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CHAPTER I

INTRODUCTION

     Intercellular communication is absolutely required for proper cell fate

specification during early embryogenesis.  This process often involves secreted

ligands that travel from the source of protein production to responding cells

where they bind to their cognate receptors on the cell membrane.  This ligand-

receptor interaction results in the activation of intracellular signal transduction

programs that lead to the expression of a specific collection of genes that are

responsible for cell fate determination.  Although numerous intercellular signaling

pathways have been identified that play a role in cell fate specification, my

studies have focused on the Transforming Growth Factor beta (TGF )

superfamily and specifically two family members, Nodal and Lefty.  Nodal

signaling has emerged as a crucial and evolutionary conserved dose-dependent

inducer of mesendoderm during gastrulation, and is required at later stages for

left-right (L-R) axis specification.  Many recent data suggest that a precise

balance between positive and negative influences is required to generate a

proper Nodal activity gradient during embryogenesis.  The experiments

described in this thesis demonstrate that Lefty, the primary Nodal antagonist,

undergoes several post-translational modifications and that some of these

modifications are required for Nodal-blocking function.  A brief introduction will

include information about morphogen activity gradients and the mechanisms that
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generate or regulate such gradients.  This will be followed by a description of

Nodal signaling and the role of Lefty molecules in modulating Nodal activity.

Finally, I will end with a brief description on the structure of Lefty-related

molecules and describe the types of post-translational processing that Lefty may

undergo.

Nodal ligands as morphogens

Morphogen activity gradients

     A morphogen is defined as a secreted signaling molecule that patterns a field

of cells by activating characteristic sets of target genes in a concentration-

dependent manner.  Morphogens are generally thought of as being distributed

along a gradient with a higher concentration near the source of protein

production (Green, 2002).  Responding cells then perceive their position within

the morphogen gradient in order to determine the appropriate developmental

fate.  There is developing evidence that morphogen-like characteristics are

carried by proteins in the Hedgehog, Wingless, and TGF  families (Tabata and

Takei, 2004).  Recently, FGF (Fibroblast growth factor) family members have

also been shown to have morphogen-like behaviors.  A good example of the

concentration-dependent dose response relationship was shown by recent

studies on FGF2, where it was demonstrated that different concentrations of the

FGF2 protein were able to induce different levels of Hox-c expression in spinal

motor neurons (Liu et al., 2001).  In addition, Dubrulle and Pourquie (2004) have
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demonstrated that a gradient of FGF8 protein results in a graded response in the

phosphorylation of Akt, a well-known downstream target of FGF signaling

(Schlessinger, 2000).

     Since the action of a single morphogen can lead to the specification of

multiple cell fates, the embryo needs to have in place mechanisms that not only

generate but strictly control morphogen gradient formation.  Intense research in a

multitude of organisms has begun to dissect these mechanisms.  One way to

control the formation of these gradients would be to regulate the transcription and

translation of both the morphogen and its extracellular antagonist.  A good

example of translational control was demonstrated by the fact that fgf2 antisense

RNA transcripts seem to govern the amount of protein produced from translation

of fgf2 mRNA (Li and Murphy, 2000).  The stability or the rate of degradation of

the mRNAs encoding these morphogens is another method to control the activity

gradient.  This mechanism is the result of the binding of trans-acting proteins and

RNAs to cis-elements in the mRNA message to either promote or inhibit

degradation by RNases (Dibrov et al., 2006). In vertebrate axis elongation, the

role of mRNA degradation, in particular fgf8, was shown to contribute to

formation of the FGF8 protein gradient (Dubrulle and Pourquie, 2004).

     Another way to achieve the generation of a morphogen gradient would be to

control the amount of extracellular secreted ligand available for effective

signaling, which could be done by modulating the level of endocytic clearance

from the extracellular compartment (Cadigan, 2002).  Experiments using

dynamin mutant clones in Drosophila wing imaginal discs, and overexpression of
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dominant negative components of the endocytic pathway in zebrafish, have

demonstrated that endocytosis controls the amount of Wingless and FGF8

available for signaling (Scholpp and Brand, 2004; Marois et al., 2006).  However,

the role of endocytosis in generating the Dpp (Decapentaplegic) gradient in

Drosophila wing imaginal discs is controversial.  Entchev et al. (2000) suggested

that Dynamin-mediated endocytosis was required for the long-range movement

of Dpp while Belenkaya et al. (2004) reported that Dpp movement was

independent of Dynamin function.

     Interactions with cell surface proteins, such as heparan sulfate proteoglycans

(HSPGs), have been shown to both positively and negatively alter the distance

that morphogens move from the source of their production (Ohkawara et al.,

2002; Belenkaya et al., 2004; Han et al., 2004; Lin, 2004).  This interaction is

thought to occur electrostatically, through the basic amino acids of HSPG-

interacting proteins associating with the negatively charged heparan sulfate (Irie

et al., 2003).  For Hedgehog, Wg, and Dpp, HSPGs have been demonstrated to

permit the long-range movement of these molecules in Drosophila wing imaginal

discs (Belenkaya et al., 2004; Takei et al., 2004).  The interaction between

HSPGs and BMP-4 has been tested in Xenopus embryos (Ohkawara et al.,

2002).  When three basic amino acids (R-K-K) were deleted from the N-terminus

of the ligand domain of BMP-4 ( -BMP-4), the signaling range of -BMP-4 was

increased compared to wild-type BMP-4.  This increase was caused by -BMP-4

having a lower capacity to bind heparin compared to the wild-type molecule.  It

has been postulated, based on the data presented above, that extracellular
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“molecular highways” are generated by HSPGs that facilitate the long-range

movement of morphogens (Strigini, 2005).  This model suggests that

morphogens are effectively transferred from one sugar chain to another sugar

chain on the large proteoglycans, with a net movement of morphogen down the

concentration gradient (Strigini, 2005).

Cleavage and post-translational modification of extracellular signaling
molecules

     Members of the subtilisin-like proprotein convertase family (SPC) are calcium-

dependent serine endoproteases that recognize the R-X-X-R motif found in many

intercellular signaling molecules, including TGF  superfamily members

(Nakayama, 1997; Molloy et al., 1999).  There are seven vertebrate family

members, of which SPC1, SPC4, and SPC6 have been shown to mediate

cleavage of both Lefty and Nodal in several transfected cell lines (Ulloa et al.,

2001; Beck et al., 2002; Sakuma et al., 2002; Nelsen et al., 2005).  The tissue

distribution and even the intracellular localization seem to vary among the

various SPCs.  The prevailing idea used to be that SPCs functioned

intracellularly within the source cells to process the precursors of peptide

hormones and other proteins into their biologically active forms (Bergeron et al.,

2000).  Recently, however, several reports suggested that SPCs may also

function at the cell surface, or even become secreted into the extracellular milieu

and, therefore, act non-cell-autonomously on proproteins secreted from adjacent

or nearby cells.  For example, endogenous SPC6A has been detected at the

surface in adult mouse liver, duodenum, and jejunum (Nour et al., 2005).
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Another relevant example came from work by Daniel Constam and colleagues.

They demonstrated that, at embryonic day 5.5, mouse nodal and spc1/spc4 were

expressed in the epiblast and extraembryonic ectoderm, respectively (Beck et al.,

2002).  The model arising from these findings is that proprotein cleavage may

occur in the extracellular space (Beck et al., 2002).  In agreement with this

supposition, an artificial system was used to demonstrate that cleavage of mouse

Nodal and Lefty could occur by secreted SPCs secreted from COS1 (Beck et al.,

2002).  In this system, conditioned medium from COS1 cells expressing Lefty

and Nodal proproteins were incubated with soluble SPCs, which were secreted

into the condition medium by COS1 cells expressing spc1, spc4, and spc6 (Beck

et al., 2002).

     In addition to control being exerted at the level of proprotein cleavage,

secondary modifications of the core polypeptide could easily be thought of as

modifying interactions with extracellular components and with the cognate

receptors.  Carbohydrate addition, such as N-linked glycosylation, can affect a

myriad of biological processes.  It may stabilize the protein against denaturation

and proteolysis, influence protein folding, increase protein solubility, and provide

structural rigidity to the core protein (Helenius and Aebi, 2004).  The presence of

N-linked glycans can increase the secretion and biological activity of several

TGF related members.  For example, both TGF 1 and TGF 2 contain several

glycosylation motifs in the prodomain and require N-linked glycans for efficient

secretion of the ligand into the culture medium (Sha et al., 1989; Brunner et al.,

1992; Lopez et al., 1992).  Since its discovery, mouse Nodal has been
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notoriously difficult to detect when secreted from several mammalian cell lines,

but the addition of an artificial glycosylation motif into the ligand domain

increased its steady-state level of protein accumulation, signaling strength, and

range of signaling compared to the wild-type protein (Le Good et al., 2005).

These results suggest that glycosylation may play important functions in

controlling secretion and stability of TGF  molecules.

Nodal signaling in vertebrate embryos

     Although Nodal signaling seems to involve a specific complex of TGF

receptors and cofactors (see below), ligand maturation and initiation of the

signaling cascade follow the general rules of all TGF  molecules. Nodal is initially

synthesized as a large pre-proprotein with an N-terminal hydrophobic signal

sequence for secretory pathway targeting, a prodomain, and a C-terminal mature

ligand domain (Kingsley, 1994).  As described above, maturation of the pre-

proprotein involves proteolytic cleavage at the dibasic R-X-X-R motif by SPCs to

release the mature ligand from the prodomain in the form required to engage the

receptor complex for active signaling (Kingsley, 1994; Nakayama, 1997; Cui et

al., 1998; Constam and Robertson, 1999; Molloy et al., 1999; Ulloa et al., 2001;

Beck et al., 2002; Sakuma et al., 2002; Ben-Haim et al., 2006).  Most TGF

family members contain 7-9 conserved cysteine residues of which six are

involved in generating a structure referred to as a “cysteine knot”.  One of these

cysteines will form a disulfide bond between two monomers to generate the

biologically active homodimer or heterodimer (Sun and Davies, 1995).  These
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primary structure characteristics (dibasic cleavage motif and 7 cysteine residues)

are contained within the amino acid residues of mouse Nodal and several of the

Xenopus Nodal-related proteins (Xnr), such as Xnrs1, 2, 4, 5, and 6 (Conlon et

al., 1994; Jones et al., 1995; Joseph and Melton, 1997; Takahashi et al., 2000).

     In order to initiate downstream signaling, the Nodal dimer engages a receptor

complex consisting of type I and type II Activin receptors that both possess

intracellular serine/threonine kinase domains (Fig. 1.1) (Massague, 1998; Schier,

2003).  Biochemical and genetic evidence has demonstrated that, unlike Activin,

for example, the activation of Nodal signaling also requires the presence of the

EGF-CFC co-receptor (Gritsman et al., 1999; Whitman, 2001; Yeo and Whitman,

2001; Schier, 2003; Dorey and Hill, 2006; Onuma et al., 2006).  The downstream

result of Nodal-receptor complex interaction is, similar to Activin, however,

involving the phosphorylation of either Smad2 or Smad3, which then associates

with Smad4 (Schier, 2003).  The activated Smad complex becomes translocated

to the nucleus in association with a more sequence-selective DNA-binding co-

factor, such as FoxH1, where it acts to induce the transcription of Nodal-target

genes (Whitman, 2001; Schier, 2003).
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Figure 1.1 Nodal signal transduction pathway.  Binding of the Nodal dimer to
the ActRIIA/B type II receptor (1) in combination with the Alk4 type I receptor (2)
and the EGF-CFC co-receptor leads to formation of an activated receptor
complex (3) and phosphorylation of the type I receptor (4).  Thus activated, the
type I receptor phosphorylates Smad 2 or Smad3 (5), allowing this complex to
associate with Smad4 (6).  The activated Smad complex translocates to the
nucleus (7) and associates with DNA-binding partners, such as FoxH1 (8)
resulting in transcription of downstream target genes (9). Modified from
Massague, 1998.
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     There are several proteins that both positively and negatively influence Nodal

signaling during embryogenesis.  Some of these proteins have a broad effect for

the various TGF  family members, whereas some appear relatively restricted in

affecting Nodal/Activin signaling. For example, Smad6 and Smad7 are proteins

utilized by both TGF  and Nodal pathways to attenuate signaling by

competitively binding to activated receptor complexes and recruiting E3-ubiquitin

ligases to target the receptors for degradation (Kavsak et al., 2000; Suzuki et al.,

2002).  An additional function of Smad6 and Smad7 includes binding to Smad4

to prevent Smad2/3-Smad4 complex formation (Massague, 1998).  Processes

that induce the degradation of Smad4 can curtail TGF  signaling.  For example,

Ectodermin, a RING-type ubiquitin ligase, is responsible for terminating TGF

signaling by catalyzing the addition of poly-ubiquitin to Smad4, leading to its

proteosome-mediated degradation (Dupont et al., 2005).  Proteins that remove

phosphate moieties from Smads can also attenuate signaling.  Recently, several

phosphatases, such as PPM1A and small C-terminal domain phosphatases,

have been found to reside in the nucleus and dephosphorylate Smad proteins,

leading to termination of signaling (Duan et al., 2006; Knockaert et al., 2006; Lin

et al., 2006; Sapkota et al., 2006; Wrighton et al., 2006).  On the other hand,

proteins that inhibit the function or induce the degradation of such negative

regulators of signal transduction can enhance TGF  signaling.  For example,

Arkadia, a RING domain E3-ubiquitin ligase, can induce the proteosome-

dependent degradation of several negative regulators (Smad7, SnoN, and c-Ski)
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of the TGF  pathway and leads to enhanced signaling (Liu et al., 2006; Nagano

et al., 2007).

     As compared to the proteins discussed above, which seem to regulate TGF

pathways, there are several molecules that appear to modulate only

Nodal/Activin signaling.  Recently, Suri et al. (2005) and Mir et al. (2007) used

subtractive hybridization and microarray technologies to discover factors that

were down-regulated by Xnr/Activin signaling.  Both groups independently

identified the transcription factor gene Xema/Foxi1e and showed that it was

expressed in the animal region, where it functioned to suppress mesendoderm

formation.  Data gathered using both transactivation domain (VP16) or

repression domain (EnR) fusion proteins suggested that Foxi1e either directly or

indirectly stimulated the transcription of as yet unknown inhibitors of

mesendodermal fates (Suri et al., 2005).  The experimental findings to date

suggest that it acts as an endogenous suppressor of mesodermalization to force

the embryo to overcome a “mesoderm induction threshold”, thus ensuring correct

apportioning of tissue fates across the embryo.

Nodal, an inducer of mesendoderm

     The formation of the three primary germ layers, ectoderm, mesoderm, and

endoderm, is a critical patterning event of early embryogenesis, which sets the

stage for all future inductive events.  Early tissue grafting experiments by

Nieuwkoop and others showed that the mesoderm induction process results from

signals that emanate from the vegetal region to specify the overlying equatorial
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region (Harland and Gerhart, 1997).  Subsequently, heterochronic tissue grafts

suggested that the endogenous mesoderm-inducing factor was a maternally

supplied protein or RNA (Harland and Gerhart, 1997).  At the time of these

experiments, the only inducer that fulfilled this requirement was Activin

(Asashima et al., 1990; Slack, 1990; Smith et al., 1990).  The subsequent

discovery of Vg1 mRNA, localized to the vegetal hemisphere in Xenopus

embryos, suggested that this TGF  molecule was the long-sought-after inducer

(Weeks and Melton, 1987; Pondel and King, 1988).  Further experiments,

however, cast doubt on the role of both Activin and Vg1 in patterning the early

embryo.  Whereas overexpression of many TGF  members induced mesoderm,

injection of Vg1 RNA did not (Tannahill and Melton, 1989) and strong inducing

properties of the Vg1 ligand were only seen when it was fused to a BMP

prodomain region (Thomsen and Melton, 1993).  Moreover, the endogenous

ligand domain of Vg1 could not be detected in embryos (Tannahill and Melton,

1989).  Recently, Janet Heasman and coworkers have made clear progress

toward resolving the role of Vg1 in embryonic patterning.   They discovered a

new isoform of Vg1, which contained a serine instead of a proline at amino acid

position 20.  This version had mesoderm inducing properties when

overexpressed in Xenopus embryos without the need to resort to the chimeric

prodomain/ligand approach referenced above (Birsoy et al., 2005; Birsoy et al.,

2006).  Evidence against Activin being an endogenous mesoderm inducer came

from genetic studies in mouse, in which activin A and activin B have been

mutated using homologous recombination techniques.  These homozygous null
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mutant mice progressed normally through embryogenesis and contained

normally patterned mesoderm (Matzuk et al., 1995).  The role of Activin in

patterning the early embryo has been further clouded by two recent reports from

the laboratory of James Smith (Piepenburg et al., 2004; Ramis et al., 2007).  In

the first report, morpholino-mediated knockdown was concluded to show that

endogenous Activin was involved in mesoderm induction, as rt-PCR assays

showed that there was a reduction in the expression of mesodermal marker

genes within the embryo (Piepenburg et al., 2004).  Later experiments using

microarray analysis of embryos injected with the same morpholino targeted

against activin (described above) suggested that Activin signaling functioned to

control cell division (Ramis et al., 2007).  It is puzzling why the same morpholino

used in the same lab would generate data suggesting different functions of

Activin.

     The initial evidence that Nodal was the endogenous mesendoderm inducer

came from a mouse mutant, 413.d, that carries a retroviral insertion-mediated

inactivation of the nodal locus (Zhou et al., 1993; Conlon et al., 1994).  The

homozygous mutant mice fail to form a primitive streak and lack most mesoderm

and endoderm.  Following the isolation of Nodal in mice, Nodal-related proteins

have been identified in all vertebrate species.  In Xenopus, six nodal-related

proteins (Xnrs1-6) have been isolated, of which Xnrs1, 2, 4, 5, and 6 have been

shown to possess mesoderm-inducing activities (Jones et al., 1995; Smith et al.,

1995; Joseph and Melton, 1997; Takahashi et al., 2000).  Xnr3 is more divergent,

as it lacks the last of the seven cysteines and has a serine instead of a glycine
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between the second and third cysteines (Ezal et al., 2000).  Probably, the most

important function for Xnr3 is its role in regulating convergent and extension

movements in Xenopus (Yokota et al., 2003).  Squint (sqt), cyclops (cyc), and

southpaw (spaw) are the three nodal-related genes known in zebrafish (Erter et

al., 1998; Sampath et al., 1998; Long et al., 2003).  In gain-of-function studies,

mouse Nodal, Cyc, Sqt and Xnrs1, 2, 4, 5, and 6 can dose-dependently induce

mesoderm when overexpressed in Xenopus animal caps (Jones et al., 1995;

Joseph and Melton, 1997; Erter et al., 1998; Sampath et al., 1998; Takahashi et

al., 2000). Consistent with the loss-of-function data from mouse, null mutations in

cyc and sqt produce a highly mesoderm-deficient embryo (Feldman et al., 1998).

Similarly, loss-of-function experiments in Xenopus revealed the conserved

mesoderm-inducing activities of Xnrs.  Overexpression of Xnr-specific inhibitors,

such as cleavage-mutant Xnr2, a Nodal-specific truncation version of the

secreted antagonist Cerberus-short, as well as Lefty, resulted in reduction or

elimination of mesendodermal derivatives (Osada and Wright, 1999; Agius et al.,

2000; Cheng et al., 2000; Onuma et al., 2002).  Altogether, these data firmly

establish the role of Nodal/Xnr signaling in the dose-dependent formation of

mesendoderm in vertebrate embryos.

Nodal signaling in left-right axis formation

     Vertebrates exhibit a stereotypical and conserved left-right asymmetry in, for

example, the differential lobation of the lungs, the placement of visceral organs

and the morphogenesis of the cardiovascular system (Wright, 2001; Hamada et



15

al., 2002).  In zebrafish, anatomical asymmetries have been identified in the

forebrain region, such as the diencephalon and parapineal gland (Gamse et al.,

2003; Long et al., 2003).  Deviations from the normal asymmetric placement of

the internal organs, which is referred to as situs solitus, can lead to

randomization of organ placement (heterotaxia) or complete reversal of organ

symmetry (situs inversus).  Although situs inversus is not harmful, heterotaxia

can have severe medical consequences, such as cardiovascular connection

abnormalities and atrial and ventricular septal defects.  (Ramsdell, 2005).  Such

congenital heart defects occur in approximately 90% of individuals exhibiting

heterotaxic phenotypes (Ramsdell et al., 2006).

     Initially, vertebrate embryos are bilaterally symmetric but various species-

specific mechanisms have been discovered that break this embryonic symmetry

(Raya and Belmonte, 2006).  As a result of early breaking of embryonic

symmetry, at around tailbud stage (the equivalent of 2-3 somites in mouse), there

is a transient expression of a “left-side gene cassette” (nodal, lefty and Pitx2) in

the left lateral plate mesoderm (LPM).  This conserved feature is likely a central

event leading to asymmetric morphogenesis (Lowe et al., 1996; Wright, 2001).

During neurula stage in Xenopus, the expression of Xnr1 is observed as

bilaterally symmetrical domains flanking the posterior notochord (Lowe et al.,

1996).  By a mechanism that is not at all well understood, Xnr1 expression then

becomes activated asymmetrically with higher levels on the left LPM and an

extremely low level on the right side (Nakamura et al., 2006).  Recent work in the

Wright lab has demonstrated that planar tissue communication is required for a
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rapid posterior-to-anterior (P-to-A) expansion of the Xnr1 expression domain.

Subsequently, Xnr1 expression becomes rapidly suppressed in a P-to-A manner

(Ohi and Wright, 2007).  In the left LPM, the expression domain of Xenopus lefty

(Xlefty) spatially mirrors that of Xnr1 but with a temporal delay in accordance with

its activation as a direct target of Nodal signaling (Ohi and Wright, 2007).

     As described in detail below, Xlefty inhibits Xnr signaling in both

mesendoderm induction and during L-R axis formation.  In Chapter III, I will

provide evidence that Xlefty undergoes N-linked glycosylation.  Nevertheless, my

assays showed that glycan addition did not influence either the ability of Xlefty to

regulate Xnr signaling during mesoderm induction or the movement of Xlefty

through embryonic tissues of blastula-stage embryos.  Since carbohydrates are a

source of negative charges and may interact with basic domains on extracellular

proteins (Janosi et al., 1999), it is a possible that glycans can influence the speed

of movement of Xlefty during stages of L-R axis formation in Xenopus.  If

“molecular highways” (described above) exist in the left LPM of Xenopus

embryos, there is a possibility that N-linked glycans may affect the path that

Xlefty travels within the embryo.

Negative feedback regulation of Nodal signaling by Lefty

     Lefty-related proteins have been identified in chordates ranging from the very

primitive Ciona to higher vertebrates like mouse and human.  Although several

biological functions have been proposed for Xlefty (Chapter IV), the general

consensus is that a principal activity of Lefty is to antagonize Nodal signaling.
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Lefty molecules are thought to limit the strength, range of signaling, and duration

of Nodal signaling during mesendoderm induction, thereby ensuring the

formation of the proper amount and type of mesendoderm within the embryo

(Branford and Yost, 2002; Chen and Schier, 2002; Feldman et al., 2002; Cha et

al., 2006).  The importance of Lefty molecules in regulating Nodal signaling has

been demonstrated by loss-of-function and gain-of-function experiments in mice,

zebrafish, and frogs.  For example, mice deficient for lefty2 resulted in expansion

of the primitive streak and excess formation of mesoderm (Meno et al., 1999).

This phenotype can be partially rescued by reducing the gene dosage of nodal,

consistent with the idea that overproduction of mesoderm in lefty2 mutants

resulted from increased Nodal signaling (Meno et al., 1999).  Experiments

performed by overexpressing Lefty proteins in zebrafish produced a phenotype

that closely resembled cyc;sqt double mutants or maternal-zygotic oep mutants,

a mutation in the Nodal pathway-required EGF-CFC co-factor (Meno et al.,

1999).  Xenopus Lefty was isolated by Abby Cheng, a former graduate student in

the Wright laboratory, who showed that Xlefty overexpression suppressed Xnr

signaling in mesoderm induction experiments (Cheng et al., 2000).

Subsequently, Young Cha, another former lab member, demonstrated the

importance of Lefty by morpholino-mediated knockdown of the Xlefty protein.

These embryos showed massive expansion in the expression of Xnr-regulated

genes.  For example, Xbra expression in morphant gastrula stage embryos often

encompassed the entire animal hemisphere (Cha et al., 2006).
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     Initially, Lefty-related proteins were thought to inhibit Nodal signaling at the

level of membrane-bound Activin type II receptors (ActRII), as overexpression of

membrane-bound ActRIIA, as well as the extracellular domain of ActRIIB,

suppressed the antagonistic effects of Lefty (Meno et al., 1999; Thisse and

Thisse, 1999).  Subsequent studies, however, suggested a different mechanism

of inhibition.  Using biochemical extracts prepared from Xenopus embryos, and

cultured cells that overexpressed various components of the Nodal signaling

pathway, there are now data supporting the hypothesis that Lefty antagonizes

Nodal signaling by binding either the EGF-CFC cofactor or the Nodal ligand

dimer, thereby blocking the Nodal-receptor interaction (Chen and Shen, 2004;

Cheng et al., 2004; Tanegashima et al., 2004).

Structure of Lefty-related proteins

     Lefty-related proteins are a highly divergent subclass within the TGF

superfamily (Meno et al., 1996; Thisse and Thisse, 1999; Cheng et al., 2000).

Compared to canonical TGF  members, Lefty molecules have several unique

structural features (Fig. 1.2).  First, most TGF  proteins contain a single

proteolytic cleavage site in the proprotein, which generates a mature domain that

is 110-140 amino acid residues (Kingsley, 1994).  Lefty molecules contain two

cleavage sites (CS1 and CS2), such that proteolytic cleavage of the proprotein

could generate cleaved ligand-like domains of either 220 or 290 amino acids

(Thisse and Thisse, 1999; Cheng et al., 2000; Sakuma et al., 2002).  Second, the

carboxy terminus of most TGF -related ligands is CX1CX1 while that in Lefty-
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related proteins are extended to CX1CX8-13.  Third, Lefty molecules lack the large

-helix and the fourth cysteine residue, both of which are involved in ligand

dimerization.  Thus, Lefty molecules are thought to function as monomers.

Indeed, when secreted from Xenopus animal caps, mouse Lefty 1 and Lefty 2

have so far been detected biochemically as monomers, consistent with these

structural predictions (Sakuma et al., 2002).
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Figure 1.2 Structure of the Xlefty pre-proprotein.  Xlefty is synthesized as a
large pre-proprotein, which can undergo several post-translational modifications
during its maturation.  The signal sequence (SS) targets the proprotein to the
secretory pathway.  There are two potential cleavage sites (CS1 and CS2) in the
proprotein that would be expected to generate long and short isoforms

depending on cleavage site usage.  The one N-linked glycosylation motif ( ) is
present in both long and short isoforms.  The mature domain is missing the
cysteine that is involved in dimerization. C, cysteine; R, arginine; X, any amino
acid
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     All TGF -related proproteins undergo proteolytic cleavage in order to

generate the active ligand (Kingsley, 1994; Nakayama, 1997; Cui et al., 1998;

Constam and Robertson, 1999; Molloy et al., 1999; Ulloa et al., 2001; Beck et al.,

2002; Sakuma et al., 2002; Ben-Haim et al., 2006).  As stated above, proteolytic

cleavage at CS1 and CS2 would be expected to generate long (XleftyL) and short

(XleftyS) isoforms depending upon the cleavage site used.  Such differential

cleavage has of Lefty has been detected in transfected overexpressing cultured

cell lines (Meno et al., 1996).  When mouse Lefty 1 was secreted from 293T and

BALB/3T3 cell lines, proteolytic processing at CS1 and CS2 occurred in a cell

type-dependent manner (Sakuma et al., 2002).  The reason for differential

cleavage of Lefty is not yet understood, but this issue is returned to in Chapter

IV.  Lefty molecules contain a single consensus site for N-linked glycosylation in

the mature domain, and in Chapter III, I present my studies on the

characterization and functional evaluation of N-linked glycosylation and

proprotein cleavage in Xenopus tissues.

     The prevalent idea used to be that TGF  molecules were cleaved at a single

SPC motif within the proprotein to allow the release of the ligand for receptor

engagement.  Recently, however, several reports have suggested that a second

cleavage event could influence the biological activity of these secreted

molecules.  I will describe some of the experimental findings illustrating that

cleavage at a second site in the prodomain increases the signaling activity of

BMP-4.  The idea of using different cleavage sites to regulate the activity of a

TGF  molecule is important because Lefty molecules contain two cleavage sites



22

that could regulate protein turnover or Nodal-blocking function (discussed in

Chapter IV).  As a prototypical member of the TGF  superfamily, BMP-4 is fully

expected to require proprotein cleavage to release the active ligand for

productive engagement with receptors.  In vitro assays demonstrated that

Xenopus BMP-4 can be processed by SPC1 (Furin), SPC4, SPC6, and SPC7

(Cui et al., 1998).  In these in vitro BMP-4 cleavage assays, Jan Christian and

colleagues noticed cleavage occurring at an unexpected site in the BMP-4

prodomain (Cui et al., 1998).  From a subsequent series of experiments, they

determined that BMP-4 experienced an ordered cleavage event that influenced

both the strength and range of signaling in Xenopus tissues (Cui et al., 2001).

The first cleavage occurs at the optimal SPC1/Furin site (Site 1; S1) in the

proprotein, which separates the ligand from the prodomain.  The second

cleavage event takes place at a minimal furin site (Site 2; S2) in the prodomain.

Cleavage at S2 is thought to disrupt the non-covalent ligand/prodomain

interaction, and the ligand is released for productive receptor binding.  By

generating an S2 cleavage site mutant, it was determined that preventing

cleavage at S2 caused a marked decrease in the secretion of the mature ligand

domain (Cui et al., 2001).  The decrease in secretion was discovered to be the

result of targeting the ligand domain within the producing cells for rapid

degradation via the lysosomal/proteosomal pathways (Degnin et al., 2004).

Based on the above data, Degnin et al. (2004) suggested that the basal level of

BMP signaling is caused by cleavage of BMP-4 at S1 and tissues that required

higher levels of signaling cleaved BMP-4 at S2.  This hypothesis was supported
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by analyzing mice carrying a targeted mutation that prevented cleavage at S2,

which led to defects being detected in tissues that required the highest level of

BMP signaling (Goldman et al., 2006).

Nodal and Lefty constitute a reaction-diffusion system

     The appropriate level of Nodal signaling is a central determination of proper

pattern formation during mesendoderm formation and L-R axis specification.

Currently, Lefty is thought to act over a long distance to inhibit Nodal signaling.

For example, experiments utilizing both zebrafish and Xenopus showed that

localized injections of lefty RNA into the animal hemisphere could suppress

Nodal signaling many cell diameters away, at the marginal zone (Branford and

Yost, 2002; Chen and Schier, 2002).  It has also been demonstrated that green

fluorescent protein (GFP)-tagged mouse Lefty 2, when electroporated into

chicken embryos, was able to travel further away from its source cells than was a

similarly introduced mouse Nodal-GFP fusion protein (Sakuma et al., 2002).  It

has been suggested that the relationship between Nodal and Lefty resembles

that of the two hypothetical molecules in the classical “reaction-diffusion system”,

as originally proposed by Turing (1990).  Using a series of mathematical

equations, this model describes the generation of complex tissue patterning

within the embryo as a self-buffering system between a short-range morphogen

and its long-range antagonist.

     There are several principal interactions that are postulated to occur between

the activator and the inhibitor in the reaction-diffusion model.  First, the
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morphogen induces its own production, as well as activating the expression of

the inhibitor.  The antagonist then functions to short-circuit the auto-activation of

the activator.  Finally, the long-range antagonist acts to restrict the range of

short-range positive feedback loop of the activator.  All of the current loss-of-

function and gain-of-function data, including effects on target genes, suggest that

Nodal and the feedback antagonist Lefty interact in such a self-regulating

system.

Aims of the dissertation

     The broad goal of my Ph.D. thesis research project was to examine how post-

translational modifications influence the ability of Xlefty to regulate Nodal

signaling during mesendoderm induction in Xenopus laevis.  Currently, the

published reports characterizing how proprotein cleavage of Lefty affects its

ability to regulate Nodal signaling have come from heterologous experiments,

which could lead to incorrect findings.  In these experiments, mouse Lefty and

the various cleavage mutants were co-expressed with Nodal and a Nodal-

regulated luciferase reporter plasmid in Xenopus animal caps.  Therefore, my

studies were carefully designed to analyze proteolytic cleavage of Xlefty in the

homologous tissue context of Xenopus and at the appropriate developmental

time.  In Chapter III of this dissertation, I describe biochemical and embryological

assays that demonstrate the role of post-translational modifications in regulating

Nodal signaling.  Some major conclusions from my studies are that Xlefty

undergoes both proteolytic cleavage and N-linked glycosylation.  Proprotein
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cleavage of Xlefty is required to inhibit Nodal signaling while glycosylation does

not inhibit Xnr signaling in mesoderm induction assays and does not alter the

movement of Xlefty through embryonic tissues.  Because the proteolytic

cleavage characteristics of Xlefty occurred at CS1 and CS2 when secreted from

oocytes but cleavage only happened at CS1 when embryonic tissues were

assayed, a major conclusion is that future experiments should utilize embryonic

cells to investigate the mechanisms that regulate the biochemical processing of

secreted proteins.  In chapter IV, I present a synopsis on the significance of my

findings and the direction of future experiments.
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CHAPTER II

MATERIALS AND METHODS

Embryo manipulations

     Embryos were obtained by in vitro fertilization of eggs from hormonally

induced Xenopus laevis females (Kay and Peng, 1991).  Embryos were dejellied

in 1% thioglycolic acid in 1X Steinberg solution (1X SS; 4.6 mM Tris-HCl pH 7.4,

58 mM NaCl, 0.67 mM KCl, 0.34 mM Ca(NO3)2, 0.83 mM MgSO4) and

subsequently cultured in 1X SS.  Embryos were staged according to Nieuwkoop

and Faber (1967).

Embryo injections

     Fertilized embryos were transferred to 5% Ficoll/1X SS and injected using a

Narashige gas driven microinjector.  Depending on the blastomere size, the

injection volume ranged from 1 nl to 10 nl (10 nl for the one-cell stage, 2.5 nl for

the 4-cell stage, and 1 nl for the 32-cell stage).  Injected embryos were allowed to

recover at room temperature in 5% Ficoll/1X SS until stage 9 and then

transferred to 0.1X SS for the remainder of the culture period.

     Capped RNAs were synthesized using SP6 mMessage mMachine (Ambion)

from the following linearized plasmids: CS2+Xnr2 (Jones et al., 1995);

CS2+Xlefty (Cheng et al., 2000); CS2+Zebrafish Lefty1 (Thisse and Thisse,

1999); SP64TL-Mouse Lefty1, pSP64TL-Mouse Lefty2; (Sakuma et al., 2002);
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CS2+Xnr5 (Takahashi et al., 2000); CS2+nLacZ.  The following plasmids

(generated for the studies performed in this thesis; for detail see below) were

linearized to make synthetic RNA: CS2+Xnr2NGM; CS2+Xnr5G; CS2+Xleftymcs1;

CS2+Xleftymcs2; CS2+Xleftymcs1/2; CS2+Xleftymcs1myc; CS2+Xleftymcs2myc;

CS2+Xleftymcs1/2myc; CS2+XleftyHA; CS2+XleftyNGM-A; CS2+XleftyNGM-S;

CS2+Xleftymyc; CS2+XleftyNGM-Amyc.

Xenopus oocyte isolation and injection

     Xenopus oocytes were isolated and defolliculated according to Sive et al.

(2000).  Oocytes were cultured in O-R2 (pH 7.8: 82.5 mM NaCl, 2.5 mM KCl, 1

mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, and 5 mM HEPES) supplemented with

0.5 mg/ml bovine serum albumin (BSA), 100 units/ml penicillin (Specialty Media),

and 100 µg/ml streptomycin (Specialty Media).  For protein expression, a 10 nl

volume was used to inject 30-50 ng of synthetic RNA per oocyte.  After injection,

the oocytes were allowed to recover for three hours at room temperature in O-

R2/BSA/penicillin/streptomycin described above.  Subsequently, five oocytes

were transferred to a single well (prerinsed with O-R2 plus 15 mg/ml BSA) in a

96-well plate containing 50 µl of Labeling Medium.  Labeling Medium consisted of

250 µCi [35S]methionine and [35S]cysteine (Promix; >1000mCi/mmol; GE

Healthcare catalogue # AGQ0080) dissolved in O-R2/BSA/penicillin/streptomycin

described above.  A 10 mg/ml stock concentration of tunicamycin (Sigma) was

prepared by dissolving in dimethyl sulfoxide (DMSO).  To inhibit N-linked

glycosylation, 10 nl was used to inject of 2 ng of tunicamycin per oocyte and
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followed by culturing in O-R2/BSA/penicillin/streptomycin plus 2 µg/ml

tunicamycin (Colman, 1984).  After tunicamycin injection, oocytes were cultured

with no agitation for 2 hours before RNA injection.  Supernatants were collected

by carefully removing as much conditioned medium as possible (approximately

40 µl) with the P200 pipetmen after overnight incubation at 19ºC.  Samples were

stored at -20ºC for further analysis.  Sample buffer (4X: 40 % glycerol, 0.1M 2-

mercaptoethanol, 25 mM EDTA, 10 % SDS, 0.125 M Tris pH 6.8, 0.05 %

bromophenol blue) was added to 15 µl of conditioned medium, boiled for three

minutes, microcentrifuged for 30 seconds, and resolved using precast 10% Bis-

Tris NuPAGE SDS-PAGE gels (Invitrogen; catalogue # NP0301Box) and

NuPAGE MOPS SDS running buffer (Invitrogen; NP0001)

Protein isolation from whole embryos

     For analysis of proteins secreted from embryonic tissues, embryos were

injected with the indicated RNAs and cultured to stage 10-10.5 in 1 X SS.  Ten

whole embryos were lysed by pipetting up and down in 300 µl of lysis buffer (pH

7.4: 50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 0.25% sodium

deoxycholate, 1 µM leupeptin, 1 µM pepstatin, 1 mM PMSF).  Lysates were

microcentrifuged at 14,000 rpm at 4ºC for 5 minutes.  Following

microcentrifugation, soluble protein (located between the insoluble protein pellet

and the pellicular layer; approximately 200 µl) was transferred to a new 1.5 ml

tube.  Following the addition of sample buffer (see above), one-half embryo

equivalent of soluble protein was loaded per lane.
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Protein secretion from embryonic tissues

     Animal halves were isolated by cutting along the equator with a surgical knife

to separate the animal hemisphere from the vegetal hemisphere, and animal

caps were isolated using the Gastromaster® dissector with 400 µm size square

loop tips.  After tissue isolation, 12 animal halves or 25 animal caps were

cultured per well in a 96-well plate containing 40 µl of calcium magnesium-free

medium (7.5 mM Tris-HCl pH 7.6; 88 mM NaCl,1 mM KCl, 2.4 mM NaHCO3)

containing 0.1 mg/ml BSA at room temperature (Sives et al., 2000).

Supernatants (approximately 35 µl) were collected with a P200 pipetmen after

three hours for western blot analysis.  

Enzymatic removal of N-linked glycans

     PNGase F (New England Biolabs, catalogue # P0704S) digestion was

performed on conditioned medium secreted from Xenopus oocytes and

embryonic tissues.  Conditioned medium (30 µl from oocytes and 20 µl from

animal halves and animal cap) was performed according to the manufacturer

protocol prior to gel electrophoresis.  Briefly, protein was denatured in 1X

glycoprotein denaturation buffer (0.5% SDS and 2% -mercaptoethanol) for 10

minutes at 100ºC.  Next, the solution was allowed to cool to room temperature.

10X G7 reaction buffer (0.5 M sodium phosphate, pH 7.5) was diluted to a final

concentration of 1X, and 10% NP-40 was diluted to a final concentration of 1%.

Finally, 1 µl of PNGase F (500 units) was added and the reaction was incubated

at 37ºC for 1 hour.
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MAPK assay

     In order to stimulate activation of endogenous MAPK, whole embryos were

wounded by rapidly cutting the embryo into quarters along the animal-vegetal

axis with a surgical knife at stage 9 and cultured for 15 minutes.  Animal caps

were isolated using the Gastromaster® dissector with 400 µm size square loop

tips at stage 9 and cultured for 15, 60, and 120 minutes.  Three whole embryo

equivalents (12 quarters) were lysed by rapidly pipetting up and down with a

P200 pipetmen in 100 µl of lysis buffer (10 mM Tris–HCl pH 7.5, 100 mM NaCl, 5

mM EDTA, 0.5% Nonidet P-40, 1 µM leupeptin, 1 µM pepstatin, 1 mM PMSF, 50

mM NaF, 10 mM Na2P2O7, 0.5 mM Na3VO4) and 15 animal caps were lysed by a

similar pipetting method in 30 µl of lysis buffer.  Lysates from whole or quartered

embryos were microcentrifuged at 14,000 rpm at 4ºC for 5 minutes.  Soluble

protein (located between the pellet and pellicle; approximately 70 µl) was

transferred to a new tube and stored at -20ºC for further analysis.  Sample buffer

was diluted to a final concentration of 1X and boiled for three minutes.  One-half

embryo equivalent of soluble protein was loaded per lane for western blot

analysis.  Sample buffer (10 µl) was added to lysates from animal caps and

microcentrifuged at 14,000 rpm at 4ºC for 5 minutes to pellet insoluble protein.

7.5 animal cap equivalents of soluble protein were loaded per lane.

Western blots

     Embryonic lysates and secreted proteins were resolved using precast 10%

Bis-Tris NuPAGE SDS-PAGE gels and NuPAGE MOPS SDS running buffer
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(described earlier).  Proteins were transferred to Immobilon-P PVDF (Millipore;

catalogue # IPVH00010) and were blocked for 2 hours in 1X Tris-buffered saline

(TBS; 100 mM Tris-HCl pH 7.6 and 150 mM NaCl) containing 5% non-fat dry milk

(NFDM; Kroger brand) and 0.1% Tween 20 (Fisher; catalogue # BP337).

Primary and secondary antibodies were incubated in 1X TBS containing 1%

NFDM and 0.1% Tween 20.  Membranes were washed 4 times in 1X TBS plus

0.1% Tween 20 for 15 minutes after primary and secondary antibody incubation.

    The following antibodies were diluted 1/2000 in 1X TBS containing 1% NFDM

and 0.1% Tween 20: anti-myc (9E10; Vanderbilt University Antibody Core), anti-

HA (12CA5; Vanderbilt University Antibody Core), anti-phospho-p44/42

(phospho-ERK1/2; Cell Signaling Technology catalogue # 9101) and anti-p44/42

(ERK1/2; Cell Signaling Technology catalogue # 9102).  Horseradish peroxidase-

conjugated anti-mouse IgG and anti-rabbit IgG (Santa Cruz Biotechnology

catalogue numbers sc-2314 and sc-2004, respectively) were diluted 1/2000 and

used as secondary antibodies. SuperSignal West Pico Chemiluminescent

Substrate (Pierce) was used to detect Horseradish peroxidase on immunoblots.

In vitro translation and N-linked glycosylation

     Canine Pancreatic Microsomal Membranes (Promega; catalogue # L4610)

were used for in vitro translation and N-linked glycosylation analysis.  Capped

mRNA was synthesized using SP6 mMessage mMachine (Ambion).  250 ng of

Xlefty RNA was used to prime rabbit reticulocyte lysate system.  Promix
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(described above) was used for metabolic labeling.  The reaction was performed

according to manufacturer protocol.

Animal cap assays

     One-cell stage embryos were injected with RNA.  Vitelline membranes were

removed from stage 8.5/9 embryos.  Animal caps were explanted at stage 8.5/9

using the Gastromaster® 400 µm tip and cultured in 1 X SS.  Explanted animal

caps were collected at sibling stage 10.5, and flash frozen in dry ice/ethanol for

RT-PCR analysis.

RT-PCR

     Total RNA from three whole embryos or 25 animal caps was isolated using

TRIzol (Invitrogen) according to manufacturer protocol.  cDNA synthesis was

performed with 2 µg of total RNA using 200 units of SuperScript II (Invitrogen;

catalogue # 15596-018) and 5 nmoles of Oligo d(T)16 (Applied Biosystem).  After

cDNA synthesis, the volume of the reaction was adjusted to 80 µl by adding 60 µl

of distilled water.  Each set of reactions included a control reaction without

reverse transcriptase.  PCR reactions were performed with 4 µl from the cDNA

synthesis reaction and contained 0.75 units of Taq polymerase (Fisher), 0.25 mM

of each dNTP, and 0.2 µM of gene-specific primers.  PCR products were trace-

labeled with 2 µCi of [ -32P]-dATP (GE Healthcare catalogue # AA0004,

~3000Ci/mmol) .  After an initial 5 minute denaturation step at 95ºC, the reactions
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cycled for 1 minute at 94ºC, 1.5 minutes at 55ºC and 1 minute at 72ºC.  After 24

to 28 cycles (see Table 2.1 for cycle number), a final extension step was carried

out for 5 minutes at 72ºC.
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Table 2.1 PCR primers and cycle number

Gene
name Sequences

Cycle
number

goosecoid F ACAACTGGAAGCACTGGA 28

R TCTTATTCCAGAGGAACC

chordin F CCTCCAATCCAAGACTCCAGCAG 26

R GGAGGAGGAGGAGCTTTGGGACAAG

noggin F AGTTGCAGATGTGGCTCT 27

R AGTCCAAGAGTCTCAGCA

Xbra F GGATCGTTATCACCTCTG 28

R GTGTAGTCTGTAGCAGCA

odc F GGAGCTGCAAGTTGGAGA 24

R TCAGTTGCCAGTGTGGTC
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Whole-mount immunostaining and Red-Gal staining

     Whole-mount immunostaining was performed using albino embryos.

Embryos were co-injected with Xlefty
myc or Xlefty

NGM-Amyc RNA and a lineage-

tracer RNA that encodes a nuclear-targeted -galactosidase into one marginal

blastomere of a 32-64 cell-stage embryo.  Vitelline membranes were carefully

removed from stage 9 embryos. Embryos were formaldehyde fixed in MEMFA

(0.1 mM MOPS pH 7.4, 2 mM EGTA, 1 mM MgSO4, 3.7 % formaldehyde) for 1

hour, and washed three times in 1X phosphate-buffered saline (PBS).  gal was

detected with Red-Gal (Research Organics; catalogue # 1364C) by incubating at

room temperature in reaction buffer (1X PBS, 5 mM K3Fe(CN)6, 5 mM

K4Fe(CN)6, 2 mM MgCl2, 1 mg/ml Red-Gal; Sive et al., 2000) for approximately

30 minutes.  Next, embryos were washed three times in 1X PBS and post-fixed

in MEMFA for one hour.  Embryos were washed three times in 1X PBS

containing 0.2% Triton-X100 (PBST) and blocked in two solutions for 1 hour

each: (i) PBST containing 2% milk and 2 mg/ml BSA and (ii) PBST contain 10%

donkey serum, 2 % milk, and 2 mg/ml BSA.  Anti-myc antibody (9E10; Vanderbilt

University Antibody Core) was diluted to 1:3000.  Alkaline phosphatase-linked

anti-mouse secondary antibody (Jackson ImmunoResearch, catalogue # 715-

055-151) was reconstituted in 500 µl of sterile water.  500 µl of glycerol was

added for a final concentration of 50% glycerol.   The secondary antibody was

then diluted to 1:1500.  Primary and secondary antibodies were diluted in

blocking buffer containing 10% donkey serum and incubated overnight at 4ºC.

Embryos were washed 10 times in PBST for 30 minutes after primary and
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secondary antibody incubation. BM purple (Roche; catalogue # 11442074001)

signal was terminated after approximately 30 minutes.  In comparative

experiment, all parallel-processed samples were stopped at the same time.

     For bisection, embryos were collected 1, 2, 3, and 4 hours post-injection.

Embryos were MEMFA-fixed for one hour at room temperature and washed three

times in 1X PBS.  Red-Gal staining and MEMFA post-fix were performed as

described above.  Embryos were equilibrated in 0.3 M sucrose in 1X PBS for 5

minutes and then embedded in 1X PBS/0.3 M sucrose/2% low melting point

agarose.  Embryos were bisected through the patch of Red-Gal marked clone.

The bisected embryos were removed from the agarose, washed for 5 minutes in

1X PBS/0.3 M sucrose and then washed three times for 5 minutes in 1X PBST.

Antibody incubations and washes were performed as described above.

DNA constructs

XleftyHA

     The QuickChange Site-Directed Mutagenesis Kit (Stratagene; catalogue #

200519) was used to add a NheI site 4 amino acids downstream of cleavage site

2 with the following primers: Nhe-Xlefty-top 5 -

CACCGACCTGTCAACAATGGAGCTAGCGGAGCCAGAGTTAGTGTGTAT-3 ;

Nhe-Xlefty-bottom 5 -

ATACACACTAACTCTGGCTCCGCTAGCTCCATTGTTGACAGGTCGGTG-3

(NheI site underlined).  The following oligonucleotides were annealed and
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inserted into NheI digested CS2+XleftyNheI: 5 -

CTAGCGGATATCCATATGATGTGCCAGATTATGCAGGATATCCATATGATGT

GCCAGATTATGCAGGAG-3 ; 5 -

CTAGCTCCTGCATAATCTGGCACATCATATGGATATCCTGCATAATCTGGCA

CATCATATGGATATCCG (HA epitope tag underlined).

XleftyNGM-A and XleftyNGM-S

     The QuickChange Site-Directed Mutagenesis Kit (Stratagene) was used to

mutate the N-linked glycosylation site “NRT” (asparagine arginine threonine) to

either “ART” (NGM-A; alanine arginine threonine) or “SRT” (NGM-S; serine

arginine threonine) with the following primers: NGM-A-Top 5 -

TTGAAAGATGGCACCGCCAGAACCTCCCTGGTG-3 ; NGM-A-Bottom 5 -

CACCAGGGAGGTTCTGGCGGTGCCATCTTTCAA-3 ; NGM-S-Top 5 -

TTGAAAGATGGCACCAGCAGAACCTCCCTGGTG-3 ; NGM-S-Bottom 5 -

CACCAGGGAGGTTCTGCTGGTGCCATCTTTCAA-3  (mutated N-linked

glycosylation underlined).

Xleftymcs1, Xleftymcs2, and Xleftymcs1/2

     The QuickChange Site-Directed Mutagenesis Kit (Stratagene) was used to

mutate cleavage sites (CS1 and/or CS2) from “R-X-X-R” to “G-V-D-G” with the

following primers: CS1-Top 5 -

ATGCTGCACAATCACAGAGAGGGGGTGGATGGATCACTGCCCAGCTTGGC

TGGC-3 ; CS1-Bottom 5 -
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GCCAGCCAAGCTGGGCAGTGATCCATCCACCCCCTCTCTGTGATTGTGCAG

CAT-3 ; CS2-Top 5 -

ATCATGAACGTTCCAGAAAGGGGAGTCGACGGACCTGTCAACAATGCCAGA

GTT-3 ; CS2-Bottom 5 -

AACTCTGGCATTGTTGACAGGTCCGTCGACTCCCCTTTCTGGAACGTTCATG

AT-3  (mutated cleavage site underlined).

Xleftymyc, XleftyNGMmyc, Xleftymcs1myc, Xleftymcs2myc and Xleftymcs1/2myc

     The open reading frame of Xlefty, XleftyNGM and the various cleavage mutants

were PCR amplified with the following primers: Xlefty-5 -myc 5 -

CGCGGATCCATGGGTGTCACTACCAAATCTTTG-3 ; Xlefty-3 -myc 5 -

CGCGGATCCTATGATAGCGATATTGTCCATTGT-3 .  The PCR product was

digested with BamHI and subcloned into CS2+MT digested with BamHI.

Xnr2NGM

     The QuickChange Site-Directed Mutagenesis Kit (Stratagene) was used to

mutate the N-linked glycosylation site “NET” to “AET” (NGM) with the following

primers: Xnr2-NGM-5  5 -

GCCTGTCCTATTCCTTTAGCTGAAACCTTCAAGCCAACG-3 ; XNR2-NGM-3

5 -CGTTGGCTTGAAGGTTTCAGCTAAAGGAATAGGACAGGC-3  (mutated

glycosylation site underlined).

Xnr5G
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     The QuickChange Site-Directed Mutagenesis Kit (Stratagene) was used to

add N-linked glycosylation site “NGT” with the following primers: Xnr5-N-5  5 -

TGCCCGATTCCACTGAATGAGACCTTCAAGCCAACAAA-3 ; Xnr5-N-3  5 -

GTTTGTTGGCTTGAAGGTCTCATTCAGAGGAATCGGGCA-3  (N-linked

glycosylation motif underlined).
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CHAPTER III

THE EFFECT OF POST-TRANSLATIONAL MODIFICATIONS ON XLEFTY
FUNCTION

Introduction

     During metazoan embryogenesis, intercellular signaling molecules in the

hedgehog, Wnt and TGF  families are used reiteratively and in combination to

initiate various developmental programs (Freeman and Gurdon, 2002; Tabata

and Takei, 2004).  Especially in early embryogenesis, the regulated transcription

of the genes encoding these signaling molecules, as well as the level of activity

of their extracellular antagonists, and other factors, are involved in the generation

of morphogen activity gradients that lead to the spatially ordered specification of

cell fates.  There are several mechanisms that assist in shaping morphogen

gradients.  A good example of the effect of post-translational modification is seen

in the addition of cholesterol to proteins in the Hedgehog family, which regulate

the range of spreading of this factor through tissue in several systems (Li et al.,

2006; Su et al., 2007).  For FGF8, the rate of clearing via endocytosis controls

the amount of extracellular protein available for signaling as well as the distance

the protein is able to travel from the source of production (Scholpp and Brand,

2004). It is easy to imagine how receptor availability and extracellular antagonists

are powerful dynamic regulators of morphogen gradients (Smith and Harland,

1992; Sasai et al., 1994; Bouwmeester et al., 1996; Goodrich et al., 1996; Meno

et al., 1996; Meno et al., 1999; Thisse and Thisse, 1999; Cheng et al., 2000;
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Tanegashima et al., 2000; Larrain et al., 2001; Branford and Yost, 2002; Chang

et al., 2003; Harms and Chang, 2003; Zhang et al., 2004).  The preferential

intracellular degradation of mRNA for a signaling molecule gene can contribute to

formation of a morphogen gradient.  For example, progressive clearance of fgf8

mRNA is translated into a gradient of FGF8 protein that appears to be required

for proper axis elongation during vertebrate embryogenesis (Dubrulle and

Pourquie, 2004).

     The Nodal ligand binds a receptor complex that includes Activin type 1 and

type 2 receptors (Whitman, 2001), together with an EGF-CFC family co-receptor

(Shen et al., 1997; Ding et al., 1998; Zhang et al., 1998; Dorey and Hill, 2006;

Onuma et al., 2006).  Lefty, a divergent member of the TGF  family whose

transcription is directly regulated by Nodal signaling, is one of the principal

extracellular feedback inhibitors of Nodal signaling (Meno et al., 1996; Meno et

al., 1999; Thisse and Thisse, 1999; Cheng et al., 2000; Tanegashima et al.,

2000; Branford and Yost, 2002; Cha et al., 2006).  The current understanding is

that Lefty antagonizes Nodal signaling by binding to either the EGF-CFC cofactor

directly, or by physically interacting with the Nodal ligand, thereby blocking

Nodal-receptor interaction and inhibiting downstream signal transduction (Chen

and Shen, 2004; Cheng et al., 2004; Tanegashima et al., 2004).

     Calcium-dependent serine endoproteases of the subtilisin-like proprotein

convertase family (SPCs) recognize the consensus R-X-X-R motif found in many

intercellular signaling molecule proproteins, including Nodal and Lefty

(Nakayama, 1997; Molloy et al., 1999).  SPCs, of which there are seven distinct
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mammalian family members, have been localized to the intracellular secretory

network as well as having been detected in association with the extracellular

matrix.  SPC-mediated cleavage releases the active ligand during the maturation

of TGF  proteins (Kingsley, 1994; Nakayama, 1997; Cui et al., 1998; Constam

and Robertson, 1999; Molloy et al., 1999; Ulloa et al., 2001; Beck et al., 2002;

Sakuma et al., 2002; Ben-Haim et al., 2006).  In principle, therefore, SPCs may

work in both a cell-autonomous (i.e., within the proprotein producing cell) and

non-cell-autonomous manner from adjacent cells (Nakayama, 1997; Molloy et al.,

1999).  Although mammalian Lefty molecules have been shown to undergo

proteolytic cleavage by SPC1, SPC4, and SPC6 in several transfected cultured

cell lines, the endogenous SPC enzyme(s) that is involved in the proteolytic

processing of Lefty in vivo is currently not known (Ulloa et al., 2001; Beck et al.,

2002; Sakuma et al., 2002).

     There is much evidence that cleavage mutants (which cannot undergo

proprotein processing) of various TGF  molecules are either not secreted or are

biologically inactive (Lopez et al., 1992; Hawley et al., 1995; Osada and Wright,

1999; Sun et al., 1999; Yeo and Whitman, 2001; Eimon and Harland, 2002;

Onuma et al., 2002; Sakuma et al., 2002; Onuma et al., 2005).  Recently,

however, several reports have suggested that uncleaved proproteins retain some

signaling function.  In one example, Eimon and Harland (2002) demonstrated

that overexpressed cleavage-resistant Xnr2 was capable of inducing the

expression of mesodermal genes in Xenopus embryos, although this activity was

weaker than normal protein, and has so far not been detected by other groups
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(Osada and Wright, 1999; Onuma et al., 2002; Hashimoto-Partyka et al., 2003;

Onuma et al., 2005).  The reason for this discrepancy remains unclear.  A similar

activity was reported for a non-cleavable form of mouse Nodal, and in this case,

the proprotein has been suggested to be able to bind and signal through Activin

receptors to induce significant expression of BMP4, furin/spc1 and spc4 (Ben-

Haim et al., 2006).  Yet another report demonstrated that affinity purified human

Lefty A proprotein could activate the MAP kinase pathway in P19 mouse

embryonic carcinoma cells when added to the culture medium (Ulloa et al.,

2001).

     The Xenopus Lefty proprotein has two potential cleavage sites that would be

expected to produce a long (XleftyL) or short (XleftyS) isoform by cleavage at site

1 (CS1) or site 2 (CS2), respectively.  When tested in 293T and BALB/3T3 cell

lines, CS1 and CS2 cleavage of mouse Lefty 1 seemed to depend on the cell

type (Meno et al., 1996).  Expression of mouse Lefty 1 and Lefty 2 in Xenopus

tissues (animal caps and oocytes) and COS-7 cells resulted in the detection of

the short isoform for Lefty 1 and the long isoform for Lefty 2 (Sakuma et al.,

2002).

     Several TGF  family members contain at least one N-linked glycosylation

consensus sequence in the proprotein that may affect the secretion, protein

stability and biological function of the ligand domain.  Specifically, TGF 1 and

TGF 2 require the addition of N-linked glycans at three sites in the prodomain for

efficient secretion of the ligand into the culture medium (Brunner et al., 1992;

Lopez et al., 1992).  In another example, the modification of mouse Nodal by
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inserting an N-linked glycosylation motif that is found in five of the six Xenopus

Nodal-related factors and absent from mouse Nodal led to a greatly increased

ligand stability (Le Good et al., 2005).  The presence in Lefty molecules of a

single N-linked glycosylation motif in the mature region that might influence

intrinsic protein stability or Nodal-blocking function is an issue that we address in

this thesis.

     As stated above, Sakuma et al. (2002) and Ulloa et al. (2001) assayed the

cleavage of mammalian Lefty in Xenopus tissues or in several mammalian

cultured cell lines, which may not be the appropriate tissue context to study the

processing of this important intercellular antagonist, especially when considering

how its activity in specifying the patterning of embryonic tissue.  Therefore, we

decided to examine the single Xenopus Lefty molecule in a homologous tissue

context within the developing Xenopus embryo, and during a period when Xlefty

is normally expressed.  We report here on our assays of how proprotein

processing and N-linked glycosylation affected protein stability, biological

function and movement through embryonic tissues.  We found that Xlefty

undergoes cleavage at CS1 and CS2 when secreted from Xenopus oocytes, but

that only XleftyL is detected when produced from embryonic tissues.  The use of

cleavage mutants to direct the production of either the long or short isoform

showed in a mesoderm induction assay context that XleftyL is the inhibitory

isoform.  Additionally, this is the first report that demonstrates that vertebrate

Lefty molecules are secreted as glycosylated proteins, but our assays suggest
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that glycosylation does not alter the gross biological function or the movement of

Xlefty through blastula stage embryonic tissue.
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Results

Lefty molecules are secreted as glycoproteins

     Lefty molecules contain a single N-linked glycosylation consensus sequence

in the mature domain that could affect intrinsic protein stability or post-secretion

clearance, its biological effectiveness as a Nodal antagonist, and/or the range of

movement through embryonic tissue.  To determine if core glycosylation of the

proprotein could occur, in vitro translation of Xlefty RNA was performed in the

presence and absence of canine pancreatic microsomal membranes.  When

Xlefty was used as a template in the absence of microsomal membranes, a

signal band of approximately 38 kDa was produced (Fig. 3.1).  When the reaction

was carried out in the presence of microsomal membranes, two bands were

detected.  The lower band had a migration equivalent to that of Xlefty produced

in the absence of microsomal membranes, while the slower migrating and distinct

appearance of the second band indicated post-translational modification, likely

glycosylation (Fig. 3.1).
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Figure 3.1 Post-translational modification of Xlefty.  TNT reaction primed with
250 pg of Xlefty RNA in the absence (-) and (+) presence of canine pancreatic
microsomal membranes.
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     In order to determine if the glycosylation motif is functional in vivo, RNAs

encoding Xenopus Lefty, zebrafish Lefty 1, mouse Lefty 1 and mouse Lefty 2

were injected into Xenopus oocytes and the resulting conditioned medium was

analyzed by SDS-PAGE.  Radiolabeled Lefty molecules detected in the

conditioned medium migrated slower than predicted and as diffuse bands, a

typical behavior of glycoproteins (Fig. 3.2A).  When tunicamycin was injected into

the oocytes prior to the RNA, the secreted proteins migrated faster and as

sharper bands.  The presence of glycosylation was confirmed by treating the

Lefty-containing media samples with a deglycosylase, PNGase F, prior to gel

electrophoresis (Fig. 3.2A).  These data demonstrated that vertebrate Lefty

molecules were glycosylated when secreted from Xenopus oocytes.  The

tunicamycin result showed that, unlike TGF 1 and TGF 2, Lefty molecules do

not require the presence of N-linked glycans for efficient secretion into the

medium.

     Mouse Lefty 2 contains two potential cleavage sites, with cleavage reported to

occur only at CS1 in Xenopus animal caps and COS-7 cells.  Furthermore, I the

same studies, animal cap expression of mouse Lefty 2 carrying a mutant CS1

resulted in the detection of only the proprotein, suggesting that CS2 is strongly

refractory to cleavage (Sakuma et al., 2002).  We wanted to determine if both

CS1 and CS2 were utilized for proteolytic processing of the Xlefty proprotein.

Injection of Xlefty RNA into Xenopus oocytes resulted in equal amounts of both

long and short isoforms (XleftyL and XleftyS, respectively) in the conditioned

medium (Fig. 3.2).



49

  

Figure 3.2  Glycosylation of Lefty molecules.  A, B: Medium was analyzed
from Xenopus oocytes injected with the indicated RNAs, metabolically labeled
with [35S]-methionine/cysteine.  Black dots, major glycosylated and
deglycosylated bands. Un, uninjected oocytes; V, vehicle (1% DMSO); (-),
oocytes not injected with tunicamycin, or conditioned medium not treated with
PNGase F; T, tunicamycin; P, PNGase F.



50

This finding suggested that cleavage occurred at CS1 and CS2 with equal

efficiency for wild-type Xlefty.  To test for the cleavage efficiency at each CS, we

used site-directed mutagenesis to disrupt the protease recognition site at one or

both cleavage sites.  Injection of Xlefty
mcs1 RNA (mutant cleavage site 1;

encoding an uncleavable CS1) resulted in detection of XleftyS and the proprotein,

together with minor amounts of unknown and perhaps spurious cleavage

products.  Although only a functional CS2 was available in this proprotein, the

presence of substantial proprotein in the conditioned medium indicated that CS2

cleavage was inefficient.  This result can be interpreted as suggesting that

cleavage at CS1 is required for further processing at CS2, a situation similar to

that noted for BMP-4, as described in more detail in the Discussion (Cui et al.,

2001).  Conversely, injection of Xlefty
mcs2 RNA (in which only CS1 is functional)

resulted in detection of XleftyL without appreciable proprotein, suggesting that

CS1 cleavage was extremely efficient (Figure 3.2B).  Injection of double-

cleavage-site-mutant Xlefty
mcs1/2 RNA resulted in secretion of the proprotein and

a small proportian of unknown cleavage products (Figure 3.2B).  Proprotein

cleavage is therefore not required for Xlefty secretion, which differs from reports

showing that cleavage is required for secretion of TGF 1 and Derrière (Lopez et

al., 1992; Eimon and Harland, 2002).

     The initial steps of N-linked glycosylation occur in the endoplasmic reticulum

with further maturation in the Golgi complex (Helenius and Aebi, 2001).  SPC1,

SPC4, and SPC6 have been localized to the trans-Golgi network and secretory

granules, as well as at the cell surface and secreted to the extracellular matrix
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(Molloy et al., 1999; Bergeron et al., 2000; Beck et al., 2002; Tsuji et al., 2003;

Nour et al., 2005).  Although the effect of N-glycosylation has not yet been

directly assessed on the structure of TGF  family proteins, experiments with

synthetic peptides have demonstrated that N-linked glycans can induce a

compact -turn in the vicinity of the carbohydrate addition (O'Conner and

Imperiali, 1998; Helenius and Aebi, 2001).  Therefore, there is a possibility that

the presence or absence of N-linked glycans could generate a protein

conformation that is unsuitable for SPC-mediated cleavage.  In order to test if

glycosylation affected cleavage at CS1 and CS2, tunicamycin was injected into

the oocytes prior to the RNAs encoding the various cleavage mutants.  Although

the secreted proteins migrate at different rates, the similarity of the cleavage

patterns generated from the various cleavage mutant proteins in the presence or

absence of tunicamycin suggests that glycosylation does not alter CS1/CS2

cleavage characteristics (Figure 3.2B).  Again, PNGase F treatments confirmed

the presence of glycosylation.  In addition, the similarity of migration of the

cleavage products detected in the presence of tunicamycin or with PNGase F

treatment suggested that the previous tunicamycin treatment blocked the

majority of N-linked glycan addition.

     We next examined the cleavage and glycosylation characteristics of Xlefty

secreted from embryonic tissues.  We analyzed conditioned media from the

dissociated cells from entire animal halves (the animal hemisphere cut away at

the equator) or standard animal caps.  Since there are no Xlefty antibodies

available to detect either the endogenous (which is in any case likely expressed
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at difficult-to-detect low levels) or overexpressed normal protein, an HA epitope-

tagged version was utilized for these experiments.  When overexpressed in

whole embryos, XleftyHA (containing a tag placed 4 aa after CS2; see Chapter II)

induced an embryonic phenotype similar to that caused by wild-type Xlefty at

equivalent RNA doses (not shown), and the HA tag did not interfere with

secretion or stability of Xlefty (not shown), demonstrating that HA tagging at this

location did not affect its biological function.  When expressed in Xenopus

embryonic tissues, XleftyHA was secreted as a glycosylated protein, as confirmed

by PNGase F treatment  (Figure 3.3) and only XleftyL was detected.  In similar

experiments with myc-tagged versions of Xlefty or the various cleavage mutants,

XleftyL and the proprotein were detected in cell extracts from whole embryos, or

in the conditioned media from dissociated animal halves (Fig. 3.4).  Similar to

data gathered from oocyte secretion assays, the proprotein was efficiently

secreted from animal halves (Fig. 3.4B).  These results indicate that Xlefty is

glycosylated in embryonic tissues, and that XleftyL is the only isoform of the

protein that accumulates to detectable levels either in homogenized whole

embryos extracts, or secreted from embryonic cells.
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Figure 3.3 Secreted Xlefty is a glycoprotein. A,B: Western blot of conditioned
medium from dissociated animal halves (A) and animal caps (B) isolated from
embryos injected at the one-cell stage with 2.5 ng of Xlefty

HA RNA.  Un,
uninjected embryos; (-), conditioned medium not treated with PNGase F; P,
PNGase F; L, XleftyL (filled arrowhead); S, XleftyS (open arrowhead).
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Figure 3.4  XleftyS not detected in whole embryos or conditioned medium.
Embryos were injected at the one-cell stage with 300 or 900 pg of RNA encoding
myc-tagged “wild-type” Xlefty or the various cleavage mutants.  Western blot
analysis of cell extracts from whole embryos (A) or conditioned medium from
animal halves (B).  Filled arrowheads, proprotein (P) and XleftyL (L) open
arrowhead, XleftyS (S).  Un, uninjected.
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Cleavage of Xlefty required for Xnr antagonism

     Xlefty inhibits the expression of organizer-specific and mesendodermal genes

that are induced in isolated animal caps by Xenopus Nodal-related factors such

as Xnr2 (Cheng et al., 2000).  To determine if XleftyL, XleftyS and the proprotein

differ in their capacity to inhibit Xnr signaling, we co-expressed normal Xlefty or

its various cleavage mutants with Xnr2.  For wild-type Xlefty, a 1:1 ratio of

Xlefty:Xnr2 RNA resulted in the induction of mesodermal markers (gsc, chd, and

Xbra) at a level similar to or only slightly down-regulated compared to Xnr2

alone.  A higher 10:1 Xlefty:Xnr2 RNA ratio led to suppressed organizer-specific

and pan-mesodermal marker gene expression (Fig. 3.5).  Co-injection of RNAs

encoding Xlefty that should produce only the proprotein (Xlefty
mcs1/2) or a

proprotein that can be cleaved only to XleftyS (Xlefty
mcs1) were incapable of

blocking Xnr2-mediated induction of mesodermal markers, even at the 10:1 ratio

(Fig. 3.5A, B).  In contrast, RNA that encoded a protein only capable of cleavage

to XleftyL inhibited Xnr2 function as efficiently as did wild-type Xlefty (Fig. 3.5C).

The difference in Xnr-blocking ability is not explained by different translation

efficiencies, as the level of protein produced from injected myc-tagged RNAs

encoding Xlefty and the various cleavage variants were similar in whole embryos

or when secreted from animal halves (Fig. 3.4).  These results suggest that

cleavage of Xlefty proprotein to XleftyL is required to block Xnr signaling, a

finding consistent with the requirement of proprotein cleavage of mouse Lefty 1

and mouse Lefty 2 to block Nodal signaling in luciferase assays (Sakuma et al.,

2002).
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Figure 3.5 Inhibition of Xnr2 by XleftyL.  A: One-cell stage embryos were
injected with RNA (pg/embryo indicated) encoding Xnr2 plus or minus Xlefty or
Xleftymcs1, the latter to enforce XleftyS production.  Animal caps were analyzed at
stage 10.5 for organizer-specific (goosecoid and chordin) or pan-mesodermal
markers (Xbra).  Odc, loading control.  B, C: Similar analysis of one-cell stage
embryos overexpressing uncleavable Xlefty proprotein (B, Xlefty

mcs1/2 RNA used)
or proprotein that enforces XleftyL production (C, from Xlefty

mcs2 RNA) on Xnr2-
mediated mesoderm induction.  WE, whole embryo plus (+) and minus (-)
reverse transcriptase (RT); AC, uninjected animal cap; 1:1, 10 pg of each RNA;
10:1, 100 pg of RNA encoding Xlefty or cleavage mutant protein, and 10 pg of
Xnr2 RNA.
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No dorsal-ventral difference in Xlefty processing

     Tanegashima et al. (2000) demonstrated that Xlefty was unable to inhibit the

Xnr1-mediated induction of mesodermal markers in animal caps, while it could

completely suppress the Nodal-induced expression of chordin in ventral marginal

zone explants.  One interpretation of their data is that SPC enzyme activity could

vary throughout the embryo.  We have been interested in the idea that a dorsal-

to-ventral gradient of Xlefty-processing activity in the gastrula-stage embryo

might be set up as a consequence of the reported dorsal-to-ventral gradient of

Nodal signaling (Lee et al., 2001).  We assayed Xlefty processing in dissociated

animal hemispheres from embryos in which Xlefty
myc RNA was targeted to either

both dorsal, or both ventral, blastomeres at the 4-cell stage.  The animal half

conditioned medium (removed at St. 8.5 to 9, cultured for 3 hours; approx.

equivalent of sibling stage 10-10.5) and whole Stage 10-10.5 embryo extracts

were analyzed by western blot.  There was equivalent accumulation of XleftyL

from embryos producing Xlefty from either the dorsal or ventral side (Fig. 3.6).
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Fig. 3.6 Absence of dorsal-ventral difference in Xlefty processing.  Western
blot, cell extracts from embryos (WE) and conditioned medium from dissociated
animal halves (AH) from embryos injected in either both dorsal (D) or ventral (V)
blastomeres at the 4-cell stage with 150 pg/cell of Xlefty

myc RNA.  The
completeness of processing to XleftyL at this 300 pg total RNA dose is similar to
that seen at 300 pg/embryo in Figure 3.4.  Un, uninjected embryos; L (solid
arrowhead), XleftyL; proprotein (P) and XleftyS (S) open arrowhead.
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Xlefty does not induce prolonged MAPK activation

     Despite the demonstration above that proprotein cleavage seems to be

required for Xlefty activity, at least as related to Nodal signaling, we were

interested in following up, but this time in a homologous embryonic tissue, a

previous report that human Lefty proprotein showed some biological activity as

an inducer of the MAP kinase pathway in P19 mouse embryonic carcinoma cells

(Ulloa et al., 2001).  To test if either Xlefty or the full-length proprotein caused

prolonged MAPK activation, we assayed for intracellular diphosphorylated

ERK1/2 (dpERK) in whole embryos and animal caps injected with Xlefty and

Xlefty
mcs1/2 RNAs.  Uninjected embryos showed no detectable dpERK at stage 9,

consistent with previous reports (LaBonne and Whitman, 1997; Christen and

Slack, 1999).  However, as expected, wounding (cutting the embryo into

quarters) resulted in robust ERK activation (LaBonne and Whitman, 1997;

Christen and Slack, 1999; Kuroda et al., 2005).  Injection of 100 pg of either

Xlefty or Xlefty
mcs1/2 RNAs did not induce ERK activation in whole embryos.  In

animal caps isolated from uninjected embryos, surgical removal of the animal

cap, which induces a wounding response, resulted in detection of dpERK, but

this activation was short-lived, becoming barely detectable after 120 minutes.  In

animal caps removed from embryos that were injected with Xlefty or Xlefty
mcs1/2

RNAs, the steady-state level of dpERK became progressively reduced at a rate

similar to that in animal caps isolated from uninjected embryos (Fig. 3.7).  These

results suggest that neither Xlefty, nor the forcibly overexpressed uncleavable
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proprotein, are capable of inducing prolonged activation of the MAPK pathway in

the homologous context of the Xenopus embryo.
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Figure 3.7  Xlefty does not induce prolonged MAPK activation.  Western blot
of cell extracts from embryos and animal caps injected with 100 pg of either
Xlefty or Xlefty

mcs1/2 RNA, using antibodies against diphospho-ERK1/2 or total
ERK1/2.  Time after wounding (“w”; quartering of embryos) or animal cap
isolation is given in minutes.  Un, uninjected; WE, whole embryo; AC, animal cap.
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Glycosylation not required for Xlefty stability

     Several reports suggest that the addition of carbohydrate moieties affect the

secretion, stability and biological activity of TGF  family molecules.  For TGF 1

and TGF 2, blocking N-linked glycan addition by either mutating asparagine

residues, or adding tunicamycin to the culture medium, resulted in no detectable

proprotein or ligand being secreted from COS, 293S or CHO cells (Sha et al.,

1989; Brunner et al., 1992; Lopez et al., 1992).  In addition, tunicamycin

treatment resulted in the intracellular accumulation of the TGF 1 proprotein (Sha

et al., 1989).  Active Nodal ligand has been notoriously difficult or impossible to

detect in conditioned medium from COS1 or 293T cells (Constam and

Robertson, 1999; Le Good et al., 2005), but a modified version created by the

insertion of an artificial N-linked glycosylation site into the ligand region (the

glycosylation motif was the same as that in Xnr1/Xnr2/Xnr3) increased the

stability of mouse Nodal (Le Good et al., 2005).  Given that the above reports

suggested that glycosylation was playing a role in secretion and/or stability of

TGF -related molecules, we next determined if glycosylation influenced Xlefty

secretion and stability.  In the context of either wild-type or Myc epitope-tagged

Xlefty, the latter having a similar level of function to the wild-type protein as

explained below, the asparagine in the N-linked glycosylation motif (NRT) was

mutated to either alanine (XleftyNGM-A) or serine (XleftyNGM-S) to prevent N-linked

glycan addition (Brunner et al., 1992; Carter et al., 2005).  The equivalent

migration characteristics of untagged versions of either XleftyNGM-A or XleftyNGM-S

in the presence or absence of tunicamycin showed that these mutations blocked
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addition of all N-linked glycans (Fig. 3.8A).  Dissociated animal halves were used

to test the stability of myc-tagged Xlefty compared to myc-tagged XleftyNGM-A.  As

judged by the equivalent accumulation of Xleftymyc and XleftyNGM-Amyc,

glycosylation does not alter the stability or secretion of Xlefty from embryonic

tissues (Fig. 3.8B).  Also, data gathered from mesoderm induction assays

suggest that the glycosylation mutant is an effective blocker of Xnr2, which

argues for no difference in protein stability compared to wild-type (Fig. 3.9).
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Fig 3.8  Glycosylation not required for protein stability.  A: Xenopus oocytes
were injected with RNA encoding Xlefty or either non-glycosylatable mutant,
XleftyNGM-A or XleftyNGM-S.  Arrowheads, XleftyL and XleftyS.  B: Western blot,
conditioned medium from animal halves from embryos injected at the one-cell
stage with 100, 500, or 1500 pg of Xlefty

myc or Xlefty
NGM-Amyc RNA.  Filled

arrowheads, proprotein and XleftyL; open arrowhead, XleftyS. Un, uninjected
oocyte or embryo; Vehicle, 1% DMSO; (-) conditioned medium from oocytes not
injected with tunicamycin; T, tunicamycin; L, XleftyL; S, XleftyS; P, proprotein.
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Glycosylation of Xlefty not required for Xnr antagonism

     Artificial glycosylation of mouse Nodal greatly increased its signaling activity

compared to the wild-type ligand (Le Good et al., 2005).  Since the stability of

Xlefty secreted from embryonic tissue was not altered by glycosylation, we tested

if glycosylation affected its ability to block Xnr signaling.  Untagged versions of

Xlefty or Xlefty
NGM-A

/Xlefty
NGM-S RNAs were co-injected with Xnr2 RNA at the

one-cell stage, and the induction of mesodermal markers in animal caps was

analyzed.  Similar to wild-type Xlefty, XleftyNGM-A and XleftyNGM-S efficiently

blocked Xnr2-induced mesodermal gene expression, and we conclude that

glycosylation does not alter the efficacy of Xlefty as an antagonist of Xnr

signaling in mesoderm induction assays (Fig. 3.9) in which the distribution of

Xlefty RNA amongst all animal cap cells effectively removes any potential effect

from the range of movement of the inhibitor (a “range-independent” assay).
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Fig 3.9 Glycosylation is not required to suppress Xnr2-mediated mesoderm
induction. A: Mesoderm induction assay for effectiveness of non-glycosylated
Xlefty.  Marker expression was assayed at stage 10.5 in animal caps explanted
from embryos injected with Xnr2 (pg/embryo indicated) with or without RNA
encoding Xlefty, XleftyNGM-A, Xleftymyc or XleftyNGM-Amyc.  B: Animal caps were
isolated from embryos injected with Xnr2 (pg/embryo indicated) plus or minus
Xlefty or Xlefty

NGM-S RNA.  WE, whole embryo plus (+) and minus (-) reverse
transcriptase (RT); AC, uninjected animal cap.  1:1, 10 pg of each RNA; 10:1,
100 pg of RNA encoding untagged or tagged versions of Xlefty, XleftyNGM-A or
XleftyNGM-S and 10 pg of RNA encoding Xnr2.
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Glycosylation does not alter the movement through embryonic tissues

     Interaction with heparan sulfate proteoglycans (HSPGs) has been suggested

to regulate the movement of BMP-4 and Dpp in Xenopus embryonic tissue and

Drosophila imaginal discs, respectively (Ohkawara et al., 2002; Belenkaya et al.,

2004; Han et al., 2004).  Since glycosylation of Xlefty did not alter protein stability

in embryonic tissues or its biological activity in antagonizing mesoderm induction,

we next tested for an effect on the movement of Xlefty.  For range of movement

experiments, we utilized myc-tagged versions of Xlefty and XleftyNGM-A, which

antagonize Xnr2 signaling as effectively as the untagged proteins (Fig. 3.9).

Xlefty
myc or Xlefty

NGM-Amyc were co-injected with LacZ RNA, encoding nuclear-

targeted -galactosidase as a lineage tracer, into a single marginal blastomere of

32-64 cell-stage albino embryos.  The embryos were analyzed at later stages by

Myc immunostaining.  In uninjected and control-injected embryos (untagged

Xlefty RNA), no specific staining was detected.  In embryos injected with either

Xlefty
myc or Xlefty

NGM-Amyc, external observation of whole embryos showed a

specific immunostaining reaction that appeared discontinuous and localized to

the interstitial spaces between cells, as opposed to a smoothly distributed signal

(Fig. 3.10A-D).  The distance that Xleftymyc and XleftyNGM-Amyc moved from the

source of production was assessed by counting the maximal observable number

of cell widths of visible signal from the edge of the clone of producer cells

(measured on the vegetal aspect, in the direction of the vegetal pole; single

measurement per embryo; Table 3.1).  Among three independent injection

experiments, the inferred range of movement away from the source cells, as
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assessed at stage 9, was similar between wild-type and non-glycosylated Xlefty.

We also collected embryos at 1, 2, 3, and 4 hours after injection that were then

bisected through the patch of marked producer cells prior to Myc immunostaining

in order to observe the internal signal (Fig. 3.10E-F).  The signal was now

intracellular as well as in the interstitial spaces, but the distal-most point of signal

from the marked clone of producer cells still seemed to be marked by an

extracellular or interstitial signal.  As with the surface Myc staining, there was no

difference at any time point in the distance that wild-type Xlefty and XleftyNGM

moved from the source cells.
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Fig 3.10  Range of Xlefty movement is not altered by glycosylation.  A-H:
Embryos co-injected with 250 pg of LacZ RNA plus or minus 150 pg of tagged or
untagged RNAs encoding Xlefty and XleftyNGM-A and stained for Red-Gal and
then Myc-immunostained.  A-D: Dashed line, boundary of Red-Gal lineage-label-
marked producer cell clone.  Broken arrow, direction of vegetal pole.  Specific
Myc immunodetection signal is purple (arrowhead).  A-D: Embryos were
visualized externally after staining in whole-mount.  Embryos were uninjected (A),
or received 150 pg untagged Xlefty RNA (B), 150 pg Xlefty

myc RNA (C), or 150 pg
Xlefty

NGM-Amyc RNA (D).  E-H: Embryos were bisected through the patch of Red-
Gal staining before myc immunostaining.  Embryos were uninjected (E) or
received 150 pg untagged Xlefty RNA (F), 150 pg Xlefty

myc RNA (G), or 150 pg
Xlefty

NGM-Amyc RNA (H).
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Table 3.1  Range of movement is not altered by glycosylation

RNA 1 2         3

n average cells p n average cells p n average cells p

Xlefty
myc

17 6.65 ± 2.2 0.103 21 5.28 ± 1.6 0.225 8 6.75 ± 2.1 0.613

Xlefty
NGM-Amyc

16 5.40 ± 2.0 17 6.00 ± 1.9 9 7.33 ± 2.5

150 pg of either Xlefty
myc or Xlefty

NGM-Amyc RNAs were co-injected with 250 pg of RNA
encoding nuclear-localized -galactosidase into one marginal blastomere of a 32-64

cell-stage embryo. Cell widths were calculated as described in the text.  Three
independent experiments (1, 2, and 3) were performed.  n, number of embryos scored.
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Discussion

     In this study, we demonstrated that various vertebrate Lefty molecules were

secreted as glycoproteins from oocytes and that Xlefty was glycosylated when

secreted from embryonic cells.  While all vertebrate Lefty proteins contain a

single N-linked glycosylation motif in the mature region, our data suggest that, at

a gross level, glycosylation does not influence protein stability, Nodal-blocking

function, or its movement through embryonic tissues.

     We showed that Xlefty is capable of being cleaved to produce both long and

short isoforms in oocytes, although efficient cleavage at CS2 may be regulated

by cleavage at CS1.  XleftyL was the only isoform detected, however, when

produced from embryonic cells and seems to be the inhibitory isoform in

mesoderm induction assays.  These findings lead to the conclusion that future

biochemical experiments should be sure to employ the XleftyL isoform in, for

example, determining which region(s) of Xlefty binds to either the Nodal ligand or

xCR1-3 to antagonize Nodal signaling (Chen and Shen, 2004; Cheng et al.,

2004; Tanegashima et al., 2004).  Additionally, determining the binding constants

for the interaction of XleftyL with xCR1-3 or Xnr ligands, by producing stable

XleftyL from an Xleftymcs2 construct, may determine the level to which each

mechanism contributes to the antagonism of Nodal signaling.

     Although the movement characteristics of mouse Lefty 2 and mouse Nodal

have been analyzed by expressing EGFP-tagged proteins in chick mesoderm,

the movement of XleftyL in relation to the various Xnrs should be compared in

Xenopus tissues, where localized injections can be performed to determine how
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Xlefty shapes the Xnr morphogen gradient (Sakuma et al., 2002).  Since Nodal

signaling is important for both mesendoderm induction and proper establishment

of the Left-Right (L-R) axis during embryogenesis, understanding how Xlefty

shapes the Nodal morphogen gradient during mesendoderm formation might

also be relevant to its role in modulating Nodal signaling during L-R specification

(Wright, 2001; Schier, 2003).  It remains possible that in our range of movement

experiments, we are only detecting a fraction of the Xlefty gradient in regions

where enough protein accumulates to generate a detectable immunostaining

signal, while lower levels are in fact functional beyond these domains.  A similar

problem exists with the published studies on EGFP-tagged TGF -related

molecules (Entchev et al., 2000; Teleman and Cohen, 2000; Sakuma et al.,

2002; Belenkaya et al., 2004; Williams et al., 2004; Nakamura et al., 2006),

which must also rise above a detection threshold that is currently unknown with

respect to the level of the ligand that induces downstream gene pathways.  This

issue is further complicated because the tag location in principle cannot

distinguish between the active or inactive ligands or indeed the proprotein forms.

Relevant to this point, at the doses used for our range of movement assays, the

animal half secretion experiments show that the great majority of the

overexpressed Xlefty is being cleaved to the XleftyL form, as the proprotein is not

detected at this RNA level (Fig. 3.8).
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Cleavage of Xlefty is required to block Xnr signaling but not secretion

     Similar to other TGF  molecules, Xlefty required proprotein cleavage to block

Nodal signaling.  In P19 mouse embryonic carcinoma cells, however, human

Lefty A proprotein has been reported to activate the MAPK pathway (Ulloa et al.,

2001).  Mechanistically, this result might be explained by the fact that Lefty

molecules have been shown to associate physically with EGF-CFC family

members (Chen and Shen, 2004; Cheng et al., 2004; Tanegashima et al., 2004)

and that overexpression of FRL1/xCR1 in Xenopus tissues can activate MAPK

(Yabe et al., 2003; Yokota et al., 2003).  Thus, Xlefty engagement of EGF-CFC

co-receptors might lead to MAPK activation.  Additionally, cross-talk between

Nodal and FGF signaling pathways, which is known to occur during

mesendoderm specification, may involve physical interactions between EGF-

CFC, Xlefty and the FGF and Nodal ligands (Mizoguchi et al., 2006; Poulain et

al., 2006).  In our experiments in the context of the Xenopus embryo, however,

we detect no evidence of prolonged activation of ERK1/2 by Xlefty or the

proprotein.  This discrepancy may be related to the different experimental

designs.  Ulloa et al. (2001) incubated P19 mouse embryonic carcinoma cells

with affinity-purified human Lefty A generated from conditioned medium from

transfected human embryonic kidney 293 cells expressing leftyA.  Western blot

analysis was used to confirm that human Lefty A was contained in the eluate, but

the purity of the eluted protein was not verified, and it is hard to rule out the

additional possibility that a protein capable of MAPK activation was co-purified.
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     XleftyL and XleftyS were produced at approximately equivalent levels when

normal (i.e., untagged) Xlefty was produced from oocytes.  However, the lack of

XleftyS accumulation to significant levels when embryonic tissues were analyzed

may indicate that the short isoform is a clearance intermediate that is much less

efficiently eliminated when secreted from oocytes, perhaps related to the

absence of an appropriate SPC produced by oocytes.  Alternatively, the

secondary structure of Xlefty, or the inherent protease sensitivity at each site,

may differ between oocytes and embryonic tissues, such that CS2 cleavage does

not occur in embryonic tissues.  A general conclusion from our studies, therefore,

despite the numerous reported experiments using Xenopus oocytes to infer the

mechanisms regulating the biochemical processing of secreted proproteins (Dale

et al., 1989; Thomsen and Melton, 1993; Jones et al., 1996; Cui et al., 1998; Cui

et al., 2001; Eimon and Harland, 2002; Degnin et al., 2004), is that only

embryonic cells should be used for future studies of Xlefty.

 BMP-4 undergoes an ordered cleavage process that affects the strength

and range of signaling during gastrulation stages in Xenopus.  Cleavage at site 1

(S1) separates the ligand from the prodomain and subsequent cleavage within

the prodomain (at S2) seems to be required in order to disrupt non-covalent

prodomain/ligand interactions, which releases the BMP-4 ligand for productive

receptor engagement (Cui et al., 2001).  When the BMP-4 ligand remained

prodomain-associated, the complex seems to be targeted for efficient

degradation via the lysosomal/proteosomal pathway (Degnin et al., 2004).

Therefore, Degnin et al. (2004) suggested that tissue-specific cleavage at S2
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might contribute to the spatiotemporal regulation of BMP-4 activity.  This

hypothesis was validated by mutating the cleavage motif at S2 in the

endogenous locus of mice, which led to defects being detected in those tissues

that require the highest levels of BMP signaling (Goldman et al., 2006).

     Because XleftyS did not accumulate to detectable levels when secreted from

embryonic tissues, and overexpression of an engineered XleftyS-only-expressing

proprotein did not block Xnr2-mediated mesoderm induction, we hypothesize that

the ordered cleavage of Xlefty, first at CS1 to release the active ligand, and then

at CS2 as a post-secretion clearance mechanism, might regulate turnover of

Xlefty in the extracellular milieu.  Post-secretion CS2 cleavage, from SPC

produced by the same or from nearby cells, has a precedent in the numerous

reports of extracellular cleavage of TGF -related molecules.  For example,

mouse Lefty and Nodal can be cleaved by SPCs secreted from COS-1 cells

(Beck et al., 2002).  Moreover, the idea that proprotein-processing enzymes can

act non-cell-autonomously is supported by the detection of mouse nodal and

spc1/spc4 expression in non-overlapping tissue regions during embryogenesis

(Beck et al., 2002).  Another relevant example is the detection of endogenously

produced SPC6 at the cell surface in adult mouse liver, duodenum and jejunum

(Nour et al., 2005).  A post-secretion, clearance activity of SPC at CS2 on XleftyL

might not be detectable in our secretion assays (i.e., there was no stabilization,

or increased level, of XleftyL from the CS2 cleavage site mutant over the wild-

type protein in, for example, Fig. 3.4B) because movement of XleftyL into the
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culture medium and away from the cell reduces its probability of interaction with

secreted or, in particular, cell-surface-localized SPC.

Glycosylation does not alter Xlefty stability, function or movement through
tissue

     As described in the Introduction of this chapter and in Chapter I, studies of

several TGF  molecules suggest that glycosylation functions to increase the

stability of the proprotein/ligand and/or aid in secretion from the producing cells

(Sha et al., 1989; Brunner et al., 1992; Lopez et al., 1992; Le Good et al., 2005).

When the single N-linked glycosylation motif in Xlefty was mutated, the steady-

state level of protein accumulated was similar between Xlefty and XleftyNGM.  In

mesoderm induction assays, N-linked glycosylation was not required for Xlefty to

antagonize Xnr2 signaling.  We cannot yet rule out a role for glycosylation

affecting the biological function of Xlefty, as we still might not have performed the

signaling or movement assays at an appropriate time.  For example,

glycosylation of Xlefty may assist in regulating Nodal/Xnr1 signaling during L-R

specification.

     Vg1 and xBMP-4 have been shown to undergo N-linked glycosylation, but we

are uncertain if such a modification is a general mechanism for the stabilization

of the ligand domain, or if this effect is specific for a subset of the TGF  family

(Dale et al., 1989; Degnin et al., 2004).  We are currently testing the role of

glycosylation in regulating the protein stability and signaling strength of the

Xenopus Nodal-related proteins.
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CHAPTER IV

SUMMARY AND FUTURE AIMS

     Members of the TGF  superfamily are key controllers of a variety of cellular

processes that include cell differentiation, proliferation, apoptosis, motility and

adhesion.  A broad range of experiments on the Nodal-related proteins has

demonstrated that they are functionally conserved between vertebrates and

essential for mesendoderm specification and L-R axis formation.  During my

thesis research, I investigated the role of post-translational modifications of

Xlefty, the primary Nodal antagonist, and how these modifications affect its ability

to inhibit Nodal signaling during mesendoderm induction in Xenopus.

Specifically, I wanted to determine why Xlefty contained two potential cleavage

sites in the proprotein.  Are both XleftyL and XleftyS produced in embryonic

tissues?  If so, do XleftyL and XleftyS have the same potency as antagonists of

Nodal signaling?  Moreover, I wanted to determine if the glycosylation motif in the

mature domain of Xlefty was functional allowing the addition of N-linked sugars to

the core protein, as well as to investigate the biological function of this

modification.

     By performing my experiments in Xenopus laevis, which is amenable to both

biochemical analysis of proteins and various embryological manipulations, I was

able to show that Xlefty undergoes proprotein cleavage and N-linked

glycosylation in Xenopus tissues.  Furthermore, I presented data that shows that
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proteolytic cleavage of the proprotein to XleftyL is required for inhibition of Nodal

signaling.  At the end of this chapter, I will switch my focus somewhat and

present preliminary data demonstrating that N-linked glycosylation does not

affect the signaling strength of two Nodal-related proteins, Xnr2 and Xnr5.  Since

many studies have demonstrated that the function of Lefty and Nodal-related

proteins are evolutionarily conserved, my results of Xlefty add significantly to the

knowledge of how post-translational modifications modulate Nodal activity.

Moreover, my findings strongly support the idea that analysis of biochemical

processing of secreted ligands should be performed in the appropriate tissues

and at the relevant developmental time.

Post-translational modifications of Xlefty

Proprotein cleavage of Xlefty

     When I began my thesis research studies in the Wright laboratory, a previous

student, Abby Cheng, had isolated and performed the initial characterization of

Xlefty as a feedback inhibitor antagonist of Nodal signaling (Cheng et al., 2000).

Proteolytic cleavage of the Xlefty proprotein could generate two isoforms, which

might have differed properties with respect to the antagonizing of Nodal

signaling. The central issue addressed in my thesis research was the

determination of how biochemical processing (proprotein cleavage and

glycosylation) of Xlefty influenced its ability to regulate Nodal signaling.
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     When Xlefty was produced in Xenopus oocytes, proprotein cleavage occurred

at both CS1 and CS2, although CS2 processing occurred at a low efficiency in

the absence of CS1 cleavage.  This result could be interpreted as indicating that

CS2 cleavage is regulated by cleavage at CS1.  Such sequential cleavage would

be a situation reminiscent of BMP-4, as described in Chapter I and Chapter III.

But in the case of BMP-4, which is an inducer, the second cleavage disrupts a

ligand/prodomain complex that allows for secretion of the ligand to activate

downstream signaling.   In the case of Xlefty, my data suggest that XleftyL is the

functional blocker and that XleftyS (produced by CS2 cleavage following CS1)

might be part of a clearance mechanism to fine-tune the level of Lefty, and thus

Nodal signaling present in the embryo.  We only detected XleftyL, which is

generated from cleavage at CS1, when we assayed embryonic cells isolated at a

stage when Xlefty is normally expressed.  The reason why we did not detect

XleftyS when secreted from embryonic cells might be explained by inappropriate

or extremely high SPC protease activity in oocytes, which leads to improper CS2

cleavage.  Furthermore, XleftyS might be more stable in the oocyte situation, i.e.,

the components of the clearance machinery may not be present in the oocyte.

Alternatively, SPCs may be unable to access CS2 when Xlefty is produced in

embryos, which could be caused by different secondary branching of the sugar

side chains on Xlefty when produced in oocytes versus embryonic cells.  The

idea that glycans can mask CS2 seems unlikely, as we do not detect XleftyS

when XleftyNGM-Amyc was secreted from embryonic cells.  Future studies should

be designed to ascertain the basic secondary structure of the N-linked glycans
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attached to Xlefty and determine if the secondary carbohydrate branching is the

same when Xlefty is secreted from oocytes or embryonic tissues.  Although the

Wright lab is not in a position to pursue these experiments, a combination of

high-performance liquid chromatography and mass spectrometry could be used

for the structural analysis of these carbohydrate moieties.  Further biochemical

analysis should include assays to determine whether XleftyS is produced at

detectable levels in any other specific stage of development, such as, for

example, tailbud stages when Xlefty functions to modulate Nodal signaling during

L-R axis formation.  This experiment could be performed by injecting pCSKA-

Xleftymyc, a plasmid utilized to drive expression of Xleftymyc after gastrulation, into

the left four blastomeres of 8-cell stage embryos.  After the embryos develop to

tailbud stages, the careful isolation of left LPM tissue from uninjected and

plasmid injected embryos for western blot analysis could show if XleftyS

accumulates at the stages, suggesting regulated cleavage at different stages

could alter the effectiveness of Xlefty as a Nodal antagonist.

     Data in Chapter III illustrated that proprotein cleavage of Xlefty was required

to inhibit mesendoderm induction initiated by Xnr signaling, which is consistent

with the requirement for cleavage of mouse Lefty 1 and Lefty 2 in order to block

Nodal signaling (Sakuma et al., 2002).  Unlike mouse Lefty 1, in which both long

and short isoforms effectively inhibited Nodal signaling when expressed in

Xenopus animal caps, injection of Xlefty
mcs1 RNA designed to be able to produce

only XleftyS could not block Xnr2-mediated induction of mesodermal marker
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genes.  The most parsimonious explanation for this result is that XleftyS is never

produced in embryonic tissues.

     While XleftyS may not play a role in mesoderm induction, we do not know if

the short isoform functions during L-R specification stages to negatively influence

Nodal signaling.  If XleftyS is produced during tailbud stages, there is a possibility

that XleftyS associates with xCR2, the only EGF-CFC family member expressed

during stages of L-R axis specification, to terminate Xnr1 signaling in the left LPM

(Dorey and Hill, 2006; Onuma et al., 2006).  Future analysis should include

tissue-grafting assays pioneered by Yuki Ohi, a former graduate student (Ohi and

Wright, 2007).  In this assay, LPM tissue overexpressing normal Xlefty, when

transplanted into the left LPM of host embryos, was able to suppress Xnr1

signaling and block the anteriorward progression of Xnr1 expression (Ohi and

Wright, 2007).  A similar experimental design could be performed but now with

tissue overexpressing XleftyS from a plasmid encoding Xleftymcs1, a cleavage

mutant version that should be capable of producing the short isoform.

     The endogenous SPC(s) responsible for proteolytic cleavage of vertebrate

Lefty molecules is/are currently not known.  There are, however, data to suggest

that SPC1, SPC4, and SPC6 mediate proprotein cleavage of Lefty in several

transfected cell lines (Ulloa et al., 2001; Beck et al., 2002; Sakuma et al., 2002).

While these in vitro assays are useful in determining which SPCs can cleave

Lefty in an overexpressed, and perhaps non-physiological situation.  These

assays may not be relevant to the endogenous enzyme produced and functional

in the normal embryonic environment and stage in which Lefty and Nodal
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operate.  The problem of studying proteolytic cleavage of TGF  molecules in a

non-physiological assay is illustrated by the fact that Activin was cleaved by

recombinant but not endogenous SPC4 (Cui et al., 1998; Birsoy et al., 2005).  In

the experiment utilized in determining that Activin was not an enzymatic

substrate for endogenous SPC4, spc4 mRNA was depleted by injecting

antisense oligonucleotides into Xenopus oocytes, which were transferred to

recipient Xenopus females (Birsoy et al., 2005).  Following fertilization, embryos

were injected with a RNA encoding an epitope-tagged version of Activin.

Western blot analysis of Activin processing activity was performed on blastocoel

fluid and was compared between normal (not injected with oligonucleotides

targeted against spc4) and spc4 depleted embryos.  In order to establish a full

detailed mechanistic understanding of the way in which Lefty inhibits Nodal

signaling activity, future analyses would therefore be expected to include

experiments to determine which SPC(s) is the endogenous enzyme responsible

for Xlefty cleavage.  In one approach, antisense phosphorothioate

oligonucleotides, which are resistant to nucleases, will be injected into Xenopus

oocytes to deplete specific spc mRNAs and then transferred to recipient females

for fertilization.  Western blot analysis of conditioned medium would then be used

to compare the cleavage products of Xlefty produced from spc-deficient embryos

and embryos not injected with spc oligonucleotides. This type of experiment has

already been performed in Xenopus to analyze some of the biological substrates

of SPC4 and should be relatively straightforward (Birsoy et al., 2005).



84

Xlefty is N-glycosylated

     The addition of N-linked glycans to core proteins is an energy and time

consuming process (Jones et al., 2005).  The process involves the ATP-

dependent generation of the dolichol-phosphate acceptor, to which seven sugars

are added on the cytoplasmic face of the endoplasmic reticulum (ER) (Helenius

and Aebi, 2004).  This dolichol-heptasaccharide precursor undergoes a

topological flipping such that the sugar residues are now facing the lumen of the

ER. The seven sugar precursor is extended to 14, and this “full precursor” is

transferred as a core oligosaccharide unit onto the nascent polypeptide chain

(Helenius and Aebi, 2001).  The basic oligosaccharide is then extensively

modified by removing and adding sugar residues in the ER and Golgi complex

(Helenius and Aebi, 2001).  The modification of the N-linked glycans results in

three general categories of oligosaccharides (high-mannose, hybrid, and

complex glycans) with distinct functions (Helenius and Aebi, 2001).  For example,

high-mannose glycans can be further modified to mannose-6-phosphate, a

moiety that functions to target proteins to the lysosome (Helenius and Aebi,

2001).

     As stated in Chapter I and Chapter III, the presence of N-linked glycans can

affect numerous biological processes.  The presence of a conserved N-linked

glycosylation site in the mature domain of Lefty raised the possibility that

carbohydrate moieties influence protein secretion, biological activity and/or

movement through embryonic tissues.  There are several reports of glycosylation

effects on the TGF  family, such as TGF 1, TGF 2, and Nodal.  All vertebrate
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Lefty molecules contain a single N-linked glycosylation motif in the mature

domain.  Furthermore, the placement of this motif is conserved at approximately

20 amino acids downstream of CS2.  For this reason, I wanted to ask whether N-

linked glycans could be added to Xlefty as well as to define the biological role for

this modification.  In the case of TGF 1 and TGF 2, blocking the addition of N-

linked glycans by either mutating asparagine residues or adding tunicamycin to

the culture medium resulted in a block to secretion and led to intracellular

accumulation of the proprotein (Sha et al., 1989; Brunner et al., 1992; Lopez et

al., 1992).  It is possible that N-linked glycans are required for proper protein

folding and that non-glycosylated TGF 1, which does not reach the normal

conformation, is retained in the ER for eventual degradation (Helenius and Aebi,

2004).  Furthermore, N-linked glycans have been shown to positively influence

several biological attributes of mouse Nodal.  For example, the insertion of an

artificial glycosylation site (to mimic the site found in several Xnr ligands, as

described in more detail below) into mouse Nodal resulted in increased steady-

state protein levels when secreted from cultured cell lines, and signaling strength

in activating Nodal-response genes in zebrafish embryos compared to the wild-

type protein (Le Good et al., 2005).

     The data presented in Chapter III demonstrate that Xlefty was N-glycosylated

when secreted from animal halves, but that glycosylation did not influence the

steady state level of protein accumulation, Nodal-inhibitory function during

mesoderm induction, or long-range movement through Xenopus blastula stage

tissues.  Future analysis should include assays to determine if sugars residues
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alter the intrinsic protein half-life of Xlefty in its normal embryonic context, which

could be done by pulse-chase experiments.  These experiments are not trivial to

perform in Xenopus, because it is well known that these large embryos contain

massive stores of RNAs and amino acids deposited during oogenesis. The

difficulty arises from the principles of the pulse-chase type assay.  In this

analysis, there is a depletion of a precursor (amino acids or RNAs) pool, which is

followed by a short labeling time with radioactive precursor.  Next, the non-

radioactive amino acids or RNAs are added to reconstitute the large pool.  The

amount of labeled protein or RNA is followed in time, and how it decays or

becomes converted into specific cleavage products, is then determined.  While

radioactive amino acids can be incorporated into Xenopus embryos to a level

that allows detection, the specific activity of the labeled protein is often low and

variable, and the amount that needs to be added results in the post-pulse being

difficult to attain properly.

     As mentioned above, Xlefty is thought to function as a long-range feedback

inhibitor of Xnr1 during the process of L-R axis specification in Xenopus embryos

and the glycosylation state may positively or negatively influence its range of

movement through the left LPM.  This issue could be addressed using the

techniques of Ohi and Wright (2007) by transplanting LPM tissue overexpressing

Xlefty
myc or a glycosylation mutant version of Xlefty (Xlefty

NGMmyc) [which are

known to have equal functions as Xlefty; they antagonize Xnr signaling as

effectively as the untagged proteins as measured by the suppression of Xnr2-

mediated induction of mesodermal marker genes] into the left LPM of host
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embryos.  After the embryos reach tailbud stage, they could be fixed at various

time points for immunohistochemical analysis with an anti-myc antibody. The

result of this experiment might determine how glycosylation influences the

movement of Xlefty through the LPM.  Furthermore, the route that Xlefty travels

within the embryo during tailbud stages is unknown.  Based on the low resolution

histological analysis of neurula and tailbud stage embryos, the LPM consists of

more than one cell layer sandwiched between the overlying ectoderm and the

adjacent endoderm (Hausen and Riebesellm, 1991).  There could be several

potential paths that Xlefty could utilize for its long-range movement through the

embryo to attenuate Nodal signaling.  For example, Xlefty could travel through

the interstitial space between cells in the plane of the LPM.  Alternatively, there

could be space between the LPM and endoderm (or ectoderm) through which

Xlefty travels. Glycans present on Xlefty may influence that course and speed of

movement though the LPM or embryonic tissues at these later stages.

Xlefty is Nodal-specific antagonist

     While the general consensus is that a principal conserved function of Lefty is

a feedback inhibitor of Nodal signaling during mesendoderm induction and L-R

patterning in vertebrate embryos, there are a few reports that suggesting that

Lefty molecules can function in other signaling contexts.  Furthermore, there are

data to suggest that signaling pathways other than Nodal can induce the

transcription of lefty.
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     Initially, mouse Lefty 1 was isolated from a subtractive hybridization screen

trying to identify genes that were regulated by the transcription factor Oct-3 in

P19 embryonic carcinoma cells (Meno et al., 1996).  Subsequently, a second

isoform was discovered in mouse by similarity-based methods (Meno et al.,

1997).  Concurrent with these studies, Oulad-Abdelghani et al. (Oulad-

Abdelghani et al., 1998) also isolated mouse lefty 1 as a retinoic acid-induced

gene in P19 embryonic carcinoma cells (Oulad-Abdelghani et al., 1998).

     Prior to defining the function of Lefty molecules as an inhibitor of Nodal, Lefty

was thought to be an anti-BMP molecule.  This idea came from experiments

overexpressing BMPprodomain-Leftymature chimeric proteins in Xenopus animal caps,

which led to a neuralized phenotype (Meno et al., 1997).  However, when normal

Xlefty was overexpressed in animal caps, there was no induction of neural

markers (Cheng et al., 2000).  These conflicting results might be explained by

results from Daniel Constam and colleagues.  They demonstrated that the

prodomains of TGF -related factors can influence the stability of the mature

domains (Constam and Robertson, 1999).  Thus, it is possible that the

prodomain from the chimeric protein mediates an inappropriate association with

the ligand domain of endogenous BMPs, generating a complex that was unable

to initiate downstream signaling.  This neuralized phenotype was the result of

diminished BMP signaling, which directed animal caps down the default neural

induction program (Kuroda et al., 2005).

     Recently, another function has been ascribed to Lefty molecules.

Overexpressed Human Lefty molecules (both the proprotein and the mature
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domain) could apparently induce the MAP Kinase pathway in P19 mouse

embryonic carcinoma cells (Ulloa et al., 2001).  However, in my experiments that

directly addressed this issue by overexpressing Xlefty in Xenopus tissue, I could

not detect MAPK activation.  The reason for this inconsistency is not known but

could relate to the way Lefty was produced in their assay. Ulloa et al. (2001)

incubated P19 mouse embryonic carcinoma cells with affinity-purified human

Lefty A generated from conditioned medium from transfected human embryonic

kidney 293 cells expressing leftyA and while western blot analysis confirmed the

presence of human Lefty A in the eluate, its purity even after partial “affinity”

purification was not verified.  It is, therefore, possible that a protein capable of

MAPK activation was co-purified.

     Despite these few reports that Lefty might be a multifunctional protein (anti-

BMP and inducer of MAPK), the overwhelming weight of data being to work as a

Nodal-inducible feedback antagonist of the Nodal auto-regulatory signaling loop,

is in agreement with the primary role of Lefty is that of a Nodal antagonist.

Does glycosylation regulate Xnr signaling?

     In the previous sections of this thesis, I have been discussing how post-

translational modifications influence the ability of Xlefty to modulate Xnr

signaling.  In this section, I begin to change the focus from the antagonist and

move onto explorations of the effect of N-linked glycosylation on the activities of

the inducers themselves; specifically the Xnr ligands.  As discussed in Chapter I

and Chapter III, when mouse Nodal was created by inserting an artificial
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glycosylation site into the ligand domain (a site present in five of the six Xnrs), it

had increased signaling strength in zebrafish embryos and stability in culture

cells (Le Good et al., 2005).  The placement of the glycosylation motif is

conserved (five amino acids downstream of the third cysteine residue) in Xnr 1,

2, 3, 4, and 6, but is absent from in Xnr5 (Table 4.1). If the data from Daniel

Constam and colleagues are correct, sugar residues present on the Xnr ligands

should increase the intrinsic protein stability and signaling strength of these

powerful inducers compared to the non-glycosylated version (Le Good et al.,

2005).
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Table 4.1 Alignment of amino acid sequences of Nodal-related proteins

Nodal-related protein Amino acid sequence

Xnr1 C P I P L N E T F K P T

Xnr2 C P I P L N E T F K P T

Xnr3 C A V P Q N E T E N A T

Xnr4 C P S P V N E S V K P N

Xnr5 C P I P L D E N F K P T

Xnr6 C P I P L N E S F K P T

Nodal C P N P V G E E F H P T

Cyclops C P N P L G E E L R P T

Squint C P T P V D E T F T P T

Southpaw C P S P L D E T Y N P T

Alignment of Xnr1 residues 339-350 and the corresponding sequences from the
Nodal-related proteins from Xenopus, mouse, and zebrafish.  Putative N-
glycosylation sites are boxed in yellow.
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     For simplicity, I selected two Xnrs (Xnr2 and Xnr5) for these studies.  In order

to test the biological function of these N-linked glycans, I used site-directed

mutagenesis to remove the glycosylation motif in Xnr2 and add the N-E-T

consensus site to Xnr5 (the N-linked site is at the same location as Xnr1/2/4/6).

Using mesoderm induction assays, we compared the activity of wild-type Xnrs to

the mutant versions (Xnr2 glycosylation mutant, Xnr2NGM; glycosylated version of

Xnr5, Xnr5G).  My preliminary experimental results show that N-linked glycans do

not influence the signaling strength of Xnrs in this range-independent assay, as

the distribution of RNAs amongst all animal cap cells effectively removes any

potential effect from the range of movement of the inducer (Fig. 4.1).  Using

similar experiments described in Chapter III, future analysis will include assays to

determine if glycosylation affects intrinsic protein stability and the movement of

these ligands through blastula stage tissues.
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Fig 4.1 Glycosylation does not alter the signaling strength of Xnr2 and
Xnr5.  A, B: One-cell stage embryos were injected with RNA (pg/embryo
indicated) encoding Xnr2, Xnr2NGM (mutated glycosylation site), Xnr5, or Xnr5G

(inserted glycosylation site).  Animal caps were analyzed at stage 10.5 for
mesodermal marker gene expression. WE, whole embryo plus (+) and minus (-)
reverse transcriptase (RT); AC, uninjected animal cap.
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