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CHAPTER I 

 

INTRODUCTION 

 

Isolated Populations for Genetic Studies 

 

 While studies involving unrelated cases and controls have become popular for 

studying complex genetic phenotypes, particularly with the widely used genome-wide 

SNP (single nucleotide polymorphism) marker sets, human genetic studies have 

historically examined families to map disease genes.  The family structure allows the 

observation of the co-occurrence of genomic transmission with disease, which case-

control association studies attempt to indirectly measure in a population.  The 

traditionally used tool for studying families is linkage analysis, which studies the 

cosegregation of genetic markers and a phenotype within pedigrees.  Studying families 

with multiple affected individuals using linkage analysis was extremely successful for 

mapping Mendelian diseases, and has also had some success with complex diseases (1-

3).  However, association studies, which look for differences in allele frequencies 

between cases and controls, have become more popular because of the lower costs of 

SNP genotyping.  With the increasing popularity of association studies, family-based 

association designs have also advanced.  Family-based designs-- both linkage and 

association-- continue to have utility for mapping complex genetic diseases, and the 

progress of the HapMap project to prompt genome-wide SNP genotyping has made 

these studies even more powerful. 
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Larger families provide more meioses to tease out which genetic markers are 

linked to disease and thereby make association analysis more powerful.  Isolated 

founder populations provide extremely large family structures and have been successful 

in mapping genes for a variety of genetic diseases (4-7).  Isolated founder populations 

can also reduce environmental noise since they typically share a common lifestyle and 

live in the same location.  The isolated expansion of the population from a small number 

of founders restricts the introduction of new genetic variation(8), so it can be expected 

that these unique groups’ genomes would contain a more homogeneous set of disease 

risk genes.  Many isolated populations have large families and often keep extensive 

genealogy records, making extended pedigree construction feasible.   

A population isolate we have studied for many years is the Amish communities 

of Ohio and Indiana.  This population was founded by Swiss Anabaptists fleeing 

religious persecution.  They immigrated to the United States in two main waves starting 

in the early 1700’s, which brought the first group to Pennsylvania.   Then, in the early 

1800’s some of these immigrants moved to Holmes County, OH, while a second wave of 

immigration from Europe established more Amish communities in other areas of Ohio 

and Indiana (including Adams County).  Later, Elkhart and LaGrange County Amish 

communities were started by some of the Amish from Pennsylvania and Ohio (including 

Holmes County) moving to these new locations (9-11).   

The Amish marry almost exclusively within the community and have large 

families, providing pedigrees with multiple affected individuals for analyses.  The 

Anabaptist Genealogy database (AGDB)(12;13) and the Swiss Anabaptist Genealogical 

Association (SAGA) keep thorough family history records, providing necessary and 

critical pedigree information. Because of their faith, the Amish lead a strict and 
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traditional lifestyle and, therefore, have more homogeneous environmental exposures 

than the general population.   

We have been studying the Ohio and Indiana Amish communities to identify 

genes contributing to late-onset Alzheimer disease susceptibility (LOAD).  Compared to 

the general population in which many genes are contributing to LOAD, the relatively 

homogeneous Amish population is likely to contain a smaller set of risk alleles, each 

with a theoretically increased population attributable risk, thereby increasing detection 

power.  The relatively recent expansion of the population from a small number of 

original founders, plus isolation, results in this reduced amount of genetic variation (8).  

To isolate disease genes in the Amish we have employed both linkage and 

association analyses to increase the ability to locate disease genes by tackling the 

problem from two different angles.  Combining these approaches with large-scale SNP 

genotype data in the large pedigree structure increases our ability to localize disease 

genes.  The large pedigree structure also increases the complexity of both association 

and linkage analyses. 

 

Association 

 

Isolated founder populations, such as the Amish, are unique family datasets in 

that their family units are interrelated and the population as a whole can be considered 

one family.  This phenomenon reduces the validity of most family-based association 

methods such as the popular TDT (transmission disequilibrium test) (14) and PDT 

(pedigree disequilibrium test) (15;16) which assume independence between family units.  

In addition to the problem of non-independence, TDT only uses family triads (an 
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affected individual and both parents) so only part of the large pedigree dataset could be 

used, and the parents must have genotypes.  With a late-onset phenotype like Alzheimer 

disease, parental genotypes are often not available.  The PDT allows for more extensive 

pedigree structures to be used, but not as extensive as an Amish pedigree or a similar 

very large pedigree from a founder population. 

To perform association analysis in any pedigree structure, even a large inbred 

pedigree, and to adopt a case-control based design which can be more powerful than 

family-based designs (17), Thornton and McPeek developed a quasi-likelihood score 

test, CC-QLS (case-control quasi-likelihood score test).  The CC-QLS conditions on the 

pedigree structure by using kinship coefficients.  A kinship coefficient is the probability 

that two alleles at a randomly chosen locus, one from individual i and the other from 

individual j, are identical by decent (i.e. came from the same common ancestor).  The 

more related the individuals are, the more alleles they should share, and the higher the 

kinship coefficient will be between the two individuals.  Because the Amish, like other 

population isolates, have reliable genealogy records, genetic sharing can be inferred 

using the known pedigree relationships when calculating kinship coefficients. 

To improve CC-QLS, they went on to develop MQLS (modified quasi-likelihood 

score test) which has an even more optimal weighting scheme to increase power to 

detect an association.  More specifically, MQLS uses unaffected controls and controls of 

unknown phenotype differently since it is less likely that unaffected controls will carry 

the risk allele.  Secondly, MQLS uses phenotype data of samples without genotypes to 

optimize the weights of the relatives with genotypes.  This optimization is based on the 

assumption that affected individuals with other affected relatives are more likely to 

carry a genetic risk factor than individuals without any affected relatives. 



5 

 

To evaluate type 1 error rates, Thornton and McPeek simulated a null SNP with 

three different allele frequencies in 60 moderately-sized pedigrees (each pedigree had 

three generations and sixteen individuals) and 200 unrelated controls.  After performing 

5,000 replicates they found that for each allele frequency setting, empirical type 1 error 

was ~0.05 and ~0.01 for nominal type 1 errors of 0.05 and 0.01, respectively.  Therefore, 

they did not see any inflation of type 1 error. 

To evaluate power they simulated 5,000 replicates of six different disease models 

in the same 200 unrelated controls and 60 pedigrees (each with 4, 5, or 6 cases).  Each 

dataset had two or three simulated SNPs.  Three of the models had two SNPs acting 

epistatically and dominantly.  Two other models had three SNPs acting epistatically and 

dominantly.  The sixth model had two SNPs acting epistatically with one SNP acting 

recessively and the other acting codominantly.  They used a variety of penetrances; the 

highest in any model was 0.5.  They calculated at least 71% power to detect a p-value ≤ 

0.05 for all models.  MQLS had the most difficulty detecting a significant association for 

the two-SNP epistatic model with one acting recessively and the other codominantly.  

The highest power (97%) to detect association was seen for a two-SNP epistatic model 

with both SNPs acting dominantly and when the disease allele frequency was high for 

both SNPs (0.5 and 0.4). 

We have employed MQLS in many of our studies in the Amish (18;19) because 

the test can handle the entire 4998-member 13-generation pedigree structure; however it 

has been unclear to us how to estimate our type 1 error rates and power are in the large 

and complicated pedigree structure of our Amish dataset. 
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Linkage 

 

Isolated founder populations also challenge the capabilities of available linkage 

analysis software available.   The two main algorithms which have been developed and 

are implemented in software for linkage analysis are the Lander-Green (20) and Elston-

Stewart (21) algorithms.  The main practical difference between the two algorithms is the 

number of markers and the pedigree size that each algorithm can handle.  The 

computational requirements when using the Elston-Stewart algorithm increase 

exponentially as the number of markers increases and increase linearly as the pedigree 

size increases.  The Lander-Green algorithm can handle more markers because the 

computational complexity increases linearly as the number of markers increases but 

exponentially as the pedigree size increases.  Therefore, the Elston-Stewart algorithm is 

more suitable for larger pedigrees, while the Lander-Green algorithm is more suitable 

for larger numbers of markers as found in SNP arrays.  Neither algorithm is capable of 

handling genome-wide SNP (single nucleotide polymorphism) data in very large and 

complex pedigree structures.   

Some of the top linkage programs which implement one or more of these 

algorithms are Vitesse (22), Allegro (23;24), Superlink (25-27), and Merlin (28).  Vitesse 

applies the Elston-Stewart algorithm but also incorporates part of the Lander-Green 

algorithm by using inheritance vectors.  Allegro is based on the Lander-Green method.  

Superlink incorporates both algorithms using a Bayesian approach.  Merlin applies 

sparse binary trees to the Lander-Green algorithm to be able to successfully handle 

genome-wide SNP data.  Merlin has been shown to outperform the other linkage 
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programs in computational time and ability to handle large numbers of markers (28;29).  

We have also found that Merlin is best suited for SNP data in our Amish pedigrees.   

Despite the advantages of using Merlin, pedigree size and complexity is still a 

hindrance.  Therefore, the only option to analyze genome-wide SNP data in large 

complex pedigrees like the Amish is to divide the pedigree into smaller sub-pedigrees.  

Methods for subdividing the pedigree into smaller more computationally feasible 

pedigrees include Greffa (30) and PedCut (31).  Greffa requires several user-defined 

parameters and does not guarantee that all resulting subpedigrees will be handled by 

linkage programs.  When Liu et al. (2008) compared the performance of Greffa to their 

program PedCut, they found that Greffa did not assign as many subjects of interest to 

subpedigrees and that the number of subjects of interest per subpedigree was smaller.  

We prefer PedCut for its straightforward and automatic approach which guarantees all 

subpedigrees will be computationally feasible for linkage analysis.  The PedCut 

algorithm prioritizes subjects of interest (specified by the user) and their closest relatives 

(measured by kinship coefficients) to be included in the subpedigrees that are all within 

a user-specified bit-size limit.  A bit-size is defined as two times the number of 

nonfounders (individuals with parents represented in the pedigree structure) minus the 

number of founders (individuals without parents represented in the pedigree structure) 

(32).   

While necessary to perform linkage analysis, cutting the pedigree could 

potentially affect power and/or type 1 error of linkage results.  Type 1 error has been 

shown to be inflated when consanguinity is underestimated or loops are broken in the 

pedigree when performing homozygosity mapping of recessive traits (33;34).  Power has 
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been shown to be reduced when splitting the pedigree prior to quantitative trait linkage 

analysis (35).   

Liu et al. (2007) performed a type 1 error analysis using GENEHUNTER and 

SIMWALK assuming a dominant model and calculated a 5% type 1 error rate for a LOD 

score of 3.64 when no disease locus was simulated (36).  In a separate publication (31), 

Liu et al also performed a power analysis to compare power to detect linkage using 

subpedigrees derived from PedCut compared to subpedigrees derived from Greffa.  

They simulated completely penetrant 1-locus disease models with dominant, additive 

(with penetrances of 0.75, 0.5, and 0.25 for the heterozygous genotype), and recessive 

modes of inheritance.  They also set the distance between the trait and marker loci to 

zero, which generated a scenario of perfect linkage, and only tested each model with the 

corresponding correct linkage analysis model.  They calculated the expected LOD scores 

for each model using SIMLINK. 

Because these ‘perfect’ scenarios rarely, if ever, exist in real-life analyses of 

complex genetic diseases, we wanted to examine power and type 1 error with more 

realistic simulated binary trait models in our Amish pedigree structure using the 

program Merlin.  Ideally, we would run linkage analysis on the whole pedigree and the 

divided pedigree to compare the results.  Because running linkage on the whole 

pedigree is not possible, but running MQLS on the whole pedigree is possible, one 

approach is to compare MQLS results on the whole pedigree versus the divided 

pedigree. We also wanted to examine power when the correct model is not specified for 

analysis, since we most often do not know what the true underlying model is.   

In this thesis work I have simulated pedigrees with the same structure as the 

Amish to accomplish the following goals: 1) determine power and type 1 error rates 
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when using MQLS to test for association; 2) determine power and type 1 error when 

subdividing the pedigree into subpedigrees using Merlin and subsequently performing 

linkage analysis using Merlin; and 3) Compare power and type 1 error rates when 

applying MQLS to the entire pedigree structure versus subpedigrees used for linkage 

analysis.   
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CHAPTER 2 

 

USING SIMULATIONS TO EVALUATE TYPE 1 ERROR AND POWER FOR 
ASSOCIATION AND LINKAGE ANALYSES OF AN AMISH PEDIGREE  

 
 
 

Introduction 

 

As discussed in Chapter I, complex pedigrees from isolated populations have 

gained popularity for genetics studies due to their pedigree size, genetic homogeneity, 

and environmental homogeneity (18;19;37).   Despite their advantages, pedigree size and 

genetic homogeneity complicate analyses and can make results difficult to interpret.  

Association analyses must correct for the nonindependence of samples within families.  

In our genetic studies of the Amish, we have employed MQLS (modified quasi-

likelihood score) (38) to test for association because it can handle large complex 

pedigrees and uses kinship coefficients to correct for relatedness.  Pedigree size and 

complexity also present problems when running linkage analyses because even the best 

available linkage programs, such as Merlin(28), can only handle pedigrees under a 

certain size and complexity, defined by the bit-size (two times the number of non-

founders minus the number of founders (32)).   Therefore, we use PedCut(31) to 

generate sub-pedigrees with the maximal number of subjects of interest within a 

specified bit-size limit conductive to two-point and multipoint linkage analyses.  

GenomeSIMLA(39) is a forward-time population-based simulation package for 

generating large-scale SNP data in both case-control and family-based designs and has 

been adapted to efficiently produce SNP data in any pedigree structure given a pedigree 

template.    We have implemented this extended version of GenomeSIMLA to evaluate 
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the power and false-positive rates for association and linkage analyses in an Amish 

pedigree structure. 

 

Methods 

 

Simulations 

We extended GenomeSIMLA to generate complex pedigree structures based on a 

template pedigree.  Once a population of chromosomes has been created, a collection of 

founders is drawn and are mated to produce all generations of the pedigree.  Affection 

status is assigned by applying a penetrance function with the option of only assigning 

known phenotype and genotype data to the same individuals with known phenotype 

and genotype data in the template pedigree, maintaining a more realistic distribution of 

genotyped affected and unaffected individuals in the pedigree.  We simulated a null 

disease model into 1000 pedigree replicates, each with 124 unlinked autosomal SNPs, 

using our recently published 4998-member Amish pedigree with almost identical 

affection status (798 genotyped) (19).  Minor allele frequencies (MAFs) were randomized 

between 0.1 and 0.3 with a default MAF of 0.2, to approximate the mean MAF in the 

recent GWAS study of our Amish pedigree (19). 

For studies of power, similar simulations were conducted with one of the 124 

SNPs having either a dominant, recessive, or additive effect of odds ratios 1.1, 1.5, 2.0, or 

5.0 on the phenotype, which generated 12 disease models.  The minor allele frequency 

for the ‘disease’ SNP was held constant at 0.2.  One thousand replicates were simulated 

for each disease model. 
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Analyses 

 We ran MQLS (software version 1.2) to test for association and used option ‘1’ 

to include all individuals, cases, controls, and individuals with unknown phenotype, in 

the analyses.  More recent versions (starting at version 1.5) of MQLS include a more 

robust variance estimator (40), which was not implemented in these analyses but would 

not likely make a significant difference in our results.  We tallied the number of p-values 

below the relevant threshold in each of the replicates.  For the type 1 error study any p-

value below the threshold was included in the count, and for the power studies any p-

value below the threshold at the ‘disease’ SNP was counted.  The average number of p-

values was then calculated across each set of 1000 replicates.    

  To generate sub-pedigrees within a bit-size limit of 24, we ran PedCut (31) in 

each of the simulated pedigrees using affected individuals and unaffected siblings of the 

affected individuals as subjects of interest.  We ran two-point and multipoint parametric 

and nonparametric linkage analyses on the PedCut pedigrees using Merlin (28).  

Parametric HLOD scores were computed assuming affecteds-only autosomal dominant 

and recessive models of 0 penetrance for no disease allele and 0.0001 for 1 or 2 copies of 

the disease allele under the dominant model, and penetrances of 0 for 0 or 1 disease 

allele and 0.0001 for 2 disease alleles under the recessive model.   A disease allele 

frequency of 1% was used to mimic our recently published genome-wide study.   We 

would like to note a typographical error in that paper which misreported the disease 

allele frequency to be 10% (19).  Nonparametric calculations (LOD*) were computed 

using the NP-all and NP-pairs statistics.  For the two-point type 1 error results, we 

tallied the number of SNPs out of the 124 simulated SNPs with HLOD/LOD scores 

above certain thresholds.  We averaged these tallies across the 1000 replicates and 
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divided by 124.  For two-point power analyses we tallied the number of times the 

disease SNP crossed the HLOD/LOD threshold in each set of 1000 replicates.  For type 1 

error and power evaluations of multipoint linkage analysis, we tabulated the maximum 

parametric HLOD and nonparametric LOD of each replicate and calculated the 

percentage of the peak HLOD/LOD scores that crossed thresholds.  We allowed the 

maximum HLOD/LOD to be at any of the 124 SNPs since we simulated regions similar 

to the regions in our previous multipoint study (3) and we do not expect the peak to 

always be precisely at the disease SNP every time. 

We also ran MQLS on the sub-pedigrees to compare those results to running 

MQLS on the unmanipulated large simulated pedigrees.  Prior to running MQLS, we re-

calculated kinship coefficients using the sub-pedigree structures rather than the entire 

pedigree structure to model some of the effect of losing the entire pedigree structure that 

might occur during linkage analysis.  We determined type 1 error rates and power as 

before. 

All computations were performed using either the Center for Human Genetics 

Research (CHGR) computational cluster or the Advanced Computing Center for 

Research and Education (ACCRE) cluster at Vanderbilt University. 

 

Results 

 

MQLS  

In 1000 runs of MQLS, each with the entire 4998-member pedigree and 124 null 

SNPs, we see average type 1 error rates of 5.06%, 1.02%, 0.56%, and 0.13% associated 
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with p-values less than 0.05, 0.01, 0.005, and 0.001, respectively.  Therefore, we do not 

see an inflated type 1 error rate when running MQLS in our pedigree structure.   

 Evaluating power for 1-locus disease models, we find, as expected, that we have 

the least power to detect association when the underlying disease model is recessive and 

the most power to detect association when the underlying disease model is additive.  

For dominant and additive models we have >90% power to detect association at p ≤0.05 

when the simulated odds ratio is at least 2.0, but power drops significantly at an odds 

ratio of 1.5.  With a very strong effect of OR=5, we have very high power to detect 

association as low a p-value as 5.0E-10.   Under the recessive models, power was >80% 

only when using a p-value threshold of 0.05 with an odds ratio of 5.0 (table 2.1). 

 

Table 2.1. Average percentage of times (power) per model disease SNPs was under p-
value thresholds when running MQLS on whole simulated pedigrees.  Power ≥80% in 
bold.  

Disease Model, Odds Ratio %≤0.05 %≤ 5E-3 %≤ 5E-4 %≤ 5E-5 %≤ 5E-6 %≤ 5E-7 %≤ 5E-8 %≤ 5E-9 %≤ 5E-10 

recessive, OR 1.1 6 0 0 0 0 0 0 0 0 

recessive, OR 1.5 12 4 1 0 0 0 0 0 0 

recessive, OR 2.0 26 9 3 1 0 0 0 0 0 

recessive, OR 5.0 87 75 61 48 38 29 21 15 14 

dominant, OR 1.1 8 2 0 0 0 0 0 0 0 

dominant, OR 1.5 50 23 9 3 1 1 0 0 0 

dominant, OR 2.0 92 72 47 28 13 7 4 1 1 

dominant, OR 5.0 100 100 100 100 100 99 98 94 92 

additive, OR 1.1 11 3 0 0 0 0 0 0 0 

additive, OR 1.5 67 36 19 8 3 1 1 0 0 

additive, OR 2.0 96 87 69 50 33 20 12 6 5 

additive, OR 5.0 100 100 100 100 100 100 100 100 99 
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MQLS-PedCut 

Using the same sets of pedigrees, but dividing them into subpedigrees using 

PedCut, the type 1 error rates when running MQLS hardly changed from the MQLS 

analysis using whole pedigrees.  The type 1 error rates were 5.16%, 1.06%, 0.51%, and 

0.11% for the same p-value thresholds. 

On the other hand, evaluating power when subdividing the pedigree before 

running MQLS we do see a loss of power.  Power is only >80% for dominant and 

additive models at an odds ratio of 5.0 (table 2.2). 

 

Table 2.2. Average percentage of times (power) per model disease SNPs was under p-
value thresholds when running MQLS on whole simulated pedigrees.  All numbers 
are percentages.  Power ≥80% in bold. 
Disease Model, Odds Ratio %≤.05 %≤ 5E-3 %≤ 5E-4 %≤ 5E-5 %≤ 5E-6 %≤ 5E-7 %≤ 5E-8 %≤ 5E-9 %≤ 5E-10 

recessive, OR 1.1 6 0.5 0 0 0 0 0 0 0 

recessive, OR 1.5 8 1 0.4 0.1 0 0 0 0 0 

recessive, OR 2.0 15 3 0.6 0.1 0 0 0 0 0 

recessive, OR 5.0 74 51 34 19 10 5 2 1 0.7 

dominant, OR 1.1 8 0.3 0 0 0 0 0 0 0 

dominant, OR 1.5 24 5 1 0.2 0 0 0 0 0 

dominant, OR 2.0 55 21 7 2 0.6 0.1 0 0 0 

dominant, OR 5.0 99 90 72 49 27 13 6 2 0.9 

additive, OR 1.1 6 0.6 0 0 0 0 0 0 0 

additive, OR 1.5 33 9 2 0.1 0 0 0 0 0 

additive, OR 2.0 70 37 16 5 2 0.8 0 0 0 

additive, OR 5.0 100 98 92 80 65 43 24 12 9 
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Two-point Linkage 

Averaging across 1000 replicates of two-point parametric linkage analysis using 

sub-pedigrees with a bit-size ≤24, we see low type 1 error rates, which were nearly the 

same when running dominant and recessive models.   The type 1 error rate for an HLOD 

≥ 3 under the dominant model was only 0.01% and under the recessive model was only 

0.02%.  Nonparametric analyses had no type 1 error at LOD threshold of 2 and 3 (table 

2.3).   

 

Table 2.3. Percentage of SNPs (type 1 error) above HLOD thresholds using PedCut 
followed by two-point parametric linkage analyses assuming dominant and recessive 
models and nonparametric linkage analysis using the ‘all’ and ‘pairs’ statistics. 

  

HLOD/LOD 

>1 

HLOD/LOD 

>2 

HLOD/LOD 

>3 

dominant 2.21% 0.18% 0.01% 

recessive 2.02% 0.20% 0.02% 

NPL all 0.15% 0 0 

NPL pairs 0.05% 0 0 

  

 

According to our simulations of 1-locus disease models, we had >80% power to 

detect a two-point HLOD ≥ 1.0 with a simulated additive model with OR=5.0 when a 

dominant model is assumed during linkage analysis.  All other circumstances had <80% 

power; however, with the simulated dominant model with OR=5, Merlin was able to 

detect the disease SNP almost 80% of the time at or above an HLOD of 1 when a 

dominant model was assumed.  Even when a recessive model was assumed two-point 
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linkage analysis was not powerful for any of the simulated recessive scenarios.  

Parametric analyses were more powerful than nonparametric analyses (table 2.4). 

 

Table 2.4. Percentage of times (power) disease SNP crossed parametric HLOD or 
nonparametric LOD thresholds using PedCut followed by Merlin two-point 
parametric and nonparametric linkage analyses.  1000 replicates of each disease model 
were performed.  All numbers are percentages.  Power >80% in bold. 

HLOD/LOD ≥1.0 HLOD/LOD ≥2.0 HLOD/LOD ≥3.0 

Model, Odds Ratio Dom Rec All Pairs Dom Rec All Pairs Dom Rec All Pairs 

dominant, OR 1.1 2.4 2.3 0 0 0.1 0 0 0 0 0 0 0 

dominant, OR 1.5 3.6 3.6 0.7 0.3 0.6 0.7 0 0 0 0 0 0 

dominant, OR 2.0 8.3 9.1 2.3 0.7 1.7 1.2 0 0 0.5 0.4 0 0 

dominant, OR 5.0 77.7 71 50 33.6 51.1 43.3 4.7 0.7 28.2 22.8 0 0 

recessive, OR 1.1 2.6 2.6 0.4 0.1 0.4 0.4 0 0 0 0.1 0 0 

recessive, OR 1.5 2.9 2.3 0.3 0.1 0.2 0.1 0 0 0 0 0 0 

recessive, OR 2.0 2.4 2.3 0.2 0.1 0.2 0.2 0 0 0 0 0 0 

recessive, OR 5.0 13.3 13.9 9 6.5 3.7 4.1 0.4 0.1 0.5 1.4 0 0 

additive, OR 1.1 2.5 2.2 0.3 0.1 0.1 0.2 0 0 0 0 0 0 

additive, OR 1.5 4.3 3.7 1 0.6 0.4 0.8 0 0 0.2 0.1 0 0 

additive, OR 2.0 12.3 10.4 3 1.5 2.6 2.3 0.1 0 0.6 0.3 0 0 

additive, OR 5.0 85.5 79.1 64.9 48.9 67.8 53.6 12.2 3.4 44 32 0.7 0 

 

 

Multipoint Linkage 

When running multipoint analysis on the same sets of sub-pedigrees we see both 

higher type 1 error and higher power for most circumstances except for a simulated 

dominant model with OR=5.  For multipoint analyses we see higher type 1 error and 

power for nonparametric analyses than for parametric analyses (tables 2.5 and 2.6).  For 



18 

 

both two-point and multipoint linkage, the highest power for detecting linkage was seen 

with a simulated additive model with OR=5.0 (tables 2.4 and 2.6). 

 

Table 2.5. Percentage of SNPs (type 1 error) above parametric HLOD and 
nonparametric LOD thresholds using PedCut followed by multipoint parametric 
linkage analyses assuming dominant and recessive models and nonparametric 
linkage analysis using the ‘all’ and ‘pairs’ statistics. 

  HLOD/LOD ≥1 HLOD/LOD ≥2 HLOD/LOD ≥3 

dominant 23.9% 7.5% 2.5% 

recessive 19.7% 6.8% 2.5% 

NPL all 44.2% 16.5% 4.6% 

NPL pairs 44.7% 16% 3.7% 
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Table 6: Power to detect parametric HLOD and nonparametric LOD thresholds using 
PedCut followed by multipoint parametric linkage analyses assuming dominant and 
recessive models and nonparametric linkage analysis using the ‘all’ and ‘pairs’ 
statistics.  All numbers are percentages. 

HLOD/LOD ≥1.0 HLOD/LOD ≥2.0 HLOD/LOD ≥3.0 

Model, Odds Ratio Dom Rec All Pairs Dom Rec All Pairs Dom Rec All Pairs 

dominant, OR 1.1 22.4 18 44.1 43.2 6.9 5.4 13.7 14 2.1 1.8 3.6 2.7 

dominant, OR 1.5 23.3 21.7 44.9 44.1 7.8 6.8 15.2 15 2.4 1.6 3.5 2.6 

dominant, OR 2.0 26.7 22.1 48.1 47.7 8.8 6.6 17.7 16.6 1.9 1 5.7 4.7 

dominant, OR 5.0 43.8 33 72.9 72.5 20.8 13.5 41.6 41.3 7.8 5.2 19.5 16.6 

recessive, OR 1.1 22.8 19.7 41.6 41.6 7.6 5.3 16 15 2.2 1.7 4 2.8 

recessive, OR 1.5 24.2 20.7 43.9 44.2 6.5 5.8 16.8 16.6 1.4 1.4 4.8 4.1 

recessive, OR 2.0 23.2 19.7 43.9 44.6 7.5 6.1 15.1 14.7 1.9 1.8 3.5 3.2 

recessive, OR 5.0 31 26.2 54.3 56.5 10.3 8.2 23.6 23.1 3.4 3.2 7.7 6.3 

additive, OR 1.1 23.5 19.2 44.1 44.2 6.9 5.7 15.4 14.7 2.9 2.6 4.4 3.6 

additive, OR 1.5 26 21.5 45.5 46.2 8.6 5.8 18 17.1 1.9 1.4 5.4 4.2 

additive, OR 2.0 30.7 26.5 51.4 52.7 10.6 7.3 20.8 20.2 2.5 1.5 6.4 5.7 

additive, OR 5.0 50.5 39.6 77.9 77.5 26.9 18.8 52 49.9 12 8 25.9 21.7 

 

 

Discussion 

 

Pedigrees from population isolates provide rich datasets for genetic analyses; 

however, the size and complexity of the pedigrees contribute to ambiguity when 

running analyses and interpreting results.   We have used this approach to discover 

novel susceptibility loci for complex diseases, such as Alzheimer disease and 

Parkinson’s disease, by studying the Amish communities of Ohio and Indiana.  In a 

recent genome-wide study using this population (19), 798 successfully genotyped 



20 

 

individuals connected into one 13-generation, 4998-member pedigree with 

consanguineous loops.  Using this same pedigree structure, we simulated 1000 pedigree 

replicates. 

Simulations of pedigrees as large and as complex as an Amish pedigree to assess 

the type 1 error rate and power of MQLS have not been previously published, so we 

sought to fill this void.  We did not see an inflated type 1 error rate in our simulated 

pedigrees.  Therefore, MQLS is an appropriate method for analyzing pedigrees as large 

and as complex as the Amish.  MQLS is very powerful for detecting a strong effect of 

OR=5 when the mode of inheritance is recessive, dominant, and additive and OR=2 

when the mode of inheritance model is dominant or additive.  While these are large 

effect sizes compared to those typical of complex diseases, in a homogeneous founder 

population a larger effect size is more likely. 

Linkage analyses for a pedigree of this size and complexity require pedigree 

splitting, but the effect on the type 1 error and power was not known for our pedigree 

structure using PedCut to subdivide the pedigrees followed by linkage analysis using 

Merlin.  Using a bit-size limit of 24, we saw a low type 1 error rate associated with an 

HLOD of 3.0 for both two-point and multipoint linkage (lower for two-point).  An 

HLOD of ~3 has traditionally been a ‘significant’ HLOD score, and the low type 1 error 

rate in this instance all allows us to confidently use this threshold when evaluating 

results from the Amish sub-pedigrees.  These approaches, however, were not powerful 

when we analyzed simulated 1-locus disease models. 

Unfortunately, we cannot analyze the entire 4998 member pedigree for linkage to 

compare the type 1 error and power to analyses of sub-pedigrees for linkage.  We can, 

however, compare the type 1 error of association analysis using MQLS on the entire 
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pedigree versus using MQLS on the sub-pedigrees.  Splitting the simulated pedigrees 

did not affect the type 1 error when running MQLS.  This result does not guarantee that 

splitting a pedigree will not lead to any spurious positive results, since other studies 

suggest otherwise (14).  We do see a loss of power due to splitting the pedigrees because 

many pedigree connections are disrupted. 

 Through these simulations we see that MQLS has acceptable type 1 error rates 

even when using an extremely complex pedigree structure.  Type 1 error rates are also 

acceptable when splitting pedigrees prior to linkage analysis, consistent with a related 

study (13).  Unfortunately, but not surprisingly, significant power is lost when pedigrees 

are divided.  Development of new methods or extensions of current methods to use 

more pedigree information to perform multipoint linkage analyses would greatly 

improve our ability to query the rich genetic information of founder populations. 
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