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CHAPTER I 

 

INTRODUCTION 

 

Pain 

 The International Association for the Study of Pain (IASP) defines pain as 

“an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage”(IASP, 2011).   

As the definition indicates, pain is a complex entity made up of sensory, affective, 

motivational, and cognitive dimensions.  The sensory dimension, nociception, is 

the physiological process by which primary sensory neurons detect pain-

producing stimuli.  The brain perceives these inputs as pain and suffering. 

 Pain perception is subjective and response to the same stimulus can differ 

between individuals.  This is due in part to the affective component of pain 

processing, which attributes emotional coloring to the experience.  Some of the 

emotions that accompany pain include fear, anxiety, depression, anger, and 

disgust.  Commonly, one’s pain perception is also influenced by previous 

experiences with pain, feelings about the treatments, and overall emotional state.  

The motivational and cognitive dimensions refer more to the self- protection 

aspects of pain perception, which is why we evolved pain sensory systems in the 

first place.  Pain can motivate learning processes in order to avoid current and 

future tissue damage and can also interfere with learning if it becomes too 

intense. 
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 Short term protective pain is referred to as acute pain.  Acute pain is 

characterized by being limited in time and disappearing with resolution of the 

pathological cause or aversive stimuli.  Pain becomes chronic when it persists for 

an extended period of time, is associated with chronic pathological processes, 

and affects multiple physiologic, psychological, and social functions.  Chronic 

pain affects millions of people worldwide and is frequently accompanied by 

hyperalgesia, hypersensitivity to painful stimuli, and allodynia, perceiving a 

normally innocuous stimulus as painful(IASP, 2011).  This persistent pain 

interferes with a person’s productivity and ability to carryout normal everyday 

activities.  Each year, 7100 billion dollars are spent on health care, lost time and 

wages, unemployment, and disability due to poorly controlled chronic pain.  For 

sufferers of chronic pain, there is great need for improved long-term treatments.  

Current treatments are invasive, ineffective, or plagued with serious side-effects.  

Our current limited understanding of the exact mechanisms and wiring of the 

body’s pain transmission system is a significant obstacle to the development of 

more specific and effective chronic pain treatments; a better understanding of the 

neural systems underlying and modulating pain perception could be instrumental 

in developing better treatments for chronic pain. 

 

Neurobiology of Pain and Nociception 

Primary Afferent Nociceptors 

 All sensory systems, including the pain system, have mechanisms to 

convert environmental stimuli into electrochemical signals, including specific 
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receptors and neural pathways.  Pain sensation results from the activity of 

dedicated nociceptive primary afferents, not from the over-stimulation of other 

kinds of receptors, such as touch receptors.  Nociceptors are a primary sensory 

neurons activated by stimuli capable of causing tissue damage(Sherrington, 

1906).  The cell bodies of these primary afferent nociceptors originate in the 

trigeminal (head) or dorsal (body) root ganglia and send out one branch of their 

T-shaped axons into the dermal and epidermal layers of the skin or viscera 

where they terminate as free nerve endings, while the other branch terminates in 

the dorsal horn of the spinal cord(Julius and Basbaum, 2001).  

Primary afferent nociceptors are classified into two types, Aδ and c fibers, 

based upon their structure, diameter, and conduction velocity.  Aδ fibers are 

lightly myelinated with diameters ranging from 2-6 µm and conduction velocities 

of 12-30 m/s.  They are responsible for rapidly transmitting sensations evoked by 

higher intensity stimuli with short latencies and for rapidly triggering fast 

withdrawal responses.  There are two types of Aδ fibers.  Type 1 responds to 

noxious thermal, mechanical, and chemical stimuli.  It gradually increases its 

response to heat and will sensitize to burn and chemical injury.  Type 2 responds 

to thermal and chemical stimuli, responding with an early peak and slowly 

adapting response.  Aδ fibers are responsible for what is commonly referred to as 

1st pain, or the rapid onset, sharp, brief pain felt immediately after a noxious 

stimulus(Julius and Basbaum, 2001).   

 C fibers are unmyelinated with diameters ranging from 0.4-1.2 µm and 

conduction velocities of 0.5-2 m/s.  They propagate information more slowly than 
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Aδ fibers, with prolonged, slowly adapting potentials, and induce dull, burning, or 

aching pain, also called 2nd pain.  C fibers can be specifically thermo-, mechano-, 

or chemically sensitive, or polymodal, responding to two or all three stimulus 

modalities.  There are also several special types of c fibers, such as those that 

respond to high intensity thermal stimuli and mediate the flare response after 

tissue damage; the slow-conducting, mechano-insensitive fibers activated by 

histamine that are likely involved in burning and/or itching sensations; and the 

“silent receptors” that don’t normally respond to noxious stimuli, but can be 

activated in presence of inflammation.  Typically, Aδ fibers are associated with 

producing acute pain and c fibers with chronic pain (Julius and Basbaum, 

2001;Serpell, 2006). 

 The axons of nociceptors terminate as free nerve endings in the skin, 

where they possess membrane receptors sensitive to various stimuli in the 

environment. Temperatures are detected by several members of the TRP 

(transient receptor potential) family of channels that act as molecular 

thermometers.  TRPV1 is a nonselective plasma membrane cation channel that 

is activated by temperatures greater than 43°C and capsaicin, the compound that 

gives peppers their heat and causes a burning effect when it comes in contact 

with the skin.  It is expressed by type 2 Aδ fibers and many c fibers.  TRPV2, 

expressed by type 1 Aδ fibers, is activated by high intensity thermal stimuli with a 

threshold of 52°C, but is capsaicin insensitive(Caterina et al., 1997;Szallasi and 

Blumberg, 1999;Clapham et al., 2001).  
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 The transmission of cold pain is much less understood than heat pain.  

Both menthol, a naturally occurring component of mint oils that produces a 

cooling sensation when applied to the skin, and icilin, a more potent, synthetic 

compound, have been valuable tools in finding transducers of noxious cold. 

TRPM8 is a cool specific channel that is located in the peripheral projections of c 

fibers and is activated by menthol, icilin, and temperatures around 25°C.  It does 

not colocalize with any known markers of nociceptive fibers, such as CGRP, 

Substance P, and TRPV1(McKemy et al., 2002;Peier et al., 2002;Foulkes and 

Wood, 2007;McKemy, 2007).  The TRPA1 channel (formerly called Anktm1), is 

specifically expressed in a subset of sensory neurons that express CGRP, 

Substance P, and TRPV1.  It is activated at temperatures at or below 17°C 

(which are reportedly painful in humans) and icilin, but is menthol insensitive.  

TRPA1 is also responsible for generating the nociceptive currents in response to 

mustard oil and is upregulated after nerve injury and inflammation, indicating that 

it likely contributes to the cold hypersensitivity seen in those conditions as 

well(Story et al., 2003;Bandell et al., 2004;Jordt et al., 2004;Story and Gereau, 

2006).  Additionally, several other TRP channels have been identified with a 

range of temperature thresholds that might be responsible for detecting warm 

and cool sensations (Patapoutian et al., 2003;Foulkes and Wood, 2007).  To 

date, no mechanical transducers have been definitively identified. 
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The Withdrawal Reflex 

 Primary sensory neurons do not carry their message directly to the brain, 

but synapse in the spinal cord or brainstem.  The simplest pathways of sensory 

neurons are flexor reflex arcs.  A reflex is an automatic, usually rapid, response 

to an adverse stimulus.  Many reflex actions are protective and the action 

happens involuntarily, meaning the brain is not required to generate the 

response.  Bypassing the brain allows the actions to happen quickly and without 

delay, although sensory information about the stimulus and response are usually 

sent to the brain after the reflex action has occurred.    

 There are several types of reflex arc, but, when discussing painful stimuli, 

it’s the withdrawal, or flexor, reflex that’s involved (Figure 1).  The withdrawal 

reflex occurs through a polysynaptic reflex arc.  When the receptor detects 

painful stimuli, it responds and sends the information to the spinal cord via 

myelinated sensory neurons.  The primary afferents synapse onto interneurons in 

the spinal cord, which transfer the signal to motor neurons that excite relevant 

muscles to contract (and antagonistic muscles to relax), producing a withdrawal 

movement.  Usually, there are also projections sent contralaterally to stimulate, 

or inhibit, muscles on the opposite side of the body.  These automatic actions are 

referred to as crossed reciprocal inhibition and extensor reflexes, respectively, 

and are necessary for maintaining balance during the flexor reflex. 
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Figure 1: Spinal cord circuitry of the withdrawal reflex.  Stimulation of nociceptors in the foot 
activates local circuits in the spinal cord that cause withdraw of the stimulated extremity and 

extension of the other extremity to provide compensatory support (Purves, 2004).     
  

 

Spinal Modulation and Ascending Pathways  

 Since many nociceptors are polymodal, coding of the type of stimuli 

detected must occur at spinal, or higher, levels.  The neural pathways the signal 

follows to reach the brain are more complicated and less understood than the 

reflex arcs.   
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 Again, most nociceptive primary afferents terminate in the spinal cord 

before being processed and sent to higher centers.  Most nociceptive sensory 

neurons terminate in the superficial dorsal horn of the spinal cord (laminae I and 

II) with a small percentage terminating in lamina V, where they synapse onto 

local interneurons or projection neurons(Melzack and Wall, 1965).  The primary 

neurotransmitter used for these connections is glutamate, which elicits a fast 

excitatory response in the post-synaptic neurons, however, many of the primary 

afferents also release other neurotransmitters (such as Substance P)(Lawson et 

al., 1997;Julius and Basbaum, 2001).   These other neurotransmitters, along with 

the robust network of excitatory and inhibitory interneurons in the dorsal horn and 

input from axons descending to the dorsal horn from various parts of the brain 

and brainstem, all act to modulate transfer of the pain signal from the primary 

afferent nociceptor to nociceptive projection neurons that transfer the signal to 

the brain. 

 The organization of the neurons involved in this network is decidedly 

complex and little is known about the specific neuronal circuits involved in the 

dorsal horn.  Discerning the connections and neurotransmitters involved in this 

process is a key area of pain research as there are many potential targets for 

pain therapeutics in the dorsal horn.   

 After modulation, the nociceptive message is transmitted to second order 

projection neurons.  The most common ascending path for pain and temperature 

information to the brain is called the spinothalamic tract, but there are also other 
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ascending tracts that carry nociceptive information, such as the spinoreticular, 

and spinomesencelephalic tracts.    

 The spinothalamic tract (Figure 2) has lateral and medial components.  

Axons cross the midline of the spinal cord through the anterior white commissure 

and ascend in the contralateral ventrolateral quadrant to the thalamus.  The 

lateral spinothalamic track projects to the lateral thalamus, specifically the ventral 

posterior lateral, the ventral posterior inferior, and the posterior lateral nuclei, 

which then project to the primary and secondary somatosensory cortexes.  The 

medial spinothalamic track projects to the intralaminar and some diffuse 

projection nuclei of the medial thalamus, which then project to the insula and 

anterior cingulated cortices.   Also, as the fibers pass through the brainstem, 

projections are sent into various regions, including the reticular formation of the 

medulla and the mescencephalic periaquaductal gray (PAG), which likely 

activates a descending analgesia system(Almeida et al., 2004).  

 The spinoreticular tract travels along with the spinothalamic tract in the 

ventrolateral spinal cord and brainstem.  It projects to the parabrachial nucleus 

and the locus ceruleus.  Reticular neurons respond preferentially to noxious 

stimuli and likely activate endogenous analgesia systems and relay information 

to trigger motivational and affective responses.  The spinomesencephalic tract 

ascends to the midbrain in the lateral funiculus and terminates in several 

midbrain nuclei including the PAG, cuneiform nucleus, and superior colliculus.  

These nuclei play a role in activating the descending modulatory systems and 

orientating to the stimulus(Almeida et al., 2004). 
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Figure 2: The Spinothalamic Tract.  Pain and temperature information is carried from nociceptors 
into the spinal cord, where the information then follows the contralateral spinothalmaic pathway to 

the thalamus and higher brain structures (Purves, 2004). 
 

  

Measuring and Studying Pain 

 As described above, pain is a subjective experience that varies among 

individuals, and as thus, measuring it can be challenging.  Pain, including 

suffering, motivational, emotional, and cognitive responses, is experienced in the 

brain.  In a clinical setting, when a patient complains of pain, the physician often 
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will ask the patient to rate the severity of the pain.  Typically this is done on a 

number scale, for example 0-10, where a response of “0” indicates no pain and 

“10” is the worst pain they’ve ever felt.  Note that the pain rating scale depends 

on the patient’s prior experience with pain compared to their perception of their 

current pain.  The same stimulus would very likely be rated differently by different 

people.   

 Measuring pain in humans depends on the patient being able to describe 

the sensations they’re feeling, and their locations, and rate their pain.  Clinicians 

and investigators can then gauge the efficacy of therapeutic interventions based 

upon the changes described by the patients.  Since animals don’t have language 

skills, investigators have had to devise ways to measure their behavioral 

responses in order to study nociception and pain in non-human models.   

 Some early attempts to assess nociception in non-human animals 

involved observing spontaneous behaviors or physiological reactions that were 

believed to represent pain or distress.  Some of these spontaneous events 

include vocalizations, autotomy/ overgrooming, and sleep disruption; however, 

each of these events can be caused by non-painful stimuli as well.  These 

spontaneous behaviors may indicate, in some cases, baseline levels of ongoing 

discomfort and can be used to compliment, but not replace, direct measures of 

nociception or hyper-sensitivity(Vierck et al., 2005b;Vierck et al., 2008). 

 In order to directly measure nociception, investigators began to look at 

stimulus  response experiments, where a potentially noxious stimulus is 

applied and the reflexive responses measured.  Typically the response measured 
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is the latency to first response, where an “increased latency” indicates that the 

animal was slower to respond to the stimulus, which is interpreted as decreased 

nociception.  These types of tests have been used to measure responses to 

heat, cold, and mechanical stimuli.  A radiant heat source is applied to the tail in 

the “tail flick” task and the time from stimulus application to the rat moving its tail 

away from the heat is measured.  This radiant heat source can also be applied to 

the hind paw in the paw-withdrawal task or heat can be applied to hind paws 

using a hotplate set to a specific temperature.  To assess response to cold, 

acetone is applied to the hindpaw as the stimulus and mechanical sensitivity can 

be measured using a pin prick test or Von Frey filaments.  In each case, the 

latency to lift/ guard or lick the paw is measured.   

 This latency to first response is not always an accurate measure of 

sensitivity, as the tests are very susceptible to experimenter bias and a normal 

footstep can easily be mistaken for paw withdrawal response.  An alternative is to 

use a modified hotplate test where a less intense stimulus is applied over an 

extended period of time.  This method is beneficial for several reasons: 1- 

experimenters can collect lick/guard behaviors over time, 2- the total number of 

responses and duration of responding can be measured, yielding a less biased 

result, and 3- the heat can be set to a lower temperature that will preferentially 

activate C nociceptors over Aδ nociceptors, which are more relevant in chronic 

pain studies.  These reflex tests are widely used by researchers and drug 

development companies since they can yield large amounts of data in little time 

and require little to no training of the animal subjects or investigators.     
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 The third type of behavioral testing investigators use to assess pain in 

animals are the operant tasks.  These tests involve cerebral processing and 

decision making, because in each test the animal is asked to make a choice 

about which environment it prefers: in the place preference test, the animal 

chooses between two temperatures, typically one noxious and the other 

aversive, but not overtly painful;  in the escape task, the animal can choose to 

escape from the thermal stimulus to a brightly lit, angled shelf; and in the feeding 

interference task the animal can remain in a dark, neutral temperature start box, 

or step onto the thermal floor plate in order to consume sweetened condensed 

milk.  By measuring the amount of time the animal spends in each environment, 

we can determine the extent that the unpleasant thermal stimuli are affecting the 

choices made by the animal.  These choices reveal the aversiveness or 

motivational qualities of the stimuli, therefore these responses can be considered 

to be more reliably representative of pain than simple reflex responses(Mauderli 

et al., 2000;Vierck et al., 2005b).  Actually, when direct comparisons have been 

made between reflex responses and cortically dependent operant tasks, 

different, and sometimes opposite, effects have been demonstrated.  In each 

case, the results from operant tests are more consistent than reflexive tests with 

what would be expected from human studies(Vierck et al., 1990;Vierck and Light, 

1999;Vierck et al., 2004;Vierck et al., 2005b;Wiley et al., 2007).  This makes 

logical sense since chronic pain sufferers don’t complain about repeated limb 

flexion or tail flicks, they complain about discomfort, which is more accurately 

modeled and measured using the operant tasks.  
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Models of Chronic Pain 

 Each of the methods described above for testing and measuring 

nociception and pain are effective only for determining baseline responses to 

acute stimuli.  We have adequate treatments for acute pain, but the clinically 

relevant problem is chronic pain.  Sufferers of chronic pain often have heightened 

sensitivities to noxious (hyperalgesia) and non-noxious stimuli (allodynia).  These 

symptoms are a result of a nerve injury or persistent inflammation that have been 

reported to cause physiological changes leading to changes in gene expression 

and plasticity in sensory neurons, the spinal cord, and supraspinal structures.  

Inflammation and nerve injury have been modeled several ways by researchers.  

 A common way to model persistent nociception is to inject inflammogens 

into the plantar surface of the hindpaw.  Two such inflammogens are the 

common food additive carrageenan and complete Freund’s adjuvant (CFA), 

which cause thermal and mechanical hyper-sensitivity that can last several hours 

(carrageenan) or two weeks or more (CFA)(Zukowska and Feuerstein, 2005).  

An intermediate model of peripherally induced pain is the formalin test, where a 

dilute formalin solution is injected into the hindpaw.  This damages the tissue, 

instantly causing intense behavioral and physiological responses that can be 

measured in terms of licking and flinching behaviors for approximately 90 

minutes following injection.  These behaviors usually consist of two distinct 

phases of responding separated by an interphase period with suppressed 

responding(Tjolsen et al., 1992).   The formalin test is often described as a model 
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of persistent pain and has been extensively studied; however, the clinical 

relevance of the formalin test is not clear. 

 Persistent enhanced nociception can also be induced through nerve 

injury.  Some examples of injuries used by researchers to mimic chronic pain 

states are axotomy, the spared nerve injury (SNI), and the chronic constriction 

injury (CCI).   These can either be unilateral or bilateral.  An axotomy is the 

cutting or severing of a neuron’s axon and usually results in death of the neuron.  

In the chronic constriction injury model, several sutures are tied loosely around 

the sciatic nerve, resulting in robust mechanical and cold sensitivities (Vierck et 

al., 2005a).  Finally, the spared nerve injury model involves transection of two out 

of the three terminal branches of the sciatic nerve, which also results in robust 

mechanical and thermal hypersensitivities(Decosterd and Woolf, 2000).  Both the 

CCI and SNI produce enhanced nocifensive responses within 24 hours that can 

last for several months.   

 

Summary 

 Chronic pain affects millions of people and there is a growing need for 

successful, long-term treatments that aren’t plagued with side effects.  

Unfortunately, development of new medications is hindered because the precise 

organization and function of the neural mechanisms underlying nociception are 

still unclear.  Therefore it’s important to study the nociceptive pathway to learn 

the identity and function of neurons and transmitters involved, with the dorsal 

horn of the spinal cord being a prime location for this research.  Several pain-
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related peptidergic targets have been identified to date in the spinal cord, such as 

Substance-P and the opioids, and researchers have already taken advantage of 

these systems to create pain therapeutics.  For example, the commonly used 

analgesic, morphine is an agonist of the endogenous mu-opiate receptor.  While 

morphine often works well to treat acute pain, the hope is that other neuropeptide 

systems could be targeted in a similar way to relieve chronic persistent pain.  

One excellent candidate is neuropeptide Y, as recent studies have shown that 

the spinal neuropeptide Y system is involved in the modulation of nociceptive 

information. 

 

 

The Neuropeptide Y System in the Spinal Cord 

 Neuropeptide Y (NPY) is a 36 amino acid peptide that is widely distributed 

throughout the central and peripheral nervous systems (Tatemoto et al., 1982) 

and has a variety of physiological effects on blood pressure control, feeding, 

anxiety, and memory(Hokfelt et al., 1998).  There are at least five different 

receptor subtypes for NPY (Y1-Y5), with the Y1 and Y2 receptors being the most 

abundant in the spinal cord(Larhammar et al., 1998;Silva et al., 2002).  A role 

has also been identified for Neuropeptide Y in pain based on both behavioral 

studies using intrathecal injections of NPY and anatomical evidence showing that 

both the Y1 and Y2 receptors are present in the superficial dorsal horn, a key 

area of nociceptive gating. 
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Neuropeptide Y - Y1 Receptors 

 Neuropeptide Y1 receptors are generally considered to be 

inhibitory(Zhang et al., 1999;Brumovsky et al., 2007).  They are G-protein 

coupled receptors with Gi/o subunits that inactivate adenylate cyclase when 

neuropeptide Y is bound, which has an inhibitory effect on the cell.  Additionally, 

the Y1 receptor can activate G-protein coupled inwardly rectifying potassium 

channels (GIRK), which hyperpolarizes the cell, resulting in its inhibition.  Y1 

receptors can also influence intracellular calcium levels by activating L-type Ca2+ 

channels(Sun et al., 2001;Silva et al., 2002).   

 Neuropeptide Y1 receptors are located primarily postsynaptically in the 

dorsal horn and at least seven different populations of Y1 receptor-expressing 

neurons have been identified in the dorsal horn and area X of the spinal cord, 

characterized by location and morphology, but not necessarily function.  These 

neuron populations have been classified into types 1-7, with type 1 and 2 

neurons localized in the superficial dorsal horn.  Type 1 neurons are found in 

lamina I-II and are tightly packed, fusiform shaped cells, with rapidly dividing 

bipolar processes.  Type 2 neurons are larger than type 1, are found in lamina I, 

and some were identified to be projection neurons by retrograde labeling using 

Cholera Toxin-B injected at the 9th thoracic segment(Brumovsky et al., 2006). 

 It is likely that the Type 1 cells represent the same population of cells 

described by Zhang et al., as small somatostatin-expressing interneurons(Zhang 

et al., 1999).  One could then infer that these Type 1 interneurons are excitatory, 

since dorsal horn cells expressing somatostatin have been found to co-express 
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the vesicular glutamate transporter 2 (VGLUT-2), making glutamate the primary 

neurotransmitter of those cells(Todd et al., 1992).  Since NPY co-localizes with γ-

aminobutyric acid (GABA) in lamina II interneurons(Rowan et al., 1993), NPY 

may be acting to reduce pain signals through co-inhibition (along with GABA) of 

the type 1 excitatory interneurons or by acting directly to inhibit the type 2 

projection neurons. 

Neuron types 3-7 are found throughout lamina III – X and include: type 3, 

small neurons in lamina III; type 4, large, multipolar neurons in the area between 

lamina III and IV; type 5, large, multipolar, projection neurons in lamina V and VI; 

type 6, large, multipolar, projection neurons around the central canal in lamina X; 

and type 7, large neurons in lamina VIII(Brumovsky et al., 2006). It is unknown 

under which circumstances these neurons are activated, but it is possible that 

some of these populations could be activated in situations of inflammation or 

nerve injury and involved in mechanisms of descending inhibition or transmission 

of nociceptive information to higher brain centers.  

 

Neuropeptide Y - Y2 Receptors 

 Spinal Y2 receptors are located on cell bodies in the dorsal root ganglion 

(DRG) and are found presynaptically on nerve terminals in the dorsal horn; 

however the anatomy of the Y2 receptor has only been studied in the mouse to 

date(Hokfelt et al., 2007), and no reliable antibodies are available for 

immunohistochemistry.  Activation of the Y2 receptor in the DRG is generally 

considered to exert an excitatory effect on the cell, which is increased after nerve 
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injury(Hokfelt et al., 2007), however these processes are not yet completely 

understood and more research is still needed to clarify the data.   

 

Intrathecal Injection of Neuropeptide Y 

Intrathecal (i.t.) administration of NPY has been shown to have an 

antinociceptive effect in the rat.  This was first published by Hua et al., who found 

that NPY dose-dependently increased the hindpaw lick/guard latency response 

on the 52°C hotplate test(Hua et al., 1991).  This research was confirmed by 

Taiwo & Taylor who found increased paw-withdraw latency in response to a 

strong radiant heat source, in addition to increased hotplate latency at 

52°C(Taiwo and Taylor, 2002) in rats injected with intrathecal NPY.  Additional 

evidence that NPY could be involved in regulating the spinal transmission of 

nociception is that intrathecal injections of NPY into anesthetized animals results 

in a reduced nociceptive flexor reflex(Xu et al., 1994;Xu et al., 1999).  These 

behavioral tests show that i.t. NPY reduces protective reflex responses to acute 

noxious stimuli, however, different models involving persistent nocifensive 

stimulation must be used to make inferences about effects on chronic pain.   

 Complete Freund’s adjuvant (CFA) causes heat and mechanical hyper-

sensitivity that can last up to two weeks.  The CFA-induced hyper-reflexia can be 

inhibited by i.t. injection of NPY, as shown by increased paw withdraw latencies 

in the 52°C hotplate test(Taiwo and Taylor, 2002).  Intraplantar injection of 

formalin instantly causes intense responses that can be measured in terms of 

licking and flinching behaviors.  NPY dose-dependently inhibited licking 
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behaviors in Phase I and licking and flinching behaviors during Phases I and II of 

the formalin test(Mahinda and Taylor, 2004;Intondi et al., 2008).  

 Chronically enhanced nociception can also be induced through nerve 

injury.  Neuropeptide Y, when administered two weeks after SNI surgery, 

completely inhibited the mechanical and cold hyper-nociception, produced by the 

nerve injury(Intondi et al., 2008).  These studies indicate that intrathecal injection 

of NPY is effective in reducing nociception after peripheral inflammation and 

nerve injury, suggesting a possible role for neuropeptide Y in modulating 

inflammatory or neuropathic pain.  

 It has been found that peripheral inflammation leads to increased levels of 

NPY and Y1 mRNA transcripts in the dorsal horn(Ji et al., 1994;Zhang et al., 

1994).  This could indicate that following CFA injection there are more Y1 

receptors, and thus more places for NPY to bind, but changes in static levels do 

not necessarily correlate to dynamic changes in function.  However, increased 

NPY binding in the dorsal horn has been shown after nerve injury(Brumovsky et 

al., 2004), further supporting the idea that there may also be increased NPY 

involvement in modulating nociception after inflammation.  Increased NPY 

binding could result in increased inhibition of nociceptive signals, which relates to 

the observation that the antinociceptive action of intrathecal NPY is enhanced in 

situations of persistent nociceptive stimulation compared to acute stimulation.  

Thus, endogenous NPY in the superficial dorsal horn may represent a counter-

regulatory mechanism for suppressing chronic pain. 
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Intrathecal Injection of Neuropeptide Y Receptor Antagonists 

 The antinociception produced by i.t. NPY can be blocked by 

simultaneously injecting a NPY antagonist.  Two days after unilateral hindpaw 

CFA injection, Taiwo and Taylor intrathecally administered the NPY Y1 receptor 

antagonist BIBO3304 with or without NPY.  BIBO3304 given alone slightly 

enhanced the CFA-induced thermal hypersensitivity, indicated by a slight 

decrease in paw-withdraw latency.  This presumably reflected blocking the 

antinociceptive effect of endogenous NPY binding to Y1 receptors.  When 

BIBO3304 was given concurrently with NPY, the antinociceptive effect of NPY 

was completely inhibited.  These effects were similar in experiments with SNI 

animals, where BIBO3304 co-administered with NPY, completely reversed the 

antinociceptive effects of NPY.  The Y2 antagonist BIIE0246 also was effective in 

reducing the antinociceptive effects of NPY when they were administered 

together(Taiwo and Taylor, 2002); however, BIIE0246 is overtly neuro-toxic at 

doses similar to those in this study, raising concerns about the interpretation of 

these experiments.  Taken together, these experiments provide evidence that the 

antinociceptive effects of intrathecal NPY can positively be attributed to action of 

the peptide at Y1 dorsal horn spinal receptors, but the role, if any, for Y2 

receptors remains to be determined. 

 When these same antagonists were used in the formalin test, however, 

the results were more complicated.  As previously stated, i.t. NPY injection alone 

reduces licking behaviors in phases 1 and 2, and flinching behaviors in phase 2 

of the formalin test.  The Y1 antagonist BIBO3304 did not change the formalin-
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induced licking and flinching behaviors when administered alone.  When NPY 

and BIBO3304 were administered together, the inhibitory effect of NPY was 

reduced when measuring flinching behaviors, but licking responses were not 

altered, raising the possibility that NPY is likely working at other sites to produce 

antinociception in the formalin test.   When the Y2 antagonist BIIE0246 was 

administered alone, there was no effect on the formalin-induced licking and 

flinching and there was also no change in the antinociceptive effect of i.t. NPY on 

licking and flinching behaviors when NPY was co-administered along with 

BIIE0246, somewhat arguing against a contribution of spinal Y2 receptors in NPY 

antinociception in the formalin test(Intondi et al., 2008). 

 There are several caveats to the results obtained in the formalin tests. 

First, the Y2 antagonist used in the studies does not have a very high affinity for 

Y2 receptors.  It’s also highly toxic and had to be administered at low doses, 

further compounding the problem of having a low affinity.  These problems call 

into question the validity of the Y2 antagonist experiments.  Second, the 

relationship of the formalin-test to any particular clinical pain problem is unclear. 

 Even with the complications introduced with the formalin test results, the 

NPY antagonist experiments do support the hypothesis that intrathecal NPY is 

antinociceptive by action of the peptide at its spinal Y1 receptors.  The role of Y2 

receptors in nociception remains to be determined. 
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Neuropeptide Y1 Receptor Knock Out Mice 

 The antagonist studies strongly suggest that the NPY Y1, and possibly Y2, 

receptors play a role in modulating nociception.  Naveilhan et al. further 

investigated the role of the Y1 receptor in nociception using an Y1 receptor knock 

out (Y1R-KO) mouse that was developed at the Karolinska Institute using 

homologous recombination.  The Y1R-KO mice demonstrated a marked 

nociceptive hyper-reflexia compared with wild-type mice. They showed reduced 

latencies on hotplate temperatures of 50o, 52o, 55o, and 58oC and also in the tail 

flick test at temperatures tested between 46o and 54oC.  Intrathecal NPY, which 

has an antinociceptive effect in wild-type mice, had no effect in the Y1R-KO mice 

on the hotplate tests.  The Y1R-KO mice also had a much reduced mechanical 

threshold, which was measured using the Von Frey test(Naveilhan et al., 2001).   

 The Y1R-KO mice also had increased behaviors in response to 

inflammation and nerve injury.  They exhibited increased licking and flinching 

events during Phase 1 of the formalin test and demonstrated increased pain-

related behaviors in response to inflammation caused by capsaicin applied to the 

hindpaw.  The response of the knock-out mice to nerve injury was tested using a 

partial sciatic nerve ligation model.  The nerve injury causes mechanical hyper-

nociception in wild-type mice, measured using Von Frey filaments, which was 

notably increased in the knock-out mice(Naveilhan et al., 2001;Shi et al., 2006). 

 These Y1R knock-out mice experiments were confirmed and elaborated 

upon by Kuphal et al., who used knock out mice developed at the University of 

Lausanne by Thierry Pedrazzini.  Using the CFA model of peripheral 
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inflammation, they found that the dose of CFA required to evoke thermal 

hypersensitivity for one day in wild-type mice, produced a much longer lasting 

hypersensitivity in the Y1R-KO mice.  CFA also produced mechanical hyper-

nociception in both wild-type and KO mice, which was reduced by i.t. injection of 

NPY in the wild-type, but not the KO mice.  Next they tested the mice using the 

SNI model, which causes thermal hyper-nociception.  The antinociceptive effects 

of i.t. NPY were reduced in the Y1R-KO mice compared to the wild-type(Kuphal 

et al., 2008). 

 The hyper-nociception and sensitivity caused by knocking out the Y1 

receptor can likely be attributed to the fact that endogenous NPY had no 

available receptors to bind, similar to the NPY antagonist studies.  Another theory 

for the hyper-sensitivity observed in knock-out mice is that they have increased 

RNA transcript levels of Substance-P and CGRP, but lower levels of the peptides 

compared to wild-type(Brumovsky et al., 2004).  This could indicate that they 

have an increased release of the excitatory peptides, with a more rapid transport 

of the peptides from the cell bodies, leading to increased nociception.  The 

inability of i.t. NPY to cause any antinociceptive effects in the knock-out mice 

strongly suggests that the antinociceptive effects of NPY are modulated primarily 

through the NPY-Y1 receptors.  However, it must also be taken into 

consideration that Y1R-KO mice lack Y1 receptors throughout the CNS and may 

have developmental consequences due to life long absence of effective 

receptors. 
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Intrathecal Injection of Neuropeptide Y-Saporin 

 All of the above anatomical and behavioral data strongly suggest a role for 

the spinal Neuropeptide Y system in nociception, specifically that Y1R-

expressing neurons in the superficial dorsal horn can modulate reflex responses 

to noxious or aversive stimuli.  Since Neuropeptide Y exerts an inhibitory effect 

when acting through its Y1 receptor, one would predict that destroying Y1R-

expressing neurons would also inhibit nocifensive reflex responses.  Destroying 

the neurons that express the Y1 receptor and removing them completely from the 

neural network allows researchers to ask the question “What is the role of the 

cells that express the Y1 receptor in nociception?” rather than focusing on the 

receptor itself the function of the receptor itself. 

 Conjugating saporin, a ribosomal inactivating toxin, to Neuropeptide Y, 

creates a targeted toxin called NPY-sap that, when injected into the lumbar 

intrathecal space, creates a lesion of Y1R-expressing neurons in the dorsal horn 

of the spinal cord.  750ng of NPY-sap led to about 45% loss of Y1R-expressing 

dorsal horn neurons, but did not affect cells in the dorsal root ganglion.  The 

behavioral effects of this lesion were as expected from previous reflex studies.  

Loss of Y1R-expressing dorsal horn neurons was associated with increased first 

response latencies on the 44°C hotplate, decreased lick/ guard durations on the 

44° and 47°C hotplate, and reduced formalin-induced nocifensive behaviors 

during both the interphase and Phase 2 of the formalin test(Wiley et al., 2009). 

 The reflex data from the NPY-sap experiments confirmed the hypothesis 

that killing Y1R-expressing superficial dorsal horn neurons mimics the inhibitory 
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effects of NPY.  These results, both behavioral and anatomical, also confirm that 

NPY-sap is effective in targeting Y1R-expressing neurons.   

 

Summary 

 The superficial dorsal horn (lamina I-II) of the spinal cord is made up of a 

dense network of neurons and is a key area of spinal pain transmission and 

gating.  These neurons communicate using a number of classical transmitters 

and neuropeptides that work together to modulate and propagate incoming 

sensory information to higher centers.  Neuropeptide Y is one of these 

transmitters.  It and two of its receptors, Y1 and Y2, have been found in the 

dorsal horn of the spinal cord and studies have shown that intrathecal injection of 

NPY leads to decreased noficensive reflex behaviors, indicating a role for NPY in 

nociceptive modulation.  Further studies using antagonists, knock-out mice, and 

targeted toxins, have implicated the Y1 receptor as the primary receptor through 

which NPY inhibits nociception.  Since all of the behavioral data reported to date 

measured reflexive responses to stimuli, it is unclear whether the Y1R- 

expressing neurons also modulate pain.   

 As previously stated, pain differs from nociception in that it is a complex 

experience made up of sensory, affective, motivational, and cognitive 

dimensions.  In order to reliably evaluate pain sensitivity, measures in laboratory 

animals must assess cortically mediated behavioral responses to noxious stimuli, 

such as occurs with the operant behavioral tasks. 
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Specific Aims 

There is sufficient evidence that the spinal Neuropeptide Y system is 

involved in negatively modulating nociception and that this is primarily mediated 

through the Y1 receptor.  Studies using NPY-sap show that the targeted 

destruction of Y1-expressing cells also exerts an inhibitory effect on nociception.  

In order to determine if the spinal NPY system also modulates pain, and not just 

nocifensive reflexes, operant behavioral tasks must be used, as these require 

cerebral processing of stimuli and comparison with similar past experiences in 

order for the animals to respond.  It is hypothesized that spinal Y1 receptor-

expressing neurons also play an inhibitory role in the transmission of pain to the 

brain. 

In order to test this hypothesis, neurons in the dorsal horn will be 

selectively destroyed by intrathecal injection the targeted toxin NPY-sap, which is 

composed of the ribosomal-inactivating toxin, saporin, coupled to a NPY.  After 

the targeted neurons are destroyed, three operant behavioral assays will be used 

to measure the effects that removal of these neurons from the neural network 

has on responses to noxious stimuli.  Finally, lumbar spinal cord sections from 

each rat will be processed using immunohistochemical staining for the Y1 

receptor, and for other cellular markers, to assess the extent and selectivity of 

the effects of NPY-sap and to correlate the degree of target neuron depletion to 

the magnitude of behavioral responses for each rat, i.e. the relationship between 

target neuron loss and behavioral changes. 
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Aims 1 and 2: Determine the effect(s) of intrathecal NPY-sap on operant 

responses to noxious thermal stimuli under (1) normal conditions and (2) 

pathological conditions. 

Baseline operant nocifensive responses of NPY-sap treated rats will be 

compared to controls, injected with a nonsense peptide-saporin conjugate, using 

three different operant paradigms: thermal place preference, escape, and feeding 

interference tasks.   In order to assess the effects of NPY-sap on the common 

clinical pain-related problems of hyperalgesia and allodynia, NPY-sap and control 

conjugate-injected rats will be tested on the operant tasks before and after 

producing hindpaw inflammation (complete Freud’s adjuvant).   Since there are 

reported similarities in electrophysiologic actions between NPY and opiate 

agonists, morphine analgesia will also be assessed in the operant tasks with 

toxin and control rats before and after inducing hyperalgesia/ allodynia, thus 

providing information about any NPY-sap effect on opiate analgesia.   

 

Aim 3: Anatomically identify and define the targeted interneuron 

populations in the dorsal horn. 

This set of experiments will identify which cells were killed by the NPY-sap and 

where they were located in the dorsal horn.  After completion of behavioral 

testing, lumbar spinal cord sections from each rat will be stained for both the Y1 

and the mu opiate receptors (MOR) to define the extent and location of the lesion 

produced by the toxin.   Additionally, lumbar spinal cord sections from rats 

treated with two other toxin conjugates to inhibitory neuropeptides, dermorphin-
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sap, which kills cells expressing the mu-opiate receptor, and Galanin-sap, which 

kills cells expressing the Gal-R1 receptor, will be stained for the Y1 receptor to 

determine if there is overlap in the respective neuronal populations.   
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

Subjects 

 All experiments in this study were conducted using adult female Long 

Evans hooded rats obtained from Harlan Industries, Inc (Indianapolis, IN, USA).  

Rats were housed two or three to a shoebox cage, depending on weight, in a 

temperature controlled environment with 12 hour light/dark cycles and free 

access to food and water. All procedures were approved by the Vanderbilt 

University institutional animal care and use committee and conformed to the 

National Institutes of Health (NIH) guide for care and use of laboratory animals. 

All procedures were closely monitored to minimize animal discomfort. 

 

Lesioning Y1R-expressing Dorsal Horn Neurons 

 Neuropeptide Y-saporin, Galanin-saporin, Dermorphin-saporin, and a 

control nonsense peptide-saporin conjugate, blank-saporin, were supplied by 

Advanced Targeting Systems (San Diego, CA, USA). Toxins were dissolved in 

sterile, preservative-free normal saline (Sigma Chemical, St. Louis, MO, USA). 

Concentrated stock solutions were stored at -4°C and working dilutions were 

made fresh and stored on ice until used the same day and then discarded.  

 Rats were anesthetized by i.p. injections of a ketamine-xylazine-

acepromazine mixture supplemented with additional ketamine as needed to 
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maintain insensibility.  As previously described(Kline and Wiley, 2008;Wiley et 

al., 2009), lumbar intrathecal catheters (Recathco LLC, Allison Park, PA, USA) 

were inserted into the spinal subarachnoid space through a small incision in the 

atlantooccipital membrane, as per the technique of Yaksh and Rudy, to a depth 

of 8.5 cm from the dural incision. The toxin was injected in a volume of 10 µl 

followed by a 10 µl flush of saline and the catheters were removed after 10 

minutes.  The wounds were closed with Michel clips and rats were warmed until 

awake then returned to home cages. 

 

Behavioral Testing 

 All behavioral testing was completed in a dimly lit, dedicated room with low 

level white noise in the background.  Each day rats were allowed to acclimate to 

the testing room for 30-60 minutes prior to behavioral testing.  The rats were 

coded to blind the experimenter to their identities during behavioral testing. 

 

Reflex Testing Procedures 

 A modified thermal test, as previously described(Kline and Wiley, 

2008;Wiley et al., 2009), was used to assess effects of depletion of Y1 receptor-

expressing dorsal horn neurons on innate nocifensive reflex responses to 

aversively cold stimuli.  The cold-plate test chamber consisted of a clear 

Plexiglas box (25cm x 15cm x 16cm) with a ventilated lid sitting on a custom-built 

aluminum plate containing internal circulation channels to assure uniform surface 

temperature.  The temperature of the plate was controlled by a thermally 
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regulated circulator (Polyscience circulating bath model 9105, Washington, PA, 

USA) as previously described.  Prior to each test trial, rats were placed in an 

identical enclosure with floor temperature at 20°C for 10 minutes and then 

transferred to the test chamber.  Trials were run at 0.3°C, 5°C, and 10°C with 

each trial lasting 600 seconds.  Hind paw licking and guarding (sustained lifting) 

behaviors were captured in real time by continuous observation using a custom 

computer program, which records latency and duration of each response, as well 

as total numbers of responses and total amount of time spent responding.  Rats 

do not require training prior to testing on the cold plate.  Typically, they are 

placed in the test enclosure with the plate off a couple of times before testing 

begins so that they are acquainted with the environment and the newness 

doesn’t distract them from the thermal floor. 

 

Operant Behavioral Test Procedures 

Thermal Preference Task 

 The thermal preference task involves two temperature-regulated 

aluminum plates (same as described above) that are placed end to end and 

separated by a piece of plexiglass with a hole cut in it for the rat to walk though.  

The entire area is enclosed in a plexiglass box (30cm x 13cm x 16cm), creating 

two compartments whose temperatures can be independently adjusted.  Thermal 

preference trials were 300s and the rat was allowed to freely move back and 

forth between the two compartments for the entire trial.  Stimulus temperatures 

for thermal preference testing were set at 15ºC and 45ºC.  Training for the 
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thermal preference task occurred over a four day period with the floor plates set 

to 38° for the first two trials and 20° and 40° for the second two trials.  This 

allowed the rats to acclimate to the test chamber, while exploring freely from 

compartment to compartment and learning that the floor on each side was a 

different temperature.  The amount of time spent on the 45ºC side and the 

number of crossovers between compartments were recorded.  A rat was 

considered to have crossed over when all four feet were in the new 

compartment. 

Escape Task 

 As described by Mauderli et al(Mauderli et al., 2000), the escape task 

consists of a plexiglass enclosure (35cm x 11cm x 24cm) atop a temperature 

regulated aluminum plate (same as described above), which serves as the floor.  

At one end of the enclosure is a brightly lit, angled, room temperature shelf that 

rats can climb on to escape the stimulus. 

 Rats require extensive training on the escape task before data can be 

collected.  The first two times a rat is placed into the test box, the floor plate and 

light are off and the shelf is flat; for the next two trials, the floor plate and light 

remain off, but the shelf is angled; and for the following two trials, the light is 

turned on low above the angled shelf, but the floor plate remains off.  Once each 

rat is adjusted to the test box and is climbing onto and off of the shelf, the floor 

plate is turned on at 38°C and moved either up or down 1-2° at a time until the 

desired test temperatures are reached.  This is critical to ensure the rats don’t 

develop an avoidance response. 
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 Escape trials were 360 seconds and responses were measured at 10°, 

15°, 20°, 38°, 45°, and 47°C.  At test temperatures 38° or above, rats were pre-

warmed on a 38° plate and at temperatures below 38° rats were pre-cooled on a 

20° plate for 360 seconds before escape testing.  The number of times rats 

escaped to the shelf and the amount of time spent on the shelf were recorded. 

 For morphine trials, preservative-free morphine sulfate sterile solution 

(Baxter, Deerfield, IL) was diluted in preservative-free sterile physiological saline 

for subcutaneous injection 30 minutes before escape testing.  Subcutaneous 

morphine doses were 0.0, 0.5, and 1.5 mg/kg. 

Feeding Interference Task 

 The feeding interference task is another two-chambered task, in which a 

plexiglass box (40cm x 13cm x 43cm) with a room temperature start area is 

adjacent to the thermal plate (same as described above).  At the opposite end of 

the thermal plate from the start box is a feeding tube with sweetened condensed 

milk (diluted 1:32 for these experiments).  The rat must walk across and remain 

standing on the thermal plate in order to drink the milk, but can return to the 

neutral temperature start area at any time during the trial.  Trials were run for 480 

seconds and the amount of time spent on the thermal plate was measured. 

 The first time the rats are introduced to the feeding interference task, the 

floor plate is set to a neutral temperature, or off, and there is full strength 

sweetened condensed milk in the sipper tube.  These conditions are repeated 

several trials in a row until all rats discover the milk and drink from the sipper.  

For these experiments, any rat that didn’t drink from the sipper by, or during, the 
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third trial, or who didn’t spend the majority of the trial on the plate consuming 

milk, was removed from the experiment.  Once all of the rats were consuming the 

milk, it was slowly diluted, one trial at a time (1:2, 1:4, 1:8, 1:16, and 1:32), until 

the rats no longer spent the entire trial drinking.  Then the temperature of the 

floor plate was gradually raised or lowered 1-2° at a time until the test 

temperatures were reached. 

 

Complete Freund’s Adjuvant  

 Rats were anesthetized by i.p. injections of a ketamine-xylazine-

acepromazine mixture.and then injected bilaterally with 0.1ml Complete Freund’s 

Adjuvant (CFA) in the plantar surface of their hindpaws.  CFA injection was 45 

days after intrathecal toxin injection.  Rats were tested 2-7 days post-CFA 

injection.   

 

Anatomical Procedures 

 Spinal cord sections were prepared as previously described(Kline and 

Wiley, 2008;Wiley et al., 2009).  Two weeks after toxin/vehicle injections, or at 

the conclusion of behavioral testing, rats were deeply anesthetized with sodium 

pentobarbital and perfused transcardially with 500ml of cold normal saline 

containing 5mM sodium phosphate, pH 7.5, 1g/l sodium nitrite (vasodilator) and 

1000 units/liter sodium heparin (anticoagulant), followed by 1L of cold 4% 

formaldehyde prepared from paraformaldehyde in 100 mM sodium phosphate, 

pH 7.5.   
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 Spinal cords were postfixed for 4 hours and then equilibrated overnight in 

30% sucrose in 5mM sodium phosphate, pH 7.5, the night before sectioning. 

Transverse sections of the lumbosacral spinal cord were cut at 40µm thickness 

on a freezing sliding microtome (American Optical).  Spinal cord sections were 

collected six to a well in 24-cell tissue culture plates.  Spinal cord sections were 

equilibrated with antifreeze solution consisting of glycerol-ethylene glycol-

phosphate buffer and stored at -20°C until processed for peroxidase or 

fluorescent immunohistochemistry.   

 

Peroxidase Immunohistochemistry 

 As previously described (Kline and Wiley, 2008;Wiley et al., 2009), control 

and toxin treated sections were processed in parallel.  One in six series of 

transverse spinal cord sections were removed from antifreeze at room 

temperature and washed in Tris-buffered saline followed by incubation for 15 

minutes in 5% normal serum at room temperature. Then the free-floating 

sections were transferred to primary antibody diluted in 1% serum and incubated 

for 4 hours at room temperature.  Then sections were washed and processed for 

peroxidase immunohistochemistry using the standard biotin–avidin technique 

(ABC elite kit, Vector Laboratories, Burlingame, CA, USA) with 

diaminobenzidine/nickel as chromogen.  Antibody #96106 raised against Y1R 

and antibody #96202 raised against Gal-R1 were provided by the CURE 

Digestive Diseases Research Center (Antibody/RIA Core, NIH grant #DK41301).  

The MOR1 antibody was from Chemicon, now Millipore, (Temecula, CA).  
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Reacted sections were washed and mounted on gelatin-coated slides, 

dehydrated, cleared and examined using a Leica (Bannockburn, IL, USA) 

DM6000B automated photomicroscope.  Blank-sap and toxin sections were 

processed simultaneously in parallel using the same solutions and conditions. 

 

Y1R, MOR, and Gal-R1 measurements 

 As previously reported(Kline and Wiley, 2008;Wiley et al., 2009), we used 

computer-assisted quantitative densitometry to evaluate Y1R, MOR, and Gal-R1 

staining in the superficial dorsal horn.  Using randomized coded sections to blind 

the operator to experimental condition, user-defined areas of interest 

encompassing the entire medio-lateral extent of lamina I and II were digitally 

captured.  Both right and left dorsal horns from 8 to 10 stained sections of lumbar 

segments L4 and L5 from each spinal cord were photographed.  The darkest 

pixels (intensity 0–100 out of a range of 0–250 gray levels) were chosen as 

consistently representing specific staining as determined by comparing the 

distribution of computer selected stained pixels to visual inspection of the 

peroxidase-stained sections.  Mean pixel counts for each rat were computed 

from the 8 to 10 L4/5 sections measured (16-20 dorsal horns) from each rat.  All 

measurements were performed on raw digital images, no transformations or 

other photo processing manipulations were applied to the original images from 

which measurements were taken counted from the coded slides to obtain the 

staining intensity for each dorsal horn region of interest.  
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Fluorescence Immunohistochemistry 

 Control and toxin treated sections were processed in parallel.  One in six 

series of transverse spinal cord sections were removed from antifreeze at room 

temperature and washed in 0.3M phosphate-buffered saline.  Then the free-

floating sections were incubated in a mixture of rabbit anti-NPY and guinea pig 

anti-MOR, diluted in phosphate buffered saline, and incubated 48 hours at 4°C.  

The sections were washed and incubated for 3 hours in species-specific 

fluorescent secondary antibodies: anti-guinea pig Alexa 488 and anti-rabbit Alexa 

594 (Invitrogen, Carlsbad, CA, USA).  Reacted sections were washed and 

mounted on gelatin-coated slides using antifade mounting media (Invitrogen, 

Carlsbad, CA, USA).  Slides were stored at 4°C until ready to be analyzed.  

 

MOR/Y1R Cell Counting Procedures 

 Fluorescent stained sections were viewed using a Zeiss LSM510 (Carl 

Zeiss, Inc, North America) Inverted confocal microscope.  Sections were 

scanned sequentially with a 40x oil-immersion lens to produce a z-series of 24 

optical sections separated by 1µm z-steps.  The most medial part of the 

superficial dorsal horn was imaged to ensure the same area of each spinal cord 

section was compared. 

 The images were viewed and analyzed using Confocal Assistant and 

ImageJ (Free Programs).  For each toxin group, six spinal cord sections from 

each of three rats were analyzed.  The sixth section from each z-series was 

viewed and counted.  Cells that stained positive for MOR and Y1R individually 
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were marked and counted by viewing the red (Y1R) and green (MOR) channels 

independently.  Then the individual images were merged and the cells that were 

marked twice were counted as expressing both Y1R and MOR.  An average 

number of MOR-expressing, Y1R-expressing, and MOR/Y1R co-expressing cells 

was calculated for each rat. 

 

 
Statistical Procedures 

 
 All data were tested for equal variances, and satisfied, the Shapiro-Wilk 

criteria for normality prior to use of parametric statistical analyses.  Raw 

anatomical data, or stained pixel counts (spinal cord sections), as described 

above, was compared using a standard t-test.  For raw behavioral data (duration 

of nocifensive or escape responding, etc.), t-test and two- or three-way analysis 

of variance (ANOVA) techniques were used.  In each case a minimum 

significance level of P<0.05 was required to reject the null hypothesis.  As 

appropriate, Tukey’s test or the Holm-Sidak Method was used for pairwise, post 

hoc comparisons within the ANOVA.  All graphing and statistics were done with 

SigmaPlot v11 software (SPSS, Inc., Chicago, IL, USA). 
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CHAPTER 3 

 

BEHAVIORAL EFFECTS OF NPY-SAP 

 

Abstract 

 The spinal Neuropeptide Y system is a potential target for development of 

new pain therapeutics.  Lumbar intrathecal injection of NPY is antinociceptive, 

reducing hyper-reflexia to thermal and mechanical stimulation, particularly after 

nerve injury and inflammation.  We have previously shown that intrathecal 

injection of Neuropeptide Y-sap (NPY-sap) is also antinociceptive, reducing 

nocifensive reflex responses to noxious heat and formalin.  In the present study, 

we sought to determine the role of dorsal horn Y1R-expressing neurons in pain 

by destroying them with NPY-sap and testing the rats on three operant tasks.  

Lumbar intrathecal NPY-sap 1- reduced CFA-induced hyper-reflexia on the 10°C 

cold plate, 2- reduced cold aversion on the thermal preference and escape tasks, 

3- was analgesic to noxious heat on the escape task, 4- reduced the CFA-

induced allodynia to cold temperatures experienced on the thermal preference, 

feeding interference, and escape tasks, and 5- did not inhibit or interfere with 

morphine analgesia.   

 

Introduction 

The superficial dorsal horn of the spinal cord is the first key area of 

nociceptive gating and modulation within the CNS (Melzack and Wall, 1965), and 
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therefore, a potential target for pain therapeutics (Cougnon et al., 1997;Silva et 

al., 2002).  Several neuropeptides in the superficial dorsal horn are thought to 

play an important role in modulating nociception, including Neuropeptide Y 

(NPY).  Intrathecal injection of NPY is antinociceptive, reducing hypersensitivity 

to thermal and mechanical stimulation.(Hua et al., 1991;Xu et al., 1994;Xu et al., 

1998).  This NPY-mediated antinociception is particularily evident after nerve 

injury and inflammation (Taiwo and Taylor, 2002;Mahinda and Taylor, 

2004;Intondi et al., 2008), when levels of NPY and Y1R mRNA transcripts are 

increased in the dorsal horn (Ji et al., 1994).   

The Y1 receptor is a key player in the NPY-mediated nociception.  When a 

Y1R antagonist was intrathecally administered to animals with nerve injury or 

inflammation, the animals showed increased nocifensive hyper-reflexia and when 

it was adminstered along with NPY, the antinociceptive effect of NPY was 

effectively blocked (Taiwo and Taylor, 2002).  Additionally, studies involving Y1R 

knock-out mice (Naveilhan et al., 2001;Shi et al., 2006;Kuphal et al., 2008) and 

conditional knock-down mice (Solway et al., 2011) have shown that mice lacking 

the Y1R have increased inflammatory and injury related nocifensive hyper-

reflexia, which is not affected by intrathecal NPY.   

Neurons that express the Y1 receptor can be permanently and selectively 

destroyed using NPY-sap, a conjugate of NPY and saporin, a ribosomal 

inactivating toxin.  We have previously shown that intrathecal injection of NPY-

sap produces a selective lesion of Y1R-expressing dorsal horn neurons, without 

affecting primary afferent neurons in the dorsal root ganglion.  Rats treated with 
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NPY-sap showed decreased nocifensive reflex responses to aversive heat and 

formalin (Wiley et al., 2009).  These results suggest a significant role for Y1R-

expressing neurons in modulating nocifensive reflexes, but do not necessarily 

reflect changes in the degree of discomfort experienced by the animal subject.  In 

order to make inferences about analgesia, one must use responses that require 

cerebral processing of nociceptive information, such as those obtained from 

operant behavioral tasks (Vierck et al., 2005b).  

In this study we looked at the effects of intrathecal NPY-sap on analgesia 

and the common clinical pain-related problems of hyperalgesia and allodynia by 

testing rats on three different operant paradigms before and after inducing CFA 

inflammation.  In order to bridge the operant data obtained in this study to the 

existing literature on the effects of spinally administered NPY and NPY-sap, rats 

were first tested on a cold plate reflex task before and after inducing CFA 

inflammation.  Then baseline operant nocifensive responses were assessed 

using three different operant paradigms.  Each operant task asks the subject to 

make a context-specific choice about which stimulus condition it prefers, thus 

making possible inferences about the degree of discomfort/aversiveness 

experienced by the subject.  Three operant paradigms are used here in order to 

rule out potential sources of confounding that may occur when relying on only 

one task.  Given the anatomic and physiologic similarities between NPY and 

opioid peptides in the superficial dorsal horn, we examined morphine analgesia 

before and after inducing hyperalgesia/ allodynia, to assess any effect of NPY-

sap on opiate analgesia. 
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Results 

Coldplate Hindpaw Lick/Guard Responses 

 Prior to CFA injection, Blank-sap and NPY-sap rats were tested on the 

cold plate at 0.3°, 5°, and 10°C.  At 0.3° and 5°C, rats from both groups 

responded equally with minimal hindpaw licking or guarding and none of the rats 

from either group responded by licking or guarding at 10°C (Figure 3).  After CFA 

injection, all of the rats engaged in hindpaw licking or guarding at 10°, showing 

that CFA induced cold hypersensitivity in both experimental groups (Blank-sap: 

P=0.002, F2,15=36.433, 2-way ANOVA; NPY-sap: P=0.023, F2,12=49.079, 2- way 

ANOVA; Figures 3 and 4), however, the CFA-injected NPY-sap rats responded 

by licking or guarding significantly less than the CFA-injected Blank-sap rats 

(P=0.023, F1,33=4.22, 2-way ANOVA, Figures 3 and 4).    

 

Figure 3: Effects NPY-sap on cold plate reflex responses.  Graph shows effects of i.t. NPY-sap on 
lick/guard nocifensive responses on 0.3°, 5°, and 10°C cold plate before and after CFA-induced 

inflammation.  Bilateral CFA increased reflexive responses of both Blank-sap and NPY-sap treated 
rats at all temperatures, with the NPY-sap rats responding significantly less than the Blank-sap rats 

at 10°C.  Data was collected 5-7 weeks after NPY-sap injection and 4 days post CFA injection. 
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Figure 4: Effect of NPY-sap on 10°C cold plate after CFA.  NPY-sap reduces CFA-induced hyper-
nociception on the 10°C cold plate reflex test. Data is presented as a cumulative time course of 

lick/guard durations throughout the 300 second trial.  
 
 
Operant Behavioral Responses 

 Thermal Preference Task: Blank-sap control rats spent significantly more 

time on the hot (45°C) side of the thermal preference task than NPY-sap rats 

both before (P=0.03, F1,4= 16.614, 2-way ANOVA, Figure 5A and B) and after 

CFA inflammation (P=0.01, F1,4= 9.790, 2-way ANOVA, Figure 5C and D).  After 

CFA injection, Blank-sap rats increased their time spent on the hot side, almost 

completely avoiding the 15°C side after the first minute of the trial (P=0.015, 

F1,4=9.017, 2-way ANOVA, Figure 5C).  NPY-sap rats responded the same 

before (Figure 5B) and after CFA inflammation (Figure 5C), spending about half 

the trial on each side of the apparatus.   
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Figure 5: Effects of NPY-sap on thermal preference task. Time course data of thermal preference 
task shows that NPY-sap reduces cold aversion before and after CFA-induced inflammation.  Each 
bar represents one minute of the trial and the rats’ preference during that minute (black: 45°, white 
15°).  Blank-sap rats (A and C) spent more time on the hot side than NPY-sap rats (B and D) both 
before and after CFA inflammation.  After CFA, Blank-sap rats almost completely avoided the 15° 
side (C).  NPY-sap rats responded the same before (B) and after CFA inflammation (D).  Data was 

collected 5-7 weeks post NPY-sap injection and 5 days post CFA injection. 
  

 Feeding Interference Task:  Before CFA injection, both NPY-sap and 

Blank-sap rats spent the majority of the trial standing on the 10°C plate 

consuming the sweetened condensed milk (Figure 6A).  After CFA injection, 

Blank-sap rats spent significantly less time on the cold plate feeding than they 

had previously (P<0.001, F1,128=14.465, 3-way ANOVA, Figure 6B).  NPY-sap 

rats showed no change in behavior after CFA, spending the same amount of time 

on the cold plate before and after CFA; with the result that NPY-sap rats spent 

significantly more time feeding than Blank-sap rats post-CFA injection (P<0.001, 

F1,128=11.555; 3-way ANOVA, Figure 6B).  
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Figure 6: Effects of NPY-sap on feeding interference task.  NPY-sap and Blank-sap rats responded 
similarly before CFA inflammation (A).  After CFA (B), Blank-sap, but not NPY-sap, rats spent less 

time on the cold plate than they had previously, showing NPY-sap reduces CFA-induced thermal 
allodynia. Data were collected from 2-5 weeks post NPY-sap injection and 2-4 days post CFA 

injection.  
 
 

 Escape Task: NPY-sap treated rats chose to climb onto the escape 

shelf significantly less than Blank-sap rats at 10°C (p<0.001, F1,120=62.659, 2-

way ANOVA, Figure 7A), 15°C (p<0.001, F1,120=12.572, 2-way ANOVA, Figure 

7B), 44°C (P<0.001, F1,120= 12.999; 2-ANOVA; Fig 7E), and 47°C (P<0.001, 

F1,120=30.769; 2-way ANOVA; Fig 7F), indicating that all of these temperatures 

were perceived as less aversive to the toxin-treated rats than controls.  There 

was no difference between control and NPY-sap rats in escape responding at the 

non-aversive temperatures of 20° and 38°C.  Administration of both 0.5mg/kg 

and 1.5mg/kg systemic morphine significantly reduced escape duration of Blank-

sap (0.5mg/kg: P=0.012; 1.5mg/kg: P<0.001; 2-way RM ANOVA, Figure 8A) and 

NPY-sap rats (0.5mg/kg: P=0.02; 1.5mg/kg: P<0.001; 2-way RM ANOVA; Figure 

8B) from the 47°C hotplate.  There was no significant interaction between NPY-

sap and morphine. 



 

 47 

Trial Time (s)

0 50 100 150 200 250 300 350 400

Es
ca

pe
 T

im
e 

(s
)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

20oC

Trial Time (s)

0 50 100 150 200 250 300 350 400

Es
ca

pe
 T

im
e 

(s
)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

15oC

*

Trial Time (s)

0 50 100 150 200 250 300 350 400

Es
ca

pe
 T

im
e 

(s
)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

47oC

*

Trial Time (s)

0 50 100 150 200 250 300 350 400

E
sc

ap
e 

Ti
m

e 
(s

)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

10oC

*

Trial Time (s)

0 50 100 150 200 250 300 350 400

Es
ca

pe
 T

im
e 

(s
)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

45oC

*

Trial Time (s)

0 50 100 150 200 250 300 350 400

Es
ca

pe
 T

im
e 

(s
)

0

100

200

300

400

750ng Blank-sap (n=6)
750ng NPY-sap (n=5)

38oC

A

FED

CB

 

Figure 7: Effects of NPY-sap on the escape task.  Time course data showing decreased escape 
responding (shelf time) by NPY-spa rats compared to Blank-sap rats at the aversive temperatures of 

10°, 15°, 44°, and 47°C .  There was no difference between NPY-sap and Blank-sap rats in escape 
responding at the neutral temperatures of 20°(C) and 38°C (D). Data were collected 2-5 weeks post 

NPY-sap injection. 
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Figure 8: Effects of NPY-sap on morphine analgesia.  Escape task time course data shows that 
administration of both 0.5mg/kg and 1.5mg/kg systemic morphine 30 minutes prior to testing 

significantly reduced escape duration of Blank-sap (A) and NPY-sap rats (B) from the 47° hotplate.  
There was no significant interaction between NPY-sap and morphine.  Data was collected 5 weeks 

post NPY-sap injection. 
 
 

After administration of CFA, Blank-sap rats escaped significantly more 

from 15°C than they did prior to CFA injection (P<0.001, 3-way ANOVA, F1,102= 
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22.075, Figure #A and C).  Again, NPY-sap rats escaped less than Blank-sap 

rats (P<0.001, F1,102= 31.652, 3-way ANOVA, Figure 6A and C).   
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Figure 9: Effects of NPY-sap on escape task after CFA. NPY-sap reduces thermal allodynia on the 
escape task compared with controls.  After administration of CFA (B), Blank-sap rats escaped 

significantly more from 15° than they did without inflammation (A).  Data was collected 5 weeks post 
NPY-sap injection and 2-4 days post CFA injection. 

 
 

Finally, both groups of rats were given systemic morphine injections and 

tested on the escape task at 45°C.  CFA inflammation did not affect baseline 

responding (saline injections) of either group, compared with their pre-CFA 

responding, while 1.5mg/kg morphine significantly decreased escape time of 

both Blank-sap (P=0.012, F1,9= 21.735, 2-way RM ANOVA) and NPY-sap 

(P=0.007, F1,9= 21.735, F1,9= 18.436, 2-way RM ANOVA) rats (data not shown).  

Again, there was no significant interaction between NPY-sap and morphine 

analgesia. 

 

Discussion 

 The principal observations of this study are: 1- bilateral plantar injection of 

CFA led to marked hyper-reflexia in Blank-sap control rats, that was significantly 
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less in NPY-sap rats; 2- intrathecal NPY-sap reduced baseline cold aversion in 

normal rats with CFA on both the thermal preference and escape tasks; 3- 

intrathecal NPY-sap was analgesic to noxious heat in the escape task; 4- 

bilateral CFA caused cold hyperalgesia and allodynia that was less in NPY-sap 

rats, as measured using three operant tasks; and 5) intrathecal injection of NPY-

sap did not interfere with morphine analgesia before or after CFA inflammation.  

Prior to operant behavioral testing, rats were tested on the 10°C cold plate and 

reflexive lick/guard responses were measured.  This was done to bridge the data 

from the operant tasks used in this study to the current literature on NPY and 

nociception to establish that the long evans female rats in these experiments 

were showing the same reflex changes previously reported.  Before CFA 

injection, the 10°C cold plate was aversive enough to make the rats 

uncomfortable, but not enough to elicit reflex nocifensive responses from rats in 

either treatment group.  After CFA injection, both groups of rats responded 

significantly more, showing that the CFA application was effective in inducing 

cold hyper-reflexia, however, CFA-induced hyper-reflexia was reduced by 

targeted elimination of the Y1R-expressing neurons, which concurs with previous 

reports that NPY is antinociceptive after inflammation.   

 Next rats were tested on each of three operant tasks.  In the thermal 

preference task, rats were asked to choose between two compartments with 

different temperature floors, one noxious heat (45°C) and the other aversively 

cool (15°C).  In baseline testing, the control rats showed some preference for the 

hot side, while the NPY-sap rats split the trial evenly between both 
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compartments.  These results could be interpreted two ways, that NPY-sap either 

increases heat sensitivity or decreases cold sensitivity.  Taking into consideration 

data from previous reflex experiments (Wiley et al., 2009) and the other operant 

tasks in the present study, it is evident that NPY-sap induced loss of Y1R-

expressing neurons leads to primarily decreased cold sensitivity.  After 

administration of bilateral CFA, the control rats avoided the 15° side after the first 

minute of testing, exhibiting the cold allodynia associated with inflammation.  The 

behavior of the NPY-sap rats did not change after CFA, indicating that loss of 

Y1R dorsal horn neurons blocked inflammation-induced cold allodynia.   

 While the control rats chose to avoid the 15° plate in the thermal 

preference task, they could be motivated to stand on a 10° plate by the 

availability of sweetened condensed milk in the feeding interference task.  Before 

CFA inflammation, control and NPY-sap rats spent the same amount of time 

standing on the cold plate consuming milk at 10°C, however, at 8°C, the control 

rats spent less time on the thermal plate than the NPY-sap rats (data not shown).  

The temperatures used in the feeding interference task are slightly lower than in 

other tasks, presumably due to the rewarding properties of the milk, which 

motivates the rats to occupy an uncomfortable area that they would normally 

avoid.  After CFA, however, the control rats spent significantly less time on the 

10°C cold plate than the NPY-sap rats, again illustrating the cold allodynia 

produced by inflammation in control rats and the anti-allodynic effect of 

intrathecal NPY-sap.  
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 Rats were next tested in the escape task, where they must choose to 

either stand on the thermal floorplate or escape to an angled, brightly lit, neutral 

temperature shelf.  Rodents find bright lights aversive and they have to work to 

stay on the shelf due to its angle, so rats would not typically escape without 

motivation.  NPY-sap rats escaped from the thermal surface to the neutral shelf 

less overall than control rats at 10°, 15°, 45°, and 47°.  NPY-sap treatment was 

analgesic at both aversively cold and hot temperatures.  The escape times of 

both groups were the same at neutral temperatures, indicating that the control 

rats had not developed an avoidance response and were sampling the floor 

temperature before escaping to the shelf.  After CFA-induced inflammation, 

control rats escaped more from 15°C than they had previously, again showing 

that the allodynia produced by CFA inflammation in control rats was reduced in 

NPY-sap rats.   

 The present study is the first to demonstrate a role for NPY receptor-

expressing neurons in pain, as opposed to nociception.  The data from each of 

the three operant tasks agrees with what would be expected from the current 

knowledge of the spinal NPY system.  The Y1 receptors are likely located on 

excitatory interneurons, which presumably provide excitatory drive to projection 

neurons, which are inhibited when NPY binds.  NPY-sap kills the cells expressing 

Y1 receptors, permanently inhibiting them (see Chapter 4).  Rats injected with 

750ng NPY-sap were less sensitive to cold temperatures and not susceptible to 

CFA-induced cold allodynia, indicating a clear role for Y1R-expressing neurons in 

pain modulation, particularly after peripheral inflammation.  Inflammatory pain is 



 

 52 

typically associated with increased sensitivities to tactile and cold stimuli.  We are 

currently lacking adequate treatments for chronic pain and the go-to drug for 

many clinicians is morphine, however, morphine is not very effective in 

minimizing cold sensitivities.  In our experiments, bilateral CFA did not affect 

sensitivity to noxious heat, thus posing Y1R-expressing neurons as excellent 

candidates to be targeted for the development of analgesic drugs.  It is important 

that any new treatment not interfere with morphine analgesia, so we injected the 

rats with systemic morphine and tested them on the escape task before and after 

CFA injection.  We found that intrathecal NPY-sap did not interfere with or 

interact with the ability of morphine to produce analgesia.   

 It was not the intent of this study to examine the relationship between the 

spinal NPY and opiate systems.  While Y1 receptors and µ-opiate receptors have 

been shown to interact and overlap within the spinal cord and several supra-

spinal regions (Moran et al., 2004;Wang, 2004;Upadhya et al., 2009) and have 

similar electrophysiological properties (Moran et al., 2004), further anatomical 

studies and behavioral testing using intrathecal morphine injections would be 

valuable in determining if the lesion produced by NPY-sap effects spinalmu 

opiate mechanisms of analgesia.   

 

Conclusions 

 The present results show that lumbar intrathecal injection of 750ng NPY-

sap reduces sensitivity to cold stimuli and eliminates the allodynia associated 

with CFA-induced inflammation, without interfering with morphine analgesia, 
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indicating that the spinal NPY system would be an appropriate target for 

development of analgesic drugs.     
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CHAPTER 4 

 

ANATOMICAL EFFECTS OF NPY-SAP 

 

Abstract 

 The spinal Neuropeptide Y system is involved in the modulation of pain 

and nociception, primarily through action on the Y1 receptors (Y1R), which are 

inhibitory.  Selective destruction of Y1R-expressing neurons in the dorsal horn 

using NPY-sap significantly reduces dorsal horn Y1R staining and has also been 

shown to be antinociceptive, using both reflexive and operant measures.  In this 

study, we attempt to further characterize the lesion produced by NPY-sap to 

assess the extent and selectivity of targeted neuron depletion.  The effects of 

NPY-sap, Derm-sap, and Gal-sap on Y1R staining intensity are compared, along 

with the effect of NPY-sap on Gal-R1 and MOR expression.  We found that only 

NPY-sap affects Y1R-expressing dorsal horn neurons.  Additionally, we show 

that there are cells in the dorsal horn that likely co-express both Y1R and MOR.  

These observations of the anatomical effects of intrathecal NPY-sap form the 

basis for attributing the behavioral changes described previously in NPY-sap rats 

to a specific anatomic lesion. 

 

Introduction 

 The superficial dorsal horn of the spinal cord is the first key area of 

nociceptive gating and modulation within the CNS (Melzack and Wall, 1965), and 
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therefore, a potential target for pain therapeutics.  However, the precise 

organization of the dorsal horn remains incompletely understood.  Several 

neuropeptides in the superficial dorsal horn are thought to inhibit, or negatively 

modulate, nociception, including neuropeptide Y (NPY), galanin, and µ-opioid 

peptides.  While much is known about these peptide systems, their precise role 

in modulating nociception is unclear. 

 As previously described (Chapter 1), two NPY receptors, Y1R and Y2R, 

are localized in the dorsal horn.  Y1 receptors are primarily post-synaptic and 

exert an inhibitory effect (Brumovsky et al., 2002;Brumovsky et al., 2006), while 

the Y2 receptors are pre-synaptic and excitatory (Hua et al., 1991;Brumovsky et 

al., 2005).  The presence of these two receptors likely accounts for the biphasic 

effects sometimes seen after intrathecal injection of NPY.  Similarly, intrathecal 

injection of galanin has also been shown to produce both pro and antinociceptive 

effects.  Again, this is likely due to the presence of two receptors types, GalR1 

and GalR2, in the dorsal horn.  GalR1 receptors are primarily expressed post-

synaptically on dorsal horn interneurons, while both GalR1 and GalR2 receptors 

are pre-synaptic (Xu et al., 1996;O'Donnell et al., 1999).  Typically, GalR1 

receptors are inhibitory (Zhang et al., 1995) and GalR2 receptors are excitatory 

(Liu et al., 2001;Liu and Hokfelt, 2002). Finally, the µ-opioid peptides exert their 

antinociceptive effects through the inhibitory µ-opiate receptor (MOR), which is 

located both pre- and post-synaptically.   

 While it is likely that each of these neuropeptide systems play a unique 

role in nociception, they have much in common.  Galanin, NPY, and µ-opiate 
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peptides have each been shown to co-exist with GABA, and galanin and NPY 

each co-localize with enkephalins, however, galanin and NPY are found in 

different populations of neurons (Todd et al., 1992;Rowan et al., 1993;Simmons 

et al., 1995;Zhang et al., 1995;Landry et al., 2000;Tiong et al., 2011).  As 

previously mentioned, each of these neuropeptides can have an antinociceptive 

effect when administered intrathecally, likely exerted through action on the Gal-

R1 receptor, the NPY-Y1 receptor (Y1R), and the µ-opiate receptor (MOR), 

respectively.  Each of these receptors couples with Gi/o subunits, consistent with 

the observation that ligand binding exerts an inhibitory effect on target neurons 

(Wang et al., 1998;Sun et al., 2001).  Additionally, the Y1 receptor has similar 

electrophysiological characteristics to the mu-opiate receptor (MOR) (Moran et 

al., 2004) and intrathecal galanin has been shown to potentiate the 

antinociceptive action of morphine in reflex testing (Wiesenfeld-Hallin et al., 

1990). With these similarities, it is unclear whether the peptidergic neurons, 

and/or the corresponding neurons expressing the neuropeptide receptors, 

represent three separate populations, or if there is overlap among them.   

 In order to attribute the behavioral changes seen after intrathecal NPY-sap 

to the destruction of Y1R-expressing cells, it is critical to know whether the NPY-

sap targets only Y1R-expressing neurons or if it affects other populations, as 

well.  Our previous work with NPY-sap has shown that intrathecal NPY-sap 

(750ng) significantly reduces dorsal horn Y1R staining in lamina I and medial 

lamina II, without affecting DRG neurons(Wiley et al., 2009).  In the current study, 

we elaborated upon these findings to assess the extent and selectivity of the 
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targeted neuron depletion.  We compared the Y1R lesion produced using NPY-

sap with that produced using Derm-sap, which kills cells expressing the µ-opiate 

receptor, and Gal-sap, which kills cells expressing the Gal-R1 receptor.  Also, we 

looked at the populations of Y1R-, Gal-R1-, and MOR-expressing neurons to 

determine if there’s any overlap.  

 
 

Results 

Immunohistochemistry 

 Sixteen rats were injected with either 750ng Blank-sap, 750ng NPY-sap, 

625ng Derm-sap, or 500ng Gal-sap.  The dosages selected are the same as 

those used in behavioral experiments, since they yield significant behavioral 

changes without causing any adverse toxin effects.  Blank-sap, composed of the 

saporin toxin conjugated to a nonsense peptide, was used as a control, the same 

as in the behavioral studies.  Intrathecal injection of 750ng NPY-sap has 

previously been shown to produce a 40% reduction in dorsal horn Y1R staining.  

In the present experiments the reduction in stain was slightly less, with about 

30% loss of Y1R staining, (p=0.019, t-test, Figure 10) but still resulted in 

significant behavioral effects as described previously (Chapter 3). The receptor 

loss in both cases was mainly in lamina I and medial lamina II of the dorsal horn.  

There was no reduction in Y1 receptor stain in tissue from Blank-sap, Derm-sap, 

or Gal-sap rats.   
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Figure 10: Intrathecal NPY-sap leads to a reduction in dorsal horn Y1R stain.  Tissue from rats 
injected with Blank-sap, NPY-sap, Derm-sap, or Gal-sap was stained for Y1R.  Only NPY-sap caused 

a lesion in Y1R-expressing cells. 
 
 
 Next the tissue was stained for MOR and Gal-R1.  In the Derm-sap and 

Gal-sap tissues, staining intensities for their intended targets, MOR and Gal-R1, 

respectively, were each reduced by approximately 40% (MOR p=0.01; Gal-R1 

p=0.03, t test).  Neither toxin affected staining intensities of the other receptor.  

Staining for both receptors was decreased in the NPY-sap tissue (Figure 11), but 

the MOR stain counts just missed the significance level (Gal-R1 p=0.04; MOR 

p=0.05, t test).   

 

Fluorescence 

 Tissue from the same rats injected with Blank-sap, NPY-sap, and Derm-

sap, was stained for both Y1R and MOR and labeled using fluorescent 

secondary antibodies.  The cells that express Y1R, MOR, and Y1R/MOR were 

counted and it was found that approximately 9% of the total cells counted 
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express both Y1R and MOR in control rats.  This percentage was the same in 

NPY-sap treated rats, but the percentage of cells that co-express both receptors 

was increased in the Derm-sap rats at about 13%.   
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Figure 11: Effects of NPY-sap on MOR and Gal-R1 stain.  Tissue from rats injected with Blank-sap, 
NPY-sap, Derm-sap, or Gal-sap was stained for MOR and Gal-R1.  As expected, derm-sap rats had 

reduced MOR stain and gal-sap rats had reduced Gal-R1 stain, compared with Blank-sap rats.  
NPY-sap rats also had significantly less Gal-R1 stain and a decrease in MOR stain. 

 
 

Discussion 

 We have previously published that intrathecal injection of 750ng NPY-sap 

leads to a 40% lesion of Y1R-expressing superficial dorsal horn neurons (Wiley 

et al., 2009).  In the present experiments, the lesion caused by the same dosage 

of toxin was less, with about 30% loss.  There could be several reasons for the 

difference, but it is most likely that, since the same stock of toxin was used for 

the injections in both experiments, which were several years apart, the toxin had 

begun to break-down over time and the dosage injected in the latter experiments 
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was actually less than 750ng.  Further justification for this is given in the same 

paper where we showed that tissue from rats injected with 750ng NPY-sap had 

less Y1R staining intensity than rats injected with 500ng NPY-sap, showing a 

relationship between dosage of toxin injected and extent of lesion produced. 

 The other two toxins used in these experiments, derm-sap and gal-sap, 

also create significant dorsal horn lesions.  Derm-sap targets cells that express 

the µ−opiate receptor and Gal-sap targets cells expressing the Gal-R1 receptor.  

Tissue from rats injected with these toxins did not have decreased Y1R stain, 

indicating that the toxins do not affect Y1R-expressing neurons and are selective 

in targeting specific neuronal populations.  

 To further investigate the possibility of overlap in these neuronal 

populations, the NPY-sap tissue was stained for MOR and Gal-R1.  Intrathecal 

injection of NPY-sap led to a decrease in staining intensity of Gal-R1 and, to a 

lesser degree, MOR.  This data implies that the NPY-sap toxin also targets cells 

expressing Gal-R1 and MOR, however, if there were overlaps in the neuronal 

populations, you would have expected to see a decrease in Y1R staining 

intensity from injection of Gal-sap or Derm-sap, and we did not. 

 It is unknown how reliable the results using the Gal-R1 antibody are, since 

there is controversy in the literature over the specificity of the available antibodies 

and we weren’t able to obtain consistent staining results using our antibody.   

 In the case of the MOR-expressing cells, these experiments were 

repeated several times and the MOR-expressing cell loss in NPY-sap rats was 

right around the significance point each time.  It is possible that the immuno-
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staining techniques being used were not sensitive enough to detect the loss of 

small populations of cells.  This warranted a closer look at the cells themselves. 

 Tissue from Blank-sap, NPY-sap, and Derm-sap rats was double stained 

for both Y1R and MOR and analyzed under confocal microscopy.  The main 

conculsion that can be drawn from these experiments is that some dorsal horn 

neurons express both Y1R and MOR.  This is only a small percentage of the total 

Y1R and MOR-expressing cells.  A probable explanation for the decrease in 

MOR staining seen with NPY-sap, when no decrease in Y1R was seen with 

Derm-sap is that these cells aren’t targeted and destroyed by Derm-sap, but are 

by NPY-sap.  One possible explanation is that the toxins might be more or less 

effective in destroying mono- vs. dual-receptor-expressing neurons.  One such 

mechanism for this might be if one population of neurons is under more intense 

endogenous control than the other, there might be more endogenous ligand 

present to compete with the toxin for binding to receptors and the neurons might 

be less likely to be killed by the toxin.   

 Due to several complications that arose while these experiments were 

being conducted, this question of receptor co-localization still needs to be further 

investigated.  Strategies for improving these experiments include: 1 – using a 

higher dose of toxin to produce more consistent lesions, reduce variability, and 

enlarge statistical sensitivity; 2 – sacrificing and processing tissue immediately 

prior to analyzing to ensure the brightest stain; and 3 – using a third label, such 

as NeuN, or other neuronal marker, to identify neurons, which would aid in the 

neuron-counting process.   
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Conclusion 

 Intrathecal injection of NPY-sap creates a significant lesion of Y1R-

expressing neurons in the dorsal horn, which is clearly different from the lesions 

produced by other toxins, such as Derm-sap and Gal-sap.  There is potential 

overlap between the populations of Y1R- and Gal-R1-expressing neurons, since 

NPY-sap also reduced Gal-R1 stain, which could be further investigated pending 

the availability of an improved Gal-R1 antibody.  Finally, there also is evidence 

that some of the Y1R-expressing dorsal horn neurons co-express MOR.   
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CHAPTER 5 

 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

General Discussion 

 Millions of people worldwide suffer from poorly controlled chronic pain that 

interferes with their productivity and ability to carryout normal everyday activities.  

Unfortunately for those affected by chronic pain, we are currently lacking 

effective long-term treatments without side effects. The development of new 

treatments has been hindered, in part, by our limited knowledge of the 

connectivity, wiring, and specific functions of the neurons involved in the pain 

pathways, specifically those in the dorsal horn of the spinal cord, the first key 

area of nociceptive gating and processing.   

 It has long been established that there are several neurotransmitters and 

neuropeptides located in the dorsal horn that are involved in nociceptive 

transmission.  These consist of both excitatory and inhibitory signaling molecules 

that act to either propagate or dampen the nociceptive signal, respectively.   

 In these studies, we undertook to investigate the spinal Neuropeptide Y 

system by determining the role Y1R-expressing interneurons play in pain 

modulation.  The combination of the anatomical and behavioral results presented 

here support the conclusion that Y1R-expressing neurons in the dorsal horn are 

involved in modulation of thermal nociception, particularly cold pain and the cold 

hyperalgesia seen after CFA inflammation, and loss of these neurons produces 
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thermal analgesia, consistent with the hypothesis that Y1R-expressing cells are 

excitatory interneurons.  

 We also compared our findings with NPY-sap rats to those treated with 

toxins that target two other groups of putative excitatory interneurons: GalR1-

expressing neurons and MOR-expressing neurons. The present results with the 

lesion produced by intrathecal NPY-sap differ from:  1 - selective destruction of 

dorsal horn GalR1-expressing dorsal horn neurons by Gal-sap, which strongly 

decreases operant and reflex responses to aversive heat, bur may increase 

sensitivity to cold(Lemons and Wiley, 2011); 2 - selective destruction of dorsal 

horn MOR-expressing neurons with derm-sap, which has no effect on baseline 

reflex responses to heat(Kline and Wiley, 2008); and, 3 - selective destruction of 

dorsal horn MOR-expressing neurons with derm-sap and selective destruction of 

dorsal horn GalR1-expressing dorsal horn neurons by Gal-sap, in response to 

morphine injection, where both derm-sap and gal-sap treated rats show 

profoundly decreased antinociceptive effect of morphine(Kline and Wiley, 

2008;Lemons and Wiley, 2011).  The anatomical and behavioral results 

described in this work indicate that the population of neurons targeted by NPY-

sap is unique and different from those targeted by either Gal-sap or Derm-sap.  

Once completed, the combined results from studies using these toxins and 

several others will greatly aid in decoding the pain pathways in the dorsal horn. 

 Our limited knowledge of the detailed wiring and connectivity of the pain 

pathway is not the only obstacle in the development of new, improved, pain 

treatments.  The methods commonly used for testing pain also need to be 
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revised in order to increase our knowledge of the innate pain processing 

systems.  The present studies also contributed to the field of pain research 

through their use of operant behavioral tasks, which are relatively new to the field 

of pain research and have been met with some resistance from pain 

investigators.   

 As described in Chapter 1, pain is a complicated, subjective, and 

individualized experience, generated from a combination of sensory, affective, 

motivational, and cognitive dimensions.  Pain is measured in humans based 

upon their verbal descriptions or ratings of the sensations they’re experiencing.  

Since animals are unable to describe their experiences, pain researchers have to 

decipher the animal’s feelings from its behavior.  The behaviors that are most 

commonly measured are reflexive responses to an applied stimulus.  These 

reflex tests have been traditionally used by researchers and drug companies due 

to their ease of use and speed of generating large amounts of data.  The problem 

with these tests is that they aren’t clinically relevant.  There is no cortical 

processing necessary for a reflexive response and these tests use such intense 

stimuli that the animal subject may actually develop a fear response that may 

skew the results.   

 The operant tasks involve cerebral processing and decision making, 

because in each test the animal is asked to make a choice about which 

environment it prefers, as previously described in Chapter 1.  By observing the 

animals’ choices, we can determine the extent that they are affected by the 

unpleasant thermal stimuli.  These choices reveal the aversiveness, or 
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motivational qualities, of the stimuli and are therefore more reliably 

representative of pain than simple reflex responses.  These tasks can also be set 

up for automatic data collection, which removes user bias and reduces error.  

Investigators have been reluctant to change from reflexive to operant behavioral 

testing due to the extensive training (sometimes up to a month) required of the 

animals before data can be collected.  There are also very few publications using 

operant tasks for pain testing, so the literature isn’t available for comparison of 

results.    

 The experiments in this work contributed more data and experience to the 

field of pain testing with using operant testing.  We’ve illustrated the usability and 

validity of using operant tasks and shown that significant, meaningful data can be 

obtained in a short time and using few animals.  

 In regards to the current study, the operant tasks provided much more 

information than the reflex tasks on the role Y1R-expressing dorsal horn neurons 

play in pain and nociception.  The reflex results suggest that Y1R-expressing 

neurons are more involved in modulating withdrawal reflexes driven by activation 

of C, rather than Aδ nociceptors, since NPY-sap treated rats had increased 

response latencies to 44°, but not 47°, or 52°C.  Loss of Y1R-expressing neurons 

also led to decreased response events and total durations of responding at 47°C 

in Sprague Dawley male rats, but not Long Evans female rats (which were used 

in the current study)(Wiley et al., 2009).  A simple cold-plate test was also unable 

to detect any effect of NPY-sap injection on 0.3°, 5°, or 10°C in normal rats, 

where both the thermal preference and escape tasks show that rats choose to 
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avoid temperatures at or below 15°C when possible, unless they’re rewarded for 

remaining on the cold plate, as in the feeding interference task.  Since the 

operant tasks make use of comparisons and force the animals to choose an 

environment, we can discern the motivations behind their behavior and gain 

insight into their perception of the stimulus. Also, since they’re more sensitive, 

less noxious temperatures can be used, better allowing testing of animals with 

enhanced pain states like inflammation or nerve injury. Thus, the results gained 

from using operant tasks are more representative of pain and more clinically 

relevant than results from simple reflex tests. 

 

Future Directions 

 While the studies described in this work provide insight into the role of 

Y1R-expressing dorsal horn interneurons in pain, a more complete picture of the 

anatomical and functional connectivity of these neurons and their role in 

nociceptive modulation can be gained with the completion of a couple additional 

experiments. 

 First, to better define the site of toxin action, it would be worthwhile to 

simultaneously inject NPY-sap and an Y1R or Y2R antagonist.  We have shown 

that lumbar intrathecal NPY-sap reduces dorsal horn Y1R staining, but has no 

effect on Y1R-expressing DRG neurons and there is no evidence of cytotoxicity 

in DRG neurons after injection of 1000ng NPY-sap(Wiley et al., 2009).  Since 

there is no mRNA for Y2R in the dorsal horn (Gustafson et al., 1997) and in 

mouse dorsal horn Y2R protein appears to be almost entirely 
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presynaptic(Brumovsky et al., 2007), we conclude it’s highly likely that only Y1R-

expressing dorsal horn neurons are targeted by intrathecal NPY-sap.  Since 

there aren’t any antibodies available to stain for Y2R, co-administration of NPY-

sap along with either Y1R or Y2R antagonists could be used to confirm the site of 

toxin action.  The lack of toxin effect on presynaptic neurons is not specific to 

intrathecal NPY-sap injection.  Intrathecal derm-sap has also been shown to 

selectively destroy MOR-expressing neurons in the superficial dorsal horn, 

without affecting MOR-expressing DRG neurons.  A possible explaination for this 

is that the toxins are not internalized into the axons or terminals of DRG neurons, 

or that once internalized, the NPY-sap is not effectively transported to the cell 

bodies in the DRG. 

 Additional markers that can be stained for to help identify and define the 

neurons killed by the toxin and to help place the targeted neurons within the 

dorsal horn circuitry include: VGlut2 (excitatory interneurons), GAD/GABA 

(inhibitory interneurons), and retrograde tracers WGA/CTB (projection neurons).  

The behavioral data strongly indicates that the Y1R-expressing dorsal horn 

neurons targeted by the toxin are excitatory interneurons, staining for these 

markers can confirm this and also show if other types of cells express Y1R. 

 The behavioral data presented here shows that Y1R-expressing cells are 

involved in modulating CFA-induced cold hyperalgesia and allodynia.  This 

finding agrees with the reflex literature, where the antinociceptive effect of 

intrathecal NPY in increased after CFA inflammation and nerve injury.  Also, as 

described in Chapter 1, peripheral inflammation and nerve injury cause several 
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changes in the expression of NPY and its receptors in the dorsal horn and DRG.  

For these reasons, it would be informative, and give a sense of completion to the 

study, if these operant behavioral tasks were repeated using a model of 

neuropathic pain, such as bCCI or SNI.   

 Inflammation and nerve injury aren’t the only effective means of inducing 

thermal hypersensitivity.  As described in Chapter 1, capsaicin and mustard oil 

activate the TRPV1 and TRPA1 receptors, respectively, when applied to the 

surface of the skin, resulting in transient hyperalgesia(Patapoutian et al., 

2003;Foulkes and Wood, 2007).  Since Y1R-expressing neurons also appear to 

be involved in the modulation of pain from noxious heat, which is transduced by 

the TRPV1 receptor, it would also be worthwhile to look at the effects of NPY-sap 

after applying bilateral capsaicin to the rats’ hindpaws.  Moreover, since the 

TRPA1 receptor is activated by noxious cold temperatures and Y1R-expressing 

dorsal horn neurons are involved in modulating cold pain, it would be especially 

valuable to investigate the effect of intrathecal NPY-sap on mustard oil-induced 

hyperalgesia.  Finally, it would be interesting to observe the effects of both 

capsaicin and mustard oil in the NPY-sap injected rats before and after inducing 

inflammation or nerve injury.   

 During the course of these experiments, there were two instances where 

the toxin-injected and operant-task-trained animals were unable to be tested for 

2-3 months.  Before the testing hiatus, the rats’ behavior clearly corresponded 

with the two experimental groups, NPY-sap and Blank-sap, with the toxin rats 

showing the same NPY-sap effects documented above.  However, when testing 
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resumed, there was no longer a distinguishable difference between the two 

groups of animals.  Without further investigation, it is unclear whether this effect 

was due to behavioral: from the rats not being handled for a length of time, or 

anatomical: neuronal plasticity, or re-wiring, of the dorsal horn, reasons.  In order 

for NPY-sap, or any of the toxin-saporin conjugates, to be considered as effective 

pain therapeutics, they would need to exert a lasting effect.  It would be 

worthwhile to inject rats with NPY-sap and monitor their behavioral responses 

over a long period of time.  Since changes were noticed after just 2-3 months of 

inactivity, that time-range would be a good starting point for these experiments. 

 Finally, for a thorough comparison between the lesions, further behavioral 

testing using Gal-sap and Derm-sap injected animals should be conducted.  The 

results from our initial experiments testing Gal-sap rats on the operant tasks 

suggest that Gal-sap might increase cold sensitivity.   This could be further 

explored by repeating the tests using cool and cold temperatures and also 

enhancing cold sensitivity through CFA inflammation or nerve injury.  Our current 

data with Derm-sap rats is limited to reflexive tests, so testing those animals on 

the operant tasks would provide insight into the role of MOR-expressing dorsal 

horn neurons in pain.  Furthermore, since both inflammation and nerve injury 

lead to a reduction of opioid receptors in the dorsal horn and DRG(Zhang et al., 

1998), resulting in decreased efficacy of morphine after injury, it would be 

interesting to examine the effect of Derm-sap on pain responses in injury models 

and compare with the other toxins.   
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Conclusions 

 The data presented and discussed in this dissertation provides insight into 

the role of Y1R-expressing dorsal horn interneurons in pain.  Rats injected with 

750ng NPY-sap were less sensitive to warm and cold temperatures and did not 

experience CFA-induced cold allodynia, indicating that Y1R-expressing dorsal 

horn neurons play an important role in pain modulation, particularly after 

peripheral inflammation.  Inflammatory pain is typically associated with increased 

sensitivities to tactile and cold stimuli.  We are currently lacking adequate 

treatments for chronic pain and the go-to drug for many clinicians is morphine, 

however, morphine is not very effective in minimizing cold sensitivities.  The 

involvement of Y1R-expressing neurons in modulating cold pain and the fact that 

intrathecal injection of NPY-sap does not interfere with morphine analgesia, 

along with the observation that that intrathecal NPY-sap doesn’t interfere with 

protective reflexes, all pose Y1R-expressing dorsal horn neurons as excellent 

candidates to be targeted for the development of analgesic drugs. 

 

 

 

 

 

 

 

 



 

 72 

REFERENCES 

 

Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical 
review. Brain Res 1000:40-56. 

Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, 
Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent 
compounds and bradykinin. Neuron 41:849-857. 

Brumovsky P, Hofstetter C, Olson L, Ohning G, Villar M, Hokfelt T (2006) The 
neuropeptide tyrosine Y1R is expressed in interneurons and projection neurons in 
the dorsal horn and area X of the rat spinal cord. Neuroscience 138:1361-1376. 

Brumovsky P, Shi TS, Landry M, Villar MJ, Hokfelt T (2007) Neuropeptide tyrosine and 
pain. Trends Pharmacol Sci 28:93-102. 

Brumovsky P, Stanic D, Shuster S, Herzog H, Villar M, Hokfelt T (2005) Neuropeptide 
Y2 receptor protein is present in peptidergic and nonpeptidergic primary sensory 
neurons of the mouse. J Comp Neurol 489:328-348. 

Brumovsky PR, Bergman E, Liu HX, Hokfelt T, Villar MJ (2004) Effect of a graded 
single constriction of the rat sciatic nerve on pain behavior and expression of 
immunoreactive NPY and NPY Y1 receptor in DRG neurons and spinal cord. 
Brain Res 1006:87-99. 

Brumovsky PR, Shi TJ, Matsuda H, Kopp J, Villar MJ, Hokfelt T (2002) NPY Y1 
receptors are present in axonal processes of DRG neurons. Exp Neurol 174:1-10. 

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The 
capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 
389:816-824. 

Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev 
Neurosci 2:387-396. 

Cougnon N, Hudspith MJ, Munglani R (1997) The therapeutic potential of neuropeptide 
Y in central nervous system disorders with special reference to pain and 
sympathetically maintained pain. Expert Opin Investig Drugs 6:759-769. 

Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent 
peripheral neuropathic pain. Pain 87:149-158. 

Foulkes T, Wood JN (2007) Mechanisms of cold pain. Channels (Austin) 1:154-160. 
Gustafson EL, Smith KE, Durkin MM, Walker MW, Gerald C, Weinshank R, Branchek 

TA (1997) Distribution of the neuropeptide Y Y2 receptor mRNA in rat central 
nervous system. Brain Res Mol Brain Res 46:223-235. 

Hokfelt T, Broberger C, Zhang X, Diez M, Kopp J, Xu Z, Landry M, Bao L, Schalling 
M, Koistinaho J, DeArmond SJ, Prusiner S, Gong J, Walsh JH (1998) 
Neuropeptide Y: some viewpoints on a multifaceted peptide in the normal and 
diseased nervous system. Brain Res Brain Res Rev 26:154-166. 

Hokfelt T, Brumovsky P, Shi T, Pedrazzini T, Villar M (2007) NPY and pain as seen 
from the histochemical side. Peptides 28:365-372. 

Hua XY, Boublik JH, Spicer MA, Rivier JE, Brown MR, Yaksh TL (1991) The 
antinociceptive effects of spinally administered neuropeptide Y in the rat: 



 

 73 

systematic studies on structure-activity relationship. J Pharmacol Exp Ther 
258:243-248. 

IASP IAftSoP- (2011) IASP Taxonomy. 
Intondi AB, Dahlgren MN, Eilers MA, Taylor BK (2008) Intrathecal neuropeptide Y 

reduces behavioral and molecular markers of inflammatory or neuropathic pain. 
Pain 137:352-365. 

Ji RR, Zhang X, Wiesenfeld-Hallin Z, Hokfelt T (1994) Expression of neuropeptide Y 
and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root 
ganglia following peripheral tissue inflammation. J Neurosci 14:6423-6434. 

Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng 
ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres 
through the TRP channel ANKTM1. Nature 427:260-265. 

Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203-
210. 

Kline RH, Wiley RG (2008) Spinal mu-opioid receptor-expressing dorsal horn neurons: 
role in nociception and morphine antinociception. J Neurosci 28:904-913. 

Kuphal KE, Solway B, Pedrazzini T, Taylor BK (2008) Y1 receptor knockout increases 
nociception and prevents the anti-allodynic actions of NPY. Nutrition 24:885-891. 

Landry M, Holmberg K, Zhang X, Hokfelt T (2000) Effect of axotomy on expression of 
NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the 
superior cervical ganglion studied with double-labeling in situ hybridization and 
immunohistochemistry. Exp Neurol 162:361-384. 

Larhammar D, Soderberg C, Lundell I (1998) Evolution of the neuropeptide Y family 
and its receptors. Ann N Y Acad Sci 839:35-40. 

Lawson SN, Crepps BA, Perl ER (1997) Relationship of substance P to afferent 
characteristics of dorsal root ganglion neurones in guinea-pig. J Physiol 505 ( Pt 
1):177-191. 

Lemons LL, Wiley RG (2011) Galanin receptor-expressing dorsal horn neurons: Role in 
nociception. Neuropeptides. 

Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, 
Hokfelt T (2001) Receptor subtype-specific pronociceptive and analgesic actions 
of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. 
Proc Natl Acad Sci U S A 98:9960-9964. 

Liu HX, Hokfelt T (2002) The participation of galanin in pain processing at the spinal 
level. Trends Pharmacol Sci 23:468-474. 

Mahinda TB, Taylor BK (2004) Intrathecal neuropeptide Y inhibits behavioral and 
cardiovascular responses to noxious inflammatory stimuli in awake rats. Physiol 
Behav 80:703-711. 

Mauderli AP, Acosta-Rua A, Vierck CJ (2000) An operant assay of thermal pain in 
conscious, unrestrained rats. J Neurosci Methods 97:19-29. 

McKemy DD (2007) TRPM8: The Cold and Menthol Receptor. 
McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals 

a general role for TRP channels in thermosensation. Nature 416:52-58. 
Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971-979. 



 

 74 

Moran TD, Colmers WF, Smith PA (2004) Opioid-like actions of neuropeptide Y in rat 
substantia gelatinosa: Y1 suppression of inhibition and Y2 suppression of 
excitation. J Neurophysiol 92:3266-3275. 

Naveilhan P, Hassani H, Lucas G, Blakeman KH, Hao JX, Xu XJ, Wiesenfeld-Hallin Z, 
Thoren P, Ernfors P (2001) Reduced antinociception and plasma extravasation in 
mice lacking a neuropeptide Y receptor. Nature 409:513-517. 

O'Donnell D, Ahmad S, Wahlestedt C, Walker P (1999) Expression of the novel galanin 
receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. 
J Comp Neurol 409:469-481. 

Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and 
beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529-539. 

Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, 
Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses 
cold stimuli and menthol. Cell 108:705-715. 

Purves D (2004) Neuroscience. Sunderland, Mass.: Sinauer Associates, Publishers. 
Rowan S, Todd AJ, Spike RC (1993) Evidence that neuropeptide Y is present in 

GABAergic neurons in the superficial dorsal horn of the rat spinal cord. 
Neuroscience 53:537-545. 

Serpell M (2006) Anatomy, physiology and pharmacology of pain. Surgery (Oxford) 
24:350-353. 

Sherrington CS (1906) The integrative action of the nervous system. New York,: C. 
Scribner's sons. 

Shi TJ, Li J, Dahlstrom A, Theodorsson E, Ceccatelli S, Decosterd I, Pedrazzini T, 
Hokfelt T (2006) Deletion of the neuropeptide Y Y1 receptor affects pain 
sensitivity, neuropeptide transport and expression, and dorsal root ganglion 
neuron numbers. Neuroscience 140:293-304. 

Silva AP, Cavadas C, Grouzmann E (2002) Neuropeptide Y and its receptors as potential 
therapeutic drug targets. Clin Chim Acta 326:3-25. 

Simmons DR, Spike RC, Todd AJ (1995) Galanin is contained in GABAergic neurons in 
the rat spinal dorsal horn. Neurosci Lett 187:119-122. 

Solway B, Bose SC, Corder G, Donahue RR, Taylor BK (2011) Tonic inhibition of 
chronic pain by neuropeptide Y. Proc Natl Acad Sci U S A 108:7224-7229. 

Story GM, Gereau RWt (2006) Numbing the senses: role of TRPA1 in mechanical and 
cold sensation. Neuron 50:177-180. 

Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden 
AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A 
(2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is 
activated by cold temperatures. Cell 112:819-829. 

Sun QQ, Huguenard JR, Prince DA (2001) Neuropeptide Y receptors differentially 
modulate G-protein-activated inwardly rectifying K+ channels and high-voltage-
activated Ca2+ channels in rat thalamic neurons. J Physiol 531:67-79. 

Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. 
Pharmacol Rev 51:159-212. 

Taiwo OB, Taylor BK (2002) Antihyperalgesic effects of intrathecal neuropeptide Y 
during inflammation are mediated by Y1 receptors. Pain 96:353-363. 



 

 75 

Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y--a novel brain peptide with 
structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659-
660. 

Tiong SY, Polgar E, van Kralingen JC, Watanabe M, Todd AJ (2011) Galanin-
immunoreactivity identifies a distinct population of inhibitory interneurons in 
laminae I-III of the rat spinal cord. Mol Pain 7:36. 

Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an 
evaluation of the method. Pain 51:5-17. 

Todd AJ, Spike RC, Russell G, Johnston HM (1992) Immunohistochemical evidence that 
Met-enkephalin and GABA coexist in some neurones in rat dorsal horn. Brain 
Res 584:149-156. 

Upadhya MA, Dandekar MP, Kokare DM, Singru PS, Subhedar NK (2009) Involvement 
of neuropeptide Y in the acute, chronic and withdrawal responses of morphine in 
nociception in neuropathic rats: behavioral and neuroanatomical correlates. 
Neuropeptides 43:303-314. 

Vierck CJ, Acosta-Rua AJ, Johnson RD (2005a) Bilateral chronic constriction of the 
sciatic nerve: a model of long-term cold hyperalgesia. J Pain 6:507-517. 

Vierck CJ, Hansson PT, Yezierski RP (2008) Clinical and pre-clinical pain assessment: 
are we measuring the same thing? Pain 135:7-10. 

Vierck CJ, Jr., Greenspan JD, Ritz LA (1990) Long-term changes in purposive and 
reflexive responses to nociceptive stimulation following anterolateral 
chordotomy. J Neurosci 10:2077-2095. 

Vierck CJ, Jr., Kline Rt, Wiley RG (2004) Comparison of operant escape and innate 
reflex responses to nociceptive skin temperatures produced by heat and cold 
stimulation of rats. Behav Neurosci 118:627-635. 

Vierck CJ, Jr., Light AR (1999) Effects of combined hemotoxic and anterolateral spinal 
lesions on nociceptive sensitivity. Pain 83:447-457. 

Vierck CJ, Mauderli AP, Wiley RG (2005b) Assessment of pain in laboratory animals: a 
comment on Mogil and Crager (2004). Pain 114:520-523; author reply 523-524. 

Wang JZ (2004) Microinjection of neuropeptide Y into periaqueductal grey produces 
anti-nociception in rats with mononeuropathy. Sheng Li Xue Bao 56:79-82. 

Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE (1998) Differential intracellular 
signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 
37:6711-6717. 

Wiesenfeld-Hallin Z, Xu XJ, Villar MJ, Hokfelt T (1990) Intrathecal galanin potentiates 
the spinal analgesic effect of morphine: electrophysiological and behavioural 
studies. Neurosci Lett 109:217-221. 

Wiley RG, Kline RHt, Vierck CJ, Jr. (2007) Anti-nociceptive effects of selectively 
destroying substance P receptor-expressing dorsal horn neurons using 
[Sar9,Met(O2)11]-substance P-saporin: behavioral and anatomical analyses. 
Neuroscience 146:1333-1345. 

Wiley RG, Lemons LL, Kline RHt (2009) Neuropeptide Y receptor-expressing dorsal 
horn neurons: role in nocifensive reflex responses to heat and formalin. 
Neuroscience 161:139-147. 



 

 76 

Xu IS, Hao JX, Xu XJ, Hokfelt T, Wiesenfeld-Hallin Z (1999) The effect of intrathecal 
selective agonists of Y1 and Y2 neuropeptide Y receptors on the flexor reflex in 
normal and axotomized rats. Brain Res 833:251-257. 

Xu IS, Luo L, Ji RR, Hokfelt T, Xu XJ, Wiesenfeld-Hallin Z (1998) The effect of 
intrathecal neuropeptide Y on the flexor reflex in rats after carrageenan-induced 
inflammation. Neuropeptides 32:447-452. 

Xu XJ, Hao JX, Hokfelt T, Wiesenfeld-Hallin Z (1994) The effects of intrathecal 
neuropeptide Y on the spinal nociceptive flexor reflex in rats with intact sciatic 
nerves and after peripheral axotomy. Neuroscience 63:817-826. 

Xu ZQ, Shi TJ, Landry M, Hokfelt T (1996) Evidence for galanin receptors in primary 
sensory neurones and effect of axotomy and inflammation. Neuroreport 8:237-
242. 

Zhang X, Bao L, Shi TJ, Ju G, Elde R, Hokfelt T (1998) Down-regulation of mu-opioid 
receptors in rat and monkey dorsal root ganglion neurons and spinal cord after 
peripheral axotomy. Neuroscience 82:223-240. 

Zhang X, Nicholas AP, Hokfelt T (1995) Ultrastructural studies on peptides in the dorsal 
horn of the rat spinal cord--II. Co-existence of galanin with other peptides in local 
neurons. Neuroscience 64:875-891. 

Zhang X, Tong YG, Bao L, Hokfelt T (1999) The neuropeptide Y Y1 receptor is a 
somatic receptor on dorsal root ganglion neurons and a postsynaptic receptor on 
somatostatin dorsal horn neurons. Eur J Neurosci 11:2211-2225. 

Zhang X, Wiesenfeld-Hallin Z, Hokfelt T (1994) Effect of peripheral axotomy on 
expression of neuropeptide Y receptor mRNA in rat lumbar dorsal root ganglia. 
Eur J Neurosci 6:43-57. 

Zukowska Z, Feuerstein GZ (2005) The NPY family of peptides in immune disorders, 
inflammation, angiogenesis and cancer. Boston, MA: Birkhauser Verlag. 

 
 


