change in February, 2002, by switching from a ranking of four sickness categories – Status 1, 2A, 

2B, and 3 – to using a continuous scale called MELD [6,7].  This policy change closely coincided 

with the division between the training set from 2000-2001 and the independent  validation set 

from 2002.  This observation may explain why differences were seen in certain descriptive 

statistics as noted above.  Regardless, since performance was very consistent between both study 

groups despite the policy change, this suggests that  the Bayesian network model may generalize 

well.  

The performance of the Bayesian network measured by AUC was approximately 5-10% 

higher than previous Cox regression models in the literature, and this difference was statistically 

significant [19,23,25].  Furthermore, because I used a data set that  was independent  with respect 

to all four models, I was able to perform a well-controlled comparative validation to show that  the 

Bayesian network outperforms the others in predicting 90-day graft survival.  This conclusion is 

worded carefully and is not  intended to impugn the quality of the other models or the studies that 

created them. 

The present research sheds new light on the field of modeling liver transplant outcomes 

in a few ways.  First, to my knowledge Bayesian networks have not previously been applied to 

the problem of modeling liver transplant outcomes.  The use of this technique may better lend 
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itself to high model complexity than Cox regression does, as evidenced by the 29 predictors 

included in the Bayesian network model.   Another benefit to this modeling technique, as 

compared with Cox regression, is that  Bayesian analysis is tolerant  to missing values such that no 

imputation is necessary.  Moreover, by examining the positive and negative predictive value of 

the model, I found that  the difficult part of the problem lies not in identifying good survivors, but 

in identifying poor survivors.  Lastly, my model incorporates some interactions between 

important  predictors, and while it  is possible to explicitly specify variable interactions in a Cox 

regression model, none of the models used for comparison included them.  

Future research will focus on constructing a Bayesian network that  incorporates both pre-

transplant information as well as some early post-transplant  information.  The model can be 

trained with joint  probability distribution governing all nodes in the network, even if inferences 

are made by entering findings only into pre-transplant  nodes.  The presence of this additional 

information in the network may help improve predictive power. 

Conclusion

 Bayesian networks may be used to model graft  survival following liver transplantation 

with fair performance.  This model exhibited greater discriminatory power than three other high-

quality models from the literature.  The Bayesian network is a candidate for further validation 

using foreign liver transplant data.  Given its high positive predictive value, our model may serve 

as a useful adjunct to clinical judgment in identifying patients most  likely to have good outcomes.  
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CHAPTER V

VARIABLE SELECTION

Purpose

Selecting variables for predicting liver transplant survival has traditionally relied upon 

clinical judgment for a priori selection of variables, followed by statistical treatment  of this 

subset to empirically identify the most important  factors.  Computational techniques for feature 

selection may be used to obtain the minimal set of variables required for optimal prediction, 

called the “Markov blanket” [62].  The goal of this study was to compare the performance of 

survival models created from factors chosen using traditional methods versus those selected by an 

automated technique that  approximates the Markov blanket.  I evaluated the performance of these 

predictor sets using several different  types of machine learning models.

Methods

Four different sets of predictors from the UNOS liver transplant database were used to 

model 90-day graft survival in adult (> 18 years) liver transplant  recipients.  The variables 

identified by Desai [25], Ghobrial [19], and Thuluvath [23] were used as baseline predictor sets, 

derived via well-established methods of univariate and multivariate association.   

Among all of the pre-transplant  variables in the UNOS database, 148 of them were at 

least 80% populated for the study period from 1995-1999.  Variables with a greater fraction of 

missing information were deemed to have insufficient data for further analysis.  These variables 

were available at  the time of transplantation, and any of them could be potential predictors for 

post-transplant outcomes.  

The automated feature selection technique used repeated tests of conditional 

independence with forward and backward conditioning to identify key features in the data set.  An 

alpha level of 0.001 was used for all statistical tests in automated feature selection, both for entry 
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into and exit from the variable pool.   This technique was based on the algorithm described by 

Aliferis et  al., and I refer the reader to the original paper for more technical details [63].  My 

method differed from theirs in that  I did not  implement the final wrapper step specified in their 

algorithm.  For the feature selection step, continuous variables were discretized by selecting 

thresholds that maximized the chi-squared association with the outcome variable.  Once all 

variables were in the required discrete form, missing values were encoded as a separate category.

Various types of classifier models were built  to predict 90-day graft  survival; specifically 

linear regression, naïve Bayesian classifiers, support  vector machines, and neural networks.  To 

ensure that  all required values were populated in the data set, I excluded data points that  had 

values missing for any of the required variables in the four predictor sets.  All of the feature 

selection and modeling experiments were conducted using the Matlab environment. (version 6.5, 

http://www.mathworks.com)

I employed a 3-fold cross-validated experimental design using the data set  from 

1995-1999 (n = 6,765).  The data were randomly divided into balanced splits, and during three 

alternating iterations two of these splits were used to train a model, while the third was used to 

validate the model.  I also created a final model using the entire data set from 1995-1999, and 

validated its performance using an independent  data set of adults transplanted from 2000-2002 (n 

= 2,119).  The AUC was used to assess model performance [35].  This metric quantifies 

discriminatory power, where 0.5 denotes random guessing and 1.0 denotes perfect  discrimination.  

I repeated the cross-validation step five times to obtain an average AUC for each predictor set and 

model type.  I used a t-test  to evaluate the difference between the means between my predictor set 

and those published in the literature.  

To evaluate the necessity of all predictors, a support  vector machine was trained with 

random fractions of features removed from the predictor set.  I repeated the above process of 

cross-validation five times with all predictors in the set; five times with 25% of the predictors 

randomly selected for removal; five times with 50% of the predictors randomly selected for 
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removal; and five times with 75% of the predictors randomly selected for removal.  The results 

were visualized using a scatterplot.  

Results

The automated feature selection technique selected 21 survival predictors, cross-tabulated 

in table 5.  All of these predictors were clinically justifiable, and some of them had not been used 

in the other models from the literature.  The linear regression, naïve Bayes, and support  vector 

machine models tended to show better performance for all predictor sets than the neural network, 
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Table 5. Comparison of four predictor sets for liver transplant survival

Predictor Desai Ghobrial Thuluvath Automated

Recipient Variables

   Age, recipient

   Diagnosis of liver disease

   Serum creatinine

   Total bilirubin

   Prothrombin time

   UNOS status, registration

   UNOS status, transplantation

   Medical condition, registration

   Medical condition, transplantation

   Dialysis, registration

   Dialysis, transplantation

   Life support, transplantation

   On ventilator, transplantation

   Previous abdominal surgery

   Previous liver transplant

   Previous primary non-function

   Date of transplant referral

   Days on waiting list

   Employment status

   Body mass index

   Racial background

Donor Variables

   Age, donor

   Whole or split liver graft

Technical Variables

   UNOS region

   Cold ischemia time

   Warm ischemia time

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√



as seen in table 6.  For these three model types, my predictor set outperformed each of the three 

others by cross-validation (p < 0.0001).  Similar trends were seen by prospective validation, 

except  for the Ghobrial predictor set, which showed similar performance to my predictor set.  

Moreover, when increasing numbers of variables were randomly removed from my 

predictor set, a gradual decline in support  vector machine performance was seen.  The variability 

of model discriminatory power also became greater as more variables were removed.  These 

trends are shown on a scatterplot in figure 7. 

Discussion

Key predictive factors for liver transplant  survival may be identified in a very large 

database using fully automated methods.  My feature set  was mostly a superset of the three other 

sets from the literature; i.e. it included nearly all of the features that the others used, but  it  also 

incorporated some additional variables.  Validation showed that my technique led to the creation 

of models with statistically better performance than two out  of three baseline data sets.  The 

improved performance may in part  be due to the fact that  my predictor set contained more 

information than the other sets; it  contained 21 predictors while the others had 8, 4, and 7 

predictors.  Moreover, this predictor set  does not depend on a specific type of model to perform 

well, as different machine learning techniques all resulted in the creation of similarly performing 

models.  Future experiments may further reduce the size of the predictor set while maintaining 

predictive power.
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Table 6. Model performance with four different predictor sets

Model Type Desai Ghobrial Thuluvath Automated

Logistic regression

Naïve Bayes

Neural network

Support vector

0.63* (0.62)

0.62* (0.60)

0.58 (0.56)

0.63* (0.62)

0.65* (0.65)

0.64* (0.61)

0.64 (0.60)

0.65* (0.65)

0.64* (0.63)

0.63* (0.60)

0.61 (0.59)

0.63* (0.62)

0.67 (0.64)

0.67 (0.63)

0.63 (0.62)

0.68 (0.65)

Note: Performance is  measured by AUC, with independent  validation in parentheses.  
Asterisk denotes predictor sets that were outperformed by the automated set, p < 0.0001.  



Conclusion

Fully automated feature selection techniques may be used to identify the key predictors 

of liver transplant survival from a very large database, and this predictor set  performed better than 

two out of three other predictor sets reported in the literature.  Furthermore, various machine 

learning techniques may be used in conjunction with the UNOS database to model survival 

following liver transplantation.  
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Figure 7.  Impact of randomly deleting variables from the automated predictor set.  All models in this experiment 
were support vector machines.  Each data point represents the mean performance of one cross-validated experiment 
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receiver operating characteristic curve.  A minor impact on model performance was observed when 25-50% of the 
variables were removed from the predictor set, and a greater impact on performance was observed when 75% were 
removed.  



CHAPTER VI

COMPLEXITY ANALYSIS

Purpose

As described previously, support vector machines have been growing in popularity for 

machine learning applications due to their mathematical elegance and computational efficiency 

[57].  They can detect patterns in large data sets consisting of hundreds or thousands of variables.  

The support  vector machine formulation is based upon an implicit  mapping of variables to a 

higher-dimensional space through the use of kernel functions.  When a polynomial function is 

used as the kernel function, all possible variable interactions up to an arbitrary complexity are 

implicitly considered for the model [56].  For example, a polynomial support vector machine of 

degree two would implicitly model all main effects and all possible combinations of two-variable 

interactions.  

The goal of this experiment was to evaluate the ability of support vector machines to 

predict liver transplant  outcomes using the entire set of pre-transplant variables available in the 

UNOS database.  To my knowledge, no previously reported model has incorporated all available 

information in the UNOS database.  It  is possible that some variables available in the pre-

transplant database have previously been overlooked, and they might contain useful information 

for modeling.  A second goal of the experiment was to determine the extent  to which complex 

variable interactions are important for predicting liver transplant survival.  

Methods

The population for this study was all adult  (> 18 years) liver transplant  recipients in the 

UNOS database from 1995-1999 (n = 15,747).  All of the 258 available pre-transplant variables, 

described earlier, were included in the data set.  Two copies of the data set were created, and they 

differed in the way missing values were handled.  For one data set  – called the missing-encoded 
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data set – all missing values were set to 0.  For every variable in the data set, an additional 

dummy variable was created, and this dummy variable held the value 0 if the corresponding value 

was missing and 1 if it  was populated.  For the second data set, the missing-imputed data set, all 

missing values were filled in using the sample mean of all populated values for that variable.  

Both data sets were processed according to the technique described earlier in the general 

methodology chapter.  Continuous values were normalized and scaled between 0 and 1, and 

discrete variables with more than two categories were distributed into multiple binary variables.  

The GEMS software package was used for model creation and validation [64].  GEMS 

automates the process of optimizing and cross-validating a model through a graphical user 

interface.  Using both the missing-encoded and missing-imputed data sets, I conducted a 3-fold 

cross-validated experiment, using an inner loop to optimize the support vector machine tolerance 

and kernel parameters.  Next, I conducted another experiment using the missing-imputed data set.  

All support vector machine parameters were fixed, including tolerance, and I varied the degree of 

the polynomial kernel function.  Ten models were created, one for every integer degree from 1 to 

10.  Discriminatory power for all generated models was measured using the area under the 

receiver operating characteristic curve, and the relationship between polynomial degree and AUC 

was visualized using a line graph [35].  

Results

The discriminatory power was similar for the missing-encoded (AUC = 0.666) and the 

missing-imputed (AUC = 0.661) data sets.  When polynomial degree was varied and other 

parameters remained fixed, the AUC of the support vector machine increased from 0.605 to 0.654 

as the degree was increased from 1 to 2.  However, using polynomial kernel functions of degree 

higher than 2, the model discriminatory power remained virtually constant  all the way up to 

degree 10, as seen in figure 8.  
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Discussion

A survival model was constructed with the entire set  of available pre-transplant 

information, using a support vector machine.  Given that the missing-encoded and missing-

imputed data sets performed similarly, the support vector machine does not  seem to be learning 

patterns of reporting in the data.  If the model performance on the missing-encoded data set  had 

significantly exceeded model performance on the missing-imputed data set, questions would have 

been raised about whether the data alone, or the data combined with the reporting habits of 

transplant centers, was providing information about post-transplant survival.  

The effect  of degree of the polynomial kernel function on model performance was 

striking due to the sharp rise in performance between degrees 1 and 2, and the stable performance 

at  all degrees greater than 2.  This observation implies that little or no marginal benefit exists in 

considering interactions involving more than two variables.  A limitation of the present  study 
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exists in that  the polynomial kernel function of degree 2 implicitly considers both main effects 

that are non-linear in shape, as well as two-way interactions between variables.  Thus, one cannot 

conclude which of the two factors accounted for the rise in performance between degrees 1 and 2: 

whether two-way interactions, or non-linear functions of main effects.  Another limitation of the 

experiment lies in the fact  that the support vector machine remains a “black box” in the sense that 

these results do not provide information about which specific variables or interactions of 

variables are important  for the model.  However, the results illustrate that complex interactions 

involving three or more variables may not need to be considered for post-transplant  survival 

modeling using the UNOS database. 

Conclusion

A support vector machine can be trained to predict  post-transplant  survival using the 

entire set  of pre-transplant  variables available in the UNOS database.  Moreover, complex 

interactions involving more than two variables may not need to be taken into account for 

predicting liver transplant  survival when using this database.
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CHAPTER VII

CLINICIAN SURVEY

Purpose

Clinical judgment is the current standard for making decisions about liver transplant 

allocation.  This raises the question, how good are clinicians in predicting outcomes following 

liver transplantation?  In other fields, studies have been published to assess the predictive ability 

of clinicians.  In oncology, a systematic literature review showed that for terminally ill cancer 

patients, clinicians were found to overestimate survival consistently [65].  Despite this poor 

calibration, their predictions were highly correlated with actual survival.  Thus, clinician 

predictions did have some discriminatory power.  Critical care physicians were found to have 

difficulty predicting length of stay in ICU patients whose total length of stay was greater than five 

days [66].  However, for patients with a short  length of stay in the ICU, physicians were able to 

predict the length of stay and outcome fairly accurately, with more experienced clinicians 

showing better performance than their less experienced colleagues.  

I am aware of no previous studies that assessed the prognostic ability of clinicians in the 

field of liver transplantation.  The purpose of the present study is to quantify the ability of expert 

clinicians to predict outcomes after liver transplantation, and to compare the clinicians’ 

performance to published survival models. 

Methods

Survey Participants

The local Institutional Review Board approved this research (IRB #050329, “Assessing 

Clinical Utility of a Liver Transplant  Survival Model”).  I invited clinicians at  different  transplant 

centers specializing in the care of liver transplant patients to participate in a survey. The eligibility 
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criteria specified that each participant  must be “an attending physician who is up-to-date in the 

care of liver transplant patients.”  All clinicians who agreed to participate were sent a packet 

containing the study instrument, together with a cover letter and an example item.  

Study Instrument

Case reports were prepared based on 16 actual patients who received liver transplants in 

2003-2004 at  Vanderbilt  University Medical Center.  The patients were randomly selected and 

stratified to achieve a balance of good and poor outcomes.  I randomly chose four patients who 

were healthy at  last follow-up, with the original graft intact  (range: 8-18 months after 

transplantation), four patients who experienced a graft failure after 90 days but before 2 years 

after transplantation, and eight patients who experienced a graft failure before 90 days.  

The medical records for the 16 patients were condensed into half-page case reports, fully 

de-identified.  Information was obtained from all available data sources, which consisted of (1) 

electronic medical records, (2) archived paper charts, (3) the local transplant database, and (4) 

UNOS donor and recipient information forms.  Care was taken to include all pre-transplant 

information that  could be relevant to the post-transplant prognosis.  This included (1) basic 

demographic information, (2) history of the liver disease, (3) medical therapy provided, (4) past 

medical and surgical history, (5) family and social history, and (6) characteristics of the donor 

liver.  

To ensure that the reports were readable and concise, only noteworthy information was 

included.  Participants were told to assume that  any findings not  discussed were either within 

normal limits or otherwise unremarkable, given the patient’s health status. For example, the 

finding of “mild encephalopathy” was not repeated in the case report, as this finding is very 

commonly seen in patients with liver failure.  Severe findings like “stage IV hepatic coma,” 

however, were always included in the reports.

For quality control, each case report was independently reviewed by the medical and 

surgical directors of the local liver transplant  program, and by a surgery resident with experience 
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in liver transplant  research.  The three reviewers were asked to evaluate whether the information 

provided was (1) adequate for predicting outcomes, (2) consistent in scope among the reports, and 

(3) objectively described to avoid possible bias by the writer.  An example of a case report is 

shown in figure 9.  

Participants were asked to assess the likelihood of 90-day graft  survival for each patient 

using (1) a 4-point Likert scale of ‘poor’, ‘fair’, ‘good’, or ‘excellent’; and (2) a visual analog 

scale representing the probability of survival.  The participants were also asked to provide their 

age, gender, clinical specialty, and years of experience in caring for liver transplant patients after 

the completion of specialty training.
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History of Present Illness  A 48 year old Caucasian female was diagnosed with hepatitis

C 12 years ago.  Possible infection sources include sexual transmission or IV drug use 25

years ago.  Five years ago she noted decreased energy, shortness of breath, and

intermittent abdominal swelling, and she was diagnosed with cirrhosis.  She did not

respond to interferon.  A TIPS was placed 3 years ago due to persistent ascites and

esophageal varices.  She was listed for transplantation three months later in blood group

O as Status 2B (creatinine 0.6, bilirubin 4.3, INR 1.8).

Past Medical History  Type II diabetes mellitus, obesity with a BMI of 42, mild untreated

hypertension, laparoscopic cholecystectomy, bilateral tubal ligation.

Family & Social History  The patient lives with her four children.  She attended some

college.  Both of her parents have congestive heart failure and diabetes mellitus.  A

cousin had cirrhosis and fatal "liver cancer".  She has a 40 pack year history of smoking

and quit 1 month ago.  Her primary source of payment was private insurance.

Course After Listing  She was admitted 8 months ago with massive refractory ascites and

hypertension.  She also had an episode of spontaneous bacterial peritonitis and vaginal

bleeding.  An ultrasound demonstrated her TIPS to be patent.  Her INR persisted near

2.0, and she received transfusions every few weeks.  She was discharged and awaited

transplantation at home.  A whole liver graft, matched for size and blood type, was

obtained from a 19 year old Caucasian male, deceased by a MVA resulting in intracranial

hemorrhage.  She underwent orthotopic liver transplantation with 13 hours of cold

ischemia time and 39 minutes of warm ischemia time (creatinine 0.6, bilirubin 7.4, INR

2.3).

1) Please circle one subjective assessment of the likely outcome of this transplant:

Poor         Fair         Good         Excellent

2) Please make a single tick mark on the analog scale to represent the probability of

achieving graft survival of at least 90 days:

3) Please fill in your best estimate of the graft survival time:

_______________ Days / Weeks / Months / Years

0% 100%

Likert scale

Visual analog scale

Survival time scale

Clinical summary

Figure 9.  Example of a finished case report.  All case reports were presented using the same structured format.  
Relevant clinical details from the patient’s medical record were summarized and followed by three measurements for 
estimating the prognosis: a 4-point Likert scale, a visual analog scale, and a survival time scale.  The survival time 
scale was not used for any subsequent analysis.  



Statistical Analysis

All statistical analysis was performed using the SPSS package (version 13, http://

www.spss.com).  The mean and standard deviation were calculated for age and years of 

experience of the participating clinicians.  The frequency was calculated for their gender and 

clinical specialty.  For each clinician, the Pearson correlation was computed between predictions 

on the Likert  scale and the visual analog scale.  The distribution of clinician predictions on the 

visual analog scale for each patient  was examined on a box-and-whisker plot and compared with 

the actual outcome of each case.  A t-test  was used to determine whether there was a difference in 

the coefficient of variation in predictions between transplants with good outcomes versus poor 

outcomes.  The ability of each clinician in predicting 90-day graft  survival was measured using 

the AUC, and the 95% confidence intervals were calculated [35].  The AUC is a measure of 

discriminatory power at all classification thresholds, where 0.5 denotes random guessing and 1.0 

denotes perfect discrimination.  The non-parametric Mann-Whitney test  was used to determine 

whether there was a difference in AUC between medical and surgical specialties.  The bivariate 

correlation between years of experience and AUC was computed.  As a baseline for comparison, 

four models from the literature were further validated using the data from the cohort  of 16 

patients. [7,19,23,25] The predictive ability of each model was measured using the AUC.  

Results

Study participation was solicited through a recruitment  email to 150 clinicians.  Study 

material was sent out  to 30 clinicians who agreed to participate, and 20 clinicians returned 

completed surveys (67% response rate; 19 males, 1 female; age 47 ± 6 years).  These clinicians 

represented both medical specialties (n = 4) and surgical specialties (n = 16).  They had 11 ± 6 

years of experience, with a range from 2 years to 21 years.  There was no difference in years of 

experience between the specialty types (p = 0.920).  

The 4-point Likert  scale was used to establish the consistency of predictions for each 

rater between the different metrics.  I examined the correlation between the Likert scale and the 
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visual analog scale, and the median Pearson’s r was 0.86. 

The distributions of the clinicians’ prognostic estimates for 90-day graft  survival are 

shown in figure 10.  Clinicians tended to agree on the prognosis for some patients and disagree 

for others, and no relationship was found between the coefficient of variance and outcome (p = 

0.527).  For cases #3, #5, and #7, clinicians estimated the probability of survival to be 88 ± 8%, 

88 ± 11%, and 88 ± 7% respectively; however, all three of these patients had early graft  failures 

due to post-operative complications.  Two of them had sepsis, leading to death, and one had 

hepatic artery thrombosis, leading to retransplantation.  

One case report (#14) was excluded from AUC performance analysis due to a factual 

discrepancy in the case report discovered after mailing the summaries.  A critical care progress 

note stated that  the patient was not ventilated, as reported in the case summary, but an imaging 

study prior to transplantation noted life support  in place.  The remaining 15 cases were used to 

determine the predictive performance of each clinician, and 13 cases were used for one clinician 

who left two estimates blank.  
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Individual clinicians’ predictive ability for 90-day graft  survival was 0.60 ± 0.16, as 

assessed by the AUC.  This was comparable to the performance of published models for my 

cohort of patients (MELD 0.59; Desai 0.66; Ghobrial 0.61; Thuluvath 0.45), as shown in figure 

11.  The confidence intervals for all AUC calculations were wide, by roughly 50%, due to the 

small number of patients represented in each receiver operating characteristic curve.  

There was no difference in predictive ability between the medical specialties and the 

surgical specialties (p = 0.570).  A significant  negative correlation (r = -0.641, p = 0.003) was 

found to exist between years of experience and predictive power, illustrated by figure 12.  
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years a clinician spent caring for liver transplant patients as an attending physician.  Discriminatory power was 
measured by the area under the receiver operating characteristic curve.  A significant negative correlation was found, 
r = -0.641, p = 0.003.



Discussion

A few observations were noted regarding the distribution of clinician predictions for each 

case.  There were patients about whom clinicians tended to agree, and other patients about whom 

the clinicians tended to disagree.  Furthermore, when clinicians agreed in their predictions for a 

given patient, the consensus opinion was not always correct, as shown by cases #3, #5, and #7.  

The patients with good predicted survival and poor actual survival tended to experience 

complications of generalized sepsis or hepatic artery thrombosis.  These complications may be 

very difficult  to predict based on pre-transplant  information.  Other researchers have postulated 

that there is a theoretical limit  on how well a pre-transplant  model of liver transplant survival can 

perform, because certain complications are affected by peri-operative and early post-operative 

events [25,36,67].  My observations are consistent with this suggestion.  

The results indicate that clinicians predict 90-day graft  survival after liver transplantation 

with a mean AUC performance of 0.60.  As a baseline for performance, models in the literature 

showed similar or worse performance than the clinicians.  The statistical significance of this trend 

was not  evaluated, because the confidence intervals were wide for the AUC estimates.  

The patient  population was selected randomly and stratified to attain a balance of good 

and poor outcomes.  The prevalence of severe complications was higher in my population than in 

the overall population of patients receiving liver transplants.  Considering this, if it  holds true that 

certain complications of liver transplantation are inherently hard to predict, then it logically 

follows that the predictive ability of a model should be lower with my limited population than 

with the general population.  This is substantiated by the fact that  the four published models all 

showed worse performance than reported in the literature. 

The results indicated that  less-experienced clinicians have better predictive ability than 

their more experienced colleagues.  At the present time, I can only speculate about  potential 

explanations for this rather surprising finding.  It  is possible that more experienced clinicians take 

on more administrative duties as their careers progress, and hence they spend less time with 

patients.  Likewise, it  is possible that  more experienced clinicians were busier and thus were 
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unable to devote as much time and attention to the survey as their less experienced colleagues.  

There could also be a bias in the group of participants or in the study instrument that  contributed 

to this finding.  However, this incidental finding requires further examination to distinguish 

between these possible hypotheses, and future research will focus on this issue.  

The study has limitations that merit discussion.  First, I have a relatively small sample 

size of participants.  Based on the trends observed in the data analysis, some statistically 

significant effects were found, and the trends that  were not  significant were deemed unlikely to 

become significant  if the sample size were increased.  Second, I have a small number of cases 

evaluated by each clinician, resulting in the confidence intervals of AUC performance 

calculations being relatively wide.  To achieve an adequate return rate, I limited the number of 

cases included, as it  took 30 minutes to an hour for the clinicians to read through and make 

predictions for the 16 included cases.  To further increase the number of cases would ask for an 

impractical time commitment  on the part  of the attending physicians who completed the survey.  

Third, the participants in the study never saw firsthand the patients they were assessing; all of the 

predictions were based on written case reports.  The manner of presentation of the case reports 

may have been an important  influence on clinician predictions.  However, the preparation of these 

case reports included a quality control step in anticipation of this limitation, and great  efforts were 

made to include all relevant information in the summaries.  

Conclusion

Based on the survey data, the overall ability of clinicians to predict  survival for a set of 

pre-transplant scenarios was similar to published survival models.  In other words, their power to 

discriminate between likely survivors and non-survivors was relatively modest.  Our data are 

consistent with the postulate that certain post-operative complications of liver transplantation may 

be inherently hard to predict  prior to surgery.  

52



CHAPTER VIII

CONCLUSION AND POLICY IMPLICATIONS

The greatest practical value in a liver transplant survival model lies in its ability to make 

predictions at or before the time of transplantation.  Others have shown that it is possible to 

predict liver transplant  survival with good accuracy if post-transplant information is considered 

[18,67].  However, the utility of a post-transplant  model is mitigated by its inability to make 

predictions at the time of decision-making.  Because of this, my thesis has focused on the harder 

and more clinically-oriented problem of developing a pre-transplant survival model.  

To address Specific Aim 1, Chapter IV showed that  a Bayesian network can be created to 

predict liver transplant  survival with performance that  exceeds published Cox regression models 

using an independent UNOS data set.  Chapter VI demonstrated that a support vector machine 

can be scaled up to learn a survival model using a very large set of data.  

To address Specific Aim 2, Chapter V illustrated that fully automated feature selection 

techniques can identify the key predictors of liver transplant  survival within a very large database, 

and this predictor set  performed better than two out of three published in the literature.  Chapter 

VI showed that a relatively simple model that  accounts for main effects and two-way variable 

interactions may be sufficient for predicting liver transplant survival with the UNOS database.  

To address Specific Aim 3, Chapter VII described the ability of clinicians to predict 

survival after liver transplantation.  They perform similarly to mathematical models using our 

survey cohort, so careful evaluation is necessary if a decision support  system is to be used in 

transplantation.  

In addition to addressing the Specific Aims, these collective results highlight the fact that 

predicting survival after liver transplantation is a challenging problem.  Others have suggested 

that there is a theoretical limit on how well a pre-transplant model can perform [25,36,67].  Two 

lines of reasoning support this idea.  First, model performance may be limited by the content of 
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the data available, as shown by my extensive search of the UNOS database.  Second, the 

observations from the clinician survey suggest that certain complications of liver transplantation 

are inherently hard to predict.  My thesis, however, does not address where the theoretical limit 

may be, or how close the current  survival models are to reaching that  limit.  

These findings carry policy implications that pertain both to clinical decision support and 

to the collection of transplant data.   First, my Bayesian network, which was validated using an 

independent  data set and showed generalizable performance, may be useful for clinical decision 

support  in transplantation.  I emphasize that it  should be used as an adjunct, and not as a 

replacement, for clinical judgment.  Clinicians should be made aware of the strengths and 

weaknesses of the model, and care should be taken to monitor the impact of its implementation.  

Second, the collection of additional data pertaining to transplantation may be warranted.  For 

example, these data may include the viral genotype of hepatitis C, a gene expression profile of 

hepatocellular carcinoma, or mass spectrometry analysis of the donor liver.  

In summary, accurate survival prediction after liver transplantation is challenging, and it 

remains an open problem.  However, I have proposed a model for liver transplant survival, and I 

have carefully validated and compared its performance to models from the literature.  I have 

characterized various aspects of the problem, including which predictors are important, and how 

complex should a model be in considering them.  I have also investigated the ability of clinicians 

to predict survival, which is the current standard of care for making decisions in transplantation.  

These elements together pave the way for future refinements in survival modeling, and for a 

clinical trial of decision support  in liver transplantation.  
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APPENDIX A

DETAILS ON CLEANING THE UNOS DATABASE

Several steps of processing occurred in order to convert the UNOS liver transplant 

database into a cleaner form that  would be more useful for survival modeling.  These steps are 

detailed below. 

1. Validation of Data Elements.  The format of data was validated, and all invalid items were 
removed from the database.  All free-text  variables were considered to be valid.  For all other 
variables, the following values were deemed to be missing:

a. Any values which were blank or ‘**’, or which contained a question mark

b. Any date values which did not have the format  MM/DD/YYYY

c. Any time values which did not have the format HH:MM:SS

d. Any numeric values which did not  have a valid decimal representation

e. Any values which are connected to text labels in an external file, for which there was no 
label defined

2. Ambiguous Information.  All values which represented complete uncertainty, and thus 
contained no useful information for the present  purposes, were removed from the database.  
The following values were deemed to be missing:

a. All of the ‘U’ values for character discrete variables, which often take the form ‘Y/N/U’ 
or ‘P/N/U’

b. Any of the values ‘Cannot Disclose’, ‘Indeterminate’, ‘Not Done’, or ‘Unknown’ for 
variables which denoted serum status, as noted by SERSTAT  labels

c. For other discrete variables, any of the values ‘Unknown’, ‘UNKNOWN’, ‘Unknown 
Duration’, ‘Not  Reported’, ‘Confirmed Blk.’, ‘Not  Tested’, or ‘Unknown (for Donor 
Referral only)’

d. For the variables ABO and ABO_DON, the value ‘UNK’

e. For the variable PX_STAT, the value ‘N’

3. Range Checking.  For continuous variables, a range was established for values which would 
be considered reasonable.  Any values falling outside of this range were removed from the 
database, as they resulted either from data entry errors or extreme outliers.  The following 
ranges were established for continuous data:
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a. Age: 0 - 100 years

b. Height: 25 - 250 cm

c. Weight: 2.5 - 250 kg

d. Albumin: 0.5 - 7.5 g/dl

e. Alkaline phosphatase: 20 - 2500 U/l

f. Blood urea nitrogen: 5 - 150 mg/dl

g. Creatinine: 0.2 - 10 mg/dl

h. Prothrombin time: 5 - 75 sec

i. Prothrombin control time: 5 - 50 sec

j. International normalized ratio: 1 - 20

k. Transaminases: 5 - 30000 U/l

l. Total bilirubin: 0.2 - 75 mg/dl

m. Cold ischemia: 0 - 48 hours

n. Warm ischemia: 5 - 240 minutes

o. Variables which cannot  be non-negative: > 0

p. Dates: > 1/1/1985

q. Year of transplantation: > 1985

4. Category Abstraction.  Discrete variables which had a large number of possible categories, 
and thus an insufficient number of values in each category for reliable statistical testing, were 
condensed into broader categories.  The following substitutions were made:

a. ABO blood type: the values ‘A’, ‘A1’, and ‘A2’ were all marked as ‘A’, and the values 
‘AB’, ‘A1B’, and ‘A2B’ were all marked as ‘AB’

b. Cancer site: all values other than ‘NO’ were marked as ‘YES’

c. Storage solution: any values aside from ‘VIASPAN (UW/BELZER)’ were marked as 
‘OTHER’

d. Ethnic category: the ‘Non-Hispanic Multiracial’ designation was made part  of the ‘Other’ 
category

e. Time zone: the values ‘ALASKA’, ‘HAWAII’, and ‘ATLANTIC’ were combined into a 
category called ‘OTHER’

f. Payment source: all values aside from ‘HMO/PPO’, ‘MEDICAID’, ‘MEDICARE’, and 
‘PRIVATE INSURANCE’ were grouped into a category called ‘OTHER’
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g. Employment  status: all values designating some reason for not  working were marked as 
‘NOT  WORKING’, and all values designating some reason for working part time were 
marked as ‘WORKING PART TIME’

h. Patient status: all values other than ‘LI: Status 1’ were marked as ‘OTHER’

i. States: all values were combined into their respective UNOS regions, as defined by the 
OPTN at http://www.optn.org/latestData/stateData.asp?type=region.  

j. Diagnosis: all values were combined into the categories ‘NON_CHOLESTATIC’, 
‘CHOLESTATIC’, ‘ACUTE_HEPATIC_NECROSIS’ , ‘METABOLIC’, 
‘MALIGNANT’, ‘BILIARY_ATRESIA’, and ‘OTHER’, as defined by the OPTN at 
http://www.optn.org/organDatasource/about.asp?display=Liver.

5. Calculated Variables.  A few custom variables were calculated and added into the database.  
Their values were determined using the following methods:

a. Patient survival at 30 days, 90 days, 6 months, 1 year, and 5 years: this variable took the 
value ‘Y’ if patient  observation time was greater than the desired interval, ‘N’ if patient 
observation time was less than the desired interval and the patient status was marked as 
dead, and it  was marked as missing otherwise

b. Graft survival at  30 days, 90 days, 6 months, 1 year, and 5 years: this variable took the 
value ‘Y’ if graft  observation time was greater than the desired interval, ‘N’ if graft 
observation time was less than the desired interval and the patient status was marked as 
dead or retransplanted, and it  was marked as missing otherwise

c. Body mass index for the donor and recipient: this was determined by the formula (weight 
in kg / (height in m) squared), and any values less than 5 or greater than 100 were 
considered absurd and thus marked as missing

d. Gender match combination: this variable took one of the values ‘FF’, ‘FM’, ‘MF’, or 
‘MM’, representing the concatenation of donor and recipient  gender, respectively

6. Uncleaned Variables.  The following variables were not  cleaned and should be excluded from 
further analysis.  The rationale for excluding these items is described below.  

a. DA1, DA2, DB1, DB2, DDR1, DDR2, RA1, RA2, RB1, RB2, RDR1, RDR2: these 
histocompatibility variables have too many categories and could not  be condensed in a 
systematic manner, and the variables AMAT, AMIS, BMAT, BMIS, DRMAT, and 
DRMIS act as appropriate surrogates for them

b. All binary payment form variables (DONATION_*, FREE_*, HMO_PPO_*, 
MEDICAID_*, MEDICARE_*, OTH_GOVT_*, PRIV_INS_*, SELF_*): these were 
removed because the PRIMPAY variables act as surrogates for them

c. DEATH_MECH_DON, DIAL_TY_TCR, HIST_DIABETES_DON, LITYP, RACE, 
RACE_DON, TX_PROCEDUR_TY: these variables would all need to have their 
categories condensed for proper analysis, and those condensed variables already exist  in 
the database
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d. CLSTR_OLD, CLSTRTYP_OLD, EXTRACRANIAL_CANCER_DON, ECMO, IABP, 
LI_PUMP, PGE, VAD_TAH: these items lack sufficient variation to be useful for 
statistical tests

e. CMV_OLD, HBEAB_OLD, HEPD_OLD, HIV_CONF_CAD_DON, 
HIV_SCRN_CAD_DON, MRCREATG_OLD: collection of these variables stopped 
during the study interval, and thus they are not populated for prospective validation

7. Identification of Pre-Transplant Variables.  The following steps were used to eliminate items 
and reduce the UNOS data to those variables that  were available prior to transplant.

a. Variables collected on the forms TRF or TRF/TRR

b. Variables marked as TRR/TRF - CALCULATED

c. Variables collected on the form TRR in the section POST  TRANSPLANT CLINICAL 
INFORMATION

d. Encrypted identifiers

e. Items for internal UNOS use (DATASET, DATE_OF_RUN)

f. Other outcome variables (GTIME, GSTATUS, PTIME, length of stay variables including 
DISCHARGE_DATE)

g. Items with OSTXT in the title
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