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CHAPTER I 

 

INTRODUCTION 

 

Overview 

Model organisms are used to study biological processes that share commonalities 

throughout the phylogenetic tree of life, with the ultimate objective of a comprehensive 

understanding of the molecular dynamics of even the most highly evolved creature.  

Study of model organisms represents a reductionist approach to our investigations, 

because one simplification dictates that the “least complex” organism will likely have the 

fewest and most easily dissected molecular processes that it can undertake.  Indeed, 

scientific understanding proceeds through incremental gains in knowledge, and one 

strategy is to bracket the constituents of an organism into all of those “systems” or 

“circuits” functional at the level of a single cell; these include sets of macromolecular 

assemblies or “machines,” which can be further subdivided as typically consisting of 

several individual protein or RNA subunits (Alberts, 1998; Alberts and Miake-Lye, 

1992).  The ability to define a complete collection of “protein machines” is greatly 

facilitated by the availability of genomic DNA sequences, since this information contains 

the blueprint for the identity of the individual RNA and protein molecules needed to 

construct a cell and hence the whole organism.  However, to a cell the blueprints encoded 

by the genomic DNA are non-functional without molecular machineries to faithfully 

interpret, maintain, and propagate distribution of the informational content through 
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subsequent generations.  It so happens that the “circuits,” “machines,” and “parts lists” 

behind these genome-directed processes are very similar whether one is examining a 

simple unicellular model eukaryote or a highly evolved human cell. It is through an 

understanding and appreciation of this basic concept that the life sciences have enjoyed 

such dramatic gains of knowledge in the last half-century. 

This document describes the molecular process of eukaryotic transcription, the 

molecular mechanism by which the informational content of the genomic DNA is 

converted into RNA, either messenger RNA (mRNA), tranfer (tRNA), ribosomal RNA 

(rRNA), or other low molecular weight non-coding RNA (ncRNA).  tRNA, rRNA, and 

the small ncRNAs such as small nucleolar (SnoRNA) or micro RNA (miRNA) represent 

entities that are direct participants in biological regulatory processes; these are structural 

and functional components of non-transcriptional gene regulation.  On the other hand, 

mRNA is mainly thought of as the critical biological intermediate that must be further 

interpreted during the process of translation to yield a protein product.  Thus, the function 

of an mRNA is as an obligatory, though indirect, contributor to cellular processes.  The 

different kinds of RNA are synthesized by enzymes known as RNA polymerases that use 

DNA sequences as templates to produce specific transcripts.   

In eukaryotic cells there are multiple RNA polymerases, each of which is 

responsible for transcription of a subset of the RNAs mentioned just above (Roeder and 

Rutter, 1969).  All eukaryotes contain 3 nuclear DNA-dependent RNA polymerases. 

RNA Polymerase I (Pol I) synthesizes rRNAs that are constituents of the ribosome.  RNA 

Polymerase III (Pol III) transcribes 5S rRNA, also a ribosomal component, as well as all 

of the tRNAs and some of the SnoRNAs.  The overwhelming majority of the diversity in 
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RNA species comes from mRNA, which is synthesized by RNA Polymerase II (Pol II).  

Plants contain two additional nuclear RNA polymerases, Pol IV and Pol V, and there is 

recent evidence of a nuclear-encoded enzyme that is differentially spliced to generate an 

RNA polymerase that targets either to the nucleus or the mitochondrion (Kravchenko et 

al., 2005; Matsunaga et al., 2004; Ream et al., 2009).  Other non-nuclear enzymes include 

the mitochondrial RNA polymerase and chloroplast RNA Polymerases in plants, both of 

which are considerably more simple molecules and only functional for transcription of 

the organelle genomes (Matsunaga et al., 2004).     

Despite the diversity of function in the different final transcription products, all of 

these enzymes share similar overall characteristics with respect to the structure and 

function of their catalytic components.  The three-dimensional structure of yeast Pol II 

was solved by Roger Kornberg’s lab, and comparison of this data with that of the 

comparable archael RNAP structure supports the concept of conserved catalytic 

mechanisms (Asturias and Kornberg, 1999; Boeger et al., 2005; Bushnell et al., 2002; 

Bushnell and Kornberg, 2003; Bushnell et al., 2004; Chung et al., 2003; Cramer et al., 

2001; Darst et al., 1991; Edwards et al., 1990; Fu et al., 1999; Gnatt et al., 1997; Gnatt et 

al., 2001; Liu et al.; Spahr et al., 2009; Wang et al., 2009; Westover et al., 2004a, b; 

Zhang et al., 1999).  Further emphasizing the features shared between the eukaryotic 

enzymes, all three are composed of anywhere from twelve to sixteen different proteins, 

some of which are commonly found within several of the three RNA Polymerases, an 

observation that again hints at both complexity and similarities in mechanism of function 

(Sklar et al., 1975; Woychik et al., 1990).  Even given the noted similarity between 

eukaryotic polymerases and the lone bacterial polymerase, there are two major 
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differences.  First, the eukaryotic enzymes have more than twice the number of subunits 

as the bacterial enzyme (β, β’, α2, ϖ, and σ subunits).  Secondly and in spite of this 

seemingly increased overall complexity, when the purified enzymes are tested in vitro 

none of the nuclear polymerases are capable of synthesizing a biologically relevant RNA 

species, a feat readily accomplished by the bacterial RNA Polymerase Holoenzyme 

(ββ’α2ϖσ, referring to the isolated species of enzyme that possesses all biologically 

necessary activities, as a cohesive assembly of proteins) (Burgess, 1969a, b; Burgess et 

al., 1969; Weil et al., 1979).   

The differences between the bacterial enzyme and the eukaryotic RNA 

Polymerases indicate an increased complexity in the eukaryotic transcription program.  It 

is not unexpected that over the course of evolution, nature created additional means of 

regulatory inputs to allow higher flexibility and fine-tuning of homeostatic and 

developmental processes.  The final products of translation of different mRNA 

transcripts, the proteins, are basic functional units found in cells, and the physiological 

status or even identity of an individual cell is intimately linked to which subset of all the 

possible genome-encoded mRNAs and proteins are actually present (DeRisi et al., 1997).  

Thus cellular homeostasis and identity rely on differential gene expression, which 

typically leads to changes in protein abundance.  As it happens, one of the major means 

of controlling protein abundance occurs at the level of mRNA gene transcription by RNA 

Pol II.  There are four phases of polymerase function that can be tightly regulated: 

transcript initiation, promoter clearance, elongation, and termination. Inhibition or 

stimulation of any of these four phases of transcription can affect the quantity of 
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functional transcript produced.  The steady state cellular abundance of a transcript has a 

major influence on the ability of cells to synthesize the corresponding protein. 

Structure of RNA Polymerase II-Transcribed Genes 

 The most obvious component of a simplified gene (as illustrated in Figure 1.1), 

excluding the presence of intronic non-protein coding sequence, is the DNA sequence 

encoding all of the mRNA triplet codons that in turn correspond to the anticodons 

specifying amino acids of the protein product.  This portion of a gene is referred to as the 

open reading frame (ORF).  However, an mRNA will possess additional sequences 

located at both the 5’ and 3’ ends that also correspond to the DNA sequence, but that 

precede the initiating methionine codon and extend beyond the stop codon, respectively.  

The upstream end of this so-called 5’ untranslated region (UTR) of a message always 

corresponds to the position of the transcription start site, the very first nucleotide 

transcribed by Pol II.  It is not uncommon for a gene to have several unique transcription 

start sites that map to within 5-10 nucleotides.  The 5’ UTR sequence can have important 

impacts on post-transcriptional processing, translation, and even on subcellular 

localization of the mRNA.  The 3’ UTR also affects various properties of mRNA.  

Notably, there will be extra features found at the 5’ and 3’ ends of a typical mRNA in 

addition to the 5’ and 3’ UTR.  These extra parts of the mRNA do not directly correspond 

to the DNA encoding the transcript.  Instead, the 5’ methyl guanosine cap and the 3’ 

poly-adenosine (A) tail are added co- or post-transcriptionally. These mRNA 

modifications affect translation and mRNA turnover rates.     

The position of the transcription start site is part of the so-called promoter region 

of a gene (Burke et al., 1998; Butler and Kadonaga, 2002; Juven-Gershon et al., 2006b).  
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As shown in Figure 1.1, there are several DNA sequence elements that constitute a 

promoter; these include TATA, INR, DPE, MTE, BRE, and XCPE elements (Anish et al., 

2009; Juven-Gershon et al., 2008; Kadonaga, 2002; Lim et al., 2004; Smale and 

Baltimore, 1989; Tokusumi et al., 2007).  Importantly, the TATA box is the only 

identified promoter element in yeasts.  Whether or not functional equivalents of the other 

promoter cis-elements exist in yeast remains to be determined.  It is likely that additional 

unique yeast promoter elements remain to be discovered.  In metazoan promoters, all of 

the known elements have a characteristic order and composition of nucleotides that vary 

to an extent from a consensus sequence, depending on the particular gene.  This variation 

may affect the capacity of the promoter to stimulate transcription.  The probable absence 

of one or more elements from some promoters also contributes to unique enhancer-

promoter transcriptional properties of genes (Juven-Gershon et al., 2006).  The overall 

function of these DNA motifs at promoters is to help localize the RNA Polymerase at the 

transcription start site since Pol II has no potential for sequence specific DNA binding, 

unlike its bacterial counterpart.  Thus the promoter sequence motifs act indirectly for 

accurate positioning of Pol II.   

Although the composition of the promoter affects the transcriptional output, these 

elements are not sufficient to stimulate physiological levels of transcription, either in 

vitro or in vivo.  Additional sequence elements known as enhancers are required to 

regulate the amount of transcript produced, and when fused to the promoter can stimulate 

transcription as much as 1000 fold (simplified representation in Figure 1.1).  Enhancers 

are complicated regulatory elements, typically composed of multiple individual sequence 

elements that act to modulate transcription rates (Szutorisz et al., 2005).  In yeasts these 
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DNA elements are known as upstream activating (UAS) or repressing (URS) sequences, 

named in part because they are typically located upstream of the promoter, within 1-2 

kilobases of the transcription start site (Bram et al., 1986; Lorch and Kornberg, 1985).  

Regardless of any other general characteristics, an overarching feature of an enhancer is 

the ability to function in both a distance- and orientation-independent manner.  For 

example, vertebrate enhancers can influence transcription of their associated transcription 

unit when placed hundreds of kilobases upstream or downstream of the transcription start 

site.   These properties are attributed to the ability of proteins to bind specifically to small 

six to twenty nucleotide cis-elements within the enhancer.  There are typically many such 

small sequence motifs within an enhancer.  The identity, number, spacing, order of 

arrangement, and variation of cis-elements from a consensus sequence make a huge 

contribution to the transcriptional properties of a gene. Thus enhancers modulate 

maximum output potential as well as the ability to integrate cell-type specific and/or 

environmental signals into a gene’s transcriptional activity at any point in time.  In fact, it 

is generally accepted that the majority of regulatory decisions are integrated into a genes 

function, at least initially, by virtue of the dynamic properties of the enhancer.  The 

cellular decision making process exploits the properties of the factors that bind to the 

enhancer.  These DNA-binding proteins are known as transfactors.   

The properties of the transfactor-bound enhancer and those of the promoter, and 

the communication between enhancer and promoter are the drivers of transcriptional 

control.  The outcome of this communication can affect all four stages of RNA 

Polymerase activity from initiation to termination.  Importantly, the accessibility and 

hence function of enhancers and promoters can be affected by nucleosomes, protein-
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DNA assemblies that consist of roughly 150 base pairs of DNA wrapped around an 

octamer of four histone proteins, two each of H2A, H2B, H3, and H4 (Kornberg and 

Lorch, 1999).  The octamer of histones is tightly bound to the encompassed DNA, and 

this feature means that a particular sequence of DNA may be inaccessible to factors even 

if they could normally bind with high affinity to an element within the nucleosome 

(Luger et al., 1997).  Thus nucleosomal architecture influences the activity of both 

enhancers and promoters by limiting access of critical regulatory factors to the DNA.  

However, to say that chromatin is simply repressive is inaccurate (Durrin et al., 1992; 

Han and Grunstein, 1988; Han et al., 1988; Kim et al., 1988).  While the physical 

presence and precise location of nucleosomes may be relatively static over time (as 

determined by population measurements, and hence an average of position), their exact 

biochemical characteristics may vary widely, with resulting alterations in transcriptional 

activity.  Histone proteins within the nucleosome are subject to a vast array of post-

translational modifications (PTMs) (Allfrey et al., 1964; Allfrey and Mirsky, 1964; 

Jenuwein and Allis, 2001).  PTM status of the histone proteins affects nucleosomal 

properties in two critical ways.  First, PTMs affect the nucleosome-DNA interaction to 

strengthen or weaken it thereby influencing the ability of the nucleosome to compete with 

other DNA-binding factors for occupancy of DNA sequence elements.  Note that 

modification on the N-terminal histone tails, where the majority of PTMs occur, probably 

does not influence stability of nucleosome-DNA interactions since the histone tails are 

unstructured and not necessarily near the DNA.  Instead nucleosome-DNA interaction is 

probably modulated through histone residues located in the nucleosomal interior such as 

H3 lysine 56  (Shahbazian and Grunstein, 2007; Xu et al., 2005).  Second, histone 
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modifications can stimulate or repress association of the nucleosome with histone-

binding factors that may ultimately stimulate or repress transcription (Hecht et al., 1995; 

Hecht et al., 1996).  Thus PTM status of histones can stimulate or inhibit protein-protein 

interactions between histones and other regulatory factors, and therefore affect DNA-

independent factor localization around regulatory regions in the DNA.  Histone residues 

in the amino terminal tails are believed to be modified to influence protein-protein 

interactions between the nucleosome and other coregulators.  Histones are subjected to 

phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, 

ADP-ribosylation, and other PTMs on many residues of all four proteins, and there is 

evidence of combinatorial variety in the final outcome of such modifications.  It has been 

hypothesized that these PTMs comprise a “code” that dictates how combinations of 

modifications alter the accessibility and interaction with other transcription proteins and 

hence function of the underlying DNA (Strahl and Allis, 2000; Sun and Allis, 2002).  In 

addition, there are histone variants that have different properties than the canonical 

histones and these variants can be inserted into nucleosomes at specific locations in genes  

(Krogan et al., 2003; Mizuguchi et al., 2004; Santisteban et al., 2000).  Although it is 

difficult to state any immutable rules regarding whether chromatin architecture will be 

stimulatory or repressive to transcription in a give context, it is clear that gene expression 

can be heavily dependent upon chromatin-directed activities.                                    

To summarize which gene characteristics influence RNA polymerase activity, we 

can then say that the promoter DNA elements help localize the enzyme and variations in 

promoter DNA sequence composition can affect the efficiency of transcription.  Function 

and identity of enhancer DNA elements have a more profound affect on transcription 



 11 

rates.  Finally, chromatin can be highly regulated and dynamic over the course of the cell 

cycle and in response to environmental changes.  Chromatin structure affects the 

behavior of both enhancer and promoter and even the ability of the polymerase to 

proceed once transcription is initiated.  The decision to make the correct transcript at the 

right time and in the appropriate amount is tied to all three components of gene structure: 

promoter, enhancer, and chromatin structure.  The combination ultimately affects the 

ability of RNA polymerase to do its job.  We must now begin to consider how regulatory 

inputs are made into both the promoter and enhancer through associated regulatory 

proteins, how chromatin affects and is affected by these transactions, and how regulation 

of the promoter, the enhancer, and the overlying chromatin structure collectively regulate 

transcription of a given gene.    

 

Basal Transcription Factors and Coregulators 

As mentioned above RNA polymerase II cannot accurately initiate synthesis of a 

transcript alone, unlike the bacterial enzyme whose σ and α subunits contain promoter 

cis-element DNA binding domains (Browning and Busby, 2004).  σ factor binds to 

specific sequence elements in all bacterial core promoters and thus contributes to correct 

polymerase localization.  Pol II lacks comparable specific DNA binding capacity, and in 

fact it took over a decade between the initial identification of the enzyme and the 

discovery of Polymerase accessory factors that would allow accurate 5’ mRNA end 

production in vitro (Weil et al., 1979).  This in turn led to the discovery of the protein 

factors that allow accurate Pol II transcription (Matsui et al., 1980).  Extensive 

purification efforts identified six distinct chromatographic fractions required to 



 12 

recapitulate accurate in vitro transcription using purified Pol II (Conaway et al., 1996; 

Feaver et al., 1991; Flores et al., 1988; Gileadi et al., 1992; Hahn et al., 1989a; Henry et 

al., 1992; Reinberg and Roeder, 1987a, b; Sayre et al., 1992; Sumimoto et al., 1990).  

These were subsequently more extensively purified and termed TFIIA, B, D, E, F, and H, 

where the acronyms specify Transcription Factor, RNA Pol II transcription, and the letter 

suffix indicates order in which components were identified.  Continuing investigation 

using additional promoters as templates in transcription assays confirmed that different 

target promoters exhibit differences in the degree of dependency upon individual factors.  

After genome sequencing revealed the composition of many gene core promoters, it 

became clear that no single DNA element is present in every described promoter, an 

observation likely indicative of mixed requirements or differences in mechanism of 

function for these transcription factors from gene to gene.  As such we can consider it 

less accurate to refer to these factors as ‘General Transcription Factors’, but should 

describe them as ‘Basal Transcription Factors’ because it is fair to say that they are often 

all required for low-level transcription, at least in vitro (Sikorski and Buratowski, 2009).  

Each factor performs a distinct role in formation of a Pol II-containing pre-initiation 

complex (PIC) on model genes in vitro (see Figure 1.2). 

TFIIA facilitates TFIID loading onto the promoter, in part by acting as an anti-

inhibitor to factors that restrict TFIID-promoter binding (Ma et al., 1996; Weideman et 

al., 1997).  TFIIB stabilizes the IIA/IID complex on the promoter to augment association 

of TFIIF and Pol II in the PIC and it also helps in choice of the transcription start site 

(Nikolov et al., 1995). TFIIB can reportedly auto-acetylate and this seems mandatory for 

transcription to occur but the exact mechanism of this PTM remains obscure  
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(Choi et al., 2003).  TFIID is the most complex of all the factors, with 15 subunits, and 

contains the major DNA binding activity; IID association at promoters was classically 

described as rate-limiting for PIC formation (Buratowski et al., 1989; Van Dyke et al., 

1988).  TFIID is the focal point of this dissertation.  TFIIE function is tied to that of 

TFIIH as IIE helps bring IIH to the PIC and also stimulates IIH-intrinsic enzymatic 

activities described below (Ohkuma et al., 1995; Ohkuma and Roeder, 1994).  TFIIF 

directly associates with Pol II and acts as an adaptor between it and the IIB/IID assembly, 

which in turn allows clearance and transcription.  Finally, TFIIH provides several 

enzymatic activities including those needed for promoter melting and modification of Pol 

II by phosphorylation, both of which help Pol II transition out of the PIC and into 

elongation complexes (Lu et al., 1992). 

The enormous amount of investigation that led to the understanding presented in 

the last paragraph relied upon sophisticated biochemical experiments.  An ‘order of 

action’ model was presented based upon detailed biochemical complementation 

experiments (see Figure 1.3, (Buratowski et al., 1989; Hawley and Roeder, 1985, 1987; 

Van Dyke et al., 1988)), although as stated the ‘rules’ for factor responsiveness probably 

vary somewhat from gene to gene.  The complete purification of each factor led to the 

identification, isolation, and cDNA cloning for each subunit of each complex; 2 for 

TFIIA, 1 for TFIIB, 15 or more for TFIID, 2 for TFIIE, 3 for TFIIF, 10 for TFIIH, and 12 

Pol II subunits (DeJong and Roeder, 1993; Dynlacht et al., 1991; Horikoshi et al., 1989a; 

Moqtaderi et al., 1996b; Pinto et al., 1992; Poon et al., 1995; Reese et al., 1994; Sun and 

Hampsey, 1995; Young and Davis, 1983).  All of the factors have been purified from 

budding yeast and human sources, and some have been isolated from fission yeast, fruit 
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Figure 1.3:  Step-wise model of PIC Formation 

During Transcripton Initiation.  An accessible

core promoter contains DNA elements recognized

by Taf subunits of the TFIID complex.  TFIID can 

bind to TATA, INR, and DPE elements using 

different Taf subunits.  Incidentally TFIID binding 

is the rate-limiting step for PIC assembly, and the 

rate of TFIID association is enhanced in the 

presence of activation domains.  TFIIA enters the 

PIC next probably through interactions with 

TBP and possibly with Tafs; TFIIA has also been 

suggested as a direct activator target.  TFIIB binds 

next and engages TBP, allowing for subsequent 

Pol II/TFIIF association.  Note that this cartoon is 

notrepresentative of TFIIB/Pol II architecture

which is known through crystallographic and

crosslinking studies (Kostrewa et. al., 2009;

Liu et. al., 2010; Chen and Hahn, 2004).  

Pol II will be competent for initiation and 

promoter escape after association of TFIIE

and TFIIH into the PIC.  TFIIH melts and 

unwinds promoter DNA, while TFIIE binds

to TFIIH and stimulates its activities;  TFIIE

also stabilizes the ssDNA promoter intermediate.

Finally, TFIIH  phosphorylates the Pol II CTD to

facilitate elongation.            
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fly, and mouse.  The first major conclusion is that there is a high level of phylogenetic 

amino acid sequence conservation in eukaryotes for every factor subunit.  The second 

conclusion is that in a limit case, 46 polypeptides are required to fulfill a set of 

biochemical functions satisfied by merely five proteins of the bacterial Holoenzyme, 

ββ’α2σ.  Actually, initial studies using TATA-containing promoters showed all of these 

factors are required for activator-responsive in vitro transcription, although activator-

independent transcription can utilize just the TBP subunit of TFIID and under certain 

circumstances become independent of TFIIE and TFIIH as well, whereas on TATA-less, 

INR-containing promoters all of the factors are absolutely required for transcription 

(Conaway and Conaway, 1990b; Pugh and Tjian, 1990; Smale et al., 1990).  Contrast this 

situation again with the E. coli RNA polymerase, where both promoter recognition and 

activator responsiveness of polymerase can be entirely mediated by just one polypeptide, 

sigma, associating with the ‘core’ ββ’α2  assembly.  The apparent complexity in 

eukaryotes suggests that there are many polypeptide candidates for mediating activator 

responsiveness available in eukaryotic Pol II transcription.  This situation is attractive for 

allowing entry of diverse regulatory inputs with equally diverse functional consequences, 

all of which could contribute to fine-tuning of transcriptional output. Because it was 

initially suggested that multiple proteins within the different PIC- forming complexes 

may directly respond to activators, they could qualify as coregulators, which are defined 

as factors that contribute to enhancer-mediated regulation of Pol II activity.  However as 

time has passed, dozens of additional factors qualifying as coregulators have been 

identified (Roeder, 2005).  For a summary of some of the different classifications of 

coactivators, see Figure 1.2.  Some of the first studies hinting of regulatory entry points, 
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exclusive from basal transcription factors, identified a so-called eukaryotic RNA 

Polymerase II ‘holoenzyme’ that contains Pol II, some of the basal factors, and an 

additional thirty-plus novel proteins that stimulate a significantly higher amount of 

transcription than Pol II alone when combined with TFIIB, IIF, IIE, IIH and the TBP 

subunit of TFIID (Kelleher et al., 1990; Kim et al., 1994; Koleske and Young, 1994).  

This holoenzyme was also required for activator responsiveness in the same biochemical 

settings that did not include holo-TFIID (Koleske and Young, 1994).  The novel 

holoenzyme components were subsequently referred to as the Mediator of transcription, 

because it appears to directly modulate the effects of both positive and negative 

regulatory inputs to Pol II, both from enhancer bound activators and repressors and 

directly from signal transduction pathways.  It is currently believed that a freestanding 

form of a Mediator complex, distinct from Pol II holoenzyme, is mainly responsible for 

the additional coregulatory function of this multisubunit complex in vivo (Bhoite et al., 

2001; Bryant and Ptashne, 2003; Kuras et al., 2003).    

It has become increasingly clear that the cellular machinery regulates many steps 

of transcription besides PIC formation and function.  There are other aspects of Pol II 

function that are modulated besides its localization to the PIC.  The C-terminus of the 

largest subunit, Rpb1, contains an array of seven amino acid repeats called the C-terminal 

domain, or CTD (Corden et al., 1985; Dahmus, 1983).  There are 27 repeats in yeasts and 

52 in humans.  The consensus peptide repeat sequence is YSPTSPS (Nonet et al., 1987a; 

Nonet et al., 1987b).  Each repeat can be post-translationally modified on the serine, 

threonine, and tyrosine residues (Feaver et al., 1991).  Differential modification status 

distinguishes free Pol II (unphosphorylated) from actively transcribing Pol II (elongating 
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transcripts) and the enzyme present in PICs (Payne et al., 1989).  The elongating 

polymerase is extensively phosphorylated on serine2 and serine5 residues within each 

repeat, a partially active form is modified on the second serine alone, and the inactive, 

PIC restricted, polymerase is hypophosphorylated.  Ser5 phosphorylation is added by 

kinase activity in TFIIH while Ser2 is modified by another kinase, pTEFb in mammals 

and CTKs 1 and 2 in yeasts (Lu et al., 1992; Marshall et al., 1996; Marshall and Price, 

1995).  The combination of modifications and the extent of overlap throughout the 27 to 

52 repeats has major affects on the repertoire of factors that will associate with the CTD, 

and a ‘CTD code’ hypothesis exists which predated the ‘histone code’ model described 

earlier (Buratowski, 2003).  These models of PTM function specify combinatorial affects 

of individual modifications on different residues, with different combinations resulting in 

potentially diverse functional outcomes.  Thus potential exists for widely different 

species of Pol II isoforms, each with different combinations of modifications on 

individual Pol II molecules.  Also, as in the case of histone modifications, a major 

outcome of differential modification is altered capacity for protein-protein interactions 

between the CTD and additional regulatory factors (Brookes and Pombo, 2009).  For 

example Ser5 modification is important for association of the 5’ mRNA capping 

machinery with template-engaged, promoter-proximal Pol II, whereas Ser2 status 

influences the association of pre-mRNA splicing factors and 3’ PolyA tailing machinery 

during transcription elongation (Cho et al., 1997).  Phospho-Ser2 stimulates association 

of histone methyltransferases that put chromatin into a state compatible with Pol II 

transcription elongation (Stock et al., 2007).  The CTD is also regulated by the prolyl 

isomerase Pin1 in mammals and this affects and is affected by the extent of  



 19 

Tag Count or Hybridization

+
1
0
 k

b
-1

0
k
b

T
S

S

S
e
n

s
e

A
n

ti
s
e
n

s
e

2
0

4
0

6
0

8
0

1
0
0

2
0

4
0

6
0

p
o

ly
A

p
o

ly
A

T
S

S

+
1

0
 k

b
-1

0
k

b

T
S

S

H
3
K
4
m
e
2
/3

H
3
a
c

H
3
K
4
m
e
2
/3

H
3
a
c H
3
K
7
9
m
e
2
H
3
K
7
9
m
e
2

F
ig

u
re

 1
.4

: 
 A

n
 a

lt
er

n
at

iv
e 

to
 t

h
e 

st
ep

-w
is

e 
m

o
d

el
 o

f 
P

IC
 F

o
rm

at
io

n
. 

C
o

re
 e

t.
 a

l.
 p

er
fo

rm
ed

 d
ee

p
 s

eq
u

en
ci

n
g

 a
n

al
y

se
s 

o
f 

n
as

ce
n

t 
ce

ll
u

la
r

R
N

A
s 

an
d

 f
o

u
n

d
 t

h
at

 p
ea

k
s 

o
f 

tr
an

sc
ri

p
ti

o
n

al
 a

ct
iv

it
y

 l
o

ca
li

ze
 a

ro
u

n
d

th
e 

p
ro

m
o

te
rs

 o
f 

3
0

%
 o

f 
h

u
m

an
 g

en
es

. 
 T

o
p

, 
p

ea
k

 h
ei

g
h

t 
co

rr
es

p
o

n
d

s

to
 a

b
u

n
d

an
ce

 o
f 

n
as

ce
n

t 
tr

an
sc

ri
p

ts
 w

it
h

 r
ed

 p
ea

k
s 

in
d

ic
at

in
g

 n
o

rm
al

g
en

ic
 t

ra
n

sc
ri

p
ts

 a
n

d
 b

lu
e 

in
d

ic
at

es
 t

ra
n

sc
ri

p
ts

 o
ri

g
in

at
in

g
 f

ro
m

 t
h

e 

n
o

n
-g

en
ic

, 
o

r 
an

ti
se

n
se

, 
d

ir
ec

ti
o

n
. 

 O
b

se
rv

an
ce

 o
f 

th
es

e 
tr

an
sc

ri
p

ts
 

in
d

ic
at

es
 t

h
at

 m
an

y
 g

en
es

 h
av

e 
tr

an
sc

ri
p

ti
o

n
al

ly
 e

n
g

ag
ed

 

p
o

ly
m

er
as

e 
at

 a
ll

 t
im

es
, 

an
d

 h
en

ce
 f

u
n

ct
io

n
al

 P
IC

s.
  

H
o

w
ev

er
,

th
e 

te
m

p
la

te
 e

n
g

ag
ed

 p
o

ly
m

er
as

es
 a

re
  

d
ef

ic
ie

n
t 

in
 t

h
ei

r 
ca

p
ac

it
y

 f
o

r 

el
o

n
g

at
io

n
; 

th
is

 c
h

ar
ac

te
ri

st
ic

 m
ay

 p
ro

v
id

e 
fo

r 
ad

d
it

io
n

al
 r

eg
u

la
to

ry
 i

n
p

u
t.

  

O
n

e 
p

u
rp

o
se

 o
f 

th
e 

b
id

ir
ec

ti
o

n
al

ly
 a

ct
iv

e 
P

IC
s 

an
d

 P
o

l 
II

 m
ay

 b
e 

re
la

te
d

 

to
 a

 c
h

ar
ac

te
ri

st
ic

 c
h

ro
m

at
in

 s
tr

u
ct

u
re

 a
ro

u
n

d
 c

o
re

 p
ro

m
o

te
rs

, 
w

h
er

e 
tw

o
 

tr
an

sc
ri

p
ti

o
n

al
ly

 p
er

m
is

si
v

e 
n

u
cl

eo
so

m
es

 w
it

h
 c

h
ar

ac
te

ri
st

ic
 m

o
d

if
ic

at
io

n
s 

fl
an

k
 c

o
re

 p
ro

m
o

te
rs

. 
 T

h
e 

st
at

u
s 

o
f 

th
es

e 
n

u
cl

eo
so

m
es

 m
ay

 b
e 

m
ai

n
ta

in
ed

 

b
y

 t
h

e 
p

ar
ti

al
ly

 a
ct

iv
e,

 b
i-

d
ir

ec
ti

o
n

al
ly

 t
ra

n
sc

ri
b

in
g

 p
o

ly
m

er
as

es
, 

w
h

ic
h

 i
n

 

tu
rn

 k
ee

p
s 

g
en

es
 i

n
 a

 s
ta

te
 p

o
is

ed
 f

o
r 

ra
p

id
 i

n
cr

ea
se

s 
in

 t
ra

n
sc

ri
p

ti
o

n
al

 o
u

tp
u

t.
  

R
es

u
lt

s 
il

lu
st

ra
te

d
 h

er
e 

ar
e 

in
 a

cc
o

rd
 w

it
h

 f
in

d
in

g
s 

o
f 

G
u

en
th

er
 e

t.
 a

l.
, 

2
0

0
7

; 

N
ec

h
ae

v
 e

t.
 a

l.
, 

2
0

1
0

; 
P

re
k

er
 e

t.
 a

l.
, 

2
0

0
8

; 
S

ei
la

 e
t.

 a
l.

, 
2

0
0

8
. 

  
  

 

 

 

 

 



 20 

phosphorylation, which collectively regulate CTD association with pre-mRNA 

processing factors (Albert et al., 1999; Kops et al., 2002; Xu et al., 2003; Xu and Manley, 

2007).  The regulation of CTD-directed factor activity, including Pin1 and the mentioned 

kinases and equivalent phosphatases, as well as all of the phosphorylated/prolyl 

isomerised-CTD associated factors, are potential points of regulatory input after PIC 

formation.  

Very recent studies indicate that regulation of Pol II at a post-recruitment/post-

PIC formation step is very prevalent in regulating individual gene expression, and that a 

low level of transcription is common at all times on many genes (see Figure 1.4).  These 

findings have their basis in genome-wide localization of Pol II and phospho-isoforms, 

and more importantly by localization of Pol II activity, also in a genome-wide manner  

(Core and Lis, 2008; Core et al., 2008; Guenther et al., 2007; Kininis et al., 2009; Muse et 

al., 2007; Nechaev and Adelman, 2008; Nechaev et al.; Preker et al., 2008; Preker et al., 

2009; Seila et al., 2008; Seila et al., 2009; Zeitlinger et al., 2007).  The implication is that 

most of the Pol II is localized around gene promoters along with some or all of the basal 

factors and possibly the mediator, and that these Pol II molecules are actually 

transcriptionally active because they generate high levels of very short transcripts and a 

very low level of intermediate to full length transcripts.  Template-engaged promoter-

proximal Pol II is co-localized with negative elongation factors such as NELF and DSIF, 

which can restrict the ability of Pol II to completely escape or clear the promoter.  

Complementary biochemical studies indicate that the rate limiting step for conversion of 

Pol II to the fully active form in vitro includes pTEFb mediated phosphorylation of Ser2 

in CTD repeats, which promotes dissociation of NELF, association of numerous other 
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positive chromatin-directed factors with the CTD as mentioned above, and the 

phosphorylation-mediated conversion of DSIF into a positive elongation factor (Chen et 

al., 2009; Hartzog et al., 1998; Kim et al., 2003; Kim et al., 2001; Narita et al., 2003; 

Renner et al., 2001; Wada et al., 2000; Wada et al., 1998a; Wada et al., 1998b; Wu et al., 

2003; Yamada et al., 2006; Yamaguchi et al., 1999; Zhu et al., 2007).  The reversal of 

CTD phosphorylation events, by phosphatases Fcp1 in yeasts and SCP in mammals, is 

associated with transcriptional termination and recycling of the resulting 

hypophosphorylated enzyme into additional rounds of initiation, promoter escape, 

elongation, and termination (Lin and Dahmus, 2003).  

The discussion of biochemical rate-limiting steps has therefore expanded from the 

initial model of stepwise PIC formation to include Mediator involvement and the 

modification of the Pol II CTD that in turn facilitates transcriptional elongation.  In other 

words, both factor association with promoters and modification status of those factors can 

be important.  The concept of factor association assumes a chromatin context where 

nucleosomes present in and around gene regulatory elements do not prohibit downstream 

binding events.  For a generalized example of how chromatin both influences and is 

influenced by gene regulation and transcriptional activation, see Figure 1.5.  The finding 

that dozens of unique coregulatory complexes contain chromatin-directed enzymatic 

activity underscores the dramatic influence that the nucleosome can have on gene 

regulation (Tsukiyama and Wu, 1997; Wu, 1997).  Many such coregulators are molecular 

motors that hydrolyze ATP and use the liberated energy to physically relocate 

nucleosomes to different locations on enhancers or promoters or even completely evict  
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Figure 1.5:  Chromatin regulation of enhancer and core promoter accessibility.  A.  Nucleosomes restrict factor access

to enhancer and core promoter DNA elements.  Transfactor activation domains, such as the chimeric Gal4-VP16 

fusion, directly interact with chromatin modifying enzymes like SAGA where Tra1 is one specific subunit contacted

by activators in vivo (Bhaumik et. al., 2005).   Activator mediated recruitment of SAGA results in localized histone H3

hyperacetylation mediated by the Gcn5 acetyltransferase and SAGA is further stabilized by binding to acetyl-lysines

via its bromodomain, also contained in Gcn5.  B.  Activation domains also directly interact with SWI/SNF complex

subunits through the Swi1 and Snf5 subunits.  (Prochasson et. al., 2003).  Like SAGA, SWI/SNF is stabilized both by 

contacts with activator but also through contacts of intrinsic bromodomains with acetyl-lysines in nucleosomes.  

(Hassan et. al., 2002).  Localization of SWI/SNF activity at enhancers results in remodelling of enhancer and promoter 

nucleosomes by the SWI/SNF Snf2 ATPase.  C.  The remodeled enhancer and promoter is now more accessible to 

binding factors.  Additional transactivator binding can result in recruitment of additional coregulators such as Mediator,

also by direct protein-protein interaction.  In turn PIC components will assemble either as a holoenzyme or through
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(Bhaumik et. al., 2002; Reinke et. al., 2003; Kuras et. al., 2003; Cosma et. al., 1999); and the human PS2, p21, 

and PEPCK genes (Métivier et. al., 2003; Espinosa et. al., 2003; Li et. al., 2010). 
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nucleosomes from DNA (Tsukiyama et al., 1994).  The archetypes of these factors 

include the SWI/SNF and ISWI families of ATP-dependent chromatin remodelers 

(Cairns et al., 1994; Cairns et al., 1996; Peterson et al., 1994; Tsukiyama et al., 1995; 

Vary et al., 2003).  Chromatin remodelers can be both coactivators and corepressors, 

depending on the exact role of the nucleosome being mobilized on an individual gene.   

Another class of coregulators includes the so-called ‘writers of the histone code’ 

that modify histones by acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation, etcetera.  The first described example is the Gcn5 acetyltransferase, which 

acetylates lysine residues on histone H3 (Brownell and Allis, 1995; Brownell et al., 

1996).  Gcn5 is also a ‘reader’ of the histone code, as it contains another domain called a 

bromodomain that has increased affinity for binding to acetylated H3 relative to 

unmodified H3 (Horn and Peterson, 2001; Marmorstein, 2001; Marmorstein and Berger, 

2001).  The equivalent ‘code reader’ in the methyltransferases is the chromo, 

chromoshadow, and/or plant homeodomain (PHD) in these complexes.  These 

methyltransferases domains bind to methylated histones (Chen et al., 1999).  Thus 

capacity within chromatin-directed coregulators for physical alterations of the chromatin 

is often combined with the ability to recognize introduced changes.  It seems that the 

modification status can be self-stabilizing or self-propagating, since an initial 

modification event can promote the continued presence of the responsible enzyme, or 

even distinct enzymes that introduce other modifications but recognize the modification 

introduced by the first coregulatory enzyme.  This may be important for long-term 

regulation of genomic loci or ‘memory’, by marking regions of the genome with a unique 

physical architecture (Kundu et al., 2007; Kundu and Peterson, 2009), also keeping in 
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mind that steady state abundance of a particular modification at a given genomic region is 

dependent upon the balance of activity between the ‘writers,’ ‘readers,’ and ‘erasers’ of 

histone modifications such as phosphatases, deubiquitinases, deacetylases and 

demethylases (Rundlett et al., 1996; Tsukada et al., 2006; Vidal and Gaber, 1991) (Daniel 

et al., 2004).  The presence of particular histone modifications in enhancer or promoter 

nucleosomes can now be used as a surrogate marker of gene transcriptional status, active 

or inactive or somewhere in between, depending on the particular combinations of 

modifications enriched in the enhancer, promoter, and/or ORF (Karlic et al.).  These 

observations are consistent with the long-established, genetically-defined concept of 

regions of the genome being described as transcriptionally permissive ‘euchromatin’ and 

repressed chromosomal regions as ‘heterochromatin’   In spite of this apparent targeting 

of coregulatory enzymatic activity to specific genome regions, it is important to 

remember that with the exception of a few of the basal transcription factors, most 

coregulators lack sequence specific DNA binding activity.  Therefore it can be imagined 

that one possible mechanism of coregulator targeting to specific genomic regions relies 

upon their capacity for modified histone binding.  While this is probably true to a limited 

extent, it is important to point out that much of the histone deposition in the genome 

occurs concomitant with DNA replication in S phase of the cell cycle.  As it happens, 

most of the newly deposited histones are initially found as posttranslational modification-

deficient isoforms.  Therefore a ‘pioneer’ round of modification is undoubtedly necessary 

to facilitate later stabilization of coregulatory binding.  Another fact is that ectopic 

placement of defined enhancer elements in genomic locales is sufficient to confer a 

heterologous pattern of histone modification (Bhaumik and Green, 2003).  This is also 
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genetically dependent upon the activator proteins that bind to the enhancers.  Altogether 

these facts suggest that there is a functional link between activator proteins and 

chromatin-directed coregulatory complexes.  Like a huge portion of regulatory biology, 

these phenomena are directed by protein-protein interactions, in this case interactions 

between transactivators and transcriptional coregulators.  An attempted summary of some 

of these interactions is illustrated in Figure 1.5.  Before discussing the details on what is 

known about activator-coregulator interactions, it is appropriate to discuss biochemical 

characteristics of activator proteins.                                

 

Transfactors 

All transfactors influence transcription by association with enhancers, most 

commonly through direct DNA binding in cis-elements.  Another common feature of this 

diverse class of proteins is a modular structure and presence of several functionally 

distinct domains (Keegan et al., 1986; Ma and Ptashne, 1987a).  At a minimum, a 

transfactor will usually have a DNA binding domain (DBD), responsible for sequence-

specific association with cis-elements contained in enhancers, and an activation or 

repression domain, depending on whether the factor is an activator or repressor 

(Kadonaga et al., 1988).  For clarity, activation domains are operationally defined by 

fusion to a heterologous DBD, resulting in a chimeric protein that is typically necessary 

and sufficient to stimulate expression of a reporter gene containing cis-elements 

recognized by the specified DBD. 

The observation that many so-called ‘master regulatory genes’ of development 

and differentiation encode transfactors underscores both the importance and high level of 
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regulation of these proteins (Affolter et al., 1990; Muller et al., 1988; Otting et al., 1988; 

Qian et al., 1989).  In general, transcription factors are among the most rare of all types of 

proteins in vivo, often present at just hundreds of molecules per cell, quite low 

considering that there are an estimated 30,000 Pol II enzymes per cell (Borggrefe et al., 

2001; Kimura et al., 1999).  A consequence of the low cellular abundance is that there is 

a large excess of potential binding sites present throughout the genome, meaning that all 

available sites will likely never reach saturation.  Low transfactor steady state levels, a 

specific binding site composed of just a few base pairs, and a genome that can potentially 

provide an excess of millions of base pairs of DNA to compete with the specific binding 

site for limiting transfactor molecules are all indications that the affinity of a transfactor 

for its binding site is generally extremely high.  However, all transfactors have some 

intrinsic non-specific binding affinity for DNA, but this affinity is typically three to four 

orders of magnitude lower than that for consensus binding sites.  This general 

biochemical characteristic has been exploited to purify transfactors by site-specific DNA 

affinity chromatography techniques, which allowed the initial cloning of many 

transfactors prior to availability of genome sequences (Kadonaga and Tjian, 1986).  It is 

estimated that there are more than 1500 genes in the mammalian genome that encode 

transfactors. 

The necessity for an intrinsically high affinity for binding sites means that 

transfactor-enhancer interaction can be extremely stable.  However, occupancy of 

enhancers by transactivators is a common point of target gene regulation.  It is easy to 

imagine that presence of activation domains at enhancers could stimulate promoter 

activity and inappropriate gene expression, and thus binding is a logical event to set as 
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rate limiting for gene activation.  Not surprisingly, nature has evolved myriad 

mechanisms for restricting transfactor activity.  Transcriptional control of transfactor 

gene expression is often used in developmental pathways; translational control of 

transfactor mRNA is another obvious cellular mechanism since enhancers won’t be 

bound by proteins that are not present (Hinnebusch and Natarajan, 2002).  Transfactor 

mRNA can be kept inactive by sequestration away from the translational machinery via 

control of nuclear export or trafficking into so-called P-bodies, or bound by cytoplasmic 

factors such as microRNAs that inhibit translation.  Likewise, decreased protein stability 

via post-translational modification such as ubiquitination can keep transfactor abundance 

low, but reversal of negative modifications will allow protein to accumulate in response 

to appropriate signaling events (Honda et al., 1997; Honda and Yasuda, 1999).  Protein 

localization is another regulated aspect; dynamic phosphorylation status can provide a 

means to shift the balance between nuclear import and export, leading to nuclear 

depletion and cytoplasmic accumulation whenever gene transcription is inappropriate 

(Kaffman et al., 1994; O'Neill et al., 1996).  Membrane tethering and regulated 

proteolysis can be used to direct subcellular localization (Hua et al., 1993; Wang et al., 

1994; Yokoyama et al., 1993).  Characteristics of the DNA binding domain can be 

directly regulated by modification, most commonly phosphorylation but also methylation 

or acetylation, which can increase or decrease sequence-specific binding affinity (Gu and 

Roeder, 1997; Huang et al.; Huang et al., 2006; Huang et al., 2007; Luo et al., 2004).  

Many transactivators are only functional in a multimerized form, often as homo- or 

heterodimers (Abate et al., 1990).  Therefore, oligomerization status can be tightly 

controlled, by mechanisms including but not limited to regulation of heterodimer partner 
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abundance/stability, localization, or posttranslational modification, providing yet another 

means to limit specific DNA binding activity.   

In instances where DNA binding is constitutive, activation domain potency can be 

modulated by PTM.  Other proteins may engage the activator, blocking or competing 

with the ability of the activation domain to contact other responsive factors that would 

stimulate transcription (Ma and Ptashne, 1987b).  The nuclear receptor family of 

transfactors are activated by appearance and binding of unique small molecule ligands, 

and there are typically dramatically different biochemical and cell biological differences 

between the apo- and ligand bound state of these proteins (Means et al., 1975).  This can 

be affected by mechanisms such as those described above and also by many others.  It 

has become increasingly evident that these proteins can even be converted from activator 

to repressor or vice versa in a ligand-dependent manner (Fondell et al., 1996a; Fondell et 

al., 1996b; Fondell et al., 1993).  Along these lines transfactors are probably not strictly 

activators or repressors in a general sense; instead they function in widely different 

manners depending on environmental conditions and on which particular enhancer/gene 

they are binding (Kurtz and Shore, 1991).  The complexity of regulation of a lone 

transfactor is generally extensive, since the variety mentioned above are only a small 

representation of those mechanisms probably in existence.  Added to that, combined 

utility of different mechanisms is likely the order of the day. 

Moreover, one must take into account the complexity of enhancers found in 

natural genes.  Although there are only a few model genes for which the enhancer is 

perhaps completely characterized with respect to the proteins involved, such as the 

Interferon-β ‘enhanceosome’, we know that vertebrate enhancers can include 
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contributions from many distinct transfactors (Agalioti et al., 2000; Ford and Thanos; 

Munshi et al., 1999; Sheppard et al., 1999; Thanos, 1996; Yie et al., 1999a; Yie et al., 

1999b).  The quantity of transcriptional stimulation that an enhancer can provide is 

generally greater than the sum of that provided by the individual components.  This 

indicates that separate enhancer-bound transfactors may be responsible for directing 

association with distinct coregulatory complexes.  In other words different enzymatic 

activities can be directed into stimulating transcription through a variety of mechanisms 

(note chromatin as one possibility, see Figure 1.2).  There may be different stages of 

gene activation, each of which is required in a specific order of occurrence, with distinct 

cohorts of coregulators functioning within each stage, and with the involvement of 

individual coregulators specified by one or a few of the enhancer-bound transfactors.  

Evidence for the existence of such phenomena is available from studies on several model 

genes in yeast and human cells.  Chromatin immunoprecipitation (ChIP) studies looking 

at occupancy of numerous factors during a time-course of gene activation confirm a 

stepwise transcriptional program.  The yeast GAL, HO, and GCN-pathway genes and the 

human PS2 and p21 genes provide just a few examples (Bryant and Ptashne, 2003; 

Cosma et al., 1999; Espinosa et al., 2003; Govind et al., 2005; Metivier et al., 2003).  

There appears to be both an order and a periodicity of coregulator association with target 

gene enhancers and promoters.  In the case of the PS2 gene, this periodicity is correlated 

with a dynamic pattern of transfactor-enhancer association (Metivier et al., 2003).  The 

complexity of the enhancer, coupled with the plethora of coregulators involved and added 

kinetic components during the activation process do not lend themselves to easily 

understanding the mechanism of coregulator targeting.  Nevertheless, enhancer activity is 
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undoubtedly tied to protein-protein interactions between activators and coactivators.  

Simplified biochemical and genetic systems have provided many of the clues about these 

interactions (Swanson et al., 2003).  A minimalist approach to investigation is necessary 

to confront the problem of coregulator targeting, since even though a limit case is to 

consider the interaction between one transfactor and one coregulator, there remains the 

fact that a typical coregulator is structurally and functionally complicated. 

 

Transfactor-Coregulator Interactions 

Having re-introduced the concept of a defined order of events in the pathway to 

gene activation, we will consider here the earliest possible rate-limiting steps.  

Transactivator occupancy of the enhancer is the most obvious.  Even if they are present in 

the nucleus and competent for both DNA binding and transactivation, transfactors may 

not be able to access their cis-elements within the enhancer if it is occluded by 

nucleosomes.  Partial nucleosomal occlusion of the enhancer provides a context where 

dynamic regulation and mechanism of co-regulatory function can be productively 

studied.  The yeast PHO5 gene is a physiological model for this situation (Almer et al., 

1986).  There are two high-affinity binding sites for the Pho4 activator, but the more 

promoter-proximal site is occluded by a nucleosome that prohibits occupancy by Pho4 

(Venter et al., 1994).  Full enhancer occupancy and gene activation requires intact 

binding sites, nuclear-localized Pho4, and histone acetyltransferase activity provided by 

Gcn5 and Esa1 (Barbaric et al., 2001) (Svaren et al., 1994).  Kinetic studies indicate that 

a rise in histone H3 acetylation precedes full de-repression of the gene; this is presumably 

due to Pho4-mediated recruitment of acetylases (Reinke and Horz, 2003).  Pho4 
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occupancy, as scored by genomic footprinting or ChIP, becomes apparent first on the 

accessible binding site, then on the previously inaccessible binding site (Barbaric et al., 

2007).  Pho4 binding of the second enhancer occurs coincident with the apparent removal 

of the blocking nucleosome, as scored by ChIP or nuclease accessibility.  Similarly, the 

core promoter region becomes depleted of nucleosomes around this time.  Removal of the 

histone acetylase by deletion of the GCN5 gene lengthens the time necessary to de-

repress the gene (Barbaric et al., 2001; Gregory et al., 1998).  This is an example of an 

activator, chromatin, and histone acetylase-dependent gene activation (Svaren and Horz, 

1997).   

Detailed biochemical experiments with defined components substantiate these 

descriptive findings.  Using a chromatin-reconstituted and immobilized DNA template 

containing Gal4 activator binding sites, a promoter, and nucleosome positioning 

sequences around the enhancer and promoter, Workman and colleagues were able to 

demonstrate activator dependent targeting and stabilization of the Gcn5-containing 

SAGA complex and the SWI/SNF chromatin remodeler (Hassan et al., 2001a; Hassan et 

al., 2001b; Hassan et al., 2002; Neely et al., 1999).  Specifically, association of SAGA 

and SWI/SNF with the chromatinized template required pre-incubation with Gal4-VP16 

activator.  Subsequent addition of SAGA and SWI/SNF only resulted in binding of the 

complexes to the template if both template-bound activator and acetyl-CoA were present, 

indicating coregulator binding was stabilized by both activator and coregulator-mediated 

acetylation of histones on the template.  Moreover, competition of Gal4-VP16 from the 

template using a molar excess of oligonucleotide binding sites destabilized SAGA and 

SWI/SNF binding.  Not surprisingly, several groups were able to demonstrate direct 
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protein-protein interaction between Gal4 as well as other yeast activators and subunits of 

SAGA and SWI/SNF (Bhaumik and Green, 2001; Brown et al., 2001; Neely et al., 2002; 

Prochasson et al., 2003).  Genetic disruption of the binding surfaces provided by SAGA 

and/or SWI/SNF subunits resulted in reduced transcription of target genes in vivo.   

Perhaps the most convincing experiment demonstrating the interaction between 

an activator and a chromatin-directed coregulator again involved the yeast Gal4 protein 

and the SAGA complex.  Bhaumik and colleagues used GFP fusion proteins and live cell 

imaging to demonstrate fluorescence resonance energy transfer, or FRET, between Gal4 

and a single SAGA subunit (Bhaumik et al., 2004).  When combined with the other 

genetic and biochemical experiments, this paints a clear picture of direct protein-protein 

interaction between activators and chromatin-directed coregulators.  A variety of 

additional studies including other activators and coregulators suggest this is not 

uncommon; for example the related p300 and CBP coregulators that directly associate 

with the cAMP response element binding protein, CREB, are acetyltransferases whose 

activity is highly important for transcription in vitro and in vivo (Eckner et al., 1994; 

Kundu et al., 2000; Kwok et al., 1994; Scolnick et al., 1997).  Connections between 

activators and chromatin-directed coregulators are illustrated in Figure 1.5.     

The Mediator complex has been the subject of many studies seeking to identify 

direct activator-coregulator interactions.  Using affinity purification of the thyroid 

hormone receptor from human cell lines, Roeder and colleagues identified a set of co-

fractionating proteins with homology to yeast RNA Pol II holoenzyme subunits (Fondell 

et al., 1996b).  The copurification of these proteins depended on the presence of thyroid 

hormone in the growth media of the cells used as the initial source of material, indicating 
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that only transcriptionally active thyroid hormone receptor engages these proteins, a 

property consistent with their identity as coregulators.  Additional studies aimed at 

directly purifying these TRAPs, or thyroid receptor activator proteins, proved their 

coregulatory role and demonstrated its function in the form of a discrete high molecular 

weight complex. Studies by Tjian’s lab characterized coactivators of the Vitamin D 

Receptor and Sp1 activators and identified a similar complex, termed DRIP or CRSP, 

respectively.  In parallel, the Activator Responsive Complex, or ARC, was also identified 

by Tjian as providing direct responsiveness to several activators in vitro (Naar et al., 

1998a; Naar et al., 1999; Naar et al., 1998b; Ryu and Tjian, 1999; Ryu et al., 1999; 

Taatjes et al., 2002).  Further investigation has shown that multiple Mediator subunits 

provide interaction surfaces for activators, that these interaction partners can vary 

somewhat between different activators, and certain activators can likely use multiple 

domains to interact with more than one mediator subunit at a time (Ge et al., 2008; 

Grontved et al.; Malik et al., 2004).  This observation is probably highly relevant in the 

broader relationships between various activators and coactivators.     

In vivo studies using yeast demonstrated a set of very important observations 

about Mediator function.  Ptashne and coworkers demonstrated that a fusion protein 

consisting of the Pho4 DNA binding domain and the Gal11 mediator subunit provided 

both chromatin remodeling and transcriptional activation at the PHO5 gene in vivo 

(Gaudreau et al., 1997).  There are several implications of this work.  First, the fusion 

protein directed function from the enhancer and not from the core promoter.  Second, 

chromatin remodeling was stimulated even though there was no indication that Mediator 

subunits could provide this function.  Thus, Mediator was suggested to regulate the 
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function of the enhancer, chromatin remodeling, and the core promoter.  It also seemed 

unlikely that Mediator would do this in the form of a holoenzyme complex, since no 

aberrant upstream transcripts were detectable as would be expected if Pol II colocalized 

with the Pho4-Gal11 fusion at the enhancer.  Chromatin immunoprecipitation studies 

performed over a time course of gene activation later showed that Mediator subunits 

preferentially localize to the enhancers of the HO and GAL genes in yeast, and do so at 

time points preceding the association of Pol II with the promoter and ORF (Bhoite et al., 

2001; Bryant and Ptashne, 2003).  Collectively, these studies indicate a coregulatory role 

for Mediator, in many cases implicating direct interaction with activators, meaning that 

the Mediator functions to physically bridge or link enhancer with promoter, perhaps by 

interacting with both activators and basal transcription factors.   

Interactions between activators and either chromatin-directed complexes or the 

Mediator complex were not the first postulated transfactor-coregulator protein-protein 

interactions facilitating communication from enhancer to promoter.  At a point in history 

when only activators and basal transcription factors had been identified, it was logical to 

look at interactions between these components.  As has already been mentioned here, the 

best example of a coactivator available at the time were the bacterial σ factors, which can 

specifically recognize the promoter, associate with the Polymerase, and directly interact 

with activator proteins.  TFIID activity had been shown to act early in stepwise PIC 

formation, and was the only basal factor able to directly bind TATA box DNA found in 

promoters (Buratowski et al., 1989; Van Dyke et al., 1988).  This led to comparisons 

between TFIID and σ.  For these reasons the possibility of TFIID coactivator function 

was pursued early on (Abmayr et al., 1988).                                  
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TFIID:  Requirement of Taf Proteins for Activator-Stimulated Transcription 

Perhaps the longest recognized hallmark of TFIID is its ability to bind to the 

TATA box that is located in model promoters that were used as DNA templates in 

biochemical assays.  Therefore specific DNA binding assays were used to guide 

fractionation of TFIID activity from cellular extracts.  This proved very difficult in 

animal systems, probably owing to the fairly low abundance and instability of the factor.  

However, using soluble yeast extract as a starting material, a single polypeptide 

possessing specific TATA box binding activity was purified (Cavallini et al., 1988).  

Protein sequencing and cloning of the single-copy, essential yeast TBP gene quickly 

followed, and the recombinant protein was able to functionally substitute for the native 

protein in biochemical complementation of DNA binding and in vitro transcription (Hahn 

et al., 1989b; Horikoshi et al., 1989a, b).  Importantly, the recombinant yeast protein 

supported these functions whereas all other reaction components were derived from 

human sources, demonstrating the high evolutionary conservation of protein activity 

between yeasts and human.  Consistent with this idea, the sequence of yeast TBP protein 

was useful for cloning of TBP-encoding genes from several organisms including flies and 

humans (Gasch et al., 1990; Hoey et al., 1990; Hoffmann et al., 1990; Lichtsteiner and 

Tjian, 1993; Muhich et al., 1990; Peterson et al., 1990; Peterson and Tjian, 1993).   

Interestingly, in no case could any of the recombinant TBPs support activator-

stimulated transcription in vitro, whereas less pure fractions containing native, high 

molecular weight form of TBP could do so.  This observation, with its origins in a 



 36 

‘failed’ experiment, led to some of the first speculation of the identity of coactivators in 

the eukaryotic transcription system (Pugh and Tjian, 1990).  Properties of TBP again 

became useful in pursuit of these elusive coactivators, as it was possible to generate high 

affinity, high specificity antibodies using the recombinant protein as an antigen.  Use of 

these antibodies allowed the immuno-affinity purification of a protein fraction containing 

TBP and 10 to 15 TBP associated factors, or TAFs, that could provide both core 

promoter recognition and response to activators in an in vitro transcription system 

(Dynlacht et al., 1991; Meisterernst and Roeder, 1991; Pugh and Tjian, 1991; Tanese et 

al., 1991).  As with TBP, Taf-encoding cDNAs were obtained from different organisms, 

first from flies, followed by human and lastly from yeast a few years later; again this 

information indicated a high overall degree of Taf sequence conservation (Chiang and 

Roeder, 1995; Dynlacht et al., 1993; Gill and Tjian, 1992; Goodrich et al., 1993; Hisatake 

et al., 1993; Hisatake et al., 1995; Hoey et al., 1993; Hoffmann and Roeder, 1996; 

Klemm et al., 1995; Kokubo et al., 1993a; Kokubo et al., 1994a; Kokubo et al., 1993b; 

Kokubo et al., 1993c; Kokubo et al., 1993d; Moqtaderi et al., 1996b; Poon et al., 1995; 

Reese et al., 1994; Ruppert et al., 1993; Takada et al., 1992; Verrijzer et al., 1994; 

Weinzierl et al., 1993b; Yokomori et al., 1993).  Characterization of purified recombinant  

Tafs revealed that some could engage in binary interactions with activators in vitro, 

results that at least partially explained the basis of activator responsiveness (Goodrich et 

al., 1993; Hoey et al., 1993; Kashanchi et al., 1994).  The existence of a complex 

functionally analogous to bacterial σ, conferring both activator binding and sequence-

specific promoter binding within the PIC, was the first example of a factor present in  
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seemingly all eukaryotes (Conaway and Conaway, 1990a).  For an overview of TFIID 

composition, structure, and function; see Figure 1.6 and Table 1.1. 

Transfactor-TAF/TFIID Interaction 

Upon consideration of TFIID complex characteristics, a paradox became quickly 

apparent, although it once again had its basis in comparisons to the bacterial system.  The 

TFIID complex containing TBP and Tafs clearly provides promoter recognition and 

facilitates direct interaction between activators and the PIC.  But why are as many as 15 

distinct proteins required for TFIID function in eukaryotes when just one or two proteins 

(i.e. σ, α) can communicate with a plethora of activators in bacteria? Even in light of 

current information, such as the ability of activators to contact multiple subunits of 

coregulator complexes like Mediator and TFIID, the high complexity is not well 

understood, but the basis of this complexity surely lies in the diverse functional 

capabilities among the different Tafs.  TFIID can do quite a lot more than bacterial σ, and 

its additional features are likely put to use in the more complicated mechanisms of 

eukaryotic gene regulation. 

In vitro TFIID-Taf interaction with activators is long recognized and biochemical 

studies showed that transfactors lacking an activation domain could not utilize TFIID to 

stimulate in vitro transcription (Gill et al., 1994).  Partial reconstitution of TFIID 

complexes from a subset of recombinant Taf proteins provided the first evidence for 

specific targets of activation domains, since omission of certain Tafs also resulted in lack 

of activator responsiveness during in vitro transcription assays (Chen et al., 1994; 

Weinzierl et al., 1993a).  Many studies have since shown specific in vitro interactions 

between Tafs and a variety of activators (Kashanchi et al., 1994; Thut et al., 1995).  
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These interactions were first described as important for mediating ‘recruitment’ of TFIID 

to promoters in vitro (Dynlacht et al., 1991).  TBP binding affinity for the TATA box is 

strong, but the strength of TBP interaction with non-TATA sequence is also significant, 

as compared to the binding affinities of typical activators for non-binding site DNA.  As 

such, activator-TFIID interaction was proposed to increase the affinity of TFIID for 

TATA box, perhaps by affecting TBP conformation or location within the complex 

(Coleman and Pugh, 1995; Horikoshi et al., 1992; Lee et al., 1991; Nikolov et al., 1995).  

Additionally, the N-terminus of Taf1 from various organisms contains a domain that 

engages TBP through the same surfaces important for TATA binding, thereby inhibiting 

TBP-DNA interaction (Kokubo et al., 1994b).  It has been postulated that activator-Taf 

interaction promotes the rearrangement of this configuration such that TBP in TFIID is 

made available for DNA binding (Albright and Tjian, 2000; Nishikawa et al., 1997; 

Oelgeschlager et al., 1996).  It should be pointed out that any models involving 

modulation of TFIID-TATA DNA binding activity would involve TFIIA.  The binding of 

the TFIID complex to TATA is not readily observed in vitro unless TFIIA is also present 

or very specific biochemical conditions are provided, specifically the inclusion of super-

physiological levels of magnesium ions. (Geiger et al., 1996; Yokomori et al., 1994; 

Zerby and Lieberman, 1997).   

The limitation of proposals involving activator-mediated TFIID-TATA 

recognition is that the majority of promoters in eukaryotic genomes do not contain a 

consensus TATA box.  As such, models solely involving activator-mediated TBP-TATA 

interaction are deficient owing to the lack of general applicability.  But how then can 

TFIID engage TATA-less promoters?  Recombinant Taf2 and Taf6/9 dimers have been 
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shown to directly interact with INR and DPE core promoter elements, respectively 

(Burke and Kadonaga, 1996, 1997; Chalkley and Verrijzer, 1999; Emami et al., 1997; 

Kaufmann et al., 1998; Kaufmann and Smale, 1994; Kaufmann et al., 1996; Martinez et 

al., 1994; Verrijzer et al., 1995; Verrijzer et al., 1994).  Taf-INR or DPE interaction could 

possibly be influenced by activator-TFIID interaction.  But again, many promoters lack 

these cis-elements.  Furthermore, there is no evidence that non-TATA core promoter cis-

elements exist in lower eukaryotes, although existence of a functional equivalent cannot 

presently be ruled out.   

It is possible that TFIID could localize to chromatinized promoters in the absence 

of Taf-DNA binding.  The Taf1, Taf3, and Taf5 subunits possess respective bromo-, 

PHD finger, and WD40 domains.  The Taf1 bromodomain potentiates high affinity 

binding to acetylated histone H4 peptides in vitro; likewise the Taf3 PHD finger 

recognizes H3 triply methylated on lysine four (Jacobson et al., 2000; van Ingen et al., 

2008; Vermeulen et al., 2007).  Taf5 WD repeats could also bind methylated histones or 

nucleosomes.  The chromatin marks recognized by Taf1 and Taf3 are generally 

associated with transcriptionally permissive or active genomic regions (Guenther et al., 

2007).  In theory, activators, assuming the requisite histone modifications are also 

present, could modulate TFIID association with certain nucleosomal gene promoters.   

Furthermore, it appears that the Taf1 bromodomain can bind non-histone 

acetyllysine-containing substrates, the example being acetylated p53.  This interaction 

appears to facilitate Taf1 interaction with the p21 enhancer, potentially resulting in the 

formation of a DNA loop between p53-localized, enhancer bound Taf1 and other TFIID 

Tafs already present at the core promoter (Li et al., 2007).  Taf1 also appears to possess 
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histone acetyltransferase activity, thus TFIID is potentially both a ‘writer’ and a ‘reader’ 

of histone/chromatin modifications (Mizzen et al., 1996).  As in the case of the Taf1 

bromodomain, Taf1-mediated acetylase activity may not be limited to histone substrates; 

for example p53 or other GTFs might be acetylated by Taf1 (Imhof et al., 1997).    

There are many caveats to the observations suggesting connections to chromatin.  

First, these putative TFIID-chromatin interactions remain primarily untested in the 

context of TFIID, since all of the experiments described above were conducted with 

isolated Tafs.  Second, these TFIID-histone interactions were not tested in the context of 

intact nucleosomes.  Third and finally, the responsible domains in Taf1 and Taf3 are not 

found in Tafs from all species, so it is unlikely that chromatin targeting of TFIID is 

absolutely conserved, at least not through Taf1 and/or Taf3 dependent mechanisms.  

Nevertheless, models where TFIID affinity for promoter DNA elements or promoter 

chromatin is increased by interaction with activators remain attractive for a number of 

reasons, even if as yet unproven in vivo.  Gene activation could occur only when 

activator is present, when appropriate histone modifications are present, or both.  As 

always, a combination of activator status, promoter element accessibility, and histone 

status could all contribute to establishing TFIID-promoter association as rate-limiting. 

The development of more powerful genetic reagents in higher eukaryotes is the roadblock 

that prevents the proof of activator-mediated TFIID recruitment.  Very specific mutations 

in activators and their Taf binding partners are needed that selectively disrupt function of 

the protein surfaces involved.  The prediction would be that PIC formation and 

transcription would be inhibited due to reduced TFIID association and/or function on 

promoters directly regulated by the activator in question.  
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High-resolution structural information would be quite useful to direct mutational 

analysis of activator-Taf interaction surfaces, but this has remained elusive in the case of 

TFIID, primarily because of its large size and subunit complexity.  There are a few x-ray 

structures of individual Taf domains, primarily the histone-fold domain pairs, and several 

high-resolution structures have been solved for TBP (Chasman et al., 1993; Geiger et al., 

1996; Kim et al., 1993; Nikolov et al., 1995; Nikolov et al., 1992).  Structures of the Taf1 

bromodomain, the heterodimerized histone-fold domains of Taf4 with Taf12 and Taf6 

with Taf9, and portions of the Taf4 and Taf5 amino termini have all been solved 

(Bhattacharya et al., 2007; Birck et al., 1998; Jacobson et al., 2000; Romier et al., 2007; 

Wang et al., 2007; Werten et al., 2002).  Most of these studies suffer the same limitations 

of any experiments that examine Taf characteristics outside the context of both the intact 

proteins and TFIID holocomplex; if framed within TFIID those findings may be 

dramatically different on the basis of three-dimensional conformation.  However, the 

Taf1 structure was actually crucial for identifying residues in Taf1 responsible for 

binding acetylated p53, and unmodifiable p53 variants and bromodomain-substituted 

Taf1 forms were put to use in ChIP experiments to look at changes in Taf and/or activator 

occupancy on the p21 enhancer and promoter during a time course of gene activation (Li 

et al., 2007).   

As discussed above, p53-Taf1 interaction is arguably the only example of 

activator-mediated Taf recruitment resulting from direct protein-protein interaction that is 

supported both by solid in vitro biochemical and in vivo molecular genetic data.  

Unfortunately, there are numerous limitations to the general applicability of the p53-Taf1 

example.  First and most obvious, this again concerns an activator-Taf interaction and not 
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necessarily one of an activator-TFIID complex interaction.  By necessity, this must 

involve subcomplexes of TFIID and de novo assembly of the complex in situ on 

promoters.  There is some evidence for these TFIID subcomplexes but the physiological 

significance is uncharacterized and unknown, except in the in vivo context of p21 

transcription (Demeny et al., 2007).  Secondly, this mechanism is probably not generally 

utilized, even on the p21 gene, since different p53-controlled transcriptional programs are 

apparently employed depending on the induction method.  Specifically, UV irradiation 

promotes Taf1 association with the p21 enhancer and promoter, but other genotoxic 

agents invoke a transcriptional response that does not involve Taf1 (Donner et al., 2007; 

Espinosa et al., 2003).  Third, a p53- and Taf1-dependent gene-looping event remains 

speculative, because this type of event is very difficult to document in vivo, and is 

dependent on the use of a technically challenging, gene-specific protocol called the 

chromosomal conformational capture (3C) assay (Ansari and Hampsey, 2005; Laine et 

al., 2009; Singh and Hampsey, 2007); such experiments have not yet been reported for 

the p53-Taf1 interaction on p21.  Thus the simultaneous involvement of Taf1 at both 

enhancer and core promoter in this context has not truly been confirmed.  It should also 

be noted that in the context of TFIID, p53 does not interact with just Taf1, but also Taf5, 

Taf6, and TBP (Liu et al., 2009).  However, DNA was not included in these particular 

biochemical experiments, and this could alter the spectrum of p53-Taf interactions. 

An understanding of overall three-dimensional TFIID structure has been made 

available by electron microscopy and digital reconstruction.  There are now low- 

resolution structures available for TFIID derived from human, budding yeast, and fission 

yeast (Andel et al., 1999; Brand et al., 1999; Elmlund et al., 2009).  Overall similarity of 
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the three-lobed, horseshoe shape between species is observed, not unexpected given the 

conserved polypeptide sequences of the subunits.  Structural methodology involving 

difference mapping has been used to roughly localize TBP and all 13 integral Tafs within 

budding yeast TFIID (Leurent et al., 2002; Leurent et al., 2004; Papai et al., 2009).  This 

data is consistent with a modular TFIID organization suggested by earlier biochemical 

experiments, with histone-fold dimers residing in all three lobes and nucleating around 

two Taf5 densities, with a single TBP-Taf1-Taf7 module on the outside of the half of the 

complex containing the so-called A and C lobes (Chen et al., 1994; Guermah et al., 2001; 

Hoffmann et al., 1996; Oelgeschlager et al., 1996).  This defined structure, and the 

observed presence of slightly different context-dependent conformations of TFIID, 

suggest the existence of intrinsic flexibility within the complex that is consistent with 

speculation of a ‘hinge’ function underlying the three-lobed configuration (Elmlund et 

al., 2009; Grob et al., 2006; Liu et al., 2008).  Indeed, TFIID appears capable of adopting 

varying degrees of ‘open’ to ‘closed’ configurations.  Consequently, models of activator-

TFIID interaction in TFIID recruitment could mechanistically include alteration of TFIID 

conformation as a result of interaction with activators, and these conformational changes 

could then alter the binding to core promoter elements such as TATA, DPE, or INR or to 

PTMs on chromatin or other promoter-bound proteins, leading to stabilized TFIID-

promoter association.  Alternatively, dynamic conformational changes might affect many 

other characteristics of TFIID, like intrinsic enzymatic activities, or recruitment of other 

GTFs, Pol II, and/or additional coregulators (Dikstein et al., 1996; Imhof et al., 1997; 

Mizzen et al., 1996; O'Brien and Tjian, 1998; Pham and Sauer, 2000). 
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Figure 1.7:  Activator-Taf Interaction in the context of TFIID.  Purifed human TFIID was saturated with  p53, Sp1, 

or c-Jun activators.  Crosslinking and EM studies indicated the Taf components bound by each activator, and the 

activator domains involved.  Representation of data from Liu et. al., 2009.  A.  p53 activator contacts Taf6 using

its activation domain, while Taf1, Taf5, Taf6, and TBP are contacted by the p53 DBD.  Importantly, it is not clear

in any example whether each of the Taf molecules super-stoichiometric in the complex is engaged with activator

or if there is some specificity of activator-Taf interaction based on location in the complex.   B.  The Sp1 activation 

domain contacts Taf4, while the DBD again contacts Taf4 but also Taf1 and Taf6.  C.  the c-Jun DBD selectively 

contacts Taf6.  Note that DNA was actually not included in these binding assays, so the existence of activator DBD 

contacts with TFIID may be altered in that physiological context.  Any conformational change happening in TFIID 

as a result of activator contact may occur only in the presence of core promoter DNA, a possibility that so far remains 

untested.  Importantly, this study did not address the individual Taf domains involved in TFIID-activator interaction.

Nevertheless this study is the only one besides that of Garbett et. al., 2007 that addresses activator-Taf interaction 

within the context of TFIID.                
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There is already a strong basis for activator-mediated conformational changes in 

coactivator structure.  Perhaps the best example comes from low-resolution analysis of 

the Mediator complex in the absence and presence of several different activators and the 

RNA Pol II CTD (Naar et al., 2002; Taatjes et al., 2002; Taatjes et al., 2004).  Activator-

specific conformations were observed, consistent not only with interaction being 

achieved via different Mediator subunits, but also with potentially diverse functional 

outcomes within activator- and gene-specific transcription.  Accordingly, EM difference 

mapping showed that c-Jun, Sp1, and p53 activators, which engage in binary interactions 

with only partially overlapping subsets of Tafs, localized to distinct sites in TFIID (Liu et 

al., 2009).  In contrast to the Mediator studies, none of these activators induced dramatic 

conformational changes in TFIID comparable to those observed in activator-Mediator 

interaction.  As summarized in Figure 1.7, these results regarding activator-TFIID 

interaction are surprising in some ways, but there are also technical limitations that could 

be influencing the interpretation of results.  First, images were obtained from fixed and 

negative stained samples in low resolution.  Harsh sample preparation could have 

disrupted conformational characteristics of TFIID, and subtle alterations could have 

escaped detection at the resolution achieved.  Second, it is conceivable that TFIID 

interaction with core promoter elements or chromatin could contribute to conformational 

differences while in presence of activators.  In other words, activators or other binding 

surfaces could synergize to obtain the final allosteric effects on the complex.  Obviously 

this is the more physiological context, but neither DNA nor chromatin was used for 

analysis of TFIID binding with c-Jun, Sp1, or p53. 
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So while one must be careful not to trivialize the existing studies and findings, 

much of the current body of knowledge of activator-TFIID interaction suffers from a 

common weakness; absence of one or more components that would be found at genes in 

cells.  Investigation of interactions using isolated Tafs instead of the complex is just as 

perilous as studying the complex in the absence of DNA or chromatin, or even additional  

factors like TFIIA.  One might say that what has been missing is a combined approach 

not reliant upon one particular methodology and/or derivatives thereof, but instead the  

use of techniques of genetics, biochemistry, cell biology, and structural biology in a 

complementary way.  This is a formidable undertaking but it actually has been 

demonstrated in other contexts; namely in defining mechanism(s) of bacterial activator-

RNA Polymerase interaction.  Once again I will use bacterial transcription to illustrate 

the diversity in how these interactions can be achieved, and suggest how this information 

might be applied to direct a cohesive strategy for characterizing activator-TFIID 

cooperation in eukaryotes.    

 

Additional Paradigms from Bacterial Models 

In E. coli, roughly 300 transcription factors can directly regulate some of the 2000 

different promoters in the genome (Browning and Busby, 2004).  This regulation is 

accomplished by direct interaction of the activators with ~8 potential isoforms of theholo-

RNA polymerase, each differing on the basis of the σ factor they contain.  Some genes 

use just one transcription factor to up-regulate polymerase activity on the promoter.  This 

regulatory event is referred to as ‘simple activation’ and can be further categorized into 

three basic mechanisms (diagrammed in Figure 1.8).  In class I activation, the binding 
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Figure 1.8  Simple Activator-Coregulator Interactions as exemplified by bacterial activator-RNA Polymerase

contacts.  Most situations involve a stabilization or ‘recruitment’ of the five subunit polymerase by activator to 

the typical core promoter elements UP, -35, and -10.  A.  Class I activation:  direct protein-protein interaction

between activator and the # polymerase subunit.  B.  Class II activation:  as in A except the ! polymerase

subunit is directly contacted.  C.  Class III activation:  The event of DNA binding by activator induces a 

rearrangment in the core promoter DNA, which is more favorable for the association of polymerase.  Note that 

in contrast to the situation for activator-TFIID contact, here it is more common for a single activator to contact just

one subunit of the coactivator, in this case the RNA polymerase itself.  Adapted from Browning and Busby, 2004.

Compare these simplified examples with either of the three activator-TFIID interactions described in Figure 1.7.

The possibile mechanisms of activator-TFIID interactions are significantly expanded given the current state of 

knowledge.    
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Figure 1.9  Models for independent inputs from two transactivators in bacteria.  A.  One activator influences the

position of a second, which is then better positioned to engage Polymerase, for example by either class I or class II

mechanisms.  B.  Combined Class I and Class II mechanisms.  C.  Independent Class I contacts.  D.  Cooperative

binding of DNA by activators, which are subsequently able to stabilize Polymerase on the promoter by various 

mechanisms.  Many more mechanisms exist than those described in A-D, and combinations of these and other

mechanisms help to diversify transcriptional regulation in prokaryotes.  Since the variety of both transactivators 

and combinatorial control is greater in eukaryotes, it is to be expected that many more mechanisms of regulation of 

RNA Pol II function will be in place, even within the realm of activator-TFIID interaction.  For example, p53,

Sp1, and c-Jun, which bind distinct but overlapping sets of Tafs, often collaborate to regulate common target genes.

Again consider the sampled mechanisms shown here, the possibility of combinatorial regulation of/by eukaryotic

activators, and the mechanisms detailed in Figure 1.7 in considering the potential complexity of activator-TFIID 

interaction, within the context of a target gene in vivo; adapted from Browning and Busby, 2004.    
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site for the activator is located further upstream from the binding sites for σ in the 

promoter and activator will engage polymerase by contacting the α subunit(s).  Class II is 

similar except that the activator-binding site will be closer to the promoter, perhaps even 

overlapping with a σ binding site, and instead of α the activator will directly engage σ.  

In contrast to classes I and II, class III does not necessarily involve protein-protein 

interaction, but instead the DNA binding of activator within the promoter serves to 

change the DNA topology, allowing polymerase to associate more readily; this 

mechanism illustrates the important point that promoters are not merely simple linear 

double helices, since even in bacteria, chromosomal conformation can be used to regulate 

genome function.  

As is the case in eukaryotes, it is much more common for multiple bacterial 

activators to influence polymerase function, and composite ‘enhancers’ are frequently 

observed in prokaryotes.  To describe increased complexity a bit further, I should 

mention some of the known mechanisms by which two activators work together to 

influence promoter/polymerase function (Figure 1.9).  In ‘repositioning’ mechanisms, 

using cooperative protein-protein interactions, an initial activator can help adjust the 

movement of a second activator from inefficient stimulatory locations on DNA to more 

efficient ones.  A second type of ‘repositioning’ would involve a change in DNA 

conformation mediated by one activator, which serves to allow direct contact of the 

second activator with the polymerase.  As such the binding sites on the DNA do not 

actually change, but the position of the activator-DNA complex does.  Activation by two 

different proteins can strictly involve protein-protein interactions with the polymerase.  

For example, polymerase could be simultaneously contacted on the α subunit and on the 
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σ subunit, each interacting with different activators.  Or, since the α subunit is present as 

a homodimer within the enzyme, distinct activators could contact each monomer.  These 

possibilities represent combinations of simple Class I and II activation.  Of course 

amalgamation with Class III mechanisms can diversify these schemes, even with three or 

more functioning activators.   

Multiple activators can function even when only one is directly engaging the 

polymerase.  Protein-protein interactions between activators can increase the binding (i.e. 

cooperativity) of both to DNA, allowing them to stably associate with the enhancer and 

recruit the polymerase through a simple Class I or Class II mechanism (see (Griffith et 

al., 1986; Hochschild and Ptashne, 1986).  When one considers that repressors will often 

co-occupy regulatory sequences along with activators, a single activator could serve only 

to counteract a repressor, allowing net activation by a second activator through simple 

mechanisms.  These are just a few of the known mechanisms of activator function in 

bacteria and there are probably simple but undiscovered pathways awaiting discovery.  

By including schemes with additional activators or repressors, the variety can increase a 

great deal. 

In bacteria where polymerase subunits themselves provide all cellular 

coregulatory function, there are still multiple proteins that can interact with activators.  In 

addition, multiple domains within those two subunits can function in an activator-

dependent fashion.  One must reconsider that in eukaryotes there are dozens if not 

hundreds of coactivators whose contact with activators can be just as necessary for 

transcription as that of polymerase with activators in prokaryotic cells.  Many of those 

complexes include a dozen or more subunits that can provide interaction surfaces, as is 
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the case with Mediator (34 subunits) and TFIID (15 subunits).  Explicitly, consider again 

that TFIID has fifteen subunits and this is three times as many proteins as bacterial 

polymerase, any of which could bridge the complex to activators and most likely a higher 

effective number when one considers TFIID size and subunit domain architecture and 

stoichiometry within the complex (compare activator-TFIID interactions in Figure 1.7 

with bacterial activator-polymerase interactions described in Figures 1.8 and 1.9).  Also 

one must consider compartmentalization in eukaryotes.  There is emerging evidence that 

the nuclear rim and nuclear pore complexes can have important topological affects on 

gene location and transcription, above and beyond what DNA conformation can achieve.  

It is becoming apparent that coregulation by the nuclear pore in space and time can add a 

whole new level of complexity as opposed to just considering the chromosomal DNA as 

‘free-floating’ within the nucleus (Casolari et al., 2005; Casolari et al., 2004).  Precise 

nuclear locales may contain conformationally constrained ‘transcription factories,’ whose 

formation, composition, and location may be guided by activator-coregulator interactions 

(Ahmed et al.; Ahmed and Brickner, 2007; Brickner et al., 2007; Brickner, 2009; 

Brickner and Walter, 2004; Luthra et al., 2007; Martin and Pombo, 2003; Menon et al., 

2005). 

The prokaryotic system is greatly simplified but this in no way suggests the gains 

in knowledge were easy.  In fact, it is the use of facile, high-throughput microbial genetic 

techniques coupled with powerful biochemistry and structural biology that allowed the 

elaboration of the models for activator-polymerase interaction presented above.  While 

the use of biochemistry and cell fractionation in systems such as Drosophila, Xenopus, 

and mammalian cell culture can rival E. coli or other microbes, the genetics of these 
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metazoan systems are more cumbersome and time-consuming.  Therefore it is more 

challenging to apply lessons learned from exercises in biochemistry and re-test them to 

observe changes in transcription in vivo.  The advent of RNAi and transgenic animals has 

helped this to a degree but these techniques are neither foolproof nor trivial to implement 

effectively.   

 The key to understanding activator-coregulator interactions in any model system 

is to have identified a candidate gene whose regulation can be easily studied and is 

dependent upon both genetically defined activators, and also on specific coregulators.  It 

is important to confirm direct activator and coregulator association with the candidate 

gene regulatory sequences, both in vitro and in vivo.   

In vivo investigation of Taf function in human cell lines and flies has been 

restricted to a very small sampling of mutant alleles (Georgieva et al., 2001; Hisatake et 

al., 1993; Kaufmann et al., 1996; Metzger et al., 1999; Pham et al., 1999; Sauer et al., 

1996; Suzuki-Yagawa et al., 1997; Zhou et al., 1998).  Unfortunately, targeted deletion of 

Tafs in mice repeatedly led to embryonic lethality, restricting the potential of this system 

for detailed investigation (Guermah et al., 2003; Indra et al., 2005; Metzger et al., 1999; 

Mohan et al., 2003).  Mutations in fly Taf4, Taf6, and Taf9 indicated gene specific 

transcriptional defects in vivo, with important contributions to development and evidence 

for direct affects (Pham et al., 1999; Zhou et al., 1998).  However, large-scale effects on 

transcription genome-wide have not been reported.  Cell lines containing temperature 

sensitive mutations in hamster Taf1 or human Taf2 indicated a very important function 

for the proteins in cell cycle progression from G1 to S or from G2 to M, respectively 

(Kaufmann et al., 1998; Suzuki-Yagawa et al., 1997).  These cell-cycle defects were 
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attributed to direct participation of Tafs in transcription of cyclin genes, with some 

indications that an affect on activator-Taf interactions could be involved.  Somewhat 

surprisingly, the Taf1 mutant cell line demonstrated mis-regulation of 18% of expressed 

genes at the non-permissive temperature, considerably less than what would be expected 

given the results of various in vitro transcription experiments (O'Brien and Tjian, 2000).  

Regarding genetic dependencies on Tafs in TFIID, as mentioned previously there were 

already indications that certain activators could function in a Taf-independent manner in 

vitro, even when driving transcription from the same core promoter as Taf-dependent 

activators (Oelgeschlager et al., 1998).  Collectively these results were somewhat difficult 

to expand upon, given the relatively limited number of mutant forms of Tafs under 

examination.   

Yeast has been used most extensively for in vivo investigation of Taf function.   

The earliest studies indicated that all Taf encoding genes are essential in yeast (Poon et 

al., 1995; Reese et al., 1994), but this was used as an asset to direct construction of 

temperature conditional mutants in several different Tafs (Apone et al., 1998; Apone et 

al., 1996; Shen and Green, 1997; Walker et al., 1996; Walker et al., 1997).  These studies, 

along with others based on different strategies to deplete cellular Taf protein levels, again 

showed that Tafs are not generally required for mRNA gene transcription (Moqtaderi et 

al., 1996a; Walker et al., 1996).  However, the use of other distinct mutants subsequently 

showed that the bulk of mRNA gene transcription in fact does depend on Tafs (Holstege 

et al., 1998; Moqtaderi et al., 1998; Shen et al., 2003).   The seeming inconsistencies 

between the results of experiments utilizing different Taf mutant alleles were difficult to 

reconcile, especially given the paucity of corresponding biochemical data.  
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Mechanistically, all that had been made clear was that certain genes require Taf function 

for transcription and other genes do not.  Yeast is the eukaryotic model system with the 

most technical similarities to bacteria, including facile genetics, so it is ironic that TFIID 

biochemistry in yeast lagged behind the genetic understanding, especially in comparison 

to the animal systems where genetic information about TFIID function is greatly 

exceeded by the biochemistry. 

 

TAF Dependent and Independent Transcription 

The studies in yeast that showed broad dependencies on individual Taf function 

focused on those Tafs (5, 6, 9, 10, and 12) that were subsequently shown to be shared 

with the SAGA histone acetylase/deubiquitinase complex (Grant et al., 1998), which is 

also a direct target of activators (Bhaumik et al., 2004; Brown et al., 2001).  These facts 

are inconsistent with genetic analyses of SAGA, which have shown that the genes 

encoding nearly all non-Taf SAGA subunits are non-essential, and deletion often has 

minimal impact on overall mRNA gene transcription (Bhaumik and Green, 2002).  

Therefore it has been speculated that essential Taf function must reside in TFIID, unless 

there are undiscovered Taf-containing complexes in yeast besides TFIID and SAGA.  

Interestingly, many genes that exhibit genetic dependencies on one complex do not have 

dependencies on the other, although the transcriptional deficit in the absence of SAGA is 

typically less profound (Huisinga and Pugh, 2004; Lee et al., 2000; van Werven et al., 

2009).  Genes dependent on both SAGA and TFIID do exist though (van Oevelen et al., 

2005; Zhang et al., 2008).  In any case, the focus on SAGA and other chromatin-directed 

coregulators and mediator has shifted attention away from the concept of TFIID as a 
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direct activator target.  Nevertheless, current thinking suggests that TFIID-Taf function is 

required for transcription of the majority of genes, most of which are somewhat 

arbitrarily described as the ‘housekeeping’ variety.  On the other hand SAGA is generally 

thought to provide coregulatory function on inducible genes that are transcribed under 

specific environmental conditions.   

The basis of TFIID dependence is defined by exhibition of reduced transcription 

upon Taf inactivation and also by physical occupancy of target promoters by Tafs in 

ChIP experiments.  Taf–independent promoters will exhibit a much higher occupancy by 

TBP relative to the occupancy by Tafs as scored by ChIP, while Taf-dependent promoters 

will have similar quantities of TBP and Tafs (Kuras et al., 2000; Li et al., 2000).  These 

results are thought to indicate the presence of TBP as a component in TFIID (Taf-

dependent genes), whereas TBP can exist on promoters as a component of other 

complexes (on Taf-independent genes).  TBP regulation cannot be the sole basis on 

whether or not a gene is Taf-dependent or independent.  Higher organisms also exhibit 

TBP-independent transcription; in fact a set of so-called TBP-related factors, or TRFs, 

exist in cell type and developmental specific patterns and are critical for expression of 

functionally related subsets of genes (Crowley et al., 1993; Hansen et al., 1997; Kopytova 

and Krasnov, 2007; Rabenstein et al., 1999).  TRFs exist in complexes distinct from 

classical TBP-containing TFIID.  The most dramatic example involves mouse TRF3, 

which is important for differentiation of myoblasts into mature myotubes, or muscle 

fibers.  TRF3 is directly involved in the myotube-specific transcriptional program.  

Coincident with differentiation, TRF3 becomes associated in a stable complex with Taf3, 

while  surprisingly at the same time cellular levels of most other Tafs drop to near 
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undetectable levels.  The TRF3-Taf3 complex appears to serve as a coactivator for the 

muscle-specific MyoD activator through direct MyoD-Taf3 interactions (Deato et al., 

2008; Deato and Tjian, 2007, 2008; Hu et al., 2008).  A similar phenomenon of declining 

TFIID-Taf levels appears to occur in another differentiation event, the transition from 

hepatoblast to hepatocyte.  Furthermore, Mediator complex levels also decline during this 

tissue differentiation step (D'Alessio et al., 2009).  Collectively, these data have led to the 

hypothesis that TFIID is generally involved in mRNA gene transcription within cell types 

containing greater proliferative potential, and then becomes insignificant in 

differentiated, post-mitotic cells.  It is notable that TFIID function in vivo has mostly 

been studied using transformed cell lines, the Drosophila embryo, and logarithmically 

dividing yeast cultures, contexts where the overall dependency on TFIID would be very 

high according to this hypothesis.  However, the continual presence of one particular Taf, 

Taf3, is critical for myotube function, still consistent with the central importance of Tafs 

in transcription within all eukaryotic cells.  Therefore, although we have enough 

examples to place universality of each Taf’s function in doubt, their physiological 

importance remains central to life.  From one perspective, the importance of Tafs has 

only been solidified, since their regulated and timely removal can be as important to 

cellular identity as their ongoing function.               

It seems that the yeast work that did identify examples of Taf-dependent 

transcription would have indicated the genetic systems useful for an in vivo dissection of 

activator-TFIID interaction.  Unfortunately, many of the best-studied and potentially 

useful genetic systems, those with characterized activators, cis-elements, and core 

promoters, fall into the Taf-independent category (Kuras et al., 2000; Li et al., 2000; 
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Moqtaderi et al., 1996a).  Early differential display experiments performed by Michael 

Green’s lab indicated that transcription of G1/S and G2/M cyclin genes were TFIID-Taf 

dependent (Shen and Green, 1997; Walker et al., 1997).  This was not substantiated by 

ChIP, a technique quite new at that time, thus indirect affects were not excludable.  Those 

genetic systems are also technically challenging to study since synchronous cell 

populations are needed to observe cyclical transcription and factor-promoter association, 

a characteristic that slowed subsequent analyses of Taf involvement therein (Spellman et 

al., 1998).  Ribosomal Protein Genes, or RPGs, also showed up in Green’s studies (Shen 

and Green, 1997).  Study of microarray data indicated that RPG transcripts were over-

represented amongst those mRNAs genetically dependent on TFIID Tafs.  About sixty 

percent of RPGs required Taf1 function for wild-type transcript levels, as compared to 

twenty percent of all other transcripts (Holstege et al., 1998).  Subsequent ChIP studies 

by the Green and Struhl labs showed that RPGs have approximately equal TFIID-Taf and 

TBP occupancy, indicating that TBP is present there as a component of the TFIID 

complex (Kuras et al., 2000; Li et al., 2000).  This work established RPGs as a candidate 

genetic system to study the possible direct roles of TFIID on specific mRNA gene 

transcription.         

 

Yeast Ribosomal Protein Genes as a Context for Studying TFIID Function 

The reason for a strong dependence on TFIID function in RPG transcription was 

initially considered to revolve around TBP function, because a majority of the 137 RPG 

promoters lack a ‘consensus’ TATA box (Mencia et al., 2002).  Several lines of evidence 

pointed to a linkage between TFIID function and absence of a TATA box.  The 
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aforementioned in vitro transcription studies showed that a TATA-less core promoter 

template requires Tafs for in vitro transcription, even in the absence of activator (Pugh 

and Tjian, 1991; Smale et al., 1990).  This is probably because Tafs possess the ability to 

directly bind other promoter DNA elements (Chalkley and Verrijzer, 1999; Verrijzer et 

al., 1994).   

This is more difficult to test in yeast, because to date no DPE/MTE/XCPE/INR 

elements (see Figure 1.1) have been defined in this organism.  Perhaps such elements 

exist but there is no available biochemical data such as chemical or enzymatic footprints 

to suggest how TFIID physically associates with yeast promoters in the absence of 

TATA.  Informatics approaches that make use of genome sequence and microarray or 

deep-sequencing data have not shed any light on this matter.  Nevertheless genetic 

experiments showed that addition of a ‘consensus’ TATA box to a gene with a TFIID 

dependent, TATA-less promoter converted that gene to TFIID independence.  Other 

studies confirmed this correlation.  Mechanistically, the reason(s) behind this remained 

obscure owing to the poor definition of yeast core promoter sequences.   

It was perhaps experimentally less challenging to pursue the relationship between 

activators and TFIID dependence.  The basis for a yeast gene’s TFIID dependence must 

in some ways be linked to the activator for several reasons.  Regulons activated by well-

studied proteins such as Gal4 and Gcn4 are transcribed independent of Taf function 

(Kuras et al., 2000; Li et al., 2002; Moqtaderi et al., 1996a).  Strikingly, these fairly 

strong activators cannot always function when used in conjunction with a Taf-dependent 

core promoter (Shen and Green, 1997).  These results unfortunately indicate that the 

benefits of studying these exceptionally well-characterized activators/genes cannot be 
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extended to TFIID.  However, besides the TATA-less nature of the majority of RPG core 

promoters, the Rap1 activator also directly binds most of those genes (Klein and Struhl, 

1994; Lascaris et al., 1999; Lieb et al., 2001).  The Struhl lab showed that artificial 

placement of Rap1 binding sites from an RPG directly upstream of a Taf-independent 

core promoter resulted in Taf-dependent transcription and increased Taf occupancy on 

these chimeric genes (Mencia et al., 2002).  Struhl expanded on these observations 

considerably and proposed that Rap1-mediated increases in TFIID occupancy could 

occur through several mechanisms.  Rap1 might directly recruit TFIID to RPG promoters 

or recruit chromatin-directed coactivators that modify nucleosomes, leading to their 

removal, thereby allowing passive association of TFIID with the cis-linked promoter.  

Owing to the partial core promoter independence of this phenomenon, it seemed logical 

that Rap1 and TFIID function together by way of direct protein-protein interactions with 

Tafs.  The functional link between enhancer and core promoter would occur by 

interaction between enhancer-bound Rap1 and promoter-bound TFIID.  This actually 

became the first reported case of activator-specified yeast TFIID function in vivo.  

Description of TFIID function in the yeast Ribosomal protein gene system offered the 

promise of getting the most information from a combined, thorough genetic and 

biochemical investigation.   

 

Direct Rap1-TFIID Interaction 

Once again, though a more informative series of genetic observations had been 

made, description of any biochemical mechanism was lacking.  The findings of Struhl 

actually supposed a direct genetic involvement of Rap1 through manipulation of the Rap1 
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binding sites.  Gain of function was achieved using a consensus RPG Rap1 binding site 

because its presence created a TFIID-dependent promoter; loss of function was observed 

by point mutations in the Rap1 binding site.  The direct role of Rap1 in TFIID interaction 

was not confirmed using any loss of function mutants directly affecting Rap1 protein 

function.  Similarly, the methodology used to test and confirm TFIID-Taf dependence 

was not appropriate for indicating the specific reason(s) for TFIID involvement.  Taf1 

protein was depleted from the cells and effects on transcript levels were subsequently 

measured (Mencia et al., 2002).  Elimination of Taf1 protein most likely causes a 

destabilization of the entire complex, although Struhl’s study did not address the affect of 

Taf1 depletion on levels of any cellular proteins, including Taf1.   

To get at the mechanism behind these genetic interactions, the next step was to 

identify if physical interaction occurs between the proteins, and to define the Rap1 

surfaces and the Taf proteins and domains involved.  Such information would in turn 

allow an additional genetic characterization of the physical interaction.  Demonstration of 

physiological relevance via directed genetic studies would warrant additional 

biochemical characterization.  The situation could be examined much in the way a similar 

problem would be pursued with E. coli activator-polymerase interactions.   

I should make it explicitly clear that there are other proteins besides Rap1, TFIID, 

and the other basal transcription factors that contribute to RPG transcription.  First, Rap1 

doesn’t bind to all 137 RPG enhancers.  Instead Abf1, or in a few cases Reb1, appear to 

carry out functions similar to Rap1 (Diffley and Stillman, 1989; Ju et al., 1990; Yarragudi 

et al., 2004; Yarragudi et al., 2007).  Second, other transactivators contribute broadly to 

RPG transcription including the Fhl1/Ifh1 dimer, Sfp1, and Hmo1 (Hall et al., 2006; 
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Lempiainen et al., 2009; Marion et al., 2004; Martin et al., 2004; Rudra et al., 2005; 

Schawalder et al., 2004; Wade et al., 2004).  RPG transcription is very tightly and 

coordinately controlled according to growth rate, which is influenced by environmental 

conditions such as nutrient quality/availability (Rudra and Warner, 2004).  RPG 

transcription can approach 50% of total Pol II output during rapid growth or almost 

completely cease when cultures approach stationary phase or conditions of starvation 

(Warner, 1999).  Rap1 occupancy appears fairly consistent regardless of transcription 

rate, while the other transfactors appear to dissociate from the enhancer during low 

transcription in response to signal transduction pathways (Berger et al., 2007; 

Lempiainen et al., 2009; Marion et al., 2004; Martin et al., 2004; Rudra et al., 2005; 

Schawalder et al., 2004; Wade et al., 2004).  This has been taken to suggest that these 

multiple alternative transcription factors, and not Rap1, are the principal drivers of RPG 

transcription activation.  Another piece of circumstantial evidence supporting this 

hypothesis is that Rap1 itself is considered a weak activator, since when fused to a 

heterologous DNA-binding domain such as LexA or Gal4 DBD, it does not behave like 

Gcn4 or Gal4 activation domains, for example (Zhao et al., 2006).  The continued 

presence of Rap1, its apparent weak activation potential, and the eviction of the other 

transfactors concomitant with decreased transcription could be taken to indicate their 

heightened importance relative to Rap1.  Unfortunately, there is little information about 

the amount of stimulation of RPG transcription contributed by these proteins.  Moreover, 

there exists the possibility that Rap1 functionality is not independent of RPG 

transcription rate; for example Rap1 could be altered by PTMs in such a way that as yet 

unidentified properties, but not DNA-binding, are stimulated or inhibited in response to 
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changing environmental conditions.  Indeed Rap1 is known to be phosphorylated (Klein 

and Struhl, 1994; Tsang et al., 1990).  It could be that Rap1 directly influences the 

properties of the other transfactors, for example by stabilizing their binding, but to date 

there is no evidence of direct protein-protein interaction between Rap1 and Ifh1/Fhl1, 

Sfp1, or Hmo1 (Rudra et al., 2007).  There is also little compelling evidence to suggest 

functional interactions between the alternate RPG transfactors and TFIID, in contrast to 

the connection between Rap1 and TFIID.  However, there are other coregulators present 

and apparently functional on RPG enhancers and promoters, and their function could be 

tied to that of Fhl1/Ifh1, Sfp1, and Hmo1.  An Rpd3 deacetylase-containing complex can 

repress RPG transcription rates as part of the response to environmental stress 

(Humphrey et al., 2004).  In contrast, the Esa1 acetylase-containing NuA4 complex 

positively regulates transcription, is required for full Taf and TBP occupancy, and also 

dissociates from the enhancer during conditions of reduced transcription (Mencia et al., 

2002; Reid et al., 2000; Rohde and Cardenas, 2003).  Genome-wide ChIP on chip studies 

indicated that proteasomal components also occupy RPG enhancers, consistent with 

involvement of the proteasome complex in transcription (Auld et al., 2006).  The 

proteasome could conceivably mediate transfactor and coregulator turnover on RPGs, 

perhaps with an accelerated turnover rate contributing to the decreased occupancy of the 

factors mentioned.  Inhibition of the TOR signaling pathway is commonly associated 

with downregulation of RPG transcription and loss of Ifh1/Fhl1, Sfp1, Hmo1, and NuA4 

(Powers and Walter, 1999).  A summary of the inputs into RPG transcription from 

activators and coregulators is shown in Figure 1.10.   
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Figure 1.10:  Structure of Yeast  Ribosomal Protein Genes and factors regulating their transcription .  A.  Notable 

characteristics of Ribosomal Protein Gene DNA include an absence of obvious core promoter elements.  Instead,

a well positioned nucleosome overlaps slightly with DNA containing the transcription start site, and an ~220 base

pair nucleosome-deficient region extends 5’ of the TSS, where a dyad Rap1 binding site is contained within another 

well-positioned nucleosome.  Importantly, Rap1 efficiently binds to this nucleosomal Rap1 enhancer element 

(Koerber et. al., 2009).  B.  Factor association during conditions of nutrient deficiency and low level or absent

RPG transcription.  Two molecules of Rap1 are  constitutively bound to its nucleosomal enhancer element found in 

many RPGs, and Fhl1 is also commonly found in or around the nucleosome free region, although its exact mechanism 

of association is unknown.  The Crf1 repressor is engaged with Fhl1.  The Rpd3 histone deacetylase complex is 

selectively present under these conditions although the substrate is unknown.  C.  Conditions of high level RPG 

transcription, where the 137 genes account for ~50 % of Pol II initiation events genome-wide.  In addition to Rap1 

and Fhl1, the Ifh1 protein has replaced Crf1 for binding to Fhl1, and Sfp1 and Hmo1 associate in or around the 

nucleosome-free region.  Like Fhl1, their exact mechanism of binding remains unclear.  The NuA4 Histone H4 

acetylase and the TFIID complex are physically associated and both are genetically required for high-level RPG 

transcription.  There also evidence for physical association of the Proteasome complex or subcomplexes and it is 

genetically required for transcription as well.  Note that the only known protein-protein interactions are between Fhl1 

and its binding partners, and Rap1 and the TFIID complex.  Indeed, Rap1-TFIID interaction is the only known 

direct activator-TFIID interaction documented in budding yeast.  Note that the potentially flexible configuration 

of the nucleosome-free region could be important for facilitating the interaction between upstream bound Rap1 

and TFIID localized around the transcription start site.             
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The overall relationship between Rap1, the other activators, Rpd3, NuA4, the 

proteasome, and TFIID is not at all clear since the exact role that each of these factors 

play in RPG transcription is unknown;  the connection between Rap1 and TFIID remains 

the best described.  However, because there are clearly other important transfactors and 

coregulators, it is unlikely that overall stimulation of transcription occurs in a way strictly 

analogous to simple bacterial class I, II, or class III activation mechanisms, though with 

respect to the contribution of Rap1 and TFIID, these mechanisms may still be relevant.  

Our lab began testing this possibility by looking at genetic dependencies on specific Rap1 

domains for TFIID-driven RPG transcription.  We also began to characterize the 

possibility and mechanism of physical interaction between Rap1 and TFIID (Garbett et 

al., 2007). 

 Importantly, in our studies the possibility of contributions from factors other than 

Rap1 and TFIID was minimized through the use of an artificial transgene composed of a 

minimal RPG enhancer fused to a TFIID-independent core promoter (Garbett et al., 2007; 

Mencia et al., 2002).  Although the mechanism of Fhl1/Ifh1/Sfp1/Hmo1 association with  

RPGs is unclear, if they indeed bind via their own cis-elements then their contribution to 

transcription of our chimeric reporter gene is theoretically zero.  Furthermore, eliminating 

the contribution of the other activators might also minimize contribution from the NuA4 

complex and the Proteasome.  Our lab confirmed Struhl’s observation that the minimal 

41 base pair Rap1 enhancer from RPS8A, which contains just two tandem 17 base pair 

Rap1 binding sites, is sufficient to confer TFIID occupancy on the otherwise TFIID-

independent PGK1 core promoter.  Moreover, Rap1 itself physically occupied this gene, 

while specific Rap1 domains within the C-terminus were needed for full transcription of 
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the chimeric gene and authentic RPGs.  Using immunodepletion and partial reconstitution 

of in vitro transcription, we confirmed the importance of the Rap1 protein and the TFIID 

complex in transcription of the chimeric reporter gene.  Simultaneous depletion of Rap1 

and TFIID from the transcription-competent extract abolished activity.  Strikingly, 

addition of purifed Rap1 and TBP back to the extract did not rescue transcription.  

However, in the TFIID- and Rap1-depleted extracts, addition of Rap1 and TFIID restored 

activity to full levels.  This experiment essentially recapitulated the very first results that 

indicated coactivator function of Tafs, but shown here in the context of yeast RPG 

transcription.  The most important conclusion of this experiment is its indication that 

Rap1 uses Tafs to coactivate Rap1-driven RPG transcription, since add back of TFIID but 

not TBP restored transcription in the depleted extract.  Rap1 interacted with the TFIID 

complex in binding assays.  This result indicated direct interaction between Rap1 and the 

TFIID complex.  At the time, this was the first report of an activator interaction with the 

isolated TFIID holocomplex, since all prior studies had instead measured activator 

interaction with isolated Tafs or subcomplexes.  Consistent with the importance of Rap1 

C-terminal domains for transcription noted above, the Rap1 C-terminus was also 

important for in vitro binding to TFIID.  Despite Struhl’s prediction that Rap1 invoked 

recruitment of TFIID to RPG promoters, in the absence of the Rap1 C-terminus TFIID-

Taf occupancy on the chimeric Rap1-driven gene was not markedly decreased in vivo as 

scored by ChIP.  But, consistent with reduced in vivo transcription in the absence of the 

Rap1 C-terminus, Pol II occupancy was low.  These results suggest that Rap1 may affect 

TFIID function subsequent to its association with RPG promoters, perhaps by modulating 

the ability of TFIID to stimulate pre-initiation complex formation or function.  This result 



 68 

therefore indicates a heretofore-unrecognized activator-dependent mechanism of TFIID 

function, because transcription is reduced while TFIID occupancy remains consistent in 

the absence of Rap1 function, arguing against Rap1-mediated TFIID recruitment to RPG 

promoters.    Finally, we confirmed that Rap1 contacts three specific Tafs in vitro; Taf4, 

Taf5, and Taf12.  As such, genetic analyses of these Tafs promised to shed more light on 

the mechanism of Rap1-TFIID interaction and TFIID function in RPG transcription.  I 

characterized interaction of Rap1 with Taf12 in considerable detail (Garbett et al., 2007). 

 

Initial Study of Rap1-TFIID Genetic and Physical Interaction 

The initial work of Struhl provided a nice series of observations using purely 

genetic methodology, which as a sole strategy is always at risk of over-interpretation due 

to potentially misleading indirect affects.  It would have been difficult to extend the 

initial characterization of Rap1-TFIID genetic interactions without some supporting 

biochemical data, which would in turn allow additional iterative rounds of enlightening 

genetic and biochemical analyses.  This held promise to us because of our interest in 

TFIID, and our ability to use the yeast system for both genetics and biochemistry.  Other 

researchers were interested as well, recognizing these studies as the first detailed 

characterization of activator-TFIID interaction in yeast.  Fortunately we were largely able 

to recapitulate the major observations of Struhl’s work, confirm that there is a direct 

biochemical basis behind his genetic observations, use genetics along with biochemistry 

to more precisely define the Rap1 domain(s) mediating interaction with TFIID, provide 

clues about the potential contribution of three specific TFIID-Taf subunit’s involvement, 
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and allow some speculation about the mechanisms of Rap1-TFIID binding on RPGs and 

the initiation steps affected by the interaction in vivo (Garbett et al., 2007).   

 If there was a weakness of our work prior to initiation of the experiments 

described in this dissertation, it was the failure to provide genetic evidence about the 

specific Taf functionalities mediating the interaction.  While removal of specific Rap1 

protein regions had affects on in vitro interaction with TFIID, affects on transcription in 

vivo, and defective post-TFIID binding PIC formation/function in vivo, there was no 

equivalent information about individual Taf involvement other than the in vitro 

interactions. I did perform a detailed characterization of Taf12 and identified specific N-

terminal residues required for in vitro interaction with Rap1.  However, this was 

somewhat ambiguous given existing genetic information about Taf12, because sequence 

encoding this protein region is neither required for viability nor is its removal associated 

with any loss of growth phenotype (Moqtaderi et al., 1996b).  If the Taf12 domain were 

truly required for a Rap1-TFIID interaction that drives high level RPG transcription, 

which is in turn essential for rapid cellular growth, we would expect that abolishing 

Rap1-Taf12 interaction would have an immediate and obvious growth phenotype.  

Clearly, that wasn’t the case so we had to consider some additional possibilities.  First, 

the in vitro mapping of interaction domains might not reflect the true nature of Rap1-

Taf12 interaction.  Second, a specific domain or domain(s) in Taf12 might be redundant 

with parts of other Tafs.  Taf4 and Taf5 were good candidates since these TFIID subunits 

were identified as Rap1 binding partners at the same time as Taf12.  Because the 

possibility of redundancy was easier to test, it was chosen as a means to address our 
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deficient understanding of genetic and biochemical interactions between Tafs and Rap1 

in Rap1-TFIID mediated RPG transcription. 

 A series of assumption and predictions had to be considered before initiating 

studies characterizing putative Rap1 Binding Domains, or RBDs, in Taf4 and Taf5.  First, 

we expected that one or more unique domains in each protein allow the interaction with 

Rap1.  Proteins are modular with multiple domains, and individual domains often provide 

distinct components of overall protein function.  As an example, within Taf5 there are the 

C-terminal WD repeats which are known to mediate direct interaction with the Taf6/Taf9 

heterodimer and also possibly contribute to methyl-lysine recognition (Dynlacht et al., 

1993; Fitzgerald et al., 2006).  At the Taf5 N-terminus there are the so-called N-terminal 

domains, or NTDs (1 and 2), that are speculated to be involved in Taf5 dimerization 

(Bhattacharya et al., 2007; Romier et al., 2007).  Thus we have to think of potential Rap1 

interaction surfaces in several ways; certain Taf domains are clearly involved in TFIID 

integrity via Taf-Taf interactions, such as Histone fold domains, and these are important 

for TFIID formation and stability, while other Taf domains are responsible for allowing 

interactions with proteins that are not integral TFIID components, such as Rap1 (Lawit et 

al., 2007; Yatherajam et al., 2003).  Individual domains could also function for TFIID 

DNA binding or enzymatic activity (Chalkley and Verrijzer, 1999; Mizzen et al., 1996).  

Of course there could be the complication of shared overall functionality between 

multiple distinct domains.   

My objective was to identify the smallest portions of each Taf responsible for in 

vitro interaction with Rap1.  The logic was that this would then allow me to target a very 

specific locale of the overall coding sequence for targeted mutagenesis, in an attempt to 



 71 

test the physiological significance in vivo.  Unfortunately at the time my project was 

initiated there was very little structural data that could be used to guide site-directed 

mutagenesis studies.  As such I had to begin with a semi-random strategy to analyze 

structure and function of Taf4 and Taf5, with respect to the interaction with Rap1.  One 

speculation coming from my studies on Taf12, our previous studies on Taf4, and 

structural information about the Taf4/12 heterodimer was that since the Taf12 histone 

fold domain did not appear to engage Rap1 but did engage Taf4, then perhaps the Taf4 

domains responsible for engaging Taf12 would not be involved with Rap1 interaction 

(Garbett et al., 2007; Thuault et al., 2002).  But again except for Taf4/12 histone fold 

domains, there was no structural information available (Werten et al., 2002).  However, 

Taf sequences are fairly well conserved in evolution at the amino acid-level, and because 

conservation of sequence often indicates conservation of function, I could use deletion 

and point mutation of conserved coding residues to guide my analyses of Taf domain 

interaction with Rap1.  By focusing on a minimal contiguous section of amino acid 

sequence, I hoped to only affect Taf function pertinent to interaction with Rap1 and not 

other processes such as TFIID integrity. 

 A second prediction relates to the importance of RPG transcription to cellular 

growth capacity. To grow and divide at their maximum rate yeast cells must synthesize 

2000 ribosomes per minute.  RPG transcription rates are limiting for ribosome abundance 

in yeasts, even though one of every three mRNAs is from an RPG.  RPG mRNA 

stabilities are also considerably lower than the average non-RPG transcript.  Thus, 

meeting demand for ribosomes requires an enormous amount of transcription of the 137 

genes that encode the 79 ribosomal proteins (Gorenstein and Warner, 1976; Warner, 
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1999).  Disruption of Rap1-TFIID interaction through targeted mutagenesis of Rap1 

binding domain-coding sequence in Tafs should have an obvious negative effect on 

cellular growth.  If a particular Taf RBD-targeted mutation does cause a strong negative 

growth phenotype, then the degree of growth defect should be commensurate with a 

reduction in RPG transcription relative to wild type.  Moreover since Rap1 and TFIID 

directly bind most RPGs, and all 137 genes are coordinately regulated, I expected that 

mutations affecting Taf RBD function should reduce transcription of the whole gene 

family.   

 I planned a back and forth application of genetic and biochemical approaches.  

Our hypothesis predicted that mutations putatively affecting Taf RBD function should be 

associated biochemically with proteins possessing altered affinity of binding to Rap1, in 

vitro and in vivo.  Test of Rap1-Taf binding in vitro would utilize conventional protein-

protein interaction assays with purified recombinant Rap1 and Tafs; Rap1-TFIID binding 

would use TFIID purified from Taf-RBD mutant yeast strains.  Affect on Rap1-TFIID 

binding might also be measured using immunoprecipitation and western blotting.  

Importantly, I planned to test for off-target affects on TFIID stability, potentially 

introduced by targeted RBD mutation, by examining Taf-Taf interaction and/or TFIID 

complex integrity within mutant strains. 

 I should explain why a parallel dissection of both Taf4 and Taf5 was planned.  

This is due to the possibility of redundancy within TFIID for Rap1 binding, maybe due to 

a mechanism involving fractional contribution(s) from Taf4, Taf5, and Taf12.  Given the 

absence of phenotype in Taf12 mutants, it seemed that simultaneous alterations in each 

Taf-encoding gene might be needed to manifest a growth and transcriptional defect.  To 
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test this redundancy hypothesis, I planned to create yeast strains bearing mutations in 

multiple Taf-encoding genes and look for intensified reductions in growth rate, RPG 

transcription, and Rap1-TFIID interaction.   

 The possible roles of three different Tafs raised another hypothesis, that Rap1 

uses multiple independent domains as surfaces for interaction with unique Taf domain 

surfaces.  Although our previous genetic and biochemical analyses of Rap1-TFIID/Taf 

interactions indicated that both the DNA binding domain and C-terminus of Rap1 are 

involved, this work did not permit identification of a specific C-terminal domain.  

Actually, there are no less than 4 independent domains in the Rap1 C-terminus, only one 

of which has been purported to contain transactivation potential (Freeman et al., 1995; 

Hardy et al., 1992a).  Moreover, the most C terminal domain has a known role in 

chromosomal telomere length homeostasis through transcription-independent functions 

(Feeser and Wolberger, 2008; Lustig et al., 1990).  Telomere homeostasis is believed to 

have important relationships with cellular lifespan and growth properties (Bitterman et 

al., 2003).  The involvement of this so-called silencing domain in multiple cellular 

processes might serve as a relay between them.  In any case I wanted to describe the 

involvement of Rap1 domains in TFIID interaction in greater detail than we had 

previously done. 

 To summarize, the objectives of my project were to map segments of amino acid 

sequence in Taf4 and Taf5 that are bound by Rap1 in vitro.  I then wanted to subject the 

DNA sequence encoding these domains to truncation and deletion mutagenesis to 

determine if they are important to Taf function in cellular growth.  I next intended to 

attempt identification of amino acid substitutions within the RBDs associated with 
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Figure 1.11:  Rap1-TFIID interaction in target gene regulation.  A.  To study the possibility of direct

interaction between Rap1 and TFIID, as originally suggested by the widespread usage of both factors

on RP genes, the minimal Rap1 binding sites of the RPS8A gene were fused to a promoter segment

of the PGK1 gene.  This chimeric gene was introduced into yeast and scored for TFIID binding and

genetic dependence on TAF1.  TFIID binding was strictly dependent upon integrity of the Rap1 binding

sites, as seen by Struhl and colleagues previously (Mencia et. al., 2002).  Note that genetic dependence 

on Rap1 was independently verified as removal of the Rap1 C-terminus caused defective TFIID association 

with the reporter gene and defective transcription; authentic RPGs were also affected (Garbett et. al., 2007).  

Importantly, the use of the minimal reporter gene in all likelihood minimized, or more likely abolished, the 

contribution of other RPG transfactors, since the only RPG-related DNA sequence were the Rap1 binding 

sites, and use of the normally TFIID-independent PGK1 promoter minimized any potential relationship 

between TFIID and core promoter sequence motifs.  Furthermore, use of a naked DNA template in vitro 

transcription system recapitulated Rap1 and TFIID dependencies seen in vivo, suggesting that chromatin 

and chromatin-directed factors have a negligible impact on Rap1-TFIID interaction.  B.  Basic model for 

Rap1-TFIID interaction.  Rap1 bound to the enhancer directly contacts the TFIID complex.  This probably 

involves multiple domains in Rap1 since separate direct contacts are made with in the so-called Rap1 DBD, 

but also with the C-terminus, which contains no less than four separate domains.   The Taf4, 5, and 12 

subunits were implicated but the relevance of their contribution to interaction remained largely untested.  

Based upon gene architecture, it seems likely that the mechanism of Rap1-TFIID interaction involves 

significant rearrangement of DNA sequences in between the Rap1 binding sites  and the TFIID-bound 

promoter.  C.  Questions to be addressed by this dissertation project regarding the Rap1-TFIID interaction.                                      

A.
PGK1 Core Prom.

Rap1 Rap1
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with TFIID Binding

or Genetic Dependence.

Natural Rap1 Sites
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1
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conditional loss of growth phenotypes in yeast.  Carefully selected conditional mutant 

strains would be examined for levels of RPG transcripts to test if loss of growth 

corresponded to defective RPG transcription.  Transcript analyses would be extended to 

whole-genome analysis by microarray, with the objective of testing if introduced 

mutations in Tafs affected all the RP genes, as predicted given the RPGs widespread 

association with Rap1 and TFIID.  Given that Taf4, Taf5, and Taf12 may provide 

overlapping and/or redundant Rap1 binding domains, I wanted to test whether synthetic 

phenotypes occur when taf4 and taf5 mutants are combined.  Next I wanted to test if 

RBD-substituted Tafs have a reduced ability to interact with Rap1 in vitro.  To look at the 

status of Rap1-TFIID interaction, I wanted to isolate TFIID complexes from wild type 

and mutant strains and test their capacity for binding recombinant Rap1.  I thought that 

creation of double taf4 taf5 mutants would be more useful than single mutants for looking 

at Rap1 interaction with the TFIID complex, considering the possibility of functional 

overlap.  Finally, I wanted to carry out a more precise analysis of individual Rap1 domain 

contribution to interaction with Tafs.  These objectives are also discussed in Figure 1.11. 

 

Hypothesis and Specific Aims 

 My research was designed to test the hypothesis that the interaction of Rap1 with 

TFIID is mediated through binding of Rap1 to distinct and unique domains (Rap1 

Binding Domains, RBDs) present in the Taf4, Taf5, and Taf12 subunits of TFIID.  My 

studies are predicated on the fact that transcription factor Rap1 is the key activator 

driving transcription of the RP genes, and that the growth rate of yeast cells is limited by 

RP gene transcription and subsequent ribosome production.  Consequently I predicted 
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that removal of or amino acid substitution(s) within the RBDs would decrease RP gene 

transcription concomitant with negative effects upon yeast cell growth.        

 

To test this hypothesis I developed the following Specific Aims. 

 

1.  Map the RBDs of Taf4, 5, and 12 using deletion mutagenesis and in vitro Rap1-Taf 

binding studies. 

2.  Determine the effects of deletion and targeted mutations within the TAF4 and TAF5 

RBD-encoding regions upon yeast cell growth and RP gene transcription. 

3.  Determine whether mutation of Taf4, 5, and 12 RBDs affected their affinity of binding 

for Rap1.     

4.  Test whether mutations in taf4 and taf5 alleles exhibit synthetic genetic interactions 

with each other and mutant variants of rap1. 
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CHAPTER II 

 

STRUCTURAL AND FUNCTIONAL ANALYSES OF RAP1-TAF INTERACTION 

 

Considerations in Dissecting Rap1-Taf Interactions 

 In planning a strategy involving biochemical and genetic investigation of the 

molecular structure-function relationships of Tafs (4, 5, and 12) and Rap1, the single 

most important consideration is that all four proteins are encoded by single copy genes in 

the haploid genome which are essential for viability.  This fact indicates that one or more 

domains in each protein is/are responsible for that vital characteristic.  In the case of Tafs 

the mechanisms behind domain requirement can be simplified into two categories:  

protein domain functions intrinsic to TFIID or protein domain functions extrinsic to 

TFIID.  The former can be subdivided into domain homo-oligomerization or domain 

interaction with other Taf(s) within TFIID.  Extrinsic functions might include intrinsic 

enzymatic activities, DNA-binding, or interaction with proteins that are not TFIID 

subunits.  Rap1 is a candidate for this last possibility therefore my idea was, if at all 

possible, to identify domains within each Taf that interact with Rap1 but do not engage in 

Taf-Taf interaction or possess enzymatic or DNA-binding activity.  I considered aspects 

of protein structure to the extent that I could, given the lack of high-resolution structural 

data mentioned in Chapter 1.  A potential confounding issue in my analyses was the fact 

that protein domains can sometimes be composed of residues that are non-contiguous in 

protein sequence.  Taf4 is a case in point, since the histone fold domain (HFD) that 

mediates heterodimerization with Taf12 is bisected by a large stretch of amino acids that 



 78 

are dispensable for interaction with Taf12 (Thuault et al., 2002).  Hence the Taf4 HFD is 

bipartite, and composed of an amino-terminal portion and the so-called conserved C-

terminal domain, or CCTD.  With this caveat in mind I chose to begin mapping studies 

by using as unbiased an approach as possible, by first implementing ordered truncations 

to define the amino and carboxy termini of any Rap1-binding domain (RBD)-containing 

protein fragments in Taf4, Taf5, and Taf12.  It follows that if Rap1 interaction with that 

particular protein fragment is truly important, then both the serial truncation and the 

selective deletion of that domain should compromise cellular growth.  To supplement and 

extend the deletion mutagenesis studies I planned to extend manipulation of putative Taf 

domains to the level of single amino acid residues, in an attempt to reduce the chance of 

gross disruption of overall protein function, while simultaneously generating a detailed 

structure-function map of the respective domains.  But once again, I needed to keep my 

objective in accordance with the level of resolution of Taf domains that I expected to 

obtain in a reasonable amount of time.  Site-directed mutagenesis of individual codons 

might be overly optimistic in pursuit of associated mutant phenotypes in vivo, especially 

given the lack of structural information about Taf domains.  A semi-randomized strategy 

of amino acid substitution had proven useful in the lab’s previous experiences and could 

be expected to allow reliable, predictable and accurate testing of my hypothesis that the 

Taf RBDs are important for cell growth and RPG transcription.  The implementation of 

yeast genetics also promised to speed things up.  Again considering the predicted 

essential nature of Taf4, 5, and 12 RBDs, my best-case scenario was isolation of 

conditionally lethal mutants with amino acid substitutions confined to the area deemed 

responsible for Rap1 interaction.  In this chapter I will first describe the methodology 
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behind my mutational studies and then discuss the results of the actual experiments where 

I mapped and characterized the Rap1 binding domains of Taf4, Taf5, and Taf12. 

 

METHODS 

 

Bacterial and Yeast Strains and DNA Manipulations 

A large number of plasmid constructs were generated during the course of 

dissertation research; I estimate that I made in excess of two thousand unique constructs.  

In addition many recombinant proteins were prepared; more than three hundred were 

expressed and purified.  Therefore every effort was made to generate these reagents as 

economically as possible, both in terms of monetary and time investment.   

Standard E. coli manipulations for construct generation were performed using 

strain BW23474 (Liu et al., 1998; Liu et al., 2000).  This strain has two advantages.  

First, it is compatible with replication origins found in the pUNI series of plasmids, 

which are created using conventional restriction enzyme-mediated subcloning and 

subsequently utilized for recombination-based subcloning via LoxP sites and 

bacteriophage P22 Cre Recombinase.  The second advantage is that BW23474 can easily 

be made chemically competent to very high transformation efficiencies (~108 - ~109 

colony forming units per microgram DNA), which is useful for difficult or challenging 

subcloning experiments but also for library construction that mandates high complexity 

and representation.  All bacteria used in this study were made chemically competent 

using room temperature cultures, growing logarithmically in S.O.C. media (following 

exact protocol in (Inoue et al., 1990).  The Univector system was utilized to create yeast 
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expression vectors in certain instances; reactions between pUNI and pHOST vectors 

included Cre Recombinase, expressed and purified in-house.  This methodology is 

superior to other recombination-based cloning strategies such as the Gateway system, 

because it relies only upon easily-produced Cre Recombinase instead of multiple 

proprietary (and costly) enzymatic components.  Univector recombination reactions were 

transformed into E. coli strain DH5 (F' δ80ΔlacZ ΔM15 Δ(lacZYA -argF)U169 deoR 

recA1 endA1 hsdR17(ρKo mK+)phoA supE44 lambda- thi-1).  Irrespective of whether 

traditional subcloning or recombinase-based cloning was used, the desired constructs 

were usually recovered from subcloning reactions at high efficiences (typically exceeding 

80% correct, insert-bearing clones).  While fully expected when using the Univector 

system, the success in the traditional subcloning experiments can be attributed to strict 

use of sequential restriction enzyme digestions, dephosphorylation of vector recipient 

ends, and gel purification of both vector and insert preparations.   

Two E. coli strains were used for protein expression.  Both are based upon BL21 

Gold DE3 ((B F- ompT hsdS(ρB- µB-) dcm+ Tet gal λ(DE3 [lacI lacUV5-T7 gene 1 ind1 

sam7 nin5]) endA Hte)).  The 8 tRNA encoding plasmid pRARE was isolated from 

Rosetta DE3 (Novagen, ompT hsdSB(ρB- µB-) gal dcm λ(DE3 [lacI lacUV5-T7 gene 1 

ind1 sam7 nin5]) pRARE (CamR).  This low-copy pACYC184-based plasmid encodes 

tRNAs corresponding to rare codons for arginine, isoleucine, glycine, leucine, proline, 

methionine, threonine, and tyrosine.  pRARE was used to transform BL21 Gold DE3 to 

chloramphenicol resistance and the resulting strain, BL21 Gold DE3 pRARE, was made 

competent as above and used for all subsequent protein expression experiments.  To 

make the second expression strain, the RIL plasmid from Arctic Express DE3 RIL 
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(Stratagene, B F- ompT hsdS (ρB- µB-) dcm+ Tet gal λ(DE3 [lacI lacUV5-T7 gene 1 ind1 

sam7 nin5]) endA Hte [cpn10 cpn60 Gent] [argU ileY leuW Str] was isolated and used to 

transform BL21 Gold DE3 to streptomycin resistance.  The resulting strain, BL21 Gold 

DE3 RIL Strept, including four tRNAs for arginine, isoleucine, and leucine on a pSC101-

based plasmid, was made competent as above and used for all experiments involving 

coexpression of multiple proteins.  This strain is compatible with other plasmids 

containing pBR322 and/or p15A replication origins, such as the popular T7 expression 

vectors based on pET or pACYC184 backbones.  These two strains share several 

indispensable attributes:  strains grow more robustly than other rare codon-containing 

strains such as Rosetta DE3, simplifying expression experiments; these strains exhibit 

high transformation efficiency when made chemically competent as described above 

allowing ligation or ligation-independent subcloning reactions to be directly transformed 

into the expression strain; finally as codon bias is probably the most common obstruction 

in successful bacterial expression of eukaryotic proteins, both E. coli strains largely 

overcome this problem due to their overexpression of multiple  rare tRNAs. 

Several yeast strains were prepared.  Because strain-specific phenomena have 

been reported in the regulation of Ribosomal Protein Gene transcription (Zhao et al., 

2006), and because my pilot experiments used a mixed assortment of different strain 

backgrounds, I decided to base my experiments on several common laboratory 

background strains.  Initial experiments used SEY6211 (MATa leu2-3,112 ura3-52 his3-

Δ200 trp1-Δ901 ade2-101 suc2-Δ9; GAL) because a previous lab strain contained a 

chromosomal taf5 deletion in this background.  An advantage of this strain is that it 

exhibits a high sprorulation efficiency that can be put to use when advanced genetic 
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experiments involving strain crosses are needed.  SEY6211 is also good for experiments 

using cellular protein extracts because it does not appear to contain the proteolytic 

activity associated with some strains.  BY4741 (MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 

ura3Δ0) was used because existing lab strains with either chromosomal taf4 or taf12 

deletions were on this background.  BY4741 was used for the genome sequencing project 

and several systematic strain collections are designed on this background.  BY4741 is 

Trp+, which reduces the nutritional markers available for genome manipulation, but Trp+ 

strains are not cold sensitive or Gal-, characteristics that can be useful for certain 

experiments.  W303a (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) is 

my strain of choice for genome manipulations, because it exhibits high transformation 

efficiency in conjunction with the Lithium Acetate/Polyethylene Glycol-based protocol I 

use for all yeast transformations (Gietz and Schiestl, 2007).  W303a has the broadest 

range of nutritional markers of the three strains further enhancing its usefulness when 

planning complex plasmid-based genetic experiments.  Unfortunately, unlike the other 

strains there is no difference in nutritional markers between W303 mating types unlike 

SEY6211 and BY4741, so genetic experiments involving mating, sporulation, and tetrad 

dissection are less convenient and more time consuming in W303a.  Other disadvantages 

are that W303a is Gal- and cold sensitive owing to the trp1-1 allele, and appears less 

suitable than SEY6211 or BY4741 for experiments involving preparation of cellular 

extracts (JHL, personal observation). 

“Shuffling” strains were created in each of these strain backgrounds to perform 

genetic experiments with TAF4, TAF5, TAF12, and RAP1.  There are two modifications 

made to the parental genetic background to create a shuffling strain.  Firstly, a “covering” 
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plasmid (typically a WT version of the gene of interest) is needed that contains a 

nutritional gene that can be selected for by omitting a nutrient such as a particular amino 

acid or nucleotide.  However this nutritional marker should also be counterselectable 

such that addition of a specific compound selects against growth of cells that contain the 

covering plasmid.  In this case the selectable/counterselectable marker was the URA3 

gene, which was selected for by use of media lacking uracil, and selected against by 

inclusion of the nucleotide analog 5-fluoro-orotic acid (FOA); FOA is toxic when 

metabolized to pyrimidine (Sikorski and Boeke, 1991).   The URA3-marked covering 

plasmid contained the protein-coding sequence of either TAF4, TAF5, TAF12, or RAP1.  

Expression of the protein must be directed from 5’ and 3’ regulatory sequences unrelated 

to those directing expression of TAF4, TAF5, TAF12, or RAP1 from their normal 

respective chromosomal loci, in order to avoid direction of homologous recombination 

events into the plasmid-borne sequence.  Second, a DNA fragment designed to replace or 

knockout the chromosomal TAF or RAP1 open reading frame is needed and this DNA 

fragment will include an expression cassette for either KANMX or HPHMX, genes that 

encode resistance to either G418 or Hygromycin B, respectively.  In addition to an 

antibiotic resistance gene this DNA fragment will contain homology arms that 

correspond to the 5’ and 3’ sequences immediately upstream or downstream of the TAF 

or RAP1 initiator methionine codon or stop codon, respectively.  The length of homology 

used varied from ~0.4 to 1.2 kb, although homology as short as 45 bp can direct 

homologous recombination of a cassette to the intended locus.  Longer homology arms 

increase both the likelihood and efficiency of a precisely targeted recombination/gene 

replacement event, and were employed for this reason.  Covering plasmids were created 
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by ligating TAF4 or TAF12 ORFs as 5’ BamHI and 3’ SalI DNA fragments into 

equivalently digested p416ADH (Funk et al., 2002), while TAF5 and RAP1 covering 

plasmids were created by inserting 5’ NdeI and 3’ XhoI DNA fragments into p416ADH.  

The 5’ NdeI sites of inserts and 5’ BamHI site of p416ADH were made blunt using the 

Klenow fragment of E. coli DNA Polymerase I; the 3’ XhoI site of inserts and vector 

allowed directional ligation into vector.  TAF4, TAF5, TAF12 and RAP1 fragments 

originated from bacterial expression vectors that had been sequenced in their entirety 

(described below).  Targeting fragments were created in pAG32 (Goldstein and 

McCusker, 1999).  5’ homology arms were typically created as PCR-generated 5’ SpeI-

3’EcoRV fragments, while 3’ homology arms were typically designed as 5’BglII-

3’HindIII fragments.  Targeting constructs were created via four-component ligations 

including SpeI-HindIII-digested vector, EcoRV-BglII-digested hygromycin-resistance 

cassette, a SpeI-EcoRV-digested 5’ homology arm, and BglII-HindIII-digested 3’ 

homology arm.  To convert these targeting constructs from hygromycin resistance to 

G418 resistance, an EcoRV to BglII fragment derived from pFA6 KANMX (Wach et al., 

1994) was liberated and ligated to equivalently digested pAG32-based targeting vectors.  

Hygromycin resistance targeting vectors were digested with SpeI and HindIII, G418 

resistance targeting vectors were digested with SpeI and NotI; enzymes were heat-

inactivated and DNA ethanol precipitated and resuspended in 10 mM Tris pH 7.9, 0.1 

mM EDTA.  25-50 µg of cut targeting fragment and 5-10 µg of corresponding covering 

plasmid were mixed and used to transform SEY6211, BY4741, or W303 (from 2 to 3 

individual 250 ml YPD-media cultures grown to mid-log phase (A600  0.4-1.7)); the high 

efficiency TRAFO yeast transformation method was used exclusively (Gietz and 
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Schiestl, 2007).  Yeast cells from the large-scale one-tube transformation reaction were 

distributed equivalently across 20-40 100 mm agar plates containing SC-Ura media; 

plates were incubated at 30o C.  Upon evidence of colony formation, typically requiring 

2-3 days incubation, each individual plate (~1000 colonies) was replica-plated using 

sterile velvet cloths to YPD agar plates containing hygromycin or G418 at the appropriate 

concentration (Goldstein and McCusker, 1999; Wach et al., 1994).  These were further 

incubated for 3 to 7 days, at which point antibiotic-resistant colonies were picked to 0.5 

ml YPD cultures.  These cultures were grown an additional 3-7 days, and then plated 

onto 150 mm agar plates containing synthetic complete media plus or minus 1 mg/ml 5-

FOA.  Use of 96 well plates and a pinning device resulted in 96 clones being analyzed 

per 150 mm plate.  Clones exhibiting normal growth rates on the plate lacking 5-FOA, 

but exhibiting complete absence of growth on the plate containing 5-FOA were repicked 

and tested for growth at various temperatures.  The most robust strains, (although little 

variation in phenotype was observed) were transformed with HIS3-marked plasmids 

either lacking or containing TAF4, TAF5, TAF12, or RAP1, and tested for growth at 23o, 

30o, and 37o C on SC-His plates either containing or lacking 5-FOA.  Strains that grew 

equivalently at each temperature in the presence of the respective wild type TAF/RAP1 

gene and in the presence of 5-FOA, but not when TAF/RAP1 was absent, were designated 

for use in future experiments as the shuffling strain, because these strain’s growth 

properties indicated dependence on a URA3-marked plasmid containing the TAF or RAP1 

gene.  To the best of my knowledge, this procedure I have designed for generating 

shuffling strains is the most expedient method available (JHL, unpublished observation).  

Note that the reason this works is due to the use of heterologous regulatory sequences 
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(ADH1) to drive TAF or RAP1 expression on the URA3-marked covering plasmid, 

therefore disruption events are restricted to the chromosomal TAF or RAP1 locus.  

Because TAF and RAP1 genes are essential for viability, yeast clones that are Ura+, 

HygroR or G418R, and FOA sensitive by necessity contain a chromosomal 

insertion/disruption at the target gene locus that is complemented by the URA3 marked 

covering plasmid.  The absence of any other overt growth phenotypes indicates that there 

are likely not additional/random/unwanted genomic insertions conferring antibiotic 

resistance in strains exhibiting the growth phenotypes I described above.                                

 

Expression Vectors 

 TAF4, TAF5, TAF12, and RAP1 fragments including the complete open reading 

frames were PCR amplified from yeast genomic DNA and inserted into pBG101 

(http://structbio.vanderbilt.edu/wetlab/vectors.php), pET28A, or pET33B (latter two from 

Novagen).  PCR was performed using a mixture of in-house expressed and purified Pfu 

and Taq DNA polymerases (expression and purification discussed below).  Pfu 

polymerase has one of the lowest misincorporation rates of commonly available 

hyperthermophilic polymerases due to its intrinsic proofreading activity; its low 

processivity is counteracted by including Taq polymerase (Taq has better processivity but 

no proofreading activity).  This blend results in a highly economical method to produce 

useful quantities of gene fragments essentially free of unwanted PCR-introduced point 

mutations.  The proofreading capability of Pfu is due to its 3’-5’ exonuclease activity, 

which is further exploited in a Ligation Independent Cloning (LIC) strategy (Aslanidis 

and de Jong, 1990; Aslanidis et al., 1994; Haun et al., 1992; Vaillancourt et al., 2000).  
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The pBG series of vectors can be digested with BamHI and HindIII, gel purified, and 

incubated with Pfu in the presence of dTTP, which leaves LIC compatible overhangs 

(JHL, unpublished observation).  PCR primers for TAF or RAP1 amplification include 5’ 

overhangs C CAG GGG CCC GGA TCC NNN NNN ATG for the 5’ primer and GC 

CGC CGC AAG CT NNN NNN TTA for the 3’ primer, where the bold T nucleotide 

represents the endpoint for a single stranded LIC overhang resulting from incubation of 

gel purified, double stranded PCR products with Pfu in the presence of dATP.  The 

optional NNN NNN sequence represents the appropriate location for nesting a unique 

restriction enzyme site, which can be used to recover DNA fragments from pBG series 

vectors for conventional ligation-mediated subcloning into other bacterial or yeast 

expression vectors.  Note that this included restriction enzyme site is on the 5’ flank of an 

initiator methionine or stop codon, so as to give inserts translational initiation and 

termination signals that are independent of destination vector sequences.  5’ primer 

restriction sites were BamHI for TAF4 and TAF12 (NNN NNN sequence not required, it 

is already included in the generic 5’ LIC primer) and NdeI (CAT ATG) for TAF5 and 

RAP1 (ATG not required); 3’ primer restriction sites were SalI for TAF4 and TAF12 and 

XhoI for TAF5 and RAP1.  An additional 20 to 26 nucleotides are added to the 3’ end of 

each primer, which are complementary to TAF or RAP1 DNA sequence.  The LIC-

compatible PCR primers were a maximum of 45 nucleotides in length.  Primers were 

designed as such to allow serial truncation of each TAF gene from the amino and carboxy 

terminal coding sequences; the location of truncation points was chosen based upon 

alignment of Taf protein sequences from S. cerevisiae, C. albicans, S. pombe, C. elegans, 

and D. melanogaster.  Using genomic DNA as template, full length TAF and RAP1 
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coding sequences were amplified as described above.  Products were precipitated and gel 

purified then incubated with Pfu in 1X Pfu PCR buffer (Lu and Erickson, 1997) and 1 

mM dATP for one hour at 65o.  A portion of the reaction products were mixed with LIC-

treated pBG101 (dTTP) and allowed to cool to room temperature over the course of 30 

minutes, then an appropriate amount of the LIC mixture was used to transform  

BW23474 with selection for kanamycin resistance.  Insert bearing clones were sequenced 

in their entirety to confirm the appropriate reading frame and absence of any mutations.  

Full length and 100% correct clones (typically 80-100% of those examined) were used as 

templates for the PCR amplification of TAF truncations; Taq polymerase was omitted 

from these reactions to minimize the chance of introducing unwanted mutations.  Pfu 

alone is normally sufficient for any amplification reaction insofar as the template is a 

plasmid bearing the target sequence.  LIC was used to insert the systematic families of 

TAF truncations into pBG101.  The TAF5 family was excised from the pBG101 vectors 

by digestion with NdeI and XhoI and subcloned into pET28A.  Likewise, RAP1 was 

excised from pBG101 and transferred to pET28A and pET33B.  Families of TAF5 and 

TAF12 truncations in pET28A or pBG101 and pET33B RAP1 were directly transformed 

to BL21 Gold DE3 pRARE from the LIC reaction.  The TAF4 family in pBG101 (LIC 

reaction) was mixed with pACYC11B TAF12 and transformed directly to BL21 Gold 

DE3 RIL Strept.  Two to three individual clones of each construct were picked to liquid 

LB cultures with kanamycin and chloramphenicol, a portion of each liquid culture was 

expanded for protein expression while the remainder was used for plasmid miniprep.  

Insert-positive clones were sequenced from 5’ ends using either GST oligo primers 

(pBG101) or the T7 primer (pET28A and pET33B); sequence from 3’ end was 
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determined using the T7 terminator primer.  Inserts were excised from those vectors 

found to express protein of the expected molecular weight and lacking point mutations; 

these inserts were subcloned to an appropriate yeast expression vector. 

 Yeast vectors were based upon the “Funk” series (Funk et al., 2002); these vectors 

contain the polylinker of pBluescript SK-, the minimal centromeric portion of 

chromosome IV, and a replication origin from chromosome I.  Several steps were used to 

create the yeast expression constructs for TAFs and RAP1.  First, the ADH promoter 

fragment of p413 ADH was removed by digestion with KpnI and SpeI, and replaced with 

PCR-generated KpnI-SpeI fragments containing the 5’ genomic regulatory sequences of 

TAF4, TAF5, TAF12, or RAP1.  Next a synthetic oligonucleotide duplex encoding three 

tandem copies of the HA epitope and the nuclear localization signal of the SV40 large T-

antigen was inserted between the SpeI and BamHI sites of each p413 Promoter Vector.  

The triple HA tag/NLS (HA3/NLS ) was designed using optimized codon usage for yeast 

(www.kazusa.or.jp/codon/) and dual glycine codons were encoded between each HA 

repeat and the NLS; this epitope tags ensures unbiased detection of different Taf and 

Rap1 protein variant levels and nuclear localization in the event that natural Taf or Rap1 

NLS are disrupted.  Using this design, the reading frame of the p413 Promoter HA3 /NLS 

vectors is the same as that of the pBG series of bacterial expression vectors that TAF and 

RAP1 variants were initially subcloned into.  Inserts from TAF4 bacterial expression 

vectors were inserted into p413 TAF4 HA3/NLS as BamHI/SalI fragments, the p413 

TAF12 HA3/NLS family of vectors was created similarly.  p413 TAF5 HA3/NLS vectors 

were created by cutting pET28A TAF5 vectors with NdeI, filling in the end with the 

Klenow fragment of E. coli DNA polymerase, and liberating the TAF5 fragment with 
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XhoI, followed by inserting these fragments into p413 TAF5 HA3/NLS cut with BamHI 

and XhoI where the BamHI site was cut and filled in with Klenow fragment.  RAP1 

vectors were generated as with TAF5 except that the RAP1 promoter- HA3/NLS fragment 

was first inserted into p415 rather than p413.  p415 confers ability to grow on media 

lacking leucine, whereas p413 confers the ability to grow on media lacking histidine.  

Because all inserts had already been characterized within the bacterial expression vectors, 

all yeast expression vectors were deemed ready to use upon confirmation of DNA insert 

presence and length. 

 Site directed mutagenesis by gene SOEing (Ho et al., 1989) was used to create 

internal deletions in TAF4, TAF5, and RAP1.  SOEing mutagenesis involves a three step 

PCR procedure using Pfu and a kanamycin-marked TAF4, TAF5, or RAP1-containing 

vector as template for the first two PCR steps.  These first two steps involve creation of a 

product that slightly overlaps the 5’ end of the gene region being mutagenized, likewise a 

product is created that slightly overlaps the 3’ end of the targeted gene region.  Each 

product is gel purified, and an equimolar mixture of the two products is used as the 

“template” for a third PCR reaction, using the outside primers employed in the initial two 

PCR reactions.  The slight overlap between the two initial PCR products effectively 

creates a “megaprimer” allowing the synthesis of a product equivalent in length to the 

sum of the two initial PCR products that contains the desired site-directed alteration.  

Restriction enzyme sites encoded in the outside PCR primers allow the final product to 

replace a gene fragment within the appropriate yeast expression vector.  For TAF4 the 

most convenient sites are an internal EcoRV site and the 3’ SalI site.   TAF5 site-directed 

mutagenesis used internal SmaI and EcoRI sites.  RAP1 site-directed mutagenesis used an 
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internal BlpI sites and a 3’ XhoI site.  Highly efficient site-directed mutagenesis occurs 

only when the third PCR product is less than 1 KB in length, and the recipient vector is 

digested to completion and treated with phosphatase to prevent unwanted vector closures 

during ligation (JHL, personal observation).  Note that this method of site-directed 

mutagenesis allows essentially unlimited manipulation of DNA sequence, allowing 

seamless fusion of any possible desired DNA fragments.  One need only have the cloned 

DNA in hand, and be able to identify unique restriction sites near the region(s) being 

manipulated. 

 

Protein Expression and Purification 

 Transformations to BL21 Gold DE3 pRARE or BL21 Gold DE3 RIL Strept were 

seeded on agar plates containing all antibiotics (kanamycin, chloramphenicol, and 

streptomycin, or just the first two) and incubated overnight at 30o C.  A single colony was 

picked the next morning or early afternoon into a 5 ml LB culture containing all 

antibiotics and placed into a shaking incubator at 30o C until early or late evening.  At 

this point the cultures were just visibly turbid (A600 0.2-0.8).  A 1/1000 dilution was made 

into fresh auto-induction media ((Sreenath et al., 2005; Studier, 2005; Tyler et al., 2005) 

containing all antibiotics and cultures were grown with aeration at room temperature.  

Using this procedure, protein expression is typically evident at 16 hours post-inoculation 

and is maximal at 24 to 30 hours post-inoculum, depending on the individual protein.  

Cells were harvested at 4000 rpm for 5-10 minutes in a Beckman J6-HC swinging bucket 

centrifuge.  Expression by auto-induction facilitates the parallel expression of multiple 

proteins because it is not necessary to simultaneously monitor culture densities in order to 
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determine the appropriate time to add inducing agent; instead all cultures grow to near 

saturation and automatically induce protein expression at that time.  Consequently cell 

pellet mass is almost always nearly identical irrespective of the protein being expressed, a 

feature that greatly helps simplify extract preparation and the overall lack of variation in 

protein yield from protein to protein.  As an added advantage, because of the additional 

harvested cell mass, the amount of recombinant protein per unit culture volume typically 

exceeds the yield from equivalent conventionally-induced cultures by ten to twenty fold.  

Most importantly, the only limitation to the number of different recombinant proteins that 

can be expressed using this method is the amount of shaking incubator space available.   

Unless otherwise stated, all protein isolation procedures were performed at 4o C in 

conjunction with ice-cold buffers and pre-chilled equipment such as ultracentrifuge 

bottles and rotors.  Pfu DNA Polymerase was expressed from vector pET11A Pfu and 

purified as follows (Lu and Erickson, 1997).  Frozen cell pellets from 6 liters auto-

induced culture were dispersed in 150 ml of ice-cold buffer containing 50 mM Tris pH 

7.6, 150 mM potassium acetate 0.1% Triton X100, 10% Glycerol, supplemented with 

protease inhibitors TPCK, TLCK, Pepstatin, Leupeptin, Aprotinin, Benzamidine, and 

PMSF (Sanders et al., 2002a).  To disperse the frozen cell pellet the buffer was added and 

containers with buffer and frozen cell pellet was allowed to rotate gently, ~150 rpm, on a 

New Brunswick floor model shaker at room temperature.  The cell suspension was 

poured into a 250 ml plastic beaker and kept on ice.  A Model 250 Branson Sonifier 

outfitted with the large probe was used to reduce the viscosity of the cell suspension by 5 

rounds of sonication at 90% duty, setting five, with 6 bursts per round of sonication.  The 

sonicated extract was cleared of debris in a Beckman 45 Ti preparative rotor in the LE-
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80K ultracentrifuge, 43,000 rpm for one hour.  The soluble extract was poured into a 300 

ml ehrlenmeyer flask with a screw-on lid and sealed tightly, and placed in a 75o C water 

bath for 30-45 minutes.  Heat-denatured materials were pelleted using a Sorvall SS34 

rotor and a 15 minute spin at 14,000 rpm.  The supernatant, primarily containing 

recombinant Pfu DNA Polymerase, was applied to an equilibrated 75 ml bed of 

Phosphocellulose P11 cation exchange resin (Whatman) packed in a glass column.  The 

column was washed with resuspension buffer until UV absorbance of the effluent 

returned to baseline levels, (2-3 column volumes).  Pfu was eluted using a 4 column 

volume salt gradient of 150-1000 mM potassium acetate with buffer components as 

above.  Pfu eluted at 600-700 mM potassium acetate (determined using a conductivity 

meter and a salt standard curve).  Peak fractions were pooled and dialyzed against Pfu 

storage buffer (Lu and Erickson, 1997) containing 50% Glycerol.  At this stage Pfu was 

95-99% pure as determined by staining of SDS-PAGE gels and was highly active for 

PCR.  A working stock was prepared by diluting this material 40 fold.  This enzyme 

preparation was subsequently used to generate every recombinant DNA construct made 

in the lab during my tenure. 

 Taq DNA Polymerase was expressed from vector pTTQ18 TAQ and purified 

using a combination of methods (Engelke et al., 1990; Pluthero, 1993).  The standard 

procedure is very similar to that followed for Pfu except the heat-cleared extract was 

dialyzed against buffer containing ammonium sulfate at 50% saturation (.291 grams 

ammonium sulfate per ml of extract) at 4o C, overnight.  Insoluble material was pelleted 

in the SS34 rotor as above and resuspended in Engelke’s starting buffer containing 50 

mM potassium acetate, and applied to a packed column of Bio-Rex 70 cation exchange 
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resin.  After washing with buffer containing 50 mM potassium acetate, the column was 

step eluted with two column volumes of buffer containing 400 mM potassium acetate.  

Peak Taq-containing fractions were pooled and dialyzed against Taq storage buffer 

containing 50% glycerol (Engelke et al., 1990).  As with Pfu, Taq prepared this way is 

highly concentrated, pure, and active.  This Taq preparation, which was used for 

analytical PCR such as colony PCR and ChIP, was essential for creation of mutagenized 

TAF libraries, and also was blended with Pfu when amplifying targets from genomic 

DNA.  Recombinant dUTPase from Pyrococcus woesei (Pwo) was prepared and used to 

supplement difficult PCR amplification reactions ((Dabrowski and Kiaer Ahring, 2003).  

Pwo dUTPase is expressed from pET30 Pwo and purified by successive heat treatment of 

extract and immobilized metal affinity chromatography (IMAC, Ni-NTA agarose, 

Qiagen).  dUTPase helps to maintain high activity of Pfu polymerase during thermal 

cycling reactions by limiting the concentration of uracil created by heat-stimulated 

cytosine deamination; because uracil is an allosteric inhibitor of Pfu its removal by 

hyperthermophillic dUTPase during thermal cycling facilitates successful high-fidelity 

PCR amplification of targets longer than 2 kb. 

 Rap1 was expressed from pET33B.  Cloning RAP1 into pET33B using the NdeI 

and XhoI sites resulted in inclusion of an N-terminal hexahistidine tag followed by a 

“kemptide” sequence allowing high-efficiency phosphorylation by the catalytic subunit 

of bovine heart cyclic AMP-dependent protein kinase.  Frozen cell pellet from 6 liters 

auto-induced culture was homogenized and lysed in buffer containing 20 mM HEPES pH 

7.9, 200 mM potassium acetate, 20 mM imidazole, 0.1% Triton X100, 10% glycerol and 

protease inhibitors as above.  Insoluble debris and unbroken cells were removed using a 
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Beckman LE80K ultracentrifuge and 45Ti rotor by spinning for 1 hour at 43,000 rpm.  

Nucleic acids and Rap1 were precipitated from this cleared extract with 

polyethyleneimine (Burgess, 1991).  Rap1 was recovered using 400 mM potassium 

acetate-containing buffer washes of the pellet and then precipitated using ammonium 

sulfate (35% of saturation, .194 grams ammonium sulfate per ml of soluble material).  

This pellet was dissolved in buffer as above except with ionic strength of 50 mM.  

Soluble material was directly applied to a phosphocellulose column and eluted using a 

gradient of 150-1000 mM potassium acetate in starting buffer.  Peak fractions identified 

by SDS-PAGE were pooled and directly applied to an IMAC column (Ni-NTA Agarose, 

Qiagen).  After step-eluting this column with 300 mM imidazole in starting buffer, peak 

fractions identified by A280 were pooled and dialyzed over 12 hours against two 1 liter 

changes of 20 mM HEPES pH 7.9, 150 mM Potassium Acetate, 0.1% Triton X100, and 

30% glycerol.  At this stage Rap1 was highly concentrated and electrophoretically 

homogenous.  Rap1 prepared by this method was subsequently shown to be active in a 

variety of protein-protein interaction assays, highly active for protein-DNA interaction as 

scored by EMSA, and useful for affinity purification of specific anti-Rap1 IgGs.   

 The Taf12 family of proteins was expressed using pBG101.  This vector encodes 

N-terminal His6- and GST-tags, and a cleavage site for human rhinovirus (HRV) 3C 

protease.  Cell pellets from 50 ml auto-induced cultures were resuspended in 3 ml buffer 

containing 25 mM HEPES pH 7.9, 500 mM NaCl, 30 mM Imidazole, 0.1% Triton X100, 

10% Glycerol, and protease inhibitors.  The cell suspension was sonicated using the  

Model 250 Branson Sonifier as described above.  Insoluble debris was cleared using the 

Sorvall SS34 rotor as above, and the supernatant was applied to a 0.2 ml bed of Ni-NTA 
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agarose and mixed in batch at 4o C for 1 hour.  Resin was pelleted by gentle 

centrifugation and the supernatant gently poured off and saved at -80o C.  The column 

was washed twice with the resuspension buffer, twice with the same buffer except 

containing 200 mM NaCl, and eluted using the last buffer supplemented with imidazole 

at 300 mM.  All eluted material was applied to a 0.5 ml bed of Q sepharose fast flow 

resin (Pharmacia) and mixed in batch at 4o for 1 hour.  The mixture was poured into a 

small spin column (BioRad) and the eluate was recovered by centrifugation.  A large 

portion of the major contaminants bound to the resin while the breakthrough fraction, 

containing most of the Taf12 forms that were input, was applied to a 0.5 ml bed of SP 

sepharose fast flow resin (Pharmacia) and mixed in batch at 4o C for 1 hour.  After 

pelleting beads and discarding the supernatant, the column was rapidly washed with 

buffer containing 25 mM HEPES pH 7.9, 200 mM NaCl, 0.1% Triton X100, 10% 

Glycerol, and protease inhibitors, then step eluted using the same buffer except 

containing 1000 mM NaCl.  Most of the remaining contaminants were found in the SP 

breakthrough fraction.  The bulk eluent was diluted three fold with buffer lacking NaCl, 

and used for Far Western protein-protein binding studies, as described below.  The Taf12 

protein family purified in this manner was essentially free of higher molecular weight 

contaminants as indicated by SDS-PAGE, with remaining contaminants most likely 

corresponding to proteolytic fragments of Taf12 forms. 

 The Taf4 family was expressed initially from pBG101 but was found to be highly 

degraded when purified from soluble bacterial extracts.  The solution to the degradation 

problem was to coexpress the Taf4 family along with Taf12, which was expressed from 

pACYC11B (Fribourg et al., 2001).  To include extra tRNAs for rare codons found in 
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eukaryotic genes, the plasmid pSC101 RIL was included in design of a bacterial 

expression strain appropriate for carrying pBG101 TAF4 along with pACYC11B TAF12, 

which requires selection with chloramphenicol.  This was the primary rationale for 

creation of bacterial strain BL21 DE3 Gold RIL Strept.  Cell pellets from two liters of 

autoinduced culture corresponding to each Taf4 variant were resuspended in buffer 

containing 25 mM HEPES pH 7.9, 150 mM NaCl, 30 mM Imidazole, 0.1% Triton X100, 

10% Glycerol, and protease inhibitors and sonicated as described for Pfu.  Insoluble 

debris was removed by a 30 minute spin in the 45 Ti rotor at 43,000 rpm, and supernatant 

was applied to a 5 ml bed of Ni-NTA agarose and bound in batch with mixing for 1 hour 

at 4o C. After washing with the starting buffer, the column was eluted with starting buffer 

supplemented with 300 mM imidazole.  The resulting material was incubated with Q 

sepharose as for Taf12, which bound a substantial portion of contaminants but not Taf4-

Taf12 complexes.  Unbound material was subjected to chromatography on SP Sepharose 

as was described for Taf12.  The 1 M NaCl eluant from SP sepharose was subjected to 

preparative SDS-PAGE.  This served to remove any remaining contaminants, degraded 

Taf4 fragments, and Taf12, allowing recovery of essentially pure Taf4 variants of the 

correct molecular weight.  4%/10% SDS-PAGE gels were cast with preparative combs, 

and after running the predominant protein species (Taf4 variants and Taf12) were 

identified by staining briefly with 4 M sodium acetate (Higgins and Dahmus, 1979).  

Excised bands were diced, and each band, corresponding to one Taf4 variant, was placed 

into one fixture in a Model 422 electoelution apparatus (BioRad) and recovered by being 

left in the electroeluter overnight at 20 volts.  Two Model 422 apparati were operated in 

parallel thus two runs were necessary to recover the eluted material corresponding to all 
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Taf4 variants.  Protein preparations were essentially homogenous at this stage and used 

for Far Western Analyses as described below. 

 Taf5 variants were initially expressed from pBG101 but subsequently expressed 

from pET28A (see explanation below).  Any Taf5 variants containing the C-terminal 

portion of the protein are found in the insoluble fraction of bacterial extracts, irrespective 

of temperature during induction of expression.  Cellular extracts were prepared from 

frozen cell pellets corresponding to two liters of induced culture.  Homogenates were 

prepared in 25 mM HEPES pH 7.9, 500 mM NaCl, 30 mM imidazole, 0.1% Triton X100, 

10% glycerol, and protease inhibitors using the Branson Model 250 Sonifier as described 

for Pfu and Taf4/Taf12 variants.  Insoluble material was pelleted using the Sorvall SS34 

rotor, the supernatant was discarded, and the insoluble pellet was washed using 

sonication in starting buffer where 0.5% sodium deoxycholate was substituted for Triton 

X100.  The remaining insoluble material was recovered by centrifugation, the supernatant 

discarded, and the pellets resuspended in buffer containing 25 mM HEPES pH 7.9, 150 

mM NaCl, 30 mM imidazole, 6 M guanidine hydrochloride 0.1% Triton X100, 10% 

glycerol, and protease inhibitors.  After mixing, including dispersion with wooden 

toothpicks and rotation of sealed tubes, non-proteinaceous debris was again removed 

using the SS34 rotor.  Solubilized material was applied to a 5 ml bed of Ni-NTA agarose 

and incubated in batch with mixing at room temperature.  After two hours binding, resin 

was recovered by gentle centrifugation, supernatant was discarded and two washes using 

guanidine buffer were performed.  Afterwards two additional washes were performed 

using buffer containing 4 M urea as a substitute for guanidine hydrochloride.  Note that 

this modification was important in lieu of preparative SDS-PAGE and/or Far Western 
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Analyses, as guanidine hydrochloride-containing buffers are incompatible with SDS-

PAGE.  Denatured protein was eluted from Ni-NTA using buffer containing 25 mM 

HEPES pH 7.9, 150 mM NaCl, 300 mM imidazole, 4 M urea, .1% Triton X100, 10% 

glycerol, and protease inhibitors.  Taf5 variants were subjected to preparative SDS-PAGE 

and recovered as specified for Taf4 variants. 

 Steady-state levels of Taf4, Taf5, Taf12 and Rap1 variants in yeast cells were 

determined using SDS-PAGE and immunoblotting.  Because the serial truncations and 

internal deletions of Tafs and Rap1 might remove epitopes recognized by our polyclonal 

antibody preparations, which were raised using full-length Tafs or Rap1 as antigens, it 

was important to include a suitable epitope tag in the expression vectors encoding Tafs 

and Rap1.  The HA epitope from the Influenza virus haemaglutinin protein was selected 

because commercially available antibodies against this epitope tag are highly sensitive 

and selective when using yeast extracts (Kolodziej and Young, 1991).  Incidentally, 

detection of Taf and Rap1 variants was performed using our polyclonal antibodies, and 

this indicated the distribution of protein-specific epitopes recognized by the polyclonal 

antibodies, when compared to a parallel blot that was incubated with anti-HA antibody 

(not shown).  Cells were often grown at various temperatures corresponding to 

permissive, semi-permissive, or non-permissive temperatures according to the Taf allele 

in question.  Because yeast cells have a dense cell wall enriched in complex 

carbohydrates, cell pellets were harvested from logarithmically growing cultures 

containing plasmids encoding Taf or Rap1 variants, and suspended in 100 mM NaOH.  

This caustic treatment acts to partially hydrolyze the cell wall material, rendering cells 

sensitive to detergent-mediated lysis (Kushnirov, 2000). After a five-minute NaOH 
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treatment, cells were pelleted by centrifugation, the supernatant discarded, and cells 

resuspended in 1X NuPAGE sample buffer at 75o C.  5-10% of the resuspended volume 

was directly loaded on BioRad or Invitrogen precast 4-12% gradient SDS-PAGE gels and 

resolved at 150-180 volts for one to two hours.  Gels were then electroblotted to 

Immobilon P (Millipore) for 2-2.5 hours at 12 volts, and membranes were blocked in 5% 

non-fat dry milk (NFDM) in  10 mM Tris pH 7.5, 150 mM NaCl (TBS) for 30 minutes at 

room temperature.  After three five minute washes in TBS, blocked membranes were 

incubated with a 10 ml solution containing 1% NFDM in TBS that also contained 

antibodies.  Antibody incubations were performed in seal-a-meal bags at room 

temperature for no less than 3 hours to overnight at 4o C.  All Taf and Rap1 variants were 

detected using anti-HA antibody at 1:5,000 dilution (monoclonal 3F10 horseradish 

peroxidase conjugate, Roche Diagnostics) while anti-actin mouse monoclonal antibody 

(Abcam) was used to provide an internal loading control.  After the primary incubation, 

three five minute washes were performed followed by a 15 minute incubation at room 

temperature in a seal-a-meal bag containing secondary antibody solution (rabbit anti-

mouse IgG at 1:10,000 dilution in 1% NFDM/ TBS).  This served for detection of the 

actin signal.  The membrane was washed once more and bound antibody-HRP conjugates 

were detected using ECL (Pierce Super Signal Pico West) and a time course of film 

exposures. 

 

Far Western Interaction Assay 

Because the achievable resolution of defining Rap1 binding domains in Tafs was 

significant for the success of my experimental agenda, it was clear that examination of a 
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collection of Taf N- and C-terminal truncations was prudent.  Several major 

considerations went into the choice of methodology for defining Rap1 binding domains.  

Firstly, it was important to measure relative binding affinities of Rap1 with Taf truncation 

variants in a parallel manner, although practically speaking, the greater the complexity of 

an experimental design, the lower the likelihood of obtaining meaningful data.  Second, 

both and N- and C-terminal truncation variants of Tafs should inform about the location 

of Rap1 in a consistent way, but solution-based assays were ruled out for at least some of 

the Taf variants, particularly N-terminal truncations of Taf5, since those proteins were 

expressed in an insoluble form.  Coexpression of Taf5 with Taf6 and Taf9 was pursued as 

this basic approach has resulted in production of recombinant Taf5/Taf6/Taf9 complexes 

in the Baculovirus system (Berger et al., 2004), but this did not provide satisfactory 

results using E. coli coexpression.  For these reasons the ‘Far Western’ or ‘Overlay’ assay 

was employed as it allows parallel comparison of many protein variant’s binding activity 

but with minimal handling, and also does not mandate availability of soluble protein 

variants to measure binding events.  This is a widely accepted approach that has been 

used to make many important biological observations, such as the identification of 

targeting proteins that localize enzymes of cell signaling (Carr et al., 1992) and 

characterization of E. coli activator-polymerase interactions (Burgess et al., 2000).   

Taf12, Taf4 or Taf5 forms were loaded in 1X NuPAGE sample buffer without 

heating on pre-cast 26 well 4-12% SDS PAGE gels (BioRad 345-0125) and run at 150 

volts for 90 minutes in 1X MOPS NuPAGE running buffer.  Gels were immediately 

electro-blotted onto PVDF membranes (Millipore Immobilon P) for 120 minutes at 12 

volts in an Idea Scientific Genie Blotter apparatus using NuPAGE transfer buffer with 
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10% methanol.  Membranes were placed on a rotary incubator at 4o C in renaturation 

buffer containing 20 mM HEPES pH 7.6, 75 mM KCl, 2.5 mM magnesium chloride, 0.1 

mM EDTA, 0.05% Triton X100, 1 mM DTT, and 1% w/v BSA (Roche Ultra Pure, cat 

no. 100377, lot no. 93097226).  The large amount of BSA in the renaturation buffer 

serves to compete away SDS bound to proteins embedded in the membrane, theoretically 

facilitating their partial renaturation.  However, BSA is not as effective at blocking non-

specific sites of interaction for Rap1 and/or antibodies that are subsequently incubated 

with the membrane.  To improve signal-to-noise ratio and overall data quality, after 90 

minutes the initial renaturation buffer was discarded and replaced with buffer containing 

5% w/v NFDM instead of BSA.  Following 30 minutes incubation at room temperature 

on a rotary incubator, membranes were washed at room temperature with five three-

minute washes using renaturation buffer without BSA or milk.  Next membranes were 

incubated in a heat-sealed bag on a tiltboard at 4o C for 120 minutes with renaturation 

buffer plus BSA at 1% W/V and Rap1 at 3.5 nM (0.12 ml buffer per cm2 membrane).  

This and all subsequent steps were performed at 4o C using chilled buffer.  Excess Rap1 

was washed away using three one-minute washes with renaturation buffer.  Antigen-

purified anti-Rap1 rabbit IgG was incubated with membranes at 1:20,000 dilution in 

renaturation buffer plus 1% w/v milk for 60 minutes.  Excess anti-Rap1 IgG was washed 

away then HRP conjugated goat anti-rabbit IgG (Roche) was applied to membranes at a 

1:20,000 dilution for 10 minutes.  After one more washing step, Taf-Rap1-IgG 

Complexes were detected via ECL (Pierce Super Signal Pico West) and film exposure (2-

5 minute exposure times).  Parallel controls included membranes treated identically 

except that either Rap1 or primary anti-Rap1 antibody were omitted from binding 
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solutions; these membranes presented no detectable signal in lanes containing Taf forms 

(not shown, (Colbran et al., 2003)).  Notably, these experiments were initially performed 

using Rap1 that was labeled with γ32P-ATP using the catalytic subunit of Protein Kinase 

A (gift of Drs. Sharron Francis and Jackie Corbin) using home-made components and the 

procedure detailed in the PKAce kit manual (Novagen).  Note that Rap1 is a good 

substrate for phosphorylation by PKA irrespective of whether the N-terminal “Kemptide” 

is present on the recombinant protein.  The significance of this has not been pursued.  

Radiolabeled Rap1 was desalted from free ATP using a 5 ml column of G25 Sephadex 

equilibrated in renaturation buffer plus 1% BSA, and used in binding reactions as detailed 

above.  After removing the Rap1 binding reaction from the membrane, it was washed 

briefly, placed in an acetate envelope and subjected to autoradiography without an 

intensifying screen for ~36 hours at room temperature. 

 

Plasmid Shuffle Assay 

 In the study of both TAF genes/proteins and RAP1, it is advantageous that in 

every case the protein-coding genes are necessary for cellular growth.  Thus simple plate-

based growth assays allow for rapid complementation tests of gene and protein 

function(s).  The design and construction of yeast “shuffling strains” and sets of TAF and 

RAP1 variants encoded within streamlined plasmid vectors allows rapid complementation 

tests using the plasmid shuffle assay (Sikorski and Boeke, 1991).  As described above, 

these yeast strains were created along with yeast expression vectors containing systematic 

variants of TAFs or RAP1, and these vectors were transformed into the corresponding 

TAF or RAP1 yeast shuffling strain.  For TAFs these vectors conferred the ability to grow 
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on media lacking histidine while RAP1 vectors allowed growth on media without leucine.  

Transformants were plated onto the appropriate selective media and grown at 30o C for 2-

3 days.  A single colony was then picked to a 5 ml liquid culture with the appropriate 

selective media and grown at room temperature without aeration for several days after the 

culture had appeared to reach saturation (typically 5-14 days).  Note that the inclusion of 

uracil in the media used for both plating and liquid cultures expedites the loss of the 

URA3-marked plasmid that carries the WT copy of the TAF or RAP1 gene found in the 

parental shuffling strain.  This means that if a particular TAF or RAP1 variant possesses 

all the characteristics needed to support growth, it is possible for the cells to lose the wild 

type TAF or RAP1 gene found on the URA3-marked plasmid and become resistant to the 

drug 5-FOA, which is a poison to any cells containing the URA3 gene product.  Within a 

single cell, loss of the URA3 plasmid occurs through a chromosomal mis-segregation 

event that only becomes evident within a mixed population over many generations, and 

several generations are also needed to allow turnover of the URA3 gene product that 

confers sensitivity to 5-FOA.  This is the reason for including uracil in all growth media, 

beginning at the transformation step, when one is seeking to look at phenotypes attributed 

to a particular TAF or RAP1 variant, uncovered by loss of the wild-type TAF or RAP1 

allele.   To test if a particular variant can act in a dominant manner, it is necessary to omit 

both histidine (or leucine) and uracil in order to force the maintenance of the wild type-

containing plasmid within each cell in the population.  For these reasons it is convenient 

to prepare two liquid cultures from each transformation plate; one lacking just histidine to 

be used for the complementation test and the second culture lacking both histidine and 

uracil for test of dominance of the TAF or RAP1 variant of interest.  To prepare serial 
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dilutions and spot them onto a plate, the 5 ml liquid cultures are mixed very well and a 

250 µl portion is placed into the leftmost row of a sterile 96 well Bacti Plate (Nalgene-

Nunc).  Using an 8-channel pipette, 50 µl of each of these cell suspensions are diluted 

into 150 µl of sterile water and this is repeated six successive times working from left to 

right, resulting in one undiluted culture sample and 7 one-to-four serial dilutions for each 

taf or rap1 variant.  Each successive dilution is mixed by no less than 10 pumps of the 8-

channel pipette before transfer to the next serial.  One half of each 96 well plate is 

touched with a 48-prong pinning tool that lifts ~10 µl of cell suspension from each well, 

and the pinning tool is then carefully laid onto a 150 millimeter-diameter petri plate 

containing well-dried solid selective media, resulting in transfer of a uniform bead of 

liquid suspension onto the agar.  The pinning tool is flame-sterilized, cooled briefly, and 

the remaining 48 wells are partially transferred to the agar plate.  Several identical agar 

plates are prepared this way for the purpose of comparing growth at different 

temperatures and with different media ingredients.  Thus a typical experiment examining 

complementation properties and also testing for dominance of twelve variants would use 

twelve SC-His cultures, twelve SC-His-Ura cultures, two 96 well plates, and nine agar 

plates.  Three agar plates would contain media lacking histidine or leucine but also uracil 

and these would be grown at 23o, 30o, and 37o C.  Six plates would contain media lacking 

histidine or leucine only, three of these would also contain 5-FOA at 1 mg/ml and thus 

two plates each would be kept at 23o, 30o, and 37o C.  Plates are photographed from three 

to 7 seven days after cell inoculation.  After representative images are obtained, a single 

colony corresponding to a strain containing each variant, is again transferred to liquid 

culture and used for immunoblotting experiments intended to compare steady-state 
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protein levels of different variants.  This information is necessary to interpret 

complementation patterns in light of contribution of individual protein fragments; for 

example if a particular variant is of a reduced cellular concentration relative to the wild-

type form, one cannot necessarily extrapolate the importance of specific regions of a 

protein directly to the complementation properties. 

 

Yeast Two-Hybrid Assay 

 It was important to establish an alternative method for determining affects of 

Rap1 or Taf alteration on protein-protein interactions.  Two limitations of the Far 

Western method are that it is potentially labor intensive and does not easily give 

quantitative information about protein-protein interactions.  By comparison, the yeast 

two-hybrid method is an accepted means of measuring protein-protein interaction albeit 

indirectly through a genetic readout.  Moreover this method does not require any purified 

recombinant proteins and can provide both quantitative and qualitative information about 

interactions (Bai and Elledge, 1996, 1997; James et al., 1996).  Wild-type RAP1 was 

cloned into pGBDU C1 using a blunted NdeI end on the RAP1 fragment and a blunted 

BamHI end on the vector while a XhoI site was used on the RAP1 3’ end that was ligated 

to a SalI site in the vector.  The resulting vector directed expression of a fusion of the 

Gal4 DBD to the amino terminus of full-length Rap1, using the ADH1 promoter and a 

high copy yeast 2µ replication origin; selection for the plasmid was maintained with SC-

Ura.  TAF5 and derivatives were cloned into pGBDU C1 using the same strategy.  TAF4 

and derivatives were cloned into pGBDU C1 as BamHI/SalI fragments.  These constructs 

or empty pGBDU C1 vector were transformed into yeast strain PJ69-4A (James et al., 
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1996).  This strain is superb for testing two-hybrid interactions because it has multiple 

reporter genes including a GAL7 enhancer/promoter-ADE2 fusion that allows growth on 

media lacking adenine, but only when strong two-hybrid interactions occur.  This ADE2 

reporter gene is therefore much more selective for authentic interactions, eliminating 

many false-positives that can occur when testing for expression of other reporter genes 

such as HIS3.  Other reporter genes in PJ69-4A encode E. coli β-galactosidase and yeast 

α-galactosidase. These enzymes are readily scored by colorimetric assays and provide 

quantitative information about positive interactions.  PJ69-4A derivatives containing 

pGBDU C1 with or without RAP1, TAF4, TAF5 and variants of the latter two were 

grown in liquid SC-Ura media and transformed with a systematic collection of vectors 

encoding each TFIID subunit, subcloned in pACT2.2 (Yatherajam et al., 2003) while 

empty pACT2.2 and a vector encoding full-length Gal4 served as negative and positive 

controls for two-hybrid interactions, respectively.  pACT2.2 expresses N-terminal fusions 

of the Gal4 AD and a single HA epitope tag to the protein of interest, using the ADH1 

promoter and a high-copy yeast 2µ replication origin (Bai and Elledge, 1997).  pGBDU 

C1 and pACT2.2 derivatives were simultaneously maintained in PJ69-4A using selection 

with SC-Ura-Leu.  Single colonies corresponding to each pGDDU C1 / pACT2.2 

pairwise combination were picked to liquid SC-Ura-Leu media and grown to saturation at 

room temperature without aeration over the course of 2-3 weeks.  Serial dilutions were 

then prepared and spotted onto plates containing either SC-Ura-Leu, SC-Ura-Leu-His 

plus 1 mM 3-aminotriazole (to inhibit growth permitted by leaky expression of the HIS3 

gene), or SC-Ura-Leu-Ade, where the latter two score for two-hybrid interactions that 

activate expression of HIS3 or ADE2 reporter genes, respectively.  Plates were incubated 
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at room temperature from between 4 days to 2 weeks.  A significantly longer time is 

often needed for strains containing true positive interactions to grow on the media that 

select for interactions.  While a low level of growth on SC-Ura-Leu-His plus 1 mM 3-

aminotriazole is typically observed even in the absence of bait-(DBD fusion) or prey-(AD 

fusion) encoding plasmid this phenomenon is completely suppressed when scoring for 

activation of the ADE2 reporter gene on SC-Ura-Leu-Ade.  This makes growth patterns 

significantly easier to assess as to whether or not a true two-hybrid interaction is 

occurring, as compared to scoring HIS3 reporter gene activity.  Moreover, different 

interaction partners exhibit a range of colony color on SC-Ura-Leu-Ade.  Strong 

interactions result in rapidly dividing white colonies and weak interactions provide slow 

growing red colonies while intermediate interactions give different shades of pink colony 

color (JHL, data not shown).  Differences in affinity of protein-protein interactions 

between different two-hybrid partners probably account for at least some of these 

observable colony color variations, through indirect mechanisms involving differential 

ADE2 reporter gene expression could also occur.  Expression levels of Gal4-DBD fusions 

expressed from pGBDU C1 vectors were determined using western blotting with 

polyclonal antibodies against Rap1, Taf5, or Taf4.  Expression levels of Gal4-AD fusions 

expressed from pACT2.2 were made using anti-HA antibody 3F10 (Roche Diagnostics). 

 

PCR-Mediated Random Mutagenesis 

 The parallel pursuit of identifying Rap1 interaction domains within Taf4, Taf5, 

and Taf12, while considered necessary for success of this project, placed a practical 

limitation on the amount of resolution that could be obtained.  Only being able to identify 
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rather expansive protein segments, coupled with the complete absence of structural 

information about these segments at that time meant that a random mutagenesis strategy 

was the only realistic option to obtain information about mutational sensitivity of DNA 

encoding these Rap1 interaction domains.  I employed my expertise with PCR to achieve 

this goal.  The basic strategy employed PCR amplification of RBD coding sequences 

under conditions of reduced enzyme fidelity.  The basic formulation and protocol are 

outlined in Cadwell and Joyce, 1992.  There are three major modifications to the 

described protocol.  First, a 10X PCR buffer stock was changed to 100 mM Tris-Cl pH 

8.3, 500 mM KCl, and 70 mM magnesium chloride, because the above-referenced buffer 

composition did not work.  Second, a homemade preparation of Taq DNA polymerase 

described above was used.  Third, because Taf4 and Taf5 Rap1 interactions domain-

coding sequences were flanked on both sides by other unrelated but important coding 

sequences, and mutagenized sequences had to be restricted to those encoding the Rap1 

interaction domains and used to replace the wild type sequences in cloned TAF4 and 

TAF5 genes, long PCR primers had to be used that included appropriate restriction 

enzyme sites but that avoided unwanted mutagenesis by inclusion of those sequences 

within the primers.  Therefore, PCR primers were designed to be as much as ~100 

nucleotides in length and were subjected to preparative denaturing PAGE to isolate full-

length primers away from truncated synthesis byproducts.  TAF4 oligonucleotides were 

designed to use an internal 5’ EcoRV site and the artificial 3’ SalI site, but were extended 

to include codons from amino acids 250 and 350, respectively (therefore ~38 codons 

were included in the 3’ primer).  TAF5 oligonucleotides were designed to use an internal 

5’ SmaI site and a 3’ EcoRI site; it was not necessary for these primers to be as great in 
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length as those for TAF4.  Otherwise, the relevant ingredients to successful mutagenic 

PCR are an increased magnesium chloride concentration, as mentioned, the inclusion of 

Manganese chloride at 0.5 mM final, modified dNTP concentrations (fresh 10X stock 2 

mM dGTP and dATP, 10 mM dCTP and dTTP), and increased concentration of Taq 

DNA polymerase.  It was important to add the manganese chloride at a later time to avoid 

precipitation.  These modifications to standard PCR increase the misincorporation 

frequency of Taq DNA polymerase several hundred fold.  15 pmoles of each primer and 

0.5-1 ng of pBG101 TAF4 or pET28A TAF5 were also included in each 50 µl PCR 

reaction.  30 rounds of thermal cycling were used with 94o, 45o, and 72o C, with 1 minute 

holds per step.  Products of ninety six 50 µl PCR reactions were pooled, ethanol-

precipitated, and subjected to preparative electrophoresis in 1.5% agarose gels.  DNA 

was recovered using the Qiagen gel extraction kit and 5-10 spin columns per DNA 

fragment.  A large starting quantity of mutagenized DNA fragments was needed due to 

the low final recovery of insert after successive rounds of restriction digestion and gel 

purification.   

 

Library Construction 

 To generate a high complexity plasmid library, it is necessary to have an 

extremely low background of parental plasmids DNAs present upon transformation of the 

ligations reactions to bacteria.  This was achieved by extensively digesting the vector 

preparations, treating them with alkaline phosphatase to prevent re-closure of vectors, 

and gel purification.  Plasmid p413 TAF4 HA3/NLS (250-500 µg) was digested 

sequentially with EcoRV, AatII, and SalI followed by alkaline phosphatase treatment and 
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gel purification.  The use of two different restriction enzymes prior to SalI treatment 

increases the proportion of vector molecules able to accept an EcoRV/SalI insert, since 

SalI cuts circular DNA at very low efficiency.  Plasmid p413 TAF5 HA3/NLS (250-500 

µg) was digested sequentially with XmaI and EcoRI followed by alkaline phosphatase 

treatment and gel purification.  XmaI digestion was allowed to proceed 24 hours at room 

temperature to maximize vector cleavage.  Each successive enzymatic treatment was 

preceded by extraction using the Qiagen PCR clean-up kit.  Pools of mutagenized TAF4 

and TAF5 fragments were prepared by successive EcoRV/SalI/gel purification or 

XmaI/EcoRI/gel purification, respectively.  Pilot ligation reactions performed overnight 

at room temperature confirmed an extremely low vector background and allowed 

determination of optimal vector to insert ratios giving maximal ligation efficiency.  

Subsequently, a large-scale ligation reaction was performed in a 200 µl final volume 

overnight at room temperature.  The next morning the two large ligation reactions were 

distributed into 20 bacterial transformation reactions containing 10 µl of each ligation 

reaction and 50 µl of BW23474 E. coli that had been made chemically competent and 

frozen at -80 degrees C the week before (transformation efficiency ~ 109 CFU/microgram 

DNA).  After incubation on ice for 30 minutes, 20 seconds heat shock at 37o, and 1 hour 

recovery at 37o C in .5 ml fresh SOC medium, each transformation reaction was plated 

onto one 150 mm petri dish containing LB Agar plus ampicillin at 100 ug/ml and 

incubated overnight at 30o C.  The following morning/early afternoon, each plate had 

~1000 large visible colonies.  5 ml of fresh LB liquid plus ampicillin was added to each 

plate, which were then wrapped in parafilm, stacked on an orbital shaker, and left to 

rotate gently for 30 minutes.  Afterwards the LB liquid in each plate, corresponding to 
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either TAF4 or TAF5 mutagenized libraries, was decanted into a fernbach flask 

containing 900 ml LB plus ampicillin and incubated at 30o C with shaking for ~5 hours, 

which resulted in a significantly turbid culture.  The E. coli were harvested by 

centrifugation and plasmids were extracted using the Qiagen Giga Prep kit.  Assuming 

that bias towards certain clones was avoided during the incubation of plates and 

expansion of libraries in liquid culture, each library contained as many as 20,000 unique 

clones. 

 

Library Screening 

 A log phase 250 ml YPD liquid culture of the appropriate shuffling strain was 

transformed with a portion of the corresponding mutagenized plasmid library.  Ten 150 

mm petri plates containing SC-His agar, each having 500-1000 yeast colonies after two 

days incubation at 30o C, were used to pick single colonies directly to wells of sterile 96 

well bacti plates containing 200 µl SC-His liquid media.  Forty to fifty 96 well plates 

were prepared per library and incubated at room temperature for from four to seven days.  

Each 96-well plate contained a clone transformed with empty pRS413 or p413 

TAF4/TAF5 as negative and positive controls, respectively.  Thus between ~3500-5000 

individual mutant clones were examined, or at maximum ~25% of total clones present in 

each library.  Each well was mixed by ten strokes with an eight channel pipettor, and then 

a 96 pin device was used to transfer a sample of each well to six replicate 150 mm plates 

containing SC-His with or without 5-FOA.  Accordingly two plates each were incubated 

at 23o, 30o, and 37o C and examined after 3 to 7 days.  The comparison of plates without 

or with 5-FOA and incubated at different temperatures identified individual colonies that 
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were defective for growth at elevated temperature but only in the presence of 5-FOA.  

Several hundred such colonies were repicked from the 23o plates without 5-FOA for 

TAF4 and TAF5 strains.  These cultures were grown to saturation and then subjected to 

serial-dilution growth analyses on plates containing or lacking 5-FOA with incubation at 

various temperatures.  Clones that again exhibited temperature conditional growth but 

which grew comparably to wild type at lower temperatures were further screened by 

western blot analyses.  Loading-adjusted immunoblots using anti-HA and anti-actin 

antibodies were used to select clones that exhibited steady state Taf4 or Taf5 protein 

abundance very similar to wild type.  Strains that exhibited “tight” growth, with little 

visible perturbation at lower temperature but severely compromised or eliminated growth 

at 37o C, and consistent steady-state Taf4 or Taf5 protein abundance after heat shock 

were expanded from single colonies picked from 23o SC-His plates containing 5-FOA.  

Plasmids were recovered from these strains and transformed back into E. coli according 

to the procedure of M.V. Singh (Singh and Weil, 2002).  Next, DNA sequencing was 

used to identify the changes in coding sequence and allow exclusion of any taf4 or taf5 

alleles that had coding changes outside codons 250-350 of TAF4 or 147-290 of TAF5, as 

well as alleles that coded for deletion, insertions, or frameshifts within these sequences.  

Finally, plasmids associated with all of the specified parameters were re-transformed into 

the yeast shuffling strains and confirmed to confer tight temperature conditional growth 

after shuffle with 5-FOA.  Note that as performed, these genetic screens did not nearly 

approach saturation based on estimated library complexity, and can only identify 

recessive, loss-of-function, temperature conditional alleles.  Three unique taf4 alleles 
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were identified along with thirty unique taf5 alleles.  Only two of the thirty taf5 alleles 

were isolated twice, consistent with the screen not having been performed to saturation. 

 

RESULTS 

 

Rap1 Interacts With Specific Regions of Taf12, Taf4, and Taf5 

 The investigation into Rap1-TFIID interaction had been ongoing within the lab 

for several years prior to my participation in the project.  From the beginning of my 

involvement, my objective was characterization of Rap1 interaction with Tafs, although a 

former post-doc had gained some clues about this.  Data indicated direct Rap1 binding by 

Taf4, Taf5, and Taf12 and my experimental data confirmed this observation.  Another 

previous observation was that Rap1-Taf12 binding appeared to involve the highest 

affinity of interaction.  For this particular reason, I first wanted to determine the site(s) 

within Taf12 that mediated interaction with Rap1.  We decided to base our strategy on 

use of the Far Western interaction assay since it had proven useful up to that point for 

characterizing these interactions, and because it would lend itself to analysis of many 

Taf12 variants to help localize the Rap1 interaction domain(s).  Even so, I designed a 

systematic family of N and C-terminal Taf12 truncations, to be expressed as fusions to 

GST, allowing the opportunity to examine the interactions using GST pulldown 

interaction assays as an experimental alternative.  A second reason for preparing Taf12 

variants as fusions to GST was that the tag might obviate problems with protein folding 

and solubility anticipated to arise with some truncation variants.  All of the designed 

Taf12 variants, including the full-length protein and 19 truncations, were successfully  
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purified from the soluble extracts of bacteria expressing the recombinant proteins.  These 

proteins were run on SDS-PAGE gels, alongside full-length Taf12 lacking the GST tag 

and recombinant GST alone, and analyzed by Far Western as described above.  Data are 

shown in Figure 2.1.  Consistent loading of the gel and equivalent transfer to the PVDF 

membrane are indicated as shown by a representative membrane stained with Coomassie 

Brilliant Blue.  Rap1 interacted with Taf12 variants missing as many as 241 residues 

from the amino terminus but not with a variant missing 291 residues.  Consistent with 

this observation, the amino terminal 285 residues of Taf12 were sufficient for interaction 

with Rap1, but the amino terminal 225 residues were not.  Note that a variant containing 

the amino terminal 375 residues consistently failed to interact with Rap1 in this assay, the 

reason behind this lack of binding is not clear but I suspect this may be due to a limitation 

of protein refolding after SDS-PAGE and electroblotting, which is peculiar to that 

particular variant.  Altogether, the data were reproducibly consistent with the existence of 

Rap1-Taf12 interaction occurring through the involvement of Taf12 residues between 

241 and 285.  Subsequent experiments showed that other Taf12 fragments containing 

residues ~201-315 were both necessary and sufficient for interaction with Rap1 in the Far 

Western assay (not shown). 

After the characterization of the Taf12 Rap1 interaction domain(s), equivalent 

information about Taf4 RBD(s) was pursued next.  In proceeding this way, I was 

considering that Rap1 interacts with Taf4, but also that Taf4 interacts with Taf12, and the 

heterodimer of the two proteins co-localize to multiple locations within the TFIID 

complex.  Participation of both Taf4 and Taf12 in Rap1 binding was taken to indicate the 

possibility of redundancy of Taf contacts for Rap1 within TFIID.  Thus information about 
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the interactions of each Taf with Rap1 might be required to adequately dissect Rap1-

TFIID interactions.  Having obtained information about Rap1 and Taf12 using the Far 

Western assay, this seemed the logical approach to extend to Rap1-Taf4 interaction.  

Full-length protein and truncations were again expressed as GST fusions in bacteria.  

Unfortunately, it was very difficult to obtain useable Taf4 variants.  Expression and 

purification of Taf4 variants was plagued by low protein solubility and stability.  Much of 

the difficulty was obviated by developing a new strain of bacteria compatible with 

coexpression of two different proteins from separate vectors, and with a third vector 

supplying rare tRNAs.  As such Taf4 and variants were coexpressed along with Taf12 in 

BL21 DE3 Gold RIL Strept.  Coexpression of Taf4 with Taf12 seemed to stimulate 

proper folding and solubility of Taf4 and also provide protection from proteolytic 

degradation.  Preparative SDS-PAGE was included in the purification scheme to remove 

protein contaminants that might otherwise complicate the interpretation of the Far 

Western analyses.  Gel purification also removed the full length Taf12 that was present in 

every preparation; this preparative step was intended to facilitate GST pulldown 

experiments to compare binding of Rap1 to full length GST Taf4 and derivatives.  The 

results of the Far Western experiments are shown in Figure 2.2.  Taf4 without a GST tag 

was used as a positive control because the family of Taf4 derivatives possessed this tag.  

GST was again used as a negative control and Taf3 was used as an additional negative 

control.  Rap1 failed to interact with either recombinant Taf3 or GST.  Rap1 interacted 

with Taf4 variants missing as many as 253 N-terminal residues, but not when 281 amino 

acids were removed.  Amino acids 1-344 were sufficient for interaction with Rap1 but a 

fragment containing residues 1-316 did not interact with Rap1.  Collectively, these results   
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indicated that the Rap1 interaction domain(s) resided within residues 253 and 344 of 

Taf4.  A fragment containing residues 253-344 fused to GST was sufficient for 

interaction with Rap1 in this assay (not shown).   

 Having successfully characterized interactions between Rap1 and both Taf12 and 

Taf4, it seemed logical to obtain equivalent information about Taf5.  Once again, this was 

done in consideration of how Rap1 actually interacts with Tafs in the physiological 

context; that of the TFIID complex.  And again, I was considering the possibility of 

redundancy existing in the mechanism of Rap1-Taf-TFIID interaction.  Like with Taf4, 

Taf5 presented problems, but to a more significant extent.  I found that while full length 

Taf5 and variants thereof are primarily insoluble when expressed in bacteria, some 

soluble protein could be obtained when expression was performed at lower growth 

temperatures and also if a solubility-enhancing tag like GST or MBP was appended to the 

protein.  In this way I was able to obtain the systematic family of Taf5 truncations for use 

in the Far Western Assay.  Unfortunately, when tested side by side with appropriate 

positive and negative controls, Rap1 failed to interact with any members of the Taf5 

family.  However, full length Taf5 expressed without the GST tag and purified under 

denaturing conditions was reproducibly capable of interacting with Rap1 within the same 

assays that failed to detect interaction with GST Taf5 and variants prepared from soluble 

proteins.  I considered that it was the denaturing buffer conditions employed during 

purification of insoluble Taf5 that somehow rendered Taf5 competent to interact with 

Rap1 in the Far Western Assay.  As such, denaturing preparations were made for the 

GST Taf5 family.  Again, none of these proteins interacted with Rap1, although full 

length untagged Taf5 made and tested in parallel once again did interact with Rap1.  This  
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indicated that the amino terminal GST tag was interfering with the ability of Rap1 to 

interact with the protein(s).  As such the entire Taf5 family was transferred from pBG101 

to pET28A to allow expression without the GST tag.  Rapid switching of expression 

vector backbone was simplified by the logical, streamlined LIC strategy used to create all 

Taf12, Taf4, Taf5, and Rap1 constructs, which itself would not have been possible 

without having had made my own preparation of Pfu polymerase.  Expression and 

purification of Taf5 variants from pET28A under denaturing conditions resulted in the 

data shown in Figure 2.3.  In these experiments Taf3 was again used as a negative 

control, and Taf4, Taf12, and full length Taf5 was used a positive control.  Importantly, 

the similar quantity of Rap1 binding observed in these experiments indicated that Rap1 

binds to Taf4, Taf5, and Taf12 with similar affinity.  Binding of Rap1 to Taf5 was 

significantly reduced when as little as 58 amino terminal residues were removed, and 

eliminated when additional protein sequence was removed.  On the other hand a Taf5 

fragment containing just the amino terminal 337 residues was sufficient for interaction 

with Rap1 but the 222 amino terminal Taf5 residues were not.  Notably there did appear 

to be some interaction between Rap1 and the Taf5 C-terminus, specifically within the 

WD repeats, but this only occurred when all residues amino-terminal of the WD repeats 

were removed.  Therefore the results indicated overall that the amino terminus of Taf5 

contains the Rap1 interaction domain(s).  Recognize this is also consistent with the 

inability of full length Taf5 bearing a large amino terminal GST tag to interact with 

Rap1; it seems likely that placement of a large epitope tag at the Taf5 amino terminus 

reduces access for Rap1 to interact with Taf5 there.  Note that the smallest Taf5 fragment 

that was able to interact with Rap1 contained residues 1-337; several other variants with 
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residues removed from either amino or carboxy terminal ends of this fragment did not 

interact with Rap1.  Therefore the lowest amount of resolution of the Rap1 interaction 

domain(s) was available with Taf5.   

 

Sequence Encoding the Rap1 Binding Domain of Taf12 is Non-Essential for Viability 

 Identification of Rap1 binding domain(s) contained within residues ~200-300 of 

the 539 residue Taf12 protein was a bit surprising.  We expected that if truly critical for 

Rap1-TFIID interaction and thus Ribosomal Protein Gene (RPG) Transcription, then the 

DNA sequence encoding the responsible portion of Taf12 would be both necessary for 

cellular growth and encode amino acid sequence conserved in evolution.  Available 

evidence from the literature suggested that this N-terminal Rap1-binding portion of Taf12 

was dispensable for cellular growth (Moqtaderi et al., 1996b).  Additionally, the only 

portion of yeast Taf12 with significant evolutionary conservation resides between ~400-

539, which contains the histone fold domain that mediates dimerization with Taf4 

(Thuault et al., 2002; Werten et al., 2002).  Nevertheless, we decided to use our available 

systematic Taf12 truncation family and assess the complementation properties in yeast, to 

confirm the literature and see for ourselves if we could observe any significant growth 

defects associated with removal of the Rap1 interaction domain(s) in Taf12.  Taf12 and 

derivatives were expressed from a single copy HIS3-marked plasmid under control of 

natural TAF12 regulatory sequences, within my TAF12 shuffling strain.  As shown in 

Figure 2.4, all of these variants appeared to be recessive to wild type TAF12.  When cells 

were grown in the presence of 5-FOA, which killed any cells containing TAF12 on the 

URA3-marked plasmid, it was clear that removal of as many as 350 N-terminal amino  
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acids was compatible with growth.  Consistent with the requirement of Taf12 for viability 

(see empty vector strain) and importance of the C-terminus, any significant alteration of 

this region resulted in a loss of viability.  Notably, removing just 19 C-terminal residues, 

while compatible with viability, conferred temperature conditional growth (not shown).  

Two of the amino-terminal truncations, containing residues 151-539 or 351-539, showed 

a consistent slow-growth phenotype on 5-FOA.  However, the loading adjusted 

immunoblot shown below the growth data indicated that both of these variants were of 

reduced steady-state abundance compared to wild type.  Thus although the 351-539 

variant is missing the entire Rap1 binding domain, its slow growth phenotype is not 

expressly due to this deficiency.  I attempted to clarify this issue by subcloning the Taf12 

family into another yeast vector intended to direct high-level expression.  Neither the 

complementation patterns nor the pattern of Taf12 variant steady state abundance relative 

to wild type changed from the prior result, so this did not reconcile whether the growth 

deficiency in the 351-539 variant is strictly due to absence of the Rap1 interaction 

domain (not shown).  Note that four Taf12 variants that did not support viability but were 

capable of interaction with Rap1 in the Far Western accumulated to levels greater than or 

equal to wild type (lanes 15-18).  Therefore the available information confirmed what the 

literature already reported, that the RBD within Taf12 is dispensable for viability 

(Moqtaderi et al., 1996b). 
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Sequences Encoding the Rap1 Binding Domains of Taf4 and Taf5 Are Essential For 

Viability 

 Given the lack of a discernible phenotype with any of the Taf12 variants, it was 

necessary to proceed with in vivo analyses testing growth requirements for Taf4 and Taf5 

Rap1 interaction domains.  Experience had shown us that only severe loss of growth 

phenotypes typically preceded observance of affects on RPG transcription; it seemed 

unlikely we would see this phenomenon in the case of the Taf12 Rap1 interaction 

domain.  As was the case with Taf12 though, the initial design of the Taf4 and Taf5 

deletion families facilitated their movement into yeast expression vectors for plasmid 

shuffle complementation assays.  Figure 2.5 shows the results of complementation tests 

and a western blot measuring steady state Taf4 variant protein abundance.  Recall that the 

Rap1 interaction domain in Taf4 was localized to residues 253-344.  Note that removal of 

residues between 210 and 233 resulted in loss of viability.  Removal of either the first 21 

or 91 residues caused a slow growth phenotype, but the steady state levels of the 

corresponding proteins were barely detectable.  On that note, there was a wide range of 

steady state protein levels compared to wild type.  The 210-388 form, which supported  
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Figure 2.5:  Mapping regions of Taf4 necessary for growth.  The systematic serial truncations 

of TAF4 were tested in a plasmid shuffle complementation assay exactly as was done for TAF12.  

Vector containing TAF4 was able to complement as were most N-terminal truncation variants, 

with the exception of variants with the N-terminal 232 or more residues absent.  On the other hand, 

only the 1-378 C-terminal truncation variant could complement, and this variant was inviable at 37o 

(not shown).  Collectively, this data indicates that all portions of the Taf4 HFD are completely 

needed for growth, and do not address the role of the RBD in cell growth.  Creation of the two 

internal deletion mutants !250-359 and !284-326, which lack some or all of the mapped RBD, 

demonstrate the requirement of the RBD for cell growth.  As indicated by the accompanying 

western blot, variants deviated widely from wild type steady state abundance, but abundance did 

not necessarily correspond to complementation profile.  The !250-359 and !284-326 variants 

were present at or greater than wild type levels.  Data are adapted from Layer et. al., 2010.            
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viability at the wild type rate, was also present at reduced levels.  Therefore in the case of 

Taf4 it was somewhat difficult to reconcile steady state protein abundance with 

complementation patterns.  At the C-terminus, removal of just 10 residues conferred a 

temperature conditional phenotype (1-378, data not shown); additional removal was not 

compatible with life (see 1-344).  Importantly the 1-344 variant protein accumulated to 

approximately wild type levels, consistent with a critical function of residues 345-388, 

which are not involved in Rap1 interaction.  Because amino acids flanking the 

Rap1interaction domain(s) at both the amino and carboxy terminus were necessary for 

viability, additional Taf4 variants had to be generated to specifically address the 

requirements of those particular Taf4 residues for viability.  Site directed mutagenesis 

using the gene SOEing technique allowed the removal of residues 250-350 while leaving 

Taf4 otherwise intact.  To create a Taf4 variant with a smaller deletion removing residues 

284-326, TAF4 was subcloned as a BamHI-SalI fragment into p413 TAF4 HA3NLS that 

had been cut with BamHI and XhoI thereby destroying the XhoI site in the vector 

backbone.  This construct was then cut with XhoI and subsequently made blunt using the 

Klenow fragment, then digested with ZraI.  The vector backbone was next gel purifed 

and re-ligated at low DNA concentration.  This resulted in seamless deletion of residues 

284-326 with preservation of the reading frame.  When tested in complementation assays 

neither the form missing residues 250-350, nor the variant missing 284-326 could support 

viability, even though these proteins accumulated to levels equal to or greater than that of 

the wild type protein.  This result indicated that like the residues flanking the Rap1 

interaction domain, these amino acids are also necessary for viability.  Therefore the 
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Figure 2.6:  Mapping regions of Taf5 necessary for growth.  The systematic serial truncations 

of TAF5 were tested in a plasmid shuffle complementation assay exactly as was done for TAF12 

and TAF4.  Vector containing TAF5 was able to complement as were a few N-terminal truncation 

variants.  The 263-798 variant, but not 214-798, was able to complement.  Note however the large 

excess of the 263-798 variant demonstrated in the accompanying western blot, which may account 

for the complementation properties of the 263-798 variant, although it cannot support viability at 

37o (not shown).  Note that there are three lysine residues between 214 and 263; these residues may 

play a role in Taf5 stability, possibly through ubiquitin- and/or SUMO-dependent pathways.  On the 

other hand, none of the C-terminal truncation variants could complement.  Collectively, this data 

indicates that the N-terminal NTD1 and NTD2 portions of the Taf5 RBD, colored blue and 

green, respectively, are important for cell growth, as are the non-RBD C-terminal WD repeats.  

Data are adapted from Layer et. al., 2010.            
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portion of Taf4 responsible for interaction with Rap1 in vitro indeed plays a critical role 

in cellular growth.   

 In parallel the complementation properties of the Taf5 truncation family were 

tested in yeast (Figure 2.6).  Removal of as many as 146 amino terminal residues was 

compatible with normal growth.  As a portion of this sequence was found to be important 

for interaction with Rap1, this result indicates that at least a portion of the Taf5 Rap1 

interaction domain is not needed for cellular growth.  However, additional removal of 

amino terminal Taf5 domains up to residue 213 was strictly incompatible with 

viability.Strangely, a variant lacking as many as 263 amino terminal residues consistently 

grew, albeit at a reduced rate and in a temperature sensitive manner.  Note that this 263-

798 variant exhibited steady state protein abundance 5-10 fold greater than wild type; this 

characteristic may be related to the ability to complement since this form is always 

effectively overexpressed, perhaps providing a measure of dosage compensation.  

Consistent with the important nature of amino terminal Taf5 residues, both the 329-798 

and 414-798 variants, which are also present at elevated steady state levels, are 

completely unable to support growth.  These two variants are either nearly lacking or 

completely missing the mapped Rap1 interaction domain(s).  With respect to the Taf5 C-

terminus, it appears that all or nearly all of this portion of Taf5 is required for growth.  

The least disturbed variant, missing residues 757-798, can only grow at low temperatures 

and very slowly at that (not shown).   

To better characterize the Taf5 amino terminus, two additional variants were 

created using site directed gene SOEing.  The hope was that these variants would better 

explain the relationship and relevance of the so-called N-terminal domains 1 and 2 
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(NTD1 and 2).  These domains represent the most conserved residues in the Taf5 amino 

terminus and as such it was reasonable to consider them as of primary significance with 

respect to the observed complementation properties, and for interaction with Rap1.  

Because NTD1 appeared dispensable as shown using the systematic truncation family 

and NTD2 seemed to play a bigger role, I designed variants missing all of NTD2 or all of 

NTD2 but also NTD1.  The complementation properties of these variants are shown in 

Figure 2.7.  Deletion of residues 147-290 conferred a temperature conditional growth 

phenotype, where this strain was unable to grow at temperatures above 30o C.  

Simultaneous removal of NTD2 and also NTD1 worsened this phenotype, causing a 

constitutive severe slow growth phenotype and this strain was also unable to grow at 

temperatures above 23-25o C.  Note that both variants were of higher steady state 

abundance than WT, particularly the double deletant, which may alleviate the 

deficiencies associated with these variants, by driving protein-protein interactions whose 

affinity was reduced by the deletions.  Note that the worsened phenotype is considered a 

synthetic genetic interaction, often found when distinct proteins or protein domains 

contribute to the same molecular process.  Since the entire Taf5 amino terminus was 

needed for effective interaction with Rap1, this new finding supported the idea that these 

domains in Taf5 really do contribute to interaction with Rap1 in vivo, and also suggested 

the importance of this interaction to cellular growth.   
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domains making important contributions to Rap1-TFIID interaction and RPG transcription.  The accompanying western blot indicates the high expression

level of the deletants relative to wild type.  Data are cropped and spliced from the same image of the same experiment, as indicated by the dividing line.        
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Rap1 Binding Domains of Taf4 and Taf5 Do Not Contribute to Taf-Taf Interaction 

 An alternative methodology was sought to characterize interactions between Rap1 

and Tafs, with an eye for obtaining both qualitative and quantitative information.  The 

yeast two-hybrid technique fulfilled these criteria.  Unfortunately Rap1 did not interact 

with any Tafs when fused to the Gal4 DBD, where Tafs were fused to the Gal4 AD. A 

possible explanation for the lack of interaction with Tafs was that the Gal4 DBD Rap1 

fusion protein was unstable or expressed at very low levels.  This undesirable feature 

might be further complicated by, and contribute to, a reduced availability for participation 

in activation of two-hybrid reporter genes, particularly since the fusion protein 

presumably maintained its ability to bind to the many natural Rap1 binding sites 

distributed throughout the genome.  This is not a new observation or suggestion (Zhao et 

al., 2006). Nevertheless, the Gal4 DBD Rap1 fusion was active for interaction with Gal4 

AD Rif2, a protein known to interact with the C-terminus of Rap1 to mediate telomeric 

silencing (positive control, not shown).  The Rap1-Rif2 interaction might simply be of a 

higher affinity than Rap1-Taf interactions and thus activation of reporter genes is possible 

with the Rap1-Rif2 two-hybrid pair even though the fusion proteins are poorly expressed.  
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To attempt to address this issue the reciprocal experiment was performed with Tafs fused 

to the Gal4 DBD and Rap1 fused to the Gal4 AD.  Unfortunately, the Gal4 AD Rap1 

fusion appeared to have a toxic affect on yeast cell growth, because no transformants 

could be obtained that contained the pACT2.2 RAP1 construct.  Further attempts would 

have necessitated creation of additional constructs, none of which promised to provide 

useful information, so at this stage two-hybrid experiments to study Rap1-Taf 

interactions were abandoned. 

       To salvage some useful information after the investment of time made in 

establishing reagents for this procedure, the requirement for the Taf4 and Taf5 domains 

of interest for interaction with other Tafs was pursued.  Gal4 DBD fusion of Taf4, Taf5, 

and deletion derivatives were created using pGBDU C1.  These were transformed into the 

reporter strain along with a vector encoding TBP or one of the fourteen Tafs, so that 

interaction with every single stoichiometric component of the TFIID complex was 

examined.  Using an ADE2 reporter gene as the readout for two-hybrid interaction, I 

identified interactions between Taf4 with Taf9 and Taf10 (Figure 2.8).  The pattern of 

interaction did not change when residues 250-350 were removed from Taf4.  Gal4 DBD 

Taf5 interacted with Gal4 AD Taf4, Taf6, Taf9, and Taf10.  Again, this pattern of 

interaction did not change when both NTD1 and NTD2 were deleted from Taf5.     

 The lack of interaction between Taf4 and Taf12 was unexpected since it is widely 

accepted that these proteins directly bind in a strong manner.  The observed of interaction 

between Taf5 and Taf4, but not the reciprocal interaction, was also troubling.  There are 

two additional reports in the literature concerning systematic two-hybrid interactions 

using TAF genes from yeast or plants (Lawit et al., 2007; Yatherajam et al., 2003).  There 
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are considerable technical differences between these two studies and my own 

experiments, not the least of which include using TAF genes from plants instead of yeast, 

or use of a different (and less selective) reporter gene to indicate two-hybrid interactions.  

Thus published work with yeast Tafs identified interactions between Gal4 DBD-Taf4 and 

Gal4 AD-Taf10 and Gal4 AD-Taf12, but not Gal4 AD -Taf9; work with plant Tafs found 

the exact same pattern of interactions.  The study using yeast Tafs identified interactions 

between Gal4 DBD-Taf5 with Gal4 AD-Taf4, Gal4 AD-Taf10, and Gal4 AD-Taf12, 

while plant Gal4 DBD-Taf5 interacted with Gal4 AD-Taf4, Gal4 AD-Taf5, Gal4 AD-

Taf8, and Gal4 AD-Taf9.  Thus a commonality between the different results is the 

observance of interactions between Gal4 DBD-Taf5 and Gal4 AD -Taf4, but not the 

reciprocal interaction.  This and other discrepancies might be sorted out using 

combinations of both N- and C-terminal fusions of Tafs to the Gal4 DBD and AD, in 

case the exclusive N-terminal location of epitope tags is site-specifically interfering with 

certain interactions.  Until this and systematic use of reporter genes is implemented, it is 

difficult to extrapolate results of two-hybrid experiments from one report to another.  For 

my purposes, the strongest conclusion that could be made from my studies is that the 

regions of Taf4 and Taf5 proposed to be important for interaction with Rap1 do not 

appear to influence Taf-Taf interactions identified by directed two-hybrid screening. 

With the caveat of false negatives accompanying use of this assay, we could proceed with 

some extra confidence in additional mutational analyses of DNA encoding these Taf 

domains, without concern about gross perturbation of TFIID structure caused by 

disruption of Taf-Taf interactions. 
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Point Mutagenesis of Sequences Encoding Rap1 Binding Domains Confers Temperature 

Conditional Growth 

Having mapped Rap1 binding domains in Taf4, Taf5, and Taf12, and 

demonstrating that the responsible portions of Taf4 and Taf5 are necessary for cellular 

growth, I had a good basis for attempting isolation of mutant alleles that affect TFIID 

function by way of an affect on the portions of interest.  Because an obvious growth 

phenotype occurred upon removal of the Rap1 interaction domain(s) in Taf4 and Taf5 but 

not with Taf12, only Taf4 and Taf5 were pursued further.  The objective of this part of 

the study was to attempt to identify mutants that show growth defects, but that more 

importantly display a defect in RPG transcription.  I wanted to rule out indirect affects to 

the best of my ability and as such sought to avoid the use of large deletions in building 

my model of the role of Rap1-Taf-TFIID interaction in RPG transcription.  Thus point 

mutants were most desirable.  Again, there was little basis for designing mutants on the 

information about structural features, since nothing was known at the time I started my 

Taf4/Taf5 structure-function studies.  Moreover, our experience has shown that multiple 

amino acid substitutions are often needed to provide enough disturbance of Taf function 

so as to allow detection of a growth phenotype.  Both of these limitations could be 

overcome by partial randomization of DNA sequence encoding the Taf domains of 

interest.  Successful creation of taf point mutants was achieved by a combination of 

judicious subcloning strategy, PCR-mediated mutagenesis under conditions of low-

fidelity amplification, high quality library construction, and efficient growth-based 

library screening available through use of yeast genetics as detailed above.  There were 

several criteria set forth prior to screening for mutants.  The purpose of these criteria was 
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to eliminate indirect affects as much as possible in judging the suitability of particular 

unique mutants.  Therefore I was able to focus on the contribution of individual mapped 

Rap1 interaction domains in Taf4 and Taf5, and truly and selectively test the contribution 

of those domains to growth and RPG transcription.   

Mutagenesis of TAF4 was successful in that three unique mutant alleles 

demonstrating temperature conditional growth were isolated (Figure 2.9).  Alleles were 

named with a number designation corresponding to the order in which they were isolated 

and finally selected.  Each allele encoded a protein exhibiting steady state abundance and 

mobility very similar to wild type, as expected given that this was factored into my 

selection of mutant alleles. All three alleles encoded multiple amino acid substitutions, 

from three to six amino acid substitutions coded per allele.  Interestingly the allele with 

the strongest loss of growth phenotype, taf4-219, contained the fewest coding changes.  

The identification of multiple mutants suggested firstly that this region alone is 

responsible for providing a critical Taf function, and also again suggested that individual 

amino acids within the putative Rap1 binding region of Taf4 are important for cellular 

growth, although the occurrence of multiple substitutions per allele complicated more 

precise interpretation.  Since all three alleles conferred a loss-of-growth phenotype, but 

were recessive to wild type, it was inferred that the encoded proteins are defective for a 

specific part of overall protein function. 

While this goal of the project concerning Taf4 met with success, by comparison 

mutagenesis of TAF5 was a smash hit.  In total 30 unique recessive mutant alleles were 

isolated that conferred a temperature conditional loss of growth phenotype.  All isolated 

alleles except one contained multiple amino acid substitutions.  For practical reasons 
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further use of all identified taf5 mutants was deemed excessive; the experiments that will 

be described below in detail were limited to four particular mutants (Figure 2.9) that 

contained either one, five, or eight different coding changes.  Again, each Taf5 protein 

was of similar mobility and abundance relative to wild type, as mandated by my selection 

criteria.  Growth characteristics were generally more desirable with “tighter” phenotypes 

evident than seen with taf4 mutants; this is attributed to a larger set of taf5 mutants to 

choose from that allowed the ‘best’ mutants to be used.  The specific reasons behind the 

higher success rate of TAF5 mutagenesis are discussed below.  In any case the 

randomization experiments involving DNA encoding Taf4 and Taf5 Rap1 binding 

domains supported the importance of these domains to cellular growth and showed that 

individual amino acids contribute to RBD function.  The occurrence of strong growth 

phenotypes is consistent with, but does not prove, a defect in RPG transcription in mutant 

cells since RPG transcription is a limiting factor for cellular growth capacity.  The next 

logical step was to examine levels of RPG transcripts in RNA from wild type and mutant 

cultures grown at permissive and non-permissive growth temperatures.   
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Discussion 

The objectives of this phase of my thesis research were to identify and 

characterize Rap1 binding domains in TFIID that are potentially shared or distributed 

between three Tafs, and were predicated on the concept that any such domains make a 

critical contribution to cellular growth in part via participation in RPG transcription.  

Only by uncovering growth phenotypes associated with alteration of these Taf domains 

could I expect to successfully and meaningfully characterize the function of those 

domains.  To restate in other terms, those loss-of-growth phenotypes associated with Taf 

mutants should be coincident with the molecular phenotype of reduced RPG 

transcription, the readout that we needed to ultimately measure.  It would be impractical 

to first measure for RPG transcriptional phenotypes, so the correlation (albeit not strict or 

exclusive to RPGs) of RPG transcriptional defects with growth defects was mandatory 

for execution of this project. 

The first Rap1 binding domain to be characterized was that of Taf12.  This was 

roughly mapped to residues ~200-315 of the 539 amino acid protein.  The best 

characterized feature of Taf12 is its C-terminal histone fold domain that participates in 

direct interaction with Taf4.  There is very little information about the Taf12 N-terminus, 

probably because in higher eukaryotes Taf12 is a much smaller protein, essentially 

containing just the HFD.  In addition the yeast-specific N-terminus has enjoyed little 

investigation because it was initially shown to be dispensable for viability, (Moqtaderi et 

al., 1996b) in contrast to essential yeast Taf domains that have been characterized in any 

detail such as HFDs of Taf4 and Taf12, Taf1 domains, or WD repeats of Taf5.  The lack 

of evolutionary conservation hinders study of the Taf12 N-terminus even further.  The 



 140 

only noticeable feature(s) within the Taf12 RBD are several patches of consecutive 

glutamine residues.  Patches of contiguous glutamine residues are found in the metazoan 

Taf4 amino terminus, but not in the yeast Taf4 amino terminus.  Incidentally, the 

glutamine-rich Taf4 amino terminus has been shown to participate in coregulatory 

protein-protein interactions with metazoan activators such as Sp1.  It is reasonable to 

propose then that the yeast Taf12 amino terminus fulfills roles normally tasked to Taf4 in 

higher organisms, an idea made all the more reasonable since Taf4 and Taf12 bind 

directly and are hence tightly colocalized within the TFIID complex.  Perhaps this 

concept could include Taf12-mediated coactivation for Rap1 by TFIID in yeast.  It 

remains difficult to test at present given the lack of Taf12 mutants exhibiting strong 

growth phenotypes. 

The Rap1 binding domain in Taf4 was found to reside in a portion of the protein 

that interrupts the bipartite Taf4 histone fold domain.  This domain is believed to provide 

a function independent of the Taf4 interaction with Taf12.  For example Taf4 variants 

missing this domain were previously shown to copurify with Taf12 when coexpressed in 

E. coli (Thuault et al., 2002).  While this portion of Taf4 is conserved, the identity of 

amino acids is rather loosely defined, with the major characteristic being a relatively 

hydrophilic overall character.  Consistent with these features, this ‘linker’ region was 

proposed to be unstructured and solvent exposed since it did not show up in the x-ray 

crystal structure of the Taf4-Taf12 heterodimer (Werten et al., 2002).  If these features 

are of significance in vivo in the context of TFIID, then it leaves open the possibility that 

this domain is available for interaction with activators such as Rap1.  And again noting 

some of the differences between yeast Tafs and metazoan Tafs, the yeast Taf4 protein is 
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relatively small and missing several domains found in the metazoan protein.  These 

metazoan Taf4 domains have been implicated in direct activator interaction.  Maybe 

yeast Taf4 is still an important coregulatory contact, but it must utilize the identified 

domain to carry out this role.  This clue that there are different protein features present or 

absent depending on the organism is perhaps indicating to us that the composite and/or 

collective features of the Taf4-Taf12 subcomplex are the more relevant context within 

which to visualize overall coregulatory responsibility.  Distribution of function between 

either one or multiple TFIID subunits is a phenomenon that was first described for the 

chromatin/acetyllysine binding function of TFIID, found either within just metazoan Taf1 

or shared between yeast Taf1 in conjunction with yeast Bromodomain Factor 1; Bdf1 

(Matangkasombut et al., 2000).   

The characterization of TAF5 described here is the most extensive in the literature 

to date.  The function of most Taf5 domains is proposed to be related to Taf-Taf 

interaction and this is supported by coexpression/copurification studies and immuno-

electron microscopy data.  It seems likely that the WD repeats function predominantly or 

wholly to interact with Taf histone fold heterodimer pairs like Taf4/12 and Taf6/9.  This 

hypothesis is supported by the yeast two-hybrid data reported here and elsewhere, 

although there are caveats to this type of experiment that will be discussed at greater 

length below.  Perhaps less attention has been paid to the Taf5 amino terminus and this 

may be related to several reports in the literature.  First, a study to characterize the highly 

related S. pombe Taf5 protein indicated that the N terminus is dispensable for viability 

(Yamamoto et al., 1997) although subsequently it has become clear that there is a flaw 

with this study.  Second, our immuno-electron microscopy studies and biochemical 
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characterization of TFIID showed that two moles of Taf5 are present per mole of TFIID 

and that the Taf5 N-termini colocalize in the TFIID EM structure (Leurent et al., 2004; 

Sanders et al., 2002a).  It was noted that the NTD1 domain of most species Taf5 proteins 

have significant homology to the Lis-1 protein, which forms an obligate homodimer 

(Kim et al., 2004), and this fact along with the other observations were used to propose 

that Taf5 dimerizes in TFIID and this is mediated by the N-terminus.  Thus the only 

proposed function of the Taf5 N-terminus was, like the C-terminus, to facilitate Taf-Taf 

interaction and TFIID structure and/or integrity.  This prediction has not been borne out 

by any experimental data in the literature.  Firstly, neither the systematic two-hybrid 

analyses of yeast Taf interactions nor my equivalent studies identified interaction of DBD 

Taf5 with AD Taf5, as would be expected if the protein formed a homodimer (although 

plant Taf5 has been reported to self-interact in two hybrid assays, (Lawit et al., 2007; 

Yatherajam et al., 2003).  Second, a form of Taf5 missing the N-terminus co-

immunoprecipitated with the full length protein in yeast expressing both forms of Taf5, 

indicating that N-terminal to N-terminal contacts are not required for multiple molecules 

of Taf5 to be contained within the TFIID or SAGA complexes (Romier et al., 2007).  

Third, biochemical analysis of the recombinant Taf5 N-terminus indicated a lack of 

oligomerization in gel filtration and analytical density-gradient ultracentrifugation 

experiments (Bhattacharya et al., 2007; Romier et al., 2007).  Fourth, during the course of 

my studies the x-ray structures were determined for the human, yeast, and E. cuniculii (a 

parasitic microorganism) Taf5 amino terminus by independent groups; neither of the 

remarkably similar x-ray structures indicated crystallographic dimerization (Bhattacharya 

et al., 2007; Romier et al., 2007).  In addition it was shown that certain organisms 
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completely lack the portion of the Taf5 amino terminus with homology to Lis1 (Romier 

et al., 2007).  Thus the weight of evidence suggests that the Taf5 amino terminus possibly 

does not directly contribute to Taf5 dimerization or does so in a manner dependent on 

either additional Tafs, or dependent on posttranslational modifications.  The practical 

implication of these observations is that as far as is known, the Taf5 amino terminus is 

available for interaction with other proteins besides itself or besides other Tafs. 

The initial finding that the Rap1 binding domain in Taf12 is non-essential for 

growth was discouraging but easily reconcilable with available data about Taf 

stoichiometry and location within the TFIID complex.  There are three different Tafs with 

which Rap1 can interact in vitro thus this opens the possibility of redundancy in the 

context of Rap1-TFIID interaction.  The lack of any observable phenotypes in Taf12 

truncation mutants did not ‘soften the blow’ when I reconciled this observation with the 

facts; at that time the practical implication was that I would be dealing with four proteins 

rather than just two (Rap1 and Taf12).  These logistics were yet another obvious prelude 

to my PhD experience involving quite an extended/protracted campaign.  Besides the 

possibility of redundancy amongst different protein, I should again mention the 

possibility of a ‘distribution of function’ model.  Some of the possible ‘distribution of 

function’ relates to subtle differences between Tafs from different common model 

organisms, where it is possible that there is differential responsibility between 

orthologous proteins, but that overall function within the physiological context is 

maintained.  Thus I would propose that overall function of the Taf4/Taf12 heterodimer is 

conserved even though individual protein characteristics are not.  Clearly the known 

function associated with histone fold domains, that of heterodimerization, is conserved.  
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A proposed critical structural role of Taf4 within TFIID may also be tied to histone fold 

domain function along with Taf12 (Wright et al., 2006).  Thus the remaining known role 

for the Taf4/Taf12 heterodimer  is to function in direct activator-TFIID contact, and my 

findings are in overall agreement with this idea.  But for practical reasons, Taf12 was not 

investigated much further, in part because I needed to characterize Taf4 and Taf5 first 

and then was obtaining promising information in the study of those two proteins.  

Because of the non-essential nature of the Taf12 RBD, I think that future experiments 

would have to include combination of taf12 mutants with taf4 or taf5 mutants.  For 

example, it would be interesting to determine if chimeric proteins, that include the Taf12 

RBD fused to Taf4 and/or Taf5 variants deleted for their respective RBDs, could 

complement growth of yeast cells expressing RBD deleted-Taf12.  Another simpler 

experiment would involve testing for synthetic phenotypes when various Taf12 

truncations were combined with the Taf4 and/or Taf5 mutants within the same strain 

background.  I initiated such studies though technical problems prevented me from 

drawing any conclusions, I do consider these experiments worthy of re-investigation.  A 

lack of time and manpower has delayed re-attempts of these experiments.  The resources 

at hand were directed towards characterization of Taf4 and Taf5 RBDs. 

The finding of a Taf4 Rap1 binding domain essential for viability and located 

between residues 253-344 is the first report of a protein-protein interaction mediated by 

that portion of Taf4 in yeast; the only other known protein-protein interaction was 

between Taf4 and Taf12 as mediated by the bipartite Taf4 HFD, also essential for 

viability.  Other features of this ‘linker’ portion of Taf4 include a generally unstructured 

domain organization when observed in isolation.  We have observed that this portion of 
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Taf4 is phosphorylated on four residues when isolated from yeast (Manish K. Tripathi, 

unpublished observation).  There are growth phenotypes associated with genetic 

manipulation of certain of these phosphorylated residues (JHL, unpublished) but detailed 

analyses to look at important features such as stoichiometry or dynamics of the 

modifications or characterization of responsible kinases has not been done.  DNA binding 

activity of this portion of Taf4 has been reported (Shao et al., 2005), but the physiological 

relevance of this remains obscure.  Whether DNA binding is mediated by this domain in 

vivo is unclear.  Since this portion of Taf4 does not appear to interact with Tafs, as 

determined by my two-hybrid analyses, it certainly remains possible that DNA binding 

could occur through this domain.  Human Taf4 was reported to interact with the GTF 

TFIIA and also with a repressor protein through the equivalent protein domain (Guermah 

et al., 2001; Olave et al., 1998).  The interaction of this Taf4 domain with TFIIA in yeast 

may be of significance to our analyses and will be discussed at length in an ensuing 

chapter.  However, it remains equally possible that the seemingly uncommitted character 

of this Taf4 domain renders it available to interact with activators such as Rap1. 

After I mapped the Taf5 RBD to the amino terminus, it seemed that this would 

represent another non-essential RBD like the case with Taf12.  I was led to believe this 

since studies in S. pombe had indicated that the Taf5 N-terminus is dispensable for 

viability (Yamamoto et al., 1997) but it turns out there is a serious flaw with this study; 

the shuffling strain used contained an intact chromosomally encoded TAF5 gene because 

there are two gene copies in the S. pombe genome.  I did confirm that NTD1 is 

dispensable for viability and a study published while this work was in progress mirrored 

my results (Romier et al., 2007).  However, my addition to the body of knowledge 
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showed that NTD2 is needed for growth at elevated temperatures, and indicated a 

collaborative relationship between NTD2 and NTD1.  Together these two domains are 

almost entirely essential for growth; strains missing both domains are barely alive and 

cease to grow with even the most minor environmental insult.  A Taf5 protein missing 

NTD2 or both NTD1 and NTD2 is present in high amounts relative to the wild type 

protein, which may be the main reason these proteins can support growth, although the 

possibility has not been tested by “under-expression” studies.  It seems likely that these 

domains may normally play a role in de-stabilizing Taf5 steady-state abundance, perhaps 

through the ubiquitin-proteasome degradation system.  It has not been demonstrated that 

Taf5 is ubiquitinated, but Taf5 is known to be modified by the similar small ubiquitin-

like moiety (SUMO) (Boyer-Guittaut et al., 2005).  These modifications occur through 

lysine residues and NTD1 and NTD2 are highly enriched in lysine.  The consensus 

SUMO modification site contains the consensus ZKXE peptide sequence, where Z refers 

to any hydrophobic residue.  Several candidate sites loosely matching this consensus 

were identified in the Taf5 amino terminus.  I performed some preliminary analysis of the 

role of lysine residues in Taf5 steady state abundance, using substitution of arginine for 

individual lysines.  The results were inconclusive, and it has been shown that mutation of 

many lysine codons to arginine can be needed to retard overall affects on protein steady 

state abundance, as was demonstrated with the human p21 protein (Bloom et al., 2003; 

Bornstein et al., 2003).  I did not proceed with generation of mutants where multiple 

lysine codons are switched to arginine, which is  the next logical step in pursuit of the 

importance of ubiquitination/sumoylation in Taf5 steady state abundance.  Ubiquitination 

or sumoylation might be more directly pursued by use of overexpressed hexahistidine 
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tagged-ubiquitin and mass spectrometry (Mayor and Deshaies, 2005).  In any case it was 

comforting that the Taf5 domains implicated in Rap1 binding are clearly important for 

cellular growth as expected if truly important for Rap1-TFIID driven RPG transcription. 

Once again, the essential nature of the putative Rap1 binding domains in Taf4 and 

Taf5 may be unrelated to an interaction with Rap1 in vivo.  The most obvious alternative 

reason for this is responsibility for interaction with other Tafs for proper assembly of 

TFIID.  Other possibilities include DNA binding mediated by the Taf4 domain of 

interest, although that possibility is difficult to test given the current state of knowledge.  

Another mechanism requiring the Taf5 N-terminus is oligomerization, although as I have 

discussed, this seems unlikely.   

Taf-Taf interaction was the most testable hypothesis and I pursued that using 

systematic directed two-hybrid interaction screening.  Even a non-specialist with the 

technique might ask if it is appropriate to use this yeast-based technique to study yeast 

proteins.  One could envision that introduced yeast proteins, even those fused to the Gal4 

DBD or AD, might compartmentalize to an organelle where they are restricted from 

participating in the two-hybrid, or even if properly compartmentalized they could be 

restricted from interacting with two-hybrid partners due to sequestration within their 

natural yeast protein complex(es).  The latter situation would be more applicable to Tafs 

since they are nuclear proteins and present within endogenous high molecular weight 

TFIID.  A related ‘sequestration’ caveat might apply to Rap1, which is a nuclear 

sequence-specific DNA binding protein; if the Gal4 DBD or AD fusion protein spends a 

majority of its time bound to the numerous natural Rap1 binding sites distributed 

throughout the genome it might be unavailable for participation in two-hybrid 
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interactions.  Nevertheless, using the two-hybrid system Rap1 was characterized with 

respect to protein-protein interaction partners (Hardy et al., 1992b), which resulted in the 

identification of Rap1 interacting factors, or Rifs, one of which I used as a positive 

control in my two-hybrid studies with Rap1.  It is ironic then but not surprising that this 

technique was not useful for characterization of Rap1-Taf interactions.  The reason for 

me to say that this is no surprise is because this is a technique subject to both false 

positives and false negative results.  Most of the attention on improvements to the system 

have focused on elimination of false positives.  For example, this was the reason for 

creation of strain PJ69-4A, with its stringent ADE2 reporter gene.  There are less obvious 

solutions to the problem of false negatives.  In fact there are practical issues which only 

worsen this situation including use of different expression vector, host, and reporter gene 

combinations amongst different studies.  Prominent examples of this in this literature are 

the cited attempts at systematic characterization of yeast and plant Taf-Taf interaction, 

where there are differences in the findings between those studies and also between each 

of those studies and my findings.  To reduce the chances of false negatives, I think it 

would be judicious to confirm interactions using as many reporter genes as possible, to 

examine the affects of changing locations of the epitope tags, and to attempt variation of 

expression levels through use of additional promoters and vector replication origins.  

Systematic optimization of Taf two-hybrid interactions would be worth looking into, 

particularly since we have many of the relevant plasmids and strains in place.  Sorting out 

the differences in literature regarding Taf two-hybrid interactions would be a pursuit 

worthy of a PhD.  Unfortunately this could not be justified during my time here.  My first 

addition to the available reagents would be Tafs fused at their C-termini to Gal4 DBD 
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and/or AD, instead of just the N-termini.  For reasons that have been mentioned, I suspect 

that different epitope tags can introduce artifactual effects into protein characteristics, and 

this has been seen by me and by others in the case of Taf5.     

The advent of E. coli-based two-hybrid systems has provided an alternative to 

problems exclusively associated with the yeast system.  I employed one such system 

involving a fusion between the lambda repressor DBD and Tafs or Rap1 and another 

fusion of Tafs or Rap1 to a portion of the omega subunit of E. coli RNA polymerase 

(Dove and Hochschild, 2004).  Unfortunately this system has its own problems, some of 

which are protein specific.  For example many Tafs cannot be effectively expressed in E. 

coli unless measures are taken to address problems with codon bias or solubility or 

stability issues (as is the case with Taf4 and Taf5).  Thus while appropriate positive 

controls functioned effectively for me in this assay, no positive interactions could be 

detected between the proteins I was seeking information about.  Additional improvements 

will need to be implemented in this system before it will be suitable for analysis of Taf 

protein-protein interactions. 

Two-hybrid interactions between Taf4 and Taf5 with others Tafs were identified 

and interaction patterns did not vary between full length Taf4 or 5 and variants lacking 

Rap1 binding domains, indicating that these domains have no apparent responsibility for 

Taf-Taf interaction.  I will say once again that there is the caveat of false negatives, 

meaning that the Taf4 and 5 domains actually do contribute to Taf-Taf interactions, albeit 

Taf-Taf interactions that my experimental set-up will not detect.  Even so, we felt 

justified in proceeding with mutagenesis of sequence encoding RBDs in Taf4 and Taf5.  

Although I recognized the possibility that I was missing the whole story, I had obtained 
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enough information to be able to interpret the mechanisms underlying any putative 

growth and/or RPG transcription phenotypes.  Therefore at this stage, regional 

randomization of TAF4 and TAF5 was considered appropriate. 

However, randomization of sequence encoding of RBDs was expected to be quite 

labor intensive (see above).  To try and circumvent this challenge I performed a set of 

preliminary experiments, with the logic that nature might be able to provide me with the 

material to test the in vivo function of the Taf5 RBD.  I had in hand cDNAs for the 

Drosophila and human Taf5 genes, and used these to create chimeric proteins containing 

the C-terminus of yeast Taf5 and the N-terminus of one of either ortholog.  The 

expectation was that the encoded proteins might represent a form with a partial loss of 

function within the N-terminal portion, and normal function within the C-terminus.  

Unfortunately the human/yeast Taf5 chimera presented the same growth phenotype as the 

yeast variant with NTD1 and NTD2 deleted.  This can be explained because of the 

evolutionary distance between the yeast N-terminus and the human version; these have 

more individual changes within individual amino acid residues than a closer ortholog 

such as that of flies.  The human variant could provide none of the function provided by 

the yeast version.  On the other hand, the fly/yeast Taf5 chimera could not be tested 

because of apparent toxicity of the protein; no transformants were obtained containing the 

sequence-verified chimeric construct thus it seemed to act as a dominant negative.  It 

would be necessary to use a regulatable on/off promoter to drive expression of this 

chimera, in order to definitively test whether it is a true dominant negative.  These type of 

experiments were shown to be of limited utility in the case of chimeras between human 

and yeast Taf4, so at one level my lack of success was unsurprising although it was worth 
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a try (Thuault et al., 2002).  I chose to abandon use of the dTaf5/yTaf5 chimeric protein, 

since such experiments might prove overly complicated, and consequently proceeded 

with the more conventional generation and isolation of mutant alleles. 

Dozens of taf4 alleles conferring temperature conditional growth were identified 

and characterized.  When the mobility of the encoded proteins was analyzed by SDS-

PAGE and western blotting, it became clear that many of the corresponding mutant 

alleles likely encoded proteins with an abnormal number of amino acids.  Consistent with 

the hypothesis, many of the alleles included frameshifts in sequence encoding the CCTD, 

which was not desired since this portion of the protein does not contribute to Rap1 

interaction.  Previously I have observed that one of the C-terminal Taf4 truncations was 

associated with a temperature conditional phenotype, and that a previously described taf4 

allele encodes a protein with a frameshift in the CCTD as well as other histone fold 

domain alterations (JHL, data not shown, (Shen et al., 2003).  Since many of the CCTD 

variants contained just a single nucleotide deletion, I suspect that truncated PCR primer 

oligonucleotides introduced the technical artifact responsible for much of this problem, 

which is not surprising given that the primer was by necessity ~100 nucleotides long.  

Gel purification of the primer was evidently not sufficient for removal of N-1 length 

synthesis products.  In retrospect, a better method of creating the mutagenized library 

would have started with introduction of silent mutations encoding unique restriction 

enzyme sites closer to the region encoding the RBD.  This would in turn allow the use of 

shorter oligonucleotides and avoid creation of any alleles that affected portions of Taf4 

other than the RBD.  With this simple modification in creation of the mutagenized taf4 
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library, the number of mutants identified would speculatively have been similar to the 

situation with taf5.   

I was fortunate enough to isolate 3 unique taf4 temperature conditional alleles.  It 

is always good to have more than one mutant available, to avoid the observance of 

artifacts due to allele-specific phenotypic changes.  Moreover, if I had gone ahead and 

performed a saturating screen of the mutagenized library I might have identified a couple 

more useful taf4 alleles, but I was discouraged from this pursuit during a PhD committee 

meeting.  The logic behind this decision was that even though the genetic screen for taf4 

RBD mutants was not as effective as I might have hoped, afterwards I was positioned to 

determine the affect of these mutants on RPG transcription.  The reagents needed to 

advance the project were thus available after discovery of these three taf4 alleles.  Their 

identification represented the first taf4 point mutant temperature conditional alleles with 

coding substitutions in a domain other than the HFD.  This result again supported the 

importance of the putative Taf4 RBD to cellular growth. 

A few additional strategic decisions were made before undertaking the 

mutagenesis of Taf5 RBD-encoding sequence.  First, I decided to restrict the mutagenesis 

to NTD2-encoding sequence even though Rap1 interacts through the entire N-terminus, 

not just NTD2 but likely NTD1 as well.  This was done for both theoretical and practical 

reasons.  First, NTD1 is non-essential, so it would be difficult to establish the 

contribution of substitutions there to growth phenotypes without performing a 

supplemental site-directed point mutagenesis study.  Second, the convenient location of 

restriction enzyme sites for generation of the mutant library almost perfectly flanked 

NTD2-encoding sequence.  Third, I had established that deletion of NTD2 alone 
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conferred a rather tight temperature conditional growth phenotype, so it seemed a safe bet 

that amino acid substitutions there would be sufficient to confer similar phenotypes.  

Around 30 unique temperature conditional mutants were identified and 2 more 

represented reisolation of the same allele, consistent with the number of colonies 

screened being far less than the total number of clones available in the mutagenized 

library.  I attribute the relatively greater success of TAF5 mutagenesis as compared to 

TAF4 to two reasons.  First, the natural restriction sites lying very close to NTD2 coding 

sequence facilitated the use of short DNA primers for PCR mutagenesis, and these 

primers were also subjected to preparative PAGE and as such were essentially all unit 

length and thus ~100% correct with a very low proportion able to cause frameshifts.  

Second, unlike the Taf4 C-terminus where deletion or alteration of the CCTD confers 

temperature conditional growth, Taf5 residues C-terminal to the Taf5 RBD are strictly 

required for growth and as such any unwanted alterations to that protein region would 

result in a mutagenized clone that would score completely negative for growth in my 

genetic screen.   

The generation of the taf5 alleles represents the first identification of point 

mutants in a portion of TAF5 other than the WD repeats.  The first characterized taf5 

temperature conditional mutant contained substitutions in the WD repeats, and a 

subsequent study generated a number of mutants all of which also encoded WD 

substitutions (Apone et al., 1996; Durso et al., 2001).  Notably, several of the mutants 

identified in the second study also contained substitutions in the N-terminus.  I obtained 

these mutants with the idea of combining the 5’ mutant gene fragments from these alleles 

with a 3’ wild type gene fragment to test the affect of the N-terminal substitutions 
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encoded in these alleles.  The success of my taf5 mutant screen reduced the priority of 

performing this experiment.  My results again indicate that temperature conditional taf5 

mutants can be isolated that do not disturb the function of the WD repeats.  Because I 

placed a priority on selecting taf4 and taf5 mutants that did not appear to affect bulk 

protein stability, and because the identified domains did not appear to influence Taf-Taf 

interaction, we could anticipate that the growth and putative transcription phenotypes 

would be independent of gross disruption of TFIID structure.  Consistent with this, the 

growth characteristics of the mutant strains indicate that the cells can recover from a 

period of heat shock lasting as long as 12 hours.  The recovery from heat shock indicated 

two things about possible molecular phenotypes.  First, the altered proteins are probably 

not completely disrupted, misfolded, and degraded from an unfolded protein response.  

There are reports of taf mutant alleles that encode unstable proteins and this can lead to 

degradation of the TFIID complex, and cells containing these are less able to recover 

from heat shock (Moqtaderi et al., 1996b; Reese and Green, 2003).  Perhaps a complete 

removal/degradation of TFIID from such heat-treated cells renders them susceptible to 

terminal cell cycle arrest.  This idea is related to the second indication about the 

molecular phenotype of my novel taf mutants.  TFIID is important for transcription of 

genes required for cell cycle progression such as G1 and G2 cyclins needed for the G1/S 

and G2/M transitions; TFIID dependency involves Taf1 but also the WD repeats of Taf5 

(Apone et al., 1996; Walker et al., 1997).  Because my mutants were able to resume 

growth quickly after removal from the restrictive temperature, this phenotype indicates 

that there was probably little affect on the transcription of such cell cycle-specific genes, 

which are TFIID-dependent but Rap1-independent.  By extension, the growth defect 
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could logically be expected as an affect, at least in part, on Rap1 and TFIID dependent 

ribosomal protein gene transcription.  A test of my hypothesis was appropriate at this 

time, and the results of these experiments are presented and discussed in the next chapter.                                 
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CHAPTER III 

 

ANALYSES OF THE ROLE OF RAP1-TAF INTERACTION IN RNA POLYMERASE 

II TRANSCRIPTION IN VIVO 

 

Considerations in Testing for Molecular Phenotypes Associated with Novel taf4 and taf5 

Temperature Conditional Mutants 

The identification of Rap1 binding domains in Taf4 and Taf5, the observance that 

these domains are required for cellular growth without apparent roles in TFIID integrity, 

and the sensitivity of these domains to amino acid substitutions conferring conditional 

growth all supported the notion that Rap1-Taf4 and Rap1-Taf5 interaction are 

physiologically relevant.  There are several complications to interpretation of phenotypes 

associated with taf4 and taf5 mutants not the least of which is that TFIID, and thus Taf4 

and Taf5, are involved in the transcription of many genes (Huisinga and Pugh, 2004; 

Shen et al., 2003).  Since TFIID and Rap1 commonly regulate RPGs these seem like 

great candidates for genes experiencing reduced transcription rates in taf mutants at the 

non-permissive temperature, as compared to wild type.  However, it is theoretically 

possible that defective transcription of just one gene in the entire genome could cause a 

dramatic growth deficiency phenotype, even in the absence of an affect on RPG 

transcription.  For example, abolishing transcription of a single TAF4 and/or TAF5 

dependent cyclin-encoding gene could cause such an affect.  However, as mentioned, 

comparison of several studies in the literature would argue against this scenario in the 

case of these novel taf mutants, as do the growth cessation/recovery phenotypes 
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mentioned in the last chapter (Apone et al., 1996; Reese and Green, 2003; Walker et al., 

1997).   

There were several key considerations in testing the affect of taf mutants on RPG 

transcription.  Proper experimental design, technique, and choice of controls were 

especially paramount to allow unbiased and meaningful interpretation of results.  RPG 

transcription rate is exquisitely linked to the growth stage and nutrient availability in the 

culture environment; subjecting cells to heat shock causes a momentary disruption of 

RPG transcription even in wild type strains (Sanders et al., 1999).  Common laboratory 

manipulations such as centrifugation can also disrupt RPG transcription rates (JHL, 

personal observation).  Of course it is essential to prepare high-quality RNA from all 

cultures of interest, which in and of itself is a non-trivial undertaking.  These and other 

technical considerations had to be accounted for.   

As with the immunoblotting data already shown, it was critical to provide internal 

controls for accurate comparison of RPG transcript abundance from different strains.  A 

related control relates to the possibility of off-target affects.  Since incubating yeast 

cultures above a threshold temperature causes a transient cessation of RPG transcription, 

it is necessary to sample cultures after a more chronic heat shock to differentiate the 

natural physiological response to the treatment versus defective regulation occurring via 

the altered temperature sensitive Taf4 or Taf5 proteins.  This experimental characteristic 

increases the chance of observing off-target affects on gene transcription that is normally 

TFIID-independent.  As such it was important to confirm that the abundance of TFIID-

independent transcripts remained unperturbed.  Ideally, I hoped to observe very little 

reduction in transcript abundance of genes that are independent of TFIID and Rap1, but a 
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reduction in transcription of coordinately regulated, Rap1- and TFIID-dependent genes; 

in other words the majority of Ribosomal Protein Genes.  A caveat to this is that other 

activators could theoretically function in a manner analogous to Rap1, by using the 

identified surfaces in Taf4, Taf5, and/or Taf12 to utilize TFIID as a coactivator.  Genes 

utilizing such activators would also be affected in taf4 and taf5 mutants grown at the non-

permissive temperature. 

  There is an additional caveat in that because Taf5 is also a constituent of the 

SAGA complex, the taf5 mutants could be scoring SAGA function rather than TFIID 

function, or in a more complicated scenario the taf5 mutants could be scoring the 

requirement for both SAGA and TFIID at the same target genes (Grant et al., 1998; van 

Oevelen et al., 2006; Zhang et al., 2008).  The bulk of data suggests that SAGA does not 

directly regulate RPG transcription, but I felt it important to confirm this using my own 

yeast strains and methods (Huisinga and Pugh, 2004).  Even still, affects on other genes 

might occur through a SAGA-dependent pathway.  There is no functional data about the 

mechanistic role of Tafs in SAGA function, so this would be a difficult issue to contend 

with.  Aside from SAGA, I thought it important to consider the possibility of additional 

contributing coregulatory complexes.  The NuA4 complex is proposed to stimulate RPG 

transcription but the mechanism of targeting is completely unknown although like 

SAGA, NuA4 contains the Tra1 subunit that is a direct target of the Gal4 activator 

(Bhaumik et al., 2004; Reid et al., 2000).  The Mediator complex is another activator-

targeted coregulatory complex in Pol II transcriptional regulation but its role in RPG 

expression had not been characterized at the time these studies began and as such was 

worthy of investigation.           



 159 

Most of the commonly used assays that measure specific mRNA abundance such 

as northern blot, RNase protection, S1 nuclease, primer extension, or RT-PCR can be 

used to monitor at maximum a few dozen different transcripts within a reasonable 

amount of time.  Therefore, while one or more of these techniques might be useful for 

testing for an RPG transcriptional phenotype in the taf ts mutants, none would be suited 

to look at more than a few TFIID- and Rap1-independent transcripts; this is important to 

ascertain to what extent non-RPG transcripts are affected in the mutants.  Likewise, given 

that there are well over one hundred RPGs possibly affected in the taf ts mutants, it 

would not be possible to fully authenticate the expected broad phenotype for the 

coordinately regulated gene family.  No such limitations exist when applying whole 

transcriptome analyses such as serial analysis of gene expression (SAGE), microarray, or 

RNA-seq because these methods can in theory simultaneously quantify every transcript 

encoded by the genome (Holstege et al., 1998; Nagalakshmi et al., 2008; Velculescu et 

al., 1997).  However, being that quantification of transcript abundance typically involves 

a population measurement, information about abundance of cell-cycle regulated 

transcripts is not easily extracted unless the population of cells being studied is first 

synchronized at a specific stage of the cell cycle (Spellman et al., 1998).  Thus 

information about this particular class of genes, some of which are Taf dependent, would 

not be obtained unless extra steps were taken to ensure their inclusion in population-

based studies of transcript abundance.  I considered these steps to be beyond the scope of 

my study due to the technical difficulty involved.  I did plan on testing whether the entire 

RPG family was affected in my novel taf mutants and a microarray experiment seemed 

the most practical method to achieve this.  Due to the caveats mentioned I did not 
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anticipate being able to conclude that an RPG-exclusive transcription phenotype was 

responsible for the growth phenotypes associated with taf mutants. 

In the likely event of an RPG transcription phenotype occurring in the taf4 and 

taf5 mutants, I would also need to test/confirm the mechanistic basis of that phenomenon.  

Since the objective of the domain-directed random mutagenesis was to create and identify 

mutant alleles encoding proteins compromised in their ability to interact with Rap1, it 

seemed logical that Rap1-TFIID interaction would be thusly affected in vivo at the non-

permissive or semi-permissive temperature.  Deficient Rap1-TFIID interaction would 

compromise RPG transcription rates, which would in turn reduce cellular growth 

capacity.  There are several methods that could be used to score Rap1-TFIID interaction 

and these range from fully in vivo approaches that do not require any cell disruption, to in 

vitro interaction assays just using purified TFIID and Rap1, to extract-based methods that 

fall somewhere in between with respect to physiological context.  Our lab has a lot of 

experience using co-immunoprecipitation (Co-IP) and this is an example of an extract-

based method to measure protein-protein interactions (Sanders et al., 2002b).  Besides 

being a non-in vivo method, there are additional drawbacks to the technique like the need 

for good antibodies or epitope tags to be available.  Also the technique relies on western 

blotting, which does not readily lend itself to precise quantification of interactions.  Most 

notable, Co-IP does not demonstrate direct interactions per se, but must be supplemented 

with other techniques such as in vitro interaction assays using pure components for 

confirmation.  However, because of our experience with the method, Co-IP was our first 

choice for characterizing Rap1-TFIID interactions and comparing them between wild 

type and taf mutants.  My second alternative was the use of isolated TFIID and Rap1 to 
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measure interactions in vitro.  Use of isolated proteins to assay interaction suffers from 

the main limitation of being able to obtain TFIID from wild type and taf mutant yeast 

cells in sufficient yield and purity to do the experiments.  It is quite formidable to isolate 

TFIID from a specially engineered strain, even though that strains grows as well as wild 

type, because a large quantity of starting material is needed and the procedure is labor 

intensive, technically challenging, and expensive (Sanders et al., 2002a).  In order to 

isolate TFIID containing altered Taf proteins, the mutant yeast would first have to be 

engineered to include an N-terminal epitope tag on Taf1 to allow efficient affinity 

purification of the complex.  Second, large-scale cultures would need to be grown to 

serve as the starting material for TFIID purification.  Third, intact TFIID would need to 

be successfully isolated from the mutant cells and proven to possess some of the same 

apparent biochemical properties as TFIID isolated from wild type cells.  A not-

inconsiderable amount of technical skill would be required to succeed in each of these 

steps.  Successful isolation of TFIID from mutant cells has never been reported, so the 

technical hurdles might be insurmountable.  A purely in vivo approach would involve the 

use of fluorescent protein epitope tags that could act as sensors of fusion protein 

proximity (binding) in Fluorescence resonance energy transfer (FRET) assays.  By 

introducing enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent 

protein (EYFP) epitope tags at the C-termini of every SAGA complex component and to 

the Gal4 activator, Bhaumik and colleagues were able to identify subunit specific Gal4-

SAGA protein-protein interactions in yeast cells using live cell imaging with confocal 

microscopy.  The Bhaumik study represents the only FRET-based characterization of 

eukaryotic activator-coregulator interactions reported in the literature to date (Bhaumik et 
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al., 2004).  While no equivalent analyses of mutants has been reported, in theory the 

technique could provide quantitative information describing altered/weakened 

interactions between Tafs and Rap1 such as what may be occurring in the taf mutants.  So 

while on paper FRET looks like the best approach, it suffers from our lack of experience 

with it, and the problems of artifacts that can come with the use of epitope tags, 

particularly the larger/bulkier variety such as the EXFPs.  Epitope tags were documented 

by me and others to cause problems with Taf4, Taf5, and Rap1 depending on which tag 

was used and where the tag was appended.  Such problems might eliminate the 

possibility of using FRET to characterize Rap1-Taf interactions in wild type and mutant 

cells.   

 The limitation of all of the above approaches is that they are describing 

characterization of Rap1-TFIID interactions in the context of a single taf mutant.  If the 

assumption is that a single Rap1-Taf-TFIID binding event is the driver of RPG 

transcription, then it is reasonable to expect a deficiency in Rap1-TFIID interaction in the 

mutants.  However, this seems unlikely given that three different Tafs are potentially 

contacted by Rap1 in vivo, each of these three Tafs are present in multiple molecules per 

TFIID molecule, and are present in different locations in the complex.  Even if a simple 

binary binding event is the purpose and final outcome of Rap1-TFIID interaction, 

elimination/reduction of interaction between Rap1 and a particular Taf within the 

complex would at most eliminate 33% of overall Rap1-TFIID interaction, assuming 

independent binding sites are provided by each Taf molecule (see Figure 1.6).  

Moreover, it is possible that the mutants could experience a deficit in interaction between 

Rap1 and TFIID immeasurable by the techniques employed, but still present in vivo and 
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severe enough to cause a reduction in RPG transcription incompatible with rapid cellular 

growth.  In fact, I considered it worth determining first if multiple taf mutants could be 

combined into the same strain.  If such strains proved to be viable and able to grow at 

wild type rates, even at 10% of wild type rate, such multiply mutant strains could provide 

a useful avenue to apply one of the above-mentioned techniques of quantifying Rap1-

Taf-TFIID interaction in these strains.  Creation of these strains would involve traditional 

yeast genetic crosses along with phenotypic and genotypic confirmation of presence of 

multiple mutant taf alleles. 

 The problem of examining the mutational sensitivity of Rap1-TFIID interaction 

stems from potential differences between the mode of Rap1-Taf interaction and the mode 

of Rap1-TFIID interaction.  The project initiated with the mapping of RBDs in each Taf, 

so it would be logical to expect the proteins encoded by the loss of function taf alleles to 

exhibit reduced affinity for Rap1.  As a supplement to defining Rap1-TFIID interaction in 

the mutants, characterization of in vitro interactions between Rap1 and the altered Taf 

proteins would be of value.  The problem with doing this experiment relates to the 

relatively poor quantitative capabilities of the assays already in place such as the Far 

Western.  Other related techniques such as the in vitro pulldown also do not lend 

themselves to precise quantification of binding affinities.  The majority of the time, 

workers use these approaches only for qualitative purposes rather than both qualitative 

and quantitative measurement of interaction. The most quantitative technique used for 

examining intermolecular interactions that we had used in the lab was fluorescence 

anisotropy, and in the format in which we had used anisotropy it could not be expected to 

be useful due to its limited capacity for throughput, because I could expect a need to 
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perform many experiments to accurately and precisely define the interactions of interest 

(Gumbs et al., 2003).  The need for a high-throughput, quantitative method was my prime 

motivation for investing so much effort into setting up the yeast and bacterial two-hybrid 

techniques, but unfortunately neither was applicable for detecting the Rap1-Taf 

interactions.  Therefore, I could expect to introduce novel techniques into the lab in order 

to quantify binding interactions between Rap1 and the altered Taf4 and Taf5 proteins. 

 Of course the physiological relevance of simple binary interactions between Rap1 

and Tafs are of dubious significance in the absence of in vivo interaction data 

documenting loss of protein function, or at least observance of an affect on binding in the 

context of TFIID.  The stated problem of redundancy or overlapping function between 

Tafs in mediating Rap1 interaction with TFIID might allow observance of a deficit in 

Rap1-TFIID binding only if multiple Taf RBDs were altered.  Because the available taf4 

and taf5 mutants have rather dramatic growth phenotypes, and more importantly because 

the affected protein domains are ostensibly contributing to the same molecular pathway, 

it is easily conceivable that it would be impossible to obtain strains containing taf RBD 

mutants corresponding to both proteins.  It is common for mutations in different genes 

whose protein products contribute to the same process to result in loss of viability (known 

as synthetic lethality), even when the single mutants do not display overt phenotypes 

(Davierwala et al., 2005).  If that turned out to be the case, then I would not be able to 

obtain more precise genetic reagents to confirm loss of Rap1-TFIID interaction.  An 

inviable strain obviously could not be used to quantify Rap1-TFIID interaction using any 

available methods.   
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However, the use of advanced genetic approaches, meaning combination of 

different mutations and looking for enhanced growth defects, holds additional value.  

This relates to the lack of severe growth defects in certain rap1 mutants.  We found that 

Rap1 utilizes both its centrally located DBD and unidentified portion of the C-terminus to 

interact with TFIID in vitro (Garbett et al., 2007).  While the Rap1 DBD is required for 

cell growth, cells completely lacking the C terminus are able to grow, albeit at a reduced 

rate.  Deletion of individual C terminal domains, including Tox, AD, and Silencing 

domains results in much more subtle phenotypes (as seen in Figure 3.8, (Yu et al., 2001).  

If one or more specific C-terminal Rap1 domains were involved in TFIID binding, strains 

missing both this domain might exhibit a growth phenotype if a mutation in one the Taf 

RBDs were introduced.  Such an approach promised to reveal several features of Rap1-

Taf/TFIID interaction; it would indicate which specific C-terminal Rap1 domain(s) were 

important for cellular growth, suggest which Tafs were contacted by the Rap1 C-

terminus, and in doing both of the above provide further indication of the physiological 

relevance of Rap1-Taf interaction. 

To summarize, the objectives of the experiments described in this chapter were to 

determine if an RPG transcription defect was occurring in the taf ts mutants at the non-

permissive temperature, determine the extent to which other genes in the genome 

experienced transcriptional defects, identify if RPGs were actually broadly affected as 

would be expected given their coordinately regulated nature, and test whether Rap1-

TFIID or Rap1-Taf interactions were actually compromised in the novel taf4 and taf5 

mutants.  The latter objective would be approached using a variety of techniques, 

including test of synthetic genetic interactions, which also promised to characterize Taf 
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binding domains in Rap1.  The methods used to complete these objectives, a description 

of experimental results and a discussion of the significance of the findings are described 

in the ensuing sections of this chapter. 

 

  METHODS 

 

Temperature Shift, RNA Extraction, and Transcript Analyses by 5’ Primer 

Extension 

A single colony from each shuffled TAF4, TAF5, taf4 ts, or taf5 ts strain was 

picked from a fresh 23o C 5-FOA-containing plate used for the serial dilution growth 

analyses.  Each colony was grown to saturation in YPAD at 23o C (3-5 days) then re-

inoculated into two separate 50 ml YPAD cultures and shaken overnight at the 

permissive temperature of 23o C.  The quantity of each pre-culture used as an inoculum to 

the 50 ml cultures was estimated based upon preliminary growth curve analyses, and 

were adjusted so that cells would reach log-phase at approximately the same time the 

following morning.  For example, certain mutant strains grow at ~10% the rate of the 

equivalent wild type strain and would therefore need ~10 fold more cells as inoculum to 

reach the desired cell density in the same time frame as wild type.  The next day cultures 

were grown until they each reached an optical density at 600 nanometers (A600)of ~1.  At 

that point 50 ml of fresh pre-warmed 50o C YPAD was added to one of the two cultures 

and placed in a 37o C incubator.  The other culture was spiked with 50 ml of 23o C YPAD 

and retained at room temperature.  After two hours, cultures were rapidly harvested by 

filtration and total RNA immediately isolated by hot acidic phenol extraction and ethanol 
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precipitation (Belinchon et al., 2004).  The two hour time point was selected because at 

that stage wild type cells have mostly recovered from the transient cessation of RPG 

transcription that occurs upon heat shock but this time is short enough to avoid some of 

the off-target affects associated with more chronic heat shock (Reese and Green, 2003).  

Cultures were harvested by filtration because this is up to ten times more rapid than 

centrifugation and consequently results in better yield of RNA, with the transcriptome 

representing the fully heat shocked state, rather than the partially heat shocked state 

resulting from culture cooling during the centrifugation run (Belinchon et al., 2004).  

Filters were immediately submerged in hot acidic phenol and 50 mM acetate, 10 mM 

EDTA, 0.5% SDS buffer maintained in a 65o C water bath (Schmitt et al., 1990).  This 

method captured RNA representative of the cellular pool because degradation and 

synthesis were rapidly halted by the harsh conditions.  The acidic phenol removed much 

of the liberated DNA because it is acid-labile, moreover nuclei were left mostly intact by 

this procedure and large intact chromosomal DNA partitioned into the organic phase 

along with the nuclei, while cytoplasmic RNA and some of the nuclear RNA was 

captured in the aqueous phase.  The aqueous and organic phases were split by 

centrifugation and the aqueous phase subjected to one more 10 minute incubation in fresh 

hot acidic phenol.  Subsequently the RNA was extracted two times more with a room 

temperature mixture of 1:1 acid phenol/chloroform and twice thereafter with chloroform.  

The RNA was ethanol precipitated after incubation of tubes on dry ice, and resuspended 

in 10 mM Tris pH 7.9, 0.1 mM EDTA, 0.1% SDS.  After incubating the resuspended 

RNA at 65o C to fully dissolve it, one more round of ethanol precipitation was performed.  

This last step served to remove any residual phenol which can interfere with accurate 
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quantification of RNA concentration by spectrophotometry.  Concentration of final 

resuspended RNA was measured in quadruplicate and normalized to 0.5-1 mg/ml.  A260, 

A280, and A270 measurements were taken to estimate nucleic acid content, protein content, 

and organic contamination. A260/ A280 ratios were ~2, and the A270 values fell in between 

the value of A260 and A280 if organic contamination was absent.  Equivalent sample-to-

sample concentration and integrity of both high and low molecular weight RNA was 

confirmed respectively by electrophoresis in both denaturing 1.2% agarose and 10% 

polyacrylamide gels, followed by staining with Sybr Gold (Invitrogen) and imaging using 

a BioRad Pharos Fx machine.   

Analysis of specific messages was by 5’ primer extension.  Complementary gel-

purified (unit length) oligos were labelled with T4 Polynucleotide Kinase and γ -32P-ATP 

(MP Biochemicals, 7000 Ci/mmole) then de-salted by Sephadex G-50 chromatography.  

Specific activities were greater than ~6000 cpm/fmole as determined by liquid 

scintillation counting, except that RDN1 and U3 probes were adjusted to ~600 and ~200 

cpm/fmole, respectively, by dilution with unlabeled probe.  For best results, I found it 

was preferable to label oligonucleotide probes as soon as possible upon receipt of freshly 

prepared radioisotope and to use the labeled probes for primer extension quickly.  A 

mixture containing ~35 fmoles of each labeled probe (RDN1, PGK1, U3, RPS2, RPS3, 

and RPS5) were simultaneously mixed with 5 µg total RNA and quantitatively 

precipitated along with a labeled 330 bp DNA fragment recovery control.  The pellet was 

resuspended well in annealing buffer (1X AMV RT buffer plus 0.5 mM dNTPs), heated 

briefly at 100o then placed at 65o for 30 minutes.  Samples were spun briefly after which 

Avian Myeloblastosis Virus Reverse Transcriptase (AMV RT, Promega) was added and 
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incubation continued at 42o for 45 minutes.  Samples were then precipitated, resuspended 

in formamide sample buffer, heat denatured, and resolved on 8% polyacrylamide 

sequencing gels (IBI Model 45 STS) made in 1.5X Tris/Borate/EDTA buffer.  

Sequencing gels were run at constant temperature, 50o-55o C, as monitored using an IBI 

laboratory surface thermometer.  Dried gels were exposed to a phosphoimager (Kodak K-

Screen) overnight and imaged using a BioRad Pharos Fx Imager.  Image analysis and 

quantification was done exclusively using BioRad Quantity One software.  Dried gels 

were also subjected to film autoradiography at room temperature without an intensifying 

screen for 2-5 days.  Additional primer extension was done using a variety of probes to 

Taf-dependent genes including RPS12, RPS13, RPS15, RPS20, RPL3, RPL5, RPL28, 

RPL30, and Taf-independent genes HHT3, ADH1, ADH3, TPI1, and SCR1. 

Strains used for the analyses of SAGA and Mediator contribution to RPG 

transcription were procured from the Open Biosystems Systematic Gene Deletion 

Collection.  These strains contained a G418 resistance-marked disruption of genes 

encoding single SAGA or Mediator complex subunits and were created on the BY4741 

background.  100 ml log phase cultures of these strains were grown at room temperature 

and processed for RNA which was subjected to 5’ primer extension as described above.     

 

RNA Analyses by Slot Blot and Microarray 

Measurement of total polyA+ RNA content is a useful indicator of RPG transcript 

abundance, since ~1 out of 3 mRNAs originates from the 137 RPGs in yeast (DeRisi et 

al., 1997; Gorenstein and Warner, 1976; Hereford and Rosbash, 1977; Warner, 1999).  

The most convenient method to do this is the Oligo dT slot blot.  Using a slotted vacuum 
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manifold and Zeta Probe GT membrane material (BioRad), 1.8 µg of RNA sample in 300 

µl of 1 M ammonium acetate was applied with slow vacuum to one slot of the vacuum 

manifold, this was done in triplicate and the vacuum set so that the full volume of one 

300 µl sample was fully applied at the time that the third sample was just being 

introduced into the apparatus.  After all samples were applied, membrane-bound RNA 

was UV crosslinked using a Stratalinker machine.  Next the membrane was blocked using 

25 ml of pre-hybridization solution (5X SSPE, 0.5X Denhardt’s solution, 0.5% SDS, 0.1 

mg/ml salmon sperm DNA) in a glass tube with rotation at 37o C for three hours.  

Afterwards fresh pre-hybridization solution replaced the solution in contact with the 

membrane; it contained ~160 pmoles of γ−32P-labelled oligo dT 20 mer probe at specific 

activity of ~250 cpm/fmole.  The specific activity of this probe was kept low by 

providing a large excess of cold ATP to the labeling reaction.  Hybridization proceeded 

overnight at 37o C and was followed by three 15 minutes washes in 2X SSPE/0.1% SDS 

then three 15 minutes washes in 0.2X SSPE/0.1% SDS, all at room temperature.  The 

damp membrane was placed into an acetate envelope and exposed to a phosphoimager at 

room temperature for at least 2-3 hours. 

Preparation for microarray analyses was initiated after carrying out several primer 

extension and slot blot experiments.  RNA was available from two independent 

biological replicates, representing unique mutant clones, temperature shift growth 

experiments, and RNA preparations.  These were the same samples that had been tested 

by primer extension and slot blot, and originated from strains TAF5, taf5-17, taf5-45, 

taf5-408, taf5-10.4, and taf1 ts2.  RNAs were again subjected to two rounds of ethanol 

precipitation because it was found that 0.1% SDS in the resuspension buffer interfered 
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with downstream procedures.  At that point all samples were submitted to the Vanderbilt 

Microarray Shared Resource for quality control.  RNA concentration was checked using 

a nanodrop instrument (values were essentially the same as my spectrophotometer data) 

and RNA integrity was checked by Bioanalysis (precast agarose gels to compare sample 

to sample variation in large ribosomal RNA content).  cDNA was prepared from 10 µg 

total RNA using Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV RT) 

and oligo dT (specifically prepared for conjugation of Cy Dyes through imido ester 

linkages).  After successful cDNA synthesis and cleanup/desalting of reactions, Cy3 or 

Cy5 dye was conjugated to 23o or 37o samples, respectively.  An equivalent mass of each 

Cy3 and Cy5/23o and 37o pair were combined, dried down, and resuspended in 12 µl of 

hybridization mix, each of which contained a unique sample tracking control (“bar 

code”).  6 µl of this mix was applied to one slide in a Nimblegen 12-plex oligonucleotide 

array (Roche-Nimblegen, Indianapolis, Indiana) and incubated with the array at 37o for 

17 hours.  Therefore two-color hybridizations were carried out for six different strains, 

with biological replicates for each strain, resulting in 12 different hybridizations per 

array.  Washing was performed according to Nimblegen instructions and the array was 

dried using an array centrifuge.  The array was scanned using an AXON 4000B 

instrument according to the Nimblegen instructions for two-color hybridizations.  Raw 

data were imported into the Arraystar software program and decrypted.  Files were 

submitted to the NCBI GEO database (GSE20444 record).  HEAT map clustering 

analysis of transcripts was performed using Arraystar. 
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Immunological Techniques 

To measure Rap1-TFIID interaction and TFIID integrity in extracts of wild type 

and mutant strains, it was necessary to perform co-immunoprecipitation experiments.  To 

avoid the generation of multiple epitope-tagged strains, it was most practical to use 

polyclonal antibodies to Rap1 and several Tafs.  The use of such antibodies has the 

additional advantage that epitope accessibility is less of a factor than can potentially 

occur when using epitope tags, because with polyclonal antibodies epitopes are 

potentially distributed throughout the protein rather than localized to one protein area.  

Fortunately we had antiserum from rabbits immunized with full length Rap1 or each of 

the Tafs.  I thought it best to affinity purify the IgGs from these antisera, in order to 

increase the specific antigen binding activity of these antibodies.  A 5-10 ml portion of 

the latest bleed from each of two rabbits was mixed and a saturated solution of 

ammonium sulfate was slowly added to 33% of saturation (.182 grams ammonium sulfate 

per ml of antisera) with end-over-end mixing at 4o C.  A portion of 1/3 the volume of the 

final necessary amount of saturated ammonium sulfate was added twice at five minute 

intervals, followed by two successive additions of 1/6 the volume needed.  Precipitated 

material including total IgG was collected by centrifugation in the SS34 rotor.  The pellet 

was dried using kimwipes and resuspended in 25 mM HEPES pH 7.6, 150 mM NaCl, 

0.1% Triton X100, and 10% glycerol and applied to a 1 ml packed bed of Protein A 

sepharose (Sigma) and bound in batch with mixing at 4o C for 3 hours.  Beads were 

collected and the supernatant decanted and saved.  The column was washed three times 

with the above buffer and IgG was eluted by addition of 1 ml of 100 mM Sodium Citrate 

pH 3.5, 0.1% Triton X100, and 10% glycerol.  This eluate was adjusted to near neutral 
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pH by addition of 10 µl of 1 M Hepes pH 7.6.  In some cases these fractions, containing 

essentially pure total IgG, were subjected to antigen affinity chromatography.  Full length 

soluble antigens were expressed in E. coli.  Rap1 was expressed and purified as described 

above.  Taf1 was expressed from pET28A TAF1 (full length NheI/XhoI fragment) and 

purified by successive  Ni-NTA and SP sepharose columns.  Taf3 was expressed from 

pET28A TAF3 (full length NdeI/BamHI fragment) and purified by successive Ni –NTA 

and Q sepharose columns.  Taf4 was expressed from pBG100 TAF4 (full length 

BamHI/SalI fragment) coexpressed along with Taf12 from pACYC11b TAF12 (full 

length NdeI/BamHI fragment) and purified as described above.  Taf6 was expressed from 

pBG101 TAF6 (full length BamHI/HindIII fragment), coexpressed with Taf9 expressed 

from pACYC11b TAF9 (full length NdeI/BamHI fragment) and purified by successive 

Ni-NTA and Glutathione sepharose columns.  Taf8 was expressed from pET28A TAF8 

(full length NdeI/BamHI fragment) and purified by successive Ni-NTA and Q sepharose 

columns.  Taf10 was expressed from pBG101 TAF10 (full length NdeI/BamHI fragment) 

and purified by successive Ni-NTA and Glutathione sepharose columns.  Taf11 was 

expressed from pET28A TAF11 (full length NdeI/XhoI fragment), coexpressed with 

Taf13 expressed from pACYC11b TAF13 (full length NdeI/XhoI fragment) and purified 

by successive Ni-NTA and SP sepharose columns.  TBP was expressed from pBG101 

TBP (full length BamHI/XhoI fragment) and purified by successive Ni-NTA and 

Glutathione sepharose columns.  Purified proteins were again bound to a 1 ml bed of Ni-

NTA sepharose, and unbound protein was removed by washing.  Whole IgG preparations 

supplemented with 10 mM imidazole were incubated with the Ni-NTA-immobilized 

antigen, unbound and loosely bound IgG was removed by washing, and antigen-specific 
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antibodies were eluted from the immobilized antigen with 25 mM PIPES pH 6.8, 150 

mM Sodium Acetate, 2.5 M Magnesium Acetate, 0.1% Triton X100, and 10% Glycerol.  

The excess magnesium was subsequently removed by extensive dialysis against the same 

buffer lacking the magnesium acetate.  Taf4/12, Taf6/9, and Taf11/13 heterodimer 

preparations were used to affinity purify both binding partner-specific IgGs.  Full length 

Taf2 was not successfully expressed in bacteria, and Taf7 could also not be obtained 

from bacteria due to apparent toxicity of plasmids encoding the full length protein.  As 

such Taf2 and Taf7 were expressed and purified from Sf9 cells infected with recombinant 

baculoviruses were used to affinity purify anti-Taf2 and anti-Taf7 IgGs.  Previously 

prepared aliquots of antigen affinity purified anti-Taf5 IgGs were used.          

30o C represents a “semi-permissive” temperature for growth of taf5 conditional 

mutants. Higher growth temperatures (heat shock) could not be used because this resulted 

in extracts containing excessive proteolytic activity.  Importantly, the strain background 

also ended up being important for the success of these experiments and the SEY6211 

TAF5 shuffling strain was selected because it appeared to consistently yield the best 

whole cell extracts with respect to Taf content and integrity.  taf5 mutants were the focus 

of these experiments because they exhibited much stronger RPG transcription phenotypes 

than the taf4 mutants.  250 ml YPAD cultures were grown overnight at 30o so that they 

reached an OD600 of 0.5-1 the next morning.  Cells were harvested by centrifugation and 

resuspended in 0.6 ml buffer for every 50 OD600 units of cells.  The initial buffer 

contained 20 mM HEPES pH 7.6, 200 mM Sodium Acetate, 0.1% Triton X100, 10% 

Glycerol, 1 mM DTT, and a panel of protease inhibitors.  0.6 ml portions of each cell 

suspension were pipetted into screw cap tubes containing ~0.5 ml acid washed glass 
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beads and disrupted in a 96 chamber bead beater with one 30 second pulse.  The bottom 

of the screw cap tube was punctured with a 20 gauge needle and placed into a 2 ml 

eppendorf tube which was subsequently spun for 30 seconds at 2000 rpm in an eppendorf 

5417C centrifuge to separate unbroken cells and extract from the glass beads.  The 

punctured screw cap tube was removed and the 2 ml tube containing the lysate was 

centrifuged for 10 minutes at 14,000 rpm.  Each 1 ml of supernatant was mixed with 0.5 

ml of a 1:1 slurry of Protein A sepharose in the extraction buffer and incubated for 30 

minutes at 4o in order to preclear the extract.  The beads were pelleted by centrifugation 

and a portion of the precleared extract was set aside as an input sample.  

Immunoprecipitations were prepared using 100 µl of precleared extract, 1-5 µg of 

antibodies, 0.5 µl of 10 mg/ml ethidium bromide (BioRad), 10 µl of 1:1 Protein A 

Sepharose slurry, and buffer to a final volume of 200 µl then incubated on a tiltboard 

overnight at 4o.  Immunocomplexes on the Protein A beads were recovered by 

centrifugation at 3000 rpm for 30 seconds and the supernatant aspirated with a 20 gauge 

needle attached to a vacuum trap.  Beads were rapidly washed three times with starting 

buffer with each wash aspirated with the needle/vacuum trap.  The last wash was 

aspirated extensively, and the beads were eluted with 20 µl 1X NuPAGE sample buffer at 

75o.  2.5% of input and 50% of immunoprecipitation were loaded in equal 10 µl volumes 

onto 26 well precast 4-12% NuPAGE gels and run at 180 volts until the dye front reached 

the bottom of the gel, then electroblotted to PVDF membranes.  Western blotting was 

done with antibody dilutions from 1:500 to 1:10,000, with all antibodies mixed and 

bound to membranes simultaneously.   
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Attempts were made to increase the stringency of IP conditions by altering salt 

and detergent concentrations.  Salt concentrations of 100, 200, 300, 400, and 500 mM 

sodium acetate were systematically combined with Triton X100 at 0.01, 0.05, 0.1, 0.25, 

and 0.5 %.  Salt concentrations greater than 300 mM negatively affected Rap1 stability, 

while those significantly less than 200 mM negatively affected TFIID stability and IP 

stringency.  Detergent concentration greater than 0.5% Triton X100 disrupted TFIID 

integrity.  Therefore a second titration of salt concentration was performed with 200, 225, 

250, 275, and 300 mM sodium acetate and 0.2, 0.25, 0.30, 0.35, and 0.5 % Triton X100.  

Maximal stringency with acceptable Rap1 stability and TFIID integrity was achieved 

with 20 mM HEPES pH 7.6, 225 mM Sodium Acetate, 0.25% Triton X100, and 10% 

Glycerol, and this buffer condition was used for high stringency Rap1-TFIID 

coimmunoprecipitation using anti-Taf7 IgG. 

 

Quantitative Protein-Protein Interaction Assays 

The Far Western assay was initially used in attempts to characterize the binding 

of Rap1 to altered Taf5 forms.  The yeast vectors containing all of the different taf5 

alleles were digested with XbaI/XhoI to recover full-length taf5 genes.  These fragments 

were ligated to pET28A digested with NheI/XhoI to yield bacterial expression vectors 

encoding full-length Taf5 forms containing amino acid substitutions.  Full length Taf5 

proteins were expressed and purified from inclusion bodies as described previously and 

tested in parallel for binding to Rap1 in the Far Western assay.  A series of reproducible 

experiments using different Rap1 protein concentrations in the binding reactions failed to 

detect any quantifiable difference in Rap1 binding between the different Taf5 forms. 
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The main weakness of the Far Western in a quantitative role is its reliance upon 

film exposures to obtain final binding data, which can introduce the non-linearity 

associated with autoradiography and/or enhanced chemiluminescence.  The conventional 

in vitro pulldown methods do not suffer this limitation if relatively pure proteins are used 

and bound proteins are visualized by staining of SDS-PAGE gels rather than western 

blotting.  To this end Rap1 was expressed with an N-terminal GST tag (111 kDa protein) 

from pBG101, purified as described in Chapter 2, and immobilized on glutathione 

sepharose.  To obtain soluble Taf5 forms, sequences encoding the amino terminal 337 

residues were PCR amplified from yeast vectors containing taf5 mutant alleles and 

inserted into pET28A as NdeI/XhoI fragments.  Taf5, Taf5-17, Taf5-45, Taf5-408, or 

Taf5-10.4 proteins were prepared from 6 liters of autoinduced cultures per protein.  Two 

5 ml Ni-NTA columns were prepared for each protein.  Soluble extract was incubated 

with one of the columns by batch binding for 1-2 hours at 4o C, the beads recovered by 

centrifugation, and the supernatant applied to the second 5 ml Ni-NTA column in the 

same manner.  The first column was washed and recombinant Taf5 forms eluted by 

imidazole competition.  Eluted material was kept at 4o C, and the first column was 

regenerated by treatment with 1 M hydrochloric acid for five minutes and subsequently 

re-equilibrated in the appropriate buffer.  The supernatant of the binding reaction with the 

second column was then applied to the regenerated column.  The second column was  

washed, eluted, and regenerated as well.  This process was repeated iteratively until each 

column had been used three times for a total of six elutions, which effectively depleted 

the large majority of recombinant Taf5 forms from the soluble extract prepared from six 

liters of culture.  The next day, the six elutions of each Taf5 form were pooled.  Using a 
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Pharmacia FPLC system with a 50 ml superloop loading apparatus attached, pools of Ni-

NTA-purified proteins were applied to a 5 ml Hi-Trap SP sepharose column, which was 

subsequently washed and subjected to gradient elution over five column volumes with 

buffer containing from 150 to 600 mM sodium acetate.  Peak fractions were pooled and 

dialyzed against 25 mM HEPES pH 7.6, 150 mM sodium acetate, 0.1% Triton X100, and 

30 % glycerol.  The column was washed extensively and succeeding Taf5 variants were 

fractionated the same way.  Taf4 variants were expressed from pBG100 (inserts 

subcloned as BamHI/SalI fragments from yeast expression vectors) alongside 

pACYC11b TAF12 in BL21 DE3 RIL Strept, essentially as described previously except 

that each preparation began with cell pellets from 6 liters induced culture.  A 3 to 5 fold 

molar excess of Taf5 or variants or Taf4/12 or variants were incubated with immobilized 

GST or GST Rap1 (10-20 µl of 1:1 resin slurry) in 100 µl binding reactions performed in 

Far Western binding buffer.  Incubation was carried out at room temperature for one hour 

after which three 250 µl washes were performed and GST or GST Rap1 and bound 

proteins were eluted using 30 µl of binding buffer supplemented with 10 mM reduced 

glutathione.  33% of the eluted material from each binding reaction and 2% of the inputs 

were run on 4-12% NuPAGE gels and stained with Sypro Ruby, then visualized with the 

PharosFx imager (BioRad).  As with the Far Western assay, this approach did not detect 

any difference in Rap1 binding between wild type forms and the variants.  Systematic 

titration of buffer components and incubation conditions including time courses and 

incubation at different temperatures yielded either equivalent negative or uninterpretable 

results.   
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The failure of the Far Western and GST pulldown assays to yield results 

indicative of compromised Rap1-Taf interaction can be attributed to artifacts unique to 

each assay.  For example, neither approach is carried out at the non-permissive 

temperature where growth and transcriptional phenotypes were observed in vivo; these 

assays require rather strict conditions to give interpretable results and those do not appear 

to be compatible with the ‘heat shock condition.’  For example, renaturation and Rap1 

binding in the Far Western must be performed at 4o C to observe binding, and binding 

reactions in the GST pulldown could not be performed at temperatures above room 

temperature without compromising the interaction between GST and immobilized 

glutathione.  Apparently what was needed was a technique with considerably increased 

throughput to identify optimized binding parameters and allow statistical power through 

use of replicate reactions; such a technique could be used along with the large quantities 

of pure Taf proteins and variants that I had already made for attempts at GST pulldowns. 

Dr. Scott Miller, a postdoctoral fellow in the lab, used the protein preparations I 

generated to set up the biolayer interferometry technique to study Rap1-Taf binding.  The 

basis of this technique is the immobilization of a recombinant protein onto derivatized 

sensor probes that are present in 96 replicates mounted on a biorobot (‘Octet’ instrument, 

ForteBio Inc.).  Each sensor probe has optical detectors that can emit fixed wavelength 

light and detect incidence of reflection.  The composition and quantity of protein bound 

to the derivatized probes affects the angle of reflection of the detected light.  Moreover, 

light reflecting properties of the derivatized probes can be monitored in real time, for 

example at time points after immersing the probes into buffer solutions containing 

different protein binding partners of the probe-immobilized test protein, or with different 
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concentrations of binding partners, different binding buffer composition, or binding 

conducted with varying temperatures.  Systematic variation of binding partner protein 

concentration can allow the determination of rates of binding and dissociation and 

facilitate the construction of binding isotherms that allow extrapolation of rate constants 

for association and dissociation.  The ratio of dissociation rate constant to association rate 

constant gives an indication of the strength of protein-protein interaction (i.e. ΚD).  

Because sensor probes were coated with recombinant streptavidin, chemical modification 

of Rap1 by biotinylation allowed immobilization of Rap1 through the extremely high 

affinity interaction between streptavidin and biotin.  Rap1 was biotinylated at one of 

several cysteine residues using a thiol reactive biotin derivative (Sulfo-link, Pierce).  Note 

that Rap1 contains four cysteine residues including a dyad in the N-terminus and two 

separate residues in the C-terminus.  Thus we did not anticipate that modification of these 

residues would have any affect on Rap1 function with respect to Rap1-Taf interaction, 

because the Rap1 N-terminus is neither required for growth nor for interaction with the 

TFIID complex, while modification of the C-terminal residues were not expected to 

affect Rap1-Taf interaction because these cysteines are located in the silencing domain, 

which also did not appear important for Rap1-Taf interaction.  Nevertheless, modified 

Rap1 was tested in DNA-binding gel shift assays, and DNA binding activity did not 

appear any different from the unmodified protein.  Therefore constant amounts of Rap1 

were used in titration binding reactions where the concentration of non-binding Taf3, 

Taf4/Taf12 heterodimers, the Taf5 amino terminus, or the variants of these Tafs were 

monitored in real time for rate of association with and dissociation from Rap1.  This 

allowed comparison of binding properties of Tafs and altered derivatives, and in addition 
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to allowing more rapid optimization of binding conditions, the 96 well format allowed 

statistical analyses because many replicate reactions could be done in parallel.  Data were 

analyzed using the software package included with the Octet instrument.  All of this work 

was performed by Dr. Miller. 

 

Synthetic Genetic Interaction Studies 

To create strains containing multiple deletions in different Tafs or Rap1, different 

chromosomal knockout markers and covering plasmids had to be created.  These reagents 

were used to create haploid strains with different mating types along with the different 

knockout markers.  W303 was chosen for these strain constructions because it contains 

the most nutritional selection options, and because the strain has superb transformation 

efficiency which helps both in creating the initial knockout strains, and subsequent 

introduction of plasmids.  W303a was used to make a chromosomal taf5 knockout 

plasmid shuffle strain as described previously, the knockout was marked by G418 

resistance.  This strain was transformed with HIS3-marked plasmids containing TAF5 or 

taf5 conditional alleles and subjected to plasmid shuffle.  In parallel W303α was used to 

make a chromosomal taf4 or rap1 knockout plasmid shuffle strain where the knockout 

was marked by Hygromycin resistance.  The W303α taf4 shuffling strain was 

transformed with TRP1-marked plasmids containing TAF4 or taf4 conditional alleles, 

while the W303α rap1 shuffling strain was transformed with LEU2-marked plasmids 

containing RAP1 or rap1 mutant alleles.  Each of the shuffled, kanamycin-resistant 

W303a taf5 strains was then transferred into liquid culture (SC-His) as were each of the 

hygromycin resistant W303α taf4 or rap1 strains (these were grown in SC-Trp-Ura or 
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SC-Leu-Ura, respectively).  Crosses were set up at room temperature by mixing a portion 

of each taf5 strain culture with each taf4 or rap1 strain culture and incubating overnight.  

The next morning an appropriate serial dilution was plated onto YPD containing 

hygromycin and G418 at the appropriate concentrations and the plates were incubated at 

room temperature.  Upon appearance of defined single colonies, each plate was replica-

plated onto another fresh plate containing hygromycin and G418 to ensure that all 

colonies consisted entirely of diploid cells.  A single colony of each diploid strain was 

picked and mixed into 0.5 ml distilled water.  100 µl portions were then spread across 

each of four plates containing SC-Trp-Ura or SC-Leu-Ura, for taf5 taf4 strains or taf5 

rap1 strains, respectively.  Upon appearance of large, defined single colonies, each plate 

was replica-plated to sporulation media plates supplemented with 0.5% w/v potassium 

acetate and 0.25 M sorbitol (included both to select against non-sporulated cells but 

prevent excessive osmotic shock of conditional mutants).  After several days of  

incubation, each of these plates was overlaid with a sterile buffered solution containing 

0.5 M sorbitol and 0.1X lyticase.  The overlay solutions for each strain’s four plates, 

containing partially digested spores, were pooled and subjected to mild sonication.  The 

sonifier probe was rinsed thoroughly with ethanol before sonication of each strain 

suspension.  Appropriate dilutions of the solutions containing disrupted asci were plated 

onto YPD media containing hygromycin and G418 and incubated at room temperature.  

These represented master plates used for a series of replica plating phenotypic analysis 

that tested for temperature sensitivity (indicative of recessive taf5 allele presence and 

absence of TAF5), Ηis+ phenotype (taf5 plasmid), and Τrp+ Ura+ (taf4 and TAF4 

plasmids) or Leu+ Ura+ (rap1 and RAP1 plasmids).  Temperature sensitive strains that 
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were Ηis+, Τrp+, and Ura+ (taf5 taf4) or Ηis+, Leu+, and Ura+ (taf5 rap1) were genotyped 

for ploidy and mating type by PCR.  Because the proteins encoded by the plasmid-borne 

taf5, taf4, and rap1 alleles were epitope tagged, resulting in a mobility shift on SDS-

PAGE, western blotting with polyclonal antibodies against each protein served as another 

indirect indicator of taf5, taf4, or rap1 genotype and strain ploidy.  To test for synthetic 

growth phenotypes, strains containing the above growth and nutritional phenotypes and 

that were haploid/Mat a were expanded into room temperature liquid cultures containing 

SC-trp or SC-leu media, grown for 5-7 days to allow for loss of the URA3-marked 

plasmids containing either TAF4 or RAP1, and subjected to serial dilution growth 

analysis on 150 mm plates with appropriate media containing or lacking 5-FOA; identical 

plates were prepared and incubated in parallel at 23o, 30o, and 37o C.  At least two 

independent clonal isolates were tested to confirm the evidence of synthetic growth 

phenotypes.  In total more than 52 unique strains were created; isolation of multiple 

clones containing all of the desired attributes mandated examination of 100-200 

individual colonies on average thus more than 10,000 colonies were screened to complete 

these experiments.    

 

RESULTS 

 

Neither the SAGA Nor Mediator Complexes Contribute to RPG Transcription 

The purpose of identifying specific domains in Tafs responsible for interaction 

with Rap1 was to inform a directed mutagenesis/genetic test of Taf function that would 

hopefully not affect other Taf/TFIID functions.  However, in addition to having several 
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distinct roles in the context of TFIID function, both Taf5 and Taf12 contribute to gene 

regulation as subunits of the SAGA complex (Grant et al., 1998).  Thus it is possible that 

Taf5 and Taf12 function as coregulators for Rap1 not only as members of the TFIID 

complex, but potentially as members of SAGA, though this has not been explicitly tested 

and reported in the literature.  Clearly, if SAGA were a contributor to RPG regulation, it 

would be difficult to differentiate the molecular mechanism of any transcriptional defect 

found in taf5 mutants, with respect to whether TFIID or rather SAGA function were 

compromised.  Moreover, there are many multisubunit complexes that could theoretically 

fulfill a coregulatory role on RPGs; examples include the Mediator complex and the 

NuA4 histone acetylase, a complex that has been  documented to directly regulate RPGs 

(Reid et al., 2000).  The participation of these other complexes in RPG transcription 

would complicate interpretation of TFIID function, particularly the role of TFIID in 

direct activator interaction, since Mediator and SAGA have been shown to perform their 

function at least in part via direct contact with activators.  Fortunately, the majority of 

genes encoding subunits of Mediator and SAGA are present in single-copy and are non-

essential for cellular growth; a characteristic that greatly simplified genetic tests of their 

contribution to RPG transcription.  Furthermore, strains containing deletions of most of 

these subunit-encoding genes are commercially available.  These strains and their cognate 

wild type control were grown to mid-log phase, harvested by filtration and RNA was 

extracted.  The method used for measurement of specific transcript abundance was the 5’ 

primer extension method that is well suited to my purposes for several reasons (Ghosh et 

al., 1978; McKnight et al., 1981).  First, although the technique is somewhat less 

sensitive than other radioactive detection methods (northern blot, RNase protection, S1 
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nuclease), that is less of a concern when studying RPG transcripts because these are 

among the most abundant mRNAs present in a rapidly growing yeast cell and thus easily 

scored.  Second, like the other radioactive methods, primer extension lends itself to 

processing numerous samples in parallel, because cross contamination of reaction 

samples is much less of a concern than with RT-PCR because there is no exponential 

amplification of target signal.  Third, the method gives rather crisp raw data due to the 

use of DNA sequencing gels so bands are quite sharp, similar to results obtained with 

RNase protection or S1 nuclease assays.  Moreover, probe preparation is somewhat more 

straightforward than RNase protection or RT-PCR, because a synthetic DNA oligo needs 

only to be labeled by 5’ phosphorylation using T4 polynucleotide kinase.  One more 

advantage is that by definition, primer extension provides not only quantitative 

information about transcript abundance, but also qualitative data as the method scores the 

location of the transcription start site.  It can be envisioned that the mechanism of Rap1-

TFIID interaction/TFIID function might involve an affect on start site selection.  Primer 

extension provides this information by default, although RNase protection and S1 

nuclease assays can also map start sites but must be deliberately set up to do so.  Note 

that all choices of methodology do not measure transcription directly since they score 

only steady state abundance rather than synthesis rates per se.  However, the initiation 

rate of RPG transcription is quite high and RNA half-life is quite short, thus these steady 

state measurement methods are a reasonable proxy of initiation rates for RPG mRNAs. 

As scored by primer extension, the abundance of several transcripts within 

Mediator and SAGA deletion strains is shown in Figure 3.1.  RPS2, RPS3, RPS5, and 

RPS13 are from RPGs while PGK1 was analyzed as a control that is TFIID-independent  
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(but possibly SAGA and/or Mediator dependent).  The very abundant U3 transcript is 

TFIID- and SAGA-independent and provided a useful loading control.  Wild type cells 

were grown at low and high temperatures to provide a control for the rpb1-1 strain; all 

mRNA transcription is compromised in this temperature sensitive strain at high but not 

low temperature, with a mutation affecting the largest Pol II subunit (Nonet et al., 1987a).  

The taf68-9 temperature sensitive strain which encodes an altered form of TFIID- and 

SAGA-shared Taf12 was also analyzed as a control since this mutation could possibly 

affect both SAGA- and TFIID-dependent transcription (Reese and Green, 2003).  Twelve 

different viable Mediator subunit deletion strains were analyzed and are labeled 

according to the submodule of the holocomplex in which each subunit is believed to 

reside (Bourbon et al., 2004).  Eleven different viable SAGA deletion strains were 

analyzed that collectively represent the majority of non-Taf SAGA subunits.  As 

expected U3 transcript levels were fairly even from strain to strain.  Each RPG transcript 

was also fairly even irrespective of strain background, except for deficiencies in the rpb1-

1 mutant and the taf68-9 mutant, which were grown at both permissive and non-

permissive temperature.  Use of these two mutants confirms the involvement of Pol II 

and Taf12 in RPG transcription, although since little to no effect is seen in any of the 

SAGA mutants, it seems likely that Taf12 contribution is occurring through its 

participation as a member of the TFIID complex and not SAGA.  Likewise, there is at 

best a minor contribution from Mediator subunits to RPG transcription. On the other 

hand, Mediator seems to function in PGK1 transcription, since mRNA levels are notably 

reduced in the med15, med3, and med18 strains (lanes 10, 12, and 15, respectively).  

SAGA subunits Spt20, Spt8, Spt3, and Ada1 (lanes 17, 19, 20, and 24) all appear to be 
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important for PGK1 transcript levels with the ada1 strain showing the most profound 

affect.  Collectively these data clearly argue against any significant direct contribution 

from either Mediator or SAGA to RPG transcription.  These results set the stage for 

testing the affect of taf4 and taf5 mutants in RPG transcription. 

 

Reduced Ribosomal Protein Gene Transcripts in taf4 and taf5 Mutants 

Before embarking on a detailed gene-by-gene analysis of transcript abundance in 

taf4 and taf5 mutants, I decided to grow the strains, perform the temperature shifts, 

prepare the RNA from unshifted and shifted cultures, and carry out a bulk analysis of 

changes in total cellular RNA abundance.  The logic behind this decision was that 

because RPG transcripts represent ~33% of cellular mRNA, any profound affect on RPG 

transcripts would cause a noticeable reduction in the cellular mRNA pool of polyΑ+ 

(Warner, 1999).  Total cellular mRNA is easily detectable through the 3’ polyA tail by 

use of hybridization with end-labelled oligo dT (Reese and Green, 2003).  The rpb1-1 

strain was again used as a positive control since the mutation causes a cessation of all 

transcription at the non-permissive temperature.  Tony Weil helped with these 

experiments and found that there was a noticeable reduction in total polyΑ+ mRNA 

content in each of the taf4 and taf5 temperature conditional mutants.  RNA was prepared 

from 3 different taf4 mutants, 30 different taf5 mutants, and several positive and negative 

controls in addition to wild type and rpb1-1 strains; characterization of each RNA 

preparation was achieved using the convenient oligo dT slot-blot method and a range of 

loss-of-function phenotypes was noted (not shown).  Having seen this affect, I decided to 

check an RPG transcript in these same RNA preparations.  Using one-tube multiplex 
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primer extension with probes for U3, PGK1, and again for RPS5, I analyzed all 45 strains 

(two wild type, three taf4 mutants, thirty taf5 mutants, and several control strains).  U3 

signal was constant as expected and so was PGK1, while there was a mild reduction in 

RPS5 transcripts in taf4 mutants.  On the other, every single taf5 mutant showed a 

dramatic reduction in RPS5 but not PGK1 transcripts, indicating an essential role of the 

Taf5 amino terminus in RPG transcription (not shown).  To extend this analysis, and to 

make these experiments more manageable, I decided to carry forward using only a subset 

of the taf5 mutants, since all of them appeared to confer a loss of RPG transcripts at the 

non-permissive temperature.  It was convenient to analyze a couple positive control 

strains, the negative control wild type strains, the three available taf4 mutants, and four of 

the taf5 mutants.  The multiplex primer extension assay was extended to include probes 

for RPS2, RPS3, and RDN1, in addition to U3, PGK1, and RPS5.  RDN1 promised to 

provide useful information about off-target affects, since this RNA is synthesized by Pol I 

and thus is TFIID-independent, however, there is crosstalk between RPG transcription 

and RDN1 transcription as they all encode constituents of the ribosome; the probe used 

for RDN1 also scored the 5’ end of the immature transcript which is rapidly removed co- 

and post-transcriptionally therefore as monitored RDN1 RNA abundance is a very close 

approximate of transcription rates.  Representative results are shown in Figure 3.2.  Note 

that it is important to compare transcript levels from 37o samples (even numbered lanes) 

to the equivalent analyses for the wild type strain (lanes 2 and 10).  Elevated temperature 

caused a mild reduction in RPS5 transcripts in taf4-116 and taf4-219, but not in taf4-141.  

Quantification of signals were normalized to U3 abundance and represented as a 

percentage of the wild type at 23o, indicating a reduction from 40 to 60% in the two 
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affected mutants (bar graph data).  Note that these strains had elevated RPS5 mRNA 

levels compared to wild type when grown at low temperature, so the relative reduction is 

actually considerably greater than wild type.  The same basic pattern was evident when 

examining RPS2 or RPS3 mRNA levels (quantification not shown).  RPS2, RPS3, and 

RPS5 are all much more affected in the each of the taf5 mutants, although not quite as 

much in the taf5-408 mutant.  Quantification indicates a 50 to 80 percent reduction in 

RPS5 transcripts.  Importantly, in no case were there reductions in RDN1, U3, or PGK1 

levels, consistent with the phenotypic affect having selectivity as to which genes are 

affected by taf mutants.  Note that these experiments were performed a number of times 

with the use of independently grown cultures and different RNA preparations.  The data 

were qualitatively remarkably similar from experiment to experiment, but differences in 

probe labeling and gel handling rendered some differences in exact quantitative 

similarity, which obviated the inclusion of error bars with the graphical data.  

Nevertheless, the fact that different strains recapitulated the same phenomenon amongst 

the same group of transcripts again and again strongly supports the existence of a bona 

fide RPG transcriptional defect in the taf mutant strains.  Also consistent with these 

observations, an extension of these experiments revealed reductions in transcript levels of 

RPS12, RPS13, RPS15, RPS20, RPL3, RPL5, RPL28, and RPL30.  Non-RPG transcripts 

were also analyzed, specifically HHT3, ADH1, ADH3, TPI1, and SCR1.  Of these only 

TPI1 exhibited a reduction in transcript abundance, consistent with the lack of an RPG-

exclusive dependence on the Taf4 and Taf5 domains affected by the mutations. 
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The limitation of these experiments is that this approach is not readily amenable 

to looking at all 137 RPG transcripts, or to monitor the large number of non-RPG 

transcripts.  Also, these assays do not lend themselves to precisely quantifying 

phenotypic affects with statistical significance.  Microarray analyses can do all of the 

above with relative ease if the experimental format is chosen properly.  Oligonucleotide 

arrays are especially useful if they are designed to provide good specificity and 

sensitivity; both can be achieved by providing multiple probes per transcript (Gasch, 

2002).  We therefore chose to perform such experiments and opted to use Nimblegen 12-

plex arrays because these arrays utilize from 4-6 probes per transcript for ~5700 of the 

~6200 yeast genes.  Moreover these arrays have 12 individual microarrays per slide so up 

to 12 independent samples can be monitored in parallel.  We included biological 

replicates for all strains and conditions to strengthen any potential statistical analyses 

beyond what is automatically performed with the software package obtained with 

purchase of the microarray.  One set of biological replicates was generated by Tony Weil 

and one by myself.  We first analyzed the taf mutants along with the equivalent wild type 

strain.  The ArrayStar program (DNA Star, Inc.) allowed us to create a hierarchical 

clusterogram which is shown in Figure 3.3.  Presentation of data was achieved by 

comparing the 23o wild type data with the 37o data of the taf5-17 mutant and selecting 

those transcripts that exhibited a two-fold up or down change at the 95% confidence 

interval.  These 1347 gene transcripts were ranked from highest to lowest abundance 

from left to right, and their abundance was compared amongst each of the taf5 mutants 

grown at 23o and 37o.  The RPG transcripts, the most abundant class in the cell, grouped 

into a tight cluster at the left of the panel.  Signal intensity in this region of the cluster, 
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which included 110 of the 137 RP genes, dropped significantly at 37o as compared to 23o 

in each of the mutants as compared to the effect seen in wild type. Note that the overall 

change in signal intensity was less dramatic in the taf5-408 mutant as compared to the 

other mutants, in agreement with the gene-by-gene analysis presented in Figure 3.2.  It is 

clear that many transcripts were elevated with heat shock in the mutants just as well as 

wild type, indicating that these genes do not depend on the affected Taf5 domain for their 

transcription.  However, many more genes other than RPGs were negatively affected by 

heat shock, indicating a more widespread role for this Taf5 domain in stimulation of 

transcription.  Additional data analyses have not been performed to characterize these 

phenomena in more detail.  This set of microarray experiments fulfilled their main 

objective, which was to test if there was an affect on the entire RPG regulon, as would be 

expected if Rap1-Taf5-TFIID interaction is important for transcription of RPGs.  It 

remained to be seen if the biochemical explanation for the affect seen in the taf5 RBD 

mutants was truly due to defective Rap1-TFIID interaction.     



 194 

T
A
F
5

ta
f5
-
1
7

ta
f5
-
4
5

ta
f5
-
4
0
8

ta
f5
-
1
0
.4

2
3

o

3
7

o

2
3

o

3
7

o

2
3

o

3
7

o

2
3

o

3
7

o

2
3

o

3
7

o

1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 1
0

R
P

 
G

e
n

e
E

n
ri

c
h

e
d

H
S
P

 
G

e
n

e
E

n
ri

c
h

e
d

+
1

.3
+

1
5

.6

S
ig

n
a

l 
In

te
n

s
it

y

F
ig

u
re

 3
.3

: 
 T

ra
n

sc
ri

p
to

m
e 

an
al

y
se

s 
in

 w
il

d
 t

y
p

e 
an

d
 t

a
f5

 t
s+

 m
u

ta
n

ts
 a

t 
p

er
m

is
si

v
e 

an
d

 n
o

n
-p

er
m

is
si

v
e 

te
m

p
er

at
u

re
s.

  
M

ic
ro

ar
ra

y
s 

w
er

e 
p

er
fo

rm
ed

u
si

n
g

 R
N

A
 f

ro
m

 t
h

e 
ex

p
er

im
en

t 
sh

o
w

n
 i

n
 F

ig
u

re
 3

.2
, 

la
b

el
ed

 w
it

h
 C

y
3

 o
r 

C
y

5
 a

n
d

 h
y

b
ri

d
iz

ed
 t

o
 N

im
b

le
g

en
 1

2
-p

le
x

 o
li

g
o

n
u

cl
eo

ti
d

e 
ar

ra
y

s

co
n

ta
in

in
g

 a
n

 a
v

er
ag

e 
o

f 
si

x
 u

n
iq

u
e 

p
ro

b
es

 f
o

r 
~

5
7

0
0

 o
f 

th
e 

~
6

2
0

0
 y

ea
st

 g
en

es
. 

 C
o

m
p

u
ta

ti
o

n
al

 a
n

al
y

si
s 

se
le

ct
ed

 t
h

e 
tr

an
sc

ri
p

ts
 t

h
at

 s
h

o
w

ed
 2

-f
o

ld

o
r 

m
o

re
 a

b
u

n
d

an
ce

 c
h

an
g

e 
b

et
w

ee
n

 t
h

e 
p

er
m

is
si

v
e 

an
d

 n
o

n
-p

er
m

is
si

v
e 

te
m

p
er

at
u

re
 i

n
 t

h
e 

ta
f5

-1
7

 m
u

ta
n

t.
  

  
T

h
e 

ab
u

n
d

an
ce

 o
f 

th
is

 s
et

 o
f 

tr
an

sc
ri

p
ts

w
as

 t
h

en
 c

o
m

p
ar

ed
 b

et
w

ee
n

 a
ll

 t
h

e 
st

ra
in

s 
an

d
 c

o
n

d
it

io
n

s 
an

d
 u

se
d

 t
o

 f
o

rm
 t

h
e 

H
E

A
T

 m
ap

 s
h

o
w

n
 a

b
o

v
e.

  
1

3
4

7
 t

ra
n

sc
ri

p
ts

 m
et

 t
h

es
e 

cr
it

er
ia

 a
n

d
 v

ar
y

 

in
 a

b
u

n
d

an
ce

 o
v

er
 a

 f
if

te
en

-f
o

ld
 r

an
g

e,
 w

it
h

 a
b

u
n

d
an

t 
tr

an
sc

ri
p

ts
 s

h
o

w
n

 i
n

 r
ed

, 
in

te
rm

ed
ia

te
ly

 a
b

u
n

d
an

t 
tr

an
sc

ri
p

ts
 i

n
 y

el
lo

w
, 

an
d

 l
es

s 
ab

u
n

d
an

t

tr
an

sc
ri

p
ts

 i
n

 b
lu

e.
  A

lt
h

o
u

g
h

 t
h

is
 c

lu
st

er
 a

n
al

y
si

s 
w

as
 e

ss
en

ti
al

ly
 u

n
su

p
er

v
is

ed
, 

1
1

0
 o

f 
th

e 
1

3
7

 R
P

G
 t

ra
n

sc
ri

p
ts

 c
lu

st
er

ed
 t

o
g

et
h

er
 a

n
d

 s
h

o
w

ed
 a

 

co
n

si
st

en
t 

d
ro

p
 i

n
 a

b
u

n
d

an
ce

 a
t 

th
e 

n
o

n
-p

er
m

is
si

v
e 

te
m

p
er

at
u

re
 a

s 
co

m
p

ar
ed

 t
o

 w
il

d
 t

y
p

e.
  

M
an

y
 o

th
er

 t
ra

n
sc

ri
p

ts
 w

er
e 

af
fe

ct
ed

 n
eg

at
iv

el
y,

 a
n

d
 m

an
y

in
d

u
ci

b
le

 t
ra

n
sc

ri
p

ts
 w

er
e 

n
o

t 
m

is
-e

x
p

re
ss

ed
 i

n
 t

h
e 

m
u

ta
n

ts
. 

 C
o

ll
ec

ti
v

el
y

 t
h

es
e 

re
su

lt
s 

ar
e 

co
n

si
st

en
t 

w
it

h
 a

 n
eg

at
iv

e 
af

fe
ct

 o
n

 R
P

G
 t

ra
n

sc
ri

p
t

ab
u

n
d

an
ce

, 
ac

ro
ss

 t
h

e 
en

ti
re

 r
eg

u
lo

n
, 

in
 t

a
f5

 t
s+

 m
u

ta
n

ts
, 

w
it

h
 a

ff
ec

ts
 a

ls
o

 o
cc

u
ri

n
g

 o
n

 n
o

n
-R

P
G

 t
ra

n
sc

ri
p

ts
 i

n
 t

h
e 

ta
f5

 t
s+

 m
u

ta
n

ts
, 

an
d

 o
th

er
 g

en
es

b
ei

n
g

 c
o

m
p

le
te

ly
 T

A
F

5
 i

n
d

ep
en

d
en

t.
  

 M
o

st
 i

m
p

o
rt

an
tl

y,
 t

h
es

e 
d

at
a 

ar
e 

co
n

si
st

en
t 

w
it

h
 a

 d
ir

ec
t 

R
ap

1
-T

F
II

D
 i

n
te

ra
ct

io
n

 o
cc

u
rr

in
g

 o
n

 m
an

y
 o

f 
th

e

co
o

rd
in

at
el

y
-r

eg
u

la
te

d
 R

ib
o

so
m

al
 P

ro
te

in
 G

en
es

, 
an

d
 w

it
h

 a
 l

o
ss

 o
f 

p
ro

d
u

ct
iv

e 
in

te
ra

ct
io

n
 o

cc
u

rr
in

g
 i

n
 t

h
e 

ta
f5

 t
s+

 m
u

ta
n

ts
 a

t 
th

e 
n

o
n

-p
er

m
is

si
v

e

te
m

p
er

at
u

re
. 

 N
o

te
 t

h
at

 f
u

rt
h

er
 a

n
al

y
se

s 
o

f 
th

is
 d

at
a 

ar
e 

p
en

d
in

g
. 

 D
at

a 
ar

e 
ad

ap
te

d
 f

ro
m

 L
ay

er
 e

t.
 a

l.
, 

2
0

1
0

. 
  

  
  

  
  

 

 

 

 



 195 

Rap1 Interaction with TFIID Containing Altered Taf5 Appears Unaffected 

Several methods were considered for testing the interaction of Rap1 with TFIID.  

The ideal technique would monitor interactions in vivo without disruption of cells.  The 

FRET technique has this property.  Unfortunately, neither I nor any lab colleague had 

experience with FRET, and moreover I knew that large epitope tags could potentially 

cause problems when appended to the Rap1 C-terminus, the Taf4 C-terminus, or the Taf5 

N-terminus, which are the preferred locations in each protein where a ECFP/EYFP tag 

would have the best chance of documenting FRET interactions.  We had previously used 

an in vitro pulldown technique using immobilized TFIID complex purified from yeast to 

document interaction with purified recombinant Rap1 (Garbett et al., 2007).  Using this 

method, it was possible to get rather clean protein preparations to use for Rap1-TFIID 

interaction assays and even provide some quantitative data about the Rap1-TFIID 

interaction.  The logistics of performing these experiments are intimidating with respect 

to the skill and effort needed to get this working.  Nevertheless I took the previous 

success to indicate that it might be possible to adapt the in vitro Rap1-TFIID pulldown 

assay to include the use of TFIID complexes containing altered Taf4 and Taf5, purifed 

from the mutant strains.  First the TAF1 locus had to be genetically modified to encode an 

N-terminal HA tag to allow affinity purification of TFIID by anti-HA immunoaffinity 

chromatography.  I created a construct to allow this genome modification and 

transformed it into BY4741 taf4 and SEY6211 taf5 shuffling strains.  The tagging 

construct was marked by hygromycin resistance while the taf4 and taf5 knockout markers 

were kanamycin resistance.  Correctly tagged strains were chosen from hygromycin-

resistant clones by immunoblotting with anti-HA antibody and looking for a single band 
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at the mobility of Taf1.  The taf4 and taf5 temperature conditional alleles were 

reconfigured to remove the epitope tags and were then shuffled into the modified 

shuffling strains.  After confirming temperature sensitivity of the resulting strains, single 

colonies were progressively expanded into larger and larger liquid cultures.  Finally, a 

cell pellet from 36 liters of 23o-grown cultures was obtained for each of six temperature 

conditional strains (taf4-116, taf4-219, taf5-17, taf5-45, taf5-408, taf5-10.4) and each 

cognate wild type (total of 192 separate 1.5 liter cultures).  Transcriptionally active whole 

cell extracts prepared from each cell pellet and a portion of each of these extracts was 

subjected to large scale cation-exchange chromatography on BioRex70 resin (Woontner 

et al., 1991).  The next step of the purification scheme was to perform the immunoaffinity 

anti-HA step, but I was unsuccessful in this part of the purification and failed to obtain 

any Tafs/TFIID from the BioRex70 fractions.  Therefore, I did not get the TFIID 

preparations needed to perform in vitro pulldown assays between Rap1 and immobilized 

TFIID.  However, I did document the transcriptional activity of the whole cell extracts, 

which were consistently active for transcription by RNA Pol I and RNA Pol III, but 

showed deficiencies in Pol II transcription in extracts prepared from taf4 or taf5 mutant 

strains (not shown) (Klekamp and Weil, 1982; Schultz et al., 1991).  These experiments 

indicated that the phenotypes seen in vivo were likely caused by a true defect in 

transcription initiation, as would be expected if TFIID/Taf function was the compromised 

activity. 

Thus I turned to co-immunoprecipitation of Rap1 with TFIID using extracts 

prepared from wild type and mutant strains.  I decided to focus on the taf5 strains because 

they exhibited a more dramatic transcriptional phenotype, and because of this I suspected 
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that Rap1-TFIID interaction was potentially compromised to a greater extent in these 

strains.  But first I prepared antigen-affinity purifed IgG to many of the TFIID subunits 

and Rap1 by using existing stocks of whole anti-serum and expressing and purifying full-

length antigens along with ammonium sulfate precipitation and Protein A affinity 

chromatography prior to antigen-affinity chromatography on Ni-NTA-immobilized 

antigens.  This gave me an indispensable asset of polyclonal antibody preparations with 

excellent sensitivity and selectivity in both immunoprecipitation and immunoblot assays, 

allowing avoidance of the artifacts that can be introduced by epitope tags.  More 

importantly, I hoped to systematically monitor both TFIID integrity and association with 

Rap1 using this comprehensive panel of reagents.  Initial IP experiments with extracts 

from heat-shocked cultures revealed consistent proteolytic degradation of Tafs in extracts 

of wild type cells (not shown), so a semi-permissive growth temperature of 30o was 

chosen because the cells grew, albeit slowly, at this temperature and thus it was possible 

that Rap1-TFIID interaction was appreciably reduced in a manner that could be 

successfully documented.  Figure 3.4 shows results of these IP reactions.  Rap1-Taf Co-

IP was documented in extracts from wild type and three taf5 mutants.  

Immunoprecipitation was performed with negative control IgG to show specificity and 14 

antibodies to account for almost all TFIID subunits.  These immunoprecipitation 

reactions included ethidium bromide to exclude the possibility of protein-DNA 

interactions contributing to Co-IP, as such any co-precipitation is due to protein-protein 

interaction (either direct or indirect, (Lai and Herr, 1992)).  In extracts prepared from 

wild type cells, Taf1, Taf5, Taf4, and Taf10 reproducibly co-precipitated, consistent with 

each protein existing as a member of the TFIID complex in these extracts.  Rap1 also co-



 198 

precipitated with every single Taf, again consistent with Rap1 engaging the TFIID 

complex in vivo.  Note that there are separate bands with different mobility detected with 

polyclonal anti-Rap1 antibodies, indicating that multiple Rap1 isoforms are actively 

engaged with TFIID.  An additional Rap1 species of further increased molecular weight 

was also present in some but not all of the immunoprecipitation reactions (not shown) 

although I suspect it is present in all reactions but is outside of the detection limits of the 

assay in current configuration.  These high molecular weight Rap1 forms suggested that a 

portion of the TFIID-associated Rap1 contained one or more post-translational 

modifications, such as phosphorylation or ubiquitination.  Note that enrichment of Rap1 

varied depending on the IP antibody used; the strongest enrichment occurred when using 

antibodies to Taf5, Taf6, Taf10, Taf12, and TBP; all of which are constituents of the 

SAGA coregulatory complex.  Note that the reciprocal interaction did not occur; IP with 

anti-Rap1 antibodies enriched Rap1 but not any detectable Tafs (not shown).  This is 

likely due to the relatively low proportion of total cellular Rap1 that is involved in gene 

transcription; the majority of Rap1 is bound to repetitive elements near each of the 32 

telomeres, which are transcriptionally silent and depleted of coregulators (Negrini et al., 

2007).  Related to this observation of a lack of reciprocal immunoprecipitation, the 

altered mobility Rap1 isoforms did not appear as enriched when immunopurifying Rap1 

using anti-Rap1 IgG, as compared to isolation of Rap1 indirectly via Co-IP with anti-Taf 

IgG, again suggesting that these Rap1 isoforms are preferentially associated with TFIID. 

Immunoprecipitations from wild type extracts were done in parallel with reactions from 

mutant strain extracts.  There was essentially no change in the pattern of Taf co-

precipitation, indicating that TFIID integrity is maintained in the mutant cells.   
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However, there was also no apparent difference in the pattern and amount of Rap1 co-

precipitation with Tafs.  This result indicated that Rap1 interaction with TFIID and Tafs 

was not significantly reduced in vivo in any of these mutant strains under the 

experimental conditions used.  To test the possibility that the extraction and IP conditions 

were not sufficiently stringent to discriminate between full-strength and weakened 

interactions between Rap1 and TFIID, buffers constituents were systematically titrated in 

conjunction with IPs using the anti-Taf7 antibody.  Maximal salt and detergent 

concentrations that allowed both preservation of Rap1-TFIID interaction and Rap1/TFIID 

integrity were identified.  Using these buffer conditions, the temperature of IP incubation 

was varied from 4o to 30o in a further attempt to reduce weakened Rap1-TFIID 

interactions.  The results are shown in Figure 3.5.  The amount of Rap1 co-precipitating 

with anti-Taf7 antibodies did not appreciably change in any strain extract or condition 

except in extracts of the taf5-408 mutant where decreased Rap1 co-precipitation occurred 

at all temperatures tested.  However, there was also a reduction in the quantity of Taf1 

co-precipitating with anti-Taf7, which indicate a reduction in Taf1 stability and/or TFIID 

complex integrity.  Thus it is not possible to state that Rap1 association with the intact 

TFIID complex was truly affected in this particular mutant.  In conclusion Rap1 

interaction with TFIID did not appear to be affected in the taf5 mutants examined using a 

very thorough analysis by co-immunoprecipitation assays.  The possibility of not having 

the correct experimental conditions remained as an explanation although this was pursued 

to the best of my ability given the time constraints.  The problem of redundancy between 

different Rap1-binding Tafs present within TFIID also offered a very legitimate 

explanation for the failure to document defective Rap1-TFIID interaction.  
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Combinatorial Mutation of TAF4 and TAF5 Results in Lethality 

Since Taf4, Taf5, and Taf12 all contain Rap1 binding domains, it is possible that 

each protein acts either independently or collaboratively to promote Rap1 interaction 

with TFIID in vivo.  In support of this notion, distinct domains of Rap1 contribute to 

interaction with TFIID in vitro; thus one could hypothesize that each Rap1 domain is 

responsible for interacting with distinct subsets of Tafs (Garbett et al., 2007).  

Furthermore, nearly every RPG enhancer contains two binding sites for Rap1, hence the 

multiple enhancer-bound Rap1 molecules may be capable of direct interaction with 

TFIID (Lieb et al., 2001).  Perhaps each molecule of Rap1 uses a unique mode of binding 

to TFIID.  In any case, the existence of three distinct binding sites, each of which is 

present in multiple copies per TFIID molecule, and localized to the same general regions 

of holo-TFIID argues that there may be redundancy involved in the exact mechanism of 

interaction.  Regardless of the exact mode of Rap1-TFIID/Taf interaction, introduction of 

both mutant taf4 and taf5 genes into yeast cells should weaken or reduce the Rap1-TFIID 

interaction to a greater extent than in either single mutant, and perhaps allow the 

observation of a reduced or defective Rap1-TFIID interaction using the co-

immunoprecipitation technique.  In other words, the specific objective of this experiment 

was not to examine a growth phenotype per se, but rather to generate a reagent that would 

be more useful for biochemical tests of our model of Rap1-TFIID-Taf interaction.  The 

creation of taf4 taf5 strains required a substantial amount of yeast genetics including 

independent haploid strain construction, crosses to generate diploids, induction of cells to 

undergo meiosis, re-isolation of haploid strains, and then several phenotypic and 

genotypic tests to confirm strain identity, with actual experiments being performed using 
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the standard plasmid shuffle technique.  Results representative of these plasmid shuffles 

are shown in Figure 3.6.  It was possible to obtain strains containing three taf5 ts alleles 

combined with each of the three taf4 ts alleles.  However, upon shuffling no viable 

double mutant strains were recovered, while the single taf mutants grew as previously 

documented.  The incubation temperature for the plates shown was 30o, however reduced 

temperature did not allow any growth of the double mutant strains (not shown).  This is 

an example of synthetic lethality.  Therefore no additional tests of Rap1-TFIID 

interaction in compound mutants could be made.  However, this provided further 

evidence of the importance of these domains to cellular growth, and argues that these two 

Taf domains contribute to the same molecular process.  Perhaps that process, for which 

these two protein domains act in common, is to allow Rap1 interaction with the TFIID 

complex.  Unfortunately, additional headway could not be made to investigate Rap1 

interaction with TFIID in taf mutant strains.  

 

Rap1 Interaction With Altered Taf4 and Taf5 is Compromised In Vitro 

To attempt to provide information about the molecular mechanism behind the 

reason for loss of growth in the taf ts mutants, it was necessary to return to investigation 

of binary Rap1-Taf interactions using in vitro techniques, since semi-in vivo approaches 

like the yeast two-hybrid and co-immunoprecipitation had only yielded negative results.  

The most obvious method was the Far Western, since it had been used initially to define 

Rap1 binding domains in all three Tafs (4, 5, and 12).  To this end, full-length taf5 

mutant alleles were transferred from yeast to E. coli expression vectors; the proteins were  
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Figure 3.6:  Synthetic lethality of taf5 and taf4 mutants.  Shuffled, haploid strains, pseudo-

diploid for taf5, containing either shuffled-in TAF5 or taf5 ts+ alleles, were mated with 

unshuffled, haploid strains of the opposite mating type, pseudo-triploid for taf4 and 

containing both TAF4 and one of three taf4 ts+ alleles.  Haploid, ts+ strains pseudo-diploid 

for taf5 and pseudo-triploid for taf4 were isolated and subjected to plasmid shuffle at 30o.  

Whereas the presence of the TAF5 allele supported the isolation of viable taf4 strains, 

presence of taf5 ts+ alleles could not, indicating a synthetic genetic interaction, possibly 

indicative of participation in the same molecular process.    Data are adapted from Layer 

et. al., 2010.            
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expressed and purified from inclusion bodies, then used in the standard Far Western 

assay. There was no apparent difference in Rap1 binding to wild type full length Taf5 or 

the equivalent altered proteins (not shown).  Alteration of the incubation parameters and 

buffer constitution to increase the stringency of binding reactions did not reveal any 

differences.  Thinking that the sensitivity of Far Westerns might be a limitation in 

observance of subtle differences in binding affinity, I next established a more 

conventional GST pulldown assay, with GST Rap1 acting as ‘bait’ and soluble Taf5 

fragments (residues 1-337, containing NTD1 and NTD2) or Taf4/Taf12 heterodimers as 

‘prey.’Again, there appeared to be no difference in binding of Taf5 variants to GST-Rap1 

as compared to the wild type Taf5 amino terminus (not shown).  The relatively 

cumbersome nature of Far Westerns and GST-pulldowns did not facilitate rapid or 

comprehensive optimization of binding reaction conditions, neither did these methods 

lend themselves to a quantitative description of binding events.  Given these constraints 

and the availability of large amounts of suitable recombinant proteins, we opted to 

establish a new assay possessing both high-throughput and quantitative capabilities.  The 

protein preparations used are shown in Figure 3.7.  Note that Taf4 was co-expressed and 

purified as a heterodimer with Taf12, whose association was not affected by the amino 

acid substitutions in the Taf4 RBD, at least not within the fairly harsh conditions under 

which these proteins were prepared.  The practical consequence of this 

coexpression/copurification strategy is that at least two binding sites are present in the 

wild type Taf4/Taf12 heterodimer preparation, and one intact RBD is theoretically 

always provided by wild type Taf12.  Also note the mobility variation of the wild type 

Taf5 N-terminal fragment as compared to equivalent proteins expressed from mutant 
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alleles.  Rap1 cysteines were covalently modified with biotin; the biotinylated Rap1 

retained full DNA binding activity, as shown in the upper right panel of Figure 3.7 that 

displays the results of EMSAs.  This figure shows that addition of both biotin and 

streptavidin did not preclude DNA binding of modified or unmodified Rap1, as most 

clearly indicated by the enhanced mobility shift of biotin-streptavidin-Rap-DNA 

quaternary complexes.  Moreover, the interaction of biotin-Rap1 with immobilized 

streptavidin biosensors allowed real-time monitoring of light scattering properties of 

streptavidin-biotin-Rap1.  A representative real-time kinetic trace of streptavidin-biotin-

Rap1-Taf5 complex binding and dissociation using the 96-well ‘Octet’ instrument with 

optical biosensors is shown in Figure 3.7.  Biotin-Rap1 was first loaded onto the 

streptavidin biosensors (step I), and in a second step excess Rap1 was washed away (step 

II).  Next the Rap1-containing biosensors were immersed in individual wells containing 

different concentrations of the wild type Taf5 N-terminus (step III); Taf5-Rap1 binding 

was monitored as increased signal (Δnm; y-axis) until after binding reached equilibrium.  

The biosensors containing Rap1-Taf5 complexes were then transferred to wells 

containing buffer alone and dissociation of the protein complexes commenced (Step IV).  

Taf5-Rap1 association occurred in a rapid, concentration dependent manner, and 

dissociation proceeded more slowly.  Given the real-time data, rate constants describing 

both association and dissociation rates were derived, with the ratio representing the 

equilibrium dissociation constant, or ΚD, which indicates the relative strength of 

interaction between different Taf5 variants or Taf4/12 heterodimer preparations and 

Rap1.  ΚD values indicated that altered Taf4 variants bound slightly less tightly than the  
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Figure 3.7:  Interaction of Rap1 with Taf4 and Taf5 proteins bearing amino acid substitutions in the RBDs.

Proteins used are shown in the upper left hand panel, A.  It was necessary to prepare Taf4 and variants as 

heterodimers with Taf12 by co-expression in E. coli, so at least two RBDs are present per heterodimer, with

the Taf12 RBD being wild type in each case.  The N-terminal 337 Taf5 residues, containing all of the RBD, 

was expressed in order to obtain soluble protein in E. coli.  Rap1 was modified by biotinylation of cysteine 

residues (three per molecule and none in portion of Rap1 relevant to Rap1-Taf interaction).  Retention of 

DNA binding activity by biotin-Rap1 is shown in the upper right hand panel, B.  Biotin and/or streptavidin had 

no affect on native recombinant Rap1 binding to a radio-labeled RPG binding element in EMSA (lanes 2-7), 

whereas streptavidin caused a supershift of biotinylated Rap1-DNA complexes, which could be reversed by 

inclusion of excess free biotin (lanes 9-13).  Therefore Rap1 DNA-binding, the only measureable biological 

activity, was unaffected by site-specific modification of Rap1 and thus modified Rap1 was deemed suitable 

for Rap1-Taf interaction studies.  Biotin-Rap1 was used along with Taf4/12, Taf5, and derivatives from mutant 

alleles in biolayer-interferometry assays, an example of which is shown in the lower left hand panel.  

Interferometry experiments depend upon biotin-Rap1 binding to immobilized streptavidin, and occur in four 

steps which are monitored in real-time, C.  Kinetic data allows calculation of rates of association and dissociation, 

and therefore determination of the associated rate constants, which in turn allow calculation of an apparent 

affinity of binding.  A summary of data for wild type proteins and derivatives is shown in the table at the lower 

right, D.   Preparation of vectors and recombinant proteins by J.H.L.; all protein-DNA binding and protein-protein 

interaction by Scott G. Miller.  Data are adapted from Layer et. al., 2010.            
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wild type protein, and the Taf12 amino terminus also contributed to the interaction with 

Rap1 in this assay. While the wild type Taf5 amino terminus did not bind as tightly as the 

Taf4/Taf12 heterodimer, each Taf5 variant bound ~2 fold less tightly than the wild type 

protein.  Altogether, these results were consistent with taf temperature conditional alleles 

encoding proteins that were defective for interaction with Rap1.  The exact relationship 

between affects on Rap1 binding and the previously documented transcriptional 

phenotypes amongst the different mutant alleles remains somewhat less clear.  This 

disparity will be discussed in some detail below, but the thrust of any argument will 

probably relate to the connection between observations made here, in vitro, and the 

situation actually occurring in vivo, with all the additional complexities inherent to that 

context.  For now, note that all the experimental data shown was obtained using room 

temperature kinetic binding experiments, and different results may be anticipated if the 

temperature of reactions were raised.  At 37o, binding affinities may be much more 

significantly reduced than we have observed here.   

 

Synthetic Genetic Interaction Between TAF5 and Specific Mutant RAP1 Variants 

While we, and others, had previously documented functional relationships 

between Rap1 and TFIID in vivo, my study was still lacking in a demonstration of Rap1-

Taf relationship, outside of purely biochemical experiments.  Moreover, the level of 

understanding of particular protein domains within Tafs and their contribution to 

interaction with Rap1 had surpassed the known information available regarding Rap1 

structure-function relationships.  To address both these deficiencies, I decided to try and 

use a genetic approach to define connections between Rap1 domain functionality and Taf 
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domain functionality, in vivo.  The basic strategy followed that used in creation of taf4 

taf5 strains.  But since I did not have any rap1 conditional mutants in hand, and because 

my goal was to obtain information about contribution of individual Rap1 domains, I 

generated the series of mutants shown in Figure 3.8.  The focus of this study was on the 

Rap1 C-terminus, since deletion of the C-terminus is compatible with viability, unlike the 

DBD, which is strictly required for growth.  Therefore I hypothesized that one or more 

specific domain(s) in the Rap1 C-terminus mediates interaction with one or more of the 

TFIID Tafs.  While I could expect that removal of one Rap1 C-terminal domain at a time 

could cause a mild growth defect (at most), a more pronounced growth defect could 

possibly occur when taf4 or taf5 mutations were also present.  A synthetic genetic 

interaction such as this would be indicative of biochemical crosstalk between specific 

Rap1 C-terminal domains and specific Taf domains.  As a first step, several taf5 mutants 

were combined with the systematic rap1 mutants; the TAF5 strain was combined with 

rap1 mutants as control.  Results of growth assays where RAP1 was shuffled out to 

expose phenotypes associated with rap1 mutants are shown in Figure 3.8.  RAP1 was 

essential as indicated by the lack of growth in the presence of vector missing the gene.  

The DBD, encompassed by residues 361 and 596, was also necessary for viability.  The 

so-called Tox domain, which negatively affects growth when included in overexpressed 

Rap1, was not required for growth, and neither was the putative AD (Freeman et al., 

1995).  Residues of unknown function from 678 to 695 appeared to make a contribution 

to growth since strains missing this region grew at a reduced rate, as did a strain missing 

a large portion of the Silencing Domain (residues 763-827); slow growth of this strain 

may relate to compromised regulation of telomere homeostasis (Hardy et al., 1992a).  On  
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Figure 3.8:  Synthetic lethality of taf5 and rap1 mutants.  Haploid, ts+ strains pseudo-diploid 

for taf5 and pseudo-triploid for rap1 were isolated and subjected to plasmid shuffle at 30o.  

rap1 !DBD and !630-695 could not support viability even in the presence of TAF5.  Surprisingly, 

the !678-695 Rap1 variant, able to grow in the presence of TAF5, was extremely slow-growing and 

nearly inviable in the presence of taf5 mutants.  Besides this, another notable synthetic genetic 

interaction is the enhanced growth of unshuffled taf5 strains containing extra RAP1 or !Tox alleles 

(left hand panels).  These were the most technically and logistically demanding experiments described 

in this dissertation.  Data are adapted from Layer et. al., 2010.            
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the other hand, removal of the AD along with residues 678-695 was not compatible with 

growth (Δ630-695).  This is consistent with collaboration between the Rap1 AD and the 

residues of unknown function, perhaps these collectively contribute to transactivation 

potential (possibly by interaction with Tafs).  Note that in the TAF5 background, all rap1 

alleles were recessive to the wild type RAP1 allele, since the unshuffled strains grew 

equivalently. 

 On the other hand, in each of the taf5 mutants, unshuffled strains containing 

RAP1 or the ΔTox mutant exhibited an elevated growth rate relative to those strains 

lacking extra full-length or nearly full-length RAP1, indicative of partial suppression of 

the slow-growth phenotype of the taf5 strains that occurred at the 30o incubation 

temperature used for these experiments.  This was the first indication of a positive genetic 

interaction between TAF5 and RAP1 revealed by these experiments.  A more obvious 

indicator of the relationship between the genes occurred when the Δ678-695 Rap variant 

was the sole source of Rap1 in the taf5 mutant strains; the failure of this rap1 allele to 

support growth when combined with taf5 mutants represents a negative synthetic genetic 

interaction between DNA encoding this Rap1 domain and the taf5 alleles.  Such synthetic 

genetic interactions were taken to suggest the possibility of biochemical interaction 

between the Rap1 C-terminus and the Taf5 N-terminus; this biochemical interaction is 

likely to be direct given the variety of other observations I had made regarding 

relationships between these proteins. 
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DISCUSSION 

 

Whereas the experiments detailed in Chapter 2 were intended to define protein 

domains within Tafs that mediate interaction with Rap1, the series of experiments 

described in this Chapter were intended to put precedence on testing the physiological 

relevance of the Rap1-Taf-TFIID interaction(s).  The molecular physiological process in 

question was transcription, particularly that of Ribosomal Protein Genes, since these are 

the common target of the protein factors in question (Lieb et al., 2001; Mencia et al., 

2002).  However, it was by no means reasonable to hypothesize that these genes would 

be the only ones negatively affected within the novel taf4 and taf5 temperature 

conditional yeast strains that I generated for my thesis project.  While it seemed 

reasonable to expect that all or most RPGs would be negatively affected, this 

characteristic, along with the identity of some of the affected non-RPG transcripts, could 

all be tested for using unbiased measurements of transcript abundance, in this case 

microarray analyses.  The second major impetus of this series of experiments was to 

monitor possible molecular defects underlying loss of growth and RPG transcription 

phenotypes.  Since the mutant taf alleles were rationally designed to minimize affects on 

Taf function other than Rap1 interaction, it seemed that a loss of function in Rap1 

interaction would be the best candidate to test as being causative for growth phenotypes.  

With the caveat that there are likely to be several Rap1 binding sites within TFIID, 

provided by three different Taf proteins each present in multiple copies, I was prepared 

for negative results in assay of Rap1-TFIID interaction status in mutant strains (Garbett et 

al., 2007; Leurent et al., 2002; Leurent et al., 2004).  Since assay of Rap1-TFIID 
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interaction presents technical as well as theoretical challenges, I also planned 

measurements of binary Rap1-Taf interaction in the context of altered Taf4 and Taf5 

proteins.  While this type of assay is readily performed in vitro, the physiological 

significance of binary interactions between activators and subunits of high molecular 

weight complexes is much more difficult to document in vivo.  Assay of synthetic genetic 

interactions is a powerful, albeit indirect, strategy to test for functional interactions 

between multiple factors in the context of the whole organism.  Given that I had some 

prior knowledge of both Rap1 and Taf protein domains involved in physical interaction, I 

could design a rational domain-directed synthetic genetic interaction study. 

The complexity of the in vivo situation is always the challenge when attempting 

extrapolation from in vitro observations obtained using a minimal set of components.  

Transcription is certainly no exception to this, as stated before there are a huge number of 

individual proteins and many multisubunit complexes potentially involved at every step 

of transcription regulation.  I am studying the connection between enhancer bound Rap1 

and promoter bound TFIID but there are many candidates for bridging adaptors, or 

multisubunit coactivators that could possibly fulfill the same responsibilities more 

traditionally associated with TFIID.  SAGA and Mediator are two complexes that could 

in theory coactivate RPG transcription by direct interaction with Rap1.  Moreover, SAGA 

also contains Taf5 and Taf12, so it would be possible for Taf5 or Taf12 biochemical 

function to occur solely or partially through SAGA (Grant et al., 1998).  A SAGA-

dependent pathway of biochemical contribution would be difficult to decipher using 

genetic approaches such as generation of taf mutant alleles.  Therefore it was reassuring 

to see that neither SAGA nor Mediator make any significant contribution to RPG 



 214 

transcription, as evidenced by consistent steady state RPG transcript abundance within a 

broad collection of strains lacking subunits of each complex.  A concern of mine was the 

authenticity of these strains, since none were prepared by me, although I verified each 

strain to the best of my ability and perhaps more tellingly, I observed that some did 

display overt growth phenotypes. However, I was most reassured because there were 

PGK1 transcription defects within some of these strains.  Thus the deletion of SAGA and 

Mediator subunits was effective in reduction of gene transcription (i.e. PGK1), just not 

that of RPGs.  There was a recent report of the direct involvement of Mediator in RPG 

transcription, which used ChIP of epitope tagged proteins to show Mediator association 

at RPG promoters while an med17 temperature conditional mutant strain was used to 

show genetic dependence on Mediator (Ansari et al., 2009).  Personally, I feel that there 

are serious flaws with this report, since previous studies suggested that ChIP of tagged 

Mediator subunits is problematic, and further this report included only one Mediator 

mutant, leaving open the possibility of allele-specific affects (artifacts).  The study I 

carried out used a large panel of isogenic genetic reagents, and allows a much stronger 

conclusion arguing against the involvement of either SAGA or Mediator. This fact 

simplifies the interpretation of genetic experiments involving TFIID Taf-encoding genes, 

where I endeavored to implicate the importance of Taf-RBDs in RPG transcription. 

The observance of deficits in bulk polyA+ RNA levels in temperature shifted taf4 

and taf5 ts cultures, as scored by oligo dT-probed slot blots, was a strong indication that 

RPG transcription was compromised in these mutants at the non-permissive temperature.  

RPGs account for ~50% of all Pol II transcription initiation events in the genome and 

thus a negative affect on these 137 genes should confer a significant alteration in overall 
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gene expression.  It was surprising that only mild RPG transcriptional defects occurred in 

the taf4 ts mutants when individual mRNA abundance was scored by primer extension.  I 

feel that this is a limitation of the particular mutants that I generated; the three taf4 strains 

used were the only taf4 mutants that I isolated because there was a flaw in my plasmid 

library construction.  This mistake generated many alleles with mutations outside the 

targeted area.  Thus while the experiment was performed using the best reagents available 

at that time, but certainly not the ideal.  Since then I have generated additional taf4 

mutants that almost certainly will be more appropriate for testing the contribution of the 

Taf4 RBD to RPG transcription.  Even though the taf4 alleles used were quite possibly 

suboptimal for testing my hypothesis, two of the three nevertheless did manifest defects 

in RPG transcript abundance.  This result was easily overshadowed since the novel taf5 

mutants displayed a more dramatic RPG transcript reduction.  Personally, I do not think 

this result reflects an elevated importance of the Taf5 RBD relative to the Taf4 RBD but 

rather simply reflects the relative quality of the genetic reagents used in the study.  There 

was a much larger pool of taf5 mutants to choose from whereas the taf4 mutants 

represent the sum total of those identified, and consequently the taf5 alleles were of 

higher quality as scored by several criteria.  Still, the availability and application of more 

than one allele per taf strengthened this study, since it is widely acknowledged that the 

use of multiple unique genetic reagents will allow stronger conclusions (Durso et al., 

2001).  Moreover, a consistent reduction in the levels of distinct RPG transcripts occurred 

in the taf mutants, which was expected given that RPGs are coordinately regulated 

through mechanisms involving both Rap1 and TFIID.  However, we did not know if all 

137 transcripts were affected.  This question and also knowledge about affects on other 
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non-RPG transcripts were of interest to us.  The microarray experiments were executed to 

address these unknowns.  A broad RPG transcription phenotype indeed occurred in the 

taf5 mutants, as 110 of the 137 transcripts consistently clustered together as a group that 

showed decreased abundance at elevated growth temperature.  Furthermore, the cluster 

analysis indicates that many other genes were affected by loss of Taf5 functionality 

(~600 downregulated greater than two fold, but not mRNA of RAP1, TAFs or any other 

important RPG regulators).  The loss of some of these genes mRNA may be due to a 

secondary affect, occurring as a result of many perturbations on protein abundance or 

function, not exclusive to Tafs.   A more interesting and testable hypothesis for the 

mechanism behind these deficiencies is that many other transfactors might use TFIID 

coregulatory function in a manner similar to Rap1.  To test this hypothesis, it would be 

necessary to identify putative Taf5-interacting transfactors.  The identity of such 

transfactors would be facilitated by a gene ontology (GEO) clustering analyses of the 

array data, which groups genes based on the biological process(es) in which the encoded 

protein participates.  Like RPGs, other coordinately regulated clusters of genes often 

utilize one or more common transfactors to activate their transcription in parallel.  GEO-

grouped genes could be compared with ChIP-ChIP data that is available for several 

hundred yeast transfactors (Harbison et al., 2004; Lee et al., 2002).  The comparison of 

this ChIP-ChIP data with equivalent data for TFIID occupancy, and also genetic 

dependence on Tafs, might indicate those genes that are commonly directly dependent 

both on a particular transfactor and also on TFIID (Lee et al., 2000; Shen et al., 2003).  I 

analyzed the taf1-ts2 mutant strain that has been used as a benchmark for establishing 

TFIID dependence of individual gene transcription, so we have our own dataset to 
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compare genes negatively affected in taf5 ts mutants to those affected in taf1 ts2 

(Huisinga and Pugh, 2004).  This comparison might help to differentiate between the 

requirement of a gene for Taf5 function in SAGA versus Taf5 function within TFIID.  

With respect to those transfactors affecting genes other than RPGs, I must point out that 

Rap1 directly regulates ~450 additional genes, so some of those might share TFIID 

dependence and include direct Rap1-TFIID interaction in their regulation (Lieb et al., 

2001).  At one level, this seems a bit unlikely or alternatively, more complicated, since 

genes that I tested such as PGK1, ADH1, and ADH3 are direct Rap1 target genes but are 

clearly Taf and TFIID-independent (Chambers et al., 1989).  With respect to non-RPG 

activators, we do have some biochemical evidence that the SBF transfactor, which is a 

direct activator of a collection of cell cycle-regulated genes, can directly interact with 

Tafs (Sanders et al., 2002b).  Unfortunately, my microarray data will probably not shed 

light on any affects on SBF target genes, since those transcripts are cell cycle regulated 

and need to be quantified within synchronized cultures to determine if a defect does occur 

in the taf5 ts mutants (Spellman et al., 1998).  An experiment with synchronously 

growing cultures would be interesting to perform in the taf5 ts mutants, since it seems 

reasonable to propose that SBF might interact with TFIID, and Taf5, in a manner similar 

to Rap1.  To summarize this set of experiments, there are many facets of the microarray 

data that have not been visited in detail and the dataset promises to be a source of novel 

information, and subsequent publications for the lab.  My specific question was answered 

by completing these experiments; essentially the entire RPG regulon was negatively 

affected by incubating taf5 ts strains at the non-permissive temperature.  This is 

consistent with the Taf5 RBD functioning critically in RPG transcription.   The effect 
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was clear, it remained to be seen if the cause could be legitimately ascribed to a defective 

Rap1-TFIID interaction. 

Having had established a bona fide RPG transcription phenotype in taf mutants 

designed to interfere with Rap1-Taf4/Taf5 interaction, it was next logical to examine 

Rap1-TFIID interaction in these strains.  The expectation that it would be difficult to 

observe such an affect, owing to possible inherent redundancy, did not alleviate the 

disappointment when this prediction was fulfilled by negative experimental results.  One 

may ask just why there is such a strong transcriptional phenotype in the taf5 mutants 

without a detectable affect on Rap1-TFIID interaction.  Such strong phenotypes have 

been associated with taf mutants that compromise TFIID integrity and/or stability 

(Komarnitsky et al., 1999).  Clearly this is not the case with these particular mutants, 

since there is no change in quantity or quality of Tafs that co-immunoprecipitate in 

extracts of mutants as compared to wild type.  The use of a comprehensive panel of 

antibodies for IP solidifies the argument that TFIID integrity remains unaffected in the 

mutants generated by this study.  The immunoprecipitation data on Taf-Taf association in 

extracts of the mutant strains is also consistent with my yeast two-hybrid data, which 

indicated a lack of involvement of Taf4 and Taf5 RBDs in Taf-Taf interaction.  The lack 

of a noticeable reduction in Rap1-TFIID association in the immunoprecipitation 

experiments might be explained by the existence of some form of compensation with 

respect to conservation of Rap1-TFIID interaction in the mutant strains.  This seems a bit 

unlikely given the strength of the transcriptional phenotype; were there effective 

compensation one would not anticipate the growth and transcription phenotypes being so 

severe.  The more likely reason for the failure to observe defective interaction, in my 
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opinion, is the limitation of the technique used.  While I made an attempt at systematic 

buffer optimization in order to identify optimal salt and detergent concentrations, these 

were not combined with other parameters such as pH of extraction and IP.  Neither were 

identity of different salts nor detergents pursued although these could well contribute to 

the nature of the interaction(s) and affect of taf mutations.  Perhaps the other techniques I 

have mentioned, such as FRET or in vitro pulldowns with TFIID isolated from mutant 

strains would readily identify differences between wild type and mutants.  Unfortunately 

I think this is a long way from fruition, since these methods are not without their own 

difficulties and caveats, which will also need to be sorted out through additional hard 

work, much like what was necessary to get the IP assays working.  With respect to FRET, 

I think the judicious use of epitope tag locations will be of exceptional importance for 

these experiment to have any chance of success.  The apparent integrity of TFIID in 

extracts of mutants can be taken as a further indication that it should be possible to purify 

the complex from mutant strains using our standard isolation procedure.  But this will 

take the right person with the right skill-set and an eye for detail to do this and re-

establish in vitro Rap1-TFIID interaction assays.  So it is fair to say the Co-IP 

experiments did provide some insights such as the observance of conserved TFIID 

integrity and an apparent association with specific Rap1 isoforms.  The identification of 

any post-translational modification in this Rap1 population and their locations within the 

protein will be interesting to investigate and could very well provide some insight into the 

nature of the Rap1-Taf/TFIID interaction and possible dynamic regulation of the 

interaction.  Another positive note about this round of Co-IP experiments has to do with 

the evident possibility of yet another type of experiment that might be put to use to 
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characterize Rap1-TFIID interaction.  Nearly every individual Taf protein was prepared 

in recombinant form for use in affinity purification of specific anti-Taf IgG.  These 

proteins were generally prepared in soluble form with good purity and yield.  In theory it 

should be possible to attempt reconstitution of full or partial TFIID complexes using 

recombinant proteins prepared using the methods I have worked out.  Indeed, partial 

reconstitution of multisubunit complexes using purified subunits, originally pioneered 

using E. coli RNA Polymerase, has been applied to human and fly Tafs and TFIID in 

several previous studies (Chen et al., 1994; Guermah et al., 2001; Ishihama and Ito, 

1972).  One can easily envision the incorporation of recombinant Tafs encoded by mutant 

alleles into reconstitution experiments (Tang et al., 1996; Tang et al., 1995).  Thus full or 

partially reconstituted TFIID complexes containing altered proteins might be prepared for 

use in Rap1-TFIID interaction studies.  However promising and/or technically 

challenging this particular endeavor may be, like all the other possible approaches, TFIID 

reconstitution still suffers the limitation that the mutant alleles described by my studies 

may be too phenotypically strong (or exhibiting too dramatic a reduction in RPG 

transcription as a result of heat shock) to be useful for the full panel of experiments I 

would like to use in testing the model of Rap1-TFIID interaction. 

Having put much effort into establishing the Co-IP procedures, and obtaining at 

least some useful observations, I wanted to try and address the potential caveat of 

inherent redundancy of Rap1-Taf-TFIID interaction.  Thus several of the available taf5 

mutants were systematically combined with taf4 mutants.  The objective was to make 

strains with multiply disrupted surfaces within Tafs used by Rap1 to interact with TFIID.  

If such strains could be identified and isolated, it might be possible to observe a deficit in 
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interaction as compared to single mutants or wild type using Co-IP assays.  Unfortunately 

the possible allelic combinations produced only strains that were inviable.  The molecular 

mechanism behind this phenotype can only be speculated on; it may be due to the loss of 

Rap1-TFIID interaction or could be a consequence of compromised TFIID integrity or 

stability, or any other myriad reasons.  Again, this question of whether or not I used the 

‘right’ mutants in these experiments is one that must be asked (Ebright, 1991).  The best 

mutants would be strong enough to observe phenotypes, but not so strong as to 

chronically manifest a portion of the overall phenotype.    Perhaps the ‘right’ mutants for 

this type of experiment are those that do not display as dramatic a phenotype on their 

own, relative to the mutant taf4 and taf5 alleles that were used.  While I feel the overall 

qualities of the taf5 alleles are quite good by comparison with other mutant strains I have 

worked with, nearly every one I identified encodes multiple amino acid substitutions, and 

this appears to be a general feature of most every useful allele present in the libraries I 

constructed.  Perhaps a novel but more systematic targeted mutagenesis could identify 

taf5 alleles with even ‘tighter’ phenotypes, which could subsequently be combined with 

existing or to-be-identified taf4 alleles, in order to generate viable strains useful for 

testing the model.  In fact I have made progress in identifying novel targeted taf4 alleles, 

in a study that will be discussed in the next chapter.  The generation of better reagents 

will be the holdup for fulfilling the promise of taf synthetic interaction studies.  The study 

I did perform served to further indicate the importance of the identified Taf domains, but 

the molecular mechanism can only be inferred and not proven.  Unfortunately, inviable 

strains cannot provide additional evidence of molecular mechanism.  Indeed, dead cells 

will tell no tales.  So while we got an additional clue from the synthetic genetic 
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interaction study between taf4 and taf5 alleles, we were left wanting for means to carry 

forward with analysis of Rap1-TFIID interaction.  Since compound taf mutant strains 

were likely necessary to justify carrying forward with extract-based Co-IP approaches, 

and these strains could not be obtained, the next best available option at this juncture was 

to express recombinant Taf4 and Taf5 proteins corresponding to the mutant alleles and 

measure the capacity of each of these proteins for interaction with Rap1.   

Far Western and GST pulldown assays did not identify any difference in the 

interaction between altered Taf5 proteins and Rap1.  Thinking that these methods lacked 

the sensitivity or capacity for rapid optimization to determine if any real deficiencies 

were occurring, we turned to a fairly new method that provides kinetic protein binding 

data, termed biolayer interferometry.  Thus we have to date utilized five different 

methods to observe interactions between Rap1 and Tafs or TFIID: in vitro TFIID 

pulldown, Far Western, GST pulldown, co-immunoprecipitation with Tafs from yeast 

extracts, and biolayer interferometry.  This last technique allowed the determination of 

binding constants describing the affinity of Rap1-Taf interaction.  The consequence for 

interaction of Taf4 with Rap1 was different depending upon the Taf4 allele used.  

Somewhat paradoxically, the Taf4 variant corresponding to the allele with the most 

severe transcriptional defect, taf4-219, demonstrated the least perturbed Rap1 binding 

affinity.  The protein corresponding to the taf4-141 allele exhibited a reduced Rap1 

binding affinity, even though this strain did not have a profound RPG transcription 

defect.  It was also somewhat surprising that Taf4 bound to Rap1 more tightly than Taf5, 

even though much more severe transcription phenotypes were observed in the taf5 

mutants.  However, recall that most of these measurements were made using recombinant 
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Taf4-Taf12 heterodimers thus two Rap1 binding sites may be available; consistent with 

this hypothesis removal of the Taf12 N-terminus results in a protein that should be 

compromised for interaction with Rap1 but fully capable of dimerizing with Taf4, and 

Taf4/12 dimers containing truncated Taf12 bind Rap1 with affinity similar to Taf5.  

However, the affinity of such an altered heterodimer for Rap1 is still slightly greater than 

Taf5 affinity for Rap1, which could partially explain why none of the taf4 mutants have 

as strong a transcriptional phenotype as taf5 mutants, and why truncation of the Taf12 N-

terminus causes no obvious in vivo phenotype at all.  In other words the Taf4-Taf12 

heterodimer may provide a localized, high affinity ‘platform’ within TFIID for Rap1 

binding.  With respect to Taf5 variants, although each binds Rap1 with reduced affinity 

compared to the wild type protein, there is a consistent quantitative reduction, which is 

surprising given that the taf5-408 allele has a less severe transcriptional phenotype than 

the other mutants; one might expect that this particular variant would bind better than the 

others but not as well as wild type.  Altogether, it is very difficult to draw connections 

between the transcriptional phenotypes associated with particular mutant alleles and the 

Rap1-binding properties of proteins corresponding to those alleles.  I do not feel it is a 

particularly worthwhile exercise for several reasons, not the least of which is that these 

experiments, while apparently reproducible at the quantitative level, were actually not 

performed with multiple independent preparations of Taf4 and Taf5 variant proteins.  

Thus binding characteristics could be artifacts of peculiarities unique to the preparations 

studied.  Most fundamentally, these binding measurements are performed outside the 

context of the TFIID complex where these proteins are naturally found and which is 

naturally bound by Rap1.  Thus protein conformation could be radically different here in 
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these experiments with isolated Tafs than what is found in the context of TFIID, where 

many other Taf-Taf, Taf-DNA, and Taf activator interactions are occurring, and where 

any combination of these different types of interactions could converge to influence the 

properties of those Taf domains responsible for interaction with Rap1.  Also, the 

recombinant proteins were produced in E. coli and thus are devoid of any post-

translational modifications that could occur in yeast.  Indeed, the Taf4 and Taf5 domains 

of interest are in all likelihood subject to PTM in vivo.  We have evidence that the Taf4 

RBD is subject to phosphorylation in vivo, and there is some likelihood that the Taf5 

RBD is subject to ubiquitination and/or sumoylation.  Both types of modification could 

be important for RPG transcription; Rap1 along with Tafs are probably conduits for such 

regulatory information stream since it is known that multiple signaling pathways 

converge upon RPG transcriptional regulation. In light of the discussed caveats, the 

physiological relevance of these in vitro Rap1-Taf binding experiments will await further 

investigation, and will benefit greatly from corresponding binding data obtained using 

Rap1 and TFIID preparations containing altered Tafs (whether obtained in vitro or in 

vivo). 

Yeast genetic approaches afforded the opportunity to perform in vivo tests of the 

relationship between the Taf5 RBD and Rap1.  Clearly the choices of TAF5 genetic 

reagents were my novel mutant alleles, but the equivalent choice for RAP1 presented 

more of a dilemma.  We have had some previous trouble with the authenticity of 

published rap1 temperature conditional mutants (Freeman et al., 1995; Kurtz and Shore, 

1991; Lustig et al., 1990).  I attempted to reconstitute several rap1 ts alleles using site-

directed mutagenesis but the resulting sequence-correct clones did not manifest the 
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growth phenotype predicted by the literature.  Thus although the use of point mutant 

and/or temperature conditional mutants is always preferred to alleles containing large 

deletions, I needed to turn to deletion mutants to pursue analyses of genetic interaction 

between TAF5 and RAP1, since generation of novel point mutant rap1 alleles was not 

practical given the time constraints. To move ahead I systematically deleted sequence 

encoding individual Rap1 domains beginning with the Rap1 DBD, since the amino 

terminus is completely dispensable for cell growth, and because we had seen TFIID 

interaction with the DBD and C-terminus, but not the N-terminus.  I expected that certain 

particular C-terminal domains would be important for cellular growth on their own, since 

deletion of the whole C-terminus results in a severe slow growth phenotype.  Consistent 

with the literature, Rap1 forms lacking the DBD failed to support viability (Freeman et 

al., 1995).  Therefore I could not examine genetic interactions between rap1 DBD 

mutants and taf5 mutants.  My suspicion was that any observable genetic interactions 

would occur between rap1 activation domain mutants and the taf5 mutants, since the 

affected Rap1 domain would predictably function to stimulate/activate RPG transcription.  

However, I wondered if the Rap1 AD had been mapped in its totality (Hardy et al., 

1992a).  After all there was a stretch of residues C-terminal to the AD that had no known 

function, but which by inference could associate with AD function, owing to these 

domains’ proximity.  Simultaneous deletion of sequence encoding the AD and this region 

of unknown function resulted in lethality in otherwise wild type strains, suggesting that 

these domains indeed functionally overlap.  This was a novel observation.  Perhaps the 

contiguous stretch of residues participates in the same process, namely transactivation 

and/or physical interaction with Tafs.  Consistent with this possibility, the rap1 mutant 
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missing the region C-terminal to the AD exhibited strong synthetic negative interactions 

with each taf5 mutant, suggesting a functional interaction between specific portions of 

the Rap1 C-terminus and the Taf5 N-terminus.   

Many potentially informative experiments could follow in a logical progression to 

extend these observations, using very similar techniques.  First, I would expect to be able 

to identify point mutants in this region of RAP1 that display similar synthetic interactions 

with taf5 mutants, because if this protein domain is truly functional in contribution to 

Rap1-Taf5 physical interaction, then individual Rap1 amino acid residues there should 

contribute to contact between the two proteins.  Similarly one would expect that certain 

specific changes in this RAP1 sequence might suppress the effect of the taf5 mutants.  If 

the conformation of the Taf5 N-terminus is altered within the mutants such that the 

domain(s) cannot effectively interact with the surfaces provided by the Rap1 C-terminus, 

then perhaps compensatory conformational changes caused by mutation of RAP1 could 

counteract the changes in TAF5 to reintroduce a productive interaction.  This is one 

theoretical basis for the past success of suppressor genetics.  Thus one can propose many 

experiments to test for both negative and positive genetic interactions.  If a weakened 

protein-protein interaction between Rap1 and Tafs occurring within either taf5 or rap1 

mutants is truly responsible for the phenotypes, then it should be possible to rescue 

growth of the taf5 mutants at the non-permissive temperature by overexpressing Rap1.  

Weakened interactions and the accompanying hastened turnover of interaction might be 

compensated by a mass action affect of increased cellular concentration of an individual 

binding partner.  This is another commonly practiced method of suppressor genetics (i.e. 

high copy suppression).  Unfortunately, overexpression of Rap1 is itself associated with 
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significant cytotoxicity and slow growth, although removal of the so-called Tox domain 

alleviates this phenomenon to an extent (Freeman et al., 1995).  Since the Tox domain 

itself doesn’t contribute to genetic interaction with TAF5, I decided to try and rescue the 

growth phenotype of taf5 mutants by overexpression of the tox-domain deleted Rap1 

variant.  Indeed, such overexpression alleviated the lack of growth of taf5 mutants at 

elevated temperature; taf5 strains containing excess Rap1 could grow, albeit very slowly, 

at 37o (not shown).  All of these genetic experiments could serve to shed light on the 

overall Rap1-TFIID interaction; perhaps Taf4 also interacts with the Rap1 C-terminus.  

Alternatively the Rap1 DBD might be restricted to interaction with Taf4 and the Rap1 C-

terminus reserved for interaction with Taf5.  Making things more complicated within the 

relevant context of these interations, which occurs on RPG enhancers and promoters, the 

presence of two molecules of Rap1 per RPG enhancer could either allow some overlap 

and/or redundancy in the mode of Rap1-Taf4-Taf5-Taf12-TFIID interaction, but it is just 

as possible that this enhancer characteristic could facilitate distinct modes of Rap1-Taf 

interaction.  These various possibilities might be supported or ruled out by directly testing 

the affect of Rap1 domain alteration on the biochemical interaction with Tafs.  Use of the 

Rap1 proteins corresponding to the deletion variants along with Taf4/12 heterodimers 

and the Taf5 N-terminus in the biolayer interferometry assay would be the most 

straightforward way to begin these experiments.  I expressed the appropriate Rap1 

proteins in E. coli and isolated them with good yield and purity but these variants have 

not yet been analyzed with respect to interaction with Tafs. 

It is easy for me or anyone else to criticize the limitations of the experiments I 

did, being that we now have the benefit of hindsight.  Indeed, one must start somewhere, 
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and in this respect it does seem clear that I made a good start into the dissection of Rap1-

TFIID interaction.  Thematically, I think that future studies must focus on two particular 

areas of deficiency.  First is to address the question of whether or not the ‘right’ taf and 

rap1 mutants are in hand at this time to allow the progression of our studies.  Since we 

are talking about a set of protein-protein interactions, and since many well-known 

examples have been mapped to peptide levels, I would argue that we do not yet have the 

most ideal mutant alleles in hand since there are scattered amino acid substitutions 

encoded in each allele.  As an example of a situation where peptide-level resolution of 

interaction is the norm, the protein regions responsible for recognition by monoclonal 

antibodies are commonly mapped to within 8 to 10 amino acids, and specific changes of 

just one residue within that peptide can essentially eliminate antibody-antigen interaction.  

If we could achieve that type of resolution of protein sequence mediating Rap1-Taf 

interaction, within each protein, then we could much more easily obtain precise and 

rationally designed mutant alleles with minimal chance for cause of off-target affects.  It 

is quite possible that cells regulate Rap1-Taf interactions in a dynamic manner, for 

example by post-translational modification, in order to allow the highly environmentally 

sensitive regulation of RPG transcription.  Identification of the locations of such putative 

post-translational modifications, for example in the state of high level RPG transcription 

versus physiological conditions wherein expression is halted, could tell us a lot about the 

specific residues directly involved in Rap1-Taf-TFIID interaction.  Even in the absence 

of a PTM-directed mutagenesis study, a systematic residue-by-residue site-directed 

mutagenesis study of the identified Taf and Rap1 regions is an attractive approach that 

would surely allow us to obtain the ‘right’ mutants for our future studies.   
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The second theme I would propose to address deficiencies of my study is to look 

at things in the context of a ‘bigger picture’ of RPG transcription.  I have discussed the 

need to more effectively examine these interactions in the context of a Rap1-TFIID 

interaction, but that also leaves out the fact that the proteins are almost certainly bound to 

DNA while they are engaged in protein-protein interaction in vivo.  Perhaps this 

characteristic represents an upstream and downstream influence on the mechanistic 

outcome(s) of Rap1-TFIID interaction.  Since the enhancer DNA bound by Rap1 is 

approximately 400 bases upstream of promoter-bound TFIID, there must be significant 

conformational complexity of the DNA involved in the process, otherwise it seems 

unlikely that the proteins could effectively interact while still bound to their respective 

regulatory DNA sequences.  In the absence of our ability to examine these protein 

interactions in the context of the cellular mileu, for example by using FRET, we must 

extend our planned biochemical experiments to not only include Rap1 and the TFIID 

complex instead of recombinant Tafs.  But we also must consider the affect of DNA in 

these interactions.  Since TFIID does not bind to DNA in vitro in the absence of TFIIA, 

we would have to include this GTF in our future studies as well.  The regulatory interplay 

of Rap1, TFIID, TFIIA, and DNA have actually been examined extensively by our 

collaborators in France, and these studies and several others will be detailed in the final 

Chapter of my dissertation.  Structural studies combining Rap1, TFIID, DNA, and TFIIA 

have placed my observations within a more mechanistic context, and this has led to ideas 

for many more potentially informative experiments to understand the precise function of 

TFIID-directed transcriptional coregulation. 
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CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary 

My thesis project was designed to pursue an understanding of the mechanistic 

outcomes of activator-TFIID interaction.  I initiated my work by identifying the 

individual subunits of the TFIID complex mediating interaction with the yeast Rap1 

activator (Garbett et al., 2007).  To allow a successful genetic analysis of these 

interactions, the regions of each TFIID-Taf responsible for the Rap1 binding were 

mapped at low resolution to within several dozen to several hundred amino acid residues 

(Garbett et al., 2007; Layer et al., 2010).  The expectation was that these regions of the 

Taf proteins would be important for cellular growth and RPG transcription, if the mapped 

RBDs were truly involved in physiologically relevant Rap1-TFIID binding events.  

Conversely, the recessive mutants I obtained that affected the function of these Taf 

domains and which exhibited growth and/or RPG transcription defects should also 

compromise interactions of Tafs or TFIID with Rap1.  While all of these expectations 

were borne out at the level of Rap1-Taf interaction there are still, not surprisingly, 

caveats to the interpretation of my experimental results and our models as presented in 

(Layer et al., 2010).   Thus, an extended set of future experiments that utilize both genetic 

and biochemical techniques will be required to more firmly establish the mechanistic 

outcome of Rap1-TFIID interactions.  So as with any good research project my work has 

been informative but it remains incomplete.  However, I am satisfied that the relevant 
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future experiments have also been hinted at by my studies.  I have systematically 

investigated and described the function of not just one but instead four different proteins.  

Here I will attempt to discuss theoretical and practical ways to advance the study of 

Rap1-TFIID interaction, given the observations and limitations that I have revealed 

and/or encountered during my time studying these factors.  All of the genetic 

investigation that was done was guided by low-resolution analyses of residues needed for 

in vitro protein-protein interaction and this in vitro data let me focus my genetic 

experiments.  Since only low-level resolution was obtained, a randomization strategy 

(Cadwell and Joyce, 1992) for generating mutant taf alleles was most appropriate at the 

time my studies were initiated.  This choice of technique was made based on my level of 

expertise at that time and also simply because that approach had proven successful in our 

laboratory (Singh et al., 2004).  This mutagenesis method suffers the drawback that 

frequently many residues within the targeted region are altered at the same time, therefore 

the exact amino acid residues responsible for the cognate protein-protein interaction are 

usually not identified.  Indeed this was the case with most all of the mutants that I 

described in the previous chapters, consequently these mutants are of limited utility as a 

basis for carrying forward a more detailed mechanistic description of Rap1-Taf 

interaction.   

It is tempting to speculate that a fairly small number of residues directly 

participate in the binding events between each Taf and Rap1, with other residues in the 

vicinity either being unimportant or contributing to the interaction indirectly, for example 

by contributing to the overall conformation of that protein region or domain.  Ideally one 

would hope to define the individual direct-binding residues, for example by biophysical 
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studies coupled with mutagenesis (Wakula et al., 2003).  I have mentioned several times 

about the need to obtain the ‘right’ mutants, that is, those mutants that only influence the 

process in question and do so by the most direct mechanism possible.  Presumably, such 

mutants would possess the most ‘tight’ conditional growth phenotype with little 

manifestation of that phenotype at the permissive condition(s), but with an obvious defect 

at the non-permissive environmental condition(s).  Such mutants would be potentially 

more useful for extended genetic and biochemical experiments, such as synthetic genetic 

interaction analyses or isolation of TFIID from mutant strains.  Multiple distinct peptide 

residues within each Taf and also Rap1 probably contribute to the interaction(s); the 

distinct N-terminal domains 1 and 2 in Taf5 both contribute biochemically to interaction 

with Rap1, the Rap1 DBD and domains in the C-terminus make either distinct or 

overlapping contributions to interaction with Tafs and/or TFIID, and the RBD in Taf4 

appears to contain at maximum ~92 residues, an expanse that could easily include several 

distinct motifs or domains (Layer et al., 2010).  To obtain the best possible mutants, it 

would be necessary to identify the most critical individual residues within each domain of 

interest.  It is now within my ability to perform site-directed mutagenesis to alter every 

individual amino acid in each domain.  The most practical way to implement this is 

systematic alanine block scanning mutagenesis, where one to several contiguous residues 

are simultaneously changed to alanine.  Growth and/or transcription analyses would 

reveal phenotypes associated with changing particular residues to alanine.  This overall 

strategy would serve to answer a fundamental question:  what is minimally required to 

make a Rap1 binding domain in Tafs, or a Taf binding domain in Rap1?  
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What Makes a Rap1 Binding Domain?  Taf4 as a Test Case. 

Since the least success was obtained in generation of taf4 mutant alleles, and 

because there is no structural information about the Taf4 RBD, I performed the alanine 

scanning mutagenesis of the Taf4 RBD-encoding sequence to try and identify better taf4 

mutants (Werten et al., 2002).  These reagents would allow me to more rigorously test the 

importance of the Taf4 RBD in vivo, and map those residues most critical to the 

mechanistic function of that domain.  I generated sixteen 6 amino acid Ala block mutants 

within TAF4 sequences encoding the RBD of the protein.  These mutants were 

transformed into yeast and tested for growth phenotypes using the plasmid shuffle assay.  

The results of this experiment are shown in Figure 4.1.  The usual negative and positive 

controls of empty vector and vector expressing wild type Taf4 were performed.  Two 

internal deletion mutants again showed that the entire Taf4 RBD, as mapped to residues 

253-344, was required for growth and also that the smaller deletant lacking residues 284-

326 also failed to support viability.  When present as the sole source of Taf4 protein, each 

of the Ala block-mutated alleles were able to support growth at 30o although two alleles 

conferred a slow-growth phenotype; these two variants have Taf4 residues 311-316 or 

317-322 changed to alanine.  Moreover, the slow-growth phenotype of these two variants 

was more severe at 37o, with the 317-322 Ala variant unable to support viability.  It is 

noteworthy that a subtle slow growth phenotype was evident for the 251-256, 264-269, 

and 269-274 Ala-block mutant variants when these strains were grown at 37o.  None of 

the alanine substitution strains exhibited reduced steady state abundance (Figure 4.1), 

thus the growth defect phenotypes observed above are not explained by reduced protein 

stability and/or defective synthesis. 
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 Since the taf4 alanine scan family appeared to exhibit phenotypes ranging from no 

visible growth reduction, mild growth reduction at elevated temperature, to inviability, I 

reasoned that a synthetic genetic interaction study might expose subtle growth defects 

associated with some of these taf4 mutants.  Thus I sought to systematically combine 

these taf4 variants with one or more of my taf5 temperature conditional mutants. As 

shown in Figure 4.2, 14 of the 16 taf4 Ala scan mutants were combined with strains 

bearing either TAF5 or two of the taf5 temperature conditional mutants, taf5-17 and taf5-

10.4, then subjected to plasmid shuffle at 30o.  As controls, the two taf4 deletion mutants 

and the three previous taf4 temperature conditional mutants were combined with these 

taf5 strains; as demonstrated before, these variants could either not support viability or 

exhibited synthetic lethality with taf5 mutants.  Additionally, since residues 311-322 had 

a clearly important role in Taf4 function and because we had some evidence that serine 

311 was phosphorylated (Manish K. Tripathi, J.H.L., Scott G. Miller, unpublished 

observations) S311 was changed to either alanine or a phosphomimetic aspartate residue.  

When combined with the taf5-17 or taf5-10.4 strains, the taf4 S311D mutant, but not the 

taf4 S311A mutant, showed a slow growth phenotype indicating a functional interaction 

between this Taf4 residue and the Taf5 NTD2.  Consistent with the importance of the 

portion of Taf4 containing S311, the other two taf4 alanine substitution mutants affecting 

residues 311 to 322 displayed synthetic lethality when combined with either taf5-17 or 

taf5-10.4.  These results further support the importance of the identified Taf4 residues to 

the function of the RBD contained within that part of the protein, and indicates a  
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functional overlap with the mapped Taf5 RBD.  Importantly, 9 of the 14 tested Ala scan 

variants did not exhibit synthetic lethality with taf5 mutants, indicating a high degree of 

allele specificity in these analyses.  Interestingly, three Ala-block variants that affected 

residues 251-274 also showed synthetic lethality with both taf5 variants, even though 

these taf4 mutants only showed very mild temperature conditional slow growth 

phenotypes on their own Figure 4.1.  This result suggests that two separate stretches of 

residues in the Taf4 RBD contribute critically to the function of that domain and these 

include residues 251-274 and 311-322.  Therefore, through these Ala-block mutagenesis 

studies, the most critical residues within the Taf4 RBD were much more narrowly 

defined as a result of this experiment, going from 90 amino acids to less than 34 residues 

of interest. 

Collectively, these data suggest functional interaction(s) between two separate 

stretches of Taf4 residues with Taf5 NTD2 residues.  By inference, this result might 

indicate that the Taf4 RBD utilizes two different portions/domains to participate in the 

same cellular process as the Taf5 NTD2, which I presume to include functional 

interaction with Rap1.  If those two Taf4 RBD components are indeed contributing to the 

same process, I predicted that combining mutations of each of these Taf4 RBD ‘domains’ 

would result in a synthetic growth deficiency.  To test this hypothesis I constructed a 

series of taf4 alleles where two distinct stretches of residues were each converted to 

alanines within the same protein, and tested the ability of these mutants to support growth 

(Figure 4.3).  The previous negative and positive controls were included and an 

additional Taf4 variant was created that lacked residues 274-310, since this deletion was 



 238 

predicted to have little to no effect on Taf4 function if those residues are truly 

inconsequential.  Six different single alanine scan alleles are shown first; the two mutants  

affecting residues 311-322, and four additional mutants with two of those flanking the 

amino terminal side of 311-322 and two flanking the carboxy terminal side.  Each of 

these six mutants was combined with one of four different alanine block substitutions; 

three of these affected residues 251-274 while the fourth altered residues 275-280 and 

was expected to be less likely to interact genetically with the six mutants affecting 

residues 299-334.  Addition of the 251-256 alanine block to the mutants with alanine 

blocks in residues 299-334 had a clear and selective affect on the 311-316 and 317-322 

ala mutants, 251-256 caused synthetic lethality when combined with the 317-322 block 

and synthetic temperature sensitivity at 30o and 37o when combined with the 311-316 

block.  A similar overall pattern of synthetic genetic interactions was observed when the 

275-280 block mutant was combined with the 299-334 block mutants; the 311-316 or 

317-322 block mutants interacted genetically with residues 275-280 while the others did 

not.  Combination of the 264-269 ala block or the 269-274 ala block with the 299-334 

block mutants had a more complex and severe pattern of synthetic genetic interaction 

than 251-256 or 275-280.  The 311-316 and 317-322 blocks were both synthetic lethal 

with either of the 264-269 or 269-274 blocks.  Most interestingly, the 264-269 ala block 

resulted in synthetic temperature conditional growth at 37o when combined with either 

299-304 or 306-311 ala blocks; similarly the 269-274 block was also synthetically sick 

with the 299-304 block at 37o.  Therefore in addition to revealing overlapping function of 

several distinct regions of the Taf4 RBD, this study generated several novel temperature 

conditional taf4 alleles that very precisely affect specific groups of amino acids, and 
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could eventually prove useful in testing models of Rap1-TFIID interaction.  Collectively 

these results are in agreement that the most critical regions of the Taf4 RBD reside 

amongst residues 251-374 and 311-322, although it is possible that residues 299-310 

provide some function as well. 

There are many implications and future directions hinted at by this systematic 

alanine scanning mutagenesis study of Taf4.  It is worthwhile to review the finding that 

residues within amino acids 251-374 and also amino acids 311-322 are important, by 

revisiting the amino acid substitutions encoded by the three previously discussed taf4 

temperature conditional alleles, taf4-116, taf4-141, and taf4-219.  Each of these three 

mutants contains coding changes of residues within these intervals; E269V, R273S, and 

L318R in taf4-116, A257V and W319R in taf4-141, while the taf4-219 allele includes the 

S320P substitution.  However, all three alleles also include other substitutions and thus it 

would be interesting to know if the changes in the intervals of interest are sufficient to 

confer the conditional growth phenotypes.  This may be less interesting to pursue since 

the transcription phenotypes of those mutants were mild.  In trying to get the ‘right’ 

mutants I am after, it would probably be more expedient to make substitutions at smaller 

intervals within residues 311-322, perhaps changing just one or two consecutive residues 

to alanine per mutant.  If this study identified the exact residue(s) with the most critical 

contribution to growth, a codon randomization experiment could be used to look at how 

the identity of the amino acid used for substitution contributes to growth phenotype.  

Hopefully altering the substituent from alanine to the other 18 possible residues would 

identify a range of phenotypes from mild to severe loss of growth.  This systematic 

strategy could also be extended to the 251-274 interval to comb through those residues.  
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Finally, to look for synthetic interactions, interesting mutants with one or a few 

substitutions in residues 311-322 could be combined with more precise substitutions in 

251-274.  Given the observation that every single or double ala block scan mutant 

encoded an apparently stable protein (see figure 4.3, part two), it seems likely that this 

detailed mutagenesis strategy would prove successful in generating ‘better’ mutants.  At 

that point, I think the goal of finding the best mutants possible will have been reached.  

Before pursuing more extensive site-directed mutagenesis, I think it would be wise to 

examine the transcription and Rap1-binding characteristics of the newly available taf4 ala 

scan mutants.  Given the more severe growth phenotypes, there should be a more 

profound affect on RPG transcription and Rap1 binding than with those mutants already 

characterized.  Alternatively, it is possible that the properties of these latest mutants have 

nothing to do with Rap1 binding.  In fact, residues including 311-322 are reported to 

participate in direct Taf4 DNA binding in vitro (Gazit et al., 2009; Shao et al., 2005).  

The in vivo significance of this observation is much more obscure, since the exact DNA 

binding properties remain rather ill defined.  These findings illustrate other possible roles 

for the functionality of these Taf4 residues, which may or may not be relevant to Rap1 

binding.  Additionally, the Ala-scan studies of the Taf4 RBD did reveal the continuation 

of a trend with respect to the Rap1-Taf-TFIID interaction.  I already showed that several 

of the proteins involved, including Rap1 and Taf5, appear to utilize multiple domains for 

their interactions.  Both the DBD and C-terminal domains in Rap1 and the NTD1 and 

NTD2 of Taf5 are relevant; here in the case of Taf4 we once again see that two separate 

stretches of amino acids appear genetically important for the biological function of the  
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RBD therein (Garbett et al., 2007; Layer et al.).  It remains to be seen how much of this 

participation of multiple distinct domains within individual proteins is a reflection of 

intrinsic biological redundancy.  The involvement of multiple Tafs in TFIID, along with 

multiple non-contiguous stretches of amino acids in both Rap1 and the Tafs, are each 

indicative of the importance of multiple distinct mechanisms of contact.      

Even though my latest mapping experiments have shed light on the functionality 

of the Taf4 RBD, they are not an end in themselves, instead pointing to yet more 

additional experiments.  It is to be expected that interaction between a large transactivator 

and a multisubunit coregulatory factor like TFIID will be complicated, so it is also no 

surprise that these mapping experiments are equally difficult.  The detailed site-directed 

mutagenesis strategy described in this chapter should be broadly applicable, not just to 

Taf4 but also to Taf5, Taf12, and Rap1, or any and every additional factor we eventually 

define as contributing to Rap1 and TFIID-dependent RPG transcription.  All that is 

required is the limited information that I already have about specific protein domain 

involvement, and basic techniques of molecular biology and yeast cell biology.  Most 

importantly, this strategy has the potential to generate extremely precise genetic reagents, 

which will be all the more useful in downstream genetic and biochemical experiments.  

The systematic residue-by-residue mutagenesis strategy represents a rigorous approach to 

defining the relevant contiguous amino acid residues in each protein, but there is perhaps 

a more precise and possibly more rapid approach to defining the minimal residues needed 

for Rap1-Taf interactions.  Although most of the biochemical interaction studies used 

recombinant proteins from E. coli, hence lacking yeast-specific and possibly regulatory 

post-translational modifications, it could be envisioned that cells utilize alterations of 
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specific residues to modulate the affinity and stability of Rap1-Taf interactions.  More 

profoundly, there could be situations where Rap1-TFIID interaction is not appropriate, 

and cells might exploit reversible PTM(s) to disrupt these interactions.  One would 

presume such modifications would be located at residues directly involved in the 

interaction, or at least proximal to the relevant protein domains.  Description of such a 

phenomenon could help us define Rap1- and Taf-binding domains with precision, 

without having to first generate and sort through large quantities of site-directed mutants. 

 

How Is Rap1-TFIID Interaction Dynamically Regulated In Vivo? 

Before discussing identification PTM of Tafs and/or Rap1, it would be instructive 

to consider physiological situations where interaction of Rap1 with TFIID would be 

inappropriate and thus negatively modulated to reduce RPG transcription rates.  Within 

that situation, simple mechanisms might include disruption of Rap1-TFIID interaction on 

RPGs in situ, without disruption of protein-DNA interaction, or disruption of factor-DNA 

binding with consequent relocation of one or both factors, or degradation of 

enhancer/promoter-bound proteins in situ. In all likelihood, combinations of these 

mechanisms with each other or any other unlisted possibilities are operative.  Given that 

the proteins used for in vitro characterization of Rap1-Taf interaction, in particular Rap1, 

were prepared in E. coli and thus lacking yeast-specific phosphorylation, ubiquitylation, 

acetylation, et cetera, it seems likely that addition of modification(s) to either TFIID or 

Rap1 is the best bet for inhibition of the protein-protein interactions and/or RPG 

transcription, when appropriate.  This proposal does not mean we can rule out 

upregulation of factors mediating removal of modifications normally stimulatory to the 
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interactions and RPG transcription.  In any case, we might ask if any effect on these 

proteins is observable as a result of an environmental condition associated with down-

regulation of RPG transcription.  It is well documented that inhibitors of the TOR 

signaling pathway, such as with rapamycin, reduce bulk protein translation through 

inhibition of the ribosomes, but an affect also occurs through reduction in RP synthesis 

via reduced RPG transcription (Cardenas et al., 1999).  In fact, several activators such as 

Fhl1/Ifh1, Sfp1, Hmo1, and the NuA4 coactivator each become dissociated from RPG 

enhancers when rapamycin is added to yeast cells (Berger et al., 2007; Lempiainen et al., 

2009; Rohde and Cardenas, 2003; Schawalder et al., 2004).  While Rap1 remains tightly 

bound to RPG enhancers in rapamycin-treated cells, an affect on TFIID occupancy has 

not been reported (Schawalder et al., 2004).  Thinking that modifications of Rap1 and/or 

TFIID might take place during these conditions, I sought to examine the occupancy of 

RPGs by Rap1, Tafs, and other GTFs during rapamycin treatment in vivo.  To do this I 

used ChIP (chromatin immunoprecipitation) with polyclonal antibodies to Pol II, TBP, 

Tafs, and Rap1 after exposure of cells to either rapamycin or DMSO vehicle (Hecht and 

Grunstein, 1999).  DNA recovered by ChIP was measured by quantitative multiplex PCR 

and data are shown in Figure 4.4.   

The multiplex PCR assay scored DNA content from the natural RPS5 gene; 

several primer pairs were used to document relative enrichment of several distinct RPS5 

segments including the open reading frame (ORF), the enhancer where Rap1 binds, and 

the promoter where TBP, Tafs and Pol II bind.  A primer pair recognizing the telomere-

proximal region of Chromosome VI (TELVIR) was used to provide an internal positive 

and negative control; this genomic region which is bound and ‘silenced’ by Rap1 is 
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transcriptionally inactive and therefore expected to provide little enrichment of TBP, 

Tafs, and Pol II above background (Adkins et al., 2004).  The mobility of each of the four 

PCR products is demonstrated in the first lane, as amplified from control unsheared, 

uncrosslinked genomic DNA.  The next lane demonstrates a lack of PCR contamination 

that could confound interpretation of results, as evidenced by the absence of any PCR 

products in a reaction that received no template DNA.  Next are the samples representing 

the input chromatin used for each immunoprecipitation, one each for cells treated with 

either vehicle DMSO or rapamycin.  A small fraction of the DNA contained within each 

of the total inputs was serially two-fold diluted and analyzed by PCR; the approximate 

two-fold increase in signal abundance for each PCR product per serial dilution 

demonstrates that the assay was within the linear range of amplification and detection, 

and that each genomic region was indeed approximately equally present in each input 

sample.  The next two lanes represent the DNA content of ChIPs for the largest subunit 

of RNA Pol II, from cells cultured either in the absence or presence of rapamycin, 

respectively.  In the untreated sample, the most intense bands correspond to the core 

promoter and ORF, respectively most likely representative of Pol II engaged in either 

PICs or actively transcribing the RPS5 gene body/ORF.  There is a marked reduction in 

Pol II occupancy of both the core promoter and ORF in chromatin prepared from cells 

treated with rapamycin, consistent with the well-documented dramatic reduction in RPG 

transcripts that occurs as a result of this treatment (Cardenas et al., 1999).  To score 

protein occupancy of a PIC component that should be specifically enriched to the 

promoter, TBP association was also examined.  Like Pol II, TBP was specifically  
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enriched at the promoter in the absence but not in the presence of rapamycin, again 

indicative of a dramatic reduction in RPS5 transcription rates consequent with drug 

application.  Interestingly, both TBP and Pol II occupancy at TELVIR appeared to 

increase in the presence of rapamycin.  The significance of this observation remains 

unclear.  TBP is a TFIID component, but its presence in other cellular complexes does 

not necessarily indicate its participation in events at RPS5 as a member of TFIID (Kuras 

and Struhl, 1999).  Therefore the occupancy of three TFIID-specific Taf subunits Taf1, 

Taf2, and Taf4 was also scored.  Each protein behaved identically to TBP in that all three 

were specifically enriched at the RPS5 core promoter in the absence, but not the presence 

of rapamycin.  These patterns of occupancy are entirely consistent with Tafs 1, 2, 4 and 

TBP participating in RPS5 regulation as constituents of TFIID, but more importantly 

these results indicated that TFIID disappears (by relocation or by destruction) from the 

core promoter upon rapamycin treatment.  Finally, as a control, Rap1 occupancy at RPS5 

was examined under both conditions.  Rap1 was enriched at the enhancer and consistent 

with the literature, this pattern of occupancy did not change with rapamycin (Schawalder 

et al., 2004). 

These ChIP results demonstrate that inhibition of the growth-responsive TOR 

signal transduction pathway results in marked alteration of TFIID association with an 

RPG promoter.  That TOR itself is a protein kinase that phosphorylates many targets, 

including downstream effector kinases and phosphatases to modulate their activity (De 

Virgilio and Loewith, 2006), suggests a role for reversible protein phosphorylation in 

regulation of TFIID/Taf activity.  In this case TOR is believed to function in concert with 

cyclic AMP-dependent protein kinase (PKA) to stimulate RPG transcription, although the 
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exact mechanisms are not clear (Lempiainen and Shore, 2009),  but perhaps includes 

direct affects on reversible protein phosphorylation of factors on RPGs.  Activated 

signalling kinases have been shown to physically occupy enhancers and promoters of 

target genes, so it is possible any relevant phosphorylation events could be dynamically 

occurring directly on Tafs while they are present on RPG promoters (Pokholok et al., 

2006).  Stimulatory kinases might affect modification of Taf and/or Rap1 residues that 

facilitate interaction between the proteins; these kinases could depend on active TOR 

signaling for their action on substrates.  Alternatively, negatively acting kinases could be 

de-repressed in the absence of TOR signaling, ultimately leading to the modification of 

Taf and/or Rap1 residues that disrupt their interaction.  This possibility can be connected 

with the observation that alteration of specific Taf4 residues within its RBD leads to 

growth phenotypes, as shown earlier in this chapter.  In the case of Taf4 serine 311, 

conversion to aspartate, a phospho-mimetic, leads to synthetic growth phenotypes when 

combined with Taf5 mutants, while conversion of S311 to alanine has no such affect.  It 

would be interesting to look for affects on Taf4 phosphorylation coincident with 

rapamycin treatment of cells, to see if S311 phosphorylation becomes upregulated.  The 

S311A mutant could be resistant to the affect of the drug on RPG transcription if 

modification of that residue is truly important for the affects on that process.  To ask 

more broadly how phosphorylation might influence RPG behavior, it would useful to 

conduct a proteomic analysis of PTMs occurring on Tafs and Rap1 isolated from cells 

cultured in the absence and presence of rapamycin (Huber et al., 2009).  Differences in 

phosphorylation status of Taf RBD residues between the two conditions might indicate 

regulation of the Rap1-Taf interaction, and suggest those residues directly involved.  
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Subsequently, mutations could be introduced that change the identified serine or 

threonine residues to either alanine or aspartate.  Cells containing the altered Tafs as the 

sole source of the proteins could then be treated with rapamycin and examined for an 

altered affect on RPG transcription status.  A connection between individual 

modifications and candidate kinases could be pursued using available deletion strains 

missing the genes for those enzymes.  Phospho-specific antibodies could be developed 

for use in kinetic ChIP assays that measure Taf/Rap1 isoform occupancy during a time 

course of rapamycin treatment.  In parallel, the affect of kinases on in vitro interaction 

between recombinant Tafs and Rap1 could be examined using our established 

quantitative methods (see Figure 3.7); such assays could be supplemented with cognate 

Taf and/or Rap1 variants containing amino acid substitutions at particular residues.   

While there is evidence suggesting that phosphorylation of Rap1 and/or Taf4 may 

be important, this is not the only candidate PTM that could modulate their activity.  

Sumoylation and ubiquitination are also reasonable possibilities; with published data 

showing the NTD regions of Taf5 are directly sumoylated in human cells (Boyer-Guittaut 

et al., 2005).  Sumoylation and ubiquitination are modifications classically associated 

with alteration of protein abundance (Bloom and Pagano, 2005; Sacher et al., 2005).  

Regulated protein stability fits with my observation that deletion of the NTD2 is 

sufficient to cause a dramatic increase in Taf5 abundance.  Residues between NTD2 214-

263 are probably involved (see Figure 2.6), this domain includes three potentially 

modifiable lysines, although Taf5 stabilization is increased when NTD1 is also deleted.  

Thus it is possible that yeast also utilize sumoylation or ubiquitination of NTD lysine 

residues to modulate Taf5 stability and/or function.  Some of my Co-IP data also 
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indirectly suggests that Rap1 is subjected to a modification that alters its molecular 

weight to an extent consistent with a large PTM like ubiquitination (see Figure 3.4).  

Interestingly, this effect occurs more prominently under buffer conditions including 

elevated salt concentrations or with larger amounts of ethidium bromide, both of which 

may suggest a relationship between Rap1 DNA binding status and this PTM pattern.  

Consistent with this hypothesis, the Rap1 DBD is highly enriched in lysine residues, as 

might be expected given its interaction with negatively charged DNA, however one or 

more of these residues might be ubiquitinated or sumoylated under certain conditions, 

which could in turn alter the conformation of the Rap1 DBD, change stability, or 

modulate Rap1’s capacity for protein-protein interaction with TFIID Tafs.  Any 

relationship between factor ubiquitination might be related to the function of the 

proteasome, which functions to degrade poly-ubiquitinated protein substrates (Verma and 

Deshaies, 2005).  The proteasome also appears to directly participate in RPG 

transcription, where its exact function is completely unknown, but may be related to 

turnover of regulatory proteins in situ on promoters (Auld et al., 2006; Collins et al., 

2009; Leung et al., 2008).  Perhaps proteasomal activity on RPGs is stimulated after cells 

are treated with rapamycin, as a consequence of increased ubiquitination of 

enhancer/promoter-bound proteins such as Rap1 or Tafs.  The net effect would be 

observed as the decrease in factor occupancy of RPG regulatory sequences in treated 

cells, as scored by ChIP.  Proteomic approaches would be useful in detection and 

mapping of sumoylation or ubiquitination of Rap1 or Tafs, under different growth 

conditions (Kaiser and Wohlschlegel, 2005).  The location of any modified residues 

could be correlated with sensitivity to amino acid substitutions of those residues, which 



 252 

could also be correlated with any affect on Rap1-Taf interaction.  Finally, lysine 

acetylation of Rap1 and/or Taf residues could conceivably be used to modulate 

interactions.  The prevalence of this modification in non-histone proteins is only being 

appreciated, and the utilization of differential protein acetylation in altering protein-

protein and protein-DNA interaction is well documented in the case of the highly studied 

p53 transactivator (Gu and Roeder, 1997; Kruse and Gu, 2008; Li et al., 2007; Loewer et 

al.; Luo et al., 2004; Tang et al., 2008).  It stands to reason that acetylation could 

influence the behavior of our proteins of interest, particularly since they are dynamically 

regulated in vivo, with a ChIP occupancy pattern mimicking that of the NuA4 

coregulatory acetylase complex but opposite that of the Rpd3 deacetylase complex 

(Humphrey et al., 2004; Rohde and Cardenas, 2003).  NuA4 has also recently been 

shown to acetylate numerous non-histone substrates, so it is reasonable to propose that 

TFIID and/or Rap1 could be modified directly by NuA4 (Lin et al., 2009).  A 

combination of proteomics approaches to map PTMs, site-directed mutagenesis of 

modified residue codons with genetic, cell biological, and biochemical assessment of 

phenotypic affects will likely tell us important information about Rap1 and Taf binding 

domains (Mayor and Deshaies, 2005).  This could all be tied together by a pursuit of the 

kinases, phosphatases, acetylases, deacetylases, ubiquitin/SUMO ligases, 

deubiquitinases/SUMO proteases, and proteasome components directly responsible for 

Rap1 and Taf modification status, and suggest factors contributing to alteration of factor 

promoter occupancy in response to environmental changes.  We have several good leads 

since specific kinases, acetylases, deacetylases, and the proteasome are all directly tied to 

RPG transcription.  Clearly there is a wealth of biological complexity remaining to be 
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defined, and pursuit of those aspects discussed above is intended to better define the 

exact mechanism of Rap1-Taf interaction with respect to the protein domains involved.  

However, these questions still do not address the fundamental unanswered problem of my 

research interest:  How does Rap1-TFIID interaction modulate RPG transcription? 

 

The Molecular Mechanistic Outcome of Rap1-TFIID Interaction:  Re-

examination of Bacterial Paradigms and Evidence of Dramatic Conformational 

Alterations of Rap1-TFIIA-TFIID-DNA Quaternary Complexes 

 All of the experiments described in this chapter thus far, both completed and in 

progress, are intended to provide a more precise definition of those Taf4, 5, 12, and Rap1 

residues involved in Rap1-TFIID interaction.  At one level this is a continuation of my 

thesis work, but as an approach, this set of experiments does not promise to give us a 

rapid understanding of the remaining fundamental problem, which is to ask why these 

factors interact, and exactly how the interaction contributes to high-level RPG 

transcription.  Rather, genetic studies will, at least initially, provide further proof of the 

importance of Rap1-Taf interaction, and also provide more suitable/appropriate reagents 

for additional biochemical, biophysical, and cell biological experiments intended to test 

the existing model.   

 A major deficiency of all my studies was the lack of investigation in the context 

of the TFIID holo-complex.  The influence of target gene DNA binding on Rap1-TFIID 

interaction and also the likely participation of other TFIID-related factors such as TFIIA 

were only tangentially examined.  This lack of investigation relates to technical issues 

with conventional approaches such as EMSA or DNase I footprinting:  the optimal buffer 



 254 

conditions for Rap1-DNA complex stability in vitro are not compatible with optimal 

conditions for TFIID-DNA complex stability (i.e. TFIID-DNA complexes are stabilized 

by magnesium while Rap1-DNA complexes are destabilized).  The typical EMSA assay 

for TFIID-DNA binding utilizes a magnesium-containing agarose gel and observable 

TFIID-DNA gel shift also requires inclusion of TFIIA; unfortunately magnesium 

precludes detection of Rap1-DNA complexes in EMSA (Vignais et al., 1987; Zerby and 

Lieberman, 1997).  Thus the most robust TFIID DNA binding protocol is not useful for 

studying Rap1-TFIIA-TFIID-DNA complexes.  DNase I footprinting is much less 

sensitive than EMSA in terms of quantifying alterations in binding properties, such as 

affinity binding constants, but simultaneous Rap1 and TFIID footprints on an RPG 

promoter fragment were observed by this method.  Classical studies on transfactor-TFIID 

interaction, as performed by the Tjian lab, suggested that an enhancement of TFIID 

binding to the promoter DNA might occur in the presence of Rap1.  In other words, Rap1 

might help ‘recruit’ TFIID to the promoter DNA, through an enhancement of TFIID-

DNA binding affinity.  The DNase I footprinting studies conducted in the lab failed to 

demonstrate stimulation of so-called TFIID ‘recruitment’ to promoter DNA (not shown).  

As is often the case, a negative result defies meaningful interpretation, and we decided to 

turn to other methodologies to investigate potential conformational alterations of TFIID 

resulting from interaction with Rap1.  In theory some of the weaknesses of EMSA or 

footprinting, or any other bulk population measurement of molecular structure(s), could 

be circumvented through use of single-particle analyses.  High-resolution electron 

microscopy (EM) coupled with image refinement and statistical modeling was already in 

use in the lab of our colleague and Tony’s longtime collaborator, Dr. Patrick Schultz.  
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Since we had purified Rap1, TFIID, TFIIA, and promoter DNA fragments in hand from 

our biochemical studies, we sent these reagents to Dr. Schultz and his colleagues for 

examination of the various combinations using EM (Papai et al., 2010).  This structural 

biology approach promised to give a picture on the conformation of individual molecules, 

which could recover certain information lost when using population biochemical 

techniques.  But before discussing these findings, it would be instructive to first revisit 

some of the characteristics of prokaryotic activator-coregulator interactions, as that might 

help us interpret some of our own observations from the EM experiments. 

 Recall that most prokaryotic activators operate by directly contacting the RNA 

Polymerase, instead of using coactivators like TFIID, which can bridge between 

activators and Pol II.  Two of the three simple mechanisms discussed in Chapter One 

involved direct activator-Polymerase contact while the third instead involved an 

activator-dependent physical rearrangement of the promoter DNA.  The two instances of 

protein-protein interaction-mediated activation may be instructive for our purposes since 

they demonstrate that different subunit ‘targets’ exist within the repertoire of different 

prokaryotic activators, perhaps like different Taf subunits in TFIID being contacted by 

Rap1.  However, the outcome of the prokaryotic protein-protein contacts most commonly 

involves ‘recruitment’ or ‘stabilization’ of Polymerase binding to the promoter.  As 

mentioned just above, we did not consider ‘recruitment’ as a viable model in the case of 

Rap1 and TFIID on RPGs, since we had obtained only negative data regarding Rap1-

mediated stimulation of TFIID DNA binding.  Still, the existence of different surfaces 

being bound by activator and the conformational changes in the regulatory DNA 

sequences are both interesting possibilities hinted at by the simple models of prokaryotic 
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activator-Polymerase association.  For our purposes, in putative EM studies these 

phenomena might manifest as distinct localization of Rap1 binding to TFIID regions 

containing several target Tafs, and/or observable changes in DNA conformation or 

direction resulting from Rap1-TFIID binding.  Since we are dealing with a much more 

complicated system, it might be instructive to compare our situation to that of the models 

for independent activator inputs to E. coli RNA polymerase, as shown in Figure 1.9.  In 

contrast to these situations, we are not studying two activators but just one, but for the 

sake of simplification TFIID might be thought of in the role of a second activator, since 

TFIID is also in contact with both an activator (Rap1) and also the promoter DNA 

(Griffith et al., 1986; Hochschild and Ptashne, 1986).  Therefore, a prokaryotic situation 

of one or more activator/DNA complexes binding to a Polymerase/DNA complex might 

best be compared to a eukaryotic situation of an activator/DNA complex binding to a 

TFIID/DNA/TFIIA complex, as these represent the minimal eukaryotic components 

needed to observe an affect on factor or DNA conformational changes resulting from 

activator-coregulator contact.  In total, the interactions between Rap1/DNA and 

TFIID/DNA complexes might cause significant alteration of the physical properties of 

each other at the level of both protein and DNA conformation; stabilization of DNA 

binding of either factor seems difficult to prove, but we are still left with the possibility 

that Rap1-TFIID interaction could stimulate a favorable conformation of a TFIIA/TFIID 

‘partial’ PIC.  The Rap1-engaged ‘partial’ PIC might be uniquely permissive to 

interaction with other downstream core promoter factors or the Polymerase itself.  This is 

comparable to those prokaryotic systems where one or more activators interact with 

Polymerase to put it in a conformation favorable for activation of transcription. 
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 There are three important characteristics of the EM experiments that allowed us to 

use this method.  First, the basis is the analyses of a large number (104-105) of single 

molecules, which in total allows for calculation of a statistical average molecular shape.  

Second, the resolution allows us to see large macromolecular assemblies, but subunit-

sized entities are not necessarily observable by themselves.  Instead, the location of 

entities that bind TFIID are inferred on the basis of a ‘difference map’ that compares the 

shape of measured TFIID structures, that are analyzed simultaneously in the absence and 

presence of additional factors such as Rap1 and/or TFIIA.  The extra volume of densities 

and/or domain positions, inferred as being occupied by TFIID-bound entities, can be 

compared to known X-ray crystal structures, available for portions of Rap1, TFIIA, and 

TBP, which provides a means of validating the identity of any observed domains.  Third, 

from many previous experiments, we have determined the locations of all Tafs and TBP 

in the complex (Leurent et al., 2002; Leurent et al., 2004; Papai et al., 2009).  This 

information can be compared to the locations of TFIID-bound entities to infer which Taf 

subunits are being bound by those entities. 

 As shown in Figure 4.5, when Rap1 was incubated with TFIID and imaged by 

EM, the location of Rap1 could be inferred from difference maps, and its position 

corresponded to the region of TFIID known to contain Taf5 and the Taf4/12 heterodimer.  

This is entirely in agreement with my numerous Rap1-Taf binding studies, which showed 

that Rap1 could bind specifically and with high affinity to those exact Tafs (Layer et al., 

2010).  Also importantly, there did not appear to be any dramatic conformational 

rearrangement of TFIID structure, a finding similar to those of recent EM studies of 

mammalian TFIID complexed with the activators Sp1, c-Jun, or p53 (Liu et al., 2009).  
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While each of these mammalian activators bound to distinct locations in TFIID, 

consistent with their unique repertoires of Taf binding, none of them dramatically 

changed TFIID structure.  Collectively these results indicate that binding of activators to 

TFIID, in the absence of DNA and/or additional regulatory factors, does not lead to 

distinct TFIID conformations.  Similarly, a conformational change did not occur when 

TFIID was bound to TFIIA and DNA.  An additional electron density corresponding to 

the approximate size of TFIIA was located in the vicinity of the portion of TFIID known 

to contain TBP, in accord with the known direct interaction between TFIIA and TBP 

(Tan et al., 1996).  Interestingly, an additional density was localized around the known 

position of Taf2, but not that of TBP, and this result was interpreted to correspond to the 

location of the promoter DNA.  Thus in the visualized TFIID/TFIIA/DNA complex, 

TFIID was most likely binding to DNA through Taf2, but not TBP.  This idea is 

supported by the known binding of Taf2 to INR sequences in the adenovirus major late 

promoter, and the observation made by many labs that binding of purified TFIID and 

TFIIA to DNA typically gives a DNase I footprint in the vicinity of promoter TATA 

boxes (Auty et al., 2004; Chalkley and Verrijzer, 1999; Sanders et al., 2002a).  It is 

possible that TFIIA is also contacting TFIID through subunit contacts in addition to TBP, 

for example within Taf4 (Guermah et al., 2001; Olave et al., 1998).  The third structural 

biology experiment tested the affect of combining Rap1, TFIID, DNA, and TFIIA.  Over 

105 individual molecules were scored to conduct image reconstruction, and three 

prominent classes of structures were evident.  These corresponded to Rap1-TFIID-DNA 

particles, Rap1-TFIIA-TFIID-DNA particles, and TFIID unbound to additional 
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components; this last class served as a useful internal control for comparing density shifts 

within the other two classes of complexes.   

 The Rap1-TFIID-DNA structure did not exhibit much difference from the Rap1-

TFIID structure, except that as expected the density of DNA could be detected in the 

vicinity of Rap1 and also Taf2, an observation again compatible with sequence-specific 

DNA binding occurring through those proteins.  In this case, there were two additional 

densities in the region of TFIID containing Tafs 4, 5, and 12 instead of just one density, 

and several possibilities were given for this characteristic.  Since two adjacent Rap1 

binding sites were present in the DNA template used, the two densities could correspond 

to two distinct Rap1 molecules.  Since the proposed Rap1 density closer to the core of 

TFIID was also near a proposed DNA density, and because the structure of the Rap1 

DBD (Konig et al., 1996) could be docked into this density, this could correspond to the 

Rap1 DBD engaging with a subset of the Tafs.  However, Rap1 utilizes not just the DBD 

but also C-terminal domains to interact with TFIID in vitro, so we cannot exclude a 

situation where this inner Rap1 density instead corresponds to those C-terminal domains 

(Garbett et al., 2007; Layer et al.).  It is possible that, like the DBD, the structure of the 

relevant C-terminal domains could also be fit into this density, but unfortunately no X-ray 

structure exists for the candidate C-terminal domains.  So at present we cannot 

discriminate between whether the two densities correspond to distinct Rap1 molecules or 

multiple Rap1 domains, and if they are indeed multiple domains, that there is a difference 

in the location of the Rap1 DBD and the Taf-interacting C-terminal domains.  The 

presence of DNA density extending out of the complex in the vicinity of one of the Rap1 

densities but not the other, and the fitting of the Rap1 DBD X-ray structure into this 
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interior Rap1 density can be taken to suggest, but not prove, that the interior density is 

indeed the Rap1 DBD directly interacting with both DNA and Tafs.  This data is all 

entirely consistent with existing models of Rap1 and TFIID function established using 

structural, biochemical, and in vivo techniques, by several different labs. 

 The Rap1-TFIIA-TFIID-DNA structures were the most intriguing for many 

reasons.  There was a greatly increased amount of density around the interior of TFIID, 

and this was again segregated into distinct entities based upon the fitting of X-ray 

structures of Rap1 and TFIIA/TBP/DNA complexes, and the known locations of Taf 

subunits and TBP within the TFIID structure.  The innermost density was likely TFIIA, 

since it is in the vicinity of the location of TBP, again consistent with the TFIIA-TBP 

interaction and the fact that the TFIIA/TBP/DNA co-crystal structure could be concisely 

docked into the cryo-EM structure.  The outermost density was proposed to be Rap1 

since it remained in the vicinity of Tafs 4, 5, and 12, and because the Rap1 DBD structure 

could again be fitted.  Notably, the positions of both TFIIA and Rap1 were slightly 

different from those found in the Rap1-TFIID-DNA or the TFIIA-TFIID-DNA structures.  

Furthermore, extra DNA density was observed around the location of TBP, in contrast to 

the Rap1-TFIID-DNA structure or the TFIIA-TFIID-DNA structure, strongly suggesting 

that in this form of complex, TFIID was engaged with promoter DNA not just through 

Taf2, but also through TBP.  Since the location and orientation of DNA entering and 

exiting the protein complex could be more accurately described in this structure, and 

since Taf2 is believed to bind DNA downstream of TATA DNA, with both TATA and 

Inr DNA downstream of the Rap1 binding site, there was an indication of ‘looping out’ of 

DNA sequences intervening the Rap1-bound enhancer and the TFIID-bound promoter.  
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The density of this DNA ‘loop’ could not be detected using cryo-EM protocol most likely 

due to DNA conformational flexibility.  Importantly, a platinum shadowing method 

confirmed the presence of a large DNA ‘loop’ in the Rap1-TFIIA-TFIID-DNA 

quaternary complex.  This ‘loop’, the inclusion of additional DNA density within the 

TFIID core, and the conformational rearrangement of TFIIA and Rap1 position in the 

quaternary complex as compared to either of the tertiary complexes were suggestive of 

functional physical interactions between TFIIA and Rap1.  The alteration of TFIID-DNA 

binding is indicative of a stabilization of a ‘committed’ TFIID-DNA conformation 

accomplished only by simultaneous interaction with both Rap1 and TFIIA.  Again, the 

major point of emphasis is that the DNA is conformationally stabilized, or ‘locked’, in 

the Rap1-TFIIA-TFIID-DNA complex, and this feature may be key to how RPG 

transcription occurs so rapidly and efficiently, through an unusually stable TFIID-PIC 

configuration. The altered location/conformation of TFIIA in the quaternary complex 

may be significant for downstream events in PIC formation and/or function.  Overall, the 

unique positioning of the regulatory proteins and the DNA in this quaternary complex 

suggests, at least in part, how RP genes are capable of remarkably high-level 

transcription rates.  We propose that the stabilization of TFIID-promoter association 

afforded by the combination of Rap1 and TFIIA allows for more rapid rounds of Pol II 

initiation and/or re-initiation of RPG transcription.  Collectively, our observations 

concerning conformational changes of factors and DNA and enhancer-promoter looping 

between DNA-bound Rap1 and TFIID represents the first description of such events in 

the eukaryotic system.  Interestingly, similar behavior of factors has been documented in 

the prokaryotic system, and suggests a variety of possible attributes that may help explain  
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the mechanism of PIC function, while hinting at numerous experiments to relieve gaps in 

understanding eukaryotic transcription initiation and control.  In particular, these EM 

studies will be a great supplement to ongoing crystallographic studies of Pol II and GTFs, 

which to date have not included TFIID (Kostrewa et al., 2009). 

 There are many limitations to this EM study, most significantly the lack of 

correlation with the physiological relevance of the conformational rearrangements of 

factors and DNA observed in the Rap1-TFIIA-TFIID-DNA quaternary complex.  There 

is also a lack of complementary biochemical validation associated with the role of 

particular factors in protein-protein and protein-DNA interaction.  Functional studies also 

need to be extended to document downstream events, such as affects on further GTF 

association and transcription initiation.  

 With respect to roles of particular factors, while I was able to provide some 

evidence of functional interactions between Taf5 and Rap1 C-terminal domains, this has 

not been extended to documentation of distinct mechanisms of interaction between the 

Rap1 DBD and C-terminal domains with specific Tafs.  Exactly which Tafs directly 

interact with the particular Rap1 domains is important to know.  Here we are still left at 

the level of genetic interaction, which does not really allow an assignment of mechanism.  

Second, the way that TFIIA engages TFIID, with respect to TFIIA-Taf interactions, is 

unknown.  The best candidate is the RBD of Taf4, so this will be interesting to test using 

competition binding reactions with Taf4/12 heterodimers, Rap1, and TFIIA.  Third and 

related to this last point, a direct interaction between TFIIA and Rap1 was proposed 

based upon the EM data, but this has not been tested by direct interaction assays using 

just the recombinant proteins.  Fourth, a constitutive DNA binding event by Taf2 was 
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proposed, and the previous observation that recombinant fly or human Taf2 binds to INR 

sequences in vitro was included in the arguments for this, but it remains untested if  yeast 

Taf2 possesses DNA binding capability.  Furthermore, to date there has been no 

identification of the domain(s) responsible for DNA binding by any Taf2 protein.  It will 

be important to conduct detailed structure/function analyses of yeast Taf2 to help resolve 

this issue.  In fact it will be important to connect the structure/function analyses of TFIIA, 

Taf2, Taf4, Taf5, and Rap1 with EM experiments.  Ideally we would generate mutant 

forms of each protein that specifically affect distinct stages of the pathway to a functional 

PIC, and observe those defective intermediates using EM.  Such data could be correlated 

with in vivo data from ChIP, transcript analyses, and FRET, and functional biochemical 

data from DNA binding/site-specific crosslinking, protein-protein interaction/site specific 

crosslinking, NMR, and in vitro transcription.  The relevance of the large DNA ‘loop’ 

between enhancer and promoter would be confirmed in vivo using a modification of 

ChIP called the chromosomal conformational conformation, or 3C, assay (Laine et al., 

2009; Singh et al., 2009; Tan-Wong et al., 2009).  While it may be difficult to get 3C to 

work in this case because the relevant DNA elements are actually quite close together, it 

is possible that the use of 3C on RP genes in vivo, along with tools like rapamycin 

treatment and/or specific mutants affecting function of the relevant protein(s), could tell 

us a lot about the biology of enhancer-promoter physical interaction from a distance, 

which is becoming increasingly prominent as a highly regulated aspect of transcriptional 

control. 

 Even given the capability to generate optimal Taf2, 4, 5, and 12 mutants precisely 

affecting distinct components of TFIID function such as DNA binding, Rap1 interaction, 
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and TFIIA interaction, it would still be quite hard to place these into the relevant context 

of TFIID function, since it is so difficult to obtain preparative quantities of TFIID for EM 

and functional experiments.  Isolation of fully or partially reconstituted TFIID from 

recombinant Tafs might be a better plan, but that also will require a lot of effort, and 

could turn out to be a dead end (Chen et al., 1994; Ishihama and Ito, 1972).  Instead, 

structure/function analyses of Rap1 and TFIIA is much more attractive as a place to start, 

since those proteins are much easier to deal with in both genetic and preparative 

biochemical applications.  The combination of the strategy first implemented with Taf4, 

that of systematic alanine scanning mutagenesis through the sequence encoding the 

domain of interest, could easily be applied to the Rap1 DBD and relevant C-terminal 

domains.  Any work on the C-terminal domains will be difficult to interpret, since there is 

no structural information on the portions we are interested in.  With respect to the DBD, 

it might be hard to separate DNA binding function from protein-protein interaction 

function.  TFIIA is potentially much easier since there are X-ray structures available and 

the two subunits are small proteins and thus encoded by small genes, which makes site-

directed mutagenesis remarkably easy.  For all of these reasons and more I began a site-

directed mutagenesis study of the small Toa2 subunit of TFIIA.   

 In spite of the available X-ray structures of the TFIIA complex, very little site-

directed mutagenesis had been done on yeast TFIIA subunit-encoding genes.  Three 

temperature conditional alleles are described in the literature, toa1-1, toa1-25, and toa2-3 

(Kang et al., 1995; Xie et al., 2000).  The first mutant was not particularly interesting to 

us, since it was shown to affect interaction with another factor, the NC2 repressor 

complex.  The molecular mechanism underlying the growth phenotypes of the other two 
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published yeast mutants was not clear, so these were also somewhat problematic for use 

in our study.  Fortunately, a much more systematic analysis of individual residue function 

had been carried out in the case of the human small TFIIA subunit (Ozer et al., 1996).  

This study isolated a unique class of TFIIA mutants, those that appeared to be capable of 

interaction with TBP, functional in ‘basal’ transcription, but defective in activator-

dependent transcription.  Therefore we reasoned that two particular mutants, affecting 

residues analogous to yeast Toa2 Y10 and F71, might represent proteins defective for 

interaction with activators, and thus potentially defective in activator specific affects such 

as stimulation of TFIID conformational rearrangement and DNA binding.   

 When prepared in recombinant form alongside wild type TFIIA and analyzed by 

EM, these TFIIA variants were defective in the formation of DNA loops.  DNA looping 

occurred at a lower frequency that that observed with wild type TFIIA (Papai et al.).  Just 

as importantly, as shown in Figure 4.6, individually these toa2 mutants displayed 

temperature conditional growth phenotypes when tested in plasmid shuffle 

complementation assays, while the double Y10 and F71 mutation resulted in lethality.  

The toa2-3 allele could not support viability when tested in our assay, in contrast to the 

literature (Kang et al., 1995).  Notably, steady state protein abundance of each mutant 

was very similar to wild type, with the exception of the protein from toa2-3, which was 

present at a reduced level (~50-70% of wild type protein abundance).  Collectively, these 

results suggest that very specific residues in TFIIA participate in formation of the 

characteristic Rap1-TFIIA-TFIID-DNA quaternary structure observed by EM, and also 

show that these residues are critical to cell growth, consistent with a possible 

physiological role in RP gene transcription.  Like each of the factors that are of particular  
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interest to us, TFIIA probably has several functions it must perform in order to allow the 

conformational rearrangement of the quaternary complex.  It must interact with TFIID, 

through TBP but also probably through Tafs, and with Rap1; TFIIA also may need to 

undergo a physical rearrangement itself in order to accommodate the change in location 

stimulated by Rap1.  In theory, each of these responsibilities could be dependent upon 

distinct residues in the TFIIA subunits.  To begin to try and separate these functions, we 

decided to extend our mutagenesis study of Toa2.  Together with a very talented and hard 

working student in Tony’s lab, Mr. Joseph R. Cates, I set out to test the sensitivity of 

every Toa2 residue to alanine substitution by generation of mutants and examination of 

growth phenotypes.  We hoped to identify those residues that make an obvious 

contribution to cellular growth, and in so doing, prepare genetic reagents that would be 

useful for functional biochemical and structural experiments.  59 mutants were planned 

that would change every consecutive pair of residues to alanine, so that every non-alanine 

residue in Toa2 would be converted.  To date, 50 of these Toa2 mutants have been 

constructed and tested for temperature conditional growth and steady state protein 

abundance.  As expected, a range of growth phenotypes was observed amongst different 

mutants, along with variable steady state protein abundance.  The raw data are shown in 

Figure 4.7.  In total, 18 of those 50 site-directed mutants resulted in temperature 

conditional phenotypes.  The residues changed in those mutants were mapped onto the 

three-dimensional structure of TFIIA obtained by X-ray crystallography (Tan et al., 

1996).  Figure 4.8 indicates that motifs distributed around the TFIIA complex are 

affected by those amino acid substitutions.  These motifs are probably involved in several 

distinct aspects of TFIIA function.  Alteration might be expected to disrupt TFIIA  
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integrity via inter-subunit interactions, disrupt interaction with TBP, or inhibit TFIIA 

function through other means.  Based upon the structural data and temperature 

conditional phenotypes of certain substitutions, we find it likely that amongst this last 

class of toa2 temperature conditional alleles, we have generated mutants defective in 

several previously unexplored aspects of yeast TFIIA function.  It will be interesting and 

informative to characterize these mutants in much more detail.  These new reagents 

promise to help us greatly in understanding the various TFIIA-dependent aspects of 

TFIID- and Rap1-dependent RPG transcription. 

 We can clearly see that the expertise and methodology are now firmly in place to 

carry out a detailed, multidisciplinary characterization of TFIID and Rap1 function in 

RPG transcription.  By using the detailed mutagenesis approaches documented in this 

chapter on both Taf4 and TFIIA subunits, we will much more precisely characterize each 

of the factors playing a direct important role in the Rap1-TFIIA-TFIID-DNA network.  In 

so doing, our lab is now positioned to define the precise mechanism of TFIID function 

within the next few years. 

 

Overview 

 At its core my thesis project was designed to define small segments, or domains, 

of Taf4, Taf5, and Taf12 that are responsible for interaction with Rap1.  Subsequent 

elineation of the physiological relevance of Rap1-Taf interactions depended on 

demonstrating the in vivo significance of each RBD within the Tafs, and correlating in 

vitro and in vivo function of Tafs containing altered RBDs.  The RBDs of all three Tafs 
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were initially mapped by Far Western protein blotting assays using systematic truncation 

variants of each Taf.   

 The Taf4 RBD was mapped to residues 253-344, a section of Taf4 that is largely 

uncharacterized, but that was known to be essential for viability in yeast.  I demonstrated 

that the Taf4 RBD does not mediate interaction with other Tafs by using yeast two hybrid 

assays, an important observation since it rules out a Taf-Taf interaction-mediated 

explanation for the function of this Taf4 region.  I confirmed the essential nature of Taf4 

residues 253-344.  Point mutant alleles were generated by random mutagenesis and 

isolated on the basis of a temperature conditional growth phenotype.  These taf4 

temperature conditional mutants were defective in RPG transcription, as documented by 

monitoring steady-state abundance of RPG transcripts in RNA isolated from wild type 

and mutant cultures that had been subjected to temperature shift.  Recombinant proteins 

corresponding to the taf4 mutants were prepared in E. coli as heterodimers with the Taf4 

binding partner Taf12.  The amino acid substitutions encoded by the taf4 mutant alleles 

resulted in reduction of in vitro binding affinity between Taf4/Taf12 heterodimers and 

Rap1, as scored by quantitative protein-protein interaction assays.  The defect in Rap1 

binding in vitro was taken to indicate a connection between the loss of growth and RPG 

transcription defects observed in vivo.  Using a systematic alanine-scanning mutagenesis 

strategy, the residues within the Taf4 RBD that are essential for growth were mapped to 

two blocks between residues 251-274 and 311-322.  Cooperativity occurs between these 

two amino acid sequence blocks in support of rapid cellular growth.  It is likely that these 

two regions of Taf4 sequence correspond to structural motifs that bind Rap1 and mediate 

direct protein-protein interaction.  Based on findings of other labs, one or both of these 
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two blocks may also be important for direct DNA binding and also possibly direct 

protein-protein interaction with TFIIA; both of these Taf4 interactions may be 

functionally cooperative with simultaneous or stepwise Taf4 RBD-mediated Rap1 

binding. 

 The Taf5 segment bound by Rap1 contained two N-terminal domains, NTD1 and 

NTD2, both of which are evolutionarily conserved suggesting their broad importance to 

eukaryotic biology.  While NTD1 was dispensable for growth, removal of NTD2 

conferred a loss of growth phenotype that was worsened by simultaneous removal of 

NTD1. This result indicates collaboration between NTD1 and NTD2, possibly by 

collective responsibility in Rap1 interaction and RPG transcription.  As with Taf4, 

NTD2-directed point mutant taf5 alleles were generated and isolated by a genetic screen 

for temperature conditional growth.  These taf5 mutants displayed profound loss of RPG 

transcription across the entire regulon as scored by microarray analyses of RNA prepared 

from heat-shocked wild type and mutant cultures.  This result is consistent with Taf5 

NTD2-Rap1 binding and the importance of this interaction in driving most cellular RPG 

transcription.  However, a defect in Rap1 association with TFIID could not be detected 

using co-immunoprecipitation of Rap1 with Tafs from extracts of wild type and mutant 

strains.  This may or may not be a technical artifact originating from one or more 

experimental conditions.  Given that recombinant proteins corresponding to taf5 mutant 

alleles are defective for interaction with Rap1 in vitro, an alternative and more promising 

explanation for the (lack of a) result in co-immunoprecipitation assays involves 

redundancy in Rap1 binding mediated by the multiple Rap1-binding Tafs present in 

TFIID.  Moreover, there appear to be multiple distinct continuous stretches of amino 
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acids in Taf4 (251-274 and 311-322), Taf5 (NTD1 and NTD2), and also the RBD within 

Taf12 (probably just one segment).  Similarly, previous work in our laboratory has shown 

that the Rap1 DBD and one or more C-terminal domains can interact with all or a 

selection of the available RBDs in Tafs.  Consistent with this hypothesis of RBD 

redundancy within Rap1-TFIID interaction, strains containing amino acid substitutions in 

multiple RBDs (i.e. both Taf4 and Taf5) exhibit synthetic lethality.  Similarly, 

simultaneous removal of RBD function in Taf5 and deletion of specific Rap1 C-terminal 

domains confers synthetic growth phenotypes.  These results strongly suggest the idea 

that multiple mechanisms of interaction are operative in supporting cellular growth, and 

hence probably involved in Rap1-TFIID binding-dependent RPG transcription. 

 Consistent with the functional importance of multiple Tafs (and domains) in 

Rap1-TFIID binding, electron microscopy difference mapping experiments revealed 

Rap1 binding to TFIID in regions of the complex known to contain Taf4, Taf5, and 

Taf12.  While there are two regions of TFIID that contain all three proteins in close 

proximity, only one such region appeared to be bound by Rap1.  The mechanistic basis of 

this observation remains unclear but could be related to differential PTM amongst the 

multiple molecules of each Taf within TFIID.  The binding of Rap1 to TFIID did not 

appear to influence the architecture of the complex.  However, the position of TFIIA and 

DNA binding to TFIID was dramatically altered in a Rap1-dependent fashion.  This 

result indicates that conformational alterations in PICs may be stimulated by interactions 

between Rap1, TFIID, and TFIIA, and that these conformational alterations may be a 

hallmark of the PICs that stimulate the very high level of transcription initiation seen on 

the Rap1- and TFIID-bound Ribosomal Protein genes in vivo.   
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 The connection of TFIID, Rap1, and TFIIA was pursued by a systematic alanine-

scanning mutagenesis strategy of TFIIA subunit-encoding genes.  Analyses of TFIIA 

structure and function will hopefully identify mutant variants that affect specific 

individual components of the interactions and conformational rearrangements.  Likewise, 

the systematic high-resolution mutagenesis strategies developed over the course of this 

thesis project can be directed to any RBD, or additional Tafs or PIC components, or Rap1 

itself.  It is also likely that interaction and conformational rearrangements depend to some 

extent on dynamic PTM, and characterization of such PTMs may inform as to the 

mechanism and consequence of these protein-protein and protein-DNA interactions.  In 

any case, the context of Rap1-TFIID and Rap1-Taf interaction in the stimulation of yeast 

RPG transcription is now the most thoroughly characterized example of activator-TFIID 

interaction available.  This is a benefit of the systematic back-and-forth application of 

biochemistry, genetics, cell biology, and structural biology techniques.  The philosophy 

of systematic design and generation of reagents, and experimentation, will move this 

investigation even further ahead. 

 The fundamental question that will be answered by the continuation of this work 

is to understand exactly how an activator can stimulate function of a TFIID-containing 

PIC, in this case where the activator does seem to merely drive the initial assembly of the 

PIC onto the promoter.  Instead Rap1 appears to drive PIC assembly and/or function at a 

step subsequent to TFIIA- and TFIID-promoter association.  Since the genes being 

studies are transcribed at a rate that is among the highest known in the literature, our 

work will illuminate exactly what makes highly transcribed genes unique, and this will be 

instructive to understanding of both normal cellular function and pathological situations. 
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