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CHAPTER I 

 

INTRODUCTION 

 

Auditory cortical processing of speech sounds is influenced by one’s native language 

experiences (Chandrasekaran, Krishnan, & Gandour, 2007; Kuhl & Rivera-Gaxiola, 2008; 

Näätänen, 2001; Yang Zhang, Kuhl, Imada, Kotani, & Tohkura, 2005). Previous cross-linguistic 

studies have demonstrated that adult listeners are sensitive in discriminating subtle differences 

between phonemes in their ambient language, but insensitive to phonetic contrasts that are non-

native (Best, McRoberts, & Goodell, 2001; Tsao, Liu, & Kuhl, 2006; Werker & Tees, 2005). This 

phenomenon, often described as the ‘perceptual narrowing to native speech’, has been attributed 

to one’s cortical speech processing becoming specialized toward, or ‘tuned to’ the native language 

over the course of development (Werker & Tees, 2002; Werker & Tees, 2005). Recent 

electrophysiology research further demonstrated that, the brain specialization, referred to as the 

auditory cortical narrowing to native speech, stems from the development of one’s pre-attentive 

auditory discriminative processing in brain being shaped by the language-specific experiences 

(Kirmse et al., 2008; Näätänen, 2001; Winkler et al., 1999).  

The brain processing of pre-attentive auditory discrimination is indexed by the mismatch 

negativity ERP component (MMN) (Näätänen, Paavilainen, Rinne, & Alho, 2007) (Figure 1). The 

response strength or the ‘size’ of MMN is correlated with a listener’s behavioral-level auditory 

discrimination of speech contrasts (Cheoura, Korpilahti, Martynova, & Langa, 2001; Näätänen, 

2001). The MMN is defined as the difference waveform between the auditory ERP to a stream of 

sound stimulus with frequent recurrence (the standard) and the ERP to occasionally occurring 
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stimuli with deviating properties (the deviant).  When subtracting the standard ERP from the 

deviant ERP, a negative deflection i.e., MMN can usually be observed at 100~250 milliseconds 

after the stimulus onset (Figure 1).  

Cross-language MMN studies have demonstrated that, among adult listeners, MMN 

response that is elicited by a native language speech contrast is typically stronger than MMN 

elicited by a non-native contrast (Näätänen, et al., 2007). This native language effect of MMN has 

been observed in adult subjects across different language populations (Jacquemot, Pallier, 

LeBihan, Dehaene, & Dupoux, 2003; Kirmse, et al., 2008; Winkler, et al., 1999). Importantly, the 

MMN native language effect is suggested as a neural signature reflecting that an individual’s 

cortical speech processing is shaped by the subject’s native language experiences over 

development and becomes specialized or ‘narrowed’ to native speech sounds (Kuhl & Rivera-

Gaxiola, 2008; Yang Zhang et al., 2009; Yang Zhang, et al., 2005). 

 

Figure 1. ERP waveform of MMN to sound contrasts. The left side of the figure displays the 

waveform of ERP response to the ‘standard’ 1000Hz sound stimulus and the waveforms of ERP 

response to the ‘deviant’ sound stimuli at different frequencies.  The right side of the figure 
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displays the difference waveform (mismatch ERP) obtained by subtracting the standard stimulus 

ERP from that of the deviant stimulus for the different deviant stimuli. Mismatch Negativity 

(MMN) is elicited at 100~200 milliseconds (ms). Adapted from Naatanen et al., 2007. 

 

The MMN native language effect and its close relationship to a listener’s auditory cortical 

narrowing to native speech have been demonstrated by multiple ERP studies on adult subjects 

( Näätänen, 2001; Naatanen et al., 1997; Werker & Tees, 2005; Zevin, Datta, Maurer, Rosania, & 

McCandliss, 2010). Despite the extensive adult research, it remains unclear about how MMN 

develops under the influences of one’s native language experiences in childhood and adolescence. 

In particular, the age-related change of MMN response to native and non-native speech sounds 

has not been systematically investigated among school-age individuals (Bishop, 2007; Cheoura, et 

al., 2001; Näätänen, et al., 2007). Until now, very few cross-sectional ERP studies have been 

conducted to map out the development of MMN native language effect on children and 

adolescents.  

The current thesis investigates the development of MMN to native and non-native speech 

among school-age individuals from age 6 to age 17. Here, we propose a plausible development 

trajectory of the MMN native language effect after infancy: beyond the early emergence of MMN 

native language effect that has been well established in infants (for review, see Kuhl & Rivera-

Gaxiola, 2008), we propose that MMN responses to native and to non-native phonetic contrasts 

continue to become increasingly differentiated across school-age individuals from childhood 

through late adolescence. This protracted development hypothesis for MMN native language 

effect signifies the continuous narrowing of one’s auditory cortical systems for better processing 

native speech. Specifically, this hypothesis leads to two distinct predictions: (a) as language-

specific experiences progressively sharpen a child’s pre-attentive auditory discrimination,  this 
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will result in a continuous increase in the MMN response to  native phonetic contrasts, and (b) a 

continued lack of experiences with non-native language contrasts will serve to degrade  cortical 

speech discrimination, thus resulting in a progressive decrease in MMN to non-native contrasts 

and the loss of sensitivity to non-native speech. Together, these two divergent development trends 

for MMN responses to native speech and MMN responses to non-native speech reflect an 

emergent underlying process, which can be described as a progressive narrowing of auditory 

cortical processing to native speech that continues beyond infancy, and progresses through both 

childhood and adolescence (Figure 2). 

 

Figure 2. Proposed development of MMN native language effect. We predict that the response 

strength of MMN to native phonetic contrasts may increase and the response strength of MMN to 

non-native contrasts may decrease over development in school-age individuals from age 6 to age 

17. 

 

MMN not only offers a window for examining normative brain response of pre-attentive 

auditory discrimination from typically developing populations, it also provides a way to identify 

atypical patterns of cortical speech processing among individuals with dyslexia (Näätänen et al., 

2012). The association between defective MMN and reading difficulties has been demonstrated 
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across different language populations (Bishop, 2007; Csépe, 2003; Heim & Keil, 2004; Leppänen 

& Lyytinen, 1997; Schulte-Körne & Bruder, 2010). Reduced response strength, delayed latency 

and abnormal hemisphere lateralization of MMN has been reported in children and adults with 

reading problems (Bishop, 2007; Cheour, Leppänen, & Kraus, 2000; Teija Kujala et al., 2000). 

Understanding the development of MMN and how it is influenced by the native language 

experiences among typical school-age individuals will lay a foundation for future dyslexia 

research.  

It has been consistently demonstrated that the strength of MMN to native speech contrasts 

from dyslexic populations is significantly reduced relative to typical controls. Recently, an on-

going longitudinal electrophysiology study further demonstrated that, in addition to reduced 

MMN to native speech, school-age individuals with reading problems (6 to 15 years of age) tend 

to also have unusually large MMN to non-native phonetic contrasts, compared with their age-

matched typical controls (Leppänen et al., 2012; Noordenbos, Segers, Serniclaes, Mitterer, & 

Verhoeven, 2012). The excessive MMN response to non-native speech sounds from dyslexic 

school-age individuals indicates their auditory discrimination is hypersensitive to speech elements 

that are not used in the ambient language, and further suggests that insufficient auditory cortical 

narrowing to native speech is one of the attributes of dyslexia (Bitz, Gust, Spitzer, & Kiefer, 

2007).  

In the current thesis, we propose that, lack of MMN native language effect can be one of 

the attributes of school-age individuals with reading difficulty. Specifically, in line with the 

protracted development hypothesis for MMN native language effect outlined above, we predict 

that typical school-age individuals (e.g. 6 to 17 years of age) will demonstrate progressively 

increasing MMN amplitudes for native phonetic contrasts and continuous decreasing MMN 
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amplitudes to non-native contrasts. However, we further hypothesize that this native language 

effect is not occurring to the same degree for school-age individuals with reading difficulty, and 

thus predict that, relative to typically developing children of the same age, they will demonstrate 

both weaker native MMN, and at the same time, larger non-native MMN.  Such a pattern of 

findings would indicates that pre-attentive auditory discrimination is hyposensitive to native 

speech contrasts but hypersensitive to speech contrasts that are not used in their ambient language. 

Such proposed reduction in age-typical MMN native language effects in individuals with reading 

difficulties would provide additional support for theoretical accounts of reading difficulty that are 

linked to insufficient narrowing of auditory cortical processing to native speech sounds (Bitz, et 

al., 2007; Leppänen, et al., 2012; Noordenbos, et al., 2012). 

 

Research Goals 

The current thesis aims to  (a) examine the age-related change of MMN to native and non-

native speech among typically developing school-age individuals and (b) examine whether 

reading difficulties in children are linked to developmental atypicalities in progressively emerging 

MMN native language effects. Investigating the developmental change of MMN native language 

effect will help us better understand how one’s pre-attentive auditory discriminative processing, 

as reflected in MMN brain responses,  become tuned to one’s native language over development 

and how narrowing of cortical speech processing to native speech is related to reading 

development (Leppänen, et al., 2012; Noordenbos, et al., 2012).  

Three electrophysiology studies are included in the current thesis. In Study 1 (Chapter 3), 

a cross-language MMN investigation was conducted on a group of English-speaking and a group 
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of Mandarin-speaking adults. An English-specific phonetic contrast and a Mandarin-specific 

phonetic contrast were presented as the MMN stimuli to both language groups. The response 

strength of MMN to the native contrast and MMN to the non-native contrast was examined across 

these two groups to (a) validate the MMN native language effect within the particular 

experimental procedure to be used throughout this thesis is linked to an interaction between 

experimental stimuli and language experience differences across the groups, and (b) validate the  

the association between MMN native language effects and psychophysical evidence of perceptual 

narrowing to native speech in adults. Findings from Study 1 lay the foundation of the following 

Study 2 (Chapter 4) on the age-related change of MMN native language effect among typical 

school-age individuals and Study 3 (Chapter 5) on the relationship between deficient MMN native 

language effect and reading difficulty.  

In Study 2, cross-sectional comparisons were conducted on a large cohort of typically 

developing school-age individuals from age 6 to age 17, with the goal of mapping out age-related 

changes of MMN to native and non-native speech and assessing our theory that auditory cortical 

narrowing continues through late childhood and adolescence years. The English and the Mandarin 

MMN stimulus contrasts in Study 1 were presented as a native and a non-native phonetic stimulus 

to this cohort of English-speaking school-age individuals. The response strength of MMN from 

three age groups (age 6 to 9, age 10 to 13, and age 14 to 17) was compared to examine age-related 

changes of MMN to native and non-native speech over development. In addition to the cross-

sectional comparison for the development of MMN native language effect, Study 2 further 

investigated the brain-behavioral relationship between auditory cortical narrowing and reading 

development in the school-age individuals. Multiple regression of the behavioral scores for 

reading fluency on the ERP response strength of MMN to native and non-native contrasts 
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provides a critical test of the hypothesis that auditory cortical narrowing to native speech is linked 

to fluent reading among typically developing school-age individuals.  

In Study 3, the MMN native language effect was further investigated within a group of 

school-age individuals with low reading fluency, following the same experimental procedure 

from Study 2. The goal of Study 3 is to further investigate the hypothesis that insufficient 

narrowing of auditory cortical processing to native speech is demonstrated in individuals with 

reading difficulty.  Specifically, we predict that individuals with low reading fluency will 

demonstrate reductions in MMN native language effects.  Furthermore, the proposed hypothesis 

that cortical narrowing for native speech is diminished for poor readers makes two diverse 

predictions:  relative to age-matched control typical readers, poor readers will exhibit both 

reduced MMN responses to native phonetic contrasts, yet enhanced MMN responses to non-

native phonetic contrasts.  

The goal of the current thesis is to advance our understanding of auditory cortical 

narrowing to native speech over the course of development and its potential relationship with 

reading difficulty among school-age individuals. Results from Study 1 (Chapter 3), Study 2 

(Chapter 4) and Study 3 (Chapter 5) will shed light on how the development of auditory cortical 

processing can be substantially tuned by one’s native language experiences and how deficiency of 

cortical narrowing to native speech is linked to reading problems. 
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CHAPTER II 

 

METHOD 

 

The experimental design and procedure described in this section are applied to Study 1, 

Study 2 and Study 3 in the next three chapters. Native and non-native phonetic contrasts are 

presented as the MMN sound stimuli in passive auditory oddball EEG paradigm (Bishop, 2007; 

Näätänen, 2001; Näätänen, et al., 2007). The response strength of MMN to the native phonetic 

contrast stimulus and the response strength of MMN to non-native contrast are statistically 

compared to assess the native language effect of MMN in adults, typical school-age individuals 

and individuals with reading difficulty.   

 

Participants 

 In Study 1 (Chapter 3), 16 native English-speaking adults and 16 Mandarin-speaking 

adults were recruited in a cross-language ERP study. Details of the auditory EEG experiment will 

be described in the ‘Procedure’ section in the current Chapter 2. The EEG data from the 

Mandarin-speaking group were recorded at National Key Laboratory of Cognitive Neuroscience 

and Learning at Beijing Normal University, China, and data from the English-speaking adults 

were recorded at Psychology and Human Development at Vanderbilt University, United States in 

2011 and 2012. All of the 32 adult participants were healthy, right-handed college students with 

no reported hearing or neurological problems. The participants were given written informed 

consent for the study. 
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For Study 2 (Chapter 4) and Study 3 (Chapter 5), we collected both EEG data and 

behavioral data from a cohort of 156 school-age children and adolescents from age 6 to age 17 in 

Nashville, Tennessee. This cohort of school-age individuals are native English speakers without 

exposure to Mandarin. The participants were recruited by telephone contact from a birth-record 

database. None of the 156 subjects were diagnosed with hearing or neurological problems. 

Among the 156 school-age individuals, 12 subjects did not finish the experiment and 4 subjects 

had low quality EEG data (see ‘Procedure’ section in the current chapter for details). Data from 

these 16 subjects were excluded. The rest of the 140 school-age individuals were included in 

Study 2 and Study. Importantly, the 140 subjects had diverse reading fluency: 24 exhibited age-

standardized scores of Test of Word Reading Efficiency (TOWRE) below the 25th percentile. 

These 24 participants fell below the Study 2 reading inclusion criteria of >25th percentile 

performance in reading, and thus were not included from investigating the development of 

auditory cortical narrowing among typically developing individuals with fluent reading ability.  

The rest of the 116 participants who had above the 25th percentile age-standardized 

TOWRE scores were considered typically developing readers. Their EEG and behavioral data are 

analyzed and presented in Study 2. Age-related developmental changes in the MMN native 

language effect was examined across three age groups:  age 6-9 (n=47), age 10-13 (n=42) and age 

14-17 (n=27).  Cross-sectional comparisons on the MMN to native contrast and to non-native 

contrast between the three age groups were conducted to evaluate the extent to which 

development of pre-attentive auditory discrimination is progressively shaped by native language 

experiences beyond infancy and early childhood.  

In Study 3, we investigate the hypothesis that insufficient auditory cortical narrowing to 

native language may contribute to reading difficulty.  The MMN data from the 24 poor readers 
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describe above were systematically matched with 24 typical readers (i.e. TOWRE scores above 

the 25th percentile.)   Direct comparisons between the response strength of MMN to native and 

non-native contrasts across both the poor reading group and the control group provided a specific 

test of our hypothesis that insufficient auditory critical narrowing to native speech is associated 

with reading difficulty. 

 

Design 

Naturally produced English syllable pair /vi/ and /wi/ (abbreviated as /v-w/) and Mandarin 

syllable pair /ʨi/ and /ʨʰi/ (abbreviated /j-q/) are chosen as the phonetic contrast stimuli of MMN 

for Study 1, Study 2 and Study 3. The sound spectrogram of the stimuli is presented in 

Supplement Figure 2 (Appendix). Mandarin and English are two languages having fundamentally 

different phonetic systems (Kuhl & Rivera-Gaxiola, 2008; Tsao, et al., 2006). The contrast /v-w/ 

is not used in Mandarin nor /j-q/ is used in English, and therefore each syllable pair forms a 

language-specific phonetic contrast.  

We first carried out a pilot psychoacoustic ABX phoneme discrimination study (Dupoux, 

Pallier, Sebastian, & Mehler, 1997), to demonstrate the behavior-level perceptual narrowing to 

native speech in adults across the two language populations. The MMN contrast stimuli /v-w/ and 

/j-q/ used in the auditory oddball paradigm were presented to English-speaking adults (n=12) and 

Mandarin-speaking adults (n=12), with eight trials per contrast condition. The English group 

showed high discriminative sensitivity to the English contrast /v-w/ but low sensitivity to the 

Mandarin contrast /j-q/, whereas the Mandarin group showed the reverse pattern of phoneme 

discrimination accuracy for the contrast /v-w/ and /j-q/ (Figure 3).   
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Figure 3. Perceptual narrowing to native speech in adults. Behavioral performance of ABX 

phoneme discrimination from English speakers and Mandarin speakers is displayed. Both groups 

showed higher discrimination accuracy to the native contrast than the non-native contrast. 

 

For Study 1 on the Mandarin-speaking and English-speaking adults, the language-specific 

contrasts /v-w/ and /j-q/ are presented as standard and deviant pairs to elicit the ERP response of 

MMN to native speech and non-native speech contrasts. Within a contrast pair, each syllable 

served as the standard stimulus in one block and as the deviant in the other (two blocks per 

contrast). Therefore, each subject listens to 2 blocks of English condition (/v/ as the standard for 

one block, /w/ as the standard for the other) and 2 blocks of Mandarin condition (/j/ for the 

standard in one block, /q/ for the other), with a short 5-minute break between blocks. Auditory 

ERP response to the deviant stimulus and it to the standard stimulus preceding the deviant are 

computed by collapsing across the two blocks for /v-w/ and the two blocks for /j-q/ respectively 

(Näätänen, et al., 2007; Zevin, et al., 2010). Accordingly, for each of the phonetic contrast pairs 

i.e. /j-q/ and /v-w/, the deviant ERP and standard ERP are elicited by the same number of the two 

sound stimuli within the pair. The MMN to /v-w/ and the MMN to /j-q/ are computed by 
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subtracting the deviant ERP and standard ERP to control the ERP difference introduced by 

acoustic distinction of the two sounds within one contrast (May & Tiitinen, 2010; Näätänen, et al., 

2007; Zevin, et al., 2010). 

For Study 2 and Study 3 on the English-speaking school-age individuals, the same English 

contrast /v-w/ (referred to as native condition in Chapter 3 and 4) and the Mandarin contrast /j-q/ 

(referred to as non-native condition in Chapter 3 and 4) were delivered through identical auditory 

oddball paradigm as in Study1 (two blocks with reverse standard and deviant for each phonetic 

contrast pair). In addition to /v-w/ and /j-q/, another phonetic contrast pair, /b-t/, was also 

presented as MMN stimulus in the last two blocks of EEG reading in Study 2 and Study 3. The 

/b-t/ contrast (referred to as the ‘acoustic condition’ in Chapter 3 and 4) has more pronounced 

acoustic differences than the contrast /v-w/ and /j-q/, because the consonant /b/ and /t/ differ in 

both voice onset time and place of articulation (Bishop, Hardiman, & Barry, 2010, 2011; Maurer, 

Bucher, Brem, & Brandeis, 2003). Therefore, we expect that robust MMN can be elicited by /b-t/ 

across individuals from the three age groups.  

 

Procedure 

Identical auditory EEG recording procedure was applied to Study 1, Study 2 and Study 3. 

The EEG experiment was conducted in an acoustically shielded chamber. Participants were 

instructed to ignore the sounds while watching a selected animation movie. The movie was 

presented in mute mode on a portable DVD player positioned approximately 1 meter in front of 

the seat. For the adult participants in Study 1, the silent movie was presented with subtitles at the 

bottom of the screen. For the school-age individuals in Study 2 and Study 3, the movie was self-
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explanatory with no subtitles. Sound stimuli were presented over a single free-field speaker 

positioned approximately 1 meter from the subjects, placed toward the center of the room, above 

the DVD player.  

The auditory EEG was recorded through ‘passive auditory oddball’ paradigm (Bishop, 

2007; Näätänen, et al., 2007; Näätänen, Pakarinen, Rinne, & Takegata, 2004). For Study 1, there 

were two blocks of MMN recording using the Mandarin /j-q/ contrast stimulus and two blocks of 

the English /v-w/ contrast stimulus. The order of the four blocks was counterbalanced across 

participants, so that half the participants heard the two blocks of Mandarin /j-q/ condition 

followed by the two blocks of English /v-w/ condition, and the other half heard the blocks in the 

reverse order. For Study 2 and Study 3, there were two blocks of MMN recording using the /v-w/ 

contrast (native condition), two blocks of the /j-q/ contrast (non-native condition) and two blocks 

of the /b-t/ contrast (acoustic condition), with the /b-t/ being the last two blocks of EEG recording. 

For each of the blocks (four blocks for Study 1, six blocks for Study 2 and Study 3) , 723 syllable 

stimuli with stimulus onset asynchrony (SOA) of 650 milliseconds were presented to a subject in 

order to elicit the MMN ERP response (Figure 4). The “standard” sound stimulus was presented 

with the probability of 87.5% of the time, and the “deviant” stimulus was presented with 12.5%. 

There are at least 4 standards between the two consecutive deviants. All stimuli were delivered at 

75 dB from a single loudspeaker placed at a distance of one meter from the subject. 
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Figure 4. Diagram of passive auditory oddball paradigm. ‘S’ denotes that the ‘standard’ sound 

stimulus is presented and ‘D’ denotes that the deviant sound stimulus is presented. The stimulus 

onset asynchrony (SOA) in the oddball paradigm is 650 milliseconds (ms). 

 

EEG data recording and off-line preprocessing followed the procedure of ‘EEG recording 

and preprocessing’ in Zevin, et al., 2010. The continuous EEG was recorded using a Hydrocel 

Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR) referenced to Cz. Data were 

sampled at 500 Hz/channel with filters set at 0.1-200 Hz and calibrated technical zero baselines. 

Electrode impedances were below 50 kΩ. The off-line continuous EEG data from channels with 

excessive artifacts were spline-interpolated (no more than 15 channels per subject), and eye blinks 

were corrected using the standard ICA module in EEGLAB (Delorme & Makeig, 2004). To 

obtain the ERP for deviant and the standard stimulus, data were then digitally filtered band-pass 

from 0.3~30 Hz (24dB/oct, zero phase), re-referenced to the average reference, segmented as 

epochs relative to stimulus onset (-100~500 milliseconds for Study 1, -100~600 milliseconds for 

Study 2 and Study 3), and baseline corrected (100 milliseconds pre-stimulus interval) in 

EEGLAB. Trials with artifacts exceeding ± 75µV in any channel were rejected. 4 of the 144 

school-age participants who completed the experiment had more than half of the single-trial EEG 

segments being rejected when the ± 75µV segment rejection was applied. The EEG data from 

these four subjects were considered having low quality and were not included in the following 

data analyses. The deviant-minus-standard difference waves i.e. the mismatch ERPs were 

calculated for each of the rest 140 participants for each condition in Study 2 and Study 3.  
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Data Analysis 

For Study 1, Study 2 and Study 3, an individual’s MMN response strength i.e. ‘size’ of 

MMN was quantified by two measures: (a) the ERP peak amplitude on landmark electrode Cz 

(Bishop, 2007; Cheour, et al., 2000; May & Tiitinen, 2010; Näätänen, 2001; Näätänen, et al., 

2007) and (b) the peak value of global field power (GFP) (Brunet, Murray, & Michel, 2011; 

Skrandies, 1990).  

To investigation the MMN native language effect on Mandarin-speaking and English-

speaking adults in Study 1, the ERP peak amplitude of MMN to the English-specific speech 

contrast /v-w/ and the amplitude of MMN to the Mandarin-specific contrast /j-q/ were measured 

as the negative maximum between 100 ~ 250 milliseconds on Cz for each adult, after averaging 

across 10 consecutive time frames (20 milliseconds) of the standard-deviant mismatch ERP data. 

For Study 2 and Study 3 on English-speaking school-age individuals, an individual’s ERP peak 

amplitudes of MMN to the acoustic contrast /b-t/, native contrast /v-w/ and non-native contrast /j-

q/ were measured as the negative maximum between 50 ~ 200 milliseconds on Cz after averaging 

across 10 consecutive time frames of the mismatch ERP data (Bishop, et al., 2011; Cheour, et al., 

2000; Kraus et al., 1996).  

In addition to the ERP peak amplitude as a measure of the ‘size’ of MMN, Global Field 

Power (GFP) that does not require pre-selecting a landmark EEG electrode was calculated for the 

mismatch ERP under each condition, in order to measure an individual’s whole-brain response 

strength of MMN (Brunet, et al., 2011; Murray, Brunet, & Michel, 2008). GFP of a standard-

deviant mismatch ERP at each moment in time was calculated for instantaneous response strength 

across all 128 channels. Here, we adopt the idea of GFP being the power increase that exceeds the 
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average value of GFP across time frames of the -100 to 0 milliseconds pre-stimulus baseline 

period. Accordingly, we divided each instantaneous GFP after the stimulus onset by the mean 

GFP during the baseline period for each individual MMN. By doing so, the general difference of 

inter-subject EEG amplitude, for example due to differences of skull conductivity, was adjusted 

(Brunet, et al., 2011; Murray, et al., 2008). Finally, after averaging across 10 consecutive time 

frames, GFP peak value (in 100~250 milliseconds for Study 1, in 50~200 milliseconds for Study 

2 and Study 3), which reflects the maximum of the whole-brain response strength of MMN to a 

phonetic contrast from an individual, was compared between subject groups and stimulus 

conditions. 

It has been documented that the latency of certain auditory ERP components such as N1 

and P2 can change over the course of development (Bishop, 2007; Cheour, et al., 2000). The 

choice of time windows to measure the response strength of MMN at individual level, i.e. 

100~250 milliseconds for Study 1 and 50~200 milliseconds for Study 2 and Study 3, is based on 

visual inspection of grand-averaged MMN waveforms on landmark electrodes including Cz, Fcz 

and Fz. The approach of utilizing visual inspection to determine the time window of MMN for 

following statistical analysis has been frequently used across previous studies on children and 

adults (Bishop, 2007; Bishop, Hardiman, Uwer, & Von Suchodoletz, 2007; Bishop, et al., 2011; 

Cheour, et al., 2000). 
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CHAPTER III 

 

STUDY 1: CROSS-LANGUAGE INVESTIGATION ON AUDITORY CORTICAL 

NARROWING IN ADULTS 

 

The primary goal of Study 1 is to verify that, the desired MMN native language effect 

which indexes auditory cortical narrowing to native speech is presented in adult listeners 

(Näätänen, 2001; Naatanen, et al., 1997; Winkler, et al., 1999). Thus, we conducted a symmetric 

cross-language MMN experiment to investigate to what extent the response strength of MMN to a 

native phonetic contrast is different from it to a non-native contrasts (Winkler, et al., 1999). 

Findings from Study1 will allow us to confirm whether adult individuals’ cortical speech 

processing is fundamentally influenced by language-specific experiences (Näätänen, 2001; 

Naatanen, et al., 1997; Zevin, et al., 2010; Yang Zhang, et al., 2005). Study 1 would lay the 

foundation for Study 2 on the age-related changes of the MMN native language among school-

age individuals. 

 

Methods 

16 native English-speaking adults and 16 Mandarin-speaking adults participated in the 

cross-language ERP study. Details of the participants and EEG data collection were described in 

Chapter 2.   

An individual’s MMN response strength i.e. ‘size’ of MMN was quantified by two 

measures: (a) the ERP peak amplitude on landmark electrode Cz and (b) the peak value of global 
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field power (GFP) (Brunet, et al., 2011; Skrandies, 1990). Study 2 and Study 3 also use these two 

measures for the MMN response strength. To examine the MMN native language effect, paired t-

comparison between the native and the non-native condition was conducted within each group to 

evaluate the response strength difference of MMN to the native and the non-native phonetic 

contrast. 

 

Results 

Waveform of MMN.  The symmetric cross-language design allowed us to verify that to 

what extent adults’ MMN response that indexes the pre-attentive auditory discrimination is 

influence by native language experiences. The standard-deviant mismatch ERP was calculated for 

the native and the non-native condition on both language groups. The grand-averaged waveforms 

of MMN on electrode Cz are displayed in Figure 5. The ERP topography of MMN is displayed in 

Supplementary Figure 1 (Appendix). Robust MMN (peaked at ~200 milliseconds) was found 

under the native condition across both groups. In contrast, the MMN to the non-native contrast 

was greatly reduced from both groups.  
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Figure 5. ERP waveform of MMN from adults. Both Mandarin-speaking adults and English-

speaking adults showed robust MMN to the native phonetic contrast and reduced MMN to the 

non-native contrast on electorde Cz at 100~250 milliseconds (ms). 

 

Amplitude of MMN. The ERP peak amplitudes of MMN were measured as the negative 

maximum between 100 ~ 250 milliseconds on Cz after averaging across 10 consecutive time 

frames (20 milliseconds) from each individual. A group (Mandarin, English) x contrast (/j-q/, /v-

w/) 2-way repeated measure ANOVA was conducted on the MMN ERP amplitude to examine the 

main effects and interaction between these variables. A significant crossover interaction was 
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found (F (1, 31) = 17.3, p<0.0001, Figure 6). Within-group pairwise t-comparisons revealed that 

the ERP amplitude of MMN to the native contrast is significant larger than that to the nonnative 

stimulus across both language groups (Mandarin Group: t (15) = 5.12, p<0.001, English Group: t 

(15) = 3.01, p<0.01).  

 

 

Figure 6. ERP amplitude of MMN from the two language groups. Significant crossover 

interaction between group and condition was found. Both groups of adults showed significantly 

larger MMN to the native contrast than the non-native contrast.  

 

GFP of MMN. The Global Field Power (GFP) of mismatch ERPs to /v-w/ and /j-q/, which 

captures the whole-brain response strength of MMN, was displayed in Figure 7. After averaging 

across 10 consecutive time frames, the GFP peak value from 100 to 250 milliseconds, which 

characterizes the maximum of the whole-brain response strength of MMN, was measured from 

individual subjects for comparison. The GFP of MMN showed a crossover interaction between 
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the language group and phonetic contrast similar to the ERP amplitude of MMN (F (1,31) = 27.6, 

p<0.0001, Figure 8.). The within-group paired t-tests between the two contrasts also revealed 

significant larger GFP of MMN to the native contrasts across both groups (Mandarin group t(15) 

= 3.26,  p<0.01, English group, t(15) = 5.74, p<0.001).  

 

 

Figure 7. GFP curves of MMN from adults. Both Mandarin-speaking adults and English-speaking 

adults showed large GFP of MMN to the native phonetic contrast and small GFP of MMN to the 

non-native contrast. 

 

 

English-speaking Group
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Figure 8. GFP of MMN from the two language groups. Similar the pattern of ERP amplitude of 

MMN, both groups showed significantly larger GFP of MMN to the native contrast than to the 

non-native contrast. 

 

In Study 1, we found that the response strength of MMN (measured by ERP peak 

amplitude and GFP) varies as the function of an individual’s native language: both language 

groups showed enhanced MMN response to the native contrast than to the non-native phonetic 

contrast. The crossover interaction (Figure 6 and Figure 8) verified the MMN native language 

effect in adults and indicates that an adult’s pre-attentive auditory discriminative processing is 

‘tuned’ to native speech (Kirmse et al., 2008; Winkler et al., 1999).  

P3a. In addition to MMN component i.e. the negative deflection at 50 to 200 milliseconds, 

the mismatch ERP to native contrasts also presented a positive deflection at 250 to 400 

milliseconds following MMN (Figure 5, Supplementary Figure 1). This positive ERP component 

is referred to as auditory P3a component (Escera, Alho, Winkler, & Näätänen, 1998; Escera & 

Corral, 2007; Tsang, Jia, Huang, & Chen, 2011; L. Zhang, Xi, Wu, Shu, & Li, 2012). It has been 

suggested that the P3a indexes the second state of auditory cortical processing, the involuntary 
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orienting to deviant sounds. Theoretically, when the brain encounters a sound change, the central 

auditory systems automatically (a) detect the deviance and (b) orientate to the sound deviance. 

These two stages of cortical processing of sounds, referred to as pre-attentive auditory 

discrimination and involuntary orienting, are indexed by the MMN and the P3a respectively 

(Escera, et al., 1998; Escera & Corral, 2007; Horváth, Winkler, & Bendixen, 2008; Tsang, et al., 

2011). The waveforms of the mismatch ERP from Study 1 revealed that, in both the Mandarin 

speaking and the English speaking adults, the native phonetic contrast not only elicited robust 

MMN but also elicited the following P3a. Comparing to the non-native condition, the enhanced 

MMN and P3a responses under the native condition across both groups indicate that, adults’ 

auditory cortical processing is tuned to their native speech.       

 

Discussion 

Study 1 verified the MMN native language effect under our experimental procedure and 

demonstrated the auditory cortical narrowing to native speech in Mandarin-speaking adults and 

English-speaking adults. It. Using a symmetric cross-language design, we isolated the native 

language effect on MMN and P3a from both language populations (Winkler, et al., 1999). We 

found that the MMN to the native phonetic contrast is significantly larger than the MMN to the 

non-native contrast across both subject groups. This result indicates that an adult’s brain 

processing of auditory discrimination is profoundly shaped by the native language experiences. 

The enhancement of MMN response strength under the native condition is consistent with 

previous studies, in which the MMN has been demonstrated as a neural correlate of the perceptual 

narrowing to native speech (Kirmse, et al., 2008; Näätänen, 2001; Naatanen, et al., 1997; 
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Näätänen, et al., 2007; Winkler, et al., 1999). In addition to MMN, we also uncovered the native 

language effect on P3a. That is, similar to MMN, the presence of P3a, which indexes the cortical 

stage of involuntary orienting in auditory speech processing, was also specific to the native 

speech condition in both language groups.  

To sum, the native language effect on MMN and P3a revealed in Study 1 supports our 

hypothesis that an adult individual’s cortical speech processing is specialized or tuned to native 

language (Näätänen, 2001; Näätänen, et al., 2007). It sets the stage for Study 2 on the 

development of MMN native language effect and continuous narrowing of cortical speech 

processing among school-age children and adolescents.  
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CHAPTER IV 

 

STUDY 2: DEVELOPMENTAL CHANGES OF AUDITORY CORTICAL NARROWING IN 

TYPICAL SCHOOL-AGE INDIVIDUALS 

 

Study 1 has demonstrated native language effect on MMN and P3a in adults that indexes 

their auditory cortical narrowing to the native speech. Study 2 aims at investigating the 

development of the native language effect on cortical speech processing from late childhood 

through adolescence years (Bishop, 2007; Čeponienė, Rinne, & Näätänen, 2002; Cheour, et al., 

2000; Cheoura, et al., 2001). Specifically, we investigated the age-related change in the response 

strength of MMN and P3a among typical school-age individuals from age 6 to age 17. We 

propose that, the auditory cortical narrowing to native speech continues after infancy, such that 

the response strength of MMN indexing auditory discrimination and P3a indexing involuntary 

orienting to a native phonetic contrast continuously increases, while the strength of MMN and 

P3a to a non-native phonetic contrast continuously decreases in late childhood through 

adolescence years. To investigate the development of native language effect, a cross-sectional 

study was conducted on a large cohort of typically developing individuals from age 6 to age 17, 

with the goal of mapping out the developmental trajectory of MMN and P3a to native and non-

native phonetic contrasts. This normative development of auditory cortical processing for native 

and non-native speech will serve a reference for the Study 3 on the association between 

insufficient auditory cortical narrowing and reading difficulty.     
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Methods 

All methods were the same as Study 1, except as follows. 

Participants. 156 school-age children and adolescents were recruited and 144 of these 

participants completed the EEG experiment. This cohort of subjects consisted of healthy 

individuals from age 6 to 17 in Nashville, TN. They are native English speakers without exposure 

to Mandarin. Participants were recruited from Vanderbilt children database. None of the 

participants were diagnosed with hearing or neurology problems. 12 subjects did not complete the 

experiment and 4 subjects had low quality EEG data (see chapter 2 for details). Data from these 

16 subjects were excluded from the analysis. 

The 140 individuals included had diverse reading fluency: 24 of them had age-

standardized scores of Test of Word Reading Efficiency (TOWRE) below the 25
th

 percentile. We 

considered these 24 individuals being ‘poor readers’ and excluded their data in Study 2. Their 

EEG and behavioral data were examined in Study 3, which investigates our hypothesis that 

deficient auditory critical narrowing to native speech is one of the attributes of reading difficulty. 

The rest 116 participants who had above the 25
th

 percentile age-standardized TOWRE scores 

were considered being ‘typical individuals’ with normal reading fluency. Their data are presented 

in the current Chapter 4. In order to examine the age-related change in the native language effect 

on MMN and P3a, the 116 subjects were divided into three age groups for Study 2, namely Age 

6-9 group (n= 47), Age 10-13 group (n=42) and Age 14-17 group (n=27). Cross-sectional 

comparisons on response strength of MMN and P3a between the three age groups were conducted 

to evaluate age-related changes in auditory discrimination and attentional orienting to native and 

non-native phonetic contrasts among typical English-speaking school-age individuals.  
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Procedure. Study 2 consists of a behavioral assessment session (0.5 hrs) and an auditory 

EEG recording session (1.5 hrs). In the behavioral session, standardized assessments including 

Matrix Reasoning from Wechsler Abbreviated Scale of Intelligence (WASI), Test of Word 

Reading Efficiency (TOWRE), Elision and Memory for Digits from Comprehensive Test of 

Phonological Processing (CTOPP) were given to each participant. The scores of these 

standardized assessments provide behavioral measures of an individual’s non-verbal IQ, reading 

fluency, phoneme omitting and auditory working memory (Table 1).  In particular, the age-

standardized score of TOWRE, which captures an individual’s reading fluency, was used to (a) 

differentiate poor readers and typical readers and (b) conduct regression for the brain-behavior 

relationship between the response strength of MMN and P3a and reading fluency.  

 

 

Table 1. Behavioral measures of the three age groups 

  

Age 6-9 (n= 47) 

  

Age 10-13 (n=42) 

  

Age 14-17 (n=27) 

 

 

 

M 

 

SD 

  

M 

 

SD 

  

M 

 

SD 

Age 8.45 1.07  11.83 1.17  16.13 1.29 

 

Behavioral Measures 

       

TOWRE 114.49 9.89  105.60 12.25  102.22 7.19 

Elision 12.49 2.52  10.81 2.22  10.19 2.68 

Matrix Reasoning 116.43 12.37  104.00 14.59  104.93 13.35 

Memory for Digits  11.17 2.54  11.02 3.03  12.07 3.17 
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The EEG recording was under the same experimental procedure of Study 1. Details are 

described in Chapter 2 and Chapter 3. In brief, the English consonant contrast /v-w/ (native 

condition), the Mandarin contrast /j-q/ (non-native condition) and contrast /b-t/ (acoustic 

condition) were delivered through passive auditory oddball paradigm with two blocks for each 

MMN stimulus contrast. The acoustic contrast /b-t/ has more pronounced acoustic differences 

than contrast /v-w/ and /j-q/, and thus robust MMN and P3a responses are expected across all 

three age groups in /b-t/ condition.    

Data Analysis. In Study 2, the response strength of MMN and P3a to the acoustic contrast 

/b-t/, native contrast /v-w/ and non-native contrast /j-q/ was measured from the subjects in Age 6-

9 group, Age 10-13 group and Age 14-17 group. Similar to Study 1, an individual’s response 

strength of MMN was measured by (a) ERP peak amplitude on landmark electrode Cz and (b) 

GFP peak value in the time window of 50~200 milliseconds, after averaging across 10 

consecutive time frames. For P3a component, an individual’s response strength of it was 

measured by the ERP peak amplitude on Cz and the peak value of GFP at the time window of 

200~400 milliseconds, after the running average on 10 time frames. The calculation of GFP for 

MMN and P3a follows the procedure in Chapter 2. Comparing to the measure of ERP peak 

amplitude on electrode Cz, the GFP measure can capture a subject’s ERP response strength at the 

whole-brain level irrespective of scalp topographic distribution of the brain activation. Previous 

literature suggests a potential systematic topographic change of MMN (the posterior to anterior 

shift of MMN negative pole) from younger to older school-age children (Bishop, 2007; Cheour, et 

al., 2000; Cheoura, et al., 2001; Näätänen, et al., 2007). With this regard, comparing the MMN 

peak amplitude at a fixed electrode Cz between different age groups may lead to biased results. 

However, using the measure of GFP to quantify the whole-brain response strength of MMN 
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would avoid the possible systematic bias (Brunet, et al., 2011; Murray, et al., 2008; Skrandies, 

1990).   

 

Central Questions 

Question 1. How does the response strength of MMN and P3a to the three types of 

stimulus contrasts change with development among this cohort of school-age individuals with 

typical reading? Investigating this question will advance our understanding on age-related 

changes of the native language effect on MMN and P3a and further justifies our hypothesis that 

the narrowing of cortical speech processing to native language continues far beyond infancy 

(Kuhl & Rivera-Gaxiola, 2008; Werker & Tees, 2002; Werker & Tees, 2005). We predict that 

cross-sectional comparisons between the three age groups will reveal an increase of brain 

response strength in MMN and P3a to the acoustic /b-t/ and native /v-w/ contrasts but a decrease 

in the ‘size’ of MMN and P3a to the non-native /j-q/ over development (Figure 9). This divergent 

trend is due to the fact that /b-t/ and /v-w/ are used as phonetic contrasts in English. If this 

developmental trend of MMN and P3a can be observed, it would indicate that school-age 

individuals’ cortical speech processing continuously becomes more specialized toward or ‘tuned’ 

to native speech with development, and supports our hypothesis that auditory cortical narrowing 

to native speech continues in late childhood and adolescence.  

Question 2. What is the relationship between one’s MMN and P3a response strength and 

reading fluency among school-age individuals? We hypothesize that, an individuals’ reading 

development is associated with the degree of auditory cortical specialization or ‘narrowing’ to 

native phonemes (Bishop, 2007; Cheour, et al., 2000; Kraus, Koch, McGee, Nicol, & 
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Cunningham, 1999; Kraus, et al., 1996). To investigate this brain-behavioral relationship, we 

conduct regression of TOWRE scores on the strength of MMN and P3a on the entire cohort of 

116 individuals to understand to what extent individual differences in cortical speech processing 

can account for the variability in reading fluency. Specifically, we propose that, the regression 

will reveal that the response strength of MMN and P3a to the native contrast /v-w/ is positively 

correlated with age-standardized scores of TOWRE, but the strength of MMN and P3a to the non-

native /j-q/ is negatively correlated with the TOWRE scores for reading fluency.  

Question 3. Whether the relationship between one’s MMN and P3a response and scores of 

TOWRE is consistent across different age ranges, or the brain-behavioral relationship is different 

between individuals at different age level? We hypothesize that, perhaps at the early stage of 

learning to read, young readers heavily rely on the grapheme-to-phoneme conversion for 

phonological decoding of a word, whereas old readers may develop other strategies later in life 

for word decoding and become less dependent on phonological decoding. Along this reasoning, 

we suspect that the reading fluency is possibly more influenced by and thus more correlated with 

auditory cortical processing of speech (discrimination and orienting) among elementary school 

students at age 6 to 11 than mid and high school students at age 12 to 17. To evaluate this 

hypothesis, we examine the developmental change in brain-behavior relationship between MMN, 

P3a and the reading fluency by using multiple regression that includes age-level moderator 

variable (young: age 6 to 11, old: age 12 to 17) and the interaction between MMN P3a and the 

age-level.  
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Figure 9. Proposed age-related change of MMN. We predict that the response strength of MMN 

to the acoustic /b-t/and native /v-w/ contrasts should increase and the strength of MMN to the 

non-native /j-q/ contrast should decrease over development, because contrast /b-t/ and /v-w/ are 

used in English and contrast /j-q/ is not used in English.    

 

Results 

Question 1: Development of MMN and P3a response strength  

Waveforms of mismatch ERP from the three age groups under the condition of /b-t/, /v-w/ 

and /j-q/ are displayed in Figure 10. Robust MMN at 100~200 milliseconds and P3a at 200~350 

milliseconds was elicited by the /b-t/ contrast across the groups. Figure 11 displays age-related 

changes in the ERP peak amplitude of MMN and P3a. The mean and the standard error (SE) of 

ERP amplitude are presented in Table 2. To investigate the first central question, Group (age 6-9, 

10-13 and 14-17) x Condition (/b-t/, /v-w/ and /j-q/) 2-way repeated measure ANOVA was 

conducted on the ERP peak amplitude of MMN and P3a respectively. Significant main effect of 

the condition was found in both MMN and P3a ERP amplitude (MMN, F (2, 226) =12.18, 

p<0.0001; P3a, F (2,266) =6,13, p<0.01).  No significant interaction between group and condition 

was found on ERP amplitude (MMN, F (2, 226) = 1.32, p=0.27; P3a, F (2, 226) = 0.56, p=0.57). 
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Figure 10. ERP waveform of MMN from school-age individuals. The standard-deviant mismatch 

ERP to /b-t/, /v-w/ and /j-q/ on electrode Cz is displayed for the three age groups. Robust MMN is 

elicited by /b-t/ at 100~200 milliseconds (ms) following by P3a at 200~350 milliseconds in the 

three age groups.   
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Figure 11. Age-related change in ERP amplitude of MMN and P3a. The ERP peak amplitudes of 

MMN (upper panel) and P3a (lower panel) to contrast /b-t/, /v-w/ and /j-q/ are displayed for the 

three age groups. Error bars denote one standard error around the mean.  
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Table 2. ERP Amplitude (µV) of MMN and P3a from the three groups  

  

Age 6-9 (n=47) 

  

Age 10-13 (n=42) 

  

Age 14-17 (n=27) 

 

 

 

M 

 

SD 

  

M 

 

SD 

  

M 

 

SD 

Age 8.45 1.07  11.83 1.17  16.13 1.29 

         

ERP Amplitude M SE  M SE  M SE 

MMN to /b-t/ -0.55 0.15  -0.31 0.17  -0.59 0.14 

MMN to /v-w/ -0.28 0.16  -0.22 0.14  -0.36 0.15 

MMN to /j-q/ 0.36 0.17  0.07 0.16  -0.10 0.10 

P3a to /b-t/ 0.49 0.15  0.95 0.20  0.34 0.16 

P3a to /v-w/ 0.42 0.16  0.28 0.13  0.03 0.15 

P3a to /j-q/ 0.30 0.15  0.13 0.19  -0.04 0.17 

 

The GFP curves of mismatch ERP to the contrast /b-t/, /v-w/ and /j-q/ from the three age 

groups are displayed in Figure 12. The GFP increase for MMN was found at 100~200 

milliseconds and the GFP increase for P3a was found at 200~400 milliseconds, which indicates 

an age-related difference in whole-brain ERP response strength (Figure 13). Children from age 6 

to 9 group showed little GFP differences in response to the acoustic /b-t/, native /v-w/ and non-

native /j-q/. In contrast, individuals in age group 14 to 17 showed stronger MMN and P3a to the 

contrasts /b-t/ and /v-w/ comparing to the response to /j-q/. The mean and the standard error (SE) 

of the GFP of MMN and P3a are presented in Table 3. Group x Condition 2-way repeated 

measure ANOVA on the GFP of MMN and on the GFP of P3a revealed significant interaction 

between the condition and group for both MMN (F(2,226) = 4.28, p<0.05) and P3a (F(2, 226) 

=5.74, p<0.01). As displayed in Figure 13, over the course of development, the whole-brain 

response strength of MMN and P3a tends to increase for speech contrasts used in one’s ambient 
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language (/b-t/ and /v-w/) but tend to decrease for speech contrasts that is non-native (/j-q/) to the 

subject. This age-related change in the GFP of MMN and P3a supports our hypothesis that 

auditory cortical narrowing to native speech continues in late childhood and adolescence, such 

that school-age individual’s cortical speech processing (auditory discrimination and involuntary 

orienting) becomes specialized to native language with development.   
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Figure 12. GFP curves of MMN from school-age individuals. The GFP of the mismatch ERP to 

/b-t/, /v-w/ and /j-q/ is displayed for the three age groups. GFP increase that is associated with 

MMN and P3a can be observed at 100~200 milliseconds (ms) and at 200~300 milliseconds under 

the /b-t/ and /v-w/ conditions on the age 14-17 group.   
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Figure 13. Age-related change in GFP of MMN and P3a. The GFP of MMN (upper panel) and 

P3a (lower panel) is displayed for the three age groups. Error bars denote one standard error 

around the mean. Increasing developmental trend of GFP to /b-t/ and /v-w/ contrasts and 

decreasing trend of GFP to /j-q/ was found for both MMN and P3a. 
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Table 3. GFP (dB) of MMN and P3a from the three age groups 

  

Age 6-9 (n= 47) 

  

Age 10-13 (n=42) 

  

Age 14-17 (n=27) 

 

 

 

M 

 

SD 

  

M 

 

SD 

  

M 

 

SD 

Age 8.45 1.07  11.83 1.17  16.13 1.29 

         

GFP value M SE  M SE  M SE 

MMN to /b-t/ 1.96 0.12  2.01 0.14  2.33 0.26 

MMN to /v-w/ 1.91 0.13  1.79 0.12  2.06 0.18 

MMN to /j-q/ 1.84 0.10  1.66 0.13  1.55 0.14 

P3a to /b-t/ 1.82 0.10  2.28 0.20  2.49 0.22 

P3a to /v-w/ 1.93 0.13  1.68 0.15  2.19 0.19 

P3a to /j-q/ 1.98 0.12  1.91 0.14  1.73 0.16 

 

 

Question 2: Brain-behavior relationship for reading fluency 

To study the relationship between one’s auditory cortical processing of speech and reading 

fluency, we conducted multiple regression of TOWRE scores on the ERP amplitude of MMN and 

multiple regression of TOWRE scores on the ERP amplitude of P3a on the entire cohort of typical 

individuals (n=116). Each of the two regressions has one dependent variable (Y) being the age-

standardized scores of TOWRE that measures an individual’s reading fluency. For the regression 

on MMN, independent variables include the ERP peak amplitude of MMN to /b-t/ (X1), to /v-w/ 

(X2) and to /j-q/ (X3). For the regression on P3a, independent variables include the ERP peak 

amplitude of P3a to /b-t/ (X1), to /v-w/ (X2), and to /j-q/ (X3).  
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The multiple regression of TOWRE on MMN revealed (a) significant positive relationship 

between the amplitude of MMN to the native contrast /v-w/ and the age-standardized TOWRE 

scores (b = 2.56, t = 2.19, p < 0.05) and (b) marginal significant negative relationship (b = -1.83, t 

= -1.76, p = 0.08) between the amplitude of MMN to non-native /j-q/ and the reading fluency 

(adjusted R
2 

= 0.045, p<0.05). The regression on P3a revealed significant positive relationship 

between the ERP amplitude of P3a to /v-w/ and the age-standardized TOWRE scores (b = 2.63, t 

= 2.30, p<0.05; adjusted R
2 

= 0.075, p<0.01). 

In addition to the ERP peak amplitude for measuring the strength of auditory brain 

response, GFP measures of MMN and P3a were also examined by two separate multiple 

regressions for the brain-behavior relationship. For the multiple regression of TOWRE scores on 

the GFP of MMN, independent variables include the GFP peak value of MMN to /b-t/ (X1), to /v-

w/ (X2) and to /j-q/ (X3). For the regression on the GFP of P3a, independent variables include the 

GFP value of P3a to /b-t/ (X1), to /v-w/ (X2), and to /j-q/ (X3). Both of the multiple regressions do 

not reveal that significant proportion of variance in the age-standardized scores of TOWRE can be 

accounted for by the GFP measures (MMN: adjusted R
2 

= 0.03; P3a: adjusted R
2 

= -0.01). This 

result indicates a lack of relationship between an individual’s GFP brain response strength of 

auditory speech processing and reading fluency. 

 

Question 3: Age moderation on the brain-behavioral relationship  

In the third central question, we reasoned that the relationship between auditory cortical 

processing of speech and reading fluency may present differently between individuals at younger 

ages and individuals at older ages (Bishop, 2007; Bishop, et al., 2007; Bishop, et al., 2011). 
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Specifically, we predicted that, because phonological skills are so critical for children to learn to 

read, cortical speech processing involving auditory discrimination and orienting to phonetic 

contrasts can be fundamental for reading development at early stage of learning to read. With this 

regard, the correlations between the response strength of MMN as well as P3a and scores of 

TOWRE are perhaps stronger in young individuals such as elementary school students compared 

to old individuals such as middle school and high school students.   

To investigate the potential different brain-behavioral relationship between young and old 

individuals, we defined an age moderator variable and included interactions of the age moderator 

and the ERP measures to explain reading fluency in a multiple regression. In particular, we 

defined a binary age moderator age-level by splitting the cohort of 116 individuals into two age 

groups: Old (12-17 years of age with mean of 14.7, dummy coding 0 as reference level, n= 48,) 

and Young (6-11 years of age with mean of 9.2, dummy coding 1, n= 68). We then examined the 

interactions between the age-level and the response strength of MMN and P3a in the regression of 

reading fluency. That is, for the multiple regression of age-standardized TOWRE scores (Y) on 

MMN, independent variables include the ERP peak amplitude of MMN to /b-t/ (X1), to /v-w/ (X2) 

and to /j-q/ (X3), the categorical moderator variable age-level (X4) and the interaction product 

terms of X1*X4, X2*X4, and X3*X4. Similarly, for the multiple regression of TOWRE scores on 

P3a ERP amplitude, independent variables include the ERP peak amplitude of P3a to /b-t/ (X1), to 

/v-w/ (X2) and to /j-q/ (X3), the age-level (X4) and the terms of X1*X4, X2*X4, and X3*X4.  

The regression of TOWRE on MMN revealed a significant proportion of variance in the 

reading fluency measure can be explained by the ERP amplitude of MMN to /b-t/, /v-w/ and /j-q/ 

and the corresponding interaction with the age-level (adjusted R
2
=0.14, p<0.01). A significant 

positive interaction of MMN to native /v-w/ and the age-level was found (b = 5.29, t = 2.47, p< 
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0.05). This interaction revealed a stronger positive relationship between one’s auditory 

discrimination of native contrast /v-w/ and reading fluency among individuals at age 6 to 11, 

compared with individuals at age 12 to 17 (Figure 14). The multiple regression of TOWRE scores 

on P3a ERP amplitude, however, did not find significant interaction between ERP measures and 

the age-level moderator.  
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Figure 14. Age moderation on brain-behavior relationship. The correlation between amplitudes of 

MMN to /v-w/ and scores of TOWRE is moderated by the age-level moderator. More positive 

correlation was presented in the young group (age 6 to 11) comparing to the old group (age 12 to 

17). 

   

 



44 

 

In addition to the ERP peak amplitude, similar regression analyses were also conducted on 

the GFP value of MMN and the GFP of P3a to investigate the relationship between whole-brain 

response strength and reading fluency among young and old individuals. One regression of age-

standardized scores of TOWRE (Y) was conducted on independent variables including the GFP 

of MMN to /b-t/ (X1), /v-w/ (X2) and /j-q/ (X3), the age-level (X4) and the interaction of X1*X4, 

X2*X4, and X3*X4 and the other regression of TOWRE was conducted on the GFP of P3a to /b-t/ 

(X1), /v-w/ (X2) and /j-q/ (X3), the age-level (X4) and the interaction of X1*X4, X2*X4, and X3*X4. 

Neither of the two multiple regressions on the whole-brain response strength found significant 

interaction between GFP of MMN or P3a and the age level.  

 

Degree of cortical narrowing and reading 

In both Study 1 and Study 2, we proposed that an individual’s auditory cortical processing 

becomes specialized or ‘tuned’ to native speech over the course of development, and this cortical 

narrowing can benefit one’s  perception of native speech and be fundamental for reading 

development. Reading difficulties have been attributed to deficient narrowing to native speech at 

behavioral level and at brain level in previous ERP research on typical population and dyslexic 

populations (Bruder et al., 2011a; Noordenbos, Segers, Serniclaes, Mitterer, & Verhoeven, 2012; 

Schulte-Körne & Bruder, 2010).  

Here, to further investigate to what extent an individual’s reading fluency is linked to 

auditory cortical narrowing to native speech, the GFP difference between the native condition /v-

w/ and the non-native condition /j-q/ (GFP to the /v-w/ minus GFP to /j-q/) in MMN and the GFP 

difference between /v-w/ and /j-q/ in P3a were computed as two measures for the degree of one’s 
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auditory cortical narrowing to native speech. Regression of age-standardized scores of TOWRE 

(Y) on the native versus non-native GFP difference in MMN (X1) and the GFP difference in P3a 

(X2) revealed that the GFP strength difference between the native and non-native contrasts in 

MMN (but not in P3a) is significantly correlated with one’s reading fluency (b = 3.67, t = 2.98, 

p<0.01, Figure 15).      

 

Figure 15. Positive relationship between cortical narrowing and reading. The GFP difference of 

MMN between /v-w/ and /j-q/ which measures the degree of an individual’s cortical narrowing to 

native speech is positively correlated with the score of TOWRE that measures the subject’s 

reading fluency.  

   

Discussion 

In the current Chapter 3, the development of native language effect on cortical speech 

processing was investigated on a large cohort of typically developing individuals from age 6 to 

age 17. The age-related changes of MMN and P3a to native and non-native phonetic contrasts 
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were mapped out among the school-age subjects, which advances our understanding on the 

cortical narrowing to native speech over development (Bishop, 2007; Bishop, et al., 2007;  Bishop, 

et al., 2011; Cheour, et al., 2000; Cheoura, et al., 2001). The results of the cross-sectional 

comparisons on MMN and P3a response strength in Study 2 support our hypothesis that the 

narrowing of one’s auditory cortical processing to native speech continues in late childhood 

through adolescence, far beyond infancy. 

Although the ANOVA on ERP peak amplitudes of MMN and P3a only found main effect 

on the condition, ANOVA on GFP for whole-brain response strength found significant interaction 

between the condition and the age group for both MMN and P3a. Consistent with our hypothesis 

that cortical narrowing to native speech continues far beyond infancy, the school-age individuals 

at elder age showed more pronounced native language effect on cortical speech processing 

compared with those at younger age. Specifically, individuals at age 14 to 17 showed stronger 

whole-brain GFP response of MMN and P3a to the native contrast /v-w/ than the non-native 

contrast /j-q/, whereas individuals at age 6 to 9 presented little difference in the GFP of MMN and 

P3a between the native and non-native conditions.  

The significant interaction between age group and stimulus condition in both GFP of 

MMN and P3a suggests that, different from those at age 6 to 9, individuals at age 14 to 17 seem 

to be more sensitive and more likely to orientate to a native phonetic contrast but less sensitive to 

non-native phonetic elements (Čeponienė et al., 2003; Escera, et al., 1998; Escera & Corral, 2007). 

This age-related change in the native language effect of MMN and P3a suggests that,  an 

individual’s auditory cortical processing becomes more specialized or ‘tuned’ to native speech 

with development and the cortical narrowing to native language continues in childhood through 
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adolescence years (Tsang, et al., 2011; Wetzel, Widmann, Berti, & Schröger, 2006; Xi, Zhang, 

Shu, Zhang, & Li, 2010;  Zhang, et al., 2012; Zhang et al., 2012).  

In addition to the cross-sectional comparisons, an individual’s brain response strength 

(ERP peak amplitude and GFP value) of MMN and P3a to native and non-native phonetic 

contrasts was also linked to the behavioral measure of reading fluency in this cohort of 116 

typical individuals. Significant positive brain-behavioral correlation was found between the age-

standardized scores of TOWRE and ERP peak amplitudes of MMN to the native contrast /v-w/. 

Marginally significant negative relationship was also found between the TOWRE scores and ERP 

amplitude of MMN to the non-native /j-q/. The positive relationship between reading fluency and 

MMN to the native contrast along with the negative relationship between reading fluency and 

MMN to the non-native contrast supports our hypothesis (central question 2) that auditory cortical 

narrowing to native speech is associated with an school-age individual’s reading development 

(Bishop, 2007; Leppänen, & Kraus, 2000; Noordenbos, et al., 2012).     

For central question 3, we hypothesized that the brain-behavioral relationship between the 

response strength of MMN and reading fluency can potentially be different between individuals at 

different age levels. We reasoned that, when children begin learning to read in elementary school, 

they perhaps heavily rely upon auditory speech processing such as phoneme discrimination in 

order to decode written words and develop fluent reading. In contrast, for elder individuals such 

as middle school and high school students, auditory speech processing might become less 

fundamental to fluent reading, because instead of solely relying on grapheme-to-phoneme 

conversion for phonological decoding of words, elder readers may already develop alternative 

strategies later in life to read efficiently.  
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To examine the potential different brain-behavior relationships among individuals at 

different age levels, we examined the interaction effect between an age moderator i.e. age-level 

and response strength of MMN in explaining individual differences in TOWRE scores for reading 

fluency. We found that the effect of ERP amplitude of MMN to the native contrast /v-w/ (X) on 

the dependent variable TOWRE scores (Y) depends on the third age-level moderator variable. 

The significant positive coefficient of the interaction between the ERP amplitude of MMN to /v-

w/ and the age-level (i.e. the product term of the two variables in the multiple regression) 

indicates that, the reading fluency is statistically more positively associated with the size of MMN 

to native speech among children from age 6 to age 11, compared with this brain-behavioral 

relationship among individuals at age 12 to 17. 

Finally, the extent to which the degree of one’s auditory cortical narrowing to native 

speech is linked to reading fluency was examined in the regression of TOWRE scores on the GFP 

difference between MMN to the native contrast /v-w/ and MMN to the non-native contrast /j-q/. 

Significant positive relationship between the difference GFP of MMN and TOWRE is consistent 

with our hypothesis that an individual’s reading fluency is perhaps associated with the degree to 

which one’s pre-attentive auditory discrimination is specialized or ‘tuned’ to native speech.     
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CHAPTER V 

 

STUDY 3: DEFICIENT CORTICAL NARROWING AND READING DIFFICULTY IN 

SCHOOL-AGE INDIVIDUALS 

 

Study 2 revealed that the response strength of MMN to the native phonetic contrast is 

correlated with reading fluency and auditory cortical narrowing to native speech is fundamental to 

fluent reading among school-age individuals. In the current chapter, we further investigate our 

theory that reading difficulty can perhaps arise from deficient auditory cortical narrowing to 

native speech (Bruder et al., 2011b; Leppänen et al., 2012; Noordenbos, et al., 2012; Schulte-

Körne & Bruder, 2010). For Study 3, we identified 24 individuals with age-standardized TOWRE 

score below the 25
th

 percentile (defined as ‘poor reading group’) and 24 age-matched control 

individuals with TOWRE scores above the 25
th

 percentile (defined as ‘typical reading group’). 

We set out to compare the response strength of MMN between the two reading groups to examine 

the association between defective cortical speech processing and reading difficulty.  

In Study 3, we hypothesize that the native language effect of MMN is perhaps reduced in 

the poor reading group. In particular, we predict that the 24 poor readers with low reading fluency 

may possibly show abnormally small MMN to the native contrast /v-w/ and but excessively large 

MMN to the non-native contrast /j-q/, when compared with the age-matched typical controls with 

fluent reading. If a lack of MMN native language effect could be observed in the poor reading 

group, it would (a) support our hypothesis that unlike typically developing individuals with fluent 

reading, a poor reader’s auditory cortical processing is not well tuned to native speech and (b) 

further support the notion that insufficient cortical narrowing to native speech can be one of the 
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attributes of developmental dyslexia (Bruder, et al., 2011a, 2011b; Leppänen, et al., 2012; 

Noordenbos, et al., 2012; Schulte-Körne & Bruder, 2010). 

 

Methods 

All methods were the same as Study 2 in Chapter 4, except as follows. 

In Study 3, the response strength of MMN and P3a from the 24 participants whose age-

standardized TOWRE scores were below the 25
th

 percentile, i.e. the poor reading group, were 

compared to the data from the 24 age-matched controls with normal reading fluency i.e. the 

typical reading group with age-standardized TOWRE scores above the 25
th

 percentile. In addition 

to the match on age, the controls were also matched to the poor readers with non-verbal IQ that 

was measured by Matrix Reasoning in CTOPP (described in Chapter 2). The details of the two 

reading groups are displayed in Table 4.  

 

Table 4. Behavioral measures of the two reading groups 

  

Poor Reading Group 

(n=24) 

  

Typical Reading Group 

(n=24) 

 

Measure 

 

M 

 

SD 

  

M 

 

SD 

Age 12.08 3.92  12.10 3.83 

Test of Word Reading Efficiency (TOWRE) 84.38 5.89  107.29 9.91 

Elision 8.17 2.51  9.88 2.98 

Matrix Reasoning 94.71 16.55  101.42 11.93 

Memory for Digits 9.33 3.13  10.67 3.50 
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Similar EEG data analyses in Study 1 and 2 were conducted for Study 3 on the 24 poor 

readers and their age-matched controls.  Both the running-average ERP peak amplitude on Cz and 

the GFP peak value were used to measure an individual’s response strength of MMN at 50~200 

milliseconds as well as P3a at 200~400 milliseconds to the acoustic contrast /b-t/, native contrast 

/v-w/ and non-native contrast /j-q/ from each group. Group by Condition 2-way repeated measure 

ANOVA was conducted to statistically evaluate the differences of response strength of MMN and 

P3a between the two reading groups.  

 

Results 

Waveforms of the mismatch ERP to /b-t/, /v-w/ and /j-q/ on Cz from the poor reading 

group and the typical reading group are displayed in Figure 16. Robust MMN to the acoustic 

contrast /b-t/ and the native contrast /v-w/ was elicited in the typical reading group at 100~200 

milliseconds. In contrast, the poor reading group showed a lack of MMN response to /v-w/ and 

reduced MMN to /v-w/ at 100~200 milliseconds. For the non-native /j-q/ contrast, different from 

the typical reading group showing a positive durative mismatch ERP response at 200~300 

milliseconds, the poor reading group showed a negative mismatch response i.e. MMN to /j-q/ at 

150~300 milliseconds instead.  



52 

 

 

Figure 16. ERP waveform of MMN from the two reading groups. Typical readers showed MMN 

to contrasts /b-t/ and /v-w/ at 100~200 milliseconds (ms). Poor readers showed reduced MMN to 

/b-t/ and /v-w/ at 100~200 milliseconds but excessive MMN to /j-q/ at 200~300 milliseconds 

comparing to the typical readers.   

 

Figure 17 displays the ERP amplitude of MMN and P3a from the two reading groups. 

Group by Condition 2-way repeated measure ANOVA on the MMN ERP peak amplitude 

revealed a significant interaction between the condition and the reading group (F(2, 95) =5.85, 

p<0.01). Post-hoc paired t-tests between the two groups revealed that, the poor readers had 

significantly weaker MMN to the acoustic contrast /b-t/ (p<0.01) and the native contrast /v-w/ 

(p<0.05) compared to the typical readers. On the contrary, for the non-native /j-q/ condition, the 
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poor readers instead showed larger MMN (marginal significant, p=0.08) than the typical controls. 

The 2-way ANOVA on P3a ERP amplitude did not found significant main effects or interaction.  

 

 

Figure 17. Reduced amplitude of MMN from the poor readers. The ERP peak amplitude of MMN 

(upper panel) and ERP amplitude of P3a (lower panel) are displayed for the two reading groups. 

Error bars denote one standard error around the mean. Significant interaction between the group 

and condition was found on MMN. 
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The GFP curves of the mismatch ERP from the poor reading group and from the typical 

reading group are displayed in Figure 18. Group by Condition 2-way ANOVA was also 

conducted on the GFP value of MMN and the GFP of P3a. No significant interaction or main 

effects was found on the GFP data.  

 

Figure 18. GFP curves of MMN from the two reading groups.  GFP of mismatch ERP to /b-t/, /v-

w/ and /j-q/ contrasts from the poor readers and the typical readers. 

 

Poor Reading Group 

Typical Reading Group 
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Discussion 

In the current Chapter 5, auditory cortical processing of native and non-native phonetic 

contrasts was compared between a group of individuals with low reading fluency and their age-

matched controls with typical reading. Consistent with previous MMN studies, we found that the 

poor reading group had significantly weaker MMN to the native /v-w/ contrast, when compared to 

the typical reading group (Bishop, 2007; Lovio, Halttunen, Lyytinen, Näätänen, & Kujala, 2012; 

Lovio, Näätänen, & Kujala, 2010; Pakarinen et al., 2009; Schulte-Körne & Bruder, 2010). The 

lack of MMN to native contrast is consistent with our hypothesis that reading difficulty can result 

from defective auditory discrimination of native speech sounds.  

Similar group difference in ERP amplitude was also found in MMN to the acoustic /b-t/ 

contrast: the poor reading group showed greatly reduced of MMN compared with the typical 

group. The contrast stimulus /b-t/ has largely pronounced acoustic distinction and it elicits robust 

MMN across the three age groups in Study 2 and the typical reading group in Study 3. The greatly 

reduced MMN to /b-t/ from the poor reading group seems to point out that perhaps there is low-

level defectiveness in pre-attentive auditory discrimination of sounds among individuals with 

reading difficulty. The results of reduced MMN to /b-t/ together with a lack of MMN to /v-w/ 

seem to support the ‘basic auditory dysfunction’ theory of dyslexia, stating that dysfunctions of 

low-level auditory processing can impair the cortical processing of acoustic features such as 

sound frequency, duration and amplitude, and such basic auditory dysfunctions can degrade one’s 

ability in perceiving phonetic structures of speech and further results in reading difficulties 

(Bishop, 2007; Bruder, et al., 2011a; Kujala, Lovio, Lepistö, Laasonen & Näätänen, 2006;  Kujala, 

et al., 2000; Näätänen, et al., 2012; Pakarinen, et al., 2009; Schulte-Körne & Bruder, 2010).  
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The poor reader’s excessive MMN to non-native contrasts in Study 3 seem to indicate that, 

basic auditory dysfunction is not the only factor that contributes to low reading fluency (Bishop, 

2007; Bruder, et al., 2011a, 2011b). That is, if the basic auditory dysfunction such as low 

sensitivity to sound duration were the only cause for poor reading, a reduction of MMN to non-

native contrast /j-q/ would be observed in the poor reading group, because the acoustic attribute 

that differentiates /j/ and /q/ is aspiration, an acoustic feature primarily involving sound duration. 

However, different from the prediction of basic auditory dysfunction theory, we found that, when 

listening to the non-native /j-q/ contrast, the poor reading group presented even stronger MMN 

than the typical reading group. This excessive MMN response to non-native speech indicates that 

this group of poor readers’ auditory cortical discrimination is not universally insensitive. Instead, 

the result from the non-native condition suggests that individuals with poor reading may perhaps 

suffer from abnormal hypersensitivity to speech sounds that are not relevant to their native 

language (Bruder, et al., 2011a, 2011b; Leppänen, et al., 2012; Noordenbos, et al., 2012). 

The finding of reduced MMN to /b-t/ and /v-w/ along with excessive MMN to /j-q/ in 

Study 3 demonstrated a lack of MMN native language effect in the 24 school-age individuals with 

low reading fluency. It indicates that, at least some individuals with reading difficulty seem to 

suffer from hyposensitivity of auditory discrimination to native phonemes but hypersensitivity of 

pre-attentive cortical discrimination to non-native phonemes. The lack of MMN native language 

effect from the poor reading group in Study 3 supports our hypothesis that deficient auditory 

cortical narrowing to native speech can be one of the attributes of individuals with reading 

difficulty.    
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CHAPTER VI 

 

GENERAL DISCUSSION 

 

In the current thesis, we studied the auditory cortical narrowing to native speech over 

development and to what extend it is related to reading difficulty among school-age individuals. 

Theoretically, we hypothesize that, with development, an individual’s auditory cortical processing 

becomes specialized or ‘tuned’ to native speech, which facilitates an individual’s brain process of 

speech sounds that are used in the ambient language.  

The mismatch negative, .i.e. MMN to native and non-native phonetic contrasts is studied 

in the current thesis as the brain measure of auditory cortical processing of speech. In particular, 

we investigated how an individual’s MMN response, which indexes the pre-attentive auditory 

discriminative processing of speech contrasts, can be influenced by the listener’s native language 

experiences. We compared the response strength of MMN between the native and the non-native 

phonetic condition among adults (Study 1), typically developing school-age individuals (Study 2) 

and individuals with reading difficulty (Study 3). We found that, (a) both English-speaking and 

Mandarin-speaking adults show native language effect of MMN i.e. enhanced MMN to the native 

phonetic contrast but reduced MMN to the non-native phonetic contrast, (b)  the auditory cortical 

narrowing to native speech extends through childhood and adolescence years, such that 

continuously the MMN to the native contrast increases while the MMN to the non-native contrast 

decreases among a cohort of typical school-age individuals from age 6 to 17, and (c) a lack of 
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MMN native language effect that indexes deficient cortical narrowing to native speech is found 

on school-age individuals with reading difficulty.  

 

Auditory cortical narrowing in adults 

In Study 1, we verified the native language effect of MMN in a group of Mandarin-

speaking adults and a group of English-speaking adults under our EEG experimental procedure.  

In a symmetric Mandarin-English cross-language design, we presented the Mandarin-specific 

phonetic contrast /j-q/ and the English-specific phonetic contrast /v-w/ to both language 

populations. We found that the response strength (ERP peak amplitude, Global Filed Power) of 

MMN to the native phonetic contrast is significantly larger than MMN to the non-native contrast 

across both language groups. This result indicates that an adult’s pre-attentive auditory 

discriminative processing is tuned by native language experiences.  

Our finding of enhanced MMN response to native speech is consistent with previous ERP 

studies on adults, in which the MMN native language effect has been suggested as a neural 

correlate of behavioral-level perceptual narrowing to native language (Kirmse, et al., 2008; 

Näätänen, 2001; Naatanen, et al., 1997; Näätänen, et al., 2007; Winkler, et al., 1999). In addition 

to the native experience influences on the MMN component, in Study 1 we also uncovered the 

native language effect on the P3a ERP component. That is, similar to MMN, the P3a response that 

indexes the brain stage of involuntary orienting in cortical speech processing was also enhanced 

to the native phonetic contrast across both language groups.  

Study 1 has demonstrated the native language effect on MMN and P3a in adult subjects 

and supported our fundamental hypothesis that an individual’s auditory cortical processing is 
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substantially influenced by native language experiences. Study 1 also verifies our experimental 

procedure for MMN and lays the foundation for Study 2 on the development of auditory cortical 

narrowing among school-age individuals.  

 

Auditory cortical narrowing in school-age individuals 

The native language influence on pre-attentive auditory discriminative processing has 

been studied in adults from different language populations (Čeponienė, Rinne & Näätänen, 2002; 

Kirmse, et al., 2008; Näätänen, 2001; Naatanen, et al., 1997; Winkler, et al., 1999). However, 

there have been few studies on the development of MMN to native and non-native speech beyond 

infancy (Bishop, 2007; Näätänen, et al., 2007). Further, despite of the wide speculation, it has not 

been well demonstrated that the tuning of MMN to native speech is functionally linked to reading 

fluency among school-age individuals. Therefore, mapping out the age-related changes of MMN 

and P3a to native and non-native phonetic contrasts would advance our understanding on the 

development of auditory cortical narrowing and its relationship with reading development.  

In Study 2, we proposed that the native language effect on MMN as well as P3a in adults 

arises from a continuous cortical narrowing to native speech that extends through childhood and 

adolescence years. Thus, a large cohort of English-speaking school-age individuals from age 6 to 

age 17 were recruited. This cohort of subjects is divided into three age groups: age 6-9, age 10-13 

and age 14-17. Their response strength of MMN and P3a were cross-sectional compared to map 

out age-related changes of native language effect on cortical speech processing.  

Consistent with our theory that cortical narrowing to native speech continues beyond 

infancy, a significant interaction between age group and contrast stimulus condition was found in 
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the GFP of MMN and P3a. That is, elder individuals among this cohort of school-age individuals 

showed more pronounced native language effect on the whole-brain response strength of MMN 

and P3a, compared with younger individuals. The individuals in age 14-17 group showed stronger 

GFP of MMN and P3a to the native phonetic contrast /v-w/ than to the non-native contrast /j-q/. 

In contrast, those in age 6-9 group showed little GFP difference of MMN and P3a between the 

native and the non-native condition.  

The cross-sectional comparison on the response strength of MMN and P3a suggests that, 

over the course of development, school-age individuals seem to become more sensitive in 

discriminating and orienting to native speech contrast but less sensitive to non-native phonetic 

elements (Cheour, et al., 2000; Cheoura, et al., 2001; Näätänen, et al., 2007). This age-related 

change in the native language effect of MMN and P3a supports our theory that  auditory cortical 

narrowing to native speech continues in childhood through adolescence years, during which an 

individual’s brain processing of speech develops to become specialized or ‘tuned’ to native 

language. 

In Study 2, we also hypothesized that the auditory cortical narrowing is functionally 

linked to an individual’s reading development. Thus, we investigated the brain-behavioral 

correlation between one’s MMN and P3a response and reading fluency in this cohort of typical 

school-age individuals. We found that the score of Test of Word Reading Efficiency (TOWRE) is 

(a) positively correlated with the ERP amplitude of MMN to the native contrast and (b) negatively 

correlated with the amplitude of MMN to the non-native contrast. The opposite direction of brain-

behavioral relationship indicates that individuals whose pre-attentive auditory discriminative 

processing is more tuned to native language tend to have better fluent reading. This finding 
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supports our hypothesis that auditory cortical narrowing to native speech is functionally linked to 

reading development among school-age individuals.     

In Study 2, we further evaluated our hypothesis that the brain-behavioral relationship 

between MMN response strength and reading fluency may perhaps differ between individuals at 

different age levels. To examine the potential age-related differences in the brain-behavior 

relationship, we included the ‘age-level’ moderator variable in the regression and examined the 

interaction between age-level and MMN amplitude in explaining the variance of reading fluency 

in this cohort of school-age individuals. We found that the relationship between the ERP 

amplitudes of MMN to the native contrast and the scores of TOWRE depends on or ‘is moderated 

by’ the age-level moderator variable. Significant positive coefficient of the interaction between 

MMN amplitude in native condition and age-level moderator revealed that, the reading fluency is 

more positively correlated with the ERP amplitude of MMN to the native contrast among the 

individuals at younger age level (age 6 to age 11) comparing to the individuals at elder age level 

(age 12 to 17). 

The different brain-behavioral relationship between MMN and reading fluency at different 

age levels indicates that, one’s pre-attentive auditory discrimination of native speech sounds plays 

a prominent role in the early stage of reading development. This finding seems to suggest that, 

elementary school readers may largely rely on their auditory discriminative processing to perform 

grapheme-to-phoneme phonological decoding of written words, whereas middle-school and high-

school readers are less dependent on the brain function of auditory discrimination, possibly 

because they have acquired other strategies to achieve efficient reading beyond the phonological 

decoding of words.  
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Finally in Study 2, we examined the brain-behavioral relationship between the degree of 

one’s auditory cortical narrowing to native speech and reading fluency. GFP difference between 

MMN to the native contrast and MMN to the non-native contrast was computed as the measure of 

the extent to which an individual’s auditory discriminative processing is tuned to native speech. 

Significant positive relationship between the difference GFP of MMN and scores of TOWRE was 

found. This result supports our prediction that an individual’s reading fluency is perhaps 

associated with the degree to auditory cortical narrowing i.e. how well the speech processing in 

brain is tuned to native language.     

 

Auditory cortical narrowing in poor readers 

In Study 3, we further investigated the association between auditory cortical narrowing 

and reading development by comparing the MMN native language effect between a group of poor 

readers (under the 25th percentile in reading fluency) and their matched controls. We found that, 

compared with the typical reading group, the poor reading group had reduced MMN to the native 

contrast /v-w/ and the acoustic contrast /b-t/, both of which are used phonetically in their native 

speech. Consistent with the ‘basic auditory dysfunction’ theory, this finding indicates that reading 

difficulty is associated with dysfunctions in auditory cortical discrimination of native speech 

sounds (Bishop, 2007; Bruder, et al., 2011a; Kujala, Lovio, Lepistö, Laasonen & Näätänen, 2006; 

Kujala, et al., 2000; Näätänen, et al., 2012; Pakarinen, et al., 2009; Schulte-Körne & Bruder, 

2010).  

Furthermore, Study 3 also revealed that the defectiveness of low-level sound processing in 

the brain is not the only attribute of the poor reading group. Beyond the prediction of ‘basic 
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auditory dysfunction’ theory for dyslexia, we found that, comparing to the typical reading group, 

the poor reading group showed even larger MMN to the non-native /j-q/ contrast, indicating that 

their auditory discrimination is not universally poor. Instead, the poor readers seem to suffer from 

hypersensitive to speech elements that are not relevant to their native language. 

Study 3 revealed that school-age individuals with low reading fluency tend to have 

reduced MMN to native phonetic contrast along with excessive MMN to non-native contrast, i.e. 

a lack of MMN native language effect. It indicates that, some individuals with reading difficulty 

seem to suffer from hyposensitivity of auditory cortical discrimination to native phonemes but 

hypersensitivity of pre-attentive discrimination to non-native phonemes. The finding of 

insufficient cortical narrowing to native speech from the poor reading group indicates that brain 

specialization to native speech is perhaps fundamental for reading development, and insufficient 

cortical narrowing to native speech can be one of the attributes of individuals with reading 

difficulty.    

 

Conclusion 

The current thesis advances our understanding of auditory cortical narrowing to native 

speech with development and its relationship with reading difficulty among school-age 

individuals. Findings from Study 1, Study 2 and Study 3 in the thesis shed lights on (a) how the 

MMN ERP component that indexes auditory discriminative processing in the brain is 

substantially influenced by one’s native language experiences and (b) how a lack of MMN native 

language effect that reflects deficient auditory cortical narrowing to native speech is linked to 

reading problems. The current thesis will contribute to the scarce literature on these issues and 
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advance our understanding of auditory cortical narrowing to native speech and its relationship 

with developmental dyslexia.   
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APPENDIX 

 

 

 

Supplementary Figure 1. The ERP waveform of ‘Standard’ (solid black) and ‘Deviant’ (dash blue) 

and the difference waveform (solid red) on electrode Cz under the native contrast condition from 

Mandarin speaking adults (left, panel a) and English speaking adults (right, panel b). Both 

language groups showed MMN at 200 milliseconds (ms) and P3a at 300 ms. The 2-D ERP scalp 

maps showed the topographic distribution of MMN at 200 ms and P3a at 300 ms on the difference 

waveform. On each of the ERP scalp maps, the front of the head is at the top and the back of the 

head is at the bottom, crosshairs align with Cz, and negative ERP potential is in blue and positive 

ERP potential is in red.      

 

Front 

Back 
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Supplementary Figure 2. The sound spectrograms and waveforms of the acoustic contrast /b-t/, 

the English contrast /v-w/ and the Mandarin contrast /j-q/ used in the auditory oddball paradigm 

to elicit MMN.  

The MMN stimulus contrasts in Study 1, Study 2 and Study 3 were natural speech 

recorded and edited using Adobe Audition 3.0 software. The stimulus contrast /v-w/ and /b-t/ (in 

Study 2 and Study 3 only) were produced by a male native English speaker (age 22) and /j-q/ 

were produced by a male native Mandarin speaker (age 26). The two syllables within a stimulus 

contrast pair were selected from 30 recorded tokens to match for pitch (blue line in the sound 

spectrograms) and sound duration. The selected syllables for MMN stimulus contrasts were edited 

to match for overall amplitude in Adobe Audition 3.0 software (‘Match Clip Volume’ function to 

match the sound loudness across source files). 
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