
MATHEMATICAL DEFINING AS A PRACTICE: INVESTIGATIONS OF 

CHARACTERIZATION, INVESTIGATION, AND DEVELOPMENT 

 

By  

Marta Kobiela 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of  

DOCTOR OF PHILOSOPHY 

in 

Learning, Teaching, and Diversity 

December, 2012 

Nashville, Tennessee 

 

Approved:  

Professor Richard Lehrer 

Professor Leona Schauble 

Professor Ilana Horn 

Professor Philip Crooke                                                           



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my advisor, Rich Lehrer, for providing infinite support and guidance 

and 

To my parents, Bogda and Paul Kobiela, for always believing in me 

 
 
  



	  iii 

ACKNOWLEDGEMENTS 

 

I would first like to thank Dr. Richard Lehrer, the chairman of my committee, for his 

never-ending support and guidance. As my teacher and mentor, he has taught me more than I 

could ever give him credit for. I would also like to thank the members of my Dissertation 

Committee, Dr. Leona Schauble, Dr. Ilana Horn and Dr. Philip Crooke, for their constructive 

feedback and guidance. I am grateful to all of the graduate students and post docs, too many of 

whom there are to list here, who have provided me feedback along the way. I would also like to 

thank friends and family who supported me during this time, including my parents, Paul and 

Bogda, my brother, Sebastian, and Deb Lucas.   



	  iv 

TABLE OF CONTENTS 

 

 Page 

DEDICATION ..................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................. vii 

LIST OF FIGURES ......................................................................................................... viii 

Chapter 

I. INTRODUCTION ................................................................................................... 1 

References ............................................................................................................... 5 

II. MATHEMATICAL DEFINING AS A CLASSROOM PRACTICE: A                
REVIEW .................................................................................................................. 6 
 

Introduction ...................................................................................................... 6 
Theoretical perspectives ................................................................................... 9 

Disciplinary perspectives on definitions and defining .............................. 9 
Supporting classroom disciplinary practice ............................................ 16 

Method ............................................................................................................ 20 
Inclusion criteria ...................................................................................... 20 
Procedure ................................................................................................. 21 

Results of Review ........................................................................................... 27 
Overview of results ................................................................................. 28 
Nature of mathematical defining in classrooms ...................................... 28 
Potential of mathematical defining in classrooms .................................. 51 
Supporting defining ................................................................................. 57 

Discussion ...................................................................................................... 70 
References ...................................................................................................... 73 

 
III. ESTABLISHING A MATHEMATICAL PRACTICE IN A MIDDLE  

SCHOOL CLASSROOM ...................................................................................... 77 
 

Introduction .................................................................................................... 77 
Characterizing defining as a practice ............................................................. 78 

Disciplinary perspectives on definitions and defining ............................ 78 
A framework for analyzing defining in classrooms: Aspects of  
definitional practice ................................................................................. 79 



	  v 

Method ............................................................................................................ 81 
Participants, setting and data collection .................................................. 82 
Analysis ................................................................................................... 83 

Establishing the co-constitution of practice and knowledge .......................... 85 
Discussion ...................................................................................................... 87 
References ...................................................................................................... 88 
 

IV. CHARACTERIZING AND SUPPORTING PRACTICES OF DEFINING IN  
A MATHEMATICS CLASSROOM ..................................................................... 90 
 

Introduction .................................................................................................... 90 
Characterizing defining as a practice ............................................................. 91 

Disciplinary perspectives on definitions and defining ............................ 91 
A framework for analyzing defining in classrooms: Aspects of  
Definitional Practice ................................................................................ 92 

Method ............................................................................................................ 95 
Participants, setting and data collection .................................................. 95 
Analysis ................................................................................................... 97 

Establishing the co-constitution of practice and knowledge .......................... 99 
Posing question that elaborated system components .............................. 99 
Provoking contest through the generation of examples and  
non-examples ........................................................................................ 103 
Keeping definition at the forefront ........................................................ 105 

Discussion .................................................................................................... 105 
References .................................................................................................... 107 
 

V. INVESTIGATING THE CO-DEVELOPMENT OF MATHEMATICAL  
KNOWLEDGE AND THE PRACTICE OF DEFINING IN A MIDDLE  
SCHOOL CLASSROOM .................................................................................... 109 
 

Introduction .................................................................................................. 109 
Theoretical Perspectives ............................................................................... 111 

Characterizing defining as a practice .................................................... 111 
A situational approach to learning ........................................................ 113 
Supporting disciplinary practice in classroom discussions ................... 114 

Method .......................................................................................................... 119 
Instructional context .............................................................................. 119 
Data collection procedure ..................................................................... 122 
Analysis ................................................................................................. 123 

Results .......................................................................................................... 156 
Overview of results ...................................................................................... 156 

Excerpt 1: Initial forms of practice and knowledge .............................. 159 
Excerpt 2: Students take on authority for expanding the mathematical  
system .................................................................................................... 165 
Excerpt 3: Student positioning of definition at the fore ........................ 173 
Excerpt 4: Student agents in orchestrating defining ............................. 181 



	  vi 

Other contributions to creating a culture of defining ............................ 191 
Discussion .................................................................................................... 196 
References .................................................................................................... 201 
 

VI. CONCLUSION ................................................................................................... 204 

Appendix 

A. TRANSCRIPTS ................................................................................................... 209 

 

  



	  vii 

LIST OF TABLES 

 

Table Page 

Chapter 2 

1. Overview of selected works for the review ........................................................... 22 

2. Aspects of the Practice of Defining ....................................................................... 33 

3. Occurrence of Aspects of Definitional Practice among the reviewed works ........ 52 

Chapter 5 

1. Definitional Episodes from days 1, 4, 6, and 26 .................................................. 128 

2. Coding scheme for engaging in Aspects of Definitional Practice ....................... 138 

3. Coding scheme for Orchestrating Definitional Discussions ................................ 148 

4. Student definitions of triangles ............................................................................ 186 

  



	  viii 

LIST OF FIGURES 

 

Table Page 

Chapter 2 

1. Mathematics developing as a system in Lakatos’s Proofs & Refutations                    
(1976) ..................................................................................................................... 15 
 

2. Positioning defining at the forefront ...................................................................... 64 

3. Positioning defining as a form of argument .......................................................... 66 

4. Encouraging preciseness in descriptive language ................................................. 68 

Chapter 3 

1. Establishing definitional practice on the first day of instruction ........................... 88 

Chapter 4 

1. Establishing practice on the first day of instruction ............................................ 102 

2. Teacher counter-example (left) and student example (right) .............................. 105 

Chapter 5 

1. Example of transcribing talk and bodily rotation ................................................ 132 

2. Interactions contributing to the co-development of the practice of defining  
and communal knowledge ................................................................................... 157 
 

3. Knowledge development during the beginning of Day 1 .................................... 165 

4. Teacher constructed example using students’ definition of “3 sides,  
3 angles.” ............................................................................................................. 169 
 

5. Student examples of a polygon with two sides, drawn by the teacher ................ 170 

6. Teacher constructed example using student definition of side ............................ 171 

7. Ned’s example of a polygon with sides but no angles ........................................ 175 

8. Kira’s example of a polygon with sides but no angles ........................................ 178 



	  ix 

9. Teacher constructed example using student definition of closed ........................ 179 

10. Knowledge development later in Day 1 .............................................................. 187 

11. Knowledge development during Day 26 ............................................................. 188 

 
 
 

 
 
 
 
 
 
 

  



	  1 

CHAPTER I 

 

INTRODUCTION 

 

In recent years, the field of mathematics education has advocated for an expanded view 

of what it means to know mathematics and participate in mathematics as a practice. The National 

Research Council (2001) summarized this as a shift away from an entirely procedural 

mathematics to a more encompassing view that includes developing relations between 

conceptual and procedural forms of mathematics and learning to participate in epistemic 

practices of knowledge creation and revision, such as defining, making conjectures and proving. 

The aim is to support learner agency as creators and doers of mathematics. Here, I present three 

papers that investigate how students participate in one mathematical practice, defining. In many 

classrooms, definitions are often treated as given, rather than as negotiated, as they are in the 

discipline. Historically, mathematicians participated in the co-construction of definitions, and 

defining often emerged as an adjunct of proving (Lakatos, 1976). Consequently, we need to find 

ways of engaging students in defining as a practice by providing them with opportunities to 

make sense of and construct definitions, and, in turn, become authors of definition (e.g., de 

Villiers, 1998; Keiser, 2000; Lehrer & Curtis, 2000). Practice refers to recurrent forms of activity 

that those participating in them identify and recognize as contributing to the accomplishment of a 

particular goal or experience.  

In these papers, I examined the process of instigating and tracing change in students’ 

engagement in the practice of defining via three forms of investigation. First, I conducted a 

literature review of research in which students participated in defining as a practice. My goal for 
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the paper was to develop a framework identifying key forms of participation in defining that are 

particular to classrooms, what I term, Aspects of Definitional Practice. For example, aspects 

included asking definitional questions, constructing and/or evaluating examples, and 

constructing definitional explanations or arguments. Second, I used the Aspects framework as a 

lens for investigating how defining was initially established in one middle school classroom 

within the first few days of instruction. This analysis focused on how defining was realized in 

interactions among students and between the teacher and students. Third, by looking at the same 

group of students over a slightly longer period, I expanded and refined my analyses from the 

second paper to study how students’ participation in Aspects of Definitional Practice developed 

over time and how change in participation influenced the development of mathematical 

knowledge.  

In the first paper, I developed the framework of Aspects of Definitional Practice by 

reviewing 19 empirical studies in which researchers instigated and/or studied students’ 

engagement in defining as a practice. These studies varied in content, context and in the age of 

the students. The framework was developed through a method of iterative refinement, using the 

lens of disciplinary perspectives on definitions and defining to determine what constituted an 

aspect of practice. These aspects characterize how students from previous studies (of all ages) 

have participated in defining in ways representative of, yet distinct from, professional 

mathematicians.  

My second paper (Paper 2) consists of two conference papers. The conference papers 

both present versions of the same analysis aimed at understanding the establishment of 

definitional practice. Practice is ultimately tied to the production of knowledge, and in the case 

of defining, tied to the production of definitions, to close examination of the properties of the 
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objects being defined, and to the network of relations by which new definitions build on 

established definitions. Accordingly, I asked the questions: (1) How are knowledge and practice 

co-constituted? (2) How do participants in the community contribute to, or support, this co-

constitution? To answer these questions, I drew upon data collected as part of a larger study in 

which sixth-grade students investigated topics in geometry for approximately six months 

(Lehrer, Kobiela, Weinberg, in press). Our aim in working with these students was to cultivate a 

culture of inquiry in which students’ questions and conjectures guided many of our 

investigations and in which we leveraged their experiences of moving and walking as resources 

for reasoning mathematically.  

I conducted three forms of analysis, focusing on the first six days of mathematics 

instruction in this classroom. First, I characterized the development of communal knowledge, 

representing it as a system of mathematical objects and relations that stood for the mathematical 

terrain investigated by the class. Second, I characterized interactions around the practice of 

defining by looking at how they participated in Aspects of Definitional Practice and at how the 

teacher supported that participation. In doing so, I focused on three 10-minute excerpts that 

spanned the six days. Finally, I compared my first two analyses side-by-side to develop 

conjectures of how practice and knowledge were co-constituted. In particular, I described three 

ways in which this co-constitution occurred.   

In the third paper, I extended my methods and analyses from Paper 2 to ask: How might 

the practice of defining and the knowledge developed by that practice co-develop in a 

mathematics learning community? To do so, I examined one additional excerpt from the twenty-

seventh day of mathematics instruction, about two and a half months later and situated the 

excerpt within other defining activity that occurred within the larger data corpus. The existing 
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research illustrates that it is possible to engage students in defining, and that doing so supports 

students’ mathematical understandings and provides them opportunities to participate in 

mathematically productive discourse (e.g., Borasi, 1992; Keiser, 2000; Lehrer, Randle, & 

Sancilio, 1989; Lehrer, Jacobson, Kemeny, & Strom, 1999; Zandieh & Rasmussen, 2010; 

Zaslavsky & Shir, 2005). However, most of these papers primarily present analyses of very short 

excerpts of class activity, less than two class periods, and are often illustrations of already 

established practice. The studies that present longer time scales focus analytically on students’ 

development of conceptions or orientations towards defining rather than on shifts in student 

participation in practice (Borasi, 1992; Keiser, 2000). Thus, very little is known about how the 

practice of defining develops. The third paper aims to address this need. 

Taken collectively, the three papers provide: (a) an analytic and theoretical framework 

for examining the mathematical practice of defining as it might be constituted in classrooms; (b) 

an analysis of the initial establishment of this form of practice as instantiated in interaction 

among students and their teacher; and (c) an investigation of how knowledge, practice and the 

interactions that contribute to their co-constitution develop and change over time. These strands 

of investigation aim to cash in on the promise of the re-conceptualization of school mathematics 

suggested by the National Research Council and more recently, by the common core standards in 

mathematics, which interweave mathematical practices and conceptual development. I argue that 

these three forms of investigation are needed to support ongoing efforts in studying defining in 

mathematics classrooms. Additionally, I hope the papers will inform efforts to support the design 

and implementation of similar learning environments by providing teachers and researchers a 

lens for interpreting student participation and learning.  
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CHAPTER II 

 

MATHEMATICAL DEFINING AS A CLASSROOM PRACTICE: A REVIEW 

 

Introduction 

In recent years, the field of mathematics education has advocated for an expanded view 

of what it means to know mathematics and participate in mathematics as a practice. The National 

Research Council (2001) summarized this as a shift away from an entirely procedural 

mathematics to one that encompasses several strands of practice. In this expanded view, 

participants of mathematics develop conceptual understanding of mathematical ideas and 

entities, strategize about problems solved, develop fluency with procedural rules, engage in 

mathematical arguments and explanations and develop agency as a “doer” of mathematics. 

Subsequently, recent research has attended to what Lehrer (2009) calls developing students’ 

“disciplinary dispositions” (p. 762) as they partake in mathematical practices such as argument, 

explanation and general disciplinary discourse.  

Defining is one mathematical practice that deserves increasing attention for two reasons. 

First, typical classroom approaches to mathematical definition contrast sharply to disciplinary 

practices. Mathematical definitions are often treated axiomatically as ideas to be quickly 

memorized so that students may move on to mathematically “richer” work: activities ranging 

from applying algorithms and problem solving to exploration, argumentation, and proof (Keiser, 

2000, citing Fawcett, 1995). Definitions are typically dictated by the authority of the teacher or 

textbook, masking the process of how they came to exist. Historically, however, definitions were 

created and adapted by mathematicians in the process of constructing proofs and creating theory 
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(Lakatos, 1976), sometimes evolving over long periods of time. Moreover, defining is not a dead 

practice. The need for new definitions arises through activities such as problem-solving and 

proof, through opportunities to model the world and through a necessity to characterize new 

mathematical objects (Ouvrier-Buffet, 2006). Objects being defined evolve in the very act of 

defining. For example, in the history of investigations of relations among edges, vertices, and 

faces of polyhedra traced by Lakatos (1976), definitions of polyhedra were continually re-

considered as mathematicians proposed new candidates. In these situations, definitions are 

negotiated among human agents and learning may be thought of as participation in such 

interactions (Herbst, 2005).  

Second, many studies show that typical classroom approaches are inadequate for helping 

students develop conceptual understanding of definitions. Often students struggle to correctly 

recall definitions already learned (Vinner, 1983; Vinner & Dreyfus, 1989; Vinner, 1991). When 

students are able to recall definitions, they do not always use them when reasoning about the 

concept referred to by the definition (Zazkis & Liljedahl, 2004), but instead use what Vinner 

(1991) calls their concept images. The concept image is the image evoked when one hears or 

thinks of the object and may be represented visually as pictures, symbols, equations, graphs or as 

a set of properties. Often students develop concept images that emulate prototypical examples 

they experience repeatedly both in and out of school. From these prototypical examples, students 

often extract defining features for the object that are not characteristic of the object’s definition. 

This holds true for a diversity of students, including mathematically gifted students in high 

school and college, and across a range of mathematical topics. Moreover, students’ difficulties 

with definitions have been found to be the root of many students’ problems with proofs (Moore, 
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1994) and generation of appropriate examples when developing proofs (Zaslavsky & Peled, 

1996).  

However, despite the need to reconsider the role of definition in mathematics education, 

it is less clear what classroom activities would be entailed by this change in stance toward 

definition. Some advocate providing students with opportunities to make sense of and construct 

definitions themselves, and, in turn, become authors of definition (de Villiers, 1998; Keiser, 

2000). Accordingly, I reviewed the collection of research in which students participated in 

definition, with a focus on three questions: (1) What is the nature of students’ participation in 

defining? In particular: a) what types of tasks are designed to provide students opportunities to 

define? and b) what are characterizations of their engagement in the practice? (2) In view of (1), 

in what ways is defining profitable for students? (3) How is defining supported by learning 

ecologies, including teachers’ practices?  

To attend to these questions, I first situate the paper by outlining definitions from a 

disciplinary perspective and describing three lenses for looking at supporting student 

engagement in classroom practices. I then detail the methodological considerations for 

conducting this review. I follow with the Results of the Review, where I attend to each of the 

three questions. First, I provide an overview of the types of defining tasks scholars have engaged 

students in. I then highlight particular Aspects of Definitional Practice within the studies, where I 

consider Aspects of Definitional Practice to be forms of participation in defining tasks related to 

those within the discipline of mathematics. I suggest that it is important to attend to such nuances 

of practice because they provide a lens for educators and researchers for supporting students’ 

participation in defining. Second, I describe the affordances of these activities, in particular for 

supporting students’ engagement in those disciplinary practices, understanding of the definitions, 
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development of disciplinary dispositions, and for motivating a closer analysis of the objects and 

relations being defined. Finally, I highlight aspects of instructional design and teacher’s roles in 

orchestrating class discussions that appear to contribute to these affordances. In the Discussion, I 

conclude by suggesting new directions in research around mathematical defining. I argue that the 

studies show that defining is a worthwhile endeavor, but nevertheless, more research is needed 

about teaching practices that support defining and about long-term development when such 

teaching practices are in place.  

 

Theoretical Perspectives 

 Throughout the paper, I will refer to students’ participation in defining as their 

engagement in Aspects of Definitional Practice. I consider Aspects of Definitional Practice to be 

forms of participation in defining aligned with practices in the discipline of mathematics. I 

choose this perspective on practice because of the recent movement in mathematics education 

towards such a lens (Lampert, 1990) and because definitions are typically treated in a manner 

opposite from disciplinary practice. Due to this disciplinary focus, I first detail how I situate this 

paper with respect to how definitions and defining are typically framed within the field of 

mathematics. I then draw upon work that frames my inquiries about how classroom 

environments are designed to support definition. 

 

Disciplinary Perspectives on Definitions and Defining 

Mathematical definitions. I begin by highlighting forms, roles, and properties of 

definitions noted as relevant by the community of mathematicians. These qualities are significant 

to note because they guide Aspects of Definitional Practice. A mathematical definition is a 
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description of the properties of a mathematical object and the relations among those properties 

(Lehrer & Curtis, 2000; Polya, 1957). A mathematical object is an abstract category produced 

via reification of activity (Sfard, 1991). Examples of objects include geometric shapes and their 

components (e.g., circles, ellipses, squares, sides, angles), analytic concepts (e.g., functions, 

limits) and types of number (e.g., even, odd, composite, prime). Mathematical definitions come 

in two forms: structural and procedural (Zaslavsky & Shir, 2005). Structural definitions describe 

a mathematical object’s components. For instance, a structural definition of “angle” might be 

“two connected sides.” Procedural definitions, on the other hand, describe how an object is 

created. A procedural definition of angle might be “a turn” or, alternatively, a measurement of 

rotation. Structural and procedural definitions serve equally important roles because they 

highlight different attributes and relations of mathematical objects.  

 Mathematical definitions are distinct from other mathematical entities – questions, 

conjectures, axioms, lemmas, theorems or corollaries – because they are the negotiated grounds 

for mathematical work. Unlike axioms, definitions are contested rather than taken for granted 

and unlike lemmas, theorems or corollaries, definitions cannot be proven. Definitions, however, 

resemble theorems in that they may be challenged (Van Dormolen & Zaslavsky, 2003) and are 

historically the result of mathematical arguments (Lakatos, 1976). 

 Mathematical definitions serve several purposes. First, definitions are used to introduce 

new objects to the field of mathematics (Borasi, 1992; Zaslavsky & Shir, 2005). As objects are 

introduced and used, definitions describe their essential properties and relations. This in turn 

provides participants in a mathematical community a means of communicating about 

mathematical ideas (Zaslavsky & Shir, 2005, Citing Borasi, 1992). Other mathematical practices 

are built directly on systems of definitions. For example, a procedural definition of angle, as 
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turns, supports conversations about walking the perimeter of different polygons. This “path” 

perspective (Abelson & diSessa, 1980) provides a way of reasoning about the sums of the 

exterior angles of polygons. Considering only a structural definition of angle may change the 

types of mathematical work, such as proof, available to a student.  

 Mathematical definitions also have several distinct features, many of which are 

influenced by the roles definitions play. As stated above, definitions describe a mathematical 

object’s essential properties and relations. The properties communicated must be non-

contradicting and noncircular (Borasi, 1992; Zaslavsky & Shir, 2005). A non-contradicting 

definition only includes properties that are able to coexist. A noncircular definition does not use 

the term being defined. Because definitions are created in a shared community, they inherently 

must be unambiguous. That is, they must always be interpreted in the same way (Zaslavsky & 

Shir, 2005) and only include precise terminology or terms that have already been defined by the 

community (Borasi, 1992; Van Dormolen & Zaslavsky, 2003). In this way, each definition is 

part of a larger system of definitions that are related to one another and are grounded in axioms 

(Van Dormolen & Zaslavsky, 2003). Moreover, alternate definitions, those that are different yet 

equivalent, may exist for the same object (de Villiers, 1998). These definitions vary in form  

(e.g., textual vs. symbolic or procedural vs. structural) or minimality (Van Dormolen & 

Zaslavsky, 2003; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). Minimal definitions, 

also referred to as economic (de Villiers, 1998), only include descriptions that are necessary for 

guaranteeing recreation of the object or identification of the object. Minimal definitions are often 

hierarchical, that is, they include definitions already established by the community (Van 

Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 2005). It is important that alternate definitions 

are invariant; their meaning should remain unchanged between representations. 
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 To illustrate the features of definitions, consider two definitions for “triangle:” 1) a 

polygon with three sides and 2) a closed figure with three connected straight lines, three angles, 

and three vertices. Both descriptions are valid definitions of triangle. They are noncircular 

because neither uses the term “triangle.” They are non-contradicting because all the properties 

described can coexist (as opposed to, for instance, a polygon with three sides and four angles). 

The terms used, “polygon,” “sides,” “angles,” “vertices,” “lines,” “closed,” are all precise terms 

that have been defined by the mathematics community at large. At the same time, the definitions 

differ in their minimality and hierarchy. The first definition is minimal and hierarchical. It uses 

objects already defined, polygon and sides, and does not include additional, unnecessary 

information. The second definition is not minimal because it unnecessarily states that a triangle 

has three angles and three vertices, properties that are already guaranteed when a figure is closed 

with three connected straight lines. The second definition is hierarchical in some regards, but not 

others. It uses pre-defined terms such as “angles” and “vertices” but, unlike the first definition, 

does not take advantage of the definition “polygon.” 

 Mathematical defining. In his seminal text, Proofs and Refutations, Imre Lakatos (1976) 

provided historical analyses of the development of two mathematical entities: the Euler 

Characteristic and the proof that the limit of any convergent series of continuous functions is 

itself continuous. His work provides a lens for thinking about: a) what it means to participate in 

mathematics generally, b) how mathematical participation develops, c) how defining plays a role 

in that development and d) what it means to participate in defining specifically.  

 Lakatos (1976) suggested that the discipline of mathematics develops as a practice of 

what he calls “proofs and refutations.” Mathematical inquiry typically begins with an initial 

conjecture and a subsequent proof that takes the form of a “thought-experiment.” This thought-
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experiment decomposes the initial conjecture into sub-conjectures. Other members of the 

mathematical community often find counterexamples to the initial conjecture. In turn, these lead 

to re-examination of the proof in order to find the sub-conjecture responsible for the counter-

example. This “zig-zag” (p. 42) between proofs and refutations may yield suggestions for an 

improved conjecture. For example, in the history of the Euler Characteristic, analysis of the 

original proof led to several counter-examples to the initial conjecture. Because of these counter-

examples, some mathematicians suggested modifying the original conjecture to specify that it be 

true for only a smaller set of polyhedra. The process, Lakatos noted, is counter to how 

mathematics is typically presented in texts. There, the field is presented deductively, that is, as a 

logically linear progression, starting with definitions, axioms, lemmas, theorems and finally 

proofs, often masking the social and organic nature of how mathematics develops. 

One significant, but often overlooked, aspect of Lakatos’s (1976) analysis is that it shows 

how mathematics develops as a system. That is, mathematical objects and entities (such as 

theorems and proofs) develop in a related way over time, contributing to the development of 

practices. Although mathematics is often presented systematically, it is usually done so as static 

representations of knowledge. Lakatos’s historical narrative highlights how the development of 

mathematical entities and objects and their related practices can be represented as a dynamic 

system. A representation of part of the system Lakatos described in the development of the Euler 

Characteristic is illustrated in Figure 1. In the figure, arrows are used to show when one 

mathematical entity, such as a conjecture, proof, counterexample or definition, led to another. 

For example, when one mathematician provided a proof for the Euler Characteristic, several 

mathematicians responded to that proof with criticisms of its particular components (referred to 

as lemmas). The criticism of one lemma was then elaborated with a global counterexample 
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(global because it countered the initial conjecture, as opposed to local counterexamples, which 

counter a lemma). As Figure 1 illustrates, unlike final deductive presentations of mathematics, 

relations often follow in non-standard ways. For instance, we see that in the case described by 

Lakatos, counterexamples followed proofs that led to new definitions that led to new 

counterexamples. 
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Figure 1.   Mathematics develops as a system in Lakatos’s Proofs & Refutations (1976). The diagram 
illustrates the systematic relations described by Lakatos in the first part of his book. Arrows indicate 
instances where one investigation led to another historically, as suggested by Lakatos’ analysis. Gray 
blocks indicate instances involving definitions. Dashed arrows indicate indirect relations between 
definitions. Monster-barring refers to the process where a mathematician proposed a new definition in 
order to dismiss a counter-example. 
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	   Lakatos’s (1976) analysis highlights how mathematical defining plays a significant role 

in the development of a mathematical system. First, defining aids in the refinement of proof. 

When counterexamples are introduced, contest often arises about the grounding definitions of the 

proofs. Sometimes new definitions are proposed in order to dismiss the counter-example while 

still salvaging the proof and the conjecture (a process Lakatos refers to as “monster-barring”); 

other times the definition remains and the proof is altered. These disagreements highlight a 

second role of defining: defining itself is a form of mathematical argument. Such arguments are 

used to dispute inclusion of an aspect within a definition. Definitional arguments are grounded 

within a community’s choice to do one of several things: a) include a case as an example of a 

particular mathematical object, b) dismiss or keep a proposed counter-example to a proof, c) 

verify the validity of an object by appealing to a definition or d) justify the equivalence or non-

equivalence of two definitions (Van Dormolen & Zaslavsky, 2003). All of these arguments rely 

on a third role of mathematical defining, that is, that it arises out of the need to communicate 

within a mathematical community. Thus, the development of mathematics is inherently social 

and progress hinges upon deliberation among the community’s members. Finally, defining also 

supports the development of other definitions that contribute to new counterexamples. For 

instance, in the case of the Euler Characteristic, defining “polyhedron” led to a counterexample 

that, in turn, spurred discussions about the definition of “polygon” and, after further deliberation, 

the definition of “edge.” 

 

Supporting Classroom Disciplinary Practice  

 In order to understand how defining was supported within the reviewed pieces, I draw 

upon two lines of work. First, because of my focus on defining as a disciplinary practice, I use 
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Lehrer’s (2009) framework of “design elements” (p. 760). These design elements describe ways 

to support the development of disciplinary knowledge when designing learning environments. 

The first design element is the nature of the tasks designed to elicit or support a practice. The 

design or analysis of tasks should include a focus on how they support the second and third 

design elements, the inscriptions and material means available as resources for engaging with 

tasks. As Lehrer describes, inscriptions are essentially “epistemic expressions,” (p. 761). In other 

words, inscriptions embody histories of meaning that enable communication among members in 

the disciplinary community. For example, in mathematics, notational systems, such as our place 

value system, carry meaning about the mathematical objects that structure how we look at and 

talk about the objects. In the case of our place value system, each place indicates a certain 

number of groups of particular powers of ten (e.g., 23 means “2 groups of ten to the power of 

1and 3 groups of ten to the power of 0”); this inscriptional system represents a base ten 

orientation towards structuring number. Materials are also central to disciplinary activity, but, 

whereas in disciplines, constructing materials is often central to practice, in schools, students are 

often provided ready-made products. For instance, Wilkerson-Jerde and Wilensky (2011) found 

that when unpacking a proof in a new discipline in topology (knot theory), mathematicians often 

constructed examples to make sense of the mathematical objects at hand, and some examples 

were visual representations of materials from the world, such as rope. In contrast, students in 

schools are often provided examples rather than having opportunities to construct their own. 

Thus, it is important to consider how inscriptions and materials relate to how students participate 

in disciplinary forms of activity. The fourth element, modes and means of argument, entails 

disciplinary forms of justification. This form of discourse varies by discipline but also can vary 

based upon how students experience it and the role they play in participating within it. Finally, if 
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students are provided opportunities to participate in modes and means of argument and engage 

with inscriptional and material means, they may develop identities as participants within the 

discipline. In the case of this review, I am interested in how these elements of design are 

particular to defining. For instance, a) how are tasks structured to encourage defining? b) what 

forms of inscription are particular to defining and how are those forms used to communicate 

Aspects of the Practice? c) how does materiality play a role in defining? d) how do forms of 

argument and participation within argument take shape? and e) in what ways do tasks structure 

participation to support students’ development of  disciplinary identities or dispositions? 

 Lehrer (2009) also acknowledged the significance of the role of the teacher in 

orchestrating these elements of design. In order to capture the significance of the role of the 

teacher in supporting defining, I draw upon work related to orchestrating classroom 

mathematical discussions. I focus on the orchestration of classroom discussions because: a) the 

discussion is a venue where orchestration of design elements is more visible and b) since 

defining has historically been a social process between members of the mathematical community 

(Lakatos, 1976), the discussion is a significant arena for cultivating and observing students’ 

participation in the practice. I draw upon the work of two sets of scholars in particular. The first 

set of scholars, Engle and Conant (2002) described a framework of four principles for fostering 

productive disciplinary engagement, where productive disciplinary engagement entails student 

participation that is significant to a discipline and contributes to a community’s collective 

learning. The first of their principles, problematizing content, suggests that teachers should 

encourage students to probe the conceptual foundations of a discipline, in ways such as justifying 

conjectures. This relates to the second principle of giving students authority, which suggests that 

teachers should encourage students to also be authors of disciplinary content. The third principle, 
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holding students accountable to others and to disciplinary norms, entails that teachers should 

hold students accountable to the classroom community, both to each other and to established 

expectations for participating in the discipline at hand. Finally, the fourth principle, providing 

relevant resources, involves providing resources, such as materials, norms, or time, to support 

the other three principles as well as productive disciplinary engagement in general. For purposes 

of this review, I use these four principles as a general lens to identify teacher moves when 

orchestrating discussions that aim at supporting students’ participation in defining and 

development of their identities as definers.  

 In addition, I also employ O’Connor and Michael’s (1996) framework that describes how 

teachers use one particular talk move, revoicing, to support students in participating in 

disciplinary discourse practices. O’Connor and Michaels use Goffman’s (1981) and Goodwin’s 

(1990) notion of participant frames to examine how revoicing shifts, reframes or repositions 

existing participant roles and structures to place the authority in the hands of the students while 

also holding them accountable to the social and disciplinary norms of the community. In 

particular, O’Connor and Michaels note that revoicing serves several functions in a classroom, 

including: a) repairing (i.e., clarifying reasoning), b) rebroadcasting (i.e., giving students a louder 

voice), c) reformulating (i.e., advancing the teacher’s agenda), d) repositioning student utterances 

in relation to the content, and e) repositioning students’ utterances as opposing stances. These 

functions are accomplished in three ways, linguistically. First, the teacher reformulates 

components of the student’s talk, either by changing pieces of the content or by changing the 

language used to describe that content, without correcting the student. Second, the teacher uses 

indirect speech, namely by using verbs that animate the student as the author of the content (for 

instance, “so Jane predicts that…” (p. 79)). Finally, the teacher uses markers of warranted 
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inference, such as “so,” to create an inference linked to that of the student’s previous justification 

or claim. Whereas Engle and Conant’s (2002) framework provides a general lens for identifying 

key aspects of how the teacher orchestrates discussion, the notion of revoicing as shifting 

participant frameworks allows a closer description of how those aspects are accomplished 

linguistically. Thus, I pair the two frameworks in order to capture a broad, yet also detailed, 

description of the role of the teacher in orchestrating discussion around mathematical definitions. 

 

Method 

 

Inclusion Criteria 

Because this review is intended to investigate mathematical defining in learning 

environments, I searched for articles in which researchers described attempts at engaging 

students in mathematical defining. I took mathematical defining to include any activity that 

includes, “formulating, negotiating and revising a [mathematical] definition” (Zandieh & 

Rasmussen, 2010, p. 59). I took learning environments to include any setting in which a task was 

designed to promote changes in student thinking, with or without the intervention of an 

instructor. These ranged from one-on-one tutoring sessions to small group working sessions to 

whole class settings. I included papers that described learning at all ages and in any topic area in 

order to capture defining in its most general sense. Although papers investigating conceptual 

understanding of particular mathematical ideas might give insight into students’ development of 

conceptual understanding of definitions, because of my focus on students’ participation in 

defining as a mathematical practice, I did not include such articles unless definitions were part of 

the activity. Moreover, papers on conceptual development typically characterize nuances of 
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learning for particular content areas, and I was interested in defining more generally. Because I 

wanted to thoroughly capture all that had been done in defining, I included all forms of writing, 

including research journal articles, conference proceedings, book chapters and teacher practice 

journal articles from any year.  

 

Procedure 

Search process. I searched for studies via three phases. I first conducted a preliminary 

search for articles using two methods: a) a keyword search of abstracts in the search engine, 

Educational Research Information Center and b) a keyword search in two of the main 

mathematics education journals: Journal for Research in Mathematics Education and 

Mathematical Thinking and Learning. In both cases, I searched using the keywords 

“mathematical definition” and “mathematical defining.” The Educational Research Information 

Center search yielded 25 articles. The mathematics education journals yielded 6 additional 

articles, 1 in Journal for Research in Mathematics Education and 5 in Mathematical Thinking 

and Learning. In all, this phase led to 31 preliminary articles. In the second phase, I read the 

abstracts from the original 31 articles to determine which studies described students participating 

in mathematical defining (as defined above)1. When the abstract was not clear, the article was 

skimmed to determine whether it fit with the criteria. This reading allowed me to eliminate 27 

articles, leaving 4 articles remaining. For the final phase, the references of the original set of 

articles were skimmed for additional studies that were applicable. This final phase also allowed 

me to identify other forms of writing, namely books or chapters that had not appeared in the 

search. Additional writings were referred to me.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Except in a few cases in which copies of the documents were not obtainable. 
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The search led to 19 contributions, described in Table 1. In all, there were 11 peer-

reviewed articles, 2 articles from practice journals, 4 conference proceedings, 1 book chapter and 

1 book. Participants in the studies ranged from grade 2 to university level. Sample size ranged 

from 1 teacher with 1 student to multiple classes. Most of the studies were conducted about 

topics in geometry, especially around two-dimensional shapes and three-dimensional solids. 

Other topics included fine functions, Fibonacci sequences, equal area, local maximum point of a 

function, and increasing function. Studies varied in duration, ranging from a single session to 

several weeks, but most of analyses were conducted of less than 2 sessions. 

 

Table 1. Overview of selected works for the review 
 

Year Authors Publication 
Type 

Grade 
Level Sample Size Topic of 

Investigation Duration of Study 

1989 
Lehrer, 
Randle, & 
Sancilio 

Article, 
peer-
reviewed 

4th grade 

32 students 
assigned 
randomly to 1 
of 2 conditions 

Pre-proof 
geometry 

17 lessons, each for 
½ hour; analysis 
mainly post 
interviews  

1992 Borasi Book 2nd grade 1 teacher with 
2 students 

Circles, 
Isosceles 
triangles, 
Polygons, 
Variable, 
Exponentiation 

8 instructional 
sessions, each about 
30-40 minutes. 
Students also 
engaged in pre-
assessment & post 
instruction take 
home project. One 
student had an 
additional post 
assessment. 

1997 Dahlberg & 
Housman 

Article, 
peer-
reviewed 

3rd & 4th 
year under-
graduate 
math 
students 

11 students in 
1-on-1 
interview 
settings 

Fine functions 
1 session, lasting 
from 20 minutes to 
1 hour 

1997 Mariotti & 
Fischbein 

Article, 
peer-
reviewed 

6th grade  
1 teacher with 
3 different 
classes 

Prisms & 
parallelepiped 

About 1 month/ 
class; analysis of 4 
class discussions 

1998 de Villiers Conference 
Proceedings 10th grade 1 class and a 

control group  
Rhombi & 
Parallelograms 

Unclear; analysis 
describes piece of 
instruction & 
interview results 
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Table 1, continued 
 

Year Authors Publication 
Type 

Grade 
Level Sample Size Topic of 

Investigation Duration of Study 

1999 

Lehrer, 
Jacobson, 
Kemeny, & 
Strom 

Book 
chapter 2nd grade 1 teacher with 

1 class Triangles 2 sessions 

2000 Lehrer & 
Curtis 

Practice 
journal 3rd grade 1 teacher with 

1 class Perfect solids 
1-2 sessions 
(personal 
correspondence)  

2000 Keiser Practice 
journal 6th grade 2 teachers, 2 

classes Angles About 5 weeks of 
lessons 

2001 
Leikin & 
Winicki-
Landman 

Conference 
Proceedings 

Secondary 
school 
math 
teachers 

10 teachers Fibonacci 
Sequence 

3 year PD course; 
analysis focused on 
1 session 

2002 Lin & Yang 
Article, 
peer-
reviewed 

7th grade 1 teacher with 
2 students Rectangles 

2 sessions, 
conducted several 
months apart. Each 
lasting between 1.5 
– 2 hours 

2002 Furinghetti & 
Paola 

Conference 
Proceedings 10th grade 1 teacher with 

21 students Quadrilaterals 3 class sessions 

2005 Herbst 
Article, 
peer-
reviewed 

9th - 10th 
grade  

8 classes with 
3 teachers (1 
teaching 6 of 
the classes) 

Equal Area (in 
the context of 
triangles) 

2 class sessions for 
each of the 8 
classes. 3 classes 
were from year 1, 2 
from year 2 and 3 
from year 3. 

2005 
Herbst, 
Gonzalez, & 
Macke 

Article, 
peer-
reviewed 

9th grade 

2 accelerated 
geometry 
classes, 53 
students total 

Quadrilaterals 2 class sessions 

2005 Larsen & 
Zandieh 

Conference 
Proceedings University 

2 classes – 1 
geometry and 
one group 
theory 

“Small 
Triangles” on 
the Sphere, 
Subgroup 

2 class sessions, 1 
per class. 

2006 Ouvrier-
Buffet 

Article, 
peer-
reviewed 

Freshmen 
(unclear if 
University 
or High 
School)  

1 teacher with 
2 groups of 2-
3 students 

Straight line 
Each group 
participated in a 2-3 
hour session. 

2005 Zaslavsky & 
Shir 

Article, 
peer-
reviewed 

 12th grade 4 students 

Isosceles 
triangle, 
Square, Local 
Maximum Point 
of a Function, 
Increasing 
Function 

4 group sessions, 
one per concept. 
Students were also 
assessed 
individually before 
and after each group 
session. Each 
session lasted 1.5 – 
2.5 hours.  
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Table 1, continued 
	  

Year Authors Publication 
Type 

Grade 
Level Sample Size Topic of 

Investigation Duration of Study 

2009 Ambrose & 
Kenehan 

Article, 
peer-
reviewed 

3rd grade 

1 researcher 
teacher & 1 
teacher with 
class of 19 

Polyhedra – 
Pyramid in 
particular 

17 days of 
instruction; analysis 
focused on 1 class 
session & pre & 
post interviews 

2009 Roth & Thom 
Article, 
peer-
reviewed 

2nd grade 
1 teacher & 
class of 23 
students 

3-dimensional 
Solids 

3 weeks, 5 lessons 
per week; analysis 
focused on 1 class 
session. 

2010 Zandieh & 
Rassmussen  

Article, 
peer-
reviewed 

University 1 class of 25 
students 

Planar & 
spherical 
triangles 

5 weeks of 
instruction; analyzed 
5 class sessions 

Note. The studies varied in the detail they provided about the sample size and duration. Thus, some of the 
descriptions in the table may be more detailed than others.  
 
 

  Analysis. To initiate analysis, I read the studies with attendance to three broad analytic 

foci, reflective of my questions: a) the nature of defining, which included definitional activity 

and Aspects of Definitional Practice, b) the affordances of defining for mathematical learning 

and c) instructional supports for defining, including design elements and the role of the teacher 

in orchestrating discussions. Initial impressions were documented for each of the three 

categories, guiding decisions for further analysis. These further details of analysis are described 

below for each of the three analytic foci. 

Nature of defining. For nature of defining, I identified two issues during my initial 

readings. First, in order to situate the studies, I noted the sequences of activity that students 

participated in. By capturing what the students did, I hoped to characterize the types of defining 

tasks that might be employed to engage students in defining. I use the term defining tasks to 

describe classroom activities that involve mathematical defining. After my initial readings, I 

noted 4 types of defining tasks across the studies. These characterizations were checked and 

confirmed during a second reading of the articles. 
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Second, I noted Aspects of Definitional Practice. Whereas tasks were meant to capture 

overall activity structure, Aspects of Definitional Practice were intended to characterize 

particular forms of student participation. During the initial reading, I compared across the studies 

to generate an initial characterization of Aspects of Practice. To determine what counted as an 

aspect of practice, I drew upon my readings of disciplinary forms of mathematical definitions 

and defining, as described earlier. For example, I noted forms of argument around definitions, 

similar to those described by Lakatos (1976). My initial impressions guided the creation of a set 

of categories that were refined, elaborated and added to with successive readings, in the tradition 

of the constant comparative method (Glaser, 1965). Ultimately, this process led to 11 categories 

that were then used to code the studies. Categories are presented in the results. 

For the coding, my unit of analysis was an entire study. Each study was coded across the 

11 categories in a binary fashion. In other words, if a study described students participating in an 

aspect of practice, then it was coded “yes” for that particular aspect, and if not, it was coded 

“no.” In order to be coded as including an aspect of practice, the study had to provide an example 

of student talk or action that suggested participation in the aspect.2 I chose to use the entire study 

as the unit of analysis because studies varied in how extensively they described student activity. 

Because of this, it would be impossible to make claims about frequency or density of occurrence 

of the Aspects of Practice. This method gives a base-line portrait to characterize what has been 

done. Finally, once the studies were coded, I looked across instances of each aspect of practice in 

order to capture nuances of students’ engagement in defining. For instance, I noted that 

definitional arguments were constructed for different purposes, such as arguing for the inclusion 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The requirement that the study provide an example held true in most cases. In the few instances 
where this did not hold true, I determined that sufficient description was provided to warrant a 
code. 
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or exclusion of an example versus arguing for the inclusion or exclusion of a definition. Nuances 

of Aspects of Practice are also presented in the results section.  

Affordances of defining. To capture the educative potential of defining, in my initial 

reading of the studies, I noted any reference authors made to how engagement in defining might 

impact students’ mathematical thinking or development as a “doer” of mathematics. These 

claims typically appeared in the results or discussion sections of the studies. During my initial 

reading, I noted four affordances of defining: a) defining supported students’ engagement in the 

practice of defining, b) defining supported a closer analysis of the objects and relations being 

defined, c) defining supported students’ conceptual understanding of definitions, and d) defining 

supported students’ attendance to aspects of definitions (e.g., roles and features of definitions). 

As with the analysis of the aspect of the practice of defining, these initial categories were further 

refined with successive readings (Glaser, 1965). In the final reading, affordances of each study 

were documented along the 4 categories. In order for an affordance to be documented, the study 

had to provide evidence to back up their claim. For instance, authors could not simply claim that 

students improved their understanding of a definition. Rather, they had to either provide an 

example of one or more cases or provide assessment data indicating so. 

Supports for defining. In my initial reading of the articles, I noticed that little was done 

to characterize support within the studies. Thus, rather than make definite claims about support, I 

employed two forms of analysis in order to develop a set of conjectures that might guide further 

research about supporting defining. For the first analysis, in order to characterize how learning 

environments were designed to support, I compared the studies within each of my codes of 

affordances (described in the previous section) to identify similarities. For instance, within the 

code of “defining supports conceptual development,” I compared the studies that claimed to 
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support similar things, such as drawing out a range of student thinking. When comparing, I took 

note of particulars of the five design elements described by Lehrer (2009): tasks, inscriptions, 

material means, modes and means of argumentation and identity. In the end, I identified 5 

particulars of designed environment that appeared to be significant supports, related to tasks, 

inscriptions, material means and modes and means of argument. Although it was difficult to 

identify particular of design related to identity, I did find that the teacher appeared to play an 

important role in supporting this during discussions. I describe this next. 

Analysis of the role of the teacher in orchestrating discussion was conducted slightly 

differently. Most of the articles did not analyze the role of the teacher, and even when they did, 

did not always do so thoroughly. After initial readings of the articles, I noticed two that when 

compared side-by-side provided a potentially interesting contrast. Both articles described similar 

activities conducted with similar ages of students yet resulted in different outcomes in relation to 

students’ development of definitions. In one, by Lehrer and colleagues (1999), students made 

initial progress in construction of the definition and also participated in definitional practices. In 

the other article, by Ambrose & Kennehan (2009), the students did not develop definitions for 

the objects and although the students participated in explanation, only a short account of 

argument was noted. I thus used these two articles as contrasting cases and compared the role of 

the teacher, especially in excerpts of transcript of discussion. This comparison highlighted 3 

potentially significant roles of the teacher in orchestrating discussion. With this lens in mind, I 

scanned the rest of the literature for other supportive evidence for these conjectures. 

 

Results of Review 
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Overview of Results 

I present the results in the following sequence. In the first section, I describe 

mathematical defining in the classroom, first generally describing types of defining activities, 

including similarities and differences in their execution, and then highlighting aspects of 

students’ definitional practice. The second section then provides an overview of the affordances 

of these tasks. I conclude the results by considering how those viable defining activities are 

supported. I start by highlighting aspects of the designed tasks that appear to be significant, 

drawing upon the affordances described in the second section. Finally, using two studies as 

contrasting cases, I describe roles of the teacher in orchestrating discussion that I conjecture are 

significant in promoting defining, supplementing with instances from other studies. The 

reviewed studies illustrate that the tasks within them provided opportunities for students to 

participate in a range of aspects of defining that resembled disciplinary Aspects of Practice. 

Moreover, participation in defining appears to have potential in supporting students’ conceptual 

development and development of disciplinary dispositions.  

 

Nature of Mathematical Defining in Classrooms 

 Despite differences in contexts and age ranges of the studies, they nonetheless 

collectively illustrate potential activities for engaging students in defining and how that 

engagement might play out. In this section, I first provide a general overview detailing the types 

of tasks students participated in when defining. I then look across the tasks and the studies to 

highlight aspects of students’ participation that appear to be particular to defining. 

Types of defining activities. Here I describe 4 types of defining activities described in 

the reviewed studies: a) sorting and classification, b) evaluating definitions and non-definitions, 
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c) open-ended construction of definitions and d) defining arising out of problem-solving or 

proof. All these activities entail formally expressing a mathematical object’s qualities in a way 

that is sharable and upholds the features of definitions detailed previously. Sorting and 

classification tasks were the most frequently described in the studies (11 of the 19 studies 

included such activities), followed by defining arising out of problem-solving or proof (7 of the 

19), open-ended construction of definitions (4 of the 19), and evaluating definitions and non-

definitions (4 of the 19). Note that 3 of the 19 studies described students’ engagement in two 

types of defining activities and 1 study described students’ engagement in three types of defining 

activities. 

Sorting and classification. In sorting and classification activities, students were asked to 

classify objects into one or more groups by describing characteristic properties, either as a whole 

class or in small groups. These activities varied in how they were structured and proposed to 

students. In some of the studies, students were provided with examples and non-examples of one 

particular object (such as “triangle”) and were asked to determine which of the set should be 

included as examples of the object (Ambrose & Kenehan, 2009; Lehrer, Randle, & Sancilio, 

1989; Lehrer et al., 1999; Lehrer & Curtis, 2000; Ouvrier-Buffet, 2006). Alternatively, one study 

provided students with only examples (no non-examples) of an object and asked students to 

make a list of their common properties (de Villiers, 1998). In many cases, students instead (or 

additionally) generated what they perceived to be examples of one particular object and then 

justified its inclusion (Ambrose & Kenehan, 2009; Dalhberg & Houseman, 1997; Furinghetti & 

Paola, 2002; Lehrer et al., 1999; Lehrer & Curtis, 2000; Zandiah & Rasmussen, 2010). Finally, 

in other cases (Roth & Thom, 2009; Mariotti & Fischbein, 1997), teachers provided students 
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with a set of different types of objects (e.g., different types of polyhedra) and asked them to place 

the objects into new or existing groups.   

The activities varied in the materiality of the objects that were being classified or sorted, 

ranging from drawn objects (e.g., de Villiers, 1998; Lehrer et al., 1999), to physical objects (e.g., 

Ambrose & Kenehan, 2009; Lehrer & Curtis, 2000), to computer animated objects (e.g., 

Furinghetti & Paola, 2002). In some cases, students worked with objects in one medium and then 

switched to another. For example, Lehrer and colleagues (1999) engaged students in 

classification of triangles in order to create a definition for “triangle,” first by evaluating a set of 

drawn triangles and later by evaluating their own constructed triangles made out of sets of three 

paper strips. As I describe later, differences in materiality were significant in highlighting 

particular mathematical properties and relations. 

Evaluating definitions and non-definitions. In two of the reviewed studies, students 

were given a list of alternate definitions for an object and asked to comment on them (Borasi, 

1992; Leikin & Winicki-Landman, 2001) or determine whether each definition was acceptable 

(Zaslavsky & Shir, 2005). In both studies, the evaluation activities were conducted with small 

groups of high school students (either 2 or 4). The activities varied in types of definitions 

provided to the students. For instance, in Zaslavsky & Shir’s (2005) study, the group of four 

students was asked to collectively evaluate lists of alternate definitions of four different 

mathematical objects on four different occasions. In two of the sessions, the students evaluated 

alternate definitions of geometric objects (isosceles triangle and square) and in the other two, 

they evaluated both definitions and non-definitions of analytic objects (increasing function and 

local maximum point of a function). The geometric definitions, although all acceptable 
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definitions, ranged in their minimality, form of presentation (procedural vs. structural) and 

hierarchy.  

Similarly, in a different study (Herbst et al., 2005), students indirectly compared and 

evaluated definitions of different objects, through a “Guess my Quadrilateral!” game. In this 

game, students worked with groups to construct a list of yes or no questions to ask the teacher in 

order to determine which quadrilateral she had in mind. The goal of the game was to ask as few 

questions as possible, and, to do so, students had to compare properties and relations of the 

quadrilaterals. Collectively, the evaluating alternate definitions and non-definitions tasks differed 

from sorting and classification tasks in the focal topic of evaluation and comparison. In the 

sorting and classification tasks, the focal topic was the examples whereas in the evaluation of 

definitions, the focal topic was the definitions themselves (or descriptions of properties and 

relations of objects). This is not to say that definitions were not compared or discussed in the 

sorting or classification tasks; rather, the activity was structured around examples. Likewise, for 

the evaluating definitions tasks, students may have compared or discussed examples, but they 

were not the focus of students’ analysis.  

Open-ended construction of definitions. On a few occasions, students were simply asked 

to construct a definition of a mathematical object, such as “polygon.” However, the types of 

definitions students were asked to construct varied. For instance, Lehrer and colleagues (1989) 

described a learning environment where students were asked to create procedural definitions of 

geometric objects, either using the computer program LOGO or using traditional construction 

tools (e.g., pencil, straight edge, protractor). Moreover, the time period of construction varied. 

Whereas in most studies, students constructed a definition in one or two sessions as an isolated 

activity (Borasi, 1992; Zandieh & Rasmussen, 2010), Keiser (2000) described two classrooms 
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where students continuously revisited the definition they were constructing (of angle) as they 

investigated angles in multiple contexts.  

Defining arising out of problem-solving or proof. A few studies described defining 

arising from problem-solving (Herbst, 2005; Lin & Yang, 2002; Mariotti & Fischbein, 1997; 

Ouvrier-Buffet, 2006) and three described defining arising from proof in a Lakatosian manner 

(Borasi, 1992; Larsen & Zandieh, 2005; Zandieh & Rasmussen, 2010). In these tasks, the need 

for modifying or constructing a definition was motivated by the activity at hand. For instance, in 

Lin & Yang’s (2002) study, students worked on the following area word problem: “Conan is 

going to move to a new home. He has a rectangular swimming pool built in the backyard. When 

he checked the pool, he said, ‘Is it really a rectangular swimming pool?’ If you were Conan, 

what places and what properties would you ask the workers to measure so that you can be sure it 

is rectangular?” (p. 18). The problem also had a stipulation that each property cost a significant 

amount of money to check, and students were asked to spend the least amount of money as 

possible, as a way of encouraging them to consider the minimal properties needed to ensure an 

object is a rectangle. This problem generated discussions about what a rectangle is and how to 

construct a minimal definition of one. In this case, as well as many others, discussions about 

definitions were often encouraged by the teacher. However, unlike the “open-ended construction 

of definitions,” these tasks were situated within the problem or proof at hand.  

Nature of student participation in defining. Because defining is a type of mathematical 

practice, it entails forms of participation in a community of mathematicians. When the 

community is situated in a classroom composed of learners of mathematics, these forms of 

participation play out in new ways. In order to support educators in developing such 

environments, it is important to identity aspects of students’ participation in the practice. Here, I 
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attempt to highlight what the reviewed studies suggest such aspects might be and what they 

might entail. Although I describe these aspects separately, as disjoint entities, in reality defining 

entails the collective functioning of multiple aspects. Some of these relations are illustrated in the 

text below. Table 2 provides an overview of the aspects of the practice of defining. 

 

Table 2. Aspects of the Practice of Defining 
	  

Aspects of 
Defining Descriptions of Aspects Examples 

Constructing 
& Evaluating 
Examples 

Constructing examples of the object 
being defined and/or determining 
whether an example belongs to a 
set.  

Students were shown geometric solids and asked 
whether the objects were examples of pyramids. 
Afterwards, students were then asked to construct their 
own examples of pyramids and justify why it was an 
example.  

Describing 
Properties of 
Objects 

Articulating, through talk and/or 
writing, properties & relations of 
mathematical objects.  

When asked to compare a triangular pyramid and a 
square pyramid, students offered descriptions such as, 
they both “look like a triangle” (Ambrose & Kenehan, 
2009, p. 165). 

Using 
Definitions 
to Generate 
Objects 

Generating an object based upon a 
definition or set of properties. 

Students played a game in which they worked in groups 
to construct a list of “yes” or “no” questions. The goal of 
the game was to determine the teacher’s quadrilateral 
using as few questions as possible. (Herbst, Gonzalez, & 
Macke, 2005). 

Investigating 
Fundamental 
Qualities of 
Mathematical 
Objects 

Investigating or examining aspects 
of properties or related properties of 
an object. Properties need not be 
part of the definition. 

As students evaluated a set of potential “triangles,” the 
issue of orientation arose; that is, if a triangle lays on one 
side versus another versus a vertex, does it change 
whether or not it is a triangle? (Lehrer et al., 1999). 

Constructing 
Definitional 
Explanations 
& Arguments 

Definitional arguments and 
explanations are justifications in 
relation to a definition, example of a 
definition, or qualities of an object 
being defined.  

When defining triangle, one child constructed a 
“triangle” with one curved side. When her peers rejected 
her example as a triangle, she disagreed, appealing to 
their collective definition: “No. It doesn’t matter. Look 
[gesturing to the board], it has three corners and three 
sides” (Lehrer et al., 1999, p. 78). 

Revising 
Definitions 

Adding properties to, eliminating 
properties from, or modifying 
elements of a definition.  

When defining “perfect solid,” students added the 
property that faces needed congruent sides to their 
definition (Lehrer and Curtis, 2000). 

Asking 
Definitional 
Questions 

Asking questions about definitions 
or about qualities, properties or 
relations of the objects being 
defined.  

“Okay, but do you have to have endpoints [to form a 
triangle]? [sketches three rays that intersect to form a 
triangle] Is that not a triangle? Can you form a triangle 
with rays?” (Zandieh & Rasmussen, 2010, p. 62) 

Negotiating 
Criteria for 
Judging 
Adequacy or 
Acceptability 

Negotiating which features or roles 
of definitions should be used to 
determine whether a definition is 
adequate or acceptable. 

A group of students, in evaluating a definition of square, 
discuss whether a definition needs to be minimal: 
“Yoav:   Too many details, but it is still a definition. 
Omer:   What do “too many details” have to do with 
that? 
Mike:   In which definition here don’t you have too 
many  details?” (Zaslavsky & Shir, 2005, p. 329) 
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Table 2, continued 
	  

Aspects of 
Defining Descriptions of Aspects Examples 

Considering 
Definitions 
in New 
Forms or 
Contexts 

Re-defining or re-considering a 
definition of an object in a new 
form (such as procedural) or a new 
context. (such as a new space) 

After defining quadrilaterals structurally, students 
constructed procedural definitions using the software 
program LOGO. Definitions took the form of sets of 
instructions for “walking” along a shape’s edges (Lehrer, 
Randle, & Sancilio, 1989). 

Engaging in 
Definitional 
Conjectures, 
Experiments 
& Tests 

Begins with making conjectures 
about properties to include in a 
definition and/or about potential 
examples of the object being 
defined. Conjectures are followed 
by experiments that are then tested 
in some manner. 

In trying to define “perfect solid,” students constructed a 
conjectured definition, experimented by creating possible 
examples for perfect solids and then tested their 
candidates by comparing them to existing examples and 
non-examples and to their definition (Lehrer & Curtis, 
2000).  

Establishing 
and/or 
Investigating 
Systematic 
Relations 

Considering the meaning of new 
mathematical objects or new 
mathematical questions, 
conjectures, theorems or proofs that 
are related to an object being 
defined.  

When a class investigated two-dimensional 
representations of three-dimensional solids, because 
words like “sides” and “corners” meant different things 
to children, they negotiated agreed upon meanings 
(Lehrer & Curtis, 2000). 

	  

	  

Defining involves constructing and evaluating examples. In many of the studies (14 of 

the 19), students constructed and/or evaluated examples and/or non-examples of the object being 

defined. Evaluation involved determining whether or not a case should be included as part of the 

set in question. In some cases, construction and/or evaluation was the focal activity, organized as 

a sorting or classification task, in effort to generate classes of objects or descriptions of one 

particular class (Ambrose and Kenehan , 2009; Furinghetti & Paola, 2002; Lehrer & Curtis, 

2000; Lehrer et. al, 1989; Lehrer et. al, 1999; Mariotti & Fischbein, 1997; Roth & Thom, 2009; 

Zandieh & Rasmussen, 2010). For example, in both Ambrose and Kenehan’s (2009) and Lehrer 

and colleague’s (1999) studies, elementary-aged students were asked to evaluate cases in a 

collection of objects, justifying their choices to include or exclude the case as a member of the 

main object (e.g., pyramids and triangles, respectively). Afterwards, children constructed their 

own example of the object and justified why they considered it to be a member of the class.  
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In other cases, construction of examples arose in service of constructing definitional 

arguments or evaluating a current definition (Borasi, 1992; Herbst, 2005; Keiser, 2000; Ouvrier-

Buffet, 2006; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). For instance, in Zandieh & 

Rasmussen’s (2010) study, when the students constructed definitions for planar triangles, one of 

them questioned whether “endpoints” was a necessary property to include in their definition. To 

illustrate his point, he drew three intersecting rays as an example of a triangle without endpoints. 

Sometimes, examples also served as sense-making devices for students. For example, when 

Dahlberg & Housman (1997) asked students to make sense of a definition provided to them, 

several students spontaneously constructed examples. In fact, the authors found that constructing 

examples, either spontaneously or when prompted, supported learning of the concept. 

Constructing and evaluating examples was a significant aspect of the practice of defining 

because it helped students consider what the class of objects being defined should include and 

provided a set of objects to describe. Moreover, the latter cases show that constructing and 

evaluating examples play a significant role in students’ participation in other Aspects of 

Definitional Practices, such as describing, and thus may be an important aspect to cultivate. 

Defining involves describing properties. Often when students constructed and evaluated 

examples, they also described and articulated properties and relations of the examples. This 

descriptive quality is what pushes example construction and evaluation towards definitional 

activity and beyond simply building and making decisions of “in” versus “out.” Despite this co-

occurrence, I include description as a separate aspect of definitional practice from example 

construction and evaluation because they both play important roles in defining. In a few cases, 

teachers started a lesson with pure description of examples and/or non-examples (Ambrose & 

Kenehan, 2009; de Villiers, 1998; Lehrer & Curtis, 2000; Lehrer et. al, 1989). For instance, 
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Ambrose & Kenehan (2009) describe an introductory activity in a lesson in which students were 

shown a large triangular pyramid and a large square pyramid and asked what the solids had in 

common. Children offered descriptions such as, they both “look like a triangle” or their “bottoms 

are different” (p. 166). 

However, most of the time, description serviced other goals, such as constructing a 

definitional argument, explaining a particular classification or writing a definition for an object 

(Ambrose & Kenehan, 2009; Borasi, 1992; de Villiers, 1998; Herbst, 2005; Lehrer & Curtis, 

2000; Lehrer et. al, 1989; Lehrer et. al, 1999; Keiser, 2000; Mariotti & Fischbein, 1997; Roth & 

Thom, 2009; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). For example, in trying to 

convince his classmates that a constructed example was a case of a spherical triangle, one college 

student argued, “First of all, use the first one as the equator, and you come around and you stop 

on the opposite side. So it goes completely around, like 300 degrees or something like that. 

Another line segment on the great circle, and you have a third line segment on the great circle, 

and they all intersect with each other only once, only once, only once [pointing to each of the 

line segments in turn]” (underlining added to highlight his use of descriptions) (p. 65). In all of 

these forms of activity, it is important that descriptions go beyond “lists of properties” but 

instead contribute to the construction of a definition. For instance, in one second grade class, as 

the students classified a collection of examples and non-examples of triangles, the teacher kept a 

running list of their agreed upon “rules” for triangles on the front board and rules that were 

tentative and belonged to individuals on the side board (Lehrer et. al, 1999). However, in other 

cases (e.g., Ambrose & Kenehan, 2009), although descriptions may have served immediate goals 

(such as classification), they were not simultaneously repurposed for the construction of 
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definitions. Rather, it was only later that the students constructed definitions. The importance of 

this will be discussed further later. 

Younger children’s descriptions often varied in their attendance to mathematically 

significant properties and relations. For instance, Ambrose & Kenehan (2009) note that often 

students’ initial descriptions were holistic, describing the overall looks of a geometric solid (e.g., 

both “look like a mummy house,” (p. 165)), whereas later children more frequently attended to 

the parts of a solid and the relations between them. Because articulation of properties and 

relations is critical for constructing definitions, it is important to consider how one might 

cultivate mathematically relevant descriptions. This will be discussed later. 

Defining involves using definitions to generate objects. As described, many of the 

activities involved students in generating descriptions for known objects. However, a few studies 

illustrated that defining may also involve generating objects (e.g., “square” or “triangle”) for a 

given definition or set of properties. In two cases, generation occurred as students collectively 

constructed definitions for an unfamiliar object. Zandieh and Rasmussen (2010) describe college 

students constructing a definition for a subset of triangles on the sphere, which they termed 

“small triangles,” whereas Lehrer and Curtis (2000) describe third graders constructing a 

definition for “perfect solid.” In the case of the college students, their investigations were guided 

by their desire for the object to uphold a particular theorem. For the elementary students, their 

investigations were motivated by the desire to find all five of the perfect solids and were guided 

by the teacher who informed students whether their constructed polyhedra were in fact perfect 

solids. 

In a study by Herbst and colleagues (2005), generating objects took the form of a game 

called “Guess my Quadrilateral!” In the game, students worked in groups to construct a list of 
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“yes” or “no” questions that they would ask to determine which quadrilateral the teacher was 

thinking of. Their goal in the game was to guess the quadrilateral using as few questions as 

possible. Because of this, when students generated questions, they often considered which 

quadrilaterals the question would exclude. Several of the groups created tree diagrams to 

illustrate how responses to their questions related to possible quadrilaterals. In both the game 

setting and the cases where students were generating objects when constructing definitions, 

students had to consider how properties or rules related to one object rather than others. In other 

words, this aspect of defining requires students to consider an object not as an isolated case, but 

in relation to other objects, whether a set of quadrilaterals or the set of objects which are not 

perfect solids. 

Defining involves investigating fundamental qualities of mathematical objects. One 

aspect that contributes to description and example construction and evaluation is the 

investigation of fundamental qualities of mathematical objects. In several of the studies, as 

students constructed definitions, they also examined more carefully particular qualities of the 

objects they were defining (Borasi, 1992; Furinghetti & Paola, 2002; Herbst, 2005; Keiser, 2000; 

Lehrer & Curtis, 2000; Lehrer et al., 1999; Zandieh & Rasmussen, 2010). Typically students’ 

investigations were not directly expressed in definitions but were critical in their evaluation of 

potential examples. For instance, in Lehrer and colleagues (1999) study, as students evaluated a 

set of potential “triangles,” the issue of orientation arose; that is, if a triangle lays on one side 

versus another versus a vertex, does it change whether or not it is a triangle? They investigated 

this quality of the object by constructing triangles with paper strips and considering whether the 

triangles changed when rotated, an investigation that led to agreement that orientation does not 

matter. Sometimes, investigating qualities unveils equivalent relations that allow for new ways of 
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defining objects. For instance, one group of third graders noticed that satisfying the constraint of 

congruent sides for examples of perfect solids were met by equilateral polygons where the 

number of rotational symmetries was the same as the number of sides (Lehrer, personal 

communication). Although the examination of qualities of objects may occur in classrooms 

outside of defining, in the context of defining, it arises out of the need to make sense of the 

object at hand. Thus, such investigations may be motivated by students’ inquiries (rather than 

suggested by the teacher) and also promote unpacking relations between an object’s properties. 

Defining involves constructing definitional explanations and arguments. The most 

thoroughly documented aspect of defining practice was that of constructing definitional 

arguments and/or explanations. Definitional arguments and explanations are justifications in 

relation to a definition, to an example of a definition or to qualities of an object being defined. 

Arguments and explanations took similar forms, but, unlike explanations, arguments arose from 

contest and were used to resolve that contest. This distinction is significant because historically 

the need to resolve disagreements led to advancement in the field (Lakatos, 1976). Despite this, 

because the definitional arguments and explanations took similar forms and because it was not 

always possible to discern whether a justification was an argument or explanation, I chose to 

include them in the same category of practice while still distinguishing them when possible. 

I noted four types of definitional arguments and explanations that students engaged in. 

First, some definitional arguments and explanations were used to justify the inclusion or 

exclusion of a definition (de Villiers, 1998; Borasi, 1992; Larsen & Zandieh, 2005; Leikin & 

Winicki-Landman, 2001; Mariotti & Fischbein, 1997; Zandieh & Rasmussen, 2010; Zaslavsky & 

Shir, 2005). These types of justifications often occurred when students were evaluating alternate 

definitions. Zaslavsky & Shir (2005) further delineated such justifications into five types. The 
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first type, mathematical arguments, involved invoking logical concerns, that is, evaluating the 

definitions based on their correctness. In Larsen & Zandieh’s (2005) study with undergraduates, 

students employed this type of justification by proving that one definition was equivalent to 

another. The second type, communicative arguments, were those in which students evaluated 

definitions based mainly on clarity, comprehensiveness and their accessibility to the audience. 

Figurative arguments occurred only when evaluating geometric definitions. These arguments 

mainly focused on the issue of whether or not it is acceptable to define a geometric figure based 

on its latent parts. Example-based reasoning used examples to convince others about an aspect of 

including or excluding a definition. These justifications mainly took the form of counter-

examples in order to reject a definition. Finally, definition-based reasoning argues for or against 

a definition by invoking features or roles of mathematical definitions.  

The second general type of definitional argument or explanation was used to negotiate 

aspects of properties or relations of an object (Mariotti & Fischbein, 1997; Keiser, 2000; Lehrer 

et al., 1999). This type of justification appeared related to the first, except rather than arguing for 

the inclusion or exclusion of an entire definition, students attended to the discussion of emergent 

aspects of an object that might be included in the definition. Thus, this form of justification was 

less directly related to a completed definition but was still significant in contributing to the 

construction. For example, Keiser (2000) described students’ arguments related to one class 

member’s question about whether increasing the physical size of the angle increased its measure. 

In this case, the argument was resolved by one child’s use of two examples (same angles formed 

by the watch hands and the clock hands) to illustrate that size did not matter. This argument 

example is similar to the example-based arguments that Zaslavsky & Shir (2005) described. As 

another example, in Lehrer and colleagues study (1999), students’ initial investigations with 
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triangles led to arguments about the qualities of sides, such as their necessity to be straight. This 

type of definitional argument or explanation may occur when students are investigating qualities 

of mathematical objects, illustrating a potential link between two Aspects of Definitional 

Practice.  

The third and most frequent type of definitional argument or explanation was used to 

argue for the inclusion or exclusion of an example (Ambrose & Kenehan, 2009; Dalhberg & 

Houseman, 1997; Herbst, 2005; Keiser, 2000; Lehrer & Curtis, 2000; Lehrer et al., 1999; Lin & 

Yang, 2002; Mariotti & Fischbein, 1997; Roth & Thom, 2009; Zandieh & Rasmussen, 2010). 

This type of justification, not surprisingly, occurred frequently in the sorting and classification 

tasks since the nature of the task centered on evaluation of examples and non-examples. These 

justifications appeared to range in sophistication. Although there was some variation of 

arguments and explanations within studies, variation was most clearly observed across the 

studies. The least sophisticated justifications did not attend to any aspect of the object: [it’s not a 

pyramid] “because it just doesn’t look like one…I can’t quite put my finger on it” (Ambrose & 

Kenehan, 2009, p. 172). Other less sophisticated arguments and explanations attended to non-

mathematical attributes of the object to suggest inclusion or exclusion. For instance, these 

included justifications that attended to shape or size (e.g., “cause this one is sort of bigger than 

the other ones,” Roth & Thom, p. 66) or justifications that describe the overall appearance (e.g., 

“because it looks like a triangle,” Ambrose & Kenehan, 2009, p. 167). More sophisticated 

justifications attended to particular components of the objects, such as a geometric object’s parts, 

but argue based on prototypical beliefs. For instance, one student explained to her class during 

their investigation of triangles that, “this one isn’t a triangle. Because these things [pointing at 

the long sides] are going way up high, and they have to be kind of smaller” (Lehrer et al., 1999, 
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p. 75). In contrast, other justifications attended to mathematically relevant properties of an 

object’s components (e.g., those are all pyramids because “they all have a pointy part at the top,” 

Ambrose & Kenehan, 2009, p. 169, or it belongs with the cubes “cause these are more 

squares…they are all squares I think, Roth & Thom, 2009, p. 72).).  Other justifications 

considered relations between features (e.g. “some of the triangles don’t touch the base,” 

Ambrose & Kenehan, 2009, p. 169). However, the most sophisticated form of justification was 

that which privileged mathematical properties that were part of the current definition. For 

instance, Lehrer and colleagues (1999) describe one child’s argument during a class’s 

construction of a definition of triangle. The child had constructed a triangle with 3 paper strips, 

with one curved strip. When the class rejected her example as a triangle, she disagreed, appealing 

to their collectively constructed definition of “3 corners, 3 sides,” “No. It doesn’t matter. Look 

[gesturing to the board], it has three corners [gesturing to each vertex] and three sides [gesturing 

to each strip of paper]” (p. 78). This type of justification is sophisticated because it resembles 

those described by Lakatos (1976) as emblematic of arguments within the mathematical 

community. Such arguments are emblematic because the forms of evidence used are agreed upon 

components of the community’s mathematical system (i.e., the definitions), rather than, for 

example, opinions. Moreover, they also contribute to the overall goal of constructing a definition 

and may lead the community to consider what needs to be revised about a current definition.  

 The final type of justification was used to justify that conditions were minimal. Although 

this only clearly occurred in one study, it is important to note because it requires students to 

consider relations between properties. For instance, Lin & Yang (2002) describe two students 

investigation of minimal properties for a rectangle. When the teacher asked them whether four 

right angles implies that the opposite sides will have the same length, one student responded, 
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“Because they are right angles, two sides of the right angles will be parallel, it won’t be 

stretching out, because these two lines will always be cut off like this, then because it a right 

angle too, so it must be straight” (p. 22). Lin and Yang noted that their students’ arguments 

typically employed natural language or gestures, for instance, moving a pencil along a horizontal 

line to show that AB equals CD and AD equals BC in a rectangle). With all the forms of 

argument, often argument led to revision of definition, another aspect of practice, described next. 

Defining involves revising definitions. Defining also involves the revision of definitions 

to serve the needs of the mathematical classroom community. Revision often resulted from 

definitional arguments or from evaluating examples or non-examples. Often, definitions were 

expanded to include additional properties or relations (Borasi, 1992; de Villiers, 1998; Mariotti 

& Fischbein, 1997; Kieser, 2000; Larsen & Zandieh, 2005; Lehrer & Curtis, 2000; Lin & Yang, 

2002; Zandieh & Rasmussen, 2010). Sometimes, students expanded definitions unnecessarily, 

but incorporated newly learned attributes. Other times definitions were expanded to include 

necessary properties that were needed for the definition to be correct. For instance, in Lehrer & 

Curtis’s (2000) study with third graders constructing a definition for “perfect solids,” in trying to 

find the final perfect solid, the teacher suggested that they compare a non-example they had 

constructed with an example. This comparison helped them realize that, although both solids 

were built with triangular pieces, unlike the non-example, the triangle pieces in the example had 

congruent sides. They thus added this property to their list of rules. In other cases, students 

revised definitions to make them more minimal (Borasi, 1992; de Villiers, 1998; Herbst et al., 

2005; Lehrer & Curtis, 2000; Lin & Yang, 2002). For instance, de Villiers (1998) describes an 

activity where high school students were given a set of examples of rhombi and were asked to 

list their common properties and then create a definition for them. Because this usually resulted 
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in long definitions that were not minimal, the students were then asked to shorten their 

definitions by considering eliminating some of the properties. Sometimes, definitions were 

neither expanded nor reduced but instead modified, mainly to improve their correctness (Lehrer 

& Curtis, 2000; Zandieh & Rasmussen, 2010). For instance, towards the beginning of their 

investigation of “perfect solids,” when students in Lehrer & Curtis’s (2000) class found new 

examples and non-examples, because one of the examples had 3 faces coming together at each 

vertex, one student noted that their conjecture of “three faces at each vertex” (p. 326) could not 

be true. Rather than eliminating that property all together, students suggested modifying it, either 

to “three or four faces come together at each vertex” or “the number just has to be the same at 

each vertex, but could be any number” (p. 326).  

Defining involves asking definitional questions. On occasion, students also asked 

questions about definitions or about the qualities, properties or relations of the objects being 

defined. Students’ questions were not frequently described within the studies, but, nevertheless, 

those questions that were varied in their purpose. Some questions were about the nature of 

definitions or defining. For instance, when Leikin & Winicki-Landman (2001) asked teachers to 

construct procedural definitions, when reflecting on the activity, one of the teachers asked, 

“What is considered to be a definition?” (p. 71), spurring a discussion about whether procedural 

definitions should be considered definitions or not. A couple questions were about the qualities 

of an object, asked in the process of trying to make sense of examples or the construction of 

examples. For example, in one study, the child was constructing procedural definitions of shapes 

using LOGO when he asked, “Will this still be a rectangle if I make these sides longer and 

longer and these shorter and shorter?” (Lehrer et. al, 1989, p. 166-167). Other questions asked 

about which properties of an object are necessary and/or sufficient for inclusion in the definition. 
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For instance, in Borasi’s (1992) study, when the students were considering the definition of 

isosceles triangle, one student asked whether the property of “two equal angles” was sufficient 

for determining a triangle to be isosceles: “Does it really guarantee that if a triangle has two 

equal angles then it is isosceles?” (p. 34). As another example, in Zandieh & Rasmussen’s (2010) 

study, when the undergraduates worked in groups to write definitions of planar triangles, one 

student questioned whether the property of “endpoints” was necessary for an object to be a 

triangle: “Okay, but do you have to have endpoints?” (p. 62). The student then proceeded to 

draw three rays, intersecting to form a triangle and asked another type of definitional question, 

one about including or excluding the drawn case within the class of triangles:  “Is that not a 

triangle?” (p. 62). All of the question types occurred within multiple studies, occurring at least 

twice and at most four times in all. Thus, although definitional questions were not frequent, they 

illustrate the potential for the mathematical inquiry that defining may encourage.   

Defining involves negotiating criteria for judging adequacy or acceptability. 

Students also negotiated which features of definitions should be used to determine the 

acceptability of a definition (Borasi, 1992; Leikin & Winicki-Landman; Zandieh & Rasmussen, 

2010; Zaslavsky & Shir, 2005). In all of these cases, such discussions arose when students were 

either evaluating multiple definitions or constructing their own definition and were motivated by 

the need to determine whether to accept a particular definition or part of a definition. Topics of 

negotiation included: a) what constitutes a definition (Leikin & Winicki-Landman, 2001), b) 

whether a definition needs to be minimal (Borasi, 1992; Zandieh & Rasmussen, 2010; Zaslavsky 

& Shir, 2005), c) whether procedural definitions are acceptable (Leikin & Winicki-Landman, 

2001; Zaslavsky & Shir, 2005), d) whether any concept may serve as a basis for a definition or if 

those concepts must first be defined (e.g., can you define “square” using the notion of 
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“rectangle,” Zaslavsky & Shir, 2005), e) whether any property (e.g., the latent parts, such as the 

diagonal of a square, or properties of objects that are the result of proof, such as the sum of the 

angles in a triangle) may serve as the definition or part of the definition (Borasi, 1992; Zandieh 

& Rasmussen, 2010; Zaslavsky & Shir, 2005), f) whether correctness of a statement guarantees 

its acceptance as a definition (Zaslavsky & Shir, 2005), and g) whether multiple definitions for 

an object may exist (Zaslavsky & Shir, 2005). For instance, when the students in Zaslavsky & 

Shir’s (2005) study were evaluating alternate definitions for square, they came across a longer 

definition. This definition spurred discussion about whether a definition needs to be minimal to 

be acceptable. 

Erez:  It’s correct, but it’s not a definition. 
Yoav:   It’s correct, and it is a definition. 
Erez:   It has too many details. 
Yoav:    Too many details, but it is still a definition. 
Omer:   What do “too many details” have to do with that? 
Mike:    In which definition here don’t you have too many details? (p. 329) 
 
In this example, Erez argued that a definition is not “correct” because it “has too many 

details.” Omar and Mike then questioned more generally why having extra information is 

unacceptable. The students later came to agree that although extra details are not preferable, they 

are nonetheless acceptable. Criteria are often negotiated in service of definitional arguments. 

However, negotiations of criteria is still worth separating as a distinct aspect of definitional 

practice because they allow norms to be established for future definitional arguments and thus 

serve to construct shared understandings of practice within a mathematical community. 

Defining involves considering definitions in new forms or contexts. Defining may also 

involve the consideration of definitions of existing objects in new forms or in new contexts. 

Students considered definitions in new forms when they evaluated and/or constructed procedural 

definitions. Evaluation of procedural definitions led to discussions about whether such 
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definitions are acceptable forms of definition (Leikin & Winicki-Landman, 2001; Zaslavsky & 

Shir, 2005) whereas construction of procedural definitions provided students opportunities to 

reason about the properties and relations of the mathematical object being defined (Lehrer et al., 

1989; Leikin & Winicki-Landman, 2001). For example, in Zaslavsky & Shir’s (2005) study, the 

group of four students evaluated a list of definitions for square, one of which was procedural: 

“An object that can be constructed (in the Euclidean Plane) as follows: Draw a segment; from 

each edge erect a perpendicular to the segment, in the same length as the segment (both in the 

same direction). Connect the other 2 edges of the perpendiculars by a segment. The 4 segments 

form a quadrangle that is a square” (p. 345). When students evaluated this definition, they 

discussed whether a set of instructions should be allowed to be a definition. One student noted, 

“It’s an instruction, it’s not-,” and his peer followed with, “It’s a description of how to construct 

a square…You should write that we don’t accept it [as a definition of a square]” (p. 329). On the 

other hand, Lehrer and colleagues (1989) engaged two groups of students in the construction of 

different types of procedural definitions. One group used protractors and rulers to create 

instructions for constructing two-dimensional geometric figures while the other group used 

LOGO (a software program) to create sets of instructions for “walking” along a geometric 

figure’s sides. These two situations differed in more than material – the LOGO context allowed 

students to take a “path perspective” (Abelson & diSessa, 1980) that required them to consider 

relations between adjacent sides and angles. Using rulers and protractors required articulating 

positional aspects (e.g., this side is connected to this one) but did not necessitate articulating 

relations between angles and sides.  

Students considered definitions in new contexts by expanding an existing definition to 

new domains or by using a definition of an object in a new space. For instance, Borasi (1992) 
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asked students to expand their existing definition of exponents in the whole numbers to include 

new domains, namely fractional exponents and negative exponents. This expansion required 

students to rethink their notion of multiplication as repeated addition and to consider patterns 

within the system of numbers. That is, in order to agree upon new, additional rules, they had to 

take into consideration how patterns within the existing system could be carried into the new 

domain. On the other hand, when applying an existing definition of an object to a new space, 

students had to re-conceptualize the object because it’s appearance, qualities and properties often 

changed (in other words, change their concept images). This definitional habit of mind is like 

that required for some definitional arguments. For instance, Zandieh & Rasmussen (2010) asked 

a group of college students to use their definitions of triangles in the plane to construct triangles 

on a new surface – the sphere. In deciding upon what constituted a triangle on the sphere, 

students continuously revisited their definition. As one student noted when evaluating a non-

prototypical triangle, “It’s not a traditional triangle, but it’s correct by the definition” (p. 63). As 

a contrast, Borasi (1992) asked her students to consider two-dimensional geometric figures in the 

context of taxicab geometry, where distances and points are constrained to a grid (resembling a 

grid of streets in a city). The students were asked to draw the collection of points a distance five 

from one point. Although one of the students correctly drew this set of points, forming a 

diamond shape, she refused to acknowledge that it was a circle, even though it fit their agreed 

upon definition of circle. Thus, this habit of mind is at the center of discussions involved in 

considering objects in new contexts, especially new spaces. 

Defining involves engaging in definitional conjectures, experiments and tests.  

In a few cases, defining took the form of cycles of conjectures, experiments and tests (Larsen & 

Zandieh, 2005; Lehrer & Curtis, 2000; Lehrer et. al, 1999; Zandieh & Rasmussen, 2010). Cycles 
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began with making conjectures about properties to include in a definition and/or about potential 

examples of the object being defined. Conjectures were then followed by experiments that were 

then tested in some manner. For instance, Lehrer and colleagues (Lehrer & Curtis, 2000; Lehrer 

et. al, 1999) describe two elementary school classrooms, where in each, students worked 

collectively to construct a definition (“perfect solid” and “triangle,” respectively). After students 

had done some initial work in formulating a conjectured definition, in both cases, they were 

asked to construct an example of the object being defined. Thus, in these cases, conjectures took 

two forms: the definition and the examples. Students then shared their “experiments” with the 

class. Experiments were tested against the class’s definition and against existing examples and 

non-examples. Experiments and tests took different forms in Larsen & Zandieh’s (2005) work 

with college students. In this setting, students wanted to make a simpler definition of “subgroup” 

that would be easier to use in proofs. Students, working in a group, came up with a conjectured 

definition. They immediately tested it by trying to prove that their new definition was equivalent 

to the original definition. When this failed, the teacher suggested a counter-example to their 

definition. Students then “experimented” by analyzing the counter-example with the goal of 

improving their definition. This contrast between the elementary and college settings illustrates 

how participation in defining may shift when students also have greater experience participating 

in other mathematical practices, such as proof. 

Defining involves establishing & investigating systematic relations. As illustrated in 

Lakatos’s (1976) historical analysis, defining involves establishing systematic relations, both 

among definitions and between definitions and other mathematical entities, such as proof. A few 

of the studies hint at how students’ participation in defining may involve unpacking relations 

between definitions (Lehrer & Curtis, 2000; Lehrer et al., 1989; Herbst, 2005; Ouvrier-Buffet, 
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2005). For example, in two of the studies, when students created definitions of objects, they also 

defined any objects that were needed in their initial definitions. Lehrer and Curtis (2000) 

describe how when the third graders investigated two-dimensional representations of three-

dimensional solids, they found that words like “sides” and “corners” meant different things to 

children. Because of this, the students negotiated agreed upon meanings for these objects. In 

Ouvrier-Buffet’s (2005) study of older children defining “straight line,” the students suggested 

making a glossary to establish definitions of commonly used words, such as “pattern.” 

Investigating such systematic relations may also entail unpacking fundamental qualities of the 

objects being defined, illustrating how the two Aspects of Practice may be related. Systematic 

relations can also be established between objects in a hierarchical manner (e.g., a square is a type 

of rectangle). Lehrer and colleagues (1989) described students doing so when they constructed 

both structural and procedural definitions for quadrilaterals. When constructing structural 

definitions, the students considered whether squares were kinds of rectangles, facilitated by 

comparing their properties. When constructing procedural definitions, students instead compared 

procedures for constructing squares to those for constructing rectangles. These relationships were 

made clear by the LOGO environment; whereas procedures for rectangles could produce 

squares, procedures for squares did not produce rectangles other than squares.  

In their work with college undergraduates, Zandieh and colleagues (Larsen & Zandieh, 

2005; Zandieh & Rasmussen, 2010) illustrated how defining led to questions and conjectures and 

how proofs alternatively contributed to the need to create new definitions. In this case, when 

students applied their definition of planer triangle to the sphere and constructed examples of 

spherical triangles, they began noticing new properties of the triangles. These discussions led to 

questions about the sums of the angles in spherical triangles (“Right, but is there a relationship 
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between the sum of angles in the triangles”) and to conjectures about what those sums might be. 

In this case, defining contributed not to definitional questions and conjectures, but rather to 

provable conjectures that could ultimately become theorems. Later, the students were asked to 

prove or disprove whether the property of “side-angle-side” held for triangles and, if not, to 

define a subset of triangles for which it did. In this case, rather than changing the theorem, the 

students defined an object that would fit the theorem, much in the manner that Lakatos (1976) 

described in his analysis of the history of the proof of the Euler characteristic. 

 

Potential of Mathematical Defining in Classrooms 

Defining contributed to engagement in Aspects of Definitional Practice. The studies 

collectively illustrate that allowing students to participate in defining provides opportunities for 

learning in several ways. First, as illustrated in the previous section, the activities provided 

students opportunities to participate in aspects of the practice of defining. As shown in Table 3, 

in all of the studies, students participated in two or more aspects of the practice of defining. 

Because these studies are representations of the students’ participation in defining, it is possible 

that they do not include all aspects in which students participated in and, thus, activity might 

have been even more mathematically richer than portrayed. Moreover, Table 3 also shows that in 

almost all of the studies (16 of 19), students participated in definitional argument and/or 

explanation. Explanation and argument are forms of mathematical discourse that are prevalent in 

reform mathematics classrooms where the emphasis has been on promoting discourse-rich 

environments (Chapin, O’Connor, & Anderson, 2003) and encouraging reasoning (National 

Research Council, 2001). Furthermore, because definitions are often the base for further 

mathematical work in which students participate in explanation and argument, such as problem-
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solving and proof, participation in definitional argument and explanation might provide an entrée 

into these forms of mathematical discourse. Other discourse-rich Aspects of Definitional 

Practice, such as revising definitions and describing properties, were also reported in at least half 

of the studies. 

 

Table 3. Occurrence of Aspects of Definitional Practice among the reviewed works 
 

 Gen. 
Obj. 

Conj., 
Exp., 
Tests 

Neg. 
Crit. 

New 
Form, 
Cont. 

Syst. 
Rel. 

Ask 
Ques. 

Fund. 
Qual. 

Rev. 
Def. 

Desc. 
Prop. 

Con. 
Eval. 
Ex. 

Expl. 
& 

Arg. 
SUM 

D&H 
(1997)          X X 2 

H,G&M 
(2005) X          X 2 

L&Y 
(2002)        X   X 2 

O-B 
(2006)     X     X  2 

D 
(1998)        X X  X 3 

F&P 
(2002)      X X   X  3 

A&K 
(2009)         X X X 3 

R&T 
(2009)         X X X 3 

M&F 
(1997)        X X X X 4 

L&W-L 
(2001)   X X  X     X 4 

L&Z 
(2005)  X   X   X   X 4 

L,R&S 
(1989)    X X X   X X  5 

H 
(2005)     X  X  X X X 5 

Z&S 
(2005)   X X     X X X 5 

L,J,K,S 
(1999)  X     X  X X X 5 

K 
(2000)      X X X X X X 6 

L,C 
(2000) X X   X  X X X X X 8 

B 
(1992)   X X  X X X X X X 8 

Z&R 
(2010) X X X X X X X X X X X 11 
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SUM 3 4 4 5 6 6 7 8 12 14 16  
 

Table 3, continued 
 

             
 
Note. Articles are denoted by the first initial of the last name of each author, in the order in the reference 
(e.g., L,R&S stands for Lehrer, Randle & Sancilio). Year of publication follows. Aspects of Practice are 
abbreviated according to the following: Investigating Fundamental Qualities of Mathematical Objects 
(Fund. Qual), Describing Properties of Objects (Desc. Prop.), Using Definitions to Generate Objects or 
Examples (Gen. Obj.), Asking Definitional Questions (Asking Ques.), Engaging in Definitional 
Conjectures, Experiments & Tests  (Conj., Exp., Tests), Constructing Definitional Explanations & 
Arguments (Expl. & Arg.), Revising Definitions (Rev. Def.), Constructing & Evaluating Examples 
(Con. Eval. Ex.), Negotiating Criteria for Judging Adequacy or Acceptability	  (Neg. Crit.), Considering 
Definitions in New Forms or Contexts (New Forms, Cont.), Establishing & Investigating Systematic 
Relations (Syst. Rel.). 
 

 

Defining motivated closer analysis of the objects and relations defined. One aspect of 

definitional practice, investigating fundamental qualities of mathematical objects, illustrated that 

defining has the potential to motivate investigations about the properties and relations of objects. 

As mentioned previously, this motivation helps make such investigations authentic and 

warranted rather than separate and dictated by the teacher. Moreover, such investigations may 

encourage systematic investigations that encourage development of relations between definitions 

(such as between “polyhedron” and “side”). In addition, closer analyses of objects often reveal 

attributes of objects that may not be articulated in definitions but that are significant in 

identifying examples and non-examples and contribute to a multi-faceted understanding of the 

object. As described next, closer inspection may support students in developing deeper 

understanding of the objects they are defining. 

Defining contributed to conceptual development. In many cases, participation in 

defining also supported students’ conceptual understanding of definitions. As mentioned earlier, 

one concern with traditional approaches to definition is that often students do not develop 

understanding of the concepts being defined, leading to difficulties when engaging in problem 
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solving and proof. Moreover, a major goal for mathematics educators in recent reforms is to 

promote mathematics as a sense-making enterprise, one in which proficiency in mathematics 

involves a deeper understanding of concepts (National Research Council, 2001). At the very 

least, when students participated in defining, it exposed their thinking about seemingly simple 

mathematical objects, especially in relation to what they considered to be examples of an object 

(Ambrose & Kenehan, 2009; Keiser, 2000; Lehrer et al., 1999; Mariotti & Fischbein, 1997; 

Roth, 2009). For instance, Keiser (2000) describes the varied ideas sixth grade students initially 

articulated about angles:  a) considering the vertex to be the angle, b) considering the rays to be 

the angle and c) considering interior space to be the angle. Moreover, as students explored 

angles, they continued to express other ideas, such as suggesting that the size of the angle might 

impact its measure. Exposing students’ thinking early on and throughout allows teachers to 

center their instruction on students’ ideas.  

At the same time, defining appeared to help broaden students’ initial images of the 

objects they were investigating, often entailing that they were able to more correctly generate 

and/or evaluate examples or non-examples of objects (Borasi, 1992; Dalhberg & Houseman, 

1997; Keiser, 2000; Lehrer et al., 1989; Lehrer et al., 1999; Zandieh & Rasmussen, 2010; 

Zaslavsky & Shir, 2005). For instance, in Keiser’s (2000) study, many of the students initially 

thought that angles only existed within shapes (not on the outside), but after their five-week 

investigation, more of them began to accept exterior angles as angles. Defining also appeared to 

support students’ description of objects, moving them away from holistic descriptions towards 

more mathematical descriptions that focused on relevant parts and properties (Ambrose & 

Kenehan, 2009; Roth & Thom, 2009).  In other cases, students already attended to 

mathematically relevant features, but instead, became more aware of which of those features 
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were necessary in order to construct a definition (Borasi, 1992; de Villiers, 1998; Herbst, et al., 

2005; Keiser, 2000; Lehrer & Curtis, 2000; Lehrer et al., 1999; Lin & Yang, 2002; Ouvrier-

Buffet, 2006; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). For example, when 

defining “perfect solid,” the students in Lehrer & Curtis’s (2000) study continuously revised 

their conjectured “rules” as they evaluated new examples and non-examples. One conjecture, 

that three faces needed to meet at each vertex, was eliminated once a student noticed that the 

octahedron had four faces coming together at each vertex and was thus not a necessary property. 

They later realized, after comparing an example with a non-example, that the faces all needed to 

have the same lengths of sides, a property that was later further revised to include the same angle 

size as well. In a couple of these cases, students also improved in writing minimal definitions 

(Borasi, 1992; de Villiers, 1998; Lin & Yang, 2002). De Villiers (1998) compared two instructed 

groups, one who engaged in learning definitions in the traditional way and one who engaged in 

constructing definitions and revising them to make them more minimal. When tested at the end 

of instruction, a higher percentage of the instructional group gave correct, minimal definitions. 

Furthermore, in a couple of cases, the defining activity supported students in thinking about 

relations between properties and/or between objects, such as hierarchical relations between 

geometric shapes (Furinghetti & Paola, 2002; Lehrer et al., 1989). 

Defining encouraged developing disciplinary identities. Third, in some cases, students 

appeared to develop dispositions towards what it means to participate in defining. That is, they 

appeared to develop authority as a participant in the practice. For instance, as mentioned under 

Aspects of Practice, in a few cases, defining provided a venue for students to negotiate what 

counts as a definition and important properties of definitions (Borasi, 1992; Leikin & Winicki-

Landman; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). Unlike in traditional classes, 
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where the authority rests in the teacher or textbook, here students were taking it upon themselves 

to determine what properties were significant to conduct their investigations with definitions. 

And, in some of these cases, students showed evidence of learning about the properties of 

definitions, such as the fact that multiple definitions may exist for the same object. Moreover, 

although not frequently documented, there were instances in which students’ talk appeared to 

suggest that students were taking on authorities as “definers.” For example, in Lehrer & Curtis’s 

(2000) study of the third graders defining “perfect solid,” students appeared to uptake the goal of 

defining. When they were struggling to find the fifth perfect solid and had a solid that was 

surprisingly rejected, several students proclaimed, “we must not have found all the rules 

[properties] yet!” (p. 328). This example illustrates that students had tied the activity of 

constructing and evaluating examples to the overall goal of constructing a definition, without 

prompting from the teacher. In Borasi’s study (1992), when the students were proving a theorem 

about polygons, after the teacher asked “How do you think we can prove something like this?” 

one student remarked, “I don’t know. Take a polygon as an example. [[the teacher] immediately 

draws one, a convex pentagon] We never really got to the definition of a polygon. We think 

this is a polygon” (bold added for emphasis) (p. 50). This instance illustrates the student’s 

appreciation of the role that definition plays in other mathematical practices and their authority in 

determining that definition. This is notable because this student had reported having horrible past 

experiences with mathematics and had recently failed the standardized test in geometry. In 

Zandieh & Rasmussen’s (2010) study with undergraduates, the students had previously engaged 

with definitions and, in the cases described, they already appeared to have developed 

dispositions as authors of definitions. When they were working in their small groups, they 

frequently reminded one another of their goal of defining and, even for the familiar object of 
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“triangle” on the plane, they negotiated which properties should be part of the definition by 

appealing to examples and features of definitions rather than appealing to a pre-determined 

definition. Although this study may not show how such dispositions develop, it does illustrate 

what participation might look like after students have taken on more authoritative roles with 

defining. 

 

Supporting Defining 

The previous section illustrates that defining has potential to support students in several 

ways, and thus the question remains of how that might be done. Although the studies in general 

focused very little on supports for defining, they still suggest some important directions for 

further investigation. In the next two sections, I illustrate what such conjectures might look like, 

first in regards to designed supports and then with regards to how a teacher might orchestrate 

classroom discussion. 

Designing tasks to support defining. Here, I employ Lehrer’s (2009) framework of 

designing for disciplinary practices to describe some supports for defining along the lines of four 

of the five elements of design: nature of tasks, inscriptions, material means, modes and means of 

argument. These are suggestions for defining broadly, and it is expected that particulars of design 

would vary depending on the particular mathematical topic of investigation. Supports the fifth 

element, identity, along with additional supports about modes and means of argument, are 

discussed in the following section about the role of the teacher in orchestrating discussions 

around definition. 

Tasks should include opportunities to construct new forms of definitions. As described 

earlier, one aspect of the practice of defining that occurs less frequently in classrooms is that in 
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which students consider definitions in new forms, namely procedural, and within new contexts, 

such as a new space. Lehrer and colleague’s (1989) study illustrates that engaging students in the 

construction of procedural definitions, in particular those where students create instructions for 

walking polygons, has the potential to help students notice relations between figures. 

Additionally, constructing procedural definitions might provoke students to ask definitional 

questions that may be less likely with structural definitions, such as questions about modifying 

properties of objects described above. Besides supporting conceptual understanding of the 

objects being defined, procedural definitions are also significant to the discipline and 

constructing them is an important part of disciplinary practice. However, as Zaslavsky & Shir 

(2005) pointed out in their study, procedural definitions are not naturally accepted forms of 

definitions for students. Although they described a small sample, the students were 

mathematically advanced and yet still rejected procedural definitions as acceptable definitions. 

Moreover, Leikin & Winicki-Landman (2001) found that teachers too questioned the validity of 

procedural definitions. Thus, students should be provided opportunities to construct procedural 

definitions as well as discuss their role as definitions, perhaps by experiencing their use in 

solving problems or proving theorems.  

Tasks should include opportunities to evaluate examples and definitions. When 

students were asked to evaluate examples and non-examples or definitions and non-definitions, 

the conversation appeared to support development of students’ understanding of the definitions. 

As Dahlberg & Housman (1997) found in their one-on-one sessions, generating examples 

appeared to support students’ learning of a new definition. This result is consistent with work 

done with mathematicians that shows that examples play a significant role in their sense-making 

of new ideas (Wilkerson-Jerde & Wilensky, 2011). In the studies, many times, evaluation was 



	  59 

promoted through classification or sorting tasks of examples or by giving students a list of 

definitions and non-definitions. In both cases, having non-examples and non-definitions 

appeared to be critical for supporting changes in students’ thinking. For example, in Zaslavsky 

and Shir’s (2005) study, students changed their thinking mainly when they evaluated definitions 

of analytic concepts rather than geometric concepts. Although this difference may be attributed 

to the difference in the concepts, at the same time, the analytic concepts included definitions and 

non-definitions whereas the geometric definitions included only examples and non-examples.   

Evaluating examples and definitions also appeared to generate definitional argument 

among students. Argument is an important part of mathematical practice, and as the studies 

illustrate, can constitute a significant part of defining as well. Argument, however, is rooted in 

contest within a mathematical community, and thus examples and definitions must be designed 

to promote contest. Classification or sorting tasks should include a range of examples and non-

examples and evaluation activities should likewise include a range of definitions and non-

definitions. Especially important is to include non-prototypical examples and/or definitions. 

Examples and/or definitions that differed from students’ images often generated contest that 

resulted in revision of the definition at hand (e.g., Lehrer et al., 1999). Moreover, particular 

definitional activities appear to promote particular types of definitional argument, so tasks should 

be designed with these in mind. For instance, sorting and classification activities appear to be 

fertile grounds for promoting arguments over the inclusion or exclusion of examples of the 

mathematical object being defined. Alternatively, as Zaslavsky and Shir (2005) illustrated, 

having students evaluate alternate definitions and non-definitions and justify choices led to 

arguments over inclusion or exclusion of the definitions. Moreover, when definitions varied in 

form and length, students also argued about the nature of definitions, such as whether definitions 
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must be minimal or can be procedural. This suggests that when students are asked to evaluate 

alternate definitions that vary in their features, it may encourage such discussion. 

Tasks should take advantage of leveraging students’ everyday experiences. In the 

studies with young children, many of the sorting and classification tasks took advantage of 

children’s existing experiences with shape as a starting point for description. For instance, in 

Lehrer and colleague’s (1999) work with second graders, the students had pre-existing notions of 

what a triangle should look like. Because of this, they had resources with which to evaluate and 

describe the set of triangles provided by the teachers. At the same time, their different opinions 

provided contest to motivate conversations around their choices. 

Inscriptions should position defining at the forefront. The need for communication 

about an object’s properties and relations is what distinguishes defining activities from classroom 

activities centered solely on conceptual development. Moreover, simply identifying an object’s 

properties may be a part of defining but is not a defining activity all on its own. When they sort, 

students may discuss similarities and differences of the objects and then refine their 

classifications. However, this task is only considered a defining activity if the students attempt to 

describe what constitutes membership to a group of objects (see Lehrer et. al., 1998 for an 

example). In studies by Lehrer and colleagues (Lehrer & Curtis, 2000; Lehrer et al., 1999), the 

teacher used inscriptions to make the definition salient and at the center of attention. For 

instance, in one classroom, on one board, she wrote the students’ conjectured rules on the side 

board and their agreed upon rules on the front board. Thus, in this case, changes in inscription 

represent changes in definitions, thus making revision visible to students. 

Materials should be selected to highlight particular properties and relationships. 

Finally, materials that teachers use should be selected in order to highlight properties and 
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relations of the objects being definition. For example, in Lehrer and colleague’s (1989) study in 

which students constructed procedural definitions, they found that students who constructed 

procedural definitions with LOGO versus with compasses, rulers and pencil recognized relations 

between objects more readily on a post assessment than those who had worked with the other 

materials. The authors conjectured that because LOGO requires students to construct directions 

for “walking” a geometric object, students must think about relations between angles and lengths 

of sides. Certain directions can be modified to create new shapes and modifications highlight 

important similarities and differences between the shapes that promote, for example, seeing 

hierarchical relations between quadrilaterals. In contrast, when constructing with rulers and 

compasses, procedural definitions do not need to take into account relations between properties. 

For instance, such a procedural definition for a triangle might be: “Draw a straight line of a 

particular length. Draw another straight line, connected to one vertex of the first line. Draw a 

third line that connects the remaining two vertices of two lines.” Note that this definition does 

not specify relations between the angles (internal or external), nor relations between sides and 

angles. As another contrast, Furinghetti & Paola (2002) found that when they had students work 

with Cabri, a dynamic geometry software, students talked about relations between geometric 

objects, but in reverse hierarchical order. That is, they thought squares were the largest set 

because with the program, it was easiest to start with a square and “stretch” it into other shapes. 

Perhaps because students were manipulating the overall shape rather than particular properties 

that they programmed (as in LOGO), the conventional hierarchical relations were not as salient.   

The role of the teacher in orchestrating discussion in defining. All of the class 

activities that researchers produced in the reviewed studies involved some form of discussion 

around definitions. However, facilitating such discussions is not trivial. Teachers play a critical 
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role in orchestrating classroom discussions in mathematics classrooms (Stein, Engle, Smith, & 

Hughs, 2008), but what about this role is particular to supporting defining? In order to highlight 

potentially significant ways in which the teacher facilitates discussion, I contrast excerpts of 

classroom transcripts from two studies about classroom defining. Both of these studies involve 

elementary-aged students participating in classification activities in geometry, yet with varying 

results. In the first study, Ambrose and Kenehan (2009) engaged third graders in the 

classification of polyhedra in order to construct a definition of pyramid. Although students began 

to notice mathematical features of pyramids, on the whole, the researchers found that the 

children did not develop mathematical definitions. In the second study, Lehrer and colleagues 

(1999) describe a class of second graders classifying a set of examples and non-examples in 

order to construct a definition of triangle. In this case, students progressed in the development of 

a definition and also participated in definitional practices, especially that of argument.  

 Here, I compare excerpts of transcript from whole class discussion from the two studies. 

Each illustrates a piece of classroom discussion where students negotiated inclusion or exclusion 

of examples. The goal of this comparison is not to criticize the teacher; nor am I claiming that 

these are typical excerpts of classroom practice. Rather, this contrast may provide some initial 

conjectures of significant teacher moves for promoting defining, in particular, how teachers 

create opportunities for defining. Using the frameworks of revoicing as shifting participant 

frameworks (O’Connor & Michaels, 1996) and the four principles for fostering productive 

disciplinary engagement (Engle & Conant, 2002), I claim that the teacher from Lehrer and 

colleague’s (1999) study played a significant role in making the activity a defining activity in 

three ways: a) by positioning defining at the forefront, b) by positioning defining as a form of 

argument, and c) by encouraging precise language. Each of these includes specific talk moves, 
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described below. For purposes of this comparison, I use “Teacher A” to refer to the teacher from 

Lehrer et al. (1999) and “Teacher B” to refer to the teacher from Ambrose and Kenehan (2009). 

Positioning defining at the forefront. The first noticeable difference between the two 

excerpts is that unlike Teacher B, Teacher A positioned defining at the forefront of the class 

discussion (see Figure 2). Teacher A did this in two ways. In her classroom, the purpose of the 

activity was to construct a set of sharable, agreed upon “rules” for triangles, and she made this 

goal explicit by reminding the students of it during discussion. As the students were discussing 

the set of examples and non-examples of triangles, students implicitly expressed that they 

thought the relative lengths of the sides and the orientation were both significant for determining 

triangles from non-triangles. In response, Mrs. Curtis asked the students, “Could that possibly be 

a rule for triangles? (bold added for emphasis).” In doing so, she related the current activity of 

evaluating the examples and non-examples to their ultimate goal of making rules for triangles, 

thus holding them accountable to the discipline. Moreover, Teacher A also gave defining a voice 

by giving the “rules” agency and “revoicing” the class’s established rules: “Our rules for 

triangles say that a triangle needs three sides” (bold added for emphasis). In the sense of 

participant frames for revoicing (O’Connor & Michaels, 1996), Teacher A rebroadcasted the 

class’s rules by using indirect speech, and thus positioned the definition as a significant 

participant in the discussion. I will further describe this significance in the next section. 
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Figure 2. Positioning defining at the forefront. The two pieces of transcript provide a contrast for how 
teacher may or may not make defining a focal activity. Teacher A (left) positioned the definition as a key 
participant in the discussion and thus made defining a focal activity. Bold words are used to highlight 
differences in talk between the teachers. The transcript on the left comes from Lehrer et al. (1999, p. 74-
75) and the transcript on the right comes from Ambrose and Kenehan (2009, p. 167).	  
 
 

As a contrast, when the students in Teacher B’s classroom proposed important properties, 

she asked questions such as, “What do you mean triangle at the top?” or “So what about this 

one?” or “Does everyone agree?” (p. 167). These questions are important for eliciting students’ 

descriptions and holding students accountable, and are considered productive talk moves in 

promoting mathematical discussion more generally (Chapin et al., 2003). However, they are not 

as directly tied to constructing a definition as Teacher A’s question and comment were. This 

difference may seem subtle, but may be important for moving the activity from solely 

description to defining. This is not to say that teachers should not ask questions similar to those 

of Teacher B, and, in fact, description is an important aspect of the practice of defining and 

should be encouraged. Rather, teachers should pair such questions with questions that position 

(In evaluating the examples and non-examples on the 
board, the students initially selected prototypical 
triangles oriented on a base (such as equilateral 
triangles). 
Teacher A: Could that possibly be a rule for 

triangles? All the sides of a triangle 
have to be the same length. 

Children:  No, yes, no… 
Beth:   Only the diagonal sides. 
… 
Teacher A:  OK, touch the sides you are calling the 

diagonal sides. [Beth touches the two 
slanted sides] 

Teacher A:  OK, then what are you calling the other 
side? 

Beth:   This one? That is the bottom. 
Teacher A:  Our rules for triangles say that a 

triangle needs three sides. So, I would 
say, side, side, side [marking each of the 
sides]. 

(The class is looking at a trapezoidal prism. One 
student, Mikey, thinks the solid is a pyramid “because 
it has triangles.”) 
Janet: It doesn’t have the triangle at the top. 

That’s one special thing that pyramids 
have. 

Teacher B: What do you mean by a triangle at the 
top? 

Janet: That at the top.  
Teacher B: So how about this one, where’s the 

triangle at the top of that one (hands Janet 
a hexagonal pyramid). 

Janet:   They all make a… 
Rick: Point. 
Teacher B: Rick, say what you mean. 
Rick: They all have a pointy part at the top. 
Teacher B: They all have this pointy part at the top. 

Does everyone agree? Where is the 
pointy part at the top of that one Mikey?  
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defining at the forefront. In activities where defining arises out of problem-solving, it is 

especially essential for the teacher to initiate defining by asking students to consider definitions.  

Positioning definition as a form of argument. Teacher A also played an important role 

in positioning defining as a form of argument (see Figure 3). She did so in two ways. First, she 

positioned students’ utterances as competing with the class’s definition. For instance, when Beth 

stated that one of the sides of the triangle was the “bottom,” Teacher A replied, “Our rules for 

triangles say that a triangle needs three sides” (bold added for emphasis). As described in the 

previous section, by using indirect speech, Teacher A imparted agency to the class’s definition 

and, in a sense, positioned it as a member of the community. Because she placed this utterance in 

response to Beth’s claim, it then positioned the definition in contest to her claim. Furthermore, 

the teacher then proceeded to position defining as an argument in a second way, by placing 

Beth’s utterance in contrast to her own: “So I would say, side, side, side…But why is it the 

bottom? Why does it get a special name?” She then furthered the contest by presenting a counter-

argument: “Why can’t it be side, side, side?” In making her argument, the teacher invoked the 

class’s definition, and, thus, modeled a more sophisticated form of definitional argument. Recall 

that that later Sadie made the argument referred to previously about her triangle with curved 

sides, and, in doing so, also invoked the class’s definition. This suggests that, perhaps, the 

teacher’s modeling had some uptake. Moreover, by invoking the definition to counter Beth’s 

point, Teacher A held her accountable to disciplinary norms. In other studies, other teachers 

similarly positioned defining as a form of argument by providing counter-examples to contest 

students’ definitions. For instance, during Borasi’s (1992) study, when the students were 

defining circle, Borasi pointed out to them that a ball would satisfy their definition. This counter-
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example helped the students realize they needed to modify their definition to include that a circle 

must lie in the plane. 

 

Figure 3. Positioning definition as a form of argument. The two pieces of transcript provide a contrast for 
how teacher may or may not position defining as argument. Bold words are used to highlight differences 
in talk between the teachers showing, in particular, that whereas Teacher A positioned defining as an 
argument, a form of contest, Teacher B positioned it as explanation. The transcript on the left comes from 
Lehrer et al. (1999, p. 75) and the transcript on the right comes from Ambrose and Kenehan (2009, p. 
167, 169). 
 
	  

Teacher B also pushed students to justify their thinking by asking probing questions. 

However, her questions encouraged explanation rather than argument. For instance, when a 

student suggested a claim, she asked, “And why does it belong to the not one?” and later 

followed with, “…And why else not, Rick?” Although these questions are important for 

promoting articulation of students’ claims, they do not go further to position claims as 

competing, thus creating contest. Although Teacher B had earlier asked students whether they 

agreed with a claim, she did not ask them to defend their stances or ask if for disagreements. Not 

only is argument is an important disciplinary practice, but contest forces members of a 

Teacher A:  OK, then what are you calling the 
other side? 

Beth:   This one? That is the bottom. 
Teacher A:  Our rules for triangles say that a 

triangle needs three sides. So, I would 
say, side, side, side [marking each of 
the sides]. 

Beth:   But this is the bottom of the triangle 
[pointing at the bottom of the triangle] 

Teacher A:  But why is it the bottom? Why does 
it get a special name? Why can’t it 
be side, side, side? 

Beth:  These two are the sides [pointing to the 
two slanted sides] because this one is 
laying flat [pointing at the bottom] but 
these ones are going up [gestures, 
showing how the sides slant.] 

Janet:   They all make a… 
Rick: Point. 
Teacher B: Rick, say what you mean. 
Rick: They all have a pointy part at the top. 
Teacher B: They all have this pointy part at the top. 

Does everyone agree? Where is the 
pointy part at the top of that one Mikey? 
(Hands him the large tetrahedron.) 

 
(The class is looking at a polyhedron with a 
hexagonal base. It is not a pyramid.) 
Ernesto:   I think it goes in the not one (referring to 

the not-pyramid pile). 
Teacher B:   And why does it belong in the not one? 
Ernesto:   The pointy top doesn’t show that much. 
Teacher B:   Okay, the pointy top’s not quite up the 

way these are. And why else not, Rick? 
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community to consider opposing viewpoints and come to a resolution, one that helps to push 

knowledge forward. And, in several of the reviewed studies, argument promoted revision (e.g., 

Borasi, 1992). 

Encouraging preciseness in descriptive language. An essential part of defining is the 

articulation and description of an object’s properties and relations. Although students may come 

with everyday forms of language for describing mathematical objects, one of the key roles of the 

teacher is to help students move towards more mathematical descriptions of objects. One way 

Teacher A did this is by encouraging preciseness in the students’ descriptive language (see 

Figure 4). For example, in her conversation with Beth, rather than accepting Beth’s description 

of “diagonal sides,” Teacher A requested that she elaborate on what she meant by diagonal sides: 

“show us what you mean when you say the diagonal sides?” She further supported Beth’s 

communication by suggesting that she point to the diagonal sides. Moreover, later when Beth 

referred to the “bottom” of the triangle, Teacher A again encouraged her to expand on her 

description: “But why is it the bottom? Why does it get a special name? Why can’t it be side, 

side, side?” As these examples illustrate, Teacher A pushed on precise language by asking Beth 

questions that probed into what she meant. At the same time, questions like this that inquire 

about a related aspect of the object push students towards developing a mathematical system. In 

a mathematical system, as was described with Lakatos (1976), relations between mathematical 

relations are investigated and fleshed out.  
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Figure 4. Encouraging preciseness in descriptive language. The two pieces of transcript provide a contrast 
for how teachers may encourage descriptive language. Bold words of the left are used to highlight that 
Teacher A pressed the student for further description. Bold words on the right show that Teacher B either 
did not press students (second excerpt), or, when she did, continued by asking pointed questions (first 
excerpt). The transcript on the left comes from Lehrer et al. (1999, p. 74-75) and the transcript on the 
right comes from Ambrose and Kenehan (2009, p. 167 & 169). 
 

 

Teacher B also encouraged children to describe the objects in their own words. However, 

when children offered descriptive language such as “pointy,” “bunch of triangles,” or “not quite 

up the way these are,” she did not always push them to elaborate on their descriptions. Instead, 

she sometimes restated what they said with positive affirmation: “This part, it has sort of a pointy 

part, doesn’t it?” When the teacher did attempt to push children to elaborate on their 

descriptions, she did not always press students to describe what they meant. For instance, when a 

Teacher A:  Beth, can you come up to one of these 
triangles and show us what you mean 
when you say the diagonal sides? [Beth 
goes to the board and points at shape 5, an 
equilateral triangle.] 

Teacher A:  OK, touch the sides you are calling the 
diagonal sides. [Beth touches the two 
slanted sides] 

Teacher A:  OK, then what are you calling the other 
side? 

Beth:   This one? That is the bottom. 
Teacher A:  Our rules for triangles say that a triangle 

needs three sides. So, I would say, side, 
side, side [marking each of the sides]. 

Beth:   But this is the bottom of the triangle 
[pointing at the bottom of the triangle] 

Teacher A:  But why is it the bottom? Why does it 
get a special name? Why can’t it be 
side, side, side? 

Janet: It doesn’t have the triangle at the top. 
That’s one special thing that pyramids 
have. 

Teacher B: What do you mean by a triangle at the 
top? 

Janet: That at the top (traces her finger around 
the apex at the top of one of the 
pyramids). 

Teacher B: So how about this one, where’s the 
triangle at the top of that one (hands 
Janet a hexagonal pyramid). 

Janet:   They all make a… 
Rick: Point. 
Teacher B: Rick, say what you mean. 
Rick: They all have a pointy part at the top. 
Teacher B: They all have this pointy part at the top. 

Does everyone agree? Where is the 
pointy part at the top of that one 
Mikey? 

(Later, discussing a new solid) 
Elizabeth:   It has a pointy part. 
Teacher B:   This part, it has sort of a pointy part, 

doesn’t it? 
Dwayne:  They all have triangles like, like  
 that, hmm, look like a pyramid. 
Teacher B:  It’s got a bunch of triangles, yup. 
Ernesto:   I think it goes in the not one.  
Teacher B:   And why does it belong in the not one? 
Ernesto:   The pointy top doesn’t show that much. 
Teacher B:   Okay, the pointy top’s not quite up the 

way these are. And why else not, Rick? 
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child noted that the solid was not a pyramid because “it doesn’t have the triangle at the top,” the 

teacher first asked, “What do you mean by a triangle at the top?” When the student explained 

that “that, at the top,” tracing her finger around the top of a pyramid, using gesture to describe 

what she meant, Teacher B asked the student to show “the triangle” on another solid. Although 

this move is good for supporting students’ articulation, she does not also go further and ask the 

student to elaborate in her own words on what made both examples the top (and not something 

else). When a child offered the description of “pointy,” rather than pushing on what makes 

something “pointy,” she again asked the student to identify the “pointy part” on another solid. 

This observation reflects the authors’ description of how the teacher supported descriptiveness in 

language. They give the example of a student noting that a solid has hexagons and in response, 

the teacher asked a series of pointed questions: “How many does it have?...Where are the 

hexagons? Are they attached to each other?” These questions are mathematically directed, but at 

the same time, they are so directed, they may potentially reframe the activity from articulating 

and constructing a definition to answering questions about particular aspects of a polyhedron. 

Thus, it is possible that such probes in isolation are not enough. To make the activity 

definitional, the probes must encourage students to further describe and articulate their 

descriptions of properties.  

 Another way teachers can support precise language is by selecting fruitful comparisons 

when students are evaluating examples and non-examples. For instance, in Lehrer & Curtis’s 

(2000) study of third graders investigating perfect solids, when the students reached an impasse, 

the teacher presented two contrasting solids – one example and one non-example they had 

constructed – and asked the students to compare and contrast the two. The teacher’s selection 
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was significant because she chose two solids that had many of the same features, helping 

students isolate the mathematical property that they needed for refining their definition.  

 

Discussion 

Although mathematics educators have started to rethink what it means for students to 

make sense of and construct definitions, little has been known about the potential of these new 

avenues. This review suggests that defining is, in fact, a worthwhile endeavor to pursue. By 

providing students opportunities to make sense of definitions, and perhaps construct their own 

definitions, they generally develop richer understandings of the concepts at hand. Sometimes, 

this engagement generates conversations about notions of definitions more generally, including 

their key features and roles. Moreover, the studies illustrate that defining is a complex, yet 

accessible practice, resembling in many ways the practice that professional mathematicians 

engage in (Lakatos, 1976; Wilkerson-Jerde & Wilensky, 2011). I identified 11 Aspects of 

Practice described by the reviewed studies. These included: constructing and evaluating 

examples, describing properties of objects, using definitions to generate objects, investigating 

fundamental qualities of mathematical objects, constructing definitional explanations and 

arguments, revising definitions, asking definitional questions, negotiating criteria for judging 

adequacy or acceptability, considering definitions in new forms or contexts, engaging in 

definitional conjectures, experiments and tests, and establishing and/or investigating systematic 

relations. 

The Aspects of Definitional Practice may provide a lens for future research in defining. 

For instance, some of the aspects, such as considering definitions in new forms, occurred less 

frequently, yet they were still shown to be significant. Therefore, aspects that have been studied 
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less would be important avenues to pursue. In particular, it would be important to consider how 

such aspects interact with other definitional aspects. Although some of the Aspects of 

Definitional Practice appeared to play integral roles collectively (e.g., argument often led to 

revision of definitions), other relations were less clear. Ideally, these aspects, and their relations, 

will be further investigated and refined so as to ultimately provide a lens for instructional 

designers and teachers. Jacobs and colleagues (Jacobs, Lamb, & Philipp, 2010) described the 

importance of developing teachers’ “professional noticing” of student thinking, a practice which 

first involves characterizing how students think and then using those characterizations to inform 

teaching. Likewise, I suggest that if we are to take students’ engagement in disciplinary practices 

seriously, then teachers should also develop “professional noticing” of those practices. 

 At the same time, however, in order to support teachers’ development of professional 

noticing of practices, the field needs to be able to characterize how students’ develop those 

practices. Having a lens to look at development would allow teachers to see what progress would 

look like and base instructional choices on understanding that progress. In general, very little is 

known about how defining develops. The reviewed studies collectively hint at development of 

definitional argument, but they tell us more about how arguments might develop rather than how 

arguing develops as a socially situated practice. Moreover, most of the studies illustrate very 

short time scales, even when instruction lasted longer. In fact, 13 of the 19 studies described only 

1 or 2 sessions of a particular class3 and 3 other studies described 3 to 5 sessions, but only 

provided snapshots of class activity (rather than pictures of development).4 Some of these 

studies, such as Lehrer and colleague’s (1999), illustrate initial entrée into the practice of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Some of these studies may have analyzed more sessions, but not for the same group of students 
(for instance, Herbst, 2005). 
4 Duration was unspecified in one study. 
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defining but do not show later engagement. On the other hand, Zandieh and Rasmussen (2010) 

show what the practice might look like for students with histories of engagement in defining and 

other mathematical practices, but do not show preliminary work. Two of the studies described 

longer development, but still leave more to be learned. One of these studies (Keiser, 2000) 

describes students’ learning over 5 weeks, but focuses on changes in their conceptions rather 

than in their engagement in the practice. The other study (Borasi, 1992) describes the learning of 

2 students with one teacher over 8 sessions in an after-school setting, rather than a whole class 

setting. Although the study illustrates how the students change in their orientation towards 

defining, there is less focus analytically on how Aspects of Practice shift as they participate.  

Furthermore, Lakatos’s (1976) analysis highlights how mathematics develops as a system 

and the role definition plays in that development. A few of the studies (e.g., Herbst, 2005) 

illustrated instances of systematic relations. Despite this, studies have yet to illustrate the 

development of defining through the lens of system. Mathematical systems, as an analytic lens, 

might allow one to see how students create connections among definitions as well as definitions 

and other entities in mathematics, such as proof. In this sense, future studies should investigate 

students’ participation in defining over longer periods of time in order to understand: a) how 

multiple aspects of defining develop (particularly through a system view) and b) how defining 

participates in other mathematical practices.  

 At the same time, studying students’ development of mathematical defining would also 

allow for studies of support. This review provided an analysis that suggests ways in which the 

teacher plays a significant role in supporting authentic participation in defining. Unlike previous 

work about orchestration of classroom discussions in mathematics, the focus of the comparison 

here was to identify teacher moves to support the practice of defining in particular. Thus, these 
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moves, as well as the aspects of design described, provide a potential starting place that may 

initially guide future analyses and classroom work. As noted previously, the teacher moves are 

preliminary conjectures and would need to be more thoroughly investigated in subsequent 

studies. 

To close, this review provides a first step towards developing a language for describing 

students’ participation in the mathematical practice of defining and how one would support that 

practice. Although the review suggests some general directions, it does not address nuances such 

as particular content areas. Nonetheless, it provides a direction for the field in pursuit of 

supporting students’ participation in doing mathematics. 
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CHAPTER III 

 

ESTABLISHING A MATHEMATICAL PRACTICE IN A MIDDLE SCHOOL CLASSROOM 

 

Introduction 

Recently, reform efforts in mathematics education have attempted to provide students 

with opportunities to participate in mathematics in ways that more closely reflect practices in 

disciplinary mathematics (Lampert, 1990). Central to these efforts is how such practices are 

established within classrooms. In this paper, we attend to the establishment of one particular 

practice, mathematical defining. Our focus on mathematical defining is motivated by the fact that 

in many classrooms, definitions are often treated in ways that are counter to how they are treated 

in the discipline of mathematics. Historically, mathematicians have participated in the co-

construction of definitions, and defining often emerged from proving (Lakatos, 1976). Some 

scholars have thus suggested that we instead engage students in defining as a practice, by 

providing them with opportunities to make sense of and construct definitions themselves, and, in 

turn, become authors of definition (e.g., de Villiers, 1998; Zandieh & Rasmussen, 2010). 

Although such studies provide examples of students’ engagement in the practice of defining, 

very little has been done to show how the practice is established.  

In this paper, we investigate how the practice of defining was established in one middle 

school mathematics classroom. We take the view that a practice is a recurrent activity structure 

governed by normative expectations about appropriate forms of participation. Practices are tied 

to the production of knowledge. The practice of defining, in particular, is tied to (a) the 

production of definitions, (b) the close examination of the properties of the objects being defined, 
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and (c) the network of relations by which new definitions build on established definitions. Thus, 

our investigation of establishment involved a close look at the co-constitution of the practice of 

defining with communal knowledge. Accordingly, we were interested in the following two 

questions: 1) How are knowledge and the practice of defining co-constituted? and 2) How do 

participants in the community contribute to, or support, this co-constitution? We were 

particularly interested in the teacher’s role in initially supporting emergent forms of definitional 

practice and how students, in turn, became participants in the practice. To attend to these 

questions, we first present a framework for characterizing the practice of defining in classroom 

communities. We then use this framework to illustrate how the co-constitution of defining and 

knowledge was established in three excerpts of classroom interaction.  

 

Characterizing Defining as a Practice 

To describe the lens we used to examine defining as a practice in classrooms, we begin 

by describing from a disciplinary perspective what we mean by mathematical definitions and 

defining. We then outline a framework for characterizing forms of participation in defining in 

classrooms, what we refer to as Aspects of Definitional Practice. The first author created this 

framework by reviewing 19 studies in which researchers instigated and/or studied students’ 

engagement in defining as a practice. These studies varied in content, context and in the age of 

the students. The Aspects of Practice were developed through a method of iterative refinement, 

using the lens of disciplinary perspectives on definitions and defining to determine what 

constituted an aspect of definitional practice. 

 

Disciplinary Perspectives on Definitions and Defining 
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A mathematical definition is a description of the properties of a mathematical object 

(such as a geometric shape) and the relations among those properties (Polya, 1957). 

Mathematical definitions are distinct from other mathematical entities – questions, conjectures, 

axioms, lemmas, theorems or corollaries – because they are the negotiated grounds for 

mathematical work. Unlike axioms, definitions are contested rather than taken for granted and 

unlike lemmas, theorems or corollaries, definitions cannot be proven. In order to characterize 

defining as a mathematical practice, we draw upon the work of Imre Lakatos (1976), who 

analyzed how mathematics developed historically in the profession. Essentially, mathematicians 

create systems of mathematical objects and relations between objects. Defining serves several 

functions in creating these systems. It contributes to the refinement of proof and to the 

development and refinement of other definitions. For instance, in Lakatos’s example of the Euler 

Characteristic, defining “polyhedron” led to a counterexample that, in turn, spurred discussions 

about the definition of “polygon” and, later, the definition of “edge.” Defining is also a form of 

argument, in that it arises out of contest about the meaning of particular objects motivated by the 

need for members of the mathematical community to communicate and develop a shared 

understanding.  

 

A Framework for Analyzing Defining in Classrooms: Aspects of Definitional Practice 

In reviewing the literature, we identified multiple Aspects of Definitional Practice. These 

aspects characterize how students from previous studies (of all ages) have participated in 

defining in ways representative of, yet distinct from, professional mathematicians. We created 

this framework to provide a lens for investigating students’ participation in defining in 

classrooms. Although there are more, we briefly describe five of the Aspects of Definitional 
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Practice below that are most relevant to the results discussed here. While we describe these 

aspects separately, in reality, defining entails their collective functioning.  

Definitional arguments and explanations are used to justify (a) inclusion or exclusion of 

a definition, (b) inclusion or exclusion of an example of a definition, (c) aspects of qualities of 

the object being defined, or (d) whether conditions in a definition are minimal. For example, 

Lehrer and colleagues (Lehrer, Jacobson, Kemeny, & Strom, 1999) describe one child’s 

argument for the inclusion of an example during her class’s construction of a definition for 

triangle. The child had constructed a triangle with 3 paper strips, one of which was curved. When 

the class rejected her example as a triangle, she disagreed, appealing to their collectively 

constructed definition of “3 corners, 3 sides:” “No. It doesn’t matter. Look [gesturing to the 

board], it has three corners [gesturing to each vertex] and three sides [gesturing to each strip of 

paper]” (p. 78). This type of argument is emblematic of those within the discipline of 

mathematics (Lakatos, 1976) because it takes as evidence agreed-upon definitions. Arguments 

and explanations may take similar forms, but, as illustrated in the example above, unlike 

explanations, arguments arise from contest and are used to resolve that contest. This distinction 

is significant because historically the need to resolve disagreements led to advancement in the 

field (Lakatos, 1976).  

Defining also involves the construction and/or evaluation of examples and/or non-

examples of the object being defined, where evaluation involves determining whether or not a 

case should be included as part of the set in question. Constructing and evaluating examples is 

significant to the practice of defining because it helps students consider what the class of objects 

being defined should include and provides a set of objects to describe (see, for example, Zandieh 

& Rasmussen, 2010). 
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Defining may also involve revising definitions to serve the needs of the mathematical 

classroom community. Revision often results from definitional arguments or from evaluating 

examples or non-examples. When revising, definitions are sometimes expanded to include 

additional properties or relations while, at other times, reduced to become more minimal. In 

other instances, definitions are instead modified, mainly to improve their correctness.  

Proposing definitions about the properties to include in a definition is another aspect of 

defining. Proposed definitions may then be tested, for instance, against examples of the object 

being defined, and possibly revised. 

Finally, defining involves asking questions about definitions or about the qualities, 

properties or relations of the objects being defined. Some definitional questions are general (e.g., 

what is a polygon?). Others are more about particular qualities of an object, often asked in the 

process of trying to make sense of examples (e.g., “Will this still be a rectangle if I make these 

sides longer and longer and these shorter and shorter?” from Lehrer, Randle, & Sancilio, 1989, p. 

166-167). Questions may also be asked about which properties of an object are necessary and/or 

sufficient for inclusion in the definition, such as, “Does it really guarantee that if a triangle has 

two equal angles then it is isosceles?” (Borasi, 1992, p. 34).  

 

Method 

We present data from video records of whole class activity where sixth-grade students 

created and refined mathematical definitions of geometric objects. Our instructional design 

capitalized on students’ everyday experiences and conceptions of space, especially bodily 

motion, and on everyday forms of argument, especially propensities to categorize and classify. 

For example, we anchored students’ learning about polygons to paths that they walked (Abelson 



	  82 

& diSessa, 1980; Lehrer et al., 1989) and related familiar properties of polygons, such as 

“straight” sides, to experiences of unchanging direction while walking. Working from these 

embodied forms of activity, we cultivated students’ dispositions toward posing questions and 

making conjectures. We privileged forms of explanation that were oriented toward the general 

and that appealed to mathematical system. Although our focus on spatial mathematics was 

informed by the school’s grade-level standards for mathematics, the conduct of any particular 

class was informed by our interpretations of students’ questions and by our judgments of their 

current levels of understanding.  

 

Participants, Setting and Data Collection 

Participants (n=18, 10 male, grade 6, ethnically diverse) attended an urban school serving 

primarily underrepresented youth in the southeastern region of the United States. Half of the 

students came from traditional classrooms that emphasized procedural mathematics. The other 

students had been with the classroom teacher the year before, and had engaged in some 

conversations about definitions related to mathematical symmetries. Despite this, we still 

considered the context to be good for studying establishment of practice because (a) norms 

surrounding participation in practice still needed to be established for new members, (b) old 

members varied in their participation in practice, and (c) the content was not trivial to students. 

Our participants came from a contained classroom, that is, they remained in the 

classroom with one teacher for all their core academic subjects. The second author served as a 

visiting classroom instructor for mathematics during the school year, and the regular classroom 

teacher occasionally interacted as well. The first day of instruction occurred during the second 

week of school, after a week working within a Connected Mathematics Project curriculum unit 
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on polygons. When the visiting mathematics instructor (who we shall from here on refer to as the 

teacher) first visited, he intended simply to have a conversation with the students about what they 

had learned. It was only after this first class, when it was clear that students’ ideas about 

polygons were still developing, that he decided to continue to teach mathematics. Mathematics 

class was conducted twice each week, for 1.5 hours per class. We videotaped each lesson and 

then digitally rendered the video for further analysis. We also took field notes of whole group 

interactions in order to contextualize the video recordings, serve as a platform for reflection, and 

guide the next day’s instruction. Students also wrote summaries of their thinking at the end of 

every lesson and took periodic assessments, and both were additional sources of data.  

 

Analysis 

For our analysis, we traced initial explorations that emerged as students pursued the 

question, “What is a polygon?” We focused on the first six days of instruction because the 

activity largely involved defining and because it allowed us to see how initial forms of 

definitional practice arose and were supported. To do so, we divided the data into definitional 

episodes – segments of (possibly overlapping) time in which the class participated in making 

sense of one particular object (e.g., polygon or side). We limited definitional episodes to whole 

class discussion in order to capture collective activity. When creating definitional episodes, we 

identified three 10-minute excerpts of class discussion for careful analysis of the establishment 

of the practice of defining. We chose the excerpts (from days one, four and six) because they 

were similar in activity structure (open-ended construction of definitions) and topic (all began 

with the question, “what is a polygon?”) and served as good representations of shifts in 

classroom interaction. We wanted the excerpts to be long enough to span multiple definitional 
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episodes, in order to see the development of the mathematical system, but short enough to look 

carefully at interaction. The excerpts were then transcribed, taking into account both talk and 

gesture.  

We then conducted four phases of analysis. First, we created a representation of the 

development of collective knowledge as a mathematical system. To create this representation, we 

looked across neighboring definitional episodes to identify moments of talk, gesture and 

inscription about interrelationships between mathematical objects and/or qualities of objects. For 

instance, defining “polygon” created the need to establish what a “side” was, suggesting a link 

between “polygon” and “side.” Our intention in making this representation was not to make 

claims about what individuals were thinking, but rather to represent the terrain investigated by 

the class. Second, using our theoretical framework, we coded when a member of the classroom 

community (teacher or student) participated in an aspect of definitional practice, using one or 

more speaker turns as the codable unit. Third, we mapped uses of Aspects of Definitional 

Practice onto the representation of the mathematical system. Finally, we characterized patterns of 

interaction within each excerpt in relation to the map between the coded Aspects of Definitional 

Practice and the mathematical system, and then looked for shifts in these patterns across the 

excerpts. In particular, we considered the roles taken on by students and the teacher in these 

interactions. Our choices for determining their roles were guided by the lens of participant 

frameworks (Goffman, 1981), and in particular O’Connor & Michaels’ (1996) framing of 

revoicing as positioning. We chose to use this framework because we were interested in how the 

class’s activity might be positioned as defining and how participants might be positioned as 

definers. To do so, we looked at how participants (both teachers and students) used talk and 

gesture to position their collective activity and roles within that activity.  
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Establishing the Co-Constitution of Practice and Knowledge 

Here, drawing upon the three excerpts, we highlight a few ways in which defining and 

the construction of a mathematical system co-emerged and how that emergence was supported.  

First, definitional questions served to encourage the investigation of new and related 

mathematical objects, and thus supported development of a mathematical system. That is, when a 

new object was introduced, the teacher asked the students for the definition of the new object. 

For instance, when the class was making sense of a definition containing “angle,” the teacher 

asked, “What makes an angle again?” The teacher often further highlighted the importance of 

new objects by writing the names of the objects on the board. Later, on the fourth day, students 

began to appropriate these types of questions. For example, after students revised their definition 

of polygon to include not only “sides” and “angles,” but also “closed,” the teacher asked, “if we 

take this definition, can there be a polygon with two sides?” One student, Kate, suggested that as 

long as the two sides were connected, it was possible, and then suggested an oval as an example. 

When Kate’s example caused many in the class to protest, a group of students asked their peers, 

“What’s a side, people?” By asking definitional questions, students were beginning to take on the 

role of supporting one another in their collective activity.  

The teacher also played a large role in modeling Aspects of Definitional Practice. As time 

progressed, the teacher modeled different aspects in order to serve the emergent needs of the 

community. Initially, as noted above, the teacher modeled the asking of definitional questions 

that supported development of the mathematical system. Later, he also modeled constructing 

definitional arguments, and, in doing so, encouraged preciseness in students’ definitions. For 

instance, when students defined a polygon as having “sides” and “angles,” the teacher drew three 
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connected, but not closed lines, and said, “I want to know what makes something a polygon. I 

know it has sides and it has angles SO…this then is a polygon right?” In making his argument, 

he positioned the counter-example in relation to their definition, and, in turn, caused students to 

revise their definition to include the property of connectedness.  In the last class, the teacher’s 

modeling of definitional practice shifted to address new mathematical relations. For instance, the 

teacher asked a new type of definitional question, one that encouraged students to think about the 

economy of their definition: “Can you make any closed figure with sides that does NOT have 

angles?” At the same time, students continued to appropriate forms of participation that the 

teacher had been modeling. For instance, in response to the teacher’s question, one student, Ned, 

constructed the example of a football-shaped figure. When asked to explain his thinking, he 

pointed to the lines and noted, “two sides,” then pointed to the vertices and said, “no angles.” He 

continued, “They can’t be angles cause an angle has to be a straight line, two straight lines make 

an angle.” What is noteworthy about Ned’s definitional argument is that it appealed to his 

conceived definition of angle in a similar manner as had been earlier modeled by the teacher.  

Finally, the teacher also played a large role in positioning both students and content. 

Initially, the teacher positioned students as participants in Aspects of Definitional Practice. For 

instance, when one student suggested that a polygon “has the same angles and the same length of 

uh, same lengths of sides,” the teacher revoiced the student’s utterance as a “claim,” thereby 

positioning his activity as proposing definitions. Another student, in response, suggested, “all 

regular polygons.” The teacher referred to this suggestion as an “amendment,” in turn 

positioning her contribution as participating in revising definitions. Later, as the class developed 

a need to remember their agreed upon definitions, the teacher positioned definitions at the 

forefront. For instance, when students proposed definitions, he wrote them on the board, and 
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when those definitions were revised, he indicated those changes as well. He also often also 

requested that students write agreed definitions in their notebooks.  

 

Discussion 

In this paper, we provided an illustration of the initial establishment of a mathematical 

practice, defining. We do not mean to claim that by the end of the six days, the practice was fully 

established. Rather, we illustrate how in establishing this practice, the roles of the teacher and the 

students were constantly shifting as the students gained more authority and began to appropriate 

forms of participation. Our analysis suggests the importance of the teacher in modeling Aspects 

of Definitional Practice, in initially positioning students as participants in those aspects, and in 

positioning definition at the forefront of discussion. As students began to appropriate particular 

forms of participation, the teacher in turn modified what he modeled and positioned to fit the 

new goals of the community and to support investigation of new mathematical properties and 

relations. Controversies about definition led to elaboration of mathematically important ideas 

such as side, angle, polygon, and straight that contributed to the development of a mathematical 

system. These ideas were then taken up and used during the remainder of the year. Figure 1 

illustrates the relation between students’ engagement in Aspects of Practice, teacher supports and 

the development of a mathematical system. 

 Our paper has two contributions. First, the use of our framework of Aspects of 

Definitional Practice illustrates a potentially significant analytic tool for characterizing student 

engagement in the practice of defining. This framework has the potential to be refined and 

expanded as it is used in relation to new classroom environments. Although others have parsed 

mathematical practices tied to particular content (Cobb, Stephan, McClain, & Gravemeijer, 
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2001), this paper illustrates how this may be done in regards to an epistemic practice that spans 

mathematical content. Likewise, the framework, along with the supports we identified, have the 

potential for supporting teachers interested in developing similar learning environments and 

supporting students in engaging in the practice of defining. The Aspects of Definitional Practice 

may allow a teacher to identify what types of activity to model and encourage with her students. 

We focused on collective activity, but this framework may also be useful for capturing changes 

in how individual students participate in the practice of defining and develop identities as 

definers. In our ongoing analysis, we are investigating how roles of individual students shift, 

taking into account their particular histories within the classroom community. 

 

Figure 1. Establishing definitional practice on the first day of instruction. The left side presents transcript from two 
time points in Excerpt 1. The right shows the mathematical system concurrently developed. Aspects of Definitional 
Practice and supports are highlighted in the transcript. Nodes indicate objects that were defined or whose qualities 
were explored. Solid lines in the system indicate relations discussed between objects. 
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CHAPTER IV 

 

CHARACTERIZING AND SUPPORTING PRACTICES OF DEFINING IN A 
MATHEMATICS CLASSROOM 

 

Introduction 

Recently, reform efforts in mathematics education have attempted to provide students 

with opportunities to participate in mathematics in ways that more closely reflect practices in 

disciplinary mathematics (e.g., Lampert, 1990). Central to these efforts is how such practices are 

established within classrooms. In this paper, we attend to the establishment of one particular 

practice, mathematical defining. Our focus on mathematical defining is motivated by the fact that 

in many classrooms, definitions are often treated in ways that are counter to how they are treated 

in the discipline of mathematics. Historically, mathematicians have participated in the co-

construction of definitions, and defining often emerged from proving (Lakatos, 1976). Some 

scholars have thus suggested that we instead engage students in defining as a practice, by 

providing them with opportunities to make sense of and construct definitions themselves, and, in 

turn, become authors of definition (e.g., de Villiers, 1998; Zandieh & Rasmussen, 2010). 

Although such studies provide examples of students’ engagement in the practice of defining, 

very little has been done to show how the practice is established.  

In this paper, we investigate how the practice of defining was established in one middle 

school mathematics classroom. We take the view that practice is a recurrent activity structure 

governed by normative expectations about appropriate forms of participation. Practice is 

ultimately tied to the production of knowledge, and in the case of defining, tied to the production 

of definitions, to close examination of the properties of the objects being defined, and to the 
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network of relations by which new definitions build on established definitions. Thus, our 

investigation of establishment involved a close look at the co-constitution of practice with 

communal knowledge. Accordingly, we were interested in the following two questions: 1) How 

are knowledge and practice co-constituted? And 2) How do participants in the community 

contribute to, or support, this co-constitution? We were particularly interested in the teacher’s 

role in initially supporting emergent forms of practice and how students, in turn, became 

participants in the practice. To attend to these questions, we first present a framework for 

characterizing the practice of defining in classroom communities. We then use this framework to 

illustrate how the co-constitution of defining and knowledge was established in three excerpts of 

classroom interaction that span the first six days of instruction.  

 

Characterizing Defining as a Practice 

To describe the lens we used to examine defining as a practice in classrooms, we begin 

by describing from a disciplinary perspective what we mean by mathematical definitions and 

defining. We then outline a framework for characterizing forms of participation in defining in 

classrooms, what we refer to as Aspects of Definitional Practice. The first author created this 

framework by reviewing 19 studies in which researchers instigated and/or studied students’ 

engagement in defining as a practice. These studies varied in content, context and in the age of 

the students. The Aspects of Practice were developed through a method of iterative refinement, 

using the lens of disciplinary perspectives on definitions and defining to determine what 

constituted an aspect of practice.  

 

Disciplinary Perspectives on Definitions and Defining 
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A mathematical definition is a description of the properties of a mathematical object 

(such as a geometric shape) and the relations among those properties (Polya, 1957). 

Mathematical definitions are distinct from other mathematical entities – questions, conjectures, 

axioms, lemmas, theorems or corollaries – because they are the negotiated grounds for 

mathematical work. Unlike axioms, definitions are contested rather than taken for granted and 

unlike lemmas, theorems or corollaries, definitions cannot be proven. In order to characterize 

defining as a mathematical practice, we draw upon the work of Imre Lakatos (1976), who 

analyzed how mathematics developed historically in the profession. Essentially, mathematicians 

create systems of mathematical objects and relations between objects. Defining serves several 

functions in creating these systems. It contributes to the refinement of proof and to the 

development and refinement of other definitions. For instance, in Lakatos’s example of the Euler 

Characteristic, defining “polyhedron” led to a counterexample that, in turn, spurred discussions 

about the definition of “polygon” and, later, the definition of “edge.” Defining is also a form of 

argument, in that it arises out of contest about the meaning of particular objects motivated by the 

need for members of the mathematical community to communicate and develop a shared 

understanding.  

 

A Framework for Analyzing Defining in Classrooms: Aspects of Definitional Practice 

In reviewing the literature, we identified multiple Aspects of Definitional Practice. These 

aspects characterize how students from previous studies (of all ages) have participated in 

defining in ways representative of, yet distinct from, professional mathematicians. We created 

this framework to provide a lens for investigating students’ participation in defining in 

classrooms. Although there are more, we briefly describe six of the Aspects of Definitional 
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Practice below that are most relevant to the results discussed here. While we describe these 

aspects separately, in reality, defining entails their collective functioning.  

Defining involves constructing and evaluating examples. Defining involves the 

construction and/or evaluation of examples and/or non-examples of the object being defined, 

where evaluation involves determining whether or not a case should be included as part of the set 

in question. Constructing and evaluating examples is significant to the practice of defining 

because it helps students consider what the class of objects being defined should include and 

provides a set of objects to describe (see, for example, Zandieh & Rasmussen, 2010).  

Defining involves describing properties. Often when constructing and evaluating 

examples, members of a mathematical community may also describe and articulate properties 

and relations of the examples. This descriptive quality is what pushes example construction and 

evaluation towards defining and beyond simply building and making decisions of “in” versus 

“out.” Description often supports other goals, such as constructing a definitional argument, 

explaining a particular classification, or writing a definition for an object (e.g., Borasi, 1992; 

Lehrer & Curtis, 2000). It is important that descriptions go beyond a “list of properties” and 

instead contribute to the construction of a definition.  

Defining involves constructing definitional explanations and arguments. Definitional 

arguments and explanations are used to justify a) inclusion or exclusion of a definition, b) 

inclusion or exclusion of an example of a definition, c) aspects of qualities of the object being 

defined, or d) whether conditions in a definition are minimal. For example, Lehrer, Jacobson, 

Kemeny, and Strom (1999) describe one child’s argument for the inclusion of an example during 

her class’s construction of a definition for triangle. The child had constructed a triangle with 3 

paper strips, one of which was curved. When the class rejected her example as a triangle, she 
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disagreed, appealing to their collectively constructed definition of “3 corners, 3 sides:” “No. It 

doesn’t matter. Look [gesturing to the board], it has three corners [gesturing to each vertex] and 

three sides [gesturing to each strip of paper]” (p. 78). This type of argument is emblematic of 

those within the discipline of mathematics (Lakatos, 1976) because it takes as evidence agreed-

upon definitions. Arguments and explanations may take similar forms, but, as illustrated in the 

example above, unlike explanations, arguments arise from contest and are used to resolve that 

contest. This distinction is significant because historically the need to resolve disagreements led 

to advancement in the field (Lakatos, 1976).  

Defining involves revising definitions. Defining also involves revising definitions to 

serve the needs of the mathematical classroom community. Revision often results from 

definitional arguments or from evaluating examples or non-examples. When revising, definitions 

are sometimes expanded to include additional properties or relations while, at other times, 

reduced to become more minimal. In other instances, definitions are instead modified, mainly to 

improve their correctness. For example, during their investigation of “perfect solids,” students in 

Lehrer & Curtis’s (2000) class found a new perfect solid with 3 faces coming together at each 

vertex. In response, one student noted that their conjecture of “three faces at each vertex” (p. 

326) could not be true. Rather than eliminate that property all together, students suggested 

modifying it, either to “three or four faces come together at each vertex” or “the number just has 

to be the same at each vertex, but could be any number” (p. 326).  

Defining involves proposing definitions. Proposing definitions about the properties to 

include in a definition is another aspect of defining. Proposed definitions may then be tested, for 

instance, against examples of the object being defined, and possibly revised, as illustrated in the 

previous example from Lehrer & Curtis (2000). 
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Defining involves posing definitional questions. Defining may also involve posing 

questions about definitions or about the qualities, properties or relations of the objects being 

defined. For example, some definitional questions are general (e.g., what is a polygon?). Others 

are more about particular qualities of an object, often asked in the process of trying to make 

sense of examples (e.g., “Will this still be a rectangle if I make these sides longer and longer and 

these shorter and shorter?” from Lehrer, Randle, & Sancilio, 1989, p. 166-167). Questions may 

also be asked about which properties of an object are necessary and/or sufficient for inclusion in 

the definition, such as, “Does it really guarantee that if a triangle has two equal angles then it is 

isosceles?” (Borasi, 1992, p. 34).  

	  

Method 

We present data from video records of whole class activity where sixth-grade students 

created and refined mathematical definitions of geometric objects. Our design for instruction 

capitalized on students’ everyday experiences and conceptions of space, especially bodily 

motion, and on everyday forms of argument, especially propensities to categorize and classify. 

For example, we anchored students’ learning about polygons to paths that they walked (Abelson 

& diSessa, 1980; Lehrer et al., 1989) and related familiar properties of polygons, such as 

“straight” sides, to experiences of unchanging direction while walking. Working from these 

embodied forms of activity, we cultivated students’ dispositions toward posing questions and 

making conjectures. We privileged forms of explanation that were oriented toward the general 

and that appealed to mathematical system.  

 

Participants, Setting and Data Collection 
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Participants (n=18, 10 male, grade 6, ethnically diverse) attended an urban school serving 

primarily underrepresented youth in the southeastern region of the United States. The percent of 

children attending the school who qualify for free or reduced lunch ranges from 60 to 80 from 

year-to-year. Half of the students came from traditional classrooms that emphasized procedural 

mathematics. The other students had looped up with the classroom teacher from the year before, 

and had engaged in some conversations about definitions related to mathematical symmetries. 

Despite this, we still considered the context to be good for studying establishment of practice for 

a number of reasons. First, because there were a considerable number of new members to the 

community, norms surrounding participation in practice still needed to be established. Old 

members were also varied in their participation in practice, suggesting that they, despite past 

experiences, were still making sense of what it meant to participate in defining. Moreover, the 

content, as will be illustrated, was not trivial to students, and thus served as a good context for 

investigating the co-constitution of knowledge with practice. 

Our participants came from a contained classroom, that is, they remained in the 

classroom with one teacher for all their core academic subjects. One of us served as a visiting 

mathematics instructor, and was the primary classroom instructor for mathematics during the 

school year. The regular classroom teacher remained in the classroom during math class, and 

occasionally interacted as well. The first day of instruction occurred during the second week of 

school, after a week working within a Connected Mathematics Project curriculum unit on 

polygons. When the visiting mathematics instructor (who we shall from here on refer to as the 

teacher) first visited, he intended simply to have a conversation with the students about what they 

had learned. It was only after this first class, when it was clear that students’ ideas about 

polygons were still developing, that he decided to continue to teach mathematics.  



	  97 

Mathematics class was conducted twice each week, for 1.5 hours per class. Each lesson 

was videotaped and digitally rendered for further analysis. Field notes were taken of whole group 

interactions. The aim of the notes was to contextualize the video recordings and to serve as a 

platform for reflection. At the end of each lesson, field notes were compiled, and these served to 

guide the next day’s instruction. Although our choice of mathematical topics was informed by 

the school’s grade-level standards for mathematics, the conduct of any particular class was 

informed by our interpretations of students’ questions and by our judgments of their current 

levels of understanding. The latter were informed both by classroom interaction and by the 

results of periodic assessments. Students also wrote summaries of their thinking at the end of 

every lesson, and these student journals were an additional source of data.  

 

Analysis 

For our analysis, we traced initial explorations that emerged as students pursued the 

question, “What is a polygon?” We focused on the first six days of instruction because the 

activity largely involved defining and because it allowed us to see how initial forms of practice 

arose and were supported. To do so, we divided the data into definitional episodes – segments of 

(possibly overlapping) time in which the class participated in making sense of one particular 

object (e.g., polygon or side). We limited definitional episodes to whole class discussion in order 

to capture collective activity. When creating definitional episodes, we identified three excerpts of 

class discussion for careful analysis of the establishment of practice. We chose the three excerpts 

(from days one, four and six) because they were similar in activity structure (open-ended 

construction of definitions) and topic (all began with the question, “what is a polygon?”) and 

served as good representations of shifts in classroom interaction. Each excerpt was 
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approximately 10 minutes long. We wanted the excerpts to be long enough to span multiple 

definitional episodes, in order to see the development of the mathematical system, but short 

enough to look carefully at interaction. The excerpts were then transcribed, taking into account 

both talk and gesture. We were particularly interested in gestures with inscriptions and materials 

that were central to the activity of defining. 

We then conducted four phases of analysis. First, we used the frame of mathematical 

system in order to create a representation of the development of collective knowledge. When 

considering knowledge, we were mainly interested in the properties and relations of 

mathematical objects that the class discussed or explored. To create this representation, we 

looked within and across neighboring definitional episodes to identify moments of talk, gesture 

and inscription about interrelationships between mathematical objects and/or qualities of objects. 

For instance, defining polygon created the need to establish what a side was, suggesting a link 

between “polygon” and “side.” Our intention in making this representation was not to make 

claims about what individuals were thinking, but rather represent the terrain investigated by the 

class.  

Second, using our theoretical framework, we coded when a member of the classroom 

community (teacher or student) participated in an aspect of definitional practice, using one or 

more speaker turns as the codable unit.  

Third, via a process of iterative refinement, we developed categories to describe ways in 

which the teacher supported the development of practice and then used our categories to code the 

teacher turns. Our creation of categories was influenced by two bodies of work. The first was the 

lens of participant frameworks (Goffman, 1981), and in particular O’Connor & Michaels’ (1996) 

framing of revoicing as positioning. We chose to use this framework because we were interested 
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in how the teacher might position the class’s activity as defining and position participants as 

definers. Similarly, we were guided by Goodwin’s (1994) notion of professional vision because 

we were interested in how the teacher, as a disciplinary representative, might highlight or code 

participation in practice. To use these two frames, we looked at how the teacher used talk and 

gesture to position or highlight collective activity and roles within that activity. For example, 

teacher moves included modeling Aspects of Definitional Practice or requesting participation in 

Aspects of Practice. We will exemplify the teacher moves further in the results. 

Finally, we mapped uses of Aspects of Definitional Practice along with teacher supports 

onto the representation of the mathematical system developed by the class. We then 

characterized patterns of interaction within each excerpt in relation to the map between the coded 

Aspects of Definitional Practice and supports and the mathematical system, and then looked for 

shifts in these patterns across the excerpts.  

 

Establishing the Co-Constitution of Practice and Knowledge 

Here, drawing upon the three excerpts, we highlight three ways in which defining and the 

construction of a mathematical system co-emerged and how that emergence was supported.  

 

Posing Questions that Elaborated System Components 

The first way in which the practice of defining and the mathematical system investigated 

by the class was co-constituted was through the posing of definitional questions. Definitional 

questions encouraged the investigation of new and existing mathematical objects and relations 

between objects, and thus supported development of a mathematical system. Three types of 

questions appeared to be especially important in contributing to this co-constitution. The first 
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type of question asked about relations between two different classes. For instance, towards the 

beginning of the first day, students had started to discuss the definition of polygon. One student 

suggested that, “a circle wouldn’t be a polygon cause a circle doesn’t have any sides.” The 

teacher then re-positioned the student’s utterance as a definitional question, saying, “okay so 

QUESTION. Circle is? A polygon?” Here, the question opened up the conversation to further 

discussion about relations between circle and polygon, inviting other members of the class to 

participate.  

A second definitional question that served to expand and deepen the mathematical system 

was that which asked about a property of the object being defined. That is, when a new object 

was introduced, the teacher asked the students for the definition of the new object. For instance, 

a little later on the first day, when the class was making sense of a definition containing “angle,” 

the teacher asked, “What makes an angle again?” This definitional question invited discussion 

about the definition of angle, an important part of the existing definition. 

The final type of definitional question that pushed on developing the mathematical 

system was that which asked about extreme cases or about economic definitions (those 

definitions that use the least amount of properties to describe a mathematical object). These 

questions served to push on relations between the properties that constituted a definition. For 

example, on the fourth day of instruction, after students revised their definition of polygon to 

include not only “sides” and “angles,” but also “closed,” the teacher asked a question about 

extreme cases, “if we take this definition, can there be a polygon with two sides?” One student, 

Kate, suggested that as long as the two sides were connected, it was possible, and then suggested 

an oval as an example. When Kate’s example caused many in the class to protest, a couple of 

students asked their peers, “What’s a side, people?” Note that the teacher’s question motivated 
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students to think about the effect of minimizing the number of sides on the other properties of a 

polygon (angles and closed), and, in turn, sparked conversation about the meaning of one of 

those properties.  

These examples also illustrate the role of the teacher in modeling the posing of 

definitional questions. Whereas earlier, the teacher had asked many questions about properties of 

the objects being defined, here we see students appropriate this particular aspect of definitional 

practice. Similarly, later, when discussing the definition of “side,” the class realized the need to 

specify that a side must be “straight.” When the teacher noted, “But I don’t know what I mean by 

side yet. I heard the word STRAIGHT,” a student asked, “What does straight mean?” By asking 

definitional questions, students were beginning to take on the role of supporting one another in 

their collective activity. Moreover, as the class began to develop a mathematical foundation of 

definitions, the teacher asked new questions that served emergent needs of the community, 

namely to push on relations among existing objects. Figure 1 presents the three examples 

illustrated above and highlights how they contributed to the development of a mathematical 

system.  
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Figure 1. Establishing practice on the first day of instruction. Each portion presents transcript from the 
alongside a representation of the mathematical system being developed. Nodes indicate objects that were 
defined or whose qualities were explored. Solid lines in the system indicate relations discussed between 
subsets of classes. Dotted lines indicate relations between two classes. Arrows indicate when a property 
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of an existing definition is expanded upon. Red is used to highlight which relations or properties are 
elaborated on in the example. 
 
 

Provoking Contest through the Generation of Examples and Non-Examples 

 A second way in which practice and knowledge were co-constituted was through contest 

provoked by the generation of examples and non-examples (what Lakatos, 1976, would refer to 

as “monsters”). This happened in two ways. First, the teacher sometimes constructed counter-

examples to contest students’ definitions. For instance, on the fourth day of instruction, when 

students defined a polygon as having “sides” and “angles,” the teacher drew three connected, but 

not closed lines (see Figure 2, left side), and said, “I want to know what makes something a 

polygon. I know it has sides and it has angles SO…this then is a polygon right?” In making his 

definitional argument, he positioned the counter-example in relation to their definition, and, in 

turn, caused students to revise their definition to include the property of connectedness, which 

the teacher then relabeled as “closed.” 

In other cases, the teacher asked definitional questions about relations that motivated 

students to construct examples that provoked contest. For example, on the sixth day of 

instruction, the students again revisited their definition of polygon. This time, Michelle, reading 

from her notebook, explained that their definition now contained the properties of “sides,” 

“angles” and “closed.” The teacher then asked a definitional question about the economy of this 

definition: “Can you make any closed figure with sides that does NOT have angles?” In response 

to the teacher’s question, one student, Ned, constructed the example of a football-shaped figure 

(see right of Figure 2). When asked to explain his thinking, he pointed to the lines and noted, 

“two sides,” then pointed to the vertices and said, “no angles.” He continued, “They can’t be 

angles cause an angle has to be a straight line, two straight lines make an angle.” Ned’s 
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definitional argument provoked contest among members of the class. One student, Kate, 

protested, saying, “I don’t [agree], cause that’s not a polygon…and Michelle forgot to say that it 

has to have straight lines.” The teacher noted that the difference in opinion between Kate and 

Ned was the definition of “side.” Ned, in response, asked, “What did we say a side is?” Here, 

Ned’s example, much like Kate’s “oval” described previously, pushed upon relations of what 

constituted a definition of polygon. The contest provoked by Ned’s example motivated the need 

to further discuss the definition of side and it’s relation to straight.  

What is noteworthy in the last example is that the teacher’s question provoked Ned to 

participate in the aspect of practice, constructing an example, in turn placing authority of 

defining in the hands of the students. This highlights another teacher support: requesting 

participation in Aspects of Practice. Moreover, by looking across the two examples provided, we 

again see the role of the teacher in modeling Aspects of Practice, this time the aspect of 

constructing a definitional argument. In the first example, the teacher modeled using the 

definition in his argument: “I know it has sides and angles. SO, this then is a polygon, right?” He 

then proceeded to label his figure as he spoke, further highlighting the components of the 

definition in his counter-example: “side one, side two, side three. Angle one, angle two-.” 

Likewise, Ned’s definitional argument also appealed to his conceived definitions of polygon and 

angle in a similar manner as had been earlier modeled by the teacher. Like the teacher, Ned 

pointed to the components of the figure as he argued his case and then referred to the definition 

of angle to justify this description of the properties. Thus, each of these examples illustrate the 

role of the teacher in supporting student participation. 
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Figure 2. Teacher counter-example (left) and student example (right). 
 
 

Keeping Definition at the Forefront 

Finally, the practice of defining and the development of mathematical system co-emerged 

by keeping definitions at the forefront. This occurred in two ways. On the one hand, participants 

verbally positioned definitions in relation to arguments or examples. For example, in the last 

section, both the teacher and Ned did so as they referenced the definition in defending their 

examples. A second way this occurred was by recording and highlighting definitions. When the 

teacher drew his counter-example of a polygon with sides and angles (left of Figure 2), he also 

labeled the figure in relation to the components of the definition, and, in doing so, highlighted 

those components. Moreover, the teacher also often wrote definitions on the board or requested 

that students write definitions in their notebooks. The teacher especially pushed on the writing of 

definitions starting on the fourth day of instruction, when it became apparent that students 

continued to revisit the same questions and definitions. By the sixth day, more students were 

using their notebooks as resources for referencing agreed upon definitions, as Michelle had done 

in the previous example. Having a record allowed for the stabilization of definitions, and 

stabilization, in turn, allowed for the investigation of new objects and relations. 

 

Discussion 
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In this paper, we provided an illustration of the initial establishment of a mathematical 

practice, defining. We do not mean to claim that by the end of the six days, the practice was fully 

established. Rather, we highlight three ways in which the class’s participation in the practice of 

defining allowed for investigations of qualities of mathematical objects that that contributed to 

the development of a mathematical system. Posing definitional questions motivated the 

introduction of new objects and properties and the elaboration of relations between those objects 

and properties. Controversies about examples of definitions led to elaboration of mathematically 

important ideas such as side, angle, polygon, and straight. These ideas were then taken up and 

used during the remainder of the year, partly supported by verbal and written reference to the 

definitions. Moreover, we illustrate how in establishing this practice, the roles of the teacher and 

the students were constantly shifting as the students gained more authority and began to 

appropriate forms of participation. Our analysis suggests the importance of the teacher in 

modeling Aspects of Definitional Practice, in requesting participation in Aspects of Practice, and 

in positioning definition at the forefront of discussion. As students began to appropriate 

particular forms of participation, the teacher in turn modified what he modeled and positioned to 

fit the new goals of the community and to support investigation of new mathematical properties 

and relations.  

 Our paper has two contributions. First, the use of our framework of Aspects of 

Definitional Practice illustrates a potentially significant analytic tool for characterizing student 

engagement in the practice of defining. This framework has the potential to be refined and 

expanded as it is used in relation to new classroom environments. Although others have parsed 

mathematical practices tied to particular content (Cobb, Stephan, McClain, & Gravemeijer, 

2001), this paper illustrates how this may be done in regards to an epistemic practice that spans 
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mathematical content. Likewise, the framework, along with the supports we identified, have the 

potential for supporting teachers interested in developing similar learning environments and 

supporting students in engaging in the practice of defining. The Aspects of Definitional Practice 

may allow a teacher to identify what types of activity to model and encourage with her students. 

We focused on collective activity, but this framework may also be useful for capturing changes 

in how individual students participate in the practice of defining and develop identities as 

definers. In our ongoing analysis, we are investigating how roles of individual students shift, 

taking into account their particular histories within the classroom community. 
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CHAPTER V 

 

INVESTIGATING THE CO-DEVELOPMENT OF MATHEMATICAL KNOWLEDGE AND 
THE PRACTICE OF DEFINING IN A MIDDLE SCHOOL CLASSROOM 

 

Introduction 

In recent years, the field of mathematics education has advocated for an expanded view 

of what it means to know mathematics and to participate in mathematics as a practice (National 

Research Council, 2001). This paper investigates one practice that has received increasing 

attention: mathematical defining. Whereas definitions are often treated in school mathematics as 

rote, unchanging entities, recently mathematics educators have suggested that classroom 

mathematics should instead treat definitions as they are treated in the discipline. In the discipline, 

definitions are co-constructed by mathematicians with the goal of creating a system of 

mathematical objects, properties and relations. Definitions are subject to revision depending on 

the emergent needs of the mathematical community, such as the desire to reject a particular case 

of an object (a “monster”) (Lakatos, 1976). Unlike other forms of mathematical argument, 

definitions are negotiated, and not taken as shared, as are axioms, or as contested, as are 

conjectures, or as settled, as are proofs. 

In light of this recent trends, scholars have conducted several studies that essentially 

provide existence cases suggesting that it is possible to engage students in this form of practice, 

and that doing so provides students with opportunities to participate in productive mathematical 

discourse, which in turn nurtures the growth of students’ mathematical understandings (e.g., 

Borasi, 1992; Keiser, 2000; Lehrer, Randle, & Sancilio, 1989; Lehrer, Jacobson, Kemeny, & 

Strom, 1999; Zandieh & Rasmussen, 2010; Zaslavsky & Shir, 2005). However, most of these 
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studies primarily present analyses of very short excerpts of class activity, less than two class 

periods, and are often illustrations of already established practice. The studies that present longer 

time scales focus analytically on students’ development of conceptions or orientations towards 

defining rather than shifts in student participation in practice (e.g., Borasi, 1992; Keiser, 2000). 

Thus, very little is known about how the practice of defining develops. This paper aims to 

address this need. 

Here, I present analyses of how students in one sixth grade classroom participated in the 

mathematical practice of defining and how that practice developed over time. I take the view that 

a practice is a recurrent activity structure governed by normative expectations about appropriate 

forms of participation. Epistemic practices result in the production of knowledge, and the 

practice of defining, in particular, is tied to (a) the production of definitions, (b) the close 

examination of the properties of the objects being defined, and (c) the network of relations by 

which new definitions build on established definitions. Thus, this investigation of development 

involves a close look at the co-development of the practice of defining and of communal 

knowledge. I investigated three questions: (a) How does the practice of defining develop? (b) 

How does communal knowledge develop? (c) How do practice and knowledge co-develop, and 

how is such development reflected in the forms of participation generated by teachers and 

students?  

In the following section, I outline three theoretical perspectives that helped shape my 

work: one about what it means to participate in defining from a disciplinary perspective, what I 

term, Aspects of Definitional Practice; one about learning, and one about forms of interaction 

that are key to supporting the orchestration of classroom discussions in mathematics. I then 

follow by describing the context of the study, my sampling method, and three phases of analysis 
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– analysis of knowledge, analysis of practice, and analysis of how knowledge and practice were 

co-constituted. I follow with the research findings, first presenting an overview of how practice 

and knowledge co-developed. I then illustrate the evolution of the co-development of practice 

and knowledge by describing four episodes of classroom interaction at varying points of time. I 

conclude with implications for the field and suggest how similar classroom environments can be 

designed. 

 

  Theoretical Perspectives 

In this section, I outline the perspectives that guided my analyses. The first perspective 

describes a lens for determining what constitutes participation in the practice of defining, what I 

call Aspects of Definitional Practice. The second perspective describes a general lens I employ to 

look at learning of disciplinary practice – as situated. The third perspective describes a lens for 

looking at other forms of interaction that are important for establishing and maintaining 

communal practice, drawing upon four bodies of work. This lens focuses on the role of 

individual participants, especially the teacher, in shaping what it means to interact with others 

around practice.  

 

Characterizing Defining as a Practice 

Disciplinary perspectives on definitions and defining. To situate defining as a practice 

in classrooms, I first describe from a disciplinary perspective what I mean by mathematical 

definitions and defining. A mathematical definition is a description of a mathematical class or 

property (e.g., “polygon,” “function,” “straight”). Functionally, definitions allow members of a 

mathematical community to distinguish between classes of objects and determine whether cases 
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are members of a class (Lakatos, 1976).  Definitions come in two forms (Eylon & Reif, 1984; 

Zaslavsky & Shir, 2005). Structural definitions communicate the properties that constitute a 

mathematical object and the relations among those properties. For instance, “equilateral triangle” 

may be defined structurally as “a polygon that has three congruent sides.” Here, the class is 

“equilateral triangle.” Its properties are “sides” and any properties that comprise a polygon. 

Moreover, it is characterized by the relation between “polygon” and the class of polygons with 

“three congruent sides,” where sides are understood to be straight. Note that the properties that 

constitute a mathematical object are themselves mathematical objects that may be defined. In 

contrast, procedural definitions describe how to construct a class of objects. For example, a 

procedural definition for “equilateral triangle” could be “walk n number of straight steps, turn 

120-degrees right, walk n straight steps, turn 120-degrees right, walk n straight steps, turn 120-

degrees right.” 

Mathematical definitions are distinct from other mathematical entities – questions, 

conjectures, axioms, lemmas, theorems or corollaries – because they are the negotiated grounds 

for mathematical work. Unlike axioms, definitions are contested rather than taken for granted 

and unlike lemmas, theorems or corollaries, definitions cannot be proven. In order to characterize 

defining as a mathematical practice, I drew upon the work of Lakatos (1976), who suggests that 

mathematicians create systems of mathematical objects. Defining particular classes of 

mathematical objects often leads to refinement of definitions as potential cases and counter-

examples are investigated. Often, the grounds of proof are challenged as mathematicians work to 

modify the scope of a definition, occasionally by contracting it (“monster barring”) and more 

commonly, by expanding it. For instance, in Lakatos’s example of the Euler Characteristic, 

defining “polyhedron” led to a counterexample that, in turn, spurred discussions about the 
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definition of “polygon” and, later, the definition of “edge.” Defining is also a form of argument, 

in that it arises out of contest about the meaning of particular objects motivated by the need for 

members of the mathematical community to communicate and develop a shared understanding.  

A framework for analyzing defining in classrooms. In reviewing the literature for 

Paper 1, I identified 11 Aspects of Definitional Practice. The Aspects of Definitional Practice 

were the foundation for a coding scheme I created for Paper 2 to analyze how members of the 

class participated in defining. This coding scheme was again used for part of my analysis in this 

paper. Rather than describe the aspects here, I will describe how I developed operational 

definitions for a subset of them in the Methods Section. To read more about how the aspects 

were developed and grounded in the literature, please refer to Paper 1.   

 

A Situative Approach to Learning 

A useful frame for studying the co-development of defining with knowledge 

development is what Greeno (1996) describes as “situative.” One of the key tenants of the 

situative approach is that knowledge development and practice are tightly related, and that it 

involves learners’ development of disciplinary dispositions (Boaler, 2002; Lehrer, 2009). Thus, 

the situative approach motivates a focus not only on knowledge and practice, but also on how the 

two co-develop in interaction. Such an analysis must be evidenced by talk, gesture, inscription 

and other forms of communication about meaning. This focus on interactions requires 

understanding how practices are negotiated and how joint activity becomes taken-as-shared 

(Yackel & Cobb, 1996). In this process, members of a group take on different roles as they are 

positioned in terms of “competence, authority, and accountability” (Greeno, 1996, p. 88), both 
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by themselves and others. Next, I describe the work I drew upon for investigating how such joint 

activity is negotiated among members of a community. 

 

Supporting Disciplinary Practice in Classroom Discussions 

 For my final lens, I drew upon four bodies of work that describe how participants 

contribute to the development of communal understanding for what it means to engage in 

interactions around practice. This lens informed my analysis of interactions pivotal in supporting 

the creation of community norms, expectations, and understandings about what it means to 

participate in defining. Much of the work I draw on comes from scholars interested in how math 

talk communities develop and how discussions are orchestrated in relation to mathematical 

practices such as collaboration, explanation or argumentation. Despite differences in topic, this 

work still provided a way to look generally at interactions in order to consider what is significant 

for establishing a classroom culture for the practice of defining. I focused on the orchestration of 

classroom discussions because defining has historically been a social process between members 

of the mathematical community (Lakatos, 1976), and discussion is a productive means for 

cultivating and observing students’ participation in the practice. I describe each strand of this 

lens in what follows. 

 Articulating expectations for participation in practice. The first strand describes how 

participants in a classroom culture play a pivotal role in establishing norms by articulating 

expectations for participation in mathematics practice. Expectations are often negotiated between 

members in interaction, but in a classroom, these negotiations are heavily scaffolded by the 

teacher. The teacher, standing in as a disciplinary representative, often articulates rules or 

expectations for participating in communal mathematics practices (Horn, 2008; Lampert, 2001; 
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Wood, 1999; Yackel & Cobb, 1996). For one, teachers may communicate expectations for the 

roles participants should take on in certain moments and how they should act in those roles 

(Horn, 2008; Wood, 1999). Wood (1999) describes a teacher who created expectations for roles 

in class presentations, and articulated not only what the speaker should do, but also how the 

audience should participate. On the first day of school, the teacher she was studying began the 

year by explaining the importance of disagreements in math class. When they participated in 

their first math discussion, the teacher requested that students vocalize agreement or 

disagreement. As students learned to do so, the teacher articulated new expectations for listeners, 

such as “decide if you have a question, so that you can ask it.” This example illustrates how the 

teacher’s expectations shifted in relation to the emergent needs of the community. 

 A teacher may also implicitly communicate expectations through her reactions to 

students’ contributions (Enyedy et al., 2008, Strom, Kemeny, Lehrer, & Forman, 2001). For 

example, a response of “I like that!” or “listen to her” suggests that a student’s contribution is 

important and legitimizes it (Yackel & Cobb, 1996). Moreover, expectations do not need to be 

communicated by talk. Horn (2008) describes how Deborah Ball, as a classroom teacher, asked a 

student to stay to the center of the classroom after he presented in order to receive questions from 

students. By physically placing him at the center of the class, where the teacher usually stood, 

she implicitly articulated two expectations: (a) that students need to take a justified position in a 

discussion and actively defend that position and (b) that the other students also need to engage in 

the mathematics work. 

 Modeling practice. A second strand in supporting disciplinary practice describes how 

participants play a role in modeling for other members of the community how one should 

participate in practice. Sometimes modeling comes in the form of providing examples, and might 
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be coupled with the articulation of expectations (Lampert, 2001; Wood, 1999). For instance, in 

the example provided above from Wood (1999), when the teacher requested that students begin 

to ask questions to the presenter, she illustrated several examples: “You might think, ‘I’m not 

sure of what you’re saying?’ or ‘I’m not sure how you did it?’ or ‘You don’t count the way I 

thought you should’” (p. 186). Similarly, Lampert (2001) describes how she as the teacher 

initially modeled how one should respectively disagree with others, building on an interaction 

between two of the students, “If you disagree, like Anthony just disagreed with Eddie, that’s very 

very important to do in math class. But, when you disagree or think somebody misspoke, you 

need to raise your hand and say, I think he must have meant plus, not times” (p. 70).  

 Teachers may also model participation by participating alongside students in ways that 

they hope students will appropriate. For example, Hufferd-Ackles, Fuson, and Sherin (2004) 

describe how one teacher modeled how to ask questions to presenters during whole group 

discussions, and eventually the students began to use the same questions. It is important to note, 

though, that learning by watching someone model entails more than copying or imitating. Rather, 

because of the interactive nature of discussions, it requires learning when to participate in those 

forms of interaction as well.  

 Positioning practice & participants. A third component of supporting participation in 

classroom practices is the notion of positioning other members as participants in disciplinary 

practice or positioning particular forms of activity as significant to disciplinary practice. 

Positioning is important to supporting disciplinary engagement because it gives students 

authority by highlighting them as authors of disciplinary content. One way in which this is done 

is what O’Connor and Michaels (1996) call revoicing. They examine how revoicing shifts, 

reframes or repositions existing participant roles and structures to place the authority in the hands 
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of the students, while also holding them accountable to the social and disciplinary norms of the 

community. In particular, O’Connor and Michaels, and several scholars since, have noted that 

revoicing serves several functions in classrooms. First, by restating a student’s utterance and 

attributing authorship to the student (e.g., “Jim said…”), revoicing serves to rebroadcast a 

student’s statement, thereby giving them a more prominent voice and positioning their 

contribution as important (Enyedy et al., 2008; Forman & Ansell, 2002; Forman, Larreamendy-

Joerns, Stein, & Brown, 1998; Strom et al., 2001). Similarly, some of the ways expectations are 

implicitly articulated, as described earlier (e.g., “Tim, do that again. Watch. Do that again,” p. 

759, Strom et al., 2001), also serve to position a comment as important and the student as an 

important contributor. Second, by changing components of the student’s talk when restating the 

student, the teacher may repair (clarify) or reformulate the utterance, often in order to advance 

the teacher’s agenda (Enyedy et al., 2008; Forman & Ansell, 2002; Forman et al., 1998; 

Jacobson & Lehrer, 2000; Strom et al., 2001). For instance, a teacher may replace a student’s 

word with a more mathematically precise word. Sometimes, such revoicing may be non-verbal. 

For instance, one person may repeat the gesture of another person, but modify it slightly to 

highlight a new feature (Strom et al., 2001). Third, by using indirect speech, namely verbs that 

animate the student as the author of the content (e.g., “so Jane predicts that…” (O’Connor & 

Michaels, 1996, p. 79)), the speaker positions a student’s utterance in relation to content, such as 

an argumentative stance (Forman et al., 1998; Strom et al., 2001). Note in the example provided, 

the teacher used a marker of warranted inference, “so,” to link to the student’s previous 

justification or claim. And, finally, in a similar way, revoicing can be used to pit two stances as 

competing (Forman et al., 1998; Horn, 2008; Strom et al., 2001). This has been found to be 
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especially important in supporting interactions around mathematical argumentation in 

classrooms. 

 Although in many of these studies, the focus was on how the teacher used revoicing to 

establish or maintain interactional norms, students may also participate in revoicing. In fact, even 

after initial norms and expectations for participation have been established, revoicing and other 

positioning moves may still be used as a way to negotiate interaction (Forman & Ansell, 2002; 

Horn, 2008; Strom et al., 2001). For instance, Horn (2008) describes how members of Ball’s 

class positioned themselves and others into argumentative roles, such as “principal of a 

controversy,” the person who makes the initial claim, and “dissenter,” the person who voices 

initial disagreement. Positioning into roles is accomplished in several ways: (a) by assuming a 

role (e.g. “I disagree with Joe”), (b) by designing others into roles (e.g., “I disagree with Joe” 

designs him as the principal of controversy), (c) by ratifying a role, and (d) by animating others 

into roles, for instance, by juxtaposing positions of two participants.  

 Disciplining perception. A final strand draws upon Goodwin’s (1994) construct of 

“professional vision,” what he defines as the “socially organized ways of seeing and 

understanding events that are answerable to the distinctive interests of a particular social group” 

(p. 606). Building professional vision consists of the use of three practices, namely: (1) coding 

(labeling events or artifacts in discipline-specific terminology), (2) highlighting (marking 

important aspects of events or artifacts), and (3) producing and articulating material 

representations. Goodwin, drawing upon his studies of archeologists and lawyers, argued that 

these three practices are important forms of communication and serve as resources for 

apprenticing and essentially “teaching” non-members important aspects to focus on in discipline-

specific work.  
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 Stevens and Hall (1998) extended Goodwin’s notion of professional vision to illustrate 

how visual practices, and the teaching of those visual practices, are often tied to particular forms 

of representation. In looking at the case of a tutor and student and another of two professional 

engineers, they found that when a disruption occurred, for instance in the form of the 

representation, it triggered what they term a “breakdown” in shared understanding. At this point, 

one person typically stepped in to “discipline the other person’s perception.” Disciplining 

perception usually involved a directive such as, “look at it this way” (p. 141), followed by 

embodied interactions with the representation, or representations, under discussion. Goodwin’s 

notion of professional vision has also been used to look at teachers learning to notice and 

interpret student thinking (e.g., Jacobs, Lamb, & Philipp, 2010; van Es & Sherin, 2008). 

However, other than Stevens and Hall (1998), little has been done to show how the lens might 

inform how teachers discipline the perception of students into ways of “seeing” characteristic to 

the discipline of mathematics. A couple of studies provide some additional insight into what that 

might entail. For instance, part of Lampert’s (2001) work in establishing a classroom culture 

involved helping students understand what a conjecture was by “labeling” their assertions as 

such, a form of what Goodwin might call “coding.” I used Goodwin’s framework to investigate 

how the teacher and students helped discipline others’ perceptions in ways similar to this. 

 

Method 

 

Instructional Context 

Participants & setting.  Participants (n=18, 10 male) were an ethnically diverse class of 

sixth grade students who attended an urban school serving primarily underrepresented youth in 
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the southeastern region of the United States. The percent of children attending the school who 

qualify for free or reduced lunch ranges from 60 to 80 from year-to-year. The participants came 

from a contained classroom, that is, they remained in the classroom with one teacher for all their 

core academic subjects. Half of the students came from traditional classrooms that emphasized 

procedural mathematics. The other students had looped up with the classroom teacher from the 

year before, and had engaged in some conversations about definitions related to mathematical 

symmetries. Despite this, because there were a considerable number of new members to the 

community, norms surrounding participation in practice still needed to be established and old 

members were also varied in their participation in practice, suggesting that they, despite past 

experiences, were still making sense of what it meant to participate in defining. I mention this 

because, as I describe later, part of what I looked for in development was how members’ roles in 

the class shifted over time, and how their histories played a part in that. 

Instructional design. The students’ work with definitions was situated within a larger 

project, aimed at engaging students in authentic mathematical inquiry about geometry and spatial 

mathematics (Lehrer, Kobiela, & Weinberg, in press). That is, we encouraged students to pose 

mathematical questions and conjectures, and, in turn, those questions and conjectures guided 

many of their investigations. At the same time, students also constructed definitions, formulated 

arguments, and wrote about and inscribed aspects of their explorations. Topics included 

definitions of polygons and related objects and properties, interior and turn angle sums for 

polygons, relations between the number of sides of a polygon and the number of diagonals, 

triangle congruency theorems, symmetries, and area measure of polygons. The research goal was 

to find out if it would be possible to engage students in this more open-ended form of inquiry, 

and, if so, what that development would entail.  
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Lehrer began working with the students as a visiting mathematics instructor on the 

second week of school. During the first week of school, students had worked within a Connected 

Mathematics Project unit on polygons. When Lehrer visited the following week, he intended 

only to find out how the students were thinking about what they had learned, and, in a whole 

group setting, asked, “What is a polygon?” When this question spurred much interesting debate 

and discussion, Lehrer and the classroom teacher decided he should continue to work with the 

students exploring topics in geometry. 

Because investigations were generally guided by students’ questions and conjectures, 

there was no written curriculum per se. Nonetheless, there were several key features of the 

instruction. First, the work began with asking students to define “polygon” and related 

properties, such as “side,” “angle,” “straight.” These definitional investigations comprised the 

first few weeks of the school year and took advantage of students’ previous experiences with the 

geometric objects, in that they had enough familiarity with them to propose initial definitions 

that could then be revised and expanded. This aspect of instruction was consistent with their 

work in Connected Mathematics, although Connected Mathematics did not position students as 

generators of definitions. 

Second, mathematical questions were highlighted as important. Starting early on, the 

teacher asked students to pose questions about particular mathematical objects (such as a square 

drawn on the board). These questions, and others that arose in class, were then documented in a 

large visible class list of questions, on which student authorship was denoted. Moreover, 

questions that could be investigated with available resources and knowledge and related to the 

overarching topic of polygons were privileged. For example, those that could not be investigated, 
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such as, “Did Mr. Einstein make one (an octagon)?” were immediately answered and given less 

floor time. The teacher also verbally noted when a question was a “good” question.  

Third, students routinely investigated questions from the questions list. Most of the time, 

the teacher asked students to investigate the same question, but on a couple of occasions, 

students selected a question to investigate with their small group. When investigating, students 

had access to their math notebooks and a variety of tools (e.g., protractors, straight edges, etc.). 

At times, investigations were open-ended and students chose their approach, whereas other 

times, the teacher guided investigations, for example, by suggesting a set of cases to test.  

Fourth, because questions and conjectures often led to investigations that led to new 

questions or conjectures, students were engaged in the creation of a mathematical system of 

definitions, conjectures, questions, investigations, theorems and proofs (Lakatos, 1976).  

And, finally, throughout the instruction, the teacher capitalized on students’ everyday 

experiences of space to help them reason about objects, properties and relations among them. For 

example, students experienced angles as portions of full rotations and “straight” as a constant 

heading while walking. 

 

Data Collection Procedure 

As previously mentioned, Rich served as a visiting mathematics instructor, and was the 

primary classroom instructor for mathematics during the school year. The regular classroom 

teacher remained in the classroom during math class, and occasionally interacted as well. 

Mathematics class was conducted twice each week, for 1.5 hours per class. There were a total of 

46 geometry lessons during the year. Each lesson (except for one) was videotaped and digitally 

rendered for further analysis. One camera captured whole group discussion, generally 
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maintaining a wide shot and zooming in momentarily for inscriptions, materials, gestures or 

other bodily movement. During small group work, this camera roamed between the different 

table groups with the intent of providing snapshots of work from a range of students. Starting in 

October of the school year, a second camera was mounted onto the wall to capture the 

interactions of one small group of three students for the remainder of the school year. At the 

same time, field notes were taken of whole group interactions in order to supplement the video 

and serve as a platform for reflection among the research team members. At the end of each 

lesson, field notes were compiled, and these served to guide the next lesson. In addition, students 

kept math journals that provided an additional insight into their thinking and into their 

developing dispositions towards the mathematics. The intention of the mathematics journals was 

to support writing mathematics as a form of self expression. We gave the students periodic 

written assessments about what they had been investigating in class and, at the end of the year, 

conducted one-on-one semi-structured interviews to get a sense of what they had learned and 

their dispositions towards mathematics class. For purposes of this paper, because my focus is on 

collective classroom activity, I mainly used the field notes and the video records of whole group 

activity. 

 

Analysis 

My analysis consisted of three parts: (a) characterizing the mathematical knowledge 

developed by the class, (b) characterizing changes in interactions around practice, including how 

the students participated in mathematical defining and ways in which discussions were 

orchestrated specific to defining, and (c) using the first two parts of analysis, characterizing how 

practice and knowledge co-developed. I begin by describing my sampling procedure for 
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selecting episodes of classroom activity to analyze. Then, for the remainder of the section, I 

describe each of the three parts of analysis. 

Sampling Procedure.  My sampling procedure consisted of four phases of data 

reduction. I describe each in turn below. 

Phase 1. First, I selected seven days from the original 46 days of geometry instruction to 

focus on. To do so, I watched video from about half of the days, distributed throughout, and read 

field notes for the other half. When doing so, I noted instances when students were engaged in 

the negotiation of a definition (either structural or procedural) for more than a few turns of talk. 

That is, students had to have competing ideas about the definition. This resulted in approximately 

21 potential days (note, there may be other instances not captured in the field notes). On these 

days, students constructed structural and/or procedural definitions for “scalene,” “triangle,” 

“circle,” “pentagon,” “polygon,” “rhombus,” “square,” and “diagonal.” From there, I chose to 

select the first six days of instruction because students were engaged in defining “polygon” and 

its related properties (e.g.. “sides,” “angles,” “straight”) for an extended period of time, and those 

days allowed me to see initial development unfold. I then selected the 26th day of instruction, 

during which students constructed definitions of “triangle.” I chose this point because it occurred 

two and a half months after the sixth day (later than most of the episodes) and thus allowed me to 

see if practice was sustained and/or changed over an extended period of time. Moreover, 

“triangle” was different from “polygon,” but similar in that its definition relies on many of the 

same properties and relations, and this similarity allowed me to see how students came to use 

those properties and relations (unlike a definition of “symmetry”). Some definitions, like 

“pentagon,” were constructed as procedural definitions and others, like “rhombus,” were 

influenced by the use of dynamic tools and could not be as easily compared. The “triangle” 
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episode also showcased multiple students’ definitions, providing a more representative account 

of students’ constructed definitions.  

Phase 2. To select excerpts from the seven days for analysis, I divided the data into 

Definitional Episodes. I defined Definitional Episodes to be segments of whole group discussion 

that involved one or more of the following: (a) the negotiation of a mathematical definition, (b) 

discussion of relations between two or more classes or properties, or (c) discussion of relations 

between a case and a class. I limited Definitional Episodes to moments from whole class 

discussions because, although small group activity may have influenced whole group activity, I 

was mainly interested in how knowledge and practice became taken-as-shared (Yackel & Cobb, 

1996). Negotiation of mathematical definitions are segments of time when competing or alternate 

definitions were proposed and discussed. Proposals involved at least two members of the class, 

and could occur between the teacher and a student or between students. This included 

negotiating a new definition or the revision of an existing definition. These segments usually 

began with the question, “What is a ____?” Discussions of relations between two or more classes 

or properties were segments of time when the class discussed relations between two or more 

classes or properties. For instance, such segments began with questions like, “What is the 

difference between an angle and a vertex?” In addition, on a few occasions, students discussed 

what terms described a situation (for example, “congruent” was used to describe when two 

objects were the same). To count as an episode, discussion had to include students’ justifications 

of the relations. Justifications moved the conversation from simply identifying whether or not a 

relation existed (e.g., “a square is a polygon”) to discussing the properties underlying those 

relations. Discussions of relations between case and class were segments of time when the class 

discussed relations between a specific case and a class. For instance, such segments began with 
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questions like “is this (drawn rectangle) a regular polygon?” To be counted as an episode, 

discussion had to include students’ justifications of the relations.  

Definitional Episodes were framed around one or two main mathematical objects or 

properties that were under discussion. In addition, other objects or properties were often 

mentioned in reference. I chose to parse Definitional Episodes in this way because it helped 

highlight the main object(s) being defined, which will, as discussed later, aided in my analysis of 

the development of mathematical knowledge.  

I used the following procedure for determining and documenting Definitional Episodes. 

First, for each of the seven days, I watched the video of whole class discussions and made 

general descriptive notes of the activity. As I made the notes, I parsed the activity into 

Definitional Episodes. I started a new episode when a new mathematical object or property was 

introduced and, as described above, (a) its definition was negotiated, (b) it was discussed in 

relation to another class or property, or (c) it was discussed in relation to a case. Segments of 

whole group discussion that were not counted as Definitional Episodes included times when a 

definition was put forth, but not negotiated (that is, multiple student contributions were not 

elicited), moments when the class discussed something not related to mathematics for longer 

than 30 seconds, times when a definition of a non-mathematical object was discussed (e.g., 

“convention”), or times when the class learned how to use a tool (for example, a protractor). 

Although Definitional Episodes often began with a question (e.g., “What is a polygon?”), not all 

questions automatically guaranteed the start of a new episode. Sometimes, questions were posed 

but not immediately investigated. Other times, questions were related to the same object under 

discussion and did not provoke the exploration of a new mathematical object. For example, one 

student posed the question, “Can a regular polygon be an irregular polygon too?” after they had 
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been discussing the difference between regular and irregular. In this instance, the question was 

not about a new mathematical object, and, thus, did not warrant a new episode. In some 

instances, questions were immediately resolved and did not result in the presentation of multiple 

ideas. This also happened to be the case for the question “Can a regular polygon be an irregular 

polygon too?” and was a second reason it did not become the start of a new episode. In that 

instance, one student responded “no” and one other provided an explanation. The conversation 

then shifted to discussing the definition of polygon. 

For each Definitional Episode, I documented (a) the start and end times of the episode , 

(b) the object being defined in the episode (e.g. “polygon”), (c) how the episode began, that is, 

what triggered discussion of the particular definition or relation (e.g., a teacher question, etc.), 

(d) a summary of the Definitional Episode, (e) the definitions discussed during the episode, and 

(f) the consensus definition, if one was reached. In cases when two Definitional Episodes about 

the same topic (e.g., “polygon”) were separated only by small group work, I documented them as 

one episode instead of two. This process resulted in a total of 48 Definitional Episodes. These 

Definitional Episodes were used for the analysis of knowledge development. 

Phase 3. Third, in order to conduct a detailed analysis of interactions around practice, I 

further narrowed the sample of Definitional Episodes to four 10-minute excerpts, three from the 

first six days and one from the 26th day, with a total of 16 Definitional Episodes (one of these 

episodes was only partly included). The excerpts from the first, fourth, and sixth days all 

involved discussions of the structural definition of “polygon” and all began with the question of 

“what is a polygon?” Similarly, in the excerpt from the 26th day, the discussion was motivated by 

the question of “what is a triangle?” and also involved structural definitions.  
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I selected the excerpts based upon several criteria. First, in order to characterize 

development, the selected excerpts represent interaction at progressive points in time. Second, to 

allow for parallel comparisons, I selected excerpts that were (a) centered around the definition of 

the same or similar object, (b) involved investigations of the same form of definition (either 

structural definitions or procedural), and (c) were similar in activity structure. Third, I selected 

the excerpts to each span multiple Definitional Episodes to allow for analyses of how practice 

led to investigations of new relations. “Polygon” had the advantage over other objects that were 

frequently defined (e.g., “straight,” “side,” “angle”), because its definition had many similar 

features to “triangle” and allowed for easier comparisons of practice. Within the first six days of 

instruction, there were four days in which students pursued the question “what is a polygon?” 

Because these occurred on the first, fourth, fifth and sixth days, I chose to focus on the first, 

fourth and sixth to represent that span. I used other Definitional Episodes, including the one from 

the fifth day, to look for confirming or disconfirming evidence about my findings from the 

selected episodes. Table 1 shows the selected Definitional Episodes (highlighted in gray) in 

relation to the entire sample of Definitional Episodes.	  

	  

Table 1. Definitional Episodes from Days 1, 4, 6, and 26	  

DE Day Main Object(s) 
Defined Starter of Episode Form of 

Definition 

1 Day 1 Polygon T asks, “Who can help me understand what a polygon is?” Structural 

2 Day 1 Quadrilateral T says, "Now someone will tell me what the heck a quadrilateral 
is, cause I haven't heard that word yet." Structural 

3 Day 1 Circle, Polygon T asks: "Okay so question. Circle is a polygon?" Structural 

4 Day 1 Regular 
Polygon 

T says, “So so far, I can't, the only thing I know is that there are 
some polygons that are regular. And they have equal sides and 
equal angles. So now I know what a regular polygon is and I'm 
very happy. Cause if I see a square, what will I say?" 

Structural 

5 Day 1 Same, 
Congruent 

Right as T is about to write the word "same," he says (pointing to 
the board), "We used a word last year, now it-." Structural 
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Table 1, continued	  

DE Day Main Object(s) 
Defined Starter of Episode Form of 

Definition 

6 Day 1 Regular 
Polygon 

T: "...So a lot of people said this show that this figure is not 
regular. But Shaunee objects. So we need to listen to Shaunee’s 
objection." 

Structural 

7 Day 1 Angle T asks, "What makes an angle again?" Structural 

8 Day 1 Regular 
Polygon 

T: " IF you don't like Shaunee’s definition, what would you do 
to it to make sure that this does not get in?" Structural 

9 Day 1 Vertex, Angle 
Adeena: “You was asking what was that called. That was the 
angle, that you were trying to get us to say. Not a vertex, but the 
point was the angle." 

Structural 

10 Day 1 Regular 
Polygon 

T: "IF I say that the sides have to be congruent and the angles 
have to be congruent, Shaunee, is this a regular polygon?" Structural 

11 Day 1 Angle T asks Ned to present first: "You tell me you've got 4 different 
angles up there. Tell me what you're thinking. Tell us.” Structural 

12 Day 1 Degree T: " What's a degree?" Structural 

13 Day 1 Vertex T: "Where's the vertex, Ned?" Structural 

14 Day 1 
Angles (what 
makes angles 
equivalent) 

T draws the same angle, except one side is longer than on the 
original angle, and then asks, "Do you agree or disagree that I 
have now drawn two different angles?" 

Structural 

15 Day 1 Straight 
T: "I never did ask you this question. Everyone keeps talking to 
me about straight sides. I never did hear what made something 
straight." 

Structural 

16 Day 1 Angle Kira asks if her group could present their angles.  Structural 

17 Day 2 Degree T: “Now when you say degree, what’s one degree?” Structural 

18 Day 2 Angle T asks Ned to interpret Kira’s drawing: “what is she trying to 
show us about what I did?" Structural 

19 Day 3 Fifty Degrees T: "What is fifty? What part of a circle?" Structural 

20 Day 3 Angle T: "Will the angle measure when I extend the lines be less, the 
same or greater and why?" Structural 

21 Day 3 Angle T: "Someone said 180 is the largest angle. And I asked you what 
were they thinking." Structural 

22 Day 4 Octagon T: "What makes it an octagon?" Structural 

23 Day 4 Obtuse T: "How do you know these angles are obtuse?" Structural 

24 Day 4 Polygon 
T: "You know, I have to say, I've been here for two weeks now 
and I've never heard you once tell me what you meant by 
polygon." 

Structural 

25 Day 4 Circle T: "Is a circle a polygon?" Structural 

26 Day 4 Polygon T: "well how bout tell me what a polygon is before you tell me 
what it not is."  Structural 

27 Day 4 Side  Mona, Kate, Adeena: "what's a side?" Structural 

28 Day 4 Straight Vern: "What does straight mean?" Structural/ 
Procedural 
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Table 1, continued	  

DE Day Main Object(s) 
Defined Starter of Episode Form of 

Definition 

29 Day 5 Straight T: "what did we conclude about straight? What was one 
meaning of straight?" 

Structural/ 
Procedural 

30 Day 5 Angle T: "What do we call it when we introduce the zig-zag?....When 
we have a line meeting another line?" Structural 

31 Day 5 
Irregular; 
Regular 
Polygon 

T: "so what's the difference between a regular polygon and one 
that is not regular?" Structural 

32 Day 5 Polygon T asks them what a polygon is. Structural 

33 Day 5 Closed T: "What does closed mean again?" Structural 

34 Day 5 Angle He asks Nicholas to come up and show the angles: “Where are 
the angles?” Structural 

35 Day 5 Polygon vs. 
Circle  

T: "Do we have to say anything about angles? Is there any way 
we could generate something that was closed with sides without 
making the same number of angles as there are sides?" 

Structural 

36 Day 5 Polygon 

Kira suggests an answer to T’s question. T repeats his question: 
"Can I just say that to make a polygon, I need to have it 3 or 
more sides and the figure has to be closed? Do I have to say 
anything about angles or not?" 

Structural 

37 Day 5 Regular 4-Sided 
Polygon 

T: "On Tuesday, I asked you to try to figure out how you would 
walk to make a polygon…I will give you 5 more minutes to 
write directions." 

Procedural 

38 Day 6 Polygon T:  "Okay, what is a polygon?" Structural 

39 Day 6 Straight T:  “How did we define straight?” Structural/ 
Procedural 

40 Day 6 Polygon T returns the conversation to the original question: “How were 
you thinking about this Kira?” Structural 

41 Day 6 Closed T asks Shaunee: “So closed means what?” Structural 

42 Day 6 Polygon T asks Shaunee: "If something is closed and has sides, must it 
have angles or not?" Structural 

43 Day 6 Regular vs. 
Polygon 

T asks: "Are there more polygons or are there more regular 
polygons?" Structural 

44 Day 6 Rectangle T asks them to write directions either for a rectangle or for a 
regular triangle. Procedural 

45 Day 6 Regular 
Triangle T asks: "But what about (directions for walking) the triangle?" Procedural 

46 Day 
26 Triangle T: "What's a triangle?" Structural 

47 Day 
26 Regular T: "What's the definition of a regular polygon again?" Structural 

48 Day 
26 Triangle 

T turns to another definition: "A triangle has 3 straight sides, 3 
angles, interior angles of 180. You mean each interior angle is a 
hundred and eighty degrees? What do you mean?" 

Structural 
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Phase 4. Finally, I selected a few additional excerpts of definitional activity from the 

days between Day 6 and Day 26 to provide additional and/or confirming evidence about co-

development of practice and knowledge. From the 21 days described in Phase 1, I chose three 

additional days – the eighth day, the 17th day and the 19th day. I selected the eighth day because 

students spent a little time constructing definitions of “triangle,” and this would provide a 

contrast to their work on day 26. On the 17th day, students revisited the definition of “polygon” 

and related properties, providing a comparison point to their earlier work. On the 19th day, 

students began constructing definitions of rhombi. Because “rhombus,” like triangle, is a sub-

class of polygon, it provided a way to compare practice and knowledge development. 

Transcription of sampled data. I conducted two levels of transcriptions. I first did a 

rough transcription of all the Definitional Episodes, capturing talk and descriptions of 

inscriptions, bodily motion, and gesture. To capture gesture or bodily motion, I used parentheses 

to denote descriptions of each as they occurred during talk. By doing so, I was able to see how 

gesture or bodily motion highlighted meaning in talk, such as messages about practice, and vice 

versa. Moreover, at times, embodied communication existed without talk, and reflected how a 

participant thought about a mathematical idea (e.g., turning one’s body to communicate an 

amount of turn, see Figure 1). For inscriptions, I noted in parentheses anything written on the 

board and described any diagrams. I then added additional detail to the transcripts for the four 

10-minute excerpts, borrowing conventions from Dressler & Kreuz (2000), to highlight stressed 

and overlapping talk. I focused mainly on stressed and overlapping talk in order to see what 

participants positioned as important about practice, and also to gauge the level of engagement 

from students. For forms of stress, I noted elongated syllables (::), emphasized words (CAPS), 
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and rising (/) and falling (\) intonations. I used brackets ([ ]) to indicate talk spoken by at the 

same time.  

 

 

Figure 1.  Example of transcribing talk and bodily rotation. 

	  

I parsed all transcripts into turns of talk, which served as my unit of analysis for both sets 

of analyses. The turn of talk allowed me to look at how definitional practice developed in 

interaction, including changes in the roles of the teacher and students. Moreover, it allowed me 

to see how in-the-moment choices and forms of interaction helped to influence the development 

of communal knowledge. All transcriptions are located in the Appendix. 

Characterizing mathematical knowledge. To characterize mathematical knowledge, I 

documented several features of the mathematical ideas explored by the class. My intention was 

not to make claims about what individuals were thinking, but rather to capture the nature of the 

mathematical system explored by the class. Using members’ talk, gesture and/or inscription, I 

documented three features of communal knowledge development: (a) the objects investigated by 

“How would you know the 
difference between this?” 

	  

(rotates body 
quarter turn to the 
left) “And this?”	  

(rotates body quarter 
turn to the right, ending 
where he started.)	  
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the class, (b) the types of relations discussed, and (c) the frequency with which an object or 

property was discussed. In what follows, I describe each of the three representational 

components, what they illustrate about communal knowledge development, and the evidence I 

drew upon to document their existence at the level of the turn of talk. 

Mathematical objects. In representing knowledge development, I denoted the 

mathematical objects (or properties) defined or discussed in order to capture what the class 

investigated. To document classes of objects, for each turn of talk, I noted all mathematical 

objects mentioned (e.g., “polygon,” “side,” “angle”) and any proposed cases of the objects (e.g., 

a drawn square). For instance, in the turn of talk, “A polygon has the same angles and the same 

length of uh, same length of sides,” the mathematical objects, bolded, are “polygon,” “angles,” 

and “sides.” Alternatively, cases were drawn on the board or illustrated with bodily motion or 

gesture. For example, a student provided an example of a polygon with two sides by gesturing an 

oval in the air. For procedural definitions, objects or properties often took the form of an action 

(e.g., “a step”). 

Nature of relations.  I also noted how members related mathematical objects. This 

included relations between: (a) a class and a sub-class (e.g., “polygon” and “regular polygon”) or 

a case of the class (e.g., “polygon” and a drawn rectangle), (b) a class and the properties that 

describe that class, what I refer to as inclusive relations (e.g., “polygon” in relation to “sides” and 

“angles”), and (c) a class and another class (e.g., “side” and “angle”). Additionally, I noted how 

classes, sub-classes, or properties are related. That is, in the definition, “a regular polygon has the 

same sides,” “same” relates “regular polygon” to “sides.”  

To document the nature of relations, I drew upon several cues. First, relations between a 

class and sub-class or a class and a potential case were often indicated with a “be” verb (e.g., “a 
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square is a polygon” or “a square is not a polygon”), an adjective (e.g., “regular polygon” 

implies that it is a type of polygon), or an inscription (e.g., an arrow) or a gesture. Second, I 

noted inclusive relations when a “has” verb linked a class and its properties, as in “a polygon has 

angles” or “a polygon does not have angles.” I also documented any adjectives describing the 

nature of the inclusive relationship. For example, in the statement “a regular polygon has the 

same angles,” the adjective “same” indicates the kind of angles that constitute a regular polygon. 

Inclusive relations were also communicated via inscription or with the body, for instance, by 

turning a quarter turn to describe a ninety-degree angle. Finally, I noted relations between classes 

when descriptions linked two mathematical terms (e.g., when the teacher asked for “another 

word” for “same,” the students responded with “congruent”) or when a member reasoned about 

relations between properties that constituted a definition, such as when reasoning about 

economic definitions. These cues were meant as general guidelines, and did not guarantee the 

existence of the relations. 

Frequency an object, property, or relations are discussed.  I also documented the 

relative frequency with which objects, properties or relations were discussed in order to see 

which mathematical ideas reoccurred and how. For example, some ideas were dismissed and 

never brought up again while others returned. To document frequency, within each Definitional 

Episode, I noted whether an object (or case of an object), property, or relation was mentioned. 

Frequency was then defined as the number of Definitional Episodes within which an object, 

property or relation arose. Because Definitional Episodes are organized around the discussion of 

a mathematical object, this gave me an estimate of how frequently a topic was re-introduced. 

Characterizing interactions around practice. To characterize interactions around the 

practice of defining, I analyzed two forms of participation. One form of participation, Engaging 
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in Aspects of Definitional Practice, was intended to characterize how participants engaged in the 

practice of defining, and, as the name would suggest, drew upon my framework of Aspects of 

Definitional Practice. The other form of participation, Orchestrating Definitional Discussions, 

was intended to capture interactional moves that may potentially support orchestration of 

discussions around the practice of defining. My analysis of orchestration drew upon the literature 

I outlined earlier, describing how individuals come to understand what it means to participate in 

mathematics practices. My goal for this paper is to distinguish how these forms of interaction are 

constituted in the context of defining. 

To analyze these two forms of participation, I developed coding schemes that were used 

to code the teacher’s and students’ turns of talk during whole group discussion. Coding at the 

level of turn of talk allowed me to trace the roles the teacher and the students take on as they 

participated in definitional practice and how those roles changed over time. Moreover, I was able 

to look carefully at how moment-to-moment choices in participation contributed to supporting 

knowledge development.  

In what follows, I first describe my method for developing coding schemes. Second, I 

describe my procedure for conducting the coding and synthesizing the codes. In the last two 

sections, I describe the coding schemes, first for Engaging in Aspects of Definitional Practice, 

and then for Orchestrating Definitional Discussions.  

Coding scheme development. For both forms of participation, I developed coding 

schemes that allowed me to characterize participation at the level of turn of talk. The coding 

schemes were initially developed using the sample of three 10-minute excerpts of whole group 

activity, taken from days one, four and six of mathematics instruction. Using this sample, I 

developed and revised my coding schemes via an iterative process. That is, for each form of 
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participation, I parsed the turns of talk into initial categories, and then used the categories to code 

the turns of talk. My initial categories for Engaging in Aspects of Definitional Practice were the 

Aspects of Definitional Practice that I attempted to operationalize. My initial categories for 

Orchestrating Definitional Discussions were created by categorizing forms of talk that did not 

fall under Engaging in Aspects of Definitional Practice, with an eye toward the theoretical work 

described earlier. When coding, I noted turns of talk that did not fit my initial coding scheme, 

and this led to the addition of new categories or subcategories, the splitting of existing 

categories, and clarification or elaboration of existing categories. Likewise, as I refined the 

coding schemes, initial categories that were not used were eliminated. Finally, I checked the 

codes using the fourth 10-minute excerpt from the 26th day of instruction and made slight 

revisions to the coding scheme.  

Coding and synthesis procedures. Once the coding scheme was solidified, I coded the 

entire sample once more, first coding for Engaging in Aspects of Definitional Practice and then 

going back through and coding for Orchestrating Definitional Discussions. This process allowed 

me to maintain consistency within each coding scheme. When coding, a turn of talk could 

receive multiple codes within each coding scheme. In instances when an utterance spanned 

multiple turns of talk (for instance, if the speaker was interrupted), then both turns of talk 

received the code. 

Once the sample was coded, I synthesized the data in two ways. First, I noted the 

frequency of codes within each coding in order to find general trends of participants’ use of 

particular Aspects of Definitional Practice or ways in which discussions are orchestrated. 

Second, I looked at codes assigned to the teacher versus those assigned to the students in order to 

see if there were shifts in the roles that the participants take on. For instance, did the teacher 
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model particular Aspects of Practice early on? Likewise, did students begin to appropriate 

participation in these Aspects of Practice? Who was doing most of the work orchestrating 

discussion and did that change over time? Further analyses of the coded data were done to look 

at co-development of knowledge and practice. Those are described later. 

Preliminary coding scheme: Engaging in Aspects of Definitional Practice.  I created 

the coding scheme for Engaging in Aspects of Definitional Practice by expanding, cutting, and 

operationalizing my theoretical framework of Aspects of Definitional Practice. In the process, I 

found seven of the initial 11 Aspects of Definitional Practice to be prevalent and describable at 

the level of turn-of-talk. These aspects included asking definitional questions, describing 

properties and/or relations, constructing and/or evaluating examples, constructing definitional 

explanations and arguments, revising definitions, establishing and reasoning about systematic 

relations, and negotiating criteria for judging adequacy or acceptability of definitions. 

Additionally, I created an eighth category, proposing definitions, that was related to part of one 

of the original Aspects of Definitional Practice, engaging in cycles of definitional conjecture, 

experiments, and tests.. The other aspects were not included because they either were not 

relevant to the sample of data (e.g., considering definitions in new forms or contexts) or were too 

inclusive and difficult to operationalize (e.g., investigating fundamental qualities of 

mathematical objects).  

In the following sections, I describe each of the eight categories that comprise my coding 

scheme for Engaging in Aspects of Definitional Practice. An abbreviated version of the coding 

scheme is presented in Table 2. 
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Table 2. Coding scheme for Engaging in Aspects of Definitional Practice 

Aspect of 
Practice Description Examples 

Asking 
Definitional 
Questions 

Speaker asks a question about a definition or 
about qualities, properties, relations, or 
examples of the object being defined.  

 “[When we define polygon] do we need to 
say sides and angles or is it enough to say 
sides?” 

Proposing 
Definitions 

Speaker proposes properties or relations to 
include in a definition.  

“A polygon has the same angles and the same 
length of uh, same lengths of sides.” 

Describing 
Properties 
and/or 
Relations 

Speaker articulates, through talk and/or writing, 
properties & relations of a class of 
mathematical objects or a particular case of a 
class. Properties and relations may be described 
in service of other goals, such as constructing 
an explanation or proposing a definition. 

A student was asked what the definition of 
polygon is. In responding, he also described 
properties and relations of the object: 
 
“A polygon has the same angles and the 
same length of uh, same lengths of sides.” 

Constructing 
&/or 
Evaluating 
Examples 

Speaker constructs an example of the object 
being defined and/or determines whether a 
particular example belongs to a set. May be in 
service of constructing definitional arguments 
or explanations or in service of evaluating a 
definition. 

A student suggests that a polygon is defined 
as “sides and angles.” The teacher draws an 
example using their definition of three 
connected but not closed lines (a “Z” like 
figure). A student then evaluates the example: 
“that’s not a polygon.”  

Establishing 
& Reasoning 
about 
Systematic 
Relations 

Speaker establishes, considers, or reasons about 
relations between two or more general classes 
of objects or properties OR unpacks a definition 
of an object that is part of the definition of 
another object being defined (e.g., unpacking 
sides because it is part of the definition of 
polygon). 

 [Example of reasoning about relations 
between two pairs of classes of objects: (a) 
circles and polygons and (b) circles and 
objects with sides. The relation being 
examined here is one of class inclusion.]  
“A circle wouldn't be a polygon cause a circle 
doesn't have sides.” 

Constructing 
Definitional 
Explanations 
& 
Arguments 

Speaker justifies a claim about a definition, 
example of a definition, qualities of an object 
being defined, or relations between two classes 
of objects.  

“A circle wouldn't be a polygon cause a 
circle doesn't have sides.” 

Revising 
Definitions 

Speaker adds properties to, eliminates 
properties from, or modifies elements of a 
definition. May also include re-assigning a 
definition to a new set (see example).  

One student claims that a polygon “has the 
same angles and the same length of uh, same 
lengths of sides.” Another student notes 
instead, “all regular polygons,” suggesting 
that the definition is not relevant for polygons 
but instead for regular polygons. 

Negotiating 
Criteria for 
Judging 
Adequacy or 
Acceptability 
of 
Definitions 

Speaker negotiates with another speaker which 
features or roles of definitions should be used to 
determine whether a definition is adequate or 
acceptable.  

One group defined a triangle as 3 sides, 3 
angles and closed. A student said their 
definition needed to include, “straight sides.” 
Two of the group members protested, and in 
doing so negotiated about the features of a 
definition. One argued, “But we already said 
sides” and the other followed, “That's the 
definition of sides.” 
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Asking definitional questions. Defining involved asking questions about definitions or 

about the qualities, properties or relations of the objects being defined. The types of questions 

that the students and teacher asked varied. For instance, some questions simply requested the 

definition for an object (e.g., “What is a polygon?”). Other questions asked about the inclusion or 

exclusion of a particular case in relation to a class, such as asking whether a rectangle drawn on 

the board is a regular polygon: “Is it a regular polygon or isn’t it?” In contrast, some questions 

asked about the existence or nature of general relations between classes of objects: “Circle IS a 

polygon?...Why can’t a circle be a polygon?” Questions also probed into relations among the 

properties that constituted a single definition. Sometimes this was done by asking about the 

economy of the definition. That is, such questions asked about which properties of an object are 

sufficient (versus necessary) for inclusion in the definition: “[When we define polygon] do we 

need to say sides and angles or is it enough to say sides?” Other times, relations among the 

properties of a definition were questioned about extreme cases. For example, one student asked, 

“Can there be a polygon under two lines? Under three lines?” 

Some questions promoted a focus on the clarity or preciseness of the language used in a 

definition. This is important because definitions historically serve a communicative purpose in 

mathematics communities (Lakatos, 1976) in that they contribute to a common, agreed upon 

language. For instance, at one point the teacher asked a question to encourage students to use the 

word “congruent” in place of “same:” “What’s that word we use when we mean lay down on top 

of one another?” Note that in asking the question, he used the language of “we” to indicate that 

the word was an agreed upon, established term. Finally, although less frequent, questions also 

probed into epistemic issues, such as about what it means to participate in defining. For example, 

when one student noted that she did not need to include the property of “straight” in her 
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definition of “triangle” because it was implicit in their definition of “sides,” the teacher asked, 

“And, can we assume that? Because we have done this?” 

I coded a turn of talk as asking a definitional question when the speaker (a) used upward 

inflection to indicate a questioning tone (this would be denoted in the transcript by a “?”) and (b) 

asked one of the types of questions denoted above. I did not code questions that probed about a 

speaker’s thinking (e.g., “How were you thinking about that?”), asked for clarification (e.g., 

“What did you mean when you said….?”,) or asked for confirmation (e.g., the student says, “all 

the same sides” and the teacher asks, “All the same sides?”). Although these types of questions 

are important for collaborative work (Staples, 2007), they are not particular to the practice of 

defining. 

Proposing definitions. Defining also involved proposing definitions, that is, proposing 

what to include in the definition of a mathematical object. Proposed definitions may be refuted 

and then possibly revised. The category of proposing definitions was not one of the original 

Aspects of Definitional Practice, but resembled the “conjecture” part of the aspect of engaging in 

cycles of definitional conjecture, experiment and tests. Such cycles are not represented by a 

single turn of talk, but, because students were often asked about definitions of objects, there were 

many utterances that resembled a “conjecture” or “claim.” I initially started to code for 

“definitional conjectures” but soon found that it was difficult to determine what constituted a 

conjecture (e.g., does any statement or opinion constitute a conjecture?). Thus, I created the code 

of proposing definitions.  

I coded a turn of talk as proposing definitions when the utterance included a stated 

definition or part of a definition. In some cases, this was indicated because the turn of talk was in 

response to a question asking for a definition. For example, when the teacher initially asked what 
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a polygon is, one student replied, “A polygon has the same angles and the same length of uh, 

same lengths of sides.” A turn of talk was also coded as proposing definitions even when a 

question is not posed. In these cases, the utterance usually included a declaration that a 

mathematical object “is” or “has” certain properties or relations. The properties or relations did 

not have to be conventionally correct in order to be coded as proposing definitions. For instance, 

one student proposed that “additionally, all polygons have five sides,” a statement that was 

quickly refuted by other students. Similarly, the properties or relations proposed sometimes 

attended to features that were not mathematically significant but instead described an object’s 

appearance or were cyclical in nature. For example, students first proposed definitions for 

straight that included “no zig-zags” and “straight is straight.” I wanted to include less 

mathematical proposals of definitions in order to capture changes in their proposed definitions. 

What students choose to include in a definition may reflect what they consider important or 

acceptable features to include. 

Describing properties and/or relations. Often, members of the classroom community also 

described properties and/or relations of the examples. Description is central to definition 

construction in many ways, including when constructing a definitional argument, explaining a 

particular classification, evaluating an example of a definition, or writing a definition for an 

object. Although proposing definitions and describing properties and/or relations might seem 

similar, and often occur simultaneously, they occur separately as well. For instance, students 

sometimes proposed a definition that did not actually describe properties, like the definition 

“straight is straight” described earlier. This distinction allowed me to distinguish between 

proposed definitions that included properties and relations and those that did not. Moreover, 
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sometimes properties were described in moments that were not immediately tied to proposing a 

definition, such as when describing properties of a particular example, such as a drawn rectangle.  

I coded a turn of talk as describing properties and/or relations when the speaker stated a 

property or a relation with reference to a mathematical object. This included describing which 

properties or relations an object does not have. I considered a property to be linguistically a noun 

that describes a component of the object (e.g., “a polygon has sides”). In contrast, in the 

statement “[a quadrilateral] is a square,” I did not consider “square” to be a property because it is 

not a noun describing a part of a quadrilateral. I considered a relation to be a verb linking the 

object with its properties or properties with other properties (e.g., “a regular polygon has the 

same sides.”) or an adjective (e.g., “the sides are straight”). When referencing the mathematical 

object, the speaker did not have to explicitly mention the object as long as there existed evidence 

for the referent. For instance, a speaker might point to an object while describing its properties or 

may respond to a teacher’s question about a particular object (e.g., if the teacher asks, “how 

many sides does this have?” and the student responds, “four.”). The mathematical object can be 

concrete, such as a drawing of a rectangle, or an abstract class, such as the class of rectangles. 

As with the proposing definitions category, descriptions of properties and/or relations did 

not need to be mathematically correct to be coded as describing properties and/or relations. For 

instance, the turn of talk, “A polygon has the same angles and the same length of uh, same 

lengths of sides,” was coded as describing properties and/or relations because although not all 

polygons have the same angles and same lengths of sides, he specified the properties “angles” 

and “sides” and the relation of “same.” Moreover, descriptions of properties or relations did not 

have to be mathematically precise, relevant or conventional to be coded. For example, utterances 
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that used the word “same” instead of “congruent” to describe the sides and angles or those that 

used the word “point” instead of “vertex” were still coded. 

Constructing and/or evaluating examples. Members of the class also constructed and/or 

evaluated examples and/or non-examples of the objects they were defining, where evaluation 

involved determining whether or not a case should be included as part of the set in question. 

Constructing and evaluating examples is significant to the practice of defining because it helps 

students consider what the class of objects being defined should include and provides a set of 

objects to describe.  

 I coded a turn of talk as constructing and/or evaluating examples when the speaker (a) 

constructed a case of a mathematical object, either by drawing it, gesturing it, or using physical 

materials to build it or (b) voiced a claim regarding the exclusion or inclusion of a particular case 

into a general class. For instance, when the students considered the definition of regular polygon, 

the teacher drew a rectangle on the board and asked them if that figure was regular. Students’ 

responses were evaluations of the case, ranging from “yes,” “no,” to “it is not a regular polygon.” 

In this situation, the teacher’s turn of talk in which he drew the rectangle as well as each of the 

students’ separate turns of talk were coded as constructing and/or evaluating examples. This 

code was only assigned when the utterance was about a particular case. Instances when a 

speaker relates two general classes, such as “a square is a regular polygon,” were instead 

assigned the code establishing and reasoning about systematic relations, described next. As with 

earlier categories, evaluations or constructions of examples did not have to be accurate or 

conventional to be coded as such. 

Establishing and reasoning about systematic relations. The students and the teacher also 

established and reasoned about systematic relations. This occurred in two ways. First, members 
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noted or described a relation between two or more general classes of mathematical objects or 

properties. For example, one student noted that “a circle wouldn’t be a polygon cause a circle 

doesn’t have sides.” In this statement, the student related the general class of “polygons” to the 

general class of “circles,” and in her explanation related the class of “circles” to the class of 

objects without sides. Second, members sometimes unpacked a definition that was part of the 

definition of another object being defined. For instance, when the students were defining 

“polygon,” a question arose of what a “side” is. This, in turn, led to the defining of “side.” 

Because “side” was part of the definition being discussed, defining it led to unpacking implicit 

relations between the definition of side and the definition of polygon. 

To be coded as establishing and reasoning about systematic relations, the turn of talk 

either (a) needed to include a statement relating two general classes of object, linguistically 

connected with a “be” verb (e.g., “a square’s a polygon”), (b) needed to be in response to an 

inquiry about a class relation (e.g., the teacher asks if a circle is a polygon and the students 

respond “no”), or (c) contain a proposal of a definition of an object or property that is part of a 

definition currently being discussed. Statements about relations between particular cases and 

classes or between versions of descriptive language (e.g., “points” versus “corners” versus 

“vertices”) were not coded in this category. Again, as with earlier codes, relations did not have to 

be correct or conventional to be coded in this category (e.g., “all shapes are polygons except for 

the squares and quadrilateral”). 

Constructing definitional explanations and arguments. This category refers to turns of 

talk in which members constructed definitional explanations and arguments related to a 

definition or an example of the object being defined. For instance, one student explained why 

circles should not be included within the class of polygons: “A circle wouldn’t be a polygon 
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cause a circle doesn’t have sides.” Definitional arguments and explanations varied in the extent 

to which they attended to the definition. That is, some used the definition as part of their 

argument, whereas others less so. For instance, in the previous example, the student justified her 

claim that circles are not polygons by appealing to a property within the definition of polygons, 

“sides.” In contrast, she could have justified her claim by describing the appearance of circles 

(e.g., they are too curvy) or by appealing to properties or relations not yet agreed upon as part of 

the definition. This distinction will be highlighted further in the results. 

A turn of talk was coded as constructing definitional explanations and arguments when a 

member of the class justified a claim about a) inclusion or exclusion of a definition or part of a 

definition in relation to a class (e.g., when one student claims that “all polygons have five sides,” 

another student disagrees and argues that “because um if all polygons have five sides, but we 

also had the square was a polygon and the triangle was a polygon…and they’ve only got three 

and four [sides].”), b) inclusion or exclusion of an example or class in relation to a class (e.g., “a 

circle wouldn’t be a polygon cause a circle doesn’t have sides”), or c) whether or not conditions 

in a definition are economical (e.g., the definition of triangle, “three sides and closed” does not 

need to include “angles” because “won’t it come with angles?”). Justifications were often 

indicated by the use of causal language, such as “so,” “then,” or “because.” A claim or stance 

without any justification (e.g., “I agree”) was not coded as constructing definitional arguments 

and explanations. Often such claims were coded as constructing and/or evaluating examples or 

establishing or reasoning about systematic relations. 

Revising definitions. Members of the class also revised definitions. Revising definitions 

involved changing proposed definitions, for instance, by adding properties or relations to, 

eliminating properties or relations from, or modifying elements of a definition. Additionally, at 
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times a definition was not changed but was reassigned to a new object. For example, when one 

student proposed that a polygon “has the same angles and the same length of uh, same lengths of 

sides,” another student suggested that instead the definition is true for “regular polygons.” 

Definitions were revised for many reasons, including (a) to improve the definition’s clarity, (b) 

to eliminate a case from the class (usually presented as a potential example), (c) to include a case 

in the class, (d) to make the definition more economical, (e) to make the definition more accurate 

or (f) to include mathematically agreed upon terminology. 

I coded a turn of talk as revising definitions when it included a proposal for changing a 

definition in one of the ways described above. In order to determine whether an utterance was a 

change from a previous definition, there had to be a previous, different version of the definition 

stated by a member of the class in the same Definitional Episode. For example, at one point, the 

teacher revoiced the class’s definition for polygon, “I want to know what makes something a 

polygon. I know it has sides and it has angles. SO, this then is a polygon, right?” He then 

proceeded to draw three connected sides, roughly forming a “Z.” One student, in protest, offered 

a revision that involved adding new properties to their definition: “It has to be CONNECTED.” 

Because all revisions were essentially proposals of definitions, if an utterance was already coded 

as revising definitions, then I did not code it as proposing definitions. An exception to this would 

be if the turn of talk were especially long and contained a separate proposed definition. 

Negotiating criteria for judging adequacy or acceptability of definitions. On a few 

occasions, members of the class negotiated criteria for judging adequacy or acceptability of 

definitions. That is, they negotiated which features or roles of definitions should be used to 

determine whether a definition is adequate or acceptable. In order to be coded as negotiating 

criteria for judging adequacy or acceptability of definitions, two or more members of the class 



	  147 

had to engage in explicit dialogue about the criteria. In other words, I did not code turns of talk 

in which one member made a statement about what he or she thought about criteria unless 

another member responded. In these cases, each turn of talk was given a code. For example, 

when a group of students presented their definition for triangle as “three sides, three angles and 

closed,” another student responded that they needed to include “straight sides.” In response, the 

students countered that they did not need to do so because “straight” is implicit in their definition 

of “sides.” One argued, “but we already said sides,” and another followed with “that’s the 

definition of sides.” The teacher then picked this up and revoiced the students’ argument. 

Although implicit, in this excerpt, the students negotiated the rule that once a definition is agreed 

upon, it does not have to be articulated in another definition, a rule that had been discussed 

earlier in the class. 

Orchestrating definitional discussions.  In addition to coding forms of definitional 

practice, I characterized other ways that members of the class participated in talk around 

mathematical defining. My goal in denoting these forms of participation was to see if and how 

particular moves potentially supported interactions around defining. Although most of these 

moves were conducted by the teacher, I did on occasion notice students participating in them as 

well. I noted six forms of orchestration particular to defining: (a) using meta-talk to 

communicate about practice, (b) requesting participation in Aspects of Practice, (c) positioning a 

student utterance as participating in an Aspect of Practice, (d) encouraging precise language or 

agreed upon terms, (e) positioning definition or Aspects of Defining at the forefront, and (f) 

modeling participation in Aspects of Practice. Members also participated in more general 

discourse moves, for instance, negotiating the social norms for	  participating in the class (Yackel 

& Cobb, 1996). However, because these forms of interaction were less frequent and because my 
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focus was on understanding interactions particular to the practice of defining, I did not include 

them in my analysis. The codes are summarized in Table 3, and I elaborate on each of them in 

the following sections.  

 

Table 3. Coding scheme for Orchestrating Definitional Discussions 
	  

Orchestration 
Move Description Examples 

Using Meta-
Talk about 
Practice 

States explicitly or implicitly expectations 
for one of the following:  (a) the purpose of 
defining, that is, why one would engage in 
defining, (b) what features a definition 
should have or the functions it should serve, 
or (c) the rules for participation in defining. 

 “Remember the goal is that I need to be able 
to tell the difference between a polygon and a 
carrot… Carrots. Circles. Anything else. 
Anything that you don't want to call a 
polygon, I have to be able to look at your 
definition and say oh thank you. Now I 
know.” 

Requesting 
Participation in 
Aspect of 
Practice 

Requests participation in an aspect of 
practice, either through a direct statement or 
via a question. 

[In this example, the teacher requests that the 
student participate in proposing definitions.] 
 
“What's the definition of a regular polygon 
again? Rhonda?” 

Positioning a 
Student as 
Participating in 
an Aspect of 
Practice 

Revoices an utterance while at the same time 
describing the utterance in terms of an aspect 
of practice. 

When asked for a definition of polygon, one 
student said, “A polygon has the same angles 
and the same length of uh, same lengths of 
sides.” Teacher then positioned the student 
utterance participating in proposing 
definitions: “Vern’s claim is that all polygons 
have the same length of sides and the same 
angles.” 

Encouraging 
Precise 
Language or 
Agreed Upon 
Terms 

Encourages use of precise language or 
agreed upon terms in one of the following 
ways: (a) Revoices an utterance, inserting 
more mathematically precise language, (b) 
Adds verbal, gestural or written stress to 
highlight a particular mathematical term, (c) 
Suggests an alternate word to use that is 
more mathematically precise and/or aligned 
with agreed upon terms, OR (d) Solicits 
mathematical language that has been 
previously discussed.  

When asked about regular, students said they 
had to have same sides, same angles. Another 
student then added “all the sides are 
congruent.” The teacher highlighted this 
agreed upon term: 
 
“All the sides are congruent. THANK YOU 
Ted… Okay, that math word says it all. All 
the sides are congruent. All the angles are 
congruent. Yeah, good.” 

Positioning 
Definition or 
Aspects of 
Defining at the 
Forefront 

Highlights the definition or an aspect of 
definitional practice via talk, gesture or 
inscription. 

[In this example, the teacher requests that 
students participate in keeping track of the 
definition.] 
 
“Does everyone have this definition (taps on 
the board) in their math notebook?.. Well I 
think you better put it in there…” 
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Table 3, continued 
	  

Orchestration 
Move Description Examples 

Modeling 
Participation in 
Aspects of 
Practice 

Participates in an aspect of practice, and in 
doing so, models participation. 

[See table of Engaging in Aspects of Practice 
for example] 

 
Using meta-talk to communicate about practice. The teacher in particular often used 

meta-talk to communicate about practice. That is, he explicitly or implicitly stated messages 

about or expectations for engaging in the practice of defining. Sometimes, these messages were 

about the purpose or the goal of defining, that is, why one would engage in defining. For 

instance, when he first asked students to define “polygon,” he communicated to students that the 

purpose of constructing the definition was to help him distinguish between two objects, “Okay 

give me the most general definition you can. So that I can recognize a polygon and I could tell 

the difference between a polygon and a turnip.” The teacher’s messages sometimes also 

communicated what features should be included in a mathematical definition. For instance, in the 

example just provided, the teacher had noted that the definition should be “general,” suggesting 

that definitions should communicate properties for all cases of the class. At other times, the 

teacher communicated rules for participating in defining. However, rather than making a list of 

declarative statements, he situated these rules within the class’s defining activity. Rules included: 

(a) if you want to rule an object out from a set, you must provide justification for doing so, (b) 

when constructing a definitional justification, you should appeal to the definition, (c) if a 

decision to include or exclude an object from a class is contrary to the definition, then the 

definition should be revised, (d) when defining, it is important to write in order to keep track of 

agreed upon definitions, (e) when we define, we first need to know the definition of an object in 

order to discuss which objects are not members of the class, (f) when we define, we use our 
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minds, not dictionaries, (g) when we define, we do not guess, and (h)  once we agree on a 

definition, then we need to stick with it. To illustrate the last rule, the students had just re-visited 

the definition of side. Once they determined that sides must be straight, the teacher noted, 

“alright so a side, if we're going to agree. Now Ned, once we say this, then this is what we 

mean.” 

I coded a turn of talk as using meta-talk to communicate about practice when it 

communicated a message about the practice of defining or about definitions in one of the ways 

articulated above. Sometimes, the teacher did so by communicating his thoughts out loud in the 

manner of a soliloquy, indicated linguistically with the pronoun “I.” For instance, when 

articulating to the students that their definition of polygon needed more in order to distinguish 

objects, he said, “I have to be able to look at your definition and say oh thank you. Now I 

know…so far I can’t. The only thing I know is that there are some polygons that are regular 

and they have equal sides and equal angles. So now I know what a regular polygon is and I’m 

very happy.” Other times expectations were phrased as directives that the teacher either 

requested that the students do (marked by pronoun “you”), requested that they as a group do 

(marked by the pronoun “we”), or requested that that the students direct to him (marked with a 

combination of “I” and “you”).  For example, when one student countered another student’s 

proposed definition with a counter-example, the teacher followed with, “Okay, so as soon as we 

find something that we’d like to call a polygon that has other than 5 sides, we KILL that 

conjecture.” Note in this example, the teacher also positioned the directive as a hypothetical 

using the phrase “as soon as we,” suggesting it as a rule for the future. Other times he linked a 

message to a piece of talk about communicating in practice with a linking word, such as “so” or 

“because.” For instance, when one student introduced a new object, “quadrilateral” to the 
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discussion, the teacher requested, “Now someone will tell me what the heck a quadrilateral is 

cause I hadn’t heard that word yet.” Here, the teacher requested that students propose a 

definition and used the word “cause” to suggest that a new word implies the need to for doing so. 

Other times, the teacher implicitly articulated important features of a definition by highlighting 

or coding them (Goodwin, 1994). For example, when looking at different groups’ definitions for 

“triangle,” he “coded” them describing their varying degrees of “sparseness,” a way of indicating 

their minimality: “So, this is like, this (points to a definition). Very slim. I would call this one 

(points to another definition) somewhat slim…This (points to another) is an expanded one.”   

Requesting participation in Aspects of Practice. At times, members requested that 

students participate in Aspects of Practice. For instance, the teacher requested that students 

propose definitions by asking them about the definition of an object: “What is a polygon?” Other 

times, the teacher requested that they construct or evaluate an example. For instance, when the 

class was trying to construct a definition of “regular polygon,” the teacher drew a rectangle on 

the board and asked, “Is that a regular polygon?” The teacher also requested students to 

participate in constructing definitional explanations or arguments, sometimes in response to 

other students’ utterances. For instance, when one student had presented an example to illustrate 

his stance that a polygon could have sides but no angles, the teacher asked, “Does anyone have a 

counter-argument for Ned?...Can you argue with Ned? Do you, do you agree with Ned or 

not?” I coded turns of talk as requesting participation in Aspects of Practice if it (a) was phrased 

as a command or a question and (b) the response assumed by the request was something that I 

could identify as an Aspect of Definitional Practice, even if the actual response was not one. 

Positioning a student as participating in an aspect of practice. The teacher also often 

positioned a student as participating in an aspect of practice. For instance, when the teacher 
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asked for the definition of polygon, Vern offered the definition, “same sides and same angles.” 

The teacher then revoiced Vern’s utterance, calling it a “claim” and thereby positioned him as 

participating in the aspect of proposing definitions: “Vern’s claim is that all polygons have the 

same length of sides and the same angles.” In response, another student, Rachel, then offered the 

following suggestion: “All regular polygons.” The teacher revoiced Rachel’s utterance, and by 

calling the utterance “her amendment,” positioned her as participating in the aspect of practice of 

revising definitions: “All regular polygons (points at Rachel and looks at Vern). Do you accept 

her amendment?”  

I coded a turn of talk as positioning a student as participating in an aspect of practice 

when it took one of two forms. First, the teacher revoiced student utterances (O’Connor & 

Michaels, 1996) in ways that re-described student participation in terms of Aspects of 

Definitional Practice, as illustrated in the examples above. Linguistically, this was often 

indicated with a restatement of the student’s utterance, an attribution of authorship to the student, 

and a statement or descriptor related to an Aspect of Practice (e.g., “claim” or “amendment” as 

bolded in the examples). In the examples above, the teacher did not change the students’ 

utterance, but rather labeled them, or as Goodwin (1994) might say, coded them in terms of 

Aspects of Definitional Practice. Second, in a few instances, when students mentioned a new 

object, the teacher sometimes changed the syntax of the utterance from a statement into a 

definitional question. For instance, at one point, a student called out “irregular polygon.” The 

teacher then changed the student’s utterance into the question, “Can polygons be irregular?” In 

doing so, the teacher re-positioned the student’s seemingly unrelated contribution as participating 

in an aspect of practice. Note that at the same time, he also sent a subtle message that we must 



	  153 

define relations before using them. This illustrates how utterances were often related to multiple 

codes. 

Encouraging precise language or agreed upon terms. The teacher, and sometimes 

students, also encouraged precise language or agreed upon terms. This move is important 

because it shows what language the member highlights and values and thus contributes to a 

shared mathematical language. Members encouraged precise language and agreed upon terms in 

a number of ways. Sometimes, they revoiced student utterances, inserting more mathematically 

precise language. For instance, when one student defined a “regular polygon” as having “all 

angles are the same,” the teacher followed with, “and all angles are the same, are congruent.” 

Although others have described such moves to be important generally in math class, I include 

them here because it appears especially relevant to the construction of mathematical definitions, 

both in relation to what terms are used within the definition, but also what terms are privileged 

for those objects being defined. Other times, members emphasized mathematical language by 

adding verbal, gestural or written stress to highlight a particular mathematical term. For instance, 

they emphasized terms (e.g., “REGULAR”), repeated words multiple times (e.g., “oh. This is for 

a kind of polygon called regular. Regular. It’s a regular polygon.”), wrote them on the board, 

or underlined terms already written. The teacher in particular also suggested alternative language 

that was either more mathematically precise or aligned with agreed upon terms. For instance, 

when the students had used the word “size” to define “regular polygon,” the teacher asked, 

“Okay, can we use the word length?” Other times, he solicited previously agreed upon language 

from the students. For instance, when the students used the word “same” to define regular, the 

teacher asked, “what's that word we use when we mean lay down on top of one another? (shows 
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with markers. One student says “congruent.”) All sides are congruent. Cause that's what we 

mean by equal here. They're the same length.”  

Positioning definition or aspects of defining at the forefront. The teacher, and sometimes 

students, also highlighted definitions or Aspects of Definitional Practice via talk, gesture or 

inscription. Whereas in the previous orchestration move, encouraging precise language or 

agreed upon terms, members highlighted particular words, here they highlighted the entire 

definition or parts of the definition. Sometimes the teacher positioned definitions by writing them 

on the board. Often, in doing so, he simultaneously positioned students’ participation in Aspects 

of Practice as important. For instance, when a student, Lavona, proposed the definition for 

polygon, “I think all shapes are polygons except for squares and quadrilaterals,” the teacher 

wrote her definition on the board and annotated it with an “L” to attribute authorship to Lavona. 

By writing this definition, he not only made it accessible to all the students, but he also 

highlighted it as something worth talking about. Similarly, when students revised definitions, the 

teacher often marked those changes on the board. Other times, the teacher would ask the students 

to write definitions in their notebooks, usually suggesting that it was important for keeping track. 

For example, when the students had constructed a definition for “regular polygon” in attempts to 

define “polygon,” the teacher stopped and asked, “Does everyone have this definition (taps the 

definition written for “regular” on the board) in their math notebook?... Well I think you better 

put it in there, cause we have to get a definition for polygon, and so far, WE don’t have one.” 

Other times, members positioned a definition at the forefront by verbally using it when 

engaging in Aspects of Definitional Practice. In these cases, the teacher in particular sometimes 

revoiced a definition and then related it to engagement in an Aspect of Practice, often using a 

subordinate conjunction such as “so” or “if.” For instance, when the students had “sides” and 
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“angles” as their definition of polygon, the teacher said, “I want to know what makes something 

a polygon. I know it has sides and it has angles SO, this then is a polygon right?” He then 

constructed an example using the students’ definition – three connected but not closed lines. 

Here, the teacher positioned the students’ definition at the forefront by stating it and then relating 

it with the conjunction “SO” to his construction of the example. In a later example, the teacher 

asked a definitional question in relation to the class’s definition: “okay so now I’m beginning to 

get an ideas that a polygon that is something that has sides, angles and is connected. That is 

it’s closed. Okay, if we take this definition, can there be a polygon with two sides?” Here, the 

teacher again revoiced the class’s definition and then related it to his question with the 

conjunction “if” and the statement “take this definition.” 

Modeling participation in Aspects of Practice. The teacher  and students also frequently 

participated in Aspects of Definitional Practice and, in doing so, modeled participation in 

Aspects of Practice. Anytime an utterance was coded as participating in an Aspect of Practice, I 

also coded it as modeling participation in Aspects of Practice. Although this might seem 

redundant, by assigning it a code, I marked its importance analytically. 

Characterizing the co-development of knowledge and practice. Once complete, I 

compared the analyses of mathematical knowledge and the interactions around practice side-by-

side in order to develop conjectures of how interactions around definitional practice contributed 

to the development of communal knowledge and how the knowledge developed, in turn, 

informed participation in practice. To do so, I first looked at points in my analysis of knowledge 

development when (a) an object, relation or property was added to knowledge system 

representation or (b) an object, relation or property was revisited. I compared these instances to 

what was happening at the same moment with respect to members’ participation in practice. 
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Likewise, I identified points of shift in practice and compare these instances to my analyses of 

knowledge development. I termed these moments in which knowledge and practice informed one 

another points of contact between knowledge and practice. Finally, I looked to see who was 

contributing to the creation of points of contact in order to identify the roles of the students and 

teacher and whether those roles shifted over time. My main goal was mostly to identify 

differences in the teacher versus the students, but I noted some differences that existed between 

students, especially between those who had been in the class the previous year versus those who 

had not. I checked my conjectures generated from my four excerpts with other Definitional 

Episodes in order to generate confirming or disconfirming evidence. 

 

Results 

	  

Overview of Results 

Multiple interactions contributed to the co-development of communal knowledge and 

defining, illustrated in Figure 2. In what follows, I provide a broad overview of these interactions 

and the ways in which knowledge and practice changed over time and how different members 

contributed to those changes. I then illustrate nuances of the interactions and changes by 

describing the sampled excerpts from the first, fourth, sixth and 26th days of math instruction. I 

conclude by illustrating additional interactions that occurred between Day 6 and Day 26 in order 

to provide further confirming evidence for the changes and suggest possible continued forms of 

support for students’ development. 
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Figure 2. Interactions contributing to the co-development of the practice of defining and communal 
knowledge.	  
 

 

Throughout the course of instruction, the teacher participated in Aspects of Definitional 

Practice and in forms of Orchestrating Definitional Discussions that made contact with 

mathematical practices and in ways that supported the development of communal knowledge. 

Initially, he achieved these forms of contact by asking definitional questions about properties of 

the object being defined (“What is a polygon?”) or about class relations (“Is a circle a polygon”). 

At the same time, by participating in this and related Aspects of Practice, the teacher supported 

students’ participation in aspects of the practice of defining. Asking general questions positioned 

students to propose definitions and reason about systematic relations. He further positioned 

students as definers by labeling their contributions, thus attributing agency, engaging in meta-

talk about practice, and encouraging precise language and agreed upon terms. These forms of 

support allowed the students immediate access to the practice, a form of scaffolded participation. 

Teacher Participated 
in Practice 

Communal Knowledge 
about Mathematical 

Properties & Relations 

Students Participated 
in Practice 
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At the same time, through these interactions, he continuously modeled participation in defining, 

and, in particular, ways of participating that made contact with knowledge development.  

The initial forms of interaction provided a space for students to present their ideas about 

polygons and related properties. These ideas helped inform the teacher’s next moves in practice, 

illustrating how the development of knowledge, in turn, informed practice. For example, in order 

to problematize a feature of a student’s definition, he often proposed an example that provoked 

contest. By doing so, he participated in the Aspects of Practice of constructing and evaluating 

examples and constructing definitional arguments in ways that again made contact with the 

mathematics and prompted students to further expand the system of mathematics objects and 

relations they were exploring.  

In later classes, students began to appropriate participation in the Aspects of Practice the 

teacher had been modeling, and, in particular, the ways in which he made contact with 

knowledge. Through their initial explorations of the mathematical properties and relations, 

definitions and examples of objects stabilized and served as resources for students’ participation 

in practice. For instance, they now were able to use definitions as sources of justification when 

constructing definitional arguments. As students participated in these ways, they in turn modeled 

participation for their peers. Moreover, although discussions were mainly orchestrated by the 

teacher, there were a few instances in later classes, especially the 26th class, in which students 

appropriated these forms of orchestration.   

In the excerpts that follow, I bold pieces of transcript to highlight how members 

participated in Aspects of Definitional Practice, the ways in which they Orchestrated Definitional 

Discussion, and the ways in which practice and knowledge made contact. Italics are used to 

indicate the forms of interaction described. 
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Excerpt 1: Initial Forms of Practice and Knowledge 

The first excerpt, from the beginning of the first day of instruction, illustrates how the 

teacher initially scaffolded students’ participation in practice while also supporting the 

development of communal knowledge. This excerpt began with the teacher, Dr. Rich, asking 

students for their definition of polygon. As he asked this definitional question, he also engaged in 

meta-talk about features of definitions, that they should be “general,” and the functions they 

should play, that is, they should allow one to distinguish between objects: “What is a 

polygon?...Okay give me the most general definition you can. So that I can recognize a polygon 

and I could tell the difference between a polygon and a turnip.” At the same time, by posing a 

question and then following with a command (“give me”) he also requested that students 

participate in the Aspect of Practice of proposing definitions. This orchestration move opened up 

the floor to student participation. Vern responded by proposing that “a polygon has the same 

angles and the same length of uh, same lengths of sides.” The teacher then revoiced Vern’s 

proposal, labeling it as a “claim” and allowed another student to respond. 

T: Vern’s claim is that all polygons have the same length of sides and the same 
angles. Rachel. 

R: All regular polygons. 
T: All regular polygons (pointing at Rachel and looking at Vern) Do you accept her 

amendment? 
V: yeah. 
T:  All REGULAR polygons 
 
In the above exchange, by revoicing Vern’s statement and labeling it as a “claim,” the 

teacher positioned him as participating in the Aspect of Practice of proposing definitions. 

Similarly, the teacher also revoiced Rachel’s contribution and labeled it as an “amendment.” 

This move again served to position her as participating in practice, albeit this time in the aspect 
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of revising definitions. Moreover, the label of “claim” also suggested a non-permanent status, 

and perhaps aided in inviting others to refute it. He then used verbal stress to emphasize the 

newly agreed upon term (“REGULAR”).  

In this example, the teacher posed a definitional question about the properties that 

constituted the object and thus prompted elaboration of system components. By doing so, 

potential properties of “polygon” were introduced, including “same sides” and “same angles.” 

The rebuttal by another student introduced yet another object to the class, “regular polygon,” and 

the qualifier of “regular” implicitly implied that this new class was related to polygons in some 

way. Although in this case, the student volunteered the rebuttal, at times, the teacher encouraged 

students to do so (e.g. “does anybody have a counter-argument?”).  

Students continued to present their ideas about polygons, both by proposing potential 

definitions as well as suggesting systematic relations between polygons and other classes of 

objects. One student, Kira suggested that “all polygons have 5 sides.” This idea was immediately 

revoked by several students and another student, Kate, offered the definitional counter-argument 

that “if all polygons have five sides but we also had the square was a polygon and the triangle 

was a polygon and they’ve only got 3 or 4.” The teacher then used Kate’s argument as an 

opportunity to articulate rules for participating in defining: “okay so as soon as we find 

something that we’d like to call a polygon that has other than five sides, we KILL that 

conjecture.” In this statement, he also positioned Kira’s contribution as participating in the 

Aspect of Practice of proposing definitions by labeling it as a “conjecture.” Other students 

suggested types of polygons: decagon, septagon, octagon, hectagon, hexagon and pentagon.  

After hearing her classmates suggest relations, one student, Lavona, proposed a new 

definition: “I think all shapes are polygons except for…uh a quadrilateral.” The teacher once 
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again positioned the contribution as participating in proposing definitions by revoicing it and 

labeling it as a “conjecture.” He further highlighted its significance by writing it on the board, 

thus positioning the definition at the fore. As he did so, he remarked that he was writing “so I can 

keep track.” The teacher then once again took the opportunity to request that students propose 

definitions in a way that, similar to his earlier question, served to elaborate on system 

components: “Now someone will tell me what the heck a quadrilateral is, cause I hadn’t heard 

that word yet.” As before, the teacher’s request turned the floor to the students and provided 

them an opportunity to voice their ideas. Students suggested various relations. More than one 

student proposed that a quadrilateral was the same thing as a square. At the same time, other 

students appeared to reject Lavona’s proposed definition. Some argued that “a square is a 

polygon” whereas one group of girls, Mona, Kate, and Adeena, called out that “a circle wouldn’t 

be a polygon cause a circle doesn’t have sides.” In constructing this definitional argument, the 

girls introduced a new object, “circle,” to the discussion and reasoned about systematic relations 

between it and polygon, suggesting that it did not have sides, and as Adeena added “or angles.”  

Rather than accepting the girls’ proposition, the teacher revoiced their comment as a 

question, thus positioning their contribution as participating in the Aspect of Practice of asking 

definitional questions: “Okay so QUESTION. Circle is? A polygon?” In doing so, he 

emphasized the word “question” and wrote it on the board, further highlighting its importance. 

This verbal and written positioning opened the conversation up to other students, who also 

unanimously rejected the relation (“NO::”). The teacher then asked another definitional question 

in order to request that students participate in the Aspect of Practice of constructing a 

definitional argument. At the same time, he also articulated the need to provide justification 

when ruling out one class from another: “No::? No. Alright. Well I like circles. So if I’m going 
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to rule circles OUT from polygons, why can’t a circle be a polygon?” Students all at once 

yelled out similar arguments, claiming that circles did not have sides or angles, and, in doing so, 

described properties of the class. 

The teacher calmed the students down and returned the discussion to their original goal of 

understanding what made something a polygon. He reminded them that until now, they had only 

established what made something regular. In the remainder of the excerpt, the students further 

discussed the notion of regularity and the related idea of congruency. To consider regularity, the 

students considered whether a square and rectangle drawn by the teacher were regular and why. 

Once they had established that regular was defined as “same sides” and “same angles,” the 

teacher prompted the students to remember another word for “same” that they had learned last 

year. Through this discussion, “congruent” was introduced as a way of describing the nature of 

“sameness,” that they could lay one on top of the other and completely overlap. The teacher 

continued to encourage this agreed upon term throughout the class period whenever they 

returned to the definition of regular. He did this by revoicing students’ descriptions of “same” 

sides or angles as “congruent” (e.g., “can I use these words?...all the sides are congruent? All the 

angles are congruent?”) and writing the definition on the board to refer to throughout the class. 

In fact, in a couple of instances, students began using the word themselves. 

Recap of excerpt 1. Although this was students’ first entrée into defining as a group, 

they participated in almost all Aspects of Definitional Practice. They proposed potential 

definitions, reasoned about systematic relations between classes, revised definitions, evaluated 

potential examples, asked definitional questions, constructed definitional arguments or 

explanations, described properties of examples or classes of objects, and negotiated criteria for 

judging adequacy and acceptability of definitions 
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The teacher played an important role in scaffolding this participation. Perhaps most 

prominent, he frequently requested that students participate in various Aspects of Practice, by 

posing a question, by revoicing a student statement as a question, or by directly requesting. Some 

students, especially those who had been in the class the year before, more readily participated on 

their own. Kate, Mona, Adeena, Lavona, Rachel and Kira had all been members of the class 

previously, and played an important role in volunteering proposed definitions and providing 

counter-arguments to others’ proposed definitions. Nonetheless, it was the teacher’s questions 

that invited students’ initial proposals for definitions. Moreover, by revoicing student comments 

as questions or conjectures, and highlighting these contributions by writing them on the board, he 

positioned the definitions to the forefront and made them visible and accessible to other students. 

Questions also served to invite other students to contribute, and often these invitations were met 

with great energy and enthusiasm, indicated by the large amount of overlapping talk. 

Additionally, by positioning and labeling students’ contributions, he further emphasized their 

importance and their role in their collective endeavor of constructing definitions. This served as 

an important form of supporting students in becoming “definers.” 

Many of the definitional questions posed or revoiced by the teacher probed about the 

properties constituting an object or particular class relations. Thus, he participated in this Aspect 

of Practice in a way that encouraged elaborating system components. Within the first class 

period, the teacher asked or revoiced such questions about “polygon,” “quadrilateral,” “circle,” 

“angle,” “degree,” and “straight.” In doing so, he modeled participation not only in this Aspect 

of Practice, but, more importantly in doing so in a way that made contact with the mathematics 

students were exploring. The teacher often further highlighted the importance of new objects by 

writing the names of the objects on the board, emphasizing agreed upon terms. As a result of the 
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teacher’s questions, new objects, properties and relations were introduced and discussed. And, 

although the teacher initiated these conversations, he gave the students opportunities to 

contribute, allowing them agency in the process. Students proposed potential properties of 

polygon, including “same sides,” “same angles,” “angles,” as well as related classes of objects, 

“regular,” “octagon,” “circle,” “square,” etc. “Regular” was also defined as “same angles” and 

“same sides” and later as “congruent sides” and “congruent angles.” Students also discussed 

whether a rectangle the teacher had drawn on the board should count as regular, and in doing so, 

again revisited its properties. The objects, properties and relations described within 

approximately the first 10 minutes of class are shown in Figure 3. In the figure, ovals represent 

objects or properties, sold lines represent sub-class relations, dashed lines represent class 

relations, and arrows represent inclusive relations between an object and the properties that 

possibly constitute it. Words or numbers on the edges describe the nature of the relation. The 

shading illustrates the frequency with which objects were discussed, with darker shading 

indicating they were mentioned in more Definitional Episodes. 



	  165 

	  
Figure 3. Knowledge development during the beginning of Day 1. Ovals represent objects or properties 
mentioned by members of the class during the first 10 minutes of class discussion. Solid lines represent 
sub-class relations, dashed lines represent class relations, and arrows represent inclusive relations between 
an object and the properties that possibly constitute it. Words or numbers on the edges describe the nature 
of the relation. The shading illustrates the frequency with which objects were discussed, with darker 
shading indicting they were mentioned in more Definitional Episodes.	  
 
 

Excerpt 2: Students Take on Authority for Expanding the Mathematical System   

Students spent much of the remainder of Day 1 and Days 2 and 3 investigating angles and 

degrees in greater depth and learning how to use protractors as a tool for reasoning about angles. 

Their inquiries about polygons resurfaced on the fourth day of instruction. Although many of the 

ideas were the same as on the first day, as new needs of the community arose, students and the 

Side Angle 

Same Same 

Regular 
Polygon 

Same Same 

Polygon Triangle 

Quadrilateral 

Square 

Pentagon 
Hexagon 

Septagon 

Hectagon 

Octagon 

Decagon 

3 

4 

Circle 

4 4 

4 

Irregular 
Polygon 

Same 

Same 

Congruent 

Lay one 
on top of 

Lay one on top 
of other 



	  166 

teacher began to take on new roles. Students began to appropriate some of the forms of 

interaction the teacher had modeled earlier and he began to model additional forms of interaction 

that encouraged introduction of new mathematical properties and relations. 

Towards the beginning of the fourth day, the teacher elicited students’ questions. When a 

student, Kira, asked, “Can there be a polygon under three lines?” the teacher returned to their 

previous conversation about defining polygon: “…I still don’t know what you mean by polygon, 

I STILL if I went to Mars and read your ideas about polygon, I might think it’s a bottle.” As on 

Day 1, this question again served to elaborate on system components by opening up the floor to 

students to discuss their ideas about “polygon.” Moreover, the teacher made the choice to 

redirect discussion to defining “polygon” instead of having students respond to Kira’s question, 

sending the implicit message that they needed to first establish what a polygon was before asking 

questions about it. He asked Rachel to respond and as she stated her definition, he wrote it on the 

board: “A polygon is a…something that has all the same sides. Has the same sides and the same 

angles.” Although the definition was not correct, he still used this as an opportunity to emphasize 

agreed upon terms by eliciting the previously discussed property of “congruent.” 

T: (writing Rachel’s definition) All sides 
R: Are the same. 
T: Are the-what’s the word we use when we mean lay down on top of one another? 

(lays one marker on top of the other to demonstrate). 
J: Congruent. Congruent. 
T: All sides are congruent. Cause that’s what we mean by equal here. They’re the 

same length. 
R: And all angles are the same. 
T: And all angles are the same. (continues writing) Are congruent. Okay, we could 

pick one up and stick it on the other.  
 

In this exchange, the teacher supported the students’ participation in defining in several ways. By 

writing Rachel’s definition on the board, he acknowledged her contribution as important and 

positioned the definition at the forefront, making it accessible to students. Moreover, by asking 
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students about “the word we use when we mean lay down,” he allowed students to reason about 

the relation and further contribute to the construction of the definition. When Rachel again used 

the word “same” to describe the angles, the teacher revoiced her definition, inserting the word 

“congruent,” further emphasizing the use of agreed upon and precise language.  

The teacher then opened up the floor for other contributions: “Okay so:: Is that it. Is that 

all we need?” Here, he requested further contributions towards a proposed definition while also 

asking a question that encouraged the elaboration of systematic relations. Kate raised her hand 

and stated that she disagreed and “that’s for a regular polygon.” In doing so, Kate participated in 

the Aspect of Practice of revising definitions while also reminding her classmates of an object 

and relationship they had discussed earlier. The teacher then revoiced Kate’s suggestion, 

repeating “regular” multiple times, as if to emphasize its importance. He also modified the 

definition on the board, positioning the revised definition to the forefront. Another student, 

Jomerd, then called out two different contributions that the teacher once again revoiced as 

questions. Note “Ss” refers to multiple students below. 

T:  Oh. This is for a kind of polygon called REGULAR. (edits the definition on the 
board) Regular. It’s a regular polygon. Alright well.  

J: Irregular polygon. 
T: If you – Can polygons be irregular? 
Ss: Yes. 
J: A circle. A circle. 
T: Is a circle a polygon? 
Ss: No:: 
T: Well. Question. (writes on the board, “Is a circle a polygon?”) 
 

In the above interaction, the teacher again revoiced contributions into definitional questions, 

opening them up for conversation by others in the class and directing discussion to consider a 

new object, “irregular polygon,” and re-consider the relation between the classes, “circle” and 
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“polygon.” Students again disagreed with the notion that a circle could be a polygon. Jomerd 

argued that it had zero sides whereas Vern suggested that it might have one.  

The teacher then redirected the discussion back to their original goal of defining polygon, 

noting that “we have to get a definition for a polygon, and so far, WE don’t have one…What are 

we gonna do?” Lavona suggested that they “list why we think a circle’s not a polygon,” 

essentially attempting to negotiate their rules for defining as well as their criteria for determining 

acceptability of a definition. The teacher replied by reiterating a message similar to one he had 

said earlier, “How can you do that when you don’t know what a polygon is yet? How do you 

know what it’s not?” He again requested that they propose a definition for “polygon,” and when 

Jomerd replied that “there are only two kinds, a regular and an irregular,” the teacher requested 

that they propose a definition for “irregular.” Mona offered the definition “it has different s-sizes 

of sides. The sides aren’t congruent…and it has to have angles.” What is noteworthy about her 

proposed definition is that she used the class’s agreed upon language of “congruent” to describe 

the relations among the sides. Jomerd suggested an alternate definition that “nothing is the same, 

like the angles aren’t the same, the sides aren’t the same.” Before the class could expand upon 

the notion of irregular more, Lavona posed a definitional question that resembled the teacher’s 

questions. She asked, “what makes it regular?” Her question suggests that she had begun to pick 

up on the type of questions that the teacher had been asking. However, in this case, the class had 

just defined regular and their definition was on the board. The teacher acknowledged Lavona’s 

question, and asked another student to respond. Vern noted, “it’s on the board. All sides are 

congruent and all angles are congruent,” and the teacher followed with “so we have an answer to 

that question.” Thus, although her contribution was recognized, the teacher also sent the implicit 

message that definitional questions should address definitions not already agreed upon. 
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Up until this point, many of the ideas and interactions and responses were similar to those 

on Day 1. The teacher then shifted to a different approach to problematize their definition of 

“polygon” and expand the mathematical landscape they were exploring. He drew three 

connected, but not closed lines, and said, “I want to know what makes something a polygon. I 

know it has sides and it has angles SO…this then is a polygon right?” (see Figure 4). In making 

his argument, he positioned their definition at the fore by relating it to his example (“side one, 

side two, side three, angle one, angle two”). At the same time, his argument also modeled how 

one might use the Aspects of Definitional Practice, constructing and evaluating examples and 

describing properties, in service of a definitional argument. Moreover, by asking his question of 

“this then is a polygon right?” he requested that students participate in evaluating his example. 

Students, with much emotion, protested his example all at once, arguing that it was not a 

polygon. Finally, one student, Owen, stated that “it has to be CO::nnected.” The teacher added 

this revision to their definition on the board and then suggested alternate language they could use 

to express the same idea: “sometimes we say that it’s closed. Meaning that is have an inside, and 

an outside.” 

 

 
Figure 4. Teacher constructed example using students’ definition of “3 sides, 3 angles.” 
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Now that they had revised their definition of “polygon,” the teacher then returned to 

Kira’s initial question, asking, “if we take this definition, can there be a polygon with two 

sides?” Kate, suggested that as long as the two sides were connected, it was possible, and then 

suggested an example of an oval. Note that in reasoning about her example, Kate appealed to the 

class’s newly revised definition. In doing so, Kate’s definitional argument resembled that of the 

teacher’s when he justified the validity of his zig-zag example. Another student gestured an oval 

to illustrate what she thought Kate meant and the teacher drew her interpretation on the board, 

making it accessible to others in the class (see Figure 5). Much like the zig-zag, the drawn oval 

caused many in the class to protest. Amidst the disagreement, Mona, whispered to her table 

mates, “What’s a side?” and the other girls chimed in, with Adeena asking loudly to their peers, 

“What’s a side, people?” This definitional question resembled that the teacher had been 

modeling in that it asked about the properties of an object and served to elaborate on the 

mathematical system the class was exploring. In this case, the students now were responsible for 

navigating the conversation to investigating new relations.  

 

 
Figure 5.  Student example of a polygon with two sides, drawn by the teacher. 

 
 

Students then proposed definitions of “side.” One student, Diego, said, “I think a side is a 

line that’s connected to another line.” The teacher, like before, drew an example in order to 

provoke contest. This time, he drew a closed figure with one curved line (see Figure 6) and 
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noted, “I had a line, and there’s I connected it and then I connected it again. Do we want to call 

this thing (points to the curved side) a line?” Again, his question invited students to evaluate his 

example, and Lavona noted, “it has to be STRAIGHT.” Note in her response, she added 

emphasis to the term. Students continued to discuss sides and whether they needed to be straight. 

When they reached an impasse, the teacher noted, “But I don’t know what I mean by side yet. I 

heard the word STRAIGHT.” Vern then followed with the definitional question: “What does 

straight mean?”  

 

 
Figure 6.  Teacher constructed example using student definition of side. 

 
 

Recap of excerpt 2. In this second excerpt, many of the initial interactions resembled 

those from the first day. The teacher continued to aid the class in making contact between 

practice and knowledge by asking definitional questions that elaborated on system components 

and modeling participation in that form of practice. Students, in turn, began to appropriate the 

teacher’s moves by asking similar questions and, in doing so, were also making contact with 

knowledge development. Like the teacher, those students who asked questions were now 

modeling an Aspect of Definitional Practice for their peers. However, at the same time, students 

were possibly still constructing normative understandings for when such questions are 

appropriate and the purpose they serve. This was evident when Lavona asked, “What makes [a 

polygon] regular?” even though the class had a few minutes before defined “regular” and written 
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it on the board. In addition to asking questions, more students contributed to the discussion, 

including students, such as Vern, Diego and Owen, who had not been in the class during the 

previous year. In this brief excerpt, students participated in all of the Aspects of Definitional 

Practice: asking definitional questions, proposing definitions, describing properties and /or 

relations, constructing definitional arguments or explanations, constructing and/or evaluating 

examples, establishing and reasoning about systematic relations, negotiating criteria for judging 

adequacy and acceptability of definitions, and revising definitions. 

During the first day and the beginning of the fourth day, the teacher’s questions had 

motivated the introduction of new ideas and properties. However, when they reached a stalemate, 

the teacher implemented a new tactic for promoting the expansion of their mathematical system, 

illustrating how the mathematical ideas posed by the class coupled with their engagement in 

practice, informed his next moves. In this case, the teacher introduced or highlighted examples 

that problematized students’ definitions. In three instances such examples provoked contest from 

the students and prompted them to introduce new properties and relations. These examples all 

shared two features that appeared to support this interaction: (a) they all were counter to what 

students viewed as polygons and (b) the feature that caused them to be undesirable was exactly 

what the students needed to add or describe in their definitions. In other words, the examples 

contrasted to polygons in one or two ways. For example, the zig-zag consisted of straight sides 

but was not closed and the 3-sided figure was closed but had one side curved. These examples 

resembled what Lakatos (1976) referred to as “monsters” – extreme examples mathematicians 

historically presented in order to counter particular proofs or theorems. These monsters had in 

turn caused mathematicians to reconsider their definitions. In the case of the sixth graders, the 

“monsters” prompted students to expand their ideas about polygons. They introduced the idea of 
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“closed,” defined “side” as needing to be “straight,” and spent the next part of class constructing 

definitions of “straight” in their table groups. 

The teacher also continued to Orchestrate Definitional Discussions by engaging in meta-

talk, by emphasizing agreed upon terms and by positioning definitions at the fore. While he 

continued to stress and encourage the use of mathematical language such as “congruent,” he also 

emphasized new language, such as “closed,” to help students describe the properties they were 

trying to articulate. He continued to write students’ definitions and contributions on the board, a 

way of positioning them to the fore, and stressed the need for students to also keep track of the 

definitions in their notebooks. For instance, at one point during this excerpt, the teacher noted, 

“Does everyone have this definition (taps on the board) in their math notebooks?...Well I think 

you better put it in there cause we have to get a definition for polygon.” This message was 

reiterated at other points in time, both by Dr. Rich and by the regular classroom instructor. 

 

Excerpt 3: Student Positioning of Definition at the Fore 

After the question of “straight” had arisen on the fourth day, the class defined and 

investigated qualities of straightness, in particular by leveraging their experiences of walking in 

straight paths. They then used their path definition of straight (as “no turns”) to write directions 

for walking particular polygons. They began the fifth day by revisiting their definitions of 

straight (ranging from “no bumps or lumps or zig-zags” to “180-degrees” and “it goes on and on 

in like one direction”) and discussed whether a zig-zag should be considered straight or not. 

They then discussed differences between regular and irregular polygons and returned again to 

defining polygon. Vern proposed the definition of “sides and angles,” and with prompt and 

reminder from the teacher, Kate added the property of “closed.” This led the teacher to ask about 
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the definitions of “closed” and “angle.” Mona additionally asked their reoccurring question of “is 

a circle a polygon?” which led to further discussion of the relation, this time leveraging their 

newly constructed definition of straight as “180-degrees.” The teacher then posed a new 

question, about the economy of their definition of polygon: “Can I just say that to make a 

polygon, I need to have it three or more sides and the figure has to be closed? Do I have to say 

anything about angles or not?” Kira suggested that a circle might be an example, but others 

countered that it was not a polygon. Ned then asked another definitional question, “Is the circle 

the only non-polygon? What about an oval?” After a brief diversion to address Ned’s question, 

they concluded the original question about economy with Kate’s suggestion that the polygon 

would have to have angles. The rest of the fifth day was spent looking at their directions for 

walking a square.   

 At the beginning of the sixth day of instruction, the teacher returned to the question of 

defining polygon once more. In this instance, students continued to appropriate forms of 

participation that the teacher had been modeling and articulating. The teacher once again opened 

with asking the definitional question of “what is a polygon?” This time, however, they 

established the definition more quickly. One student, Mataya, appeared to read from her 

notebook: “It is a closed figure that has angles and sides.” The teacher wrote the definition on the 

board, again positioning it at the forefront, and then returned to the definitional question about 

economy he had posed the day before: “Can you make any closed figure with sides that does 

NOT have angles?” This time, two students, Ned and Kira, suggested that they could and the 

teacher asked them to draw an example, saying “if it’s possible, draw it on the board.” This move 

not only held them accountable for their claims, but placed them at the front of the classroom and 

in the center of the discussion. At the same time, by insisting they draw and then describe their 
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drawings, he requested that they participate in the Aspect of Definitional Practice of 

constructing and evaluating examples of objects being defined.   

Ned drew a football-shaped figure (see Figure 7) and when prompted by the teacher to 

“help us understand how you’re thinking,” defended his example. His example, however, was 

met with disagreement from Kate. 

N: (points to the two “sides”) Two sides. (points to the vertices) No angles. They 
can’t be angles cause an angle has to be a straight line, two straight lines make a 
angle (uses his hand to show two potential straight lines - see Figure 6) 

T: And angle has the intersection of two, lines? Two straight lines? Okay. (several 
students raise their hands – Kate, Vern, Diyari) Does anyone have a counter-
argument for Ned? Kate. (she looks confused) Well, can you argue with Ned? Do 
you, do you argree with Ned or not? 

K: Um I don’t cause that’s not a polygon. 
T:  Okay. 
K: And Mataya forgot to say [that it has to have straight lines.] 
T: [I think you need to say that to Ned] though. 
K:  (turns to Ned) That’s not a polygon. 
N: Did he say it had to be a polygon? 
Ss: Yeah. 
K: Cause based on, based on Mataya’s um thing. 
 
 
 

	  
Figure 7.  Ned’s example of a polygon with sides but no angles. Here his gestures are meant to show that 
the angles are not made up of straight lines. 
 
 

There are several noteworthy points in the above interaction. First, in constructing his 

argument to defend his example, Ned described the properties of the figure and then appealed to 

the definition of angle to make his case (“they can’t be angles, cause an angle has to be two 

straight lines, two straight lines make an angle”). In doing so, he positioned the definition at the 
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forefront, suggesting that he considered it to be an important form of evidence. His appeal to the 

definition resembled how the teacher had earlier modeled this Aspect of Practice. Ned’s football 

construction also resembled the teacher’s earlier constructions in that it was counter to what 

students considered a polygon to look like. Thus, although not intentional, it too provoked 

contest and prompted Kate to engage in constructing a definitional argument. In her counter-

argument, she too positioned definition at the forefront by noting that Mataya should have 

included the notion of straight in their definition. In this interchange, the teacher supported the 

students’ construction of definitional argument by asking Kate to address Ned and not him (“I 

think you need to say that to Ned though”), thus positioning the students in more authentic 

contest.  

The teacher then pointed out that the point of difference in Kate and Ned’s thinking was 

what they considered a “side” to be. Ned furthered this point by posing the definitional question 

of “What did we say a side is?” This question, like others before, once again directed the 

conversation to consider the definition of side. The teacher followed with: “What did we decide 

if you don’t want to have that as a side, what must you define as a side, what must you define a 

side to be so you can rule it out? Cause right now, until, there’s nothing wrong with what Ned 

has done. He has a start and an end and it makes a beautiful curve and it closes just like 

polygons, it’s closed. So I see no reason yet to reject that figure.” In this message, the teacher 

articulated an expectation for participating in defining, that to rule out an example, you must 

appeal to the definition and potentially revise it. At the same time, by asking the definitional 

question of “what must you define a side to be?” he requested that students revise the definition. 

Cordell responded that what Ned had drawn was not a polygon “because the sides have to be 

congruent.” Although faulty, in his contribution, Cordell had appropriated the language of 
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“congruent” to describe the side lengths. The teacher pointed out that what Ned had drawn could 

be considered congruent if one folded the sides onto each other. Kate then reiterated her earlier 

argument that the “lines have to be straight.” A couple other students also agreed. The teacher 

articulated another rule for defining, namely that once they agreed upon the definition, they 

would need to stick with it: “once we say this, then this is what we mean. A side is a line. And 

we said it usually has a beginning and an end point. A line segment that is STRAIGHT.” 

The teacher asked the students how they had defined straight. Diego explained that “it 

had to have no curves, creases, bends,” reiterating a common way students had defined it two 

classes earlier. The teacher wrote this definition on the board and then added that “if we walked 

in a path, we would have no turns.” Jomerd added another student-invented definition, that 

straight could mean 180-degrees. They then return to the initial conversation of whether there 

could exist a closed figure with sides but no angles. Kira presented the example she had drawn, a 

depiction of a “marker cap” (Figure 8). She argued that “the inside of this marker cap is circular 

at the top (moves finger along the top rim of the cap) and it has no angles on the side (points to 

her drawing of the top of the marker cap) cause that line is curved and if you look down on the 

inside of here, it has sides.” Vern disagreed with Kira and argued that “the marker doesn’t have 

sides because um a marker top goes circular all the way down (makes spiral gesture). It doesn’t 

have (gestures up and down with finger) just a normal side.” Although Kira and Vern’s 

definitional arguments did not appeal to the definition like Ned and Kate had, they still described 

the properties of the example as they evaluated it. The teacher revoiced Vern’s argument, 

positioning it in relation to the definition while still attributing authorship to Vern: “so he’s 

saying that when you have this cylinder…it’s like one of these (draws a circle). And we decided 

that a circle, is a circle a polygon? (students reply “no”) Okay. Okay so it doesn’t HAVE sides in 
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the way that we define it cause if you went here (places marker on the circle), you would have 

to turn (turns marker as if it is walking along the path)…you’d have turning in order to make 

that.” Kira argued in response that the marker cap did have sides going down the sides. The 

teacher pointed out that what they were talking about were two-dimensional objects and 

suggested that they add that property to their definition.  

 

 
Figure 8.  Kira’s example of a polygon with sides but no angles. 

 
 

In this remainder of the excerpt, the teacher turned their attention back to the original 

question of whether “closed” and “sides” guaranteed “angles.” He asked a student, Shaunee, to 

reason about the relation, first prompting her to talk about their definition of “polygon” and 

“closed.” When Shaunee needed help defining “closed,” Adeena offered the definition of “when 

two lines are touching each other.” The teacher drew another example to problematize her 

definition showing two lines connected (Figure 9) and asked, “So is this closed?” Adeena 

laughed, as if to suggest that she knew this game by now, and said, “no. um. When things say 

like things can’t get out…like a back door.” The teacher added, “sometimes we call this the 

interior, inside and the exterior, outside. That’s what closedness does. Separates things. Inside 

and outside.” 
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Figure 9.  Teacher constructed example using student definition of closed. 

  
 

Recap of excerpt 3. In this excerpt, the students were beginning to take on yet again 

more responsibility and agency in supporting the class’s development of mathematical 

knowledge. Whereas earlier, the teacher’s examples had largely been the source of contest and 

revision of definitions, here, students’ constructed examples motivated reconsideration of the 

ideas they had been exploring. Moreover, Kate and Ned’s contributions illustrated an awareness 

of the significance of keeping the definition at the forefront, something the teacher had been 

consistently modeling and emphasizing through meta-talk and writing. Although Kate had used 

definitions to justify inclusion and exclusion of examples and other definitions even as early as 

Day 1, here she explicitly referred to their communal definition by noting that “Mataya” forgot 

to say” and “cause based on, based on Mataya’s um thing.” Although subtle, this reference to 

their definition resembled the teacher’s previous talk (e.g., “according to our definition”). 

Students’ engagement in practice appeared to be supported by the teacher’s earlier 

modeling. In addition, during the end of the fourth day of instruction and for much of the fifth 

day of instruction, students had been asked to construct directions for walking particular regular 

polygons, a form of procedural definition. They had exchanged their directions for walking 

squares and then shared their experiences of trying to use others’ directions. When one group 

claimed that their directions were easy to follow, the teacher followed their directions in a way 
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that showed what features the directions lacked. In response, the students collectively revised 

this set of directions. This activity, although a different form, reflected the cycle of definition 

posing, example generation and evaluation, argument, and revision that they had engaged in with 

the structural definitions. Thus, it is possible that this activity further contributed to the 

adaptation of these forms of practice. In this excerpt, students once again participated in most of 

the Aspects of Practice, including asking definitional questions, proposing definitions, describing 

properties and /or relations, constructing definitional arguments or explanations, constructing 

and/or evaluating examples, establishing and reasoning about systematic relations, and revising 

definitions. 

The students’ participation in practice supported the expansion and elaboration of the 

mathematical ideas they had been exploring. Here, they began with a more refined definition of 

polygon, as “a closed figure with sides and angles.” However, Ned’s example and his question 

about sides encouraged the class to revisit their definition of “side” and enforce the notion that it 

implied straightness. In turn, this provided an opportunity for the class to revisit their ideas about 

straightness that they had extensively constructed on the fourth day. Kira’s example prompted 

the class to add the property of “2D” to their definition. Although the property was suggested by 

the teacher, Kira’s example and argument motivated its addition. Moreover, because of students’ 

discussion of the relation of polygon and circle during the previous class, they were more readily 

to reject a circle as a polygon. This consensual idea served as a resource for evaluating Kira’s 

example. 

Despite these student contributions, the teacher still played an important role in helping 

students make contact between practice and knowledge. In particular, he asked a new type of 

definitional question, one that encouraged students to think about the economy of the definition: 
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“Can you make any closed figure with sides that does NOT have angles?” This type of question 

would be difficult to investigate without first establishing what constituted a polygon and having 

some initial discussion about the properties of closure, sides, and angles. This question, coupled 

with the examples the students created, prompted them to make further make contact with the 

system of mathematical ideas they had been exploring. At the same time, because this question 

probed more deeply into the relations they had been investigating, it leveraged their initial 

explorations. In this way, the knowledge developed by the class informed the teacher’s next 

moves in instruction.  

 

Excerpt 4: Student Agents in Orchestrating Defining 

 During the rest of the sixth day of instruction and for the next class period, students 

continued to construct procedural definitions of polygons. They then shifted to investigating 

interior and turn angle sums, first for triangles and then for polygons more generally. After 

several other investigations, including symmetries, rhombi and diagonals, on the twenty-six day 

of math instruction, the students transitioned to studying triangles and their properties in more 

detail. Before starting their investigations, the teacher asked that they first construct definitions 

for “triangle.” He began by asking the definitional question of “What’s a triangle?” Students 

immediately began calling out responses. One student said “a shape” and another, Terrance, 

started saying “three-sided-.” The teacher stopped the students and requested that they work with 

their table groups to come to consensus about one definition: “I want you to work in table groups 

and write me a definition of a triangle so that, so that we can know for sure, given a triangle an 

anything else that we might generate in 2D, or in 3D, that, what we’re looking at is a triangle.” 

As in the first day of math instruction, in this turn of talk, he again reiterated the purpose of 
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definitions, that they help distinguish objects. After students spent a few minutes proposing 

definitions in their table groups, the teacher stopped them and added one more request – that they 

create an economical definition, one that used as few words as possible. His goal in doing so was 

to encourage the students to think about the relations among the properties of triangles. 

 After students worked in their table groups, the teacher asked each group to write their 

definition on the board. As a class, they then went through each definition and evaluated it.  The 

teacher began by reading off Kate, Mona and Adeena’s definition: “three sides, three angles only 

and it is closed.” He then asked a definitional question that encouraged the students to consider 

whether their definition was inclusive enough: “Can anyone think of something that their 

definition, it would wouldn’t work for it? Or something that is not triangular but their definition 

would seem to fit it?” Several students raised their hands and the teacher called on Vern who 

suggested “straight sides.” The three girls immediately protested at once, arguing that their 

definition of “sides” implied the notion of straightness. 

 A: But we already said sides. 
T: [So this assumes that the] 
M: [That’s the [definition of sides.]] 
K: [definition of sides.] 
T: def[inition of side means] straight. (draws from “side” and writes “straight”) 
 

What is noteworthy about this interaction is that it resembles the interaction from the sixth day of 

instruction when students had discussed Ned’s football example. In that instance, Kate had been 

the student to suggest that their definition of “polygon” needed to include “straight,” and the 

teacher had then noted that once they establish that a “side” means “straight,” then they do not 

need to specify so. Here, Kate and her table mates took on the role of the teacher and negotiated 

with Vern about whether or not to include “straight,” sending the message that there was no need 

to based upon their definition. At the same time, however, Vern’s contribution was still 
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important because he not only described the properties of “triangle,” but also reasoned about the 

systematic relations between its properties and sub-properties, Aspects of Practice that the 

students had spent extensive time developing within the first few classes of the semester. 

 The teacher then requested the definition of straight, “just so we’re all on the same page.” 

Mataya responded that “it means a line going 180, NO turns.” Her quick response contrasted 

with many students’ earlier inclinations to define straight as “no zig-zags” and suggested that 

these were now the consensual definitions. These two definitions had been encouraged by the 

teacher, in part because they had been used when the students constructed definitions for walking 

polygons and when they investigated sums of angles.  

 They returned to Kate, Mona and Adeena’s definition of “triangle” and the teacher asked 

if there was “anything that this doesn’t cover?” Kira noted that it did not include the fact that the 

turn angles are 360. The teacher, in trying to encourage the students to think about the economic 

relations among the properties asked, “we don’t have other properties, but are these properties 

good(/) enough?” When a couple students responded “yes,” he noted, “so that is a definition that 

works.”  

They then moved on to the next definition: “three sides, three angles, can be regular or 

irregular polygon and it’s closed.” The teacher once again asked a definitional question to push 

the students to think about the economic relations: “do they need to say closed if they say 

polygon?” Several students replied “no” but Ned replied “yes” and explained that “cause regular 

polygon is always closed.” The teacher used this as an opportunity to revisit the definition of 

“regular,” asking students, “what’s the definition of regular again?” Rachel responded, “I think it 

was straight lines, with straight lines, angles and it’s closed?” The teacher probed by asking, “but 

what makes it regular?” Lavona replied, “all the sides, same sides” and Jomerd and others added, 
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“same sides, same angles.” Terrance then instead suggested, “all the sides are congru::ent,” 

adding emphasis on “congruent.” This contribution was noteworthy because, without prompt, 

Terrance suggested a modification that the teacher had often encouraged early on. The teacher 

acknowledged this contribution by responding, “All the sides are congruent. THANK YOU 

Terrance…Okay, that math word says it a::ll.” 

 They continued to go through the definitions in a similar manner. When they arrived at 

Diego’s definition, “three straight lines and has to be connected,” the teacher noted, “NOW, 

that’s a really sparse definition. That’s the sparsest one so far. Does it work? Or do we HAVE to 

say angles? What do you think?” One student agreed, “yes” and Diego followed by arguing, “but 

won’t it come with angles?” The teacher revoiced “as soon as Diego says, three sides and 

closed?” and Rachel followed with “it al-it already has angles.” Thus, although many of the 

definitions included “angles,” when prompted about their necessity, at least some students 

seemed to readily accept that they were implied. The teacher then went back over several 

definitions and described them with varying degrees of “slimness:” “So, this is like, this. Very 

slim. I would call this one somewhat slim. I’d call this one pretty slim, right? This is an 

expanded one, but it works.” Two groups had included that the sides had to be “congruent,” 

further examples of appropriation of the word. In both cases, the teacher asked students whether 

all triangles had congruent sides and they quickly suggested that those were only for “regular” 

triangles. One group had included that triangles had “three points,” and when the teacher asked 

them for another word “that we’ve been using,” the class chorused, “vertex.” 

Recap of excerpt 4.  Although several weeks had passed since their initial work with 

defining “polygon,” the students readily appealed to the objects, properties and relations that 

they had spent several classes investigating. Their definitions varied in economy, but all attended 
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to necessary properties and relations of triangles and leveraged ideas they had explored during 

the first few days of the semester (see Table 4). All the definitions included the properties of 

“three sides” and “closed” and most included straightness. Some definitions included properties 

from their recent investigations, including angles sums and diagonals. Unlike their definitions of 

“polygon,” their triangle definitions were created with little scaffold and within a much shorter 

time frame. Figures 10 and 11 illustrate the differences in the class’s initial definitions of 

“polygon” and their definitions of “triangle.” Figure 10 shows the objects, properties and 

relations explored by the class during most of the first day of instruction. During that day, 

although the students generated some properties, such as “side” and “angle,” properties such as 

“closed” were absent. On Day 26, the conversation was more focused on properties and 

relations, most of which were student-initiated, such as “sides,” “angles,” “closed,” “congruent,” 

and “straight.”  Moreover, there were fewer deviations on Day 26, that is, the conversation was 

more focused on definition construction. In contrast, on Day 1, the teacher had to remind 

students of their goal of creating a definition of “polygon” and later “regular.” When asked to 

define polygon, students listed many examples of polygons (e.g., “octagon,” “quadrilateral”), but 

without contributing directly to the creation of a definition. On Day 26, students mentioned only 

one such class relation (to “quadrilateral”), and when they did so, they specified the relative 

properties. This contrasts too to Lavona’s definition of polygon on Day 1: “I think all shapes are 

polygons except for a quadrilateral.” The students’ attendance to properties and relations on Day 

26 suggests that they had developed an inclination to seeing definitions as a means of 

distinguishing a class of objects from others. Moreover, this propensity was not limited to a 

select few students. All the groups of students constructed definitions, and students who had 

been new to the class, such as Terrance, Diego, and Mataya, were important contributors during 
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the discussion. In face, during both days of instruction, about 78% of students contributed to the 

discussion in ways that supported the development of communal knowledge, as illustrated in the 

figures. 

 

Table 4. Student definitions of triangles 
	  

1 Triangle: 3 sides, 3 angles only, and closed 

2 Triangle = 3 sides, 3 angles, can be a regular or irregular polygon, and it is a closed figure. 

3 A triangle has 3 straight sides, 3 angles, Interior angles of 180-degrees, Exterior angles of 360-
degrees and it's enclosed!  

4 A triangle has 3 straight lines and has to be connected. 

5 
A triangles is a polygon. It has 3 congruent sides. A triangle has no diagonals. It is closed with 
three interior angles and 3 exterior angles. It has 3 straight lines with three points. If you add 
another side it becomes a quadrilateral. 

6 
A triangle has 3 closed sides and a polygon. All sides have congruent sides. And 3 turn angles 
and 3 interior angles. And 3 turn angles. The sum of the turn angles is 360. A system triangle has 
all turn angle is 120-degrees. 
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Figure 10.  Knowledge development later in Day 1. Ovals represent objects or properties mentioned by 
members of the class. Solid lines represent sub-class relations, dashed lines represent class relations, and 
arrows represent inclusive relations between an object and the properties that possibly constitute it. Words 
or numbers on the edges describe the nature of the relation. The shading illustrates the frequency with 
which objects were discussed, with darker shading indicating they were mentioned in more Definitional 
Episodes.	  
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Figure 11.  Knowledge development during Day 26. Ovals represent objects or properties mentioned by 
members of the class. Solid lines represent sub-class relations, dashed lines represent class relations, and 
arrows represent inclusive relations between an object and the properties that possibly constitute it. Words 
or numbers on the edges describe the nature of the relation. The shading illustrates the frequency with 
which objects were discussed, with darker shading indicating they were mentioned in more Definitional 
Episodes. 
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Students also continued to participate in Aspects of Definitional Practice, including 

proposing definitions, describing properties and/or relations, constructing definitional 

arguments, establishing and reasoning about systematic relations, negotiating criteria for 

judging adequacy of definitions, and revising definitions when needed. Moreover, in the next part 

of the lesson, students used their definitions to evaluate a set of potential triangles, providing 

them an opportunity to engage in the aspect of constructing and/or evaluating examples. 

Although students did not construct definitions during whole group discussion, video of two of 

the small groups reveals that their interactions resembled their whole group interactions from the 

fourth and sixth days of instruction. Here, a few students appeared to take on the role of the 

teacher in orchestrating discussion. In Kate’s group, they almost immediately constructed a 

definition of “only three sides, only three angles and closed.” When Mona suggested that sides 

needed to be straight, Kate reminded her that “we already knew sides were straight…that’s the 

definition of side.” Later when Adeena proposed the same idea, Mona reiterated the same 

argument. When Vern later in whole group also proposed that “straight” needed to be included in 

their definition, all three girls insisted that “sides” implied straightness, suggesting that Mona 

and Adeena readily accepted Kate’s argument. Their reminder resembled the message the 

teacher had communicated on the sixth day of math class. Also during small group time, Adeena 

proposed that they needed to specify that the sides and angles be “equal.” Mona quickly 

countered this proposal, stating, “No that’s for a reg(/)ular. Does everything ha::ve to be regular? 

No::. I don’t think.” A similar interaction occurred between Diyari and Cordell. In their group, 

Diyari started by suggesting that a triangle was “a 3-sided figure.” Jomerd followed with “a 3-

sided, closed.” As they argued over whether to use “polygon” or “figure,” Cordell continued to 

write a definition. When he shared his version, “a triangle is a three-sided figure that has a turn 
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angle of 120.” Diyari then immediately presented a counter-example, in a manner similar to how 

the teacher had in the initial days.  

D: nu-uh, not all of them do. This is a triangle (draws something). That’s a triangle. 
C: That’s not a regular triangle. 
D: But you just wrote a triangle (points to Cordell’s notebook). You didn’t write a 

regular triangle. 
C: (writes something in his notebook) A regular triangle. 
 

In the interaction between the boys, Diyari, taking on the role the teacher had earlier modeled, 

prompting Cordell to revise his definition. He did so by presenting a counter-example and by 

positioning Cordell’s definition at the forefront by pointing to his notebook and noting, “But you 

just wrote a triangle.” Although video is not available for all groups, these two groups further 

suggest evidence that students were inclined to attending to the properties in their definitions, 

and, in these cases, with no prompt from the teacher. In a different way, Terrance also 

appropriated the role of the teacher. In whole group discussion, his contribution and verbal 

emphasis of “congru::ent” to the definition of “regular” served to encourage his classmates to use 

an agreed upon term.  

The teacher, in turn, played a similar role to earlier excerpts, but again, the students’ 

participation in practice and the mathematical ideas they proposed informed his instructional 

moves. He again initiated defining by requesting that students propose definitions. However, this 

time, the focus was more on economical definitions. Although he had asked students definitional 

questions about economy during the fifth and sixth days, this time he started with a more open-

ended request and then followed up during the discussion with particular probes (e.g., “do they 

need to say closed if they say polygon?”). He again engaged in meta-talk about participation in 

practice. Although some messages were similar to earlier ones (e.g., “write me a definition of 

triangle so that, so that we can know for sure…that, what we’re looking at is a triangle.”), others 
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differed given the greater focus on economy. The teacher additionally labeled or coded 

(Goodwin, 1994) students’ definitions using descriptors such as “slim,” “sparse,” “works,” and 

“good enough” to highlight the degree to which they were necessary or sufficient. 

 

Other Contributions to Creating a Culture of Defining 

The four excerpts illustrate how over time, students participated in practice in ways that 

resembled the teacher’s participation and served to make contact with mathematical ideas. At the 

same time, students had developed descriptions of a rich set of properties and relations that they 

were able to leverage as resources for constructing definitions of triangles. Some of these 

interactions had begun to occur during those initial six days. But how were these forms of 

participation sustained and furthered developed in the time between the sixth day and twenty-

sixth day? Here, I describe students’ activity immediately following the third excerpt and then 

illustrate interactions during three different points of time in the days leading up to Day 26. 

These examples show that students continued to engage in practice in ways similar to what was 

described on the sixth day. At the same time, they readily described some properties (such as 

sides and angles) whereas others (e.g., “closed”) required some prompt from the teacher. 

However, unlike earlier, the teacher’s prompts more quickly reminded students of these 

properties. Many of the teacher’s moves resembled those from earlier episodes, and he continued 

to reinforce similar messages about practice. 

Students spent the remainder of Day 6 and the following class period constructing 

procedural definitions of polygons, including squares, rectangles, and regular triangles. The 

students repeated this exercise with regular pentagons during the 13th and 14th days. These 

experiences contributed to students’ defining in two ways. As previously mentioned, 
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constructing directions followed a pattern of proposal, example construction and evaluation, 

argument and revision that resembled that which students had experienced when constructing 

structural definitions. Thus, students’ inclinations towards proposing, countering, and revising 

definitions, as witnessed in the small groups, was only further reinforced through these activities. 

Moreover, when constructing the polygons, they had to reason about the angle measures and the 

relations among them. This close look at properties extended into their investigations of interior 

and turn angles sums. As Table 4 illustrates, multiple groups included these properties in their 

definitions, suggesting that the experiences provided them resources for definition construction. 

Throughout the two and a half months, there were also moments when teacher (or other students) 

prompted students to recall definitions (e.g., “What’s equilateral mean?”). These conversations, 

although brief, possibly served as important reminders of properties and their relations. 

Likewise, there were points when students used definitions in service of arguments, serving as 

additional reminders. For instance, on the tenth day of math instruction, when explaining by the 

turn angle needed to be 90 if the interior angle was 90, Vern explained, "because a straight line is 

180-degrees." 

In addition to these experiences, students on several occasions engaged in short 

discussions defining new objects and properties or revisiting existing definitions. These episodes 

were usually motivated by a definitional question, asked both by students and the teacher. 

Sometimes, questions were asked when a student introduced a new object. For example, on the 

8th day of instruction, students had started to explore Diyari’s conjecture that the interior angles 

of a triangle sum to 180-degrees and the turn angles sum to 360-degrees. The teacher asked 

students to create a triangle and test out Diyari’s conjecture with the triangle. When presenting 

his group’s triangle, Terrance called it a “scalene” and the class chorused “what’s a scalene?” 
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Terrance and Shaunee both responded that “it’s a triangle,” suggesting a relation between the 

class and sub-class. Although students did not delve more into this definition, later in the same 

class, when presenting his triangle, Cordell started to doubt whether what he had drawn was a 

triangle: "this, it has uh these two are the same size but these (points to the third side) ain't and I 

think a triangle supposed to have congruent sides." The teacher then asked him if his figure is a 

triangle. Cordell responded, "I don't know what it's called. What is this called?" Instances such as 

these two suggest that students had started to develop inclinations towards posing definitional 

questions when it is not clear what the meaning of an object is, a habit of mind that the teacher 

had actively been promoting early on through modeling and meta-talk. 

The conversation that followed about the definition of triangle also illustrated yet another 

instance in which contest over an example motivated discussion about the definition and its 

properties. This was furthered by the teacher’s request that students needed to back up their 

claim with a definition: “Does everyone agree with that? If it doesn’t have congruent sides, it’s 

not a triangle? (students disagree) Okay, so if you don’t agree, you’ll have to give Cordell a 

definition that would allow that to be a triangle.” Students’ proposed definitions included some 

properties that they had been exploring. Others were quickly prompted with questions from the 

teacher, as illustrated below.  

A:  "Well, um, I think if it doesn't, just because it doesn't have the same size, um that 
it's not a REGULAR triangle, um like, regular triangle sided polygon, but it can 
also be like an irregular triangle. 

T: so how would you define a triangle, Lavona, that would allow Cordell’s triangle 
to be called a triangle? 

L: I would say a triangle is a triangle that has straight sides down and doesn't slant or 
like anything and it's got the two sides that are going down are equal. 

T: So what do you mean straight sides down? I'm not sure I understand. 
L: ...it's got like the two sides on both sides are straight. 
T:  So will any three lines make a triangle? 
L: Not unless if they're like –  
J: unless it's closed. 
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The teacher then pointed out that what Cordell had drawn was a polygon, based upon 

their definition of “three or more sides and closed.” Some students agreed, but others, like 

Jomerd, suggested it was “not a regular polygon, but irregular.” They eventually agreed that the 

triangle was an irregular triangle. In contrast to the students’ later work with triangles, their 

immediate definitions, although containing some properties, lacked others and also contained 

some visual descriptions such as Lavona’s “doesn’t slant.” However, in contrast with their earlier 

work, when prompted by the teacher with the question “will any three lines make a triangle?” 

Jomerd immediately responded with the property of closure. Recall that in the later episode of 

triangles, students all included the property of closure in their definitions. 

On the 17th day, at the end of their work looking at angle sums, the students revisited 

their definition of “polygon.” Towards the end of class, the classroom teacher asked, “Can some 

somebody give me a definition of a polygon?" Cordell responded, “A polygon is a figure that has 

more than 3 sides and um, has congruent sides, has angles and all sides are congruent." Note in 

his definition, he described the properties of “more than 3 sides” and “angles” and appropriated 

the language of “congruent.” The classroom teacher then questioned him, asking whether he 

meant “regular.” Interestingly, Cordell stated, “I know what it is,” and proceeded to look in his 

notebook, suggesting an inclination towards using the notebook as a resource. Meanwhile, other 

students suggested definitions. Lavona proposed, "a polygon is a shape that has 360 degrees and 

more than 3 sides and the interior angles are all going to be 180." She too attended to properties 

of the object, and, as was evident on the 26th day, included their newly investigated properties of 

angle sums (although not all completely conventional). Dr. Rich, as in the earlier days, 

positioned the definition at the fore by writing it on the board, thus making it accessible to others 
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in the class.  The classroom teacher asked the students “why does it have to have at least 3 

sides?” and one student responded, “cause it has to be closed.” Recall that to prompt closure, the 

teacher drew examples of the zig-zag figure and later two connected lines, suggesting that 

perhaps these earlier examples helped students reason about these relations.  

Later, the teacher posed the question: "If the polygon has all sides congruent, must it have 

all angles congruent?" Louisa immediately responded yes and suggested, “What about irregular 

polygons?” The teacher noted, "irregular polygons are polygons that DON'T have all sides 

congruent and DON'T have all angles congruent." Jomerd added, "it must be closed, right?" This 

illustrates increasing awareness of the necessity to included closure. The teacher followed with 

the same message the three girls later articulated on the 26th day: "yes, i'm saying cause I'm 

calling it polygon, right? So for us, polygon means 3 or more sides and closed. That's our 

definition of polygon.”  This conversation also provided the opportunity for the teacher to ask 

students about related definitions, including regular polygon and straight. Students’ definitions of 

regular appropriated the language of “congruent” as was witnessed later in the triangle episode. 

Students’ definitions of “straight” included “180-degrees.” When the teacher probed “if I were 

walking,” Diego added that “it has to have a starting point and an ending point.” The teacher 

probed further by noting, “if I walk do I ever change direction if I’m straight?” and the students 

responded “no.”  

During the 19th day, the object of “rhombus” was brought up by students, leading to a 

conversation of what a rhombus was. Here, their definitions were negatively influenced by a tool 

they had been using to investigate the teacher’s previous question of whether congruent sides 

implied congruent angles. The tool, four paper strips connected at the vertices with brad 

fasteners, allowed students to see that a square could be tilted and no longer have the same 
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angles (while maintaining the side lengths). However, the notion of a rhombus as a “tilted 

square” became their definition. To encourage students to focus on properties once again, the 

teacher redirected their attention to them, "what do you know about the properties of a rhombus 

then? What can you tell me?" This prompted students to describe the sides and angles and their 

relations. This move sent the message that properties were important in defining and redirected 

students’ attention to those properties.  

These excerpts illustrate that students were continuing to attend increasingly to properties 

when constructing definitions and continued to appropriate agreed upon language. The teacher’s 

questions, like those posed earlier, prompted students to revisit existing definitions. At the same 

time, with probing from the teacher, the property of “closed” was quickly accessible. Alongside 

the definitional work, students were also engaged in experiences investigating questions and 

conjectures about polygons and properties. In these experiences, they were played increasingly 

prominent roles in the class. These experiences no doubt only reinforced students’ development 

as authors of mathematics. 

 

Discussion 

The goal of this paper was to investigate how the practice of defining and communal 

knowledge each changed over time and co-developed within interaction. I presented several 

relations that I suggest contributed to the co-development of practice and knowledge. Initially, 

the teacher asked definitional questions that prompted students to propose ideas about polygons, 

sides, angles, and other related entities. Additional definitional questions encouraged discussions 

about definitions of properties and relations between “polygon” and related objects, such as 

“circle” and “regular polygon.” Revisions to initial definitions were motivated by contest from 
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students’ competing ideas. In order to problematize students’ definitions further and encourage 

the consideration of new properties, such as “closed” and “straight,” the teacher presented 

examples (monsters) created based upon their definitions. As definitions stabilized, this opened 

up opportunities to ask new questions, such as those of economy, that probed into relations 

among properties. By Day 26 of math instruction, students developed definitions that attended to 

mathematical properties with much less scaffolding from the teacher. 

To illustrate this co-development, I drew upon two frameworks for describing how 

members of the class participated in the practice of defining. The framework of Aspects of 

Practice allowed me to describe how the teacher and the student participated in defining in ways 

reflective of the discipline of mathematics. From the beginning of Day 1, most of these forms of 

participation were accessible to students with varying scaffolding and support from the teacher. 

Students had opportunities to propose definitions, to describe properties and relations of objects 

being defined, to construct definitional arguments for or against definitions or examples of 

definitions and to revise definitions in lieu of arguments. Students were asked to evaluate 

examples constructed by the teacher and were later prompted to construct their own examples in 

order to reason about the definitions they were constructing. Students also increasingly asked 

definitional questions, often reflecting those the teacher had earlier modeled. The Aspect of 

Practice of negotiating criteria for judging adequacy or acceptability of definitions occurred less 

frequently. However, among the few instances in which it did occur, earlier ones were between 

the teacher and a student whereas the later one occurred between students, suggesting that 

students were developing greater authority for their practice. 

The second framework for investigating practice, Orchestrating Definitional Discussions, 

described other forms of interaction particular to defining. Although the teacher was the main 
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participant in this form of practice, over time, students also began to appropriate certain forms of 

interaction, such as positioning definitions at the forefront and emphasizing agreed upon terms. 

Moreover, their interactions on the 26th day suggested increased inclinations towards these forms 

of interaction, especially in small groups where the teacher was absent.  

 Through their interactions in practice, students had opportunities to explore mathematical 

properties and relations of the objects they were defining. Unlike traditional approaches to 

definitions, students had opportunities to first express their ideas and articulate ways of 

describing objects and then revise their ideas in lieu of arguments or counter-examples. Over 

time, students developed inclinations towards definitions that distinguished objects from others, 

as evidenced by their property-rich triangle definitions on the 26th day.  Through this approach, 

students derived definitions for “polygon,” “side,” “angle,” “straight,” “triangle” and other 

objects. By investigating economic definitions, students probed more deeply into relations 

among properties. Moreover, by allowing students to present multiple ideas and negotiate those 

ideas, students generated multi-faceted notions of the objects and properties. Angles were 

defined not only as two connected lines, but also as “turns.” Likewise definitions of straight 

included “no bends,” “no turns,” “constant heading,” and “180-degrees.” These results reflect 

those of others who have given students opportunities to negotiate definitions (e.g., Keiser; 

Lehrer et al., 1999) and suggests that the experiences of these students is not an isolated case. 

 By centering defining around students’ ideas and participation in practice, the teacher 

created multiple opportunities for students to become authors of definition and develop greater 

mathematical authority (Boaler, 2002). He did this in part by highlighting students’ contributions 

in talk and writing, requesting that they participate in Aspects of Practice, and continuously 

acknowledging their authority.  Students’ increased authority was evidenced by their readiness to 
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contribute definitions, examples and counter-arguments, including arguments counter to the 

teacher. “Monsters” often provoked explosions of contributions, suggesting that students were 

invested in the activity and eager to participate. In the excerpts, students who had been in the 

class the year before were initially the more prominent participants, but as time when on, 

participation expanded to other students. The teacher supported this shift in part by recruiting the 

participation of students. In other excerpts, he created many opportunities to present their work 

on the board, allowing a greater range of students to participate and also positioning their 

contributions as important. Students such as Kate, Mona and Adeena were important in initially 

aiding the teacher in modeling practice. However, these extra aids do not suggest that this class is 

not replicable. Rather, in other classrooms, teachers may have to spend more time initially 

modeling, requesting participation and positioning students in practice.  

Although this paper focused exclusively on the students’ work in defining, students were 

also developing other practices. Their early work in defining provided a foundation that 

supported their participation in other practices. Their communal understandings of the 

mathematical objects allowed them a common ground for asking questions about them and 

posing conjectures related to those properties. Likewise, several aspects of defining were similar 

in nature to other forms of practice and potentially provided an accessible arena for these forms 

of interactions. Moreover, students’ investigations of questions and conjectures opened up doors 

for further discussions of definitions as new objects and relations were introduced. 

 So, then, what can be learned from this case for other teachers and other classrooms? 

Here, I suggested several teacher supports that were important in cultivating and facilitating 

students’ participation in practice in ways that also promoted the development of mathematical 

ideas. These forms of interaction included: (a) asking definitional questions that elaborated on 
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system components, (b) constructing monstrous examples that provoked contest, (c) emphasizing 

agreed upon terms, and (d) positioning definition at the forefront by highlighting definitions 

through writing and juxtaposing them with arguments and descriptions of examples. In addition, 

orchestration moves helped to provoke student participation in defining. Practices are forms of 

knowledge and they are equally important to cultivate within classrooms. Although these 

interactions were situated within the context of geometry, I argue that they are applicable to other 

subject areas, grade levels and classrooms. In fact, other work in defining has illustrated similar 

interactions. For instance, Lehrer and colleagues (1999) describe the initial work of a teacher 

cultivating defining in her second grade class. This teacher too positioned defining at the 

forefront by using two boards to post the definitions of “triangle.” One board showed the class’s 

agreed upon definition whereas the other served as a platform for emerging proposals. The 

teacher frequently redirected her students’ attention to their agreed upon definition, especially 

when they were evaluating a set of potential triangles on the board. The set of examples created 

contest and motivated discussion over what constituted a triangle. Like the examples Dr. Rich 

had posed, these examples varied from students’ visions of what a triangle should look like, and 

they were presented in a way that highlighted contrasting features. In another study, Zaslavsky 

and Shir (2005) showed a small group of high school students engaged in the evaluation of sets 

of definitions, including non-geometric definitions such as “function.” These definitions had 

been designed to too cultivate contest among the students so that contrasting features were 

prominent (that is, they varied by important features that the researchers wanted to be the center 

of discussion), illustrating the potential for such interactions to generalize to other settings. 

Nonetheless, geometry provides particular affordances in that the mathematical objects are easily 
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drawn and described. For this reason, geometry might be an ideal early entrée into defining, as 

illustrated by the case of the second graders.  

  I began this paper by pointing to the need for better understanding how the practice of 

defining develops in classroom environments. This works builds upon others who have studied 

students’ participation in defining in three ways. First, the framework of Aspects of Definitional 

Practice suggests a way to describe and analyze practice. Because the framework was created by 

reviewing definitional work in various classrooms, it suggests that these forms of participation 

are not isolated to this one classroom, teacher, age group or content area, and might be a useful 

way to communicate analytically about students’ engagement.  Second, whereas others have 

tended to present illustrations of developed practice, here I suggest how those forms of activity 

might come about. Moreover, this analysis illustrates how this practice develops alongside 

knowledge and illustrates interactions that are significant to this development. The forms of 

interaction I present that helped encourage this contact (questioning, examples that provoked 

contest, and positioning definition to the fore) are not new to math classes. However, here I 

illustrate the role they play in merging practice and knowledge. Although one case, these 

interactions provide initial conjectures to test out in other classrooms and with other teachers and 

provide an important first step in theory development.  
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CHAPTER VI 

 

CONCLUSION 

 

As mentioned previously, these three papers collectively provide: (a) an analytic and 

theoretical framework for examining the mathematical practice of defining as it might be 

constituted in classrooms; (b) an analysis of the initial establishment of this form of practice as 

instantiated in interaction among students and their teacher; and (c) an investigation of how 

knowledge, practice and the interactions that contribute to their co-constitution develop and 

change over time. In them, I aimed to provide detailed analyses that might contribute to a larger 

theory describing classrooms that promote student engagement in mathematical practices. My 

hope is that this initial theory will provide grounds for further research and work within 

classrooms. Although the data describes one classroom and one teacher, I argue that the 

interactions described here have implications for other classrooms and other lines of research.  

First, the papers present a theoretical language for describing how members of classroom 

communities interact around definitional practice and illustrate the utility of such a language. I 

presented two frameworks, Engaging in Aspects of Definitional Practice, and Orchestrating 

Definitional Discussions, that together provide a means for describing how members of the 

classroom, both teacher and students, participated in defining. Both frameworks were grounded 

within other empirical work, suggesting their potential relevance to other classrooms. The 

Aspects of Practice framework was initially created by reviewing empirical studies where 

students participated in the construction and negotiation of definitions. These studies were 

conducted with different age levels, in different topics, and in different countries. Yet in each, 
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multiple, common Aspects of Practice were at play.  The framework for Orchestrating 

Definitional Discussions was influenced by previous descriptions of math talk communities and 

how teachers in these communities orchestrate productive discussions. Whereas the Aspects of 

Definitional Practice describe forms of participation in defining from a disciplinary perspective, 

the goal in creating the Orchestrating Definitional Discussions framework was to characterize 

forms of participation that support interactions in defining. In Papers 2 and 3, these frameworks 

not only allowed me to characterize and describe how participants interacted around practice, but 

they also provided a lens for looking at interactions between practice and knowledge. That is, I 

was able to identify specific forms of participation and characterize how those forms aided in the 

development of communal knowledge. In this way, the frameworks have the potential to serve as 

ways to communicate analytically among researchers. 

Similarly, the language for describing defining may also provide a resource for working 

with teachers to establish similar classroom environments. Others have created frameworks to 

describe student ways of thinking in various content areas (e.g., Franke, Carpenter, Levi, & 

Fennema, 2001; Lehrer, Jacobson, Kemeny, & Strom, 1999; Lehrer, Kim, Ayers, & Wilson, in 

press). Such frameworks have been used as forms of support for teachers in professional 

development settings (Franke et al., 2001; Kim, 2012) in order to help teachers develop what 

Jacobs, Lamb and Philipp (2010) term “professional noticing” of student thinking. That is, 

teachers learn how to pay attention to and interpret student thinking and use those interpretations 

to inform their next steps in teaching. Likewise, they provide a basis for communication among 

teachers in professional communities. Here, I propose frameworks that instead characterize 

student engagement in practice. In this sense, the frameworks for definitional practice provide 
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initial starting places to work with teachers to create environments in which to further study 

defining.  

Likewise, the three papers also contribute to a growing body of work looking at 

describing teacher mathematical practices. Recently, mathematics educators have described 

“high leverage practices” (e.g., representing concepts with examples) that teachers can rehearse 

and implement within their classrooms (e.g., Kazemi, Franke, & Lampert, 2009). The forms of 

participation described in the Orchestrating Definitional Discussions framework. as well as the 

forms of contact between knowledge and practice identified in the second and third papers can 

be considered “high leverage practices” for defining. Although Dr. Rich’s teaching moves were 

situated in geometry, they still have the potential to travel across settings. For instance, teachers 

may present examples that create contest in other areas of mathematics, although the forms may 

vary. Ball (1993) describes a class where presenting the case of “0” as even or odd provoked 

contest and discussion about their definitions. Moreover, positioning definitions at the forefront 

allows students to have the same frame of reference and also allows the teacher to continuously 

relate activity to the overarching goal of creating a definition. The types of questions Dr. Rich 

asked are also easily transferable to other contexts (e.g., “what’s a function?” “what is odd?”). In 

other settings, educators need to consider the resources students might bring to the table for such 

discussions and how to leverage those resources. For instance, if students have not previously 

had experiences with a mathematical object, they may need to first explore the object. Curtis 

(Lehrer & Curtis, 2000) did this in her second grade classroom when she wanted to introduce 

students to “perfect solids.” She presented different solids, two of which were Platonic or 

“perfect.” Students used these examples to generate initial definitions that were then used to 

construct their own examples and further revise their definition. 
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Finally, this work illustrates a case of how knowledge and practice interact. Too often, 

studies focus on one or the other. Here, I suggest not only how knowledge and practice interact 

in this context, but also suggest a method for analysis. By looking at the level of turn of talk, I 

was able to look for moments when participation in practice informed practice and vice versa. 

This approach also afforded an analysis of the roles of different members in the class and how 

those roles shifted as students began to take on more authority and as their mathematical 

explorations grew. 

Like other studies, this set of studies has limitations. Although the cases provide 

conjectures for generalization, these conjectures need to be tested and refined in other settings. In 

particular, it would be useful to explore these ideas in a setting where students have had fewer 

opportunities to talk about and reason about mathematics. In Dr. Rich’s class, half the students 

had been in the class previously and often served as an additional support to reinforce norms and 

practices. Moreover, in the third paper, I only sampled a few points in time, and more sampling 

would allow for a richer and more nuanced picture of development. For instance, students’ 

construction of procedural definitions was not a focal part of the analysis, and might add 

additional insight into how Aspects of Definitional Practice vary. No doubt, students’ 

experiences in practice were influenced by their engagement in procedural definitions and, thus, 

a richer analysis would be worthwhile. 

 

References 

Ball, D. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary 
school mathematics. The Elementary School Journal, 93(4), 373-397. 

 
Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative 

change: A follow-up study of professional development in mathematics. American 
Education Research Journal, 38(3), 653-685.  



	  208 

 
Jacobs, V. R., Lamb L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s 

mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. 
 
Kazemi, E., Franke, M., L., Lampert, M. (2009). Developing pedagogies in teacher education to 

support novice teachers ability to enact ambitious instruction. In R. Hunter, B. Bicknell, 
& T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual conference of the 
Mathematics Education Research Group of Australasia (Vol. 1). 

 
Kim, M. (2012). Tracing naturalization process of learning progression in teacher community 

mediated by collaboration and boundary objects. Dissertation to be completed in 2012. 
 
Lehrer, R., & Curtis, C. L. (2000). Why are some solids perfect? Conjectures and experiments by 

third graders. Teaching Children Mathematics, 6(5), 324-329. 
 
Lehrer, R., Jacobson, C., Kemeny, V., & Strom, D. (1999). Building on children's intuitions to 

develop mathematical understanding of space. In E. Fennema & T. A. Romberg (Eds.), 
Mathematics classrooms that promote understanding (pp. 63-87). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

 
Lehrer, R., Kim, M.-J., Ayers, E., & Wilson, M. (in press). Toward establishing a learning 

progression to support the development of statistical reasoning.  
  



	  209 

APPENDIX A 

 

TRANSCRIPTS 

 

DAY 1 

DEFINITIONAL EPISODE #1 
[00:05:34.09]  
 
RL: polygons and vertexes. uh:: who can help me understand, what a polygon is? Just so I can 
kind of 
Mic: a regular or a regular or polygon? 
RL: A regular or [irregular?] 
Ama: irregular] 
RL:  Okay give me the most general definition you can. So that I can recognize a polygon and 
I could tell the difference between a polygon and a turnip. 
[Students: what's a turnip? 
RL: Turnip? Uh it's uh how bout a carrot. I want to know the difference between a polygon 
and alright Vincent (points to Vincent who has his hand raised). 
Vin: A polygon has the same angles and the same length of uh (pause), the same lengths of 
sides. 
RL: Vincent's claim is that all polygons have the SAME length of sides and the SAME 
angles. Rhonda.  
Rho: All regular polygons. 
RL: All REGULAR polygons (pointing at Rhonda and looks at Vincent). Do you accept her 
amendment? 
Vin:  yeah  
RL:  All REGULAR polygons. Kenjra (points at Kenjra) 
Ken:  (reading from notebook) Additionally all polygons have 5 sides. 
RL: All polygons have 5 sides. 
Mic: No (raises hand) 
RL: Who can make-uh- Someone says no. 
Mic: I say no. (raises hand) 
Kay: I say no. (rasies hand) 
RL: Okay. The troublesome trio (referring to Kayla, Amani, and Micah) say no. 
Jee: Oh we too. We say no. 
RL: Why not? 
Kay: um because um if all polygons have 5 sides but we also had the square was a polygon and 
the triangle was a polygon.  
RL: Okay so, [as soon as we find]  
Kay: and they've only got 3 and 4] 
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RL: something that we'd like to call a polygon that has other than 5 sides, we KILL that 
conjecture. Okay we-so we have to not say 5 sides. Alright but what do we say? Cause so far the 
only kind of polygons I know from what you've said are what kind Nicholas? 
Nic: Uh, sir? The only kind of polygons are? 
RL: are what kind? 
Nic: not 5 sided but- 
RL: no but what kind do we no so (shrugs) far? Cause someone (points to Vincent) Vincent said 
Nic: Squares, octagon 
Vin: (?) 
RL: huh? 
Vin: I talked about regular polygons. 
RL: REGULAR polygons. I thought you said that. I thought I heard that INSTANTLY. Yes, 
regular polygons. Okay, Jeewar. 
Jee: There are lots of other polygons. There's a decagon a septagon a octagon uh:: 
Ken: A hectagon. 
Jee: A he-HEX agon. 
Cou: a pentagon 
Lou: I think all shapes are polygons except for the squares and quadrilateral. 
Jee: lots a gons 
RL: Okay Louisa's conjecture is that all shapes are polygons except for what? 
Lou: uh a quadrilateral. 
RL: Except for quadrilaterals. 
RL: alright I'm going to write that up here so I can keep track  
[interuption] 
RL: alright. All shapes (pauses and writes an "L" above what he is writing--signifies "Louisa") 
all shapes are polygons except for quadrilaterals.  
 
------------------------------------------------ 
DEFINITIONAL EPISODE #2  
[00:08:40.19]  
 
RL: Now someone will tell me what the heck a quadrilateral is cause I hadn't heard that word 
yet. 
Lou:  (raises her hand) It's a square. 
Vin: (looks at Louisa) That's a polygon 
Ama: That's a square, isn't it? 
Vin: a square is a polygon. 
RL: You mean (draws arrow going down from "quadrilateral" and draws a square) quadrilateral 
and square are synonyms? (gestures between the two representations) 
Ama: Yeah cause they have 4 angles and 4 sides. 
Vin: But a square's a polygon (speaking to Lousia) 
Lou: [So what it's 
Kay: but a square's a polygon.] 
Mic: a circle 
Mic, Kay, Ama: A circle wouldn't be a polygon cause a circle doesn't have sides. 
Ama: A circle has no sides or no angles. 
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------------------------------------------------ 
DEFINITIONAL EPISODE #3 
[00:09:09.27] 
 
RL: Okay so QUESTION. Circle is? a polgyon? (writes this on the board) 
SS: NO:: 
RL: No::? No. Alright. Well I like circles. So if I'm going to rule circles OUT from polygons, 
why can't a circle be a polygon? 
SS: [(?)] 
Cou: [Because it doesn't have any sides] 
Lou: [because it doesn't have any angles 
Sha: No sides. 
RL: No sides? 
Sha: No sides? 
(students still talking) 
RL: alright. Okay. You have to have sides? 
Lou: No 
SS: Yes 
Mic: because pol- 
 
------------------------------------------------- 
DEFINITIONAL EPISODE #4 
[00:09:41.17] 
 
RL: Alright (they quiet down) Alright let me see those of you who want-okay we're trying to 
create a definition of a polygon. Remember the goal is that I need to be able to tell the difference 
between a polygon and a carrot. 
S: carrot? 
RL: Carrots. Circles. Anything else. Anything that you don't want to call a polygon, I have to be 
able to look at your definition and say oh thank you. Now I know. Okay so that's what we're 
doing here. So, so far I can't. The only thing I know is that there are some polygons that are 
regular and they have equal sides and equal angles. So now I know what a regular polygon is. 
And I'm very happy. Cause if I see a square, what will I say? 
Ken: That it's not a regular polygon. 
Ama: it is. 
RL: I WHAT? 
Ama: It IS a regular polygon. 
Ken: what I said a regular polygon. 
RL: Is it a regular polygon or isn't it? 
SS: YES. 
Cou: Yes cause it got sides and angles. 
RL: Okay well. We can kinda have a situation like this, right Louisa? I have a dog. And her 
name is MINI. Okay can I call her both dog and Mini? 
SS: No 
RL: Isn't-no? No I can't? You mean Mini's not a dog? 
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SS: Yes (they talk at once-hard to discern) 
RL: Okay so if I say Mini can I think of her as well as a dog? 
SS: Yes. 
RL: Okay so just because something is a square doesn't mean it couldn't ALSO be something 
else right? Is that right Louisa? 
(silence) Okay so. I want to know, when I see a square (points behind him to the drawn square) 
and I'm thinking about your definition of REGULAR polygon, I want to know is a square a 
regular polygon? Michaela. 
(Michaela says something quietly) 
RL: What? 
Mic: Square is a regular polygon. 
RL: Is it or isn't it? It is? How do you know? (Jeewar raises his hand) Jeeward, let Michaela 
answer this. 
Mich: Because it has sides and it has angles. 
RL: Okay. So::. Um. Let me draw something else that has sides and angles. 
(draws long rectangle) And just pretend that I can draw. And those are straight. Is that a regular 
polygon? 
SS: Yes 
Vin: No it's not. 
Lou: No no no. 
Vin: No cause it's an irregular polygon. 
Ken: Isn't it too long? 
Cou: It don't have- 
RL: Alright I want those of you who think that this is a regular polygon to stand up (gestures up) 
(Nobody stands) 
RL: I want those of you who think that this is NOT a regular polygon to stand up. 
(Everyone except for Daniel and Shatteryia) 
RL: I want those of you who neither stood up on either occassion, what are you? 
Sha: We don't know. 
RL: You don't know? 
Sha: We don't- 
RL: You don't know? Okay. So 
Sha: It's like part of the (?) 
RL: Alright so there are two people who don't know and I suspect there might be more than two. 
So, those of you that are standing, how could you convince Shatteryia and Daniel? How could 
you convince them that this in fact is a regular or is NOT regular polygon. Is not. Rhonda. 
Rhonda: It is not a regular polygon. 
RL: Not? (writes on the board) Why not? (Push on argument) 
Rho: Cause it doesn't have the same size sides. 
RL: The same::? 
Rho: SIZE sides. 
RL: Okay can we use the word length? So all sides (writes on the board as he speaks) are  
 
------------------------------------------------ 
DEFINITIONAL EPISODE #5 
[00:13:27:09]  
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RL: (turns to the class) we used a word last year. 
S: Equivalent. 
RL: Equivalent? Equivalent with respect to? Length? Or we used another word. (points to 
Jeewar) 
Jee: Length. 
Lou: He just said that. 
S: Height or width 
S: Area. Width area. 
Ama: Circumference. 
Jee: circumference 
RL: This thing has a circumference? 
Jee: No 
Sha: No it's not. It's uh. What's it called. 
S: Ver::: 
S: Area? 
Jee: Vertical? 
Nic: Perimeter? 
Tim: Height. 
RL: Alright I just don't want you to call out every word that we talked about last year. okay. So 
what. um. We say here that all the sides are NOT the same length. Or is there a way of doing it if 
I didn't even if I couldn't even measure the lengths? Is there a way of establishing whether or not 
two things have the same length? How would I do that? If I had something I didn't have a ruler 
and I say you know I think these things are both the same length. How would you establish that? 
You can sit down. Courtland? How would you do that? 
Cou: Dr. Rich. You can tell um how it looks? 
RL: Huh? 
Cou: You could tell how it looks because one side can be uh longer than the other one. 
RL: Right. But suppose I claimed that the sides were the same length. How could I establish that 
even without a ruler? Rhonda? 
Rho: With another object. 
RL: With another object? Okay. So if this has the same length as this (holds up pieces of paper) 
what should I be able to do? Nicholas? 
Nic: Put one beside each other. 
RL: Okay we should lay them right on top of one another? And have nothing sticking out? 
Nothing leftover? Do you remember the word that we used when we had this  
Nic: Overlap? 
RL: situation? Where it just (puts arms together) stuck right and we couldn't tell the difference? 
S: Symmetry 
RL: Well a symmetry is a certain KIND of indifference, right? When we turn or slide or flip 
something. But what about when we just (holds hand up as if holding something)  
Lou: Flip? 
RL: No we just lay it right on top of.  
S: Mirror symmetry? 
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RL: Okay I'm trying to establish-maybe we're. I'm trying to-these are all ways of establishing 
when things are equivalent so that's good right? But I have something very simple in mind. 
Nothing too fancy. Devalon? 
Dil: Slide Symmetry? 
RL: Okay. A Slide symmetry means that (puts paper rectangle on the board) right if I and I did 
this (slides it to the right), I couldn't tell the difference. It has exactly the same look. Same shape. 
Same look. But I want to know if two things have the same length and I don't have a ruler and 
we slide them to uh. We put one right on top of the other or:: think about this I pick this length 
up (indicates length of the rectangle on the board) Right over here. Right on top of it. Okay 
what's the word for that (gestures up and down) I just want to establish the word so that we can 
kinda keep it in mind. Shatteryia? 
Sha: Can I ...I believe it's a regular polygon. 
RL: Okay. Let me finish this and then we'll come back to your issue. Okay how if I started this 
(writes on the board) C-O (writes cong)  
Rho: Congruent. 
RL: congruent (writes it on board) this was our little special word when we said, lengths were 
congruent, or areas were congruent we said that, not only is it the SAME but that we can literally 
put one on top of another and establish, that they are identical. okay? so we’re going to try to 
remember this word. put it in your notebooks…  think about it… I’m going to give everybody a 
minute to put it in their notebooks. to think about it…and to be sure that you kind of understand, 
what we’re, getting at. 
(students write in  notebooks. One student tries to say something) 
RL: just a second. I want to make sure we’re all on the same page on this. we’re going to use 
this. if I wanted to establish that A:: [holds up rectangular piece of paper labeled “A” in right 
hand] was congruent to B:: (holds up different rectangular piece of paper labeled “B” in left 
hand) in some, in some way? then say the amount of space covered or the area? what would I 
do?...(looks around) Tim? what would I do?  
Tim: °put em’ together°  
RL: put em’ together? (overlaps the two pieces at the ends) and what should I what should 
happen? 
Cou: it should be- 
RL: have I established it yet? 
Cou, S: no 
Jee: >°nonono°< (raises hand) 
RL: (moves papers to overlap a little more) have I established it yet?  
Lou, S, S: no (Kayla shakes head no) 
RL: (moves papers to overlap a little more) how bout now? 
Lou, Mic, Tim, S, S:  no 
RL: (moves papers to overlap a little more) how bout now? 
SS (about 5-6): no 
RL: (moves papers to overlap completely) how bout now? 
SS (same 5-6): yes 
RL: okay. alright so that’s what we mean by congruent.  
 
------------------------------------------------ 
DEFINITIONAL EPISODE #6 
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[00:19:01:06]  
 
RL:  alright NOW, let’s get back <to Shateryia’s has uh a suggestion for us.> (turns and walks to 
board) we say (points to rectangle on board) that this is NOT a regular polygon, <because (points 
to text written on board as he reads) the sides are not all of the same length?> (looks at 
class)...okay or <the sides are  not  CON gruent?> they would fail this test (turns back to board). 
if I took THIS piece (indicates width of rectangle) and (rotates fingers clockwise and places them 
on the length of rectangle) laid it on this piece would they be congruent? if I put one (writes 1 
above the width) on two (writes 2 to the left of the length) would one be congruent with two? 
S: °no° 
SS: °no° 
RL: °okay?°…Why not? [Epistemic Message--need for justification] 
Tim: cause they different, sides. 
RL:  right cause they’re different lengths good. okay SO. so a lot of people said that this shows 
that this figure (points to rectangle) is <NOT REGULAR. but SHATTERYIA objects>, so we 
need to listen to Shatteryia’s objection. [Epistemic Message--Importance of ideas of community] 
Sha: Because a square, that's a square it's just stre::tched. like okay all of these (holds up bag of 
plastic shapes) are polygons right? so if we had (she empties bag on her desk and then picks up a 
piece) this one and (picks up another piece and puts it next to the first shape) this one (?) 
RL: uh huh. You want to hold that up so everyone can see it?  
(Shatteryia holds up the two pieces) 
Sha: If I had B and G. B like just took this part and slid it down to make G. 
RL: Okay Omari, can you restate what Shatteryia's trying to tell us? [Norm of accountability] 
Oma: I think what Shatteryia's saying is that (pause) 
RL: Daniel can you restate what Shatteryia is trying to say? 
Dan: I think what she's trying to say is just that that like that square on the board 
RL: uh huh 
Dan: It just got stretched to make that other, congruent (?) 
RL: okay. Amani? 
Ama: I think what she's also trying to say is that like all they did is take like probably 3 squares 
and like put em all in to make like one. 
RL: okay so. Is Shatteryia right? Could we make a rectangle in this way? 
SS: yes 
RL: okay. so Shatteryia says we can take a square (draws square on the board) and one thing we 
can do with it is we can stretch it (draws arrow going down from the square). We can pull on a 
side (gestures the motion). This one right here (points to side in the drawing). I'm going to pull 
on it. And I'm gonna transform (pulls arm down) it.  Okay you're-do you see that? (enacts 
movement again) pshhhh. And she says when you do that that's one way of thinking about 
(draws rectangle next to the square) a rectangle (points to drawn rectangle) okay Amani 
suggested that another way to think about what Shatteryia is saying is that we could take the 
square and join other squares to it. (draws 3 squares adjacent and then errases connecting lines) 
and that would create a rectangle. We could glue two squares together. And that would create a 
rectangle as well. (..) Okay. Louisa? 
Lou: so Shatteryia's saying that a square is more like a rectangle? Or like kinda like?= 
RL: you'll have to ask Shatteryia. 
Lou: A family? a cousin to the rectangle or something? 
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Shatteryia: (giggle) like okay. Yeah.  
RL: mmm hmmm. 
Shatteryia: okay like. 
Lou: so a square IS kinda like a rectangle. 
Shat: it IS a rectangle. It's just first like this and then like stretch it and it's kind of like this (holds 
up rectangle). 
RL: so Shatteryia says that-and I think Louisa's helping us see this. (points to drawings on teh 
board) That Shatteryia says look. a square IS related to a rectangle (points back to original 
rectangle of discussion). Because you can make rectangles by stringing squares together. Or by 
pulling on one of the sides keeping everything else the same. just pulling (gestures down) 
everything down. Or. okay. Kenjra? 
Ken: Dr. Rich what if you decided to pull on the triangle inside of the square because two 
triangles does make a square. It'll go either that way or that way. 
RL: Can you draw for us what you mean? 
(RL erases the board) 
Ken: you have a square (draws a square). Not exactly a square but you can get the. 
RL: okay 
Ken: inside of that square you find two triangles. what if you decided to pull one square that way 
(draws an arrow from one corner) and one square that way. 
RL: Uh huh. What would happen then? 
Ken: It would enlarge (?) 
RL: you mean when you say square do you mean?:: 
Ken: I mean one triangle. 
RL: one triangle. you want to pull a triangle this way (RL gestures over the drawn arrow) and 
pull the other triangle the same distance teh other way? okay you want to pull the vertex? Is what 
we call-do we call that a vertex? 
SS: mmm no. 
RL: Oh no? no. okay. what do we call that? 
Vin: that's um. (..) 
Jee: stretching. enlarging. 
RL: I mean. I want to know this point right here (points to vertex) where this side meets this side. 
does that have any? have we talked about that? 
Lou: oh it is like a vertex. it's just that. 
RL: oka 
Vin: a symmetry? 
RL: uh a symmetry? 
Vin: yes. 
RL: okay. how so? 
Vin: um if you have a square and you put it in half like that you have two triangles but they're the 
same size. 
RL: same exact si-so if you um (closes marker top) hmm. where's our square? Do we have a 
square? a nice big one Mrs. Lucas? 
DL: uh no. 
RL: no. okay. let's hold on to that idea. i'm going to say square, triangle and symmetry (writes all 
three on board) okay SO. i'm not sure Kenjra if we do that what it is that we're trying to say. 
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that's what i'm. now i understand what you're trying to do but I wasn't sure that we understood 
yet. 
Ken: what i'm trying to say is sometimes squares don't always make rectangles. i think maybe if 
you pull it out that way some, it'll kind of make a diamond I think. 
RL: okay so you could take a square and depending upon WHERE you did this stretching idea, it 
doesn't HAVE to make a rectangle. It could make something else. Is she right? 
SS: yes. 
RL: So that's another interesting observation. okay so thank you Kenjra. So. now I wonder. um if 
that rules OUT the idea, if that necessarily makes this (points to the board) a regular polygon. 
that's what we have to go back to because Shatteryia is right. And Kenjra is right. we can take a 
square. and we can stretch it or transform it in different ways and we can make other shapes and 
we can see that with our heads and we can even do this on our computers. and we'll be sure that 
we will do this on our computers so this is very-right so we can see these things. BUT, I want to 
go back to this. just because we can do that (turns and walks to board) does that MEAN, that 
(points to rectangle on board) this rectangle is now a regular polygon? 
(Micah shakes her head no) 
Lou: °no° 
Mic: °no° 
RL: okay Shatteryia what has to be true for a polygon to be regular? 
(Courtland raises his hand) 
Shatt: it have to be like it’s a three or more sides. 
RL: okay what else? 
Shatt: (    ) it has to be a polygon. 
RL: oka::y so a regular polygon has to be a polygon. okay. what else? 
(Shatteryia looks down, smiles slightly) 
Shatt: Can you restate your question? 
RL: yes…um I’m just asking you what’s your definition of a regular polygon? 
Shatt: it’s like a regular polygon is like, like up to:: (look down at something in front of her) six 
sides. three up to six sides and, like, regular polygon is like a hexa-a hexagon a qaud-whatever’s 
it’s called and a triangle. 
RL: so you know KINDS of regular polygons.  <what has to be true of all of those kinds?> what 
makes them regular? 
(Shatt looks down at what’s in front of her) 
Shatt: cause they all have °sides, and angles?° 
RL:  they all have sides and angles? so. I’m going to write down what you said over here. (walk 
to other board on the side of the classroom) um (writes as he speaks) all, 
regular…polygons…have, sides…and angles. (turns to face class) okay…um::….so Shatteryia. 
from that point of view (walks to other board) does this (points to rectangle) have sides and 
angles? 
Shatt: yes. 
RL: okay does this have sides and angles? (can’t tell what he’s pointing to) 
(Shatteryia nods) 
RL: so, according to your definition (points to definition written on other board) are::-is this 
(points to rectangle) a regular polygon and is this (points to square drawn on board) a regular 
polygon?  
Shatt: yes 
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RL: yes. (nods once) how many people agree? with Shatteryia? that IF we define a regular 
polygon as having sides and angles (points to definition on board), THE::SE two, are regular 
polygons. 
Jee: °no:: ° (shakes head no) 
RL: …(Jeewar raises his hand) well:: (looks toward Jeewar) no? yes? how many agree? stand up 
if you agree with Shatteryia. (Michaela, Kayla, Daniel stand) NOT that you agree that this is 
your definition of a regular polygon but rather (Rhonda, Tim stand) IF we define a regular 
polygon to have a polygon that has sides and angles (Courtland & Amani stand) would we have 
to agree? (Justin stands) that this (points to rectangle on board) and this (points to board) are 
regular polygons? (walks to other board) okay (Shatteryia, Kenjra stand up) I’m going to say it 
again. (writes “polygons” on board with the rest of the definition) 
RL:  Shatteryia’s definition has three pieces. she says that a regular polygon IS a polygon. okay 
it has, (waves hand) <sides, and, angles.> so:: I want to know if you use that as your definition of 
regular polygon, is this a regular polygon? (Courtland sits and writes, Dilovan stands) those of 
you that agREE, sit down. those of you who disagree stand up (Louisa, Jeewar, Courtland, Nick, 
Vincent, Omari, Brandon, Micah stand) okay. um:: Brandon. <why do you disagree?> 
Bra:  well uh. I would say cause regular polygons have um equal sides. 
RL:  well Shatteryia’s definition, says-it doesn’t say anything about equal sides…<I-I’m not 
saying that, everyone accepts, Shatteryia’s definition> but I’m saying IF we did I want you to 
play, like a PRETEND game. IF we accept it. okay IF we decided to call regular polygons those 
things that had sides and angles, then I want to know whether or not we would have to call this 
square (points to square on board) and this rectangle (points to rectangle on board) regular. 
(Louisa shakes her head. Students are talking to one another quietly.)  
RL:  okay according to Shatteryia’s definition…the only requirements are that they have sides, 
a::nd angles.   
Vin:  but she’s saying a REGULAR polygon.  
RL:  well she did say that but I-I just want you to go with it.  IF we accept Shatteryia’s definition 
of a regular polygon. IF. IF. then I want to know whether or not, we have to accept THIS (points 
to square on board) as regular and THIS (points to rectangle on board) as regular. 
Vin:  but you said the SQUARE is regular. But um but um. 
RL:  well, let’s look let’s reason with the definition. okay how many sides do you see here 
Vincent? 
Vin: four. 
RL:  how many angles do you see? 
Vin: two. 
RL:  two angles? can you show them to me? 
Vin: I mean four. 
RL:  you mean four?  
Vin: yeah 
RL:  where are they? 
Vin: (points) over:: across 
(RL points to the top left corner of the rectangle on the board) 
RL:  here? is this one? 
Vin: yeah 
 
------------------------------------------------ 
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DEFINITIONAL EPISODE #7 
[00:32:15:23] 
 
RL: what makes an angle again? I-I don’t know if I ever got that. wha-what makes? 
Lou: oh the sides. 
RL:  sides?  okay (throws arms up) I’m going to do it. (turns and walks to the board) here’s a 
side (draws a line) and here’s another side (draws a line separate from the first one). 
(Micah jumps up and down raising her hand) 
Lou: no, that’s not a side it has to be straight. 
S: connected 
RL:  This is very straight and this is very straight. 
(Many students speaking at once) 
(Jeewar raises his hand) 
Jee: uh::: 
Lou:  but it has to be the same 
Sha: but it has to be connected 
Ama: so that’s what he was- 
RL:  oh CONNECTED. oh. connected sides. (draws two lines that are connected at one point) 
Ama: that DOT was an angle. 
RL:  so:: 
(many students begin talking at once) 
Jee: (waving hand frantically) no Dr. Rich, 
RL: not an angle? 
Mic: yeah it is. 
Jee:  Dr. Rich (starts walking to board) 
Dil: It has to be 90-degrees. 
RL: oh it has to be NINETY DEGREES. okay. 
Mic: no. 
Ama: no 
(many students say no. many people are talking at once) 
Ama: there’s ACUTE angles 
RL: (draws right angle on board and points to it) only these are angles? 
Kay: there’s different kinds of angles. there’s like sixty so it doesn’t have to be. 
(noise quiets) 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #8 
[00:33:29:18] 
 
RL:  alright SO. we have to get untracked here a little bit SO. let’s just say this. if we follow the 
definition, that Shatteryia proposed. we would have to accept THIS (points to rectangle drawn on 
board) as regular.= 
Ama: =yes= 
RL:  =because <it has sides.> and it has angles. a::nd it’s a polygon…and that’s that. it’s regular. 
according to Shatteryia’s definition. if you don’t like Shatteryia’s definition what would you do 
to it? to make sure that this (knocks to rectangle on board) does NOT get in. (Micah, Kayla, 
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Amani, Jeewar, Courtland, Nick, Rhonda, Omari, Vncent raise hands—can’t see Kenjra, Michala 
or Dilovan) 
RL:  um::. um::. I haven’t called on Micah yet. 
Mic:  um. you would have to say all regular polygons have, the-e sa::me…all the sides have 
sa::me, (RL is writing as she speaks) 
Dan: equal 
Ama: equal 
Mic: uh length 
Dan: equal sides 
Mic: <and um> the angles all:: meet one degree. oh not one degree but uh…uh like all of them 
have ninety degrees or all of them have sixty degrees or all of them- 
RL:  okay.  can I use these words? (points to board) 
Dan: °sides congruent° 
Mic: yeah  
RL: all the= 
Mic: =yeah 
RL: sides are congruent? all the angles are congruent? if I lay those angles on top of one another 
(shows with arms) I couldn’t tell?  
 
------------------------------------------------ 
DEFINITIONAL EPISODE #9 
[00:34:43:24] 
 
RL:  A-Amani? 
Ama: um::…yeah but um I was waiting for you to like, pass some of that part so I could tell you 
when you was talking about that point part. when Vincent was talking about symmetries, you 
asking what was that called? that, was the angle, that you were trying to get us to say. not a 
vertex, that’s- the point was an angle. 
RL:  okay. so. (turns to board, points to the square that Kendra had drawn)   what’s the difference 
(turns to look at Amani with confused look on his face) between a vertex and an angle? 
Ama:  well::, the vertex, well is like, when two things come together and makes like um, like 
four-more than um two things fittin’ together it makes like a little,  
Dan: °circle° 
Vin:  circle 
Ama:  <middle> circle  
RL:  it makes a circle? 
Ama: mmmhmm 
RL: so. if I have three things (draws an “x” on the board) four things. how many things? do I 
have here. THINGS? what are THINGS? I’m-I’m confused (shakes head) 
Ama: like this (takes out piece of paper) like what we did, um…is put different shapes together= 
RL:  =yup 
Ama:  like the square and the triangle.= 
RL:  =yup. 
Ama:  and I think this was a hexagon (points to paper) 
RL:  you were trying to see how they would fit? yeah. 
Ama:  like these circle (points to paper) like if it makes like  
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RL: oh those CIRCLES. 
Ama: (             ) that’s the vertex. 
RL: okay. so what is a cir-is a circle a vertex? 
Lou: >yes< 
Ama: not just like a  
Mic: no um  
Ama: plain circle it’s like if it MAKES a circle. 
Mic: see when all of them are together (gestures with hands in circular motion) 
Ama: all of them (      ) together. 
Lou: the middle where it like joins together is a vertex. 
Mic: where all the shapes connect, yeah. 
RL:  okay what if I just have a square (points to drawing of square on board) like here.  
Lou: that’s not a vertex.  
(lots of students talking at once) 
Mic: you have to have more than one. 
Ama: it’s like if you have= 
Kay: =you have to have more than one shape. 
Dan: more than one polygon (     ) 
Ama: like <if you draw four squares together> when angles,  
Kay: when all angle touch 
Ama: together. 
Kay:  when all the angles touch (laughter) 
RL: so, let’s play. let’s play. u::m 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #10 
[00:36:39:27] 
 
RL:  if I change my definition let’s apply that and let’s get back to this angle vertex thing? 
Alright. So. let’s play the definition. IF I say that the sides have to be congruent and the angles 
have to be congruent? SHATTERYIA is this a regular polygon? 
Sha: yes. 
RL: look at the definition. what does the definition say Shatteryia? 
Lou: sides and angles congruent which means they have to be the SAME. 
RL: what does it say? 
Sha: all polygons. all regular polygons have a polygon 
RL: okay they’re polygons WITH? 
Sha: with sides (               ) 
RL:  yeah and maybe I should say ALL sides? congruent. ALL angles congruent?  
Sha:  °yes° 
RL:  alright so Shatteryia. are all the sides here (points to rectangle on the board) congruent? 
huh? 
Sha: yes if you draw it correctly. 
RL: wh-if I draw it correctly? 
Sha: mmhmm 
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RL: you mean? how could I draw it correctly and make one (points to side labeled “1”) the same 
as two (points to side labeled “2”)? 
Vin: it’s impossible. it’s impossible.= 
Sha: =no 
RL: huh? 
Sha: never. 
RL: never, right? okay. SO. Shatteryia. looking at the definition that the class is using? the 
classes’ definition, what most people are using?....°okay.° draw me something…that 
is::…regular. oh you put your glasses on good idea…come on up here and draw me something 
that is regular. 
Sha: like a regular polygon? 
RL:  I want a regular polygon. 
(short talk about sitting down) 
RL: okay Shatteryia’s going to draw a regular polygon. let’s see if we agree. (Shatteryia draws a 
square) Courtland, is that a regular polygon? 
Cou:  yes sir. 
RL:  you think it is? how do you know? 
Cou:  because it has same sides and uh, well the sa::me sides <uh congruent and the angles.> 
RL: and the angles are all the same? they’re congruent too? 
Lou: mmmhmmm. 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #11 
[00:39:27:00] 
 
RL:  alright. I want to get back to this angle thing. I would like you to take out a piece of paper 
and work with your partner and your table to draw outside of a shape, I just want you to draw, 
not a shape, but 5 different angles and how do you know that they're different. 
 
[00:39:57.03] 
 
 
[00:52:35:16] 
RL:  Nicholas, I'm going to start with you. You tell me you have 4 different angles up there, tell 
me what you're thinking. Tell us. 
Nic:  Well I was thinking if you have 4 of the same angles and they're turned different ways, it's 
not really the same angle, I mean they're the same angle, they're just turned different ways. 
RL:  Ok, can you - 
Nic:  I thought maybe they'd be different angles. 
RL:  What make them an angle? Tell me, tell us about how you're thinking that when you go like 
this, you make an angle, how you thinking about that? 
Nic: (pause) I was just thinking if you had 4 for example, 4's just a straight line, that's an angle. 
RL:  A straight line is an angle? 
Nic:  Yeah. 
RL:   Why do you think so? 
Nic:  because say you're going to draw a square (draws a rectangle). 
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RL:  Yup. 
Nic: This part right here (circles one side) this (points to one of his angles) is part of the angle of 
the square. 
RL:  Okay, it's part of the angle of the square?  How many angles does that thing have that you 
just drew? 
Nic: 4 
RL: 4, can you point to them? 
Nic: (points to each of the sides) 
RL:  Okay, can you point to the 4 sides? 
Nic:  (points to the same things) 
RL:  Okay, what's the difference, in your thinking, between a side and an angle? 
Nic:  (pause) I don't really know. 
RL:  Okay, so for you right now, the way you're thinking about it, a side and an angle could have 
the same meaning. 
Nic:  correct 
RL:  Okay, so you were thinking that because these were oriented in different directions, they 
would be 4 different kinds of angles. Okay good, thank you Nicholas. Thank you for sharing 
your thinking. I'm going to ask, uh yes, Tim? You want to talk to us about yours? no? did you 
want to ask nick a question? No? 
Tim: (?) 
RL:  Well why don't we let Courtland and Devalon (discussion about how to pronounce his 
name). Okay go ahead. 
Jee:  We are saying that this is an angle (points to angle labeled 60), mostly when you have a 
square, the si-the corner, for example, like here's one side (gestures over the arc he has drawn for 
the angle). This (points to the 90-degree angle) is what it would be like if there was like a square. 
One of the corners of the square. 
RL:  Okay would you point to the angles on Nicholas's drawing, just so I can, on the thing that 
he just drew - the shape that he just drew. In your view, where are the angles? 
Jee:  (points to a vertex) right there. 
RL:  How many are there? 
Jee:  there are 4 angles. 
RL: they're what? 
Jee:  four angles. 
RL: can you show me please? 
Jee: (draws in arcs at each angle) 
RL:  does everyone agree with jeewar? four angles? thank you jeewar. So, continue with you 
Jee: you can have a 60-degree angle, a 30-deg angle, a 90-deg angle, a 180-deg angle, and a 360-
degree angle. 
RL:  So you agree with nicholas then that those are 4 180-degree angles? that he wrote? 
Jee: yeah 
RL: ok. any questions for this group from anyone else? louisa has a question.  
Lou:  why did you put, why did you put just half of a circle instead of like 90-degree. like a 
square that's saying it's a right angle.  
Jee: you can do both ways 
Lou: yeah, but if you did that in like a regular classroom, they would think that you're saying 
that's a different angle. 
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RL: Vincent would you like to comment upon Louisa's comment or do you have a different 
question. 
Vin: I have a different question. Now if, now those 4 that nick did have the same are the same 
angles, just pointing in different directions, but you're agreeing with him. I don't know how you 
could agree with him, but they're the same exact angles, but just pointing in different directions. 
Jee: well nick said that this (gestures over the side lenght?) not this (points to angle). We're 
saying that this is an angle and he's saying that that's an angle.  
RL:  Well nick was saying that was a side and he wasn't quite sure about how to distinguish a 
side from an angle, but he drew 4 different lines and it looks to me that what he drew is a lot like 
what you drew for number 4.  
Jee: that's a 180-degree angle. 
RL: that's a 180-degree angle. So. Is that what you're saying Vincent or are you saying 
something else?  
Vin: I'm like asking, like how could, like those, like those four lines are the same exact angles, 
they're just pointed in different directions. 
RL: okay, so in your view, they're not 4 different angles, they're just pointed in 4 different 
directions. 
Vin: yes.  
RL: so is that the point you're trying to make? 
Vin: yes. 
RL: okay, good. 
Mic: I kinda agree and disagree cause if it they could be different angles if you added another 
line to it, where the corners met, and it could be different angles. 
RL: Okay, so you could consider a way that you could adjust it so it might be different angles, 
but the way they stand right now- 
Mic: they're all the same. 
RL: they're all the same. 
Jee: here's an example of one way (?) a 60-degree angle. A triangle (points to a triangle he has 
built around the 60 angle) 
RL: uh huh. 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #12 
[00:59:30:14] 
 
RL: um may I ask what makes something an uh what does it mean when we say that it’s ninety 
degrees. what’s a degree? I’m not sure I have understood THAT. what’s a DEGREE? 
(Courtland and Jeewar raise their hands) 
RL:  uh:: Courtland? 
Cou:  I think it’s the size. 
RL:  it’s what? the size? and what about how do you measure the size of an angle? 
Cou: by uh:: 
RL: by what? 
Cou: uh:: (shrugs) I don’t know. 
RL: okay uh (Jeewar raises his hand) yes Jeewar? 
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(shows that one starts at zero and by rotating quarter turns, the angles increase by 90-degrees 
each time) 
RL: okay, so what’s ONE degree? 
Jee: a tiny turn. 
RL: a very tiny turn? how MUCH of a very tiny turn? 
Ken: not even 
RL: not even half of a turn or a quarter of a turn? I agree. how much of a turn is a degree? 
… 
Dil: one eighth? 
RL: one EIGHTH? one eighth of a turn? does everyone agree? 
Jee: or:: or:: or a ten, out of three hundred sixth degrees. 
RL: ten out of three sixty where’d you get ten? 
Jee: like I was just thinking if I’m going here (rotates a quarter turn) that’s like 
RL: how many is that?= 
Jee: =if that’s 90-degrees- 
RL: okay so we say a quarter turn is the same or equivalent to ninety degrees? (writes this on the 
board) okay so if I have a circle (draws a circle) and I start here (draws arrow pointing up) and I 
turn a quarter of a turn (draws arrow pointing to the right and motions a quarter turn with his 
marker) right? that’s the same thing as 90-degrees? if I turn another quarter of a turn how much? 
(draws an arrow pointing downward) 
Jee: one eighty. (writes “180°”) 
RL: if I turn another quarter of a turn? (draws an arrow pointing to left) 
Jee, Vin: two seventy. (writes “270°”) 
RL: if I turn all the way? 
SS: three sixty (writes “360°”) 
RL: three sixty? so if I:: so they’re ninety what?  
SS: degrees. 
RL: DEGREES. ninety DEGREES. (writes “90 degrees” on board) degrees so:: HOW much is 
one degree? How much of a turn? 
Jee: one out of three hundred and sixty.  
RL: one out of what? 
Jee, SS: three hundred sixty. 
RL: okay. another way to think about a degree it’s one out of three hundred and SIXTIETH of a 
turn. (writes “1/360 turn” on the board) everyone get up. >up up up<  
(students stand up, talking amongst themselves)  alright. I want you to hold your right hand up 
(holds up arm in a right angle. Students follow his lead) alright. I want you all to TURN one 
fourth of a turn in the right direction (everyone turns one quarter turn as indicated) okay lets go 
back (turns so that he faces the board. The other students do the same) okay. okay I’m gonna turn 
to my right (waves right arm). okay I’ll start turning. you tell me when to stop when I reach a 
quarter of a turn. ready (rotates tiny steps at a time) ch-ch-ch-ch-ch-ch (he reaches about a 
quarter turn) 
SS: stop. 
RL: how many degrees have I come?  
SS: ninety. 
RL: okay watch this turn. (he rotates back to facing the board and then rotates with little steps 
again) ch-ch-ch-ch-ch-ch-boom (stops at somewhere in between 0 and 90) 
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SS: eh:: (sounds like a buzzer) 
RL: how much of a turn is that? 
Jee: sixty. sixty. 
Ama: sixty. 
Tim: about three six. 
RL: about sixty you think? 
S: yeah. 
RL: alright. 
Jee: maybe you 
RL: (rotates back to face the board) tell me when to stop. I want to turn a half turn. ready? (he 
turns a quarter turn) 
Ken, S: stop. 
Jee, Lou, SS: no::. 
SS: no. 
Ama: come on, keep going. 
RL: (rotates more until he is facing them) 
SS: stop. 
RL: alright. how many degrees was that? 
SS: one eighty. 
RL: how much? how many degrees are in an entire circle? 
Vin: thirty-three sixty. 
SS: three sixty. 
RL: okay. I want everyone to turn…right…three fourths of a turn. let me see you do it. 
(students turn, several counting the quarter turns) how many degrees did you turn all together? 
Lou: three sixty. 
SS: two seventy. 
RL: HOW many? 
Mic: two seventy. 
SS: two seventy. 
RL: two seventy. 
Jee: who said three sixty? 
RL: alright now. I want to go back to where they started. (the students turn to face the front of 
the class. RL remains facing them) I want you to turn, one whole turn around. 
(the students and RL rotate until they reach their starting place) (turns as he talks) one:: whole 
turn. 
(students turn along with RL) okay. HOW many degrees did you turn? 
Jee: three sixty. 
SS: three sixty. 
RL: alright now I want everyone to turn ONE three sixtieth of a turn. 
Lou: what? 
Ama: we just did it 
RL: ONE three sixtieth 
Lou: oh:: 
Ken: oh no we gotta do it just a tiny bit. 
Ama: just a ti::ny little bit. 
RL: uh uh. I should hardly be able to see the motion. 
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Vin: look. I did it. 
Tim: oh. like this like this. 
RL: okay a quarter of a turn would be like this (rotates a quarter turn) but a three SIXTIETH? 
<very very> small part of a turn. alright? so that’s another way to think about what an an-what a 
MEASURE. what a degree is. we can think of how much (walks towards board) if this is a right 
angle…(draws a right angle on the board) we can think of it as:: how much we turn to go from 
here (points to one side with marker) to here (draws arc down to other side). how much do we 
turn? okay. and that is one fourth or NINETY three sixtieths. (walks to board again) so ninety 
three sixtieths (writes 90/360) … okay. how many nineties in 360? 
SS: four. 
RL: okay. (writes as he talks) ninety plus ninety plus ninety plus ninety  
Vin: equals 
SS: three sixty 
RL: alright so:: if I divide the numerator by ninety? and the denominator by ninety? 
Lou: you can’t just 
RL: what’d I get? 
Dan: one 
RL: one what? 
SS: one eighty 
RL: (shakes head) huh? how many nineties in three sixty? 
SS: four. 
Lou: you could have just multiplied ninety times four. 
Vin: one twenty. Nevermind. 
RL: nono. so. these are some things we need to think about when we think about what this 
measure means 
 
[01:06:23.00] 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #13 
[01:08:39.24] 
 
RL: And a vertex. where's the vertex nicholas? Come and point to it. 
Nic: (gestures along the arc drawn inside the angle) 
Lou: that's a vertex? 
Nic: oh I forgot. I forgot. 
Lou: you can't see a vertex. you can only see it going all (?). 
RL: Vincent, where would you see a vertex here? 
Lou: I think it's right there (points to vertex) 
Vin:  yeah, it's right there (points to vertex) 
RL: you think it's right there? you agree with Louisa. 
Tim: yes it is. 
RL: Alright so. From now on, we'll say the point where these two lines meet, we'll call that a 
vertex. I'm just gonna say from now on, write this down in your math notebooks, we're going to 
call that a vertex. 
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[01:09:23.25] 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #14 
[01:13:23.04] 
 
RL:  Now here's a couple of questions for you. Suppose I had one line and it met another like 
this. ready? (draws an angle) and then someone said to me I'll draw you a different angle, watch 
this. (draws same angle with lines extended). Do you agree or disagree that I've now drawn 2 
different angles. 
Jee: disagree 
Ken: disagree 
RL: okay, if you disagree, who disagrees? 
Jee: me 
(a few students raise their hands) 
RL: alright Daniel, why do you disagree. Oh. Rhonda disagrees too. First Daniel, then Rhonda. 
Lou:  Me, me too. 
RL:  yeah how come? Why do you disagree? 
Dan:  Why I disagree is that it's uh, can you say that again? 
RL:  Yes, I say that i've drawn two different angles here. And you disagreed with me. You said 
no you didn't. They're the same angle. So now I say to you. How - why do you think they're the 
same angle? 
Dan: I think they're the - uh 
RL: Cause look how much longer this is. 
Ken: but it's still the same angle. 
Vin:; but it's still the same thing 
RL:  what do you mean it's the same angle. Watch this, watch this. see I'm going to measure the 
angle from here to here (draws a line through the width of the angle) look how much longer that 
is than from here to here. 
Ken: but look at the actual angles themselves. 
Vin: why don't you scoot that one up. 
Ama: yeah, scoot it up. 
RL: oh you want me to scoot it - oh, if I scooted it up it'd be- 
Vin: so (?) if scooted it up, it'd still be the same angle. 
Ama: not  the way 
S: it'd be half of. 
Ama: like half of it. 
(students talk all at once) 
RL: so I would measure from here to here and here to here (can't see gesture) and have to put it 
in the same place, if I'd wanted to use that as a measure.  
Lou: If you want to use that to measure, you have to make it the same. 
RL: alright so. alright. i'm gong to get rid of that and i'm going to get rid of that (appears to erase 
the lines). So, tell me if i thought about it without using these lines, how could these be the same 
angles. 
Jee: right here (points to something - can't see) 
Vin: yeah, right there. right where he's (?) 
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Jee: (draws in arcs in the angles) 
RL: what do you mean - 
Vin: it's the same exact angle. 
RL: look all I see are squiggly lines there. What do you mean? but how do you know that? what 
would have to be true for them to be the same? 
Cou: if uh, they was the same uh, same size. 
S:  same degrees. 
RL:  Same degrees? alright so if I wanted to know if  
Vin: they have the same vertex. 
RL: Alright, so here's a vertex. here's a vertex (darkens in the vertices). okay you guys have to  
Vin: but they have the same exact vertex. 
RL: you have to back off so that. So. if I measured how much of a turn I did (draws in a dotted 
arc for one angle), from here to here (rotates marker to show angle), right? ready? ch-ch-ch 
(rotates marker again) let's call that 90? 
Lou: but Dr. Rich if you wanted to measure that- 
Ken: uh uh, that's not 90-degrees 
Lou: it's not, if you wanted to measure that, you'd have to make the line longer so then it would 
be like fair. 
RL: why do i have to make the line longer? Why can't i just use this point and orient it on the 
line and just turn it like that? 
Lou: it wouldn't make sense. Like 
RL: what do you mean it doesn't make sense? 
Lou: it wouldn't 
RL: well. we'll have to come back to whether or not we actually believe this, but if I turn and I 
have the same amount of turn, let's say that in each case, I turned 85 three sixtieths (writes 
85/360 under each angle), would they have the same - would they be the same angles? 
S: yes 
S: yes, no 
SS:  no:: 
Jee: yes.  
S: yes. 
Jee: what did you say? 
RL:  i said if I wnated to move, if I wanted to rotate this onto the other line or side, and I moved 
85 three sixtieths of a circle this time, and 85 three sixtieths of  circle that time, I want to know if 
those angles are the same or different. 
Jee: same 
RL: okay, they're the same. they have the same measure? 
S: yeah. 
RL:  alright.  
Jee: what's hte difference? 
RL: well, i'm just asking. 
Vin: it's measured 
Ama: (?) magnifying glass 
Vin: it's dependant on what's you, it's dependant on what - 
RL:  Suppose I took this angle (points to a ninety degree angle on the board), and I turned it 
(rotates hand) but I kept everything else exactly the same. So in other words, I did this (holds two 
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markers together at 90). Ready? I do this and then i do this (rotates markers, keeping angle). 
Have I changed the angle? 
SS: no:: 
RL: What have I changed and what remains the same? 
SS: direction. 
RL: I changed direction 
Lou: yeah, but the thing is -  
RL:  But the measure remained the same? 
Vin: yes. 
RL: so something did change and something did stay the same. 
Ken: but it's not the angle that changed. 
RL: okay it's not hte angle measure that changed, but the orientation did. 
  
------------------------------------------------ 
DEFINITIONAL EPISODE #15 
[01:19:04.07] 
 
RL:  So. I never did ask you this question. Everyone keeps talking to me about straight sides. I 
never did hear what made something straight.  
Lou: You have to make it straight, or else it wouldn't be the correct measurement. 
RL:  Now, look. I'm from Mars. I don't know what straight means. Someone tell me what straight 
is. 
Lou: Straight means that 
Ken: wait a minute. what does straight mean? 
RL: yeah, what does straight mean? 
Lou: straight means that 
Vin: it's straight! 
SS: (laughter) yeah 
Ken: it's a line that goes down without (?) 
Lou: it's a line that goes down without 
Jee: parallel. 
(students talking at once) 
Vin: straight is straight. 
RL: straight is straight? what? 
Lou: it's a line that goes down without curving or  
RL: (to Vin) that doesn't help me. Daniel. Alright chill. chill. chill. that's 60s talk for calm down. 
It's a little late, but here's what I want you to think about for the next time you have class. How 
could you tell somebody who didn't know what straight meant and couldn't actually see it, they 
would just have to do something to draw it, what would they do to make something straight? 
How would they know? 
 
[01:20:21.16] 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #16 
[01:20:59.28] 
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Lou: we were discussing about the angle and how it could be different and how like the angles 
would be used in shapes and so like what I did (points to drawing of straight angle labeled "180") 
was that I used 180 um, agreed as an angle used for squares and rectangles. And, I guess like 205 
degrees, mostly used for polygons, hexagons, octagons- 
RL: where's the 205, can you show us? How do you know that's 205? 
Lou:  well how do you know that's 90? 
RL:  well, because, 90 is about a quarter of a turn, so if i were looking for 90 in this, i'd say that's 
about there, from there to there is ninety (draws a line in her angles and gestures along the arc). 
So that's why i'm asking you that. 
Lou: are you saying that there's 90 lines in that area? 
RL: what am I saying when i say 90? 90 what? 
Ken:  90 degrees. 
RL: it's a part of a rotation, right? not a line. 
Vin: I got a question. How can, how do you know something is 360-degrees? 
Lou: I know. 
Vin: how do you know that? 
Lou: do you have to count? 
RL: alright that's a good point. we would have to make a definition, right? Because unless we 
define things, you're right. we never know what it is we're talking about. So we just said that we 
would like the total num-amount of turn to partition that circle into 360, but we could have 
partitioned it in some other way. Right? so. Just because we've all agreed in the past that a total, 
one whole turn will be the same as 360ths, 360 360ths. Right? and the reason for that actually 
kind a goes way back a couple of thousand years  ago from the people who originally were 
thinking about this. they were operating in a different grouping. we grouped in ten, they grouped 
in 60s.  
Vin: okay like, so but, so i could say a whole entire circle could be a 180. 
RL: you could say it and then you'd have to show us what you mean. You'd have to define it. 
And once you did that, just like remember Shatteryia said to us, I would like a regular polygon to 
be, to have sides and angles. And we said, IF you agree to define a regular polygon that way, 
then we would have to allow this rectangle and this square (draws rect and square) both to be 
regular. But we said that we would like to define a regular polygon as having all sides congruent, 
all angles congruent. That meant that this was regular (points to square) and this was not (points 
to rectangle). But it is a matter of convention. And we start somewhere, like with these 
conventions, and then from there, we build, but unless we get out definitions right, unless we 
know what we're talking about, all our buildings are shakey. So, that's why i'm asking you these 
question. What is straight? Cause so far, everyone seems to be using it, but i'm not sure that 
we've actually decided what it means. As long as we've decided what it means, and we agree, 
then we can all use it the same way. 
Vin: I wonder how these people come up with this. 
RL: hmm? 
Vin: i said i wonder how these people come up with these things. 
Ken: yeah like the alphabet. 
Tim: or like words 
RL: well, we're going to try to give you an opportunity to come up with stuff. and then we'll see 
how you come up with stuff. I bet the way you come up with stuff is a lot like the way other 
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people come up with stuff. So, yeah, that's a good point right, how do they do that? Well i 
wonder if it's so mysterious or if we can do it too.  
Mic: I bet we could do (?) 
RL: huh? 
Mic: I bet we could do it. 
RL: I can't hear you Micah. 
Mic: I bet we could do it. 
RL: I bet you could do it too. We did some of it last year, didn't we? 
Mla: okay. we got acute angles. (reading from what she had written on the board) acute angles 
are less than ninty degrees and are mostly used with triangles.  
Lou: nuh-uh. also with some other ones. 
RL: okay so you have a classification system for angles the same way we have one for polygons? 
Mla: yes 
RL: alright so:: what makes an angle acute? I wasn’t sure sure I understood that. 
Mla: it has to be less than ninety degrees. 
RL: less than ninety? what makes it obtuse? 
Lou: it has to be more than nin-ninety. 
RL: more than ninety?  
Lou: ninety or three hundred sixty degrees (shrugs) or something like that. 
RL: or something like that? 
Mic: I have a question. 
RL: alright. Micah has a question for ya. 
Mic: um well this just came to me. 
RL: could you speak in a loud math voice because of this blower here? 
Mic: I just thought of this and how is there an angle above three sixty? if there is. I don't know. 
SS: (speaking all at once) 
Mic: Is there an angle ABOVE 360? 
Ken: well 
Mic: like over like 360, 370 degrees. 
Ken: it won't be a straight line  
Vin: well since those people whoever they were made that up. 
Lou: well since they created- 
Ama: well why can't we make it up. 
Vin: yeah that's i'm asking. 
RL: (has written question on the board) we'll take as given that one full turn around a circle is 
360-degrees.  
Lou: it's like ABC, you go all the way to Z and you have to start all over again. That's the same 
thing as that. 
Ken: I got it, I got it. 
RL: so. that's something worth investigating. 
Lou: It's like ABC, you start from A to Z and then you start all over again. 
DL:  Is there a situation in which you might see that sort of thing? Come up with (?) 
(Kenjra has drawn a circle and said something - hard to follow) 
RL: well we're saying you measure in terms of a turn. 
Lou: unless if you made it a whole different style. You know words go on for- I mean numbers 
go on forever. But. 
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Vin: (?) 
Ken: Who made up numbers? Why did they make up numbers? 
RL:  Jeewar, you have the closing comment of the class. Go ahead. 
Jee: that's 360 and then you could go to 4 hundred and 50.  
RL: how? 
Jee: you could 360 turn (gestures in an arc) you make another type of bigger circle, same thing 
again. 
RL: so jeewar - wait a minute, you're saying a bigger circle has more degrees in it? 
Lou: but it'll still have 4 if you divide it. So it make no difference, it's still going to be the same. 
Jee: no difference 
Lou: unless you made more um parts into it, that'll make it different but 
Ken: but wait a minute, don't it depend on the circle size? of  360 angle? 
RL: you mean, so are you saying that if the angle 
Lou: yeah, it makes more 
RL: if the circles are bigger (gestures in circle) they have more degrees? 
Lou: yes you make more degrees that (?) 
Vin: the smartest person in the world who made this up. 
RL: no no I don't think it's the smartest person in the world. 
Vin: Okay, it's not the smartest person in the world, but you had to be pretty good to come up 
with these  
Jee: dr. Rich 
RL: well um, you think that we could come up with some of this stuff? 
Lou: yeah, and then give it to the government and put it into the little education. 
RL: Alright we are now going to investigate this question. we're going to see if we can come up 
with anything. The question is. And this is what math will be next time. We're going to 
investigate this (points to question written on board). Is there an angle above 360? More than 
360? 
Lou: unless  you make more degrees. 
RL: how do we make angles again? what do we do? 
Ken: by squares. 
RL: well, there are other ways of making angles. Not all the things here were squares. 
Lou: But Dr. Rich, circles are mostly divided by even numbers.  
RL: wait a minute. Let me ask this question. How do we make, how did you make an angle. 
What did you do? I didn't ask you how you measured it. How did you make it? What? 
Vin: I drew straight lines. 
RL: okay 
Ama: putting them (?) 
RL: okay you had two 
Mic: putting two lines together. 
RL: lines that met. And where they met, we called that a what?  
SS: vertex 
RL: a vertex. So you had two angles that met at a vertex. And we measured them by trying to 
think of how much of a turn it would be to move one, rotate one, onto the other. Okay? So that's, 
those are the conceptual tools I want you to think about when you think about this question. Is 
there an angle greater than 360? 
Lou:  can we write our explanation about what we think? 
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Vin: but i don't get how if 360 is a full turn, why would they create numbers over that? 
Lou: numbers go on forever, so there's no (?) 
Vin: so there has to be an angle over 360 if numbers go on and on. It just doesn't stop at 360. 
RL:  I don't know. It depends on how we think about it. Right? 
Ama: And children are going to (?) 
RL: yeah, they are. 
(students talking) 
RL: okay so next class we have to do 2 things. We have to figure out how we're going to 
investigate this question, okay? And then how we would reach a conclusion about it. That's what 
we'll be doing. We need to investigate this question. I'm coming back on Tuesday. I think. Mrs. 
Lucas. Thank you. I'll be back on Tuesday. In the meantime, I don't want you daydreaming, I 
want you thinking. So. Think about how you might answer this question. 
 
[01:31:50.05] 
 
DAY 2 
 
DEFINITIONAL EPISODE #17 
[00:02:54.20] 
 
RL:  Now when you say degree, what's one degree? Would you remind me again? Someone 
remind me. Oh alright go ahead Jeewar. 
Jee:  Uh a tiny bit like not even your body moves at all. 
RL:  So if I'm standing here. You stand and show me a degree. A turn of a degree. 
(Jeewar stands and slightly turns his body to the left) 
RL:  Just barely moved? Barely rotated. Alright so if I wanted to be a little bit clearer about what 
a degree is cause we can't all get up and just move a little bit. hmmm. Shatteryia. 
Lou:  (raises hand) oh I know, I know. 
RL:  Tim? Help me here. What's a degree? How much of a turn is a degree? How can I think of 
it. I know it's just like a little bit, but how much? 
Tim:  One degree. 
RL:  One degree. Yeah. That's what I want to know. What's one degree? 
Lou:  I know 
Tim: ... 
RL:  Just a slight bit I agree. (several students have hands raised) Yeah. Good. Who can add on 
to that? Dilovan. 
Dil:  One three sixty. 
RL:  One three sixty? 
Lou: (raises hand again) I know. 
RL:  One three sixty of:: the notebook? (holds up notebook) 
Lou:  No it's one three sixteith of a circle. 
RL:  Oh of a circle. Okay. So.  
 
[00:04:17.04] 
 
------------------------------------------ 
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DEFINITIONAL EPISODE #18 
[00:18:45.28] 
 
RL:  Nick, come and interrpret this one for us. What is Kenjra trying to show us? Interrpret. 
What is she trying to show us? Other than I have a full head of hair. What is she trying to show 
us? About what I did.  
Nic: That on the first one, you turned 180-degrees and on the second, you turned 90 degrees. 
S: That's backwards 
Sha: Cause she got a  
Vin: That's backwards. 
RL: Okay so we're not sure what this 180 refers to? 
Nic: (shakes head) uh uh.  
RL:  But we see that there are two 90s. So it looks like we might (gestures over the drawing) 
Nic: and there's a 2 (points to something on the drawing). 
RL: Right, and maybe she means for us to grab the two 90s and make 180? Okay. Now, that's 
good. Alright, so this has some things that I did, right? I did, you can see htat it's me. Right? very 
clearly it's me. Who else could it be? and I turned this time, how much did I turn? 
SS: 90 
RL: 90. And then this time? 
Vin: 160. 
Jee: 170. 
Vin: 160 
S: 180 
Lou: no 
RL: somewhere between 90 and 180? 
SS: yes 
RL: alright. 
Nic: since you put the 180 up there, since you put hte 90 right there by the 90, why would you 
put the 180 up here and not down here? 
RL: Okay, so thank you. Have a seat. And, Tim, come on up and help us udnerstand what this 
person's trying to show and how's it alike and different than what Kenjra did? 
Tim: This person's trying to show that the first time you turned 90-degrees (writes 90).  
RL: okay? 
Tim: And this one (points to Kenjra's) What did you want abou this one again? 
RL: Well I just wanted to see what was alike and different. So, like for example, Kenjra has the 
90 represented right? The same way this person does, but it's not quite as clear that the 90 refers 
from here to here as it is in this one (gestures over arc). But what about this (points to other 
drawing). What are they trying to show here? 
Tim: They're trying to show like a second turn, you turn like a slightly turn after you turn 90 
degrees, you like turn 179.  
RL: I turn something less than 180? 
Tim: yeah 
RL: yeah. OK. Thank you.  
Ken: Dr. Rich. 
RL: Yes. 
Ken: That 90 in the middle that means you turn 90-degrees twice. 
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RL: But did i? If i turn 90-degrees twice, once, twice, wouldn't I be facing in this direction?  
SS: yes 
RL: Okay, let's see what i did. I went 90, and then I went (rotates) 
S: less than 180 
RL: some more, right? So somewhere. Okay? Uh what othere diagrams are like this one. Who 
did this one? (points to one drawing.) 
Lou: (raises hand) 
RL: okay so Louisa. What did you have in mind when you made this? 
Lou: well um you didn't really turn like all the way, like 180-degrees. So I was like, you turned 
less than (?) 
RL: okay. now. Let's see (points to drawing.) 
Vin: yeah that was mine. That was mine (laughter) 
RL: this is different. 
Vin: I didn't totally make it that way 
RL: So Vincent, would it have been a little better maybe to show this? (points to another 
drawing) since we're talking about a part of a circle? 
Vin: oh okay. 
RL: yeah okay. Michaela? Did you do this one? In this one, I see that a circle has how many 90-
degree pieces? We can see that with Michaela's. And she said the second was over 90-degrees, 
but she didn't tell us how much over. Right, but she's telling us that it's over. Alright. So. Now, 
what I want to know is, before we get to Micah's question. I want to know how you know. You 
all told me that I turned in this direction. And I'm looking at this and you know what I think I 
did? I think I started right here (puts marker on one line) and went here (rotates marker 
counterclockwise).  
SS: What? 
RL: What? What.  
Lou: He's rewinding himself. 
RL: No. Suppose. How would you know the difference between this (rotates body 
counterclockwise) and this (rotates CC). Are they the same thing? 
SS: yes. 
Lou: it could be. 
RL:  Well what's the same about them? Nick 
Nic: they both make 90 degrees 
RL: thank you but what's different? Vin? 
Vin: cause one goes the, one goes to 360 or 0 degrees and one goes to 90 degrees. 
RL: what do you mean? 
Vin: okay, if 
RL: if i start? how would i tell? 
Vin: okay, okay when you do this (stands up) now when you do this, you go back to 360. (stands 
facing the board) 
RL: or? 
SS: 0. 
RL: okay so I agree that they're different motions. Lou? 
Lou: um, 90-degrees can potentially start anywhere because they all have the same size, like (?) a 
perfect circle, so. 
RL: Okay, so you're saying look, the amount of the turn is 90 degrees (writes "amt of turn = 90") 
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Lou: and so it's the same 
RL: right? you're saying that.  
Lou: cause like you just added 90 plus 90 plus 90. 
RL: okay but i want to know this. And I want to know how i do this. Omari. How would I tell 
somebody the difference between this (rotates 90). Here, everyone get up. Alright, so you're 
facing the wall. Face the wall. Alright now do what I did the first time. (students rotate 90 CC). 
Now, now that you're there, go back to where you started from. The way I did. Would you agree 
that those are two different motions? 
SS: no 
SS: yes. 
RL: they're exactly the same? 
(students talk all at once) 
RL: alright. you can have a seat. have a seat. Shatteryia, how are they the same? 
Shatt: cause like rotate like this is like 90-degrees and then you turn to 0.  
RL: okay.  
Shatt: It's like you going back and then you go from 0-degrees to 90-degrees. 
RL: okay so in both cases, I turned 90. A total of 90? 90 360ths of that circle.  
Shat: yeah 
RL: okay. But. What did i do that was different? 
Lou: All the way to 180. 
RL: Did I turn in the same direction? Rhonda? 
Rho: No you went from 90 to 0 and from 0 to 90. 
RL: okay. So I went, if I label this 0, this turn is 0 to 90 and this turn is 90 to zero (writes "0 --> 
90" and "90--> 0") Okay so if I wanted to make a quick way of representing this so that people 
could follow which direction I was turning? What would you do? Do it on your paper. I want a 
way of knowing which direction I turned. And I want to be able to look at it and see right away 
oh what direction people turned. 
 
[00:28:01.15] 
 
**************** 
 
[00:33:45.21] 
 
RL: Alright, let's start out with Justin. 
Jus: um i had 
RL: big loud math voice Justin. Got to be able to hear you back here. 
Jus: um we went from the start to the, to 90-degrees, then you went back and went from start to 
170-degrees. 
DL: I didn't hear that. 
Jus: you went from teh start to 90-degrees and then back to the start and then you went to that 
(points to the end). 
RL: okay. okay so, how would you tell the difference from when I started and wound up at 90-
degrees and I was at 90-degrees and I went and rotated and I wound up back where I started? 
how would you show the difference?  
Jus: because you went to 90-degrees, then you went back to start then. 
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RL: okay so you would show me with your hand what I did? yeah and then what? (Just gestures 
along the arc from start to end and then back) 
Jus: like that 
RL: okay fine. thank you justin. um. okay so justin, i want you to take a look at what other 
people did and then i'm going to ask you to compare what they were thinking to how you were 
thinking. Rhonda, could you describe what you did. where's Rhonda? 
Rho: you went from 0 to 90 and then you went back from 90 to 0 and you said is it the same? I 
said no and you said draw (?) 
RL: and then so you used arrows? 
Rho: yes 
RL: to show a difference in direction? 
Rho: yup. 
RL: okay, thank you. Justin, what do you think of that? 
Jus: she used arrows. she went in a circle but i didn't. 
RL: well she's just trying to show you two of them, the difference between going from 0 to 90 
and 90 to 0. 
Jus: (?) 
RL: are they the same number of degrees? 
Vin: yes. 
RL: huh? 
Jus: yes. 
RL: yes, no. No? how do you know? can you show me? 
Jus: this (points to rhonda's drawing) all the same degrees but if you turn the whole thing it is 
360 degrees. 
RL: but how much did I turn? use your marker there and show me what I did. \ 
Jus: (draws a line along the path) you went like that and then you went back. (gestures along the 
arc CCW). 
RL: okay, did I walk along that, out of that circle 
Jus: yes (?) 
RL: did i? (pause) did I walk that circle? I mean it's okay to, but look (places marker on line and 
rotates it). Yeah so i turned that much of the circle? and then i turned back (rotates marker 
CCW). Okay so Rhonda has shown this direction and then this direction (writes over her 
arrows). So how much did I turn each time? how many degrees? 
Jus: 90 
RL: okay but what was different? 
Jus: it was different turns? 
RL: well different, can i use the word direction? Alright. where's yours? 
Cou: the small one. 
RL: here? so you're showing me the first time i did it. the difference between the first turn and 
the second. okay, but what i would like you to think about is what's the difference between, i 
want you to get up courtland. i want you to turn 90.  
Cou: (rotates 90 CC) 
RL:  now turn back to where you started 90. 
Cou: (rotates 90 CCW) I don't know 
RL: okay turn with me. Okay we're facing this way. Now i'm going to turn in this direction. 
ready? turn 90. 
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Cou: (turns 90 CC) 
RL: okay. now turn back to where you started 
Cou: (turns 90 CCW) 
RL: how much did you turn back? 
Cou: 90. 
RL: 90. okay what was different about the two turns? 
Cou: (?) 
RL: huh? 
Cou: I went in different directions. 
RL: different directions. yeah. yeah?  
Cou: uh huh 
RL: okay so one way we could show different directions are with arrows. Right? okay. Great. 
Now you have a question. 
Vin: I have a question for Justin. With his picture. Why did you go to uh, not, why did you uh do 
the thing where he did 175 degrees or 160 degrees or whatever it was. Why didn't you just do the 
90 degrees.  
Jus: Cause I put it together.  
RL: yeah he was showing us all 3 things that I did. That's why. Yeah, that's fine. Okay. have a 
seat everybody. thank you. Now we have to get back to the question. is it possible to turn. okay 
you had questions here (speaking to Ken) are those questions, do you have questions still about 
this idea of the direction? Alright. Okay. Micah. Amani. Yeah you two. Uh, what do you think of 
your question now? What have you concluded? 
Mic: I've concluded that no. That there may be, but i don't know really. 
RL: that's  a heck of a conclusion. I maybe I don't know. 
Mic: first I thought no. And I've been thinking about it and i'm maybe now. 
RL: alright so you're on the maybe side. 
Mic: yeah. 
RL: you've gone from no to maybe. I guess, is this a group opinion?  
Kay: yeah 
RL: or this is group of no maybe? 
Mic: I have another question. 
RL: another question. 
Mic: yeah kind of like that one. 
RL: okay 
Mic:  Is there a um degree in negative, and if there is, is there a degree a hundred and sixty 
negative? and add on to that one 
RL:  (starts writing) Is there a 
Kay: If three hundred and sixty is negative, would it still mean zero?  
Ama: yeah. 
RL:  Is - uh if we turn, uh can I rephrase it this way? If we turn a negative 360 degrees, will that 
still be equivalent to  
Ama: zero 
RL:  (writes the questions on the board as "Is there a negative degree?" and "If we turn -360^o = 
0^o?")  Is that right? 
Mic: yes. 
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RL: okay Kenjra. What do you think? Do you think it's possible that we could have negative 
degrees? 
Ken: if you get a positive degree, then you should get a negative degree. 
RL: okay you think it's possible. Louisa, what do you think? 
Lou: i think it's possible cause i tried it on (?) and um 
RL: Louisa i can't hear you and that means that no one else can. 
Lou: I think it's possible like Kenjra's saying, if there's a positive degree, then there's a negative 
degree. And I think it's, I kind of think it's impossible where Micah asked the question about can 
there be more than 360 in a circle. I think it's impossible. 
RL: you think it's impossible or possible? 
Lou: I think it's impossible. 
RL: IMpossible. She said not, not 360 in a circle, cause we just said we just mad ethat us and 
we're going to divide that up into 360 pieces, but what she's asking is could any ANGLE be more 
than 360. 
Mic: yeah 
RL: we could divide the circle as many times as you like, it's just that people have to agree about 
something so we all said that we're going to divide it into 360 parts and we're going to call each 
part a degree. Rhonda. 
Rho: If they're negatives and they go that way (gestures in a circle) wouldn't hte (?) go that way?  
RL:  uh Rhonda has a conjecture. She has a way of interpretting this for us. Would you stand up 
so that people can see the gesture you're going to make? Cause i think it might be hard otherwise. 
Rho: if the circle's that way (gestures clockwise), wouldn't the negatives have to be that way 
(gestures counter-clockwise)? 
RL: Here's what I want you to do. First. I want you to discuss with your table group and I'm 
going to give you five minutes and I'm going to ask one of you to act as the person who 
represents the table, I want to know what you think of Micah's first question. Is there any angle 
greater than 360-degrees, if we accept that their are 360-degrees in a circle. Second, is there such 
thing as a negative degree and if so, what does it mean? 
 
[00:44:19.06] 
 
**************** 
 
[00:53:53.10] 
 
Nic: what we decided is like when Dr. Rich turned around twice and he went 720-degrees, we 
thought like if you took a 360-degree spinner and you added it with another 360-degree spinner, 
you get a 720-degree spinner (he writes this as 360 + 360 = 720 on the board) So it'd be like 
(draws circle) this is 360 right here, and that's 720 right there (writes 720 on top), and you turn 
that much (draws arc around), then it's just like going on a 360 spinner (draws a circle and labels 
it 360). You turen that much, it's like going on a whole circle. 
RL:  so. are your, is your conclusion that there are angles greater than 360 or not? what's your 
conclusion? 
Nic: there are. 
RL: there are. Alright. How many people  follow Nick's argument? (a few raise their hands). 
Alright. Rhonda could you restate the argument please? 
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Rho: they're saying like if you go around the circle twice, then you'll have a degree higher than 
360. 
RL: okay so their argument is, that if I, let me know if I have this right guys. I'm going to take 
this circle here and I'm going to mark it red where we start at zero, so we can all see. alright. 
(holds up protractor) And their argument is this I believe. (rotates the protractor) How much have 
we turned? 
SS: 360. 
RL: (rotates again) how much have we turned? 
Jee: negative 360. 
SS: no 
Jee: it went backwards. 
Lou: no it didn't. 
S: 720 
RL: so just in terms of, forget about sign, we haven't talked about that yet, but just in terms of the 
number of degrees, I'll do it again. Ready? (rotates the protractor). 
Lou: 360. 
S: negative 
RL: forget the negative. forget the positive. How much? 
Jee: 720 
RL: 720. Is there anyone who disagrees with that? (a few raise hands) okay, go ahead Kayla. 
Kay:  when you turn that way, it's negative, so it'd be negative.  
RL: okay if we just forget positive or negative for just a moment, what about the amount? is the 
amount. Do you agree with the amount as 720? Okay Micah do you disagree? 
Mic: I disagree because if you turn one time, 360 adds to 0 because you move nothing, so like 
360, zero. 
RL: but did I move nothing? watch this? (rotates the protractor) ch-ch-ch. 
Mic: yeah you move, but it doesn't LOOK like it at the end. 
RL:  so sometimes, we might want to know about what did it all amount to, what's the result. 
And the result is as if I didn't move, but could there be other times when it would matter? Do you 
ever see anything called RPM on a car? 
Ken: Rose Park Magnet 
RL: Rose Park Magnet. no. sometimes we could think about times when we might want to know 
right? 
Lou: the speed when driving? 
RL: yeah sometimes we might want to know just how many times in a period of times or just 
how many times we've gone around right? but lots of other times we might not want to know. 
Okay so. Is it possible that we might have a rotation more than 360? 
S: maybe an angle 
RL: sure right? but we still have this question of whether that's useful. we can certainly see it's 
possible. alright, thank you. Your next, what'd you decide about the negative business? 
Dan: We decided there is a negative cause like when we were like, when we heard everybody 
talking, cause when you were going to, like a normal circle will be going to the right side. So, it 
would be, so would be gong to the right to make a whole circle. So, everybody's saying that if (?) 
a positive degree, then going to the left side might be a negative degree and sound slike it would 
make sense. So in conclusion we decided that there is a negative degree. 
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RL: there is a negative degree. And for you, a negative degree is a matter of which direction that 
you're turning? Okay yeah, how many people agree with that interpretation? Courtland do you 
agree? 
Cou: hold on say that again. 
RL: ok i think you better restate that cause courtland's not sure if he agrees or not. 
Cou: can you say it over? 
RL: say it again please? 
Dan: if like, if the beginning of the circle you can go to the right side until they make a whole 
circle (gestures in a circle) and I guess people were saying that that would make a positive 
degree or something? And then if you go to the left side (gestures the other way) it would make a 
negative degree. 
S: I agree. 
RL: okay how many people agree, put your hands up. (most students raise their hands.) How 
many people think this idea is like absurd? (no one raises hand) Last year for those of us who 
were here last year, what does this remind you of? 
SS: number walks. 
RL: when we did our number walks, when we went in this direction we called it positive. when 
we went in this direction, we called it negative. right? when we did our number wallks? right. 
 
[01:00:51.08] 
 
DAY 3 
 
DEFINITIONAL EPISODE #19 
[00:12:57.00] 
 
 
RL:  Alright. So what is uh:: fifty? What part of the circle? Anybody? 
Lou:  Three hundred and sixty. 
RL:  No uh, we know that three hundred and sixty degrees is all the way around right? But I'm 
not asking you that. I'm asking you a very simple question. What does fifty degrees mean? How 
much of the whole circle? 
(Courtland raises his hand) 
RL:  Kayla. 
Lou:  It's like 
Kay:  Fifty percent. 
RL:  Well fifty percent, wouldn't that be the same thing as 50 over 100 (writes on the board)? 
Jee:  (waves hand) I know I know. 
RL:  Wouldn't that be the same thing as one half? Wouldn't that be the same thing as one eighty 
over three sixty? Divided by three sixty? Wouldn't it?  Yeah. So we wouldn't say fifty percent 
would we? 
Kay:  No (shakes head) 
RL:  No. Okay. Jeewar? 
Jee:  Fifty out of three sixtieth.  
RL:  Thank you. Fifty three sixtieths. (writes on the board "50/360") 
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RL:  Fifty three sixtieths. What's another fifty three sixtieths? How much is that? (writes "+ 
50/360" to the right of the "50/360") 
Jee:  One hundred three sixtieths. 
RL:  One hundred three sixtieths or? How many degrees? 
Jee:  One hundred degrees. (RL writes "=100/360") 
RL:  One hundred degrees. (draws an arrow and writes "100 <degree symbol>") 
 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #20 
[00:14:15.00] 
 
RL:  Alright. So an acute angle, since someone brought it up, is an angle that's less than ninety.  
Now I'm going to ask you this. Okay. I am going, to, find a ruler (walks around) 
Sha:  Here. 
RL:  Thank you Shatteryia. And I'm going to extend this line like this. (extends one of the angle's 
sides)  And I want you to do the same thing. I want you to take the angle that you had and extend 
one of the lines. Come on. 
(Students draw) 
RL:  Okay now extend the other line. Make it even longer. (makes a gesture--holding out his 
arms) Extend those lines. Longer, longer. 
Mic:  I can't go much longer.  
RL:  You can't go much longer? Okay. Question. Question for Nicholas. Will the angle measure 
when I extend the lines be less, the same or greater? And why? 
Nic:  The same. 
RL:  Nicholas says the same. Stand up if you agree with Nicholas. 
(Micah, Rhonda, Shatteryia, Justin, Brandon, Jeewar and Courtland stand up. Can't see Dilovan 
or Kenjra or Michaela.) 
RL:  If you are not sure, stand up. 
(Dilovan, Courtland, Michaela, Louisa, Brandon, Omari, Micah, Kayla, Tim, Amani, Shatteryia, 
Vincent, Daniel, Justin) 
Nic:  I'll tell you why::. 
RL:  Alright Nicholas has an explanation for you doubters. See if this is persuasive. Get up there 
Nicholas. 
Nic:  Alright. (Walks to the board and points his protractor to the vertex) If you have zero right 
here (taps the protractor near the vertex) And you've got your thing up there and zero's right here 
(taps protractor near the vertex again), and you extend the line (gestures toward the top line) 
RL:  When you say zero's right there and you go (taps his hand on the board near the vertex) 
Nic:  When you have it there (places protractor so that it is centered at the vertex) When you 
have it like that.  
RL:  When you have it like what? I see zero right there (points at the protractor, towards the top-
zero is not on the angle side). Is that how you measure it? 
Nic:  Uh I forgot. Uh dang. What I'm saying is that if you have it like this (places protractor 
momentarily on the vertex), that line (gestures upward in the path of the top side of the angle) it 
can- 
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RL:  Now wait a minute. (makes the same gesture, except with his arm). I don't know what that 
means. 
Nic:  This line (points to the top side of the angle) can be as long as it wants to be but it's not 
going to change. 
RL:  You say it's not going to change it but how come? 
Nic:  Because it's not going to change the degree. If it, if you turn (moves his hand in a curve on 
the board) 
RL:  Why wouldn't it change the degree? It looks longer to me. It's got to change the degree. 
Nic:  No. 
RL:  No. 
Nic:  This would change the degree. If you move this (points to top side of the angle) up here 
(gestures in an arc to the right) That would change the degree. 
RL:  Okay so if I actually took this (lays marker over the side) and moved it like this (rotates the 
marker) then you could claim the degree would change but otherwise it won't? 
Nic:  No. 
RL:  Well show me with the protractor that it's still the same. 
Nic:  (places protractor centered at the vertex and pauses) 
RL:  What's he doing up here? What should he be doing? 
Nic:  I forgot. 
(Amani has her hand raised) 
RL:  Someone come up and help him. He's, he's having trouble. I need a protractor user. Amani 
get up there. 
Cou:  Oh me. 
RL:  You're elected. 
Nic:  Anybody who knows how to use this. 
RL: A-mani. Amani, that's your name right? Help. 
Ama:  No. Just Mani (laughs as she walks up there) 
Nic:  Do you know how to use a protractor? 
RL:  Okay, those of you that are standing can sit down because you're going to find this 
persuasive in just a minute I think. Maybe. 
Ama:  (places protractor on angle, but not centered at vertex) 
RL:  Okay wai-she's putting the protractor at the very end.  
S:  No. 
Ama:  (moves the protractor so that it's centered) 
RL:  Okay, you put it. You line the center up with the vertex. You put it up with zero (points to 
the protractor, where it aligns with the bottom side of the angle) and:: you find out how many. 
Okay. So. If you do it this way then you kind of have to go backwards. Zero, three twenty. 
Ama: (flips protractor over) 
RL:  If you do it the other way it gets a little easier. And I like to keep it easy, right? Okay, is that 
about the same? 
Ama:  Uh 
RL:  Well we have to get it on the, right? I don't know where the vertex went off to. Could you 
(waves his hand) 
Ama:  (removes the protractor from the board) I was making that the (inaudible) 
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RL:  Kind of like (tries to redraw the angle) We kind of lost part of our angle. Alright you try it. 
Try it with your protractor and your angle. What happens to the angle measure? Nick says it's 
going to stay the same.  
Nic:  It will. 
RL:  Because? 
Vin:  It stayed the same. 
RL:  Because why Vincent? 
Vin:  It stays the same because um because the angle is still like the, it's still, the angle hasn't 
changed, it's only the lines that have changed. 
RL:  So if we measure the angle with rotation, has the amount of rotation changed?  
S:  No. 
RL:  Look. (places marker on a side of the angle) Everyone look. (rotates the marker, keeping 
one end fixed to the vertex) Okay? So the amount of rotation. Do it with your pencil on your 
angle. Look at the amount of rotation. Does the amount of rotation change when you change the 
lengths of those lines? 
S:  No. 
RL:  If the amount of rotation doesn't change, then the measure of the angle can't change. Okay 
so. Nick. Justin, sorry. Justin.  
Jus:  (shows RL something in his notebook)  
RL:  (speaking to Vincent)  What we'll do. Okay. This is your job. When Justin has a question, 
you're supposed to help answer. Okay. That's why you're table partners. We'll put it right at the 
center here, right buddy? And then what we'll do is we'll follow how much it goes around. See? 
How much it rotates. Can I borrow your pencil? So we'll go from here, which is zero, all:: the 
way to about there. So that's fifty-five to fifty-eight. Does that make sense?  
Jus:  mmm hmm. 
RL:  Okay, do another one. Vincent, help Justin out to do the next one. Alright. Now. We've 
established I think, but Micah has a question so I'm not sure we all agree. 
Mic:  Nah I'm the same way. 
RL:  You what? 
Mic:  Nevermind. 
RL:  Okay. Now I have a question. Alright. Does anything change? Maybe the angle measure 
stays the same, but does anything change when I extend those lines? Is there some way that 
anything changes? 
Jee: No. No. (shakes head) 
RL:  You can't think of anything that changes? 
SS:  The length.  
RL:  Okay the length is changing. Right? (silence) 
Lou:  (raises her hand) 
RL:  (walks over to get a meter stick and then walks back to the board and lays the meter stick 
over the angle, vertically) What about the distance from here to here (draws a line from one side 
of the angle to the other). 
S:  It's getting bigger. 
RL:  mmm hmm. (draws another line further out) 
Lou:  Dr. Rich does the length really matter in (inaudible). 
RL:  Louisa asked a question. She addressed it to me. Someone else has to answer it. Okay. 
Omari, you're elected. Thank you for volunteering. Louisa, address your question to Omari. 
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Lou:  Does the length really matter? When like when you do the little angle thing (waves her 
hand in the air). Because mostly, so people that do like the buildings and stuff, they think that 
(inaudible). 
RL:  Well for the measure of an angle Louisa, and that's what we're talking about, (draws angle 
on the board) Deople that do like the buildings and stuff, they think that (inaudible). Well for the 
measure of an angle Louisa, and that's what we're talking about, (draws angle on the board) Does 
length matter? 
Lou:  (inaudible) 
RL:  Pardon? 
Lou:  No. 
RL:  Why not? 
Lou:  Because (inaudible) 
RL:  Because what? 
Lou: It still would be the same. 
RL:  Come up and show me. (points to the angle he just drew) 
Lou:  (walks up to the board) 
RL:  Nick 
Nic:  In certain cases it does. 
RL:  Show me. You find a case in which you think you changed the length and the angle's gonna 
change? 
Nic:  (inaudible) 
RL:  Okay right there. You've got a protractor, Louisa? (hands her a protractor) Measure that. 
How much is this angle (points to the angle drawn on the board). 
Lou:  (places protractor with center far from vertex) 
 
[00:23:16.02] 
 
------------------------------------------------ 
DEFINITIONAL EPISODE #21 
[00:48:56.05] 
 
RL:  Someone came along and said, 180 is the largest angle and I asked you what were they 
thinking and Rhonda I never did give you a chance to talk about that. I want to do that now. 
Rho: we said, well, our table said that uh in a circle, when they have it in a circle, how they have 
it, they usually have it 360, 90, 180 then 270. We thought that they're thinking it went 180, 90, 
then 180, then back again. 
RL: so you were noticing a pattern? 90, 180, you add another 90, you add another 180? 
Rho: (nods) 
Tim: yeah. Like if you go straight down to 180, and then you turn again, you have another 180. 
RL: okay good. very nice. So you're thinking about putting the 2 pieces together. Somethign like 
this, right? (points to an angle labeled with interior and conjugate measures)  
Tim: yeah 
RL: anybody else have other ideas about this? kayla, Micah, Amani? What'd you come up with 
about this 180 idea. 
Kay:  We came up with that 
RL: loud voice please kayla 
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Kay: we came up with that 180 is like the 0 in the number line cause it's like in the middle and 
um, when you draw the circle and you split it into 4 different part, 180 is a straight line down the 
middle. 
Mic: and then like 90 is kinda like 270 because it's just, it's just flipped around. 
RL: okay so you're saying you go a 90 here, you go another 90 here (draws arc arrows around 
the circle) and you get back to this 360 or 0. Okay? very nice thinking. Now let me tell you 
exactly what people are thinking about. Um. it's something like what you're thinking but they say 
this. Because we measure things in terms of the circle, they say that if you know one angle, you 
automatically know the other one. What do they mean by that? if you have 124, could you find 
the other angle? What was the other angle? Nicholas. 
Jee: 236. 
 
[00:51:49.07] 
 
DAY 4 
 
DEFINITIONAL EPISODE #22 
[00:05:27.10] 
 
S:  octagon.  
RL: Okay it's an octagon. What makes it an octagon? 
SS: 8 sides. 
RL: okay so it's a polygon, it has 8 sides. (lists on the board "polygon," "8 sides") Is that it? Any 
8-sided polygon will do?  
SS: no 
RL: no? Well you made it you can't talk. Alright, someone else. Omari. What do we have to 
worry about? what else do we hav eto consider? 
Oma: sides. 
RL:  What about the sides? Yeah? Who said that? I heard someone say something. Tim? Did 
you. 
Tim: Nah, she said (referring to the sub) 
RL: oh you said that. okay. thank you. you would be right. alright so, we're going to call this 
thing where the sides are all equal, they're equivalent, they're congruent, right was the word we 
used? 
SS: yes 
RL: meaning that if you put one right on top of the other, can't tell the difference? They're 
exactly the same length?  
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #23 
[00:06:41.08] 
 
RL: How do you know tha::t…these angles are obtuse? Micah? 
Mic: They’re not in 90-degrees. They’re above 90-degrees? °I think.° 
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RL: They’re not in 90-degrees they’re above 90-degrees? Is that what you’re saying? (positions 
marker on the octagon Vincent drew) so ninety would be like this and you’re thinking they’re 
greater than that? okay. 
Mic: °yes::° 
RL: okay:: so your test is LOOKING. Omari? (walks over to where Omari had drawn his 
polygon and points to it) you had a similar idea? 
(Jeewar raises his hand) 
RL: Jeewar? 
Jee: about the eight sides. like how is it congruent? because (holds up hand) like an angle like 
that (motions to form an angle that looks ninety) 
RL: yeah= 
Jee: =(pointing to Vincent’s drawing) on the six, in the six and the five, on it. 
RL: (looking at the drawing on the board) I’m not sure everyone over here understood what you 
meant. Maybe you could SHOW us. 
Jee: (walks to the board and draws an arc in the angle.) 
RL: oh oh oh, who did this? Dilovan. Are you saying what Dilovan is telling us over here? 
Jee: right here, look. 
RL: so Dilovan pulled it out so we could see it. And you're doing the same thing? Okay 
Vin: that's an error, I just accidently did a little dent in there. 
RL: oh you didn't mean to. 
Vin: no. 
RL: that's okay, so that's a drawing that we all understand what you mean. 
 
[00:08:21.27] 
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #24 
[00:14:58.15] 
 
RL: well you know I’ve gotta tell ya. I have to say. I’ve been here for two weeks and I never 
heard you ONCE, tell me what you meant by polygon. You know, first it was vertex and we kind 
of got that squared away I still don’t know what you mean by polygon, I STILL if I went to Mars 
and read your ideas about polygon, I might think it's a bottle. Rhonda? 
Rho:  What? 
(some students talking) 
Rho:  (quietly) A polygon is a= 
RL:  =Okay wait a minute. Rhonda's on, uh has the floor. I'm gonna - Omari may I erase your 
piece of art just for now? Nice thinking. Okay Rhonda. A polygon is? I'm going to write a, 
polygon is.  (writes this on the board) Yup. 
Rho:  Something that has all the same sides. Has the same sides and the same angles. 
RL:  All sides 
Rho:  Are the same. 
RL:  Are the-what's that word we use when we mean lay down on top of one another? (shows 
with markers) 
J:  Congruent. Congruent. 
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RL:  All sides are congruent. Cause that's what we mean by equal here. They're the same length. 
Rho:  and all angles are the same. 
RL:  And all angles are the same. (adds this to the written definition) Are congruent. Okay, we 
could pick one up and stick it on the other. Okay so:: Is that it. Is that all we need?  
K:  I disagree (raises her hand). 
RL:  Kayla. 
K:  That's for a regular polygon. 
RL:  Oh. This is for a kind of polygon called REGULAR. (edits the definition on the board) 
Regular. It's a regular polygon. Alright well. 
Jee:  Irregular polygon. 
 
[00:16:54.04] 
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #25 
[00:16:59.02] 
 
Jee:  A circle. A circle. 
RL:  Is a circle a polygon? 
SS: No:: 
RL:  Well. Question. (writes on the board, "Is a circle a polygon?") 
Vin:  It doesn't even have sides. 
RL:  Al::right.  
Vin:  It has one. 
Jee:  It has zero. 
RL:  Still that, if you tell me that they're irregular and they can be polygons, what do I, how do I 
have to change this definition? Does everyone have this definition (taps on the board) in their 
math notebook? 
SS:  no, yes 
RL:  Well I think you better put it in there, cause we have to get a definition for a polygon, and 
so far, WE don't have one. So we're not sure exactly what we're talking about when we say 
polygon. We have not yet agreed. Okay some people said they want all the sides to be congruent 
and all the angles to be congruent and people said yeah, we like that, but it's a special KIND of 
polygon, it's called regular. Okay. But you know what. I still -then people there could be 
irregular ones. But, according to that definition so far, you can, we don't have irregulars, we only 
have regulars. (pause) So what are we gonna do? What are we gonna do?  
Jee:  I don't know. Do you know? 
RL:  Not if you don't. Since it's up to you. We right now do not know what we're talking about. 
S:  Nope. 
RL:  Right. 
Lou:  Dr. Rich. 
RL:  Yes. 
Lou:  We can list why we think a circle's not a polygon. 
RL:  Well how can you do that when you don't know what a polygon is yet? How do you know 
what's not? 
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Lou:  What we THINK. What we THINK. 
RL:  What you think?  
Lou:  Yes. 
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #26 
[00:18:33.05] 
 
RL:  Well how bout tell me what a polygon is before you tell me what it not is. 
Jee:  A polygon is all sides - it says on the board 
Lou:  A polygon is- 
RL:  No. We said here that  REGULAR polygon has these properties Jeewar. But- 
Jee:  There are only two kinds, a regular and an irregular.  
RL:  Good. Tell me what makes a polygon irregular. (about 3-4 students raise hands) Okay 
Micah. 
Mic:  Um, it has different s-sizes of sides. The sides aren't congruent. 
RL:  Okay, so it's not necessary, it has to have sides. Yeah, okay. (writes) 
Mic:  And it has to have angles. 
RL:  And it has to have angles. (writes on the board) Okay. Jeewar, did you want to add on to 
that? Yes? 
Jee:  That all uh - nothing is the same, like the angles aren't the same, the, sides aren't the same. 
RL:  So are you tell me that in an irregular - a polygon that is NOT regular, no two angles can be 
the same? 
Jee:  (?) No angles can be the same. (?) 
RL:  Are ya? 
Jee:  If it's 2 out of 5, yeah. 
Lou:  What makes it regular? What makes it regular? 
RL:  Okay, Louisa has  a question. Who can answer Louisa's question? Okay, Vincent? 
Vin:  It's on the board. All sides are congruent and all angles are congruent. 
RL:  Alright, so we have an answer to that question. Okay, come one people, you're not thinking. 
Ama:  We are thinking. 
RL:  You're not thinking about math, is what I meant to say. 
Kay:  oh 
(laughter) 
Lou:  All the shapes are not the ones you (?) around. 
RL: I want to know <what makes something a polygon>. I know it has sides and it has angles 
SO…this then is a polygon right? (draws a Z-shape) 
RL: nice polygon, huh? 
S: that’s not a polygon. 
RL: what’d you mean it’s not a polygon? 
S: it has to be CONNECTED. 
RL: (labels  the figure as he talks, students are talking) side one side two side three angle one, 
angle two 
Vin: it has to be  
RL: look at that. it’s beautiful. 
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Lou: it has to be a SHAPE. 
RL: what? 
Lou: it has to be a shape 
RL: this is a shape. This is a shape. I love it 
(students are yelling back at RL) 
Dil: it has to be connected. 
RL: oh CONNECTED. (class calms down) it has to be connected.  (writes "connected" 
underneath "sides" and "angles") So sometimes we use a word when we mean that, like if I draw 
this thing (draws a triangle), sometimes we say that it's closed (writes "closed" next to triangle). 
Meaning that it has an inside, and an outside. Okay? So sometimes when we want to talk about 
that idea of CLOSED, we talking about that all the sides are CO-nnected. One to the other, all 
the way back to where we started. 
RL: okay so now I’m beginning to get an idea, that a polygon that is something that has sides, 
angles and is connected. That is it’s closed. Okay, if we take this definition, can there be polygon 
with two sides? 
Kay: yeah 
S: no 
Kay: yeah 
RL: okay. What would that look like? Kayla? 
Kay: you’d have to make sure they connected. 
RL: the two sides connected? okay uh:: 
Kay: it’d be an oval. 
RL: an oval?  
Ken: like this.      
RL: oh::. (draws oval on board)  
Mic: (talking to Ama and Kay) °what’s a side though? what’s a side?° 
RL: you want to do that? 
S: no. 
Jee: nuh-uh 
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #27 
[00:22:36.25] 
 
Ama: what’s a side? 
RL: you don’t like this? (points to the oval) 
(students talking all at once) 
Vin: no I do not like it. 
Kay: what’s a side? 
Ama: what’s a side people? 
Mic:  What's a side? 
RL:  oh:: thank you. 
Jee: and the angle. And the angle. 
RL:  What do we mean by side? (writes on the board as a question) What do we mean by side? 
Yeah, what do we mean by side? Everyone's yelling side. Nicholas, what do we mean by it? 
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Nic:  Like if you have a four-sided polygon, one side - or if you have, a polygon that has 4 parts. 
RL:  Yeah. 
Nic:  Uh, I don't know. 
RL:  I [want to know] what a side is. 
Jee:  [Dr. Rich,] can I go get a dictionary. 
RL:  No, you can use your head. Instead of someone elses. Daniel. 
Dan:  I think a side a line that's connected to another line.  
RL:  Okay. So Daniel says it's a line (writes "line" on the board) connecting (writes 
"connecting") to another line (writes "to another line" on the board). Okay, so. Daniel.  
Dan:  mm hmm 
RL:  Ready? (draws triangle with one curved line and then looks at Daniel) 
Dan:  (has confused look on his face) 
Jee:  huh? 
RL: Well I had a line, and there's I connected it and then I connected it again. Do we want to call 
this thing (points to curved line) a line? 
S:  No 
RL:  No? 
Lou:  No Dr. Rich it has to be STRAIGHT. 
RL:  It has to be STRAIGHT. Okay. So we have straight lines. Or parts of lines, okay. Kayla. 
Kay:  What is the biggest, line. What is the smallest um side? And, um it doesn't have to be a 
STRAIGHT side. 
SS: Yes it does (students start talking all at once) 
Mic: It can be a squiggle. 
Ama: Cause my SIDE is not straight. 
Kay:  Amani (with annoyed tone) 
(girls laugh) 
RL:  Alright, longest line, shortest, these are other questions (writes on board "longest line? 
shortest line?") BUT, Kayla then you said it DOESN'T have to be straight?  
Kay: No 
RL:  To be a polygon? 
Kay:  Oh, a polygon? 
RL:  Yeah, we're talking about polygons, right? 
(girls talking to each other) 
RL:  We're talking about something other people - so what do they mean when they say 
polygon? 
S:  Has (?) 
RL:  Well only for regular ones (underlines something on the board).  
S: Oh. 
RL:  Otherwise, we have sides, that are, closed. That form a closed figure. But I don't know what 
I mean by side yet. I heard the word STRAIGHT. 
 
 
--------------------------------------------------------- 
DEFINITIONAL EPISODE #28 
[00:25:31.14] 
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Vin: What does straight mean? 
RL:  Yes, what does straight mean? How do you know? 
Mic: 180-degrees. 
RL: oh:: A hundred and 80 degrees. 
Mic: yeah. what? 
RL: What do you mean by 180-degrees? 
Lou: well a 180-degrees is straight across. 
RL: So if I have the two parts. Okay this would be a 180-degree angle. (draws something) Are 
there straight sides that can meet at angles other than a 180-degrees? 
Vin: yes  
RL: okay so  here's an example of one (draws two lines connected.)  
Sha: no 
Vin: no. 
RL: that's not straight? 
Vin: no that is not straight. 
Jee: yes it is 
Mic: yes 
SS: yes 
Jee: no it's not no it's not. 
Vin: that is not straight. 
RL: Hold on. In your table groups, I want you to come up with a definition of straight in the next 
2 minutes. I'll give you til 130. 
 
[00:26:35.20] 
 
*************************** 
 
[00:35:46.11] 
 
RL: alright now. Let's start out with Rhonda and Shatteryia. Could you help us understand. Well 
actually let me not ask the question that way. Rhonda and Shatteryia, yours is up here?  
Tim: That's mine too. 
RL: okay, and you too Tim? The 3 of you. Okay, so Tim, Shatteryia and Rhonda. And I'm going 
to ask um Kenjra to interpret for us what do you think they're trying to say. 
Ken: Now? 
RL: yeah. Now would be a really good time. 
Ken: a line is a line that is straight. not a line that has zig-zags or curves. 
RL:  Okay, so, what's their definition of straight?  
Ken:  up and down.  
RL: you think they think up and down is the only possible straight line?  
Ken: yes. 
SS: no. 
Ken: by their thing (points to the board). by their conjecture, what is that called? Diagram. 
RL: how many of you said something like this, no zig-zags or curves. (reads the board) How 
many of you had something like that? Raise your hand if you had something like this idea. Okay. 
So Kenjra's group, you have a similar idea. Straight. (they have written "without any humps, 
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lumps, bumps, zig-zags, or loop-te-loops. so straight is something without ziging and zagging"). 
No bumps, lumps, zig-zags, loop holes, oh so it's not broken at all? okay, so straight is something 
without zigging and zagging. Alright now. What does that mean? Okay what does it mean if you, 
If you were walking. Okay let me ask this question. If you were walking, how, what would it 
mean to walk in a straight path? What would it mean? If you were a person who could either 
move or turn, what does it mean? 
Lou:  it means to walk ongoingly and your foot is in front of each other like really close.  
RL: Okay. Does everyone agree with that? So I don't change my direction. I don't turn at all. I 
just keep going in a constant direction? 
S: No. 
Ama: yes. 
RL: no? 
Jee: if you want to take a turn you just turn. 
Vin: could have an ending point. 
RL: alright is could have an ending point. Okay so if I have an ending point (walks) uh stop. 
Dan: and then you restart again. 
RL: okay and then I could restart again? but as long as I didn't change direction, would I still be 
straight?  
S: you could stop and change direction.  
RL: I could stop and change direction.  How can I change direction? What do I have to do? 
SS: (talking all at once) 
S: like this turning. 
RL: turn? 
S: yeah 
RL: alright, so maybe one way to think about straight that comes from what they're done (points 
to Ken's def) is to think that there are no turns, like it's a path without any turns. Okay. And can I 
walk in any direction and just as long as I keep the same direction, is that okay?  
SS: yes. 
RL: So they don't have to be just vertical or horizontal? they can be like this (positions pencil in 
different orientations) or like that? okay. 
Vin: it can be like this (holds up pencil) 
RL: alright um.  Who had a different kind of idea. Uh so. um. Nick. what are these people 
thinking about? This is um  
S: Dilovan. 
RL: and also, you guys too? no 
Jee: that's Daniel, Vincent and Justin. 
Dan: we're the orange ones.  
RL: they want us to have a starting point  
Vin: and it could have an ending point. 
RL:  and an ending point.    
Vin: it COULD. 
RL: alright.  
Vin: i could have an ending point. it doesn't have to be.  
RL: If it has 
Vin: but it has to have a starting point. 
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RL:  if we start walking (illustrates with a diagram showing "starting point" connected to 
"endpoint" with a line. he has drawn a point and a line connected) and we stop somewhere 
(draws a point at the end of the line) versus if we keep walking forever and ever? (draws a line 
with an arrow at one end) 
Vin: yeah 
RL: alright. that's what you're trying to get at? 
Vin: yeah but it has to have a starting point. 
RL: yeah okay, we have to start walking somewhere? a point? 
Dan: yup 
RL: alright. so, sometimes people in math, the idea that you have (writes "line segment" next to 
first line), they call it, they make a distinction. they say, oh you mean a segment versus a line. 
Alright but let's get back to Dilovan. How is he thinking Nicholas? 
Nic:  he's thinking that a line should be a 180-degree angle.  
RL: Okay so. he's defining straight by angularity. He says that it's a hundred, it's a straight, It's 
even called a straight angle. okay. Are there any other ways? 
Cou: I kinda disagree. 
RL: Courtland you have disagree with that? 
Cou: on my problem too. Because on one (?) it stops at one point, but a line, a line it keeps going 
forever. 
RL: okay so. um could we keep going forever this way if we wanted to? 
Cou: yeah on both ways 
RL: if we left a trail, what angle would the trail be at? if we left a path? 
Cou: a line. 
RL: huh? right here (points to something on the board - can't see) 
Cou: ahh, (?) 
Vin: (?) 
Cou: but it's still goes 
Vin: yeah but all it is is it's going longer. the lines. 
RL: okay so we have (interruption by intercom) a couple of ways of thinking about straight. 
Those people who haven't yet talked, what are those ways? Omari. tell us how we're thinkign 
about straight.  
Oma:  hmm. straight. 
RL: straight.  
Oma: my opinion of straight? 
RL: yeah, well what have we been talking about? your opinion of what we've been talking about. 
so what are the, how would we know whether or not something was straight?  
Oma: I would say that we'd know that something is straight is by like it having, like it could go 
on forever, but like it having no curves, no bends, no creases. Just going in one path. 
RL: How do we produce a path like that that has no bends, no curves? 
Lou: at a starting point? 
Oma: well first you got to find a starting point. Then where the starting point is, then that's 
where, then if you're going to do a line, then that's where your line with start off. Then your line 
can either end where you want it to go or you can just have it keep going. 
RL:  okay, but how do I know? - suppose I do this. okay i'm going to do this. i'm going to start at 
a point. ready? you tell me if i'm going straight. and I ended. (He walks, starting at a point and 
curves and notes he ended)  
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Oma: that wouldn't be straight. 
RL: why not? 
Oma: because I'd say you took a, well, you took a turn and a line can't have a turn.  
RL: okay, so we follow a constant direction? And we don't have any turns? Okay. Daniel. 
Dan: you could have a turn. 
Oma: well you could have a turn speaking of straight. 
RL:  At the point that we turn and that we go, what does it make, when we make a path and then 
we turn and we continue to make a path. What is that? What do we call that? 
Jee: obtuse or 
RL: obtuse or acute what? okay we go this way and then we turn (draws an angle) i'll say, look if 
i kept going, i would go like that, but instead I turn from here to here (draws an arced arrow 
showing the turn angle). okay that would be?  
Jee: obtuse 
RL: okay, but these two things meet to form? 
Jee: an angle. 
RL: an angle right? 
 
[00:44:36.07] 
 
DAY 5 
 
DEFINITIONAL EPISODE #29 
[00:03:07.01] 
 
RL: what did we conclude about straight? What was one meaning of straight? Daniel. 
Dan: it could have, oh no, it has to have a starting point and it could have an ending point. 
RL: okay, so we made a distinction between lines and line segments, didn't we? We said if we 
started some place and kept going forever, we call those a line. If we stop somewhere we call 
that a line segment. But what made a line segment or a line straight?  
Vin: we never got to that. 
RL: yeah I think we did.  
Vin: what? 
RL: yeah, Louisa? 
Lou: um do you want the definition of straight line? 
RL:  yeah what's a straight line? 
Lou: it's a line that goes on and on and um, in like one direction and it's a 180-degrees. 
RL: okay, so there are two ways we thought about, right? you can go on and on without changing 
direction. That was straight. You could walk without turning. And also we thought of it as a 
hundred eighty degree angle. And you know what we call those angles? 
Jee: straight.  
RL: straight, right? they're called straight angles to remind us of that. Kenjra. 
Ken: Adding on to Louisa's, they also had no bumps or lumps or zig-zags or loop-te-loops. 
RL: no, right, cause we wanted to rule out any kind of turning thing, any kind of action. Kayla? 
Kay: Me, Amani and Micah found out that a zig-zag can be a straight line. 
RL: a zig-zag CAN be a straight line? 
Ama: cause it's made up of  
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Kay: cause it's made up of little straight lines.  
RL: so you can think of zig-zags as being composed of straight lines but not A straight line. It 
has more than one straight lines in it. or line segment? 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #30 
[00:04:58.12] 
 
RL: What do we call it when we introduce the zig-zag? What do we call that? Micaela? What do 
we call this (holds hands together at a point) When we have a line meeting another line? Alright 
Vincent? 
Vin:  a vertex.  
RL: they meet at a vertex and what do they make? Nicholas? 
Nic: a bend. 
RL: A what? 
Nic: a bend 
RL: a bin? 
Nic: a vertex? 
RL: where they meet make a vertex, that is what- 
Nic: a point? 
RL: A vertex is a point. I agree. let's see someone who has not yet contributed. Rhonda. What do 
we call this where the two meet? Tim, I know that you're listening cause I'm going to call on you 
next. 
Rho: it's a vertex when two points meet.  
RL: okay so when these two line segments meet, we call this a vertex. what do they form 
together? 
S: (?) 
RL: a what? they do connect. what is the whole thing together called? 
Rho: an angle. 
RL: an angle, yes! Thank you. good that's what we call it, we call it an angle. 
 
[00:06:06.23] 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #31 
[00:07:37.01] 
 
RL:  so what's the difference between a regular polygon and one that is not regular? alright, 
who's going to - Micah. 
Mic: a regular polygon, all their sides are um, uh, I can't remember the word  
SS: congruent 
Mic: congruent.  
RL: what does that word congruent mean? 
Mic: It means they'll lay on top of each other  
RL: okay 
Mic: and match 



	  258 

RL: okay so all the sides are congruent. is that it? 
Mic: and all the angles  
RL: oh and all the angles are congruent. 
Jee: like this (holds us two pencils at a 90-degree angle) 
RL: okay, thank you jeewar for that drama. alright. what makes a polygon not regular then? 
alright. you haven't gone yet daniel. 
Dan: I have. 
RL: you what? 
Dan: i have 
RL: a half? 
Dan: no i have gone. 
RL: you have? 
Dan: yeah. 
RL: that's okay, i'll call on you again. you know why that is? 
Dan: why? 
RL: cause i'm a generous kind of guy. 
Dan: (laughter) I think that irregular polygons that all the sides aren't congruent.  
RL: yeah, all the sides are not congruent. 
Vin: and all the angles aren't congruent. 
RL: and all the angles are not congruent. one angle, at least one angle is different from others, 
and maybe they're all different. we don't know. 
Vin: they could all be the same 
RL: what? 
Vin: they could all be the same, but they could have different sides, lengths. 
RL: ahh so that's a conjecture you have. okay i'm going to put this up here. it's question number 
seven. And i'm gonna say. I'll call this the VF. The VF conjecture. What is the conjecture again? 
This is actually a conjecture. 
Jee: statement? 
RL: give me a statement. What's your statement? 
Vin: I saidwell maybe an irregular polygon can all have the same angles, but it could have 
different lengths of sides. Or it could be the other way around. 
RL:  Irregular polygon can have all angles congruent, but not all sides congruent. (writes it on 
the board as the "VF conjecture: Irregular polygon can have all angles congruent but not all sides 
congruent.") Or irregular polygon, or not regular, can have alll sides  
Vin: no 
RL: you don't like that one? I'll ask, this will be the RL conjecture.  
Vin: what's RL. 
Lou: rich. 
RL: alright, the DR conjecture. Not regular polygon can have all sides congruent but not all 
angles - i'm going to use that for angles- congruent (writes on board).  I hope this is in 
everybody's notebook. There are now two conjectures, along with our questions. (to DL) these 
are polygon questions and conjectures. we have 6 of them so far Mrs. Lucas. They're on the 
board, but Jeewar has them in his notes. Does everyone have them in their notes? 
SS: yeah. 
RL: okay Kayla? 
Kay: Can a regular polygon be an irregular polygon too? 
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RL: okay so (writes on board) Can an irregular polygon be a regular polygon also. 
(students write - DL asks Louisa what her question is) Alright let's try tackling number nine right 
away. Can an irregular polygon be a regular one as well? 
S: no. 
Vin: no it can't because a regular polygon has all same sides and angles and an irregular polygon 
has to have different sides or angles.  
RL: so we defined a regular polygon -  
 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #32 
[00:13:36.00] 
 
RL: What does a polygon have? What does polygon have? 
Vin: sides and angles. 
RL: (writing on the board) okay a polygon we said had sides, at least three sides we said? And 
angles. And we said that a side means a straight line or line segment. And what other property 
did it have? Cause remember that didn't quite work. (pause) Can anyone use this definition and 
make something that's not a polygon? 
 
[00:14:28.01] 
 
************************** 
 
[00:16:53.03] 
 
RL: At least 3 sides and angles we said was a polygon and we said a side means  straight line 
segment. Kayla? 
Kay: it has to be closed. 
RL: Closed. Okay. So it's got to have all of these. At least 3 sides and angles.  
 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #33 
[00:17:11.28] 
 
RL: What does closed mean again? Michaela? 
Mla: it means like, it means, closed figure means something that's not open at all.  
RL: not open. okay. And what else can you know about it Omari?  
Oma: i would say that closed would mean like all connected,  
RL: all connected? 
Oma: lno gaps that lead to the outside shape. 
RL: no gaps? so here's a way I could do something with sides and angles right? (draws a zig-zag) 
but it wouldn't be a polyogn. But if i did this. (draws a triangle) then it's closed and it has 3 
angles.  
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------------------------------------------------------------------ 
DEFINITIONAL EPISODE #34 
[00:18:01.18] 
 
RL: And it has 3 angles. Where are the angles? Nicholas 
Nic: sir? 
RL: up. 
Nic: on the board? 
RL: yeah. 
Lou: Dr. Rich, what do you mean by (?) 
RL: that's what nicholas is about to show us on that figure i just drew. 
Nic: (draws in arcs at each angle.) 
RL: how is? what was Nicholas thinking right there that he knew that? What's an angle again? 
Ken: a vertex. 
Vin: a vertex. 
Lou: like half a vertex. 
RL: okay, Shatteryia? (putting his fingers together at a point) What is this point called Shatteryia 
honey? 
Sha: vertex. 
RL: vertex. What does two lines meeting, what does it form?  
Sha: a vertxex.  
RL: it forms a vertex and what else? What else? what else? Someone help Shatteryia out. 
SS:  angles. 
 
[00:19:05.10] 
 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #35 
[00:21:29.08] 
 
Mic: But is a circle is a polygon? 
RL: okay we haven't decided that, if a circle isn't a polygon. Is a circle a polygon? 
SS: no:: 
RL: okay why not? 
SS: cause it doesn't have sides or angles. 
RL: so circle is made by taking something from the center and just tracing a path. No sides. 
According to our definition. 
Ken: you can make a circles with angles.  
Nic: Does it have a side except one is an angle?  
RL: Well if we, Does a circle have sides? (writes this on the board) 
SS: no 
SS: yes. 
Ken: yes one circle does have sides. 
(students talk) 
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Lou: a circle does not have sides. only when you divide it. it really (?) 
RL: well, we said that a polygon though was 3 or more.  
Ken: (?) 
RL: well can a circle, can, If our definition of a side is that it's a straight line. We said straight 
meant the angle was a hundred and eighty. If you go around in a circle, is the angle a hundred 
and eighty? 
SS: no 
Lou: no, it's three hundred and sixty. 
RL: So does it have a side or doesn't it? 
Lou: no it doesn't have a side. 
Vin: yes it 
RL:  well we said a side forms a straight line segment. Does a circle form a straight line 
segment? 
S: it has a curve. 
Vin: i'm saying that a side (?) the angle, cause if you think of a circle it's like this here's a half of 
a circle (gestures a semi circle) and here's a half of a circle (gestures a semi circle)  
RL: yeah 
Vin: that's congruent. 
RL: yeah. but 
Vin: i'm saying the circle (?) 
RL: Well, let's think about walking. We said straight meant no angles. Or a hundred and eighty 
degree angle. So if I walk in a circle, what do I have to do?  
(student says turn)  
RL: How many times do I have to turn? 
SS: 360.  
RL: well at least 360 times. so can it be straight according to our definition of straight? 
SS: no. 
RL: okay, so if we're going to agree that the polygon has three or more sides and they're closed, 
then a circle can't be a polygon. 
 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #36 
[00:24:04.01] 
 
DL: Can I put a question down? 
RL: okay so Kenjra has a question to the question i posed. what was my question? Omari? what 
was my question? that we're considering I hope. Wait a minute, first we have to get the question 
out. I don't think everyone has the question. What is the question? What question did i just ask 
you? 
S: what's the question? 
Jee: does a circle have sides? 
RL: we kind of got into that from Vincent. 
Vin: yeah 
RL: and we decided that according to our definition of side, no. 
Jee: no there's not anything on the board. 
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RL: but there are different ways of thinking about it, but if use this definition, we have to rule it 
out. but what I asked was this. Just to remind us. I ask, Can I just say that to make a polygon, I 
need to have it 3 or more sides and the figure has to be closed? Do I have to say anything about 
angles or not? What do you think?  
SS: no 
Lou: you have to say something about angles. 
RL: okay how many think you think I DON'T have to say anything about angles? (No one raises 
their hands) Kayla 
Kay: I'm confused.  
RL: I'm asking would it be enough to know if something was a polygon, would it be enough to 
know that it had three or more sides and that it was closed? Kayla? 
Kay: if it's closed doesn't it automatically have the angles there? 
RL: well i'm asking you that. 
Lou: it still does but (?) 
Ken:  no a circle is closed but it doesn't have angles. 
Lou: but it's not even a polygon (?) 
Kay: but that's not a polygon and it doesn't have at least three sides. 
Lou: it's not part of a polygon. All polygons have at least well, 
RL: wait a minute, all polygons have at least 3 sides and they're closed 
Lou: no 
RL: nicholas?  
Nic: Is the circle the only non-polygon? What about an oval? Is that not a polygon?  
RL: Well I don't know. Is it a polygon?  
SS: no 
RL: What's the definition of polygon? That we have right up here. 
SS: sides and angles 
Mic: straight but it's curved. 
RL: Sides. And we said a side meant that we didn't have to turn at all. Just kept going in the same 
direction. If you keep going in the same direction, will you make an oval? 
S: no 
RL: So I guess an oval according to our definition can't be a polygon. It doesn't mean that it's not 
a nice form. But it's not a polygon. Alright so. I'll just leave that. But Kayla thinks not. If you tell 
them there are at least 3 sides and they're closed, you automatically know it has to make angles. 
You don't have to say it explicitly. But you know, just something for you to consider. 
DL: Is that something written in your notebooks? 
SS: yes, no 
RL: it should be written in your notebooks. 
DL: kayla could you repeat your statement? 
Kay: I think you don't have to say anything about the angles cause if it's a polygon, it has 3 or 
more sides and it's closed, then it's automatically going to have those angles. 
DL: so you're saying it's a polygon. 
Kay: mm hmm 
DL:  you're saying it's a polygon and it has 3 or more sides, that you don't have to say anything 
about angles? 
RL: well if it's 3 or more sides and it's closed. 
Kay: and it's a polygon 
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RL: well that's the definition of polygon. 3 or more sides and closed. 
Kay: and if you're going by our rules 
RL: yeah, well our rules are very close to the rules that people outside of the classroom have too. 
DL: so that's a question, would it be true that a closed figure with 3 or more sides, must, you 
don't have to worry about angles. 
RL: must have angles. 
DL: must have angles. 
RL: yeah i like the way you said that. Must have angles. 
DL: so everyone needs to have that in your notebooks cause I'm going to ask how you would go 
about proving one way or the other. 
Jee: can we write it as a "KF statement."  
RL: as a statement? 
Jee: a KF statement. 
RL: a KF statement.  
DL: a Kayla Frank statement. 
RL: yes, Mrs. Lucas will write it as a KF statement.  
DL: (writes it on the board) If a closed figure has 3 or more sides, it must have angles. Is that it? 
RL: yes. 
 
[00:29:57.07] 
 
******************* 
 
[00:31:56.20] 
 
Ken: Dr. Rich I have an answer to your question. Your question was can we make an 8-sided 
polygon that (?) I say yes you can. (they clarify that it is Lou's question). 
RL: Okay, so Kenjra, you say the answer to this question is yes. What's your justification?  
Ken: i don't know what that means. 
RL: well you should. justification means what's your explanation. 
Ken: oh. you made (counts something). Can I draw it up on the board? 
RL: mm hmm. 
Ken: (goes to the board and draws a figure with 8 sides that looks like a hexagon on top of a 
square) And at the same time it's combineded.  
RL: So 1, 2, (labels the sides with numbers) you actually mean this? 
Ken: yes. 
RL: 3, 4, 5, 6, 7, 8. So, Kenjra has drawn, an example. If there's one example, then the answer to 
that question is yes. She's just drawn one. Would you agree that the angles are not all the same? 
Would you agree that the sides are not all congruent? 
SS: yes. 
Vin: no 
RL:  Point is they're NOT congruent. Because a regular 8-sided polygon would have all sides 
congruent, all angles congruent. Kenjra has shown us an example of something that has 8 sides, 
it's closed. Therefore is a polygon. And doesn't have all angles congruent, doesn't have all sides 
congruent. Therefore, is not regular, right?  
Ken: but at the same time it's a combination. it tiles. 
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RL: what do you mean it's a combination? 
Ken: a hexagon has 6 sides cause a (?) 
RL: oh the way you made it is you thought about a hexagon and then you erased one of the sides 
of a square and stuck that up there? So right here is what you mean. (draws a line to separate the 
shapes) and what you did is this (erases line) right? That's another way we can think about a 
shape, as being composed of two or more other shapes. Very nice thinking. 
Ken: thank you. 
RL: you're welcome. Okay Omari. 
Oma: I have a question. 
RL: go ahead.  
Oma: My question is Is there any polygon that is, that has more sides than 10 sides. 
RL: than has more sides than what? 
Oma: More sides than 10. And if there is, than what are they? 
RL: Okay so another question we could ask ourselves. Question 13. Would you get that there 
from Omari please? Omari's question is can we make a polygon with more than 10 sides? Is that 
your question Omari? 
Oma: A polygon with more than 10 sides and if there is, what are they? 
Dan: His question is can you make a polygon with more than 10 sides? 
RL: yes 
Dan: would it be regular or irregular? 
RL: he didn't say. 
Dan: (to Omari) would it be regular or irregular? 
Vin: that's his question. 
RL: no it isn't his question. His question is does any polygon exist that has more than 10 sides? 
okay. nicholas. 
Nic: What's the biggest polygon? 
RL: What do you mean by biggest?  
Nic: One with the most sides. 
RL: so that's like Omari's question (and restates it as "is there any limit to the number of sides 
that the polygon can have?") If that's what you mean by biggest. Cause you know before Amani 
said what;s the area of that octagon? and we never did get to that but we will. 
Vin: I know the answer to that question. 
RL: to which question? 
Vin: both of them. 
RL: okay go on. 
Vin: Yes because numbers go on and on.  
RL: okay so Vincent has an explanation and an answer. Who can restate Vincent's thinking? 
Courtland must be able to do this for us. Courtland, Vincent had an answer and an explanation. 
You need to say it again and Courtland will try to restate what you're saying. Try to be clear in 
your explanation so that Courtland can understand you. 
Vin: I said yes to their question because  
RL: to which question? 
Vin: both of their questions. 
RL: but would you restate the question please? 
Vin: okay. that polygons, that there's a number over. how do i say this. Yes, there is a polygon 
over a 10-sided polygon because numbers go on and on. 
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Cou: but do you know any?  
Jee: yes, you could make one right now. 
RL: so the question is yes there should be cause numbers go on and on so why couldn't the 
number of sides go on and on. and your challenge is well could you make one for us? but that's a 
different question. 
 
 
------------------------------------------------------------------ 
DEFINITIONAL EPISODE #37 
[00:38:48.28] 
 
RL: On Tuesday, I asked you to try to figure out how you would walk to make a polygon. I 
would like you, I will give you 5 more minutes to write directions. Directions. Because other 
people, I don't want you to put it on the floor and then show other people, I want you to write 
directions. 
 
[00:39:25.18] 
 
************************* 
 
[00:55:37.16] 
 
RL: How many of you found it very easy to follow somebody else's directions? Just Nicholas. 
Okay Nicholas, would you read the directions that you followed and it was easy to follow? 
DL: Cause the rest of your group is not agreeing. 
Oma: i agree. 
DL: you agree? Michaela are you saying 
Mla: (?) 
DL: Okay, so would one of you, would one of you read the directions and Nicholas I want you to 
do exactly what the directions say so we can see that it's easy to follow. 
Oma: One, take 3 straight steps 
DL: Take what? 
Oma: 3 straight steps and then turn 90-degrees.  
Nic: (takes 3 steps and turns left 90) 
Oma: Take another 3 straight steps and then turn 90-degrees. 
Nic: (takes 3 steps and turns left 90) 
Mla: Take another 3 straight steps and then turn 90-degrees.  
Nic: (takes 3 steps and turns left 90) 
Mla: Take your last 3 straight steps and then turn 90-degrees. 
RL: can I do it? Okay thank you. 
Vin: your feet are bigger. 
RL: go on. read them. 
Oma: 3 straight steps and then turn 90-degrees.  
RL: Okay 3 straight steps. 1, 2, 3. (takes 3 steps) So what I like about it so far is, I am a robot. 
and now i know how many steps to take. there are 3. Now what do you want me to do? 
Oma: turn 90-degrees. 
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RL: turn 90-degrees. (turns right 90) 
Oma: then take another 3 straight steps and then turn 90-degrees.  
RL: 1, 2, 3.  (takes 3 steps) 
Oma: then turn another 90-degrees. (turns left 90) 
Mla: Take another 3 straight steps and then turn 90-degrees.  
RL: 1,2,3. 90 degrees (takes 3 steps, turns right and hits desk). Error. Error. 
DL:  Did he follow the directions? 
SS: yes 
SS: no. 
Vin: no he didn't. 
RL: what do you mean I didn't follow the directions. You tell. I'm gonna do the directions again. 
You tell me that I didn't follow em. When I don't follow em, you yell out okay? Go ahead, give 
me the directions. 
DL: I'll do them too. 
RL: Mr. and Mrs. Robot? 
DL: yeah. 
Mla: Take 3 straight steps and then turn 90-degrees.  
RL: (takes 3 steps, turns left) 
DL: (takes 3 large steps, turns left) 
Oma: Take another 3 straight steps and then turn 90-degrees.  
RL: (takes 3 steps, turns right) 
DL: (takes 3 large steps, turns left) 
Vin: Stop. 
SS: (talk at once) 
DL: (holds hands up) following directions. 
Vin: Stop. 
Bra: Error. 
Vin: Error. 
SS: Error. 
Mic: no they're weren't specific enough. 
Kay: they weren't specific enough. 
Mic: right or left or how big the steps were. 
DL:  Did Dr. Rich and I both follow the directions? 
SS: yes 
SS: no 
DL: we took 3 straight steps and we turned 90 degrees each time, is that correct? 
SS: yes. 
RL: okay straight means we didn't change our direction, but I saw Mrs. Lucas, cause she has a 
big memory bank. It said steps and some of her steps were like this and then she computed a 
smaller step like this, so her steps, my steps in my bank are a little smaller, they're just like my 
foot. And then sometimes I went to the left and sometimes I went to the right. Why? 
SS: cause you didn't know 
RL:  I didn't know. you didn't tell me direction. you didn't tell me direction of the rotation. 
Alright how could we fix these directions so that any robot on the planet, even Dr. Rich could do 
it well? Okay, what's the first direction? 
Oma: Take 3 straight steps and then turn 90-degrees.  
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RL: (writes on the board) Take 3 straight steps  
Ken: forward. 
(intercom interuption) 
Ken: forward. Take 3 straight steps forward. 
RL: okay, take 3 straight steps forward. 
Ama: heel-to-toe steps. 
RL: heel toe steps? So step means heel to toe. 
Ken: Then turn 90-degrees right. 
RL: Turn 90 right. Okay now what? 
Ken: take another 3 straight steps heel to toe forward. 
RL: okay so i'll say, i'm going to abbreviate this, i'm going to say forward 3. then what? 
S: South 
Ken: you got to turn this way (rotates body left) 
RL: do I need to say south? 
SS: no 
Ama: it's right. 
Ken: left. 
SS: right 
RL: everybody get up. Back up, give yourselves some room. Alright now. We're going to take 
just a couple of steps. Go forward 2 steps 
Kay: 2 steps, 2 steps 
Ama: heel to toe 
RL: heel to toe. we defined steps over here. alright now. turn right 90. Follow your right hand. 
right 90. i meant your other right for some of you. it says go forward. Now the question is some 
people said you should turn left, some people said you should turn right. What do you think it is? 
SS: Right 
SS: left. 
RL: do whatever you think you should do. left or right 90. then take another 2 steps. 
Nic: i don't agree with that. 
(students talking all at once) 
Tim: you gotta turn right. look Dr. Rich. (shows him) 
RL: everyone have a seat. Okay so Omari has an observation. Woiuld you please make that for 
all of us Omari? 
Oma: I think you have to, whatever way, like to go straight first, but whatever way you turn, 
that's the way that you're going to have to keep going. So if you go right, then you have to keep 
going right till you start back. If you go left, then you have to keep going left till you start back 
to where you started.  
DL: why?  
RL: let's see if that's true. 
Oma: because if you went right and then went left (?) 
RL: (writes the rest of the directions on the board: "RT 90. Forward 3. RT 90. Forward 3. Right 
90.") Okay so i'll do it and let's see if it works. Okay, i'll start here. One, two, three. Turn right a 
quarter turn? or 90. 1, 2, 3. Turn a quarter turn right. 1,2,3. quarter turn right. 1,2,3. that's where i 
started. i just turned once more to get back to where i started. OR, Omari says I could use lefts. 
Okay, let's see if he's right so to speak. 1,2,3. Left 90, 1,2,3. Left 90. 1,2,3. Left 90. 1,2,3. Back 
to where I started. 
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Cou: yes. 
RL: Okay? 
DL: so were you correct Omari? what would happen if you mixed? 
Oma: if you mixed, you'd probably be going in all sorts of directions. Like you go down, then 
you turn right, and then you turn left, and then you turn right again and then you turn left. It's all 
messed up. 
 
[01:05:19.27] 
 
DAY 6 
 
DEFINITIONAL EPISODE #38 
[00:03:37.05]  
 
RL:  Okay what is a - What is a polygon? Let's get that first maybe. Let's (Jeewar raises his hand) 
[back up].  
Jee:  [What type?] 
RL:  What is a polygon. Michaela. 
Mich:  (appears to be reading from notebook) It is a closed figure that has angles and sides. 
RL:  Okay. It's a closed figure. And it has sides. 
Mich:  And angles. 
RL:  And angles. (writes on the board. finished product says, "closed figure, sides & angles") 
Can you make any closed figure with sides that does NOT  
have angles? 
S, Ken:  Yes. 
RL:  You can. Okay. Who said yes? Kenjra. Draw one on the board for me. Who else said yes? 
Nick? 
Draw one on the board for me. 
Nick:  Did you say a closed figure that? 
RL: It has to have closed figure and has to have sides, but no angles.  
S:  that's impossible (?) 
RL:  Is that possible? 
SS: Yes, no 
RL:  Okay, If it's possible, draw it on the board. 
Ken:  Well. 
RL:  Draw your's over there (points Nick to other whiteboard) 
Ken:  I can't draw this. 
RL:  Draw it on the board. 
Sha:  Yes you can. 
RL:  You can. You can do it. 
Sha:  I know way you can draw it. 
RL:  Okay, the rest of you should be thinking of this, and whether or not YOU think it's possible. 
(Nick draws a football shape. Ken draws hers. Says, "it's the inside of a marker cap.") 
RL:  Alright Nicholas. Help us understand how you're thinking. 
Nick:  (points to the two "sides") Two sides. (points to the vertices) No angles.  
RL:  [Two sides, no angles.] 
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Nick:  [They can't be angles] cause an angle has to be a straight line, [two straight lines] make an 
angle (gestures--clip). 
RL: [Has to have] 
RL:  An angle has the intersection of two, lines? Two straight lines? Okay. Does anyone have a 
counter-argument for Nicholas? Kayla. (Kayla looks confused) Well, can you argue with 
Nicholas. Do you, do you agree with Nicholas or not? 
Kay:  Um I don't cause that's not a polygon. 
RL:  Okay. 
Kay:  And Michaela forgot to say [that it has to have straight lines. 
RL: [I think you need to say that to Nicholas] though. 
Kay: (turns to Nick) That's not a polygon.  
Nick:  Did he say it had to be a polygon? 
SS:  Yeah. 
Kay:  Cause based on, based on Michaela's [um thing.] 
RL:  I said that, okay what I said Nicholas. And I think here's the point of difference. (draws a 
circe around "sides") I said that it's a closed figure with sides. Now, Nicholas is saying that this is 
a side. Okay I'm going to outline in blue 
Nick:  What did we say a side is? 
RL:  (outlines one of the sides of the football as he talks) What Nicholas is calling a side. 
Vin:  (quietly) You don't know what a side is? 
RL:  Okay What did we decide if you don't want to have that as a side, what must you define as a 
side, what must you define a side to be so you can rule it out? Cause right now, until, there's 
nothing wrong with what Nicholas has done. He has a start and an end and it makes a beautiful 
curve and it closes just like polygons, it's closed. So I see no reason yet to reject that, figure. 
Okay, um, uh uh (points to Courtland who has his hand raised). 
Jee:  Courtland. 
RL:  Courtland. 
Cou:  Uh well, um, them a (inaudible). 
RL:  What's that? 
Cou: Well= 
RL:  We're addressing Nicholas's figure here, right? 
Cou:  I was on hers (points to Kenjra). 
RL:  You what? 
Cou:  Was doing hers (points to Kenjra). 
RL:  No let's do Nicholas right now cause that's what - that's what we're focusing on right now. 
Then we'll get to Kenjra's. 
Ken:  I disagree with my[self.] 
RL:  [Well she just] erased it. 
Ken:  I disagree with myself. 
RL:  Well put it up cause it helps us think. I don't care if we later disagree. We want stuff to 
think with. Go ahead. 
Cou: I think it's not (RL: Huh?) because the sides have to be congruent and 
RL:  Okay so you say that the sides have to be congruent. When I look at that. I bet I could flip 
that and it would, be the same length and everything and sit right on top of it. I'll bet that could 
be congruent. 
Jee:  Yup. 
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RL:  Pretty close. Alright. 
Cou:  Well it's not a poly[gon. 
RL:  Ka][yla.] 
Kay:  [Lines] have to be straight. 
RL:  Lines have to be straight. Daniel, do you agree with that? 
Dan:  Yes. 
Vin:  I do. 
RL:  Okay. How many people agree that we said that, alright so a side, if we're going to agree. 
Now Nicholas, once we say this, then this is what we mean. (writes on the board as he speaks) A 
side is a line. And we said it usually has a beginning and end point. A line segment, that is 
STRAIGHT. 
Nick:  (inaudible) 
 
----------------------------------------------------------------- 
DEFINITIONAL EPISODE #39 
[00:08:30.08] 
 
RL:  Okay and a st-how did we define straight? Daniel? 
Dan: It had to have no curves, creases, bends. 
RL:  Okay so we said straight was no bends (writes this on the board). And if we walked in a 
path (gestures out with hand), we would have no turns. (writes this on the board) 
Dan:  (quietly) Yeah, no turns. 
RL: Okay, is there any other way that we defined straight? 
Jee:  (quickly) No zig-zags. 
RL:  Don't just call out. You know what the rules are here Jeewar. Any other way? Anybody 
who hasn't gone yet? Jeewar? 
Jee:  one eighty. 
RL:  Okay. So IF we think about the line like this look (holds up two markers, end to end). 
Everyone looking? Some people are not looking. One of their names is Louisa. Look. (pause) 
(rotates one marker) Okay if we rotate it till it's a hundred eighty degrees (shows markers end to 
end in line), this is another way we can think about straight. (draws two lines on the board, 
connected end to end at a point). The two line segments are at this angle (writes "180" with 
degree symbol). They'll form a straight (gestures out with arms) line segment. 
 
----------------------------------------------------------------- 
DEFINITIONAL EPISODE #40 
[00:09:43.16] 
 
RL:   Okay, so. When I get back to my question. Closed figure with sides that doesn't have 
angles. Alright. How were you thinking about this Kenjra? 
Ken:  Um. Where is that marker? Oh here it is. The inside of this marker cap (points to marker) 
is circular at the top (moves finger along the top rim of the cap) and it has no angles on the side 
(points to her drawing of the top of the marker cap) cause that line is curved and if you look 
down on the inside of here, it has sides. (points marker cap out, presumably towards RL) 
RL:  Where are the sides? 
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Ken:  They're going down (puts finger in marker cap. looks inside marker cap for a few seconds, 
frowning). 
RL:  Vincent? You have a comment on that? 
Vin:  Yes, but um= 
RL:  =Please use a loud math voice. 
Vin:  (louder) Okay, it can't um- the marker doesn't have sides because um a marker top goes 
circular all the way down (makes spiral gesture). It doesn't have (gestures up and down with 
finger) just a normal side. It has (makes spiral gesture), it goes circular all the way down. 
RL:  Okay so if I can rephrase what I understand Vincent to be saying? Yes, I know who could 
do that for us? Rhonda. Rhonda. What is Vincent's argument? Would you restate it for us? 
Rho:  (pause) That he's saying that it doesn't have sides cause it's circular. 
RL:  That what? 
Rho:  It doesn't, that it- that it doesn't have sides. 
RL:  Okay. So he's saying that when you have this cylinder, and of course it's also a 3D object. 
It's like one of these (draws a circle on the board). 
Vin:  (quietly) uh yeah and [it goes straight.] 
RL:  [And we] decided that a circle, is a circle a polygon? 
SS: No 
RL: Okay. Okay so it doesn't HAVE sides in the way that we define it cause if you went here 
(places marker on the cirlce), you would have to turn (turns marker as if it is walking the path of 
the circle) and turn a little bit (turns marker more, moving along path), and turn a little bit (turns 
marker more, moving along path). So you'd have turning in order to make that. Okay Kenjra 
thank you. (Kenjra has her hand raised) Oh. Yes, Kenjra? 
Ken:  Um. On the other side, on the inside of here, it has little prongs like that on the inside of 
them. But they do make SIDES [(inaudible)] 
RL:  Right but what WE'RE talking about is a two-dimensional object, right? Okay, we maybe 
should SAY that about polygons. That they're two dimensional, closed figures. (writes "2D" on 
the board next to definition) Now. To answer the question, Nicholas. What do you think about 
this? If it's two-dimensional and closed and it has sides, it must have angles? (pause)  Kenjra you 
can sit down. Thank you. Shatteryia, what do you think? (long pause) Just hang on Daniel, I 
want to give everyone some think time. Shatteryia, what do you think? If it's closed and it has 
sides, does it have angles or not? You can say yes, you can say no. You can say i don't know. 
Shatt:  (shakes head) I don't. 
RL:  Okay. How are you think-what? Shatteryia. What's a polygon? 
Shatt:  A [polygon?] 
RL:  [What's our] definition of a polygon? 
(Shatteryia looks through her notebook)  
RL:  Shatteryia, if you look on the board, we've been defining that. What does that say? 
Shatt:  A closed figure with sides and angles. 
 
 
-------------------------------------------------------------- 
DEFINITIONAL EPISODE #41 
[00:13:32.16] 
 
RL:  Okay. So closed means what? 
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Shatt:  Um. Polygon. 
RL:  Okay what does closed mean though all by itself with or without- we can have polygons 
that are closed but we can have other things that are closed. Amani, would you help out 
Shatteryia? What is closed mean please? 
Ama:  Closed is like when um, is like when two lines are touching each other. 
RL:  Okay. So is this closed? (draws two lines connected). 
Ama:  Okay. (laughs) No. Um. (pause) When things say like things can't get out. 
RL:  They can't get out? [K.] 
Ama:  [Yeah like] a back door. 
RL:  So. We have lines or curves somehow that make something that has, sometimes we call this 
the interior, inside, and the exterior, outside. That's what closedness does. Separates things. 
Inside and outside. 
 
 
-------------------------------------------------------------- 
DEFINITIONAL EPISODE #42 
[00:14:36.27] 
 
RL: Shatteryia? Are you okay with that one? Alright. Now. Shatteryia. Coming back to you. 
What about the angles. If something is closed and has sides, must it have angles or not? What do 
you think? [Shatteryia.] 
Shatt:  [Yeah.] (nods) 
RL:  Yes. Why do you think so? 
Shatt:  Because like the uh, triangles. (points to the board)  
RL:  Yup triangle I'll draw one here. Yup. 
Shatt:  Like at the top it has angle. 
RL:  mmhmm. 
Shatt:  The top has angles. The side has angles  -the two sides have angles. 
RL:  Okay how many angles does a triangle have? 
Shatt:  Three (holds up 3 fingers) 
RL:  Where are they? 
Shatt:  The top (points to the board) 
RL:  Yeah. Here? (draws in curved line to denote angle) 
Shatt: The side. 
RL:  Yup. (draws in curved line to denote a second angle) 
Shatt: and (inaudible) 
RL:  (draws in curved line to denote remaining angle) Okay. So it has three angles, that are 
INside the figure. You know what we sometimes call the angles that are INside the figure? 
Ken(?):  Interior? 
RL:  Interior. (writes "interior" on board) So these are INTERIOR, angles. (pause as he finishes 
writing) Okay so. We're pretty good now on how we want to understand polygon, right? We 
know that it has sides and it's closed. Is there any limit to the number of sides? (initial silence) 
Jee:  Nope. No not any. 
RL:  Okay so we can have as many sides as we like (writes "sides - as many as we like") I'll 
write here as many as we like. Let's go back toward one that is pretty familiar.  
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-------------------------------------------------------------- 
DEFINITIONAL EPISODE #43 
[00:16:20.14] 
 
RL:  Oh. We never answered this question. Now are there more polygons or are there more 
regular polygons? Kayla? 
Kay:  Polygons. 
RL:  Why do you say so? 
Kay:  Um because a polygon, it only has to have sides and angles. It doesn't have to um, it 
doesn't have to be closed= 
RL:  =oh 
Kay:   =well it has to be closed but it doesn't have to be uh like, the same angles and the same 
sides. [Congruent.] 
RL:  [Okay.] So these can be ANY (writes "--> any"), many sided figure (writes "sided"). Any of 
them (writes "figure"). And the regulars are the special ones. What's special about em Louisa? 
Lou:  They have number of sides.  
RL:  What makes them regular? 
Lou:  Their shapes are (inaudible) 
RL:  That what? 
Lou:  Their shapes are (inaudible) 
RL:  Yeah they are pretty common. That's a good observation. What else? What else do we know 
about regular polygons? Tim? Regular polygons. What do we know about them? 
Tim:  We know that they have sides, angles, and 
RL:  Okay all polygons have sides and angles. What's special about REGULAR polygons? 
Tim:  It can be= 
RL:  =Micah? 
Mic:  All the sides and the angles are congruent. 
RL:  Alright all (writes as he speaks) sides and angles, are congruent. Tim. What does congruent 
mean? What does that mean to you? 
Tim:  The same. 
RL:  Yeah, very good. Same right? Put one right on top of the other. Okay. Now. Does anyone 
disagree with this? Does everyone see how this works? Okay it's like if you have a bunch of 
dogs. And then you have some special kinds of dogs like German Shephards. There are many 
more dogs in the world than there are dogs that are German Shephards. So regular polygons just 
work like that. Okay so that's just a matter of convention.  So so far we're not too excited so let's 
get excited.  
 
[00:18:33.00] 
 
 
-------------------------------------------------------------- 
DEFINITIONAL EPISODE #44 
[00:29:44.08] 
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RL:  Now that you're primed and ready to go. In your table groups, here are the problems that I 
want you to solve. You pick the one that you want to solve. Alright you ready? 
Mic:  Almost. 
RL:  Okay. Either write directions to make a rectangle. OR. Write directions to make a regular, 
triangle. A triangle with all sides congruent, all angles congruent. 
Vin:  We already did that. 
RL:  I don't think anyone has done that just yet. 
 
[00:30:24.13] 
 
**************** 
 
[00:57:56.26] 
 
RL: Alright uh, I would like you to share your solutions with the rest of the class. How many 
people figured out how to make the rectangle? (Kenjra, Brandon, Courtland, Kayla, Amani, 
Michaela raise their hands) Okay let me start out with Louisa and Kenjra. Two different 
directions alright. Louisa, what are your directions please? 
Lou: They're different. 
RL:  What? 
Lou:  They're different. 
RL:  Are they using the compass? North, south, east, west? 
Lou:  Well it's also usign the compass and right and [left.] 
RL:  [And] right and left? Okay. Uh, go ahead. 
Lou:  Five steps um, north. 
RL:  Okay, five steps  
Lou:  North. 
RL:  North. Yup. 
Lou:  Two steps west. Or you can call it left. 
RL:  If I go five steps north, okay. (enacts) Okay now what? 
Lou:  Two steps left. 
RL:  How can I? Oh, so I just turn (rotates body clockwise) and go two steps west? Okay good. 
Lou:  Then five steps uh down. Left again. 
RL:  So five steps down, wouldn't that be in the opposite direction of north? What's the opposite 
direction of north? 
Lou:  I mean right. 
RL:  South.  
Lou:  Two [steps] 
RL:  [And then], two steps east? 
Lou:  Yeah. 
RL:  Alright. Good. So that would work if we knew north, south, east, west. Okay, can anyone 
else give me a different way of doing it?  
Jee:  The same way. 
RL:  Pardon? 
Jee:  The same way (inaudible). Like five steps right. Two steps right. [Five steps right] 
RL:  [I don't know] what you mean by right. 
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Jee:  Right ninety-degrees. 
RL:  Okay so I can go forward five steps, (writes as he talks) right ninety. Then what? Forward 
[how many steps?]  
Jee:  [Two steps] 
RL:  Two steps? 
Jee:  Right ninety. 
RL:  Right ninety. 
Jee:  Five steps, right ninety. 
RL:  Forward five. Right ninety. Forward two. Right ninety. 
Jee: Then turn back= 
RL:  Does anyone notice a pattern to this? Amani? 
Ama:  First you're walking, then you turn and then you're um walking again and turning. 
RL:  Alright. Anybody else add on to that? Here I'll just write this part again. (writes something 
on the board) (silence) Jeewar? 
Jee:  Five two, five two. 
RL:  Okay so. If I repeat this, two times (writes something on the board), that'll make a rectangle, 
right? pshh, kkk, pshh, kkk. Okay. (silence) Micah and Amani and Kayla? 
Ama:  mmm hmmm. 
RL:  Are your directions like this? 
Mic:  (nods)  mmm hmmm. 
RL:  Do you use a different metric? Instead of steps you were using blocks? 
Mic, Kay:  mm hmm. 
RL:  [Okay.]  
Mic:  (quietly) And i[nches.] 
RL:  And you were still using degrees though for the amount of turn? 
Kay: yeah 
Ama: and we used inches. 
RL: okay, did uh what about you rhonda and shatteryia? 
Shat: we used tiles 
RL: tiles? 
Shat: on the sheet we used inches and on the floor we used tiles. 
RL: okay so you used tiles on the floor? what were your directions with teh tiles? can you give 
them to us please? 
Shat: yeah you go one tile forward. 
RL: (writes) forward one tile? 
Shat: four  
RL: forward four tiles. yup. then what? 
Shat: then you turn a whol 90 degrees. 
RL: then what? 
Shat: you go 2 more tiles. 
RL: forward 2 tiles. 
Shat: then you turn another 90 degrees. 
RL: okay then what? 
Shat: go forward 4 tiles. 
RL: forward 4 tiles. See that pattern again? 
Shat: then go 2 more tiles 
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RL: 2 more tiles? (finishes writing) Okay. So, how are a square and a rectangle the same and 
how are they different? Amani? 
Ama: the rectangle and the square are the same because both have 4 sides, both you have to turn 
90-degrees. 
RL: okay so that's how they're alike. Four sided 90-degree turners. Kayla? 
Kay: they're different because on a rectangle, you have two different sides  
RL: the lengths aren't? okay so in a rectangle  
Kay:  and in a square they're all the same. 
RL: the lengths are not all congruent. So a square has everything a rectangle has plus it has all 
the sides congruent. Alright now. That was challenging to think about. 
 
 
-------------------------------------------------------------- 
DEFINITIONAL EPISODE #45 
[01:03:52.06] 
 
RL: But what about the triangle? Alright vincent. 
Vin: you want me to tell you the direcitons? 
RL: yes, please tell me the directions for  triangle. And i'll write them over here. Okay go ahead, 
ah and i need a volunteer to follow what vincent is telling us to do. Courtland. 
Vin: go FD 3 feet heel-to-toe. 
RL: fd 3 steps (writes) 
Vin: heel to toe 
RL: whatever. right. good enough. 
Cou: (walks 3 steps) 
RL: now what? 
Vin: FORWARD. 
Cou: (walks forward) 
RL: okay. 
Vin: turn 60-degrees left. 
RL: turn left 60-degrees. Alright go ahead turn left 60-degrees (helps Cou) 
Cou: (turns 60) 
RL: that's good. about there. just bring your other foot there so your don't trip over yourself. put 
your feet together. okay so now we turn leftt 60. okay now what? 
Vin: go FD 3 feet heel-to-toe. 
RL: FD 3 steps again? 
Vin: yes. 
RL: alright. 
Cou: (walks 3 steps) 
RL: now what? 
Vin: turn left 60-degrees again. 
RL: turn left 60-degrees again.  
Cou: (turns 60) 
RL: alirght now what? 
Vin: now go FD 3 feet heel-to-toe. 
RL: FD 3 steps? 
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Cou: (walks 3 steps) 
RL: alright now what? do i turn left 60 degrees again just to get back to where I started? 
Vin: uh huh. 
RL: did it make a triangle? 
SS: no 
S: yes. 
RL: no? no i don't think it did. right. I mean let's draw, let's draw teh path it made. I think i saw 
Courtland go 3 steps and if we kept on going it'd be like this (draws a line with dotted line 
extending from it), but we turn right or left 60-degrees (draws the turn angle). So that's about like 
that. And then we got to here and we had to turn left again. If we kept going it'd be like this. We 
turn left. 90'd be there, so 60 would be about there. And we went another 3 steps. Did not seem 
to me to make a triangle. 
SS: no 
RL: it made sommething but it doesn't look like it's a triangle 
Vin: you have to turn right. 
RL: oh you think it's if you turn right it'll work. 
Vin: you have to turn right. 
RL: okay i'll do this one okay. What do you think Micah. If you turn right will that solve the 
problem? 
Micah: No 
SS: no 
RL: alright (walks) 1,2,3. turn left 60. now what? 
Vin: go 3 steps. 
RL: 1,2,3. Okay 
Vin: no turn right. 
RL: alright how much? 
Vin: 60 degrees. 
RL: 60. alright that's about right there. now what. 
Vin: no i mean 90-degrees. 
RL: alright now it's 90. now what? 
Vin: FD 3 steps. 
RL: okay. (walks) I still don't get a triangular feeling out of this. Remember we're trying to make 
a regular triangle. All the angles have to be teh same. All the sides have to be the same. 
Everything, angles an sides are congruent. Ah. 
Jee: I made one. 
RL: alright you pick somebody to direct and i'll write your directions down. Alright Daniel 
you're up. Jee has the floor. 
Jee: FD (?) 
RL: how bout we just go fd 3 steps so we can all? 
Jee: heel to toe. 
Dan: (walks 3 steps) 
RL: FD 3 steps. Okay now what? alright put your feet together that's fine. alright now what? 
Jee: turn left 60-degrees. 
Dan: it'll be about there? 
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RL: i don't know what do you think? you know 90 is about a quarter of a turn so 60 you pointed 
out to me was 2/3 of 90 before. alright, now what? Jee? so far your directions are looking an 
aweful lot lilke this table's directions. 
SS: I know! 
Ken: you go to turn 50 degrees. 
RL: have a seat, have a seat. alright now that you all have an idea, I want you to all look at your 
directions again for a triangle and I want you to rethink it. If you didn't do a triangle. That's okay. 
Alright. so we've figured out how not to make a triangle. 
Jee: i know. 
RL: hey i put your directions there. i want an equilateral, equiangular triangle. i want to be able 
to walk it. you had a chance. You have to prove that to me  
Mic: 30- degrees 
(students talking all at once) 
RL: alright i'm going to give somebody else a chance. Omari, you're on. Omari has a diff way of 
thinking about this. If I were you I'd listen to Omari. Omari has the floor. Get up there please. 
pick somebody who you're going to direct Omari. 
Oma: brandon. 
RL: brandon you're up. alright this is for a triangle. Alright. I'll write down what Omari tells me 
to do. I mean what Om tells Bra to do. alright go ahead. 
Oma: go forward 3 steps. 
RL: FD 3 steps. (writes) 
Bra: (walks 3 steps) 
Oma: then turn right  
RL: turn right. 
Oma: a 120-degrees 
RL: a 120-degrees. Okay there's 90, where's 120. there, there we go 
Bra: (turns 120) 
Oma: take another 3 steps. 
RL: FD 3 steps. 
Bra: (Walks 3 steps) 
Oma: turn another 120-degrees. 
RL: turn Right 120-degrees. 
Bra: (turns 120) 
RL: now what? 
Oma: take another 3 steps. 
RL: FD 3 steps 
Bra: (walks 3 steps) 
Ken: and you're back to where you started. 
Oma: turn right 120-degrees 
RL: turn right another 120-degreees. back to where you started 
Bra: (turns 120) 
Jus: that's not where you started 
Dan: that's not where you started 
RL: alright. Let me try the walk. 
(argument over who gets to walk - they decide Shat and Lou) 
RL: now let's see if they both do the same thing? ready? okay, go ahead omari. 
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Oma: FD 3 steps. 
Shat: (walks 3 steps) 
Lou: (walks 3 steps) 
RL: put your feet together so no one trips. now what? 
Oma: turn 120-degrees 
RL: turn right 120-degrees 
Tim: shat don't know what she's doing. 
Rho: yes she does. 
RL: i just think you turned 180 degrees louisa, shatt. Where's 120?  
Shat: (readjusts) 
Lou: (readjusts) 
RL: alright 
Oma: take another 3 steps. 
Shat: (walks 3 steps) 
Lou: (walks 3 steps) 
Oma: turn right 120-degrees. 
Shat: (turns right 120) 
Lou: (turns right 120) 
Oma: take another 3 steps forward. 
Shat: (walks 3 steps) 
Lou: (walks 3 steps) 
Oma: turn 120.  
Shat: (turns right 120) 
Lou: (turns right 120) 
Oma: and then go 3 steps one more time. 
Shat: (walks 3 steps) 
Lou: (walks 3 steps) 
RL: so we're not exactly following your directions to the T here, are we? we have, we're winding 
up  in different places. 
Cou: Dr. Rich, I got a triangle. 
S: i got a triangle. 
RL: Omari's directions, we have to see if we can follow them first. 
Cou: I can just let me. 
RL: alright tim? 
(they discuss who will follow directions - decide on Vin and Tim. they start walking, but 
students are talking all at once) 
RL: hang on stop. everybody get up. now. I want everyone to raise their right hand. and I would 
like you to turn right 90-degrees. Alright go back to where you started. Turn left 90. Now I want 
everyone to turn 120-degrees about where you think that is.  
Kay: right or left? 
RL: doesn't matter. Alright so what you have to figure out for yourselves is the difference 
between 90, 180, 120 
Lou: oh i think i know 
RL: and i want to see it in your math notebooks. we will pick this back up on thursday. You 
might want to consider Why does Omari's directions, why do they work? They will make a 
triangle that has all angles and all sides the same length. Your homework is to figure that out." 
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[01:17:33.08] 
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DAY 26 
 
DEFINITIONAL EPISODE #46 
[00:20:40.28] 
 
RL:  While we're thinking about why we might want to explore 3D, we're going to stay in 2D for 
a little bit longer. And here's my question. What's a triangle?  
S:  A shape. 
Tim:  Three-sided- 
RL:   - uh uh uh. I want you to work in table groups and write me a definition of a triangle so 
that, so that we can know for sure, given a triangle and anything else that we might generate in 
2d, or in 3d, that, what we're looking at is a triangle. okay you can talk in your table groups. I 
want you to come up with ONE defintion per table group. That means that it will be the Rhonda, 
Omari, Louisa definition. Okay? It will be, okay so each person has to agree about the definition. 
I want you to work to(/)ge(\)ther. To(/)ge(\)ther. Alright. 
 
[00:21:52.15] 
 
**************** 
 
[00:32:01.08] 
 
RL:  so. The idea is that we can read this definition and it will allow us to recognize anything 
that's a triangle and exclude anything else. And we want to see who can do it with the fewest 
possible ideas, but it could still work. So I want you to look at every definition. I want you to 
track, just read it and see whether or not the defintion works. Cause good definition do what? 
What kind of work do they do for us?" (No one answers. He lets the students still at the board 
finish.) Alright. I'm going to start over here. This one says that a triangle has 3 sides, 3 angles 
only and it is closed. So their definition says a triangle has 3 sides, 3 angles, and it is closed. 
Okay. Can anyone think of something that their definition, it would be triangular but their 
definition wouldn't work for it. Or something that is not triangular but their definition would 
seem to fit it? Okay, some people think they can do this. Vincent. 
Vin:   Straight sides. 
Ama:  But we already said sides. 
RL:  [So this assumes that the]  
Mic:  [That's the [definition of sides.]] 
Kay:  [definition of sides.] 
RL:  def[inition of side means] straight.  (draws an arrow from side and writes "straight") 
Vin:  (looking at the girls) [Three sides, three angles.] 
Mic:  (quietly, possibly responding to Vin) We just said that. 
RL:  And, can we assume that? Because we have done this? Our definition of side (circles "sides 
--> straight") has included the notion of straight. Remind me of what straight means though? Just 
so we're all on the same page. Michaela. 
Mich:  it means a line going 180, NO turns.= 
RL:  = 180, no turns. And what if I'm walking? Give me the walking definition of straight. 
Jee:  You never ever turn (inaudible).  
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RL:  Never, ever turn, right? No turns, you keep a constant heading. (walks to illustrate). Alright, 
so this - can you think of anything that this doesn't cover then? Kenjra? 
Ken:  That it shows the exterior angles have to be 360. 
RL:  Okay. I'm uh - 
Ama:  Yeah, we forgot that, [that's what we were about to ] 
RL:  [we don't have] a other properties, but, are these properties good(/) enough? Is this set of 
properties good enough? 
S:  Yes. 
S:  Yes. 
RL:  Okay. So that is a definition that works. Alright. Let's look at this one. 3 sides, 3 angles, can 
be regular or irregular polygon and it's closed. Do they need to say closed if they say polygon? 
SS:  No. 
RL:  Why do you say yes Nicholas? 
Nick:  cause a regular polygon is always closed. 
RL:  Is an irregular polygon open?  
Dan:  (quietly) No. (shakes head) 
 
 
--------------------------------------------------------------- 
DEFINITIONAL EPISODE #47 
[00:36:18.06] 
 
RL:  What's the definition of a regular polygon again? Rhonda? 
Rho:  Uh, I think it was straight lines, with straight lines, angles and it's closed? 
RL:  Okay, straight lines, so we call those sides. And it's closed. But, what makes it regular? 
Lou:   All the sides, same sides. 
RL:  All the sides are the same? And what [else?] 
Jee:  [Same sides,] same [angles. ]  
S:  [Angles] 
Vin:  [Angles.] 
RL:  [And all] the angles are the same. [Okay] 
Tim:  [all the] sides are congru::ent. 
RL:  All the sides are congruent. THANK YOU Tim. 
Jee:  All the [ANGLES are congu(/)ent(\).]  
RL:  [Okay, that math word] says it a::ll. All the sides are congruent. All the angles are 
congruent.   
 
 
--------------------------------------------------------------- 
DEFINITIONAL EPISODE #48 
[00:36:59.01] 
 
RL: Yeah, good. So, we could say it could be regular or irregular, and, as long as we say 
POLYGON, we know it has to be closed. Good. Alright.  A triangle has 3 straight sides, 3 
angles, interior angles of 180. You mean each interior angle is a hundred and eighty degrees?  
S:  No:: 
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RL:  What do you mean? 
Vin:  I mean all of them add u::p to.  
RL:  O::kay, the interior angle, the SUM (writes something) of the interior angles is 180.  Sum of 
the exterior angles 360, and it is  
S:  Enclosed. 
RL:  Or, (erases something) closed. We just use the word closed. Okay, it encloses a space, and 
you know if you think about it, if I draw this triangle, (draws an equilateral triangle) this has an 
area, and we could figure it out, cause that's one of our questions, we have to learn to figure this 
out, and outside of it (gestures outside of the triangle) is just basically infinite. So closed, closed 
matters. It closes something, it makes the area have a definite value. and outside of it, pshhhew 
(throws his arms out to the side). It's the whole rest of the plane. Infinite. Alright. So, this works. 
Right, this works. (points to definition) 
S:  Yes. 
RL:  Good. Alright let's look at this one. [00:38:24.21] 3 straight lines and has to be connected or 
closed. (note that definition just said "connected" so "closed" was RL's addition. So Daniel's 
definition (writes "closed") is three straight lines, or we could say three sides, and closed. 
(rewrites as "3 sides, closed.") NOW, that's a really sparse definition. That's the sparsest one so 
far. Does it work? Or do we HAVE to say angles? What do you think? 
S:  Yes. 
RL:  Well. 
Dan:  But won't it come with angles? 
RL:  As soon as Daniel says, three sides and closed? 
Rho:  It al-it already has angles. 
RL:  It already has the angles. So, this is like, this (points to a different definition - can't see). 
Very slim. I would call this one (points to another) somewhat slim. I'd call this one (points to 
another) pretty slim, right? This (points to another) is an expanded one, but it works.  
Vin:  (inaudible) 
RL:  No, no. Expansion is - but we're just trying to see what we can get away with. [00:39:30.13] 
Alright let's look at this one. A triangle is a polygon.  Okay it has 3 congruent sides. It has no 
diagonals. No one's mentioned that before. It is closed. So as soon as they said polygon (points to 
the word "polygon" in their definitions), could we assume closed?  
S:  Yes. 
RL:  Okay, is it true that every triangle has 3 congruent sides?  
Dan:  No. 
SS:  No. 
Dan:  Not every [triangle.] 
RL:  [Okay] so, here might be a triangle [right] (draws something - can't see) 
Nic:  [A] regular triangles. 
RL:  Okay, a regular triangle DOES have 3 congruent sides. What is another name for a regular 
triangle? Did we ever - did we ever write that down? So - 
Ken:  An equilateral. 
RL:  An equilateral triangle. E:: qua:: lateral (writes word on board). So write that down okay? 
Put that in your notebooks, so that from now on when we say equilateral, we all know what we're 
talking about. So it's an equilateral triangle. It's CLOSED. 3 interior angles. 3 exterior angles. 3 
straight lines with 3 points. What's another word for points that we've been using? 
SS:  Vertex. 
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RL:  Vertices, right? (writes something on the board.) And, interesting tha::t this definition says 
hey if you added another side it would no longer be a triangle but something called a 
quadrilateral. Okay. So that's nice. [00:40:50.26] Alright, let's look at this one. (Courtland is still 
at the board.) Courtland has been busy editing here. Okay, I'm gonna let him finish. Courtland, 
then you present yours and see if it works. (They wait for Courtland to finish writing.) Alright, 
let us know what you got there Courtland. 
Cou:  A triangle has 3 closed  
RL:  You got to face us and speak in a loud math voice because of that fan. 
Cou:  A triangle has 3 closed sides and a polygon. All sides have congruent sides. Uh:: and 3 
turn angles and 3 interior angles. Turn angle is, the turn angles is 360. 
RL:  The sum of the turn angles is 360? 
Cou:  Uh huh, the sum of the turn angles is 360. A system, a system of triangle has all turn 
angles of 120. 
RL:  Okay, who are you representing there? Is this Dilovan and Jeewar?  
Cou:  Yes.  
RL:  Okay, so, um, are you claiming that the only triangles are the ones that are equilateral?  
Dil:  (shakes had no) 
RL:  Okay cause that's what that definition says. It says all sides are congruent. Do you mean 
that? 
Dil:  (shakes head no) I messed up. 
Jee:  [R::egular] 
RL:   [Then you said] all the turn angles are a hundred and 20. Which of the [triangles?-] 
Dil:  [For a regular.] 
RL:  For a REGULAR. So for an equilateral triangle that's true. Right, okay? we have a bunch of 
definitions that work and we find that we can be very economical and state just a few things 
about a triangle and we can make a good definition. Now what I'd like you to do is use your 
definition and in your group decide which of these things that I just gave you, which are 
triangles? 
 
[00:45:04.29] 
 
****************** 
 
[00:49:17.07] 
 
RL:  (RL has put an overhead of the shapes up.) 
RL: Alright um. This One (points to the triangle with curved in sides.) Omari. 
Oma: no 
RL: Why not? 
Oma: because it has curved sides. 
RL: okay curved sides. so if I traveled along this, would I have to change my direction? Okay, so 
that's out. doesn't have sides, they're not straight. so this is no. Alright vincent. 
Vin: yes. 
RL: yes why? 
Vin: closed figure with 3 sides.  
RL: closed figure, 3sides. Louisa how bout this one? 
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Lou: yes. 
RL: why? 
Lou: because it's straight and (?).  
RL: okay. Rhonda. this one. 
Rho: yes. 
RL: why? 
Rho: it's closed shape and (3 sides??).  
RL: closed and 3 sides. alright. um. justin. what about this one? 
Jus: yes 
RL: why? 
Jus: because closed and (3 sides??).  
RL: closed and what? 
Jus: (?) 
RL: closed and 3 sides. alright. How bout this one right here. Jeewar. 
Jee: closed and have 3 sides.  
RL: so? is it or not?/ 
Jee: yes. 
RL: alright what about this one? it's closed.  
SS: no  
RL: why not? 
SS: (?) 
RL: it look,s like a what? 
SS: (?) 
RL: so is it a triangle or what? 
Ama: no because it has curved sides.  
RL: so this looks like a piece of candy? 
Tim: no halloween corn.  
RL: alright, but it's stil no according to the definition?  
Nic: no vertex (?) 
RL: alright what about this one. it's got 3 sides  
SS: but they're not connected. 
RL: good.  
 
 
[00:51:11.19] 
 
 
 
 
 
 

 

 


