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ABSTRACT

Large-scale medical imaging studies to date have predominantly leveraged in-house,
laboratory-based or traditional grid computing resources for their computing needs, where
the applications often use hierarchical data structures (e.g., Network file system file stores)
or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance
for laboratory-based approaches reveal that performance is impeded by standard network
switches since typical processing can saturate network bandwidth during transfer from stor-
age to processing nodes for even moderate-sized studies. On the other hand, the grid may
be costly to use due to the dedicated resources used to execute the tasks and lack of elas-
ticity. With increasing availability of cloud-based big data frameworks, such as Apache
Hadoop, cloud-based services for executing medical imaging studies have shown promise.

Despite this promise, our studies have revealed that existing big data frameworks illus-
trate different performance limitations for medical imaging applications, which calls for
new algorithms that optimize their performance and suitability for medical imaging. For
instance, Apache HBases data distribution strategy of region split and merge is detrimental
to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice).
Big data medical image processing applications involving multi-stage analysis often exhibit
significant variability in processing times ranging from a few seconds to several days. Due
to the sequential nature of executing the analysis stages by traditional software technolo-
gies and platforms, any errors in the pipeline are only detected at the later stages despite
the sources of errors predominantly being the highly compute-intensive first stage. This
wastes precious computing resources and incurs prohibitively higher costs for re-executing
the application. To address these challenges, this research propose a framework - Hadoop
& HBase for Medical Image Processing (HadoopBase-MIP) - which develops a range of
performance optimization algorithms and employs a number of system behaviors mod-

eling for data storage, data access and data processing. We also introduce how to build
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up prototypes to help empirical system behaviors verification. Furthermore, we introduce a
discovery with the development of HadoopBase-MIP about a new type of contrast for med-
ical imaging deep brain structure enhancement. And finally we show how to move forward
the Hadoop based framework design into a commercialized big data / High performance

computing cluster with cheap, scalable and geographically distributed file system.
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Chapter 1

INTRODUCTION

Big data in medical imaging offers an opportunity to study specific control popula-
tions (age/sex/demographics/genetics) and identify substantive homogeneous sub-cohorts
so that one may understand the role that individual factors play in treatment response. To
support this cause, existing medical imaging studies have often leveraged either in-house,
laboratory-sized computing resources or grid computing resources. Both these existing
approaches, however, incur various limitations. Consider, for example, a medical imag-
ing application that converts Digital Imaging and Communications in Medicine (DICOM)
files to NiFTT (a research file format). If converting a 50 MB volume takes 15 seconds,
an ideal gigabit network about 100 MB/s saturates with slightly less than 30 simultaneous
processes.

These constraints are significant for medical imaging applications. For instance, con-
sider how contemporary grid computing approaches separate data storage from computa-
tion. To analyze data, each dataset must be copied from a storage archive, submitted to an
execution node, processed, synthesized to a result, and results returned to a storage archive.
When imaging datasets become massive, which is clearly the trend, the bottleneck asso-
ciated with copying and ensuring consistency overwhelms the benefits of increasing the
number of computational nodes, i.e., performance gains no longer scale with the number
of computational nodes, but are limited by the network.

The network issues are not the only challenges. Despite the presence of vast reposito-
ries of magnetic resonance imaging (MRI) and computed tomography (CT) images, which
are accumulating at a rate of nearly 100 million examinations per year in the U.S. [5],
today we lack the image processing, statistical, and informatics tools for large-scale anal-

ysis and integration with other clinical information (e.g., genetics and medical histories).



What is needed is an efficient mechanism for query, retrieval, and analysis of all patient
data (including imaging) which would enable clinicians, statisticians, image scientists, and
engineers to better design, optimize, and translate systems for personalized care into prac-
tice. All of this must be affordable and perform well. These needs preclude both in-house
and grid-based approaches.

Consequently, cloud-based services to address these growing needs hold promise. Specif-
ically, Big Data processing frameworks such as Apache Hadoop ecosystem are promising
in this context. The Hadoop framework provides flexible, distributed, scalable and fault
tolerant storage and parallel computational modules, and the associated HBase, which is a
NoSQL database built atop Hadoops distributed file system, has the potential for building
up a big data platform for medical imaging.

In this work, we mainly present a "medical image processing-as-a-service” grid frame-
work, Hadoop & HBase for Medical Image Processing (HadoopBase-MIP), which inte-
grates the Hadoop and HBase (a database built upon Hadoop) for data colocation by mov-
ing computation close to medical image storage to reduce network saturation for big data

processing.

1.1 Background

We start with the medical image format that we routinely deal with and then introduce

the overview of Apache HBase.

1.1.1 Traditional medical image format Overview

DICOM (Digital Imaging and Communications in Medicine) is the international stan-
dard for medical images and related information (ISO 12052). It defines the formats for
medical images that can be exchanged with the data and quality necessary for clinical use
(http://dicom.nema.org/). It has a hybrid structure that contains regular data (patient/clini-

cal information), multimedia data (images, video). Data inside a DICOM file is formed as

2



a group of attributes [6].

When a patient gets a computed tomography (CT) or magnetic resonance imaging
(MRI) scan, for example a patient’s brain image, a group of 2-dimensional DICOM im-
ages are generated slice by slice (or a sequence of 3-dimension images acquisition). A
non-exhaustive set of medical imaging DICOM attributes for the slices include: project,
subject, session and scan, where a project is a particular study, a subject is a participant
within the study, a session is a single imaging event for the subject, and a scan is a single
result from the event.

In order to study the entire brain, all 2-dimensional DICOM images should be collected
together. Even though medical imaging data is stored as DICOM images, a substantial
amount of medical image analysis software are NiFTI-aware (e.g.FSL (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/), AFNI (https://afni.nimh.nih.gov/afni/), SPM (http://www.fil.ion.ucl.ac.
uk/spm/) and Freesurfer (http://freesurfer.net/)). NiFTI is a medical image data format,
which is termed as a “short-term measure to facilitate inter-operation of functional MRI
data analysis software package,” developed and founded by the NiFTI Data Format Work-
ing Group (http://nifti.nimh.nih.gov/).

Converting a large group of slices of DICOM images belonging to one patient into a
small number of NiFTI format images (many-to-many relationship) is a significant step in
any medical imaging study. Any processing of DICOM datasets will need to determine
which CT/MRI scan that slice belongs to and using the Session attribute which records
when the CT/MRI scan volume is carried out. However, finding a Session needs to first
know the attribute Subject to which it belongs. Finally, the Project attribute collects all
subjects together. Thus, for medical imaging applications involving DICOM, the following

attributes are necessary: project — subject — session — scan — slice.



1.1.2  Overview Apache HBase

HBase [7] uses the Hadoop Distributed File System (HDFS) to provide distributed and
replicated access to data. We chose HBase since it can group data logically and physically
based on row-key value. However, HDFS can only provide logical order. HBase also pro-
vides a flexible translation layer (region-split policy) for dealing with data collocalization
statically or dynamically.

The key concepts from the HBase architecture are summarized in Table 1.1. Briefly,
HBase maintains tables, which have a row key that is commonly used as an index, and
where data columns are stored with the row key. All data in HBase is “type free,” which
are essentially in the format of a byte array. The table is sorted and stored based on the row
key.

Table 1.1: HBase architecture key concepts summary

[ Concept [ Comment ]
Table / HTable A collection of related data with a
column-based format within HBase.
Region HBase Tables are divided horizontally by

row key range into “Regions.” A region
contains all rows in the table between the
region’s start key and end key.

Store Data storage unit of HBase region.

HFile / Storefiles The unit of Store, which is collocated with a
Hadoop datanode and stored on HDFS.
memStore When write data is uploaded to a HTable, it
is initially saved in a cache as memStore.
Once the cache size exceeds a pre-defined
threshold, the memStore is flushed to HDFS
and saved as HFile.

HMaster HBase cluster master to monitor a
RegionServer’s behavior for load
balancing.Table operator. e.g., create,delete
and update a table.

Regionserver Serves read/write I/O of all regions in a
cluster node. When Regionservers collocate
with Hadoop datanode, it can achieve data
locality. Subsequently, most reads are
served by the RegionServer from the local
disk and memory cache, and short circuit
reads are enabled.

Rowkey A unique identifier of a row record in table.
Column family Columns in Apache HBase are grouped into
column families.

Column identifier | The member in column family, also called
as column qualifier. Multiple column
identifiers can be used within one column
family.




HBase tables are divided into “regions” for distributed storage such that each region
contains a continuous set of row keys from the overall table. The data in a region is physi-
cally collocated with an HDFS data node to provide data locality, which is performed by an
operation called major compaction. When the region size grows above a pre-set physical
size threshold, a “RegionSplitPolicy” takes effect and divides the region into smaller pieces.
The newly created regions are automatically moved to different nodes for load balancing
of the entire cluster. The row key and RegionSplitPolicy are integral to the performance

and data retrieval of HBase and Hadoop.

1.1.3 Multi-level medical image processing

Figure-1.1 depicts two examples of multi-level analysis jobs in medical image process-
ing. The first example pertains to the analysis needed in understanding the brain structure
differences within a group of people. In this case, the first level pipeline shown is dtiQA,
whose purpose is to determine how usable diffusion data is and where a diffusion of wa-
ter molecules is used to generate contrast in MR images. The input to the first example
pipeline is a group of raw brain DWI images that are collected by MRI scanners. The
pre-processing does brain extraction of images (i.e., remove head skull and other struc-
tures except the human brain), and then performs registration. The registration (especially
non-rigid registration) for medical images is time-consuming, because non-rigid registra-
tion generally does not have an analytic solution [8, 9]. Therefore, finding the optimal
deformation in non-rigid registration requires an optimization process at each iteration of
which a deformation is to update all voxels. If the size of a voxel is 1mm?>, and the entire
brain image’s size 1,6OO,OOOmm3, then there are 1,600,000 iterations of the optimization
process. Thus, non-rigid registration requires a significant computation. Assuming that we
have N images, we could register all images to one target image, where each image would
take 10 minutes, or perform an all-subjects-to-all-subjects which takes more time. For each

pre-processed and registered image, DTIFIT is the last step in the first level analysis of



dtiQA, which generates a quantified image called fractional anisotropy (FA), which can be
viewed as an image and all its data are stored in a 3D matrix.

The fractional anisotropy (FA) images, which are the quantified results generated from
the first level, are fed to a second level statistical analysis, e.g., Tract-Based Spatial Statis-
tics (TBSS) [10] or Gray Matter Surface-based Spatial statistics (GS-BSS) [11], to ensure
that all output FA images adhere to a common template. Specifically, TBSS contains 4
steps ! also involving registration. However, the registration time in the second level is
much smaller than the first level because the FA image does not need to do much data
cleaning and prepossessing like in original raw image. Finally, we run randomized statis-
tical analysis, and subsequently observe the spatial distribution in order to find differences
in the brain over the entire cortical region or partial regions of interest using parameters set
by the researcher.

The second example in the Figure- 1.1 shows the first level processing comprising im-
age segmentation for cortical parcellation of raw T1W images (or tissue segmentation of
raw T1W images). Most segmentation methods are also a very time consuming process,
which commonly embed a registration process [12, 13,2, 1, 14, 15]. All input images need
to first be registered together or registered to a known segmented structure template image,
and a tissue class is then determined for each image voxel, (e.g., white matter, gray matter,
cerebrospinal fluid). From the tissue segmentation, we can further extract brain structural
(or morphological) representations like the gray matter surface. The cortical surfaces could
better support quantitative information than 3D MRI in terms of a topological preserva-
tion. This information is then used by the second level analysis to conduct cortical-based
statistical analysis such as GS-BSS. Again, once the second level data has already been

preprocessed, the further analysis analysis is faster than the first level processing.

Itbss_1_preproc helps prepare all FA data in the right folder and format; tbss_2_reg would apply non-rigid
registration of all FA images into standard template space; tbss_3_postreg creates the mean FA image and
skeletonize it; tbss_4_prestats would project all the subjects’ FA data onto the mean FA skeleton and create
4D images for later statistic comparison usage.
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Figure 1.1: A classical medical image processing multi-level analysis Tract-Based Spa-
tial Statistics and Gray Matter Surface-based Spatial statistics. Our target pipeline of this
work is the first example dtiQA & TBSS pipeline. The purple box indicates our second
contribution focus area.

1.1.4 Overview of LStore

In Vanderbilt’s high performance computing (HPC) cluster called Advanced Comput-
ing Center for Research and Education, General Parallel File System (GPFES) [16] is the
current solution. Meanwhile, ACCRE also supports a cheaper solution, LStore, a dis-
tributed and scalable storage cross geography. LStore aims to provide a peta level storage,
e.g. for the compact muon solenoid (CMS) experiment [17]. When moving forward our
design strategies to HPC environment, seeking a feasible, cheap storage and geographic
distributed storage as backend rather than costly in house Lustre / GPFS for HadoopBase-
MIP based computation is important. LStore provides a flexible logistical storage frame-
work for distributed and scalable access to data for a wide spectrum of users. LStore is
designed to provide: virtually unlimited scalability in raw storage; support for arbitrary
metadata associated with each file; user controlled fault tolerance and data reliability on a
file and directory level; scalable performance in raw data movement; a virtual file system
interface with a native mount in Linux (exportable via NFS and CIFS to other platforms)
and a high performance command line interface; and LStore supports the geographical dis-
tribution and migration of data to facilitate quick access. These features are accomplished
by segregating directory and metadata services from data transfer. Logistical Networking is

used as the block-level data abstraction for storage with LStore clients directly performing



all data I/O without going through an intermediate server as is done for NFS and CIFS.

This means adding storage adds both capacity but also bandwidth.” [18].

1.2 Key Research Challenge

HDFS aims to deal with large file, and it has very poor performance with small files
[19]. Storing too many small in HDFS will explode the metadata’s RAM requirements.
Moreover, searching files on HDFS is sequential read, and too many files will lead to more
streaming and degrade the file read / write performance. Finally, HDFS does not support
random read / write. The main big data problem for medical imaging is high volume, the
image itself is relatively small compared with traditional “’large” file definitions. As above
background presented, HBase has potential to use for its capability of logically and phys-
ically colocating relevant data with common index. Now we start introducing challenge
of why this colocation matters medical image analysis, and how it can be optimized for

implementing and discovering more big data usage.

1.2.1 Challenge 1: How to move medical image processing to the cloud

Adopting high performance cloud computing for medical image processing is a popular
trend given the pressing needs of large studies. Amazon Web Services (AWS) provide
reliable, on-demand, and inexpensive cloud computing services [20, 21]. Our research
objective is to implement an affordable, scalable and easy-to-use AWS framework for the
Java Image Science Toolkit (JIST) [22, 23]. JIST is a plugin for Medical-Image Processing,
Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation
allowing users to quickly test and develop pipelines [24]. JIST is DRMAA-compliant
allowing it to run on portable batch system grids. However, as new processing methods are
implemented and developed, memory may often be a bottleneck for not only lab computers,
but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these

possible restrictions and does not require users to have deep knowledge of programming in
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Java. Workflow definition/management and cloud configurations are two key challenges in

this research.

1.2.2  Challenge 2: Why the data colocation based approach matters

The first challenge explores utilizing the cloud with pay-as-go fashion with the pipeline
depends on the software JIST. However, in order to deploy big data based analysis with
more generic approach, a better solution using a local private grid / cloud is an alternative
approach. Although HBase/HDFS is widely used in practice, multiple challenges manifest
in the context of medical imaging applications. First, there is no standard for the default
row key design. Intuitively, the data should be placed as sparse as possible and distributed
evenly across various points of the regions in the table. Such a strategy can avoid data
congestion in a single region, which otherwise could give rise to read/write hot-spots and
lower the speed of data updates. Because row keys are sorted in HBase, using randomly
generated keys when input as data to HBase would help leverage the data distribution in the
table. As shown later, however, such an approach incurs performance penalties for medical
imaging applications.

Second, since the original DICOM file name is a unique identifier called Global Unique
identifier [25], if the task of interest is storing slice-wise DICOM data within HBase, then
a naive approach would be to use the DICOM GUID. Since the GUID is a hash of the
data, it will not collocate data together and thus will saturate the network at the time of
retrieving all DICOM images of a scan volume. Further, the standard RegionSplitPolicy
will randomly assign files with hashed DICOM GUID file names as row keys to regions
based on the key and a convenient split point based on region size, which may not be

efficient as we show later.



1.2.3 Challenge 3: How to identify the limits of Apache Hadoop for Medical Imaging

compared with traditional cluster

The potential solution from challenge 1 gives a promise that a data colocation frame-
work may help a specific medical image processing, namely "DICOM to NiFTI”. This
creates new questions, when does that novel Hadoop/HBase framework perform better
than traditional clusters like Sun grid engine (SGE) [26]? In this case, there are many
parameters of concern, such as the cluster size, machine cores, node memory, distribution
of resources, image processing job, etc [27, 28, 29, 30]. A theoretical way to understand
the trade off of using data colocation approach is needed, and if the theoretical models

translate practical things are needed to answer.

1.2.4 Challenge 4: System optimization and enabler for boosting Big Data applications

Three optimization opportunities apply with the research and development of HadoopBase-

MIP.

» Heterogeneous hardware: Hadoop/HBase uses an approximately balanced data al-
location strategy by default. In previous work, we observe that the throughput of
a cluster is low especially when it combines with different types and / or different
number of cores per machine. Thus, performance aware data collocation models are

needed.

» Large dataset analysis: When large summary statistical analyses are requested, huge
volumes of data can saturate memory of one machine. Thus, one needs to split a
dataset into small chunks. Most chunks would be sent to where their data are located
and run in parallel on different machines, but few chunks would need to move data via
network. This process is called Map phase in the MapReduce computation paradigm
[19, 3]. Once all intermediate results of all chunks are collected on one machine, they

are further processed and final result is generated, this is depicted as Reduce phase.
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Integrated processing of large datasets introduces dependencies with the number of

jobs (which is based on chunk size) and a way to optimize chunk size is needed.

» Rapid NoSQL query: HBase is a column based NoSQL database, namely all data
that are in same column are stored together [3, 31]. Each row of table is a multi-
record that is based on total number of columns that are defined with a unique name
as rowkey. If we store all medical images with other data like index, age and sex into
same column, then when we perform a query, linear search with image traversal is
required, which severely decreases the speed of search. On the other hand, for HBase
MapReduce, each single map needs to set a start/stop row and a typical column.
When doing subset datasets analysis, data is scattered in HBase, and not all record
between start/ stop row are needed. It is important to structure data in a manner to

skip unnecessary row and image traversal.

1.2.5 Challenge 5: Enhancing big data frameworks for heterogeneous mixed workloads

of multi-level based medical imaging analysis

Owing to the high cost of running these analysis jobs in the cluster, alternatives such as
hosting in the cloud offer a promise as was validated by our potential solution of first three
challenges, where are demonstrated the use of cloud-based Apache Hadoop ecosystem to
support a specific transformation process in medical image processing. However, this work
focused only on a single job type. Our extensive work in the medical image processing
field has revealed that multi-level analysis can comprise a variety of different job types
with differing execution times. There is no existing capability to determine the feasibility
of hosting such heterogeneous and increasingly large-sized job types found in medical
image processing and using technologies beyond traditional cluster software, such as the
Apache Hadoop ecosystem.

Furthermore, in most medical image processing multi-level analysis, the first level anal-

ysis takes too long, and in many popular medical image processing software, the second
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level analysis cannot start until all of the first level results are generated. Due to a lack of
capabilities to monitor the progress of the first level and detect any anomalies in that level,
these errors are noticed only in the latter stages which is wasteful of resources, time and
money. We know of no existing capability that can detect anomalies in real-time and with

minimal human involvement.

1.2.6 Challenge 6: Evaluation of big data registration-based Image Enhancement

MRI is an important tool for analysis of deep brain grey matter structures. However,
analysis of these structures is limited due to low intensity contrast typically found in whole
brain imaging protocols. We empirically discovered a big data registration-enhancement
(BDRE) technique to augment the contrast of deep brain structures using an efficient large-
scale non-rigid registration strategy. However, direct validation is problematic given a lack
of ground truth data. How to verify the proposed image enhancement technique is chal-

lenging.

1.2.7 Challenge 7: How to integrate Apache Hadoop into high performance environment

using logistical storage framework as back-end

Apache Hadoop ecosystem aims to use commodity hardware and network setup. Adopt-
ing HPC resources is an option because of its strong computation capability. Meanwhile,
HPC fast network makes Hadoop’s separation of computation and storage reasonable. Ow-
ing to a HPC based distributed, scalable and geographically dispersed file system, LStore,
which uses cheap hard drives, we expect like to see how LStore can be integrated with
HDFS and served as a cost efficient storage backend. The main challenges are (1) how to
avoid data redundancy on HDFS side once data already available on LStore side (2) how
to ease the effort of implementing the plugin integration by choosing LStore fuse client

interface or command line based interface.
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1.3 Overview of the Proposed Research Goals

This section highlights our research contribution including framework design and the-
oretical models desgin. And all following innovations are empirically verified in a private

research cloud comprising a typical gigabit network.

1.3.1 Addressing Challenge 1: AWS plugin for a toolkit for medical image processing

As an experience with cloud utilization, for this challenge we focus more on system

framework design and setup.

* We provide a concrete workflow definition/management for JIST to deploy a local

project to be distributed and processed in the cloud.

* We integrate JIST to Amazon AWS (a reliable, on-demand, and inexpensive cloud

computing services) to execute high performance computing.

* We demonstrate a cost/benefit analysis of a pipeline that can be easily parallelized
and requires memory that would limit the processes to serially execute only on a local

lab machine.

1.3.2 Addressing Challenge 2: data colocation based approach really matters

We prototype a medical image processing as as service framework, to address the net-
work saturation of cluster. To address these problems, we present design principles and
empirical validation for a new data model for use with cloud-based distributed storage and
computation systems that provides practical access to distributed imaging archives, inte-
grates with existing data workflows, and effectively functions with commodity hardware.
Our approach makes specific improvements to the Apache Hadoop ecosystem, notably
HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Specifi-

cally, we make the following contributions:
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A row-key design for Apache HBase: A hierarchical key structure is proposed as a

necessary step to accommodate nested layers of priority for data-collocation.

New RegionSplit policy: A computationally efficient approach is proposed to opti-

mally manage data collocation in the context of the hierarchical key structure.

* Experimental results: The proposed innovations are evaluated in the context of
a routine image analysis task (file format conversion) in a private research cloud

comprising a typical Gigabit network with 12 nodes.

1.3.3 Addressing Challenge 3: theoretical and empirical way to identify the limits of

Apache Hadoop for Medical Imaging compared with traditional cluster

For both traditional network file system approach and HadoopBase-MIP, we are able
to provide two theoretical models for each scenarios. The models are two metric that user
may care about. First, we consider wall-clock time, which represents the total time as
experienced by the user. The second part is resource time, which measures elapsed time on

each node when a process starts across all nodes.

1.3.4 Addressing Challenge 4: System optimization for boosting Big Data application

Based on above 3 sub challeneges, our target design criteria are (1) improving the
HadoopBase-MIP frameworks performance in a heterogeneous cluster, (2) performing pop-
ulation based summary statistics on large datasets, and (3) introducing a table design
scheme for rapid NoSQL query. Thus, we present a load balancer for heterogeneous clus-
ters by moving data with the ratio matched cluster computation resource; a dataset sum-
mary statistic model is designed and implemented by MapReduce paradigm; and a HBase

table scheme is introduced for fast data query to better utilize the MapReduce model.
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1.3.5 Addressing Challenge 5: Enhancing big data frameworks for heterogeneous mixed

workloads of multi-level based medical imaging analysis

To address the above challenges of heterogeneous mix of and realize the desired ca-
pabilities that can be hosted on the cloud, we present the design principles and empirical
validation for a cloud-hosted, medical image processing as-a-service, and make the follow-
ing contributions: (1) Simulation tools: We present a simulation engine suite to estimate
the performance of running medical image processing on traditional cluster (centralized
storage) versus the Hadoop-based approach (decentralized storage). We name our system
as Hadoop & HBase Toolkit for Medical Image Processing (HadoopBase-MIP). (2) Semi-
automated, real-time quality assurance (QA) model framework: We present the design of
a semiautomatic, real-time monitor and checkpoint framework which aims to optimize the
performance of medical image processing by finding anomalies in the first level processing
in a timely manner thereby expediting the entire multi-level analysis; for this work, we

focus only on two-level analysis jobs.

1.3.6 Addressing Challenge 6: Evaluation of big data registration-based Image Enhance-

ment

Rather than validate each boundarys’ correctness in BDRE due to difficulties of direct
visualization of our target structures, we investigate the usefulness of BDRE for the multi-
atlas (MA) segmentation on those deep brain structures and assume only T1 images are
available. The target structures are two deep brain structures: thalamic nuclei and hip-

pocampal subfields.
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1.3.7 Addressing Challenge 7: How to integrate Apache Hadoop into high performance

environment using logistical storage framework as back-end

We integrated a plugin between HDFS interface and LStore to provide regular input /
output stream and other file system operation. The plugin can avoid data copying redun-
dancy between HDFS and LStore. We empirically verified our HDFS LStore plugin on
in-house HPC and long distance geographically WAN connected remote HPC cluster. The
performance of the plugin was compared with two current LStore client interfaces: LStore
command line interface (ideal case) and LStore fuse mounted client interface (baseline). As
a preliminary work, two system metrics we care most for now: the throughput of (multiple)

read and the throughput (multiple) write.

1.3.8 Dissertation Outline

The remainder of the dissertation is organized as follows: Chapter 2 presents prior work
that relates to our research; Chapter 3 describes our approach to integrate AWS with medi-
cal image processing software JIST; Chapter 4 describes the state of art of our HadoopBase-
MIP data colocation framework; Chapter 5 presents the theoretical bounds for performance
trade of using HadoopBase-MIP and traditional cluster; Chaper 6 explores a real-time large
volume of image averaging framework by using HadoopBase-MIP; Chapter 7 discusses our
online checkpointing monitoring that embedded in HadoopBase-MIP for accelerating the
QA for multi-level analysis; Chapter 8 discusses how BDRE image enhancement is verifid
on two deep brain structures; Chapter 9 introduces how HDFS is integrated with HPC file
system LStore; and Chapter 10 summarizes the goals of our ongoing work on investigating

design patterns for designing blockchain-based systems and presents concluding remarks.
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Chapter 2

RELATED WORK

2.1 Overview

Recent trends indicate that there is a substantial interest in adopting the MapReduce
paradigm — and thereby the Apache Hadoop ecosystem — for medical image data process-
ing. Several medical image processing studies have encountered one or more of the trio of
computation, storage and network bandwidth bottlenecks, and have developed optimiza-
tions to overcome these encountered problems. This section compares our work with prior
efforts in medical imaging and beyond. Additionally, we also review prior studies that are
not necessarily focused on medical imaging. We scope out our comparisons to only those

prior works that have leveraged the Apache Hadoop ecosystem.

2.2 Related Work involving Medical Imaging Applications with Medical Image Data

A recent study [32] illustrates how transitioning the medical image processing compu-
tations to the MapReduce paradigm and the Apache Hadoop framework pays rich dividends
over traditional processing approaches, which often are sequential in nature. Our work dif-
fers from this prior work in that not only is our use case different — we focus on mapping
DICOM images to NiFTI formats — but more importantly we demonstrate new optimiza-
tion strategies for the Apache Hadoop ecosystem instead of simply leveraging the default
strategies provided by Apache Hadoop, which is the case with most prior efforts. In fact
the authors in this related work point out the need to identify opportunities for optimiza-
tions, which is precisely the intent of our presented research. Similarly, [33] demonstrates
how the Apache Hadoop ecosystem can be used in medical imaging but do not report on

any optimizations. A recent prior work [33] has used the Apache Hadoop ecosystem for
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content-based image retrieval where the MapReduce paradigm is used to extract vector fea-
tures of the images. Similar to [32], the authors in this study demonstrate how the Apache
Hadoop ecosystem can be used in medical imaging but do not report on any optimizations.

The work reported in [6] is synergistic to our work in that it focuses on the row- versus
column-oriented storage issues for DICOM images. The authors highlight the pros and
cons of row- versus column-oriented storage policies, and indicate how the complex struc-
ture of the DICOM images requires a hybrid mechanism for storage. Specifically, their
approach stores frequently used attributes of a DICOM file into row-based layer/store, and
optional/private attributes into a column-based store so that it will reduce null values. The
motivation stems from the fact that if all DICOM attributes are stored into a row-based
store, then a search or joining operation will unnecessarily involve numerous null values
thereby adversely impacting efficiency.

The SYSEO project [34] also describes a hybrid row-column data store for DICOM
images using similar criteria as in [6] to decide between row- versus column-based storage.
Their work was motivated by the need to find alternatives to existing but prohibitively
expensive solutions for medical image storage. Moreover, image annotation and query
retrieval were additional dimensions that needed improvements in performance.

Our work does not treat DICOM file attributes in as much depth as in [6], i.e., we
need not to know the details of the attributes stored in a DICOM file when we store it to
HBase; rather we simply store the entire DICOM file to HBase. For our DICOM to NiFTI
processing, the processing operation can directly fetch the related attributes from DICOM
files and convert them into NiFTI files. For other forms of medical imaging applications
and data processing, such as image annotations, we may need to incorporate these hybrid

storage mechanisms along with our optimizations, which forms our future work.
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2.3 Usefulness of Hadoop & HBase in other Application Domains

Several prior research efforts have proposed different performance optimizations to dif-
ferent elements of the Apache Hadoop ecosystem for domains beyond just medical image
processing. The MHBase project [35] describes a distributed real-time query processing
mechanism for meteorological data with the intent to provide safe storage and efficiency.

The data in Internet of Things are always large volume, which update frequently and
are inherently multi-dimensional. The work in [36] proposes an optimization based on
high update throughput and query efficient index framework (UQE-Index) including pre-
splitting the HBase region for reducing the cost of data movement. The work in [37]
addresses the problem of the HBase multidimensional (up to four-dimension) data queries
in Internet of Things with better response time.

Recent work in Internet of Things (I0T) [36] proposes an optimization based on high
update throughput and query efficient index framework including pre-splitting the HBase
region for reducing the cost of data movement. Likewise, [37] addresses the problem of the
HBase multidimensional data queries (up to four-dimension) in IOT with better response
time.

A recent work [38] demonstrates an optimized key-value pair schema for speeding up
locating data and increase cache hit rate for biological transcriptomic data. The perfor-
mance is compared with relational models in MySQL cluster and MongoDB.

The authors in [39] present an optimized HBase table schema focusing on merging
information to fit in combination with customer cluster and constructing an index factor

scheme to improve the calculation of strategy analysis formulas.

In summary, the above-referenced prior efforts tend to focus on optimizing the table
schema, row key design for data fast access, update and query. For our work, we not
only provide an innovative row key hierarchical design, but also optimize the default Re-
gionSplitPolicy which goes deep into the HBase architecture. Our goal is to maximally

collocate relevant data on same node for further and faster group processing. Moreover,
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most prior works do not consider the cloud-based service aspect that we do.

In this following subsection we compare our work with a sampling of prior efforts.
Specifically, we focus on related research along the following dimensions: supporting
medical image processing in the cloud, efforts that estimate resource requirements and

performance for medical image processing jobs, and efforts that conduct quality assurance.

2.3.1 System modeling - better understanding the data colocation in theory

Cluster based simulation toolkit is widely used to verify a new scheduling algorithm.
Simgrid [40] and Gridsim [41] were designed based on this state-of-art. CloudSim is an
extensible and popular simulation toolkit that enables modeling and simulation of Cloud
computing systems and application provisioning environments. It supports both system
and behavior modeling of Cloud system components such as data centers, virtual machines
(VMs) and resource provisioning policies. It implements generic application provisioning
techniques that can be extended with ease and limited effort. Currently, and it supports
modeling and simulation of Cloud computing environments consisting of both single and
inter-networked clouds [42]. Due to lack of advanced application models such as message
passing applications and workflows or scalable network model of data center, Garg et al.
extended CloudSim with a scalable network and generalized application model, which al-
lows more accurate evaluation of scheduling and resource provisioning policies to optimize
the performance of a Cloud infrastructure [43].

There are many simulators for energy and resource modeling [44, 45, 46]. The fol-
lowing perform Hadoop related modeling. Lin et al. [47] define the concept of relative
computational complexity of MapReduce task to estimate the complexity of task, and il-
lustrate the way to measure it. They analyze the detail composition of MapReduce tasks
and relationships among them, decompose the major cost items, and present a vector style
cost model with equations to calculate each cost items. The model includes in great detail

including data parsing, data serialization, internal sorting with a platform independent term
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to measure the costs of MapReduce. Song et al. [48] more focus on single job perfor-
mance. They designed a light-weight hadoop job analyzer which can be used not only as a
job performance analyzer but also a parameter collecter. They also proposed a prediction
module, which combines two kinds of information given by the job analyzer and the history
traces to predict job performance. Wang et al. [49] proposed a model predictor to help
Hadoop cluster configuration by learning the practical experience of Hadoop configuration
and narrow the configuration searching space we could optimize the Hadoop configuration
with clear direction, not treating this optimization problem as a pure black optimization
problem. Tian et al. [49] focuses on the relationship among the number of Map/Reduce
slots, the amount of input data, and the complexity of application-specific components.
The resulting cost model can be represented as a linear model which provides robust gen-
eralization power that allows one to determine the parameters with the data collected on
small scale tests. The cost model furtherly helps resource allocation and financial cost.
Nez et al. [50] targeted to conduct large experiments for large dataset. In their work , they
provides a flexible and fully customizable global hypervisor for integrating any cloud bro-
kering policy; and the simulator reproduces the instance types provided by a given cloud
infrastructure.

While for our work, we focus more on large groups of jobs completion time and re-
source usage, namely wall-clock time and resource time. And our target models are cluster

with shared network and HBase modeling that built upon Hadoop distributed file system.

2.4 Moving forward to software as a service and using cloud for medical imaging

The first two related work sections discuss the potential usage of creating a data coloca-
tion framework. Once such the medical image processing as-a-service is estabilished, we
would like to browse more how it distinguish with other cloud based medical image analy-
sis as a service approaches. Our aim is to find the current problem of processing monitoring

and quality assurance of intermediate results. Wang et al. [51] develop a novel ultrafast,
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scalable and reliable image reconstruction technique for four-dimensional CT (4DCT) and
cone beam CT (CBCT) using MapReduce. They show the utility of MapReduce for solv-
ing large-scale medical physics imaging problems in a cloud computing environment. The
modified FeldcampDavisKress (FDK) algorithm to parallelization for using MapReduce
and achieved 10 fold speedup. The Java Image Science Toolkit (JIST) is a tool that inte-
grates with Amazon Web Serivce (AWS) EC2 and Amazon S3 storage to perform medical
image processing, which submits local first level analysis to AWS to utilize the pay as go
feature of the cloud [52, 22, 23, 53]. The work provides a cost/benefit model to predict
the performance difference of using different categories of AWS cloud service. Huo et
al. [54] provide a dockerizing approach for deploying large-scale image processing to High
Performance Computing environment and potential affordable cloud.

Zhang et al. [55] implement a distributed computing framework using Apache Spark
cloud for automatic segmentation of skeletal muscle cell image. The paper aims to split
the muscle cell segmentation to available resources of the Spark cluster, and propose a par-
allelized hierarchical tree-based region selection algorithm to efficiently segment muscle
cells. Roychowdhury et al. [56] proposed the Azure-based Generalized Flow for Medical
Image Classification. The flow automates generalized workflow by combining the efficacy
of cloud-computing frameworks with machine learning algorithms for medical image anal-
ysis. The proposed method utilizes the system hardware independence of a cloud-based
platform and builds a systematic workflow that further reduces the dependencies of feature
selection and data modeling from medical classification tasks.

Chen et al. [57] presented a cloud-based collaborative and scalable image processing
toolbox with a number of medical image utilities. The toolbox offers an open and web-
wide collaboration platform for image processing by leveraging the user friendly interfaces
and simple integration software architecture of Galaxy. They also explore technologies
and software architecture study of using Hadoop for data-intensive image processing of

large datasets. Bednarz et al. [58] provide a cloud based toolbox to allow user free access
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and collaboration to create workflows for image processing algorithm designs for cellular
imaging, advanced X-ray image analysis, computed tomography and 3D medical imaging
and visualization. The system provides a way for carrying out image analysis, reconstruc-
tion and processing tasks using cloud based service provided on the Australian National
eResearch Collaboration Tools and Resources (NeCTAR) infrastructure.

Mindcontrol is an open-source configurable web collaboration based quality control of
brain segmentation using MongoDB and connects with Amazon S3 storage and Dropbox.
The authors focus on integrating multiple QA metrics and providing better user-friendly
interfaces, which is application-based rather than infrastructure-based [12]. Kagadis et
al. [59] discuss the benefits of using the cloud to conduct algorithm validation by using
real / synthesized datasets that are stored in cloud storage. The cloud can provide a bench-
mark and application environment for plugging in different algorithms. The Medical Image
Archival and Analytics as-a-Service (MlaaS) is low-cost personal healthcare cloud service
that provides a single apace for archiving medical images and analyzing medical images
by software and/or physicians [60]. Chiang et al. [61] describe middleware to construct
and develop a cloud service for medical image processing based on the service-oriented
architecture (SOA) using ImagelJ tools to process medical images. The authors also discuss
security concerns of SOA’s macro data. Mirarab et al. [62] present the Eucalyptus cloud
infrastructure with image processing software “ImageJ]” using improved genetic algorithm
for the allocation and distribution of cloud VM resources. Liu et al. [63] propose the
iMAGE cloud which is a three-layer hybrid software as a service (SaaS) cloud. It receives
medical images and EMR data via the hybrid regional healthcare network. The images are
processed in the high-performance cloud units using coronary extraction, pulmonary re-
construction, vascular extraction etc., which are helpful for clinical usage while the results
are sent back to to regional users using the virtual desktop infrastructure (VDI) technology.

The above referenced works can be classified as software-as-a-service, platform-as-a-

service, infrastructure-as-a-service, and analytics-as-a-service. They are more for clinical
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usage, hosting the application for experiencing the benefit of the cloud, or to ease the
interaction and deployment cost of using cloud; however, they do not aim to deal with
cost, rapid execution, or design for multi-level medical image processing of group based
analysis. Moreover, none of them aim to solve the problem of processing monitoring and

quality assurance of intermediate results.

2.5 Opportunity for big data multi-level medical image analysis

As introduced in introduction section, a framework with capability that can detect
anomalies as early as possible in the processing stages in a multi-level medical image
analysis is needed. In [64], a quality assessment framework is presented that leverages
MapReduce to find and assess errors in large medical datasets. It presents an approach
to finding any errors in a medical dataset by formulating a SPARKL super-query which
contains common-join elements. The authors show that this technique avoids needless re-
computation of joins, and were able to complete over 80 join operations using two Map/Re-
duce iterations. The work focuses on finding errors in a medical data-set though not specif-
ically related to medical image processing.

While most of the studies [65, 66, 67, 68] incorporate some form of quality checking
(though not cloud based) at individual scan level or outlier detection level (which are all at
the first level) where data were checked for extreme outliers (relative to expected outcome
for given study), these checks are not yet carried onto second level analysis stage. All the
data is first processed and then based on the study design fed into second level analysis.
While this approach is fine for smaller datasets, for studies involving large-scale data as
mentioned above where a number of hypothesis get tested, it is beneficial to have inter-
mediary checks on second level or higher level while detecting any faulty outliers or draw
conclusion at early stages as data is getting processed than waiting until the end. This is
a capability we provide in our work. Although quality assurance is shown in a two-level

multi analysis use case, it can work for many different multiple level analysis, e.g. func-
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tional MRI, positron-emission tomography (PET) and cortical surface reconstruction. For
instance, functional MRI (fMRI) [69]- measures brain activity by detecting changes asso-
ciated with blood flow; positron-emission tomography (PET) [70] - a nuclear medicine
functional imaging technique that is used to observe metabolic processes in the body; op-
tical coherence tomography (OCT) [71] - which is established medical imaging technique
that uses light to capture micrometer-resolution, three-dimensional images from within op-
tical scattering media and and cortical surface reconstruction [72] - to understand intrinsic
two-dimensional structure of the cortical surface. Since current medical image processing
software like FSL, SPM, ANTs and FreeSurfer [73, 74, 75, 9] all provide command-line
based application for difference processing steps, we can embedded those application into
HadoopBase-MIP, or find corporation to embed the concept of multi-level performance
promoted monitoring strategy to their software for further cloud host service.

There are a number of studies that involve medical image acquisition and process-
ing of large number of subjects [65, 66, 67, 68] like the Human Connectome Project
(HCP) [65] with 1,200 subjects; Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which is a longitudinal multisite observational study collecting imaging, clinical, and bio-
logic samples at multiple time points in 200 elderly cognitively normal, 400 MCI, and 200
AD subjects [66]. The National Institute of Health Pediatric MRI data repository (https:
//pediatricmri.nih.gov/nihpd/info/index.html) comprises 554 studies for unsedated, healthy,
psychiatrically normal children and adolescents/young adults that is useful to biomedi-
cal and bio-behavioral researchers, Autism Brain Imaging Data Exchange (ABIDE) [67]
a grassroots consortium aggregating and openly sharing 1112 existing resting-state func-
tional magnetic resonance imaging (R-fMRI) datasets with corresponding structural MRI
and phenotypic information from 539 individuals with ASD and 573 age-matched typical
controls (TC; 764 years) (http://fcon_1000.projects.nitrc.org/indi/abide/).

There are also a number of studies like multi atlas learner fusion [68] involving 3,464

MRI images. Large-scale proof of concept genetic study on schizophrenia that integrated
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results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and
volumes of several (mainly subcortical) brain structures (11,840 subjects) [76]. The Pre-
processed Connectomes Project Quality Assessment Protocol (PCP-QAP) is QAP python
toolbox that assembles several metrics for assessing the quality of both functional and struc-
tural MRI data, those quality check are done before data send to processing since it is very

hard to do QA on processed data [77].

2.6 Opportunity for Apache Hadoop utilizing HPC computation resource and file system

In this section, we summarize several recent works that are related with HDFS with

HPC based file system.

2.6.1 Integrate HDFS with existence HPC file system

Wang et al. presented an integration of HDFS with Gfarm file system, which is a globlal
distributed file system [78]. The framework supports distributed data-intensive computa-
tion among multiple administrative domains using existing unmodified MapReduce appli-
cations across multiple clusters. Li et al. analyzed integrate HDFS with OrangeFS to build
a hybrid Hadoop architecture that includes both scale-up and scale-out machines [79]. The
framework can either deal with small and median (KB, MB) data sizes or with large (GB,
TB) data size. They provide an automatically schedule method to tune cluster either scale-
up or scale-out cluster to achieve the best performance. Li et al. compaired two storage
backend for Hadoop in HPC cluster: dedicate and local storage [80]. Dedicated storage
(OrangeFS) separates computation from shared storage resources. Local storage provides
better locality. They analyze 1/0 intensive, data-intensive and CPU-intensive type of jobs
and verify their finding with guidance on choosing the best pltform optimize the perfor-
mance of different types of applications and reduce system overhead. Xuan et al. proposed
a two-level storage by integrating the in-memory file system, Tachyon, and the parallel

file system, OrangeFS [81]. In two-level storage, Tachyon is deployed on compute nodes
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and OrangeFS is deployed on data nodes. Tachyon provides a temporal locality of data
that is not needed to retrieve from data nodes through network. Their theoretical model-
ing and experimental evaluation storage can provide higher read and write throughput with
limited number of compute nodes. Krishnan developed a framework named myHadoop, a
framework for configuring Hadoop on-demand on traditional HPC resources, using stan-
dard batch scheduling systems such as TORQUE (PBS) or the Sun Grid Engine (SGE) [82].
With the help of myHadoop, users can utilize traditional HPC resources rather than a dedi-
cated Hadoop cluster. It supports a regular non-persistent mode where the local file system
on each compute node is used as the data directory for HDFS, and also a persistent mode
where the HDFS can be hosted on a shared file system such as Lustre or GPFS. Yang et
al. designed PortHadoop framework to solve the cross-platform (Lustre and GPEFS) data
access issue and keep default fault tolerance feature [83]. With PortHadoop, researchers
can promptly analyze identified events without copying the entire data set from HPC par-
allel file system (PFS) to Hadoop, and consequently accelerate scientific discovery and
significantly reduce costs in computation and storage. MapReduce can concurrently retrive
data of PFS at runtime, and the data transfer operations from PFS to HDFS can overlap
with MapReduce data processing. Baer et al. proposed pbs-spark-submit script to execute

Apache Spark programs on PBS-based HPC cluster and shared-memory environments [84].

2.6.2 Utilize HPC environment to boost MapReduce and YARN resource management

Luckow et al. explores the trade-offs between running Hadoop/Spark applications on
HPC environments and running HPC applications on YARN clusters [85]. They focus on
the design of resource management middleware via integrating Pilot-based Dynamic Re-
source Management and YARN. Islam et al. proposed a design for HDFS on HPC Clusters
with heterogeneous storage architecture called Triple-H [86]. Triple-H follows a hybrid
storage usage pattern that can minimize the I/O bottlenecks and ensure efficient storage

utilization with the same level of fault-tolerance as HDFS in HPC environments. They in-
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troduced a RAM Disk and SSD-based Buffer-Cache to hide the cost of disk access during
Read/Write operations and ensure reliability by utilizing SSD-based staging. They also
propose effective data placement policies for Triple-H integrating with PFS installations,
such as Lustre. Wasi-ur-Rahman et al. proposed a novel high-performance design for run-
ning YARN MapReduce on such HPC clusters by utilizing Lustre as the storage provider
for intermediate data [87]. We identify two different shuffle strategies, RDMA and Lus-
tre Read, for this architecture and provide modules to dynamically detect the best strategy
for a given scenario. They also designed a dynamic adaptation technique to choose the
better shuffle strategy during run-time of job execution. Islam et al. proposed to inte-
grate HDFS with Lustre through RDMA-based key-value store [88]. We design a burst
buffer system for Big Data analytics applications using RDMA-based Memcached and in-
tegrate HDFS with Lustre through this high-performance buffer layer. We also present three
schemes for integrating HDFS with Lustre considering different aspects of I/O data locality
and fault-tolerance. Wasi-ur-Rahman et al. proposed an accelerated execution framework
(NVMD) for MapReduce and Directed Acyclic Graph (DAG) based processing engines
to leverage the benefits of Non-Volatile Memory (NVM) on HPC systems [89]. Through
NVMD, MapReduce is refined with integrating hybrid push and pull shuffle mechanism,
non-blocking send and receive operations, and dynamic adaptation to the network conges-
tion have been presented.

In summary, the above works either deal with integration of HDFS with existence HPC
file system, or explore the optimization opportunities for MapReduce types of jobs in HPC
environment. As a preliminary integration work of HDFS and L-Store will be introduced
in chapter 9, the above related works can absolutely guide our future directions and treat

as our future baselines.
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Chapter 3

PERFORMANCE MANAGEMENT OF HIGH PERFORMANCE COMPUTING FOR
MEDICAL IMAGE PROCESSING IN AMAZON WEB SERVICES

3.1 Problem Overview

The increasing accumulation of open-source multi-modal images makes it imperative
to deploy local processing of images into cloud-based environments. An example of such a
image processing framework is the Java Image Science Toolkit (JIST) [22, 23], a biomedi-
cal plugin for MIPAV [24], which is entirely developed in the Java programming language
[90, 91] and is hosted on the Neuroimaging Informatics Tools and Resource Clearinghouse
(NITRC). Amazon Web Services (AWS) provide reliable, on-demand, and affordable cloud
computing services [20] that is promising for medical image processing. Different types
of optimized Amazon Elastic Cloud Computing (EC2) instances are offered in AWS [92].
Amazon Simple Storage is easy to apply, cost oriented, and highly scalable as data/object
storage [93]. Despite the promise, workflow definition/management and cloud configura-
tions are two key challenges in this realm. We exploited the NITRC Computational Envi-
ronment (NITRC-CE) [53] hosted by Amazon’s AWS, to distribute each JIST “Execution
Context” (process) on a separate cloud node. Through an applicable cost/benefit analysis,
users are able to specify a grid size, automatically boot up a private network, install JIST
into MIPAYV, and set up all requirements for processing. All monitoring is managed through

the standard JIST Process Manager. Our contributions are summarized as follows.

* We provide a concrete workflow definition/management for JIST to deploy a local

project to be distributed and processed in the cloud.

* We integrate JIST to Amazon AWS (a reliable, on-demand, and inexpensive cloud

computing services) to execute high performance computing.
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* We demonstrate a cost/benefit analysis of a pipeline that can be easily parallelized
and requires memory that would limit the processes to serially execute only on a local

lab machine.

This work has been published in SPIE medical imaging 2016 [52].

3.2 Method

3.2.1 Workflow framework

Cloud configuration is based on Amazon AWS (of which S3 storage and EC2 are two
components). Amazon S3 storage is mounted by every pay-for-use Amazon EC2 instance.
Hence S3 is recognized as a shared cloud resource for all EC2 machines that are ordered
by clients. S3 stores all necessary packages including MIPAV’s install file, JIST plugins,
JIST Library and other files related to configuration. Each Amazon EC2 machine can get
the source packages from S3, and install related packages to run JIST.

Briefly, JIST pipelines are stored in a ”layout” file, which specifies inputs and outputs
as well as algorithm classes used for execution. The user’s layout is later sent to S3 storage,
and all processing is handled in the cloud virtual machines. The local host (local machine)
meanwhile monitors the processing process in cloud. Rather than run whole layout on a
typical cloud machine, each processing command (a JIST “execution context”, which is
a single process in the process manager) generated by the JIST scheduler is distributed
to any of the free EC2 instances. The process manager periodically sends jobs that are
ready to run to the cloud when idle machines are found. Each job has a local monitor
that periodically pulls back its debug and error info in the cloud so that users can view the
progress of a running job. Status "Complete” represents a process that has completed, and
all files that have been produced during the proceeding have been replicated back to local
workstation. Note, to copy files between systems, the directory paths must be modified to

represent differences in mount points and local structures. Thus, outputs are available to
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operate on locally even though processing happens on AWS. The workflow framework is

presented in Figure 3.1.
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Figure 3.1: Throughput analysis for each of the test scenarios. (A) presents the number
of datasets processed per minute by each of the scenarios as a function of the number of
datasets selected for processing. (B) shows the fraction of time spent on overhead relative
to the number of datasets.

3.2.2  Configuration

Several modes to run a layout can be selected in the JIST layout preference panel (e.g.,
run on a DRMAA compliant grid, run locally, or run in the Amazon Cloud). Users should
choose use AWS EC2 option to activate cloud computing (Figure 3.2(a)).

Using the Cloud Dashboard, users are able to configure, initialize (”init”), boot, and
terminate an Amazon AWS NITRC-CE cloud instance with predefined machine informa-

tion (Figure 3.2(b)). Access Key Id, Secret access key and region information are used to
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validate an AWS account so that user can access Amazon EC2 and S3 resources. Custom
S3 buckets are a top-level folder on S3, the name of which must be globally unique in Ama-
zon S3. This bucket is used to store necessary packages and JIST layout projects with the
same structure.A standard cryptographic key pair is needed to securely log in and connect
to remote cloud instances. Inbound and outbound connection rules including IP and port
permission range are defined in security groups. Also, users can select several different
types of pre-configured Amazon machines and any number of identical machines to boot.
These machines have different processor speeds and memory installments. The initialize
and install processes are executed once all necessary files and settings are prepared. In
JISTs ”Progress Manager”, project input files are then uploaded to cloud and they wait for

processing.
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Figure 3.2: (a) JIST preferences panel (b) JIST Cloud Dashboard.
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3.2.3 Cost/Benefit analysis

Time usage and expense are two integral factors to be considered cloud computing.
Here, we consider if there is a way to estimate cloud usage costs relative to running serially
on local lab machines. Total runtime in the cloud can be estimated by the following where
T4 represents runtime in the cloud.

For the Amazon machine instance type A. The above variables are defined in detail in
the following sections. Briefly, B is bandwidth, S44, is input data size, Syyis the function to

compute estimated execution time for all jobs, and = is the total number of cloud instances.

Sdata + Sout

(P () G.1)

T, = f(AaBasdathoutug(n» =

| =

AWS provides a considerable spectrum of instances family for on-demand purpose,
1.e., General Purpose (balance of compute, memory, and network resources), Compute
Optimized (highest performing processors with lowest cost/compute), Memory Optimized
(memory-intensive applications and have the lowest cost/GiB of RAM), and Storage Opti-
mized (SSD storage with low cost high IOPS). Different types of instances have different
processors, which need to be considered when predicting performance

Within each instance class, instances use same kind of processors with different total
number. Memory should also be considered into install process (especially means installing
MIPAV in each EC2 machines) and each job-processing time estimation. A is a weight
value between (0, 1), when smaller cache and low memory allocation instance is applied,
the value of A is more close to O (i.e., the machine is slower).

Input data size Sq4,: Input image data size is also used to estimate processing time of
a single job. In the example that we present, the process nearly linearly increases as the
number of voxels increase. Amazon machine instance type A also affects the job time when
taking processor cache and memory into consideration

Bandwidth B: When running a big layout with lots of data that gets generated and mul-
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tiple processing algorithms, upload/download time is not a primary factor in the model.
However, if a layout is small, it is worth considering as the transfer process may end up
taking as long, if not longer, than the processing time. On the same note, installation pro-
cesses are also taken into consideration. The NITRC-CE includes many popular image
processing toolkits, but is not guaranteed to have a compatible version of MIPAV and JIST
— these are transmitted and installed for each newly created cloud node in the S3 bucket.
In general, a small layout is a project when it is applied only one single process to run the
entire job, the total time is smaller than an hour, and the process needs less than 500G mem-
ory. The uploading time depends on the size of the project, or Sgu4, because the file size
is usually bigger than any other type of input files in the JIST project (i.e., .input, .output,
.LayoutXML). However, the output file size(s) S,us need to be estimated. Subsequently,
install upload and download time is then computable via bandwidth B.

Before explaining the details of g(n), we first introduce the job dependency tree D.
JISTs scheduler can handle the graph of execution dependencies. A lower priority value
results in later execution and vice versa. The scheduler itself can also estimate execution
time of a job. If several jobs are ready to run with the same priority at the same time, the job
that has the smallest execution time will run first. For example, there are 4 jobs are all ready
to run with same priority value, the estimation execution time is: job-a (15 minutes), job-b
(18 minutes), job-c (50 minutes) and job-d (60 minutes). If two free instances are available,
job-a and job-b will start first, and this will cost less time than any other combination of 2
jobs to run first. As a result, a job dependency graph can be generated. This can help a user
to decide the total number of instances.

D is a depth-first-search tree, according to job dependency. We first build an entire
tree, and denote each node as slow and fast to represent processing time of a job. Then we
remove all fast nodes, and connect all slow nodes via the hierarchy. Figure 3 presents an
example of how D is generated.

Based on D, we first calculate the total number of nodes on each level and get the
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maximum number among all levels. We can then get an estimated number of maximum
processes that can run at once. The average number of machines can be derived from a
level in D, which has the maximum total execution time and maximum single running time
in the selected level. If T;_;—j 2 3,, 1s processing time of m jobs in a chosen level, average

number of instances then can be calculate by:

i1 T
max (Tii—12.m)

avg(n) = (3.2)

More machines can be booted with the benefit of decreased execution time at the ex-
pense of increased cost. Once n is set, if there are x paths in D, we group x paths into y
groups, where y equals x/n, and T, is max time to run all jobs in group Ty. Taypiicate 18 the
duplicate time among each groups. Finally, the estimation time to process all jobs in the

cloud is

Yy
g(l’l) = Z T; — Tduplicate (33)
i=1

According to T4, type of instance and the number of nodes, the expense E is easy to

calculate as

E = [Ty - num(Inst) - price(A) (3.4)

A small amount of data transfer and data storage fee also occurs, but it is considerably
less than the cost of renting EC2 machine.

The tradeoff between number of instances booted and cost is one of the most important
considerations to make. For example, consider a layout where there are many fast jobs that
can run simultaneously, and they are all depending on a single slow job. In this scenario,
we should cautiously select the number of machines to reduce the idle time of instances, as
this is payment for non-processing time.

Different types and numbers of instances lead to different 74, which incurs several
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pairs of (E,T4). Based on budget and expectant time, users can decide if JIST cloud mode
is applicable.

Our test experiment is a multi-subject diffusion tensor imaging (DTI) project [53]. DTI
is a method to non-invasively measure water diffusion in the human brain using magnetic
resonance imaging (MRI). In this example, three different subjects are in the layout. The
layout is used to fit tensors to the acquired data using four different tensor fitting routines
(Figure 3.3). The input data size is 256*256*65*D, where D is the number of directions
at which different gradients are applied and readout. In this case, there are 34. Table 3.1
illustrates the experiment top-down structure. Level means the job hierarchy and depen-
dency.

The final Job dependency DFS tree D is shown in Figure 3.4. In summary, the total
number of level-2 in D is larger than level-1, so the maximum number of processes that
are running at the same time in our experiment is 12. Moreover, they are all slow jobs, so
we should consider applying multiple instances rather than a single instance. In our exper-
iments, in order to control variable, we apply the same Amazon instance family (namely
M3), the processors of which is High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge) Pro-

CESSOrs.

3.2.4 Case 1: Same total number of instance n, different Amazon instance type A

As a brute force approach, for each instance type, we all apply maximum number of
instances 12. Table 3.2 presents the result of actual total running time of each option
with total cpu time in cloud and expense. Total Cpu time in cloud is the time using only
a single process to execute entire jobs in one virtual machine, which is also regarded as
run layout in local workstation. Figure 5.1 visually shows the performance of JIST cloud
mode compared with total cpu time.

The result shows the estimation time 7’4 is reasonable with 90% precision. It illustrates

that Medium instances can accomplish processing the project for a low cost (a bit more

36



Table 3.1: Multi-slice DTI experiment layout top-down structure (one subject).

Job Id | Description Dependent node | Timeestimation
Extract b values
T and gradient table Fast
T2 Makea scheme file T1 Fast
. ) Slow,
T3 Registration T1 1.25 hrs/subject
T4 Tepsor T3 Slow,' .
fitting-CAMINO-WL 15 mins/subject
CAMINO-WL
5 DTT contrast T4 Fast
CAMINO-WL
16 DTI Color encode map T4 Fast
T7 Tensor fitting- T3 Slow, ‘
CAMINO-NL 2.5 hrs/subject
CAMINO-NL
18 DTI contrast 7 Fast
T9 CAMINO-NL T7 Fast
Color encode map
TI0 | CAMINO-LLMSE T3 Stow,
15 mins/subject
T11 CAMINO-LLMSE T10 Fast
DTI contrast
T12 CAMINO-LLMSE T10 Fast
encode map
) . ) Slow,
T13 Single tensor estimation | T3 1.25 hrs/subject
T14 Single tensor estimation T13 Fast
DTI contrast
Single tensor estimation
T15 T13 Fast
color encode map
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Figure 3.3: Multi-slice DTI test layout.

than Large instances), but approximately with double the needed time over other instances

type because of lack of memory allocation. The result also demonstrates xLLarge’s memory

is big enough for our experiment with a totalexperiment time of 4 hrs 10 mins. The time

does not dramatically decrease even when we apply a more expensive type instance (e.g.,

2xLarge). However, the total expense of 2xLarge is much more than the other 3 instance

types. Note that the expense of Medium is even more than Large instances. Running 12

jobs at the same time is hard for a normal local station, while running 12 jobs with 12

available instances is easy to accomplish.
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Figure 3.4: Job dependency DFS tree for multi-slice DTI experiment.

36:00:00

E 24:00:00
= 12:00:00
0:00:00

N A N

\‘}@ -cf?g’ {?g' g“g

&

M3 instancqé type

& Actual Total time

& Total Cpu time in cloud
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3.2.5 Case 2: Same instance type (large), different number of machines n.

Due to job top-down structure, for one subject, 4 tensor fitting methods can run simul-
taneously. We use it to c ompute avg(n) equals 1.68 which means an average of 2 instances
can be applied for a subject. Thus, we should apply 6 instances in total for entire project.
Table 3.3 demonstrates that 12 large machines just save 16 minutes (4%) more than 6 large
machines, which is because of the structure of the project.Before tensor fitting, at most 6
machines will be used, so basically 6 machines will be idled when we apply 12 machines.
While when we perform tensor fitting, 12 machines can save partially parallel time. When
using 12 machines, 12 tensor fitting algorithm are run at the same time. While when 6
machines are ordered, owing to JIST scheduler, CAMINO-WL and CAMINO-LLMSE are

completed first, and job CAMINO-NL and Single tensor Estimation are then run. In this
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Table 3.2: Case 1 result summary

Estimation | Actual Total
Total Weight ) . Cpu time Total
Instance Type . time TA Total time .
Machines | value A . . in cloud Expense ($)
(hr:min:sec) | (hr:min:sec) .
(hr:min:sec)
Medium
(Cpu:1, 12 0.4 9:22:00 9:57:12 31:27:31.24 | 8.04
Mem: 3.75G)
Large
(CPU:2, 12 0.9 4:10:00 4:42:40 15:38:8.35 7.98
Mem:7.5G)
xLarge
(CPU:4, 12 1 3:45:00 4:09:57 15:34:49.89 | 15.96
Mem:15G)
2xLarge
(CPU:S, 12 1 3:45:00 4:07:13 15:49:18.16 | 31.92
Mem:30G)
Table 3.3: 12 Large instances v.s. 6 Large instances.
12 6
large instances | large instances
Weight value A 0.9 0.9
Estimation time TA (hr:min:sec) 4:10:00 4:26:00
Actual Total time,(hr:min:sec) 4:42:40 5:01:04
Total Cpu time in cloud,(hr:min:sec) | 15:38:8.35 15:49:35.8
Expense($) 7.98 4.82

case, total number of 6 large instances should be ordered since it saves 40% expense and

just need 16 more minutes to complete the entire jobs.

3.3 Conclusion

This chapter has presented a system to enable automatic deployment of JIST to the

Amazon AWS cloud. Each processes of a user’s project are processed in separate nodes

in Amazon AWS. Mounting Amazon S3 storage to EC2 is automatically accomplished for

efficient I/O and data transfer in cloud environment. Our cost/benefit analysis can help

users to decide grid size and configuration relative to local computation. A performance

40




prediction scheme to accurately predict computing resource is found in [94], stricter cost
estimation could be applied to current work. EC2 limit performance compared with con-
ventional HPC platform has also introduced in [53]. So our future work is to maintain
JIST cloud version and exploit cloud-based JIST to run very large parallel processes with

efficient use of EC2 machines.
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Chapter 4

CLOUD ENGINEERING PRINCIPLES AND TECHNOLOGY ENABLERS FOR
MEDICAL IMAGE PROCESSING-AS-A-SERVICE

4.1 Problem Overview

Traditional grid computing approaches separate data storage from computation. To
analyze data, each dataset must be copied from a storage archive, submitted to an execution
node, processed, synthesized to a result, and results returned to a storage archive. This is
the workflow traditionally adopted in processing medical imaging datasets. However, when
imaging datasets become massive, the bottleneck associated with copying and ensuring
consistency overwhelms the benefits of increasing the number of computational nodes.
For example, consider the activity of converting Digital Imaging and Communications in
Medicine (DICOM) files to NiFTI (a research file format); if converting a 50 MB volume
takes 15 seconds, an ideal Gigabit network (= 100MB/s) saturates with slightly less than
30 simultaneous processes.

These challenges are further amplified considering the current trends where vast mag-
netic resonance imaging (MRI) and computed tomography (CT) databases are accumulat-
ing in radiology archives (at the rate of nearly 100 million examinations per year in the
U.S.). However, we lack the image processing, statistical, and informatics tools for large-
scale analysis and integration with other clinical information (e.g., genetics and medical
histories). An efficient mechanism for query, retrieval, and analysis of all patient data (in-
cluding imaging) would enable clinicians, statisticians, image scientists, and engineers to
better design, optimize, and translate systems for personalized care into practice. Thus, a
cloud-based service to address these needs holds promise.

It may however appear tempting to reuse the cloud-based solutions for social networks
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and e-commerce, which provide a solution to this problem that is both simple and rela-
tively inexpensive. These solutions combine the storage and execution nodes such that
each task can be done with minimal copying of data. For example, the Apache Hadoop
ecosystem [19], which provides the Big Data processing capabilities, has been extensively
used in these contexts.

Two reasons preclude such a naive reuse. First, although such big data architectures
have been applied in online commerce, social media, video streaming, high-energy physics,
and proprietary corporate applications, these technologies have not been widely integrated
with medical imaging data formats (e.g., DICOM) for medical image processing. Sec-
ond, several approaches have followed the path of general machine learning literature and
seek to implement algorithms specifically designed to take advantage of big data architec-
ture [95, 58, 96], exploit the MapReduce framework to sift through datasets [32], or use
distributed file systems [97, 98]. While such approaches have been effective for genetics
studies [98, 57], they have not yet proven effective within current medical image computing
workflows.

The fundamental reason for this shortcoming is that substantial resources have been
invested in creating existing algorithms, software tools, and pipelines, and hence there is
a substantive (often prohibitive) cost associated with algorithm re-implementation and re-
design specifically for big data medical imaging. Consequently, there is a need for new
approaches that will not require algorithm re-implementation while still being able to ex-
ploit the potential of elastic, cloud-based frameworks, such as Apache Hadoop, that have
shown promise in other application domains.

To address these problems, we present design principles and empirical validation for
a new data model for use with cloud-based distributed storage and computation systems
that provides practical access to distributed imaging archives, integrates with existing data
workflows, and effectively functions with commodity hardware. Our approach makes spe-

cific improvements to the Apache Hadoop ecosystem, notably HBase, which is a NoSQL
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database built atop Hadoop’s distributed file system. Specifically, we make the following

contributions:

* A row-key design for Apache HBase: A hierarchical key structure is proposed as a

necessary step to accommodate nested layers of priority for data-collocation.

* New RegionSplit policy: A computationally efficient approach is proposed to opti-

mally manage data collocation in the context of the hierarchical key structure.

* Experimental results: The proposed innovations are evaluated in the context of
a routine image analysis task (file format conversion) in a private research cloud

comprising a typical Gigabit network with 12 nodes.

The performance of this new system is evaluated on small (7 GB) to moderate-sized
(530 GB) test cases to characterize the overhead associated with this model and demon-
strate tangible gains on widely available network and computational hardware. We believe
that the proposed improvements to the Apache Hadoop ecosystem will greatly reduce the
technical barriers to performing high-throughput image processing necessary to integrate
imaging data into actionable metrics for personalized medicine. The novelty of the ap-
proach lies in our integrated solution for a novel application. The row-key design and
linearizing most heavily used fields have been used in other contexts [99, 100, 101]. Yet,
realizing new opportunities to apply existing techniques to a different realm (medical im-
age processing), with its specific ontologies and patterns of data size/access, is essential to
driving innovations. Our effort is a mix of research and experimental work to demonstrate
applicability to medical imaging, which, to date, has not used a data-collocation computa-
tional model, and instead typically relies on monolithic data warehouses.

The rest of the chapter is organized as follows: Section 4.2 describes our contributions;
Section 4.3 describes our evaluation approach and presents experimental results; and finally
Section 4.4 presents concluding remarks alluding to ongoing and future work, and discusses

the broader applicability of our approach.
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This work has been published in IEEE International Conference on cloud Engineering

(IC2E) 2017 [102].

4.2 Design Principles for a Cloud-based Medical Image Processing Service

The task of processing medical images at scale requires a distributed (i.e., a cloud-
based) image processing architecture that is aware of the underlying hierarchical imag-
ing data and its meta-data. Our system is based upon the Hadoop framework, which was
originally designed for file-system management and distributed processing [4, 103]. We
combine Hadoop with Apache HBase, a NoSQL database which implements Google’s
BigTable [103, 31]. The specific contribution of this chapter is a novel data storage mecha-
nism that uses the hierarchical structure of imaging studies to collocate data with physical
machines. This proposed collocation provides an efficient processing environment in which
data do not need to be transferred between machines, thereby avoiding network overhead
and saturation.

To make this chapter self-contained, we first describe the properties of the DICOM
and NiFTI file formats used by the medical imaging community alluding to the challenges.
We also provide background information on Apache Hadoop’s HBase and challenges in

applying these frameworks to medical image processing.

4.2.1 Background on DICOM and NiFTI and Challenges

DICOM (Digital Imaging and Communications in Medicine) is the international stan-
dard for medical images and related information (ISO 12052). It defines the formats for
medical images that can be exchanged with the data and quality necessary for clinical use
(http://dicom.nema.org/). It has a hybrid structure that contains regular data (patient/clini-
cal information), multimedia data (images, video). Data inside a DICOM file is formed as
a group of attributes [6].

When a patient gets a Computed Tomography (CT) or Magnetic resonance imaging
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(MRI) scan, for example a patient’s brain image, a group of 2-dimensional DICOM images
are generated slice by slice. A non-exhaustive set of medical imaging DICOM attributes
for the slices include: project (i.e., a particular study), subject (i.e., a participant within the
study), session (i.e., a single imaging event for the subject), and scan (i.e., a single result
from the event).

In order to study the entire brain, all 2-dimensional DICOM images should be col-
lected together. Even though medical imaging data is stored as DICOM images, a sub-
stantial amount of medical image analysis software are NiFTI-aware (e.g. FSL (http:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/), AFNI (https://afni.nimh.nih.gov/afni/), SPM (http://www.
fil.ion.ucl.ac.uk/spm/) and Freesurfer (http://freesurfer.net/)). NiFTI is a medical image
data format, which is termed as a “short-term measure to facilitate inter-operation of func-
tional MRI data analysis software package,” developed and founded by the NiFTI Data
Format Working Group (http://nifti.nimh.nih.gov/).

Converting a large group of slices of DICOM images belonging to one patient into a
small number of NiFTI format images (many-to-many relationship) is a significant step
in a medical imaging study. Any processing of DICOM datasets will need to determine
which CT/MRI scan that slice belongs to and using the Session attribute which records
when the CT/MRI scan volume is carried out. However, finding a Session needs to first
know the attribute Subject that it belongs to. Finally, the Project attribute collects all
subjects together. Thus, for medical imaging applications involving DICOM, the following
attributes are necessary: project — subject — session — scan — slice.

As noted in Section 4.1, traditional grid computing approaches separate DICOM data
storage from computation. To complete a DICOM to NiFTI conversion, DICOM datasets
must be copied from a storage archive, submitted to an execution node, processed, syn-
thesized to a result, and the results returned to a storage archive. When imaging datasets
become massive, the bottleneck associated with copying and ensuring consistency over-

whelms the benefits of increasing the number of computational nodes.
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4.2.2 Background on Apache HBase and Challenges for Medical Image Processing

HBase [7] uses the Hadoop Distributed File System (HDFS) to provide distributed and
replicated access to data. Zookeeper [104] handles distributed coordination to maintain
the state in HBase cluster. It uses consensus to guarantee common shared state; hence the
recommended cluster size is an odd number for cluster leader selection. The reason we
choose HBase and not any other data store available in the open source community is that
HBase can group data logically and physically based on row-key value. However, HDFS
can only provide logical order, and files with similar names can also be placed on different
remote machines. HBase also provides a flexible translation layer (region-split policy) for
dealing with data collocalization statically or dynamically.

The key concepts from the HBase architecture are summarized in Table 4.1. Briefly,
HBase maintains tables, which have a row key that is commonly used as an index, and
where data columns are stored with the row key. All data in HBase is “type free,” which
are essentially in the format of a Byte Array. The table is sorted and stored based on the
row key.

The HBase tables are divided into “regions” for distributed storage, where each region
contains a continuous set of row keys from the table. The data in a region is physically
collocated with an HDFS data node to provide data locality, which is performed by an
operation called major compaction. When the region size grows above a pre-set physical
size threshold, a “RegionSplitPolicy” takes effect and divides the region into smaller pieces.
The newly created regions are automatically moved to different nodes for load balancing
of the cluster. The row key and RegionSplitPolicy are thus integral to the performance and
data retrieval of HBase and Hadoop.

There is no standard for the default row key design. Intuitively, the data should be
placed as sparse as possible and distributed evenly across various points of the regions in
the table. Such a strategy can avoid data congestion in a single region, which otherwise

could give rise to read/write hot-spots and lower the speed of data updates. Because row
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Table 4.1: HBase architecture key concepts summary

[ Concept [ Comment |
Table / HTable A collection of related data with a
column-based format within HBase.
Region HBase Tables are divided horizontally by

row key range into “Regions.” A region
contains all rows in the table between the
region’s start key and end key.

Store Data storage unit of HBase region.

HFile / Storefiles The unit of Store, which is collocated with a
Hadoop datanode and stored on HDFS.
memStore When write data is uploaded to a HTable, it
is initially saved in a cache as memStore.
Once the cache size exceeds a pre-defined
threshold, the memStore is flushed to HDFS
and saved as HFile.

HMaster HBase cluster master to monitor a
RegionServer’s behavior for load
balancing.Table operator. e.g., create,delete
and update a table.

Regionserver Serves read/write 1/0 of all regions in a
cluster node. When Regionservers collocate
with Hadoop datanode, it can achieve data
locality. Subsequently, most reads are
served by the RegionServer from the local
disk and memory cache, and short circuit
reads are enabled.

Rowkey A unique identifier of a row record in table.
Column family Columns in Apache HBase are grouped into
column families.

Column identifier | The member in column family, also called
as column qualifier. Multiple column
identifiers can be used within one column
family.

keys are sorted in HBase, using randomly generated keys when input the data to HBase can
help leverage the data distribution in the table. As shown later, however, such an approach
incurs performance penalties for medical imaging applications.

Despite using Big Data architectures, such as Apache Hadoop, two key challenges
present themselves for medical image processing.

Challenge 1: It must be noted that the original DICOM file name is a unique identifier
called Global Unique identifier [25]. If the task of interest is storing slice-wise DICOM
data within HBase, a naive approach would be to use the DICOM GUID. Since the GUID
is a hash of the data, it will not collocate data together and thus will saturate the network
while retrieving all DICOM images of a scan volumes.

Challenge 2: The standard RegionSplitPolicy will randomly assign files with hashed

DICOM GUID file name as row keys to regions based on the key and the convenient split
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point based on region size, which may incur significant data movement over the network.
We address these challenges in deploying a cloud-based medical image processing ser-

vice.

4.2.3 Design Principle 1: Modified Row Key Design

To address Challenge 1 discussed above, we propose a modified row key design for
HBase based on the row key design requirements that it must maintain the structure of
DICOM comprising the project, subject, session, and scan. To maintain this structure,
we propose using < ProjectID > _ < SubjectID > _ < SessionlD > _ < ScanlD > as the
identifier with other optional characteristics such as the “slice” appended to this identifier.
This is how our collection of images are named in the hierarchical manner.

For example, a row key is like Proj1_Subj2_Session3_Scan4 _SliceS_example.dcm, where
“.dem” is the filename extension for DICOM. Since HBase organizes data linearly based
on row key, this new strategy will maintain data within a project that is split with a minimal,
or just one more than the minimal number of splits across regions as possible, when used

in conjunction with the default RegionSplitPolicy supported by HBase.

4.2.4 Design Principle 2: Modified RegionSplitPolicy for Medical Imaging

In practice, users always select a cohort (set of subjects, sessions) to do the processing.
The data under the same subjects or sessions are always processed together, not individu-
ally. Specifically, for DICOM conversion, the unit of processing is scan volumes. Thus,
it is important to maximally collocate relevant image data under the same level for further
group retrieval and processing/analysis, while reducing the data movement in MapReduce
operations pertaining to the DICOM to NiFTI conversion. The details of the MapReduce
operation is discussed in Section 4.3.4.1.

Unfortunately, HBase’s default RegionSplitPolicy does not have knowledge of the struc-

ture of medical imaging studies. Thus, it may split the regions non-ideally such as within
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Figure 4.1: Comparison of the standard RegionSplitPolicy and our custom RegionSplit-
Policy. The standard policy splits the data within a region equally based on the data in the
region. The custom policy considers the projects, subjects, sessions and scans in the region
and makes a split to maximize data co-locality.

a scan or between sessions for a particular subject. These splits cause increased processing
time when data needs to be transferred between machines over the network. To overcome
these bottlenecks, we propose a novel RegionSplitPolicy, which exploits the modified row
key structure from our first contribution, thus maximizing data co-localization.

Our new RegionSplitPolicy first considers all row keys in a region. If multiple projects
exist in the region, it splits the projects into separate regions. If the region is homogeneously
a single project, it finds the highest available level (project, subject, session, scan) in the
region on which it can split and balance the data between the new regions. This proposed
RegionSplitPolicy relies on the modified row key design from Section 4.2.3. Figure 4.1
compares the operation of the standard RegionSplitPolicy with the custom one we have
developed.

In detail, when a region split is triggered, the RegionServer first finds the largest files
in the largest stores. The default RegionSplitPolicy defined in HBase finds the first row
key of the largest data block in each storefile. This key is called the “midkey” of a region
and is determined based on region mid size. Thus, this split point can separate an existing

associated imaging dataset into two regions without considering row keys values in the

50



split region. The newly created two regions will move through the entire cluster for storage
balancing.

The challenge for our optimized RegionSplitPolicy is to find a split point based on all
row keys of a Region. HBase provides a client API to retrieve the data called scan (here,
we refer to it as simple_scan). A user can customize the scan to define the range of row
keys with which the column family and identifiers need to be retrieved. Users can also set
customized filters to refine the query scan. A region has internal attributes that record the
value of the start row key and end row key of the region. Since there are no attributes of
records for any other row keys in a region except start/end row key, we need to use external
means to retrieve all row keys of a region.

To be effective, the region must be split based on values of all row keys, however,
HBase does not maintain all this information. Thus, to retrieve all keys in a region, two
potential approaches can be used: (1) According to start/end key of region, a user specifies
a column to scan. The scan 1s first executed on the entire table, finds the right RegionServer
that hosts region from Zookeeper quorum, and retrieves the row key; (2) Use HBase default
RowKey filter to customize the scan. However, both approaches are slower compared to
our approach described below.

As shown in Figure 4.1, we are capable of locating the largest storefiles. In this way,
we can apply a more advanced HBase scan API (called “Region Internal scan”), which
we have found to be 163 times faster than simple_scan on average in our tests to find all
hierarchy row keys involved in the region. The Internal scan can directly operate on the
storefiles located on HDFS without starting a scan from the entire table. This gives us all
the row keys of a split region. Next, the split point is selected according to the following
conditions: (1) it ensures that related data is maximally collocated in the hierarchy, and (2)
once we have identified the level of structure which will be the potential point to split, we
traverse the candidates and return the point that can most evenly balance the size of the two

new regions in order to avoid the overhead of many small regions emerging.
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HBase provides PrefixSplitKeyPolicy as one of the default split policy which is de-
signed for grouping rows sharing a fixed length of keys [3]. However, compared to our
custom policy, it cannot dynamically group the subjects based on the order of the project,
subject, session etc based on highest available level (project,subject, session, scan). Specif-
ically, if there are many projects of a region, we should split rows by < ProjectID >; if all
row keys start with same project, and there is not only one subject, we should split rows by
< ProjectID > _ < Sub jectID, so on so forth. So we cannot define which is the appropriate
fixed length for PrefixSplitKeyPolicy.

Another policy we evaluate and compare with is the IncreasingToUpperBoundRegion-
SplitPolicy [3], which splits a region from a small threshold; with the number of regions
increased in a Regionserver, the split size threshold are increasing. It is a size-based policy
without knowledge of what key values are in a split region.

The observed average run time range to determine one split point using our custom split
policy is 28.22-58 ms, and 1.43-1.64 ms for the default HBase split policy with similar CPU
usage (19.39% vs. 19.81%) indicating no substantial overhead in our approach compared
with the default one. The increased time in our policy is due to the need to retrieve and
analyze all row keys of a region. Despite this one-time initial cost, as we show in our

experimental results, the performance improvements are substantial.

4.2.5 Putting the Pieces Together

Figure 4.2 presents the overall structure of our cloud-based medical image process-
ing service, which is an Apache Hadoop ecosystem focusing on the HBase modifications.
HBase resides upon HDFS. Zookeeper monitors the health status of RegionServer. When
users create a HBase table, they need to pinpoint the RegionSplitPolicy to HMaster, and the
pre-set split policy is automatically triggered once when a Table region needs to be split.
Our custom split policy is made the default split policy. The input DICOM is de-identified

(for privacy preservation purposes) and is normalized to the hierarchy structure by a local
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row key generator before storing into HBase.

...............................................
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Figure 4.2: Overall structure of Hadoop / HBase / Zookeeper cluster with proposed custom
row key and custom region split policy

Such a backend can then be offered as a service over the cloud using contemporary
RESTful web technologies. In the current offering of our work, a shell-script interface
(similar to Sun grid engine command line) is provided and multiple use cases have been
tested [105]. Moreover, a template MapReduce job is provided that can be easily modified
and packaged as a Maven project. Since our custom RegionSplitPolicy must be redesigned
for different levels of hierarchy — our scenario has 5 levels (project/subject/session/scan/s-
lice) — we have provided a template to generate the region split based on the levels, which
alleviates the burden for the user. A more user-friendly version is in development and will

be evaluated on larger datasets.

4.3 Evaluation Methodology and Experimental Results

This section presents results of evaluating our Apache Hadoop/HBase modifications for

the cloud-based medical image processing service and comparing with default strategies.
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4.3.1 Testing Scenarios

To investigate the performance of our HBase modifications, we evaluated the standard
DICOM to NiFTI file format conversion using three test scenarios using HBase and Hadoop
and one with Network Attached Storage (NAS) as follows.

e Scenario: ‘“Naive HBase” — The project data was anonymized such that the original
GUIDs were lost prior to this project and could not be recovered associated with data
retrieval. True DICOM GUIDs are globally unique and contain both source (root stem)
and random components. The MD35 tag mimics the random components from a single
source vendor. Using MDS5 hash key value meets original intentional HBase key design for
reduce hot-spot of table read/write. The DICOM files are distributed to all HBase regions,
and we use an additional table to record the hierarchy structure of a scan dataset. We test
using a random key, and MD5 hash of the data, as the key in HBase. With this comparison,
we test the native capabilities of Hadoop and HBase without any of our proposed advances.

e Scenario: “Custom Key/Default Split HBase” — This scenario evaluates the custom
key grouping and ordering of the DICOM file logically and physically in HBase by our
custom key value prefix. When a HBase region exceeds a pre-defined size, we use the
default split policy to split a region into two child regions without considering the key
values of the split region as introduced in Section 4.2.3. In this case, the files belonging to
the same project, subject, session, scan are distributed into two different regions. The two
regions may move to different cluster nodes, and the replication of both regions may also
be placed on random Hadoop datanodes. When retrieving all files of a cohort (i.e., a set of
scan volumes) for further processing, a MapReduce job dispatches computations to nodes
that contain the datasets of interest. When no single node contains all requested data for
a single job (either due to a large request or local storage scarcity), the minimal necessary
data will be retrieved over the network. So we test our proposed row key with the default
RegionSplitPolicy.

e Scenario: “Custom Key/Custom Split HBase” — Our custom RegionSplitPolicy
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has the capabilities to maximally collocate relevant data in the same group with the order
of project, subject, session and scans. We test our complete design with our proposed row
key and custom RegionSplitPolicy and compare it with Custom Key/Default Split HBase
to see how data retrieval matters in MapReduce. Theoretically, this approach involves less
data collection and movement over the network compared to the other two HBase methods
and makes processing faster.

e Scenario: “Grid Engine NAS” - Traditional grid computing approaches separate
data storage from computation. As a comparative method, we use a traditional Sun grid en-
gine (SGE) to distribute portable bash script (PBS) jobs to computational nodes accessing

data from a Network Attached Storage (NAS) device.

4.3.2 Hardware

We used a small, private research cloud for our experiments. Twelve physical machines
were used consisting of 108 cores of AMD Operon 4184 processors, 40 cores of Intel Xeon
E5-2630 processors and 8 cores of Intel Xeon W3550 processors running Ubuntu 14.04.1
LTS (64 bit). At least 2 GB RAM was available per core. In total, 190 GB of storage was
allocated to HDFS and a Gigabit network connected all of machines. Local Disks type
was Seagate ST32000542AS. Each machine was used as a Hadoop Datanode and HBase
RegionServer for data locality. All machines were also configured using the Sun Grid
Engine (Ubuntu Package: gridengine-* with a common master node). NAS was provided
via CIFS using a Drobo 5N storage device (www.droboworks.com) with a 12 TB RAID6

array.

4.3.3 Data and Processing

To evaluate the test scenarios, 9,910,000 DICOM files from clinical CT scanners cor-
responding to 410 subjects and 8,120 scan volumes were retrieved in de-identified form

under IRB approval from a study on traumatic brain injury. The processing system for each
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scan applied a command line program to retrieve the data from storage (see test scenarios
in Section 4.3.1) and convert the DICOM files to NiFTI using dcm2nii (www.nitrc.org\-/
projects/dcm?2nii/). We performed tests with subsets of data with different datasets to assess
the scalability of each proposed system and relative overhead versus processing load. In

Table 4.2, each dataset denotes the number of scans with average 126 DICOMs per scan.

Table 4.2: DICOM datasets size info

Datasets | Total Scan
. Datasets | Total Scan
size (GB) R
size (GB)

104 7.16

2436 159.03
186 10.93

3248 212.04
294 19.05

4060 265.05
407 27.55

4872 318.06
497 34.12

5684 371.07
606 41

6496 424.08
718 47.14

7308 477.09
812 53.01

8120 530.1
1624 106.02

4.3.4 Apache Hadoop/HBase Experimental Setup

The Hadoop/HBase cluster is configured by Hadoop (2.7.1), HBase (1.1.2) and Zookeeper
(3.4.6). HDFS uses default 3 replicas with rack awareness. In our experimental setup, the
Sun grid engine does the balancing and makes sure that the jobs ran as soon as space
was available within the specified node list when processing is executed on a traditional
grid [26]. For Hadoop scenarios, MapReduce is a programming model and an associated
implementation for processing large datasets in the Hadoop ecosystem [4]. YARN is used
for resource (CPU/Memory) allocation and MapReduce job scheduling [106]. We use the
default YARN capacity FIFO (First in First Out) scheduler, which aims at maximizing the
throughput of cluster with capacity guarantees when the cluster is being shared by multiple
tenants.

The software tools to generate row keys from DICOM data were implemented in open

source. The custom region split policy was implemented as a Hadoop extension class. All
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software is made available in open source at NITRC project Hadoop for data collocation
(http://www.nitrc.org/projects/hadoop_2016/). Manual inspection of region stores was used
to verify data collocation under multiple configurations of Hadoop Datanodes to ensure that

the desired data collocation and region splits were occurring.

4.3.4.1 MapReduce Setup for HBase Approach

The MapReduce model should complete two main tasks: data retrieval from HBase
and data processing (DICOM to NIFTI conversion). The Map phase always tries to ensure
that the computation tasks are dispatched where data resides, and such tasks are called
data-local maps. A compromise scenario is when data is not on the local node where the
running map task is located, but at least the data are on the same rack, and those maps are
rack-local maps. In the Reduce phase, the output,< key,value > pairs from Map phase are
to be shuffled/sorted and sent to random cluster nodes.

If data retrieval is done in the Map phase while processing in the Reduce phase, then
the computation and data can be on different nodes. A potential way to execute the process-
ing is remote access (i.e.SSH) where data originally locates and applies processing. SSH
limitation may occur, however, and block further connection, and as a result the processing
cannot be fully completed. If both data retrieval and processing occurs in the Reduce phase,
namely, each reduce task collects all row keys related with one scan volume, then down-
loads and collects DICOM files from HBase according to the keys, and finally executes the
conversion in Reduce phase. In this way, network congestion occurs when the node that
holds the Reduce task may not have all needed DICOM files. Since those DICOM files are
aggregated in a same Region / node owing to proposed custom split policy, so Reduce task
has to retrieve all datasets through the network leading to congestion.

Thus, these approaches break our main goal for data collocation with Hadoop and
HBase with minimum data movement. As a result, for good use of our proposed Hadoop

enhancements with data collocation in the context of the hierarchical key structure, the data
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retrieval and processing occur in the Map phase and the Reduce phase is a no-op for our
application.

In a traditional “word count” example, the input of MapReduce is a HDFS folder. The
input folder is split into several pieces based on the files in the selected folder. Then each
piece starts a map task with < key, value > pair, the input Map Key is file names and input
Map value is file content. However, this approach is not practical in HBase. The HBase re-
gion has a corresponding folder on HDFS, and all data stores/hfiles in this region are placed
in the region. When the region collocates to a Hadoop datanode to achieve data locality, all
data store/hfiles are compacted to a giant file, which means that a traditional MapReduce
like wordcount strategy cannot split an input HBase folder for further processing.

Figure 4.3 shows the modified work-flow. HBase provides a default API for running
HBase-oriented MapReduce. The input of the MapReduce is a HBase-scan, which repre-
sents an interval of consecutive table row key values of a selected column. The HBase-scan
is split based on relevant regions, and the input < key,value > pairs are values about row
keys of a region and the content of the specified column. In short, if the input HBase-scan
occurs across n regions, then only n map tasks are generated. The challenge for traditional
HBase-oriented MapReduce for DICOM is that there are usually more than one datasets of
DICOM files under the same scan in a region. So we refined the above approach to specify
the input of MapReduce to be a selected cohort of scan volumes, and the number of Map
tasks is based on the number of scans.

DICOM with same row-key prefix sticks together in order. Querying all DICOM im-
ages of a scan volumes does not need to iterate all input key values, however, we just need
to define a search range (first/last row-key record of the selected cohort scan). Thus, we use
an additional table to store the range of each scan volumes and do a one-time update once
new images are uploaded to HBase. The Map Phase first retrieves the data from HBase
and stores DICOM files to local node. Once done, it converts the DICOM files to NiFTI

using dcm?2nii as presented in Figure 4.3. For fair comparison between Hadoop methods
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and approach on NAS, additional steps such as uploading the NiFTTI result to HBase are

not launched.

1 Dataset 2 Logical input split 3 Job dispatch
selection
Select For each dataset For each split

—> Find start / stop Key —>

Datasets Initialize a split with Table.scan Assign a Map task
i.e. A datasetis aCT Filled
‘x:['éill.:l.iiii|.1 r['.]H: available
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Map Retrieve Process Generate
—
Task Image Image QOutput

Figure 4.3: Custom HBase oriented MapReduce basing on input selected groups of scan
volumes

4.3.4.2 Guidelines used for Scaling Hadoop / HBase Cluster

Scalability is one of the most important properties for Cloud usage. We test and scale
our clusters for studying intrinsic scalability performance. The following summarizes how

we scaled the Hadoop / HBase cluster step by step.

* For scaling down, the RegionServer should first be gracefully stopped [3], after which
the relationship of data collocation between Datanode and RegionServer no longer
exists. Then major compaction on the affected data from the stopped RegionServer
must be applied to collocate to the rest of the cluster [3]. When all data-locality
is achieved again, decommissioning the Datanode and re-balancing of the cluster is

performed. If decommission order is reversed, redundant replications are to be stored
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into HDFS which exponentially decreases the available size of the Hadoop cluster.

* For scaling up, a new Hadoop Datanode must be commissioned first and then a new
HBase RegionServer is added, followed by a major compaction to achieve data lo-
cality. If there is no Datanode, adding a new RegionServer can collocate to nothing,

which makes reverse commissioning order of no sense.

4.3.5 Results of Data Transfer Latency

First, we evaluate the latency in retrieving imaging data in each of the four scenarios.
Table 4.3 shows average latency for all datasets. For naive Hadoop, we retrieved data to
a random node since the data were not collocated. For custom key / standard split, we
retrieved the data to the machine which contained the first element in the scan. For custom
key / custom split, we retrieved the data to the machine where the data were located entirely.
For Grid Engine NAS, we retrieved the data from the NAS to a local machine serially (i.e.,

with one core in use).

Table 4.3: Latency results in seconds for each of the four test scenarios.

Custom || Custom
Gri.d Naive key/ key/
Approach | Engine HBase Standard | Custom
NAS split split
HBase HBase
Latency(s) 4.76 19.02 3.29 2.56

The naive Hadoop strategy performed markedly worse than the other methods because
it needs to open and close connections with multiple other machines in order to download
the data, and the initialization and setup of each ZooKeeper connection involves overhead.
Using the NAS with a single connection is relatively effective since the data are coming
from one fixed location and there is low overhead in opening and closing connections.

In comparing the default split policy to our proposed policy, we see an improvement in
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average performance. Any increase comes from the cases where scans are split between

machines and thus data needs to be retrieved from other locations on the network.

4.3.6 Data Processing Throughput for DICOM to NiFTI Conversion

Each of the four scenarios executed a DICOM to NiFTI conversion as described in
Section 4.3.3. Figure 4.4-A presents an analysis of throughput. The Grid Engine NAS per-
formed the worst (fewest datasets per minute, longest run times) across all dataset sizes. In
all scenarios, the NAS device saturated at 20 MB/s (approximately 18 datasets per minute)
throughput despite the gigabit network access. This was likely due to numerous small files
that are generated with “classic” DICOM scanning as direct read/write to the NAS device

demonstrated substantively higher performance.
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Figure 4.4: Throughput analysis for each of the test scenarios. (A) presents the number
of datasets processed per minute by each of the scenarios as a function of the number of
datasets selected for processing. (B) shows the fraction of time spent on overhead relative
to the number of datasets.

The naive HBase approach scaled better than the NAS approach with a throughput
ranging from 31 MB/s (with 104 datasets) to 58 MB/s (with 718-812 datasets). The per-

formance leveled off at 52 datasets/minute for a factor of almost three-fold improvement
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over NFS. The custom key / default policy HBase approach performed even better with a
throughput of 34 MB/s (with 104 datasets) to 94 MB/s (with 718-812 datasets). The cus-
tom key / custom policy HBase approach further improved throughput performance from
37 MB/s (with 104 datasets) to 114 MB/s (with 812 datasets).

The naive method’s performance improves flatly because of uncertainty in the place-
ment of data loading. It performs better than processing on the NAS device because not all
data needs to be retrieved from other nodes; some of the files are placed on the same node
with Map computation in most cases. On the other hand, the custom key / custom policy
HBase involves smaller data movement with better performance rather than the custom key
/ default policy HBase, both of whose processing are executed within most data-local map

and a few rack-local map according to YARN allocation.

4.3.6.1 Throughput Upper-bound

Figure 4.4-A illustrates the processing on NAS device, which saturates the Gigabit
network. The HBase approach does not incur as much network congestion because most
map tasks are data-local or rack-local. Thus, we were not able to observe any perceived
network-imposed limitations even until 812 datasets. The upper limit on the throughput
stems from other overheads in the framework, which we address in this chapter. This is
further verified in Section 4.3.7.

Consequently, to identify the upper limit on the throughput of our system, we tested our
system for more number of datasets. Figure 4.5 presents the result of processing scans per
minute with more datasets according to Table 4.2. Our proposed method performs better
than custom key / default policy HBase initially (with 407-4,060 datasets, 34.12-265.05
GB, respectively), and it reaches its throughput upper bound with 124.5 MB/s (with 4,060
datasets). Thereafter, both approaches perform basically the same. The throughput upper
bound for custom key / default policy HBase is 120.5 MB/s (with 4,872 datasets). Since the

network is not a factor, we conclude that to obtain even higher throughput, we will need to
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scale the hardware by adding more cores since the number of cores is the limitation factor.

— 120
= 110 A=
c
= 400 - W
£ v .
~ 90 :
2 80 / g "= I/
© _/
‘(DJ 70 .-
é 60 ==Custom key /custom split HBase
c 50 " -=Custom key / default split HBase
5 /
3 40 :
°o 7
: 30 T T T T T T T T T T T T T T T 1
- X 00 N> A QA Lo L ‘7, VU o> 0 & O
Q" O D QO O O AN N ‘7/ ’\ D" D Q7 LV
N NY Q7 & % 0 A ® \‘bq/ (bq/ b‘ b‘b Q)V /\Q) Q;\

Dataset Size(# Scan Volumes)

Figure 4.5: Throughput analysis for finding upper-bound of scenarios custom key / default
policy HBase and custom key / custom policy HBase

4.3.6.2 Overhead Considerations with the Hadoop Framework

The computing grid had 156 cores available. Therefore, up to 156 jobs could run si-
multaneously in any of the test scenarios. With the three Hadoop scenarios, we have logs
of both the time spent within each job on the compute node (including time to establish
data connection, retrieve the data, and clean up the connection) and the actual wall time.
For each of the Hadoop scenarios, we computed the average actual time spent executing
the processing (including data retrieval), which ranged from 22 s to 35 s. For each of the
data submission tasks, we can identify the minimum number of jobs that would need to run
in serial by dividing the number of scan volumes by the number of cores. The fastest time
that the Hadoop scheduler could run the jobs is the length of the serial queue times the job

length, but in all cases the actual wall time exceeded this value. We define the overhead
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time as the difference between the actual wall time and the theoretical minimum time.

The ratio of overhead time to total time is shown in Figure 4.4-B. Fitting a linear anal-
ysis to each of the three scenarios shows that the naive HBase strategy had a marginal
penalty of 1,003 ms per additional dataset. The custom key / default split policy reduced
the overhead penalty to 547 ms per additional dataset. Finally, the custom key / custom

split policy resulted in 398 ms per additional dataset.

4.3.6.3 Overhead Lower-bound

Similar to Section 4.3.6, the overhead of Hadoop scenarios have not reached the bot-
tom line within 812 datasets. Figure 4.6 shows ratio of overhead in total processing time
with multi-datasets. Both overhead values linearly decrease and then become steady at
33%. Finally, the Custom key / default split policy reaches the lower-bound in 159 ms and
the Custom key / default split policy performs a bit better with 138 ms. When the size of
datasets is small, the time for establishing data connection, retrieving the data, and cleaning
up the connection dominates total time compared with data processing. When the frame-
work reaches the upper limit of cluster cores treating processing capability, the overhead is

balanced.

4.3.7 Evaluating the Scalability of the Framework

We wanted to understand how does the scale of the cluster impact performance. Thus,
we experimented by linearly decreasing the size of the cluster and observe if the perfor-
mance decreased in similar manner. In our experiments, each machine acted as a Hadoop
Datanode and HBase RegionServer for data locality as introduced in Section 4.3.2. The or-
der of decommisioning of Datanode and RegionServer is important when scaling the size of
the cluster. Custom key with default and custom split policy are compared on scaled cluster
(5-10 Hadoop/HBase nodes). Decreasing the size of the cluster can linearly increase the

total time with processing 5,684 datasets, which is presented in the trends of Figure 4.7.
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Figure 4.6: The fraction of time spent on overhead relative to the number of datasets for
finding lower-bound of scenarios custom key / default policy HBase and custom key /
custom policy HBase

Based on the previous discussion, we can conclude that the Hadoop scenario perfor-
mance is not limited by the network bandwidth but by the total available CPU cores and
memory. Thus, scaling up the size of cluster can increase high performance computing
capability for medical imaging processing in an affordable local/cloud-based commodity

grid.

4.4 Conclusions

Billions of magnetic resonance imaging (MRI) and computed tomography (CT) images
on millions of individuals are currently stored in radiology archives [107]. These imaging
data files are estimated to constitute one-third of the global storage demand [108], but are
effectively trapped on storage media. The medical image computing community has heav-

ily invested in algorithms, software, and expertise in technologies that assume that imag-
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ing volumes can be accessed in their entirety as needed (and without substantial penalty).
Despite the promise of big data, traditional MapReduce and distributed machine learning
frameworks (e.g., Apache Spark) are not often considered appropriate for “traditional” /

“simple” parallelization.

4.4.1 Research Summary and Discussions

In this chapter we demonstrate that Apache Hadoop MapReduce can be used in place
of a PBS cluster (e.g., Sun Grid Engine) and can be offered as a cloud-based service. More-
over, with our approach even a naive application of HBase results in improved performance
over NAS using the same computation and network infrastructure.

We present a row key architecture that mirrors the commonly applied Project / Sub-

ject / Session / Scan hierarchy in medical imaging. This row key architecture improves
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throughput by 60% and reduces latency by 577% over the naive approach. The custom
split policy strongly enforces data collocation to further increase throughput by 21% and
reduce latency by 29%. With these innovations, Apache Hadoop and HBase can readily be
deployed as a service using commodity networks to address the needs of high throughput
medical image computing.

Our experiments promote a general framework for medical imaging processing (e.g.,
structured data retrieval, access to locally installed binary executables/system resources,
structured data storage) without comingling idiosyncratic issues related to image process-
ing (e.g., parameter settings for local tissue models, smoothing kernels for denoising, op-
tions for image registration). DICOM2NIFTI is routine first step in processing and often
a bottleneck for quality control on large datasets. Hence, the application demonstrates the
system’s correctness and scalablity across a complex organization of files.

The system was implemented on a small, private data center, which includes the Sun
Grid Engine. As the number of machines increases, NFS becomes nonviable with a single
host, and distributed storage (e.g., GPFS) is commonly used on large clusters with 10+
Gbps networks. The proposed data and computation co-location solution is an alterna-
tive and could scale to well-more CPU-cores than beyond a GPFS solution on the same
underlying network.

Finally, as implied by the trends in Figure-4.4, the benefits of distributing computa-
tion with storage increase with larger datasets. Exploration of the asymptotic performance
limits is of great interest, but beyond the scope of this chapter that illustrates meaningful
gains on problems of widely applicable scale. The optimization of characterization of these
approaches on heterogeneous grid is an area of great possibility. In particular, the Apache
Hadoop YARN scheduler could be further optimized to exploit intrinsic relationships in

medical imaging data.
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4.4.2 Broader Applicability of our Approach

The approach was designed to provide a general framework for medical imaging pro-
cessing. We have just submitted a work that presents theoretical models for estimating
wall-clock time and resource time for the proposed Hadoop/HBase framework to answer
when it will be relevant and non-relevant for medical imaging [105]. The models are
empirically verified and can be applied to other domains if the necessary parameters, i.e.
dataset size, job length, cluster setup, network environment etc, are supplied.

Thus, we envision a number of application domains that may benefit from our work
in this chapter. For example, multimedia processing always involves “large” data set
compared with medical imaging data. For instance, video transcoding has been applied
on Hadoop, each video is about 200 MB, and experiment data sizes are from 1 - 50
GB [109, 110]. Based on video record time and content, we can easily create a hierar-
chy category to name the video, and do the group processing when omitting the reduce
phase. The authors also discussed potential use of Hadoop/HBase for large image and
video processing such as Discrete Fourier Transform (DFT), face detection, and template
matching [111].

Gene data have many different styles with diverse attributes. Genes with similar ex-
pression patterns must be collocated for group analysis since genes that behave similarly
might have a coordinated transcriptional response, possibly inferring a common function or
regulatory elements [112]. Thus, genes data group/hierarchy storage, retrieval and analysis
is applicable by our framework.

Another scenario where our work is applicable includes Satellite data/image processing
on data about earth surface, weather, climate, geographic areas, vegetation, and natural
phenomenon [113], which can be studied according to region-based, day-based, multiple-
day-based, or seasonal-based [114]. As a result, time-oriented hierarchical structure can
help group the data from the satellite for further processing. Similarly, Internet of things

collect data from various facilities like sensors. According to the sensors’ supervision
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area, a component hierarchy-based data collection can be implemented. For instance, high-
speed train fault and repair prediction is applied before a train runs [115]. Analyzing mass
historical data from a group of Electric Multiple Unit (EMU) of a train’s components has
potential to be implemented in our framework.

The work in this chapter presented in this chapter is available in open source at www.

nitrc.org/projects/hadoop_2016.
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Chapter 5

THEORETICAL AND EMPIRICAL COMPARISON OF BIG DATA IMAGE
PROCESSING WITH APACHE HADOOP AND SUN GRID ENGINE

5.1 Problem Overview

As imaging datasets and computing grid sizes grow larger, traditional computing’s sep-
aration of data and computational nodes creates a problem. Moving data from where it is
centrally stored to computational nodes can saturate a network with relatively few active
processes. Under certain conditions, the bottleneck in the computing architecture becomes
the network bandwidth. An inexpensive solution is to locate the data on the computational
nodes to avoid the problem of saturating the network by copying data. This is already im-
plemented by some big data architectures, e.g., Apache Hadoop [19, 116, 117, 33, 118].
Previously, DICOM to NiFTI conversion had been identified as an area where significant
gains in scalability could be realized by using big data frameworks. In chapter 4, we use
HBase that is built upon Hadoop to logically and physically sort the data by indexed row
keys. We propose a novel data allocation policy within HBase to strongly enforce colloca-
tion of hierarchically row key for storing slice-wise DICOM data. In this way, a group-wise
DICOM retrieval occurs locally without involving the network [3]. However, this creates
new questions, e.g.: when does this novel Hadoop/HBase framework perform better than
traditional high performance computing clusters like Sun grid engine (SGE) [26]? In this
case, there are many parameters of concern, such as the cluster size, machine cores, node
memory, distribution of resources, image processing job, etc. [30, 29, 28, 27]. This work
develops theoretical models to characterize the performance of SGE and Hadoop and verify
the models empirically. The theoretical models have two parts. The first is wall-clock time,

which represents the total time as experienced by the user. The second part is resource
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time, which measures elapsed time on each node when a process starts across all nodes.
The models are further verified based on a real lab-based cluster environment focusing on
custom image processing.

This work has been published in SPIE medical imaging 2017 [105] [119].

5.2 Methods

5.2.1 Computation modules

Hadoop and HBase is to enable co-location of data storage and computation while
minimizing data transfer, while SGE separates data storage from computation. Figure 5.1
summarizes both methods” working flows. It is worth mentioning that there are mainly
two kinds of map jobs in Hadoop [4]. A data-local map involves local data within a node.
However, it is notable that if no single node contains all requested data for a single job (due
to a large request or local storage scarity), the minimal necessary data will be retrieved
over the internet. A rack-local or non-local map will retrieve data through other data nodes.
Ideally only data-local maps will occur. In reality, around 5% of maps tend to be rack-local
as evidenced by previous DICOM to NiFTI conversion experiments, which we had trained
on a data / core balanced cluster based on chapter 4. The balanced means data is distributed
equally to every machine, and every machine have the same number of cores. In the rest of

the chapter, we use Hadoop to simplify representing our novel Hadoop/HBase framework.

5.2.2 Theoretical model

We summarize the modeled parameters that affect both wall-clock time and resource

time in Table 5.1.
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Figure 5.1: Hadoop and SGE data retrieval, processing and storage working flow basing
on Multi-atlas CRUISE (MaCRUISE) segmentation [1, 2]. The data in an HBase table is
approximately balanced to each Regionserver. The Regionserver collocates with a Hadoop
Datanode to fully utilize the data collocation and locality [3]. We design our proposed
computation models using only the map phase of Hadoop’s MapReduce [4]. In this phase,
the data is retrieved locally; if the result were moved to reduce phase, more data movement
would occur, because the reduce phase does not ensure process local data. Within the
map phase, all necessary data is retrieved and saved on a local directory and gets furtherly
processed by locally installed binary executables command-line program. After that, the
results of processing are uploaded back to HBase. For SGE, the user submits a batch of
jobs to a submit host, and this host dispatches the job to execution hosts. Each execution
host retrieves the data within a shared NFS and stores the result back to the NFS.

5.2.2.1 Wall-Clock Time

Wall-clock time is what the user sees and experiences. Equation (1) is an overview wall-
clock time model basing on Figure 5.1. It contains three types of I/O: data retrieval, pro-
cessing, storage. For SGE, data is loaded from and stored to network storage, so VsourceR
and VsourceW is related with average bandwidth. All data I/O in execution host occur in
the pre-allocated memory for the job, so VhostR and VhostW can be ignored compared

with bandwidth. For Hadoop, the worst case of input data retrieval from HBase and out-
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put data storage to HBase directly involves local hard disk [3]. When the input data is
processed on a host, it is temporally saved on a place on hard disk, and the output also gen-
erated on a temp place of local drive. Thus, VsourceR, VsourceW, VhostR and VhostW

are all related with the local disk reading/writing speed (VdiskR/VdiskW).

data;, data;, data;, datayy datay,  datagy

Tye = #round - [( )+Tj]+n

VsourceR VhostW Vh()stR VhostW Vh()stR VsourceW
(5.1

Wall-clock time summary Equation 5.2 is a summarized model for wall-clock time.
Tyc network 18 the time for jobs to load data from the network for both SGE and Hadoop

scenarios. Ty, jocqr 18 foOr jobs that load data locally, and it only serves for the Hadoop

scenario.

Tve = max (& - Tye jocal, Tve_network) + N, Hadoop : ¢ = 1;SGE : a =0 (5.2)

Wall-clock time for jobs only loading data locally 7, jocq; Firstly, we make an as-
sumption for the model 7. j,co; that if the Hadoop map task is a data-local map task,
all data retrieval/storing are happened locally, and the minimal necessary data movement
from other nodes over network due to large request are ignored in this model. Therefore,
#Round is determined by data and core allocation of the cluster - i.e., if the cluster is a
core-balanced, the wall-clock time of all tasks is defined by the machine with the most data
as Figure 5.2 illustrates. If the cluster is core-unbalanced, we need to take into considera-
tion the ratio between number of jobs will be dispatched for each machine and the cores on
that machine as in equation 5.3 presented. For the number of jobs per machine, according
to the input dataset’s row key in HBase, we can know the dataset belongs to which region

of HBase table. The place of region stands for the node that the job will be run [3]. Then

Jobi

for each machine, once we find the maximum ratio of - "% ,
1

the short plate machine will

decide the value of #Round.
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Table 5.1: Theoretical model parameter definition

I/Ospeed (VsourceR,
VsourceW, VhostR, VhostW)

I/0O speed is the data read/write rate on source where
data stores and retrieves, and on host where data get
processed. Source for SGE is the Network storage
accessed by NFS. Source for Hadoop is the hard disk
allocated for HBase.

Bandwidth(B, Breal)

B is the bandwidth ofcluster. In our case, it is based
on a gigabit network. Breal is the real bandwidth that
is shared by one job.Once there is a network
congestion, the value of Breal is actually smaller than
or equal to the cluster’s given fixed bandwidth B.

Diskspeed (VdiskR, VdiskW)

Dataread/ write speed of local hard drive.

Input/output dataset Thetotal data size for one job that is
(datain / dataout) downloaded/uploaded while processing.

#core is the number of processorcores in the cluster.
Core #allowed_coreis the maximum number of allowed

(#core, #allowed _core, corei)

concurrent cores can be used without causing
network congestion. We use coreito represent the
number of individual cores on each machine.

Job(#job, jobi)

#job is the total number ofjobs. jobi is the number
of jobs will be dispatched to each machine.

Jobtime per dataset (Tj)

Processingtime per dataset.

Round(#Round)

Thetotal number of round for parallel jobs.

Region(#region, regioni)

Eachpart of a Hbase table is split into several regions

(blocks of data).The totalnumber of regions

# region per Regionserveris approximately balanced [3].
Region_{i} denotes the number of region onspecified machine.

Machine( #machine)

Thenumber of machines (workstations)
of the cluster.

File( #file)

Allfiles that are involved in the whole
process.

Negligibleoverhead (1)

An insignificant overhead that could be
eliminated and not counted

\alpha is a binary parameter. It helps the equationsexplain ’
when do they only valid for Hadoop scenario (o =1)
rather than SGE scenario(o =0.

\beta is a binary parameter. It helps the equationsexplain
when do they only valid for SGE scenario (f=1) rather
than Hadoopscenario ($=0).

Y is an experimental empirical parameter to represent

the ratio of rack-local map task for Hadoop scenario, namely
the data is loaded/stored via network. Similarly, the value of
Y is always 1 for SGE scenario since all data is transferred
through network.
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4 blocks

3 blocks 3 blocks

Machine-1 Machine-2 Machine-3

Figure 5.2: Assume there are 10 jobs are ready to process. Each block represents the input
dataset for each jobs. Three machines are all have same number of cores. If there is no data
transfer, all data processing time is defined by the medium’s processors, if all datasets have
the same processing speed.

#tmachine (1 — ) - job; 2data_in+data_out data;, + 2dat
Twc,localzf%%l;(ne( j/) Job; -(Tj+ ata_in+data_ou n ata;, + aaaut)+n,y:0.05
i=1 core; Viiskr Viiskw
(5.3)

If we need to process all HBase table’s data, we can easily use the distribution of table’s
regions to find the number of local jobs for each machine as equation 5.4 demonstrated.
region;

job; =
Jo0i #region

-#region € [1,#file] (5.4)

Wall-clock time for job containing data network transfer 7,,. .o« AS equation
5.5 presented, all data in SGE is transferred through the network, and jobs are equally

distributed to the free cores of machines, namely jobs do not care where data is. Hence the

value of #Round for SGE is simply decided by | : cjoorbe} Ideally, there is no data transfer in
the Hadoop MapReduce approach. However, as mentioned in section 2.1, there are about
5% rack-local maps in our trained experiment so that it also involves network transfer. And

for Hadoop, disk reading / writing speed should be considered in the time model due to the

data retrieval, processing and storage working flow.
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#job data;, +datay, #machine V" JODi 1

wenetwork = P (#core—‘ ( it Breal ) + [max’_l core_i
[T’] + datain + dataom‘ 4 2datain + dataou, + datain + 2data0m )]’ (55)
Breal Vaiskr Vaiskw

Hadoop: o0 =1,=0,y=0.05;SGE: a=0;=1,y=1

Network saturation release point Under a fixed bandwidth, data traveling through a
network can affect the number of running cores. We made an assumption that the value
of allowed concurrent running cores #allowed_core without arising network congestion
is showed in equation 5.6. If the total number of running cores #core that a cluster can
provide is more than #allowed core, heavier data loading may cause network saturation
and make real bandwidth B,,,; for each job smaller than or equal to the given fixed cluster
bandwidth B. Under network congestion circumstances, job completion time gets delayed
because job has to spend more time waiting for data movement by network I/O. The rela-
tionship of average B,,,; of all jobs and cluster’s B within one round parallel job processing
cycle is introduced in equation 5.7. Moreover, we define the network saturation release
point (NSRP) is at the point when #allowed _core equals to #core. Equation 5.8 summa-
rizes the Breal before and after a NSRP.

B
#allowed _core = ———————— Hadoop : Y= 0.05;SGE : y=1 (5.6)

dataj,+data_out ’

yrany

#core-y- (dataj, +datayy)

Tj + dalai%—;ilalaom + a(Zdata‘,Z,l;ialaom datai{,/;iilmzom ) ’

B=

(5.7
Hadoop : o0 =1,y=0.05;SGE : ¢« =0,y=1
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;

B-(dataj,+datagy) )
)

2data;,+datagy: | data;,+2datagy:
#core-y-(dataj,+datayy—B-Ti—a-B- in ou in
v (dataiy, out J ( VaiskR Vdiskw )

min(B,

#allowed _core < #core
Breal = < (58)

B,

\Hadoop :o—1,y=0.05;SGE : aa =0,y=1

5.2.2.2 Resource Time

Resource time is time elapsed time on each node when a process starts across all nodes
as displayed in equation 5.9. For SGE, the resource time is decided by the sum of all job’s
processing time and data transfer through network. B,., may affect the resource time of
SGE since when network saturation occurs, the core has to wait for data being loaded to the
node. Ideally, there is few data movements for Hadoop/HBase, except the small proportion
for rack-local maps. The resource time usage for Hadoop is determined by total job time,

data retrieval via the network in rack-local map and local disk reading/writing.

Y- (dataj, +data,,) 2data;, +data,,; datai, +2datay,

V,iskR V,iskW

Tresource — [T]+ Ot~( )]7
Hadoop : o0 =1,y=0.05;SGE : x =0,y=1

(5.9)

B real

5.2.3 Experiment Design

Three parallel experiment environments are setup for both Hadoop and SGE. The ex-
periment design does not aim to share the benefit of processing group hierarchical related
imaging data similar in [102]. However, our goal is to verify the behavior of our Hadoop
scenario that maximize the localization of data retrieval/processing/storage for a job. We

make the experiment simpler that compressing 3,310 T1 images to the .gz format. Each
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job compresses only one NiFTI image with 2GB memory available and generate one com-
pressed images. All T1 images for Hadoop scenario are saved into a newly created HBase
table. We estimate achievable empirical average bandwidth as 70 Mb/second; disk read
speed as 100 Mb/second with write speed as 65 Mb/second. The total input size of the
images is 70.7 GB and the processing generates 21.5 GB of compressed files as output.
To explore the impacts of processing time, we manually increase the processing time by
adding a sleep function without any data retrieval to make the job length of the experiment
take an additional 15 105 seconds on a fixed dataset to mimic different job processing
speed. Also, we vary cluster size to assess the scalability of SGE and Hadoop cluster from
6 21 machines. Table 5.2 presents the detail of the experiment setup. Each machine was
used as a Hadoop Datanode and HBase RegionServer for data locality [3]. All machines
were also configured using SGE. There is an additional Machine for both methods serving

as cluster master.

wall—clock

Our goals are to empirically verify 1) if each of the scenarios can match the =7 -="=""

time theoretical models basing on estimated network saturation release point NSRP; 2) test
if the cluster can present a scalable performance, i.e., when SGE has more cores, the satu-
ration length will be longer than seen with less cores with the increasing of data processing
time per job (7}), 3) how balanced/unbalanced data and core allocation can affect both

computing architectures.

5.2.4 Datasets

The experiment uses 3,310 T1 images retrieved from a secure, shared web database
application for MRI data that was gathered from healthy subjects/volunteers and subject-
s/volunteers with ADHD; the Tennessee Twin Study based on psychopathology risk and its
subjects constitute a portion of the neuroimaging sub-study of the Baltimore Longitudinal

Study on Aging.
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Table 5.2: Hadoop v.s. SGE experiment cluster setup with same memory allocation and
fixed datasets.

H
Core adoop Estimated Experiment
allocation data. NSRP type
allocation
209
cores,
( 3 machines regif)ns
with 32 cpres, (20 machines Until
10 machines . . .
. with 2 regions, Tj reaches Tl
with 3 cores, i . .
. 1 machine 85 s. NiFTT image
7 machines ) )
. with 32 cores compression (5s),
with 12 cores, )
. has 3 regions). and manually
1 machine )
. increase the
with 11 cores). ) .
34 processing time
. by
132 cor region .
32 cores celons Until adding a sleep
balanced on (10 machines . .
. . . Tj reaches function (10 s,
11 machines with 3 regions,
) > 54 s 25 s,
(12 cores/machine). 1 machine
with 4 regions ) 40, 555,70,
£ 855, 100s, 115
11 .
72 . respectively)
or regions
cores (5 machines Until Tj reaches
balanced on ) .
. with 2 regions, 29s
6 machines X
. 1 machines
(12 cores/machines). ) .
with 1 regions ).
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5.3 Results

Figure 5.3& 5.4 presents the verification result for Hadoop and SGE on wall clock time.
The wall-clock time usage for SGE is a bit over what would be expected by theoretical
model and could be explained by non-modeled overhead in SGE, such as job dispatching.
When cores increase under the fixed number of jobs and size of datasets, the network sat-
uration persists longer for SGE, and the wall clock time is limited because of data transfer.
The turning points (NSRP) for SGE match the theoretical point when allowed maximum
running cores without causing network saturation is larger than the cluster’s cores, which
can also be verified by result (when dataset processing time is 30 s for SGE 72 cores sce-
nario, 60 s for SGE 132 cores scenario and 90 s for SGE 209 cores). When the cluster has
132 cores, Hadoop’s time becomes gradually longer than SGE; the reason is that data in
HBase is not perfectly distributed. According to the experiment setup in Table 2, the total
processing time is decided by the node which has one more region. Our model can also
predict Hadoop 72 cores scenario since the data / core allocation is approximately balanced.
Hadoop 209 cores result is more complex and does not perfectly match theoretical model.
Neither core nor data allocation for this scenario are balanced. Through the result, we can
see that when most jobs are running on the limited machines, Hadoop randomly dispatches
some jobs to idle cores, thus the final wall-clock time is smaller than theoretical models
suggest. The final number of rack-local maps for Hadoop 209 cores is almost 30%, which
is much larger than our previously observed model parameter (5%) based on a balanced
cluster. On the other hand, SGE balanced the job and data distribution; namely, the average
number of running cores is greater than seen with Hadoop.

For Figure 5.4, because only little data movement was allowed, Hadoop with 72 and
132 cores falls on the theoretical ideal resource usage line much faster than SGE with
the same number of cores. Even on an unbalanced cluster, Hadoop with 209 cores can
also match the theoretical trend. Variation in available network bandwidth is a potential

explanation for the 132 core SGE not matching the theory-derived expected result for the 5-
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Figure 5.3: Wall-clock time performance for Hadoop and SGE with different cores.

45 seconds/dataset range. The result reveals the real average bandwidth Breal is faster than
assumed on 70 Mb/s in section 2.3. That the SGE cluster with more cores was saturated
longer also matches theoretical models, and once the dataset processing time is greater than

NSREP, all three SGE scenarios fall on the Hadoop model.

5.4 Conclusion

The theoretical model indicates a trend of wall-clock time spent for a particular image

processing job. For instance, converting a T1 NiFTT image to MNI using Aladin registration
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Figure 5.4: Resource time performance for Hadoop and SGE with different cores.

takes at least 2 minutes, so about 400 jobs can run concurrently before network saturation
occurs. Thus, SGE cannot saturate the network under the experiments introduced in section
2. The theoretical model also conveys multiple relationships among job numbers, network
environment and cluster setup. In Figure 5.5, the common logarithm ratio (log10) ratio

for wall-clock and resource time performance transition of Hadoop’s divide SGE’s, and the

log10 ratio is get scales in range from [-1,1].

We assume there are 5000 jobs as input. As Figure 5.5 (A) and (B) represents the ratio
when core/data allocation are balanced (the ideal scenario for Hadoop), which are based on
an assumed lab-based cluster (20 machines, 300 cores, gigabit bandwidth (70 Mb/s), hard

drive (Read 100 Mb/s, Write 65 Mb/s), 2GB memory for each jobs). And the ratio reveals
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Figure 5.5: Time ratio of Hadoop v.s. SGE based on core / data balanced and unbalanced
cluster. The balancing can only affect the total job running time. (A) Ratio of total running
time on a data / core balanced cluster. (B) Ratio of resource time either on a core / data
balanced cluster. (C) Ratio of total running time on a proposed 72 cores grid setup (ap-
proximate balanced cluster). (D) Ratio of total running time on a proposed 209 cores grid
setup (core / data unbalanced cluster). The red lines in (C/D) indicate the parameters for
which Hadoop and SGE result in equivalent performance for the specified setup.

SGE can perform similarly with Hadoop when the dataset size is relative small (200 MB)
but running time is long, at around 1000 s. However, Hadoop performs much better, at least
two-fold, when dataset size reaches over 500 MB and the processing time is around 1000
s either wall-clock time or resource time. We can also appreciate that when job processing
time is very long (i.e., over 100 minutes), the resource time of both approaches are close,
but Hadoop can still win on the time data transfer takes.

On a data / core unbalanced cluster, the wall-clock time for Hadoop is affected. Figure

5.5(C) and (D) presume the same data allocation proportion as the Hadoop with 72 cores
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and 209 cores scenario in Table 5.2. The ratio value smaller than ’1’ can be treated as a
break down time for SGE as the red line indicated, and the user should try to move from
their ’traditional’ grid framework to a Hadoop ’big data’ framework. The smaller cluster
is more balanced so the performance is better than in the Hadoop 209 scenario. This is
because for bigger clusters, data is approximately balanced, but here there is one machine
that contains 3 cores, which is much smaller than the average. So here the wall-clock time
section distribution is different when compared with Figure 5.5(A). However, based on
our experiment, Hadoop can randomly send some waiting jobs to other free cores (Figure
5.3(A) Hadoop 209 cores scenario), so the performance result should be considered a worst

case. Additional investigation into factors with imbalanced clusters is warranted.

84



Chapter 6

A DATA COLOCATION GRID FRAMEWORK FOR BIG DATA MEDICAL IMAGE
PROCESSING BACKEND HEURISTIC DESIGN

6.1 Problem Overview

When processing large medical imaging studies, adopting high performance grid com-
puting resources rapidly becomes rapidly important. An inexpensive solution is to locate
the data on the computational nodes to avoid the problem of saturating the network by
copying data. For example, the Apache Hadoop Ecosystem can hold the promprovides an
extensive suite of tools to co-locate storage and computation [19, 3, 4]. Hadoop is still
not widely being integrated into medical image processing (MIP), although it has shown
great success in online commerce [120, 121, 122], social media [123, 124, 125], and
video streaming [125, 126, 127]. Several recent medical image processing (MIP) Current
approaches in MIPhave aimed to take advantage of this big data architecture for specific us-
age use cases with like redesign general machine learning using MapReduce framework or
understand use distributed systems [33, 118, 117]. We recently presented a medical image
processing-as-a-service” grid framework, Hadoop & HBase for Medical Image Processing
(HadoopBase-MIP), which integrates - HadoopBase-MIP - offers promise in utilizing the
Hadoop and HBase (a database built upon Hadoop) for data colocation by moving com-
putation close to medical image storage as present in chapter 4 & 5. This system is a
general framework for MIP (e.g., structured data retrieval, access to locally installed binary
executables/system resources, structured data storage) without commingling idiosyncratic
issues related to MIP. However, the system has not yet proved proven ease to use, and faces

several key challenges for wide deployment as illustrated in Figure 6.1. Specifically,

* Heterogeneous hardware: cluster - Hadoop/HBase uses an approximately balanced
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data allocation strategy by default. In [18], we observe that the throughput of a cluster
is low especially when it combines with different types and / or different number of

cores per machine. Thus, performance aware data collocation models are needed.

» Limit of Large dataset analysis : When we do large dataset summary statistical anal-
ysisanalyses are requested, huge volumes of data can easily saturate memory of one
machine. Then Thus, one needs to we need to split whole a dataset into small chunks.
M, most chunks would be sent to where their data is located and run in parallel on
different machines, but few chunks would need to move data via network [cite data
locality]. This, this process is also called Map phase in MapReduce computation
paradigm [4, 3]. Once all intermediate results of all chunks are collected on one
machine, they are further processed and final result is generated, this is depicted as
Reduce phase [4, 3]. However, as presented in Figure 6.1(B), integrated processing
of large datasets introduces dependencies with the number of jobs (which is based on

chunk size) and a way to find a optimize chunking size is needs to be discovereded.

* Rapid NoSQL query: HBase is a column based NoSQL database, namely all data
that are in same column are stored together and furtherly saved in Hadoop [31, 3].
Each row of table is a multi-record that are based on total number of columns are
defined with a unique name as rowkey. If we store all medical images with other data
like index, age and sex into same column, then when we do perform a query, linear
search with image traversal is required, which rapidly decreases the speed of search.
On the other hand, for HBase MapReduce, each single map needs to set a start/stop
row and a typical column. When doing subset datasets analysis, data is scattered
in HBase, and not all record between start/ stop row are needed. It is important to
structure data in a manner to How to fast skip unnecessary row and image traversal

for efficiency processing is challenging.

To resolve these challenges, in this chapter, we present a novel well-designed interface
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application program interface (API) API that is developed based on built in Hadoop and
HBase. By exploiting the backend interface of HadoopBase-MIP, we We make following
contributions: 1) offer better data allocation in a heterogeneous cluster for faster processing
through an off-line load balancer; 2) describe an optimal criteriona to find the splitting
chunk size of large dataset; 3) do enable fast data query and boot up the of MapReduce

performance by using a HBase table scheme.

Use case #1: Use case #2: Use case #3:

Heterogenous cluster Large dataset Rapid NoSQL Query
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Figure 6.1: Use cases for three main challenges. (A) If a traditional cluster model is used,
average throughput would be seen (red dash), which would leave some machines starved
(e.g. A, B), while others overloaded (e.g. C, D and E). It Hence, a traditional approach will
degrade the overall execution time due to those overloaded/starved cores. (B) The time to
run a large dataset depends on total number of jobs and the longest map job to take. The
total number of jobs should be neither too large or too small. It is limited clusters total
cores and memory. (C) HBase is not designed default for storing image data since given
variability of size and the volume of medical imaging studies. If information like age / sex
/ genetics are stored in same column with image data, when do query, image traversal is
unavoidable, which degrades the search efficiency.

This work has been published in SPIE medical imaging 2018 [128].
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6.2 Methods

6.2.1 HadoopBase-MIP system interface

Our interface is mainly based on HBase built in API. Before introducing our system
backend, here is a quick introduction of HBase databases data storage model and ab-
stract architecture. A simplified hierarchical data storage model of HBase is: Table— >
Column family— > Columnquali fier— > data. An HBase table can contain many columns,
and a column is usually denoted as column family. We can define many column qualifiers
to specify a column family. Data is stored within qualifiers. EAnd each row of the ta-
ble has a unique rowkey. To retrieve or delete a set of data, users need to specify (table
name, rowkey, column family: column qualifer). Alternatively, one can , or retrievinge a
series sequences of values by assigning a table rowkey range with relative column infor-
mationfamily and qualifier. As the aspect of architecture, aA table is split into different
units named as regionsregions. - lif any size of regions exceeds a pre-set threshold, (Of
course, there is initially one region for a table), then the regions would be split into two
new regions. This split process is activated through region split policy. And regions will be
dispatched to different machines of cluster for balancing issue. Now we can see how our
system backend interface works.

Figure 6.2 presents our system interface overview and how they may help tackle three
challenges in section 6.1, which includes Upload, Retrieve, Load Balancer, MapReduce
Template, Delete and Monitor. All operations are command-line based software tool with

different parameters, and following enumerate list presents more details:

1. Upload:

¢ Table name: will create a table if it does not exist.

* A text file path for a file contains groups of < column family,qualifier > - to

create / alter a table or change table scheme.

88



* A text file path for a file contains all images tuple of < system filepath, fileuniquename,colums

File unique name will be used as rowkey.

* Overwrite Boolean value. It helps update images or avoid uploading duplicate

data.
* Region split policy : default policy, hierarchical policy [3]
* Pre-split : Boolean value. It is only valid when creating a new table.

* A text file path for a file contains all rowkeys for pre-split a table.

2. Retrieve:

* Table name
* Rowkey: set this value if retrieval is image based.

* Start rowKey and / or stop row key: set them for a retrieval range, if both keys

are empty, then retrieval is whole table column based.
e Column family.
* Column qualifier.
* A text file path for a file contains all data retrieval destination path.

* A text file path for a file contains all row keys need to skip to retrieve.

3. Delete:

» All options are same with Retrieve except a text file path for a file contains all

data retrieval destination path.

4. Monitor:

* Hadoop built in job monitoring tool.

5. MapReduce Template:
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» Table name: two names, one for source table to read data, another one for target

table to write back result.

* Column family: three values, one for data query (will introduce more in next

subsection), one for image data retrieval, the last one for target table.
e Column qualifier: three correspondence value with column family.

* A text file path for a file contains all start / stop row key pair, each pair is input

for a map job.

* A text file path for a file contains all row keys need to skip to retrieve.

* Analysis level three options, image-based 5, dataset based 6 and large dataset
based (will introduce more in next subsection).

6. Load Balancer:

* HBase default built in balancer is to balance the total number of region on
each server. Our proposed load balancer is offline greedy allocation. First it
finds all regions and images on each serve; second, moving images based on
region; finally, the data allocation ratio of each machine meets the ratio of (total
number of CPU * Million instructions per seconds (MIPS)) per nodes. MIPS is

calculated by Linux perf and is varied based on different types of CPU.
* Table name.
e Column family.

* Column qualifier.

6.2.2 MapReduce model design and implementation for large datasets

As an exemplar use case, we consider processing of T1-weigthed brain MRI brain im-
ages are different inand construction of population specific averaged brain image. the con-

text of cortical folding, the thickness, volume area across all age-specific range. Creating
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Figure 6.2: HadoopBase-MIP system interface overview. Except cluster monitoring, all
operations are extended.

a specific template for a group of studies can help improve finding cortical folding pat-
tern and reduce misclassification of brain tissue [129, 130, 131], we present a MapReduce
computation model in HadoopBase-MIP to average a large dataset that is logically sticked
together.

Figure 6.3 shows a full model pipeline to process a large dataset using MapReduce
analysis. We first present a theoretical model to modelfor the pipeline on considering two
important factors that users care the most: wall clock time (what the user sees anddirectly
experiences) and resource time (time elapsed time on each node when a process starts
across all nodes). We summarize the parameters and helper functions that affect both wall-
clock time and resource time theoretical model for finding optimizing map task chunk size

in and following enumerate list.

1. #img :

* The total number of images that are needed to be averaged.

2. #job :

* The total number of map jobs that are split from large datasets.

3.1n:
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10.

11.

* The total number of images per map task, which is the chunk size. It helps
find the total number of map jobs: #job = #inﬂ' This is the variable that we
are trying to find an optimizing value. We assume there is no local weighted

concern in split map tasks, it means all map tasks share the same value of 7).

SizeBig :
* Maximum input file size of datasets, we use it for worst case scenario estima-
tion..
. SizeSmall :
* Minimum input file size of datasets, we use it for upper and lower bound of 7.
SizeGen :
* Maximum output file size that is generated by image averaging software.
Bandwidth :
* The bandwidth of cluster.
VdisKR,VdisKW :
* Data read / write speed of local hard drive.
. #region :
* The total number of regions of a table in cluster.
mem :
* The total memory of one machine. We presume all machines have same amount
of memory.
core :
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12.

13.

14.

15.

16.

¢ The total number of CPU cores of the cluster.

When map tasks generate intermediate results, part of them are stored in network
buffer, and others are flushed into local temporarily and transfer to reduce tasks shuf-
fle phase later. is unbuffered ratio of map tasks results due to limit of heap size and

cannot be held in memory.

a
* When map tasks generate intermediate results, part of them are stored in net-
work buffer, and others are flushed into local temporarily and transfer to reduce
tasks shuffle phase later. « is unbuffered ratio of map tasks results due to limit
of heap size and cannot be held in memory.
B:

* B is an experimental empirical parameter to represent the ratio of rack-local
map task for Hadoop scenario, namely the data is loaded/stored via network.

We empirically get its value with 0.9.
diskR(x),diskW (x) :

¢ x is the size of a file. The function is used to calculate the time to read / write a

file from / to local disc, namely diskR(x) = x/V diskR,diskW (x) = x/V diskW ;
bdx(x) :

¢ x is the size of a file. The function is used to calculate the time to transfer

through network, namely diskR(x) = x/Bandwidth;
avgANTS(n) :

* x is the size of a file. We use ANTS Averagelmages [9] to empirically test

average summary statistics analysis. We also do several profiling experiments
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to model this image processing. However, it is hard to conclude a concrete
model for ANTS average to match all profiling results. We can prove the total
number of file sizes that are needed to be averaged grows much slower than
chunk size itself. And the best solution is doing all average on 1 CPU. We

found a worse case of avgANTS(1n) = 0.4-1 + 5 to illustrate this process.

Map phase
1 : Shuffle phase
: 1 i
Query all - 1 :
available keys : 1 o
H I
: Map Task : Wait, shuffle and sort all Reduce phase
: For each key, it key in all|| intermediate result
; - from Mapper, and send
¥
keys, then retrieve : 1o reduce task Reduce Task
relevant image and '

Split all temporally store on local |f ; Read data from
keys into disc —] local disc and
same chunk . average all images

. J H v from mappers
Jv Average all images ' - - -
in one chunk Retrieve intermediate
o : i value and temporally
Initialize \ \l ' store on local disc

start/stop key : E
for each : a Send average image '
mapper : L to reduce task :
: - '
H '

Figure 6.3: MapReduce model implementation for constructing population specific brain
MRI templatesAverage images flow chart.

In Map phase, 1 is lower limited by total number of CPU cores since we aim to use
one round to execute all map tasks. The upper bound is a confined by machines memory.

In Rreduce phase, 11 depends on and further limited by machines memory. In summary,

#img-SizeSmall ) #img
mem ? core

the range of valid ) is defined 1 € [max( ]. Equaltion 6.1 is an overview

wall-clock time model.

WTwall = Wit + WTmap + WTshuffle + WTreduce + WTend (61)

where WT,,;;, WT,,, are constant, which denote MapReduce job initialization and con-
clusion time. WT,,, is wall time in Mmap phase that is presented in equation 6.2. It
depends on the longest map task, namely the worst case a Mmap phase is decided by

task(s) contain all large size of images.
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WTmap = WTmapin + WTmapProcess (6 2)

= diskR(SizeBig dotn) + btw(SizeBig - N ) + diskW (SizeBig - 1) + avgANT S(n)

The worst-case time for shuffle phase depends on all unbuffered data that needs to be
retrieved from local disc, transfer through network and then transferred through band as
shown in equation 6.3. WT,.4,c. 1s wall time in Reduce phase as equation 6.4 demon-

strated.

#i #i
W s fie = diskR(SizeGen) + bdw (o - L%j -SizeGen) +diskW(L$J -SizeGen)
(6.3)

WTreduce = WTreduceProcess + WTreduceOut

. 6.4)
# (
=avgANTS(| 171;1g

|) + diskR(SizeGen) + diskW (SizeGen)

Equation 6.5 displays resource time, which sums up all the time from map, shuffle and

reduce Reduce phase as Figure 6.3 shows.

RT = RTmap + RTshuffle + RTyeduce (6.5)

Similar with wall time, the worst-case resource time involve all big size image retrieval
either through local disc or network, and it sums up all map tasks images average time

presented in equation 6.6.

RTmap = RTmapin + RTmapProcess
= diskR(#img - SizeBig) + diskW (#imgSizeBig) (6.6)

+btw(p - L%J -1 - SizeBig) + L%J -avgANTS(n)
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4
RTspyff1e = O - L%J - [diskW (sizeGen) + diskR(SizeGen)]

#im #im ©.7)
+bdw( LTg | - SizeGen) + diskW ( LTg | - SizeGen)

RThuzr1e 1s the resource shuffle time shown in equation (7), which includes all un-

buffered data loading via local disc, all data transfer through network and all data writing

to temporarily place to local disc in the end of shuffle. R7,.4,c. is wall time in Rreduce

phase as equation 6.8 demonstrated that is identical with W T,,;,c.-

RT,.4uce = RTreduceProcess + RT,oq,ce0ut

. 6.8)
# (

= avgANTS(| ’Zlg

|) + diskR(SizeGen) + diskW (SizeGen)

6.2.3 NoSQL fast query new table design scheme

In this subsection, we will discuss how to create age-specific template in HadoopBase-
MIP. As potential solution that is presented in Figure 6.1(C) potential solution discussed,
we need to separate image data with relative indexes (i.e., age, sex, demographics, genetics
etc.) into different column familiesy. It is to be noted that if they are in same column family
using different column qualifiers, the query can still not avoid do image traversal. If there
are no available indexes, but users only has have image files with unique file path/nameare
needed to store and process, in this case, we recommend users using file path/name as
table rowkeys, and same rowkey corresponds to one column family that stores one column
familyimage data for image byte array data, and another column family for storing file size
as index. Each file size record occupies only several bytes and can help hierarchical region
split policy decides the right split point [3].

This table scheme is simple but useful especially for medical imaging data query owe
to avoid image traversal. Here are several benefits for HadoopBase-MIP interface using
our proposed table scheme. First, the separate index column family can help speed up

checking if file exists when uploading, retrieving and deleting data. Second, it can also
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fast collectlocate group or individual data and skip unnecessary record without traversing
image data. Third, summary statistical analysis based on subset of data, i.e., average all
females brain within 20-40 years old, and we have a table that column 1 storesall image
data in one column, column 2 and stores indexes in a separate column. Both columns are in
different column family. When firing lauching map tasks, our target is column 2 so that we
can quickly filter which rowkeys are needed. Column 1 shares exactly same rowkey with

Column 2, thus we can do data retrieval within the map and keep the data locality .

6.2.4 Experiment Design

Experiment cluster setups for both Hadoop and SGE are presented in Figure 6.4. Each
job takes one CPU core with 4 GB memory available. We estimate achievable empirical
average bandwidth as 70 Mb/second; disk read speed as 100 Mb/second with write speed
as 65 Mb/second. The metrics to verify our proposed methods are wWall clock time and

rResource time. SGE is empirically used as a baseline comparison.

6.2.4.1 Datasets

The experiment uses 5,153 T1 images retrieved from normal healthy subjectsgathered

from [132].

6.2.4.2 Use case 1: Heterogenous cluster

In chapter 4, we found on a heterogonous cluster, if data is balanced allocated on each
machines, that Hadoop would spent more wall time than SGE if data is balanced allocated
on heterogeneous machines. A new HadoopBase-MIP load balancer result is shown at
Table 2 based on number and the performance of the CPU per machine. Our goal is to
empirically verify how load balancer can improve the performance of Hadoop in a hetero-
geneous cluster. We make use the same experimental design strategy as chapter 4, which

is compressing 5,153 T1 images to the .gz format. Each job compresses only one NiFTI
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image with 2GB memory available and generate one compressed image. The total input
size of the images is 77.4 GB and the processing generates 45.7 GB of compressed files
as output. To explore the impacts of processing time, we manually artificially increase the
processing time by adding a sleep function without any data retrieval to make the job length
of the experiment take an additional 15 105 seconds (10s,25s,405s,555s,70s,85s, 100s,
115 s respectively) on a fixed dataset to mimic different job processing speedrequirements.
Each machine was used as a Hadoop Datanode and HBase RegionServer for data locality.
All machines were also configured using SGE. There is aAn additional machine for both

methods approaches serving serves as a cluster master.

6.2.4.3 Use case 2: Large dataset analysis

We first used NiftyReg [133] to do perform rigid affine transformation on all images
to register to MNI-305space template [134, 135]. Our goal is to average all 5,153 datasets
using ANTS Averagelmages tool. We eEmpirically, the got biggestlargest file s size in the
dataset is ,; the smallest file size is , and average generated files size are is MB. Based on
clusters configuration, we get assessed the range of map chunk size of images as , so we
manually increase the chunk size by 5 from 30, and empirically test both Hadoop and SGE

scenarios.

6.2.4.4 Use case 3: Rapid NoSQL query

This use case aims to verify the benefit of using proposed table design scheme. Two
major population based study features that we are concerned to do average are: age and sex.
There are 10 experiments whose setup can be seen in Table 6.1. Two Hadoop approaches
are deigned and compared. A nave table scheme is to store data of all images, index,
sex and age information in a same column family. Our proposed one is to save image
data in a separate column family, while the reset index and population info is in another

column family. Two Hadoop scenarios are compared with baseline SGE performance. We
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Table 6.1: Hadoop v.s. SGE experiment cluster setup with same memory allocation and
fixed datasets.

Experiment | Age(years) | Female | Male
1 2370
2 All 2120
3 1157
4 4-20 698
5 651
6 20-40 643
7 230
g 40-60 530
9 332
10 ~60 494

empirically set 50 images per chunk for one map task.
Hadoop Data allocation Hadoop Data allocation

1
1
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Figure 6.4: Experiment cluster setup and Data allocation for HadoopBase-MIP. Two2 dif-
ferent cores systems (eight machines with 12 slower cores and four machines with 32 fast
cores) are used in cluster . 8 machines with slower cores, each machine contains 12 CPU.
4 machines with fast cores, and each machine has 32 CPU. Before applying the load bal-
ancer, each machine contains similar amount of image data. After using the load balancer,
the data allocations meets match the ratio #CPU*MIPS.

6.3 Results

6.3.0.1 Use case 1: HeterogenousHeterogeneous cluster

Figure 6.5 presents the verification on both theatrical modeled and empirical result for
Hadoop (before / after using load balancer) and SGE. The wall-clock time performance

in Figure 6.5(A) for SGE is initially first stuck as one linelimited because of network
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saturation. As the processing time of a single job increasesd, SGE performance is also
linearly increasesd when with lessened network saturation impact is less. For both Hadoop
scenarios, their initial overhead is very high when job processing time is small. We can
see that as the job processing time increases, Hadoop without load balancing performs
worse than SGE, while Hadoop with load balancer performs better than SGE with similar
trend. Figure 6.5(B) shows an aggressive upper bound of theoretical upper bound for SGE;
both Hadoop scenarios spend less resource time than SGE, and Hadoop with load balancer
performs a little bit better when processing time is less than 40s.

Wall clock time Hadoop vs. SGE 224 core 12000 Resource time Hadoop vs. SGE 224 core
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SGE - theo model + SGE - theo model

+ SGE - data + SGE - dala

Balance allocation - model
Balance allocation - data
Ratio allocation - model

8

g
g

s
=]
+

8

Wall clock time | minute )
Resource time ( minute )
g &
-

8

(A)”u 20 _ a0 e e 10 12 0 ( B ) okt

TP 00 S/ datasst 0 40 60 80 100 120
] Processing time / dataset | second ) Tj Processing time [ dataset ( second )

Figure 6.5: (A) Wall-clock time performance for Hadoop and SGE with different data allo-
cation; (B) Resource time performance for Hadoop and SGE with different data allocation

6.3.0.2 Large datasets analysis

Figure 6.6 presents the validation of Hadoop and SGE on averaging 5,153 T1 images.
SGE spends 5-fold of wall time and up to 20-fold of resource time more than Hadoop that
are presented at Figure 6.6 (A, B). Figure 6.6 (C, D) shows the empirical wall time model
has same trend with its theoretical model., which we can see wWhen the map task chunk
size 1s 50-60, we can receive observe an optimizing optimized wall time. The Hadoop
resource theoretical model shows an aggressive upper bound, and reveals when chunk size
increases to more than 80, resource time are similar. And The empirical Hadoop real result

shows when chunk size more than 80, the resource time becomes similar. Tthe qualitative
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difference between 5,153 images average and MNI-305 space is shown in Figure 6.7.
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Figure 6.6: (A) Wall-clock time performance for Hadoop and SGE on large datasets anal-
ysis;(B) Resource time performance for Hadoop and SGE on large datasets analysis; (C)
Wall-clock time performance for Hadoop and theoretical model; (D) Resource time perfor-
mance for Hadoop and theoretical model

6.3.0.3 : Rapid NoSQL query

When averaging large subsets like all female and all males T1 images, SGE spends
about 3-fold wall time and 6-fold resource time more than proposed Hadoop time. As
the size of subsets decreases, we can see that SGEs wall / resource time also decreases,
and proposed Hadoop table scheme design also generates similar decreasing trend, and use
less wall / resource time than SGE. However, nave table design scheme leads to opposite
trend, for example, averaging all males T1 images within 40-60 years old cost nave Hadoop

scenario namely when subsets size is small, it spends 6.5- fold wall time more than SGE

101



and about 9- fold more than proposed Hadoop, and 7- fold resource time more than SGE

with 12 fold12-fold more than proposed Hadoop.

< 20 years old 20 - 40 years old 40 - 60 years old

All 5,153 images

Figure 6.7: Qualitative results for summary statistics analysis on large datasets and age /
sex-specific image averaging analysis.

Wall time . Resource time
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hadoop  hadoop

Minute
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Figure 6.8: Proposed table scheme design vs. nave scheme vs. SGE

6.4 Conclusion

The chapter presents a HadoopBase-MIP backend design which is a data Colocation
Grid Framework for Big Data MIP. We use three use cases to validate the performance

and the usage of the system interface, all cases are compared with SGE. For heterogamous
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cluster case, SGEs trend reveals that its performance will be degraded by network satura-
tion. When network saturations impact decreases, Hadoop without load balancer performs
worse than SGE due to low utilization of cluster CPU resource. Hadoop with load perfor-
mance can help reduce this resource overload / starvation issue. The reason of both Hadoop
scenarios wall time is high when job processing time is very small reveals when data pro-
cessing type is high read / write type, the write performance would make congestion of the
whole process.

For large dataset analysis case, image averaging analysis is a read intensive with short
computation processing. SGEs performance is limited due to data movement via network.
Combining theoretical wall time with resource time model for Hadoop summary statistic,
we can conclude 50-60 optimal map task chunk as map task chunk size is optimizing. For
rapid NoSQL query case, SGEs performance is correlated with the subsets size that needs
to be averaged, since there is no query efficiency issue, all data has to be retrieved from
network storage to cluster computation node. For naive Hadoop table scheme, it costs
more time than proposed Hadoop and SGE especially when subsets size is relatively small.
The reason for this is this scheme would force query traverse image data that is not needed
which takes more time than proposed Hadoop scheme that skip small index without image
traversal. In summary, HadoopBase-MIP system provides a complete backend interface

developed upon built in Hadoop and HBase API.
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Chapter 7

TECHNOLOGY ENABLERS FOR CLOUD-BASED MULTI-LEVEL ANALYSIS
APPLICATIONS IN MEDICAL IMAGE PROCESSING

7.1 Problem Overview

The research presented in this paper addresses the execution time variability incurred by
big data, multi-stage analysis applications found in medical image processing and reduces
the cost of hosting these applications in the cloud. A typical medical image processing
job involves multiple stages of analysis activities as shown in Figure 7.1. For instance, to
conduct a group image analysis, the voxels' of raw individual images are processed and
quantified in the first stage to provide a filtered matrix or a mathematical value. When
all the first stage jobs are completed, the collected quantified data for the group are fed
to a second stage or subsequent higher stages to perform a group-based statistical analy-
sis. The processing of such multi-level analysis jobs is, however, complicated by the fact
that it often must deal with heterogeneous magnetic resonance imaging (MRI) modali-
ties acquired by different protocols, e.g., Diffusion weighted imaging (DWI), T1-weighted
(T1W) or T2-weighted (T2W). Hence, non-unified image resolution and intensity may lead
to different processing speeds even in the same medical image processing pipeline or al-
gorithm [136, 137]. To our knowledge, there has been no study to date to address these
performance issues. Moreover, the medical image processing community has traditionally
utilized expensive high performance clusters for their multi-stage analysis, which when
combined with the performance issues makes executing these jobs prohibitively expensive.

Thus, a key issue in medical image processing is dealing with the significant variance in

'A medical image is usually collected as a series of two-dimensional image slices, and combined or
stacked to get a three-dimensional image. The intensity value of the image, represented in the units of
“voxel,” is stored either as a three-dimensional cube or a three-dimensional matrix.
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the processing times incurred by such multi-stage analysis.

Pre-processing Registration

2nd level

Example
1

dtiQA

Segmentation

=i

sanaul¥220anananas

Figure 7.1: A classical medical image processing multi-level analysis Tract-Based Spatial
Statistics and Gray Matter Surface-based Spatial statistics. Our target pipeline for this
work is the first example dtiQA & TBSS pipeline. The purple box indicates our second
contribution focus area.

To support our claim, we collected anonymous trace statistics logs of completed jobs
from the XNAT system [138] for 4 years worth of multi-stage analysis without accessing
any Protected Health Information (PHI) or imaging data. These jobs were executed in
Vanderbilt’s high performance computing cluster called Advanced Computing Center for
Research and Education (ACCRE), which is representative of modern high performance
clusters. The ACCRE cluster is deployed with a 10 Gigabit Ethernet on 12 racks with IBMs
General Parallel Filesystem (GPFS). Each rack has 1 Gigabit Ethernet for its computation
nodes. The total CPU cores is over 6,000. The anonymized statistics logs involved a total
of 96,103 jobs whose completion times ranged from 15 seconds to 9 days.

Although these jobs were single image-based with first stage analysis (e.g., performing
multi-atlas segmentation or surface mapping) and the output image(s) varied based on the
type of processing, the data illustrates the compute-intensive nature and execution time
variability of the first stage. One key reason for the long execution times was that within the
ACCRE cluster, the input data for the jobs are transferred from GPFS through a high speed
switch to the available cores of each computation node, and the resulting output is returned
to GPFS over high speed networks. However, the computation nodes within the same

rack share the low-speed network bandwidth, which often leads to network saturation and
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impacts I/O intensive jobs. Thus, researchers and practitioners who are routinely involved
in the execution of such pipelines will incur a high price for using these clusters besides
paying the high maintenance fees for using GPFS and the high speed networks.

Our study also revealed a critical insight about the multi-stage analysis pipeline. We
observed that in comparison to the first stage processing times, the second and subsequent
stages are usually substantially faster. The first stage analysis deals with much more data
cleaning and preprocessing in preparation for cross subject analysis. It is thus very com-
mon for the first stage to take on the order of days to even months to process a group of
images. Existing platforms to execute the pipeline force it to execute the stages in a serial
order, which means that the second and subsequent stages of analysis cannot start executing
until the first stage is entirely complete. Consequently, any outliers or anomalies observed
in the later stages of the analysis pipeline, which are often a result of anomalies in the
first stage (e.g., due to wrong parameter, incorrect pipeline design, mistakes in input data
collection) are detected only very late in the processing. This wastes significant amount
of resources, time and money, and requires re-executing the first stage after correcting the
errors, which again requires very long running times. Unfortunately, there is no existing
capability that can detect outliers in the first stage in a timely manner such that early detec-
tion and corrective action can be taken without unduly wasting resources and time. Thus, a
key requirement to deal with is to identify errors as early as possible and to promote con-
current execution of the pipeline thereby speeding up execution time and saving the cost of
executing these jobs.

To address these challenges, we propose a concurrently executing medical image pro-
cessing pipeline with early error/anomaly detection via periodic monitoring of intermediate
results in the first stage. Our approach is based on the well-known Apache Hadoop ecosys-
tem [19], which has been shown to be effective in other application domains (e.g., fraud
detection, web search). Since the Hadoop ecosystem integrates storage with the compu-

tation node, medical image processing jobs can be completed faster with minimal data
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transfer. Moreover, the Hadoop ecosystem is amenable to be hosted in the cloud and does
not require expensive systems and high maintenance fees for GPFS. By using the Hadoop
ecosystem, we monitor intermediate results of the compute-intensive first stage and catch
anomalies early on before passing the intermediate processed data to the next stage, thus
enabling concurrent processing of the pipeline stages.

Despite this promise, however, before deploying medical image processing jobs in the
cloud and using our new approach, researchers and practitioners will require some way to
estimate the potential performance gains (and lowering of cost) in using our cloud-based
solution. Since such an estimate cannot be obtained by actually executing the jobs on the
cluster or cloud resources, we also present a simulation framework that can estimate the
performance requirements of medical image processing jobs under different large-scale
cloud resource allocations and running mixed types of workloads.

The proposed innovations are empirically evaluated in a private, research cloud com-
prising a Gigabit network and 188 CPU cores. For larger scalability estimation, we use
the historical trace data and test it on the simulation engine. To evaluate the concurrent
pipeline with early error detection methodology, we use a real-world, two-stage medical
image processing job. The evaluation results show that our proposed framework requires
76.75% less wall time and 29.22% less resource time compared to the traditional approach
that lacks the quality assurance mechanism.

The rest of the paper is organized as follows: Section 7.2 describes the contributions that
realizes the medical image processing-as-a-service; Section 7.3 describes our evaluation
approach and presents experimental results; and finally Section 7.4 presents concluding
remarks alluding to ongoing and future work, and discusses the broader applicability of
our approach.

Ths work has been accepted at 2018 IEEE International Conference on BigData.
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7.2 Supporting Medical Image Processing Multi-level Analysis in the Cloud

In this section we provide details on our technical contributions. First, we shed more
light on the challenges faced in handling medical image processing (MIP) jobs using two

case studies. We then describe our contributions.

7.2.1 Eliciting Challenges using Two Case Studies

Figure 7.1 depicts two examples of multi-stage analysis jobs in medical image process-
ing. The first example pertains to the analysis for understanding the brain structure (white
matter skeleton [139]) differences within a group of people. In this case, the first-stage
pipeline is dtiQA, which determines how usable the diffusion data is and where a diffusion
of water molecules is used to generate contrast in MRI images. The input is a group of raw
brain DWI images that are collected by MRI scanners. The first-stage pre-processing con-
ducts brain extraction of images (i.e., removing head skull and other structures except the
human brain), and then performs registration. The registration (especially non-rigid one)
for medical images is time-consuming, because it generally does not have an analytic so-
lution [8, 9]. Therefore, finding the optimal deformation in non-rigid registration requires
an optimization process at each iteration where each deformation updates all voxels. If the
size of a voxel is 1mm?>, and the size of the entire brain is 1600cc = 1.6 x 10°mm3, then
there are 1.6 x 10° updates at each iteration of the optimization process. Thus, non-rigid
registration requires significant computation. Assuming that we have N images, we could
let all images do registration® to one target image, where each image would take an hour,
or perform an all-subjects-to-all-subjects registration which takes even more time. For
each pre-processed and registered image, DTIFIT is the last step in the first-stage analysis
of dtiQA. It generates a quantified image called fractional anisotropy (FA), which can be

viewed as an image with all its data stored in a 3D matrix.

ZRegistration means a process of transforming/warping a moving image into a target image space for
further analysis.
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The FA images, which are the quantified results generated from the first-stage, are then
fed to a second-level statistical analysis, e.g., Tract-Based Spatial Statistics (TBSS) [10] or
Gray Matter Surface-based Spatial statistics (GS-BSS) [11], to ensure that all FA images
adhere to a common template. Specifically, TBSS contains 4 steps® and also involves
registration. However, the registration time here is significantly less than that in the first
stage because an FA image does not need as much data cleaning and preprosessing as the
original raw image. Finally, we run a randomized statistical analysis (randomise), and
subsequently observe the spatial distribution in order to find differences in the brain over
the entire cortical region or regions of interest set by the researchers.

The second example in Figure 7.1 shows the first-stage processing comprising image
segmentation for cortical parcellation of raw T1W images (or tissue segmentation of raw
T1W images). Most segmentation methods are also very time consuming by embedding a
registration process simultaneously [12, 13]. All input images need to first register together
or register to a known segmented structure template image, and a tissue class is then de-
termined for each image voxel (e.g., white matter, gray matter, cerebrospinal fluid). From
the tissue segmentation, we can further extract brain structural (or morphological) repre-
sentations like gray matter surface. The cortical surfaces could better support quantitative
information than 3D MRI images in terms of a topological preservation. This information
is then used by the second-stage analysis to conduct cortical-based statistical analysis such
as GS-BSS. Again, since the input to the second-stage has already been preprocessed, the
next stages of analysis are faster than the first-stage processing.

As evident from the two case studies above, in most multi-stage medical image pro-
cessing analysis, the first-stage takes a long time, and the second and subsequent stages
cannot start until all first-stage results are generated. Further, due to a lack of capabilities

to monitor the progress of the first-stage and detect any anomalies therein, errors can prop-

3Specifically, tbss_1_preproc helps prepare all FA data in the right folder and format; tbss_2_reg applies
non-rigid registration of all FA images into standard template space; tbss_3_postreg creates the mean FA
image and skeletonizes it; tbss_4 _prestats projects all subjects’ FA data onto the mean FA skeleton and creates
4D images for later statistic comparison usage.
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agate to the subsequent stages and are eventually detected only in the later stages, which
is wasteful of resources, time and money. Thus, addressing these problems calls for a new
pipeline execution and error detection mechanism, which is the first contribution of this
paper. At the same time, migrating existing pipelines from cluster-based deployment to
the new cloud-based approach requires the users to have a rough estimate of when the new
approach will pay dividends. Thus, a capability that can provide such estimates is needed,

which is another contribution of this paper.

7.2.2  Contribution 1: Semi-automated, Real-time Quality Assurance Framework for Med-

ical Image Processing Pipeline

To speed up the execution of the medical image processing pipeline, we propose con-
current execution of the stages and early detection of anomalies. To that end, as we accu-
mulate results in the first-stage, the second-stage analyses can start executing based on all
collected first-stage results up to that point, and its analyses model can be incrementally
updated when more first-stage results show up. In the meantime, if periodic monitoring of
the first-stage results indicates an anomaly or outlier, these errors can be flagged right away
and either the results can be discarded or the pipeline can be aborted instead of letting it
run for a significantly longer time for the errors to be eventually detected. The same idea
can be carried over to each stage of a multi-stage pipeline. The rationale for this approach
is that after kicking off a multi-month task, users would not want to wait until all the data
processing is done. Incrementally updating second (and later) stage analysis results would
help the users detect unusual findings and outliers in the first-stage analysis significantly
faster and earlier. It would also help users to draw preliminary conclusions before finishing
all data processing.

Figure 7.2 illustrates our proposed real-time monitoring and intermediate checkpointing
framework for multi-stage analysis. Except for the human quality assurance that involves

manual checking, the entire pipeline is automated. In our approach we assume that all the
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first-stage jobs are HBase MapReduce map tasks (e.g., each map task is a dtiQA processing
phase). The pipeline can be scripted using tools such as Matlab. In effect, this script
runs on a single input image, and the output, such as an FA image, is uploaded to HBase.
At this point our results monitoring job kicks in. The monitor can be configured to run
periodically, say, every one hour, to include any new results generated in the first-stage.
Anomaly detection is then carried out when intermediate results are available during the

execution of the monitor.
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Figure 7.2: Real-time monitoring and intermediate checkpointing framework for multi-
stage analysis (in this case 2-stage).

In terms of realizing this approach, the pipeline starts from the Hadoop YARN default

job status monitor, which can find the basic job running status such as File System Counters
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(number of bytes read and written on machine file system and HDFS), Job Counters (to-
tal number of launched data-local or rack-local map tasks, total time spent on map tasks),
MapReduce Framework (map input and output record, GC time elapsed, CPU, physical &
virtual memory usage), etc. We exploit a feature of the Hadoop system for anomaly detec-
tion. For each MapReduce job, the Hadoop system maintains a file that records map-task
success ratio. Our monitor can capture exceptions raised in the job such as map task failed
or the job stuck at one point. Anything that is anomalous would then be reported to the
system administrator. An example of such a log is shown below which shows progress. A
potential indicator of anomaly is when a task does not make any progress over the periodic
interval of our monitor task or if it has made progress and then the percentage drops from

its previous value:

17/09/12 13:39:08 INFO mapreduce.Job: map 0% reduce 0%
17/09/12 19:20:03 INFO mapreduce.Job: map 1% reduce 0%
17/09/12 19:29:26 INFO mapreduce.Job: map 2% reduce 0%

17/09/12 19:34:59 INFO mapreduce.Job: map 3% reduce 0%

Note that the above approach is only for detecting anomalies in the execution of MapRe-
duce tasks but does not provide any quality assurance about the correctness of results
produced by these tasks, which requires analyzing the medical image processing results.
Therefore, in the intermediate second-stage analysis, the “check success ratio” function
performs the following: (1) scans HadoopBase-MIP’s result column and issues fast query
to find all intermediate results; (2) retrieves value to the designated folder, does command-
line based QA to check file format and content (in our case, we embedded a script to check
medical image dimension); (3) decides based on a pre-set analysis type if the second stage
analysis can utilize previous historical analysis results, and if so starts the second-stage
analysis and merges the result in the summary folder. If the entire MapReduce job is not
completed, then the monitor would wait a pre-set number of hours before running the next
analysis. If the analysis results meet an evaluation metric requirement, the monitor then

reports a message to the administrator to recommend terminating the processing.

112



As a concrete example, consider the second-stage analysis like TBSS in Figure 7.1,
which is an embedded pipeline in itself. The first two steps of TBSS (tbss_1_preproc and
tbss_2 reg) incur a one-time cost for each image if we register each image to the same
target template. In the subsequent incremental second-stage analysis, these two steps can
be skipped for those images that have already been processed in the previous second-stage
analysis, so we just need to store those intermediate results. The last two steps of TBSS
(tbss_3_postreg and tbss_4_prestats) need the entire dataset of current second-stage analysis
and hence the results of these two steps cannot be used for future second-level analysis.

In essence, the performance benefit of adding a monitor at the first-stage is due to
the following a reason: while the first-stage analysis utilizes all the cluster resources, the
second-stage analysis often involves a “summary” process that only runs on a single ma-
chine with single core. Compared to the whole cluster resource usage by the first-stage, the
second-level analysis consumes significantly less resources. Thus, an effective monitor on
the first-level analysis is promising and can greatly help resource conservation of the whole

cluster.

7.2.3 Contribution 2: Performance Improvements Estimation via Simulation Engine

Recall that a user in medical image processing may want to first estimate whether us-
ing our approach can provide substantial gains in their use cases or not. We now present
the design and implementation of two simulators for that purpose: one for the traditional
cluster using shared network storage with simple linux utility for resource management
(SLURM [140], for job dispatching) called SLURM-simulator, and the other for the Hadoop
ecosystem using distributed storage called HadoopBase-MIP-simulator.

In a traditional cluster, a job does not care about the placement of data, which is al-
ways retrieved from the network storage, gets processed, with the results sent back to the
storage. All simultaneously running jobs on the same rack will compete for network band-

width during retrieval and uploading since a rack usually has access to a slower network.
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For HadoopBase-MIP, the jobs are dispatched by a MapReduce computation module [4].
data-locality is one of the best features that Hadoop MapReduce provides, i.e., the compu-
tation code gets dispatched to where data is. Since we leverage HBase, which is a NoSQL
database built on top of Hadoop’s distributed file system (HDFS), we focus on HBasebased
MapReduce instead of the traditional Hadoop MapReduce.

In HBase MapReduce, the map task is dispatched to the region server, a single host on
which the data block resides [3]. Thus, the computation is local to where the data is. If,
however, all the cores on that node are occupied, then the data is moved to another node on
the same rack. Only in such a rack-local case, the map tasks would compete for the network
bandwidth as in the traditional cluster case. For HadoopBase-MIP, we use default YARN
to control MapReduce tasks. We switch scheduling methods by using two popular built-in
schedulers, namely, capacity scheduler and fair scheduler, for I/O-intensive and compute-
intensive applications, respectively. The capacity scheduler can maximize job dispatching
with more data-local map tasks while fair scheduler schedules jobs to better utilize all CPU
slots and memory resources.

Before introducing the workflow in our simulator design, we outline the following key

assumptions to simplify the design of our simulator engine:

* An identical one Gigabit bandwidth is connected to all of machines under the same
rack. Each rack is connected to the GPFS with high speed fiber. To ease network

contention on each rack, we balance the total number of machines per rack.

* For each job on the same rack, if data retrieval or upload request occurs while the
network is available, then the entire bandwidth is consumed for an interval of 50 mil-
liseconds, and the rest of the data transfer needs to wait until its next turn. Moreover,

we do not consider any priority between retrieval and upload.

* Job dispatching time does not include queuing delay. In traditional cluster, a simple

First Come First Service (FCFS) scheduler is used. Jobs are ordered based on sub-
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mission time and scheduled by a single entity. For fair comparison with SLURM, in
our HadoopBase-MIP simulator we also mimic a single scheduler entity and intro-
duce a single MapReduce job at a time so that the job can occupy the entire cluster
resource as in the case of the traditional cluster. All jobs are dispatched to maintain
data-locality first; if there is an available CPU slot without local data, the resource

manager finds a node that has most pending jobs.

We only consider the Map Phase, i.e., all the necessary processing pipelines are em-
bedded in the map tasks and the reduce tasks are no-op, which has been shown to

maximize data locality in our prior work [102, 119].

The full pipelines for both of our SLURM-simulator and HadoopBase-MIP-simulator
are shown in Figure 7.3 while a complete implementation of the simulators is available from
our open source repository at https://www.nitrc.org/projects/hadoop_2016/. We briefly de-

scribe the two simulators below.
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Figure 7.3: Full pipelines of SLURM-simulator for the traditional cluster (left) and the
HadoopBase-MIP-simulator (right).
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7.2.3.1 SLURM-simulator

The input for both simulators are text files. The text files for SLURM-simulator con-
tains 3-element-tuples with the format jinput_file_size, estimate_processing_time, output_file_size;,
and each row represents one job. Jobs are dispatched in a FCFS manner, i.e., according to
the submission order. Within the same rack, each job needs to wait for the available net-
work resource to retrieve the input data. Once all the necessary data is retrieved, the job is
processed and the results are uploaded. After the job completes and successfully uploads
the results, the associated CPU core is freed and assigned to the next pending job. The

simulator tracks and summarizes the time usage per rack.

7.2.3.2 HadoopBase-MIP-simulator

The HadoopBase-MIP-simulator works in a similar manner but with a few differences.
First, a text file for HadoopBase-MIP-simulator contains 4-element-tuples with the format
jinput_file_size, estimate_processing_time, output_file_size, data_location;. Since upload-
ing original datasets to HBase database incurs a one-time cost, users can upload the data
to database and find out relevant node id to fill up the text files. The scheduler can then
schedule the available data-local and rack-local jobs. Specifically, the scheduler determines
if the job is data-local, otherwise it is scheduled as rack local. It mimics the YARN default
fair scheduler to fully utilize the cluster resource. Obviously, data-local jobs use hard disks

to do data transfer without network competition.

7.3 Evaluational Methodology and Experimental Results

The goal of this section is to evaluate the efficacy of our simulator in guiding the users
to the appropriate solution, and evaluating the performance gains and anomaly detection

capabilities of our Hadoop-based concurrent pipeline framework.

116



7.3.1 Experiment Scenarios

For our evaluations we have defined three experimental scenarios that are described

below.

7.3.1.1 Experiment 1

The goal of experiment 1 is to empirically verify the prediction accuracy of the simula-
tor for running a mix load of medical image processing jobs (which represents real-world
scenarios) in a real, in-house heterogeneous cluster using HadoopBase-MIP and traditional
cluster with Sun Grid Engine [26] (SGE, a similar scheduler with SLURM), We use the
same experimental design strategy as in [141], which uses gzip to compress 1,876 T1 im-
ages to the .gz format and adds a sleep function to mimic different processing times. The
images are pre-split equally to 47 HBase regions (each region with approximately 40 im-
ages), and data allocation ratio of 10 images per CPU core. Each job compresses only one
NiFTI image with 2GB memory available and generates one compressed image. The total
input size of the images is 29.5GB and the processing generates 20.57GB of compressed
files as output.

To explore the impact of different processing times, we artificially increase the process-
ing time by adding a sleep function without any data retrieval to increase the job length by
an additional 30 and 90 seconds. The reason we select those two time ranges is because
our theoretical model [141] shows that if we run a large number of jobs with similar type,
then even a job length as small as 65 seconds* would be enough to saturate the network
because all jobs would try to access the storage at the same time. Thus, if we only run the
30-second jobs, the jobs will saturate the network and decrease the performance of SGE.

Similarly, if we only run the 90-second jobs, the network saturation will be alleviated and

4 A typical Gigabit network is ideally 128 MB/second, and in our empirical observation, the average speed
of the network can reach 80 MB/second. For each processing task, the average data input and output size is
about 27.33 MB((29.5GB input + 20.57 output) / 1876 datasets), and if we allocate whole cluster of 188 cores
to run those types of jobs, 188=80/(27.33/processing time), and we will get processing time = 65 seconds to
rightly saturate network.

117



the performance of SGE should be similar to that of HadoopBase-MIP. So we mix short
and long length jobs to observe the effectiveness of our simulation engine’s design.

Two test scenarios are configured as follows: (1) We select 80% of the 1,876 images
and configure them as short jobs, the rest 20% are configured as long jobs; (2) We reverse
the job length setup from the previous scenario by configuring 80% of the jobs to be long

and the rest to be short.

7.3.1.2 Experiment 2

The goal of experiment 2 is to use the simulator on the historical trace data we al-
luded to in Section 7.1 to simulate the total execution wall clock time trend for a much
broader scale usage and find the performance crossover point between traditional cluster
with SLURM and HadoopBase-MIP. This provides an idea of when users should select our
technique. Since we do not have any performance data to compare against due to a lack
of other simulators and infeasibility of re-running the jobs both due to the computational
overhead and because we had access only to the logs that we mentioned in Section 7.1,
we use these results simply to illustrate the trends. For machines in the cluster, we as-
sume using homogeneous machines with 10 cores. Each rack maximally can attach 50
machines. The simulation scales the size of cluster cores from 10 to 6000. For simulating
the scalability, we start from one machine, and in each next step, we add one additional
machine with 10 cores up to a total of 600 homogeneous machines and hence 6000 cores
for a total of 12 racks. The experiment is based on our high performance computing cluster
ACCRE’s design (http://www.accre.vanderbilt.edu/?page_id=63). Note that only 12 racks
is very hard to saturate GPFS, but network competition within each racks are where satura-
tion is expected to occur which makes the case for our fair comparison between traditional
cluster and HadoopBase-MIP. This allows us to understand the minimum resource alloca-
tion needed when moving to using our technique. We use simulation models to schedule the

mix types of jobs (I0-intensive and compute-intensive) with actual time order according to
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the historic record and find the running time of all the jobs from the logs. We separate all
96,103 jobs into 3 categories based on job length: all jobs whose processing time are less
than 2 hours (51,496 jobs), 24 hours (73,558 jobs) and all 96,103 jobs taken as a whole,

respectively.

7.3.1.3 Experiment 3

This experiment is concerned with validating the effectiveness of our monitoring and
checkpointing capability in the concurrent multi-stage analysis pipeline by incrementally
conducting second stage analysis while checking for errors in the first-stage. We used an
existing medical image processing multi-stage analysis where the first-stage does dtiQA as
depicted in Figure 7.1. Specifically, this experiment aims to analyze significant differences
related to age-effect of a group of humans’ brains in the same study. The age distribution
of dataset ranges from 23-31 years old.

Our example has 423 DWI images, whose total input size is 3.5GB, and they would
generate 423 FA images as output with a total size around 0.74GB. The estimated time of
the first-stage dtiQA pipeline for one image is 7 hours (the total execution time is 35.06
hours estimated by our HadoopBase-MIP simulator). Note that each first-stage dtiQA is a
single image-based processing task and would generate an FA image. The FA image would
be verified by software FSL (which simply checks the image dimension).

Unlike the traditional multi-stage analysis which runs the two stages in a serial order,
using our monitor and checkpoint approach we started both stages concurrently as follows.
After every one hour of execution, we check if there are enough new results generated from
the first-stage. If not, the monitor waits one more hour to check the output of intermediate
results. If the number of newly collected first-stage results meets the threshold (e.g., 10
new images), then the second stage analysis starts (this is the incremental execution of the
second stage).

For the second stage analysis, we first use TBSS to process all current and previous
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first-stage analysis results and then run randomise to observe the spatial distribution of age
effects with positive correlation or negative correlation. For each intermediate round, each
person’s age effect is that person’s age minus the average age of the group (423 subjects) for
fair comparison of each intermediate second stage analysis result. After a specified number
of iterations, if we observe that the second stage analysis is producing similar results, we
assume that the results are converging and no additional first or second stage processing is
needed. Accordingly the pipeline is stopped. Doing so we can execute the entire pipeline
faster compared to traditional approaches. At the same time, if any error is observed in the
second stage at any checkpoint interval of the monitor, the system flags the error and lets
the user remove the outliers in the first-stage, and resume.

Since there is no similar monitoring mechanism implemented on HadoopBase-MIP or
similar medical image processing system, we used the baseline performance as the time to

run the entire pipeline in the traditional way.

7.3.2 Experimental Setup and Metrics

Metrics: We are concerned with three metrics in this work: the first one is wall-clock
time and the second one is system throughput, which is the number of datasets (or jobs)
processed per minute. The last metric is p-value that represents the significant difference
for the statistical analysis of a group study. In particular, p-value = 0.05 and 0.01 are two
standard significance levels to reject a null-hypothesis. For instance, the null-hypothesis for
experiment 3 is that there is no brain structure difference related with age. A lower p-value
we get for any brain voxels implies that the brain area has significant differences based on
age, so we can reject the null-hypothesis. Experiment 3 is designed to find all high p-value
voxels to know the area of brain structure that is affected by age.

Datasets: For the experiments used in validation, experiment 1’s dataset is retrieved
from normal healthy subjects gathered from [132]. Experiment 2 uses historic anonymized

statistic logs with no actual medical image processing and data retrieval. Experiment 3
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uses 423 subjects’ data from The Tennessee Twin Study (TTS) (RDoC Constructs: Neural
Substrates, Heritability and Relation to Psychopathology).

Hardware: The testbed used for our validation involves 9 physical machines with a
total of 188 cores. Specifically, the testbed consists of 5 machines with 12 cores of AMD
Operon 4184 processors and 4 machines with 32 cores of Intel Xeon E5-2630 running
Ubuntu 16.04.2 LTS (64 bit). At least 2GB RAM was available per core. The storage
is allocated to HDFS and a Gigabit network connects all the machines. Each machine is
deployed with a local Seagate ST32000542AS disk, and is used as a Hadoop Datanode
and HBase RegionServer for data locality. All machines are also configured using the Sun
Grid Engine (Ubuntu Package: gridengine-*). NAS was provided via CIFS using a Drobo
SN storage device (www.droboworks.com) with a 12TB RAIDG6 array. Both SGE and
HadoopBase-MIP contain an additional common master node as cluster master. A typical

Gigabit network is deployed at the cluster.

7.3.3 Experiments result

7.3.3.1 Experiment 1

For each scenario, we repeat the entire test 20 times on a real cluster. When fast jobs
dominate the workloads (80% of jobs are processed in 30 seconds), HadoopBase-MIP’s
performance on the cluster achieves a mean-+tstandard deviation throughput of 152.54+3.3
dataset/minute, which is 1.5-fold better on average than the traditional cluster using SGE
whose mean-=+standard deviation throughput is 102.2+2.5 dateset/minute. In comparison,
the simulator predicts that HadoopBase-MIP is 1.53-fold better than traditional cluster
(163.9£4.6 vs. 106.945.7 dataset/minute). For the second test case, most jobs are long
jobs (80% of jobs need to be processed in 120 seconds). Thus, the difference in throughput
is smaller between the two systems compared with the first test case, and HadoopBase-MIP
becomes 1.17-fold better than traditional cluster (91.3+£2.3 vs. 179.4+2.7 dataset/minute).

Our simulator estimates that HadoopBase-MIP would be 1.15-fold better than traditional
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cluster (94.040.6 vs. 81.741.7 dataset/minute).

7.3.3.2 Experiment 2

Figure 7.4 presents all simulation scenarios for HadoopBase-MIP and traditional cluster
with SLURM using different cluster setups. The execution time is in log10 scale for better
illustration and comparison since the range between low and high values is too large. When
the cluster is full of relatively short jobs (less than 2 hours as shown in Figure 7.4(1)), we
can see that SLURM suffers from network saturation when the cluster scales to more than
50 machines (or 1 rack).

When processing jobs whose processing times are less than 24 hours, the performance
of SLURM is closer to that of HadoopBase-MIP (as shown in Figure 7.4(2)). However,
when we estimate the total time of all 96,103 jobs, we can see that the performance for
HadoopBase-MIP fluctuates with a jitter trend. The reason is that the load contains jobs
whose lengths are dramatically different (ranging from 15 seconds up to 9 days). Thus, the
data location and job running sequence would affect the entire performance, e.g., due to
high data locality simulated scheduling, long running jobs co-located on the same machine.
In summary, the simulation results help us better understand how HadoopBase-MIP would
behave before we deploy it at large scale. In general, HadoopBase-MIP shows benefit when

scaling up on cheap network environment and running short-length jobs.

7.3.3.3 Experiment 3

In this experiment, there are 20 intermediate rounds including the last one. Using our
approach we first get a ratio of significant trend as shown in Figure 7.5(1). Here, all results
are projected to a common space (mean FA skeleton image). Then, we do t-test based
on groups (corresponding to negative age) and find the ratio of voxels that are significant
within the common space, using p-value=0.01, 0.05 and 0.1 as three significance levels that

we are interested in. However, the trend in Figure 7.5(1) has a strange behavior: with the
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number of new outputs generated from the first stage, the trend of the p-values should not
fluctuate that dramatically; moreover, the involved significant ratio is too small. Therefore,
QA checking should be invoked. As a result, we found some bad examples within the first
stage as shown in Figure 7.5(2). After removing all bad outputs from the first stage and re-
running the second stage analysis, Figure 7.5(3) shows a new trend of ratio of total number
of voxels with significant difference in common space based on p-value within different
intermediate rounds. The trend shows after intermediate round 11, the number of activated
voxels gradually increased, and the trend is saturated after about 15 rounds. Figure 7.5(4)
presents the qualitative result of the finding from each intermediate second stage analysis,
the significance area reveals that FA image has negative correlation with age-based effect.
This result has the similar outcome from the work [139], which does TBSS analysis of
age-effect on FA image, thus validating our finding.

If we only run the second stage analysis after the last round as usual without intermedi-
ate QA mechanism, we can still conclude that some part of the brain white matter skeleton
structure (around 1500 voxels) is significantly different regarding age-effect. However, the
conclusion is wrong since it fails to detect outliers which distort the real result. Again,
experiment 3 aims to provide a guidance for users to use this incremental second stage
analysis to detect error and draw conclusion, so that they do not need to wait till all data
processing is complete. For instance, in real life, by using our proposed monitor, users
should stop the pipeline around round 15-16 if they see a weird fluctuation as shown by
Figure 7.5(1), and users could conclude their findings when they see some p-value satura-
tion around round 15-19 as shown by Figure 7.5(4).

In summary, the total wall-clock time of processing the first stage dtiQA pipeline was
35.93 hours (2.84% slower than HadoopBase-MIP simulator prediction), and the second
level analysis took 12.16 hours. Moreover, the time to re-run the second level analysis was
11.58 hours. Thus, the final total wall-clock time using the traditional approach was 59.67

hours with 2773 hours’ resource time. On the other hand, using our incremental check-
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pointing monitor, it would take 22.01 hours wall-clock time on the first level with 1.25
hours for running the 15th intermediate second level analysis. Once the wrong output from
the first level is removed, re-running the whole second level analysis using incremental be-
havior on a single machine would lead us to draw conclusion at round 15 taking 10.5 hours.
Thus, in total 33.76 hours’ wall-clock time and 2146 hours resource time will result from
our proposed framework, which is 76.75% less wall-clock time and 29.22% less resource

time than the traditional approach.

7.4 Conclusions

The computation time for medical image processing jobs involving multi-stage analysis
often exhibits a significant variance ranging from a few seconds to several days, and most
of the processing time is spent on the first-level analysis in the pipeline. Moreover, the
cost is very high to process these jobs using traditional clusters, which are deployed with
storages like GPFS and high speed networks. The high cost is further exacerbated when
errors occurring in the first stages are not detected due to limitations in existing approaches
and get propagated to subsequent stages when they are eventually detected. To address
these concerns, this paper presented an alternative Hadoop-based approach that utilizes
cheap hardware and storage, and enables a concurrent medical imaging pipeline where
errors can be detected much earlier in the first stage itself. Additionally, to aid the users
in making an informed decision as to when to use our approach versus traditional cluster-
based approaches, we present the design of a low-cost simulator.

In this work, we did not focus on proving the efficiency of our proposed monitoring
mechanism. Instead, we are using it as a prototype to convince the community that one
should always examine the outcomes from those time consuming preprocessing stages as
early as possible rather than losing valuable computation and time resources. In our ap-
proach, the outlier detection was based on strange p-value behavior from the second level

group analysis via human checking. Meanwhile, the summary trend of intermediate results
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gave us hint to promote filtering anomality samples in the first level, also based on manual
checking. For future work, integrating effective outlier detection in the first level with a
quantitative approach for identifying strange trend in the second level is necessary. Finally,
for facilities that have neither large scale HPC clusters nor large image sets to deal with,
our recent work [141] has discussed the trade-offs between using HadoopBase-MIP and

traditional in-house clusters.
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Figure 7.4: Simulation result of estimating total execution time (log10 (Hour)) according
to historic jobs trace. (1)-(3) show running all jobs whose processing times are less than
2 hours, 24 hours and all 96,103 jobs, respectively. Blue line represents the performance
for traditional cluster while orange line represents the performance for HadoopBase-MIP.
(4) shows a summary of all HadoopBase-MIP MapReduce jobs’ data locality ratio for each
scenario, which reveals that most jobs are data-local map.
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Figure 7.5: Experiment 3’s result of using second level incremental learner monitor archi-
tecture for QA. In (2) and (4), 0.1, 0.05 and 0.01 are three different p-value significant
level. The ratio of significance means the percentage of significant area that is found in
group analysis of whole brain white matter skeleton.
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Chapter 8

BIG DATA NON-RIGID REGISTRATION-BASED IMAGE ENHANCEMENT
IMPROVES DEEP BRAIN STRUCTURES

8.1 Problem Overview

Brain MRI is an important tool for analyzing deep brain structures. Visual inspec-
tion remains as the gold standard for identifying anatomical region boundaries in the brain.
However, low contrast, spatial proximity of surrounding structures, and low resolution may
inhibit clear visual assessment of deep brain structures [142]. Various post-acquisition im-
age enhancement strategies have been proposed to address these issues. Traditional image
enhancement employs a low-pass filter for denoising. Liu et al. propose an enhanced non-
local means using Gaussian filter to reduce the disturbance of the noise [143]. Manjn et al.
use a non-local PCA thresholding within a rotationally invariant non-local mean filter, in
which the local noise level is automatically determined in the image to make noise estima-
tion and denoising [144]. A graph-based redundant wavelet transform approach is shown
in [145] to sparsely represent MR images. Another image enhancement classical research
topic is to utilize low-resolution image to reconstruct high resolution image. In [146],
Rousseau propose the use of anatomical inter-modality priors based on a physical model of
image acquisition as a high resolution image reference to improve the resolution of the LR
image. In [147], Bahrami et al, propose a hierarchical re-construction via group sparsity
in a novel multi-level canonical correlation analysis (CCA) space, to improve the quality
of 3T MR image to be 7T-like MRI. Recently, a trend has developed for deep learning for
medical image enhancement area. Yang et al use an artificial neural network to lower the
bound of the variance/resolution tradeoff and thus to decrease the size of the unachievable

region in the variance/resolution plane of PET modality [148]. Oktay incorporates anatom-
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ical prior knowledge into convolutional neural network to enhance cardiac image [149].
Yet, none of the above works intrinsically focus on MRI deep brain enhancement.

Our inspiration comes from a recent work [128] that can perform averaging of thou-
sands of images (pre-processed affinely into MNI space) in near real-time (<3 mins). The
resulting image reveals enhanced contrast in some brain structures. When considering the
generation of MNI average brain stereotaxic registration model [134], we posit that it is
useful to use non-rigid big data averaging. However, such an approach has been computa-
tionally infeasible as a single reasonable non-rigid image registration would take 2-4 hours;
hence, registering a reference population would take about 2 months. Recently, ultra-fast
image registration methods [150] have been developed that enable a 50-100-fold accelera-
tion of the registration process. It is now feasible to routinely perform these computations.
Herein, we propose big data registration-enhancement image (BDRE) to improve the inten-
sity contrast of deep brain structures. Rather than parametric models of anatomy or specific
sets of well-characterized atlases, we propose to use large archives of unlabeled data (e.g.,
big data) to capture and enhance image features.

Briefly, our approach registers thousands of datasets to a single target image using non-
rigid image registration [150]. We then create a new average image by deforming the
registered data to reflect patterns of target image. This approach reveals substantially in-
creased detail in the deep brain structures. To the best of our knowledge, a proposal to
routinely apply registration of a large number of images (i.e., >1,000) per target image has
not yet been presented.

On standard 3T T1 images, deep brain structures are visible but substructures are not
easily identifiable due to low contrast and low image resolution. The thalamic nuclei and
hippocampal subfields are two sets of deep brain substructures that play significant roles
in the pathophysiology and treatment of neurological and psychiatric disorders including
Parkinsons disease, Alzheimers disease, depression, and schizophrenia [151, 152, 153].

However, delineation of these structures on MRI typically requires high resolution 7T or
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specialized 3T images which are not commonly acquired in research studies or clinical
practice. In Figure 8.1 and Figure 8.2, we present examples of images specialized for
identification of thalamic nuclei (Figure 8.1: 7T T1) and hippocampal subfields (Figure
8.2: 3T T2) along with reference segmentations. The appearance of these structures on
standard 3T T1-weighted images for both structures are also presented. As can be observed,
the contrast of the thalamic nuclei and hippocampal subfields can be improved on standard
3T T1 images by de-noising (DN), super resolution (SR), and BDRE. Because labeling of
the thalamic nuclei and hippocampal subfields requires another imaging modality (i.e., 7T
MRI and 3T T2 MRI), it is difficult to determine if contrast within BDREs are spatially well
aligned with the original T1 targets structures since the generation of BDRE is based on a
more common widely used 3T scanner. In this chapter, rather than validate each boundarys
correctness in BDRE due to difficulties of direct visualization of our target structures, we
investigate the usefulness of BDRE for the multi-atlas (MA) segmentation on those deep
brain structures and assume only T1 images are available.

Ths work has been submitted to Magnetic Resonance Imaging.

8.2 Methods

The pipeline for BDRE image generation is as follows Figure 8.3. Briefly, a T1-
weighted 3T image is retrieved from an XNAT system [138] and affinely transformed into
MNI space. All local atlases (a total of 5,150 T1-weighted images pre-processed into MNI
space, and we call them as 5K atlas images for BDRE) undergo a linear transform to tar-
get image (in MNI space) followed by a non-rigid registration to the target image. Next,
all registered atlases are averaged in target space with a uniform weight. Finally, the en-
hanced image is sent back to XNAT system for storage. Traditional registration tools, e.g.,
Advanced Normalization Tools (ANTS)s Symmetric Normalization (SyN) algorithm [9],
are time consuming to perform at scale. With recent innovations in image registration effi-

ciency, it is now becoming feasible to evaluate such scenarios. We evaluate non-parametric
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discrete registration with convex optimization. The tool, Dense Displacement Sampling
wbirLCC (deeds-wbirLCC), uses a fast implementation of a local cross-correlation metric
evaluated densely over a discrete search region followed by Gaussian smoothing of the re-
sulting fields, and the fields are coupled back into the similarity measure [150, 154]. While
the quality of the fast registration is generally similar with a traditional neuroimaging cen-
tric tool - ANTs SyN, the registration process is exceptionally fast and sufficiently flexible
to allow for high throughput registrations.

Specifically, we used NiftyReg [133] to perform rigid affine transformation to register
target image to MNI-305 template. We then used deedss transformation tool linearBCV
to operate linear transformation on 5K atlases to the target image in MNI for better com-
patiblility with deeds-wbirLCC [154]. After that, we applied the big data registration tool
deeds-wbirLCC to non-rigid registered transformed 5K atlases to the target image in MNI.
For averaging 5K non-rigid registered images, we used ANTS Averagelmages tool. All
software packages were configured using default parameter settings, except for the deeds-
WBIRLCCs regularization Gaussian sigma parameter that was empirically set as 1. The SK
atlas images for big data registration were retrieved from normal healthy subjects collected

by [132].

8.2.1 BDRE generation time

The proposed method takes less than 7 hours to perform 5150 non-rigid registrations
to target image in MNI space using 200 CPU cores. For image averaging to generate one
BDRE, we equally split 5150 registered atlases into 103 subgroups, average each group
first and then average all intermediate results within 20 minutes.

In detail, the 5150 atlases images are all pre-rigid affine to MNI space since target
image would be also registered to MNI space. This is only a one time cost (based on our
experimental cluster, it would take about 50 minutes). We did not do other preprocessing

(e.g. N4 bias correction. If we did so, it would be also a one-time cost. The most time
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consuming part is the large volume of non-linear registration, the testbed used for our
validation involved 188 cores. At least 2GB RAM was available per core. Each deeds-
WBIRLCC takes 4 cores, thus in total 51 non-rigid registration can run simultaneously.
Per each atlas, it would take about 4 mins (due to CPU resource competition, the speed is
slower than deeds-WBIRLCC on a single image with empty cluster, which is 50x faster
than ANTSs around 2 minutes), and that is how we spent 7 hours per one BDRE (5150/51*4
~ 404 minutes). The averaging times depended on the network setup of our cluster. Our
experimental cluster used shared network that was deployed with one gigabit ethernet on
each computation nodes and took 20 minutes to do averaging 5150 atlases. Moreover, if we
had multiple BDRE generating, the image averaging can be applied slowly on a single core,

the processing time for averaging would be overlapped with an on-going BDRE generation.

8.2.2 Image Acquisition information

To explore the usefulness of BDRE, we focused on two deep brain structures: thalamic
nuclei and hippocampal subfields. Under IRB approval, we collected MRI data from eight
subjects with paired 7T-3T T1-weighted MRIs for full thalamus segmentation. The ground
truth 46 labels (23 per each hemisphere) were manually delineated by visually fusing the
information provided by the multiple image volumes in 7T space [155]. Table 8.1 presents
the detail of 23 thalamic nuclei structures.

We retrieved paired T1 and T2 MRI datasets for 29 subjects in deidentified form from
a first episode psychosis hippocampal imaging dataset. The reference standard hippocam-
pal subfield labels were generated by automatic segmentation of hippocampal subfields
(ASHS) pipeline on the T2 MRI (symmetric 4 labels for left / right side) as reference stan-
dards [156]: (1-2) CA1, CA2/3: cornu Ammonis. Here, we collapsed subfields CA2 and
CA3 due to lack of distinguishing contrast in MRI and variability [157]; (3) DG: dentate

gyrus; (4) SUB: subiculum.
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Table 8.1: The detail of 23 thalamic nuclei substructures that were manually delineated.

Thalamic nuclei

anterior medial
nucleus (AM)

lateral posterior
nucleus (LP)

ventral anterior
nucleus (VA)

anterior ventral
dorsal (AVD)

mediodorsal nucleus
(MD)

ventral lateral
anterior nucleus (VLa)

central medial
nucleus (CeM)

mammillothalamic tract
(mitt)

lateral posterior
nucleus (VLp)

central lateral
nucleus (CL)

parafascicular (Pf)

ventral medial
nucleus (VM)

centre median
(CM)

pulvinar (Pu)

ventral posterior
inferior nucleus (VPI)

habenula (Hb)

anterior pulvinar
(PuA)

ventral posterior
lateral nucleus (VPL)

lateral dorsal
nucleus (LD)

lateral pulvinar
(PuL)

ventral posteromedial
nucleus (VPM)

limitans (Li)

paraventricular (PV)

8.2.3 Preprocessing

For each above 3T T1-weighted image, we created one BDRE generated image. Mean-
while, we also created one denoising image and one super resolution image by software
BTK default setting. BTK is an Open-Source Toolkit intrinsically for fetal brain MR image
processing, while the denoising technique can be applied for any 3D MRI, and super reso-
lution can be applied to adults affected by pathologies (such as Parkinson disease) leading
to involuntary movements during image acquisition [158, 159]. All images for MA seg-
mentation pipeline were affinely transformed to the label space (352x352x350 voxels and
0.7mm isotropic voxel size in the axial direction for thalamus; 480x480x26 voxels with
0.48x0.48x2 mm3 voxel size for ASHS label space, for computation efficiency, we did not
upsample atlases and targets.). Then, images were pre-processed by N4 bias field correc-
tion for correcting image intensity inhomogeneity. Next, we removed outliers by trimming
each images and keep the intensity range within [0.15,99.85] percentiles. Finally, for image

normalization, consider the original image I, with mean intensity of y and standard devi-
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ation of the intensity o , the normalized image /1, then a commonly used normalization

based on z-scores can be described as follows equation 8.1.

8.1)

8.2.4 Experimental setup

We evaluate the usefulness of BDRE for MA segmentation on the above two deep brain
structures. For the thalamic nuclei, we use three parallel MA pipelines as shown in Figure
2. We use leave-one-out cross-validation, where one subject is chosen as a target and the
remaining 7 are used as atlases. The process is repeated 8 times using different subjects
in traverse. For the hippocampal subfields, based on input imaging modality, four parallel
pipelines are used for verification. We first randomly chose 15 images from 29 datasets as
atlases and remainder of the 14 images for testing. We then reverse training and testing set
for second fold validation.

For MA segmentation, we used NiftyRegs Reg Aladin algorithm for efficient rigid
affine transformation. And we used ANTs SyN for non-rigid registration with the cross-
correlation similarity metric (with radius 2) and a Gaussian regularizer with o = 3. After
registration, reference segmentations from each of the atlases were warped into the target
image space. Finally, we used default joint label fusion [160] to make thalamus targets la-
bel. For hippocampal subfield, we empirically set both patch radius for similarity measures

and local search radius to 1x1x1 because of limited number of slices in coronal view.

8.2.5 Validation

We quantified the performance of eight MAS approaches in terms of Dice Similarity
Coefficient (DSC) to assess the contributions of BDRE in MA segmentation, which is the
most commonly used accuracy metric in recent studies of image segmentation. Consider

X as the segmentation result, Y the truth volume, and ||-|| the L1 norm operation, DSC is
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Table 8.2: Average performance of thalamic nuclei MA segmentation approaches using dif-
ferent modalities as atlases and target. Average Dice similarity (4- standard deviation(SD))
and median DSC are shown. Each Wilcox paired test is calculated between BDRE (as ref-
erence) and other corresponding scenarios, where ”**”” represents Wilcox paired t-test with
p<0.01, and ”*” represents p<0.05.

Atlases + target 3T * TT ** DN #* SR ** | BDRE (ref)
DSC 0.447 0.422 0.457 0.420 0.488
(mean=+SD) (£0.017) | (£0.04) | (£0.028) | (£ 0.028) (£ 0.038)
DSC 0446 | 0425 | 0466 | 0.414 0.477
(median)
presented as follows equation 8.2.
2||ANB||
DSC(A,B) = ——— (8.2)

Al + Bl

All assessments of significance below were performed with the Wilcoxon paired signed
rank test. Each Wilcox paired test is calculated between BDRE (as reference) and other
corresponding scenarios.

Figure 8.4 illustrates qualitative results and Figure 8.5 presents quantitative results
for full thalamus MA segmentation of using different modalities. Three sample datasets
are selected based on overall DSC performance: poor, average and good. Table 8.2 lists
quantitative for overall DSC performance for each imaging modalities in detail. BDRE
gets overall DSC of mean (&£ standard deviation) of 0.488 (£ 0.038), which significantly
improves average thalamic nuclei segmentation compared with using 3T only, 7T only, DN
only and SR only.

Specifically, BDRE MA performs significantly better with 10 out of total 46 thalamic
nuclei structures when comparing BDRE and 3T MRI MA segmentation; 11 out of total
46 thalamic nuclei structures are significantly better when comparing BDRE and 7T MRI
MA; 9 out of total 46 thalamic nuclei structures are significantly better when comparing
BDRE and 3T images preprocessed by DN; and 10 out of total 46 thalamic nuclei structures

are significantly better when comparing BDRE and 3T images preprocessed by SR. Mean-

135



Table 8.3: Average performance of hippocampal subfields MA segmentation approaches
using different modalities as atlases and target. Average Dice similarity (+ standard devi-
ation) are shown. Each Wilcox paired test is calculated between BDRE (as reference) and
other corresponding scenarios, where *** represents Wilcox paired t-test with p<0.001,
and ** represents p<0.01.

Atlases + target | 3T *** | DN ** | SR #** | BDRE (ref)
DSC 0.607 0.628 0.608 0.660
(mean+SD) (£0.054) | (£0.046) | (£ 0.042) (£ 0.045)
DSC 0597 | 0642 | 0618 0.667
(median)

while, we found 3T MRI MA segmentation outperform than BDRE on left lateral posterior
nucleus (LP) and right anterior ventral dorsal (AVD), and when 3T MRI preprocessed by
DN, it performs better on left lateral pulvinar (PuL), right AVD and right pulvinar (Pu).

Similarly, Figure 6 illustrates qualitative results and Figure 7 presents quantitative re-
sults hippocampal subfields MA segmentation with three sample datasets. Table 8.3 lists
quantitative for overall DSC performance in detail. BDRE performs overall DSC of mean
(£ standard deviation) of 0.66 ( &= 0.045) that significantly improves the average hippocam-
pal subfield segmentation compared with using 3T only, DN only and SR only.

Specifically, BDRE MA performs significantly better with all 8 hippocampal subfields
structures when comparing BDRE and T1 MA segmentation; 5 out of total 8 hippocampal
subfields structures when comparing BDRE and T1 images preprocessed by DN; and all 8
hippocampal subfields structures when comparing BDRE and T1 images preprocessed by
SR.

We also summarized Mean Surface Distance (MSD) and Hausdorff Distance (HD) per-

formance as reference that present in Figure 8.8-8.11 and Table 8.4-8.5.

8.3 Discussion & Conclusion

Herein, we have presented a technique to use BDRE to enhance the image for deep brain

structure MA segmentation. The full structure DSC performance results shows that BDRE
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Table 8.4: Average performance of hippocampal subfields MA segmentation approaches
using different modalities as atlases and target. Average overall Mean Surface Distance
(MSD) (& standard deviation(SD)) and median MSD are shown. Each Wilcox paired test
is calculated between BDRE (as reference) and other corresponding scenarios, where **%*
represents Wilcox paired t-test with p<<0.001.

Atlases + target | 3T *** | DN *** | SR *** | BDRE (ref)
MSD 0.638 0.601 0.642 0.492
(mean-+SD) (£0.162) | (£0.138) | (£0.161) | (& 0.107)
MSD 0607 | 0586 | 0.598 0.454
(median)

Table 8.5: Average performance of hippocampal subfields MA segmentation approaches
using different modalities as atlases and target. Average overall Hausdorff Distance (HD)
(£ standard deviation(SD)) and median MSD are shown. Each Wilcox paired test is cal-
culated between BDRE (as reference) and other corresponding scenarios, where *** rep-
resents Wilcox paired t-test with p<0.001.

Atlases + target | 3T *** | DN *%* | SR *** | BDRE (ref)
HD 3.935 3.836 3795 3114
(mean+SD) (£ 1.031) | (£1.112) | (£0.933) | (& 0.624)
HD 3816 | 3.574 | 3.448 2.989
(median)
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can significantly improve full thalamus and hippocampal subfields segmentation accuracy.
For full thalamus segmentation, BDRE significantly improves full thalamus segmentation
accuracy with 9.1%, 15.6%, 6.9%, and 16.2% improvement over using 3T imaging only,
7T imaging only, DN only and SR only. The hippocampal subfields segmentation results
in 8.7%, 8.4% and 8.6% improved DSC performance over utilizing T1 weighted modality
only, DN only and SR only. We found that there were several structures when only using
3T MRI or 3T MRI preprocessed by DN outperformed BDRE. We also found that the over-
all performance when only using 7T MRI as atlases and target was worse than the other
four approaches. Although the ground truth thalamus nuclei are segmented in 7T modality,
the labels were not depicted by only using one 7T image but multiple imaging sequences.
So it can explain 7T MA performs even worse. Due to our limit number of 8 datasets,
and the manual reproducibility of full thalamus is also very difficult, more datasets to val-
idate should help us better understand the utilities of BDREs enhanced thalamic nuclei.
Furthermore, our work is not trying to design a best pipeline, (e.g., in [155], Liu et al.
directly segment the thalamic nuclei in 3T MRI using high resolution shape models which
are manually delineated in high-field MR images. They start from entire thalamus shape
and hierarchically fit joint models to capture the relationship between the thalamus and the
internal nuclei and leads to a better result compared with our work), rather, this chapter
shows the value of the BDRESs contrast.

The BDRE approach has the potential to improve multi-atlas segmentation for other
deep brain structures and imaging protocols and offers enhanced contrast for other ap-
plications. We note that the intensity images produced by BDRE exaggerate contrast at
boundaries and highlight intensity cues that might not be obvious in the original image.
Some of the boundaries may be artefactual (i.e., a byproduct of the registration method
and/or data archive). Here, we sidestep issues of the validity of these boundaries and focus
instead on the utility of the contrasts for driving image processing in situations where a true

anatomical label is available via an alternative imaging modality (which is less routinely
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collected and more time consuming than typical 3T T1 MRI). For further understanding of
BDRE and future validation, we plan to evaluate different numbers of atlases and/or utilize
different time consuming non-rigid registration tools with smaller number of atlases for
computation efficiency to browse if they impact the quality of deep brain structure contrast.

For this chapter, our main purpose is to find the usefulness of BDRE which is generated
by large datasets. Using weighted averaging is a topic that has been highly studied, and
tuning the weights is an important future step to improve BDRE. For MA segmentation
validation, we also tested on using multimodal approach for atlases (combined with original
T1 MRI + BDRE) and the target was either T1 MRI or BDRE, the performance of the above
approach was worse than only using BDRE as input atlases and target (results not shown).

For the potential time consuming issue of generating a BDRE image, 7 hours for one
image is time consuming, but trying fast non-linear on large datasets (i.e. >1000) is a new
approach with interesting result (new contrast) which would take tremendous time when
using traditional registration tool. Deep learning super resolution is in real time, but they
are not focused on deep brain structures. In this chapter, we think currently it is irrelevant
to compare BDRE with a deep learning approach since we focus on discovering an atlas

with a new imaging modality, which also has potential to train a deep network.
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Figure 8.1: Three samples of 7T T1-weighted raw images with ground truth manual thala-
mic nuclei reference segmentation labels. Paired 3T T1-weighted MRI images are shown.
Each BDRE, DN and SR preprocessed images are generated by the corresponding 3T im-
age
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preprocessed images are generated by the corresponding T1 image.
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Figure 8.3: Workflow for validation of BDRE usefulness for MA. For the thalamic nuclei
segmentation, BDRE atlases to BDRE target approach is compared with using 3T T1, 7T
T1. For the hippocampal subfields, 3T T1 imaging is used. Each scenarios of BDRE is also
compared with T1 images that are preprocessed by DN and SR.
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Figure 8.4: Qualitative result for thalamic nuclet MA segmentation validation including
ground truth reference segmentation, 3T MRI only, 7T MRI only, DN only, SR only and
BDRE only. Three samples were selected by average overall DSC across each MA seg-
mentation approach using different modalities, which were ordered by worst, median and
best mean DSC similarity (& standard deviation).
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Figure 8.5: Quantitative result for thalamic nuclei MA segmentation including 3T MRI
only, 7T MRI only, DN only, SR only and BDRE only. (A) is the full thalamic nuclei MA
segmentation DSC performance for each scenario; (B) is left /right thalamic nuclei MA
segmentation DSC on each label based. Each Wilcox paired t-test is calculated between
BDRE (as reference) and other corresponding modalities. Red * represents Wilcox paired
t-test with p<0.01, and green * represents p<<0.05.
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Figure 8.6: Qualitative result for hippocampal subfields MA segmentation validation in-
cluding reference segmentation standards from ASHS pipeline, T1 MRI only, DN only,
SR only and BDRE only. Three samples were selected by average overall DSC across
each MA segmentation approach using different modalities, which were ordered by worst,
median and best mean DSC similarity (& standard deviation).
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Figure 8.7: Average performance of hippocampal subfields MA segmentation approaches
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Figure 8.8: Quantitative result for thalamic nuclei MA segmentation including 3T MRI
only, 7T MRI only, DN only, SR only and BDRE only. The plot shows left /right thalamic
nuclei MA segmentation Mean Surface Distance (MSD) on each label based. The plots
omit infinite MSD. Each Wilcox paired t-test is calculated between BDRE (as reference)
and other corresponding modalities. Red * represents Wilcox paired t-test with p<0.01,
and green * represents p<0.05.
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Figure 8.9: Quantitative result for thalamic nuclei MA segmentation including 3T MRI
only, 7T MRI only, DN only, SR only and BDRE only. The plot shows left /right thalamic
nuclei MA segmentation Hausdorff Distance (HD) on each label based. The plots omit
infinite HD. Each Wilcox paired t-test is calculated between BDRE (as reference) and other
corresponding modalities. Red * represents Wilcox paired t-test with p<0.01, and green *
represents p<0.05.

147



z

12 %
L1 * * ]
o Lo} T T 1 ——— T1 atlases + target
09 + 1
E o3} 1 ———————— DN atlases + target
g 3;;2 é ] ————————— SR atlases + target
05 l -
oal %l 1 BDRE atlases + target (ref)
03
T1 DN SR BDRE
(B)
4‘0 I I T T T T T T T _L T T T T T T T T T T T T T T T I I I I I
350 -
3.0( -
E 251 * N
- * -+
2 20l + r I _
E il * " + * % Kk * * X%
15 - * * + X o |
* 0+ ¥ * + * ok Ok
* +
T ERE ! THIEe
+ -+
+
NETTR S SILL SR RS EERO RN L H SN
0 =1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 =
Left CA1 Left DG Left CA23 Left SUB Right CA1 Right DG Right CA23 Right SUB

Figure 8.10: Quantitative result for hippocampal subfields MA segmentation including T1
MRI only, DN only, SR only and BDRE only. (A) is the hippocampal subfields MA seg-
mentation Mean Surface Distance (MSD) for each scenario; (B) is left /right hippocampal
subfields MA segmentation MSD on each label based. Each Wilcox paired t-test is cal-
culated between BDRE (as reference) and other corresponding modalities. Black * repre-
sents Wilcox paired t-test with p<0.001, Red * represents p<0.01, and green * represents
p<0.05.
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Figure 8.11: Quantitative result for hippocampal subfields MA segmentation including
T1 MRI only, DN only, SR only and BDRE only. (A) is the hippocampal subfields MA
segmentation Hausdorff Distance (HD) for each scenario; (B) is left /right hippocampal
subfields MA segmentation HD on each label based. Each Wilcox paired t-test is calcu-
lated between BDRE (as reference) and other corresponding modalities. Black * repre-
sents Wilcox paired t-test with p<0.001, Red * represents p<0.01, and green * represents
p<0.05.
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Chapter 9

INTEGRATE HADOOP DISTRIBUTED FILE SYSTEM WITH GEOGRAPHICALLY
DISTRIBUTED HIGH PERFORMANCE FILE SYSTEM

9.1 Problem Overview

The Apache Hadoop ecosystem aims to use commodity hardware and network setup to
provide a distributed storage and computation environment. The Hadoop Distributed File
System (HDFS) is a data storage system. It can split a large file into several small chunks,
and distributed / replicated each chunk across a cluster. MapReduce is a built-in Hadoop
computation template that can process split large files chunk in parallel and summarize in-
termediate result efficiently. To achieve best efforts with such types of applications, data
locality is very important since moving computation to storage is cost friendly especially
for those computation clusters with limited network bandwidth (e.g, one Gigabit). How-
ever, when moving forward to high performance computing (HPC) environment, fast speed
network is (>ten Gigabit) commonly used. To run MapReduce types of jobs, we need a
separate Hadoop cluster set inside the HPC cluster since resource management (YARN)
is needed to operate MapReduce jobs. However, if we can fully employ existence HPC
storage, separation between computation and storage is achievable without involving much
data transfer overhead owing to fast network, and we can still use existing computation
nodes in HPC for MapReduce tasks.

Currently, in Vanderbilt’s high performance computing cluster called Advanced Com-
puting Center for Research and Education (ACCRE), IBMs General Parallel File System
(GPFS) is the main storage solution for routinely HPC application. Meanwhile, we have
an alternative cheaper solution: LStore file system, which is a distributed, scalable and

geographically dispersed storage. L-storage aims to provide a peta level storage for the
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compact muon solenoid (CMS) experiment [17] that uses commodity hard drives.

In our recent work [128, 102], we developed a simulator for modeling the behavior of
processing different types and amounts of medical image processing jobs between solely
using a separate Hadoop cluster and regular SLURM job scheduling mechanism with GPFS
in HPC environment. To support our claim, we collected anonymous trace statistics logs
of completed jobs from the XNAT system [138] for 4 years worth of multi-stage analysis
without accessing any Protected Health Information (PHI) or imaging data. These jobs
were executed in ACCRE. The ACCRE cluster is deployed with a 10 Gigabit Ethernet on
12 racks with IBMs General Parallel Filesystem (GPFS). Each rack has 1 Gigabit Ethernet
for its computation nodes. The total CPU cores is over 6,000. The anonymized statistics
logs involved a total of 96,103 jobs whose completion times ranged from 15 seconds to 9
days (in total 152.45 CPU years). We present a simulation engine suite to estimate the per-
formance of running medical image processing on Hadoop-based approach (decentralized
storage) versus the traditional cluster (centralized storage). The simulation result shows
that in order to maximize the benefit for I/O intensive types of application (processing time
less than 2 hours), data locality is important and matters network saturation. However,
when considering more long runing jobs (1 day up to 9 days), data locality matters not that
much. It is important for us that when moving forward to use Hadoop ecosystem to HPC
environment with fast network, seeking a feasible, cheap and geographically distributed
storage is urgent. GPFS is feasible but very expensive to utilize and maintain. Thus we
consider integrating Hadoop cluster with LStore file system.

LStore has two interfaces for client to attach the data: a fuse mountable client and HPC
command line interfaces. A naive solution is to copy data from LStore and load it to a
Hadoop cluster, process the data and send the result back to LStore. However, it would
inevitably involve much redundant cost and unnecessary operations, since data would be
stored and replicated in both LStore and HDFS side. Another naive solution is put all

Hadoop related directory for Namenode and Datanode on fuse mount directory. Current
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fuse mount interface can only take 128 Kbytes chunk size per read / write operation by
default. LStore aims to store and process peta-level’s file, the limited I/O chunk size will
easily degrade data streaming performance and furtherly impact HDFS performance.

The fundamental solution is to build up a bridge from HDFS to LStore (before involving
HBase inspired from our previous effort HadoopBase-MIP [128]) to separate computation
and storage, and still use commodity hardware with keeping all features of LStore storage
(‘e.g., distributed, geographically dispersed, data integrity schemes). Because HDFS read
block size is tunable (>10 MB), and for write, the size of buffer for loading sequence files is
also tunable from (4KB-16 MB). Thus, if we can bypass fuse mount and directly integrate
a plugin of HDFS native interface to LStore command line interfaces (command line tool
can configure flexible read block size and stream buffer for read / write), data streaming
performance of the plugin should be much better than LStore fuse mount. In summary,
the main challenges of this work are (1) how to avoid data redundancy on HDFS side
once data already available on LStore side and (2) how to ease the effort of implementing
the plugin integration by choosing LStore fuse client interface or command line based
interface. Figure 9.2 illustrates the problem that we deal with of this work among Hadoop,
GPFS and LStore.

Our contributions are summarized as follows:

* We integrated a plugin between HDFS interface and LStore to provide regular input
/ output stream and other file system operation. The plugin can avoid data copying

redundancy between HDFS and LStore.

* We empirically verified our HDFS LStore plugin on in-house shared environment
HPC and standalone HPC. The performance of the plugin was compared with a
two current LStore client interface: LStore command line interface (ideal case) and

LStore fuse mounted client interface (baseline).

This work has not been submitted yet.
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Figure 9.1: Main problems for ACCRE cluster integrates HDFS with HPC file system.

9.2 Methods

Considering our previous effort on HadoopBase-MIP, moving forward to HPC envi-
ronment is reasonable to scale up the system and utilize HPC computation power. GPFS
is the current solution, which is expensive to maintain and scale up. LStore as a cheap,
distributed and geographically dispersed is ideally to use to integrate with Hadoop. The
physical storage unit of LStore can be a single hard drive or a single disk or a collection
of disks in RAID 6 array. The unit is called depot. The file is stored as block separately.
Similar with UNIX’s metadata mechanism inode [161], LStore uses a container called
ExNodes to store the file’s physical location, attributes etc, which provide a mapping from
LStore to physical data layer. For this preliminary work, we are not dealing or optimizing

underlying LStore system design. We designed, implemented and verifed the integration
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of HDFS and LStore first.

9.2.1 System Design

As we discussed above, our goal is to bypass the usage of LStore fuse mount client and
directly integrate HDFS interface with LStore command line tool. It can ease the effort
of input / output data stream between HDFS and LStore and further benefit MapReduce
throughput. Besides HDFS block size per read operation and the size of buffer for use in
sequence files is tunable, we can also customize data blocks size for each of split large file.
In HDFS, the block size is pre-set as 256 MB by default. LStore high performance com-
mand line interface is implemented in C language. The key component of this structure is
implement a Java Native Interface (JNI) to LStore client. For LStore side, we make a shared
wrapper library. A customized schema (LStore://) for LStore is registered in HDFS. For
Hadoop side, a class LStoreFilesystem is extended from org.apache.hadoop.fs.FileSystem,
and a class LStoreBaseFile defines file operation of open / close / seek / read / write / ap-
pend. Figure-2 illustrates the data loading workflow of a native call involving JNI. And

Table 9.1 shows the detail of each JNI call that weve implemented.

9.2.2 Experiment design

Currently there are two system metrics we care most: the throughput of (multiple) read
and the throughput (multiple) write. And there should be three test scenarios: (1) LStore
command line interface, which is ideal case (2) LStore fuse client interface, which is the
baseline and potential worst case and (3) HDFS LStore plugin interface. Due to the limit
of test machines memory and buffer setting on LStore command line interface, there are
maximally 8 files with size of 10 GB can be sequentially read simultaneity. Thus 8 identical
files with size of 10 GB are pre-write to both dedicate network connected depots and in-
house shared LStore. Moreover, files loading via in-house standalone depot are an ideal test

cases since it is not shared publicly. For in-house shared LStore, it is real world verification
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Figure 9.2: JNI implementation workflow via HDFS to LStore

since the depot belongs to routinely on-going CMS research, which is shared by multiple
groups on campus. For write performance, we only test on in-house HPC !.

Specifically, 8 sets of multiple reads are performed for each of three test interfaces.
Namely we perform multiple read range from 1-8 files simultaneously. Similarly, writing
test are based on performance of in parallel loading same file on test machine and output
identical 1-8 files to LStore. For fuse scenario, cleaning cache is necessary before each set

of test. We empirically set read buffer size for HDFS as 80MB (same with LStore command

'For dedicate connection scenario, the depots heterogeneous clustered, some of them are old and slow.
So the write performance would be random which depends on which depots that the file would be put on. It
would result 50% read degradation if the file is written to old depots with poor drive. In order to get consistent
write performance, we ignore the write testing to dedicate depot sets
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Table 9.1: JNI implementation from HDFS to integrate with LStore command line tool’s

core interface

JNI

Description

LStore_activate

Start LStore file system when loading the shared library

LStore_deactivate

Shutdown LStore file system

LStore_delete

Remove a file with optionally recursive the path

LStore_fstat

Parse the returned file attributes and stores them in a customized
data structure for Hadoop FileStatus object

LStore_fstat_iter

Returns a fstat iterator

LStore_fstat_iter_next

Returns the next iterator object

LStore_fstat_iter_destroy

Destroys a fstat iterator

LStore_mkdir

make a directory in LStore

LStore_rename

Rename an object

LStore_open

Opens an existing targeting object

LStore_close

Closes an existing targeting object

LStore_read

Read data from the target

LStore_write

Write data to the target

LStore_append

Write data to the target
(append mode)

LStore_seek

Set the current file position

LStore_getpos

Get the current file position

line interface), and set files io.file.buffer.size in Hadoop core-site.xml as 8MB. The rest of

parameters setting in Hadoop will be available soon at https://github.com/accre/LStore/.

9.2.3 Hardware

The Hadoop package version we use is 2.7.5. LStore version is 0.5. Because this

work focus on evaluating the data read / write performance of sequential files via HDFS

LStore plugin integration, only single machine as Namenode and Datanode is enought for

HDFS. The test client machine is deployed with twelve Xeon(R) ES520 CPU cores with

23.5 memory 23.5 GB available. We tested LStore uses single LServer with 80 depots on

ACCRE, which are shared by multiple cients; and 9 depots are also set within ACCRE

using dedicate connection for testing ideal scenairo. Each depot is connected with a 10

Gigabit WAN Ethernet.
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9.3 Results
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Figure 9.3(A) and Table 9.2 present standalone read performance via three interfaces
when data retrieval incurs long distance transfer, which is a ideal scenario since the depot
bandwidth is only shared by us. With the total number of files that are simultaneously
read increased, the read throughput is decreased, which is our expected result. We can also

see that when reading more files in parallel, the performance difference between LStore

Figure 9.3: Full empirical experiment result summary.
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command line interface and HDFS LStore plugin are moderate. Although LStore command
line scenario represents the ideal case, some of read performance are a bit worse than
HDFS LStore plugin. It is acceptable because of the variation of network environment. In
overall, HDFS LStore achieves 52%-73% throughput multi-file read improvement when it
compares with corresponding fuse mount.

Similarly, Figure 9.3(B) and Table 9.2 present in-house HPC LStore read performance
for three different data access interfaces. As a real world test environment, we can see the
performance LStore command line interface and HDFS LStore plugin tie to each other.
LStore command line interface seems to involve more variance within same test case, but
it needs further to verify. As the aspect of HDFS LStore plugins performance versus fuse
mount client, HDFS LStore plugin outperform with 219% - 280% throughput improve-
ment.

Finally, for write performance through in-house LStore, the result is displayed in Fig-
ure 9.3(C) and Table 9.2. Fuse mount client write performance seems to saturate around
45 MB/s when writing more than five files simultaneity. HDFS LStore plugin employs
57% - 102% better improvement than mountable fuse interface. The write performance
of LStore command line tool and HDFS LStore plugin are still comparable among each

sub-test cases.

9.4 Discussion and Conclusion

When moving Apache Hadoop ecosystem to HPC environment, cost efficiency is still
an important factor since Hadoop aims to use commodity hardware and network, while
HPC cluster usually deploys with expensive file system such as Isture and GPFS. As an
alternative cheap HPC file system, LStore brings us an opportunity to integrate HDFS with
such a distributed, scalable and geographically dispersed storage. In this work, we in-
troduce how the integration is implemented between LStore command line interfaces and

HDFS, which bypass LStore fuse client due to its limited chunk size per read / write oper-

158



Table 9.2: Full empirical experiment result summary for mean+standard deviation read
write throughput performance. Two tails t-test is calculated between HDFS LStore plugin
(the reference) and other two interfaces. ”*” means statistically difference with p-value
<0.05.

mean +/- SD (MB/s)
Test Total LStore | yiyFS LStore | LStore
scenario number command plugin (ref) fuse client
of files line tool

1 448 +/-2.3 * 392 +/- 13 333 +/-79 *
2 307 +/- 4.6 * 285 +/- 6 187 +/- 0.9 *
Read from 3 228 +/- 5 * 218 +/- 5.6 135 +/- 1.3 *
dedicate 4 183 +/-2.8 * 176 +/- 4 107 +/- 0.9 *
depots 5 152 +/-2.7 * 146 +/- 8.6 88 +/- 0.9 *
in parallel 6 127 +/- 3.5 * 125 +/-5.4 74 +/- 0.9 *
7 112 +/- 1.8 * 110 +/-5.2 64 +/-0.9 *

8 97 +/- 3.6 96 +/- 4.2 56 +/- 0.8 *

1 185 +/- 3.7 * 192 +/-2.2 92 +/-7.7 *

2 178 +/- 28.5 181 +/- 20 56 +/-2.9 *

Read from 3 137 +/-29.8 % | 155 +/-11.5 43 +/-2.4 *
in-house 4 118 +/-30.1 * 134 +/- 7.8 41 +/- 1.3 *
HPC cluster 5 112 +/-17.5* 118 +/- 6.2 34 +/-0.9 *

in parallel 6 103 +/- 16.1 103 +/- 15.1 20 +/-1*
7 95 +/- 11 94 +/- 9.6 27 +/-1.9 *

8 85 +/- 8.7 85 +/-7.5 22 +/- 0.6 *

1 101 +/- 21.7 102 +/- 33.4 97 +/- 8.1

2 114 +/-5.6 119 +/- 14.9 73 +/- 6.6 *

Write to 3 104 +/- 14.6 110 +/- 8.1 60 +/- 3.9 *
in-house 4 101 +/- 1.4 105 +/- 3.4 52 +/-1.1%
HPC cluster 5 92 +/-8.2 93 +/-11.6 48 +/- 1.3 *
in parallel 6 86 +/- 5.7 85 +/-3.1 43 +/-1.4 *
7 77 +/- 8.9 77 +/- 5.6 43 +/- 1.7 *

8 70 +/- 13.5 72 +/-9 46 +/- 0.5 *
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ation. Our empirical experiment result verifies the HDFS LStore data loading efficiency.
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Chapter 10

CONCLUSION

Billions of magnetic resonance imaging (MRI) and computed tomography (CT) images
on millions of individuals are currently stored in radiology archives [107]. These imaging
data files are estimated to constitute one-third of the global storage demand [108], but are
effectively trapped on storage media.

In this work, we first demonstrated how medical image processing can share the benfit
of using cloud (AWS) to deploy large dataset processing when user short of computa-
tion resource. We then introduce the HadoopBase-MIP, which is a data colocation frame-
work for dealing with big data problem. Specifically, the problem is about high volume
of unstructured / small medical image files. The medical image computing community
has heavily invested in algorithms, software, and expertise in technologies that assume
that imaging volumes can be accessed in their entirety as needed (and without substantial
penalty). Despite the promise of big data, traditional MapReduce and distributed machine
learning frameworks (e.g., Apache Spark) are not often considered appropriate for “tradi-
tional” / “simple” parallelization. In this paper, we demonstrate that HadoopBase-MIP can
be used in place of a PBS cluster (e.g., Sun Grid Engine) and can be offered as a cloud-
based service. Moreover, with our approach, even a naive application of HBase results in
improved performance over NAS using the same computation and network infrastructure.
We proposed theoretical way to better understanding the feasibility of HadoopBase-MIP
and developing more applications with different scale and levels of analysis including a
novel multi-level incremental quality assurance framework. During the development of
HadoopBase-MIP, we found a new MRI contrast via doing big data non rigid registra-
tion averaging that enhanced deep brain structures. Rather than validate each boundarys’

correctness in BDRE due to difficulties of direct visualization of our target structures, we
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investigated the usefulness of BDRE for the multi-atlas (MA) segmentation on those deep
brain structures (thalamic nuclei and hippocampal subfields) were assume only T1 images
were available. And finally, we presented a preliminary plugin framework that integrate
HDFS with LStore, where LStore is a HPC based distributed, scalable and geographically

dispersed file system.

10.1 Summary of Ph.D. Contributions

* Integration of the Java Image Science Toolkit with Amazon Web Service

1. For the Java Image Science Toolkit (JIST) to Amazon Web Service (AWS)

2. Completed cost/benefit analysis of a pipeline that can be easily parallelized and re-
quired memory that would limit the processes to serially execution only on a local

lab machine.

* HadoopBase-MIP: A data colocation grid framework for big data Medical Image Process-

ing using Hadoop & HBase

1. Implemented a novel data colocation strategy for improving latency and throughput

of processing.

2. Defined Big Data by comparing the performance between HadoopBase-MIP and a

traditional cluster with Sun Grid Engine in theoretical and empirical way.

3. Developed MapReduce templates for different types of analysis: single image pro-
cessing; group based analysis; large dataset summary statistics (also described an

optimal criterion to find the splitting chunk size of the large dataset).

4. Implemented an off-line load balancer to better allocating data in a heterogeneous

cluster for processing efficiency.
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5. Designed a HBase Table design scheme to enable fast data query and boot up the of

MapReduce performance.

6. Developed a simulation engine suite to estimate the performance of running medical
image processing on traditional cluster (centralized storage) versus the HadoopHBae-

MIP (decentralized storage).

7. Designed and implemented a semi-automated, real-time quality assurance (QA) model
monitor and checkpoint framework which aims to optimize the performance of med-
ical image processing by finding anomalies in the first level processing in a timely

manner thereby expediting the entire multi-level analysis.

* Big data non-rigid registration-based image enhancement improves deep brain structures

1. Discovered a new contrast that enhance the contrast of deep-brain structure by large
volume of fast non-rigid registration. The target structures were two deep brain struc-

tures: thalamic nuclei and hippocampal subfields.

2. Explored the usefulness of proposed new contrast imaging modality by multi atlas

segmentation.

* Integrate Hadoop Distributed File System with Geographically Distributed High Perfor-

mance File System

1. We integrated a plugin between HDEFS interface and LStore to provide regular input
/ output stream and other file system operation. The plugin can avoid data copying

redundancy between HDFS and LStore.

2. We empirically verified our HDFS LStore plugin on in-house HPC and long distance
geographically WAN connected remote HPC cluster. The performance of the plu-
gin was compared with a two current LStore client interface: LStore command line

interface (ideal case) and LStore fuse mounted client interface (baseline).
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10.2 Future Work

First of all, there is an open task of writing a summary journal paper for HadoopBase-
MIP is necessary, which should introduce all features and innovations with system design
strategies.

For deep brain enhancement via BDRE, we would like to verify different medical image
registration tool with different number of atlases for big data averaging. We would like to
evaluate the usefulness not only for Multi-Atlas segmentation, but also for deep learning.
Our current effort shows that to make a correct verification, it needs to be very careful to
align the enhanced image affine correctly to original target space. Of course, a cleverer
alignment strategy is ideal rather than manual checking.

The performance of whole brain segmentation is improved by pre-registering all train-
ing volumes to 305 MNI template, which is a routinely steps. However, there is no such an
abdomen template like MNI space template for brain currently. Creating a standard tem-
plate for abdomen is challenging due to high variability of structure in abdomen area. Our
goal is to create an unbiased abdomen template as a reference for deep learning network -
which is a very popular recent trend for doing medical image segmentation - to improve the
accuracy of learning process. Of course, without a promise of using fast non-rigid registra-
tion tool and availability of big volume of abdomen data, this work is not achievable. We
have successfully configured an automatic cropping as first pre-processing step developed
in [162, 163]. Then registration would be based on cropped images. We have found crop-
ping help better registration but is still not good enough. We are currently using a classic
3D Unet to verify the performance of potential template, it seems that cropping leads to
better whole abdomen segmentation, unfortunately, potential template makes result worse.
Some manual corrections are needed for correct registration and we need to further work
on this promising project.

Another innovation should be easy to verify, namely using BDRE mechanism to en-

hance a group of abdomen atlases. Those enhanced images would be trained as second
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channel for helping whole abdomen organ segmentation.

Finally, for HDFS LStore integration project, we have not fully tested the MapReduce
types of jobs performance using LStore as backend, our next step is to setup a multi-nodes
commercialized cluster for HDFS and compare the performance of between using local
storage and LStore plugin. Since HDFS LStore integration has been implemented, more
empirical tests should be done to find the bottleneck and challenging problem. Another
future work is to seek a mapping from HDFS Namenode to LStores Exnode, which should
give us several optimizing opportunities to design a HDFS LStore customized fault tolerant
and replication strategy for large dataset processing. Due to HDFS and LStores namespace
is easily exploded by large small volume of data, deploying HadoopBase-MIP to deal with
medical image processing in HPC environment is challenging but optimistic since it uses
HBase, which is built upon HDFS and deals with large volume of small files. Finally, our
ultimate goal is to propose a cheap solution of using LStore to replace GPFS solution with-
out experience a lot of performance loss for Hadoop system. Finally, we fully understand
LStore is an existence solution available for us to utilize and optimize, my ultimate goal
is to employ the power of domain specific language modeling from my previous expertise
in [164],to provide a generic integration from HDFS to any high performance computing

storage.

10.2.1 Dissertation time line

Finally, here is a summary of my thesis’ tasks and research time line.

Task 0: Experiment with medical image analysis in cloud - chapter 3

Task 1: Data colocation grid prototype for Medical image processing-as-a-service -

chapter 4

Task 2: Establishing theoretical bounds - chapter 5

Task 3: HadoopBase-MIP optimization -chapter 6
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» Task 4: HadoopBase-MIP enablers for optimzing traditional multi-level Medical im-

age analysis - chapter 7
» Task 5: Big data registration based image enhancement - chapter 8

* Task 6: Integrate HDFS with LStore (a geographically distributed high performance

file system) - chapter 9

Shunxing's Research Timeline

2015 2015 2016 2016 2016 2017 2017 2017 2018 2018
summer fall spring summer fall spring summer fall spring summer

task-0

task-1

task-2

task-3

task-4

task-5

task-6

Figure 10.1: Research timeline
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