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General Introduction 

Assume you are a psychometrician at a large university on tenure track, and have 

developed an inferential technique for correlations. You want to ensure that the technique 

performs well under a wide range of circumstances, including nonnormal parent distributions, 

and therefore you choose a popular method for simulating nonnormal bivariate data by varying 

skewness and kurtosis. You run the Monte Carlo simulations, and things do not turn out quite as 

well as you had hoped — in some conditions of skewness and kurtosis, the performance of your 

method is poor. Nevertheless, you send your paper to Psychological Methods for review. The 

result — rejection.  

Two years later, completely independently, a fellow researcher develops the exact same 

inferential technique. Just as you did, he examines the performance of the technique under a 

wide range of skewness and kurtosis conditions. However, there is one important difference 

between his work and yours: He uses a different simulation technique. His study finds 

reasonably good performance in the conditions where you found poor performance. He sends his 

paper to Psychological Methods, gets published, and, in the course of several years, receives 

many citations for the new correlational technique which gains great popularity. How could this 

happen? 

 

Multivariate Data Analysis. Multivariate data analysis is a cornerstone in modern social 

sciences research. A fundamental part of such multivariate data analysis is the analysis of 

association between two or more variables, and many procedures exist that test hypotheses about 

or provide point and interval estimates for single estimates of association, coefficients of 

multiple determination, and patterns consisting of several estimates of association. Many 
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advanced statistical techniques such as Path Analysis, Structural Equations Modeling (SEM), and 

Factor Analysis are based on the calculation of some form of correlation. The broad involvement 

of correlational procedures in all kinds of scientific research makes it paramount that such 

procedures perform as expected and that their performance in a wide variety of (if not all 

possible) circumstances is investigated. 

The traditional hypothesis tests and confidence intervals for the best known measure of 

association, Pearson’s product moment correlation r, are based on the assumption of normal 

parent distributions, i.e., it is assumed that the variables for which the correlation is calculated 

have a bi–/multivariate normal distribution. If we calculate sample correlations for bivariate 

normal data, the Fisher Z transform can be used to transform the sample correlation into a 

variable that is close to normally distributed, which in turn can be used to create quite accurate 

test statistics and confidence intervals. While numerous specialized procedures and coefficients 

exist that cater more towards data that deviate from the ideal of normal parents, many researchers 

will still use the procedures based on the Pearson correlation coefficient, hoping that they will 

retain most of their validity even under nonnormality of parent distributions. Reasons for 

adhering to analyses based on normal theory may include: a) Lack of knowledge of the 

specialized procedures, or, indeed, of the robustness issue itself; b) The specialized procedures 

have not been implemented in data analysis software; c) Higher level analysis techniques such as 

factor analysis and SEM, were originally developed using the traditional coefficients; d) The 

advantages and improvements of the special procedure over the standard Pearson correlation 

coefficient are not fully established, or at least not salient to the researcher.  
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Nonnormality and Correlation. In his oft–cited 1989 study, Micceri demonstrates that we 

can expect the majority of univariate real data sets for achievement and attitude measurements to 

not have a normal distribution. An equivalent study for bi– or multivariate data seems to await 

completion, but even lacking concrete evidence, it is safe to assume that bivariate (and 

multivariate) nonnormality is at least as common as univariate nonnormality, for one simple 

reason: For the joint distribution of variables X and Y to be bivariate normal, the following 

condition needs to be true: Every linear combination W aX bY= +  with at least one a or b not 

equal to zero needs to be normally distributed as well. Hence, both the marginal distributions of 

X and Y (set either a or b equal to zero) and all the conditional distributions have to be normal. 

From this, we can expect that there are far more nonnormal than normal bi– and multivariate 

distributions in real data, as Micceri's study seems to indicate that the marginals alone will 

probably be nonnormal. Even if the marginal distributions are close to normal, their joint 

bivariate distribution may be distinctly nonnormal (see, e.g., Joliffe & Hope (1996) for a real 

bivariate data set with normal marginals but nonnormal joint distribution).  

The ensuing dilemma is obvious: The Pearson correlation is employed almost universally. 

Inferences and confidence intervals based on correlations rely on the assumption of bivariate 

normal parent distributions. Yet bi- or multivariate normal data may be a rare exception in actual 

statistical practice. This discrepancy between the assumption of normally distributed data and 

nonnormal reality is also true for other data analysis procedures, but will often be mitigated by 

the central limit theorem, as is the case for the well-known t–test for a single mean. To be able to 

use the advantages of the central limit theorem, we need two things:  

1) Increasing sample size and  

2) Knowledge of the asymptotic variance 2σ  of the parameter in question, estimated by 2s .  
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A as sample size increases, the shape of sampling distribution of the mean can be approximated 

by a normal distribution, and its standard deviation can be approximated by /S n .  

What happens if we calculate correlations for samples drawn from a bivariate nonnormal 

parent distribution? The shape of the distribution of these sample correlations will be 

approximated by a normal distribution as sample size increases, but finding or approximating the 

standard deviation of the distribution is not as straightforward as for the sample mean. Further, 

the rate at which the approximation to the normal shape takes place is not well known. Several 

approaches have been taken to remedy these difficulties, including measures of association for 

nonnormal data other than the correlation, and some will argue that these are better at capturing 

the true nature of such data or that normalizing transformations of the univariate parent variables 

are the best option. However, such approaches shall not be elaborated on in my dissertation, and 

I will account for this later on. If we want to continue to use the product-moment correlation as 

well as the many analysis procedures based on normal theory, contrasted with reality which often 

is far from normal, we need to subject these procedures to strict tests regarding their performance 

under nonnormality. To do so, simulation studies have been the main staple, requiring the 

generation of bi–/multivariate nonnormal distributions. 

My dissertation is divided into two parts. Part I explores available techniques for 

multivariate nonnormal data generation. The investigation of multivariate nonnormal 

distributions in psychometric literature seems to be not as well developed as it is in mathematical 

statistics. To bridge this gap and make the relevance more obvious to applied psychometricians, I 

will concentrate on bivariate nonnormality, specifically providing an in depth analysis of the 

most popular simulation technique to this date as well as two very recently published 
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competitors. Part I will conclude with a discussion of the implications of differences between 

simulated nonnormal distributions.   

Part II examines the evaluation of confidence interval performance itself, and provides a 

new perspective on understanding and interpreting approximate CIs. Three conceptually different 

approaches to constructing a confidence interval around r will be applied to nonnormal 

distributions simulated from one of the methods discussed in Part I. The evaluation of these 

confidence intervals will reach a depth that has not been offered in previous Monte Carlo 

research.  
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PART I 

 

Pitfalls of ‘Blind’ Monte Carlo Simulations 

 

This dissertation begins with a key point that, in a sense, is an old story. In fact, many of us first 

received this point as undergraduates, and now routinely teach it in our introductory statistics 

classes. And yet, as psychological research has demonstrated repeatedly, even experienced senior 

scientists sometimes fail to identify all potential applications of a scientific concept when 

presented in a new context. As we shall show, that is unfortunately the case here. 

This old story was told in 19731 by Francis John Anscombe as the well–known 

“Anscombe's Quartet.” Anscombe presented four bivariate data sets with the same means, 

standard deviations, and correlation, but very different bivariate shapes as a whole; his original 

four graphs are reproduced in Figure 1. Using a total of six variables, 1X , 2X , 1Y , 2Y , 3Y , and 

4Y , the graph in the upper left hand corner is constructed from 1X  and 1Y , graph 2 from 1X  and 

2Y , graph 3 from 1X  and 3Y , and graph 4 from 2X  and 4Y . Both X variables have a mean of 9, 

and a variance of 10, and all four Y variables have a mean of 7.5, and a variance of 3.75. All four 

regression lines have the same equation: 3 .5Y X= + . The correctness of these descriptive 

statistics is undisputed, but it is quite striking how the linear model that is implied by the 

regression line is only appropriate for the first data set in graph 1. The second bivariate data set 

exhibits a strong nonlinear relationship, the third includes an outlier with formidable influence on 

                                                 
1  Interestingly, Anscombe published his quartet right around the same time that both the 
investigation/definition of multivariate parameters and the simulation of multivariate 
distributions as well as the examination of r's sensitivity to multivariate nonnormality were under 
way. 
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the regression line and the fourth one may be interpreted as a data set with one dichotomous 

variable for which the model is just simply inadequate. 

 

 

 
  Figure 1: Anscombe's Quartet 
 

The lesson conveyed by Anscombe’s quartet is twofold: (1) While descriptive statistics may be 

numerically correct and can be reported without objection, taking the next step into inferential 

techniques such as hypothesis tests, model fitting, and prediction, requires a deeper analysis; (2) 

Data sets and distributions are not exhaustively described by their moments – unless you include 

all of them — and can in fact be radically different even if some of the moments between them 

agree. Of course, one might hope that the lesson of Anscombe’s data and graphs would have 

been grasped and generalized to new situations by the researchers who were exposed to them.  

As we shall see below, this hope has not been justified.  
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Multivariate Nonnormal Data Generation 

In the general introduction, we have already identified that shape and variance of the 

sampling distribution of the Pearson correlation coefficient and performance of hypothesis tests 

and confidence intervals for correlations under nonnormal parents must be investigated. Part I of 

my dissertation will explore different ways of simulating bi–/multivariate nonnormality. I will 

show that popular ways of describing bivariate nonnormal distributions may not be useful in 

capturing their shape and demonstrate that disregarded differences in bivariate nonnormal shape 

can have a strong impact on the sampling distribution of r.  

Multivariate nonnormal data generation is not new and first attempts date back to the 

earlier years of the past century (see, e.g., Pearson, 1923, 1929; Baker, 1930). Pearson (1929), 

perhaps mindful that many real-world data sets are often mixtures of several distinct 

subpopulations, used mixtures of bivariate normal distributions to construct bivariate nonnormal 

distributions. Baker (1930), inspired by the skewed character of an actual data set, constructed a 

bivariate nonnormal distribution using two skewed marginal distributions.  

As research and – most importantly – computing power progressed, various strategies for 

simulating bi–/multivariate nonnormal data were suggested. One prominent and rather 

straightforward approach is to subject a standard normal random variable Z to a nonlinear 

transformation, thus generating a nonnormal variable Y. To obtain multivariate samples, several 

standard normal random variables are first correlated (often the method described in Kaiser & 

Dickmann, 1962, is used) and then transformed. Such techniques have also been called 

“Transform and Calculate” (TC) methods (Ruscio & Kaczetow, 2008).  

Three rather well known transformation methods are (1) polynomial transforms (see, e.g. 

Fan, Felsövalyi, Sivo & Keenan, 2003; Fleishman, 1978; Headrick, 2002; Headrick & 
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Sawilowsky, 1999; Vale & Maurelli, 1983) (2) the g-and-h distribution (Field & Genton, 2006; 

Hoaglin & Peters, 1979; Hoaglin, 1985; Kowalchuk & Headrick, 2010; Tukey, 1977), and, in a 

broader sense, (3) multivariate skew distributions (Azzalini & Dalla Valle, 1996; Arnold & 

Beaver, 1999). A good general introduction to “TC” techniques and issues they might face can be 

found in Li & Hammond (1975), while Ruscio & Kazcetow (2008) contrast them with iterative 

procedures (see next paragraph). 

Other methods of simulating nonnormal multivariate data comprise mixture distributions 

(see, e.g., Kowalski, 1972; Edgell & Noon, 1984), a multivariate non–normal distribution based 

on the generalized lambda distribution (Headrick & Mugdadi, 2006), and others (Parrish, 1990). 

Finally, iterative procedures have been discussed or suggested by Hoyland, Kaut, & Wallace 

(2003), Lurie & Goldberg (1998), Ruscio & Kaczetow (2008), and Yang (2008). To briefly 

summarize one of the iterative techniques, consider Ruscio & Kaczetow’s method and assume a 

multivariate nonnormal sample with k variables and a correlation matrix Ρ  is desired. As a first 

step, k univariate nonnormal samples are created by either bootstrapping from a real data set or 

sampling from some desired population (the user of the method will have to provide a function 

or quantiles for such sampling). Then, by means of factor analysis, the variables are iteratively 

rotated until they have a sample correlation matrix R which deviates fromΡ  only by sampling 

error. 

 During the 1990’s, the proliferation of new methods to simulate multivariate nonnormal 

data gained momentum, as evidenced by a strong increase in related publications, mainly in 

mathematical statistics journals. A short list of methods and their number of citations (given are 

ISI web of knowledge citations with Google scholar citations in italics and parentheses) 

includes:  
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Table 1: Popularity of Multivariate Nonnormal Simulation Methods 

3rd order polynomial method Fleishman (1978): 173 (263)  
Vale & Maurelli (1983): 104 (134) 

 Headrick & Sawilowsky (1999): 24 (38) 
5th order polynomial method Headrick (2002): 11, 7 of which are himself 

(16) 
Multivariate skew-normal 
distribution 

Azzalini & Dalla Valle (1996): 230 (425) 

(Multivariate) g-and-h 
distribution 

Hoaglin (1985): (157) 
Field & Genton (2006): 5 (14) 

 Kowalchuk & Headrick (2010): 2 (3) 
Iterative multivariate nonnormal 
distribution 

Ruscio & Kaczetow (2008): 9 (11)  

Using the generalized lambda 
distribution 

Headrick & Mugdadi (2006): 6 (10) 

Based on an exponential 
distribution 

Arnold & Strauss (1991): 38 (57)  

Based on the Pearson distribution 
system  

Nagahara (2004): 11 (17)  

 
 

Only some of these methods have been adopted into psychometrics. For example, a 

sizeable amount of research in purely statistical journals has focused on the (multivariate)  

skew(-normal) distribution (Azzalini & Dalla Valle, 1996), yet only 7 out of 230 citations on ISI 

are in a journal related to psychometrics. The most popular method in psychometrics to this day 

remains Vale & Maurelli's multivariate extension of the 3rd order polynomial transform by 

Fleishman. The purpose of Part I of my dissertation is to create a broader understanding of the 

potential issues of the 3rd order polynomial and Z score transformation methods in general and 

provide stepping stones for further evaluation of other already existing and forthcoming 

simulation methods. I will focus on transformation techniques which provide control over both 

marginal characteristics of and the correlation matrix between the nonnormal univariate 

variables. Such simulation methods include the 3rd order polynomial method and its multivariate 
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extension (Fleishman, 1978; Vale & Maurelli, 1983; see also Headrick & Sawilowsky, 1999), the 

5th order polynomial method (Headrick, 2002), and the g-and-h distribution (Field & Genton, 

2006; Kowalchuk & Headrick, 2010). The next section provides an in–depth look at the 3rd order 

polynomial transform and its multivariate extension, while the 5th order polynomial transform 

and the g-and-h distribution will be discussed afterwards. 

 

The 3rd Order Polynomial Transform 

Transformations for all methods discussed in my dissertation can be represented as a 

function applied to a standard normal random variable Z to obtain a nonnormal random variable 

Y: 

 ( )Y f Z=  (1) 

As mentioned before, the most popular transformation method in psychometrics is the 3rd order 

polynomial transform, also called the 3rd order polynomial method or power method, first 

suggested as a univariate version by Fleishman (1978), and later extended to the multivariate 

case by Vale & Maurelli (1983), which will be discussed below. The 3rd order power method uses 

a third-degree polynomial such that 

 2 3
0 1 32Y a a Z a Z a Z+ += +  (2) 

The polynomial coefficients are selected to produce desired values of skewness and kurtosis for 

Y, while mean and variance are fixed at 0 and 1.  

Equation (2) uses four coefficients ( 0a , 1a , 2a , and 3a ) to create the nonnormal random 

variable (RV) Y. The moments about zero for a standard normal variable Z are well known, and 

the moments of Y are thus an easily calculated function of these coefficients. (See Appendix for 

details.) Skewness and kurtosis of Y are, in turn, a function of Y‘s first four moments. Ultimately, 
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we arrive at a system of four nonlinear equations in terms of 0a  through 3a  which can then be 

used to determine the values of 0a  through 3a  that yield desired values of skewness and 

kurtosis: The mean of Y is 

 ( ) 0 2 0Y E Y a aμ = = + =  (3) 

This in turn means that 0 2a a= − . For the variance, we have   

  

( ) ( )( )
( )
2 2 2

1 1

22

2

3 2

2

36 2 15
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=
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Skewness is defined as   
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because ( ) 0E Y =  and ( )2 1E Y = . Finally, the kurtosis of Y is defined as 
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 (6) 

Note that this defines skewness and kurtosis so that a normal distribution has 1 0γ =  and 2 0γ = .  

If we substitute 0 2a a= − , we are left with three unknowns ( 1a , 2a , and 3a ) in three 

equations (Equation (4), (5), and (6)). (Actually, since the variance has been set equal to 1, we 
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could solve for 2a , thereby having only two equations and two unknowns left, but the equations 

will become long and unsightly and the result will be the same.) To construct a random variable 

with desired skewness and kurtosis, we can now numerically solve the following set of nonlinear 

equations for the three coefficients 1a , 2a , and 3a  and later set 0 2a a= − : 

 
( )

2 2 2
1 1 3 2 3

2 1 2 1 3 3

1

2 2 2

4 2 2 4 3 2

2 2
1 2 2 1 3 1 2 3

1 3
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2 3 1
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a a a

=

= + + +
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+ +

=

+

+ +

−

+

 (7) 

In his 1978 article, Fleishman provides a table of coefficients for a number of different 

skewness-kurtosis combinations. Figure 2 is an excerpt of Table 1, pp. 524 from Fleishman 

(1978) (note that Fleishman chose 0a A= , 1a B= , 2a C= , and 3a D=  as names for the 

coefficients).  

 

 
Figure 2: Fleishman’s Transformation Coefficients 
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Equivalently to 0 2a a= − , we have A C= − , therefore a separate column for A is not 

provided. As an example, to achieve a nonnormal random variable with a mean of 0, a variance 

of 1, a skewness of 1.5, and a kurtosis of 3.75, we need to construct Y as  

 2 3
1 .02722.22103 .86589 .22103Y Z Z Z= − + × + + ××  (8) 

 

Visual Representation of 3rd Order Polynomial Transformations and Resulting Distributions 

To better understand the nature of these transformations, examine Figure 3, which graphs 

the transformation in Equation (8): 

 

 
   Figure 3: Example 3rd Order Polynomial Transformation for 1Y  

 

The resulting empirical distribution (with 1,000,000n = ), next to its parent standard normal 

distribution looks like this: 
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Figure 4: Parent and Final Distribution Histogram for 1Y  

 

It is relatively easy to see how the function in Figure 3 relates the two distributions in Figure 4 to 

each other, as negative values for Z are matched with values between around –2 and 0 for Y 

while especially large positive values of Z translate into a long tail on the right hand side of Y’s 

distribution.  

So far, the univariate power method seems rather straightforward: 

 Step 1: Choose desired skewness and kurtosis 

Step 2: Solve the set of nonlinear equations in (7) to find coefficients 0a , 1a , 2a , and 3a  

 Step 3: Use coefficients 0a , 1a , 2a , and 3a  to construct Y as in Equation (2).  

Unfortunately, not all of the steps are quite as simple as they may seem. Specifically, the 

solutions to the set of nonlinear equations in step 2 are not necessarily unique. For example, for 

the combination 1 1.5γ = , 2 3.75γ = , aside from 0 .22103a = − , 1 .86589a = , 2 .22103a = , and 

3 .02722a = , the coefficients 0 .472154a = − , 1 1.05881a = , 2 .472154a = , and 3 .127813a = − , 
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present a solution to the set of equations in (7) as well. Using these coefficients in a second 

transformation to create 2Y , we have 

 2 3
2 .127813.472154 1.05881 .472154Y Z Z Z= − + × + − ××  (9) 

The graph of the transformation in Equation (9) is pictured in Figure 5: 

 

 
Figure 5: Example 3rd Order Polynomial Transformation for 2Y  

 

Figure 6 shows empirical pdfs of the normal RV Z and the transformed 2Y  next to each other: 
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Figure 6: Parent and Final Distribution Histogram for 2Y  

 

The distribution of 2Y , resulting from the second transformation, has quite a different shape 

compared to the distribution of 1Y ! It is easy to see how the shape of 2Y ’s histogram results from 

the transformation in graphed Figure 5: Around .5Z = − , the transformation has a local 

minimum, relating almost all points on Z between –2 and 0 to a value on 2Y  close to about –1. 

This results in the mode we see at the low end of the distribution of 2Y . Values of Z between 0 

and about 3 are almost linearly related to values on Y that lie between –1 and about 3.5, resulting 

in the relatively smooth right side tail of Y.  

 To establish the accurateness of these transformations, we can insert both sets of 

transformation coefficients into Equations (3), (4), (5), and (6). As a second way to assess the 

method’s performance, we can calculate first four sample moments which are defined as: 

 1
N

ii
X

X
N
== ∑  (10) 
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for a very large sample for each 1Y  and 2Y . The fifth and sixth sample moment, which will 

become relevant as we discuss the 5th order polynomial transform later on, are defined as: 
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Y , 2
YS , 1̂γ , and 2γ̂  for 1Y  and 2Y  turn out to be essentially the same (unless otherwise stated, 

empirical moments or correlations are based on sample sizes of 5,000,000): 

 

 Table 2: Empirical First Four Moments for the Transformed Variables 1Y  and 2Y  

 Mean Variance Skewness Kurtosis 
1Y  –0.000055 0.999947 1.498564 3.723273 

2Y  –0.000359 0.998610 1.490766 3.598177 
 
 
 
As a matter of fact, the two solutions presented above are not the only ones. The set of equations  
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has a total of four distinct real (and a substantial number of imaginary) solutions:  

 

0 1 2 3

0 1 2 3

0 1 2 3

0 1

set1: 0.221028,  0.865886,  0.221028,  0.0272207
set2: 0.221028,  0.865886,  0.221028,  0.0272207
set3: 0.472154,  1.05881,  0.472154,  0.127813
set4: 0.472154,  1.

a a a a
a a a a
a a a a
a a

= − = = =

= − = − = = −

= − = − = =

= − = 2 305881,  0.472154,  0.127813a a= = −

 (17) 

You may notice that the transformation based on the second set of coefficients is a mirror image 

about the y-axis of the transformation based on the first, with the sign of both 1a  and 3a  

reversed. The same is true for sets 3 and 4. Closer inspection of the equations in (7) shows that if 

*
1a , *

2a , and *
3a  present some particular solution, *

1a− , *
2a , and *

3a−  must be a solution as 

well, since all products involving 1a  and 3a  have an even number of coefficients. The pdf of 

2 3
2 1 2 3Y a a Z a Z a Z= − + + +  will be equal to the pdf of 2 3

2 1 2 3Y a a Z a Z a Z= − − + − , since the 

pdfs of Z and 3Z  are symmetric (see also Property 4.2 in Headrick & Kowalchuk, 2007). 

However, as we have already seen, which of the two distinctly different solutions (e.g. set 1 or set 

4) is chosen can make a substantial difference. Finally, it seems that whenever one real solution 

to the set of equations in (7) exists, there will always be four real solutions for any given 

skewness-kurtosis combination, two of which will be distinctly different.  

A Second Example. Solving for 1 0γ =  and 2 25γ =  proves to be an even more striking 

example of how the resulting distributions can differ, depending on the choice of transformation 

coefficients. For 1 0γ =  and 2 25γ = , the four possible solutions are:  
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0,  1.56668,  0,  0.348173
0,  1.56668,  0,  0.348173
0,  0.255283,  0,  0.203755
0,  0.255283,  0,  0.203755

a a a a
a a a a
a a a a
a a a a

= = − = =

= = = = −

= = − = = −

= = = =

 (18) 

Choosing the first and the last set of coefficients, the resulting transformations look like this: 

 

 
Figure 7: Two Distinctly Different Transformations for 1 0γ =  and 2 25γ =  

 

These don’t look too different, do they? What about the resulting distributions? 
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3
3 1.566 .34817368Y Z Z− × + ×=  3

4 .25528 .203753 5Y Z Z× + ×=  

Figure 8: Univariate Distributions Resulting from Transformations in Figure 7 

 

The two distributions look strikingly different, yet, they have essentially the same first four 

sample moments: 

 

Table 3: Empirical First Four Moments for the Transformed Variables with 1 0γ =  and 2 25γ =  

 Mean Variance Skewness Kurtosis 
3Y  –.000199 0.999167 –.029793 24.133729 

4Y  –.000790 1.003323 .005143 25.608518 
 

 

The question that presents itself now is which set of coefficients should be chosen when 

we want to construct a nonnormal univariate random variable with 0μ = , 2 1σ = , 1 0γ = , and 

2 25γ = . If we compare all four sets of coefficients, we may notice that only the last set with 

0 0a = , 1 0.255283a = , 2 0a = , and 3 0.203755a =  leads to a strictly increasing transformation 

function. Its mirror image, the third set of coefficients in Equation (18), will create a 
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monotonically decreasing transformation function, and the other two will lead to non-monotonic 

transformations. To be able to decide which one should be preferred, we need to investigate 

whether there will always be two monotonic and two non-monotonic transformations and what 

the properties of the resulting distributions are. This is done in the upcoming sections. 

 

Limitations of the 3rd Order Polynomial Transform  

Several limitations of the power method have been identified. The first of these 

limitations is a restriction of the range of possible skewness-kurtosis combinations (see 

Fleishman, 1978, whose equation (21) suffers from typographical errors; Headrick & 

Sawilowsky, 1999; Headrick, 2004; Tadikamalla 1980). Headrick proved in 2004 (see also 

Devroye, 1986) that for any univariate distribution, the range of valid skewness–kurtosis 

combinations is limited by the equation  

 2
2 1 2γ γ≥ −  (19) 

In other words, for a given value of skewness ( 1γ ), kurtosis ( 2γ ) can only take on values that are 

equal to or greater than 2skewness 2− . The resulting range of valid skewness-kurtosis 

combinations is the area above the black line in the skewness-kurtosis plane in Figure 9.  

The range of available kurtosis values for any given skewness value is further restricted 

when Fleishman’s power method is employed. For any real-valued solution to the set of 

equations in (7) to exist, kurtosis must satisfy constraints that can be approximated by the 

following:  

 2
2 11.588 1.139γ γ> −  (20) 

Further, kurtosis also has an upper limit (see Chen & Tung, 2003): No real solutions to the set of 

equations in (7) exist if kurtosis exceeds approximately 101.38, and this value of allowable 
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kurtosis will be even lower for 1 0γ ≠ . The range of available skewness-kurtosis combinations 

for Fleishman’s 3rd order polynomial is bounded by the red continuous line in Figure 9. Outside 

of that range, the set of equations in (7) does not have a real-valued solution.  

In addition to the constraint on skewness-kurtosis combinations marked by the red line in 

Figure 9, only an even smaller subset of skewness-kurtosis combinations will have a set of 

coefficients that leads to a transformation function with ( )' 0f Z > Z∀ ∈  (Chen & Tung, 2003; 

Headrick & Kowalchuk, 2007). Requiring ( )' 0f Z >  is a slightly more stringent condition than 

strictly increasing, as strictly increasing allows for ( )' 0f Z =  at individual points, so called 

saddle points. For example, the function ( ) 3f x x=  has a saddle point with ( ) 2' 3 0f x x= =  at 

0x = , but is still considered to be strictly increasing. In requiring that ( )' 0f Z >  across the 

whole range of Z, we are following Headrick & Kowalchuk’s Definition 3.2. We can find the 

subset of transformations with ( )' 0f Z >  by investigating the derivative of the function in 

Equation (2), which is 

 ( ) 1 2 3
23' 2f Z a a Z a Z+= +  (21) 

We will have  

 ( ) 1 2
2

3' 2 3 0f Z a a Z a Z++ >=  (22) 

if 

 3

2 1 3
2

a) 0 and 

b) 3 0

a

a a a

>

− <
 (23) 

(see also Chen & Tung, 2003). 
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Proof: Assume 0Z = , then Equation (22) will be satisfied only if 1 0a > . Further, since the last 

term for the derivative, 2
33a Z , will exceed all other terms in absolute value for large enough Z, 

we also need 3 0a > . Any real solution to 2
3 2 13 2 0a aZ Z a++ =  must be avoided, too. Solutions 

are: 

 
2

2 2 1 3

3

3
3

a a a a
a

Z
− ± −

=   

Hence, there will only be a real-valued solution if 2 3
2

13 0a a a− ≥ . We do not want a solution and 

must therefore require 2 3
2

13 0a a a <− . A heavily modified version of this proof is also provided 

in Headrick & Kowalchuk (2007). The range of skewness-kurtosis combinations that can be 

constructed with a transformation that satisfies ( )' 0f Z >   is enclosed by the blue line in Figure 

9 (see also Headrick & Kowalchuk, 2007). It has been common in the existing literature to refer 

to transformations which satisfy ( )' 0f Z >  as being “monotonic” or “strictly increasing,” which 

is a misnomer, as these terms do include functions with saddle points (which have ( )' 0f Z = ). 

However, from here on, we will adopt this terminology for the sake of consistency.  
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Figure 9: Univariate limitations of the range of skewness and kurtosis. The black line is the 

limitation due to the requirement 2
2 1 2γ γ≥ − , the red line is the limitation for any real-value 

solution to the set of equations in (7) to exist. The blue line bounds the set of skewness-kurtosis 
combinations for which a monotonic Fleishman transformation can be found. 

 

Properties of monotonic vs. non-monotonic transformations based on the power method 

have been discussed by several authors (Chen & Tung, 2003; Headrick, 2004; Headrick & 

Kowalchuk, 2007). Headrick & Kowalchuk (2007) compare Fleishman’s 3rd order polynomial 

method with Headrick’s 5th order polynomial method (see below) and, among other things, 

derive the pdf and cdf as well as several properties regarding the pdf and cdf for a subset of 3rd 

and 5th order polynomial variables. They claim that some variables Y obtained through 3rd and 5th 

polynomial transforms will have a valid pdf and cdf while others will not. They argue that a 

nonnormal variable Y may result from a 3rd or 5th order polynomial transformation with a cdf that 
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is not a one-to-one relationship between values of Y  and ( )P Y y≤  for y∈ . The following 

section elaborates on their argument and reflects on its usefulness for the applied 

psychometrician.  

 

The Issue of the “Valid pdf”. For this section, the notation used in Headrick & 

Kowalchuk (2007) will be adopted. The main difference is that the authors use ( )p z  to 

designate the transformation function instead of ( )f Z . Further, they shift the indices for the 

transformation coefficients by one unit so that our 0a  is the same as their 1a , our 1a  is their 2a , 

and so on. They then define the family of sets of distributions obtainable through polynomial 

transforms of order r such that 

 ( ) 1

1

r
i

i
i

Y p z a z −

=

= =∑  (24) 

with r being positive and even: { }2,4,6,...r∈ . Equation (2) is a special case of Equation (24), 

letting 4r = : 

 ( )
4

1 2 3
1 2 3 4

1

i
i

i
Y p z a z a a z a z a z−

=

= = = + + +∑  (25) 

We begin with (the relevant parts of) Definition 3.1 on page 230 in Headrick and Kowalchuk 

(2007): 

“Let Z be a random variable that has a standard normal distribution with pdf ( )Zf z , cdf 

( )ZF z  and tht  moment tμ . Let ( ),z x y=  be the auxiliary variable that maps the 

parametric curves of ( )Zf z  and ( )ZF z  as 
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( ) ( ) ( )( )
( ) ( ) ( )( )

2

2

: : , ,

: : , ,
Z Z Z

Z Z Z

f z f z f x y f z f z

F z F z F x y F z F z

→ = = =

→ = = =
” (26) 

The definition quoted in Equation (26) describes ( ) ( )( ),Z Z Zf z f z f z=  as a map of the values 

of Z, ( )0,1Z N∼ , to the pdf of Z. 

Next, we consider a slightly modified version of the first part of Definition 3.2 on their page 231. 

In particular, we will keep to the special case of 4r = : 

“Let 4r = , then 4A  is the set of distributions stemming from the transformation 

( ) 4:p p z A→  (i.e. the set of distributions that can be created by the Fleishman transform 

from Equation (2)). The transformation is expressed as ( ) 4 1
1

i
ii

p z a z −
=

=∑ .  
(i) p is said to be a strictly increasing polynomial function in z with (a) degree 3, (b) 

one and only one real root, (c) derivative ( )' 0p z > , and (d) constant coefficients 

ia ∈ , 1 0rc − ≠ , and where 1 30 3 1a a< + ≤ .  
(ii) … (not important for our purposes here)” 

 

Finally, we have proposition 3.1 on page 232:  

“If the compositions f p  and F p , based on Definitions 3.1 and 3.2, map the 
parametric curves of ( ) ( )( )p Zf p z  and ( ) ( )( )p ZF p z , where ( ) ( ),p z p x y=  as 

 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

2

2

: : , ,
'

: : , ,

Z
p Z p Z p Z

Zp Z p Z p Z

f z
f p p z f p z f p x y f p z

p z

F p p z F p z F p x y F p z F z

⎛ ⎞
→ = = = ⎜ ⎟⎜ ⎟

⎝ ⎠
→ = = =

 (27) 

then ( ) ( ) ( ) ( )( ), / 'Zp Zf p z f z p z  and ( ) ( ) ( )( ), Zp ZF p z F z  are the pdf and cdf of the 

power method transformation ( )p Z .”  
 

This means that, equivalently to how the maps between a standard normal variable Z and its pdf 

and cdf were described in Definition 3.1, ( ) ( ) ( ) ( )( ), / 'Zp Zf p z f z p z  and ( ) ( ) ( )( ), Zp ZF p z F z  

map the nonnormal variable Y to its pdf and cdf, respectively. Headrick & Kowalchuk provide a 

proof on page 232.  
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Combining definition 3.1, definition 3.2, and proposition 3.1 essentially states that if the 

derivative of the transformation function  is never equal to zero, you can draw the pdf of Y by 

plotting the transformed values ( )p z  against the ratio of the normal pdf and the derivative of the 

transformation, ( ) ( )/ 'Zf z p z . Using this technique, I was able to replicate the “invalid” pdf in 

Panel A of Headrick & Kowalchuk’s Figure 1 (created for a 5th order polynomial RV) in Figure 

10. The coefficients for the figures in Panel A are: 0 0a ≈ , 1 1.36a ≈ , 2 0a ≈ , 3 .148a ≈ − , 4 0a ≈ , 

5 .00126a ≈ . The pdf is created by plotting the Y variable 3 51.36 .148 .00126Y Z Z Z= × − × + ×  

on the x-axis against ( ) 2 4/ (1.36 .444 .0063 )Z Z Zϕ − × + ×  on the y-axis, where ( )Zϕ  is the pdf 

of the standard normal distribution and the denominator is the first derivative of the 

transformation function. The cdf is created by plotting the Y variable 

3 51.36 .148 .00126Y Z Z Z= × − × + ×  on the x–axis against ( )ZΦ , where ( )ZΦ  is the cdf of the 

standard normal distribution. 
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Figure 10 (a) & (b): “Invalid” pdf and cdf as shown in Headrick & Kowalchuk (2007), figure 1 
 

Headrick & Kowalchuk have derived an analytic form of the pdf and cdf for variables Y 

created from monotonic polynomial transformations. With pdf and cdf available in analytical 

form, percentiles and mode, among other things, of a power method distribution can be found. 

However, they choose a slightly unfortunate terminology: They declare variables with monotonic 

transformations to have a “valid” pdf/cdf. Variables for which Equation (27) cannot be used to 

find the pdf or cdf are said to have an “invalid” pdf/cdf. This choice of terminology is 

unfortunate because it is safe to assume that variables produced with non-monotonic 

transformations will still have a pdf and cdf, only that Equation (27) cannot be used to find them. 

The pdf and cdf for variables that cannot use Equation (27) certainly exist, they are just 

unknown.  

More importantly, Headrick & Kowalchuk have not identified why non-monotonic 

transformations whose pdf/cdf are not known need to be avoided when nonnormal random data 

generation is desired. Other than the necessity of a monotonic transformation in order to simulate 
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bi- or multivariate nonnormal data with a specified rank correlation (Headrick, 2004), the 

practical importance of monotonic transformations remains unclear. It is also quite easy to find 

an example of a power method distribution that does not have a “valid” pdf as defined by 

Headrick & Kowalchuk (2007), yet whose pdf is well-known to even most undergraduate 

students: Consider the nonnormal variable with 1 8γ =  and 2 12γ = . The sets of coefficients 

that satisfy the set of equations in (7) for these values of skewness and kurtosis are: 

 
[ ]
[ ]
[ ]

.520676,.614598,.520676,.0200724

.520676, .614598,.520676, .0200724

.707107,0,.707107,0

−

− − −

−

 (28) 

None of these are monotonic: 
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Figure 11: Non-monotonic Transformations to obtain a Chi-square Random Variable With One 

Degree of Freedom 
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Still, you may realize that the last transform is nothing other than a transformation of the form 

2Y a bZ= +  (where ( )0,1Z N∼ ). In other words, Y is a rescaled chi-square variable with one 

degree of freedom, and thus, it’s pdf and cdf are certainly well known, even if they cannot be 

derived via Equation (27). I will demonstrate in the following sections that the choice between a 

monotonic and a non-monotonic transformation can still be an issue of very high practical 

importance. First, however, we need to introduce the multivariate extension of Fleishman’s 

method. 

 

The Multivariate Extension of the 3rd Order Polynomial Transform 

Five years after Fleishman’s publication of the univariate 3rd order polynomial transform, 

Vale & Maurelli (1983) extended the method to the multivariate case (Note that more recently, 

Headrick & Sawilowsky (1999) have suggested an alternate extension to Fleishman's power 

transformation). The multivariate extension of the 3rd order power method provides control over 

marginal skewness and kurtosis of all variables as well as over their correlation matrix. This 

ability to (relatively freely) manipulate marginal distribution parameters and the correlation 

matrix has been seen as an advantage over previously available techniques, and the method rose 

to considerable popularity, especially for use in Monte Carlo research in the social sciences.  

A common and very tractable way of creating correlated variables is by post–multiplying 

a matrix of scores (in column vector format) with the Cholesky decomposition of the desired 

correlation matrix. Introducing some additional notation, let z  be a 1p×  random vector having 

a multivariate normal distribution with mean vector 0  and with covariance matrix I . Let L  be a 

Cholesky factor of Σ , a p p×  positive definite covariance matrix. That is, L  is a unique lower-

triangular matrix such that ' =LL Σ . Then  
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 * =z Lz  (29) 

will have a multivariate normal distribution with mean 0  and covariance matrix Σ .  

 Consequently, if the columns of an n p×  sample data matrix Z  represent n observations 

from a ( ),MVN 0 I  distribution, then  

 * '=Z ZL  (30) 

will represent n observations from a ( ),MVN 0 Σ  distribution, where '=Σ LL .  

 

Sample Score Example. To illustrate this technique, I limit the following example to the 

bivariate case. We want to create standard normal random scores *
1z  and *

2z  drawn from a 

( ),MVN 0 Σ  distribution, where the off-diagonal element of Σ  is 
1 2

.5ρ =z z  (from here on, Zρ  

will be used as a short for 
1 2

ρz z ). To achieve this, let [ ]1 2=Z z z  be an 2n×  matrix of standard 

normal random scores from a ( ),MVN 0 I  distribution. We now only need to post-multiply Z  by 

'L , where  

 ' 1 .5 1 .5
chol

.5 1 0 .866
⎡ ⎤ ⎡ ⎤

= ≈⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

L , (31) 

the transpose of Cholesky decomposition of the desired correlation matrix:  

 [ ] [ ]* * '
1 2 1 2 1 2

1 .5
0 .866
⎡ ⎤⎡ ⎤ = × = × ⎢ ⎥⎣ ⎦ ⎣ ⎦

z z z z L z z . (32) 

* *
1 2⎡ ⎤⎣ ⎦z z  is now an 2n×  matrix of correlated standard normal random scores; i.e., the 

individual variables *
1z  and *

2z  still have a univariate standard normal distribution, but the 

bivariate distribution exhibits a linear relationship between the two variables.  
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How can we create a set of nonnormal random scores [ ]1 2=Y y y  drawn from a 

bivariate nonnormal distribution with desired skewnesses and kurtoses and known correlation 

1 2Y Yρ , short Yρ , equal to .5? Can we, for example, just apply the same transformation of post-

multiplying a vector [ ]1 2y y  with the Cholesky decomposition of the desired correlation matrix 

as in Equation (32)?  

Although the above method is straightforward for creating multivariate normal variables 

with desired covariance matrix, it does not generalize directly to a method for creating 

multivariate nonnormal variates with desired covariance structure and specified skewness and 

kurtosis. To see why, consider the two possible approaches using the above method. 

1. Transform and Combine. Using the power transform, create uncorrelated variates 

with desired skewness and kurtosis in Y , then compute the linear combination 

* '=Y YL . Problem. This approach will generate variates with the desired 

covariance matrix, but the process of linear recombination during the matrix 

multiplication will alter the skewness and kurtosis of all but the first variate.  

2. Combine and Transform. Create multivariate normal variates with covariance 

matrix Σ  as described above, then power transform the variates nonlinearly to 

have desired skewness and kurtosis. Problem. This approach will generate 

variables with the correct skewness and kurtosis, but the process of transforming 

nonlinearly will alter the correlations between the Y variables, so YΣ  will no 

longer have the desired values.  

To enable control over both the marginal parameters and the correlation matrix, a trick 

has to be employed: Assume we choose to first correlate normally distributed random variables 

as discussed above and then apply non-normalizing transforms. The influence of the non-
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normalizing transformations on the correlations can be calculated and taken into account. The 

final correlation Yρ  between the nonnormal variables can be expressed as a function of the 

intermediate correlation Zρ  between the normal variables and the non-normalizing transforms 

(see Li & Hammond, 1975): 

 ( ) ( )2 12 1 21Y f g f dZ dZZ Zρ
∞ ∞

−∞ −∞

= ∫ ∫  (33) 

where ( )1f Z  is the non-normalizing transform for the first variable, ( )2g Z  is the non-

normalizing transform for the second variable, and  

 
( )

2 2
1 1 2 2

12 22

21 exp
2 12 1 2

Z

ZZ

Z Z Z Zf ρ
ρπ ρ

⎛ ⎞− +⎜ ⎟= −
⎜ ⎟−− ⎝ ⎠

 (34) 

is the standard normal bivariate density.  

A popular remedy therefore is to find an intermediate correlation matrix which to apply 

to standard normal random variables as in Equation (32) and then, in a second step, to subject the 

correlated standard normal random variables to the non-normalizing transformation. In this 

process the intermediate correlation matrix is chosen so that the final correlation matrix – the 

correlation matrix between the nonnormal random variables, after applying the non-normalizing 

transform – is as desired (Li & Hammond, 1975). This technique has been termed TC, transform 

and calculate, by Ruscio & Kaczetow (2008) and is the principle Vale & Maurelli used to extend 

the 3rd order polynomial transform to the multivariate case.  

The first step in the Vale & Maurelli (1983) method is to find the Fleishman coefficients 

that are needed to create the nonnormal random variables with desired skewnesses and kurtoses. 

Secondly, one needs to find the required intermediate correlation matrix. As a special case of 
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Equation (33), the correlation Yρ  between two nonnormal Fleishman variables 1Y  and 2Y  can be 

expressed as (see equation (11) in Vale & Maurelli, 1983): 

 ( ) 2 3
11 12 11 32 31 12 31 32 21 22 31 323 3 9 2 6Y Z Z Za a a a a a a a a a a aρ ρ ρ ρ= + + + + +  (35) 

where Zρ  is the intermediate correlation between two standard normal random variables, 11a , 

21a , and 31a  are the transformation coefficients for 1Y , and 12a , 22a , and 32a  are the 

transformation coefficients for 2Y . Zρ  can therefore be found by numerically solving Equation 

(35). Once Zρ  is found, *Σ  is created as  

 * 1
chol

1
Z

Z

ρ
ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ  (36) 

In the next step, two standard normal random variables are correlated by using the intermediate 

correlation matrix from Equation (36) in the process in Equation (32). Finally, the 3rd order 

polynomial transformations as in Equation (2) are applied individually to the now correlated 

standard normal variables, using transformation coefficients 01a , 11a , 21a , 31a , 02a , 12a , 22a , 

and 32a . 

An Example. Assume we want to create two nonnormal random variables 1Y  and 2Y  with 

correlation Yρ . Each variable will have its own marginal skewness and kurtosis, which we 

denote by 11γ  and 21γ  for the skewness and kurtosis of 1Y  and 12γ  and 22γ  for skewness and 

kurtosis of 2Y . To demonstrate, we choose a condition used in Harwell & Serlin (1989) with 

skewnesses 11 12 0γ γ= = , kurtoses 21 22 25γ γ= = , and final correlation .3Yρ = . The skewness-

kurtosis combination 1 0γ = , 2 25γ =  can be produced by two distinctly different sets of 

coefficients for the 3rd order power method, one resulting in a monotonic, the other in a non-
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monotonic transformation. We have already plotted the two versions of the univariate 

distribution for this parameter combination (see Figure 8). What do the bivariate versions look 

like?  

Assume we first choose the set of coefficients for the monotonic transformation for both 

1Y  and 2Y : 01 02 0a a= = , 11 12 .2552828a a= = , 21 22 0a a= = , 31 32 .2037548a a= = . Inserting 

these coefficients into Equation (35), the relationship between final and intermediate correlation 

is now: 

 3.3 0.750904 0.249096Y Z Zρ ρ ρ= = +  (37) 

We numerically solve for Zρ  and obtain .381150Zρ = . Now we postmultiply two independent 

standard normal random variables by the Cholesky decomposition of a correlation matrix with 

off-diagonal element .381150Zρ =  and then apply the non-normalizing transform. The resulting 

bivariate nonnormal distribution with correlation .3Yρ =  is shown in Figure 12(a).  

If both marginal variables are non-normalized with the non-monotonic transformation 

which has coefficients 0 0a = , 1 1.566682a = − , 2 0a = , and 3 .3481727a = , the intermediate 

correlation will be different, and have the value .579947Zρ = . The resulting distribution is 

shown in Figure 12(b).  
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Both marginals created with monotonic 
transform 

Both marginals created with non-
monotonic transform 

Figure 12 (a) & (b): V&M distributions for 11 12 0γ γ= = , 21 22 25γ γ= = , .3Yρ = , and 
5,000N = . 

 
 

Table 4: Sample Skewnesses, Kurtoses, and Correlations for Distributions in Figure 12 

 11γ̂  12γ̂  21γ̂  22γ̂  ˆYρ  
Both Marginals 
Transformed with 
Monotonic Transform 

–0.0170 –0.0114 24.9536 25.1213 0.3002 

Both Marginals 
Transformed with Non-
monotonic Transform 

0.0103 –0.0409 24.7616 23.3222 0.3006 

 
 

These two distributions have essentially the same marginal means, variances, skewnesses, and 

kurtoses, as well as the same correlation, but very different shapes.  

 

Identical Marginals vs. Non-Identical Marginals. At this point, I introduce new 

terminology that will help classify distributions for the remainder of my dissertation. In the 
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example above, Figure 12(a) & (b), both marginal distributions had the same skewnesses and 

kurtoses, namely 11 12 0γ γ= =  and 21 22 25γ γ= = . Further, because the marginal distributions are 

constructed utilizing the same method and the same transformation coefficients, we can say that 

the marginals are identical. Consequently, a distribution with such properties shall be called a 

Distribution with Identical Marginals or IM Distribution. A distribution with 11 12γ γ≠  or 

21 22γ γ≠  or both will be called a Distribution with Non-Identical Marginals or nIM Distribution. 

As we will see throughout the remainder of this dissertation, IM distributions and nIM 

distributions differ in several ways, and that IM distributions have been simulated much more 

often than nIM distributions.  

 

Limitations of Vale & Maurelli’s Multivariate Extension to the 3rd Order Polynomial Transform 

Since Vale & Maurelli's method is directly based on applying the Fleishman 3rd order 

transform to normally distributed (albeit correlated) random variables, limitations that have been 

found for Fleishman's method also apply to their multivariate extension of the 3rd order 

polynomial transform. Most prominently, each variable will be subjected to the limitations in the 

range of skewness-kurtosis combinations discussed earlier and graphed in Figure 9. However, 

multivariate distributions created by the Vale & Maurelli method, even if they are only bivariate, 

are more complex by several orders of magnitude than any univariate distribution. This begins 

with the 2nd order bivariate moment, represented by the correlation. 

 

The Relationship Between Intermediate and Final Correlation. Li & Hammond (1975) 

discuss for the general case that not every desired final correlation matrix has a valid 

corresponding intermediate correlation matrix. Whether a valid intermediate correlation matrix 
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exists depends on the shape of the marginal distributions, i.e., the marginal skewness-kurtosis 

combinations. This in turn means that for certain choices of marginal skewness-kurtosis 

combinations for two variables, the final correlation Yρ  cannot exceed some maximum 

permissible value * 1Yρ <  (Carroll, 1961, provides a relatively interesting discussion). Also, the 

minimum value **
Yρ  of the final correlation might exceed –1: **1 Yρ− < . As we shall see, this 

limitation depends both on the selected values for skewnesses and kurtoses of the two variables 

and the subsequent choice of the particular set of transformation coefficients for Equation (2). 

To explicate why this is so, assume we would like to simulate a bivariate nIM distribution 

with one normal and one fairly nonnormal marginal and desired final correlation Yρ . We have 

11 0γ =  and 21 0γ =  for the normal distribution and  choose 12 1γ =  and 22 15γ =  for the 

nonnormal distribution. The four sets of coefficients for the normal distribution are: 

 

[ ]
[ ]
[ ]
[ ]

01 11 21 31

01 11 21 31

01 11 21 31

01 11 21 31

set1 0 1.49435 0 .214504

set2 0 1.49435 0 .214504

set3 0 1 0 0

set4 0 1 0 0

a a a a

a a a a

a a a a

a a a a

= = = = = −

= = = − = =

= = = = =

= = = − = =

 (38) 

and for the nonnormal distribution we have 

 

[ ]
[ ]
[ ]

02 12 22 32

02 12 22 32

02 12 22 32

02 12 22 32

set1 .170095 1.534711 .170095 .306848

set2 .170095 1.534711 .170095 .306848

set3 .077327 .445537 .077327 .157014

set4 .077327 .445537 .077327 .

a a a a

a a a a

a a a a

a a a a

= = − = = = −

= = − = − = =

= = − = = =

= = − = − = = −[ ]157014

 (39) 

The choice of coefficients for the normal distribution is simple: 11 1a =  and 01 21 31 0a a a= = = ; 

for the nonnormal distribution, let’s just arbitrarily pick the very first set, 02 .170095a = − , 
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12 1.534711a = , 22 .170095a = , and 32 .306848a = − . We can now substitute the coefficients into 

Equation (35), resulting in 

 

( )
( )
( )

2 3
11 12 11 32 31 12 31 32 21 22 31 32

12 32

3 3 9 2 6

3

1.534711 0.920544
0.614167

Y Z Z Z

Z

Z

Z

a a a a a a a a a a a a

a a

ρ ρ ρ ρ

ρ

ρ
ρ

= + + + + +

= +

= −

=

 (40) 

Figure 13 depicts the relationship between final and intermediate correlation: 

 

 
Figure 13: Relationship between Intermediate and Final Correlation for a Normal and a 

Nonnormal variable. 
 

The intermediate correlation Zρ  will assume values between –1 and 1, but inserting its whole 

range [ ]1, 1−  into Equation (40) will only produce corresponding values of the final correlation 
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Yρ  between –.614167 and .614167. For this choice of marginal skewnesses and kurtoses and this 

set of coefficients, it is impossible to create a final correlation of, say, .8 between 1Y  and 2Y .  

Is this true for all sets of coefficients in equations (38) and (39)? Had we chosen the same 

coefficients for the normal distribution but 02 .0773268a = − , 12 .4455373a = , 22 .0773268a = , 

and 32 .1570144a =  for the nonnormal distribution, the relationship between Yρ  and Zρ  would 

have been 

 
( )
( )

12 323

.4455373 .4710432
.9165805

Y Z

Z

Z

a aρ ρ

ρ
ρ

= +

= +

=

 (41) 

The picture of the relationship between intermediate and final correlation is now this: 

 

 
Figure 14: Relationship between Intermediate and Final Correlation for a Normal and a 

Nonnormal variable. 
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A much larger range of final correlations is available. By choosing .8728093Zρ = , we can 

produce a final correlation of .8Yρ = . However, the entire range of [ ]1, 1−  for Yρ  still cannot 

be simulated. Obviously, the range of final correlations available to us depends both on the 

skewness-kurtosis combinations and the choice of transformation coefficients. To gain a better 

overview of the ranges of final correlations typically available, I examine three additional 

bivariate distributions, two of which have been popular choices in Monte Carlo studies (see 

Table 28). 

 Example 1. The first of these distributions has 11 12 0γ γ= =  and 21 22 25γ γ= = . The 

transformation coefficients for this distribution have already been provided in (18). We choose 

 
[ ]
[ ]

Set1 0 0.255283 0 0.203755

Set2 0 1.566682 0 0.348173

=

= −
 (42) 

for the monotonic (Set1) and non-monotonic (Set2) transformation. This results in three 

distinctly different ranges of available final correlations (three because the combinations Set1–

Set2 and Set2–Set1 will be the same). We get 

 

Table 5: Range of Final Correlations, Example 1 

 Min Max 
Set1 – Set1 
( 1monotonic  & 1monotonic )  –1.000000 1.000000 

Set1 – Set2 
( 1monotonic  & 2non monotonic− )  –0.179564 0. 179564 

Set2 – Set2 
( 2non monotonic−  & 2non monotonic− ) –1.000000 1.000000 

 
 



 43

Both the monotonic/monotonic and the non-monotonic/non-monotonic combinations yield a 

range of [ ]1, 1−  for Yρ , but the monotonic/non-monotonic combination does not; see Figure 

152. 

 

 

 

 

Figure 15: Relationship Between Intermediate and Final Correlation Depending on Choice of 
Transformation Coefficients 

                                                 
2 Note that when more than two graphs are included in one figure, these will be numerated (a), (b), (c), etc. The 

order will always be  
(a)   (b) 
(c)   (d) 
(e)   (f) 
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Example 2. The second distribution has 11 12 2γ γ= =  and 21 22 6γ γ= = . There are two 

distinctly different sets of coefficients, both resulting in a non-monotonic transformation (no 

monotonic transformation is available for  1 2γ =  and 2 6γ = ): 

 
[ ]
[ ]

Set1 0.313749 0.826324 0.313749 0.022707

Set2 0.569495 0.815741 0.569495 0.087793

= −

= − −
 (43) 

The three unique ranges for the final correlation are:  

 

  Table 6: Range of Final Correlations, Example 2 

 Min Max 
Set1 – Set1 
( 1non monotonic−  & 1non monotonic− )  –.606249 1 

Set1 – Set2 
( 1non monotonic−  & 2non monotonic− )  –.167004 . 839453 

Set2 – Set2 
( 2non monotonic−  & 2non monotonic− ) –.036503 .999999 
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Figure 16: Relationship Between Intermediate and Final Correlation Depending on Choice of 
Transformation Coefficients 

 

Even though both sets of coefficients lead to a non-monotonic transformation, the range of final 

correlations available is still dependent on which set of coefficient is chosen. Notice also that 

when combining Set1 or Set2 with Set2, the relationship between Zρ  and Yρ  is not one-to-one! 
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For example, if we chose Set2 for both marginals and want .2Yρ = , both .877Zρ = −  and 

.365Zρ =  are a solution! 

Example 3. The third example is an nIM distribution, with 11 1γ =  and 21 20γ =  for the 

first variable and 12 2γ =  and 22 40γ =  for the second variable. The two distinctly different sets 

of coefficients for the first variable are:  

 
[ ]
[ ]

Set1 0.070726 0.348061 0.070726 0.180925

Set2 0.144537 1.544216 0.144537 0.325927

= −

= − −
 (44) 

The transform from Set1 is monotonic and the transform from Set2 is non-monotonic. For the 

second variable, we have:  

 
[ ]
[ ]

Set3 0.117429 0.061593 0.117429 0.242096

Set4 0.205819 1.465874 0.205819 0.354146

= −

= − −
 (45) 

Again, the first transform is monotonic and the second is non-monotonic. We can combine both 

Set1 and Set2 with each Set3 and Set4, resulting in four ranges of possible final correlations: 

 

Table 7: Range of Final Correlations, Example 3 

 Min Max 
Set1 – Set3  
( 1monotonic  & 3monotonic ) –.9480722 .9812932 

Set1 – Set4  
( 1monotonic  & 4non monotonic− ) –.1250746 .1432437 

Set2 – Set3  
( 2non monotonic−  & 3monotonic ) –.1565529 .1779114 

Set2 – Set4  
( 2non monotonic−  & 4non monotonic− ) –.8615769 .9805707 
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The largest possible range for Yρ  is reached when the two monotonic transforms are coupled. 

Coupling the two non-monotonic transforms results in a fairly large range for Yρ  as well, but a 

monotonic transformation coupled with a non-monotonic transformation results in a very small 

range of possible final correlations. Graphing the range of available final correlations for the two 

monotonic transformations (Set1 with Set3), we have: 

 

 
Figure 17: Relationship Between Intermediate and Final Correlation 

 

For now, it largely remains an open question how marginal skewnesses and kurtoses as 

well as transformation types (monotonic vs. non-monotonic) interact to produce a range of 

available final correlations. It may be that two sets of coefficients that are relatively similar to 

each other will yield a wider range for Yρ  than two sets of coefficients that are fairly different 
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from each other. Even if we do not have a final answer on how to choose from different 

transformations available, it is incontrovertible that choice of transformation matters. 

 

Mirror Image Transformations and the Relationship Between Intermediate and Final 

Correlation. Out of the four solutions to the set of equations in (7), only two are distinctly 

different, while the others are mirror images of first two. Whether we choose a set of coefficients 

or its mirror image has no effect on the range of final correlations. Consider the very first 

example from Figure 13 and Figure 14, for which we used the third set of coefficients from 

Equation (38) and the first set of coefficients from Equation (39). If we had used the second set 

of coefficients for the nonnormal variable from Equation (39), which is the mirror image of the 

first, 

 
[ ]
[ ]

set1 .170095,1.53471,.170095, .306848

set2 .170095, 1.53471,.170095,.306848

= − −

= − −
 (46) 

while the set of coefficients for the normal variable remained the same ( 0 0a = , 1 1a = , 2 0a = , 

and 3 0a = ), Equation (40) would change to 

 

( )
( )
( )

2 3
11 12 11 32 31 12 31 32 21 22 31 32

12 32

3 3 9 2 6

3

1.53471 .920545
.614166

Y Z Z Z

Z

Z

Z

a a a a a a a a a a a a

a a

ρ ρ ρ ρ

ρ

ρ
ρ

= + + + + +

= +

= − +

= −

 (47) 

The sign of the multiplicative factor in front of Zρ  is reversed, but its absolute value is still the 

same. Since Zρ  ranges from –1 to 1, this means that the range of Yρ  is not changing either. The 

only aspect changing is that now 1Zρ = −  maximizes Yρ  and 1Zρ =  minimizes Yρ . 
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 This is true for the general case. Consider Equation (35), the formula for Yρ , and slightly 

rearrange to  

 ( ) 3 2
Y Z Z Z Zg a b cρ ρ ρ ρ ρ= = + +  (48) 

with 31 326a a a= , 21 222b a a= , and 11 12 11 32 31 12 31 323 3 9c a a a a a a a a= + + + , with maximum  

 ( ) ( )3 2* * * *
Y Z Z Za b cρ ρ ρ ρ= + +  

and minimum 

 ( ) ( )3 2** ** ** **
Y Z Z Za b cρ ρ ρ ρ= + +  

where *
Zρ  and **

Zρ  are the values of the intermediate correlation that maximize and minimize 

Yρ , respectively. The coefficient of the quadratic term, b, will never change because the sign of 

both 21a  and 22a  stays the same. If the sign for the second and fourth coefficient for both sets are 

reversed (i.e. we change to the mirror image transformation for both variables), the changed 

signs will cancel out for both a and c. The only interesting case is a sign reversal for one of the 

variables, e.g. *
11 11a a= −  and *

31 31a a= −  thereby reversing the sign of a and b. Now the new 

equation for Yρ  will be: 

 ( ) 3 2
Y Z Z Z Zh a b cρ ρ ρ ρ ρ= = − + −  (49) 

Notice that  

 

( ) ( ) ( ) ( )

( )

3 2

3 2

Z Z Z Z

Z Z Z

Z

h a b c

a b c
g

ρ ρ ρ ρ

ρ ρ ρ
ρ

− = − − + − − −

= + +

=

 (50) 
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Therefore, ( ) 3 2
Z Z Z Zh a b cρ ρ ρ ρ= − + −  is maximized by *

Zρ−  and minimized by **
Zρ− , 

resulting in the same maximum *
Yρ  and minimum **

Yρ  as ( )Zg ρ . We can conclude that the 

range for the final correlation Yρ  is only influenced by the marginal skewness and kurtosis as 

well as the choice between distinctly different sets of transformation coefficients for each 

variable. 

 

Odd–shaped Distributions 

There is another and potentially even more important property of bi- and multivariate 

distributions beyond marginal skewnesses, kurtoses, and correlation that has not been discussed 

yet: Shape. Under “shape”, we summarize all additional moments for bivariate or multivariate 

distributions. We have to make ourselves aware that even just bivariate distributions are 

substantially more complex than univariate ones. For example, bivariate distributions have a total 

of two 1st order moments (the two means), three 2nd order moments (two variances and one 

covariance) and four 3rd order moments:  

• 111 11ρ γ= , skewness of variable 1 

• 112ρ  

• 122ρ  

• 222 12ρ γ= , skewness of variable 2 

where  

 
( )( )( )i i j j k k

ijk
ii jj kk

E X X Xμ μ μ
ρ

σ σ σ

⎡ ⎤− − −⎣ ⎦=  (51) 

and  
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 ( )2
ii i iE Xσ μ⎡ ⎤= −⎣ ⎦  (52) 

Note that any permutations of the bivariate 3rd order moments are irrelevant; 112ρ  is the same as 

121ρ  etc.  

Likewise, there are five 4th order moments:  

• 1111 21 3ρ γ= +  

• 1112ρ  

• 1122ρ  

• 1222ρ  

• 2222 22 3ρ γ= +  

Equivalently to Equation (51),  

 
( )( ) ( )( )i i j j k k h h

ijkh
ii jj kk hh

E X X X Xμ μ μ μ
ρ

σ σ σ σ

⎡ ⎤− − − −⎣ ⎦=  (53) 

two of the 3rd order moments and three of the 4th order moments of a bivariate distribution are 

not controlled by the 3rd order power method. For higher moments, this figure will increase even 

more, e.g. for 5th order moments, we will have two marginal moments and four “mixed” 

moments.  

For any bivariate distribution, there are  

 
2 3

2
M M+  (54) 

moments up to thM  order. For example, if we are interested in the first 4M =  moments, we 

have ( ) ( )4
1

1 2 3 4 5 14
i

i
=

+ = + + + =∑  moments in total. The V&M method provides control over  
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nine of these moments: Univariate means, variances, skewnesses, kurtoses, and the bivariate 

covariance, while leaving the other five moments uncontrolled. Of course, any other moments of 

even higher order are altogether uncontrolled as well. 

What does this mean in practice? Figure 12 already shows that the shape of a bivariate 

V&M distribution depends not only on marginal skewnesses and kurtoses and the correlation, 

but also on the choice of coefficients used for the transformation. Below we will see another 

example of the striking impact the choice of a set of transformation coefficients can have. We 

create a bivariate nIM distribution with 11 2.5γ =  and 21 11.5γ =  for the first variable, 12 1.4γ =  

and 22 5.6γ =  for the second variable, and .46Yρ = . For the first variable, the distinctly different 

coefficient sets are: 

 
[ ]
[ ]

Set1 0.280057 0.640671 0.280057 0.084618 (monotonic)
Set2 0.646612 0.619375 0.646612 0.097626 (non-monotonic)

= −
= − −

 (55) 

For the second variable, we have 

 [ ]
[ ]

Set3 0.159417 0.740037 0.159417 0.072615 (monotonic)
Set4 0.428141 1.198410 0.428141 0.177011 (non-monotonic)

= −
= − −

 (56) 
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Figure 18 (a) through (d): Different Shapes Depending on Choice of Transformation Coefficients 

   

Table 8: Skewnesses, Kurtoses, and Correlations for Distributions in Figure 18 

Nominal Value 2.5 1.4 11.5 5.6 .46 
Sample Estimate  11γ̂  12γ̂  21γ̂  22γ̂  ˆYρ  

Figure 18(a), set 1 – set 3 2.4819 1.3901 11.2333 5.5354 .4597 
Figure 18(b), set 1 – set 4 2.4979 1.4170 11.4382 5.9682 .4602 
Figure 18(c), set 2 – set 3 2.4866 1.4064 11.2432 5.6918 .4612 
Figure 18(d), set 2 – set 4 2.4978 1.3921 11.3700 5.4030 .4597 
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The shapes in  Figure 18 are strikingly different from one another, despite all having the same 

marginal skewnesses and kurtoses and the same correlation and all being produced with what has 

been portrayed in the literature as a single unique method for simulating nonnormal distributions. 

Notice that the only distribution with a completely “well-behaved” shape is the one constructed 

from two monotonic transforms in Figure 18(a). The distribution created from the two non-

monotonic transforms (Figure 18(d)) comes quite close to the box-shaped form we have already 

observed for the distribution in Figure 12(b). The distribution in Figure 18(c) almost looks like a 

mixture of two relatively normal distributions with high correlations in opposite directions. 

Interestingly, .46Yρ =  is very close to the maximum of available final correlations for the set of 

parameters that creates the distribution in Figure 18(c).  

 

First Conclusions on the 3rd Order Polynomial Transform. At this point, no 

comprehensive summary of the findings on the univariate and multivariate 3rd order power 

method, presented in the previous sections, exists. Univariate and bivariate shape as well as 

range of final correlation available are aspects of V&M distributions that have not undergone any 

formal examination. However, the above observations on the power method have a more general 

implication for other bi- or multivariate distributions as well: Marginal skewnesses and kurtoses 

for nonnormal variables 1Y  and 2Y  and the correlation between them are far from sufficient to 

characterize a bivariate nonnormal distribution. Often, researchers employing the Fleishman or 

the V&M method to simulate nonnormal distributions report no more than marginal skewnesses 

and kurtoses, and it is very likely that few are aware of the drastic differences that can occur 

between distributions even if these parameters have been fixed. The end of Part I of my 

dissertation I will demonstrate that such differences in shape can have quite direct and drastic 
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consequences for studies in which nonnormal distributions are simulated. In other words, 

moments which are not controlled may have a major impact on inferences drawn from a Monte 

Carlo study. However, before we discuss the practical consequences of the results presented 

above, I introde two additional ways of simulating multivariate nonnormal scores, beginning 

with Headrick’s (2002) extension of the 3rd order to a 5th order polynomial method.  

 

The 5th Order Polynomial Transform 

In 2002, Headrick suggested expanding Fleishman’s 3rd order polynomial transform to a 

5th order polynomial transform by simply adding two terms to Fleishman’s transformation from 

Equation (2): 

 2 3
0 1 2

4
4

5
3 5HY a a Z a Z Za aa Z Z+ += + + +  (57) 

Subsequently, he equated not only mean, variance, skewness, and kurtosis, but also the 5th and 6th 

moment (designated as 3γ  and 4γ  from here on) of the nonnormal variable HY  with functions of 

the six coefficients 0a  through 5a , similar to the set of equations in (7) for the 3rd order power 

method:  

 

( )
( )
( )
( )
( )
( )

1 0 1 2 3 4 5

2
2 0 1 2 3 4 5

1 3 0 1 2 3 4 5

2 4 0 1 2 3 4 5

3 5 0 1 2 3 4 5

4 6 0 1 2 3 4 5

, , , , , 0

, , , , , 1

, , , , ,

, , , , ,

, , , , ,

, , , , ,

f a a a a a a

f a a a a a a

f a a a a a a

f a a a a a a

f a a a a a a

f a a a a a a

μ

σ

γ

γ

γ

γ

= =

= =

=

=

=

=

 (58) 

This allows for control over the first six instead of the first four univariate moments. 

Detailed equations for the moments of HY  as well as the final correlation Yρ  are not included 

here, as they cover several pages. To get an impression of their size and character, the reader may 
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refer to Headrick (2002). To illustrate, consider that the largest of these functions, 

( )4 6 0 1 2 3 4 5, , , , ,f a a a a a aγ = , has about 112 terms. Some of the longer of these 112 terms are as 

large as 2 4
4 527 977816385000c c× . I will discuss possible implications of such large terms in the 

following sections. 

Headrick & Kowalchuk (2007) discuss additional properties of the 5th order power 

method such as the pdf and cdf for subsets of the 3rd order and 5th order transform, an issue 

which has already been examined in the section on the “valid pdf and cdf” above. Headrick, 

Sheng, & Hodis (2007) provide Mathematica code to simulate desired distributions using the 5th 

order polynomial transform. Headrick argues strongly that a need for control over additional 

moments exists as this will improve the approximation of known univariate nonnormal 

distributions such as the exponential or the uniform distribution (Headrick, 2002; Headrick, 

2004). 

An Example. We demonstrate the 5th order polynomial transform with two sets of 

transformation coefficients from Table 1 in Headrick (2002) which are used to approximate 

known nonnormal distributions. The first of these distributions is the logistic distribution (with 

1 0γ = , 2 6 / 5γ = , 3 0γ = , and 4 48 / 7γ = ) and coefficients  

 [ ]Set1 0.0000 0.8795 0.00005 0.0408 0.0000 0.0004= −  (59) 

The second is the Weibull distribution with parameters 6α =  and 10β =  (with 1 .373262γ = − , 

2 .035455γ = , 3 .447065γ = , and 4 1.022066γ = − ) and coefficients (Set2b is discussed below): 

 [ ]Set2 0.0655 0.9692 0.0652 0.0278 0.0001 0.0039a = − − −  (60) 
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The respective transformations and their resulting empirical distributions (along with the 

theoretical densities of the logistic and the Weibull distribution plotted in red) are shown in 

Figure 19: 

 

Figure 19: 5th Order Polynomial Transforms and Resulting Empirical Distributions 
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You may notice that the fit between theoretical and empirical distribution (as created by the 5th 

order power method) for the Weibull distribution is suboptimal. We will examine this issue in 

greater depth in the next section. 

 

Limitations of the 5th Order Polynomial Transform  

Number of Solutions for Set of Coefficients. The 5th order polynomial transformation (or 

power method) is not free from the problems we identified for the 3rd order power method. Just 

as the 3rd order power method, the 5th order power method has multiple real-valued solutions to 

the set of equations that solves for the coefficients 0a  through 5a  (the possibility of multiple 

solutions is also briefly mentioned in a subordinate clause in Headrick & Kowalchuk, 2007, page 

244). When solving the system of equations in (7) for the 3rd order power method, we saw that a 

total of four solutions, two of them distinctly different and sometimes leading to distributions 

with very different shapes, were found by Mathematica and R. It turns out that the 5th order 

polynomial can have even more distinctly different solutions to the set of equations referred to in 

(58).  

As an example, consider a scaled 2
1χ  distribution with first six moments 0μ = , 1σ = , 

1 8γ = , 2 12γ = , 3 48 2γ = , and 4 480γ = . Both Mathematica and R encountered difficulties 

when attempting to find all solutions for the six coefficients 0a  through 5a . Running for 

approximately 24 hours, Mathematica found six real-valued sets of coefficients (and in addition, 

a very large amount of sets of coefficients with at least some coefficients imaginary): 
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[ ]
[ ]
[ ]
[ ]

Set1 0.6689 0.3194 0.6671 0.0007 0.0006 0.0001

Set2 0.6689 0.3194 0.6671 0.0007 0.0006 0.0001

Set3 0.3977 0.6211 0.4169 0.0684 0.0064 0.0000

Set4 0.3977 0.6211 0.4169 0.0684 0.0064 0.0000

Set5 0.7071 0.0325 0.7071

= − − −

= − −

= − −

= − − − −

= − −[ ]
[ ]

0.0335 0.0000 0.0001

Set6 0.7071 0.0097 0.7071 0.0105 0.0000 0.0005

− −

= − − − −

 (61) 

When either used to simulate data (see Equation (57)) or when substituted into equations for the 

first six moments of a 5th order polynomial variable, only sets 1, 2, and 6 produced distributions 

with values of 1̂γ , 2γ̂ , 3γ̂ , and 4γ̂  reasonably close to their nominal values. To investigate this 

further, I manipulated the existing root finding routine nleqslv in R to find as many different sets 

of coefficients as possible. R produced almost identical six sets of coefficients, all performing as 

expected (either by inserting into formulas for the first six moments or by simulating data): 

 

[ ]
[ ]
[ ]
[ ]

Set1 0.3977 0.6211 0.4169 0.0684 0.0064 0.00004

Set2 0.3977 0.6211 0.4169 0.0684 0.0064 0.00004

Set3 0.6689 0.3194 0.6671 0.0007 0.0006 0.00005

Set4 0.6689 0.3194 0.6671 0.0007 0.0006 0.00005

Set5 0.7071 0.0039 0.7

= − −

= − − − −

= − −

= − − −

= −[ ]
[ ]

071 0.0000 0.0000 0.0000

Set6 0.7071 0.0335 0.7067 0.0001 0.0000 0.0000= −

 (62) 

Notice that Set1 and Set2 and Set3 and Set4 are, just as for the 3rd order polynomial, mirror 

images of each other. Further, Set5 and Set6 look quite similar, with 0a  close to .5 , 2a  close to 

.5− , and all other coefficients close to 0. All of these solutions may very well be just an 

approximation to the exact solution 0 .5a = − , 1 0a = , 2 .5a = , and 3 4 5 0a a a= = = , which is 

the same transformation to a scaled 2
1χ  variable we already saw for the 3rd order power method. 

Both R and Mathematica had difficulties solving numerically for these solutions. Possibly, by 

increasing the complexity of the set of equations in (58), which relates the first six moments of 
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the Y variable to the six coefficients 0a  through 5a , and introducing numerically very large 

terms, we may have met some limits of numerical root finding. This is somewhat contrary to the 

claim by Headrick and co-authors in several papers that the 5th order polynomial is 

computationally efficient and “simple.”  

Figure 20 plots the transformations for the sets of coefficients in Equation (62). All of 

these transformations are non-monotonic – including transformation 1 and 2 (as can be verified 

by plotting a smaller section on the interval [ ]3,0− ).  

 

 
Figure 20: 5th Order Polynomial Transformations 
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In Figure 20, transformations 3, 4, and 5/6 are quite similar to each other, and it may 

seem as if the differences between these transforms should not be particularly important. 

However, the behavior of multivariate distributions with as many as 10k = or more variables 

created with the 5th order polynomial method might become unpredictable, just as behavior has 

been shown to be somewhat unpredictable for the 3rd order polynomial transform and two 

dimensions. Again, requiring researchers to specify the coefficients used to create nonnormal 

distributions may be necessary to facilitate the replication of results through reviewers as well as 

consumers of the published research. For example, Beasley, DeShea, Toothaker, Mendoza, Bard, 

and Rodgers (2007) make use of the 5th order polynomial transformation to create an 

approximation to the 2
1χ  random variable. It is unknown which set of parameters was used and 

if a different set of parameters would – possibly – have resulted in different performance of the 

confidence intervals studied. It is not also clear whether Headrick et al.’s (2007) Mathematica 

program always chooses monotonic transformations when available. 

When solving for the sets of transformation coefficients for a range of additional 

distributions, I found between two (for most of the distributions in Headrick’s (2002) table 1) and 

four (for the Pareto distribution) distinctly different sets. Whether these were all available sets of 

coefficients or whether the number of coefficient sets will vary even more for other skewness-

kurtosis combinations is, as of yet, uncertain, due to the computational difficulties I and possibly 

Headrick and others have encountered. Headrick & Kowalchuk (2007) do not discuss this issue 

and Headrick, Sheng, & Hodis (2007) only warn potential users of their Mathematica program to 

not alter starting values for the root finding routine that solves for the six coefficients.  

It is also unclear whether Headrick is aware of the total number of existing solutions and 

their properties in all cases. As an example, consider Headrick’s (2002) treatment of the 
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approximation to the Weibull distribution with 6α =  and 10β =  as examined in Figure 19. The 

set of coefficients he suggests is shown in Equation (60) and reproduced below: 

 [ ]Set2 0.065524 0.969217 0.065172 0.027783 0.000117 0.003879a = − − − (63) 

However, there is at least one more set of distinctly different transformation coefficients that 

presents a solution to the set of equations in (58) for the this distribution: 

 [ ]Set2 0.072274 1.00608 0.080604 0.001916 0.002776 0.000307b = − − −  (64) 

The transformation based on the set of coefficients from Equation (64) and the resulting 

distribution look as follows: 

 

Figure 21: Transformation and Empirical Approximation of the Weibull Distribution Based on 
the Set of Coefficients from Equation (64) 
 

The empirical distribution in Figure 21 fits the theoretical density function much better than the 

empirical distribution in Figure 19.  

I further investigated the performance of transformations from both sets of coefficients by 

using Equation (57) to simulate 1,000 samples of size 10,000N =  for both Set2a and Set2b, 
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calculating 4γ̂  for each of the samples and plotting the empirical sampling distribution of the 

4γ̂ s in Figure 22: 

 

 
Figure 22(a) & (b): Sampling Distributions for 4γ̂  Under the Two Sets of Transformation 
Coefficients from Equations (63) and (64). 
 

The bulk of the sampling distribution of 4γ  in Figure 22(a) lies below its nominal value of 

4 1.022066γ = − , while the sampling distribution in Figure 22(b) is more “on point.” The 30 most 

extreme values were excluded before the sampling distribution of 4γ  in Figure 22(a) was plotted. 

The largest of these values was approximately 4ˆ 2008γ = , which does pull the mean, but not the 

entire distribution significantly upwards.  

 

Monotonicity of Transforms. Some of the transformations for the 3rd order polynomial 

method were monotonically increasing, while others were not monotonic, and sometimes a 

particular skewness-kurtosis combination could be simulated by both a monotonic and a non-
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monotonic transform, in which case the monotonic transform seemed to generally have better 

performance and should be preferred. Both monotonic and non-monotonic transforms also exist 

for the 5th order polynomial method. Headrick & Kowalchuk (2007, properties 4.5 and 4.6) 

present constraints on the coefficients 0a  through 5a  which will guarantee monotonicity of 5th 

order polynomial transformations and which are similar to the constraints in Equation (23) on 0a  

through 3a  for the 3rd order polynomial method. Property 4.5 states that a 5th order polynomial 

resulting in a symmetric distribution, i.e. 3 5
1 3 5Y a Z a Z a Z= + + , with 0 2 4 0a a a= = = , will be 

monotonic if all numbers z with 

 
2 2

3 1 5 3 3 1 5 3

5 5

9 20 3 9 20 3
     or     

10 10
a a a a a a a a

z z
a a

± − − ± − −
= ± = ∓  (65) 

have non-zero imaginary parts. Equivalently, property 4.6 states that a 5th order polynomial 

transform that results in an asymmetric distribution with will be monotonic if all numbers z with  

 4 4
4 6 5 4 6 5

5 5

1 1 1 1     or     
2 2 5 2 2 5

a az S S S z S S S
a a

= ± ± ± − = ± −∓ ∓  (66) 

have non-zero imaginary parts. Expressions for 4S , 5S , and 6S  can be found in the appendix of 

Headrick & Kowalchuk (2007) and are rather lengthy formulae of 0a  through 5a . These 

equations are not very practical. At best, they present a way to program a test for whether a 

particular transform is monotonically increasing. A graph similar to Figure 9, but for the 5th order 

power method is needed. 

 

Range of Skewness-Kurtosis. Limitations to the range of skewness-kurtosis combinations 

available to the 3rd order polynomial method are plotted in Figure 9 and a similar plot for the 5th 

order polynomial method would be desirable. The 5th order power method’s control over 
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additional moments seems to increase the proportion of the skewness-kurtosis plane 2 1 2γ γ≥ −  

that can be simulated. In his table 3, Headrick (2004) provides a small set of skewness-kurtosis 

combinations on the borders of the available range for the 5th order transform. These are plotted 

and connected by the green line in Figure 23 and contrasted with the ranges for 3rd order 

monotonic and all 3rd order transforms.  

 

 
Figure 23: Ranges of Possible Skewness-Kurtosis Combinations for 3rd and 5th Order 

Polynomial Transforms 
 

Apparently, Equation (57) allows one to solve for a larger range of skewness-kurtosis 

combinations than Equation (2) because the larger number of variables and coefficients provides 

more flexibility. On the other hand, this makes it more difficult to find the boundaries of the 
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available region, since the fifth and sixth moment are not part of the graph, but can be varied as 

well – this may be why Headrick (2004) does not provide more values. Notice, however, that the 

5th order power method can create nonnormal variables with 2 0γ <  via a monotonically 

increasing transform. An example is given in Headrick & Kowalchuk (2007). It should be a 

priority for the investigation of the 5th order polynomial transform to complete Figure 23 for both 

monotonic and all 5th order transformations. This will allow users and psychometricians alike to 

evaluate how much more of the skewness-kurtosis range is covered compared to the 3rd order 

polynomial transform and whether advantages gained through this increase outweighs 

disadvantages from the additional complexity of the 5th order polynomial transform. However, 

the long runtimes to solve for sets of coefficients make this more difficult since empirical 

exploration is the only known way to construct a figure for the 5th order transform similar to 

Figure 9 for the 3rd order transform. 

 

The Multivariate 5th Order Polynomial Transform 

  The extension of the 5th order polynomial transform to the multivariate case can be 

carried out exactly like the multivariate extension of the 3rd order polynomial transform. After 

finding the transformation coefficients 0a  through 5a  for each individual variable, the final 

correlation Yρ  is a function of the transformation coefficients of the individual variables and the 

intermediate correlation Zρ : 

 ( ), ,Y Zfρ ρ= 1 2a a  (67) 

where 0 1 2 3 4 5[ , , , , , ]a a a a a a=1a  for 1Y  and 2 0 1 2 3 4 5[ , , , , , ]a a a a a a=a  for 2Y . The fully expressed 

equation is given in Headrick (2002) and not reproduced here due to its length. Zρ  is then found 
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as the root of the function in Equation (67). Next, a set of standard normal variables is correlated 

with Zρ , with the same procedure of post-multiplying by the Cholesky decomposition of the 

intermediate correlation matrix as for the 3rd order power method. As a last step, the 

transformations to nonnormality are carried out on the individual variables.  

 

Range of Final Correlations. We have seen that for the 3rd order polynomial transform the 

range of available final correlations can be smaller than [ ]1, 1−  and that this range depends not 

only on the marginal moments but also the set of coefficients chosen for the univariate 

transformations. Assessment of this aspect for the 5th order power method is decidedly more 

difficult as it takes at least several hours for Mathematica to end its solution search process. We 

also cannot be certain that all solutions have been found. To nevertheless provide an example, I 

will again revert to the sets of coefficients found for the approximation to the 2
1χ  distribution. 

The following subsets of coefficients from Equation (62) are distinctly different (all are non-

monotonic): 

 
[ ]
[ ]
[ ]

Set1 0.3977 0.6211 0.4169 0.0684 0.0064 .00004

Set2 0.6689 0.3194 0.6671 0.0007 0.0006 0.00005

Set3 0.7071 0.0000 0.7071 0.0000 0.0000 0.0000

= − −

= − −

= −

 (68) 

resulting in six unique combinations. The approximate ranges for final correlations are displayed 

in Table 9: 
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Table 9: Range of Final Correlations for 5th Order Power Method Approximation to Bivariate 
2
1χ  Distribution 

 Min Max 
Set1 – Set1 
( 1non monotonic−  & 1non monotonic− )  –.424858 1 

Set1 – Set2 
( 1non monotonic−  & 2non monotonic− )  –.033750 .769071 

Set1 – Set3 
( 1non monotonic−  & 3non monotonic− ) 0 .535341 

Set2 – Set2 
( 2non monotonic−  & 2non monotonic− )  –.002792 1 

Set2 – Set3 
( 2non monotonic−  & 3non monotonic− )  0 .948543 

Set3 – Set3 
( 3non monotonic−  & 3non monotonic− ) 0 1 

 
 

Figure 24 plots the relationship between Zρ  and Yρ  for the first (Set1 – Set1) and the last 

combination of transformation coefficient sets (Set3 – Set3): 

 

 
Figure 24(a) and (b): Relationship Between Intermediate and Final Correlation for 5th Order 

Power Method Example. 
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Surprisingly, the largest range of final correlations available is not for the most “natural” 

transformation via the coefficients from Set3, which is of the form 2Y a bZ= +  and has been 

recommended by Headrick & Kowalchuk (2007)! The largest range of final correlations is 

achieved when both variables are transformed via Set1.  

 We can also compare these values to the ranges of final correlations available with the 3rd 

order polynomial method. Sets of coefficients to approximate a 2
1χ  distribution are: 

 
[ ]Set1 0.5207 0.6146 0.5207 0.0201

Set2 .5 0 .5 0

= −

⎡ ⎤= −⎣ ⎦
 (69) 

Both sets of coefficients are non-monotonic. Resulting ranges for final correlations are: 

 

Table 10: Range of Final Correlations for 3rd Order Power Method Approximation to 
Bivariate 2

1χ  Distribution 
 Min Max 
Set1 – Set1 
( 1non monotonic−  & 1non monotonic− )  –.095792 1 

Set1 – Set2 
( 1non monotonic−  & 2non monotonic− )  0 .736347 

Set2 – Set2 
( 2non monotonic−  & 2non monotonic− ) 0 1 

 
 

At least for this particular example it seems that the 5th order polynomial offers a wider range of 

final correlations and therefore a wider range of bivariate distributions to be simulated – if the 

right set of coefficients is chosen.  

 

Odd-Shaped Distributions under the 5th Order Polynomial Transform. The 5th order 

power method can, just like the 3rd order power method, result in odd-shaped distributions. 
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Figure 25 graphs an odd-shaped 5th order power method nIM distribution. Neither of the 

variables has extreme values for skewness or kurtosis. 

 

 
Figure 25: An Odd-Shaped Distribution under the 5th Order Polynomial Transformation 

 

The g-and-h Distribution 

Polynomial transforms are not the only transformation method for obtaining nonnormal 

random variables. Another technique that allows control over univariate skewness and kurtosis of 

the resulting nonnormal random variable as well as the covariance matrix for the multivariate 

extension is the g-and-h distribution, initially suggested by Tukey (1977). The g-and-h distribution 

has received a fair amount of attention in the literature. Its univariate version or slight variations 

thereof have been described by several authors such as Headrick, Kowalchuk, & Sheng (2008), 
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Hoaglin (1985), Hoaglin & Peters (1979), and Martinez & Iglewicz (1984). Multivariate 

extensions (see section on the multivariate g-and-h distribution below) have been elaborated on 

by Field & Genton (2006) and Kowalchuk & Headrick (2010). The g-and-h distribution has been 

utilized to simulate nonnormal distributions in Monte Carlo research (e.g., Keselman, Lix, & 

Kowalchuk, 1998; Wilcox, 1994; Algina, Keselman, & Penfield, 2006) or to model extreme 

events, e.g. relating to the stock market (e.g., Badrinath & Chatterjee, 1988; Badrinath & 

Chatterjee 1991). See Headrick et al. (2008) for a more comprehensive list of applications.  

The general form of the g-and-h transformation is  

 ( ) 2exp 1
exp

2
gZ hZY
g

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
  (70) 

where Z is a standardized normal random variable. Example plots of g-and-h transformations and 

histograms of the resulting distributions can be found below in Figure 26 and Figure 27.  

Nonnormal distributions can also be created by setting one of the coefficients to zero, 

thus reducing equation (70) to 

 ( )1 1gZY e
g

= −  (71) 

if h is set to zero or 

 
2

exp
2

hZY Z
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (72) 

if g is set equal to zero. Note that if g is to be set equal to zero, Equation (72) has to be used for 

transformations, since 0g =  would lead to an indeterminate term in Equation (70). Distributions 

created with Equation (72) will always be symmetric. Mean, variance, skewness and kurtosis for 

a univariate g-and-h variable are expressed as functions of g and h in the appendix, due to their 
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length. Moments for distributions that use only g or only h, i.e. that use transformations (71) or 

(72), can be found in Hoaglin (1985).  

Finding Coefficients g and h. As for the polynomial transforms, a set of nonlinear 

equations is solved numerically to find the transformation coefficients g and h: Equations (130) 

and (131) are set equal to the desired values for skewness and kurtosis and then solved for g and 

h. Notice that due to the term 1 4h−  in Equation (131), we can only solve for .25h <  using this 

technique. However, it is certainly possible to enter values for h larger than .25 into Equation 

(70) or (72), and values of .25h ≥  have been employed in Monte Carlo studies (e.g. Wilcox, 

1994).  

While some authors (e.g. Field & Genton, 2006; Headrick et al., 2008; Wilcox, 1995) 

seem to suggest that g controls the skewness of Y independently of h, while h alone controls 

kurtosis, both parameters interact to determine 1γ  and 2γ , as can be easily seen from Equations 

(130) and (131). This lack of clarity may stem from the conceptualization of “excess kurtosis” as 

discussed in Hoaglin (1985). Hoaglin treats tail elongation “naturally” resulting from increased 

skewness separately from additional tail heaviness not associated with skewness (see page 486 

and page 504 in Hoaglin, 1985). However, this is not to be confused with the straightforward 

concepts of skewness and kurtosis as ( )3E X  and ( )4 3E X − .  

 

Limitations of the Univariate g–and–h Distribution 

In previous sections, we have encountered a range of issues with the 3rd (and 5th) order 

power method:  

(1) The power methods do not yield unique solutions when solving numerically for the 

transformation coefficients: The 3rd order power method yields 2 distinct solutions, while 
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the exact number of distinct solutions for the 5th order power method is not known. 

Further, not all power method transformations are monotonically increasing.  

(2) The range of skewness and kurtosis combinations available with the power method is 

limited. Limitations for monotonic transforms vs. all transforms of the power method are 

shown in Figure 9 and Figure 23.  

(3) The range of final correlations available between two power method variables 1Y  and 2Y  

depends on the values of marginal skewnesses and kurtoses  as well as the specific sets of 

coefficients chosen for the transformations. This range of available final correlations is 

not always –1 to 1, but can be severely limited.  

We now investigate whether these issues apply to the g-and-h distribution as well. 

  

(1) Multiple Solutions to the Set of Equations for the g-and-h Distribution & 

Monotonicity. When solving Equations (130) and (131) for the coefficients g and h, both 

Mathematica’s FindRoot routine and R’s nleqslv function found a total of two real-valued 

solutions, one of which had comparatively large values for g and h. Both sets of solutions yield 

first four moments as desired when reentered into Equations (128), (129), (130) and (131). 

To provide a few examples, I choose three relatively common skewness-kurtosis 

combinations (see Table 28): 1 0γ =  and 2 1γ = − , 1 1.25γ =  and 2 3.75γ = , and last but not least, 

1 0γ =  and 2 25γ = . The resulting sets of coefficients are: 
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Table 11: Two Sets of g-and-h Coefficients for Each Skewness-Kurtosis Combination 

Skewness and Kurtosis Transformation A Transformation B 
1) 1 0γ = , 2 1γ = −  0g =  0.1610h = − 0g =  5.1774h = −  
2) 1 1.25γ = , 2 3.75γ = 0.3226g =  0.0377h =  3.5915g = 67.9942h = −  
3) 1 0γ = , 2 25γ =  0g =  0.1930h =  0g =  1392.03h = −  
 
 

You will notice that the sets of coefficients under the heading “Transformation A” are relatively 

close to zero, while the other set of coefficients is comparatively large in absolute value. What do 

these transformations look like when plotted as a function that relates standard normal scores to 

the nonnormal Y scores? In Figure 26, the first column of transformations (A) is plotted in black, 

and the transformations from the second column (B) are plotted in red. Transformations in the 

right column of Figure 26 display fairly extreme changes in direction close to a value of 0 on the 

Z scale, while being essentially horizontal everywhere else. Transformations in the left column of 

Figure 26 are considerably smoother compared to their counterparts in the right hand column. 

The transformation in Figure 26(d) relates the values of 4 4Z− ≤ ≤  to values of Y between 

approximately –.05 and .1. However, note that the range of values on the Y variable is of only 

secondary importance, since this can always be adjusted by rescaling. The resulting univariate 

distributions are plotted in Figure 27. 
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Figure 26(a) through (f): g-and-h Transformations corresponding to Table 11. Transformation 1 
in black, transformation 2 in red.  
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Figure 27: Histograms related to transformations in Figure 26, based on 5,000,000 replications.  
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Table 12: Empirical Skewnesses and Kurtoses for Distributions in Figure 27 

 Nominal 1̂γ  2γ̂  
Variable 1A 0.000367 –1.000040 
Variable 1B 1 0γ = , 2 1γ = −  

0.000326 –1.000222 
Variable 2A 1.244497 3.682793 
Variable 2B 1 1.25γ = , 2 3.75γ =  

1.250411 3.755162 
Variable 3A –0.040349 18.795985 
Variable 3B 1 0γ = , 2 25γ =  

–0.011476 24.955543 
 
 

Overall, the large sample estimates for 1̂γ  and 2γ̂  conform quite well with their nominal 

counterparts, with the exception of kurtosis for Transformation 3A. It also seems that for the vast 

majority of skewness-kurtosis combinations, the transformation with the larger coefficients will 

lead to quite odd-shaped distributions, hence making the choice between coefficient sets 

straightforward.  

 

Monotonic and Non-monotonic g-and-h Transformations. In many cases, properties of 

simulated power method distributions such as shape, distributional fit, and range of final 

correlations are related to the monotonicity of the transformation function. Hence, it seems 

necessary to examine monotonicity and its consequences for the g-and-h transform as well. Only 

one of the six transformations in Figure 26 is monotonic. An examination of the derivatives for 

Equation (70),  

(71), and (72) can provide a first overview of when we can expect a monotonic g-and-h 

transformation to be available. To assess whether a g-and-h transformation is monotonic, 

consider the three possible cases (1) 0, 0g h≠ = , (2) 0, 0g h= ≠ , and (3) 0, 0g h≠ ≠ , 

corresponding to Equations (71), (72), and (70).  

For case (1), the derivative is  
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 ( )' gZf Z e=  (73) 

This is always positive, hence, the transformation from Equation (71) with 0, 0g h≠ =  is always 

strictly increasing. For case (2), the derivative is  

 ( ) ( )2 2' 1hZf Z e hZ= +  (74) 

The term 
2hZe  will always be greater than zero, therefore potential roots of Equation (74) must 

be roots of 21 hZ+ . For 0Z = , no root exists. For 0Z ≠ , we must require 0h ≥  for the 

transformation to be monotonic; if 0h < , 1/Z h= −  will be a root (see Hoaglin, 1979). 

Finally, case (3) is decidedly trickier. The derivative of the transformation in Equation 

(70) is  

 ( )
2' /2hZ gZ gZhZ hZf Z e e e

g g
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (75) 

We can certainly find values for g and h for which this derivative will always be strictly 

increasing, as, e.g., in transformation 2A: With .322587g =  and .0377476h = , we have 

 ( ) ( )( )2' .019 .323 .323.117 1Z Z Zf Z e e Z e≈ − × −  (76) 

When 0Z = , this reduces to ( )' 1f Z = . When 0Z < , .3230 1Ze< < , therefore 

 

( ) ( )( )
( )( )

2

2

2

' .019 .323 .323

.019 .323

.019 .323

.117 1

.117 1 1

0

Z Z Z

Z Z

Z Z

f Z e e Z e

e e Z

e e

≈ − × −

≥ + × − +

=
>

 (77) 

Finally, when 0Z > , .3231 Ze< , and  
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( ) ( )( )
( )( )

2

2

2

' .019 .323 .323

.019 .323

.019 .323

.117 1

.117 1 1

0

Z Z Z

Z Z

Z Z

f Z e e Z e

e e Z

e e

≈ − × −

≥ + × − +

=
>

 (78) 

Equivalently, it is easy to show that choices for 0g ≠  and 0h ≠  exist for which the 

transformation is non-monotonic. Let 2.6604g = −  and .2h = − , then we have ( )' 0f Z =  at 

1Z =  and ( )'.5 .231f ≈ , i.e. positive, and ( )'1.5 0.074f ≈ − , i.e. negative. No further 

systematical evidence or analysis regarding the monotonicity of the g-and-h transform exists.  

Headrick et al. (2008) (and based thereupon Kowalchuk & Headrick, 2010) suggest that 

transformations in Equation (70) will always be monotonic when 0g ≠  and 0h > , but do not 

provide a proof. In fact, Headrick et. al. (2008) and Kowalchuk & Headrick (2010) favor and 

almost exclusively focus on the subset of the g-and-h distributions with 0g ≠  and 0h >  and 

derive an analytical form of the pdf and cdf for this subset in a fashion quite similar to the one 

described for the power method in section on the “valid pdf/cdf” above. Kowalchuk & Headrick 

only present examples with positive kurtosis, and it is possible that when 0h > , only g-and-h 

variables with positive kurtosis can be created. However, they do not provide a compelling 

explanation of the need for a monotonically increasing transformation aside from procuring a 

way to derive a pdf and cdf. Hoaglin (1985) mentions that monotonicity is not obtained when 

0h <  for the transformation in Equation (72) but makes no mention regarding monotonicity for 

the general g-and-h transformation from Equation (70). 

 

(2) Range of Available Skewness-Kurtosis Combinations. For both power methods (3rd 

and 5th order), the portion of skewness-kurtosis combinations that can be simulated is limited, 
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especially if a monotonic transformation is desired (see Figure 23). We will now investigate 

whether the g-and-h distribution suffers from similar limitations. Assessing the range of skewness 

and kurtosis available to univariate g-and-h distributions turned out to be a somewhat challenging 

task. As with the 3rd order power method, this range was assessed by attempting to numerically 

solve Equations (130) and (131) for g and h for a variety of skewness-kurtosis combinations. If 

the root finding procedure obtained a solution, that skewness-kurtosis combination was recorded 

as available, if no solution was found, it was recorded as unavailable.  

However, whether Equations (130) and (131) could be solved for g and h frequently 

depended on specifics of numerical root finding. The availability of solutions was cross-validated 

by using both R and Mathematica, which occasionally disagreed on whether the equations could 

be solved for a given skewness-kurtosis combination. Furthermore, within each program, 

solvability also depended on the various settings of the root finding algorithm (FindRoot for 

Mathematica and nleqslv for R). Figure 28 provides insight into one of the problems that 

were encountered. Plotted are (a) Total range of the skewness-kurtosis plane (black line), (b) 

Portion of that plane that can be solved for by the 3rd order power method with monotonic and all 

transformations (green and red lines), (c) Portion of the skewness-kurtosis plane that could be 

solved for the g-and-h distribution in Mathematica (blue line), and (d) Portion of this plane that 

could be solved for the g-and-h distribution in R (black dots). Across the three panels, number of 

iterations for the numerical root finding nleqslv in R was varied from 100 to 500: 
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Figure 28 (a) – (c): Finding Solutions for the g-and-h Distribution Depends on Number of 
Iterations 

 

As the maximum number of iterations increases from 100 to 300, R finds more solutions 

to Equations (130) and (131). However, increasing the number of iterations even more, R’s root 

finding algorithm nleqslv encounters a singular Jacobian more often, and the number of 

solutions found decreases again. This could possibly be remedied by varying the starting values 

for the numerical iteration. It should further be noted that the maximum number of iterations 

(with 150 as the default value) is only one manipulable parameter of the nleqslv routine for 

numerical root finding. Others include, but are not limited to,  

(a) Step length of x values (for f(x)). For example, if xtol=1e-6, the algorithm is 

stopped if the step for the next iteration is smaller than 1e-6 for all x-values;  

(b) Function value tolerance. Convergence is declared when the largest absolute 

function value is smaller than ftol, e.g., 1e-6;  

(c) Backtracking tolerance;  

(d) An option to obtain detailed report of progress of iteration, which seems to be 

fairly comprehensive and informative;  

(e) The initial trust region size.  
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The range of skewness-kurtosis combinations for which solutions for g and h were found 

with Mathemtica (as shown by the blue line in Figure 28) differed slightly from the range found 

with R. The indent in the upper right corner in the blue line is most probably an artifact occurring 

due to the settings in Mathematica’s FindRoot routine. 

During my attempts to write my own R routine that would solve for g and h, I was 

occasionally able to increase the number of solutions found by manipulating the step length for x 

values (xtol), the function value tolerance (ftol), and the maximum number of iterations 

(maxit), as well as the starting values for the iteration. However, this is a time consuming 

process that requires good general knowledge of numerical optimization methods and how they 

relate to the function on which the root finding is performed. These technical requirements 

probably exceed the level of the many users of nonnormal random number generation. Because 

of the complicated interaction of settings in the root finding procedure with the desired 

skewness-kurtosis combination, very careful programming would be necessary to create a 

routine that finds g and h whenever they exist.  

To get an overview of the total range of the skewness-kurtosis plane that can be simulated 

by the g-and-h distribution, I assume that if a solution for some specific combination of 1γ  and 

2γ  was found in any one of the different root finding settings, this solution was only not found 

during other searches because of characteristics of the root finding process. Figure 29 then plots 

the range of skewness-kurtosis combinations available to the g-and-h distribution (stars are 

combinations for which R found a solution, the blue line spans the range of combinations for 

which Mathematica found a solution): Almost the entire plane spanned by 2 1 2γ γ≥ −  (see the 

black line) is available. Figure 29 also contains the range for the V&M method (red and green 

lines). Inspection of Figure 28 and Figure 29 shows that the g-and-h distribution can be used to 
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simulate practically any skewness-kurtosis combination possible. It provides a much wider range 

of distributions that can be simulated than the power method, especially distributions with large 

values for 2γ . The g-and-h distribution, compared to the V&M method, also offers simulation of 

a slightly extended range of platykurtic distributions, which can be useful for simulating floor 

and ceiling effects. To verify the validity of some of the solutions found, I both reentered the 

resulting g and h parameters into Equations (130) and (131) and used them to simulate sample 

distributions with large N, calculating the sample skewness and kurtosis for those, always with 

reassuring results.  

It is unclear what the range of available skewness-kurtosis combinations for 

monotonically increasing g-and-h transformations is. If Headrick et al. (2008) are correct, and 

transformations for g-and-h distributions are only increasing when 0g ≠  and 0h > , it may be 

possible that no g-and-h distribution with 2 0γ <  can be simulated via a monotonic 

transformation.  
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Figure 29: Range of Univariate Skewness and Kurtosis available for the g-and-h Distribution, 

Compared with 3rd Order Power Method 
 

The Multivariate g-and-h Distribution 

 There have been two extensions of the univariate g-and-h distributions to the multivariate 

case, one by Field & Genton (2006), which is based on quantile fitting as described in great 

detail in Hoaglin (1985, see sections below), and one by Kowalchuk & Headrick (2010), which 

is very similar in procedure to the multivariate power method extensions. I will focus on the 

latter due to its comparability with the power methods. The extension is carried out as follows: 

First, the univariate coefficients ig  and ih  for the transformation to nonnormal marginal 

distributions are determined as described in the previous section. The second step then involves 
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solving for the entries of an intermediate correlation (matrix) individually, which will depend on 

the transformation coefficients for their respective variables and the desired final correlation. Just 

as for the power method, each final correlation Yρ  between two g-and-h variables 1Y  and 2Y  can 

be expressed as a function of the transformation coefficients 1g , 1h , 2g , and 2h  and the 

intermediate correlation Zρ  between the two standard normal random variables: 
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−

= ∫ ∫ (79) 

Notice that Equation (79) is a direct adaptation of Equation (33). Once all entries of the 

intermediate correlation matrix have been found, a set of independent standard normal random 

scores is multiplied by the Cholesky factor of the intermediate correlation matrix, just as for the 

power method. Finally, the now correlated standard normal random scores are individually 

transformed with Equation (70), using the coefficients g and h found in the first step.  

 

Special Issues of the Multivariate g-and-h Distribution 

In addition to the issues discussed for the univariate case (non-uniqueness of solutions 

and especially the dependency on numerical root finding performance), the multivariate 

extension of the g-and-h distribution has an additional difficulty to master: The bivariate integral 

in Equation (79) cannot be solved analytically for Yρ . In practice, instead of having a (relatively) 

simple function that relates Yρ  to Zρ , such as Equation (35) for the 3rd order power method, one 

must carry out a numerical integration of Equation (79), choosing integration limits for 1Z  and 

2Z  that are large enough to yield results that are practically identical to what integration limits of 
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infinity would have produced. Kowalchuk & Headrick (2010) use [ ]1 2 8, 8Z Z= = − . To this 

date, with the exception of one partial example of Mathematica code in Kowalchuk & Headrick 

(2010), no software implementation of the multivariate g-and-h distribution has been published 

(and we might soon see why). Therefore, I wrote my own R and Mathematica code to simulate 

multivariate g-and-h distributions. I encountered a number of difficulties. In R, these were: 

• The most recent routine for multivariate numerical integration I could find was 

the adapt package, which was updated for Windows last in 2007 and is not available 

in the standard repositories anymore. A quick internet search for R package 

adapt_1.0-4.zip will find the necessary zip file which can then be installed locally 

(tar.gz files for LINUX distributions are available as well).  

• The success of the numerical integral also depended on several adjustable 

parameters such as (a) eps – the “desired accuracy for the relative error” and (b) 

minpts – the “minimum number of function evaluations.” If the minimum number of 

function evaluations was too small, e.g. 1,000, the results of the numerical integration 

often showed erratic behavior, such as discontinuities. Collaboration with 

mathematicians specializing in numerical optimization could possibly lead to a stable, 

yet efficient routine for finding Yρ . 

• Once are successfully calculating Yρ  from the transformation coefficients and 

Zρ , we still need to reverse the process and find the intermediate correlation Zρ  

based on the transformation coefficients and a desired final correlation Yρ . I wrote a 

simple bisection algorithm to accomplish this task, but finding Yρ  often took 

considerable amounts of time. 
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Issues in Mathematica: To double-check results obtained in R, I also implemented the 

multivariate g-and-h distribution in Mathematica. Despite occasional error messages regarding 

slow convergence, Mathematica generally executed the numerical integration in a reliable 

fashion. As in R, I employed my own bisection algorithm to find the intermediate correlation Zρ  

needed for a desired Yρ . Generally, finding Zρ  in Mathematica could be achieved in less 

computation time than in R, a circumstance that might be remediable with more careful 

programming. To summarize, we can say that the numerical optimization routines required for 

implementation of the g-and-h distribution are more challenging than routines needed for the 

implementation of the power methods. This may be a reason for the lack of a published program 

that will simulate multivariate g-and-h distributions with desired marginal skewnesses and 

kurtoses and correlation matrix.  

 

Range of Final Correlations for the g-and-h Distribution. Another issue we encountered 

when investigating the multivariate extension of the power method was an occasional restriction 

of the range of final correlations available. Depending on marginal skewnesses and kurtoses as 

well as the choice of transformation coefficients, the range of available final correlations could 

be perfect, as, e.g., in the first and third panel in Figure 15, or severely limited, as in the second 

panel of Figure 15. To be able to compare relationships between intermediate and final 

correlations for the g-and-h distribution with the same relationships for the 3rd and 5th order 

power method, I chose a few skewness-kurtosis combinations which are displayed in Table 13 

below. It includes 1) One bivariate IM distribution with 1 0γ =  and 2 25γ =  for both variables, a 

distribution that has been examined in great detail for the 3rd order polynomial, 2) One bivariate 

IM distribution with 1 8γ =  and 2 12γ =  for both variables, a skewness-kurtosis combination 
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that has been the focus of many of Headrick et al’s investigations of the 5th order polynomial 

distribution, 3) One bivariate IM distribution with 1 1.25γ = , 2 3.75γ =  for both variables, a 

setting that has been quite popular with Monte Carlo studies employing the simulation of 

nonnormal distributions (see Table 28 below), and 4) One bivariate nIM distribution with a 

different set of marginal skewness and kurtosis for each variable, as examined for the 3rd order 

polynomial. In previous sections, each g-and-h distribution has two distinctly different sets of 

coefficients, leading to transformation A and B, listed in separate columns of Table 13: 

 

Table 13: Sets of g-and-h Coefficients 

Skewness and 
Kurtosis Values 

Transformation A Transformation B 

1) 11 12 0γ γ= = ,  

21 22 25γ γ= =  
0g = , 0.1930h =  0g = , 1392.03h = −  

2) 11 12 8γ γ= = , 

21 22 12γ γ= =  

1.1511g = , 0.1910h = −  11.4037g = , 263.784h = −  

3) 11 12 1.25γ γ= = , 

21 22 3.75γ γ= =  
0.3226g = , 0.0377h =  3.59147g = , 67.9942h = −  

4i) 11 1γ = , 21 20γ = ,  
4ii) 12 2γ = , 22 40γ =  

i) 0.1017g = , 0.1760h =  
ii) 0.1935g = , 0.1757h =  

i) 4.2963g = , 909.117h = −  
ii) 11.4292g = , 3061.36h = −  

 
 

For the first three bivariate distributions, there are three ways to uniquely combine distinctly 

different sets of transformation coefficients, while for the last distribution there are four ways to 

do so. Combined, there are 13 unique ranges of available final correlations for these four 

distributions, listed in Table 14. These ranges of available correlations and their corresponding 

graphs were created by executing the numerical integration for Equation (79) for individual 

values of Zρ , ranging from –.999 to .999. 
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Table 14: Range of Final Correlations 

Skew & Kurt Transformation Max Min 
A & A –.9882 .9882 
A & B –.0377 .0377 11 12 0γ γ= =  

21 22 25γ γ= =  B & B –.2361 .2361 
A & A –.4346 .9605 
A & B –.0630 .0024 11 12 8γ γ= =  

21 22 12γ γ= =  B & B –.5469 .7311 
A & A –.8642 .9679 
A & B –.0831 .0484 11 12 1.25γ γ= =  

21 22 3.75γ γ= =  B & B –.7838 .8555 
A & A –.9280 .9496 
A & B –.0040 .0020 
B & A –.0089 .0061 

11 1γ = , 21 20γ =  

12 2γ = , 22 40γ =  
B & B –.2019 .2116 

 
 

Available final correlations for the first skewness-kurtosis combination ( 11 12 0γ γ= =  and 

21 22 25γ γ= = ) and all transformation combinations are plotted in Figure 30: 
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Figure 30 (a) – (c): Range of Final Correlations for Different Sets of g-and-h Transformations 
 

Only bivariate distributions created with Transformation A for both variables offer a large, 

almost perfect range of final correlations. From Figure 30(b) and (c), we can see that 

Transformation B limits the range of available final correlations (the range in Figure 30(c) could 

be slightly extended as the range of the intermediate correlation was not fully exploited, but will 

never reach as far as the range for Transformation A in Figure 30(a)). For bivariate distributions 

created with at least one set of coefficients from the Transformation B column, some slight 
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numerical instability could be observed. Together with the odd shape already observed for 

univariate distributions, it is safe to disregard any distribution created with a Transformation B. 

however, notice that the nonlinearity in even Figure 30(a), which onvolves only Transformation 

A, could be problematic when trying to numerically solve for Zρ . Figure 31 shows the largest 

possible range of final correlations for g-and-h distributions with  11 12 8γ γ= =  and 

21 22 12γ γ= =  and 11 1γ = , 12 2γ = , 21 20γ = , and 22 40γ = , both created with their respective 

Transformation A. Compare these to Figure 17 for the Vale & Maurelli method and Figure 24 for 

the 5th order polynomial method.  

 

Figure 31: Ranges of Final Correlations Available for Various Bivariate g-and-h Distributions 
 

How do the ranges of final correlations available for the g-and-h distribution compare to 

the ranges for the V&M method?  
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Table 15: Range of Final Correlations – V&M and g-and-h Comparison 

V&M  Best Worst g-and-h 

11 0γ = , 21 25γ =  

12 0γ = , 22 25γ =  
[ ]1, 1−  [ ].1796, .1796− [ ].9882, .9882−  

11 8γ = , 21 12γ =  

12 8γ = , 22 12γ =  
[ ].0958, 1−  [ ]0, .7364  [ ].4346, .9605−  

11 1γ = , 21 20γ =  

12 2γ = , 22 40γ =  
[ ].9481 .9813− [ ].1251, .1432−  [ ].9280 .9496−  

 
 

The g-and-h distribution seems to sometimes span a range of final correlations somewhat below 

the range of the 3rd order power method, but it also offers a significantly wider range for other 

skewness-kurtosis combinations, such as for 1 8γ = , 2 12γ = .  

 

The g-and-h Transformation and Odd–shaped Distributions. We have seen that 

distributions created with the 3rd or 5th order power method can occasionally be severely odd–

shaped (see Figure 18(c) or Figure 25). Does the g-and-h distribution produce odd–shaped 

distributions as well? Among others, we have plotted bivariate distributions for the 3rd order 

power method with the following parameter choices:  

a) 11 12 0γ γ= = , 21 22 25γ γ= = , .3ρ =  

b) 11 2.5γ = , 12 1.4γ = , 21 11.5γ = , 22 5.6γ = , .46ρ =  

Transformation coefficients for the corresponding g-and-h distributions with the same parameters 

can be found in Table 13. Distributions created with Transformation A are plotted in the left 

column, distributions created with Transformation B are plotted in the right column of Figure 32: 



 93

Distributions Created with  
Transformation A 

Distributions Created with  
Transformation B 

Figure 32(a) through (d): Various g-and-h distributions 
 

Distributions created from Transformation B are unrepresentative of bivariate distributions 

typically observed in practice. At the same time, the shapes of the g-and-h distributions created 

from Transformation A seem relatively reasonable. Perhaps even more importantly, they are 

relatively similar to the well–behaved V&M distributions from Figure 12(b) and Figure 18(d). 
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For any following analyses, distributions created from Transformation B will be dropped from 

consideration, and only distributions created from Transformation A will be discussed.  

But even if we only use distributions created from Transformation A, care is needed. 

Consider a bivariate distribution with 11 0γ = , 21 0.5γ = −  and 12 0γ = , 22 1.5γ = − .  The two sets 

of coefficients are: 1 0g = , 1 0.054383h = − , and 2 0g = , 2 0.595744h = − . Further, we want 

.85Yρ = , e.g. for some robustness tests on reliability coefficients. The resulting g-and-h 

distribution will look like this: 

 

 
Figure 33: Odd-shaped g-and-h Distribution 
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Summary of the g-and-h Distribution 

 The g-and-h distribution was developed by Tukey around 1977 to provide a relatively 

simple transform that would allow simulation of a wide range of distributions (e.g., covering a 

large part of the skewness-kurtosis plane). While initially the main concern for the application of 

the g-and-h distribution was to fit quantiles of nonnormal distributions, moment fitting is just as 

feasible. For this study, we are focusing on moment fitting, as this has been a very popular 

technique for creating nonnormal data with any desired skewness-kurtosis combination, using 

the third and fourth moment of a nonnormal distribution as the only characteristics to control.  

The g-and-h distribution has two solutions to the set of equations that relate the 

transformation coefficients g and h to skewness and kurtosis. However, one of these coefficient 

sets (labeled Transformation B in the sections above) will usually lead to transformations that 

reproduce the third and fourth moment as requested, but with an overall rather odd-shaped 

distribution and small range of available final correlations. Hence, it is safe to disregard 

coefficients for Transformation B, leaving only one set of coefficients for Transformation A. It 

seems that the range of correlations that can be simulated with the g-and-h distribution for a 

given choice of marginal skewnesses and kurtoses tends to be larger than what is available for 

the 3rd order polynomial method. Even multivariate g-and-h distributions from Transformation A 

can be odd-shaped.  

Despite some advantages over the power method, numerical optimization and integration 

for the g-and-h uni- and multivariate distributions is decidedly more challenging than what is 

required for the 3rd order power method. For the applied psychometrician the sensitivity of the g-

and-h distribution’s results to settings of numerical procedures might very well present an 
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obstacle. As of today, no problem-free software solution to simulate g-and-h distributions is 

available. 

 

Empirical Evaluation of Simulation Methods 

When we draw a sample from a nonnormal distribution, the sample values for skewness 

and kurtosis, 1̂γ  and 2γ̂ , will not have their nominal value but be subjected to sampling 

variability. Little is known about the sampling distributions of 1̂γ  and 2γ̂  and whether these 

sampling distributions will be the same when different simulation methods are employed. For 

example, if we repeatedly draw samples of size 20N =  from a distribution with 1 0γ =  and 

2 25γ =  using the 3rd order polynomial transform, what will the average sample skewness and 

kurtosis, 1̂γ  and 2γ̂ , be? How much will they vary around their mean? If we draw a large number 

of samples, we can use 1̂γ  and 2γ̂  to estimate the expected value of 1̂γ  and 2γ̂  at a given sample 

size, while ( )1̂SD γ  and ( )2ˆSD γ  will estimate the standard error of 1̂γ  and 2γ̂ .  

 

Expected Value and Sampling Variability of 1̂γ , 2γ̂ , and ρ̂  for the 3rd Order Polynomial 
Transform 

Attempts to evaluate the expected values of 1̂γ  and 2γ̂  at given sample sizes for 

distributions created by the power method have been made. For example, Sharma, Durvasula & 

Dillon (1989) write that “…kurtosis tended, on average, to be underestimated in conditions 

characterized by smaller sample sizes.” However, the authors provide no further explanations, 

demonstrations, or simulation results.  
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Harwell & Serlin (1989) report sample skewness and kurtosis (table 3, page 360) as well 

as average correlations (table 2, page 359) for samples with 20N = , 40N = , and 100N = , 

based on 4,000 replications each, from distributions with  

I. 1 20, 0γ γ= =  (normal),  

II. 1 20, 1.12γ γ= = −  (symmetric and platykurtic),  

III. 1 20, 3γ γ= =  (symmetric and leptokurtic),  

IV. 1 20, 25γ γ= =  (symmetric and extremely leptokurtic), and  

V. 1 22, 6γ γ= =  (heavily skewed). 

Results in their table 3 seem to imply that for all four nonnormal distributions, 1̂γ  and 2γ̂ and 

based on all described sample sizes, showed very good congruence with the nominal values of 1γ  

and 2γ , respectively. For example, for distribution IV with 1 20, 25γ γ= = , they report average 

sample skewness and kurtosis 1̂ .141γ = −  and 2ˆ 22.80γ =  for 20N = . This seems to be quite 

satisfactory performance, and for all other distributions and sample sizes, 1̂γ  and 2γ̂  are even 

closer to their nominal values.  

For average correlations, Harwell & Serlin observe a slight failure to reach nominal levels 

for both .3Yρ =  and .7Yρ = . For example, for distribution IV and 100N = , they report .62r =  

when .7Yρ =  is desired. Generally, average sample correlations seem to lie somewhat below 

their nominal level for all nonnormal distributions. Harwell & Serlin further describe (page 359) 

that they conducted additional simulations with larger sample sizes (up to 400N = ) which 

showed increasing correspondence between sample correlation and nominal value. 
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However, there are a few problems with Harwell & Serlin’s assessments. Several 

publications (see Johnson & Lowe, 1979; Dalen, 1987; Kirby, 1974) contain derivations of 

maximum possible sample skewness and kurtosis for a given sample size. Kirby (1974) provides 

the most stringent upper boundary for sample skewness for any sample of size N: 

 1
2ˆ
1

N
N

γ −
≤

−
 (80) 

While Johnson & Lowe (1979) find an upper bound to sample kurtosis of 3N − , Dalen (1987) 

improves on this by deriving 
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Therefore, we have the following boundaries for sample skewnesses and kurtoses for sample 

sizes employed in Harwell & Serlin’s study: 

 

    Table 16: Boundaries for Sample Skewness & Kurtosis 

 1̂γ  2γ̂  
20N =  –4.1295 4.1295 –2.0000 15.0526 
40N =  –6.0849 6.0849 –2.0000 35.0256 
100N =  –9.8494 9.8494 –2.0000 95.0101 

 
 

This clearly implies that it would be impossible for Harwell & Serlin to observe an individual 

sample kurtosis of 2ˆ 22.80γ = , let alone an average sample kurtosis of 2ˆ 22.80γ =  for samples of 

size 20N = . Their table 3 must contain simulation results for something other than 1̂γ  and 2γ̂  

for 20N = . One possibility is that they – perhaps accidentally – treated their simulated data as 

one large sample of 80,000 data points, calculating 1̂γ  and 2γ̂  for this one large sample. In that 
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case, Harwell & Serlin’s table 3 would not show 1̂γ  and 2γ̂ based on 4,000 samples of sizes 

20N = , 40N = , and 100N = , but 1̂γ  and 2γ̂  for one large sample with 80,000N = , 

160,000N = , and 400,000N = , respectively. Following this assumption, I was able to 

reproduce their table 3, and results from my simulations are displayed in Table 17. Remembering 

that per skewness-kurtosis combination, there are two distinctly different sets of transformation 

coefficients, I report results obtained with both sets of coefficients; within each cell, results from 

the monotonic transformation (where available) are reported first and results from the non-

monotonic transformation second, in italics. When both transformations are non-monotonic, the 

one with coefficients closer to [0 1 0 0]  are reported first. Harwell & Serlin’s results are 

included on the last line of each row in red. 

 

Table 17: Empirical Skewnesses and Kurtoses  

1 20, 1.12γ γ= = −  1 20, 3γ γ= =  1 20, 25γ γ= =  1 22, 6γ γ= =  
N 

1̂γ  2γ̂  1̂γ  2γ̂  1̂γ  2γ̂  1̂γ  2γ̂  

80,000 
–0.001 
–0.006 

0.001 

–1.126 
–1.218 

–1.16 

0.041 
0.015

–0.007

3.032 
3.651
3.06

0.072 
0.002

–0.141

22.321 
13.696

22.80

2.017 
2.004 

2.02 

6.099 
6.060
6.20

160,000 
0.001 
0.005 

–0.006 

–1.128 
–1.132 

–1.15 

0.021 
–0.092
–0.008

2.954 
2.905
2.89

–0.115 
–0.156

0.009

23.721 
31.482

27.24

2.005 
1.979 

2.00 

6.041 
5.561
6.10

400,000 
–0.001 

0.003 
0.002 

–1.104 
–1.148 

–1.16 

–0.032 
–0.030
–0.006

2.982 
4.299
2.98

–0.076 
–0.125
–0.002

24.320 
22.391

24.48

1.979 
1.999 

2.00 

5.796 
6.044
5.99

Average 
0.000 
0.001 

–0.001 

–1.119 
–1.166 

–1.16 

0.010 
–0.036
–0.007

2.989 
3.618
2.98

–0.040 
–0.093
–0.018

23.454 
22.523

24.84

2.000 
1.994 

2.01 

5.979 
5.905
6.10
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Sample skewness and kurtosis based on 80,000N =  or more show good agreement with Harwell 

& Serlin’s results in table 3 and are not restricted by Equations (80) or (81).  

 I also attempted to replicate their results on average correlations by simulating samples of 

sizes 20, 40, and 100 and calculating average sample correlations 20r , 40r , and 100r . Table 18 

contains results based on 4,000 replications, as in Harwell & Serlin (1989; their results are 

included in red for comparison) as well as based on 100,000 replications, a figure more easily 

obtained with the increased computing power available today. As in Table 17, results for both 

distinctly different transformations are presented, with the results for the monotonic 

transformation first, if available.  

 

Table 18: Sample Skewnesses and Kurtoses 

12 
Popula- 
tion 
Value 

Normal 1

2

0,
1.12

γ
γ
=
= −

 1

2

0,
3

γ
γ
=
=

 1

2

0,
25

γ
γ
=
=

 1

2

2,
6

γ
γ
=
=

 

.3ρ =  .296 / .29 .295 / .295 / .26 .296 / .302 / .29 .324 / .327 / .25 .293 / .288 / .26 
20 .7ρ =  .689 / .69 .691 / .692 / .66 .694 / .706 / .68 .708 / .706 / .63 .692 / .676 / .65 

.3ρ =  .294 / .30 .300 / .298 / .27 .301 / .309 / .29 .318 / .253 / .24 .305 / .294 / .26 
40 .7ρ =  .695 / .70 .698 / .700 / .66 .698 / .705 / .69 .711 / .708 / .63 .697 / .691 / .66 

.3ρ =  .301 / .30 .299 / .299 / .27 .299 / .303 / .29 .311 / .313 / .24 .302 / .298 / .26 
100 .7ρ =  .699 / .70 .698 / .699 / .66 .698 / .703 / .69 .704 / .705 / .62 .700 / .698 / .66 
Number of replications: 4,000; values obtained by Harwell & Serlin in red 
 
 

N 
Popula- 
tion 
Value 

Normal 1

2

0,
1.12

γ
γ
=
= −

 1

2

0,
3

γ
γ
=
=

 1

2

0,
25

γ
γ
=
=

 1

2

2,
6

γ
γ
=
=

 

.3ρ =  .293 .295 / .297 .296 / .310 .324 / .333 .298 / .289 
20 .7ρ =  .690 .693 / .695 .693 / .704 .714 / .709 .691 / .679 

.3ρ =  .297 .299 / .299 .299 / .309 .317 / .324 .301 / .296 
40 .7ρ =  .695 .696 / .697 .698 / .704 .709 / .706 .696 / .690 

.3ρ =  .299 .299 / .300 .300 / .306 .309 / .314 .300 / .299 
100 .7ρ =  .698 .699 / .699 .699 / .703 .705 / .703 .699 / .697 
Number of replications: 100,000 
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Neither for monotonic nor non-monotonic transformations, for 4,000 or 100,000 replications, 

was I able to observe the deviations from nominal levels of the magnitude reported in Harwell & 

Serlin (1989). Only for distribution V, with 1 2γ =  and 2 6γ =  does r  fall slightly below its 

nominal value. 

 

Expected Value and Sampling Variability of 1̂γ , 2γ̂ , and ρ̂  for the g–and–h Distribution 

 Estimates of ( )1̂E γ  and ( )2ˆE γ  for samples of size 10N = , 30N = , 50N = , and 

100N =  for the g-and-h distribution are presented by Headrick (2002, table 3, page 700) and 

Kowalchuk & Headrick (2010, table 6, page 70). Kowalchuk & Headrick calculate 1̂γ  and 2γ̂ , 

based on 50,000 replications, for the following distributions: 

I. 1 3γ = , 2 20γ =   
II. 1 1.5γ = , 2 10γ =  
III. 1 .75γ = , 2 5γ =  
IV. 1 .25γ = , 2 1γ =  

They do not report sampling variability of 1̂γ  and 2γ̂ . According to their table 6, 1̂γ  and 2γ̂  fall 

fairly close to their nominal values, the largest deviation being observed for 2ˆ 17.816γ = , when 

2 20γ = (distribution I). However, remembering the derivations presented in Equation (80) and 

(81), we can construct a table similar to Table 16 for the sample sizes selected in Kowalchuk & 

Headrick’s study: 
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    Table 19: Boundaries for Sample Skewness and Kurtosis 

 1̂γ  2γ̂  
10N =  –2.6667 2.6667 –2.0000 5.1111 
30N =  –5.1995 5.1995 –2.0000 25.0345 
50N =  –6.8571 6.8571 –2.0000 45.0204 
100N =  –9.8494 9.8494 –2.0000 95.0101 

 
 

For a sample size of 10N = , they cannot have observed 1̂ 2.958γ =  and 2ˆ 17.816γ =  as reported 

in table 6 for distribution I. It may be that Kowalchuk & Headrick’s table 6 is the result of 

something similar to what seems to have happened in Harwell & Serlin (1989): They may have 

combined all simulated data points and calculated 1̂γ  and 2γ̂  for one large sample instead of 

calculating 1̂γ  and 2γ̂  by averaging sample skewnesses and kurtoses across 50,000 samples. 

Headrick’s (2002) Table 3 also suffers from an inconsistency between a supposedly observed 

average sample kurtosis of 2ˆ 5.973γ =  for a sample size of 10N =  and a maximum possible 

sample kurtosis of 5.1111 at such sample size. 

 

Simulation of Expected Value and Variability of Sample Skewness and Kurtosis 

The smaller the sample, the narrower are the bounds on the possible values for 1̂γ  and 2γ̂ . 

As sample size increases, skewness and kurtosis have a larger range to vary within, which is due 

to the fact that more scores are available, and therefore, individual scores can stand out further 

from the rest of the scores, thereby creating extreme skewness or kurtosis.  

In light of the previous section, it seems very likely that estimates for ( )1̂E γ  and ( )2ˆE γ  

for small to moderate samples simulated with the 3rd order power method or the g-and-h 

distribution have not been reported correctly in the literature up to this point. Therefore, I present 
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new simulation results for eight bivariate IM distributions with popular skewness-kurtosis 

combinations: 

I. 1 0γ = , 2 25γ =  (in Harwell & Serlin) 
II. 1 0γ = , 2 3γ =  (in Harwell & Serlin) 
III. 1 1γ = , 2 1γ =  
IV. 1 1.75γ = , 2 3.75γ =  
V. 1 2γ = , 2 6γ =  (in Harwell & Serlin) 
VI. 1 3γ = , 2 21γ =  (similar to 1 3γ = , 2 20γ =  in Kowalchuk & Headrick) 
VII. 1 1.25γ = − 2 3.75γ =  
VIII. 1 2γ = , 2 40γ =  

Samples for each skewness-kurtosis combination can be simulated in three ways: Using one of 

the two distinctly different Fleishman transformations or using the g-and-h distribution. To 

estimate ( )1̂E γ  and ( )2ˆE γ , 100,000 samples of sizes 1 40N =  and 2 100N =  were drawn from 

the three different nonnormal distributions (two distinctly different 3rd order power method 

distributions and one g-and-h distribution) and the sample skewnesses and kurtoses calculated. 

Table 20 through Table 27 contain mean values, standard deviations, skewnesses and kurtoses for 

the empirical sampling distributions of both 1̂γ  and 2γ̂ . For each skewness-kurtosis combination, 

cells with relatively good performance are colored in different shades of green: If the estimate for 

sample skewness or kurtosis is within 10%±  of the respective population value (e.g., with 

1 2γ = , any observed value for 1̂γ  between 1.8 and 2.2), darker green is used, if it is within 

50%±  of the population value (e.g. 1̂ [1.0,3.0]γ ∈  when 1 2γ = ), a lighter green is used. These 

guidelines were chosen as opposed to confidence intervals of, e.g., 2±  standard error estimates 

around the observed value to safeguard against “excessive power.” With 100,000 replications, 

such confidence intervals would be quite narrow and less informative than the rules chosen 

above. For the special case of 1 0γ =  or 2 0γ = , the intervals [ .05,.05]−  and [ .25,.25]−  are 
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chosen. The worst departure from either asymptotic skewness or kurtosis is colored in a reddish 

shade.  
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Table 20: First Four Moments of Sample Skewness and Kurtosis when 1 0γ =  and 2 25γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  0.006 1.876 0.000 –0.111
40N =  

2γ  6.594 5.317 1.602 2.770

1γ  –0.001 1.996 –0.019 0.828

mV&M: 
1 0.2553a = , 2 0a = , 3 0.2038a =  

 100N =  
2γ  11.257 8.934 2.350 7.626

1γ  0.005 1.003 –0.047 8.531
40N =  

2γ  0.396 4.432 3.555 13.930

1γ  –0.005 1.383 –0.041 8.114

nmV&M: 
1 1.5667a = − , 2 0a = , 

3 0.3482a =  
 100N =  

2γ  2.957 9.195 3.571 15.677

1γ  0.002 1.144 –0.016 2.484
40N =  

2γ  2.609 3.696 2.869 11.048

1γ  0.005 1.254 0.006 6.097

1 0γ = , 

2 25γ =  

g-and-h: 
0g = , 0.1930h =  

100N =  
2γ  4.829 6.671 4.293 26.901
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Table 21: First Four Moments of Sample Skewness and Kurtosis when 1 0γ =  and 2 3γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  0.001 0.778 –0.002 1.839
40N =  

2γ  1.382 2.064 2.748 12.187

1γ  –0.005 0.650 0.007 3.087

mV&M 
1 0.7824a = , 2 0a = , 3 0.0679a =  

 100N =  
2γ  2.108 2.346 3.678 25.063

1γ  0.001 0.510 0.105 25.361
40N =  

2γ  –0.872 2.049 7.240 63.488

1γ  0.001 0.623 –0.128 34.584

nmV&M 
1 1.5504a = , 2 0a = , 

3 0.2594a = −  
 100N =  

2γ  –0.354 4.036 7.566 75.678

1γ  –0.003 0.737 –0.016 2.983
40N =  

2γ  1.131 2.058 3.378 18.965

1γ  –0.003 0.644 –0.025 6.137

1 0γ = , 

2 3γ =  
 

g-and-h 
0g = , 0.1089h =  

100N =  
2γ  1.838 2.598 5.110 48.329
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Table 22: First Four Moments of Sample Skewness and Kurtosis when 1 1γ =  and 2 1γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  0.871 0.156 0.713 1.209
40N =  

2γ  0.462 1.903 2.181 8.102

1γ  0.946 0.078 0.671 1.159

nmV&M 
1 1.0175a = − , 2 0.1910a = , 

3 0.0186a =  100N =  
2γ  0.758 1.341 2.040 9.310

1γ  0.882 0.359 2.202 13.700
40N =  

2γ  0.008 1.412 6.774 74.981

1γ  0.930 0.343 5.318 50.942

nmV&M 
1 1.2164a = , 2 0.3446a = , 

3 0.1366a = −  
 100N =  

2γ  0.236 2.278 10.456 156.993

1γ  0.874 0.392 0.642 1.013
40N =  

2γ  0.499 1.354 2.092 7.656

1γ  0.949 0.272 0.511 0.595

1 1γ = , 

2 1γ =  
 
 

g-and-h 
0.4168g = , 0.0746h = −  

100N =  
2γ  0.783 1.081 1.633 4.949

   



 108

Table 23: First Four Moments of Sample Skewness and Kurtosis when 1 1.75γ =  and 2 3.75γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  1.506 0.253 0.952 1.979
40N =  

2γ  2.117 6.028 2.130 7.860

1γ  1.638 0.160 1.592 8.075

nmV&M 
1 0.9208a = − , 2 0.4868a = , 

3 0.0725a =  
 100N =  

2γ  2.880 6.377 4.124 40.329

1γ  1.494 0.517 0.901 1.461
40N =  

2γ  2.144 2.518 1.953 5.864

1γ  1.637 0.402 0.951 1.971

nmV&M 
1 0.9297a = , 2 0.3995a = , 

3 0.0365a = −  
 100N =  

2γ  2.977 2.417 2.136 8.490

1γ  1.492 0.516 0.805 1.170
40N =  

2γ  2.208 2.495 1.836 5.204

1γ  1.643 0.395 0.739 1.036

1 1.75γ = , 

2 3.75γ =  
 

g-and-h 
0.8339g = , 0.1680h = −  

100N =  
2γ  3.067 2.311 1.717 5.129
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Table 24: First Four Moments of Sample Skewness and Kurtosis when 1 2γ =  and 2 6γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  1.621 0.317 1.215 2.998
40N =  

2γ  2.610 8.859 2.422 9.516

1γ  1.794 0.270 2.398 12.046

nmV&M 
1 0.8157a = − , 2 0.5695a = , 

3 0.0878a =  
 100N =  

2γ  3.759 15.035 4.679 36.923

1γ  1.575 0.615 1.056 1.781
40N =  

2γ  2.726 3.203 2.066 6.048

1γ  1.784 0.543 1.385 3.793

nmV&M 
1 0.8263a = , 2 0.3137a = , 

3 0.0227a =  
 100N =  

2γ  4.109 3.769 2.752 13.329

1γ  1.569 0.622 1.019 1.627
40N =  

2γ  2.764 3.219 2.022 5.691

1γ  1.789 0.545 1.269 2.978

1 2γ = , 

2 6γ =  
 

g-and-h 
0.7594g = , 0.0979h = −  

100N =  
2γ  4.204 3.762 2.521 10.340
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Table 25: First Four Moments of Sample Skewness and Kurtosis when 1 3γ =  and 2 21γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  1.742 1.194 –0.272 1.713
40N =  

2γ  5.774 5.178 1.668 3.106

1γ  2.216 1.211 0.322 2.517

mV&M 
1 0.4186a = , 2 0.2523a = , 

3 0.1476a =  100N =  
2γ  9.891 8.389 2.393 7.924

1γ  1.713 0.797 1.649 3.225
40N =  

2γ  3.361 4.740 2.448 6.840

1γ  2.088 1.006 2.016 5.086

nmV&M 
1 0.6816a = , 2 0.6371a = , 

3 0.1487a =  100N =  
2γ  6.569 8.817 2.918 10.865

1γ  1.728 0.848 1.156 1.695
40N =  

2γ  3.993 4.734 2.051 5.129

1γ  2.149 0.950 1.810 5.118

1 3γ = , 

2 21γ =  
 

g-and-h 
0.6542g = , 0.0242h =  

 100N =  
2γ  7.299 7.999 3.037 13.316
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Table 26: First Four Moments of Sample Skewness and Kurtosis when 1 1.25γ = −  and 2 3.75γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  –0.923 0.646 –0.818 1.906
40N =  

2γ  1.569 2.462 2.654 10.636

1γ  –1.087 0.550 –1.295 4.214

mV&M 
1 0.8189a = , 2 0.1606a = − , 

3 0.0492a =  100N =  
2γ  2.503 2.976 3.589 23.032

1γ  –0.952 0.468 –2.956 15.452
40N =  

2γ  0.269 2.232 5.750 43.784

1γ  –1.039 0.538 –4.367 27.622

nmV&M 
1 1.2091a = , 2 0.4059a = − , 

3 0.1663a = −  100N =  
2γ  0.874 4.018 6.660 59.670

1γ  –0.899 0.617 –1.187 2.775
40N =  

2γ  1.320 2.466 2.947 13.062

1γ  –1.066 0.548 –1.809 6.981

1 1.25γ = −

2 3.75γ =  
 

g-and-h 
0.3226g = − , 0.0377h =  

 100N =  
2γ  2.250 3.201 4.228 31.156
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Table 27: First Four Moments of Sample Skewness and Kurtosis when 1 2γ =  and 2 40γ =  

Skewness and Kurtosis values; 
Simulation method & Coefficients 

 γ̂  Sγ  Skewness 
of γ̂  

Kurtosis 
of γ̂  

1γ  0.932 2.179 –0.419 –0.223
40N =  

2γ  9.032 6.251 1.269 1.316

1γ  1.239 2.381 –0.339 0.569

mV&M 
1 0.0616a = , 2 0.1174a = , 

3 0.2421a =  
 100N =  

2γ  15.776 11.230 1.958 4.865

1γ  0.517 1.169 0.770 5.143
40N =  

2γ  1.299 5.420 2.779 8.026

1γ  0.795 1.634 0.696 4.734

nmV&M 
1 1.4659a = − , 2 0.2058a = , 

3 0.3541a =  
 100N =  

2γ  5.254 11.367 2.799 9.180

1γ  0.719 1.082 0.556 2.312
40N =  

2γ  2.803 4.032 2.776 9.958

1γ  1.003 1.183 1.328 5.443

1 2γ = , 

2 40γ =  
 

g-and-h 
0.1935g = , 0.1757h =  

100N =  
2γ  5.316 7.454 3.919 21.180
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Looking at Table 20 through Table 27 it becomes clear very quickly that it is rather an 

exception than the rule to find 1 1γ̂ γ≈  or 2 2γ̂ γ≈ . In the vast majority of cases, 1̂γ  and 2γ̂  

underestimate 1γ  and 2γ  in absolute value, often by a massive amount. As an example, compare 

1 2γ =  and 2 40γ = to 1̂ .7194γ =  and 2ˆ 2.8028γ =  for 40N =  for the g-and-h distribution. It should 

be obvious that the results presented in Table 20 through Table 27 deviate gravely from Harwell 

& Serlin’s (1989) table 3 or Kowalchuk & Headrick’s (2010) table 6. 

Sample skewness generally comes closer to its nominal value than sample kurtosis, with 

sometimes considerable variability between the different simulation methods. Generally, when a 

monotonic 3rd order polynomial transform is available, it seems to produce nonnormal samples 

that have skewness and kurtosis closest to the desired nominal values. In these situations, the 

non-monotonic transform can clearly be disregarded. When no monotonic transformation is 

available, non-monotonic 3rd order polynomial transform and g-and-h distribution perform 

similarly, with the g-and-h distribution performing slightly better. The sampling distributions of 

1̂γ  and 2γ̂  often differ considerably, depending on whether one of the 3rd order polynomial 

transformations or the g-and-h distribution is used.  

Notice that we cannot include the 5th order polynomial method in these tables. For the 

eight distributions with arbitrarily chosen skewness-kurtosis combination, we have no guidelines 

on how to choose values for the 5th and 6th moment. We could only evaluate expected value and 

variability of sample skewness and kurtosis for the distributions discussed in Headrick (2002).  

 

Why This Matters  

 The differences in shape at equal marginal skewnesses and kurtoses, as well as equal 

correlation, are not only of theoretical interest. If we recall from the introduction, the main 
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motivation for simulating nonnormal distributions in many fields of applied statistics is to assess 

the performance of statistical procedures under nonnormality. The question then becomes: 

Keeping the selection of marginal skewnesses and kurtoses and correlation constant, will 

additional differences in shape have an effect on the performance of statistical procedures?  

   

The 3rd Order Polynomial Transformation in Published Research 

The 3rd order polynomial transform has been the most popular procedure for simulating 

nonnormal distributions in psychometrics, and has received a considerable amount of attention 

and referencing in statistics in general. Vale & Maurelli’s paper has been cited over a hundred 

times, including at least 64 studies which employed the method to simulate bi- or multivariate 

nonnormal data in Monte Carlo analyses. The question arises whether odd-shaped distributions 

similar to the ones in Figure 12(b) or Figure 18(c) have been utilized in published research and 

whether they may have affected results in robustness studies. Table 28 and Figure 34 summarize 

the skewness-kurtosis combinations utilized in the most relevant of these about 64 studies. The 

center column lists the skewness-kurtosis combinations for which a monotonic solution exists 

(which does not necessarily means that the monotonic solution was used), while the right column 

lists skewness-kurtosis combinations for which no monotonic solution exists. 
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Table 28: List of Studies with Skewness-Kurtosis Combinations that Employed the 3rd 
Order Polynomial Method 

Authors 

Skew & Kurt 
Combinations where 
monotonic transform 

exists 

Skew & Kurt 
Combinations where no 

monotonic transform 
exists 

Rausch & Kelley (2009) 1 0γ = , 2 3.75γ =  

1 1.25γ = , 2 3.75γ =  

1 1.25γ = − , 2 3.75γ =  

1 1.25γ = , 2 1.5γ =  

1 1.25γ = − , 2 1.5γ =  
 

Lix & Fouladi (2007) 1 0γ = , 2 3γ =  1 6.2γ = , 2 110.9γ =  

Vallejo et al. (2007) 
1 3γ = , 2 21γ =  1 1γ = , 2 .75γ =  

1 1.75γ = , 2 3.75γ =  

Wang & Thompson (2007) 
 1 1γ = , 2 1γ =  

1 1.5γ = − , 2 3.5γ =  

Flora & Curran (2004) 1 .75γ = , 2 1.75γ =  

1 .75γ = , 2 3.75γ =  

1 1.25γ = , 2 3.75γ =  
1 1.25γ = , 2 1.75γ =  

Hipp & Bollen (2003)  1 1.5γ = , 2 3γ =  

Lix, Keselman &  
Hinds (2005) 1 0γ = , 2 3γ =  1 2γ = , 2 6γ =  

1 6.18γ = , 2 110.93γ =  

Hau & Marsh (2004) 
1 .5γ = , 2 .5γ =  1 1γ = , 2 1.5γ =  

1 1.5γ = , 2 3.25γ =  

Weathers, Sharma &  
Niedrich (2005) 

1 0γ = , 2 6γ =  

1 1γ = , 2 6γ =  1 1γ = , 2 0γ =  

Vallejo et al. (2004)  1 1.63γ = , 2 4γ =  

Fouladi & Yockey (2002) 1 0γ = , 2 6γ =  

1 .75γ = , 2 6γ =  
1 0γ = , 2 1γ = −  

1 .75γ = , 2 0γ =  

Jedidi, Jagpal &  
Desarbo (1997) 

1 0γ = , 2 2.75γ =  

1 1γ = , 2 2.75γ =  1 .75γ = , 2 0γ =  

Harwell & Serlin (1989) 1 0γ = , 2 3γ =  

1 0γ = , 2 25γ =  
1 0γ = , 2 1.12γ = −  

1 2γ = , 2 6γ =  
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Harwell (1991) 
1 0γ = , 2 3γ =  1 2γ = , 2 6γ =  (with 

coefficients) 

Berkovits et al. (2000) 
1 3γ = , 2 21γ =  1 1γ = , 2 .75γ =  

1 1.75γ = , 2 3.75γ =  

Bauer & Curran (2003) 1 1.5γ = , 2 6γ =  1 1γ = , 2 1γ =  

Enders & Bandalos (1999) 1 1.25γ = , 2 3.5γ =  

1 0γ = , 2 3.75γ =  1 2.25γ = , 2 7γ =  

Ferrando &  
Lorenzo–Seva (1999)  1 1γ = , 2 1γ =  

Nevitt & Hancock (2000) 1 2γ = , 2 7γ =  

1 3γ = , 2 21γ =   

Fouladi (2000) 1 0γ = , 2 1γ =  

1 0γ = , 2 3γ =  

1 0γ = , 2 6γ =  

1 0γ = , 2 25γ =  

1 1γ = , 2 3γ =  

1 1γ = , 2 6γ =  

1 1γ = , 2 25γ =  

1 2γ = , 2 25γ =  

1 3γ = , 2 25γ =  

1 0γ = , 2 1γ = −  

1 1γ = , 2 1γ =  

1 2γ = , 2 6γ =  

Benson & Fleishman (1994) 1 1γ = , 2 2γ =  1 2γ = , 2 6γ =  

Harwell & Serlin (1988) 1 0γ = , 2 3γ =  

1 0γ = , 2 25γ =  
1 2γ = , 2 6γ =  (with 

coefficients) 

Enders (2001) 1 1.25γ = , 2 3.5γ =  

1 3.25γ = , 2 20γ =  

1 0γ = , 2 3.5γ =  

1 0γ = , 2 7γ =  

1 0γ = , 2 20γ =  

1 2.25γ = , 2 7γ =  

Habib & Harwell (1989) 1 0γ = , 2 3γ =  

1 0γ = , 2 20γ =  

1 1γ = , 2 3γ =  
 

1 2γ = , 2 6γ =  (with 
coefficients) 
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Olejnik & Algina (1984) 1 0γ = , 2 1γ =  

1 0γ = , 2 3.75γ =  

1 .5γ = , 2 3.75γ =  

1 1γ = , 2 3.75γ =  

1 0γ = , 2 1γ = −  

1 .75γ = , 2 0γ =  

1 1.75γ = , 2 3.75γ =  

 
 
 

 
Figure 34: Sunflower Plot of Skewness–Kurtosis Combinations that have been Utilized in 

Published Research. 
 

Particularly interesting are the studies by Lix & Fouladi (2007), Lix, Keselman & Hinds (2005), 

and Weathers et al. (2005): They use skewness-kurtosis combinations that, according to the 

skewness-kurtosis combination limits presented in Figure 9, do not have a real valued solution 

for the transformation coefficients. The combinations I am referring to are 1 21, 0γ γ= = , 
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1 26.18, 110.93γ γ= = , and 1 26.2, 110.9γ γ= =  (the last two combinations are not included in 

Figure 34 due to scale considerations). Further, not a single study clearly mentioned including an 

nIM distribution, and only three studies (and one author) provide information on the 

transformation coefficients that were used for the simulation of nonnormal data.  

Time constraints make it impossible to reconstruct the original simulations carried out in 

the studies listed in Table 28 and to then assess whether the choice of transformation coefficients 

would have an effect on the simulation results obtained in these studies. In lieu of testing the 

statistical procedures investigated in these studies, I will examine the performance of two 

confidence intervals for a single correlation for a small selection of nonnormal distributions, 

comparing the impact of different choices of transformation coefficients or even choosing the g-

and-h distribution instead of the 3rd order power method. Results obtained in this study could 

provide a first indication regarding the severity of the influence of shape. The next section 

describes the traditional Fisher Z confidence interval as well as an asymptotically distribution-

free confidence interval for ρ . 

 

The Fisher Z Confidence Interval  

The exact distribution of the sample correlation coefficient r, even when the underlying 

parent distribution is bivariate normal, is complex and therefore alternative procedures that allow 

hypothesis testing and confidence interval construction were developed early on. The Fisher Z 

transform for a single correlation is a well-known variance stabilizing and normalizing transform 

which allows hypothesis testing and confidence interval construction for r based on normal 

theory.  

For the remainder of this study, define  
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 ( )1zα α−= Φ  (82) 

as the inverse standard normal cumulative distribution function, so that ( )1
.05 .05 1.645z −= Φ = −  

and ( )1.96 .975Φ = . Further, let  

 ( ) ( )
2

1
2

1 1 1tanh      and     tanh ln
2 11

x

x
e xx x

xe
−− +⎛ ⎞= = ⎜ ⎟−+ ⎝ ⎠

 (83) 

be the hyperbolic tangent and inverse hyperbolic tangent of a variable x.  

The Fisher Z confidence interval (see Fisher, 1915) for the product moment correlation r, 

calculated for a sample of size N, is constructed as follows:  

 [ ] ( )( )1
1 /2, tanh tanh 1/ ( 3)z zLL UL r z Nα

−
−= ± × −  (84) 

When the parent distribution (the distribution of the variables for which the correlation is 

calculated) is bivariate normal, the performance of the Fisher Z confidence interval from 

Equation (100) is remarkably close to nominal. “Remarkably close to nominal” means that the 

empirical coverage rate of a ( )100 1 %α−  confidence interval is quite close to ( )100 1 %α−  and 

that both one-sided and two-sided hypothesis tests have empirical Type I error rates close to their 

nominal values. Note that the Fisher transform uses no information from the sample other than 

the value of the sample estimate ρ̂  and the sample size, N. No information on skewness, 

kurtosis, or other moments is utilized in the construction of the confidence interval. 

 

Fisher Z Confidence Interval Example. To illustrate the construction of all intervals 

utilized in Parts I and II of my dissertation, I introduce a very small sample of 5 data points: 

( )2,10 , ( )7,7 , ( )8,2 , ( )5,4 , and ( )1,9 , with sample correlation .80965r = − : 
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X Y 
2 10 
7 7 
8 2 
5 4 
1 9 

 

 

.80965r = −  

Figure 35: Small Example for Demonstration of Confidence Intervals 

 

The 95% Fisher Z confidence interval is constructed as  

 

[ ] ( )( )
( )

[ ]

1, tanh tanh .80965 1.96 1/ 2

tanh 1.126 1.386

.987,.254

z zLL UL −≈ − ± ×

≈ − ±

= −

 (85) 

This is a relatively wide confidence interval, but understandably so, since the sample size is only 

5N = . 

 

The Asymptotically Distribution-free Confidence Interval 

 In 1982, Steiger and Hakstian derived an asymptotically distribution free estimate of the 

covariance of two correlations (and therefore, as a special case, of the variance of a single 

correlation) based on second and fourth order moments. Equation (3.4) from their article is 

reproduced in Equation (86): 
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( ) ( )

( ) ( )

1,
4

1 1
2 2

ij kh ijkh ij kh iikk jjkk iihh jjhh

ij iikh jjkh kh ijkk ijhh

r rγ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

= + + + +

− + − +
 (86) 

where ( ),ij khr rγ  is the asymptotic covariance between ijr  and khr . Steiger & Hakstian define:  

 ijkh
ijkh

ii jj kk hh

σ
ρ

σ σ σ σ
=  (87) 

with 

 ( )( )( )( )ijkh i i j j k k h hE X X X Xσ μ μ μ μ⎡ ⎤= − − − −⎣ ⎦ . (88) 

Equation (87) is a general formula for fourth order moments of four variables. To simplify, we 

can assume that all variables are standardized, i.e. the variances are ... 1ii hhσ σ= = = , reducing 

Equation (87) to ijkh ijkhρ σ= . The sample statistic corresponding to Equation (87) is 

 ijkh
ijkh

ii jj kk hh

s
r

s s s s
=  (89) 

with  

 ( )( )( )( )
1

1 N

ijkh mi i mj j mk k mh h
m

s X X X X X X X X
N =

= − − − −∑  (90) 

Note that if all coefficients are the same, i. e. i j k h= = = , Equation (89) estimates 2 3γ +  as 

defined previously in Equation (13). To simplify the calculation of the fourth order moments in a 

sample, the scores will first be standardized, so that the denominator in Equation (89) does not 

need to be calculated and the sample estimate of the fourth order moments is 

 ( )( )( ) ( )
1

1 N

ijkh mi mj mk mh
m

r Z Z Z Z
N =

= ∑ . (91) 
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We then have the following sample estimate of the asymptotic covariance between two 

correlations ijr , khr  (compare with equation (5.1) in Steiger & Hakstian): 

 ( ) ( ) ( )1 1 1ˆ
4 2 2ijkh ijkh ij kh iikk jjkk iihh jjhh ij iikh jjkh kh ijkk ijhhr r r r r r r r r r r r rγ = + + + + − + − + . (92) 

To construct a confidence interval for a single correlation, we can use Equation (92) and letting 

i k=  and j h= , obtain variance estimate: 

 
( ) ( ) ( )

( ) ( )2

1 1 1ˆ
4 2 2
1 2
4

ijij ijij ij ij iiii jjii iijj jjjj ij iiij jjij ij ijii ijjj

iijj ij iiii iijj jjjj ij iiij ijjj

r r r r r r r r r r r r r

r r r r r r r r

γ = + + + + − + − +

= + + + − +
 (93) 

This variance estimate takes into account all fourth order moments between two variables. The 

variance estimate in Equation (93) can now be used in any formula for a confidence interval 

around a single correlation. For example, a common approximate confidence interval around a 

single correlation is  

 
( )22

1 /2

1

2

r
r z

Nα−

−
±

−
 (94) 

using ( ) ( )
221 / 2r N− −  as a standard error estimate. This can now be substituted with the 

estimate from Equation (93), yielding 

 [ ]
( ) ( )2

1 /2

1 2
4,

2

iijj ij iiii iijj jjjj ij iiij ijjj

ADF ADF

r r r r r r r r
LL UL r z

Nα−

+ + + − +
= ±

−
 (95) 
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Using Equation (93) as a variance estimate receives further support from Yuan, Bentler, & Zhang 

(2005), who write:  

“Results in Yuan and Bentler (1999a, 2000a, 2002a) imply that the asymptotic 
distributions of the covariance parameter estimates, the commonly used sample 
correlation coefficients, and sample reliability coefficients depend on only the joint 
fourth–order moments or kurtoses of the variables.” 

 

Asymptotically Distribution Free Example. For the small example data set from above, 

we need to first standardize the scores and then calculate the correlation, squared correlation, and 

all fourth order moments between the two variables: 

 12 .8096501r = −  
2

12 .6555334r =  
 1111 1.099827r =  
 1112 .916156r = −  

1122 .9563612r =  

1222 1.034218r = −  

2222 1.217355r =  

Entering these values into Equation (95) provides us with the 95% confidence interval: 

 

[ ]

( ) ( )

[ ]

, .810

1.956 .656 1.010 2 .956 1.217 .810 .916 1.034
41.96

5 2
0.055.810 1.96

3
1.076, .544

ADF ADFLL UL = − ±

+ + × + + − −

−

≈ − ±

≈ − −

(96) 

The resulting CI includes values outside the parameter space for correlations, which may indicate 

that the asymptotically distribution free confidence interval may not work well for small sample 

sizes. Also, rounding to three decimal places introduced significant rounding error. A more exact 

value for the confidence interval is [ 1.110, .509]− − . 
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Evaluating Confidence Interval Performance: Coverage Rate & Balance Index 

To evaluate and compare the performance of these two confidence intervals, I will assess 

the rate at which they cover the true parameter ρ , the so-called coverage rate. In addition to 

coverage rate, I will employ coverage balance as another indicator of performance. A confidence 

interval has (good) coverage balance if it misses ρ  equally often above and below, while 

coverage imbalance occurs when a confidence interval does not miss ρ  equally often above and 

below. I have found the ratio of the number of times the CI misses the true parameter above and 

below, called balance index, to be a measure that improves and quickens the assessment of 

coverage balance:  

 Miss Rate BelowBalance Index = 
Miss Rate Above

 (97) 

This index will hover near 1 when a confidence interval exhibits good coverage balance, and will 

go toward 0 or ∞  as coverage balance worsens. For example, a value of 0.5 stands for a CI that 

missed ρ  twice as often by lying above it and a value of 2 stands for a CI that missed twice as 

often by lying below. For a 95% confidence interval with nominal coverage rate, a balance index 

of 0.5 would mean that it missed the true ρ  by lying 1.66% below it and 3.33% above it, a 

balance index of 2 would mean that it lies 3.33% below ρ  and 1.66% above it. Coverage 

balance was already called to attention in DiCiccio & Efron (1996), who emphasize that they 

construct 90% confidence intervals which have noncoverage probabilities of 5% in each tail, not 

just 10% overall noncoverage (see also Efron, 2003). 

 Despite the importance of coverage balance being pointed out by Efron, most studies on 

the performance of bootstrap confidence intervals do not include this information, which is, in 

fact, not any more difficult to obtain than coverage rate. Earlier studies such as Rasmussen 
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(1988, 1989), Strube (1988), Efron (1988), Wilcox (1991), and Sievers (1996) do also not 

provide information on coverage balance. Neither do Lee & Rodgers (1998) or Beasley et al., 

who provide Type I error and power rates for hypothesis tests conducted with the BCa and 

univariate sampling bootstrap confidence intervals, but little to no information on coverage rate 

and balance. 

 

Method 

Four IM distributions (distribution 1 – 4) and four nIM distributions (distribution 5 – 8) were 

simulated. The four IM distributions were chosen from the pool of Vale & Maurelli distributions 

previously used in published research that simulates nonnormality (Table 28). To ensure that the 

present study is as representative as possible of previous research, the distributions from Table 28 

were plotted and then visually grouped into four categories of distributions with  

1. A cut-off effect on one side of a variable. Since all distributions in this group have 

identical marginals, this means that there will be a cut-off effect on one side of each 

variable. These distributions have a triangular shape and resemble a bivariate chi-square 

distribution with low degrees of freedom. (distribution 3a, b, & c) 

2. A cut-off effect on both sides of a variable (and, because of symmetry, both variables), 

leading to a rather box-shaped bivariate distribution. (distribution 1b, 2b, & 4b) 

3. A star-shaped appearance with long tails on both ends of both variables. (distribution 2a) 

4. A relatively regular or fanned shape. (distribution 1a & c, 2c, 4a & c) 

The distributions listed in Table 29 represent each category at least once, as indicated in 

parentheses in the list of categories. In addition to the two distinct Vale & Maurelli IM 

distributions that exist for a given skewness-kurtosis combination, the corresponding g-and-h 
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distribution was simulated as well, and all four IM distributions  were created with underlying 

population correlations .2Yρ = − , 0Yρ = , .4Yρ = , and .8Yρ = .  

 

Table 29: Four IM Distributions Used to Demonstrate Effects of Shape on Simulation Results 

Description of Distribution Transformation Coefficients 

11 12 0γ γ= = , 21 22 2.75γ γ= = ,  

Yρ =  –.2, .0, .4, .8  
(as utilized by Jedidi, Jagpal, & 
Desarbo with .8ρ = ) 

[ ]
[ ]
[ ]

1

1

1

v&m 0 0.7948 0 0.0643

v&m 0 1.5479 0 0.2569

g&h 0 0.1046

a

b

c

=

= −

=

 

11 12 0γ γ= = , 21 22 25γ γ= = ,  

Yρ =  –.2, .0, .4, .8  
(as used by Harwell & Serlin, 1989, 
with .3ρ =  and .7ρ = ) 

[ ]
[ ]
[ ]

2

2

2

v&m 0 0.2553 0 0.2038

v&m 0 1.5667 0 0.3482

g&h 0 0.1930

a

b

c

=

= −

=

 

11 12 1.25γ γ= = , 21 22 1.5γ γ= = ,  

Yρ = –.2, .0, .4, .8  
(as used by Rausch & Kelley, 2009, 
with .1ρ =  and .5ρ = ) 

[ ]
[ ]
[ ]

3

3

3

v&m 0.2823 1.0373 0.2823 0.0421

v&m 0.3915 1.1058 0.3915 0.1044

g&h 0.6074 0.1381

a

b

c

= − −

= − −

= −

 

11 12 1.25γ γ= = − , 21 22 3.75γ γ= = ,  

Yρ = –.2, .0, .4, .8 
(as used by Rausch & Kelley, 2009, 
with .1ρ =  and .5ρ = ) 

[ ]
[ ]
[ ]

4

4

4

v&m 0.1606 0.8189 0.1606 0.0492

v&m 0.4059 1.2091 0.4059 0.1663

g&h 0.3226 0.0377

a

b

c

= −

= − −

=

 

 
 

Very few simulation studies conducted in the past utilized nIM distributions to test the 

robustness of statistical procedures to nonnormality. However, it seems unrealistic to expect real 

multivariate data to always have identical marginals, about as unrealistic as expecting real data to 

always be normally distributed. With potentially all four marginal parameters 11γ  through 22γ  

different from each other, there is an immense range of possible nIM bivariate distributions that 

can be simulated. Lacking systematic information on the behavior of real world nIM 



 127

distributions, I randomly sampled and combined values for 11γ , 12γ , 21γ , and 22γ  from a 

weighted list of values obtained from Table 28. The values for skewness were sampled from the 

list [–1.5, –1.25, 0, 0.5, 0.75, 1, 1.25, 1.5, 1.63, 1.75, 2, 2.25, 3, 3.25], with weights according to 

the frequency with which they were used in the studies listed in Table 28. The values for kurtosis 

were sampled from the list [–1.12, –1, 0, 0.5, 0.75, 1, 1.5, 1.75, 2, 2.75, 3, 3.25, 3.5, 3.75, 4, 6, 7, 

20, 21, 25]. Once two values for each skewness and kurtosis were chosen, I plotted the resulting 

bivariate nIM distribution with .5Yρ =  and 5000N = . Without providing a full list of graphs of 

these nIM distributions, I eventually settled on distributions with shapes that repeatedly occurred 

and that also resulted in noteworthy variations in confidence interval performance. However, 

these selections do not claim to be a comprehensive summary of any possible situation one may 

encounter when using the Vale & Maurelli method. Table 30 below contains information on 

simulation parameters (all nIM distributions were simulated with 0Yρ =  and .5Yρ = ) and 

transformation coefficients.  
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Table 30: Four nIM Distributions Used to Demonstrate Effects of Shape on Simulation Results 

Description of Distribution Transformation Coefficients 

11 2γ = , 12 0γ = , 

21 6γ = , 22 3.75γ =  

Yρ =  .0, .5  

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

5

5

5

5

5

5

v&m 0.3137 0.8263 0.3137 0.0227

v&m 0.5695 0.8157 0.5695 0.0878

v&m 0 0.7480 0 0.0779

v&m 0 1.5568 0 0.2662

g&h 0.7594 0.0979

g&h 0 0.1199

a

b

c

d

e

f

= −

= − −

=

= −

= −

=

 

11 2γ = , 12 1γ =  

21 25γ = , 22 2.75γ =  

Yρ =  .0, .5  

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

6

6

6

6

6

6

v&m 0.1379 0.2872 0.1379 0.1914

v&m 0.2966 1.4301 0.2966 0.3059

v&m 0.1321 0.8483 0.1321 0.0428

v&m 0.3363 1.3060 0.3363 0.1831

g&h 0.2396 0.1515

g&h 0.2558 0.0446

a

b

c

d

e

f

= −

= − −

= −

= − −

=

=

 

11 1.25γ = − , 12 1.25γ =  

21 3.75γ = , 22 3.5γ =  

Yρ =  .0, .5  

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

7

7

7

7

7

7

v&m 0.1606 0.8189 0.1606 0.0492

v&m 0.4059 1.2091 0.4059 0.1663

v&m 0.1655 0.8347 0.1655 0.0439

v&m 0.4086 1.1981 0.4086 0.1614

g&h 0.3226 0.0377

g&h 0.3372 0.0283

a

b

c

d

e

f

= −

= − −

= −

= − −

= −

=

 

11 3γ = , 12 1.63γ =  

21 21γ = , 22 4γ =  

Yρ =  .0, .5  

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

8

8

8

8

8

8

v&m 0.2523 0.4186 0.2523 0.1476

v&m 0.6371 0.6816 0.6371 0.1487

v&m 0.2581 0.8798 0.2581 0.0167

v&m 0.4979 0.9894 0.4979 0.1112

g&h 0.6542 0.0242

g&h 0.5942 0.0633

a

b

c

d

e

f

= −

= − −

= −

= − −

=

= −

 

 
 

Confirmation of Population Moments. Table 31 through Table 38 contain values for 

observed skewnesses, kurtoses, and correlations based on 2,000,000 replications each to compare 
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population moments with moments for very large samples. Notice that for distribution 7d, .5ρ =  

cannot be simulated and that even at these very large samples, the population parameter values 

for skewness and kurtosis are not always reached. In particular, the (g-and-h) distribution 2c 

shows values of sample kurtoses perceivably lower than the nominal population kurtosis of 25. 

 

Table 31: Large Sample Moments For IM Distribution 1 

11 0γ =  12 0γ =  21 2.75γ =  22 2.75γ =  .2,.0,.4,.8ρ = −   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 –0.0047 0.0087 2.7806 2.7903 –.1993 
V&M2 0.0065 0.0049 3.0537 2.9053 –.1986 
g&h –0.0047 –0.0010 2.6288 2.7922 –.1988 

 
V&M1 0.0048 –0.0008 2.7217 2.7111 0.0007 
V&M2 –0.0033 –0.0167 2.7914 2.5818 0.0013 
g&h –0.0139 –0.0106 2.6370 2.7114 –0.0007 

 
V&M1 0.0098 0.0057 2.7999 2.7967 .4008 
V&M2 –0.0110 –0.0421 2.2067 2.8203 .4005 
g&h 0.0018 0.0074 2.7760 2.8362 .4005 

 
V&M1 0.0015 0.0016 2.7818 2.8067 .7997 
V&M2 0.0112 –0.0363 3.3650 2.1665 .7996 
g&h –0.0010 –0.0023 2.7222 2.7762 .7997 
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Table 32: Large Sample Moments for IM Distribution 2 

11 0γ =  12 0γ =  21 25γ =  22 25γ =  .2,.0,.4,.8ρ = −   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 –0.0730 0.0285 25.1358 25.8449 –.1996 
V&M2 0.0440 –0.0616 22.1144 25.8241 –.1991 
g&h –0.0650 0.0719 18.4026 14.1446 –.2011 

 
V&M1 –0.0300 0.0777 23.8444 24.4979 .0005 
V&M2 –0.0459 –0.0017 22.1743 21.7601 –.0003 
g&h 0.1008 0.0146 17.5920 19.0393 –.0003 

 
V&M1 –0.0028 –0.0009 25.1513 24.2231 .4012 
V&M2 0.1053 0.0876 22.8050 21.8017 .3971 
g&h –0.1601 0.0032 34.1461 14.4994 .3999 

 
V&M1 0.0274 0.0422 24.6004 23.9087 .7989 
V&M2 0.1345 0.0352 26.9823 25.7209 .7993 
g&h –0.0629 –0.0009 19.1303 18.1340 .8003 

 

Table 33: Large Sample Statistics for IM Distribution 3 

11 1.25γ =  12 1.25γ =  21 1.5γ =  22 1.5γ =  .38, .2,.0,.4,.8ρ = − −   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 1.2482 1.2488 1.4873 1.4952 –.3807 
V&M2 1.2510 1.2485 1.5374 1.5136 –.3807 
g&h 1.2464 1.2528 1.4842 1.5123 –.3799 

 
V&M1 1.2495 1.2499 1.4983 1.4934 –.1997 
V&M2 1.2462 1.2457 1.4641 1.4405 –.2007 
g&h 1.2508 1.2500 1.5008 1.4980 –.1998 

 
V&M1 1.2521 1.2479 1.5096 1.4901 –.0013 
V&M2 1.2555 1.2490 1.5527 1.4877 –.0000 
g&h 1.2491 1.2510 1.4986 1.5005 –.0007 

 
V&M1 1.2518 1.2517 1.5066 1.5102 .4008 
V&M2 1.2536 1.2570 1.5835 1.6138 .3994 
g&h 1.2486 1.2502 1.4967 1.5007 .3999 

 
V&M1 1.2544 1.2522 1.5217 1.5041 .8001 
V&M2 1.2465 1.2486 1.4696 1.5429 .7999 
g&h 1.2515 1.2529 1.5045 1.5094 .8004 
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Table 34: Large Sample Statistics for IM Distribution 4 

11 1.25γ = −  12 1.25γ = − 21 3.75γ =  22 3.75γ =  .2,.0,.4,.8ρ = −   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 –1.2555 –1.2495 3.7804 3.7602 –.2005 
V&M2 –1.2658 –1.2444 4.2134 3.6442 –.1996 
g&h –1.2499 –1.2485 3.6960 3.7487 –.2003 

 
V&M1 –1.2452 –1.2492 3.7048 3.7131 .0001 
V&M2 –1.2395 –1.2549 3.5667 3.9131 –.0001 
g&h –1.2465 –1.2492 3.6651 3.7604 –.0000 

 
V&M1 –1.2405 –1.2463 3.6589 3.7375 .4009 
V&M2 –1.2532 –1.2460 3.7413 3.5296 .3996 
g&h –1.2490 –1.2460 3.6582 3.7544 .4114 

 
V&M1 –1.2477 –1.2465 3.7499 3.6973 .8000 
V&M2 –1.2431 –1.2338 3.5888 3.4300 .7995 
g&h –1.2576 –1.2699 3.8551 4.0037 .8001 
 
 
 

Table 35: Large Sample Statistics for nIM Distribution 5 

11 2γ =  12 0γ =  21 6γ =  22 3.75γ =  .0,.5ρ =   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 1.9961 0.0111 5.9308 3.7014 –.0009 
V&M2 2.0024 0.0036 5.9988 3.2789 –.0003 
V&M3 2.0010 0.0037 6.0928 3.7266 .0002 
V&M4 1.9867 0.0159 5.8580 3.6795 .0004 
g&h 1.9953 0.0013 5.9596 4.0308 .0002 

 
V&M1 2.0069 0.0045 6.0639 3.6915 .4986 
V&M2 2.0135 –0.0312 6.0959 3.4364 .4978 
V&M3 1.9935 0.0070 5.9532 3.7557 .5011 
V&M4 1.9940 –0.0046 5.8941 2.8272 .5029 
g&h 2.0044 0.0053 6.0417 3.5633 .4999 
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Table 36: Large Sample Statistics for nIM Distribution 6 

11 2γ =  12 1γ =  21 25γ =  22 2.75γ =  .0,.5ρ =   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 2.0495 1.0041 24.1686 2.8208 .0005 
V&M2 2.0579 1.0039 26.2677 2.7218 –.0002 
V&M3 2.1493 0.9954 34.4119 2.7462 .0017 
V&M4 1.8947 1.0225 22.1066 2.9400 –.0011 
g&h 2.0636 0.9933 26.1164 2.7256 –.0008 

 
V&M1 2.0221 0.9951 24.7389 2.7300 .5013 
V&M2 2.0574 0.9986 25.6209 2.6501 .5019 
V&M3 2.0265 0.9997 26.7434 2.7531 .5005 
V&M4 1.9816 1.0119 24.2023 2.8830 .4991 
g&h 2.0576 0.9984 22.9781 2.7267 .5002 
 
 
 

Table 37: Large Sample Statistics for nIM Distribution 7 

11 1.25γ = −  12 1.25γ =  21 3.75γ =  22 3.5γ =  .0,.5ρ =   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 –1.2502 1.2470 3.7441 3.4973 .0002 
V&M2 –1.2555 1.2592 3.8081 3.9149 .0000 
V&M3 –1.2391 1.2515 3.3933 3.5177 –.0017 
V&M4 –1.2557 1.2321 3.8082 3.0608 .0002 
g&h –1.2512 1.2515 3.7866 3.4871 .0011 

 
V&M1 –1.2541 1.2475 3.7844 3.4764 .5000 
V&M2 –1.2524 1.2385 3.7343 3.2267 .4989 
V&M3 –1.2624 1.2537 3.9677 3.5328 .4987 
V&M4 NA NA NA NA NA 
g&h –1.2535 1.2483 3.7173 3.5512 .5009 
 
 
 
 
 
 
 
 
 
 
 



 133

Table 38: Large Sample Statistics for nIM Distribution 8 

11 3γ =  12 1.63γ =  21 21γ =  22 4γ =  .0,.5ρ =   

11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  
V&M1 3.0314 1.6264 21.5846 3.9782 .0002 
V&M2 3.0283 1.6275 21.7421 4.0528 .0009 
V&M3 3.0523 1.6288 22.2828 3.9889 .0014 
V&M4 3.0037 1.6386 21.5028 4.1285 .0006 
g&h 3.0318 1.6333 22.2933 4.0485 .0008 

 
V&M1 3.0136 1.6327 20.8490 4.0095 .4999 
V&M2 3.0386 1.6321 21.7794 4.0122 .5012 
V&M3 3.0470 1.6276 24.2088 3.9747 .4993 
V&M4 3.0138 1.6437 21.4155 4.3788 .4998 
g&h 2.9622 1.6287 19.5347 4.0059 .5006 
 

 

Using a sample size of 50N =  and 100,000 replications per condition, coverage rate and 

balance index were collected for the Fisher Z (Equation (84)) and the asymptotically distribution-

free confidence interval (Equation (95)). These performance indices will be contrasted with 

marginal skewnesses and kurtoses as well as overall shape of the distributions in the upcoming 

result section. 

 

Results 

Table 39 through  

 

Table 46 contain coverage rate and balance for both the Fisher Z CI and the 

asymptotically distribution-free CI for all eight distributions. In addition, average sample 

skewnesses and kurtoses and a small graph of the distributions at each simulated population 

correlation are provided for each distribution. This allows for a comparison of confidence 
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interval performance with average sample statistics and shape of distribution. Within each table, 

the population correlation changes horizontally, while type of distribution (V&M 1 and 2;  

g-and-h) changes vertically. Average sample statistics are recorded in the right most column, 

while coverage performance is reported in the lower section of the table: Each cell on coverage 

performancehas two columns, the first of which contains coverage rate information, and the 

second coverage balance. Rows within each cell represent the three (for IM distributions) or five 

(for nIM distributions) distribution types. Coverage performance horizontally across cells 

follows the changing correlations, while the two rows of results represent the two different 

confidence intervals.  

Use Table 39 as an example: In the right most column, we can see that the first V&M 

distribution had average sample values 11ˆ 0.000γ = , 12ˆ 0.001γ = , 21ˆ 1.458γ =  and 22ˆ 1.465γ = . 

The second Vale & Maurelli distribution has 11ˆ 0.000γ = , 12ˆ 0.001γ = , 21ˆ 0.789γ = −  and 

22ˆ 0.789γ = − . From the section ‘Confidence Interval Performance,’ we find that the Fisher Z CI 

covers the true correlation .2ρ = −  94.9% of the time when samples are taken from V&M 

distribution 1a, 93.8% of the time when taken from V&M distribution 1b, and 94.7% of the time 

when taken from the g-and-h distribution. When .8ρ = , these values change to 93.5%, 87.6%, 

and 93.9%. The corresponding values for the balance index are 1.91, 1.73, and 1.86. For 

comparison, the coverage rate and balance index for the asymptotically distribution-free CI are 

90.0%, 86.5%, and 90.5% as well as 3.25, 14.98, and 3.46.  

 Several aspects are of interest here: a) Is performance of a particular confidence interval 

procedure the same across distributions with equivalent marginal skewnesses and kurtoses as 

well as correlations, but different shapes? The answer to this question can be found in the 

confidence interval performance section for every distribution utilized. Focusing only on the 
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Fisher Z CI, we can observe sizeable differences in performance for distribution 2, .8Yρ = , for 

distribution 3, .38Yρ = − , and all nIM distributions (5 through 8), when .5Yρ = . For example, 

coverage rate varies from .375 to .928 and coverage balance varies from 1.999 to 3.756 for 

distribution 6, .5Yρ = . For the asymptotically distribution-free confidence interval, equally 

drastic performance deviations can be found; e.g., for distribution 6, coverage rate varies from 

.525 to .891 and coverage balance varies from 1.687 to 22.698. Cells with performance 

differences between distributions of at least .05 for coverage rate or a factor of three for coverage 

balance are colored in yellow. 

b) When comparing two interval procedures with each other, could our decision which 
confidence interval is better depend on the choice of distribution? In other words, with marginal 
parameters and correlation held constant, could aspects of shape have an influence on which 
confidence interval we choose over the other? If we consider  

Table 40, with distribution 2, we find that at .8ρ = , the Fisher Z CI covers the true ρ  for 

the first V&M distribution 75.3% of the time, and tends to overestimate it, indicated by a balance 

index of 2.57. The asymptotically distribution-free CI misses the true ρ  for the same distribution 

78.6% of the time and has a balance index of 2.37. Therefore, by both standards, the 

asymptotically distribution-free CI would be chosen over the Fisher Z CI. For the second V&M 

distribution however, the situation is a little different: The Fisher Z CI covers the true ρ  79.8%, 

with a balance index of 1.94, while the asymptotic CI covers ρ  81.5%, with a balance index of 

10.15. While the asymptotic CI still covers more often, the gross overestimation as indicated by 

the high balance index and the negligible coverage rate difference would lead most researchers to 

prefer the Fisher Z CI. A slightly weaker case can be made for the results for distribution 8, 

.5ρ = . For the last V&M distribution, the indices are 82.4% and 1.86 for the Fisher Z CI and 

84.6% and 2.33 for the asymptotically distribution-free CI, while for the g-and-h distribution, 
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these values are 88.2% with 2.38 and 86.5% with 1.66. The performance indices are almost 

reversed from one distribution to the other. Finally, if we were to focus on only one of the 

parameters, e.g., just coverage rate, which confidence interval seems preferable varies even 

more, depending on the nonnormal distribution used. For example, for distribution 5, .5ρ = , the 

Fisher Z CI would be preferred for V&M distributions 1, and 2, and the g-and-h distribution, 

while the asymptotic CI performs better under V&M distribution 3 and 4.  

c) Last but not least we may ask ourselves what influence average sample skewness and 

kurtosis have on the performance of the confidence intervals. In some instances, differences in 

average sample skewness and kurtosis seem to coincide well with differences in performance for 

the two confidence intervals. For distribution 1, .8ρ = , the most salient deviations from nominal 

coverage (rate or balance) occur for the second V&M distribution. This V&M distribution also 

has an average sample kurtosis of about 2ˆ .79γ = − , a value that, interestingly enough, deviates 

from kurtosis for a normal distribution in the opposite direction of the desired population 

kurtosis, 2 2.75γ = . However, for distribution 5, .5ρ = , the first and third V&M distribution 

have very similar average sample skewnesses and kurtoses, with values of 1.64, 0.00, 3.09, and 

1.91 and 1.67, 0.00, 2.91, and 1.90, respectively. The coverage performance for both confidence 

intervals differs drastically between the two distributions, though. This is an example for which 

moments other than skewness and kurtosis greatly influence the performance of the two 

confidence intervals. The main differences between these distributions lie in their shapes, and 

therefore their additional, uncontrolled moments.
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Table 39: Coverage Rate and Balance forDistribution 1 (see detailed description on page 133) 

Distribution 1 a, b, & c: 11 12 0γ γ= = , 21 22 2.75γ γ= =  

 .2Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  1̂γ  and 2γ̂  

V&M 1a 

    

0.000  1.458  
0.001  1.465 

V&M 1b 

    

0.000 -0.789 
0.000 -0.789 

G&h 

    

0.000  1.244 
-0.001  1.244 

Confidence Interval Performance 
Fisher 

Z CI 
0.9487  0.8136
0.9376  0.6673
0.9473  0.8447 

0.9475  0.9778
0.9506  0.9956
0.9492  0.9996 

0.9453  1.4769
0.9117  1.5428
0.9463  1.3719 

0.9347  1.9118
0.8764  1.7287
0.9391  1.8610 

 

Asympt. 
CI 

0.9074  0.7921
0.9170  0.5010
0.9075  0.7349 

0.9068  0.9900
0.9268  1.0182
0.9093  1.0178 

0.9061  1.7033
0.8987  3.9599
0.9079  1.7432 

0.9003  3.2547
0.8650 14.9787
0.9045  3.4607 
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Table 40: Coverage Rate and Balance for Distribution 2 (see detailed description on page 133) 

Distribution 2: 11 12 0γ γ= = , 21 22 25γ γ= =  

 .2Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  1̂γ  and 2γ̂  

V&M 2a 

    

-0.001  7.690  
-0.004  7.705 

V&M 2b 

    

0.002  0.877 
-0.001  0.872 

G&h 

    

-0.002  3.107 
0.001  3.106 

Confidence Interval Performance 
Fisher 

Z CI 
0.9230  0.2292
0.8940  0.3837
0.9452  0.5504 

0.9413  0.9547
0.9520  1.0270
0.9467  0.9810 

0.8770  5.3169
0.8441  1.9716
0.9338  2.6225 

0.7527  2.5702
0.7976  1.9413
0.8957  3.8857 

 

Asympt. 
CI 

0.8470  1.6653
0.8700  0.4134
0.8949  0.7682 

0.8902  0.9720
0.9104  1.0043
0.8981  0.9889 

0.8078  0.8197
0.8438  3.7371
0.8848  1.6439 

0.7859  2.3708
0.8146 10.1540
0.8604  3.4647 
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Table 41: Coverage Rate and Balance for Distribution 3 (see detailed description on page 133) 

Distribution 3: 11 12 1.25γ γ= = , 21 22 1.5γ γ= =  

 .38Yρ = −  .2Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  1̂γ  and 2γ̂  

V&M 3a 

     

1.139  0.992  
1.139  0.989 

V&M 3b 

     

1.145  0.795 
1.145  0.795 

G&h 

     

1.143  1.038 
1.142  1.038 

Confidence Interval Performance 
Fisher 

Z CI
0.9832  1.6609
0.7465  0.4677
0.9845  1.8391 

0.9717  1.8769
0.9562  1.9058
0.9685  1.6829

0.9511  1.7440
0.9502  1.6116
0.9488  1.6620 

0.9168  1.4257
0.9046  1.3546
0.9194  1.4890 

0.8983  1.4605
0.8825  1.4425
0.8945  1.5744 

 

 

Asympt. 
CI

0.9161  0.1767
0.7396  0.0542
0.9205  0.1907 

0.9152  0.3215
0.8956  0.2012
0.9104  0.3185

0.9062  0.5543
0.9055  0.5135
0.9049  0.5478 

0.8992  1.4207
0.8959  1.5205
0.8998  1.3969 

0.8968  4.1543
0.8896  5.6023
0.8919  4.1482 
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Table 42: Coverage Rate and Balance for Distribution 4 (see detailed description on page 133) 

Distribution 4: 11 12 1.25γ γ= = − , 21 22 3.75γ γ= =  

 .2Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  1̂γ  and 2γ̂  

V&M 2a 

    

-0.970  1.815  
-0.968  1.808 

V&M 2b 

    

-0.974  0.397  
-0.975  0.397 

G&h 

    

-0.949  1.562  
-0.950  1.567 

Confidence Interval Performance 
Fisher Z 

CI 
0.9582  1.1228
0.9036  1.0138
0.9590  1.1659 

0.9486  1.3949
0.9498  1.4244
0.9497  1.3552 

0.9282  1.7932
0.9024  1.5933
0.9305  1.7937 

0.9033  1.9994
0.8683  1.6698
0.9109  2.0967 

 

Asympt. 
CI 

0.9086  0.5632
0.8531  0.1597
0.9104  0.5349 

0.9044  0.7427
0.9103  0.6077
0.9060  0.7474 

0.8968  1.5252
0.8944  2.2496
0.8992  1.6714 

0.8869  3.5634
0.8746  8.9571
0.8911  3.9491 

 



  

Table 43: Coverage Rate and Balance for Distribution 5 (see detailed description on page 133) 

Distribution 5: 11 2γ = , 12 0γ = , 21 6γ = , 22 3.75γ =  

 .0Yρ =  .5Yρ =  1̂γ  and 2γ̂  

V&M1 

  

1.635   3.092 
0.002   1.908 

V&M2 

  

1.633   3.077 
0.003  -0.709 

V&M3 

  

 1.671  2.909 
-0.001  1.904 

V&M4 

  

1.671   2.906 
0.000  -0.705 

G&h 

  

1.633   3.149 
0.000   1.521 

Confidence Interval Performance 

Fisher Z CI 

0.9488  1.0265
0.9524  1.0234
0.9483  0.9561
0.9510  1.0165
0.9484  0.9804 

0.9430   2.5438
0.8045   1.9146
0.4536   2.1632
0.7788   1.7702
0.9452   2.5375 

 

Asymptotic CI 

0.9010  1.0310
0.9057  1.0087
0.9030  0.9628
0.9058  0.9989
0.9028  0.9627 

0.8919   1.6455
0.7011  21.7105
0.6889   9.8977
0.7515  16.0701
0.8959   1.9354 
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Table 44: Coverage Rate and Balance for Distribution 6 (see detailed description on page 133) 

Distribution 6: 11 2γ = , 12 1γ = , 21 25γ = , 22 2.75γ =  

 .0Yρ =  .5Yρ =  1̂γ  and 2γ̂  

V&M1 

  

1.094   7.577 
0.786   1.375 

V&M2 

  

1.101   7.575 
0.765  -0.137 

V&M3 

  

0.718   1.112 
0.789   1.383 

V&M4 

  

0.721   1.137 
0.765  -0.139 

G&h 

  

0.929   3.129 
0.768   1.198 

Confidence Interval Performance 

Fisher Z CI 

0.9483  1.2901
0.9510  1.3864
0.9503  1.2180
0.9509  1.2408
0.9496  1.2462 

0.9122   3.4431
0.5357   3.7559
0.3748   3.4137
0.8486   1.9992
0.9282   2.3054 

 

Asymptotic CI 

0.8844  0.7971
0.8789  0.7527
0.9079  0.8402
0.9151  0.7877
0.9038  0.8529 

0.8649   1.6865
0.5246  22.6984
0.5726  15.4896
0.8405   5.8355
0.8906   2.1984 
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Table 45: Coverage Rate and Balance for Distribution 7 (see detailed description on page 133) 

Distribution 7: 11 1.25γ = − , 12 1.25γ = , 21 3.75γ = , 22 3.5γ =  

 .0Yρ =  .5Yρ =  1̂γ  and 2γ̂  

V&M1 

  

-0.969   1.812 
 0.985   1.722 

V&M2 

  

-0.969   1.813 
 0.990   0.421 

V&M3 

  

-0.972   1.382 
 0.980   1.704 

V&M4 

 

 -0.973   0.386 
 0.991   0.420 

G&h 

  

-0.948   1.566 
 0.969   1.529 

Confidence Interval Performance 

Fisher Z CI 

0.9481  0.7186
0.9496  0.6890
0.9485  0.6615
0.9501  0.6986
0.9498  0.7101 

0.9715   1.6208
0.4672   3.0776
0.4587   3.1389

0.9746   1.4858 
 

Asymptotic CI 

0.9032  1.3456
0.9065  1.4779
0.9085  1.3980
0.9110  1.7031
0.9057  1.3097 

0.9096   3.2154
0.6016  19.5376
0.5996  19.4918

0.9088   4.1462 
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Table 46: Coverage Rate and Balance for Distribution 8 (see detailed description on page 133) 

Distribution 8: 11 3γ = , 12 1.63γ = , 21 21γ = , 22 4γ =  

 .0Yρ =  .5Yρ =  1̂γ  and 2γ̂  

V&M1 

  

1.859   6.722 
1.357   2.125 

V&M2 

  

1.865   6.750 
1.393   1.723 

V&M3 

  

1.802   4.007 
1.359   2.133 

V&M4 

  

1.803   4.010 
1.394   1.726 

G&h 

  

1.844   4.785 
1.358   2.164 

Confidence Interval Performance 

Fisher Z CI 

0.9488  2.4244
0.9506  2.6776
0.9522  2.6883
0.9519  2.5476
0.9495  2.4865 

0.8803  2.5633
0.7591  1.6855
0.5688  2.3916
0.8239  1.8626
0.8821  2.3791 

 

Asymptotic CI 

0.8791  0.5043
0.8767  0.4310
0.8869  0.4493
0.8844  0.3860
0.8866  0.4965 

0.8533  1.4400
0.8159  5.0433
0.7343  5.3154
0.8455  2.3335
0.8652  1.6611 
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Other Nonnormal Distributions in Published Research.  

I conclude Part I examining some of the other nonnormal distributions utilized in 

previous simulation studies on the robustness of r. Many studies on the robustness of procedures 

for correlations have focused on nonnormal distributions with identical marginals and 0ρ = . 

Mixture distributions have been particularly popular, the most extreme case a mixture of two 

bivariate normal distributions, one with 1 .9ρ = , the other with 2 .9ρ = − , mixed at 50% each, as 

in Figure 36(a) below (Kowalski, 1972; Rasmussen, 1988 & 1989; Edgell & Noon, 1984). A 

hypothesis test or confidence interval for a single correlation is applied to such distribution and 

the performance examined, without taking into account that a single linear model may often be 

considered inadequate. The overall population correlation for the resulting distribution is 

1 2.5 .5 0ρ ρ ρ= × + × = , but generally it seems that such data should be analyzed with a model 

that distinguishes two groups. Something similar may be said for bivariate nonnormal 

distributions with a non-linear relationship between the two variables. A distribution with 1Y Z=  

(a standard normal variable) and 2
2Y Z=  (the same standard norma variable squared), thus 

creating a perfect quadratic relationship between 1Y  and 2Y , has been used by Edgell & Noon 

(1984). Figure 36 plots these and several other distributions for which rather severe deviations 

from nominal Type I error rates or coverage rates for confidence intervals on a single correlation 

were observed. 
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Figure 36(a) – (f): Nonnormal Distributions in Previous Research 
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Table 47 summarizes empirical estimates of asymptotic skewnesses, kurtoses, and correlations 

for the distributions plotted in Figure 36. 

 

Table 47: Estimates for Expected Values of Skewnesses, Kurtoses, and Correlations for the 
Distributions in Figure 36, based on 2,000,000 Replications. 

Distribution 11γ̂  12γ̂  21γ̂  22γ̂  ρ̂  

(a) Kowalski (1972) &  
Rasmussen (1988 & 1989) 

–0.002 –0.001 0.008 0.005 –.000 

(b) Duncan & Layard (1973) –0.001 –0.001 3.003 0.842 .749 
(c) Edgell & Noon (1984) –0.001 2.834 0.003 12.035 .001 
(d) Sievers (1996) 0.001 0.000 –1.499 –0.937 .500 
(e) Lee & Rodgers (1998) 1185.482 616.613 1502079.5 520139.0 .000 
(f) Beasley et al (2007) 0.003 2.832 0.004 11.978 .800 
 
 

It is safe to say that a reasonably sized sample (say with 80N = ) drawn from any of these 

distributions will already forebode the extraordinary shape of its parent distribution, which 

should motivate any researcher to investigate further: 
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Figure 37: Samples of size 80N =  from the Distributions in Figure 36 
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Is it paramount to investigate whether a confidence interval for a single Pearson product-moment 

correlation is robust to the nonnormality of distribution such as in Figure 36(c)? If we require 

researchers to plot their data, is it likely that they will apply a confidence interval around r to a 

sample from such a distribution? And if not, is robustness of hypothesis tests and confidence 

intervals for a single correlation to the nonnormality of such a distribution of practical interest or 

needed? 

 The most extreme example in the writer’s opinion is Figure 36(c), the case of 0ρ = , but 

total dependence between both variables with Variable 1 ( )0,1N∼  and Variable 2 2
1χ∼ . Edgell 

& Noon (1984) observed rejection rates of around .38 for sample sizes of 5N =  up to 100N =  

when a Type I error of .05 was expected for this distribution (Table 3, page 581). Beasley et al 

(2007) employed a distribution with the same marginals, Variable 1 ( )0,1N∼ , Variable 2 2
1χ∼ , 

and 0ρ = , but both variables truly independent of each other.For this distribution, they found 

empirical Type I error rates very close to their nominal value, even for sample sizes as small as 

5N = . The distribution is plotted in Figure 38: 
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Figure 38: Variable 1 ( )0,1N∼ , Variable 2 2

1χ∼  and true Independence. 
Compare with Figure 36(c). 

 
The bivariate distributions in Figure 36(c) and Figure 38 have the same marginal 

distributions, and the same population correlation of 0ρ = . Yet, robustness results of the Fisher 

Z test or confidence interval to the nonnormality of these distributions are strikingly different 

from each other. For Figure 36(c), Type I error rate is as high as .38 (nominal .05), while for 

Figure 38, Type I error rate remains close to its nominal level. This observation is an extreme 

instance of the observation already made above for some of the Vale & Maurelli distributions: 

Something other than characteristics of the marginal distributions and the population correlation 

has an influence on these robustness results. The shapes of Figure 36(c) and Figure 38 are 

immensely different and generally we would say that a researcher will be more likely to test data 

from a distribution such as in Figure 38 for a linear zero correlation than a data set that stems 
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from a distribution such as in Figure 36(c). As a corollary, we may say that robustness results for 

the distribution in Figure 38 are much more interesting than robustness results for the 

distribution in Figure 36(c).  

The same will be true for other distributions. Knowledge of the first four marginal 

moments or even the entire marginal distribution and the population correlation will not suffice 

to judge whether a particular bivariate distribution is of great interest for a study on the 

robustness of r. If we simulate data using the 3rd order power method, we may either come up 

with the distribution in Figure 18(a) or the distribution in Figure 18(c), despite the same 

asymptotical marginal skewnesses and kurtoses and the same correlation. Differences in 

robustness results will not be trivial, and data drawn from a distribution such as the one in Figure 

36(c) would most likely be analyzed by a researcher as a set of two subpopulations. 

Summarizing, we see that shape of a distribution is an important factor in the outcome of Monte 

Carlo studies designed to assess the robustness of statistical procedures has been neglected. Such 

neglect may, lead to failure to replicate results and contradicting evidence across Monte Carlo 

studies.   

 

Discussion 

 Due to the convenience of and the familiarity with normal distribution theory, many 

statistical methods are still developed utilizing the assumption of an underlying normal 

distribution of the data, an assumption that is often severely violated for real data sets (Micceri, 

1989). One hopes that subsequently the method in question can be shown to be robust to 

nonnormality, and robustness to nonnormality is traditionally demonstrated in Monte Carlo 

studies, utilizing simulated, artificial data sets. Simulation of nonnormal multivariate data and 
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subjection of multivariate procedures to tests of performance under nonnormality is becoming 

increasingly more feasible as computer power increases. Parallel to computing power, the 

number of methods available for generating nonnormal multivariate data has also rapidly 

increased. Because the development of multivariate simulation techniques is a rather new area of 

research, it is important to familiarize applied psychometricians and other methodologists with 

them, as they will eventually be the consumers of nonnormal data simulation techniques. At the 

same time, we need to provide applied researchers with tools that can help them understand the 

possibilities and limitations of the different methods for simulating multivariate nonnormal data. 

 

 Observations. Part I of my dissertation analyzes three nonnormal data simulation 

methods in depth: Multivariate extensions of the 3rd order and the 5th order polynomial transform 

and the multivariate g-and-h distribution. All three methods use a nonlinear transformation of a 

standard normal variable to create a nonnormal variable, and provide control over its first few 

moments. The 5th order polynomial method differs slightly from the other two methods: While 

the 3rd order polynomial method and the g-and-h distribution only provide control over the first 

four moments of the nonnormal variable, the 5th order polynomial method controls the first six 

moments. This additional control may seem to be an advantage and does provide improved fit to 

known distributions, as demonstrated in Headrick & Kowalchuk (2007). However, it is also 

accompanied by a fundamental problem: If we want to simulate nonnormal distributions with 

just any skewness-kurtosis combination, we will be hard-pressed to make a choice for the 5th and 

6th moment. Very little is known about these moments and only when we strive to simulate 

distributions for which the 5th and 6th moments are known will we be able to make full use of the 

5th order polynomial technique. Therefore, with respect to their properties and issues, only a 
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limited comparison between the 3rd order power and the g-and-h method and the 5th order power 

method is possible. While the 5th order polynomial method shares some of the concerns and 

cautions with the other methods, I concentrated on the 3rd order polynomial method and the g-

and-h distribution.  

 This study provides particularly detailed insight into the limitations of the 3rd order 

polynomial method, which, to this date, has been the most popular simulation method in 

psychometrics. Its advantages and disadvantages compared to the 5th order power method and 

the multivariate g-and-h distribution are presented. Integrating and exceeding previous research, 

I discuss limitations and issues of the power method such as the range of skewness-kurtosis 

combinations available, monotonicity of transformations, range of final correlations, and odd-

shaped distributions.  

Because all three simulation methods (3rd and 5th order power method and g-and-h 

distribution) use a direct (nonlinear) transformation of a normal variable Z to create a nonnormal 

variable Y, it can be fruitful to investigate the relationships between properties of the 

transformation and properties of the resulting nonnormal distribution. The property that has 

received the greatest amount of attention so far is the monotonicity of the transformation 

(Headrick, 2002; Headrick, 2004; Headrick & Kowalchuk, 2007; Hoaglin, 1985; Kowalchuk & 

Headrick, 2010). Monotonicity of the transformation has been a focus of investigation for two 

reasons: 1) Hoaglin, who only discussed the g-and-h distribution, emphasizes the importance of 

monotonicity, as a monotonic transformation allows us to link quantiles of Z to the quantiles of 

Y. With a direct expression for the quantiles of Y – and he anticipates Headrick’s work – we have 

access to the pdf of Y and can link its quantiles to any nonnormal shape we wish. 2) Headrick 

and others have placed emphasis on monotonicity of the transformation because their derivation 
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of an analytical form of the pdf of Y relies on ( )' 0f Z ≠  for any Z, thereby requiring the 

derivation of the transformation to be strictly increasing (or decreasing). 

Does this mean that we should only use monotonic transformations? When both a 

monotonic and a non-monotonic transformation are available for the 3rd order power method, we 

have seen that, aside from rank correlations and “valid” pdfs, monotonic transformations will 

also create better behaved distributions. But what if no monotonic transformation is available for 

a certain skewness-kurtosis combination? For example, no monotonic 3rd order polynomial 

transformation exists that can simulate a 2
1χ  variable. The criterion of monotonicity will also 

exclude the straightforward transformation 2Y a bZ= + . It remains to be decided whether that 

means that we should not simulate that particular distribution at all or whether we should find 

different criteria that help us choose the best non-monotonic transformation available. 

 The expected value and variability of sample skewness and kurtosis at a given sample 

size have received insufficient attention in the past, and some of the results that have been 

published seem to be substantially in error. These previous results create the impression that 

sample skewnesses and kurtoses will most often have values close to the nominal values 

specified by the researcher. However, the specified values are population values 1γ  and 2γ , and 

especially for smaller N, their sample equivalents 1̂γ  and 2γ̂  will differ substantially. 

Additonally, if we simulate the same values for 1γ  and 2γ  with different simulation techniques, 

e.g., 3rd order power method vs. g-and-h distribution, the sampling distributions for 1̂γ  and 2γ̂  at 

a given sample size can be gravely different as well. It seems that some transformations regulate 

skewness and kurtosis through outliers more than others. If a method heavily relies on extreme 

outliers to create a distribution with a large asymptotic skewness or kurtosis, it is likely that 
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smaller samples drawn from that distribution will not contain any of these extreme outliers, and 

therefore, the average sample skewness or kurtosis will be much smaller than their asymptotic 

values. If we test a method that is sensitive to skewness and kurtosis for its performance under 

nonnormality, choice of simulation method may have an influence on the results if expected 

value and variability of sample skewness and kurtosis for some given sample size differ greatly 

between simulation methods. An example could be the contrast between 1̂γ  and 2γ̂  for the 

monotonic vs. non-monotonic 3rd order power method distribution with 1 2γ =  and 2 40γ =  in 

Table 27. 

The range of final correlations available between two nonnormal variables can be 

severely limited. Such limitation depends on marginal skewnesses and kurtoses, but also on the 

particular transformation to nonnormality for the variables. This issue was never broached before 

in the context of any specific simulation method, and only discussed theoretically in Li & 

Hammond (1975).  

A few univariate moments such as marginal skewnesses and kurtoses are insufficient to 

describe multivariate nonnormal distributions. Aside from properties of sample statistics and 

ranges available for final correlations, some skewness-kurtosis combinations can lead to severely 

odd-shaped distributions. Without careful plotting and examination, these odd-shaped 

distributions may be used in simulation analyses unnoticed. Vale & Maurelli’s method for 

simulating multivariate nonnormal distributions has been quite popular. Keeping marginal 

skewnesses and kurtoses as well as correlation constant, I compare coverage rate and balance of 

two different confidence intervals for a single correlation calculated from two or four differently 

shaped Vale & Maurelli distributions and the promising multivariate g-and-h distribution. Choice 

of distribution and thereby shape in some cases shows a strong influence on performance, 
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leading to very different results for coverage rate and balance. Whether odd-shaped distributions 

created by the Vale & Maurelli method, e.g., have been used in any of the studies listed in Table 

28 is unknown. Finally, I demonstrate that some of the nonnormal distributions that have been 

utilized in Monte Carlo research on the robustness of correlational methods are of questionable 

relevance for the practical researcher, because the distributions in question deviate grossly from 

the simple linear model the product-moment correlation is intended for. Such deviation is 

obvious even for samples of relatively small size. Robustness to such less suitable distributions is 

of less interest, as researchers investigating real data will be less likely to apply a single 

correlation to samples drawn from such distributions, provided they plot their data. As this lack 

of suitability can generally not be detected through knowledge of marginal skewnesses and 

kurtoses alone, it is recommended that distributions to be used for robustness studies are plotted 

and visually inspected for their suitability. 

 

Practical Consequences. Asymptotic marginal skewness and kurtosis are hardly 

sufficient to characterize univariate or multivariate nonnormal distributions. When multivariate 

nonnormal data are simulated in a Monte Carlo study, authors should be required to specify not 

only the method that was used for data simulation, but also transformation coefficients or other 

corresponding information that will enable any reader to exactly reproduce the results and avoid 

the unintentional use of odd-shaped distributions. Ideally, a routine for nonnormal data 

simulation should automatically provide the user with a representative graph of the distribution 

created with the program. With publication increasingly moving to online versions of journals (or 

pure online journals), space limitations are less severe and inclusion of figures, tables, and plots 

is much more viable. Whenever of potential interest, plotting nonnormal distributions utilized in 
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simulations should be encouraged, such as seen in Beasley et. al. (2007). Thus increased 

transparency will help in making research reproducible. 

 

 Alternative Approaches & Ideas. Alongside the three methods for nonnormal data 

generation discussed above, which all involve moment matching and subsequent transformation 

of a normal variable Z, other approaches for nonnormal data simulation have been suggested. For 

example, the g-and-h distribution was initially developed in the context of nonnormal 

distribution quantile fitting. Hoaglin & Peters (1979) describe several examples of how values 

for the coefficients g and h are determined by matching quantiles of an existing nonnormal 

distribution with quantiles of a g-and-h distribution. They further suggest expressing g and h 

each as a non-linear function of Z-values, thereby introducing even greater flexibility to the g-

and-h distribution. Field & Genton (2006) extend the quantile fitting method to the multivariate 

case. The quantile method of fitting a g-and-h distribution to an existing nonnormal distribution 

is different from the moment fitting suggested by Headrick et al. (2008). Headrick et al (2008) 

and Kowalchuk & Headrick (2010) argue that the increased simplicity of generating nonnormal 

distributions by characterizing them by their (marginal) skewness and kurtosis is an 

improvement over the more involved quantile fitting. However, as we have seen, potential users 

of nonnormal data simulation procedures need to be made aware that such characterization can 

be inadequate to represent the full complexity of multivariate, or even of univariate distributions.  

One of the most salient univariate examples are the two distributions in Figure 8, which 

have essentially the same first four moments, but radically different shapes. Hoaglin (1985, pp. 

504) provides a very short discussion of quantile vs. moment fitting in which he hints at the 

“resistance and convenience” of working with quantiles. Hence, the advice of only relying on 
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marginal skewnesses and kurtoses cannot be taken without further precautions and simulated or 

fitted distributions must at least be plotted. As an advantage, the g-and-h moment matching 

procedure allows creation of nonnormal distributions with specified skewness and kurtosis 

without an already existing “blueprint” distribution. 

 

 Future Directions. Monotonicity vs. lack of monotonicity may not be a sufficient 

criterion to choose between transformations and we may need additional strategies. Headrick & 

Kowalchuk (2007) seem to make an attempt by discussing the correlation ( ),p Z Zρ  between 

normal scores and transformed scores (in their notation Z and ( )p Z ), requiring ( ),p Z Zρ  to be 

( ]0,1∈ , i.e. positive and as large as possible. However, I am not convinced that this is 

necessarily the best measure possible: Considering the example of a (scaled) 2
1χ  variable, which 

is simply constructed as 2Y a bZ= + , the correlation between the two variables is equal to zero, 

( ) ,, 0Y Zp Z Zρ ρ= = , but Y is a very good example of a well-behaved nonnormal variable. Since 

the standard normal variable Z has a distribution that is symmetric about 0, I suggest exploring 

the relationship between ( ],0Z ∈ −∞  and Y and between [ )0,Z ∈ ∞  and Y separately as a first 

step. Last but not least, some non-monotonic transformations seem to produce very good 

simulation results by some standard, see e.g. Figure 21(b). Additional examination of the 

properties of transformation functions and their connection with the intermediate correlation may 

be necessary if we want to identify the factors that lead to odd-shaped bi-/multivariate 

distributions. After showing that marginal skewness and kurtosis, the measures of nonnormality 

people are most familiar with, are insufficient for describing multivariate nonnormality, the 

question remains whether there are other measures of nonnormality that could provide us with 
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better information about the shape of bi- or even multivariate distributions. One such suggestion 

has been made by Mardia (1970), who introduced a coefficient for multivariate skewness. No 

attempt has been made in my study to verify whether Mardia’s coefficient is able to detect 

differences between distributions with the same marginal skewnesses and kurtoses but different 

higher moments. As long as these questions remain unanswered and measures of multivariate 

nonnormality that can make these important distinctions between distributions unidentified, we 

must rely on careful visual inspection of simulated distributions when using them for Monte 

Carlo studies. Needless to say that the same care has to be exercised when statistical models are 

applied to real data. 

The connection between moments of a distribution and the possible range of final 

correlations requires closer examination. Carroll (1961, page 349) writes about distributional 

shape and calculating correlation coefficients: “As the actual data depart from a fit to such a 

model (bivariate normal or linear regression), the limits of the correlation coefficient may 

contract…” As an example, he cites a bivariate dichotomous distribution: If the dichotomy is 

asymmetrical between the two variables, the product-moment correlation (phi coefficient) will 

not range between –1 and 1. He further writes: “But even when the distributions have more than 

two class intervals, the possible range of the correlation coefficient is constricted to the extent 

that the two marginal distributions are disparate, i.e., not of identical shape and skew.” A general 

framework for the shape of distributions may be worth investigating; for certain combinations of 

marginal skewnesses and kurtoses, a particular shape may be predetermined. For example, when 

11γ  and 12γ  (the two skewnesses) for a bivariate distribution are different from each other, it is 

possible that the relationship between the variables must be nonlinear. Halperin (1986; see also 

Carroll, 1961) comments on page 4: “If the marginal distribution of X looks different from that of 
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variable Y, the variables cannot attain a perfect linear relationship, or a correlation of 1± . … The 

problem is reduced if variables have relatively symmetric marginal distributions.” If the overall 

shape of a bi- or multivariate distribution is partly predetermined once certain characteristics of 

the marginal distribution have been fixed, this will be of great interest for researchers who wish 

to simulate nonnormality. For example, Sterba (personal conversation) attempted to use the 3rd 

order polynomial method and the method developed by Ruscio & Kaczetow (2008) to simulate a 

bivariate nonnormal distribution with ( )1 0,1Y N∼  and 2
2 3Y χ∼ . The bivariate relationship turned 

out to be nonlinear for both methods, an undesired outcome. Fortunately, the distributions were 

plotted, the nonlinear relationship discovered, and the simulation of nonnormality suspended. 

Researchers who plan to simulate multivariate nonnormality need to be made aware of such 

possible outcomes and limitations. 

Distributions that are used to evaluate performance of a statistical procedure when 

assumptions are not met should reflect the violations of assumptions in the real world. Both the 

behavior of real-world distributions and the behavior of real-world researchers need to be taken 

into account. A recommendation for future research might be to compare nonnormality in 

existing real world data sets with nonnormal distributions that can be created with the 3rd order 

power method, the g-and-h distribution and other potential simulation techniques. It would be 

informative whether nonnormality in real world data sets leads to similar robustness or lack of 

robustness results as artificially simulated data sets. Real data may be lumpier, slightly non-

linear, or suffer from cut-off effects as opposed to the distribution simulated by such methods as 

described in Part I of my dissertation. Interestingly, most studies exclusively simulate IM 

distributions – nonnormal distributions with identical marginals and therefore identical marginal 

skewnesses and kurtoses. However, it would be unrealistic to expect real data to always have 
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identical marginals, more often than not, marginal distributions of real data will have different 

skewness-kurtosis combinations. We may attempt to categorize bivariate nonnormal real data 

distributions, similar to the work done by Micceri (1989) for univariate distributions. Very large 

data sets like the one collected by Srivastava, John, Gosling, and Potter (2003) could be utilized 

for such an investigation. Subsequently, we may employ an appropriate selection from these 

bivariate nonnormal real data sets in Monte Carlo research instead of simulating bivariate 

nonnormal data blindly according to properties of marginal distributions. As storage and 

processing of large amounts of data become more feasible with increased computing power, it 

may be a valuable idea to consider bootstrapping from very large real nonnormal data sets to 

obtain smaller samples and conduct Monte Carlo studies. Ideas in that direction seem to be 

suggested with the iterative method by Ruscio & Kaczetow (2008), which can be used to emulate 

real data sets. Raju, Pappas, & Williams (1989) used a large set of real data to conduct an 

empirical Monte Carlo study on correlation and regression and Nanna & Sawilowsky (1998) also 

sampled from large real data sets to carry out a Monte Carlo study on the power of the t test vs. 

the Wilcoxon rank-sum test.  

Lastly, multivariate binomial, Poisson, etc. distributions as discussed in Olkin (1994) or 

Sarabia & Gomez (2008) might be a better alternative to general nonnormal multivariate 

distributions if the process that creates these distributions can be used to closely model the event 

we are interested in. The most common example is the binomial distribution which mimics 

processes that are the sum of independent events with two possible outcomes, and constant 

probability of success, such as voting behavior in an election. 
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PART II 

 

Robustness of Correlations Revisited 

 

I began my dissertation by pointing out in the general introduction that many statistical 

procedures, starting with ANOVA, t-tests, and tests on correlations, as well as higher level 

techniques, which are often build on the former, make the assumption of normally distributed 

data. Because real data are more often than not nonnormally distributed (Micceri, 1989), we need 

to ensure that statistical procedures will still work as expected when they are applied to 

nonnormal data sets. If a study on robustness to nonnormality is executed and conclusions are to 

be drawn on whether the procedure can be safely applied to nonnormal data or whether one 

procedure is better than another, the method for simulating nonnormality needs to be chosen 

carefully. Part I of my dissertation introduced and examined three relatively popular or promising 

methods for simulating multivariate nonnormality, the 3rd order polynomial method, the 5th order 

polynomial method, and the multivariate g-and-h distribution. All three of these methods offer 

control over marginal skewness and kurtosis as well as the correlation matrix between the 

nonnormal variables. In addition, the 5th order polynomial method offers control over the 5th and 

6th moment of the univariate nonnormal variable, but at the same time also requires these 

additional moments to be specified. Because little is known about these moments and generally 

researchers are only interested in varying skewness and kurtosis to create nonnormality, and 

because the g-and-h distribution suffers from several technical difficulties (see Part I), we will 

concentrate on the 3rd order power method only in Part II of my dissertation. 
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Part I has investigated numerous properties of the 3rd order power method. Most notably, 

even with same marginal skewnesses and kurtoses and the same correlation(s) between the 

nonnormal variables, distributions created from different sets of transformation coefficients may 

still have very different shapes. Further, properties such as expected value and variability of 

sample skewness and kurtosis for a given sample size may not be the same. part I also 

demonstrated that these newly discovered differences can lead to profound differences in results 

from Monte Carlo simulations. Part II is now going to test the robustness of several confidence 

intervals around a single correlation r, the sample estimate for ρ , when calculated for several 

nonnormal distributions. These nonnormal distributions will be characterized by their skewness-

kurtosis combinations and simulated using the 3rd order power method. While Part I focused on 

the creation and selection of nonnormal data for simulation studies, Part II will take a close look 

at what to do with simulation results once they have been obtained. The evaluation of confidence 

interval performance for CIs around a single correlation takes on the role of the exemplary 

statistical procedure. 

 

Robustness of the Sampling Distribution of r 

The exact sampling distribution of Pearson’s product moment correlation coefficient 

when calculated for an underlying bivariate normal parent distribution was derived in 1915 by 

Fisher. Early on, researchers have wondered whether and to what extent the sampling 

distribution of r is sensitive to violations of bivariate normality of the parent distribution. If such 

sensitivity could be demonstrated, the nominal performance of tests and confidence intervals for 

correlations that are based on the normality assumption would be in question as well.  
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Research on robustness to nonnormality commenced in the 1920’s, and a good overview 

of early studies can be found in Kowalski (1972). Kowalski summarizes findings on the 

sensitivity of the sampling distribution of r to various deviations from bivariate normality. He 

cites both studies contending that the distribution of r is robust as well as studies that seem to 

have detected a sensitivity of r's distribution to deviations from normality. Haldane (1949) 

attempted to analytically derive the effects of marginal skewness vs. kurtosis of the parent 

distribution on r's sampling distribution. He concludes that marginal kurtosis had a much more 

substantial effect on  r's sampling distribution than skewness. Norris & Hjelm (1961) hoped to 

settle the question of r’s robustness to nonnormality by using larger numbers of replications, 

since previous studies, especially ones that found r’s sampling distribution to be non-robust 

(Baker, 1930), used only a very small number of replications. They employed five different types 

of distributions: a) normal, b) rectangular, c) leptokurtic, d) slightly skewed, e) markedly 

skewed, each with both 0ρ ≈  and .83ρ ≈  and sample sizes of 15N =  (15,984 replications), 

30N =  (7,992 replications), and 90N =  (2,664 replications). They observed surprisingly good 

performance for all sample sizes when 0ρ ≈ , with only slightly low Type I error rate for the 

leptokurtic distribution. When .83ρ ≈ , empirical Type I error rates deviated from the nominal 

value .05α = , ranging from .0101 (rectangular distribution, 90N = ) to .1562 (leptokurtic 

distribution, 90N = ). Norris & Hjelm observe that deviations from nominal Type I error levels 

increase as sample size increases (table III, page 269). Kowalski (1972) concludes that the 

distribution of r is generally robust when 0ρ = , but for 0ρ ≠ , especially with increasing 

kurtosis, the variance of r will deviate increasingly from its value under normality. He adds to 

existing studies by including results for a set of mixture distributions (distributions consisting of 

a mixture of two normal distributions with a different correlation for each) as discussed in Part I 
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that do lead to non-robustness of the distribution of r when overall 0ρ = . He also demonstrates 

non-robustness for several other bivariate nonnormal distributions with 0ρ ≠ . However, his 

results are based on only 100 replications. 

Newer studies on robustness of correlational procedures include work by Duncan & 

Layard (1973), who compare coverage rate as well as Type I error and power of the Fisher Z CI 

and significance test, Jackknife procedures, and a Box confidence interval and test. Zeller & 

Levine (1974) seem to obtain results similar to Norris & Hjelm (1961): Overly conservative 

Type I error rates for distributions with small kurtosis and increase of that effect as sample size 

increases. Havlicek & Peterson (1977) and Edgell & Noon (1984) examined the effects of 

nonnormality and type of scale on hypothesis tests of 0ρ = . Edgell & Noon (1984) included 

additional conditions of bivariate nonnormality that had not been taken into account previously, 

such as more extreme deviations from normality and bivariate distributions that had marginals 

with different shapes. They generally found good agreement between nominal and empirical 

Type I errors for .05α =  and some inflation for .01α =  test when 0ρ =  and the variables were 

truly independent. Type I error tended to be inflated when bivariate distributions were 

constructed from a mixture of two normal distribution with 1 0ρ ≠  and 2 0ρ ≠ , but overall 

0ρ = .  

 

What Am I Going to Add to the Robustness Literature? 

As we have seen in the previous section, the robustness of the product-moment 

correlation to nonnormality of the parent distributions has received much interest and resulted in 

a number of simulation studies with mixed results. When two variables are truly independent, the 

sampling distribution of ρ  seems to be fairly robust to violations of nonnormality, and therefore 
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hypothesis tests and confidence intervals will be as well. When 0ρ ≠  or when 0ρ =  but the 

variables are statistically dependent, it seems to often be the case that the sampling distribution 

of ρ  has an altered shape and statistical procedures are not robust. I believe that the perspective 

on robustness of CIs to nonnormality is incomplete in several respects. On the one hand, 

nonnormality is, in the vast majority of cases, described only in terms of marginal skewnesses 

and kurtoses. Traditionally, no further aspects of the underlying parent distribution such as shape 

are taken into account. We have already seen in Part I of this dissertation that shape of a 

distribution beyond marginal skewness and kurtosis can have a significant impact on the 

behavior of confidence intervals for a single correlation. On the other hand, I believe that the 

concept of confidence interval performance has not been explored in all its aspects. Often, the 

only measure employed in robustness studies is coverage rate, or, in some cases, Type I error 

rate, thereby treating the confidence interval solely as a substitute for hypothesis tests. 

Confidence intervals have a whole set of additional characteristics, however, and Part II of my 

dissertation shall be dedicated to exploring these additional properties for five different 

approaches to constructing an approximate confidence interval for ρ .  

 

The Aspect of Sample Size. In addition to the odd shapes observed for some of the studies 

mentioned in Part I of my dissertation (see Figure 36), many robustness studies choose rather 

small sample sizes, which especially for tests and CIs on correlations lead to low precision. With 

a range of –1 to 1, the parameter space for ρ  is relatively limited; hence, an informative 

confidence interval should part off a substantially smaller range to provide meaningful 

information. When 0r = , the Fisher Z confidence interval for a sample of size 5N =  is 

[ ].882, .882− . Confidence intervals of this size have been routinely included in a wide range of 
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studies, both on the robustness of the traditional Fisher Z and of bootstrap CIs (see, e.g., Edgell 

& Noon, 1984; Lee & Rodgers, 1998; Rasmussen, 1988). For an observed sample correlation of 

.8r =  and 5N = , the Fisher Z CI is [ ].280, .986− , still not particularly interesting. Yet, this 

condition has been considered even in recent studies such as Beasley et al (2007). For which 

sample size does the width of the confidence interval shrink to a size that carries a substantial 

amount of information? Confidence intervals around correlations become narrower as either 

sample size or the absolute size of the correlation increase. For .8r =  and 20N = , the Fisher Z 

CI is [ ].553, .918 , having a total width of just under .4; when 0r =  and 20N = , the Fisher Z 

CI is [ ].443, .443− , with a width of almost .9. When 60N = , the CI for 0r =  is 

[ ].254, .254− . I suggest choosing a sample size so that confidence interval width (as estimted 

by the Fisher I CI) does not exceed .5.  

 

Confidence Intervals for Correlations 

 I will evaluate the performance of several different confidence intervals for a single 

correlation r. Confidence intervals will be constructed based on three main approaches: The 

traditional Fisher Z statistic, asymptotically distribution free theory, and the bootstrap approach. I 

will use the well-known Fisher Z confidence interval as an indicator of the severity of deviation 

from nominal performance, subsequently comparing its performance to the performance of an 

asymptotically distribution free confidence interval around r (derived from results presented in 

Steiger & Hakstian, 1982), an asymptotically distribution free Fisher Z CI, and two different 

approaches towards a bootstrap confidence interval around r. Nonnormality will be simulated 

using the 3rd order power method. A discussion of alternative approaches to measuring 

association under nonnormality is offered at the end of Part II. 



 

168 
 

The Fisher Z Confidence Interval and the Asymptotically Distribution-free Confidence Interval   

These confidence intervals have already been described in Part I of this study. For 

convenience, remember the following definitions:   

 ( )1zα α−= Φ  (98) 

is the inverse standard normal cumulative distribution function, so that ( )1
.05 .05 1.645z −= Φ = −  

and ( )1.96 .975Φ = . Let  

 ( ) ( )
2

1
2

1 1 1tanh      and     tanh ln
2 11

x

x
e xx x

xe
−− +⎛ ⎞= = ⎜ ⎟−+ ⎝ ⎠

 (99) 

be the hyperbolic tangent and inverse hyperbolic tangent of a variable x.  

The Fisher Z confidence interval (see Fisher, 1915) for the product moment correlation r 

is constructed as follows:  

 [ ] ( )( )1
1 /2, tanh tanh 1/ ( 3)z zLL UL r z Nα

−
−= ± × −  (100) 

 

 To recall the construction of the asymptotically distribution-free confidence interval, 

define 

 ( )( )( ) ( )
1

1 N

ijkh mi mj mk mh
m

r Z Z Z Z
N =

= ∑ . (101) 

and  
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ijij ijij ij ij iiii jjii iijj jjjj ij iiij jjij ij ijii ijjj
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= + + + − +
 (102) 

The asymptotically distribution-free CI is then: 
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 [ ]
( ) ( )2
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 (103) 

 

 Asymptotically Distribution-Free Fisher Z Confidence Interval. The variance estimator 

from Equation (102) can also be used for an asymptotic Fisher Z confidence interval (see section 

4 in Steiger & Hakstian, 1982). Instead of ( )1/ 3N −  as a standard error estimate, we can use 

( ) ( )
22

1212 12ˆ / 1 3r Nγ ⎛ ⎞− −⎜ ⎟
⎝ ⎠

, modifying Equation (100) to  

 ( )
( ) ( )

* *
1 1212

/2 22
12

ˆ
, tanh tanh

1 3
z zLL UL r z

r N
α

γ−

⎛ ⎞
⎜ ⎟

⎡ ⎤ = ± ×⎜ ⎟⎣ ⎦ ⎛ ⎞⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (104) 

Applied to the small sample of 5 data points ( )2,10 , ( )7,7 , ( )8,2 , ( )5, 4 , and ( )1,9  with 

sample correlation .80965r = −  from Part I (see Figure 35 for a graph of these data points), we 

find: 
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So that  
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The interval is constructed as 

 

( )
[ ]

[ ]

* * 2
.055, tanh 1.127 1.96

2 1 .656

tanh 2.072, .182

.969, .180

z z
LL UL

⎛ ⎞
⎜ ⎟⎡ ⎤ ≈ − ± ×⎣ ⎦ ⎜ ⎟−⎝ ⎠

= − −

≈ − −

  (105) 

Again, this example suffers from rounding and the final confidence interval limits in Equation 

(105) are displayed for consistency in the calculation “path” only. A more exact value for the 

asymptotic Fisher Z confidence interval is [ .975, .058]− − .  

 

Bootstrapping Procedures for Correlations 

 Bootstrapping is a computationally intensive estimation technique that was suggested by 

Efron around 1977/79 (Efron, 1979). It has inspired a substantial amount of research, and, as 

computing power advances, is becoming increasingly feasible for a variety of statistical 

procedures. Bootstrapping circumvents the necessity of making distributional assumptions (other 

than that the sample obtained is sufficiently representative), such as underlying population 

normality, by basing inferences solely on information carried by the sample at hand. From the 

observed sample of size N, a sampling frame is constructed. This sampling frame can be just 

simply the observed data set or some other set of points based on the originally observed data. N 

data points are drawn randomly and with replacement from the sampling frame into a bootstrap 

sample and, if the parameter of interest is a correlation, *ρ̂ , the sample estimator of ρ , is 

calculated for this bootstrap sample. This process is repeated B times, creating an empirical 

sampling distribution for ρ  out of the *ρ̂ ’s. The empirical sampling distribution is used to 

construct confidence intervals or execute hypothesis tests. Efron & Gong (1983) provide a clear 
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introduction to the bootstrap in general as well as a description of bootstrap confidence intervals 

for a single correlation; a less technical description can be found in Diaconis & Efron (1983) or 

Lunneborg (1985). 

 Several bootstrap hypothesis tests and confidence intervals for a single correlation r have 

been suggested, with probably the first description of bootstrap techniques for r presented in 

Efron (1982). Among these confidence intervals were a simple percentile bootstrap CI, an 

adjusted bootstrap CI, a bias-corrected bootstrap CI, and a bias-corrected and accelerated 

bootstrap CI (BCa CI). All of these confidence intervals use a bivariate sampling frame as 

described in the following section which illustrates both the simple percentile method and the 

BCa CI.  

 

The Percentile Bootstrap Confidence Interval 

The construction of the percentile bootstrap confidence interval around r is conceptually simple: 

1. Collect a sample of N bivariate data points (pairs of X and Y values). This is also the 

sampling frame, called a bivariate sampling frame.  

2. Randomly select, with replacement, N (bivariate) data points from the sampling frame 

and calculate the bootstrap sample correlation *r for this bootstrap sample.  

3. Repeat step 2. B times (B tends to range from 999 to 9,999, see Efron (1987) for 

bootstrap sample size calculations). The set of bootstrap sample correlations created by 

repeating steps 2 is the empirical sampling distribution of r, { }* *
1 ,..., Br r .  

4. A ( )100 1 %α−  confidence interval is constructed by choosing the ( )100 / 2 thα  and the 

( )100 1 / 2 thα−  percentile of this empirical sampling distribution. 
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If we define ( )xΒ  as the empirical cumulative distribution function of a bootstrap sample and if 

we have an ordered empirical sampling distribution of 100 bootstrap correlations, ( ) ( ){ }* *
1 100,...,r r , 

the value of the empirical cdf at the smallest bootstrap correlation is ( )( )*
1 .01rΒ = . The percentile 

bootstrap confidence interval is then defined as 

 ( ) ( )1 1, / 2 , 1 / 2p pLL UL α α− −⎡ ⎤⎡ ⎤ = Β Β −⎣ ⎦ ⎣ ⎦  (106)  

 

Bivariate Sampling Bootstrap Example. We use the same small sample as for the Fisher Z 

and the asymptotically distribution free confidence intervals. Since the sampling frame is nothing 

other than the original sample, no additional graph or table is presented. Next, we draw 

2000B =  samples of size 5N =  from the sampling frame with replacement. Note that with such 

a small sampling frame, it can be expected that some of these samples will include all equal 

points and no correlation can be calculated; in that case, the correlation for the specific bootstrap 

sample is set equal to zero. This occurred six times. The first and last 100 values of the empirical 

sampling distribution thus created are displayed in Table 48:  
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Table 48: Bootstrap Correlations for Small Example, Bivariate Sampling Approach 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –1.000 

… 

–0.325 –0.325 –0.325 –.325 –0.099 –0.099 –0.099 –0.099 –0.099 –0.099 
–0.099 –0.099 –0.099 –.099 –0.099 –0.099 –0.099 –0.059 –0.059 –0.059 
–0.059 –0.059 –0.059 –.059 –0.059 –0.059 –0.059 –0.059 –0.059 –0.059 
–0.059 –0.059 –0.059 –.059 –0.059   0.000   0.000   0.000   0.000   0.000 
  0.000   0.034   0.034 0.034   0.034   0.034   0.034   0.034   0.034   0.034 
  0.034   0.034   0.034 0.034   0.034   0.034   0.034   0.034   1.000   1.000 
  1.000   1.000   1.000 1.000   1.000   1.000   1.000   1.000   1.000   1.000 
  1.000   1.000   1.000 1.000   1.000   1.000   1.000   1.000   1.000   1.000 
  1.000   1.000   1.000 1.000   1.000   1.000   1.000   1.000   1.000   1.000 
  1.000   1.000 1.000 1.000   1.000   1.000   1.000   1.000   1.000   1.000 
 
 

For a 95% confidence interval, we choose the middle of the interval between the 50th and 51st 

and the middle of the interval between the 1950th and 1951st of these correlations: 

 

( )

( )

* *
50 51

* *
1950 1951

1.000 1.000
1.000     and     

2 2
.034 .034

.034
2 2

r r

r r

− ++
≈ = −

++
≈ =

 (107) 

The 95% OI confidence interval for this (very small) example is: 

 [ ]Percentile Bootstrap CI , 1.000,.034p pLL UL⎡ ⎤= = −⎣ ⎦  (108)  

 

Bias-corrected and Accelerated (BCa) Confidence Interval 

To construct a bias-corrected and accelerated bootstrap CI, we calculate the bias-correction factor 
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( )( )*

1
0

#
ˆ

r b r
z

B
−
⎡ ⎤<
⎢ ⎥= Φ
⎢ ⎥
⎣ ⎦

 (109) 

where ( )( )*# /r b r B<  is the proportion of bootstrapped correlations *r  that are smaller than the 

observed sample value r and 1−Φ  is the inverse of a standard normal cumulative distribution 

function. For our small example with .80965r = − , ( )( )*# / 1140 / 2000 .57r b r B< = =  and 

therefore ( )1
0ˆ .57 0.176z −= Φ = . Further, an acceleration index α̂  is computed as 
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−⎜ ⎟

⎝ ⎠

∑

∑
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where [ ]ir  is the correlation of the original data set with the thi  value deleted and 

[ ] [ ]1
/n

ii
r r n

=
= ∑i , i.e. the mean of the [ ]ir . With [ ]1 .7446r = − , [ ]2 .9552r = − , [ ]3 .6634r = − , 

[ ]4 .8534r = − , [ ]5 .7739r = − , and [ ] .7981r = −i , we calculate the acceleration factor as 

ˆ 0.0218α = .  

The bias-correction and the acceleration factor are subsequently used to calculate the quantiles 

for the lower and upper end of the BCa confidence interval: 

 [ ]
1 2

* *
* *, ,BCa BCa B BLL UL r rα α⎡ ⎤= ⎣ ⎦  (111) 

where 

 
( )
0 /2

1 0
0 /2

ˆˆ
ˆ ˆ1
z zz

z z
α

α
α

α
⎛ ⎞+

= Φ +⎜ ⎟⎜ ⎟− +⎝ ⎠
 (112) 

and  
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−

⎛ ⎞+
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 (113) 

Entering the values we found for 0ẑ  and α̂  for this particular example into Equations (112) and 

(113), we find for a 95% confidence interval with .05α = : 

 
( ) ( )1

.176 1.96.176 1.541 .0617
1 .0218 .176 1.96

α
⎛ ⎞−

= Φ + = Φ − =⎜ ⎟⎜ ⎟− −⎝ ⎠
 (114) 

and 

 
( ) ( )2

.176 1.96.176 2.4163 .9922
1 .0218 .176 1.96

α
⎛ ⎞+

= Φ + = Φ =⎜ ⎟⎜ ⎟− +⎝ ⎠
 (115) 

The corresponding correlations (that is, only the upper limit of the CI) are colored in green in 

Table 48 and the resulting confidence interval is  

 [ ] [ ]* *
123 1984, , 1,1BCa BCaLL UL r r⎡ ⎤= = −⎣ ⎦  (116) 

This is not a very convincing confidence interval – it covers the entire parameter space of ρ . 

The BCa method seems to generally require a larger number B of bootstrap samples in the 

empirical sampling distribution than the percentile method to perform well (Efron, 1987).  

 After their introduction, the performance of bootstrap hypothesis tests and confidence 

intervals for r was evaluated in a number of Monte Carlo studies (Efron, 1988; Lunneborg, 1985; 

Mendoza, Hart & Powell, 1991; Rasmussen, 1987, 1988, and 1989; Strube, 1988). Early 

simulation studies, such as Lunneborg (1985), Rasmussen (1987), and Efron (1988) concerned 

themselves with examining whether bootstrap confidence intervals would perform as well as the 

Fisher Z confidence interval from Equation (100) when 0ρ = , often choosing an underlying 

bivariate normal distribution, i.e. complete independence. Conclusions were somewhat mixed, 

which may in part stem from methodological differences between studies. Rasmussen (1987) 
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observed inflated Type I error rates for the percentile bootstrap CI (Equation (106)) calculated 

for both a bivariate normal and a nonnormal (one variable normal, the other lognormal) 

distribution, each with 0ρ = , while the standard Fisher Z confidence interval performed almost 

perfectly. Strube (1988) expanded on Rasmussen’s study by including the bias-corrected 

bootstrap CI, which seemed to work better than the percentile CI, and in fact performed close to 

nominal. 

 Deciding that the bootstrap should be tested under conditions for which the Fisher Z 

confidence interval has been shown to perform poorly, Rasmussen (1988) applied the percentile 

and the adjusted bootstrap (the latter is not discussed in my study) to bivariate mixture 

distributions with 0ρ =  such as used by Kowalski (1972), the most extreme of which has been 

plotted in Figure 36(a). In cases where the parametric approach is extremely liberal, the bootstrap 

CI demonstrated better performance, in other conditions performance was about the same or 

slightly better for the parametric CI. In another study, Rasmussen (1989) showed that the 

adjusted bootstrap performs better than the Fisher Z CI for the same set of mixture distributions 

for medium to large sample sizes. Additional studies on the performance of bootstrap confidence 

intervals for correlations were carried out by Mendoza, Hart & Powell (1991) and Wilcox 

(1991). Sievers (1996) compares (among others) a version of the asymptotically distribution free 

CI (similar to Equation (103)) and the percentile bootstrap CI at the 90% confidence level with 

19N = , observing better performance for the bootstrap confidence interval. To construct 

bivariate nonnormal distributions, Sievers first creates two nonnormal univariate variables and 

then multiplies them with the Cholesky factor of the desired correlation matrix, as has been 

described for normal variables in the section on the 3rd order polynomial method. Notice that this 
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alters marginal moments for one of the variables. One of these distributions is pictured in Figure 

36(d). 

 In 1998, Lee & Rodgers introduced the univariate sampling approach, originally 

designed to allow for “logically more sound” nil hypothesis testing, i.e. testing the null 

hypothesis 0 : 0H ρ = . Potentially motivated by considerations presented in Dolker, Halperin, & 

Divgi (1982), they argue that when a bivariate sampling bootstrap confidence interval is 

constructed around 0r ≠ , the sampling frame reflects the relationship between the variables, and 

a sampling frame with independent variables should be preferred. While it is slightly unclear 

how Lee & Rodgers (1998) created their bivariate nonnormal distributions with 0ρ ≠  (I was 

unable to construct a bivariate distribution with one normal, one lognormal marginal distribution 

and .8ρ = ), it appears that their univariate sampling approach provides better overall Type I 

error control than several bivariate sampling bootstrap CIs when testing 0 : 0H ρ = . They claim 

that univariate sampling will show superior performance for very small samples because of a 

larger sampling frame. Recently, Beasley, DeShea, Toothaker, Mendoza, Bard, and Rodgers 

(2007) generalized the univariate sampling approach to allow testing the null hypothesis 

0 :H aρ = , with ( )1,1a∈ − . The resulting confidence interval is described in the next section.   

 

The OI Univariate Sampling Confidence Interval 

The bootstrap confidence interval around a single correlation as derived by Beasley et al (2007) 

is constructed in the following steps: 

1. Collect a sample of N bivariate data points (pairs of X and Y values, Figure 39(a)). 

2. Construct a sampling frame.  
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a. The notable difference between univariate sampling bootstrap for a correlation 

and more traditional methods (named “bivariate sampling bootstrap” in Beasley et 

al. (2007)) lies in the construction of the sampling frame. The number of elements 

in the sampling frame is increased by combining all X values with all Y values, 

thereby creating a rectangular sampling frame with a correlation of 0, 

independently of what the observed correlation in the sample has been. See Figure 

39(b). 

b. Next, the variables in the sampling frame are standardized.  

c. Finally, the up until now uncorrelated variables in the sampling frame are 

correlated by multiplying by the Cholesky decomposition of the desired 

correlation matrix (see Kaiser & Dickmann, 1962), with the observed correlation 

as off-diagonal element. This changes not only the correlation between the two 

variates in the sampling frame from zero to the observed correlation, but also the 

skewness and kurtosis of the second variate. See Figure 39(c). 

3. Randomly select N data point pairs from this sampling frame with replacement, thus 

creating one bootstrap sample. 

4. Calculate the sample correlation *r  for the bootstrap sample in 3; repeat B times. 

5. The set of B bootstrap sample correlations { }* *
1,..., Br r  is the empirical sampling 

distribution of r. A ( )100 1 %α−  OI confidence interval [ ],OI OILL UL  is constructed by 

choosing the ( )100 / 2 thα  and the ( )100 1 / 2 thα−  percentile of this empirical sampling 

distribution.  
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6. Finally, an asymptotic adjustment is applied by widening the CI from step 5 by a factor of 

( ) ( )2 / 1N N+ − : Both the center and width of the confidence interval are found: 

( )center / 2OI OIUL LL= + , ( )width / 2OI OIUL LL= − . The width is multiplied by the 

adjustment factor, creating the final margin of error: 

( ) ( ) ( )ME / 2 2 / 1OI OIUL LL N N= − × + − . Lastly, this margin of error is added to and 

subtracted from the center: [ ] [ ], center ME,center MEOIa OIaLL UL = − + . 

 

To exemplify the adjustment procedure, a confidence interval of [ ].100 .100−  around 0r =  

obtained in step 5 with 5N =  will be extended to [ ].132 .132− , and a confidence interval of 

[ ].100, .135  around .24r =  will be extended to [ ].060, .390 . Notice that the extension is 

symmetric about the center of the confidence interval, not necessarily about r.  

 

OI Univariate Sampling Confidence Interval Example. We have the same sample of 5 

data points as above: ( )2,10 , ( )7,7 , ( )8,2 , ( )5, 4 , and ( )1,9 , with sample correlation 

.80965r = −  (Figure 39(a)). The (uncorrelated) sampling frame is constructed by pairing each X 

value with each Y value, creating a total of 25 points (see Figure 39(b)). Next, the two variables 

are standardized and correlated with the originally observed sample correlation 

.80965r = − (Figure 39(c)). 
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Bootstrap Example 1 
Bootstrap Example 1 – 

Unstandardized, Uncorrelated 
Sampling Frame 

Bootstrap Example 1 – 
Standardized, Correlated 

Sampling Frame 

 
Figure 39(a), (b), and (c): Development of the sampling frame for the univariate sampling 
bootstrap 

 

Now bootstrap samples of size 5N =  are randomly drawn from the sampling frame from Figure 

39(c) and sample correlations are calculated for each sample. With 2000B = , the first and last 

100 bootstrap correlations are listed (and ordered) in Table 49.  
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Table 49: Bootstrap Correlations for the Small Example, OI Univariate Sampling Approach 
–1.000 –1.000 –1.000 –1.000 –1.000 –1.000 –0.999 –0.998 –0.998 –0.998 
–0.998 –0.997 –0.997 –0.996 –0.996 –0.996 –0.996 –0.995 –0.995 –0.995 
–0.995 –0.995 –0.995 –0.995 –0.995 –0.995 –0.994 –0.994 –0.994 –0.994 
–0.994 –0.994 –0.994 –0.994 –0.994 –0.993 –0.993 –0.993 –0.993 –0.993 
–0.993 –0.992 –0.992 –0.992 –0.992 –0.991 –0.991 –0.991 –0.991 –0.990 
–0.990 –0.990 –0.990 –0.990 –0.990 –0.990 –0.990 –0.990 –0.989 –0.989 
–0.989 –0.989 –0.988 –0.988 –0.988 –0.988 –0.988 –0.988 –0.987 –0.987 
–0.987 –0.987 –0.987 –0.986 –0.986 –0.986 –0.986 –0.986 –0.986 –0.986 
–0.986 –0.986 –0.986 –0.986 –0.986 –0.985 –0.985 –0.985 –0.985 –0.985 
–0.985 –0.985 –0.985 –0.984 –0.984 –0.984 –0.984 –0.984 –0.984 –0.984 

… 

–0.366 –0.359 –0.357 –0.349 –0.345 –0.344 –0.342 –0.331 –0.330 –0.325 
–0.321 –0.313 –0.313 –0.311 –0.311 –0.310 –0.308 –0.300 –0.300 –0.299 
–0.297 –0.297 –0.288 –0.287 –0.270 –0.260 –0.252 –0.248 –0.245 –0.238 
–0.237 –0.231 –0.231 –0.230 –0.223 –0.220 –0.217 –0.216 –0.215 –0.214 
–0.202 –0.194 –0.193 –0.180 –0.177 –0.164 –0.149 –0.142 –0.134 –0.132 
–0.119 –0.115 –0.115 –0.109 –0.107 –0.076 –0.072 –0.069 –0.067 –0.063 
–0.063 –0.056 –0.045 –0.045 –0.036 –0.022 –0.021 –0.012 –0.011 –0.009 
–0.003   0.000   0.000   0.000   0.024   0.025   0.044   0.051   0.061   0.088 
  0.102   0.124   0.128   0.162   0.168   0.192   0.199   0.253   0.307   0.311 
  0.312   0.328   0.354   0.415   0.418   0.421   0.463   0.505   0.545   0.563 
 
 

For a 95% OI confidence interval, we choose the middle of the interval between the 50th and 51st 

and the middle of the interval between the 1950th and 1951st of these correlations: 

 ( ) ( )* * * *
50 51 1950 1951.990 .990 .132 .119

.990     and     .126
2 2 2 2

r r r r− + − ++ +
≈ = − ≈ = − (117) 

As a last step, the confidence interval is widened by a factor of ( ) ( )5 2 / 5 1 1.323+ − ≈ : The  

center of the CI is –.558, and its width is .864. Hence, the new width will be .864 1.323 1.143× = . 

Arranged symmetrically around the center of –.558, we find the adjusted 95% OI bootstrap 

confidence interval to be [ 1.129,.013]− . 
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Evaluating Confidence Interval Performance – The Exact CI 

The main focus of Part II of my dissertation is the evaluation of confidence interval 

performance. Aside from Type I error rate, coverage rate is probably the most established index 

of CI performance, and both coverage rate and coverage balance as described in Part I of this 

study will be included. Coverage rate and balance will be contrasted with several new 

approaches to understanding CI performance, described in the remainder of this section. In my 

dissertation proposal, I included several predictions regarding the performance of the five 

approximate confidence intervals for r. In particular, I predicted the Fisher Z CI to depart from 

nominal performance considerably only when a linear, single population model was inadequate 

for the distribution at hand. I further stipulated that the distribution-free CIs would outperform 

the Fisher Z CI as sample size increased. Finally, I predicted that overall, the BCa CI would 

outperform the Univariate Sampling CI, especially for nonlinear relationships, since the 

sampling fram for the BCa method will increasingly resemble the true population, while the 

sampling frame for the Univariate CI will not. I also adopted the common prediction that 

confidence interval performance will improve as sample size increases. In particular, preliminary 

results had shown that coverage balance will increase, while coverage rate may in some cases 

decrease. The next section will provide us with an additional tool to investigate there predictions. 

 

Additional Ways of Evaluating Performance: An Exact CI for ρ . Confidence intervals 

are recommended by methodologists because they provide an interval estimate for the parameter 

of interest, carrying information on the precision the parameter estimate. Thus, another important 

property of confidence intervals is their width. The narrower an interval, the more precise is the 

estimation, assuming equal confidence levels. Some authors have even gone further by 
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comparing different interval procedures applied to a handful of samples one-by-one. Rasmussen 

(1988) tabulates endpoints of 99% and 95% confidence intervals, while Efron (1988) provides 

average confidence limits as well as a one to one comparison for a smaller set of instances for 

parametric and bootstrap CIs. Sievers (1996) attempts a comparison of parametric and bootstrap 

confidence intervals with “exact” confidence limits. However, there seems to be a certain 

inconsistency in his findings: Considering his Table 1, we can see for .5ρ =  and distribution 3 

(the bivariate exponential distribution), the percentile t-method has confidence limits –.108 and 

.824 and coverage rate 86.8%, while at the same time, the “exact” 90% confidence interval has 

limits .068 and .798, thus being considerably narrower, but supposedly covering the true ρ  more 

often (Sievers does not provide the empirical coverage rate for his exact CI).  

Taking a closer look at Sievers’ description of an “exact” two-sided central 90% 

confidence interval, we find that he defines its confidence limits to be the 5th and 95th percentile 

of an empirical distribution obtained by repeatedly sampling correlations from the distribution of 

interest (page 385, second paragraph). This does not necessarily result in a confidence interval 

that will miss the true ρ  a total of 10% of the time by lying below and above it 5% of the time 

each! To see why, consider the following: As ρ  changes, the shape of the sampling distribution 

will change as well, including the size of the standard error. Generally, the standard error of ρ  

will decrease in size as ρ  increases in absolute value. This effect is reflected in the simple 

approximation to the standard error as described, e.g., in Olkin & Finn (1995): 

 
( )221

rSE
n

ρ−
=  (118) 

It is easy to see that as ρ  increases, rSE  from Equation (118) decreases. Hence, width of 

intervals changes over the range of the parameter space of ρ . Now, choose .5ρ = , based on a 
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bivariate normal distribution: The 5th and 95th percentile of the sampling distribution of r when 

calculated for samples of size 19N =  are approximately equal to .153 and .750. However, this 

does not mean that the 5th percentile of the sampling distribution around .750ρ =  is equal to 

approximately .5! When .750ρ = , and 19N = , the 5th percentile of the sampling distribution is 

approximately .529. Therefore, confidence intervals around sample correlations smaller than 

.750 would already not cover .5ρ = , and the 5th and 95th percentile of the sampling distribution 

prove to be inadequate confidence limits if coverage balance is desired. The remainder of this 

study focuses on comparisons between the approximate CIs introduced in previous sections and 

a CI with exact coverage. We define an exact two-sided 1 α−  confidence interval based on work 

in Steiger & Fouladi (1997), who write (page ):  

“An upper confidence limit (or upper confidence bound) is a statistic that, over repeated 
samples of size N, exceeds an unknown parameter θ  a certain proportion of the time. For 
example, function ( )B X  is a 1 α−  upper confidence limit for θ  if, … 

( )( ) 1P B X θ α≥ = − .” 

An exact two-sided ( )100 1 %α−  confidence interval for ρ  is then defined as a confidence 

interval that will lie entirely below and above the true ρ  exactly ( )100 / 2 %α  of the time. That 

is, if ( )eLL X  stands for the lower and ( )eUL X  stands for the upper limit of the exact CI, 

( )( ) / 2eP UL X ρ α≤ =  and ( )( ) / 2eP LL Xρ α≤ = . Such an interval can be constructed with 

the technique of pivoting the cdf as described in Steiger & Fouladi. The technique of pivoting the 

cdf utilizes the relationship between the population parameter (such as ρ ) and the statistic used 

to obtain sample estimates (correspondingly, r) that is created when the cdf is known.  
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Creating an Exact CI Empirically. When we attempt to apply this procedure for creating 

an exact CI to correlations drawn from a nonnormal distribution (potentially even with an 

unknown cdf itself), where the cdf of r is infeasible or impossible to obtain, we can adapt by 

using an empirical approximation to the cdf of r. An empirical cdf can be created if large 

numbers of samples are drawn, the correlation for each sample is calculated, and the respective 

quantiles of the resulting empirical sampling distribution recorded. For example, we may create 

50,000 samples of size 20N =  from a Vale & Maurelli distribution with known 11 12 0γ γ= = , 

21 22 25γ γ= = , and .5Yρ = . For each sample, we calculate Yr , resulting in 50,000 sample 

correlations, and find the approximate 2.5th and 97.5th percentile of this empirical sampling 

distribution to be .126 and .886. If such simulation of empirical cdfs is repeated for values across 

the entire range of Yρ , with a sufficient amount of intervals, a functional relationship between 

Yρ  and Yr  can be created. To see how the confidence interval works, consider Figure 40 below, 

which is similar to Figure 9.3 in Steiger & Fouladi (1997):  
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Figure 40: Construction of an Exact CI for ρ  when Sampling from a 3rd Order Power Method 

Distribution 

 
 
On the x-axis, the entire possible range of population correlations is plotted, while sample 

correlations are plotted on the y-axis. The two slightly zigzagged graphs are the 2.5th and 97.5th 

percentile of the empirical sampling distribution of r for respective values of ρ  on the x-axis. 

Lack of continuity can be compensated by using a suitable smoothing technique. For example, 

for .5ρ = , we follow the dashed black line vertically to the lower graph and then over to the y-

axis to find that the 2.5th percentile of the sampling distribution is approximately equal to .126. 

Equivalently, the 97.5th percentile is approximately equal to .886. Reversing this process and 

assuming that we found .5r = , following the red dashed line horizontally to the two slightly 

zigzagged lines and then dropping vertically onto the scale of the population correlation, we 
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obtain about .025 as a lower and .776 as an upper confidence limit for a 95% confidence interval. 

The novelty about the interval constructed from Figure 40 is that it is not for a correlation based 

on a bivariate normal parent distribution, but on a Vale & Maurelli distribution with 11 12 0γ γ= =  

and 21 22 25γ γ= =  (transformation coefficients for both variables: [0 0.2553 0 0.2038]) as 

in Figure 12(a) with sample size 20N = . The graph in Figure 40 was created with 10,000 

samples per empirical distribution, dividing the range of ρ  into 201 parts: 

{ }–1.00,  – .99,  – .98,  ,  .99,  1.00… . No smoothing or interpolation were applied.  

 This empirical way of constructing an exact CI for a single correlation drawn from a 

nonnormal distribution will be utilized to create an exact CI that the five approximate CIs can be 

compared to. For the present study, empirical sampling distributions were created for population 

correlations spaced apart in intervals of .001, i.e., an empirical sampling distribution was created 

for 1Yρ = − , .999Yρ = − , .998Yρ = −  and so forth, up to .999Yρ = , 1Yρ = . Since random 

variation may lead to a situation in which the 2.5th quantile for .999Yρ = −  is larger than the 2.5th 

quantile for .998Yρ = − , smoothing using the lowess function in R with smoothing parameter 

f 0.01=  was applied. For this study, during the gathering of percentiles of the empirical 

sampling distribution, not only the 2.5th and the 97.5th percentile were recorded, but the 0.5th, 

5th, 10th, 16th, 84th, 90th, 95th, and 99.5th percentiles as well. This allows us to construct exact 

CIs with 68%, 80%, 90%, 95%, and 99% coverage. Once the construction of the Exact CI is 

complete and a sample correlation obtained, the population correlation values for which this 

sample correlation would lie at the 97.5th percentile or the 2.5th percentile, respectively, are found 

as demonstrated in Figure 40 and make up the lower and upper limit for a 95% CI.  
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In the results section, I provide a small demonstration of the accuracy of coverage rate 

and balance for the exact CI. However, exact coverage is not the only thing this CI has to offer. 

In fact, it is actually quite simple to create a confidence interval with nominal coverage for a 

single correlation. For a 95% CI, let  

LL 1  and  UL 1
LL UL 1
LL UL 1

= − =
= = −
= =

    
with .95
with .025
with .025

p
p
p

=
=
=

 

This interval will show perfect coverage in all conditions, but have very uninteresting behavior, 

unrelated to the properties of the obtained sample, in addition to being overly wide. Instead, the 

lower and upper confidence interval limits of the Exact CI as constructed above provide us with 

information on the probability of observing a sample correlation given a certain population 

correlation. For example, if .5r =  and .025ELL =  and .776EUL = , we know that 

( ).5 | .025 .025P r ρ≥ = =  and ( ).5 | .776 .025P r ρ≤ = = . These probabilities will be larger for 

any .025 .776ρ< < . Therefore, the Exact CI provides information on the sampling distribution 

produced at each level of ρ . Interestingly, some of the most popular instances of confidence 

intervals have this property as well. An example is the traditional confidence interval for a single 

mean, often the first confidence interval taught in statistics courses and certainly formative as 

students and researchers develop their expectations towards the statistical concept of confidence 

interval construction. The traditional CI for a single mean possesses these properties as well, 

because the standard error is conveniently assumed to be known, or, when it is not, mean and 

standard error are assumed to be independent of each other. 

 

Utilizing the Exact Confidence Interval. Notice that the construction and use of the exact 

confidence interval turns out to be more complicated when the simulation technique and the 
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choice of marginal skewnesses and kurtoses for the nonnormal parent distribution does not allow 

the simulation of the entire range of [ ]1, 1−  for Yρ . This poses a problem because the exact 

confidence interval is constructed by creating empirical sampling distributions of sample 

correlations calculated on samples drawn from the underlying nonnormal parent distribution for 

several levels of ρ . Assume we simulate an nIM V&M distribution with 11 2.5γ = , 12 2.0γ = , 

21 10γ = , and 22 12γ = , with simulation coefficients [ ]0.6415 0.6487 0.6415 0.1057− −  and 

[ ]0.5435 0.9802 0.5435 0.1553− − . This choice of transformation coefficients cannot 

simulate population correlations outside the range of [ ].0106 .9663Yρ = − . Utilizing only the 

available range and creating sampling distributions for .010ρ = −  through .966ρ =  in steps of 

.001 and plotting the 2.5th and 97.5th percentile equivalent to Figure 40, we obtain: 

 

 
Figure 41: The Exact CI for an nIM Distribution with [ ].0106 .9663ρ ∈ −  
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The issue here is obvious: How would we construct the confidence limits of the exact confidence 

interval if we observed .3r = − , e.g.? There exists a straightforward answer: Since Yρ  cannot lie 

outside the range [ ].0106 .9663− , and we have knowledge of this property of the particular 

V&M distribution at hand, we could restrict all values possible for confidence limits to this 

range, [ ].0106 .9663− . Therefore, the lower limit of the CI would be –.0106, and the upper 

limit probably something around .10. However, would it be fair to use the knowledge about the 

range of Yρ  for the construction of the exact CI, but not for the construction of the other 

confidence intervals? Answering this question requires the consideration of several other issues, 

such as simulating nonnormal distributions that produce sample correlations that lie outside the 

range of Yρ . A thorough discussion of these questions is deferred to some other occasion. For the 

purposes of this study, we will limit ourselves to constructing the exact confidence interval for 

distributions for which the entire range of [ ]1, 1−  for Yρ  can be simulated. 

Once the Exact CI around r of a sample drawn from a particular nonnormal distribution 

has been found, confidence limits of an approximate confidence interval can be directly 

compared to the limits of the Exact CI in several ways: Histograms of lower and upper CI limits 

for the Exact and the approximate CI can be plotted alongside each other. Another graphing 

approach presented in this study entails calculating difference scores between the lower and 

upper CI limits of the Exact CI and the approximate CI and plotting this bivariate set of 

difference scores in a scatterplot. Differences between interval limits can also be summarized 

numerically using a mean or median. These techniques will be demonstrated and applied in great 

detail in the results section below.  
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Widths of the confidence intervals will be recorded as well. Narrower confidence 

intervals provide more precise information on the parameter of interest. Should all other 

performance measures be approximately equal for two competing confidence interval 

procedures, the narrower confidence interval should be preferred. In general, however, width 

should be of secondary importance. 

 

Method 

 Several concerns play a role in the assessment of confidence interval performance. First, 

of course, the selection of conditions of nonnormality is important. In this section, we will 

examine coverage rate and balance, width, and variability around the exact confidence interval 

for five approximate confidence intervals: 1) Fisher’s Z confidence interval (Equation (100)), 2) 

the asymptotically distribution-free confidence interval (Equation (103)), 3) the asymptotically 

distribution-free Fisher Z confidence interval (Equation (105)), 4) the BCa bootstrap confidence 

interval (Equation (107)) and 5) the univariate sampling bootstrap confidence interval as 

suggested by Beasley et al. (2007, Equation (117)).In previous sections, we have already seen 

that properties of distributions that have been disregarded in previous literature can have a 

tremendous impact on simulation outcomes. We will be able to observe more of these effects in 

the results section of this part; however, they will not be discussed in detail here. 

    

 Conditions Simulated. I investigated a total of eight different nonnormal distributions. 

Due to its popularity and in order to limit the different factors that may influence results, the 3rd 

order power method was used to simulate nonnormality. In light of the discussion above on 

Exact CIs constructed for nIM distributions, we limit the construction of exact CIs to IM 
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distributions which are capable of simulating Yρ  over the entire range of [ ]1, 1− . There exists 

no equation that allows for the determination of skewness-kurtosis combinations that produce the 

entire range [ ]1, 1Yρ = − , but trial and error manipulation showed that only symmetric IM Vale 

& Maurelli distributions seem to be able to produce final correlations spanning the entire interval 

[ ]1, 1− . Hence, two distributions with 11 12 0γ γ= =  and small kurtosis, namely 21 22 2.75γ γ= =  

and two distributions with 11 12 0γ γ= =  and large kurtosis, namely 21 22 25γ γ= = , were used to 

compare confidence interval limits to the limits of the exact CI. The coefficient sets for these 

distributions are as follows: 

 

Table 50: Moments and Transformation Coefficients for IM Distributions Simulated 

Distribu-
tion Moments Transformation Coefficients 

1a 11 12 0γ γ= =  

21 22 2.75γ γ= =  
[ ]0.0000 0.7948 0.0000 0.0643  (monotonic) 

1b 11 12 0γ γ= =  

21 22 2.75γ γ= =  
[ ]0.0000 1.5479 0.0000 0.2569−  (non-monotonic) 

2a 11 12 0γ γ= =  

21 22 25γ γ= =  
[ ]0.0000 0.2553 0.0000 0.2038  (monotonic) 

2b 11 12 0γ γ= =  

21 22 25γ γ= =  
[ ]0.0000 1.5667 0.0000 0.3482−  (non-monotonic) 

 
 

All four distributions were simulated with population correlations .8Yρ = − , .4Yρ = − , 0Yρ = , 

.4Yρ = , and .8Yρ = . While results for distribution 1a and 1b are limited to samples of size 

50N = , simulations for distribution 2a and 2b span samples of size 20N = , 50N = , 100N = , 

200N = , and 500N = . A graph for each distribution and population correlation size based on 

5000N =  is provided in Figure 42 and Figure 43.
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 .8Yρ = −  .4Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  

1a 

   

1b 

   
Figure 42: Plots of Distributions 1a and 1b, ρ = –.8 through .8, N = 5000



  

 .8Yρ = −  .4Yρ = −  0Yρ =  .4Yρ =  .8Yρ =  

2a 

   

2b 

   
Figure 43: Plots of Distributions 2a and 2b, ρ = –.8 through .8, N = 5000 
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One more combination of marginal skewnesses and kurtoses was chosen, an nIM V&M 

distribution with 11 2.5γ = , 12 2.0γ = , 21 10γ = , and 22 12γ = . Each variable ( 1Y  and 2Y ) has two 

distinct sets of transformation coeffcients (Table 51), which combine into four differently shaped 

distributions. 

 

Table 51: Moments and Transformation Coefficients for nIM Distributions Simulated 

Variable Distribution Moments Transformation Coefficients 

1a 11 2.5γ =  

21 10γ =  
[ ]0.2694 0.6214 0.2694 0.0918− − −  

1Y  

1b 11 2.5γ =  

21 10γ =  
[ ]0.6415 0.6487 0.6415 0.1057− −  

2a 11 2.0γ =  

21 12γ =  
[ ]0.2034 0.6304 0.2034 0.0987−  

2Y  

2b 11 2.0γ =  

21 12γ =  
[ ]0.5435 0.9802 0.5435 0.1553− −  

 
The ranges of the final correlations that can be simulated for these four distributions are less than 

the maximum [ ]1, 1− : 

 Yρ  

 MIN MAX 
41a & 42a = 41a2a –.7759 .9951 
41a & 42b = 41a2b –.1530 .6685 
41b & 42a = 41b2a –.0805 .5055 
41b & 42b = 41b2b –.0106 .9663 

 
 

Population correlations and sample sizes for the nIM distributions are 0Yρ =  and .5Yρ = , and 

20N =  ( .5Yρ =  only), 50N = , 100N = , 200N = , and 500N = , respectively. No exact CI 

was constructed for this distribution, but confidence limits for all five approximate confidence 
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intervals were recorded, which could then be used to find coverage rate and balance and compare 

CIs amongst each other. The distributions are plotted in Figure 44 below, based on 5000N = : 
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 .0Yρ =  .5Yρ =  

41a2a 

  

41a2b 

  

41b2a 

  

41b2b 

  
Figure 44: Plots of Distribution 41a2a through 41b2b ρ = 0 and .5, N = 5000 
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Table 52 below summarizes the conditions (sample size, size of Yρ , and confidence level) 

simulated:  

 

Table 52: AllDistributions - Part II 

Distribution Correlation Sample size Type I Error Level 
.8ρ = −  50N =  .32,.2,.1,.05,.01α =  
.4ρ = −  50N =  .32,.2,.1,.05,.01α =  

0ρ =  50N =  .32,.2,.1,.05,.01α =  
.4ρ =  50N =  .32,.2,.1,.05,.01α =  

1a 

.8ρ =  50N =  .32,.2,.1,.05,.01α =  
.8ρ = −  50N =  .32,.2,.1,.05,.01α =  
.4ρ = −  50N =  .32,.2,.1,.05,.01α =  

0ρ =  50N =  .32,.2,.1,.05,.01α =  
.4ρ =  50N =  .32,.2,.1,.05,.01α =  

1b 

.8ρ =  50N =  .32,.2,.1,.05,.01α =  
.8ρ = −  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.4ρ = −  50,100,200,500N =  .32,.2,.1,.05,.01α =  

0ρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  
.4ρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  

2a 

.8ρ =  20,50,100, 200,500N =  .32,.2,.1,.05,.01α =  
.8ρ = −  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.4ρ = −  50,100, 200,500N =  .32,.2,.1,.05,.01α =  

0ρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  
.4ρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  

2b 

.8ρ =  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.0Yρ =  50,100, 200,500N =  .32,.2,.1,.05,.01α =  

41a2a 
.5Yρ =  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.0Yρ =  50,100, 200,500N =  .32,.2,.1,.05,.01α =  

41a2b 
.5Yρ =  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.0Yρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  

41b2a 
.5Yρ =  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
.0Yρ =  50,100,200,500N =  .32,.2,.1,.05,.01α =  

41b2b 
.5Yρ =  20,50,100,200,500N =  .32,.2,.1,.05,.01α =  
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Results 

Performance of the Exact Confidence Interval  

During the construction and execution of the exact CI, both a lowess procedure and some 

approximation are required and therefore a more extensive performance check for the Exact CI 

was done. I randomly chose two combinations of sample size and population correlation for each 

of the four distributions 1a, 1b, 2a, and 2b and generated coverage rate and balance based on 

1,000,000 replications. The eight randomly selected distributions were:  

• Distribution 1a: 50N =  with .8ρ = −  and .4ρ = −  

• Distribution 1b: 50N =  with .8ρ =  and 0ρ =  

• Distribution 2a: 50N =  with 0ρ =  and 20N =  with .8ρ = −  

• Distribution 2b: 500N =  with .8ρ =  and 200N =  with .4ρ = − .  

Due to the very large sample size ( 1,000,000N = ), a simple approximation can be used to create 

a 95% confidence interval for coverage rate, which is just a proportion: 

 ( )
/2

ˆ ˆ1
ˆ

p p
p z

nα
−

±  (119) 

For coverage balance, the values were bundled into packages of 50,000, and the balance index 

for each package then treated like one sample value. Calculating mean and standard deviation for 

these 20 values, the interval was constructed as  

 /2,19m t sα±  (120) 

where ,19 1 thtα α= −  percentile of the t distribution with 19 degrees of freedom. A visual 

representation of these confidence intervals around coverage rate and balance is provided in 

Figure 45 below. The first cell shows 95% CIs for coverage rate of the exact CIs at the 68% 

confidence level and each horizontal line stands for the 95% CI for one of the distributions, 
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resulting in a total of eight CIs. Five of the CIs cover the nominal value of 68% (distributions 

1a.1 with .8ρ = −  and 50N = , 1b.1 with .8ρ =  and 50N = , 2a.2 with 0ρ =  and 50N = , 2b.1 

with .8ρ =  and 500N = , and 2b.2 with .4ρ = −  and 200N = ), and CIs for three conditions do 

not cover the nominal value. Equivalent to Figure 45(a), Figure 45(b) shows CIs for 80% 

coverage rate and so on. 
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Figure 45(a) through (f): Confidence Intervals Summarizing the Performance of the Exact CI  
 

15 out of the 40 coverage rate CIs and 15 out of the 40 balance index CIs (37.5% each) do not 

cover the nominal value. This rate is above the random non-coverage that would be expected for 

95% confidence intervals. Most likely reasons are that smoothing and rounding applied in the 

construction and application of the CI do have some slight but noticeable effects. Notice that the 

deviations from nominal performance are very small and the confidence intervals are narrow, 

having high precision. In Figure 45(f), as confidence level increases, the width of the CIs 

increases as well, as the number of values going into the calculation of the balance index 

decreases, leading to more variability.  

 

Evaluating Confidence Intervals – Distributions with Identical Marginals.   

As promised, the presentation of study results will be more elaborate than what is 

common and focus on exploring several avenues of conceptualizing performance of confidence 

intervals. Not all simulated conditions will be discussed, and the greatest emphasis will be given 

to simulations for the IM distributions. All subsequent results are based on 50,000 replications. 
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Coverage Rate. The most common approach is to compare coverage rates (in lieu of Type 

I error performance). Oftentimes, a two-sided confidence interval is used as a substitute for a 

non-directional hypothesis test, and the information provided by coverage rate for the confidence 

interval is equivalent to the Type I error rate of the corresponding hypothesis test. Below are the 

coverage rates for all six intervals for distribution 2a, 20N = , .8ρ = : 

 

Table 53: Coverage Rate for Distribution 2a, N = 20, ρ  = .8 

Exact CI  Fisher CI 
Asymptotic 

CI 
Asymptotic 
Fisher CI 

BCa CI 
Univariate 
Sampling CI

0.680 
0.801 
0.900 
0.951 
0.990 

0.497 
0.608 
0.724 
0.799 
0.893 

0.446
0.539
0.637
0.702
0.793

0.484
0.599
0.717
0.795
0.891

0.557 
0.677 
0.796 
0.867 
0.945 

0.737
0.874
0.960
0.987
0.999

 
 

Empirical coverage rates for the exact CI are very close to the nominal coverage rates of 

11 .68α− = , 21 .80α− = , 31 .90α− = , 41 .95α− = , and 51 .99α− = . For the approximate 

confidence intervals, one may decide that the order of performance is 2) Univariate Sampling CI, 

3) BCa CI, 4) Fisher Z CI, 5) asymptotically distribution-free Fisher Z CI, and 6) asymptotically 

distribution-free CI. Notice that the Univariate Sampling CI has coverage rates above the 

nominal values, while all other approximate CIs have coverage rates below the nominal values.  

Coverage Balance. More recently (e.g. in Zou, 2007, discussed in Efron, 2003, 

Newcombe 1998) researchers have begun to include miscoverage rates for the lower and upper 

end of the confidence interval as discussed in the section on the balance index in Part I of my 

dissertation. The balance index divides the rate at which a confidence interval lies above the true 

value by the rate at which a CI lies below the true value. Coverage rates in conjunction with 

balance index values are presented in Table 54: 
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Table 54: Coverage Rate and Balance for Distribution 2a, N = 20, ρ  = .8 

Exact CI  Fisher CI  Asymptotic CI 

0.680  1.019 
0.801  1.028 
0.900  1.059 
0.951  1.068 
0.990  1.051 

0.497  2.077 
0.608  2.542 
0.724  3.553 
0.799  5.256 
0.893 15.539 

0.446  1.975 
0.539  2.272 
0.637  2.728 
0.702  3.204 
0.793  4.327 

Asymptotic 
Fisher CI 

BCa CI 
Univariate 
Sampling CI 

0.484  1.506 
0.599  1.407 
0.717  1.212 
0.795  1.041 
0.891  0.697 

0.557  0.962 
0.677  0.884 
0.796  0.785 
0.867  0.749 
0.945  0.781 

0.737  2.822 
0.874  3.856 
0.960  6.878 
0.987 14.119 
0.999 37.000 

 
 

Again, the exact confidence interval’s empirical coverage rate and balance values are 

very close to their nominal counterparts. For the other CIs, however, balance performance varies 

greatly between procedures and can be far removed from the nominal value of 1. In particular, 

the Univariate Sampling CI and tends to overestimate the true value of ρ ; out of 38 times that 

the CI misses the true ρ  at the 99% confidence level, it lies above ρ  37 times and only once 

below. While the Fisher Z CI tends to also overestimate ρ , the asymptotically distribution-free 

Fisher Z CI and the BCa CI perform rather well. With this additional information available, a 

researcher may now decide that the BCa CI outperforms the Univariate Sampling CI. Of course, 

coverage rate for the BCa CI is not great, and some researchers may be unwilling to accept such 

deviations, but the considerable coverage imbalance displayed by the Univariate Sampling CI 

should not be ignored. Notice that the asymptotically distribution-free Fisher Z CI has the second 

best coverage balance performance. 

Width. Additional insight about the confidence intervals might be gained if we also 

include information on some average distance between the lower and upper confidence limits. 
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The table below includes the median difference between lower and upper confidence limits as a 

third column: 

 

Table 55: Coverage Rate, Coverage Balance, and Width for Distribution 2a, N = 20, ρ  = .8 

Exact CI  Fisher CI  Asymptotic CI 

0.680  1.019  0.260 
0.801  1.028  0.342 
0.900  1.059  0.452 
0.951  1.068  0.554 
0.990  1.051  0.743 

0.497  2.077  0.155 
0.608  2.542  0.202 
0.724  3.553  0.265 
0.799  5.256  0.322 
0.893 15.539  0.442 

0.446  1.975  0.137 
0.539  2.272  0.176 
0.637  2.727  0.222 
0.702  3.203  0.260 
0.793  4.327  0.325 

Asymptotic Fisher CI  BCa CI  Univariate Sampling CI 

0.484  1.506  0.145 
0.599  1.407  0.190 
0.717  1.212  0.250 
0.795  1.041  0.307 
0.891  0.697  0.428 

0.557  0.962  0.179 
0.677  0.884  0.238 
0.796  0.785  0.312 
0.867  0.749  0.374 
0.945  0.781  0.477 

0.737  2.822  0.247 
0.874  3.856  0.336 
0.960  6.878  0.459 
0.987 14.119  0.576 
0.999 37.000  0.806 

 
Overall, the Univariate Sampling CI tends to be the widest, while the asymptotically distribution-

free CI tends to be the most narrow. The Univariate Sampling CI is rather close in width to the 

exact CI, but for the 68% confidence level, the Univariate Sampling CI is narrower than the 

Exact CI, but has greater coverage. While this may seem appealing at first, the interval also 

tends to overestimate the true ρ  quite often; more specifically, 19.4% of the time, while it 

underestimates the true parameter only 6.9% of the time. Nevertheless, it estimates the width of 

the exact CI best. 

Plotting. With three indices of performance, ranking the confidence intervals becomes 

increasingly difficult, as there are interactions between confidence interval type and type of 

performance index. While the triad of coverage rate, coverage balance, and width is more than is 

presented in the vast majority of studies on confidence interval performance, these are only 

point-value summaries of an entire bivariate distribution of confidence interval limits. We now 

create a number of different plots to aid the evaluation of CI performance. For distribution 2a, 
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20N = , .8ρ = , Figure 46(a) shows frequency plots for both the lower and upper confidence 

limits of the Fisher Z CI, at a confidence level of 51 .99α− =  in red. The two distributions of the 

lower and upper confidence interval limit of the Exact CI in black and a green vertical line for 

the true value of ρ  are included for comparison. While the upper limits of both intervals lie 

nicely on top of each other, suggesting near equivalence, the lower interval limits are radically 

different from each other. One can also see that the lower limit of the Fisher Z CI lies above the 

true ρ  more often than the upper limit lies below. Figure 46(b) plots the lower and upper 

confidence limits for the Univariate Sampling CI, at a confidence level of 51 .99α− =  in red, 

with the exact CI limits in black as before.  

 
 

Figure 46(a) and (b): Histograms of Upper and Lower Confidence Limits for the Fisher Z, the 
Univariate Sampling, and the Exact CI. 

 
 
The Univariate Sampling CI seems to perform better than the Fisher Z CI. The upper confidence 

limit distributions lie fairly well on top of each other and the distributions for the lower 
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confidence limits overlap more than they do for the Fisher Z CI as well.  

The graphs in Figure 46 are quite interesting, but there are additional ways in which we 

can graphically portray the behavior of confidence limits. The next type of graph plots values for 

both the lower and upper limit on the y-axis against the observed sample correlations on the x-

axis, and Figure 47 demonstrates this type of plot for the Exact CI:  

 

 
Figure 47: CI Limit-Sample Correlation Plot for the Fisher Z CI. 

 
 

The red line demonstrates that for a sample correlation of .8r = , we would observe lower 

and upper CI limits of approximately .2 and .95. This graph is, in some ways, similar to Figure 

40, however, now it is the sample correlation that is on the x-axis. We can use this type of graph 

to compare different confidence interval procedures side by side. Figure 48 shows the Exact CI 

and the Fisher Z CI in one graph:  
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Figure 48: CI Limit-Sample Correlation Plot for the Fisher Z and the Exact CI. 

 

This graph allows us to not only assess over and underestimation, but also where on the scale of 

r these occur. It seems that the Fisher Z CI has its worst departure from the Exact CI right around 

the value of the true ρ , i.e., 0.8. The upper limits lie almost perfectly on top of each other, while 

the lower limit of the Fisher Z CI overestimates the lower limit of the Exact CI by a substantial 

amount. Lastly, we can include one more confidence interval in the graph. Figure 49 plots the 

Exact, the Fisher Z, and the Univariate Sampling CI side-by-side: 
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Figure 49: CI Limit-Sample Correlation Plot for the Fisher Z, the Univariate Sampling, and the 

Exact CI. 
 

Several things can be read from Figure 49: The most striking observation will probably be that 

for any observed sample correlation, there will be exactly one value for the lower and upper limit 

of the Exact and the Fisher Z CI. The lower and upper limits of the Univariate Sampling CI, are 

subjected to sampling variability, that is, for a given sample r, the limits of the CI are not 

determined, but depend on other characteristics of the sample as well. The upper limit of the 

Univariate Sampling CI overestimates the upper limit of the Exact CI, and interestingly, the 

lower limit of the Fisher Z almost looks like an upper boundary to the lower limit of the 

Univariate Sampling CI.  

As one last option for graphing confidence interval limits, I focus on difference scores 

between confidence interval limits for two different procedures. In particular, I am interested in 

the differences between confidence interval limits for the Exact vs. some approximate CI. 
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Assume, e.g., we had observed four sample correlations for some nonnormal distribution and 

created both the Fisher Z CIs and the Exact CIs around these correlations. The (fictional) 

observed values for the sample correlations, the Fisher Z CIs and the exact CIs are: 

 

 
Sample 

Correlations 
Fisher Z CIs Exact CIs 

Sample 1 1 .67r =  [ ]1 .48 .80CI =  [ ]1 .38 .72CI =  

Sample 2 2 .84r =  [ ]2 .73 .91CI =  [ ]2 .75 .86CI =  

Sample 3 3 .81r =  [ ]3 .69 .89CI =  [ ]3 .73 .96CI =  

Sample 4 4 .53r =  [ ]4 .30 .70CI =  [ ]4 .25 .74CI =  

 
 
Notice how for the first sample, both the lower and the upper limit of the Fisher Z CI lie above 

the lower and the upper limit, respectively, of the exact CI. Similarly, for the third sample, both 

the lower and upper limit of the Fisher Z CI lie below the lower and upper limit of the exact CI. 

We would say that for the first sample, the Fisher Z CI is overestimating the exact CI and for the 

third sample, the Fisher Z CI is underestimating the exact CI. For the second sample, the Fisher Z 

CI fully contains the exact CI, making the Fisher Z CI too wide, and for the fourth sample, the 

exact CI fully contains the Fisher Z CI, which is therefore too narrow.  

 These relationships can be portrayed graphically. For each sample, calculate the 

differences between lower and upper confidence interval limits of the two interval procedures. 

For sample 1, the difference F ELL LL−  is .48 – .38 = .10, and the difference F EUL UL−  is .80 – 

.72 = .08. These two difference scores can be plotted as one point in a bivariate plane. Choosing 

the x-axis as the scale for differences between upper limits of confidence intervals and the y-axis 

as the scale for differences between lower limits of confidence intervals, the point portraying the 

difference scores for sample 1 is plotted in the upper right corner of Figure 50: 
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Figure 50: Four Categories of Bias. 

 

Any point plotted in the first quadrant of Figure 50, with a positive difference between lower CI 

limits and a positive difference between upper CI limits, is a confidence interval that 

overestimates the exact CI. Moving on to the second sample, we have  

.73 .75 .02F ELL LL− = − = −  and .91 .86 .05F EUL UL− = − = ; the interval is too wide and the 

coordinates of the differences are plotted in the second quadrant of Figure 50. For the third 

sample, .69 .73 .05F ELL LL− = − = −  and .89 .96 .07F EUL UL− = − = − , the Fisher Z CI is 

underestimating, and for the fourth sample, .30 .25 .05F ELL LL− = − =  and 

.70 .74 .04F EUL UL− = − = − , the Fisher Z CI is too narrow. Points for the third and fourth 
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sample are plotted in the third and fourth quadrant of Figure 50, respectively.  

 Assume we now had 100 sample correlations with their respective Fisher Z and Exact CIs 

and created the lower and upper CI limit difference scores as we have done for samples 1 

through 4. Plotting these bivariate difference scores just as we did in Figure 50, the resulting 

scatter plot shows the general behavior of the Fisher Z CI relative to the Exact CI for the 100 

samples: 

 
Figure 51: Example of a CI That Tends to Overestimate 

 

Most of the difference score pairs lie in the upper right quadrant, and therefore it is the tendency 

of the Fisher Z CI to overestimate, that is, generally lie higher than, the exact CI.  

We can now plot the CI limit difference scores for the two intervals we have compared so 
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far, the Fisher Z CI and the Univariate CI for distribution 2a, 20N = , .8ρ = , and a confidence 

level of 99%. Most instances of the Fisher Z CI are too narrow compared to the Exact CI, mainly 

due to a lower limit that is higher than the lower limit of the Exact CI (Figure 52): 

 

 
Figure 52: CI Limit Difference Score Plot for the Fisher Z CI 

 

The center of the CI limit difference score distribution, defined as the median of the difference 

scores for lower and upper CI limits and graphed as a bluish green star, shows little bias in 

estimating the upper limit of the Exact CI, as it lies close to the y-axis. It does indicate 

considerable bias in estimating the lower limit of the Exact CI, however, as it lies far above the 

x-axis. The univariate sampling CI on the other hand is entirely concentrated on the right hand of 

the graph, with practically all values in the first and second quadrant, either overestimating the 

exact CI or being too wide (Figure 53). 
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Figure 53: CI Limit Difference Score Plot for the Univariate Sampling CI 

 

If we plot difference scores for both the Fisher Z and the Univariate Sampling confidence 

interval side by side in the same graph, we obtain the following picture: 
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Figure 54: CI Limit Difference Score Plot for the Fisher Z and the Univariate Sampling CI 

 
 

The black dots represent differences between the Univariate Sampling CI and the Exact CI, while 

the red dots represent differences between the Fisher Z CI and the Exact CI. Based on the centers 

of the two distributions, we can see that the Fisher Z CI shows more bias in the estimation of the 

lower limit of the Exact CI, while the Univariate Sampling CI shows more bias in estimating the 

upper limit. Deviation from the Exact CI seems to also vary much more for the Univariate 

Sampling CI than the Fisher Z CI, especially for the upper, but also for the lower confidence 

interval limit. These observations are in contrast with the univariate histograms of confidence 

interval limits in Figure 46(a) and (b) and also with the conclusions one might have drawn if 

only the coverage rates for both confidence intervals (89.2% for the Fisher Z CI and 99.9% for 

the Univariate Sampling CI) had been considered.  

 When using CI limit difference score plots, we have several choices for scaling the plot: 
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1) Choose a scale for just the individual plot at hand; 2) When graphing several conditions next 

to each other, choose the same scale for all plots; 3) Use the same range of scale for both x- and 

y-axis. Option 3 was used in Figure 52 and Figure 53, and helps identify which CI limit is 

affected by bias in the estimation of the Exact CI the most. Option 1 could be particularly useful 

when detailed insight in the functioning of a particular CI under specific conditions is desired or 

for the development of definitions of confidence interval bias and the like. 

 

Number Summaries. As an aid to the interpretation of these graphs, I supplement some of 

the graphs with median and standard deviation of the confidence limit difference scores. As an 

example, for the 99% Fisher Z CI, distribution 2a, 20N = , and .8ρ = , median and SD for CI 

limit difference scores are  

( ) 0.278F EMED LL LL− ≈  ( ) 0.008F EMED UL UL− ≈ −  

( ) 0.073F ESD LL LL− ≈  ( ) 0.003F ESD UL UL− ≈  

 

The formidable overestimation of the lower limit as well as the greater variability of the lower 

limit around the Exact CI limits is clearly recognizable. The distribution of the lower Fisher Z CI 

limit around the Exact CI is heavily skewed. The median difference between the lower limits is 

positive and the median difference between the upper limits is slightly negative, indicating that 

the Fisher Z CI is too narrow. For comparison, the same values for the Univariate Sampling CI 

are 

( ) 0.029U EMED LL LL− ≈ −  ( ) 0.045U EMED UL UL− ≈  

( ) 0.178U ESD LL LL− ≈  ( ) 0.035U ESD UL UL− ≈  
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The negative median for lower CI limit differences in combination with the positive median 

value for upper CI limit differences indicates that the Univariate Sampling CI is wider than the 

Exact CI in over 50% of the cases.  

 

Additional Remarks. The graphs and numerical summaries introduced here, focusing on 

the comparison with an interval that, for several reasons, can be used as a form of gold standard, 

open up opportunities for investigating many different aspects of confidence interval 

performance. The additional insight that can be gained shall be demonstrated in the following 

sections. Rather than discussing every single distribution – sample size – correlation size and 

confidence level combination that has been simulated, the purpose of this results section is to 

present new and hopefully more informative ways of understanding confidence interval 

performance. The next section will utilize the newly introduced CI limit difference score plots to 

explore the performance of the five approximate confidence interval procedures. There are 

several conditions that have been varied: Type of confidence interval procedure, distribution (and 

therefore, population values of skewness and kurtosis as well as sample values and higher 

moments), size of correlation, confidence level, and sample size.  

 

Varying The Type Of Confidence Interval and Nonnormal Distribution. The next four 

figures provide comparative histograms as well as CI limit difference scores plots for all five 

approximate confidence intervals and distributions 1a, 1b, 2a, and 2b, at 50N = , .8ρ = , at a 

confidence level of 99%. For the CI limit difference score plots, I combine option 2 and 3 for 

maximum comparability across conditions. 
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Figure 55: CI Limit Difference Score Plots for Distribution 1a, ρ  = .8, 99% Confidence Level 
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Figure 56: CI Limit Difference Score Plots for Distribution 2a, ρ  = .8, 99% Confidence Level 
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Figure 57: CI Limit Difference Score Plots for Distribution 1b, ρ  = .8, 99% Confidence Level 



 

220 
 

 

Figure 58: CI Limit Difference Score Plots for Distribution 2b, ρ  = .8, 99% Confidence Level 
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Several things can be read from Figure 55 through Figure 58: Most plainly visible is perhaps that 

the Fisher Z confidence interval shows the least amount of variability around the Exact CI, 

thereby displaying the most consistent behavior. The other approximate confidence intervals 

show considerably more variation around the limits of the Exact CI, with more variability around 

the lower limit, as all the difference score distributions are somewhat stretched along the y-axis. 

The center of the distributions as well as their entire body usually lie above the x-axis, indicating 

that all CIs tend to overestimate the lower limit of the Exact CI; only the Univariate Sampling 

CIs center lies below the x-axis for distribution 1a. In many settings, the difference score 

distribution stretches somewhat along the too wide-too narrow dimension, while the 

asymptotically distribution-free CI tends to overestimate the exact CI more systematically. 

Notice also that for all CIs, the least variability around the Exact CI occurs for distribution 1a, 

and is increased with higher levels of marginal kurtosis (distribution 2a and 2b), but also for 

distribution 1b, which has the same marginal population kurtosis as distribution 1a, but a non-

monotonic transformation function. The univariate CI displays the largest variety of patterns, and 

is not as consistent as the other intervals. Table 56 includes coverage rate, balance, width, and the 

difference score summaries: 
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Table 56: Coverage Rate, Coverage Balance, and Difference Score Summaries for Figure 55 
through Figure 58. 

Distri-
bution 

Fisher Asymptotic 
Asymptotic 

Fisher 
BCa 

Univariate 
Sampling 

Coverage Rate and Balance 

1a  0.982  2.956 0.959  6.597 0.974  0.576 0.975  0.865 0.997  2.190

2a  0.862  4.639 0.874  3.223 0.925  0.412 0.944  0.599 0.999  3.100

1b  0.953  1.502 0.925 35.194 0.967  3.464 0.970  3.165 0.906  8.363

2b  0.897  2.306 0.886 18.324 0.948  2.313 0.947  4.244 0.900  6.538

Difference Scores: Median (SD)  

1a 
0.001 (0.001) 
0.028 (0.002) 

0.026 (0.025)
0.080 (0.031)

-0.003 (0.015)
0.039 (0.050)

0.002 (0.018) 
0.040 (0.038) 

0.025 (0.013)
-0.013 (0.043)

2a 
-0.024 (0.008) 
0.231 (0.025) 

0.028 (0.040)
0.246 (0.059)

-0.009 (0.029)
0.177 (0.111)

0.004 (0.030) 
0.198 (0.080) 

0.037 (0.022)
0.042 (0.104)

1b 
-0.019 (0.006) 
0.072 (0.007) 

0.017 (0.032)
0.109 (0.039)

-0.015 (0.016)
0.062 (0.067)

-0.017 (0.015) 
0.049 (0.069) 

-0.024 (0.012)
0.115 (0.046)

2b 
-0.026 (0.011) 
0.226 (0.027) 

0.017 (0.037)
0.254 (0.063)

-0.017 (0.021)
0.201 (0.103)

-0.020 (0.021) 
0.190 (0.090) 

-0.027 (0.022)
0.258 (0.101)

 
 

Particularly noticeable from Table 56 are the above nominal coverage rate for the Univariate 

Sampling CI and distribution 1a and 2a, and the much lower variability of CI limit difference 

scores for the Fisher Z CI (the two corresponding cells are shaded in light red). Surprisingly, the 

Fisher Z CI performs better for the more odd-shaped distributions 1b and 2b, while the opposite 

is true for all other CIs. Notice that the BCa CI has a coverage balance of less than 1 for 

distributions 1a and 2a, but a center for the difference scores that indicates overestimation – both 

the median for the lower CI limit difference scores and the upper CI limit difference scores are 

positive (shaded in light blue).  

 

What if ρ  = 0. The first few analyses have focused on performance when ρ  is large. 

However, the mostly utilized value for ρ  in past research on confidence intervals for single 

correlations has been 0ρ = . This choice is possibly rooted in the tradition of nil hypothesis 
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testing (Steiger, 2004). This section demonstrates that even when 0ρ = , coverage rate is not the 

only interesting property of a confidence interval procedure. Defaulting again to distribution 2a 

for comparability, we use 0ρ = , 50N =  and 500N =  to compare the approximate CIs across 

all confidence levels. As shown in Table 57, all CIs seem to have great coverage balance at both 

sample sizes. With respect to coverage rate, all CIs perform satisfactorily at 500N = , but the 

Fisher Z and the Univariate Sampling CI are clearly superior at 50N =  over the other CIs.  

 

Table 57: Coverage Rate and Balance for Distribution 2a, ρ  = 0 
 Fisher Z CI ADF CI Fisher Z 

ADF CI BCa CI Univariate 
Sampling CI

50N =  0.728  1.013 
0.825  1.016 
0.902  1.040 
0.941  1.054 
0.979  1.098 

0.566  0.995 
0.695  0.991 
0.817  1.008 
0.891  1.002 
0.963  0.951 

0.577  0.997 
0.711  0.995 
0.836  1.006 
0.909  0.996 
0.974  0.923 

0.627  0.986 
0.752  1.000 
0.859  0.993 
0.917  0.997 
0.973  1.029 

0.711  1.015
0.836  1.019
0.929  1.049
0.969  1.063
0.996  0.713

500N =  0.705  1.003 
0.817  0.998 
0.905  0.992 
0.949  1.015 
0.986  0.964 

0.651  0.996 
0.777  0.998 
0.887  1.008 
0.944  0.994 
0.989  1.011 

0.652  0.998 
0.779  1.001 
0.889  1.004 
0.946  0.990 
0.990  1.004 

0.631  1.002 
0.748  1.002 
0.852  1.001 
0.912  0.997 
0.971  0.999 

0.690  1.000
0.811  0.991
0.908  1.012
0.956  1.026
0.992  1.035

 
 

Figure 59 provides corresponding CI limit-sample r plots for the 99% confidence level 

along with coverage performance and the difference score summaries (within each cell, the upper 

CI limit is above the lower CI limit). As before, the Exact CI is plotted in green and the 

approximate CIs in red. Huge variability of confidence interval limits for the asymptotic, the 

asymptotic Fisher, and the BCa CI can be observed, for both 50N =  and 500N = . In terms of 

coverage rate and balance, all CIs would likely be regarded comparable at 500N = , but the 

Fisher Z and the Univariate Sampling CI are clearly superior over the other confidence intervals 

based on sampling variability of the CI limits and accuracy of estimating the Exact CI.
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 Fisher CI ADF CI ADF Fisher CI BCa CI Univariate Sampling 

50N =  

500N =

 
0.979  1.098 0.963  0.951 0.974  0.923 0.973  1.029 0.996  0.713Coverag

e 0.986  0.964 0.989  1.011 0.990  1.004 0.971  0.999 0.992  1.035

0.0340 (0.022)
-0.0322 (0.022)

-0.069 (0.118)
0.069 (0.118)

-0.071 (0.107) 
0.072 (0.107) 

-0.027 (0.116)
0.027 (0.117)

0.091 (0.047)
-0.090 (0.047)

Median 
(SD)  

of Diff 
Scores 

0.0021 (0.002)
-0.0020 (0.002)

-0.013 (0.032)
0.013 (0.032)

-0.014 (0.032) 
0.014 (0.032) 

-0.013 (0.042)
0.013 (0.042)

0.009 (0.007)
-0.009 (0.007)

Figure 59: CI Limit-Sample Correlation Plot For All Five Approximate CIs, Distribution 2a, ρ  = 0 
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Does Performance Improve as Sample Size isIincreased? For many statistical procedures, 

increasing the sample size will lead to a decrease in bias introduced because normal distribution 

theory has been applied to nonnormal parent distributions. A classic example is the confidence 

interval for a sample proportion, where the measurable outcome has a binomial distribution. 

Especially when the population proportion π  is close to 0 or 1, the normal distribution theory CI 

 ( )1p p
p z

nα
−

±  (121) 

with p as an estimate for π  performs poorly with substantial bias. But as N increases, the CI 

from Equation (121) can profit from the Central Limit Theorem and its performance steadily 

improves. Does the performance of any of the approximate CIs for a single correlation also 

improve with increasing sample size? To answer this question, I again use distribution 2a, with 

.8ρ = , and compare the Fisher Z and the Univariate Sampling CI, increasing N from 20 to 500. 

Consider Figure 60 below, which shows CI limit difference score plots for both CIs (for this 

figure, only scaling option 2 but not option 3 was used for better visual detail). The range of 

difference scores for the Fisher Z CI changes from [ ]0.02, 0.01−  for the upper and about 

[ ]0.1, 0.3−  for the lower limit when 20N =  to [ ]0.05, 0.01− −  and [ ]0.04, 0.09  when 

500N = . For the Univariate CI, the same ranges are [ ]0.0, 0.2−  and [ ]1.0, 0.4−  when 

20N = , to [ ]0.02, 0.07−  and [ ]0.2, 0.05−  when 500N = . These seem to be fair 

improvements, particularly for the bias in estimating the lower CI limit. The difference score 

summaries for all five CIs in the second half of Table 58 seem to support this observation of 

decrease in estimation bias and variability not only for the Fisher Z and Univariate Sampling CI, 

but for the other intervals as well. But when we consider coverage rate and balance (first half of 

Table 58), we can make two especially peculiar observations: For the Fisher Z CI, despite the 
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decrease in bias, coverage rate worsens, and for the asymptotically distribution-free Fisher Z CI, 

again despite decreasing bias, coverage balance deteriorates. Why is this so? 
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20N =  

  

50N =  

  

100N =  

  

200N =  

  

500N =  

  
Figure 60: Absolute CI Limit Difference Score Plots for Increasing N; Dist. 2(a), ρ  = .8 
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Table 58: Coverage Rate, Coverage Balance, and Difference Score Summaries for Figures 
Figure 55 through Figure 58. 

N Fisher ADF ADF Fisher BCa 
Univariate 

Sampling 

Coverage Rate and Balance 

20 0.892 15.538 0.793  4.327 0.891  0.697 0.945  0.781 0.999 37.000 

50 0.862  4.639 0.874  3.223 0.925  0.412 0.944  0.599 0.999  3.100 

100 0.833  2.723 0.919  2.637 0.945  0.364 0.946  0.677 0.999  0.762 

200 0.813  1.937 0.950  2.101 0.961  0.330 0.953  0.673 0.999  0.395 

500 0.786  1.497 0.971  1.831 0.975  0.293 0.961  0.749 0.999  0.462 

Difference Scores: Median (SD)  

20 -0.008 (0.003) 
 0.278 (0.073) 

0.024 (0.046)
0.393 (0.081)

-0.007 (0.039)
0.265 (0.156)

0.007 (0.033) 
0.247 (0.157) 

 0.045 (0.035)
-0.029 (0.178)

50 -0.024 (0.008) 
 0.231 (0.025) 

0.028 (0.040)
0.246 (0.059)

-0.009 (0.029)
0.177 (0.111)

0.004 (0.030) 
0.198 (0.080) 

 0.037 (0.022)
 0.042 (0.104)

100 -0.030 (0.009) 
 0.178 (0.015) 

0.022 (0.035)
0.161 (0.046)

-0.009 (0.023)
0.118 (0.082)

0.001 (0.027) 
0.137 (0.054) 

 0.027 (0.018)
 0.037 (0.072)

200 -0.033 (0.007) 
 0.128 (0.011) 

0.013 (0.029)
0.099 (0.034)

-0.007 (0.019)
0.073 (0.056)

-0.002 (0.023) 
0.087 (0.036) 

 0.021 (0.015)
 0.020 (0.049)

500 -0.029 (0.004) 
 0.077 (0.006) 

0.006 (0.020)
0.047 (0.022)

-0.005 (0.014)
0.034 (0.032)

-0.002 (0.018) 
0.043 (0.020) 

 0.016 (0.012)
 0.003 (0.029)

 
 

The difference score summaries and the graphs in Figure 60 are on the absolute CI limit 

difference scores, but these absolute differences do not take confidence interval width into 

account. As sample size increases, confidence intervals tend to narrow; a deviation of size .1  for 

one of the limits means something different for a CI with overall width .6 when 20N =  as 

opposed to a CI with overall width of .15 when 500N = . Therefore, Figure 61 below revisits the 

plots from Figure 60, but this time, the CI limit difference scores are relativized by the median 

width of the exact confidence interval. 
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20N =  

  

50N =  

  

100N =  

  

200N =  

  

500N =  

  
Figure 61: Relative CI Limit Difference Score Plots for Increasing N; Dist. 2(a), ρ  = .8 
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The ranges of difference scores for the Fisher Z CI and 20N =  are now [ ]0.02, 0.01−  

and [ ]0.05, 0.45−  and for 500N = , they are [ ]0.14, 0.08− −  and [ ]0.2, 0.46 . For the 

Univariate CI, we have [ ]0.0, 0.3  and [ ]1.2, 0.5−  at 20N =  and [ ]0.1, 0.35−  and 

[ ]0.9, 0.3−  at 500N = . Note that at 500N = , the Fisher Z CI is always too narrow, keeping 

sort of equal distances from the upper and lower CI limit of the exact confidence interval, and 

that the Univariate CI tends to be too wide. The scaled difference score summaries (second half 

of Table 60) confirm this: All else remaining approximately the same, the estimation bias of the 

upper CI limit for the Fisher Z CI increases with sample size, while variability increases for the 

upper and decreases for the lower CI limit. For the Univariate Sampling CI, variability decreases 

slightly. The largest improvements in estimation bias can probably be seen for the asymptotically 

distribution-free CI and Fisher Z CI. 
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Table 59: Coverage Rate and Balance and Number Summaries – Various Sample Sizes 
N Fisher Asymptotic Asymptotic 

Fisher 

BCa Univariate 

Sampling 

Coverage Rate and Balance 

20 0.892 15.538 0.793  4.327 0.891  0.697 0.945  0.781 0.999 37.000 

50 0.862  4.639 0.874  3.223 0.925  0.412 0.944  0.599 0.999  3.100 

100 0.833  2.723 0.919  2.637 0.945  0.364 0.946  0.677 0.999  0.762 

200 0.813  1.937 0.950  2.101 0.961  0.330 0.953  0.673 0.999  0.395 

500 0.786  1.497 0.971  1.831 0.975  0.293 0.961  0.749 0.999  0.462 

Difference Scores: Median (SD) – Relativized 

20 -0.010 (0.005) 
 0.374 (0.099) 

0.032 (0.061)
0.530 (0.109)

-0.009 (0.052)
0.356 (0.210)

0.007 (0.045) 
0.247 (0.211) 

 0.060 (0.048)
-0.039 (0.239)

50 -0.045 (0.016) 
 0.439 (0.047) 

0.052 (0.075)
0.466 (0.112)

-0.017 (0.055)
0.337 (0.211)

0.008 (0.058) 
0.375 (0.152) 

 0.070 (0.041)
 0.080 (0.197)

100 -0.075 (0.022) 
 0.449 (0.037) 

0.055 (0.088)
0.405 (0.116)

-0.022 (0.059)
0.298 (0.207)

0.003 (0.069) 
0.346 (0.135) 

 0.069 (0.045)
 0.092 (0.182)

200 -0.111 (0.023) 
 0.436 (0.037) 

0.044 (0.098)
0.338 (0.117)

-0.025 (0.063)
0.249 (0.192)

-0.005 (0.080) 
0.298 (0.121) 

 0.073 (0.052)
 0.068 (0.167)

500 -0.155 (0.021) 
 0.405 (0.031) 

0.033 (0.105)
0.250 (0.114)

-0.025 (0.071)
0.181 (0.167)

-0.008 (0.097) 
0.229 (0.108) 

 0.087 (0.065)
 0.014 (0.151)

 
 

Does Performance Vary With Confidence Level? Last but not least we may wonder 

whether the bias in estimating the limits of the Exact CI varies with confidence level. In Figure 

62 I compare the Fisher Z to the BCa CI, for confidence levels 68%, 80%, 90%, 95%, and 99%, 

using a relativized CI limit difference score plot similar to Figure 61. The nonnormal distribution 

is again distribution 2a, with 50N =  and .8ρ = .  

We can see that there is not much change in the performance of the Fisher Z CI, other 

than perhaps a slight increase in the bias of the lower CI limit (the center of the distribution 

moves up the y-axis a little). For the BCa CI, the overall variability decreases, i.e. relative to the 

width of the Exact CI, the CI behaves more consistently. There is a some increase in bias of 

lower CI limit estimation as well. When we consult Table 60, it is interesting to note that bias for 
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estimation of the lower limit increases for all CIs but the Univariate Sampling CI, which 

maintains approximately equal performance across all confidence levels. 

 

Table 60: Coverage Rate and Balance and Number Summaries – Various Confidence Levels 

 Fisher Asymptotic Asymptotic 
Fisher 

BCa Univariate 
Sampling 

Coverage Rate and Balance 

68%  0.453  1.572 0.511  1.614 0.535  1.239 0.562  0.942 0.751  1.751

80%  0.558  1.741 0.615  1.787 0.652  1.124 0.680  0.879 0.876  1.765

90%  0.670  2.065 0.719  2.087 0.770  0.922 0.796  0.785 0.960  1.932

95%  0.752  2.561 0.787  2.373 0.843  0.746 0.867  0.708 0.988  1.966

99%  0.862  4.639 0.874  3.223 0.925  0.412 0.944  0.599 0.999  3.100

Difference Scores: Median (SD)  

68% 
-0.068 (0.021) 
 0.376 (0.064) 

0.018 (0.117)
0.337 (0.148)

-0.020 (0.093)
0.281 (0.181)

-0.032 (0.137) 
 0.222 (0.214) 

0.113 (0.107)
0.108 (0.239)

80% 
-0.068 (0.022) 
 0.377 (0.059) 

0.024 (0.114)
0.355 (0.143)

-0.025 (0.086)
0.285 (0.186)

-0.021 (0.118) 
 0.244 (0.203) 

0.090 (0.088)
0.091 (0.233)

90% 
-0.063 (0.021) 
 0.397 (0.053) 

0.035 (0.107)
0.385 (0.135)

-0.025 (0.076)
0.297 (0.194)

-0.009 (0.097) 
 0.276 (0.189) 

0.088 (0.070)
0.083 (0.224)

95% 
-0.056 (0.019) 
 0.410 (0.049) 

0.044 (0.097)
0.413 (0.127)

-0.022 (0.068)
0.313 (0.200)

-0.001 (0.082) 
 0.308 (0.176) 

0.082 (0.058)
0.078 (0.215)

99% 
-0.045 (0.016) 
 0.439 (0.047) 

0.052 (0.075)
0.466 (0.112)

-0.017 (0.055)
0.337 (0.211)

 0.008 (0.058) 
 0.375 (0.152) 

0.070 (0.041)
0.080 (0.197)
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Confidence 
Level: 68% 

  
Confidence 
Level: 80% 

  
Confidence 
Level: 90% 

  
Confidence 
Level: 95% 

  
Confidence 
Level: 99% 

  
Figure 62: Relative CI Limit Difference Score Plots for Decreasing α ; Dist. 2(a), ρ  = .8 
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Evaluating Confidence Intervals –Distributions with non-Identical Marginals.  

Without the Exact CI available for nIM distributions, we cannot create CI limit difference 

scores and evaluate the performance of the approximate interval procedures in relation to the 

Exact CI. Instead, I choose one nIM distribution for a more detailed comparison of coverage rate 

and balance as well as a variation of plot type 1, which allows us to examine the variability of the 

confidence interval limits across different CI procedures. Observed values for coverage rate, 

coverage balance, and width for all nIM distributions can be found in Appendix C. Distribution 

41b2a is the most aberrant distribution in terms of shape, suggesting two distinctly different 

subpopulations. One of my predictions on CI performance was that the BCa CI would 

outperform the Univariate Sampling CI in such a situation. Some interesting patterns can be 

observed in Table 61: Coverage rate worsens for the Fisher Z CI and the Univariate Sampling CI, 

albeit not dramatically, while their balance indices improve. The opposite is true for the two 

asymptotically distribution-free CIs, with significant worsening of coverage balance for the 

asymptotically distribution-free CI in particular. Only for the BCa CI do coverage rate and 

balance improve with increasing sample size.  
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Table 61: Coverage Rate and Balance For Five Approximate CIs, Distribution 41b2a, ρ  = .5 

N Fisher ADF ADF Fisher BCa Univariate 

20 

0.237  2.005 
0.303  2.112 
0.384  2.286 
0.450  2.459 
0.570  2.873 

0.370  2.824
0.441  3.420
0.515  4.380
0.566  5.444
0.635  7.754

0.403  2.390
0.499  2.691
0.602  3.269
0.677  4.042
0.784  6.350

0.507  3.925
0.606  5.284
0.712  9.146
0.776  3.664
0.858 29.472

0.268  2.094 
0.360  2.196 
0.477  2.323 
0.584  2.479 
0.760  2.838 

50 

0.232  1.737 
0.297  1.805 
0.374  1.919 
0.439  2.011 
0.554  2.219 

0.469  2.707
0.558  3.477
0.643  4.890
0.699  6.937
0.774 12.609

0.492  2.184
0.597  2.480
0.708  3.074
0.781  3.906
0.877  7.107

0.550  2.811
0.656  3.670
0.762  5.701
0.828  8.771
0.907 21.104

0.274  1.787 
0.354  1.860 
0.453  1.913 
0.536  1.959 
0.685  2.024 

100 

0.223  1.574 
0.286  1.625 
0.364  1.693 
0.425  1.748 
0.541  1.911 

0.523  2.576
0.626  3.527
0.720  5.410
0.776  8.083
0.848 21.023

0.538  2.042
0.655  2.398
0.766  3.118
0.835  4.014
0.918  8.013

0.578  2.274
0.693  2.901
0.800  4.257
0.862  6.040
0.934 13.522

0.276  1.619 
0.355  1.662 
0.449  1.701 
0.529  1.733 
0.669  1.774 

200 

0.219  1.436 
0.281  1.468 
0.354  1.506 
0.418  1.560 
0.529  1.646 

0.567  2.342
0.674  3.231
0.772  5.302
0.830  8.597
0.898 27.406

0.574  1.904
0.691  2.228
0.803  2.860
0.870  3.828
0.944  7.959

0.598  1.855
0.715  2.213
0.823  2.973
0.886  3.902
0.953  7.607

0.285  1.478 
0.362  1.498 
0.457  1.537 
0.534  1.557 
0.665  1.578 

500 

0.212  1.310 
0.271  1.333 
0.345  1.365 
0.406  1.369 
0.519  1.422 

0.611  2.083
0.724  2.844
0.822  4.862
0.878  8.513
0.938 36.155

0.613  1.747
0.732  2.084
0.838  2.714
0.899  3.859
0.962  8.555

0.621  1.504
0.740  1.732
0.845  2.101
0.906  2.771
0.966  4.658

0.292  1.352 
0.372  1.368 
0.466  1.384 
0.546  1.414 
0.674  1.444 

 
 

Figure 63 is a variation of the CI limit-sample r plot: The Fisher Z CI in green – a well 

performing interval if the parent distribution is bivariate normal – is contrasted with the other 

four confidence intervals in red, one CI in each cell. The true ρ  is marked as a blue line; makes 

it easier to identify CIs that miss the true ρ  above and below. At 20N = , this nonnormal 

distribution produces sample correlations across the entire interval [ ]1, 1− . The two CIs with 

the worst coverage rate, the Fisher and the Univariate Sampling CI, behave quite similarly, and 

they are much narrower than the other CIs, thereby not containing the true ρ . On the other hand, 
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the Fisher Z CI and Univariate Sampling CI have a considerably lower sampling variability for 

their lower and upper CI limits at any given value for the sample correlation. 
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N Asymptotic CI Asymptotic Fisher CI BCa CI Univariate Sampling CI 

20 

500 

Figure 63: CI Limit-Sample Correlation Plots Comparing the Fisher Z CI to the Other Four Approximate CIs;  
Distribution 4(a), ρ  = .5
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Discussion 

The main goal of Part II of my dissertation is to explore the performance of confidence 

intervals for the Pearson product-moment correlation under nonnormality of the underlying 

parent distribution. I compare three different approaches to constructing a confidence interval 

around r, resulting in five different intervals: a) The parametric Fisher Z CI, b) Two 

asymptotically distribution-free confidence intervals, and c) Two bootstrap confidence intervals. 

Confidence intervals for the simple correlation r were chosen because r is a well-known statistic 

with a large body of research behind it, but a considerably complicated sampling distribution. 

Research on its robustness has not lost its relevance and robust confidence intervals for a single 

correlation r or a simple pattern hypothesis for correlations are still currently being investigated 

(Beasley et al, 2007; Zou, 2007).  

 Previous Monte Carlo studies exploring the robustness of confidence intervals (such as 

the Fisher Z CI) and hypothesis tests for r have left somewhat of a rag rug of results. When based 

on assessment of simple Type I error rate or coverage rate, most studies indicate that the Fisher Z 

CI is robust when 0ρ =  and the variables are truly independent (Pearson, 1929; Strube, 1988), 

but find lack of robustness when 0ρ = , but the variables are dependent in some nonlinear 

fashion (Edgell & Noon, 1984). When 0ρ ≠ , both the presence of robustness (Pearson, 1929) 

and lack of robustness (Beasley et al., 2007) have been demonstrated. Sievers (1996) concluded 

that the performance of an asymptotically distribution free CI was not superior to other intervals 

available such as the Fisher Z CI or bootstrap confidence intervals. When comparing BCa and 

univariate sampling bootstrap confidence intervals for r, Lee & Rodgers (1998) and Beasley et 

al. (2007) seem to have observed superior performance for the univariate sampling approach.  
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Some of this cloud of inconclusiveness may be precipitated as none of these studies 

evaluate all the information confidence intervals can provide. The overwhelming majority of 

Monte Carlo research on confidence intervals, especially in psychometrics, only presents Type I 

error rate or occasionally coverage rate, while ignoring such aspects as coverage balance and 

width, for example. Closeness to some form of exact confidence interval has – to my knowledge 

– not been investigated in a quantitative manner at all. On occasion, researchers (Efron, 1988, 

Rasmussen, 1987; Sievers, 1996) have conducted individual comparisons between bootstrap and 

other approximate confidence intervals for a handful of samples, but never have they included 

quantifying analyses. 

Further, many studies on the robustness of confidence intervals around a single 

correlation comprise results for sample sizes that are too small to yield a confidence interval of 

information-bearing width. A CI that covers 80% of the entire parameter space, as is the case 

when sample sizes are as small as 5N = , is barely helpful at all, and most researchers will not 

calculate confidence intervals around r for such small samples.  

As has been shown in Part I of my dissertation, some simulation studies contain at least 

one bi-/multivariate nonnormal distribution with an odd shape. The shape of these nonnormal 

distributions are often best explained as consisting of several subpopulations or demonstrating a 

blatantly nonlinear relationship. Under such circumstances, a single linear relationship is not a 

particularly meaningful model. Users need to be made aware that performance of seemingly all 

confidence interval procedures for a single correlation is severely hampered if the population 

being investigated does not warrant a single, linear model. Frequently, the combination of small 

sample size and odd-shaped distribution produces the most striking results, which in turn will 

make the greatest impression in the discussion of results and be remembered the most clearly. 
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Researchers should make an effort to utilize nonnormal distributions that are likely to occur in 

real data at sample sizes that are realistically used in correlational analyses. 

 

 A New Approach. Based on these observations from previous studies, I propose a more 

detailed approach of examining properties of confidence intervals, transcending simple Type I 

error rate and coverage rate. The properties that have been examined in this study, coverage rate 

and balance, width, closeness to the Exact CI, character and degree of bias when estimating the 

Exact CI, and variability of CI limits, are extremely useful since they touch on the nature of 

confidence intervals. If we were just interested in Type I error rate, in most cases we wouldn’t 

need a confidence interval, as a hypothesis test will be readily available and often easier to 

calculate. But confidence intervals provide additional, crucial information such as precision with 

which a parameter has been estimated, and lower and upper confidence limits, whose behavior is 

often subject to certain expectations. 

Coverage rate can tell us how likely it is that a confidence interval will cover the true 

parameter, and some may argue that it is the most important aspect of a confidence interval, but 

it provides only limited information on the behavior of the confidence interval limits. Yet, the 

behavior of the confidence interval limits themselves is highly important. Confidence intervals 

were developed to estimate uncertainty, to gauge the variability of the sampling distribution of 

the parameter of interest. Wide (relative to some standard, such as standard deviation in the 

sample or, as for the correlation, width of parameter space) confidence interval limits indicate 

low precision, narrow CI limits indicate high precision. Knowing that a two-sided CI will cover 

the true parameter 95% of the time without any information on coverage balance, the actual 

confidence interval limits provide nothing but conservative boundaries of lower or upper CI 
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bounds for a one-sided 95% CI, or, equivalently, a two-sided 90% CI. Why is this so? If we do 

not know anything about coverage balance, a 95% CI may lie below and above the true 

parameter equally at a rate of 2.5%. It may also lie above the true parameter 1% of the time and 

below it 4% of the time. In the most extreme case, the entire 5% of miscoverage would occur 

because the CI systematically misses the true parameter on one side only. A fair few may protest 

now and object that the interval still covers the true value 95% of the time, so how can it be 

compared to a 90% CI? One may call this observation the “Confidence Interval Paradox.” 

If we add coverage balance to the evaluation of a CI procedure, we can now answer the 

question of whether the CI misses the true parameter evenly on either side. However, there will 

still be a few caveats. We do not know any additional properties of the CI limits themselves, and 

the little we know is limited to the confidence level we included, say 95% (note that for some of 

the CIs, the balance index switches from being greater than 1 at the 68% level to being less than 

1 at the 99% level, see Table 68, Univariate Sampling CI, 100N = ). As a remedy, we could 

cover a large amount of confidence levels in our analyses, as has been done in this study. 

Nevertheless, we would still fail to keep track of one other aspect: The amount by which the 

approximate CI misses the Exact CI limits. This level of depth of performance analysis is 

reached in the graphs and numerical summaries presented in this study. 

Users of confidence intervals tend to expect certain behavior from the lower and upper 

limit of a two-sided confidence interval. Most commonly, people presume that both limits of a 

two-sided confidence interval provide a kind of boundary of parameter values. It is generally 

believed that parameter values more extreme than the values of the lower and upper confidence 

interval limits are unlikely to have produced the observed data. For the traditional confidence 

interval around a single mean, which is frequently the first CI taught in undergraduate statistics 
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classes, this expectation is fulfilled. It is also fulfilled for the Exact CI introduced in this part of 

my dissertation. The confidence interval limits of the Exact CI provide information on the 

probability with which a certain value for ρ  would have produced the observed sample r. The 

CI limit vs. sample r scatterplots and CI limit difference score scatterplots can therefore be used 

to explore the relationship between approximate CI limits, sample correlation value, and exact CI 

limits in great detail. And when providing these graphs for all conditions in a simulation study is 

not feasible, the median and standard deviation of the CI limit difference scores can summarize 

these relationships. The median differences provide information on whether the confidence 

interval procedure of interest systematically over- or underestimates the Exact CI, or whether it is 

too wide or too narrow. The standard deviation of the CI limit difference scores brings us to the 

last aspect of confidence interval performance discussed in my dissertation: Variability of CI 

limits. Less variability means that the confidence interval displays more steady behavior, 

independently of whether it, e.g., grossly overestimates the Exact CI, or whether it tends to lie 

right on top of it. The Fisher Z CI shows very consistent behavior; and in fact, for a given sample 

correlation, confidence level, and sample size, the lower and upper confidence interval limits are 

determinate. The other CIs, however, react to additional properties of the sample, thereby 

introducing more variability in the values of lower and upper CI limits which translates into 

more uncertainty in the estimation of a lower and upper limit for the value of the true parameter. 

This quality is related to predictability in general: Assume we have two confidence intervals to 

choose from and investigate their coverage rate at the 90% confidence level. One confidence 

interval has a coverage rate of 90% in most simulation conditions, but in 10% of cases has a 

coverage rate of about 50%. The other confidence interval always has a coverage rate of 80%. 

We may prefer the second confidence interval due to its predictability, especially if we cannot be 
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sure how often the second type of data occurs in the real world or if we are unable to simulate all 

kinds of nonnormality. 

Including width in evaluation results may be very informative for a researcher that needs 

to choose between different methods, and doing so could have potentially prevented some 

authors of Monte Carlo studies to include results for correlations calculated on samples of size 

5N = . As most researchers will calculate correlations on samples of size 50N =  and up, I 

concentrated on simulation results obtained for sample sizes of 50N =  through 500N = . 

 

Alternative Approaches to Dealing with Nonnormality 

 In addition to developing and finding statistical procedures for correlations that will 

perform well under both normality and nonnormality of the parent distribution, other approaches 

have been suggested. These include transformations of the marginals and robust measures of 

association. 

 

Transformations  

 Transformation of the marginal distributions is a popular technique and statistics 

textbooks tend to devote a section or chapter to it. Often, a decidedly nonnormal distribution 

with strong skewness in the marginal distributions or a nonlinear relationship between variables 

is subjected to transformation of one or both marginals to create a bivariate shape that is much 

closer to bivariate normality. For example, a nonlinear, concave relationship between two 

variables X and Y, with X on the x-axis, can often be linearized by transforming X to X  or 

( )ln X . However, after the transformation, we are left with transformed variables, which may or 

may not retain their interpretability.  
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 There is an extended literature discussing the advantages and disadvantages of such 

transformations for bivariate or multivariate data. Halperin (1986) offers an overview and 

discussion of the most common uses and issues of transformations of the marginals, 

recommending transformation when skewness is present. Kowalski (1972) presents findings 

according to which the sampling distribution of r for a bivariate exponential distribution whose 

marginals have been transformed is close to the sampling distribution of r under bivariate 

normality of the parent distribution. He offers further readings, citing research that found better 

performance of normal-based tests for independence after transformation of marginals to normal. 

Dunlap, Burke, & Greer (1995) discuss the effect of skew on product-moment correlations, 

observing an increase in the size of r  after skewness-reducing transformations. The inverse, a 

decrease in correlation after transforming bivariate normal variables to nonnormality has been 

stated and investigated by Lancaster (1957). Games (1983) offers additional discussion on pros 

and cons of transforming variables, albeit mainly in the context of ANOVA, cautioning against 

indiscriminate use of transformations.  

 Certainly, whether a nonlinear transformation of content-bearing variables is appropriate 

must be decided on a case to case basis and cannot be answered here. The present author sees 

value in not transforming variables but instead describing a nonlinear relationship as nonlinear, 

e.g. in the form ( ) 2
0 1 2Y f X a a X a X= = + + . It seems that transforming variables to create a 

more linear relationship or to make methods that have been developed for linear, bivariate 

normal data applicable will disguise nonlinear relationships when that specific property of 

nonlinearity may provide valuable information. As one small example, one may consider some 

intervention that loses its effectiveness after a certain point because the intervention-result 

relationship asymptotes. 
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Robust Measures of Association 

 A few robust measures of association have been developed. Among them are robust 

estimators described in Devlin, Gnanadesikan, & Kettenring (1975), the winsorized correlation 

(Wilcox, 1993) and the percentage bend correlation (Wilcox, 1994). Robust estimators of 

correlation and regression seem to have gained relatively little popularity outside of statistical or 

psychometric research. A search of studies citing these three articles found almost no studies in 

psychology or other behavioral sciences making use of these techniques. Without being able to 

explore and examine all robust correlational methods available in great detail, this lack of 

acceptance may, in part, come from a lack of knowledge of these methods and their functionality. 

Further, some of these robust measures of association may lack the rich methodology that has 

been developed for parametric estimators, including confidence intervals. 

 In addition, I would like to draw attention to one issue I encountered while familiarizing 

myself with the percentage bend correlation (Wilcox, 1994): For two variables X and Y, the 

sample percentage bend correlation is calculated as  

 1
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where ( )ˆ ˆ/i i pbx xA X φ ω⎡ ⎤= Ψ −⎣ ⎦  and ( )ˆ ˆ/i i pby yB Y φ ω⎡ ⎤= Ψ −⎣ ⎦ . ˆ
pbxφ  and ˆ

pbyφ  are percentage 

bend location estimators, that is, some robust estimator of location, and ˆxω  and ˆ yω  are robust 

measures of scale (in his 1994 article, Wilcox uses the 90th percentile of the deviation scores 

from the median). Finally, the function ( ) ( )max 1, min 1,x xΨ = −⎡ ⎤⎣ ⎦  is used to confine all iA  

and iB  scores to not exceed the interval [ ]1, 1− . Notice that this last step rearranges outliers to 
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not exceed some value based on the rescaled distribution and thath the assessment of the status 

“outlier” is on the univariate level.  

 Wilcox demonstrates the percentage bend correlation on a contaminated distribution, 

which is constructed as follows:  

1. One sample of size N from a standard normally distributed variable X and one sample of 

size N from a univariate contaminated variable C, independent of X are constructed. The 

contaminated sample consists of 90% scores sampled from ( )0,1N  and 10% scores 

sampled from ( )0,10N . 

2. A new variable Q is created from X and C with .8xcρ =  as follows: 

 21xc xcQ X Cρ ρ= + −  (123) 

3. The bivariate distribution used to demonstrate the percentage bend correlation is the 

distribution that exists between X and Q, and is plotted in Figure 64: 
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Figure 64: Bivariate Nonnormal Distribution Used to Demonstrate the Percentage Bend 

Correlation 

 

Wilcox argues that the part of the distribution we would be interested in is the dense cloud of 

points that exhibits a strong relationship. While the traditional Pearson product-moment 

correlation for the entire distribution in Figure 64 is only .374ρ = , the percentage bend 

correlation is estimated at .634pbr = , much closer to the underlying correlation of .8ρ =  for the 

“interesting” part of the distribution. However, there are two questions that need to be answered: 

(1) Which of these correlations is more meaningful, more representative of the distribution? (2) 

How exactly does the percentage bend correlation work? The first question is strongly related to 

the issue of whether robustness to some particular distribution is desired. The bivariate 

distribution between the variables X and Q is a mixture distribution and before we use this 
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distribution to investigate the robustness of r, we need to ensure that a single correlation is a 

statistical procedure researchers would realistically apply. Do we want the measure of 

association calculated for a sample from the distribution in Figure 64 to turn out as estimating 

.8ρ = , that is, do we want to only measure the correlation for the majority of the points, and 

discard the small subpopulation that demonstrates very different behavior? Why then do we not 

attempt to model the two separate subpopulations? Definite answers to these questions must be 

found elsewhere.  

 To answer the second question, reconsider Equation (122): The percentage bend 

correlation is a regular product-moment correlation calculated on the rescaled and, most 

importantly, rearranged (Wilcox calls them trimmed, however they are not truly trimmed, since 

they are still used in the calculation of the percentage bend correlation) scores iA  and iB . We can 

plot iA  and iB  to visualize the distribution for which pbr  is computed:  
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Figure 65: Bivariate Distribution Based on Which the Percentage Bend Correlation is 

Calculated 

 

To our surprise, the distributional shape in Figure 65 is not particularly representative of what 

Wilcox considers to be the 'interesting' part of the distribution in Figure 64. While the percentage 

bend correlation yields a higher numerical value than the product-moment correlation in this 

case, it does not help uncover the nature of the distribution in Figure 64. In the end, a procedure 

that identifies bivariate rather than just univariate outliers may be more promising.  

 It does not lie within the scope of this study to provide a complete answer on the 

advantages and disadvantages of alternative approaches to tackling nonnormal data. My 

objective is merely to draw attention to possible consequences of attempting to automate the 

handling of nonnormal data, be it real or simulated. A plot should always be drawn, and Figure 
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65 demonstrates that the data the percentage bend correlation is eventually based on may be far 

from representative for the measured phenomenon. Several additional examples could be 

provided in which the percentage bend correlation procedure substantially distorts the 

distribution for which a measure of association is computed (some of these, e.g. Wilcox’s own 

version of a multivariate g-and-h distribution with .5ρ = , appear directly in his 1994 article). 

Note that a bootstrap confidence interval for the percentage bend correlation is available 

(Wilcox, 2005). 

 

Future Directions. Alongside with lower and upper confidence interval limits and sample 

correlations, sample skewnesses and kurtoses were recorded for each replication as well. I 

believe that including these values in additional analyses has potential, since especially the two 

asymptotic confidence intervals are built to react to sample skewnesses and kurtoses. These 

analyses have been set aside for future research due to sheer volume.   

Some of the predictions I presented in the proposal of my dissertation were confirmed, 

while others were not. For example, the improvement of performance for the asymptotically 

distribution-free and bootstrap CIs with increased sample size was slower than predicted or did 

not occur at all. It would be interesting to investigate the behavior of approximate CIs for very 

large sample sizes and see whether the asymptotically distribution-free and bootstrap CIs 

eventually estimate the true CI very well. 

Lastly, the discussion of over- and underestimation of confidence interval limits for an 

Exact CI, of being too wide or too narrow could possibly be refined. The perfect coverage 

displayed by the Exact CI is only a by-product of its origin, namely the construction by pivoting 

the (empirical) cdf. The relationship between lower and upper confidence limits and the 
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percentiles of an empirical sampling distribution given the population ρ  make it a very strong 

candidate for a gold standard that can be used to establish a pragmatic definition for confidence 

interval bias.  
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GENERAL DISCUSSION 

 

Both Part I and II of my dissertation wish to improve the interconnection between 

common practice in Monte Carlo research, which is traditionally used to investigate performance 

of statistical methods under a variety of conditions, and the actual application of such statistical 

methods. Part I examines three techniques for simulating multivariate nonnormal distributions 

and demonstrates their properties, including neglected or to this point unknown ones. The 3rd 

order power method, 5th order power method, and the g-and-h distribution all have more than one 

set of coefficients that can be used to simulate a given skewness-kurtosis combination. This has 

several implications: Even though population skewness and kurtosis will be the same from one 

set of coefficients to another, the expected values of sample skewness and kurtosis and the shape 

of the distribution will almost always be different. I have demonstrated this for both univariate 

and bivariate distributions, and it will be true for higher dimensions as well; therefore, marginal 

population skewnesses and kurtoses are hardly sufficient when describing a nonnormal 

distributions. What range of values for the final correlation Yρ  between two nonnormal variables 

can be simulated depends on the values chosen for marginal skewnesses and kurtoses, the 

simulation method, and the set of transformation coefficients once a simulation method is 

chosen. Part I concludes by showing that the choice of transformation coefficients, holding 

everything else constant, can also impact simulation results in Monte Carlo studies on the 

robustness of some statistical procedure, using two confidence intervals for a single correlation 

to demonstrate these effects. 

Part II chooses five approximate confidence intervals for a single correlation to closely 

examine CI performance under nonnormality, discussing several criteria, techniques, and 
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viewpoints. The traditional method of CI performance evaluation commonly boils down to just a 

simple comparison of coverage rates, thereby disregarding large amounts of information that can 

provide a more detailed picture of the confidence interval's behavior. I introduce an exact 

confidence interval built from empirical sampling distributions, which is closely related to the 

‘pivoting the cdf’ technique described by Steiger & Fouladi (1997). This exact CI combines 

exact coverage with a first meaningful definition of a gold standard when no theoretically 

derived ‘optimal’ interval is available. Thereby, in addition to coverage rate, coverage balance, 

and width of the CIs, we can compare approximate CIs to the Exact CI, paving the way for a 

practical definition of the bias of a confidence interval. Two particularly insightful scatterplot 

techniques display the variability of CI limits for a given sample correlation or around the CI 

limits of the Exact CI. They can also provide information on the type of bias an approximate CI 

shows, such as over- and underestimation, or being too wide or too narrow compared to the 

Exact CI.   

 

Implications and Future Research 

The main message from Part I and II of my dissertation must be: Use Explorative Data 

Analysis (EDA) to reconnoiter your output! We should not rely on just a few numerical values to 

summarize the behavior of very complex objects such as nonnormal multivariate distributions or 

the behavior of confidence intervals. In quantitative research particularly, there is no Type I error 

inflation or other types of penalty for experimentally exploring results. Using EDA has helped us 

to discover that the traditional approach of characterizing multivariate nonnormal distributions 

by their marginal population skewnesses and kurtoses is insufficient. It has also uncovered the 

behavior of approximate confidence intervals in relation to the sample correlation and to an 
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Exact CI that may be worthy of being called a gold standard to compare other CIs to. We may 

hope that visual inspection of results will inspire better summaries for assessing confidence 

intervals and maybe even new strategies for developing robust confidence intervals.  

Secondly, the intent of my dissertation is also to motivate an increase in the quality of 

Monte Carlo studies by asking what the most important aspects of simulation conditions and 

result interpretations are. I go into details of distributional shape, sample size, and extensiveness 

with which to interpret results. By keeping such questions in mind, the high hope is that we may 

help research become more efficient. 

In view of the fast proliferation of techniques to simulate multivariate nonnormal data 

and the large amount of already existing methods, this study naturally has to be limited. My 

dissertation only addresses the effects of distributional shape on the robustness of confidence 

intervals for the Pearson product moment correlation. Whether differences in distributional shape 

not captured by differences in marginal population skewnesses and kurtoses have an equally 

profound effect on other statistical procedures such as ANOVA, e.g., cannot be simple implied 

and poses an interesting opportunity for future research.  
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APPENDIX A 
 
 

Moments of The 3rd Order Polynomial Transformation 

We can find the first four moments about zero by expanding and applying expected value 

theory to the expected values of Y, 2Y , 3Y , and 4Y . 

Using 3 5 7 9( ) ( ) ( ) ( ) ( ) ... 0E Z E Z E Z E Z E Z= = = = = = , as well as 2( ) 1E Z = , 4( ) 3E Z = , 

6( ) 15E Z = , 8( ) 105E Z = , 10( ) 945E Z = , 12( ) 10395E Z = , 14( ) 135135E Z = , we find that   

 

( ) ( )
( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

0 2

0 2

0 0

E Y E a a Z a Z a Z

a a E Z a E Z a E Z

a a
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= + + +

= + + +

= + + +

= +

 (124) 

If we set the mean of Y to be zero ( ( ) 0E Y = ), we have 0 2a a= − .  
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Moments of the g-and-h Distribution 
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APPENDIX B 
 
 
 
Studies That Used V&M to Simulate Nonnormal Data, Listed in Table 28: 
 
Bauer & Curran (2003). Distributional Assumptions of Growth Mixture Models: Implications for 

Overextraction of Latent Trajectory Classes. Psychological Methods, 8(3), 338–363. 
 
Benson, J., Fleishman, J.A. (1994). The robustness of maximum likelihood and distribution free 

estimators to nonnormality in confirmatory factor analysis. Quality & Quantity, 28(2), 
117–136. see page 122. 

 
Berkovits I, Hancock GR, Nevitt J. (2000). Bootstrap resampling approaches for repeated 

measure designs: Relative robustness to sphericity and normality violations. Educational 
and Psychological Measurement, 60(6), 877–892. 

 
Enders CK. (2001). The impact of nonnormality on full information maximum-likelihood 

estimation for structural equation models with missing data, Psychological Methods, 
6(4), 352–370. 

 
Enders CK, Bandalos DL. (1999). The effects of heterogeneous item distributions on reliability. 

Applied Measurement in Education, 12(2), 133–150.  
 
Ferrando PJ, Lorenzo-Seva U. (1999). Implementing a test of underlying normality for censored 

variables, Multivariate Behavioral Research, 34(4), 421–439. 
 
Flora DB, Curran PJ. (2004). An empirical evaluation of alternative methods of estimation for 

confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491. 
 
Fouladi, R.T. (2000). Performance of Modified Test Statistics in Covariance and Correlation 

Structure Analysis Under Conditions of Multivariate Nonnormality. Structural Equation 
Modeling, 7(3), 356–410. 

 
Fouladi RT, Yockey RD. (2002). Type I error control of two-group multivariate tests on means 

under conditions of heterogeneous correlation structure and varied multivariate 
distributions. Communications in Statistics Simulation and Computation, 31(3), 375–400. 

 
Habib, A.R., Harwell, M.R. (1989). An empirical study of the type I error rate and power for 

some selected normal theory and nonparametric tests of the independence of 2 sets of 
variables. Communications in Statistics Simulation and Computation, 18 (2), 793–826 

 
Harwell, M.R. (1991). Using randomization tests when errors are unequally correlated. 

Computations Statistics & Data Analysis, 11(1), 75–85. - see page 80, table 1. 
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Harwell, M. R. & Serlin, R. C. (1988). An experimental study of a proposed test of 
nonparametric analysis of covariance. Psychol. Bull. 104, 268–281. 

 
Harwell, M. R. & Serlin, R.C. (1989). A nonparametric test statistic for the general linear model. 

J. Educational Statist. 14, 351–371. 
 
Hau KT, Marsh HW. (2004). The use of item parcels in structural equation modeling: Non-

normal data and small sample sizes. British Journal of Mathematical & Statistical 
Psychology, 57, 327–351. 

 
Hipp JR, Bollen KA. (2003). Model fit in structural equation models with censored, ordinal, and 

dichotomous variables: Testing vanishing tetrads. Sociological Methodology, Vol. 33, 
267–305. 

 
Jedidi K, Jagpal HS, DESarbo WS. (1997). Finite-mixture structural equation models for 

response-based segmentation and unobserved heterogeneity. Marketing Science, 16(1), 
39–59. See page 54, right column: combined skewness (0 and 1) with kurtosis (0 and 
2.75). At least one combination not possible under constraints. 

 
Lix LM, Keselman HJ, Hinds AM. (2005) Robust tests for the multivariate Behrens-Fisher 

problem. Computer Methods and Programs in Biomedicine, 77(2), 129–139. 
 
Lix LM, Fouladi RT. (2007). Robust step-down tests for multivariate independent group designs. 

British Journal of Mathematical & Statistical Psychology, 60, 245–265.  
 
Nevitt J, Hancock GR. (2000). Improving the root mean square error of approximation for 

nonnormal conditions in structural equation modeling. Journal of Experimental 
Education, 68(3), 251–268. 

 
Olejnik, S.F., Algina, J., 1984. Parametric ANCOVA and the rank transform ANCOVA when the 

data are conditionally non-normal and heteroscedastic. J. Educational Statist. 9, 129–150. 
 
Rausch JR, Kelley K. (2009). A comparison of linear and mixture models for discriminant 

analysis under nonnormality. Behavior Research Methods, 41(1), 85–98. 
 
Vallejo G, Fernandez P, Herrero FJ & Conejo, N. M. (2004). Alternative procedures for testing 

fixed effects in repeated measures designs when assumptions are violated, Psicothema, 
16(3), 498–508. 

 
Vallejo, G., Gras, J. A. & Garcia, M. A. (2007). Comparative robustness of recent methods for 

analyzing multivariate repeated measures designs. Educational and Psychological 
Measurement, 67(3), 410–432. 

 
Wang ZM, Thompson B. (2007). Is the Pearson r(2) biased, and if so, what is the best correction 

formula? Journal of experimental Education, 75(2), 109–125. 
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Weathers D, Sharma S, Niedrich RW. (2005). The impact of the number of scale points, 
dispositional factors, and the status quo decision heuristic on scale reliability and 
response accuracy. Journal of Business Research, 58(11), 1516–1524. 

 
 



 

262 
 

APPENDIX C 

 

Tables below contain three columns in each cell: First column = coverage rate (nominal 

values .68, .80,. 90,. 95, and .99); second column = coverage balance (nominal value = 1); third 

column = mean width of the 50,000 sample confidence intervals in each condition. This is for 

comparison with the mean width of the exact confidence interval. I might change this to the 

median, since some of the confidence interval limit distributions are quite skewed.  

Each cell has five rows, moving from the 68% confidence level (first row) to the 99% confidence 

level (fifth row).  

The order of the columns is as follows: 

1) Exact CI 

2)  Fisher Z CI 

3)  Asymptotically Distribution-free CI 

4)  Asymptotically Distribution-free Fisher Z CI 

5)  BCa CI 

6)  Univariate Sampling CI (Rodgers approach) 

For distribution 1(a) and 1b, rows of the tables stand for different size of ρ , top row: .8ρ = − , 

bottom row: .8ρ = . For distributions 2a – 41b2b, rows of the tables progress with sample size. 

Top row: 20N = , second row 50N = , and so on, last row, 500N = .



  

Table 62: Coverage Rate, Coverage Balance, and Median Width for Cis on Distribution 1a 

Distribution 1a: 11 12 0γ γ= =  and 21 22 2.75γ γ= = , 50N =  

ρ  Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

–.8 

.683  0.995  0.11 

.802  0.989  0.14 

.902  0.987  0.19 

.951  0.977  0.22 

.989  0.949  0.30 

.660  0.771  0.10

.780  0.710  0.13

.884  0.623  0.17

.936  0.535  0.21

.983  0.349  0.28

.626  0.680  0.10

.744  0.579  0.12

.846  0.431  0.16

.904  0.314  0.19

.961  0.136  0.25

.639  0.909  0.10

.759  0.960  0.13

.865  1.124  0.16

.922  1.271  0.20

.975  1.600  0.26

.642  1.058  0.10

.762  1.074  0.13

.867  1.161  0.17

.923  1.184 0.20 

.976  1.042  0.27

.753  0.711  0.12

.869  0.696  0.16

.949  0.682  0.21

.980  0.649  0.26

.997  0.473  0.35

–.4 

.676  0.976  0.24 

.798  0.983  0.31 

.899  0.957  0.40 

.948  0.964  0.47 

.989  0.790  0.62 

.675  0.849  0.24

.795  0.818  0.31

.894  0.742  0.40

.943  0.680  0.47

.987  0.448  0.61

.628  0.829  0.22

.743  0.779  0.28

.847  0.694  0.36

.903  0.607  0.43

.964  0.412  0.56

.639  0.953  0.22

.758  1.000  0.28

.862  1.075  0.36

.920  1.151  0.43

.976  1.318  0.56

.648  1.024  0.23

.768  1.044  0.29

.871  1.075  0.37

.924  1.067  0.44

.978  0.988  0.58

.708  0.817  0.26

.830  0.823  0.34

.923  0.838  0.44

.967  0.809  0.53

.995  0.779  0.70

0 

.684  1.001  0.28 

.803  1.023  0.36 

.900  1.009  0.46 

.951  1.008  0.54 

.990  0.951  0.70 

.687  1.001  0.29

.803  1.018  0.37

.899  0.984  0.47

.949  0.987  0.55

.989  0.937  0.71

.631  1.002  0.26

.748  1.018  0.33

.850  1.013  0.42

.906  1.005  0.50

.966  0.987  0.66

.641  1.003  0.26

.761  1.022  0.33

.865  1.019  0.42

.922  0.989  0.50

.976  0.957  0.65

.656  1.000  0.26

.774  1.019  0.34

.875  1.000  0.44

.927  0.986  0.52

.978  0.926  0.68

.692  1.003  0.29

.816  1.010  0.38

.914  0.989  0.49

.963  0.986  0.59

.995  0.877  0.77

.4 

.676  1.018  0.24 

.796  1.006  0.31 

.899  0.995  0.40 

.950  0.990  0.47 

.990  1.168  0.62 

.673  1.149  0.24

.792  1.209  0.31

.894  1.294  0.40

.945  1.448  0.47

.988  2.034  0.61

.622  1.169  0.22

.739  1.271  0.28

.847  1.428  0.36

.905  1.614  0.43

.965  2.093  0.56

.632  1.021  0.22

.753  0.984  0.28

.863  0.917  0.36

.921  0.805  0.43

.976  0.565  0.56

.643  0.955  0.23

.764  0.943  0.29

.871  0.922  0.37

.927  0.892  0.44

.979  0.801  0.58

.706  1.202  0.26

.828  1.202  0.34

.925  1.155  0.44

.968  1.145  0.53

.996  0.935  0.69

.8 

.682  1.014  0.11 

.803  1.017  0.14 

.901  1.011  0.19 

.950  1.029  0.22 

.989  1.094  0.31 

.656  1.313  0.10

.777  1.429  0.13

.880  1.614  0.17

.934  1.899  0.21

.982  2.956  0.28

.623  1.467  0.10

.742  1.728  0.12

.844  2.293  0.16

.901  3.252  0.19

.959  6.597  0.25

.636  1.100  0.10

.757  1.025  0.13

.863  0.916  0.16

.920  0.792  0.20

.974  0.576  0.26

.639  0.952  0.10

.759  0.923  0.13

.863  0.892  0.17

.921  0.876  0.20

.975  0.865  0.27

.750  1.416  0.12

.866  1.455  0.16

.948  1.480  0.21

.980  1.629  0.26

.997  2.190  0.35
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Table 63: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 1b 

Distribution 1b: 11 12 0γ γ= =  and 21 22 2.75γ γ= = , 50N =  

ρ  Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

–.8 

.680  1.009  0.13 

.801  1.017  0.16 

.899  1.013  0.21 

.950  1.044  0.26 

.990  1.081  0.36 

.575  0.609  0.10

.694  0.588  0.13

.810  0.588  0.17

.878  0.577  0.20

.955  0.619  0.27

.602  0.379  0.10

.715  0.250  0.13

.813  0.126  0.17

.866  0.058  0.20

.926  0.027  0.26

.608  0.531  0.10

.730  0.471  0.13

.839  0.402  0.17

.904  0.339  0.21

.967  0.234  0.28

.624  0.611  0.11

.747  0.542  0.14

.851  0.468  0.18

.913  0.400  0.22

.971  0.258  0.29

.488  0.522  0.08

.606  0.447  0.10

.728  0.347  0.14

.808  0.260  0.16

.907  0.109  0.22

–.4 

.676  1.007  0.26 

.800  1.003  0.34 

.899  0.991  0.43 

.948  1.023  0.51 

.990  1.004  0.67 

.619  0.716  0.24

.740  0.685  0.31

.851  0.666  0.39

.912  0.637  0.47

.973  0.563  0.61

.623  0.581  0.24

.741  0.474  0.31

.843  0.348  0.40

.900  0.252  0.47

.957  0.122  0.62

.636  0.670  0.24

.757  0.610  0.31

.866  0.558  0.40

.923  0.496  0.47

.978  0.387  0.61

.647  0.729  0.24

.770  0.668  0.31

.878  0.592  0.40

.932  0.522  0.48

.982  0.392  0.63

.603  0.624  0.23

.728  0.545  0.30

.841  0.442  0.39

.904  0.360  0.47

.967  0.206  0.62

0 

.677  0.995  0.28 

.798  0.983  0.36 

.899  0.963  0.47 

.950  1.010  0.57 

.989  1.255  0.76 

.680  0.990  0.29

.799  0.983  0.37

.898  0.981  0.47

.950  0.996  0.55

.989  1.237  0.71

.657  0.993  0.28

.773  0.975  0.36

.873  0.979  0.46

.926  0.998  0.55

.976  1.065  0.72

.667  0.991  0.28

.787  0.964  0.36

.888  0.996  0.46

.941  0.991  0.54

.985  1.108  0.70

.678  0.984  0.28

.799  0.969  0.36

.900  0.992  0.46

.951  0.978  0.55

.990  1.115  0.71

.686  0.990  0.29

.808  0.986  0.38

.907  0.986  0.49

.956  1.000  0.58

.990  1.174  0.76

.4 

.681  1.012  0.26 

.801  0.988  0.34 

.899  1.010  0.43 

.950  1.001  0.51 

.990  0.884  0.67 

.621  1.412  0.24

.738  1.444  0.31

.850  1.481  0.39

.912  1.553  0.47

.974  1.849  0.61

.625  1.731  0.24

.740  2.115  0.31

.842  2.832  0.40

.899  4.018  0.47

.957  8.179  0.62

.637  1.494  0.24

.758  1.631  0.31

.865  1.785  0.40

.921  2.043  0.47

.977  2.666  0.61

.649  1.391  0.24

.771  1.509  0.31

.876  1.674  0.40

.931  1.908  0.48

.981  2.668  0.63

.606  1.613  0.23

.727  1.820  0.30

.839  2.224  0.39

.904  2.850  0.47

.966  4.821  0.63

.8 

.680  0.977  0.13 

.798  0.979  0.16 

.900  0.967  0.22 

.949  0.941  0.26 

.989  1.023  0.36 

.575  1.638  0.10

.694  1.673  0.13

.807  1.708  0.17

.876  1.659  0.20

.953  1.502  0.27

.602  2.586  0.10

.716  3.947  0.13

.811  7.615  0.17

.865 15.432  0.20

.925 35.194  0.26

.607  1.840  0.10

.729  2.090  0.13

.840  2.496  0.17

.902  2.863  0.21

.967  3.464  0.28

.624  1.611  0.11

.744  1.814  0.14

.851  2.127  0.18

.912  2.421  0.22

.970  3.165  0.29

.490  1.899  0.08

.606  2.180  0.10

.726  2.760  0.14

.807  3.656  0.16

.906  8.363  0.22
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Table 64: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2a, ρ  = –.8 

Distribution 2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .8ρ = −  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 

.681  0.978  0.26 

.800  1.000  0.35 

.898  0.937  0.45 

.950  0.914  0.55 

.990  0.885  0.75 

.498  0.483  0.16

.610  0.400  0.20

.728  0.291  0.27

.801  0.187  0.32

.894  0.057  0.44

.444  0.514  0.14

.540  0.445  0.18

.636  0.372  0.22

.703  0.312  0.26

.795  0.219  0.33

.482  0.671  0.14

.598  0.719  0.19

.716  0.815  0.25

.795  0.960  0.31

.893  1.437  0.43

.556  1.052  0.18

.677  1.154  0.24

.795  1.284  0.31

.867  1.317  0.37

.947  1.210  0.48

.738  0.355  0.25

.875  0.252  0.34

.960  0.141  0.46

.988  0.052  0.58

.999  0.000  0.81

50 

.679  0.987  0.18 

.799  0.957  0.24 

.899  0.940  0.31 

.949  0.950  0.38 

.990  0.913  0.53 

.446  0.627  0.10

.555  0.563  0.13

.672  0.470  0.17

.752  0.377  0.20

.859  0.219  0.27

.506  0.615  0.11

.613  0.555  0.15

.717  0.482  0.19

.785  0.415  0.22

.873  0.302  0.29

.531  0.803  0.12

.652  0.882  0.15

.769  1.062  0.20

.842  1.335  0.24

.924  2.206  0.33

.560  1.072  0.13

.681  1.145  0.17

.795  1.282  0.21

.865  1.399  0.25

.943  1.613  0.32

.752  0.564  0.18

.875  0.542  0.24

.958  0.521  0.32

.986  0.482  0.39

.999  0.464  0.52

100 

.676  1.034  0.13 

.799  1.031  0.18 

.900  1.028  0.23 

.951  1.079  0.28 

.990  1.203  0.40 

.412  0.728  0.07

.516  0.676  0.09

.630  0.610  0.12

.714  0.534  0.14

.836  0.371  0.19

.542  0.701  0.10

.656  0.644  0.12

.767  0.567  0.16

.836  0.499  0.19

.919  0.388  0.25

.560  0.890  0.10

.684  0.994  0.13

.802  1.255  0.16

.872  1.647  0.20

.945  2.847  0.26

.567  1.070  0.10

.688  1.138  0.13

.803  1.274  0.17

.871  1.407  0.20

.946  1.525  0.25

.758  0.728  0.14

.878  0.769  0.19

.959  0.827  0.24

.986  0.926  0.29

.999  0.889  0.39

200 

.676  0.984  0.10 

.796  0.994  0.13 

.897  0.981  0.17 

.948  0.961  0.21 

.990  1.075  0.29 

.392  0.811  0.05

.492  0.772  0.07

.603  0.707  0.08

.684  0.646  0.10

.807  0.520  0.13

.578  0.774  0.08

.696  0.717  0.10

.806  0.651  0.13

.873  0.586  0.15

.948  0.459  0.20

.590  0.960  0.08

.715  1.067  0.10

.828  1.354  0.13

.894  1.797  0.16

.960  3.122  0.21

.581  1.082  0.08

.701  1.111  0.10

.812  1.196  0.13

.878  1.306  0.16

.951  1.441  0.20

.767  0.825  0.11

.882  0.914  0.15

.959  1.042  0.19

.985  1.345  0.22

.999  3.333  0.29

500 

.678  1.016  0.07 

.798  1.007  0.09 

.899  1.006  0.11 

.949  1.017  0.14 

.990  0.950  0.19 

.371  0.880  0.03

.466  0.854  0.04

.575  0.815  0.05

.656  0.774  0.06

.786  0.667  0.08

.615  0.862  0.06

.737  0.849  0.07

.849  0.789  0.09

.909  0.728  0.11

.971  0.591  0.15

.623  1.027  0.06

.747  1.175  0.07

.857  1.457  0.09

.918  1.846  0.11

.972  3.173  0.15

.604  1.076  0.06

.722  1.126  0.07

.831  1.212  0.09

.893  1.230  0.11

.959  1.345  0.15

.784  0.952  0.08

.892  1.090  0.10

.962  1.277  0.13

.986  1.411  0.16

.999  2.000  0.20
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Table 65: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2a, ρ  = –.4 

Distribution 2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .4ρ = −  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.683  1.021  0.28 

.802  1.028  0.36 

.901  1.035  0.46 

.950  0.994  0.55 

.990  0.973  0.71 

.583  0.680  0.24

.703  0.530  0.31

.815  0.329  0.40

.880  0.176  0.47

.941  0.037  0.61

.520  0.982  0.21

.631  1.035  0.27

.739  1.123  0.35

.810  1.206  0.41

.899  1.422  0.54

.540  1.113  0.21

.660  1.324  0.27

.774  1.813  0.35

.845  2.565  0.41

.921  5.278  0.54

.578  1.320  0.23

.698  1.487  0.29

.812  1.746  0.38

.880  1.999  0.45

.952  2.397  0.59

.707  0.630  0.30

.832  0.541  0.39

.932  0.407  0.51

.975  0.299  0.62

.998  0.304  0.83

100 

.679  0.982  0.22 

.798  0.976  0.28 

.898  0.968  0.36 

.948  1.021  0.43 

.989  1.116  0.56 

.550  0.760  0.17

.670  0.646  0.22

.784  0.474  0.28

.855  0.320  0.33

.933  0.114  0.43

.558  1.033  0.17

.673  1.118  0.22

.783  1.286  0.28

.851  1.516  0.33

.928  2.030  0.44

.572  1.146  0.17

.692  1.391  0.22

.806  1.978  0.28

.869  2.869  0.33

.938  6.416  0.44

.584  1.226  0.18

.703  1.327  0.23

.815  1.567  0.29

.880  1.805  0.35

.952  2.320  0.45

.700  0.692  0.22

.822  0.607  0.29

.922  0.514  0.38

.967  0.435  0.45

.997  0.237  0.60

200 

.679  1.026  0.16 

.800  1.029  0.21 

.899  1.032  0.27 

.950  1.005  0.32 

.991  1.057  0.43 

.525  0.861  0.12

.643  0.768  0.15

.762  0.619  0.20

.839  0.482  0.23

.929  0.221  0.31

.589  1.129  0.13

.709  1.266  0.17

.821  1.581  0.22

.885  1.935  0.26

.954  3.190  0.35

.598  1.248  0.13

.721  1.538  0.17

.834  2.305  0.22

.893  3.376  0.26

.956  9.282  0.34

.595  1.236  0.14

.712  1.343  0.18

.825  1.530  0.22

.889  1.747  0.27

.958  2.280  0.35

.703  0.781  0.17

.824  0.703  0.22

.922  0.617  0.28

.966  0.513  0.33

.997  0.315  0.44

500 

.682  1.010  0.11 

.803  1.001  0.14 

.901  1.034  0.18 

.952  1.015  0.22 

.990  1.008  0.29 

.500  0.901  0.08

.617  0.853  0.10

.738  0.743  0.12

.817  0.638  0.15

.917  0.390  0.19

.626  1.137  0.10

.748  1.285  0.12

.854  1.562  0.16

.913  2.086  0.19

.972  3.672  0.25

.631  1.224  0.10

.753  1.468  0.12

.860  2.064  0.16

.916  3.192  0.19

.972  9.150  0.25

.616  1.147  0.10

.736  1.206  0.12

.840  1.313  0.16

.902  1.494  0.19

.966  1.769  0.24

.708  0.831  0.11

.827  0.772  0.15

.920  0.669  0.19

.965  0.553  0.22

.995  0.384  0.29
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Table 66: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2a, ρ  = 0 

Distribution 2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.683  1.013  0.25 

.800  1.025  0.33 

.901  1.015  0.42 

.951  1.063  0.50 

.991  0.946  0.65 

.728  1.013  0.29

.825  1.016  0.37

.902  1.040  0.47

.941  1.054  0.55

.979  1.098  0.71

.566  0.995  0.20

.695  0.991  0.26

.817  1.008  0.33

.891  1.002  0.40

.963  0.951  0.52

.577  0.997  0.20

.711  0.995  0.26

.836  1.006  0.33

.909  0.996  0.39

.974  0.923  0.51

.627  0.986  0.22

.752  1.000  0.29

.859  0.993  0.38

.917  0.997  0.46

.973  1.029  0.63

.711  1.015  0.29

.836  1.019  0.38

.929  1.049  0.50

.969  1.063  0.62

.996  0.713  0.84

100 

.680  1.021  0.18 

.799  1.044  0.24 

.900  1.072  0.30 

.950  1.117  0.36 

.990  1.225  0.48 

.723  1.013  0.20

.826  1.045  0.26

.905  1.048  0.33

.944  1.113  0.39

.981  1.155  0.51

.598  1.015  0.15

.728  1.012  0.20

.852  1.020  0.25

.919  1.073  0.30

.978  1.081  0.39

.603  1.016  0.15

.736  1.004  0.20

.861  1.017  0.25

.927  1.075  0.30

.982  1.057  0.39

.615  1.010  0.16

.735  1.017  0.21

.846  1.040  0.27

.908  1.045  0.33

.968  1.103  0.44

.700  1.014  0.20

.824  1.041  0.26

.921  1.064  0.34

.963  1.110  0.42

.993  1.191  0.58

200 

.681  1.023  0.13 

.800  1.037  0.17 

.899  1.005  0.22 

.948  0.960  0.26 

.990  0.930  0.35 

.714  1.036  0.14

.819  1.026  0.18

.904  1.014  0.23

.945  1.011  0.28

.982  0.991  0.36

.619  1.013  0.11

.750  1.003  0.15

.870  0.998  0.19

.932  1.041  0.22

.985  1.027  0.30

.622  1.013  0.11

.754  1.005  0.15

.875  0.995  0.19

.936  1.046  0.22

.987  1.037  0.29

.613  1.005  0.12

.731  1.012  0.15

.843  1.009  0.20

.904  1.022  0.24

.966  0.985  0.32

.691  1.030  0.14

.813  1.025  0.18

.913  1.007  0.24

.958  0.961  0.29

.992  0.939  0.40

500 

.688  0.998  0.09 

.805  0.964  0.11 

.902  0.968  0.14 

.952  1.030  0.17 

.990  0.996  0.23 

.705  1.003  0.09

.817  0.998  0.12

.905  0.992  0.15

.949  1.015  0.18

.986  0.964  0.23

.651  0.996  0.08

.777  0.998  0.10

.887  1.008  0.13

.944  0.994  0.15

.989  1.011  0.20

.652  0.998  0.08

.779  1.001  0.10

.889  1.004  0.13

.946  0.990  0.15

.990  1.004  0.20

.631  1.002  0.08

.748  1.002  0.10

.852  1.001  0.13

.912  0.997  0.16

.971  0.999  0.21

.690  1.000  0.09

.811  0.991  0.11

.908  1.012  0.15

.956  1.026  0.18

.992  1.035  0.25
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Table 67: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2a, ρ  = .4 

Distribution 2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .4ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.679  1.002  0.28 

.799  0.991  0.36 

.902  0.986  0.46 

.950  1.014  0.55 

.991  1.238  0.71 

.582  1.505  0.24

.701  1.916  0.31

.814  3.172  0.40

.878  5.795  0.47

.943 35.909  0.61

.523  1.060  0.21

.630  0.995  0.27

.741  0.913  0.35

.811  0.823  0.41

.901  0.710  0.54

.542  0.936  0.21

.660  0.777  0.27

.777  0.560  0.35

.845  0.398  0.42

.922  0.204  0.54

.581  0.789  0.23

.700  0.699  0.30

.813  0.579  0.38

.879  0.494  0.46

.952  0.421  0.59

.705  1.616  0.30

.833  1.955  0.39

.932  2.556  0.52

.975  3.922  0.62

.998  4.474  0.83

100 

.678  1.009  0.22 

.798  1.003  0.28 

.900  0.980  0.36 

.950  0.993  0.43 

.990  0.864  0.56 

.551  1.295  0.17

.667  1.530  0.22

.784  2.106  0.28

.856  3.116  0.33

.936  9.304  0.43

.554  0.952  0.17

.670  0.868  0.22

.782  0.749  0.28

.851  0.634  0.33

.929  0.457  0.44

.567  0.854  0.17

.689  0.696  0.22

.804  0.477  0.28

.870  0.325  0.33

.938  0.130  0.43

.580  0.804  0.18

.701  0.718  0.23

.813  0.609  0.29

.881  0.527  0.35

.951  0.417  0.45

.699  1.431  0.22

.823  1.599  0.29

.925  1.895  0.38

.969  2.106  0.45

.997  3.735  0.60

200 

.681  1.005  0.16 

.798  1.032  0.21 

.900  0.989  0.27 

.951  0.977  0.32 

.990  1.008  0.43 

.525  1.197  0.12

.644  1.350  0.15

.760  1.657  0.20

.836  2.149  0.23

.927  4.653  0.31

.590  0.912  0.13

.710  0.818  0.17

.819  0.688  0.22

.883  0.569  0.26

.953  0.354  0.35

.599  0.833  0.13

.721  0.680  0.17

.830  0.486  0.22

.893  0.323  0.26

.955  0.119  0.34

.595  0.839  0.14

.714  0.777  0.18

.823  0.695  0.22

.888  0.621  0.27

.957  0.468  0.35

.701  1.315  0.17

.821  1.469  0.22

.921  1.672  0.28

.966  1.982  0.33

.996  3.109  0.44

500 

.677  0.981  0.11 

.797  0.990  0.14 

.898  0.994  0.18 

.949  0.987  0.22 

.989  0.952  0.29 

.499  1.086  0.08

.614  1.165  0.10

.734  1.317  0.12

.812  1.548  0.15

.913  2.441  0.19

.623  0.872  0.10

.742  0.777  0.12

.851  0.610  0.16

.912  0.451  0.19

.970  0.265  0.25

.626  0.818  0.10

.749  0.673  0.12

.857  0.465  0.16

.915  0.304  0.19

.969  0.113  0.25

.612  0.866  0.10

.730  0.815  0.12

.836  0.746  0.16

.900  0.645  0.19

.964  0.513  0.24

.702  1.185  0.11

.822  1.284  0.15

.919  1.480  0.19

.964  1.729  0.22

.995  2.306  0.29
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Table 68: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2a, ρ  = .8 

Distribution 2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .8ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 

.680  1.019  0.26 

.801  1.028  0.34 

.900  1.059  0.45 

.950  1.068  0.55 

.990  1.051  0.74 

.497  2.077  0.16

.608  2.542  0.20

.724  3.553  0.27

.799  5.256  0.32

.892 15.538  0.44

.446  1.975  0.14

.539  2.272  0.18

.637  2.727  0.22

.702  3.203  0.26

.793  4.327  0.33

.484  1.506  0.15

.599  1.407  0.19

.717  1.212  0.25

.795  1.041  0.31

.891  0.697  0.43

.557  0.962  0.18

.677  0.884  0.24

.796  0.785  0.31

.867  0.749  0.37

.945  0.781  0.48

.737  2.822  0.25

.874  3.856  0.34

.960  6.878  0.46

.987 14.119  0.58

.999 37.000  0.81

50 

.684  0.989  0.18 

.799  0.988  0.24 

.900  1.028  0.31 

.950  1.067  0.38 

.989  1.145  0.53 

.453  1.572  0.10

.558  1.741  0.13

.670  2.065  0.17

.752  2.561  0.20

.862  4.639  0.27

.511  1.614  0.11

.615  1.787  0.15

.719  2.087  0.19

.787  2.373  0.22

.874  3.223  0.29

.535  1.239  0.12

.652  1.124  0.15

.770  0.922  0.20

.843  0.746  0.24

.925  0.412  0.33

.562  0.942  0.13

.680  0.879  0.17

.796  0.785  0.21

.867  0.708  0.25

.944  0.599  0.32

.751  1.751  0.18

.876  1.765  0.24

.960  1.932  0.32

.988  1.966  0.39

.999  3.100  0.52

100 

.678  1.015  0.13 

.796  1.013  0.18 

.898  0.986  0.23 

.950  1.036  0.28 

.990  0.841  0.40 

.414  1.380  0.07

.515  1.494  0.09

.628  1.676  0.12

.712  1.898  0.14

.833  2.723  0.19

.540  1.446  0.10

.653  1.562  0.12

.764  1.796  0.16

.836  2.038  0.19

.919  2.637  0.25

.558  1.132  0.10

.681  1.009  0.13

.801  0.796  0.16

.870  0.626  0.20

.945  0.364  0.26

.564  0.948  0.10

.684  0.886  0.13

.801  0.800  0.17

.870  0.721  0.20

.946  0.677  0.25

.758  1.427  0.14

.880  1.352  0.19

.958  1.211  0.24

.986  0.950  0.29

.999  0.762  0.39

200 

.682  0.986  0.10 

.801  0.992  0.13 

.901  0.985  0.17 

.951  0.985  0.21 

.990  1.068  0.29 

.395  1.221  0.05

.494  1.290  0.07

.607  1.390  0.08

.689  1.529  0.10

.813  1.937  0.13

.580  1.270  0.08

.702  1.370  0.10

.811  1.510  0.13

.878  1.729  0.15

.950  2.101  0.20

.593  1.015  0.08

.718  0.903  0.10

.832  0.724  0.13

.896  0.539  0.16

.961  0.330  0.21

.584  0.916  0.08

.703  0.867  0.10

.815  0.816  0.13

.880  0.745  0.16

.953  0.673  0.20

.773  1.181  0.11

.886  1.090  0.15

.960  0.936  0.19

.986  0.789  0.22

.999  0.395  0.29

500 

.680  0.995  0.07 

.801  0.986  0.09 

.901  0.994  0.11 

.950  1.005  0.14 

.990  1.031  0.19 

.375  1.158  0.03

.468  1.198  0.04

.576  1.249  0.05

.658  1.323  0.06

.786  1.497  0.08

.617  1.182  0.06

.739  1.220  0.07

.850  1.322  0.09

.911  1.366  0.11

.971  1.831  0.15

.625  0.992  0.06

.749  0.872  0.07

.860  0.703  0.09

.919  0.551  0.11

.975  0.293  0.15

.605  0.950  0.06

.724  0.909  0.07

.834  0.845  0.09

.895  0.806  0.11

.961  0.749  0.15

.785  1.057  0.08

.894  0.940  0.10

.963  0.784  0.13

.987  0.611  0.16

.999  0.462  0.20
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Table 69: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2b, ρ  = –.8 

Distribution 2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .8ρ = −  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 

.680  1.014  0.22 

.801  0.994  0.30 

.900  1.039  0.39 

.950  1.042  0.48 

.991  0.966  0.69 

.551  0.477  0.15

.667  0.438  0.20

.780  0.400  0.26

.852  0.357  0.32

.938  0.238  0.44

.527  0.299  0.14

.628  0.192  0.18

.718  0.106  0.23

.770  0.065  0.27

.838  0.031  0.35

.544  0.453  0.15

.661  0.400  0.19

.773  0.341  0.25

.846  0.300  0.31

.929  0.251  0.43

.586  0.467  0.16

.706  0.389  0.21

.817  0.293  0.28

.882  0.216  0.34

.952  0.109  0.48

.498  0.366  0.13

.624  0.277  0.18

.748  0.151  0.24

.828  0.057  0.30

.914  0.007  0.43

50 

.678  0.997  0.16 

.798  0.999  0.20 

.900  1.017  0.27 

.950  1.002  0.34 

.990  0.879  0.52 

.488  0.600  0.10

.602  0.579  0.13

.718  0.551  0.16

.796  0.519  0.20

.897  0.420  0.26

.540  0.396  0.11

.655  0.270  0.14

.757  0.154  0.17

.814  0.098  0.21

.887  0.053  0.27

.547  0.539  0.11

.671  0.485  0.14

.791  0.425  0.18

.865  0.393  0.22

.949  0.389  0.30

.572  0.600  0.11

.694  0.528  0.15

.807  0.444  0.19

.875  0.363  0.23

.947  0.221  0.30

.474  0.547  0.09

.589  0.498  0.12

.714  0.426  0.15

.799  0.320  0.19

.900  0.145  0.25

100 

.677  0.987  0.12 

.797  0.986  0.16 

.898  1.066  0.22 

.950  1.067  0.27 

.991  1.178  0.43 

.449  0.705  0.07

.555  0.678  0.09

.669  0.657  0.12

.751  0.629  0.14

.859  0.561  0.19

.556  0.487  0.09

.672  0.352  0.11

.779  0.216  0.14

.843  0.139  0.17

.918  0.067  0.22

.559  0.619  0.09

.681  0.568  0.11

.805  0.530  0.15

.879  0.499  0.18

.958  0.515  0.24

.564  0.710  0.09

.684  0.653  0.12

.799  0.575  0.15

.867  0.499  0.18

.944  0.350  0.23

.491  0.689  0.07

.607  0.672  0.09

.727  0.642  0.12

.807  0.577  0.15

.904  0.405  0.19

200 

.682  1.013  0.10 

.801  1.020  0.13 

.901  1.012  0.17 

.951  0.976  0.22 

.990  0.887  0.34 

.417  0.812  0.05

.519  0.792  0.07

.629  0.766  0.08

.710  0.731  0.10

.827  0.642  0.13

.578  0.601  0.07

.701  0.460  0.09

.813  0.281  0.12

.876  0.179  0.14

.945  0.069  0.19

.581  0.744  0.07

.707  0.701  0.09

.828  0.646  0.12

.901  0.598  0.15

.970  0.584  0.19

.570  0.870  0.07

.689  0.822  0.10

.801  0.723  0.12

.870  0.638  0.15

.945  0.433  0.19

.523  0.847  0.06

.643  0.885  0.08

.762  0.939  0.10

.835  0.919  0.12

.924  0.772  0.16

500 

.681  0.997  0.07 

.800  0.963  0.09 

.899  0.925  0.12 

.950  0.938  0.15 

.990  0.981  0.23 

.374  0.906  0.03

.470  0.886  0.04

.576  0.861  0.05

.656  0.828  0.06

.778  0.722  0.08

.600  0.731  0.06

.730  0.605  0.07

.846  0.432  0.09

.910  0.276  0.11

.970  0.116  0.14

.603  0.869  0.06

.736  0.865  0.07

.857  0.839  0.09

.923  0.841  0.11

.980  0.738  0.14

.575  1.004  0.06

.697  0.961  0.07

.810  0.898  0.09

.876  0.800  0.11

.949  0.566  0.14

.576  1.040  0.05

.702  1.179  0.07

.817  1.406  0.08

.882  1.567  0.10

.952  1.685  0.13
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Table 70: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2b, ρ  = –.4 

Distribution 2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .4ρ = −  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.675  0.961  0.31 

.797  0.977  0.39 

.900  0.951  0.49 

.949  0.991  0.58 

.990  1.098  0.71 

.525  0.630  0.24

.643  0.596  0.30

.761  0.543  0.39

.842  0.482  0.46

.934  0.327  0.60

.554  0.515  0.25

.667  0.426  0.32

.774  0.324  0.41

.841  0.249  0.49

.918  0.160  0.64

.566  0.583  0.25

.689  0.534  0.32

.807  0.478  0.41

.877  0.457  0.49

.957  0.474  0.63

.592  0.612  0.25

.715  0.538  0.33

.830  0.439  0.42

.897  0.357  0.50

.964  0.209  0.65

.534  0.565  0.24

.655  0.504  0.31

.776  0.420  0.40

.854  0.345  0.48

.944  0.214  0.64

100 

.685  0.996  0.24 

.801  0.999  0.31 

.902  0.960  0.39 

.951  0.924  0.46 

.990  0.959  0.59 

.502  0.724  0.17

.615  0.685  0.22

.734  0.654  0.28

.813  0.589  0.33

.915  0.432  0.43

.575  0.588  0.19

.692  0.497  0.25

.803  0.372  0.32

.868  0.291  0.38

.941  0.174  0.50

.582  0.659  0.19

.705  0.604  0.25

.823  0.541  0.32

.892  0.506  0.38

.963  0.484  0.49

.594  0.721  0.20

.717  0.643  0.25

.829  0.543  0.32

.894  0.442  0.39

.961  0.265  0.50

.529  0.656  0.17

.647  0.606  0.23

.768  0.549  0.29

.848  0.478  0.35

.942  0.366  0.45

200 

.679  0.987  0.19 

.800  0.979  0.24 

.901  1.012  0.31 

.949  1.037  0.37 

.990  1.139  0.49 

.470  0.802  0.12

.580  0.781  0.15

.696  0.732  0.20

.778  0.672  0.23

.886  0.559  0.30

.588  0.677  0.15

.709  0.580  0.20

.821  0.460  0.25

.886  0.372  0.30

.957  0.217  0.39

.593  0.742  0.15

.718  0.687  0.20

.834  0.635  0.25

.902  0.600  0.30

.968  0.540  0.39

.589  0.838  0.15

.711  0.773  0.20

.823  0.668  0.25

.888  0.553  0.30

.956  0.371  0.39

.523  0.748  0.13

.640  0.708  0.17

.762  0.649  0.21

.844  0.600  0.26

.939  0.519  0.33

500 

.679  0.983  0.13 

.800  0.992  0.17 

.900  1.035  0.22 

.950  1.026  0.26 

.989  0.918  0.36 

.434  0.904  0.08

.542  0.882  0.10

.657  0.829  0.12

.737  0.781  0.15

.852  0.673  0.19

.609  0.811  0.11

.735  0.725  0.14

.848  0.625  0.18

.912  0.548  0.21

.973  0.353  0.28

.612  0.871  0.11

.740  0.836  0.14

.857  0.824  0.18

.920  0.812  0.21

.977  0.738  0.28

.594  0.983  0.11

.717  0.943  0.14

.827  0.851  0.18

.891  0.785  0.21

.958  0.542  0.28

.528  0.852  0.09

.648  0.811  0.12

.768  0.752  0.15

.848  0.709  0.18

.943  0.646  0.23
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Table 71: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2b, ρ  = 0 

Distribution 2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.681  0.996  0.29 

.800  0.965  0.38 

.900  0.966  0.50 

.951  0.952  0.61 

.990  0.917  0.81 

.680  1.006  0.29

.801  0.993  0.37

.902  0.969  0.47

.953  0.952  0.55

.990  0.944  0.71

.636  1.011  0.27

.752  0.996  0.35

.853  0.989  0.45

.912  0.973  0.54

.969  0.971  0.71

.647  1.012  0.27

.766  1.004  0.35

.869  0.980  0.45

.926  0.973  0.53

.979  0.961  0.69

.671  1.011  0.28

.794  0.995  0.36

.899  0.970  0.46

.951  0.939  0.54

.992  1.029  0.70

.689  1.007  0.29

.815  0.980  0.38

.916  0.971  0.49

.962  0.947  0.59

.993  0.978  0.76

100 

.683  0.986  0.21 

.801  0.988  0.27 

.900  0.986  0.36 

.949  0.950  0.44 

.990  1.080  0.60 

.681  0.990  0.20

.802  0.989  0.26

.902  0.981  0.33

.950  0.948  0.39

.990  1.068  0.51

.648  0.983  0.19

.765  0.990  0.25

.866  0.991  0.32

.921  0.999  0.38

.974  0.977  0.50

.653  0.983  0.19

.771  0.994  0.25

.873  1.002  0.32

.928  0.990  0.38

.979  0.976  0.49

.670  0.985  0.20

.793  0.975  0.25

.896  0.993  0.32

.947  0.975  0.38

.989  1.073  0.50

.687  0.987  0.20

.811  0.981  0.26

.911  0.996  0.34

.958  0.970  0.40

.992  1.043  0.53

200 

.688  1.000  0.15 

.809  1.023  0.19 

.905  1.064  0.25 

.954  1.079  0.31 

.991  0.975  0.42 

.686  1.009  0.14

.807  1.026  0.18

.904  1.064  0.23

.954  1.069  0.28

.990  0.933  0.36

.659  1.009  0.14

.777  1.029  0.18

.877  1.031  0.23

.931  1.030  0.27

.980  1.058  0.35

.662  1.009  0.14

.781  1.028  0.18

.881  1.027  0.23

.935  1.031  0.27

.982  1.011  0.35

.676  1.010  0.14

.796  1.033  0.18

.897  1.038  0.23

.948  1.022  0.27

.989  0.967  0.35

.687  1.010  0.14

.810  1.031  0.18

.911  1.046  0.24

.959  1.040  0.28

.992  0.928  0.37

500 

.682  0.999  0.09 

.805  0.992  0.12 

.903  0.995  0.16 

.952  0.969  0.19 

.990  0.776  0.26 

.683  1.001  0.09

.806  0.989  0.12

.904  0.979  0.15

.953  0.951  0.18

.990  0.776  0.23

.665  1.004  0.09

.786  0.992  0.11

.888  0.982  0.14

.940  0.960  0.17

.984  0.826  0.22

.666  1.004  0.09

.787  0.991  0.11

.890  0.985  0.14

.941  0.956  0.17

.985  0.839  0.22

.674  1.001  0.09

.797  0.986  0.11

.898  0.976  0.14

.948  0.928  0.17

.989  0.852  0.22

.682  1.000  0.09

.807  0.994  0.12

.906  0.970  0.15

.956  0.933  0.18

.992  0.771  0.23
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Table 72: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2b, ρ  = .4 

Distribution 2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .4ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 

.683  0.982  0.31 

.804  0.989  0.39 

.903  0.993  0.49 

.951  1.012  0.58 

.990  1.004  0.71 

.530  1.566  0.24

.650  1.622  0.30

.770  1.786  0.39

.847  1.981  0.46

.937  3.054  0.60

.559  1.905  0.25

.676  2.308  0.32

.781  2.974  0.41

.846  3.721  0.49

.924  6.206  0.64

.573  1.668  0.25

.697  1.819  0.32

.812  1.977  0.41

.883  2.024  0.49

.959  2.189  0.63

.597  1.596  0.25

.723  1.804  0.33

.836  2.167  0.42

.902  2.630  0.50

.967  4.771  0.65

.538  1.747  0.24

.662  1.941  0.31

.784  2.276  0.40

.860  2.699  0.48

.947  4.308  0.64

100 

.679  0.991  0.24 

.802  0.980  0.31 

.901  0.980  0.39 

.951  0.968  0.46 

.991  1.036  0.59 

.500  1.366  0.17

.614  1.417  0.22

.732  1.533  0.28

.814  1.628  0.33

.913  2.208  0.43

.573  1.662  0.19

.690  1.989  0.25

.800  2.586  0.32

.866  3.351  0.38

.941  5.719  0.50

.581  1.496  0.19

.702  1.619  0.25

.820  1.806  0.32

.891  1.936  0.38

.964  2.044  0.49

.591  1.356  0.20

.712  1.519  0.25

.826  1.811  0.32

.893  2.205  0.39

.962  3.564  0.50

.527  1.489  0.17

.646  1.604  0.23

.765  1.778  0.29

.848  2.001  0.35

.941  2.668  0.46

200 

.679  1.021  0.19 

.798  1.019  0.24 

.900  1.017  0.31 

.950  1.000  0.37 

.990  0.793  0.49 

.465  1.259  0.12

.578  1.314  0.15

.697  1.383  0.20

.779  1.458  0.23

.888  1.825  0.30

.584  1.505  0.15

.705  1.735  0.20

.820  2.164  0.25

.888  2.790  0.30

.958  4.106  0.39

.589  1.372  0.15

.714  1.459  0.20

.833  1.572  0.25

.905  1.656  0.30

.969  1.747  0.39

.586  1.216  0.15

.707  1.315  0.20

.824  1.500  0.25

.891  1.792  0.30

.958  2.718  0.39

.519  1.363  0.13

.637  1.455  0.17

.759  1.560  0.21

.843  1.692  0.26

.940  2.001  0.33

500 

.683  1.003  0.13 

.803  1.018  0.17 

.903  1.036  0.22 

.952  1.035  0.26 

.990  1.094  0.37 

.442  1.090  0.08

.545  1.124  0.10

.657  1.180  0.12

.740  1.268  0.15

.855  1.567  0.19

.616  1.210  0.11

.738  1.349  0.14

.851  1.597  0.18

.915  1.966  0.21

.974  3.141  0.28

.619  1.122  0.11

.743  1.165  0.14

.857  1.194  0.18

.922  1.301  0.21

.978  1.431  0.28

.601  1.005  0.11

.718  1.051  0.14

.829  1.151  0.18

.893  1.324  0.21

.959  1.836  0.28

.534  1.171  0.09

.653  1.237  0.12

.773  1.327  0.15

.850  1.436  0.18

.945  1.685  0.23
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Table 73: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 2b, ρ  = .8 

Distribution 2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .8ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 

.680  0.998  0.22 

.800  1.019  0.30 

.899  1.034  0.39 

.950  1.012  0.48 

.989  1.019  0.68 

.547  2.112  0.15

.663  2.330  0.20

.780  2.584  0.26

.851  2.889  0.32

.935  4.060  0.44

.525  3.354  0.14

.627  5.263  0.18

.714  9.503  0.23

.766 15.632  0.27

.837 32.159  0.34

.542  2.232  0.15

.658  2.573  0.19

.774  3.006  0.25

.845  3.375  0.31

.929  3.855  0.42

.586  2.166  0.16

.704  2.654  0.21

.816  3.518  0.27

.881  4.670  0.34

.952  8.882  0.48

.498   2.727  0.13

.624   3.687  0.18

.748   6.685  0.24

.825  15.472  0.30

.913 119.833  0.43

50 

.678  0.982  0.16 

.800  0.994  0.20 

.900  0.990  0.27 

.949  0.990  0.34 

.990  1.016  0.52 

.488  1.640  0.10

.598  1.723  0.13

.717  1.838  0.16

.795  1.961  0.20

.897  2.306  0.26

.542  2.519  0.11

.654  3.629  0.14

.754  6.143  0.17

.814  9.430  0.21

.886 18.324  0.27

.549  1.855  0.11

.670  2.039  0.14

.789  2.333  0.18

.863  2.467  0.22

.948  2.313  0.30

.571  1.654  0.11

.691  1.869  0.15

.804  2.265  0.19

.872  2.642  0.23

.947  4.244  0.30

.473  1.822  0.09 

.590  1.977  0.12 

.717  2.357  0.15 

.798  3.012  0.19 

.900  6.538  0.25 

100 

.680  0.975  0.12 

.798  0.952  0.16 

.901  0.953  0.21 

.951  0.963  0.27 

.989  1.063  0.43 

.450  1.411  0.07

.558  1.445  0.09

.673  1.508  0.12

.751  1.554  0.14

.864  1.839  0.19

.558  2.040  0.09

.677  2.860  0.11

.783  4.883  0.14

.845  8.072  0.17

.917 19.547  0.22

.560  1.587  0.09

.684  1.743  0.11

.807  1.982  0.15

.881  2.136  0.18

.958  2.332  0.24

.566  1.377  0.09

.689  1.517  0.12

.802  1.782  0.15

.872  2.080  0.18

.945  3.279  0.23

.491  1.454  0.07 

.604  1.484  0.09 

.725  1.546  0.12 

.803  1.756  0.14 

.905  2.692  0.19 

200 

.684  0.989  0.10 

.804  1.022  0.13 

.903  1.001  0.17 

.951  0.985  0.21 

.990  0.888  0.34 

.416  1.234  0.05

.520  1.267  0.07

.630  1.339  0.08

.713  1.400  0.10

.828  1.608  0.13

.580  1.696  0.07

.703  2.218  0.09

.813  3.564  0.12

.877  5.458  0.14

.945 12.730  0.19

.581  1.368  0.07

.709  1.470  0.09

.833  1.576  0.12

.900  1.674  0.15

.969  1.665  0.19

.571  1.160  0.07

.690  1.258  0.10

.804  1.413  0.12

.871  1.627  0.15

.945  2.241  0.19

.524  1.183  0.06 

.645  1.130  0.08 

.764  1.087  0.10 

.838  1.107  0.12 

.925  1.290  0.16 

500 

.678  0.982  0.07 

.799  0.971  0.09 

.898  0.943  0.12 

.949  0.917  0.15 

.990  0.985  0.23 

.372  1.093  0.03

.466  1.112  0.04

.574  1.153  0.05

.653  1.189  0.06

.777  1.332  0.08

.600  1.318  0.06

.728  1.575  0.07

.845  2.211  0.09

.908  3.081  0.11

.968  6.402  0.14

.603  1.108  0.06

.733  1.112  0.07

.853  1.127  0.09

.919  1.135  0.11

.978  1.116  0.14

.576  0.973  0.06

.695  0.993  0.07

.806  1.070  0.09

.873  1.149  0.11

.947  1.532  0.14

.578  0.943  0.05 

.700  0.825  0.07 

.812  0.686  0.08 

.878  0.597  0.10 

.950  0.545  0.13 
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Table 74: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41a2a, ρ  = 0 

Distribution 41a2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 N/A 

.696  1.002  0.29

.814  1.173  0.37

.904  1.543  0.47

.948  2.177  0.55

.985  4.818  0.71

.597  0.734  0.23

.714  0.666  0.30

.822  0.592  0.38

.886  0.524  0.46

.956  0.433  0.60

.607  0.722  0.23

.728  0.647  0.30

.839  0.545  0.38

.901  0.465  0.45

.965  0.355  0.59

.640  0.762  0.25

.760  0.735  0.32

.866  0.672  0.41

.925  0.654  0.49

.977  0.624  0.65

.697  1.003  0.29

.831  1.366  0.38

.924  2.258  0.49

.964  3.907  0.59

.993 12.185  0.78

100 N/A 

.693  1.004  0.20

.811  1.134  0.26

.904  1.464  0.33

.950  2.057  0.39

.987  4.716  0.51

.628  0.743  0.17

.745  0.667  0.22

.852  0.548  0.28

.912  0.457  0.34

.970  0.311  0.44

.633  0.735  0.17

.752  0.652  0.22

.860  0.519  0.28

.919  0.421  0.34

.975  0.263  0.44

.645  0.818  0.18

.764  0.771  0.23

.868  0.716  0.30

.924  0.675  0.35

.977  0.621  0.46

.692  1.002  0.20

.819  1.279  0.26

.916  2.137  0.34

.960  3.950  0.41

.991 12.486  0.54

200 N/A 

.688  1.016  0.14

.807  1.126  0.18

.903  1.346  0.23

.949  1.735  0.28

.988  3.607  0.36

.646  0.765  0.13

.765  0.677  0.16

.870  0.541  0.21

.925  0.416  0.25

.977  0.263  0.33

.648  0.763  0.13

.769  0.669  0.16

.874  0.525  0.21

.928  0.404  0.25

.980  0.215  0.32

.650  0.865  0.13

.768  0.834  0.17

.871  0.753  0.21

.927  0.708  0.25

.978  0.635  0.33

.685  1.013  0.14

.810  1.228  0.18

.910  1.796  0.24

.956  3.119  0.28

.990  9.938  0.38

500 N/A 

.684  1.008  0.09

.806  1.082  0.12

.903  1.217  0.15

.951  1.489  0.18

.989  2.589  0.23

.662  0.802  0.08

.783  0.705  0.11

.886  0.557  0.14

.939  0.426  0.16

.984  0.218  0.22

.663  0.801  0.08

.784  0.702  0.11

.888  0.552  0.14

.940  0.419  0.16

.985  0.214  0.21

.658  0.925  0.08

.778  0.894  0.11

.881  0.842  0.14

.934  0.782  0.17

.983  0.697  0.22

.682  1.005  0.09

.806  1.160  0.12

.906  1.502  0.15

.954  2.236  0.18

.989  7.548  0.23
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Table 75: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41a2a, ρ  = .5 

Distribution 41a2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .5ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A 

.603  1.539  0.35

.722  1.867  0.45

.831  2.659  0.58

.894  3.858  0.68

.958 12.361  0.88

.514  1.378  0.29

.618  1.515  0.37

.724  1.763  0.47

.790  2.019  0.56

.876  2.781  0.72

.543  1.138  0.29

.662  1.071  0.38

.778  0.967  0.49

.849  0.866  0.58

.931  0.672  0.76

.602  0.918  0.33

.728  0.881  0.43

.843  0.848  0.56

.908  0.899  0.68

.970  1.420  0.88

.690  1.690  0.42

.824  2.040  0.56

.931  2.751  0.73

.974  4.437  0.88

.997 15.100  1.16

50 N/A 

.571  1.278  0.22

.691  1.470  0.28

.806  1.873  0.36

.873  2.433  0.42

.951  5.560  0.55

.563  1.149  0.21

.678  1.211  0.27

.788  1.311  0.35

.855  1.404  0.42

.932  1.639  0.54

.581  0.973  0.21

.701  0.881  0.27

.817  0.743  0.35

.882  0.609  0.42

.952  0.415  0.55

.600  0.858  0.22

.719  0.815  0.29

.833  0.791  0.37

.897  0.731  0.44

.963  0.743  0.57

.684  1.288  0.27

.814  1.386  0.35

.917  1.461  0.45

.966  1.498  0.54

.996  2.633  0.70

100 N/A 

.554  1.164  0.15

.672  1.273  0.19

.788  1.528  0.25

.860  1.884  0.30

.944  3.663  0.39

.597  1.040  0.16

.713  1.061  0.21

.820  1.078  0.27

.885  1.096  0.32

.956  1.152  0.42

.608  0.900  0.16

.727  0.811  0.21

.836  0.658  0.27

.900  0.522  0.32

.964  0.316  0.42

.607  0.853  0.17

.727  0.820  0.22

.834  0.755  0.28

.898  0.690  0.33

.963  0.631  0.43

.686  1.143  0.20

.811  1.188  0.25

.911  1.209  0.32

.962  1.209  0.39

.995  1.159  0.50

200 N/A 

.539  1.137  0.11

.657  1.215  0.14

.776  1.362  0.18

.850  1.576  0.21

.938  2.477  0.27

.621  1.014  0.13

.742  0.988  0.16

.851  0.956  0.21

.911  0.959  0.25

.971  0.888  0.32

.628  0.903  0.13

.751  0.790  0.16

.860  0.631  0.21

.917  0.499  0.25

.973  0.261  0.32

.619  0.902  0.13

.739  0.852  0.16

.846  0.803  0.21

.907  0.756  0.25

.968  0.654  0.32

.692  1.115  0.14

.812  1.121  0.18

.913  1.133  0.24

.960  1.093  0.28

.994  0.906  0.37

500 N/A 

.527  1.060  0.07

.644  1.110  0.09

.763  1.222  0.11

.840  1.340  0.13

.931  1.789  0.17

.647  0.965  0.09

.768  0.932  0.11

.872  0.852  0.14

.927  0.788  0.17

.980  0.644  0.22

.650  0.888  0.09

.772  0.790  0.11

.875  0.632  0.14

.930  0.487  0.17

.979  0.258  0.22

.638  0.918  0.09

.756  0.899  0.11

.860  0.824  0.14

.916  0.788  0.17

.973  0.707  0.22

.699  1.055  0.09

.818  1.045  0.12

.912  1.035  0.16

.960  1.014  0.19

.993  0.867  0.24
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Table 76: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41a2b, ρ  = 0 

Distribution 41a2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 N/A 

.688  1.032  0.29

.808  1.210  0.37

.904  1.702  0.47

.952  2.600  0.55

.988  8.413  0.71

.605  0.714 0.24

.719  0.631 0.31

.824  0.516 0.40

.883  0.437 0.48

.951  0.317 0.63

.615  0.702  0.24

.732  0.603  0.31

.838  0.474  0.40

.898  0.373  0.47

.962  0.245  0.61

.647  0.770  0.25

.767  0.699  0.33

.870  0.626  0.42

.927  0.543  0.51

.979  0.550  0.66

.702  1.063  0.29

.830  1.480  0.38

.926  2.737  0.49

.967  5.358  0.59

.994 43.143  0.77

100 N/A 

.681  0.999  0.20

.804  1.146  0.26

.905  1.490  0.33

.951  2.029  0.39

.988  5.242  0.51

.627  0.717 0.18

.744  0.620 0.23

.851  0.490 0.30

.909  0.389 0.35

.966  0.271 0.46

.633  0.709  0.18

.751  0.608  0.23

.860  0.458  0.29

.916  0.359  0.35

.971  0.207  0.46

.649  0.813  0.18

.770  0.769  0.24

.877  0.682  0.30

.932  0.630  0.36

.980  0.544  0.48

.687  1.004  0.20

.817  1.309  0.26

.918  2.217  0.34

.961  4.166  0.40

.991 17.667  0.53

200 N/A 

.683  0.994  0.14

.805  1.129  0.18

.902  1.412  0.23

.951  1.759  0.28

.989  3.516  0.36

.646  0.738 0.13

.766  0.656 0.17

.870  0.518 0.22

.925  0.400 0.26

.974  0.236 0.34

.649  0.735  0.13

.769  0.650  0.17

.874  0.502  0.21

.928  0.383  0.26

.976  0.212  0.33

.658  0.872  0.13

.777  0.839  0.17

.882  0.779  0.22

.935  0.732  0.26

.982  0.606  0.34

.685  0.997  0.14

.810  1.242  0.18

.909  1.880  0.24

.955  3.097  0.28

.990 11.725  0.37

500 N/A 

.681  1.004  0.09

.803  1.093  0.12

.902  1.322  0.15

.949  1.579  0.18

.988  3.217  0.23

.661  0.803 0.09

.782  0.710 0.11

.884  0.599 0.14

.936  0.486 0.17

.982  0.308 0.22

.662  0.801  0.09

.783  0.707  0.11

.886  0.592  0.14

.938  0.480  0.17

.983  0.286  0.22

.664  0.934  0.09

.785  0.910  0.11

.886  0.887  0.14

.939  0.895  0.17

.984  0.845  0.22

.679  1.001  0.09

.803  1.157  0.12

.904  1.615  0.15

.951  2.347  0.18

.988  8.231  0.23
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Table 77: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41a2b, ρ  = .5 

Distribution 41a2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .5ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A 

.420  2.177  0.31

.531  2.241  0.40

.657  2.276  0.51

.747  2.210  0.61

.876  1.949  0.80

.432  2.830  0.31

.528  3.415  0.40

.626  4.434  0.52

.692  5.556  0.61

.788  8.301  0.76

.465  2.370  0.32

.580  2.536  0.42

.704  2.848  0.54

.791  2.970  0.65

.900  3.481  0.85

.558  2.852  0.36

.678  3.348  0.48

.797  3.971  0.62

.870  4.338  0.75

.949  5.591  0.99

.512  2.052  0.38 

.655  1.986  0.51 

.797  1.772  0.67 

.885  1.500  0.82 

.969  1.092  1.08 

50 N/A 

.383  2.005  0.20

.481  2.047  0.26

.599  2.056  0.33

.687  2.012  0.39

.828  1.797  0.51

.491  3.009  0.25

.594  4.025  0.33

.695  5.955  0.42

.762  8.508  0.50

.850 18.992  0.65

.506  2.543  0.26

.618  2.966  0.33

.736  3.641  0.42

.815  4.607  0.51

.914  7.051  0.66

.554  2.884  0.27

.668  3.690  0.35

.779  5.094  0.45

.848  6.500  0.54

.933  9.334  0.71

.478  1.875  0.25 

.603  1.830  0.32 

.741  1.634  0.41 

.832  1.415  0.50 

.939  0.909  0.65 

100 N/A 

.358  1.798  0.14

.455  1.841  0.18

.567  1.862  0.24

.655  1.829  0.28

.794  1.676  0.37

.528  2.920  0.21

.636  4.208  0.27

.738  7.256  0.35

.803 12.196  0.41

.882 35.457  0.54

.535  2.489  0.21

.648  3.104  0.27

.764  4.368  0.35

.836  6.272  0.42

.923 12.242  0.54

.569  2.506  0.22

.683  3.260  0.28

.791  4.720  0.36

.857  6.737  0.44

.934 12.332  0.57

.461  1.751  0.18 

.580  1.736  0.23 

.711  1.633  0.30 

.804  1.493  0.36 

.918  1.040  0.47 

200 N/A 

.346  1.654  0.10

.438  1.684  0.13

.548  1.694  0.17

.632  1.681  0.20

.768  1.583  0.27

.563  2.774  0.17

.675  4.007  0.22

.776  7.378  0.28

.835 13.778  0.33

.907 55.890  0.44

.566  2.392  0.17

.682  3.041  0.22

.789  4.524  0.28

.855  7.030  0.33

.935 17.623  0.44

.589  2.102  0.18

.705  2.643  0.23

.809  3.731  0.29

.872  5.467  0.35

.944 10.305  0.45

.455  1.669  0.13 

.571  1.691  0.17 

.696  1.642  0.22 

.784  1.545  0.26 

.904  1.228  0.34 

500 N/A 

.332  1.439  0.07

.422  1.450  0.09

.526  1.473  0.11

.608  1.460  0.13

.743  1.408  0.17

.602  2.378  0.12

.718  3.422  0.16

.817  6.556  0.20

.874 12.820  0.24

.937 64.458  0.32

.600  2.099  0.12

.720  2.734  0.16

.824  4.293  0.20

.886  6.860  0.24

.952 19.517  0.32

.610  1.634  0.13

.730  1.933  0.16

.835  2.519  0.21

.896  3.313  0.25

.960  6.252  0.33

.455  1.491  0.09 

.566  1.524  0.12 

.689  1.547  0.15 

.772  1.542  0.18 

.889  1.413  0.23 
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Table 78: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41b2a, ρ  = 0 

Distribution 41b2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

 Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

N N/A N/A N/A N/A N/A N/A 

20 N/A 

.691  1.015  0.29

.810  1.211  0.37

.905  1.628  0.47

.950  2.431  0.55

.985  5.328  0.71

.600  0.716  0.24

.715  0.638  0.30

.819  0.528  0.39

.883  0.450  0.46

.953  0.356  0.61

.610  0.704  0.24

.729  0.608  0.30

.835  0.483  0.39

.898  0.391  0.46

.963  0.272  0.60

.642  0.755  0.25

.760  0.689  0.32

.867  0.615  0.41

.924  0.573  0.50

.976  0.556  0.65

.694  1.014  0.29

.827  1.408  0.38

.923  2.580  0.49

.963  4.716  0.59

.991 17.240  0.78

50 N/A 

.690  0.991  0.20

.809  1.150  0.26

.904  1.513  0.33

.952  2.092  0.39

.988  4.941  0.51

.627  0.727  0.17

.747  0.638  0.22

.852  0.515  0.29

.911  0.413  0.34

.968  0.249  0.45

.633  0.719  0.17

.753  0.623  0.22

.860  0.485  0.29

.917  0.378  0.34

.973  0.190  0.45

.648  0.818  0.18

.767  0.767  0.23

.872  0.704  0.30

.927  0.620  0.36

.979  0.530  0.47

.689  0.988  0.20

.816  1.298  0.26

.915  2.271  0.34

.960  4.258  0.41

.990 17.346  0.54

100 N/A 

.686  1.029  0.14

.805  1.138  0.18

.903  1.360  0.23

.950  1.721  0.28

.988  3.277  0.36

.647  0.768  0.13

.768  0.659  0.17

.871  0.512  0.21

.926  0.404  0.25

.976  0.222  0.33

.650  0.764  0.13

.772  0.653  0.17

.874  0.500  0.21

.929  0.378  0.25

.978  0.188  0.33

.653  0.888  0.13

.772  0.845  0.17

.877  0.750  0.22

.931  0.695  0.26

.979  0.578  0.34

.684  1.019  0.14

.807  1.235  0.18

.908  1.823  0.24

.955  3.119  0.28

.989 10.298  0.37

200 N/A 

.684  1.021  0.09

.803  1.086  0.12

.901  1.301  0.15

.949  1.627  0.18

.989  3.118  0.23

.661  0.813  0.08

.783  0.713  0.11

.883  0.574  0.14

.936  0.445  0.17

.983  0.269  0.22

.662  0.813  0.08

.784  0.712  0.11

.884  0.568  0.14

.937  0.437  0.17

.984  0.264  0.22

.660  0.949  0.08

.781  0.907  0.11

.881  0.861  0.14

.935  0.811  0.17

.983  0.826  0.22

.681  1.013  0.09

.803  1.161  0.12

.904  1.596  0.15

.952  2.472  0.18

.989  7.304  0.23
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Table 79: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41b2a, ρ  = .5 

Distribution 41b2a: 11 12 0γ γ= =  and 21 22 25γ γ= = , .5ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate  
Sampling CI 

20 N/A 

.237  2.005  0.26

.303  2.112  0.34

.384  2.286  0.44

.450  2.459  0.53

.570  2.873  0.70

.370  2.824  0.44

.441  3.420  0.55

.515  4.380  0.68

.566  5.444  0.76

.635  7.754  0.90

.403  2.390  0.46

.499  2.691  0.60

.602  3.269  0.77

.677  4.042  0.93

.784  6.350  1.21

.507  3.925  0.54

.606  5.284  0.70

.712  9.146  0.93

.776  3.664  1.12

.858 29.472  1.44

.268  2.094  0.33

.360  2.196  0.44

.477  2.323  0.58

.584  2.479  0.71

.760  2.838  0.94

50 N/A 

.232  1.737  0.19

.297  1.805  0.24

.374  1.919  0.31

.439  2.011  0.37

.554  2.219  0.49

.469  2.707  0.41

.558  3.477  0.53

.643  4.890  0.68

.699  6.937  0.79

.774 12.609  0.95

.492  2.184  0.42

.597  2.480  0.54

.708  3.074  0.69

.781  3.906  0.82

.877  7.107  1.06

.550  2.811  0.45

.656  3.670  0.58

.762  5.701  0.75

.828  8.771  0.89

.907 21.104  1.15

.274  1.787  0.24

.354  1.860  0.31

.453  1.913  0.40

.536  1.959  0.48

.685  2.024  0.62

100 N/A 

.223  1.574  0.14

.286  1.625  0.18

.364  1.693  0.23

.425  1.748  0.27

.541  1.911  0.36

.523  2.576  0.35

.626  3.527  0.45

.720  5.410  0.58

.776  8.083  0.68

.848 21.023  0.87

.538  2.042  0.35

.655  2.398  0.45

.766  3.118  0.58

.835  4.014  0.68

.918  8.013  0.89

.578  2.274  0.37

.693  2.901  0.47

.800  4.257  0.61

.862  6.040  0.72

.934 13.522  0.93

.276  1.619  0.18

.355  1.662  0.23

.449  1.701  0.30

.529  1.733  0.36

.669  1.774  0.46

200 N/A 

.219  1.436  0.10

.281  1.468  0.13

.354  1.506  0.17

.418  1.560  0.20

.529  1.646  0.26

.567  2.342  0.28

.674  3.231  0.36

.772  5.302  0.46

.830  8.597  0.55

.898 27.406  0.72

.574  1.904  0.28

.691  2.228  0.36

.803  2.860  0.46

.870  3.828  0.55

.944  7.959  0.72

.598  1.855  0.29

.715  2.213  0.37

.823  2.973  0.48

.886  3.902  0.57

.953  7.607  0.74

.285  1.478  0.14

.362  1.498  0.17

.457  1.537  0.22

.534  1.557  0.27

.665  1.578  0.35

500 N/A 

.212  1.310  0.07

.271  1.333  0.08

.345  1.365  0.11

.406  1.369  0.13

.519  1.422  0.17

.611  2.083  0.20

.724  2.844  0.26

.822  4.862  0.33

.878  8.513  0.40

.938 36.155  0.52

.613  1.747  0.20

.732  2.084  0.26

.838  2.714  0.33

.899  3.859  0.39

.962  8.555  0.52

.621  1.504  0.21

.740  1.732  0.26

.845  2.101  0.34

.906  2.771  0.40

.966  4.658  0.53

.292  1.352  0.09

.372  1.368  0.12

.466  1.384  0.15

.546  1.414  0.18

.674  1.444  0.23
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Table 80: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41b2b, ρ  = 0 

Distribution 41b2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , 0ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A N/A N/A N/A N/A N/A 

50 N/A 

.682  1.053  0.29

.804  1.280  0.37

.904  1.849  0.47

.951  2.927  0.55

.988 14.895  0.71

.608  0.714  0.25

.721  0.621  0.32

.824  0.485  0.41

.883  0.404  0.49

.949  0.263  0.64

.618  0.698  0.25

.735  0.590  0.32

.839  0.441  0.41

.897  0.338  0.48

.959  0.171  0.63

.649  0.789  0.26

.768  0.712  0.33

.872  0.606  0.43

.928  0.508  0.51

.978  0.385  0.67

.694   1.078  0.29

.826   1.573  0.38

.922   3.161  0.49

.963   7.393  0.59

.992 204.500  0.76

100 N/A 

.687  0.999  0.20

.808  1.169  0.26

.905  1.574  0.33

.953  2.282  0.39

.988  6.658  0.51

.637  0.705  0.18

.754  0.598  0.23

.855  0.468  0.30

.910  0.360  0.36

.967  0.219  0.47

.642  0.697  0.18

.761  0.583  0.23

.862  0.438  0.30

.917  0.324  0.36

.971  0.165  0.46

.661  0.826  0.19

.780  0.771  0.24

.882  0.690  0.31

.935  0.635  0.37

.982  0.517  0.48

.693  1.006  0.20 

.820  1.337  0.26 

.916  2.347  0.34 

.959  4.538  0.40 

.990 35.357  0.53 

200 N/A 

.687  0.987  0.14

.806  1.097  0.18

.904  1.332  0.23

.950  1.767  0.28

.989  4.586  0.36

.653  0.732  0.13

.773  0.629  0.17

.871  0.498  0.22

.924  0.396  0.26

.974  0.209  0.34

.656  0.729  0.13

.776  0.624  0.17

.874  0.481  0.22

.927  0.374  0.26

.976  0.185  0.34

.666  0.873  0.13

.787  0.833  0.17

.886  0.787  0.22

.937  0.727  0.26

.983  0.620  0.35

.689  0.987  0.14 

.811  1.211  0.18 

.910  1.803  0.24 

.955  3.052  0.28 

.989 15.688  0.37 

500 N/A 

.685  0.997  0.09

.804  1.056  0.12

.903  1.248  0.15

.951  1.538  0.18

.991  2.762  0.23

.668  0.791  0.09

.786  0.707  0.11

.886  0.562  0.14

.938  0.449  0.17

.983  0.240  0.22

.669  0.789  0.09

.787  0.703  0.11

.887  0.555  0.14

.939  0.443  0.17

.984  0.235  0.22

.672  0.934  0.09

.791  0.913  0.11

.890  0.861  0.14

.942  0.871  0.17

.987  0.754  0.22

.685  0.992  0.09 

.807  1.125  0.12 

.905  1.535  0.15 

.952  2.225  0.18 

.990  6.132  0.23 
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Table 81: Coverage Rate, Coverage Balance, and Median Width for CIs on Distribution 41b2b, ρ  = .5 

Distribution 41b2b: 11 12 0γ γ= =  and 21 22 25γ γ= = , .5ρ =  

N Exact CI Fisher Z CI ADF CI ADF Fisher Z CI BCa CI Univariate 
Sampling CI 

20 N/A 

.542  1.203  0.35

.661  1.281  0.46

.783  1.455  0.58

.857  1.688  0.69

.946  2.817  0.89

.525  1.273  0.34

.628  1.394  0.43

.728  1.574  0.56

.790  1.724  0.66

.871  2.103  0.84

.555  1.021  0.35

.668  0.959  0.45

.779  0.845  0.57

.846  0.747  0.68

.923  0.557  0.88

.616  0.911  0.38

.738  0.869  0.50

.847  0.778  0.65

.908  0.707  0.78

.968  0.654  1.02

.622  1.175  0.42

.765  1.257  0.55

.889  1.434  0.72

.954  1.889  0.87

.994  6.000  1.14

50 N/A 

.525  1.158  0.22

.642  1.201  0.28

.762  1.308  0.36

.839  1.451  0.42

.933  2.129  0.55

.585  1.256  0.25

.697  1.363  0.32

.800  1.570  0.41

.862  1.794  0.48

.934  2.210  0.63

.599  1.044  0.25

.717  0.972  0.32

.827  0.876  0.41

.891  0.753  0.49

.958  0.547  0.64

.626  0.990  0.26

.745  0.969  0.33

.853  0.926  0.43

.914  0.887  0.51

.970  0.807  0.66

.607  1.097  0.25

.738  1.091  0.33

.863  1.068  0.42

.931  1.042  0.51

.987  1.051  0.66

100 N/A 

.511  1.099  0.15

.628  1.129  0.19

.747  1.214  0.25

.824  1.325  0.30

.919  1.801  0.39

.612  1.190  0.19

.730  1.304  0.24

.834  1.459  0.31

.892  1.672  0.37

.957  2.315  0.48

.620  1.012  0.19

.743  0.956  0.24

.849  0.875  0.31

.909  0.765  0.37

.970  0.545  0.48

.630  0.969  0.19

.754  0.956  0.25

.857  0.952  0.31

.913  0.952  0.37

.972  0.933  0.48

.606  1.037  0.18

.733  1.011  0.23

.850  0.966  0.30

.918  0.913  0.36

.981  0.891  0.47

200 N/A 

.493  1.074  0.11

.611  1.101  0.14

.729  1.191  0.18

.809  1.291  0.21

.909  1.633  0.27

.630  1.121  0.14

.750  1.203  0.18

.857  1.321  0.23

.916  1.460  0.28

.973  1.930  0.36

.635  0.985  0.14

.758  0.934  0.18

.867  0.834  0.23

.925  0.731  0.28

.978  0.497  0.36

.632  0.948  0.14

.753  0.947  0.18

.861  0.954  0.23

.918  0.947  0.28

.974  1.013  0.36

.604  1.023  0.13

.732  1.011  0.17

.848  0.962  0.22

.915  0.885  0.26

.979  0.710  0.34

500 N/A 

.475  1.028  0.07

.588  1.057  0.09

.706  1.116  0.11

.787  1.193  0.13

.892  1.425  0.17

.642  1.027  0.09

.766  1.042  0.12

.873  1.080  0.16

.931  1.115  0.19

.982  1.226  0.24

.645  0.939  0.09

.769  0.870  0.12

.877  0.760  0.16

.935  0.654  0.19

.983  0.419  0.24

.633  0.934  0.09

.753  0.912  0.12

.859  0.900  0.16

.918  0.909  0.18

.975  0.938  0.24

.607  0.996  0.09

.731  0.980  0.11

.848  0.907  0.14

.912  0.818  0.17

.976  0.641  0.22
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