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CHAPTER I 

INTRODUCTION: PROVIDING AWARENESS 

 

“Will it work?” This question, while seemingly very basic, is an abstraction of many concerns. 

Will the assumptions made during radiation testing prove to be consistent with the actual 

application? Will the environment degrade the components to the point where the system fails? 

Will any anomalies occur that stress the system to the point of failure? Knowing how the system 

will behave in the environment of interest allows for the appropriate mitigations to be 

implemented.  All systems have limitations and circumstances under which the system will fail, 

and understanding these limitations and circumstances enables the use of the system in an 

intelligent manner.  This work presents a framework for providing quantified, evidence-based 

answers to the likelihood of success for system functionalities using Bayesian analysis to 

incorporate multiple information sources. This work focuses on a specific type of system in a 

specific environment: a robotic system in a radiation disaster scenario, exploring the question of 

whether or not the robot will be able to complete the desired tasks in the application environment. 

However, many of the conclusions reached in this work are applicable to a variety of scenarios 

tracing subsystem changes to the system level. 

Providing quantified reliability information spanning multiple levels of an electromechanical 

system hierarchy is a challenging problem because it stresses the abstractions made at each level 

of the hierarchy, such as the hierarchy shown in Figure 1. The design and modeling of complex 

systems heavily utilizes abstraction – breaking one large problem into smaller and smaller 

problems such that the necessary information for a particular level of the design is maintained and 



2 

the additional complexity of other levels is hidden. This approach has enabled the phenomenal 

progress of electronic design, with countless components available commercially, each solving a 

specific problem. In order for abstraction to work, assumptions must be made about the behavior 

of abstracted components. These assumptions can take many forms, such as datasheet 

requirements (e.g. the input voltage must be between 4.8 V and 5.2 V for a 5 V microcontroller). 

The stricter the requirements are around the individual subsystem components, the more difficult 

the design becomes. 

 

Figure 1. Functional diagram of abstracted robotic system. 

 

The impact of radiation on electronics physically occurs at the device level, impacting each 

transistor, diode, or oxide independently. In the radiation effects literature, the focus is primarily 

on the impact on individual devices or components, because this type of insight is most widely 

applicable. However, the combined impact of this radiation can manifest itself at the component, 

sub-system, or system level, yielding complex responses that are potentially difficult to trace back 

to their source. The number of transistors in a modern robotic system can easily climb into the 
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billions, making the simulation of the entire system at the device level unrealistic even with modern 

computing resources.  When modeling the full complexities of a system is not feasible, what is the 

next best that can be done? Deterministic models can be used where the physics is known and 

modeled in detail, and probabilistic modeling must be used when modelling processes that have 

significant variation and the models are driven by experimental data. This scenario defines the 

question addressed by this work: is it possible to include probabilistic degradation information in 

a model of the system that allows for meaningful action to be taken? 

Rather than focusing on building highly detailed models of the radiation degradation of specific 

robots, or performing exhaustive component tests, this work focuses on using a mix of experiments 

and modeling to develop a framework for answer the following questions: will the system work, 

with what confidence, and what improvements would be most beneficial. These questions can be 

answered through tracing subsystem effects to the system level, measuring quantities of interest 

called system health indicators, and Bayesian analysis techniques to merge all available 

information.  

The work is broken into four chapters, with the first chapter presenting a case study of 

characterizing the degradation of specific components, tracing those effects to the system level, 

and identifying key parameters that provide information about the health of the components.  The 

second chapter presents a novel technique for measuring and forecasting the health of a complex 

integrated circuit, focusing on microcontrollers. The third chapter presents a framework based on 

Bayesian statistics for designing experiments, quantifying the probability of successful operation 

for key functions, and identifying areas where the most design improvement can be made using 

discrete categories. The fourth chapter presents implementation of the Bayesian analysis 

techniques using continuous distributions for improved modeling attributes. Each chapter 
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corresponds to a published journal article, and contains expanded detail not included in the journal 

publication. 
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CHAPTER II 

BACKGROUND: RADIATION EFFECTS FROM TRANSISTOR TO SYSTEM 

 

This work weaves together topics ranging from device physics to robotics. In the following 

background sections, the goal is to draw out key information that is unique to this work. General 

review of relevant topics in extensive detail is cited where appropriate. 

Radiation and Robotics 

Robots are desirable in situations where the environment or task is too dangerous or difficult for 

human workers. An overview of the major deployments of robots for disaster scenarios, including 

radiation disasters such as Fukushima-Daiichi is found in [1]. The book reaches several general 

conclusions about disaster robotic systems. First, the time between the disaster and the arrival of 

disaster robots is critical for effective mitigation, with the first 24-48 hours playing an especially 

important role in limiting the effects of a disaster. This suggests that commercially available 

robotic systems designed for a wide variety of circumstances will play an important role, rather 

than custom designed robots for a specific disaster (although custom designs can come into play 

during the longer cleanup phase). Second, user error is the primary source of malfunction/failure, 

with the mean-time-between-failure on the range of 20-100 hours. The book suggests that 

additional electronics and automated control termed assistive autonomy is necessary to reduce the 

likelihood of user error. Robots will continue to expand their use of electronics. 

A comprehensive analysis of the impact of radiation on robots was completed in 1997 by Sandia 

National Laboratories [2]. The Sandia efforts provide an important foundation for work at the 
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intersection of robotics and radiation. The report provides an analysis of the different radiation 

environments robots may encounter, the impact of different types of radiation, the test results for 

key robotic components, and includes case studies for multiple robotic systems. 

The report identifies total ionizing dose (TID) from gamma radiation as the main source of 

radiation degradation. Neutron, alpha, or other types of radiation are less prevalent with the 

exception of interaction directly with nuclear fuel. The general focus of the analysis is on 

identifying a level to which the component operates successfully (e.g., the sensor was within 

specification until 100 krad(SiO2)).  

The general conclusions that the report identified are that the electronics are the most sensitive 

components, degrading significantly before most other materials (Teflon and similar polymers are 

also very sensitive). This conclusion guides the focus of this proposals focus on the electronic 

components as the critical components to be modelled in the robotic system. 

Significant emphasis is placed on testing sensors in the Sandia report, because while other 

component can be shielded from radiation, the sensors must be exposed to the environment to 

perform their function. 

A variety of post-radiation-disaster environments are possible, but they all share several 

characteristics: the radiation field can be variable over space and time, the physical environment 

can be highly unstructured and unpredictable (rubble, debris, etc.), other extreme environment 

elements may exist (dust, temperature, smoke), and communication bandwidth may be limited. 

These factors pose significant challenges to accurate sensing and interpretation of the robot 

environment - a key capability in order for robots to be able to perform useful work at a post-

nuclear-disaster site.  
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Nuclear Power Robotics 

Other work involving robots and radiation focuses on the maintenance of nuclear power plants and 

the handling of nuclear waste, with a detailed analysis of the approach to radiation and robotics 

available in [3]. These specific applications are highly structured and can support custom hardware 

and regular maintenance using systems designed with the radiation environment from the 

beginning. Significant work exists in developing these types of robotic systems, with an emphasis 

on shielding the sensitive components from the radiation sources. The “split” technique, separating 

out all the components that can be separated behind shielding, is commonly used in the nuclear 

power industry. Other techniques include replacing parts on a scheduled basis. Custom designs 

using radiation hardened components require significant design effort and can be prohibitively 

expensive. 

Fukushima –Daiichi 

The Fukushima-Daiichi natural disaster and subsequent nuclear power incident in March 2011 

created a dangerous work environment for human operators, including possible high radiation 

exposure levels and the requirement to wear protective suits resulting in heat and mobility issues 

[4]. Robotic intervention was used where possible, including surveying by terrestrial and aerial 

based robots or drones [4]. The ground-based robots encountered a radiation environment 

dominated by gamma radiation, potentially producing significant TID [5]. In the early stages of 

disaster survey and remediation, the robots used for intervention primarily consisted of COTS 

components, which went through some TID screening but not a stringent hardness assurance 

process [5], a development process similar to low-cost small satellites. Currently, custom-designed 

robots for remediation tasks are at work at Fukushima in what is one of the largest engineering 
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tasks in the world, scrubbing and decommissioning the contaminated areas from the disaster [6][7]. 

In high dose areas, the TID response is critical to the number and quality of missions the robot can 

perform before being decommissioned or reconditioned. Awareness of the TID response of the 

system can guide the choice of missions performed based on available functionalities or identify 

high value improvements to the system. Recent efforts at exploring the inside of the reactor rooms 

has led to unspecified failure by a custom-designed robotic system [8]. It is inconclusive if 

radiation-induced degradation is the source of failure for this instance, but radiation degradation is 

a potential candidate for causing the failure. 

The radiation environment in a reactor accident or post-explosion scenario can consist of a mixture 

of alpha, beta, gamma, and neutron emitters [8-10]. The contribution of these particles to the TID 

deposited in the oxides of the sensor electronics depends on the distribution of radioactive material 

in the environment, the penetration of the particles and the capture cross-sections of the materials. 

Gamma rays are of particular concern because of their occurrence in relevant nuclear decay chains, 

high penetration range, high dose rate, and persistence over long time scales [8-10]. It is difficult 

to track the effects of the accumulated dose on the electronics in real time in the field, due to the 

unstructured environment’s highly variable dose rate and the temperature-dependent recovery of 

damage due to annealing processes. 

Total Ionizing Dose and Electronics 

Gamma-induced TID affects CMOS and bipolar electronics, as well as a variety of other materials 

used in this environment [2]. Fundamentally, photon or particle radiation deposits energy that 

creates electron-hole pairs in the electronic materials. The most significant effects occur in the 

insulators accompanying the semiconductors, such as gate or field oxides in MOS devices. 
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Electrons exit the insulators quickly, while holes do not, because of their low mobility relative to 

the electrons, leading to the build-up of positive charge with time and accumulated dose [9], as 

illustrated in Figure 2.  

 

Figure 2. Band diagram illustration from [10], showing how ionizing radiation leads to fixed 

charge trapped in SiO2 and the accumulation of fixed charge at the Si/SiO2 interface. 

 

This oxide-trapped charge results in changes in the electrical characteristics of the semiconductor 

devices, for example, changes in threshold voltage and increased leakage current in CMOS 

transistors. Fabrication-level hardening techniques for integrated circuits exist, but most robotic 

sensors are designed using commercial off the shelf (COTS) electronics for cost, availability, and 

schedule reasons, which are guaranteed to meet only a range of electrical parameters prior to any 

exposure to radiation. In robot applications, the term “sensor” often refers to an entire subsystem, 

including signal processing electronics, voltage regulation, and communication ports, rather than 

just the actual transducer itself. The effects of radiation on a COTS sensor assembly in a gamma 

TID environment are a combination of the radiation effects on the physical sensing element and 

the radiation effects on the supporting electronics performing the signal processing. Dose rates for 

nuclear disaster environments are inherently highly variable, due to the different types and 
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severities of accidents possible and the inverse-square law relationship between dose rate and 

distance from the radiation source. Field reports from facilities surrounding the Fukushima-Daiichi 

nuclear plant showed dose rates as high as 6.5 rad/hour, with much higher dose rates anticipated 

as the distance from the reactor decreases [11].  

Testing electronics to evaluate the radiation response is a complicated practice, with several 

industry and military standards in place [11][12][13]. In general, it involves simulating the 

radiation environment using a source that can produce similar radiation damage in a much shorter 

time period. This can be accomplished by using high flux sources, but for certain applications dose 

rate effects must be considered.  For all experiments performed in this work, to simulate a nuclear 

disaster radiation environment, a 660 keV Gamma Cs-137 source is used.  

Hardness Assurance 

Traditional hardness assurance is centered around assurance, guaranteeing that the electronic 

components and subassemblies will remain within specification for the desired mission. This is a 

necessary and appropriate goal for many applications. The primary challenge to this approach is 

the difficulty in incorporating existing commercial solutions and subassemblies whose radiation 

tolerance is unknown. The commercial electronics market is extremely large and continuously 

investing significantly in research and development. A detailed review of hardness assurance 

approaches can be found in [14]. 

System Reliability and Bayesian Statistics 

System reliability is a broad field, encompassing many areas of specialization and approaches. A 

general overview of the approach to system design and system reliability can be found in the 
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NASA Systems Engineering Handbook [15]. The document covers a variety of topics, with some 

of the key points included understanding which sub-systems are most vulnerable in the system and 

taking steps to minimize and tolerate variability in sub-systems. 

Understanding the rate of occurrence and the propagation of discrete faults throughout the system 

is one area of focus in systems reliability. An in-depth analysis of the approach to modeling 

discrete faults in a qualitative manner can be found in [16]. This approach is fairly mature, but 

does not apply directly in TID environments because there are potentially large amounts of 

degradation rather than binary success/failure. 

Bayesian networks provide a method for modeling continuous quantities, such as a system 

parameter that degrades with TID, by using probability distribution which can be binary, discrete, 

or continuous. A Bayesian network is a graphical representation of the relationships between 

different probabilistic quantities. Bayesian networks draw their name from the application of 

Bayes’ theorem (stated in Eq. (1)) which gives a method for calculating the posterior probability 

of occurrence of an event A given that event B has occurred (P(A|B)), from the likelihood of the 

occurrence of event B given that event A has occurred (P(B|A)), and the prior probability of the 

events A (P(A)) and B (P(B)). 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)⁄      (1) 

 

Bayesian statistics have been applied to total-ionizing dose and single-event effects previously in 

[17][18][19][20], with a focus on the statistics of individual components. The papers cited contain 
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a detailed discussion of the origin of Bayesian statistics and the benefits of applying Bayesian 

statistics in the radiation effects context. This work builds on the Bayesian statistics approach, 

applying the techniques to hierarchical systems consisting of multiple interacting components. 

A simple four node example Bayesian network is shown in Figure 3,adapted from [21], where 

each node represents some random variable. The graphical representation is a directed acyclical 

graph (DAG). While the arrows have a direction, there can be no cycles (or feedback loops). The 

arrows represent a correlation or causal link, and the nodes have a distribution of conditional 

probabilities for being in the possible nodal states, with the probabilities for all the states summing 

to 1.  

 

 

Figure 3. Four node Bayesian network from [21] Node Z is dependent on nodes X and Y, and node 

Y is dependent on node W. 

 

Bayesian networks have the advantage that each node is only dependent on the nodes directly 

linked to it. In other words, each node is conditionally independent from its non-descendants, given 

its parents [21]. Without the network structure, the joint probability can be calculated as the 

product of conditional probabilities using the same notation as example (1): 

              𝑃(𝑊,𝑋, 𝑌, 𝑍) = 𝑃(𝑊)𝑃(𝑋|𝑊)𝑃(𝑌|𝑊, 𝑋)𝑃(𝑍|𝑊, 𝑋, 𝑌)                       (2) 
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With the network structure the calculations can be simplified, e.g.: 

𝑃(𝑊, 𝑍|𝑋, 𝑌) = 𝑃(𝑊|𝑌)𝑃(𝑍|𝑋, 𝑌)                             (3) 

Similar equations can be written for the other nodes. By chaining the node equations together in a 

network and solving for the target value, the desired variable can be estimated, a process called 

Bayesian inference [21][22]. Bayesian statistical inference is a broad and expanding field, with 

appealing qualities for many disciplines. Fundamentally, it performs the same type of statistical 

inference as traditional techniques such as those found in [23], but Bayesian statistics also have 

many appealing properties for simulation and interpreting results. Notable properties include that 

the simulation results demonstrate ergodicity, meaning subsections of results are statistically 

representative of the results as a whole. Additionally, the Markov chain Monte Carlo techniques 

produce results for parameters that can be incorporated into other simulation tools. Detailed 

discussions of these properties can be found in [24][25][26]. 

Software packages exist for performing Bayesian inference on an arbitrarily large network [27]. 

Discrete Bayesian network computation packages such as GENIE [28] provide an easy to use and 

interpret environment and efficient computation. Continuous modeling packages such as PyMC 

[29] or BUGS (OpenBUGS [30], WinBUGS [31]) provide great flexibility but require additional 

effort in terms of computation and evaluating the goodness o 

f fit for the model and computational approach. Additional approaches such as dynamic Bayesian 

networks have been implemented for systems that undergo discrete state changes [32]. 

An extensive review of the historical development and popular algorithms for computing with 

continuous Bayesian networks is available in [33]. The general approach is to utilize properties of 

Markov chain theory and Monte Carlo techniques to calculate the posterior probabilities given the 
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evidence and the prior. Examples of Bayesian analysis for reliability applications are available in 

an excellent NASA primer for the use of Bayesian networks for reliability found in [33].   

The notation up to this point is used to describe discrete events. For continuous random variables, 

Bayes’ theorem takes a similar form, using continuous functions that describe probability 

distributions: 

𝑓(𝑎|𝑏) =
𝑓(𝑎)𝑓(𝑏|𝑎)

∫𝑓(𝑏|𝑎)𝑓(𝑎)𝑑𝑎
                      (7) 

Normal distributions are commonly used to describe part-to-part variability. The equation for the 

probability density function of a normal distribution is: 

𝑁(𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2                                  (8) 

Combining multiple normal distributions using Bayes theorem leads to analytically complex 

integrals such as Eq. 9 for only 2 continuous variables. 
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𝑑𝑎

                (9) 

Past work explores the use of the above equations in more detail for component hardness assurance 

[19]. This work will focus on the use of continuous variables and Bayes’ theorem for networks to 

predict system performance. Historically, analytically difficult integrals such as Eq. 9 have slowed 
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the adoption of Bayesian statistics for larger networks, where the number of variables can be 

significantly larger than two. Inference algorithms have been developed to solve these types of 

complex integrals efficiently, meaning the user only needs to design the network and interpret the 

results.  Monte Carlo methods are used to sample the desired distributions, specifically Markov 

Chain Monte Carlo (MCMC). The methods are available in multiple software packages, such as 

OpenBUGS [15] or PyMC (Python Markov Chain Monte Carlo) [29]. For this work, PyMC, a 

Python based implementation of the MCMC approach, is used. PyMC allows for straightforward 

integration with other simulation tools. The integration and sampling techniques use several 

properties of the Bayesian network to perform efficient computation on a multidimensional 

parameter space.  
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CHAPTER III 

TRACING RADIATION DEGRADATION  

 

The following content is an expanded version of an article that is © 2015 IEEE. Reprinted, with 

permission, from: 

Z. J. Diggins, N. Mahadevan, D. Herbison, G. Karsai, E. Barth, R. A. Reed, R. D. Schrimpf, R. 

A. Weller, M. L. Alles, and A. Witulski, “Range-Finding Sensor Degradation in Gamma 

Radiation Environments,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1864–1871, Mar. 2015. 

Introduction 

In a post-nuclear-disaster environment such as that of the 2011 Fukushima-Daiichi accident, robots 

are ideal to survey the environment and perform remediation tasks in areas where radiation levels 

are either unknown or unsafe for human occupancy. While full custom designs are necessary for 

operation near the core or handling nuclear fuel [34], commercial disaster robots are useful for 

rapid deployment in the surrounding facility [35]. The robots may need to be equipped with a 

variety of range finding sensors to combat different sensing challenges (dust, smoke, water vapor, 

etc.). Radioactive materials in the environment have the potential to affect the performance of the 

robot sub-systems. Range-finders and other sensors are especially vulnerable because at least a 

portion of the sensor must be exposed unshielded to the environment. Extensive research on the 

effects of total ionizing dose (TID) on semiconductor devices exist [9], [36], [37], showing that 

the TID that the sensor receives from the radiation environment has the potential to change the 

sensor transfer function, which is defined in this work as the mapping between the physical 
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distance being measured and the sensor output signal. Range-finder sensor failure due to total 

ionizing dose has been reported previously [38], [39], but the impact of TID on the transfer 

function while the range-finder sensor is still operational has not been investigated. In this work, 

three sensors that exploit different physical laws for range finding were irradiated, and their 

transfer functions were measured: the Parallax Laser Range Finder, the PING Ultrasonic Distance 

Sensor, and the Sharp GP2Y0A21YK0F Infrared Rangefinder. The sensors were irradiated using 

a 660 keV 137Cesium gamma source, and the sensor transfer functions were then evaluated across 

their specified distance ranges. The key contribution of this work is to determine not only a sensor 

failure point due to radiation, but to measure and analyze the degraded sensor signal before failure 

is reached.  

This work evaluates the degradation of rangefinders due to radiation typical of a nuclear disaster 

environment. A measurement technique for measuring the input-output transfer functions of each 

sensor is presented, and the results of the degradation for each sensor are shown. Furthermore, a 

diagnosis methodology is presented, allowing identification of which individual components in 

the sensor assembly produce the measured degradation. Additionally, implications of the 

degradation are evaluated, exploring how different types of degradation will affect system level 

performance of a robot performing mapping tasks in a nuclear disaster environment. 

Sensor Input-Output Relationship Degradation 

In a typical robotic application, a processor has a look-up table or similar algorithm to map a sensor 

output to a calculated physical value that will be used by the system for decision making. If the 

sensing element or supporting electronics are impacted significantly by radiation, the relationship 

between the physical distance being measured and the sensor output will change. This scenario is 
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the motivation for not just finding the total failure point but also measuring the degradation before 

failure. The goal of this work is to test this hypothesis and explore its implications. Figure 4 

illustrates the hypothesis for a theoretical range finding sensor, which relates the physical distance 

to the sensor output through a constant of proportionality divided by the distance. The left half of 

the figure shows the sensor’s mapping between the physical phenomenon (distance) and the sensor 

output (voltage). The black curve is the pre-rad value, which would be stored in a system processor 

and used to generate a calculated physical value, as shown by the right half of the figure. The 

orange curve is a hypothetical mapping after the sensor has received a given amount of TID (the 

sensor is still operating but in a degraded state), which would result in a different calculated 

physical value.  

 

Figure 4. Notional example of degradation in a theoretical rangefinder. The degraded post-rad 

transfer function produces an incorrect calculated value when inferred from the system processor 

pre-rad look-up table. 
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Before irradiation the calculated distance (Xc1) will be close in value to the actual physical value 

(Xp1), but after irradiation the calculated value (Xc2) will potentially differ significantly from the 

actual physical value (Xp1). Different distortions in the mapping are possible due to the interaction 

between the sensor sensing element and signal processing electronics. The following sections 

present a method to measure the shape and severity of the degradation of environmental sensors 

before complete failure in post-radiation-disaster environments and explore the implications of the 

degradation. 

Experimental Details 

Three rangefinders using different physical principles for sensing were investigated. Although all 

the rangefinders measure distance, the physical output variable is different in each case. The 

Parallax Laser Range Finder uses a visible laser and a CMOS camera array to make a triangulation 

measurement - the output is the camera array column that is the center of the reflected illumination. 

The PING Ultrasonic Distance Sensor uses sonar time of flight - the output is a digital pulse whose 

length is the time it takes for the sound to reach the target and return. The Sharp GP2Y0A21YK0F 

Infrared Rangefinder uses a position-sensitive detector (PSD) and an infrared (IR) light emitting 

diode (LED). The distance between the sensor and the target changes the position of the reflected 

IR spot on the PSD. The PSD signal is processed through analog circuitry – the output is an analog 

voltage inversely proportional to the distance to the target.  
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Figure 5. Photograph of the three types of rangefinders tested on the mount used for measuring the 

transfer functions. From top left clockwise: IR rangefinder, sonar, laser rangefinder. 

 

 

Figure 5 is an image of the sensors used. These three devices were chosen because of their different 

levels of complexity, different modes of output, and different physical sensing mechanisms. The 

IR sensor consists of a single integrated circuit and the infrared emitter/receiver pair, functioning 

as an entirely analog device. The sonar is more complex, using a microcontroller to supervise the 

start and stop of a sensing pulse, consisting of a mixture of analog and digital components. The 

laser rangefinder is entirely digital, making discrete measurements and communicating through a 

serial bit stream. The three sensors represent a large class of sensors that could be used for robotic 

range-finding, and the architectures are similar to those used in more complex rangefinders such 

as scanning laser rangefinders. 

For this work, each sensor was tested as it would be deployed on a disaster-mitigation robot. The 

entire sensor assembly including the supporting electronics was irradiated with no shielding. For 

robotic applications, weight and ease of integration are important, making commercial unshielded 



21 

sensors the logical choice. If the sensor designer is making a custom radiation hardened sensor, 

potentially the radiation response of only the transducers is of primary interest such as in [40]. In 

this case, the transducer can be irradiated to dose steps by itself and then inserted into a 

measurement system for characterization. 

A test mount for measuring distance with all three sensors at the same time was designed to make 

variations in sensor and target positioning minimal (less than 0.3% of angle error and less than 1 

mm of target positioning error were achieved). A 137Cs source, was used for all irradiations; the 

660 keV gamma rays are representative of the environment and will penetrate the sensors without 

significant attenuation [38]. 

All parts were exposed to specified TID intervals and then removed from the irradiation chamber 

and placed on the mount to measure the transfer functions as illustrated by Figure 6. The sensors 

were powered on during irradiation and placed in a standby mode. The time between irradiation 

and measurement was minimized to reduce any impact of room-temperature annealing on the 

measurement. 

 
Figure 6. Test apparatus used to measure input-output transfer function for each sensor. The 

mounting points were designed for highly repeatable measurements (measurements repeatable to 

within 0.5%).  
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The sensors’ measured pre-irradiation transfer functions are shown in Figure 7. These pre-rad 

values are used in a lookup table as an inverse function to calculate measured distance versus 

actual distance for some of the following plots, as they would be used in a typical robotic control 

system. 
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Figure 7.  Measured pre-irradiation transfer function for the three rangefinders. Each sensor 

maps the physical phenomenon (distance), to a circuit level output (serial bit stream for laser 

rangefinder, digital pulse length for the sonar, and analog voltage for the IR sensor). 

 

 

Fig. 5 
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Results 

Figure 8 shows the transfer function of the laser rangefinder versus dose, with the pre-irradiation 

curve being placed at TID = 0 krad(SiO2) (far right side of the 3-D plot). Three instances of the 

sensor were tested, all showing the same results. The laser rangefinder showed no degradation 

until an abrupt failure at 8 krad(SiO2). Once the sensor failed, it did not respond to serial 

communication requests, which is displayed as a sensor output of zero on the plot. Follow-up tests 

performed on the sensor components indicated that the failure was due to the microcontroller that 

processed the camera image. This type of failure mode occurs at a low TID level with no indication 

of upcoming failure in the pre-failure transfer functions. 

 

Figure 8. Transfer function for laser rangefinder for increasing TID. The plot shows the 

relationship between the serial output stream and distance for each TID value tested. Failure to 

respond is indicated as a sensor output value of 0 on the plot. Sensor shows no degradation until 

abrupt failure at 8 krad(SiO2). 
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Figure 9 shows the transfer function versus dose for the sonar rangefinder. The sonar rangefinder 

showed similar abrupt degradation, but with a region of variation in the transfer function before 

complete failure. This region, which begins with mild variation around 10 and ends with severe 

degradation around 15 krad(SiO2), presents a significant reliability concern, because the sensor’s 

output is different than the pre-rad curve for the same physical distance. Follow-up tests identified 

degradation in a charge pump power integrated circuit as the source of the initial degradation, and 

microcontroller failure as the source of the final failure.  

A version of this sensor from a different date-code batch had a different microcontroller 

subcomponent, and it showed total failure at 3 krad(SiO2). This difference was marked as a version 

number on the part, (but was not marked on distribution websites). This difference in radiation 

sensitivity of failure at 3 and 15 krad(SiO2) between two lots marked with the same part number 

highlights how much impact one subcomponent can have on the radiation hardness of a sensor 

assembly. Robot designers concerned about radiation hardness must take extra care when working 

with COTS sensor assemblies. 

The infrared (IR) rangefinder input-output transfer function versus dose shown in Figure 10 

exhibits non-monotonic degradation, and the sensor continues to be operational at 92 krad(SiO2). 

The shape of the surface is attributed to the combination of radiation effects in the IR lens, the 

position-sensitive detector, and the analog circuitry between the PSD and the analog output. Figure 

11 shows the ratio of the calculated distance to the actual physical distance using the pre-rad 

inverse transfer function and the post-rad sensor transfer function. This relationship is a measure 

of the error that the sensor variation causes at the robot system level. Each IR rangefinder tested 

showed degradation that was similar in its characteristics (non-monotonic) but had a different 

variation in its response surface.  
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Figure 12 shows the percent change in sensor output after 23 krad(SiO2) exposure for three 

instances of the IR sensor. Significant part-to-part variation in the degradation is observed. 

Figure 13 shows the same data as Figure 10, the IR sensor’s transfer function, including the transfer 

function after a 90 hour room temperature anneal, in a two-dimensional format. The room 

temperature anneal allows time for the generated holes to migrate, impacting the device’s response. 

The IR sensor anneals to a different calibration curve (compared to original pre-rad calibration 

curve) following 92 krad(SiO2) exposure. The figure clearly indicates the non-monotonic transfer 

function change with dose. The characteristics of the degradation make recalibrating the sensor 

with a new look-up table at the new dose rate challenging, because if the accumulated dose and 

annealing are not accurately calculated, the estimate could be off significantly. 
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Figure 9. Transfer function for sonar rangefinder for increasing TID. The plot shows the 

relationship between the time for the echo to be detected and distance for each TID value tested. 

Failure to respond or the echo exceeding a maximum time is indicated as a sensor output value 

of 0 on the plot. 
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Figure 10. Transfer function for IR sensor for increasing TID. The plot shows the relationship 

between the sensor output voltage and distance for each dose level tested. Significant part-to-part 

variation was observed, and this plot serves as a representative case. 

 

Figure 11. Ratio of post-rad calculated distance to actual physical distance for an IR sensor for 

increasing TID. The error from radiation is not distributed uniformly over the range of the sensor. 
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Figure 12. Significant part to part variability was observed for different instances of the same part 

number IR sensor. A slice in the dataset after 23 krad(SiO2) exposure for IR sensor. Sensor 1 

corresponds to the sensor shown in Figure 10 and Figure 11. 

 

Figure 14 shows the change in power supply current for increasing TID. Supply current was 

monitored because it is known to vary with TID [41]. Significant changes in supply current for the 

laser range finder and sonar indicate TID effects in the supporting electronics. Additionally, the 

two highest dose levels for the sonar (blue curve) indicate the transition to severe degradation and 

total failure as shown in Figure 9. The transition in the laser range finder curve that occurs around 

8 krad(SiO2) corresponds to the rangefinder becoming non-operational. These correlations 

indicate that supply current has the potential to be used as a health status indicator for the 

operational integrity of some (but not all, i.e., the IR rangefinder) of the sensors considered here. 
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Figure 13. Transfer function including 90 hour anneal. The sensor anneals to a different transfer 

function than the pre-irradiation transfer function, complicating efforts to recalibrate the device by 

tracking the received TID. 

 

 

Figure 14. Supply current versus dose for the sonar and laser rangefinder. The degradation in 

supply current tracks strongly with the degradation in the input-output relationship of these 

sensors. The shifts are in different directions due to the supporting electronics. 
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Degradation Diagnosis 

It is desirable to diagnose the source of the TID-induced degradation in order to predict expected 

operation of a sensor in the field and to serve as a starting point for a radiation hardening by design 

approach. The sonar sensor was analyzed in detail and follow-up tests were performed to 

investigate the shape of the surface plotted in Figure 9. The IR sensor was not a good candidate 

for detailed investigation because the circuitry existed in a single integrated package, and the laser 

rangefinder degradation could be attributed to a single component (the microcontroller responsible 

for communication). However, the sonar sensor was an ideal candidate because it showed 

degradation before abrupt failure and internal circuit nodes were accessible for monitoring. 

Additional test points combined with a functional model of the sensor’s operation can be used to 

diagnose the source of the features in Figure 9. The subcomponents of the sonar that were 

susceptible to radiation degradation are listed in Table 1. Possible degradation effects were 

assigned to each subcomponent based on experience with radiation effects on similar parts. Two 

op amps are used in the assembly (one for transmitting and one for receiving), but since they are 

two instances of the same component they share an entry in the table. The functional model for the 

sonar sensor, shown in Figure 15, was developed from analyzing the structure of the sonar sensor. 

For this sensor, the functional distinctions corresponded with the discrete components on the 

circuit board, but for a more involved sensor consisting of multiple subassemblies the functional 

distinctions could contain multiple discrete components. 

An appropriate measurement was made on the sonar rangefinder board at each input/output 

transition in the functional diagram, for each dose step. For the voltage regulator and charge pump, 
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DC voltages and currents were measured. For the output of the op amp and piezo element, an 

oscilloscope was used. 

The test point information was analyzed, revealing a dip in the charge pump output voltage from 

-5 V to -4.3 V at the dose level corresponding to the shift in far distance sensing at about 

10 krad(SiO2). This voltage shift explains the first feature of Figure 9. The transmitting power of 

the amplifiers was reduced due to the degradation in the charge pump, resulting in a signal that 

was weaker, changing the characteristics of the reflection at distances approaching the limit of the 

sensor’s operation. At these dose levels all other subcomponents were operating with nominal 

characteristics. 

 

 

TABLE I 

POSSIBLE DEGRADATION EFFECTS FOR SONAR SUBCOMPONENTS 

SUBCOMPONENT DEGRADATION EFFECT 

Voltage Regulator 

 

Not provide correct voltage, consume excess power, not provide enough current 

 

Charge Pump Propagates regulator effects, does not provide correct negative voltage rail 

 

Op Amp Carries forward regulator/charge pump effect, reduced amplification, input offsets 

increase error 

 

Piezo Element Generates degraded signal (as result of degraded input signal), sensitivity of 

system is reduced 
 

Latch Change in latching threshold, sensitivity of system is affected 

 

Microcontroller Digital failure leading to non-responsive system, pulse generation characteristics 

change 
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Figure 15. Functional diagram of the sonar sensor. Test points were placed at each line of the figure 

to determine the source of the degradation. 

 

The second feature in Figure 9, the unstable behavior that begins after 14.5 krad(SiO2) corresponds 

to the combined degradation of the charge pump and op-amps. The latch, microcontroller, and 

piezo element all tested nominally, but the test points for the charge-pump showed a significant 

voltage deviation and the op amp produced an unstable output. Finally, the total failure of the 



34 

device corresponds to the microcontroller no longer starting the pulse train when prompted, 

indicating that the first stage in the sensor has failed. 

The approach of defining a functional diagram for the sensor, estimating possible failure modes, 

adding and monitoring test points to gain additional data, and then looking for values outside 

normal ranges at each test point would allow the system using the sensor to determine the health 

of the sensor in detail. 

Impact on System Functional Performance 

To evaluate the impact of degradation before abrupt failure, the measured pre- and post-rad 

rangefinder input-output transfer functions were used to create a map of a rectangular virtual room 

of the dimensions measurable by this sonar rangefinder. The measured sensor transfer functions 

were fed a data set representing the sonar scanning a room at a fixed elevation with a one-degree 

rotation between measurements. Figure 16 shows several images of the virtual room, one as it 

would be measured by the pre-irradiated sonar and others as the room would be measured by the 

sonar after receiving increasing doses of TID.  

Pre-irradiation, the sonar data constructs an accurate representation of the room. However, the 

degraded sensor drastically misrepresents the room, becoming progressively worse with increasing 

TID. At 11.6 krad(SiO2) the degradation at the long distances produces distortion of the far side 

of the room. At 14.5 krad(SiO2) the sensor is no longer monotonic and highly degraded, producing 

a distorted shape.  At 15.1 krad(SiO2) the sensor was non-functional, reporting the same value for 

any distance measured. The sonar’s degradation significantly distorts the room’s shape, passing 

incorrect information upstream to the rest of the robotic system (the discontinuities are the result 

of the one-degree step size for the measurements). If this sensor was used alone for robot 
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navigation or mission planning the system would make incorrect assessments in both mapping and 

localization. The dose levels in Figure 16 were chosen to illustrate the key changes in output 

upstream to the system leading up to the sensor’s failure. 

 

Figure 16. Simulation of how the sonar input-output relationship would map a room after different 

irradiation steps. 

 

Conclusions 

Dose levels realistic for a post-radiation-disaster environment induced faults in all three range-

finding sensors investigated as robot radiated-sensor exemplars in this study. Both abrupt failure 

(laser rangefinder) and inaccurate sensing due to significant changes in sensor transfer function 
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(sonar and IR rangefinder) present significant challenges to a robot attempting to do useful work 

for long periods of time in a gamma radiation field. The degradation and failure in the sensors 

tested were primarily due to the supporting electronics rather than the transducer. This finding 

indicates that sensors that measure physical quantities other than distance, but which use similar 

supporting signal processing electronics, will likely show similar vulnerabilities and failure modes. 

If the system relies on a pre-irradiation look-up table to interpret sensor signals, severe impairment 

of important robot functions such as mapping and localization can occur. This impairment can 

come in the form of incorrect signals propagating upstream, such as in the sonar room example. 

Mitigation strategies such as measuring radiation dose during field operation and adjusting the 

sensor models in the robot control system according to a pre-programmed pattern are demonstrated 

to be ineffective because of sensor part-to-part radiation response variability and room temperature 

annealing. High variability of transfer functions with radiation for COTS parts with the same part 

number present an additional obstacle to reliable operation and recalibration.  

Measureable sensor characteristics that can be correlated to sensor performance/degradation, such 

as power supply current, could potentially be effective in making the robot aware of a sensor’s 

current state of degradation before complete failure occurs, but supply current does not appear to 

be a universal proxy for radiation damage in all sensors. The diagnosis methodology used to 

analyze the degradation mechanisms of the sonar sensor can be extended to more complex sensor 

assemblies as a first step in developing a radiation-hardened-by-design approach for redesigning 

a sensor assembly, with the caveat that this approach is limited to sensors where internal circuit 

nodes are accessible. 
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The characteristics of a radiation-robust sensor will vary with the exact mission requirements, but 

the experimental data support several conclusions. First, the sensor should clearly indicate that it 

is functioning properly or improperly (through an increase in standby current or other reporting 

mechanism), allowing the system to know when to stop trusting the data from the sensor. This 

capability is essential for a robust sensor to prevent information that is no longer representative of 

the physical quantity being sensed being passed upstream to the robot control system. A sensor 

assembly may need to be altered from its standard commercial form so that internal circuit nodes 

can be monitored in order to obtain this characteristic. Second, a robust sensor would limit the 

impact of variations in a single component on the system performance. The sensor should be 

designed in such a way that variations in radiation-sensitive quantities such as supply current or 

amplifier gain will not impact the sensor transfer function unless the degradation is severe. This 

can be accomplished by sensing a differential quantity that can use thresholding to produce a high 

level of immunity to parametric drift in the internal components. An example of this is the laser 

triangulation approach sensing which column on the camera is brightest – as long as the pixels 

degrade similarly the same column will remain brighter comparatively. Sensors with these 

characteristics should be reliable in robotic systems intended for radiation environments. 

The benefit of using commercial rangefinders with integrated supporting electronics are the low 

deployment cost and ease of system integration, and the conclusions above provide guidance on 

the types of commercial sensors that should be targeted for inclusion.  Commercial sensors with 

operational principles similar to those studied in this work would be appropriate for surveying the 

disaster site and basic remediation tasks, providing multiple hours of reliable operation at 

anticipated dose levels, but extended operation in worst-case dose scenarios would require a part 

replacement strategy or TID hardened sensors. Further investigations into the impact of other 
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radiation sources (neutrons, alphas) as well as the combined TID-temperature degradation are 

necessary for extended operation in worst case scenarios, with the more challenging environmental 

requirements suggesting the need for customized rangefinder designs, such as isolating the 

transducer element from the supporting electronics and introducing additional radiation shielding 

materials, trading cost and ease of integration for radiation robustness.  

While this chapter focused on rangefinders and sensors, the key outcomes are applicable to many 

types of uncharacterized electronic systems that may be operated in radiation environments. 

Visibility into the degradation and root causes is essential for any mitigations to be implemented. 

This prompted the following chapter, focusing on how to diagnose degradation in complex COTS 

systems.  
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CHAPTER IV 

IDENTIFICATION OF HEALTH STATUS INDICATORS 

 

The following content is an expanded version of an article that is © 2014 IEEE. Reprinted, with 

permission, from: 

Z. J. Diggins, N. Mahadevan, D. Herbison, G. Karsai, B. D. Sierawski, E. Barth, E. B. Pitt, R. A. 

Reed, R. D. Schrimpf, R. A. Weller, and others, “Total-ionizing-dose induced timing window 

violations in CMOS microcontrollers,” IEEE Transactions on Nuclear Science, vol. 61, no. 6, 

pp. 2979–2984, 2014. 

Introduction 

The previous chapter investigated the TID degradation of several Commercial-off-the-shelf 

(COTS) systems. The ability to instrument the system by monitoring voltage rails, current profiles, 

and other expected outputs is invaluable to understanding the impact TID has on the system. For 

some systems, the ability to instrument with such fidelity proves difficult. This prompted the 

search for universal “Health Status Indicators”, or parameters that vary with TID and can be used 

for diagnosing the status of the system or predicting its future performance. This chapter introduces 

a TID degradation measurement technique and health status indicator for observing and 

forecasting the degradation of digitally clocked systems. 

Commercial-off-the-shelf (COTS) microcontrollers enable low-power, low-cost, and high-

capability design solutions for electronic systems, and are embedded in complex mechatronic 

systems such as robots. Due to the highly integrated “black box” nature of microcontrollers, 
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previous reports of total ionizing dose (TID) induced failure in COTS microcontrollers are limited 

to abrupt failure at a measured dose level [42][43], [43], [44]. Because of their complexity and 

many integrated functions, microcontrollers present a hardness assurance challenge. Software and 

configuration changes also have potential impacts on TID hardness. Additional information about 

degradation and TID robustness would allow systems containing COTS microcontrollers to be 

deployed in radiation environments with increased reliability and provide microcontroller 

designers with information on how to increase the reliability of the design.  

TID has been shown to impact propagation delays in individual transistors [45], the timing 

characteristics of integrated circuits [46], memory access times [47], and propagation delays in 

CMOS Flash-Based FPGAs [48]. In this work, timing window violations are experimentally 

demonstrated to be the primary source of failure in response to TID for a class of low power 

microcontrollers, and a model for the degradation and hardening implications are presented. The 

conclusion that timing window violations are the primary source of failure is supported by a 

measurement technique that allows insight into the internal degradation of the device during the 

radiation exposure. The technique is necessary when information regarding individual transistor 

degradation, the microcontroller technology, or the fabrication process is not available, such as 

incorporating a COTS mechatronic subassembly including an integrated microcontroller. Timing 

window violations are identified by performing a series of software tests on the microcontroller at 

various frequencies and supply voltages. The technique to determine the maximum and minimum 

frequencies and voltages for the microcontroller is more commonly used in electrical 

characterization [49]. Results are presented for a commercially available microcontroller, the 

Atmel ATMEGA328P [50]. Analysis of the experimental results shows that the degradation is 

consistent with the expected degradation of logic gate switching time based on charge build-up in 
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the gate oxide and shallow trench isolation [51]. The results are further verified using a subset of 

the software tests on a Microchip PIC16F677 [52]. The clock frequency measurement is non-

destructive and can be monitored in a field deployment scenario to evaluate the health of the 

device, allowing for mission planning as well as life extension through reducing clock operating 

frequency or increasing supply voltage. 

Background 

Microcontrollers are integrated into a variety of systems that may be introduced to radiation 

environments, including medical devices, satellites, and robots. While implanted medical devices 

and satellites are often specialized designs where radiation robustness may be considered from the 

beginning of the design process, robots used for disaster mitigation (e.g., the Fukushima-Daiichi 

nuclear incident) usually consist of many integrated subassemblies. Previous work has shown that 

microcontrollers are the primary source of TID induced failure in several range-finding sensors 

for robotic applications [53]. Information during field deployment about the remaining useful life 

or TID margin would improve robotic mission planning. 

Microcontrollers are often fabricated in high voltage processes in order to easily integrate with a 

variety of other systems, such as motors or sensors operating at 5 V or higher. The high voltage 

process necessitates thicker oxides than a modern microprocessor used solely for computation 

would, which can increase the vulnerability of the microcontroller to TID [54]. This potentially 

increased TID vulnerability makes the microcontroller a key component to analyze and a potential 

“weak link” for a subassembly in an ionizing radiation environment. 
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Timing Window Violations 

TID generates trapped charge in oxides and at interfaces [37], potentially changing the threshold 

voltage and increasing leakage currents that can result in various circuit level impacts including 

increases in propagation delays [46]. The effects of TID are present before degradation or failure 

under nominal operating conditions can be observed. For microcontrollers, timing windows and 

propagation delays are of particular interest because the device operates using one central clock. 

As opposed to microprocessors with highly pipelined architectures, most microcontroller execute 

all instructions in only a few pipeline stages, with the entire ALU operation often being completed 

in one clock cycle. Figure 17 shows a simplified illustration of the timing characteristics of a 

single-cycle microcontroller. If TID increases the propagation delay of a data path past its allotted 

timing window, then incorrect data may be latched and propagated onwards. 
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Figure 17. Timing window illustration for microcontroller architecture where the entire instruction 

is executed in a single clock cycle. Nominal demonstrates correct operations, while the TID 

induced failure portion demonstrates incorrect data being latched due to increased propagation 

delays. 

Propagation Delays and TID 

Timing effects have been established as a significant source of IC degradation for CMOS devices, 

with substantial increases in propagation delay resulting in timing failures [47]. Significant 

increases in propagation delay have been demonstrated for FPGAs, including >2x changes [48] 

and between 4 and 11X [56] in test circuits. These FPGA test circuits represent simplified versions 

of the circuits that make up a microcontroller arithmetic logic core, indicating that significant 

increases in propagation delay for microcontrollers can be expected. Additionally, published 

results with ring oscillators in a high voltage process revealed significant changes in the 
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propagation delay characteristics of the inverters, resulting in significant changes in the frequency 

of the ring oscillator [55]. While the ring oscillator experiment had transistor-level information 

available, COTS microcontrollers are complex systems with many thousands of transistors making 

the supply voltage and timing window technique demonstrated in this paper necessary. 

Timing Window Hypothesis 

Two parameters are controllable in the investigation of timing windows in microcontrollers: 

supply voltage and operating frequency. Figure 18 is an illustration of the relationship between 

operating frequency, supply voltage, and TID for a device irradiated at a fixed bias voltage and 

frequency, showing the maximum operating frequency that a given software routine passes 

successfully. The equations governing propagation delay and their relationship with TID are 

analyzed in [55]. The analysis contained in [55] is discussed below in the context of not only 

inverter chains but also generalized clocked logic such as microcontrollers. The drive strength of 

the transistors in the chain of logic elements is proportional to the supply voltage. The supply 

voltage exhibits an inverse relationship with propagation delay, as shown in (5), resulting in a 

proportional relationship with maximum operating frequency, where 𝑡𝑑 (4) is the propagation 

delay for a logic stage, 𝑡𝑝𝐻𝐿 and 𝑡𝑝𝐿𝐻 are the high-to-low and low-to-high propagation times, 𝜇𝑛 

is the NMOS mobility, 𝐶𝑜𝑥 is the oxide capacitance, (
𝑊

𝐿
)𝑛 is the width-to-length ratio for the 

NMOS, 𝑉𝐷𝐷 is the supply voltage, 𝛼𝑛 is defined by (6), and 𝑉𝑇𝑛 is the NMOS threshold voltage: 

𝑡𝑑 =
1

2
(𝑡𝑝𝐻𝐿 + 𝑡𝑝𝐿𝐻)            (4) 

𝑡𝑝𝐻𝐿 =
𝐶

𝜇𝑛𝐶𝑜𝑥(
𝑊

𝐿
)𝑛𝑉𝐷𝐷

𝛼𝑛         (5) 
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𝛼𝑛 = 
8𝑉𝐷𝐷

2

7𝑉𝐷𝐷
2 −12𝑉𝐷𝐷𝑉𝑇𝑛+4𝑉𝑇𝑛

2         (6) 

Similar equations exist for the low-to-high propagation time. The operating frequency directly 

controls the length of the timing window. Running software tests at different frequencies allows 

observation of timing windows, with passing tests for sufficiently long timing windows (low 

frequencies) and failing tests for timing windows that are too short (high frequencies). Importantly, 

the total propagation delay can increase even if one of the terms (tpHL or tpLH) decreases if the two 

terms are not balanced optimally. 

With increasing TID the maximum operating frequency at which the device is functional 

decreases. By overclocking the device past its nominal frequency, degradation is observable before 

the nominal failure point. Finally, the device remains operational past its nominal failure point if 

operated at a reduced frequency. 

 

Figure 18. Illustration of timing window violation hypothesis, demonstrating the relationship 

between TID, operating frequency, and supply voltage (Vdd). 



46 

Experimental Design 

The Atmel ATMEGA328P microcontroller was chosen to test the frequency/voltage timing 

window hypothesis described in the previous section. This device was chosen because it has a low 

power, single execution cycle architecture (indicating many logic stages in each pipeline stage), 

and has a variable core operational voltage of 1.8 V – 5.5 V. In order to validate the results for the 

ATMEGA328P and extend the results to a broader range of microcontrollers, a Microchip 

PIC16F677 was tested with a subset of the software tests using the same test procedure. 

In order to determine if timing windows are being violated, test code must be run on the 

microcontroller. Functional unit tests were designed to target individual sections of the 

microcontroller [50], as shown in Figure 19. Industry standards for start-up tests and self-tests 

including the IEC60730 Class B compliance [56, p. 998] guidelines governing functionality tests 

for microcontrollers used in controlling machinery were consulted when developing the software 

functional unit tests. The test software routines were designed to be decoupled but dependencies 

on the same hardware exist between tests. For example, the digital I/O is necessary for 

communication even if the device passes the SRAM tests. The seven tests were: digital I/O, 

SRAM, FLASH, opcode, counter, comparator, and ADC. 
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Figure 19. Block diagram from ATMEGA328P datasheet showing the microcontroller 

architecture. Arrows and text added to highlight the different regions of the microcontroller that 

the software functional unit tests exercise [50]. 

The overall test procedure was automated, in order to test a wide range of frequencies, supply 

voltages, and software functional unit tests after each irradiation dose step. A master/slave 

configuration was used to test the microcontrollers, where each slave Device Under Test (DUT) 

received commands and responded, while the master (an Arduino Due board) issued commands 

and evaluated the slave’s responses for correctness. A Tektronix AFG3252 was used to vary the 

clock frequency in 1 MHz steps, and a Keithley 2410 Sourcemeter was used to vary the voltage 

and measure the supply current. The system was controlled through a MATLAB script using serial 

and GPIB communication. All TID experiments were performed using a Cesium-137 gamma 
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source at a dose rate of 600 rad(SiO2)/min. After each dose step the DUT was removed from the 

irradiator and tested.  

 

Figure 20. Diagram showing the control flow for the master-slave microcontroller test 

configuration. Icons indicate test code written in C (top left), programmer board (top middle), test 

device board (Arduino Uno, top right), python script (bottom left), Keithley Sourcemeter and 

function generator (middle), and interrogator master processor (bottom right). 

Experimental Results  

The ATMEGA328P was irradiated while biased at 0 V and the timing window test procedure was 

performed for seven software functional tests operating at 3.3 V, repeating the process for each 

dose step. The bias condition under irradiation of 0 V does not represent the worst-case bias 

condition but does place the device in a known state (biased and clocked operation would produce 

software dependent duty cycles for the transistors, and biased and un-clocked operation would 

produce different logic states for the transistors depending on when the clock was removed or the 

power up status). The data for each test are shown in Figure 21. The steps in the graph are a result 
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of the 1 MHz step size in frequency changes, with the data point indicating the highest frequency 

at which a test passes and the error bars indicating the distance to the next 1 MHz resolution step. 

The functional tests for the counters and comparators overlap with the digital I/O test results 

therefore they have been omitted for clarity. The results show a decreasing maximum operating 

frequency for increasing TID consistent among all tests. Reducing the clock frequency allowed 

the device to remain functional past the TID failure level observed at nominal frequency. The 

results are consistent with the hypothesis that timing windows are the source of the failure because 

all software functional tests demonstrated the same trend with TID. The slight difference in the 

curves for the different software tests is likely a result of the different critical paths involved in the 

distinct operations. These experiments were repeated for multiple bias voltages and repeated for 

three parts. The datasets in Figure 21 were chosen for illustration because they have the highest 

step resolution in TID, producing the most detailed curves. 
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Figure 21. Results of test procedure for a representative part for the ATMEGA328P 

microcontroller. The maximum operating frequency for which the tests pass decreases with 

increasing TID. Error bars correspond to 1 MHz frequency measurement step size. 

Additional irradiations were performed on the ATMEGA328P while biased at 0 V. The device 

was then biased at 1.8 V, 2.7 V, and 3.6 V to determine the maximum frequency that the tests 

passed for each bias voltage. The data, shown in Figure 22, exhibit the voltage dependence 

described above, yielding increasing maximum operating frequency with increasing supply 

voltage.  
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Figure 22. Results of test procedure for a representative part for ATMEGA328P microcontroller. 

Radiation steps were performed with all pins grounded, and then the test procedure to find the 

maximum operating frequency was performed for the three voltages. The data shown are for the 

opcode test. Error bars correspond to 1 MHz frequency measurement step size. 

Figure 23 shows the maximum operating frequency for the PIC16F677 versus TID on the left axis 

with the solid line and the leakage current, measured by stopping the clock to the device, on the 

right axis. The PIC16F677 was biased at 3.3 V during both irradiation and testing. The software 

functional tests used to determine the maximum operating frequency was the lowest frequency of 

the digital I/O, flash memory, and opcode tests. The significant leakage current increase supports 

the conclusion that leakage current significantly impacts the timing windows and contributes to 

the device’s failure. 

Analysis of TID Induced Timing Window Violations 

The results support the hypothesis illustrated in Fig. 2, that supply voltage and clock frequency 

can be used to detect and quantify timing window violations in microprocessors. Both the 

ATMEGA328P and the PIC16F677 exhibited similar decreases in maximum operating frequency 
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with increasing TID. The voltage relationship with maximum operating frequency is consistent 

with the interaction between timing windows and drive strength. The leakage current increase 

measurement for the PIC16F677 suggests that TID induced leakage paths play a significant role 

in the degradation. 

 

Figure 23. Results of the test procedure for a representative part for the PIC16F677 microcontroller 

with the part biased at 3.3 V during irradiation. Similar to the previous plots the maximum 

operating frequency for which the tests pass decrease with increasing TID. The leakage current is 

included on the right side axis. Error bars correspond to 1 MHz frequency measurement step size. 

Relationship Between TID and Timing Windows 

When the microcontroller is exposed to TID, charge trapping in gate and field oxides will produce 

three primary effects in Equations 1-3: 

1. Charge build up in the gate oxide will impact the logic drive strength and subthreshold 

characteristics of the NMOS and PMOS devices, unbalancing the low-to-high and high-

to-low propagation times, resulting in a greater overall propagation time. 
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2. Leakage in the STI of the NMOSFET will impact the PMOS to NMOS drive strength ratio, 

increasing low-to-high propagation time and decreasing high-to-low propagation time.  

3. Leakage in the STI of the NMOSFET will prevent the output from reaching the true VDD, 

impacting the drive strength of subsequent stages and potentially preventing signal 

propagation. 

 

Without transistor level degradation information and detailed information about the 

microcontrollers’ architecture, weighting the impact of these three effects is not possible, but all 

contribute to produce the degradation characteristics exhibited in Figure 18. 

Operating Point Tradeoffs 

The experimental technique allows for tradeoffs between operating lifetime in a radiation 

environment, supply voltage, and operating frequency. Within the system’s electrical limitation, 

the operating point with the longest lifetime is when the supply voltage is at its maximum and the 

system operating frequency is at its minimum. This point provides the greatest lifetime for a given 

amount of TID damage because it has the highest drive strength and the largest timing windows 

of the four corners bounded by supply voltage and operating frequency. It is possible that another 

operating point should be chosen due to power concerns, and reduced supply voltages could 

potentially reduce the amount of charge that becomes trapped. A potentially attractive option is to 

place the microcontroller in a low power sleep mode to help reduce TID damage, and then operate 

the device at the maximum supply voltage during active operation. 
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Empirical Model of Maximum Operating Frequency  

The ability to model a multi-thousand gate device such as a microcontroller with simple metrics 

facilitates a comparison between devices and allows the implementation of health tracking in-situ. 

An empirical fit of the data sidesteps the limitation of not having transistor level information 

available. Fundamentally, the condition for timing windows to be satisfied is, where 𝑡𝑑_𝑡𝑜𝑡𝑎𝑙 is the 

total propagation time for the critical timing path: 

 

1

𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞.
− 𝑡𝑑_𝑡𝑜𝑡𝑎𝑙 > 0                          (7) 

 

Equation (7) can be redefined in terms of maximum operating frequency: 

max𝑓𝑟𝑒𝑞.= 1/𝑡𝑑_𝑡𝑜𝑡𝑎𝑙                              (8) 

The results presented in the previous sections suggest that TID decreases the maximum frequency, 

which can be written as: 

max𝑓𝑟𝑒𝑞.= max 𝑓𝑟𝑒𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −
1

𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝐼𝐷
               (9) 

Where the 𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝐼𝐷 can be further broken down into average delay increase per gate times the 

number of gates in the critical path in a single clock cycle: 

𝑡𝑑𝑒𝑙𝑎𝑦_𝑇𝐼𝐷 = (𝑙𝑜𝑔𝑖𝑐 𝑑𝑒𝑝𝑡ℎ) ∗ (𝑇𝐼𝐷_𝑑𝑒𝑙𝑎𝑦 / 𝑔𝑎𝑡𝑒)      (10) 

This model could be extended to include voltage dependence as well if more voltages were tested, 

resulting in a new term that interacts with the 𝑇𝐼𝐷_𝑑𝑒𝑙𝑎𝑦 / 𝑔𝑎𝑡𝑒 term. The TID delay per gate 
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increases exponentially with TID, which is consistent with the exponential increase in leakage 

current shown for the PIC16 part in Fig. 6 and other studies of STI leakage [18]. In Figure 24, the 

exponential model is shown to fit the data, allowing comparisons between different 

microcontrollers and forecasts of remaining useful life in the field. The “a” coefficient corresponds 

to the pre-irradiation maximum operating frequency, the “b” coefficient is proportional to the 

number of gates in the critical timing path, and the exponential term corresponds to the impact of 

the TID on the gate’s propagation characteristics.  

 

Figure 24. Data set for ATMEGA328P biased at 3.3 V and irradiated with all pins grounded for 

the ALU opcode test for “a” = 28.25, “b” =0.004225, “c” = 0.08827, and R2 = 0.9690. 
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Values for the fit coefficients for the tests shown in Fig. 4 are detailed in Table I. Since the fit is 

determined by a single exponential term, it suggests that one mechanism dominates the TID 

response, supporting the conclusion that timing window violations are occurring for the 

microcontrollers tested instead of a combination of other potential sources of TID-induced failure. 

Without detailed processor architecture information, it is not possible to determine definitively if 

the trends in the coefficients match the proposed model, but the results behave as expected, 

showing more variation in the pipeline depth term “b” (which is expected to vary between tests) 

than the radiation response term “c” (which is expected to be the same between tests). Similar 

timing models could be useful for other clocked digital systems, such as FPGAs or ASICs. 

Propagation of Digital “1” 

When the leakage in the shallow trench isolation of the NMOSFET approaches the drive current 

of the PMOSFET in an inverter, the ability to output logic “1” degrades. In a microprocessor, there 

TABLE II 

MODEL FIT COEFFICIENTS 

Test Name 

“a” 

Max. 

Freq. 

“b” 

Pipeline 

Depth 

“c” 

Impact 

of TID 

R2 

Digital I/O 30.31 0.008195 0.08827 0.9697 

ALU 

Opcodes 

28.25 0.004225 0.09474 0.9690 

FLASH 27.47 0.006952 0.09246 0.9260 

SRAM 29.27 0.005214 0.09285 0.9740 

ADC 27.35 0.001732 0.1045 0.9718 

Coefficients correspond to a-b*exp(c*x) model and data from Figure 21 and Figure 23. 
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may be a chain of logic gates in which logic “1” must be propagated for several gates in a row, but 

the leakage prevents this propagation because the magnitude of the leakage is on the order of the 

drive strength of the pull up network. This effect can occur at an arbitrarily low system clock 

frequency. The ultimate failure of the devices tested is potentially due to this effect. The impact of 

logic “1” degradation can be mitigated through the use of pipelining. By implementing registers 

between a chosen number of logic gates the longest path of all logic “1” outputs without a register 

stage will be limited.  

Conclusions 

Clock frequency and supply voltage are effective diagnostic tools to evaluate the influence of TID 

on microcontroller timing windows. Varying clock frequency and supply voltages provides a 

dynamic non-destructive technique for evaluating TID performance margin of microcontrollers in 

the field. Designers should choose the minimum frequency that fits the design specifications and 

increase the supply voltage as necessary for maximum TID hardness for microcontrollers and other 

components with architectures and characteristics comparable to the microcontrollers tested.  



58 

CHAPTER V 

DISCRETE BAYESIAN ANALYSIS FOR DIAGNOSIS AND PROGNOSIS  

 

The following content is an expanded version of an article that is © 2015 IEEE. Reprinted, with 

permission, from: 

Z. J. Diggins, N. Mahadevan, E. B. Pitt, D. Herbison, G. Karsai, B. D. Sierawski, E. J. Barth, R. 

A. Reed, R. D. Schrimpf, R. A. Weller, and others, “System Health Awareness in Total-Ionizing 

Dose Environments,” IEEE Transactions on Nuclear Science, vol. 62, no. 4, pp. 1674–1681, 

2015. 

Introduction 

The fundamental question of interest when using electronic components in radiation environments 

is whether the components operate successfully together as a system for the desired application 

and environment (thus completing the desired mission). The primary factors in system missions’ 

success are the nature of the radiation environment and the degradation characteristics of the 

components. In addition, a high degree of uncertainty in system radiation tolerance estimation is 

introduced because of uncertainty in the radiation environment, part-to-part variability in radiation 

sensitivity, and the changes in operating conditions, amongst other factors.  For high reliability 

applications, the uncertainty in operational outcome must be eliminated or reduced. This high 

reliability is currently and successfully accomplished by designing systems using radiation-

hardened components, component- and system-level testing, maintaining significant design 

margins, and procurement practices that ensure that the components used are similar to the 
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components tested [14]. These measures have proven successful for many high reliability 

applications such as space electronics.   

A complementary concept to assurance, or guaranteeing successful operation, is awareness, 

understanding how and why the system performs as it does while operating in a TID environment. 

Awareness is useful during the field deployment to evaluate which functions can be performed, 

and during design to guide improvements to the system. Using systems engineering principles and 

Bayesian networks, this work presents a framework for quantitatively estimating the health of a 

system in a radiation environment, including the many interactions between the components. This 

approach has two primary applications. First, systems built with mostly commercial-off-the-shelf 

(COTS) components that must operate in a radiation environment, including small, inexpensive 

satellites (Cubesats, satellite cluster formations) and robots for application in the nuclear power 

industry, cannot afford the costs of a full custom design including rad-hard parts. Second, during 

the design phase of systems that are undergoing a full custom design and hardness assurance 

process, detailed information about the TID response of every component under consideration for 

use in the design may not be available. Also if the system’s TID response is not acceptable, sorting 

through the complex interactions leading to the system’s failure can make identifying the most 

effective design change difficult.  

In such cases, an awareness of the TID response of the components and their impact on the overall 

system health and performance would provide significant value. Such system-level hardness 

awareness schemes could enable minimal/ incremental design changes (local part selection/ 

shielding/ hardness improvement) in COTS systems or custom-designed high reliability systems 

to increase the overall system reliability in a TID environment. 
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A case study of a robotic system consisting of COTS components is used to illustrate the Bayesian 

network paradigm, with four specific examples highlighting different applications of the Bayesian 

network approach to model the performance of the robot in a total-ionizing dose (TID) radiation 

environment. A comparison to existing hardness assurance methods is included in the discussion 

section.  

Bayesian Network Construction for TID Awareness 

Using a Bayesian network can enable awareness of the impact of radiation-induced degradation 

on the variables of interest in a given system. An advantage of Bayesian networks is that the 

structure includes causality and independence information, enhancing prediction of system 

performance. While the structure can be learned from data using various algorithms, for 

electrical/mechanical systems there is significant information available about component 

interactions and performances in the form of datasheets, schematics, physics-based models, and 

expert knowledge. This work presents a flow for developing Bayesian networks for understanding 

the impact of TID on component and system performance using schematics, fault diagrams, key 

functional diagrams, and ultimately a multilayered structure to construct the Bayesian network. To 

better illustrate the methodology, a specific case-study of a line-tracking robot system is 

considered. This example is concise enough to present in this context, but highlights the major 

aspects of many electrical systems that application engineers could model, including sensing, 

actuation, control, and power electronics. 
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Building a Model of the System 

The modeling process used for developing the Bayesian network determines the awareness and 

inference available from the model. The following sections provide a template for the modeling 

process, including the key considerations at each step. 

Schematic/Block Diagram 

The schematic/block diagram model captures the components involved in the system and their 

interactions in terms of energy and signal flow. As part of analyzing the impact of TID on the 

system, it is important to obtain parts lists, schematics, and other information about the system at 

the appropriate detail level. The appropriate detail level is determined by the user/designers’ needs, 

such as which measurements can be made and what components can be potentially modified or 

replaced. For an in-house, custom-designed system this information is available in great detail and 

may be performed at the component level, providing information about specific components in 

subsystems. For a COTS system, modeling at the subsystem level may be appropriate.  

The block diagram of the robot used as an example in this work is shown in Figure 25. The 

system consists of a microcontroller, infra-red reflectance line sensor, two motors, a two channel 

H-bridge driver, a voltage regulator, and a battery. For the sake of conciseness, the subsequent 

sections discuss a subset of the components, focusing on the line sensor and voltage regulator. 

These two components yield the minimal Bayesian network that illustrates the features of the 

modeling method, but the analysis could be expanded to the entire system or an arbitrarily large 

system including hundreds or more components.  
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Figure 25. Block diagram of case study system. Blocks represent key physical sections of the 

system and lines indicate signal or energy paths. Arrows indicate dependencies for functionality, 

but in Bayesian networks all arrows are bidirectional so direction is unimportant. 

Fault Propagation 

After developing the block diagram/schematic model for the system of interest, the next step is to 

use expert knowledge about the components and subsystems to capture the fault propagation 

model. Since this work is focused on studying the impact of radiation, the fault-model considers 

those component and system-level fault sources (failure modes) that are related to radiation 

exposure. The fault propagation model captures the downstream effect of each failure mode, which 

could include inducing anomalies (observable and unobservable), function degradation, and 

possibly causing other failure modes. The information obtained from the fault propagation model 

is useful in the context of building the Bayesian network, to determine the observable anomaly 

nodes that are to be related to specific components, as well as the causal relationships between the 

component nodes.  

 

Figure 26. Failure modes for the line sensor. It can receive degraded power from the linear 

regulator and pass a degraded output to the microcontroller. 
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Figure 26 contains a simplified fault propagation model for the line sensor. It indicates the 

cascading effect of failure in the power-source on the operation of the sensor component, thereby 

affecting the quality of the sensor output signal, which could affect the performance of a 

downstream component/node. 

Functional Dependencies 

The functional dependency model determines which components and sub-functions must be 

operating in order for the desired higher level function to operate successfully. The diagram is 

orthogonal to the fault propagation model and captures the functional failures that are introduced 

when components/subsystems fail/degrade. The diagram does not need to be complete or capture 

all functionalities and can be constructed using the system expert’s best estimate as to the 

functional dependencies. Figure 27 shows a model of the functional dependencies for the line-

tracking robot. The ultimate high level function is tracking, which requires the sub-functionalities 

of motor control, sensing, and power. Through clearly identifying the functional dependencies, the 

Bayesian network can be appropriately refined to include nodes pertaining to specific-desired 

functionality, including their sub-functions (if desired). The functions (and sub-functions) can be 

connected with the associated component-nodes that provide the desired functionality. 
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Figure 27. Model of functional dependencies for line follower robot. 

Designing the Bayesian Network 

A variety of Bayesian Network software packages exist. For this paper, the networks are created 

using GeNIe 2.0 [57], a software tool developed by the University of Pittsburgh’s Decision 

Systems Laboratory .  

Fig. 5 shows a simplified version of the full Bayesian network that can be constructed for the line-

tracking robot based on the information available in the schematics/block diagram, the fault 

propagation model, and the functional dependency diagrams. While the simplistic structure of the 

case study network could be determined through inspection, the processes presented in this work 

can be used for constructing an arbitrarily large network. 

The top node in the network represents the amount of TID each component has received. It is 

divided into six states, ranging from under 10 krad(SiO2) to under 60 krad(SiO2). In this network, 

a single TID node is used to represent the TID received across all components. In cases where the 

components have varying degrees of TID exposure, it might be desirable to have a network with 

multiple TID nodes, each impacting a different set of components. Additionally, a “Time” node 

can be included above the TID node if there is uncertainty in the time-to-TID mapping (i.e., the 
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dose rate) in the environment. This flexibility in network design for numerous situations is a key 

advantage for Bayesian networks for system health awareness in TID environments. 

The next level of nodes in the network (the child nodes of the TID node) corresponds to the health 

of the components. Inference can then be used as feedback to update the distributions of the 

component level nodes to which the observation nodes connect in the network.  The line sensor 

and linear regulator nodes capture the health of the respective components. Each of these nodes 

has three states: good, degraded, and failed. For the linear regulator the output voltage is the most 

important quantity and is directly used to describe the health of the node. For the linear regulator 

node’s bins, good is defined as a voltage between 5 V and 4.8 V, degraded is defined as a voltage 

between 4.8 V and 4.5 V, and failed is defined as an output voltage below 4.5 V. The choice of 

these specific states and the choice of three states were determined by the characteristics of the 

system. The number of node states and transition points can be determined by the system designer. 

The line sensor has both the linear regulator and TID as parents. The addition of the connection 

between the linear regulator and line sensor was determined using the functional dependency and 

fault propagation diagrams.  

Wherever possible, each of the component nodes in the Bayesian network model should include 

one or more child nodes that are related to measurements/observations that can be related to the 

health of the component. The “White Surface Sense” (the quality of the signal over a highly 

reflective surface) and “Supply Current” nodes correspond to the observable anomalies in the 

sensor and linear regulator components, respectively. They help characterize the health-status of 

their parent nodes. The use of observation nodes helps incorporate additional measurement 

information into the system in a quantitative manner. Often, variables of interest cannot be 

measured directly, but other variables that correlate with variables of interest can be measured 
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[58], [59] and hence incorporated in the Bayesian network. Though the “White Surface Sense” 

does not characterize the entire performance of the line sensor, it sheds light on the degradation 

(due to TID) of a very important part of the line sensor – the infra-red transmitter receiver pair 

[58]. Similarly, the “Supply Current” node does not directly describe the linear regulator but has 

been shown to vary with the linear regulator’s health [60]. Examples of this type of inference are 

included in Section IV. B. 

The next and final level of nodes in the Bayesian network corresponds to the system-level 

functionality. The parent nodes for these functionality nodes include component nodes and/or other 

functionality nodes. In this case, only one functionality node (tracking) is used in the Bayesian 

network model. This node corresponds to the highest level functionality (listed in the functional 

diagram). The node has three states. It has two parent nodes (the component nodes corresponding 

to sensor and linear regulator) and no child nodes. 
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Figure 28. Simplified Bayesian network for line-follower robot. Image shows the nodes, their 

interconnections, and the possible discrete states, separated into highlighted layers. 

Each node is independent of all the nodes to which it is not connected (all nodes that are not its 

direct parents or children), so changing the network structure is relatively straightforward, only 

requiring changes to the values of the connected nodes. If nodes are included that turn out to have 

a constant probability distribution versus its parent nodes it can be removed, or if a node has a 0% 

value for a discretization category, that category can be removed for that distribution. 

Many Bayesian network applications lose correspondence between the network nodes and the 

physical interpretation of the network. Figure 28 follows a four level structure for radiation 

degraded systems containing an environment level, a component level, an observation level, and 

a functional level. This general structure provides a powerful framework for generating data to 

populate the network for radiation degraded systems, including TID and displacement damage, 
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where gradual degradation takes place. One advantage of this approach as compared to 

conventional radiation testing and modeling is that there is no direct edge between the radiation 

node and the final system parameter, e.g., in Figure 28, the tracking node, which is a high level 

performance parameter, does not have to be directly characterized as a function of TID.  

Populating Bayesian Network with Probabilities 

Once the structure of the Bayesian Network is determined, the next step is to populate the network 

parameters - the prior probabilities of the root-nodes and conditional probabilities for the other 

nodes. These probabilities are computed based on the data sets captured from experimentation and 

simulation studies.  For a component like the linear regulator, multiple parts can be irradiated and 

characterized. For a functional node like tracking, while data can be collected through 

experimentation, additional data can be gathered using a physics-based simulation model and 

varying the parameters of the sensor and the linear regulator to simulate the tracking performance. 

For a discrete Bayesian network, the continuous radiation performance data is discretized based 

on the specified thresholds into the discrete state of the nodes. This discretized information about 

the system is then used to compute the prior and conditional probabilities.  

The prior probability captures the probability that a node is in a given state.  Prior probability for 

each node-state is determined by dividing the number of occurrences of the specific state, with the 

sum-total of the occurrences across all the states of the node. Examples are given in the following. 

The conditional probabilities represent the probability that the node is in a given state given the 

specified statuses of the parent nodes. In order to compute the conditional probability, the data-set 

is restricted to the given set of parent states. The probabilities computed for each node-state with 

this restricted data set, correspond to the conditional probabilities of the node for the specified 
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parent(s) state. This is repeated for all parent-state combinations to compute the probability 

numbers associated with all the cells. These probabilities can be updated as new information 

becomes available, or can be de-rated or additional weight given to outliers to ensure that worst 

case outcomes are magnified if desired. The network tool used in this work, GeNIe, accepts 

discrete probabilities that must sum to 1 for a given node. These probabilities can be determined 

in a variety of ways depending on the goals of the network (maximum likelihood estimate, worst 

case estimate, 95% bounds), etc. In fact, each node can on one end of the spectrum undergo a 

Bayesian treatment such as in [19] to construct these probabilities or on the other end of the 

spectrum can consist of simply binned experimental data. The full Bayesian treatment allows for 

incorporation into a hardness assurance process, while the binned data process may provide design 

insights early in the engineering process. 

To provide useful inference, experimental or other sources of information must be available for all 

the conditions that are desired to be considered. To ensure conservative analysis, a “derating” node 

could be added to the network, allowing the user to select a desired dose or other parameter 

derating. Further information about the construction of priors can be found in [19] and [33]. 

In case of the linear regulator, the voltage data collected are sorted into good/degraded/failed bins 

based on user specified thresholds. The corresponding parent node (TID) data are also converted 

into the appropriate discrete states. The procedure described above is used to compute the 

conditional probabilities.  

The same process is followed in the case of other nodes.  An example table is included in Fig. 6. 

It shows the conditional probability table for the Line-Tracking node. It is generated from a 

combination of experimental data and modeling of the robotic line follower.  
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Each combination of parent states must have a value, and each column must sum to 1. The 

values can be determined through a combination of experiment, historical data, expert knowledge, 

or simply the best information available. The inference performed by the network depends on the 

quality of the information with which it is populated, so the higher quality of the population 

information, the more accurate the inference will be. In principle the Bayesian network is limited 

in the accuracy of its prediction for the target output variables only by the accuracy of the 

information in the input variables [10].  

 

Figure 29. Conditional probability table showing the values used to populate the line tracking node 

in Figure 28. 

 

Robotic Line Follower 

The following four subsections use the case-study Bayesian network developed in the previous 

sections, to illustrate   applications of Bayesian networks in assessing impact of TID on system 

health and performance. 

Estimating Probability of Success of Key System Functions 

The most straightforward application of a Bayesian Network to the radiation effects problem is 

forward inference – given the TID level, calculate the resulting distributions for all subsequent 

nodes. When the TID-level is known, the evidence/observation on the TID node can be set to the 

Line Sensor

Linear Regulator G D F G D F G D G

Good 0.9 0.2 0 0.2 0.1 0 0 0 0

Degraded 0.1 0.8 0 0.7 0.6 0 0 0 0

Failed 0 0 1 0.1 0.3 1 1 1 1

Good Degraded Failed
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specific state (corresponding to the TID-level). Figure 30 presents the results of fixing the TID 

state to “Under 50 krad(SiO2)”. After setting the evidence, the software tool can execute the 

Bayesian Network inference algorithm [22] and compute the posterior probability distributions for 

the other nodes, the result of performing the inference algorithm. The results of the inference 

should be interpreted as: given the evidence that the TID is between 40 and 50 krad(SiO2), there 

is 17% likelihood that tracking functionality is good, 50% likelihood that it is degraded, and 33% 

likelihood it is failed. The distribution is determined by the uncertainty and part-to-part variability 

in the network, which is captured in the conditional probability tables of the network nodes.  

Inference Using Observable Parameters 

A second application of Bayesian networks is inferring the probability distribution of nodes of 

interest, based on the evidences observed on the nodes that are easy to measure – the observable 

node level. Figure 31 shows the posterior probability distribution after setting evidence in the 

“White Surface Sense” node to “Degraded” and in the “Supply Current” node to “Degraded” and 

running the inference algorithm. 

The output shows a significantly narrower posterior distribution for the “TID” and “Line Tracking” 

nodes based on the evidences compared to performing the inference with the observable 

parameters unknown. In this case, the Bayesian network is able to use the observed state of the 

easily measurable nodes to estimate the possible range of TID values. In the field in a post-nuclear 

disaster environment such as the Fukushima scenario, the current TID level may be difficult to 

determine due to annealing and uncertainty in the knowledge of the environment. 
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Figure 30. Example of forward inference. The evidence of the TID node is set to the “Under 50 

krad(SiO2)” state. The posterior distribution of the remaining nodes is calculated using Bayesian 

inference update. 
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Figure 31. Example of performing inference using observable parameters. Setting the White 

Surface Sense and Supply Current observational nodes to Degraded allows for the inference of the 

status of Line Tracking and Total Ionizing Dose distributions. 

Sensitivity Analysis for Design Enhancement 

Bayesian networks, once designed and populated, can evaluate the sensitivity of a target node to 

the status of the other nodes in the network. Figure 32 shows the sensitivity of the Tracking node 

to the status of the other nodes in the network, with red indicating highly sensitive and grey 

indicating not sensitive. This approach attempts to answer the question of which component to 

harden/shield/replace in order to gain a more robust TID degraded performance for the Tracking 

functionality. In this example, the tracking node is most sensitive to the state of the TID node and 

slightly more sensitive to the state of the Linear Regulator than the Line Sensor. If there was a 

significant difference between the Tracking node’s sensitivity to the Line Sensor versus the Linear 
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Regulator, it would provide a clear target for further investigation to see whether that node could 

be hardened. This type of insight may be performed by a human for small networks, but for larger 

networks where dependencies are less clear, the Bayesian approach becomes increasingly 

valuable. 

 

Figure 32. Automated sensitivity analysis for the Line Tracking node performed by the Bayesian 

network tool. Colors are coded by tracking node sensitivity. The Line Tracking performance is 

most influenced by Total Ionizing Dose, which is the logical outcome for this system topology. 

Notably, the observational nodes have the least direct impact on the Line Tracking distribution. 
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Estimating TID Levels Including Different TID Levels for Different Components 

Small changes to the Bayesian network structure can provide insight into otherwise difficult-to-

interpret situations. The network can and should adapt with the designer’s assumptions about the 

characteristics of the system being modeled. As demonstrated in Figure 33, the impact of different 

components in a system receiving different TID levels can be determined by adding more TID 

nodes to the network. The line sensor TID node is set to 30-40 krad(SiO2), and the second TID 

node is set to 40-50 krad(SiO2). The rest of the Bayesian network remains unchanged, allowing 

the same types of inference to be performed as in the previous examples. For example, the 

probability of “good” line tracking for the TID settings shown in Figure 33 is only 8% compared 

to 17% for the TID settings in Figure 29. By including a separate TID node, additional types of 

questions can be answered without any new experiments or changes to the Bayesian network. In 

this case, the Line Sensor may receive a different dose because of its position on the robot, 

shielding, or because the two components may anneal at different rates. The same types of analysis 

performed in the previous three subsections can be performed on this new network given the new 

assumption. 
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Figure 33. Modified network including a separate TID node for each of the components, 

accounting for part replacement, different shielding levels, or other factors that could produce 

different dose levels for different components. 

Discussion 

Discrete Bayesian networks provide a quantitative method for assessing the response of 

performance parameters of a system to TID. This awareness can be applied during the design phase 

of system development to gain insight into the TID hardness impact of different design options or 

during field operation to determine the likelihood that particular functions will be available given 

different possible operating scenarios and to interpret limited field measurements. The Bayesian 

network enables informed decision making about system capabilities, for example, when 

evaluating whether the system in its current radiation state can accomplish a specific mission, or 

whether a less demanding mission should be chosen in light of degraded functionality. 
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The quantitative and probabilistic nature of the network allows incorporation of many aspects of 

TID degradation. Part-to-part variability is included automatically, with the multiple components 

tested falling on different sides of a discretization threshold in the probability table based on their 

variation. For example, if 10 parts are tested at TID level 5, with eight being good and two being 

degraded, at TID level 5 the network incorporates this prior knowledge of the variability in 

component response in the discrete distributions.  

At a component level each component may be within specification even though partially degraded, 

which would normally imply the system performance is within specification, but the Bayesian 

network captures the interaction between components that may lead to a systemic failure even 

though the individual components are nominally within specification. Finally, the posterior 

probability distribution on the target functionality nodes in the Bayesian network yields an 

interpretable result for non-radiation effects experts.  

Comparison with Hardness Assurance Methods 

Identifying worst case responses is an important part of the hardness assurance process, and the 

Bayesian network approach can assist in this process. Experimental details  and environmental 

concerns such as low dose rate response or other testing considerations such as temperature 

detailed in [61] can be included in the network by adding nodes to represent those conditions. This 

allows the network to accept priors and likelihood data for a variety of useful circumstances 

simultaneously, letting the user operate the network for a variety of potential conditions. The 

discrete Bayesian network will calculate all combinations, which can assist with Worst Case 

Circuit Analysis (WCCA) by identifying possible combinations of conditions that lead to degraded 

or failed operation. If a WCCA is already completed before construction of the Bayesian network, 

it can inform which nodes to include in the network.  
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Bayesian networks can work in conjunction with Failure Modes Effects and Criticality Analysis 

(FMECA). FMECA provides a systematic procedure for analyzing the failure and reliability of 

systems and their underlying components and subsystems. In FMECA, the likelihood of 

occurrence of each failure mode is documented in terms of probability or component reliability 

estimates. The Bayesian network framework in this work focuses on component and system 

degradation associated with radiation exposure. The cause-effect relationship identified from 

FMECA can inform the construction of the network. Additional information is required to populate 

the conditional probability tables that capture the effect of the partial failures/ degradation as well 

as the impact of each parent node on its children to complete the Bayesian network. 

Working with Hybrid Data Sets 

Information about the TID response of a system can come in a variety of forms – experiments, 

similar parts data, historical data from different lots, simulation, or expert knowledge. For the best 

prediction accuracy, the network should be populated with repeated experiments on lot controlled 

components for the target system. However, during the design process this can be prohibitively 

cost- or time-intensive. Instead the mix of data types available can be used, trading expense for 

accuracy in a quantitative matter. Non-Bayesian hardness assurance practices do not have a 

quantitative method for incorporating such diverse data sets. Of course, the more accurately the 

data represent the actual system, the better the prediction will be. 

The fundamental idea that any available component or system characterization information 

improves the health status prediction can leverage the wealth of information available to designers 

in TID databases. For example, if there is no TID degradation information about a specific desired 

component, use the data from a similar component and if necessary supplement the data with test 

data on the desired component when the data are available. This approach can be complemented 
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with a robust set of experimental tests to perform hardness assurance on the final design if 

appropriate. The requirements for constructing the probabilities and priors can be determined by 

an organization’s risk tolerance, but in general the sources of information used to inform the 

network must be documented, because the quality of the information directly impacts the quality 

of the inference performed by the network. 

Design or Model Modification 

The Bayesian network independence properties make modification or addition of nodes 

straightforward. Each node is only affected by its parent and children nodes. If a component is 

replaced with a different component, only the replaced node and its direct children nodes need to 

have their probability tables updated. During the design process component changes may occur 

regularly, and the Bayesian network can use the most recent information available to make a 

quantitative prediction or perform a sensitivity analysis. 

Structuring the network in four layers allows for easier network modification. The component 

layer is the only layer that interacts with the environment and may require TID testing. The rest of 

the layers can be populated with simulation data from physics-based circuit or system level 

simulations, using the component-level-degradation data in a standard electrical/mechanical 

modeling and simulation flow.  

Sensitivity to Discretization Process 

Bayesian networks can be seen as an upgrade to binary modeling of component failure 

(components are either within specification or not) because of the ability to model and propagate 

many possible node states in a probabilistic and quantitative way. For TID-degraded systems, the 

multiple possible node states reflect the physical reality that there are states between ideal 



80 

functionality and failure. In the models presented in this paper three states were chosen (Good, 

Degraded, Failed), but an arbitrarily large set of states could be chosen to reflect the nature of the 

system being modeled. As the number of discretization states is increased, additional experimental 

or simulation information is needed to populate the enlarged probability tables. This can result in 

a significant increase in the size of the probability tables used to populate the network. A limitation 

of the discrete Bayesian network technique is that the predictions are sensitive to the discretization 

process. A part failing at 49 krad(SiO2) versus 51 krad(SiO2) can be placed in different bins 

according to which discretization scheme is used, impacting the inference artificially. Artifacts 

like this can become problematic if small sample sizes are used to populate the probability tables. 

Continuous probability distribution Bayesian networks are available [62], which eliminate 

problems arising from discretization, but which introduce sampling and convergence 

complications. 

Conclusions 

Bayesian networks can be applied to the TID reliability arena through a systematic approach of 

analyzing the system for functional dependencies and designing a structured Bayesian network. 

The advantage of a Bayesian network is that it extends the benefits of using Bayesian statistics for 

component level reliability to systems where simultaneous component degradations can interact, 

leading to impacts on system level performance that might not be predicted from examining 

component radiation sensitivities alone. The Bayesian network helps give quantitative insight into 

the state and sensitivities in the system, using inference to answer questions about: 

 System function availability at certain dose levels 

 Interpretation of system health measurements 
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 Sensitivity analysis 

 Estimation of current TID the system has received. 

The Bayesian network approach can work with a variety of data sources, such as simulations, 

radiation hardness data on similar parts, etc. This allows quantitative estimation of radiation 

hardness even before complete radiation testing is performed on a new electronic system. Of 

course the quality of the estimation improves when more accurate models are used for each node 

in the network. Bayesian networks are flexible and can be adapted and reused efficiently due to 

the independence of nodes that are not directly connected by an edge, which means a model for a 

node in the network can be updated independently of the not directly connected other nodes in the 

network. The Bayesian network can provide insight into radiation impacts starting with design 

decisions and continuing through field deployment. 

The largest drawback to this approach is the significant amount of experimental work required to 

populate the nodes in the network. Importantly, the amount of experimental work required 

increases rapidly with the number of dependencies a node has and the number of different states a 

node can occupy. This motivated exploring the continuous Bayesian statistics approach described 

in the following chapter. Methods that can scale more efficiently to larger systems and have more 

flexibility in representing reality can have several advantages, but the data-driven simplicity of the 

discrete approach should not be overlooked. 
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CHAPTER VI 

CONTINUOUS BAYESIAN MODELING OF TID DEGRADATION 

 

The following content is an expanded version of an article that is © 2015 IEEE. Reprinted, with 

permission, from: 

 

Z. J. Diggins, N. Mahadevan, E. B. Pitt, D. Herbison, R. M. Hood, G. Karsai, B. D. Sierawski, E. 

J. Barth, R. A. Reed, R. D. Schrimpf, and others, “Bayesian Inference Modeling of Total 

Ionizing Dose Effects on System Performance,” IEEE Transactions on Nuclear Science, vol. 62, 

no. 6, pp. 2517–2524, 2015. 

Introduction 

Hardness assurance crosses many levels of science and engineering, ranging from physical 

mechanisms of device degradation to systems engineering concepts. Modeling radiation effects 

across multiple levels of abstraction is challenging, especially when uncertainty or variance is 

involved. Although assurance means eliminating uncertainty where possible, uncertainty is an 

irreducible property of any design when variability is present. Radiation exposure compounds the 

uncertainty, adding uncertainty about the radiation environment and the part-to-part variability of 

radiation response to the inevitable distributions in electrical performance of manufactured 

components. This work embraces the uncertainty introduced throughout the different levels in a 

system hierarchy, capturing the probabilistic information in the form of a Bayesian network. 

Individual components will go out of specification at different dose levels due to component 

manufacturing variability, leading to unacceptable system performance at different dose levels due 
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to component interactions. The contribution of this paper is a modeling flow that enables quantified 

estimates of system hardness from component measurements, enabling risk assessments. Case 

study results show that the system can operate for significantly longer duration (2x) with less than 

1% chance of failure after components have degraded out of specification, demonstrating an 

opportunity to relax component-level hardness requirements 

This work presents a modeling framework that captures the details of a system and the dose 

environment in the form of a Bayesian network and mathematical models of component 

performance (theory summarized in the appendix). Widely available software tools are used to 

perform inference on the Bayesian network in order to estimate distributions for parameters of 

interest. These distributions are then used to parameterize deterministic simulation models that 

capture additional details of the system, producing an estimate of the system response given the 

available component data. A case study of a small robot is used to demonstrate the approach; 

however, the method can also be applied to other types of systems such as spacecraft systems. The 

results establish the method’s ability to predict the system response in a probabilistic manner, 

allowing for estimation of the probability of mission success and for the sensitivity analysis of 

target parameters to identify design improvements. Fundamentally this work presents a path to 

pursuing hardness assurance through uncertainty awareness. 

Background 

The effects of total-ionizing dose (TID) on electronic components have been studied extensively 

[61][63][9], but TID can still presents a testing and hardness assurance challenge due to large 

derating factors necessary to compensate for uncertainty and component variability. Due to 

variability from many sources (manufacturing process, device bias in circuit, etc.), the rate of the 
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degradation of different devices will have a degree of variability. This variability is addressed in 

test standards such as MIL-STD-814 through derating and categorizing. Methods such as Part 

Categorization Criterion (PCC) have been developed to perform a one-sided tail statistical test 

[11]. Worst-Case-Circuit-Analysis (WCCA) is one method for addressing this variability. By 

identifying the worst case in terms of radiation or other environmental reliability concerns (e.g. 

temperature) and ensuring the system can operate successfully under such conditions, the designer 

has confidence that the parts used will be reliable. 

 Designers who are able to accept a certain risk level with the goal of relaxing requirements may 

not be interested in only the worst-case response, but also the probability of successful, degraded, 

or failed operation. Previous work has modeled this variability using Bayesian statistics [19][18], 

enabling a flexible and powerful analysis of individual components. The benefits of expanding 

such statistical techniques to address system behavior are an improved understanding of the risk 

involved and the identification of potential areas of design improvement when using components 

that are not radiation hardened or that will be operating near the design margin, such as low cost 

commercial-off-the-shelf (COTS) components. 

Discrete Bayesian networks have been used for addressing component and system quality for TID 

degraded systems [64]. These discrete Bayesian networks require categorizing or “binning” the 

data according to chosen thresholds, which is effective in many situations where clear 

discretization thresholds can be identified. Several benefits can be gained by extending this 

discrete statistical analysis through the system level without any thresholding, using continuous 

probability distributions. Instead of breaking up the chain of cascading effects using thresholds, 

this works models the combination of effects using continuous Bayesian networks, supplemented 

with multi-domain model tools where appropriate. A continuous treatment of the data is closer to 
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the actual physics of TID degradation, allowing for a more natural treatment of the degradation 

(e.g., TID damage does not occur in discrete steps). Interactions between degrading components 

due to TID can be taken into account in such an approach. Significant derating levels are not 

required to hedge against unanticipated interactions, potentially leading to parts with desired 

performance or cost attributes being included in the system. A low variance, low margin system 

can be more desirable than a high variance, high margin system. The entire part variability space 

can be simulated, eliminating the need to identify worst-case circuit analysis since no thresholds 

need to be identified. Understanding component interactions has the potential to lead to low cost, 

effective design changes to meet target requirements. 
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Figure 34. Overview of continuous Bayesian network modeling process. The analysis is a multi-

step process, and incorporates domain specific information in math models, statistical information 

in the Bayesian network, and system model information in the deterministic simulator. 

Additionally, failure modeling language can be used to inform the network architecture. 
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Using Continuous Parameter Bayesian Networks for TID Degradation Modeling 

This work presents a continuous Bayesian network inference process for TID degraded systems, 

diagramed in Figure 34. The processes are explained in greater detail in the following case study 

section. The overall radiation degradation modeling approach involves assimilating data and 

information to build different kinds of models related to the environment, component, and system. 

In this context “component” can refer to either a low level individual device like a transistor or a 

sub-assembly like a sensor. “System” in this context refers to the high-level set of related 

components that are designed to perform a specific set of tasks. The types of information include 

[33]:  

1. “Engineering information,” about the structure, component interconnection, and capabilities of 

the system. 

2. “Scientific information” about the physical principles on which the various components in the 

system operate, such as first-principles equations from physical laws.   

3. Data and measurements, both of electro-mechanical performance and degradation of individual 

component performance. These data have to be translated into usable information by means of 

mathematical models of the component operation. The data impact the mathematical models by 

changing the parameters of the model.  

The modeling procedure uses different kinds of simulation and estimation models. Each simulator 

enables a different kind of inference about the system state and performance. Using the different 

kinds of simulation together enables system-level inference about robot performance capabilities 

in the presence of radiation-induced degradation.   
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The structure of the continuous Bayesian net is informed by the Fault Modeling Language (FML), 

from [64], which captures available engineering knowledge and dependency information. Physics 

models or empirical models are then developed to capture how the components degrade with 

increasing TID. All variables and effects are described by continuous probability distributions to 

refine the network structure and populate likelihood relationships. To capture the importance of 

experimental measurements of individual component degradation and the radiation environment, 

a Bayesian network inference engine is used that computes the posterior probability distributions 

based on the prior knowledge of the distribution of component parameters and radiation 

environment models. The Bayesian network allows assimilating evidence information in the form 

of observed (measured) variables about the effect of degradation to infer the impact of degradation 

on other unobservable variables. The Bayesian model also performs the function of quantifying 

the degree of uncertainty about the radiation environment and the radiation degradation. To capture 

information about the robot components, their interactions, and the overall system behavior, a 

deterministic simulation model is developed and executed using the appropriate deterministic 

simulation tool (in this work Synopsys Saber was used). The deterministic simulation enables 

quantitative estimates of the effects of component degradation on system performance.   

Case Study: Line Tracking Robot 

The same line tracking robot system as the previous chapter is used to exercise the continuous 

Bayesian framework. 

System Details 

The example system is a path-following robot [65][66] [59] with a sensor array for the path 

consisting of six optical transmitter-receiver pairs that are aligned in a row as shown Figure 35. 
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Only the sensor was exposed to TID, with the goal of modeling the impact of the variability in the 

six sensors on the system behavior, motivated by previous work showing that sensors and their 

subcomponents have a large impact on system performance [58], [59]. This robot was chosen as a 

test vehicle for modeling system radiation response because the robot design is open source, is 

inexpensive, almost every variable in the system is accessible for measurement, and irradiated 

parts can be replaced easily. The robot detects the position of a black line typically 2 to 3 cm wide 

on a white surface by analyzing the outputs of the individual sensors. Each sensor only produces 

a signal over a fraction of the length of the line sensor array. The individual sensor signals are 

combined to provide an indicator of the robot’s position with respect to the line.  

 

Figure 35. Image of line sensor over a track [66]. In operation the line sensor faces the track. 

The outputs from each of the six sensors are combined in a weighted function to create a single 

input signal to the robot control system, as shown in Figure 36.  
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Figure 36. Figure shows individual sensor outputs (bottom) and combined output (top) for sensor 

board position relative to the center of the line. 

 

The operation and theory of degradation of the line sensor are summarized in Figure 37. Theory 

of degradation for line sensor optical couplers. The two primary sources of degradation are a 

decrease in the gain of the phototransistor and the decrease in output of the LED. For TID induced 

degradation, a decrease in gain of the phototransitor.. Infrared light is emitted by the transmitter, 

which reflects off the ground. The reflected light modulates the resistance of the phototransistor. 

When the phototransistor receives light from a reflective surface, the sensor output voltage is 

pulled towards 0 V. As the sensor receives less light, the output moves towards Vcc. The 

performance of optocouplers is expected to degrade with TID [66], specifically the light output of 

the LED will decrease and the gain of the phototransistor will decrease. 
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Figure 37. Theory of degradation for line sensor optical couplers. The two primary sources of 

degradation are a decrease in the gain of the phototransistor and the decrease in output of the LED. 

For TID induced degradation, a decrease in gain of the phototransitor. 

Experimental Details 

Four boards containing six reflectance sensors were tested for their TID response using a 660 keV 

gamma-ray 137Cs source; a total of 60 individual sensor data sets were collected. An example of 

the change in sensor output for different TID levels is shown in Figure 38. The degradation due to 

the reduced light output and reduced gain manifests itself as an inability to achieve low voltage 

levels over highly reflective surfaces. 

A testing set for model validation was obtained by taking measurements on sensor assembly 

boards. The boards were irradiated 6 sensors at a time, placed on the robot, and the tracking 
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performance was monitored by post-processing a video recording of the robot attempting to follow 

the track.  

 

Figure 38. Example degradation of a reflectance sensor. The peak value of the sensor remains 

relatively constant with dose, but the low range output (over highly reflective surfaces) increases 

due to a decreased max gain in the phototransistor. 

 The combination of six degrading sensors resulted in a shift in the combined sensor curve, 

shown in Figure 39. With increasing TID, the slope of the curve decreased significantly, resulting 

in the robot eventually not having enough control gain to stay centered on the line. The curve has 

multiple inflection points, and when the slope of the curve reverses the robot will lose the ability 

to track the lane because it will have a positive feedback gain. 
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Figure 39. Degradation of combined sensor response for different TID levels. The curve is used as 

an input to a proportional-integral-derivative controller. As the curve becomes “flatter”, the 

effective control gain decreases. 

Bayesian Network Construction 

Figure 40 shows the Bayesian network constructed to model the impact of degradation of the line 

sensor through the system level. Bayesian networks require a parameterized structure to 

incorporate the data. The increase in the white-space reflectance of individual sensors (the cutline 

in Figure 38) is the dominant TID effect on the sensors, so it is used to describe the change in the 

sensor with TID. This increase is modeled as a log-linear function (y-axis on log scale) with two 

parameters, a slope and an intercept. The log-linear slope intercept model is fundamentally related 

to the exponential relationship between trapped charge from TID and the performance of the device 

as described by the law of the junction, and is supported by the experimental data plotted in Figure 

45. The variability in the slope and intercept of the log-linear fit is due to part to part variations, 

which is modeled with normal distributions (for smaller datasets, t-distributions would be 

appropriate). Each normal distribution is described with two parameters, a mean and a standard 
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deviation, resulting in four total parameters to descript the TID degradation (slope mean, slope std. 

dev., intercept mean, and intercept std. dev). The form of the model is expressed mathematically 

below: 

log(whitelevelcutline) = slope ∗ TID + intercept             (1) 

𝑠𝑙𝑜𝑝𝑒 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛𝑠𝑙𝑜𝑝𝑒 , 𝑠𝑡𝑑. 𝑑𝑒𝑣.𝑠𝑙𝑜𝑝𝑒 )             (2) 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 , 𝑠𝑡𝑑. 𝑑𝑒𝑣.𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 )     (3) 

Normal distribution priors were used for the four parameters. Non-informative priors were used, 

setting the prior means to 0, and the prior standard deviation to a large value (100,000) producing 

effectively a flat prior distribution. If information was available to produce informed priors, it 

could be included by changing the prior mean and prior std. dev. Guidelines for designing 

informative priors for a variety of models can be found in [8].  

The line sensor TID degradation experimental data are included at this point, populating the 

network with the experimental data. There are six copies of the component model in the top block, 

one for each sensor in the system. Modeling each individual sensor best captures the variability in 

the system, since the source of variability in a six sensor board is due to the variability in the 

individual sensors. 
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Figure 40. Bayesian network for line-follower robot with degraded sensor. The model is broken 

up into three sections: Bayesian component model, environment model, and deterministic system 

model. 

The environmental nodes allow for modeling of different dose profiles or paths the robot is 

commanded to follow. The environment information and sensor component information are passed 

to the simulator, where a deterministic simulation is performed, producing a distribution of 

tracking error values. These tracking error values can be compared to system level data. The 

tracking error can be processed by the functionality check to determine if the robot is tracking the 

line or losing the line. 

Saber Model of Robot System 

A hierarchical model of the robot system based on the operation and interaction of the underlying 

components was constructed using Synopsys Saber, an industry tool capable of multi-domain full 
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system models. The inputs to the simulation model include environment data pertaining to the 

desired robot trajectory (a circular track), as well as component degradation data for each of the 

six sensors in terms of parameters such as sensor white-level bias. The parameter data is output 

from the Bayesian network. The simulation outputs the system response (the actual path followed 

by the robot) and metrics to qualify the system response. 

 

Figure 41. Completed system-level SABER model of Pololu robot. 

 

Figure 42. Simulated position components for nominal parameters (left) and degraded parameters 

(right). 
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Case Study Results 

Verification of Parameter Estimation (Line sensor parameter estimation) 

The parameter estimates for the slope and intercept were performed using PyMC. PyMC uses a 

Markov chain Monte Carlo approach. Diagnostic information of the simulation is contained in 

Figure 43. In the upper left corner good mixing is observed of the chain samples. In the lower right 

corner there is initially some autocorrelation, indicating that more thinning or burn-in should be 

performed. The results follow the shape of the normal distribution, indicating that a sufficient 

number of samples have been run for the network. In our experiments, the PyMC Bayesian 

inference engine was able to achieve good mixing, minimal auto-correlation, and in general a 

normal distribution shape. Mixing indicates the chains have reached a steady state, indicating that 

the simulation has converged sufficiently. Auto-correlation is a measure of error introduced by 

subsequent samples. If it is excessively high, the samples can be thinned (ever other sample or 

more thrown away for example) to reduce autocorrelation. The normal distribution for the 

histogram indicates that the data is dominating the prior for defining the model inference, and that 

a sufficient number of simulation samples have been calculated to populate the model sufficiently. 
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Figure 43. Summary of Bayesian sampling for the slope of one of the sensors.  
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Figure 44. Parameter estimation for the slope and intercept of the PyMC model. The slope and 

intercept values correspond to the log-linear white-level model parameters. The shape of the 

surface describes the part-to-part variability in radiation response.  

This parameter information can be combined with random TID levels to produce a plot that 

provides additional information about the quality of the fit. Figure 45 shows the comparison 

between the Bayesian estimates and the actual component data, with the larger dots and error bars 

representing the experimental mean and standard deviation. The PyMC simulation results are a 

combination of the proposed model form (log-linear slope/intercept model) and the experimental 

data.  Each smaller point plotted in the graph corresponds to a sample point generated by the 

MCMC sampling algorithm used by the PyMC Bayesian inference engine.  Each sample point 
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corresponds to a specific value of the TID (dose), as well as parameters (slope and intercept) for 

this particular optical sensor in the line sensor assembly. 

 

Figure 45. Comparison between Bayesian generated samples and experimental data. Larger dots 

with error bars represent the data set mean and standard deviation. Smaller dots correspond to 

simulation results. 

Prediction of System Response 

The results of the PyMC sampling of the posterior distribution using the specified model and the 

data from the 60 tested sensors and simulation using the Saber deterministic simulator are shown 

in Figure 45, comparing the maximum simulated deviation from the line to the ratio of 

experimental system tests that result in failed tracking. Five systems were tested with radiated line 

sensors using video to measure line-tracking performance. The Bayesian-deterministic simulations 
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align well with the experimental video data (a different data set using only line sensor subsystem 

data similar to Figure 38 was used to generate the PyMC samples). System data was plotted as a 

cumulative population distribution function because misalignments in the max distance from the 

line and the video data makes a one-to-one comparison misleading. The transition between a low 

maximum tracking distance and a high maximum distance has some overlap, indicating a region 

where tracking is uncertain due to part-to-part variability.  

 

Figure 46. Comparison of Bayesian network and Saber result to actual full system test. Circles 

represent simulation results for maximum distance the robot deviates from the line (left axis) and 

diamonds represent experimental results for the ratio of robots that fail to track the line (right axis). 

The framework can output results that are straightforward to interpret, such as cumulative 

probability distribution functions (CDF), informing design or operation decisions. Using the 
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samples generated by the PyMC tool and the Saber model, a binary search is performed to find the 

TID level where that sample will no longer track the line for two cases – nominal gain and an 

increased gain of the controller, show in in Figure 47. Performing this Bayesian-deterministic 

simulation with a sufficient number of sampling iterations allows for generation of the CDF. This 

result is highly informative and shows that our approach succeeds in our objective of predicting 

the effect of radiation degradation of components on robot system-level performance. The 

component is out of specification at 20 krad(SiO2), but the system has <1% probability of failure 

through 40 krad(SiO2). Using a derating factor of 3 in a component-hardness paradigm, the system 

would only be qualified for 7 krad(SiO2) of TID, while the Bayesian network with a derating of 3 

would qualify for 14 krad(SiO2) or greater with the increased controller gain. In this case the 

Bayesian inference revealed that the qualification based on component information was too 

conservative. In other situations, for different systems, it is also possible to detect situations where 

the component qualification information is not conservative enough. System level testing attempts 

to address this concern, but it is expensive to test full systems, while the simulation approach can 

generate thousands of samples for only the cost of the simulation time. Furthermore, it is often 

difficult to diagnose from a system radiation test which component or subsystem caused the failure, 

whereas the Bayesian simulation approach can be used in a diagnostic mode to identify weak or 

failed components. 
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Figure 47. Cumulative probability distribution function of the robot’s ability to track the line versus 

dose for nominal operating conditions and an increased controller gain. Points represent 

experimental data from 5 tested systems. Lines represent model predictions. 

Different system configurations resulted in different dose levels where the transition from the 

normal line tracking mode to the failure to track mode occurs. A benefit of this framework is the 

capability of simulating the effect of radiation on a variety of configurations rapidly. Running the 

second control condition requires the change to one variable in the simulation (the controller gain), 

requiring 2 hours of run time on a dual core machine (the simulation can be parallelized to test 

more configurations rapidly or perform sweeps) In general the robot failure depends not only on 

component degradation, dose rate, and the propagation of the degradation through the system, but 
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also on software configuration of the robot at the time of failure. Appropriate component hardness 

levels should work for any software configuration, but this may be overly conservative since the 

control algorithm can potentially compensate for significant degradation. 

Discussion 

Model Flexibility 

Since the inference is handled by the software package, model forms can be changed rapidly by 

altering single lines of code, without requiring any re-derivations of posterior distributions. 

Switching from a normal distribution to a log-normal distribution, a student-T distribution, or any 

other desired form is very straightforward. Additionally, the model is independent of the data, so 

new data can be incorporated into a preexisting model. Because of the independence assumptions 

inherent to a Bayesian network, each node is only affected by those to which it is directly 

connected, allowing subsections of models to be reused in larger system designs. 

Bayesian Network’s Role in Hardness Assurance 

The modeling approach presented in this paper should be thought of as another tool available to 

designers of systems that will operate in a radiation environment. The network inference quality 

benefits from high quality component test information that follows the standards developed by the 

radiation effects community. 

The models used to convert available data into parameters for the network can and should use 

available knowledge on how the devices degrade. A wealth of knowledge is available on the TID 

degradation of common components, and the models used in the network can naturally reflect this. 

The use of radiation hardened parts can greatly simplify the analysis by eliminating nodes from 

the network. A part that shows no substantial degradation for the TID ranges of interest reduces 
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the number of TID dependent variables in the system. The Bayesian network approach can help 

identify where radiation hardened parts are necessary for high reliability designs. 

Managing Model Complexity 

Managing complexity is the primary challenge for expanding the approach to large systems (e.g. 

a spacecraft or robot). It is unrealistic to write equations that directly relate semiconductor 

parameters (the level impacted by radiation) to higher-level system functions. The solution to the 

complexity is modeling the system hierarchically, where each level corresponds to a level of 

abstraction. The work in this paper has three hierarchical levels – the environment, the 

components, and the system. A more complex system may have multiple hierarchy levels, between 

components and the system. 

Defining the transitions and connections between hierarchical levels varies with the reliability 

question that is being investigated and the insight of designer/subject matter expert. In this work 

the TID degradation of the sensors was abstracted to only the white level of the sensor, the robot 

performance was abstracted to the max distance from the line, which was abstracted further to a 

success/failure criterion. For a complex system models could be built of each subsystem passing 

the appropriate level of detail up the hierarchy. The lower levels of the hierarchy will use voltages 

and currents, while the higher levels will use probability of availability.  

Complex systems often defy intuitive analysis, but the Bayesian network simulation approach can 

allow visibility to the root cause of failures. Additionally, system data is very difficult to acquire 

for complex systems, and many tests must be performed to attempt to capture worst case 

conditions. For these reasons Bayesian networks may become more valuable the more complex 

the system becomes.  
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Software Injection of TID Degradation 

Potential novel applications of this method include the determination of system level TID 

degradation through software injection. An example would be adjusting the voltage on an 

adjustable voltage regulator that could be reprogrammed to output different values that correspond 

to the degraded values corresponding to specified TID levels. This is a potential way to understand 

the system response without having to test all the components simultaneously. 

Conclusions 

The challenge in statistics based system prediction is an efficient representation and accurate 

modeling of the available information. The model must accurately and flexibly describe the 

characteristics of the system in a way that allows for efficient computation on a large parameter 

space. The method of choice in this work is continuous Bayesian networks, supplemented with 

traditional deterministic simulators where appropriate. The technique allows for the inclusion of 

all available radiation effects knowledge of the components and design information about the 

system, enabling the statistical prediction of the system degradation from component test 

information. The probabilistic Bayesian network modeling approach accounts for the uncertainty 

in the radiation environment, the part-to-part variation in radiation response, manufacturing 

uncertainty, and the uncertainty of the impact of simultaneous degradation of multiple 

components. The modeling method combines engineering system knowledge with component 

radiation measurement sets and physics-based models of the system behavior. The method is 

implemented on a small path-following robot, and it is shown that the probability of system failure 

as a function of dose can be predicted quantitatively. We demonstrate that the radiation failure 

point of the system occurs at a dose two to three times higher than the dose for the failure points 

of the individual components. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

This work identifies characteristics of robotic COTS component degradation through a case-study 

of distance sensors, primarily part-to-part variability and the interactions between the degradation 

of multiple components. Insight into the health of a class of components, microcontrollers, was 

developed using timing characteristics. A framework using either continuous or discrete Bayesian 

networks was developed to model the degradation observed in sensors and other electronic 

components. The Bayesian network can be incorporated with deterministic models for powerful 

analysis.  

In summary, this work has identified the impact of and characteristics of sensor degradation. It 

proposed, measured, and modeled component health status indicators. Methods for integrating 

statistical modeling techniques, Bayesian networks, and commercial deterministic modeling tools 

were developed. Translation of fault propagation and functional effects captured in fault-modeling 

language models into Bayesian Network models were formalized. Saber simulation models were 

integrated into the Bayesian inference process. A functional discrete Bayesian modeling technique 

that incorporates the effects of radiation environment, component radiation measurements, 

electrical measurements related to radiation degradation, and system-level radiation measurements 

was demonstrated.  This approach has many applications, enabling the design of systems with 

adequate hardness but without massive overdesign or large design margins to attain radiation 

hardness. Information from a graphical fault-modeling reliability program, component radiation 

data, continuous Bayesian statistical distributions, and physics-based deterministic simulators 
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were combined to create a continuous Bayesian modeling method that can predict the system-level 

radiation impact on performance measures with quantitative bounded uncertainty, using only 

radiation measurements on individual components. This result was demonstrated to agree well 

with actual system-level radiation degradation measurements. Conceptually, this method is a 

systematic way of capturing engineering or technological information, physics-based modeling 

information, and experimental or simulation data from various sources. The model gives a rigorous 

bound on uncertainty in component radiation measurement, part-to-part variation, and radiation 

environment.  

The fundamental question of whether or not the system will function as designed in a radiation 

environment is challenging to answer because the abstraction layers used to make the system 

manageable to model and develop breakdown when basic circuit parameters such as threshold 

voltage and leakage current change significantly and in a highly variable manner from component 

to component. In each chapter in this work, the functionality of each system in question was recast 

from a new viewpoint to incorporate the impact of radiation while still approaching the system 

from a perspective that allows for manageable model complexity and simulation complexity. For 

the sensors this is done through modeling the dependencies of each component. For the 

microcontrollers, this is done through adding a health metric using maximum clock frequency. In 

order to make this approach scalable to a larger class of systems and not an ad-hoc case-by-case 

approach, Bayesian networks were adopted to provide a generalized solution to modeling the 

variability in radiation degradation of electromechanical systems. Using both continuous and 

discrete Bayesian networks depending on the datasets and the complexity of the model required, 

this work demonstrates that the functionality of the system can be modeled in such a way where 

probabilistic TID degradation information and deterministic system operation to answer high level 
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questions of system operation in TID environments and identify areas for design improvement. 

This combined approach allows for the evaluation of system health in TID environments using a 

quantitative and scalable approach that allows for detailed insight into system behavior. Given the 

appropriate model structure and radiation performance datasets, it is possible to quantitatively 

answer the motivating question – will the system operate as intended in the targeted radiation 

environment. 

Ultimately, the next step would be to apply these developed techniques to a real world full scale 

system. This would require a significant team effort, including development of a component 

database for prior population, instrumentation of available health status indicators, and total-

ionizing dose experiments. This would be a significant investment, but could yield a low-cost 

COTS rad-aware system.  
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APPENDIX A - FUTURE DIRECTIONS 

 

This appendix highlights some of the promising future directions that were explored during the 

final stages of this work. 

Cluster Computing for System Design Optimization 

Like any Monte Carlo simulation, run time and sample size play a major role in the practicality of 

the approach. The Markov chain simulation process requires sequential sampling, which 

unfortunately limits the possibility of parallelization, although some work has been completed in 

this area [67], [68]. This process utilizes one burn-in chain, followed by several parallel chains to 

reach the desired sample count. Additionally, the deterministic portion of the simulation can be 

parallelized extensively to accelerate code execution. Towards this end preliminary simulations 

were developed on the Vanderbilt ACCRE compute cluster. This motivated the transition from 

Saber to the Python model presented in Appendix D.  

If model run-time can be increased sufficiently (or if long runtimes are acceptable) the approach 

presented in Chapter VI can be used to optimize systems for their radiation response. Changes in 

control loop parameters or other design features can lead to dramatic improvements in radiation 

tolerance.   

Informative Priors 

One of the major advantages of the Bayesian approach is the simplicity of incorporating additional 

data sources through the use of informative priors. Figure 48 shows the data-set containing 

information on the degradation of the reflectance sensor from Chapter VI analyzed in a new way. 
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The dataset consisting of all the data was split into two equal sized datasets containing 30 samples 

each. Then, the modeling process from Chapter VI was calculated for the newly separated datasets. 

In the resulting plot, the “all data” distribution lies between the individual distributions for “dataset 

1” and “dataset 2”. The “all data” dataset is the combination of both separate datasets. This shows 

that adding the second dataset to the first dataset produces a mixture of the two distributions. This 

illustrates the property of Bayesian analysis to combine disparate sources of information into a 

cohesive distribution.  

Additionally, dataset 2 was re-analyzed with the addition of an informed prior. The informed prior 

was defined in PyMC to have a lower slope value than the media value for the non-informative 

prior posterior using dataset 2. This informed prior pulls the distribution towers lower slope values. 

The impact of the informed prior is show through skewing the distribution to the left on the plot. 

This illustrates how priors consisting of meaningful information such as similar type component 

performance can be used to pull the data towards the prior, allowing greater model flexibility. 
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Figure 48. Comparison of modeling the data together, or as two groups using one of the groups as 

an informed prior. The distribution shifts depending on how the priors are chosen. 
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APPENDIX B -  pyMC MODEL 

 

Below is the fully pyMC model used for Chapter VI. All the datasets in Chapter VI were processed using this model, 

which generated the posterior distribution used in all subsequent plots. This code is written in Python and is meant to 

be run using the PyMC python package. Note the input data has been previously log transformed, so the model is a 

linear fit. 

 

def sampling():#(true_m, true_c, true_tau) 

precision = 10 

# priors 

dose_model = pymc.Uniform("x", lower=0, upper=100, value=dose_matrix, observed=True)  

slope1 = pymc.Normal("slope1", mu=0.035, tau=precision) 

intercept1 = pymc.Normal("intercept1", mu=3.0, tau=precision)  

slope2 = pymc.Normal("slope2", mu=0.03, tau=precision) 

intercept2 = pymc.Normal("intercept2", mu=3.0, tau=precision)  

 

slope3 = pymc.Normal("slope3", mu=0.03, tau=precision) 

intercept3 = pymc.Normal("intercept3", mu=3.0, tau=precision)  

 

#define the linear model 

@pymc.deterministic(plot=True) 

def mu_1(slope1=slope1, intercept1=intercept1, dose_model=dose_model): 

return slope1*dose_model + intercept1 

 

@pymc.deterministic(plot=True) 

def mu_2(slope2=slope2, intercept2=intercept2, dose_model=dose_model): 

return slope2*dose_model + intercept2 

 

@pymc.deterministic(plot=True) 

def mu_3(slope3=slope3, intercept3=intercept3, dose_model=dose_model): 

return slope3*dose_model + intercept3  

 

#attach the model to the data in the variable “log_sensors_1” 

sensor1_model = pymc.Normal("sensor1", mu=mu_1, tau=precision, value=log_sensors_1, 

observed=True)  

sensor2_model = pymc.Normal("sensor2", mu=mu_2, tau=precision, value=log_sensors_2, 

observed=True) 

sensor3_model = pymc.Normal("sensor3", mu=mu_3, tau=precision, value=log_sensors_3, 

observed=True)  

dose_pred = pymc.Uniform("x_pred", lower=0, upper=100) 

 

return locals() 
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APPENDIC C – MICROCONTROLLER TEST CODE 

 

Below is the test code running on the microcontroller during the timing delay tests in Chapter III. 

#include <avr/io.h> 

#define F_CPU 16000000L 

#include <util/delay.h> 

#include "testdefines.h" 

extern void test_counter0(void); 

extern void test_counter_comparator_0_assy(void); 

extern void test_opcodes(void); 

//extern void test_pwm_in_assy(void); 

//extern void test_pwm_out_assy(void); 

 

void init_set_ack_pins() 

{ 

 DDRC |= (1<<(PC1)); //set slave output ack 

 DDRC &= ~(1<<(PC0)); // set slave input ack from master 

  

 _delay_ms(50); 

  

 PORTC &= ~(1<<(PC1)); //set slave out to 0.  

 

} 

void init_set_result_pins() 

{ 

 DDRD=0xFF; 

 PORTD=0xFF; 

} 

void init_set_test_code_input_pins() 

{ 

 DDRC &= ~((1<<(PC2)) | (1<<(PC3)) | (1<<(PC4)) | (1<<(PC5))); 

} 

 

unsigned char read_test_code() 

{ 

 return (PINC & (_BV(PC2) | _BV(PC3) | _BV(PC4) | _BV(PC5))) >> 2; 

} 

 

 

void  test_d2d() 

{ 

 init_set_test_code_input_pins(); 

 init_set_result_pins(); 

 PORTD = read_test_code(); 

  

} 
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// read adc value 

uint16_t adc_read(uint8_t ch) 

{ 

 // select the corresponding channel 0~7 

 // ANDing with '7' will always keep the value 

 // of 'ch' between 0 and 7 

 ADMUX = 0b11000010; 

 //ch &= 0b00000111;  // AND operation with 7 

 //ADMUX = (ADMUX & 0xF8)|ch;     // clears the bottom 3 bits before ORing 

  

 // start single conversion 

 // write '1' to ADSC 

 ADCSRA |= (1<<ADSC); 

  

 // wait for conversion to complete 

 // ADSC becomes '0' again 

 // till then, run loop continuously 

 while(ADCSRA & (1<<ADSC)); 

  

 return (ADC); 

} 

 

 

void test_adc() 

{ 

 uint16_t adc_result0; 

  

 // initialize adc 

 // AREF = AVcc 

 ADMUX = (1<<REFS0); 

 // ADC Enable and prescaler of 128 

 // 16000000/128 = 125000 

 ADCSRA = (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0); 

  

 _delay_ms(50); 

  

 while(!(PINC & 0x01)) 

 { 

  adc_result0 = adc_read(2);      // read adc value at PC2 (ADC2) 

  PORTD = (adc_result0 <<2); 

   

 } 

 return; 

  

} 

 

 

void test_sram(void) 

{ 
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 register unsigned char *p_val,sav,i; 

   

 /* test all locations with 0x55, 0xAA and complement of address value */ 

 for (p_val=(unsigned char *)RAMSTART;p_val<((unsigned char *)(RAMEND));p_val++) 

 { 

  sav = *p_val; 

  *p_val = 0x55; 

  i = *p_val; 

  if (i!=0x55) { PORTD = TEST_FAIL;  *p_val=sav; return; } 

  *p_val = 0xAA; 

  i = *p_val; 

  if (i!=0xAA) {PORTD= TEST_FAIL;  *p_val=sav; return; } 

  *p_val=sav; 

 } 

 

 PORTD = SRAMTEST; 

 return;  

 

} 

 

/* 

unsigned char test_counter_comparator_0(void) 

{ 

  

 TCCR0A = 0x00;// Set the Timer Mode to Normal 

 TCNT0=0x00; //reset 

 TIFR0 = 0x00;//reset 

 OCR0A = 0x55;// Set the value that you want to count to 

 TCCR0B |=  (1 << CS00);// set prescaler to 1 and start the timer 

 

 while ( (TIFR0 & (1 << OCF0A) ) == 0) {}       // wait for the overflow eve 

 TCCR0B = 0; 

 PORTD=0x02; 

 return 0x02; 

} 

*/ 

 

void test_pwm_out() 

{ 

  

 /*DDRD |= (1 << DDD6);// PD6 is now an output 

 OCR0A = 128; // set PWM for 50% duty cycle 

 TCCR0A |= (1 << COM0A1);// set none-inverting mode 

 TCCR0A |= (1 << WGM01) | (1 << WGM00);// set fast PWM Mode 

 TCCR0B |= (1 << CS00) | (1 << CS02) ; // set prescaler to 1024 and starts PWM 

 //while(1){} 

 _delay_ms(100); 

 TCCR0B = 0; 

 */ 

 PORTD = PWMOUTEST; 

 return; 
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} 

 

void test_pwm_in() 

{ 

 /* 

 DDRD |= (1 << DDD6);// PD6 is now an output 

 PORTD &= ~(1 << PORTD6); 

  

 TCCR0A = 0x00;// Set the Timer Mode to Normal 

 TCNT0=0x00; //reset 

 TIFR0 = 0x00;//reset 

 OCR0A = 0x64;// Set the value that you want to count to 

 TCCR0B |=  (1 << CS02)| (1 << CS01) |(1 << CS00);// set external clock source on T0 pin. Clock 

on rising edge 

 

 while ( (TIFR0 & (1 << OCF0A) ) == 0) {}       // wait for the overflow eve 

 TCCR0B = 0; 

 PORTD |= (1 << PORTD6); 

 */ 

 PORTD = PWNINTEST;  

 return; 

} 

 

 

void run_test(unsigned char test_code) 

{ 

 switch( test_code) 

 { 

  case D2DTEST: test_d2d(); break; 

  case OPTEST: test_opcodes();break; 

  case FLASHTEST: PORTD=FLASHTEST; break; 

  case SRAMTEST: test_sram();break; 

  case ADCTEST: test_adc(); break; 

  case CTRTEST: test_counter0(); break; 

  case COMPTEST: test_counter_comparator_0_assy(); break; 

  case PWMOUTEST: test_pwm_out(); break; 

  case PWNINTEST:test_pwm_in(); break; 

  default: 

   break; 

 } 

 return; 

  

} 

 

int main() 

{ 

 init_set_ack_pins(); 

 init_set_result_pins(); 

 init_set_test_code_input_pins(); 
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 unsigned char slaveStatus= 0; 

 unsigned char masterStatus = 0; 

 unsigned char testCode = 0; 

 while (1) 

 { 

   

 

  //checking for master status on PC0 

  //setting  slave status on PC1 

   

  masterStatus = PINC & _BV(PC0); //read master status 

  

  if ((slaveStatus == 0) && (masterStatus > 0))  

  { 

   init_set_result_pins(); 

   init_set_test_code_input_pins(); 

   testCode = read_test_code(); 

   PORTC |= (1<<(PC1)); // set slave status to 1 

   slaveStatus = 1; 

  } 

  else if ((slaveStatus == 1) && (masterStatus == 0)) 

  { 

   PORTC &= ~(1<<(PC1));// set slave status to 0 

   run_test(testCode); //run test code 

   slaveStatus = 0; 

   init_set_test_code_input_pins(); 

  } 

 } 

  

 return 0; 

} 
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APPENDIX D – PYTHON ROBOT MODEL 

 

A detailed python physical deterministic model of the line-tracking robot was constructed to 

improve upon the Saber model. The motivation for putting the model in python was to enable 

faster simulation time, especially through parallel simulations on the Vanderbilt supercomputing 

cluster. By eliminating the need for a Saber license and enabling direct interaction with the 

simulation variables, a much more streamlined simulation approach was achieved. The full code 

is at the end of the section. The python robot model was used to evaluate the combined effect of 

degradation in the linear regulator on the robot and the line sensor on the robot. 

Figure 49 shows the model track with the robot in three positions following the course. The smaller 

circles indicate the position of the robot and the x’s indicate the position of each reflectance sensor. 

The axes are in pixels, where 10 pixels corresponds to 1 centimeter. The progression around the 

track is as expected for the nominal condition. 

 

Figure 50 shows the calibration curve for the line sensor as a whole and for each individual sensor, 

using the same data used to generate Figure 36. This curve uses a parabolic model with two 

parameters to model the response of the sensor to the presence of the line, which is documented in 

 

Figure 49. Simulations of python robot model progressing around the track.  
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the code and is an improvement on the model used in Chapter VI. By adding individual parameters 

for the vertex of the parabola and the width of the parabola, the accuracy of the simulation 

increases. This highlights the key point that this modeling approach has significant flexibility on 

how the deterministic model of the system is constructed. 

 

Figure 50. Calibration curve generated by sweeping the software model over the line, using the 

updated parabola model. 

Figure 51 shows the degradation of the line sensor after 50 krad of dose based on the average data 

from Chapter VI with significant linear regulator degradation included. The impact of radiation on 

the linear regulator is primarily on the output voltage of the regulator, resulting in a 300 mV 

decrease per 50 krad of dose. The post-radiation performance of the linear regulator impacts the 

line sensor by reducing the max magnitude that the sensor can output due to the decrease in the 

voltage rail. The output voltage when the sensor is directly over the line has reduced by 

approximately 50%.  The impact on the sensor directly due to TID manifests itself in the increase 
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in the output offset when the sensor is not over the line, increasing to approximately 200 on the 

analog-to-digital converter scale from approximately 50. The combined effect is a substantial 

reduction in the measureable signal because the signal range is reduced on the low end by the 

offset in the line sensor and on the high end by the decrease in max output voltage. 

 

Figure 51. Degraded calibration curve at 50 krad. Note the decreased amplitudes of the parabolas 

and the increase from 0 in the offset. 

Figure 52 shows the results of running multiple simulations, sweeping the simulated degradation 

in the voltage regulator from full degradation at 0 (corresponds to 0 V) to no degradation at 1023 

(corresponds to 5 V). Each simulation was for a different ADC max value, with 1024 simulations 

run in total. The plot shows a sharp transition at ~100 ADC units (500 mV) in the ability to track 

the line. Below this point, the robot cannot track the line due to inadequate sensing range. After 

this point, the robot gains the ability to track the line successfully. This effect is a new addition 

and was not modeled in the previous chapters. The benefit of this modeling approach is the 
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straightforward ability to add basic mechanisms and data iteratively to the model, gaining 

increased fidelity with the additional modeling effort. 

 

Figure 52. Simulation of robot line-tracking performance versus the max achievable sensor output 

due to degradation in the linear regulator. 

Figure 53 shows the results of a simulation of the impact of TID on the sensor element. The 

primary impact of TID in the reflectance sensor is an increase in the output when the sensor is not 

over the line. The plot shows that for sensor white-level offset values below approximately 450, 

the robot is able to track the line successfully. Once the sensor has degraded to the point that the 

reflectance offset white level is greater than 450 units on the ADC scale (~2.3 V), the robot is no 

longer able to track the line successfully. 
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Figure 53. Simulation of the effect of the white level offset in the sensor on tracking performance. 

The above figures demonstrate the functionality of the model in isolation. The combined effect of 

degradiation in the sensor and degradiation in the linear regulator was simulated using an expanded 

pyMC model. To incorporate the degradiation of the line sensor, the following line was added to 

the model in Appendix B: 

@pymc.deterministic(plot=True) 

def mu_regulator(slope=regulator_slope,intercept=regulator_intercept, 

dose_model=dose_model): 

return slope1*dose_model + intercept1 

regulator_model = pymc.Normal("regulator", mu=mu_regulator, tau=precision, value=regulator_data, 

observed=True)  

 

The “regulator_model” assumes linear change in the output of the regulator with dose. The model 

uses non-informative priors for its mean and precision. The model accepts values for regulator 

output voltage versus dose, producing a distribution for the posterior distribution of slope and 

intercept variables that define the response of the regulator to dose. 
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Figure 54 shows the output of the pyMC model for the linear regulator and sensor. The 

experimental data for the linear regulator showed minimal spread, producing a tighter distribution 

versus dose than the sensor data. Overall, the sensor degradation shows more drift than the linear 

regulator data does. The combined effect is a reduction in sensor output range. 

 

Figure 54. Results of combined linear regulator model and sensor model. 

The linear regulator datasets showed limited degradition in output voltage, so the slope was 

increased by a factor of 10x for the plot in Figure 55 to highlight the combined effect of the two 

degradition modes. The plot of the cumulative probability of failed tracking is identical from 

Chapter VI Figure 47, and there are two new lines: the probability of failure due to just the 

regulator versus dose, and the combined probability of failure due to degradiation in both devices. 
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Importantly, the combined degradation occurs earlier in dose than either curve individually, but it 

overall follows the characteristics of the sensor only curve. 

 

Figure 55. Plot of probability of failed tracking of just the sensor degrading, just the regulator 

degrading, and both degrading. 

Below is the Python code that produces all the graphs in this section: 

import numpy as np 

from PIL import Image 

import scipy as sp 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.animation as animation 

 

position = 50 

 

class Course: 

    origin = [400,400] 

    size = [800,800] 

    track = np.zeros(size) 

    def generate(self,option): 

        if(option == 1): 
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            radius = 14.0*25.4/2.0 

            width = 25.4/2.0 

            for i in range(self.size[0]): 

                for j in range(self.size[1]): 

                    distanceFromCenter = sp.spatial.distance.pdist([[self.origin[0],self.origin[1]],[i,j]]) 

                    if((distanceFromCenter < (radius + width)) & (distanceFromCenter > (radius - width))):  

                        self.track[i,j] = 0 

                    else: 

                        self.track[i,j] = 255 

                         

class Robot: 

     

    max_error = 0 

 

    origin = [400,400] 

    radius = 14.0*25.4/2.0 

 

    max_adc = 1024 

    white_level_offsets = [50,50,50,50,50,50] 

 

    track = [] 

    position = [360,220] 

    sensor_positions = [[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]] 

    angle = 0 

     

    wheel_width = 90 

    sensor_forward_offsets = 40.0 

    sensor_sideways_offsets = [-25.0,-15.0,-5.0,5.0,15.0,25.0] 

     

    sensor_height = 10. 

    #field_of_view = 60.0/180.0*np.pi 

    field_of_view = .001    

 

    num_rays = 1000 

     

    proportional = 0 

    integral = 0 

    derivative = 0 

     

    p_constant = 1.0/40.0 

    i_constant = 1.0/10000 

    d_constant = 3.0/2.0 

     

    command_position = 3500 
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    max_speed = 200 

     

    def initialize(self, proportional, integral, derivative, start_position, command_position, track): 

        self.p_constant = proportional 

        self.i_constant = integral 

        self.d_constant = derivative 

        self.position = start_position 

        self.command_position = command_position 

        self.track = track 

        self.proportional = self.calculatePosition()  - command_position 

        self.integral = 0 

        self.derivative = 0 

        self.updateSensorPositions() 

     

    def update(self): 

        left_increment=0 

        right_increment=0 

         

        power_difference = self.controllerOutput() 

        #print(power_difference) 

        if(power_difference > self.max_speed): 

            power_difference = self.max_speed 

        if(power_difference < (-1.0*self.max_speed)): 

            power_difference = (-1.0*self.max_speed) 

             

        if(power_difference < 0):     

            left_increment = self.max_speed/20.0 

            right_increment = (self.max_speed + power_difference)/20.0 

        else: 

            right_increment = self.max_speed/20.0 

            left_increment = (self.max_speed - power_difference)/20.0 

         

         

        new_proportional = self.calculatePosition() - self.command_position 

        self.derivative = new_proportional - self.proportional 

        self.integral = self.integral + new_proportional 

        self.proportional = new_proportional 

         

        #print(self.calculatePosition()) 

        #print(left_increment,right_increment) 

        #print(self.angle) 

         

        newPosition_x = (left_increment+right_increment)/2.0 * np.cos(self.angle) 

        newPosition_y = (left_increment+right_increment)/2.0 * np.sin(self.angle) 

        self.position = [self.position[0]+newPosition_x,self.position[1]+newPosition_y] 
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        self.angle = self.angle + np.arctan((right_increment-left_increment)/self.wheel_width) 

        #print(self.angle) 

        self.updateSensorPositions() 

         

    def runCourse(): 

        print('test') 

     

    def controllerOutput(self): 

        new_proportional = self.calculatePosition() - self.command_position 

        #self.derivative = new_proportional - self.proportional 

        #self.integral = self.integral + new_proportional 

        #self.proportional = new_proportional 

        power_difference = (self.p_constant * new_proportional)  

                            #+ self.i_constant * self.integral  

                            #+ self.d_constant * self.derivative) 

         

        return(power_difference) 

     

    def plotCenter(self,ax): 

        ax.plot(self.position[0],self.position[1],'o',markersize=80,mfc='none') 

     

    def calculatePosition(self): 

        sensor_readings = self.readSensors() 

        if(sum(sensor_readings)==0): 

            position = 0; 

        else: 

            position = ((1000*sensor_readings[0]+2000*sensor_readings[1]+ 

                        3000*sensor_readings[2]+4000*sensor_readings[3]+ 

                        5000*sensor_readings[4]+6000*sensor_readings[5])/ 

                        (sum(sensor_readings))) 

        #print(position) 

        return(position) 

     

    def readSensors(self): 

        option = 2 

        output = [] 

        for i in range(0,6): 

            output.append(self.readSensor(i,option,self.track)) 

             

        return(output) 

         

    #2 methods to do this 

    #     weigh spatial distance equally -> option 1 

    #     weigh angular distance equally -> option 2 

    def readSensor(self,index,option,track): 
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 option = 3 

        if(option==1): 

            print('test') 

        if(option==2): 

            in_view = 0 

            roll_angles = np.linspace(0,2*np.pi,10) 

            pitch_angles = np.linspace(0,pololu.field_of_view*2,10) 

            for roll in roll_angles: 

                for pitch in pitch_angles: 

                    distance = self.sensor_height * np.tan(pitch) 

                    x_offset = distance * np.cos(roll) 

                    y_offset = distance * np.sin(roll) 

                    x_check = np.round(self.sensor_positions[index][0] + x_offset) 

                    y_check = np.round(self.sensor_positions[index][1] + y_offset) 

                    if(track[x_check,y_check]==0): 

                        in_view = in_view + 1 

            return(in_view/100.0*1024.0) 

 if(option==3): 

     x = self.sensor_positions[index][0] 

     y = self.sensor_positions[index][1] 

            h = self.origin[0] 

     k = self.origin[1] 

     distance_from_line = np.absolute(np.sqrt((x-h)*(x-h)+(y-k)*(y-k))-self.radius) 

      if (distance_from_line > self.max_error): 

  self.max_error = distance_from_line 

      

            new_value = distance_from_line * distance_from_line/(-1.0/(4*self.field_of_view * 

self.max_adc))+self.max_adc 

         

            if new_value < (self.white_level_offsets[index]): 

                new_value = self.white_level_offsets[index]             

            if new_value > (self.max_adc): 

                new_value = self.max_adc 

             

     return new_value 

  

                     

    def updateSensorPositions(self): 

        i = 0 

        for sensor_sideways in self.sensor_sideways_offsets: 

            self.sensor_positions[i][0] = (self.position[0] + self.sensor_forward_offsets * np.cos(self.angle)  

                                           + sensor_sideways * np.sin(-1.0*self.angle)) 

            self.sensor_positions[i][1] = (self.position[1] + sensor_sideways * np.cos(-1.0*self.angle)  

                                           + self.sensor_forward_offsets * np.sin(self.angle)) 

            i = i+1 
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    def plotSensors(self,ax): 

        for sensor in self.sensor_positions: 

            ax.plot(sensor[0],sensor[1],'x') 

             

    def plotSixSensorCalibration(self): 

 pololu.position = [360,170] 

 pololu.updateSensorPositions() 

 x = [] 

 y = [] 

 z = [] 

 for i in range(100):     

     x.append(i - 50) 

     y.append(self.calculatePosition()) 

     z.append(self.readSensors()) 

     self.position[1] = self.position[1]+1 

     self.updateSensorPositions() 

      

 sensor1 = [] 

 sensor2 = [] 

 sensor3 = [] 

 sensor4 = [] 

 sensor5 = [] 

 sensor6 = [] 

 for row in z: 

     sensor1.append(row[0]) 

     sensor2.append(row[1]) 

     sensor3.append(row[2]) 

     sensor4.append(row[3]) 

     sensor5.append(row[4]) 

     sensor6.append(row[5]) 

      

 plt.figure() 

 plt.plot(x,y) 

 plt.plot(x,sensor1) 

 plt.plot(x,sensor2) 

 plt.plot(x,sensor3) 

 plt.plot(x,sensor4) 

 plt.plot(x,sensor5) 

 plt.plot(x,sensor6) 

  plt.xlabel("Distance from center of line (px)") 

  plt.ylabel("Sensor output (ADC digital scale)") 

 plt.show() 

         

    def plotSensorCalibration(): 
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        print("not implemented") 

         

     

             

class Sensor: 

    test = 0 

     

circleCourse = Course() 

circleCourse.track = np.load("course_variable.npy") 

#circleCourse.generate(1) 

#trackImg = Image.fromarray(circleCourse.track) 

#trackImg.save("test2.gif") 

 

pololu = Robot() 

pololu.initialize(proportional=1.0/5.0, integral=1.0/10000.0, derivative = 3.0/2.0, start_position=[360,220], 

command_position=3500, track=circleCourse.track) 

 

def plot_frame(i): 

 f, ax = plt.subplots() 

 ax.imshow(circleCourse.track,origin="lower",cmap="gray") 

 ax.plot(400,400,'*') 

 #ax.plot(500,600,'x') 

 pololu.plotCenter(ax) 

 pololu.plotSensors(ax) 

 f.set_size_inches(10, 10, forward=True) 

 plt.xlim(0,800) 

 plt.ylim(0,800) 

 #plt.plot(515.345240492,262.814019017,'*',color='white',markersize=20) 

 plt.savefig("plots/fig_" + str(i))  

 plt.close() 

 

def update_10(): 

 for i in range(10): 

      pololu.update() 

def plot_course(): 

 for i in range(50): 

  update_10() 

  plot_frame(i) 

  print(pololu.position) 

 

def plot_summary(): 

 x = [] 

 y = []  

 for i in range(500): 

  pololu.update() 
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  x.append(pololu.position[0]) 

  y.append(pololu.position[1]) 

 

 f,ax = plt.subplots() 

 ax.plot(x,y) 

 plt.show() 

 

def pass_fail(adc_max,white_levels): 

    pololu.initialize(proportional=1.0/5.0, integral=1.0/10000.0, derivative = 3.0/2.0, start_position=[360,220], 

command_position=3500, track=circleCourse.track) 

    pololu.max_adc = adc_max 

    pololu.white_level_offsets = white_levels  

 

    for i in range(500): 

 pololu.update() 

 

 

    return pololu.max_error 

    if(pololu.max_error > 100): 

        return "fail" 

    else: 

        return "pass" 

 

pololu.max_error = 0 

#pololu.plotSixSensorCalibration() 

#plot_summary() 

#plot_course() 

adc_run_value = 1023 

#white_offsets = [50,50,50,50,50,50] 

white_offsets = np.full(6,50) 

 

def fig1():   

    print "generating figure 1" 

    print "3 frames of track" 

    for i in range(3):     

        f, ax = plt.subplots() 

        ax.imshow(circleCourse.track,origin="lower",cmap="gray") 

        ax.plot(400,400,'*') 

        #ax.plot(500,600,'x') 

        pololu.plotCenter(ax) 

        pololu.plotSensors(ax) 

        f.set_size_inches(5, 5, forward=True) 

        plt.xlim(0,800) 

        plt.ylim(0,800) 

        plt.xlabel("pixel") 
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        plt.ylabel("pixel") 

        update_10() 

  

def fig2():   

    pololu.max_error = 0 

    pololu.plotSixSensorCalibration() 

 

def fig3(): 

    pololu.max_adc = 500 

    pololu.white_level_offsets = [200,200,200,200,200,200] 

    pololu.white_level_offsets = [200,200,200,200,200,200] 

    pololu.plotSixSensorCalibration() 

 

def fig4(): 

    x = [] 

    max_distance = [] 

    for i in range(0,64):     

        x.append(1023-i*16)      

        max_distance.append(pass_fail(adc_run_value-i*16,white_offsets)) 

     

    plt.plot(x,max_distance) 

    plt.xlabel("ADC max value (ADC units)") 

    plt.ylabel("Max distance from line (pixels)") 

 

def fig5():  

    x = [] 

    max_distance = [] 

    for i in range(0,50):     

        x.append(50+i*20)      

        max_distance.append(pass_fail(adc_run_value,np.full(6,50+i*20))) 

     

    plt.plot(x,max_distance) 

    plt.xlabel("White level value (ADC Units)") 

    plt.ylabel("Max distance from line (pixels)") 

 

def fig7(): 

    x = [0,10,20,30,40,50,60,70,80,90,100] 

    regulator = [] 

    line_sensor = [] 

    combined = [] 

    plt.plot(x,regulator) 

     

#print("Max error: " + str(pololu.max_error)) 

 

#print("Success") 
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#fig1() 

#fig2() 

#fig3() 

#fig4() 

#fig5() 

fig7()  
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APPENDIX E – ROBOT EXPERIMENTAL DETAILS 

The primary element of interest in the model robot is the reflectance sensor. Full details of the 

reflectance sensor can be found at the product information at: 

https://www.pololu.com/product/960 

A paper guide was developed to characterize the line sensor. The robot was swept through a series 

of measurement points on the paper that correspond to distances from a printed line to characterize 

the performance of the reflectance sensor. 

 

Figure 56. Image of model robot and line sensor characterization setup. 
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A camera mount was used to record video of the full system functioning. This allowed for 

straightforward post-processing with minimal error introduced due to the angle of the video. The 

video data allowed for comparison with system level simulation models. 

 

Figure 57. Camera mount with track on the floor. Camera is placed in the middle of the mount and 

uses the four dots on the floor for image processing. 

 

 



137 

 

Figure 58. Image after video processing, showing the track the robot followed in orange. This is 

an example of successful tracking. 

 

Figure 59. Image after video processing. This is an example of failed tracking, with the robot 

spiriling in circles near the bottom of the image. 

 

Code for video processing: 
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import cv2, cv 
import numpy as np 
import math, time 
 
inch = 0 
inches = 0 
view=1 
 
#####     
def show(img): 
    cv2.namedWindow('Untitled',flags=cv2.WINDOW_NORMAL) 
    cv2.imshow('Untitled',img) 
 
def process_image(h): 
    img = cv2.imread(h,cv2.CV_LOAD_IMAGE_COLOR) 
    # Find the red boundary markers 
    markers = locate_markers(img,hue=(-20,0),sat=(100,255),val=(70,255),show=True) 
    print markers 
    show(img) 
    cv2.waitKey(0) 
    cv2.destroyAllWindows() 
 
def locate_track(img,show=False): 
    track = threshold(img,hue=(0,179),sat=(0,255),val=(0,60))     
    #cv2.imshow('video', track) 
    #return 
 
    #contours,hierarchy = cv2.findContours(track,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) 
    #track = None 
    #track_perimeter = 0 
    #for contour in contours: 
    #    p = cv2.arcLength(contour, True) 
    #    if p > track_perimeter: 
    #        track_perimeter = p 
    #        track = contour 
    if show:         
        #cv2.drawContours(img,contours,-1,(255,0,255),5) 
        cv2.imshow('video', track) 
    return track 
 
def show_mask(h,hue,sat,val): 
    cap = cv2.VideoCapture(h) 
    frame_count = 0 
    while True: 
        flag, frame = cap.read() 
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        frame_count = frame_count + 1 
        # Preprocess 
        blur = cv2.GaussianBlur(frame,(5,5),0) 
        #img = threshold(blur,hue,sat,val) 
        locate_markers(blur,hue,sat,val,sz=(15,30),show=True) 
        cv2.imshow('video', blur) 
        if cv2.waitKey(10) == 27: 
            break 
 
def dot(v1,v2): 
    return v1[0]*v2[0] + v1[1]*v2[1] 
 
def mag(v1): 
    return math.sqrt(v1[0]**2 + v1[1]**2) 
 
def process_video(h): 
    cap = cv2.VideoCapture(h) 
    fps=30 
    second=30*fps 
    #out = cv2.VideoWriter('output.avi',cv2.cv.CV_FOURCC('M','J','P','G'),20,(1920,1080)) 
    #out = cv2.VideoWriter('output.avi',cv2.cv.CV_FOURCC('M','J','P','G'),30,(1280,720)) 
 
    pos_history=[] 
    frame_count = 0 
    while True: 
        flag, frame = cap.read() 
        frame_count = frame_count + 1 
        # Preprocess 
        blur = cv2.GaussianBlur(frame,(5,5),0) 
        boundaries = locate_boundary(blur,show=True) 
        center = locate_center(blur,boundaries,show=True) 
 
        calibrateDistance(boundaries) 
        robot = locate_robot(blur,show=False) 
 
        # Add overlays 
        if center: 
            annotate_track(blur,tuple([int(x) for x in center]),7.*inches) 
        torigin = annotate_boundaries(blur,boundaries)         
        if torigin: 
            origin = torigin 
        origin=(0,0) 
        pos = annotate_robot(blur,robot,origin) 
        if pos: 
            robot_pos = ((pos[0][0]+pos[1][0])/2., (pos[0][1]+pos[1][1])/2.) 
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            pos_history.append(robot_pos) 
         
            print frame_count, robot_pos[0], robot_pos[1] 
            if center: 
                r = distance_from_center(robot_pos,center) 
                center = (center[0]-origin[0],center[1]-origin[1]) 
                error = 7.0*inches - r                 
 
                if len(pos_history) > 2: 
                    for pos in pos_history: 
                        updated_pos = (int(pos[0]+origin[0]),int(pos[1]+origin[1])) 
                        cv2.circle(blur,updated_pos,5,(20,105,255),-1) 
 
                v_angle = 0.0 
                v_mag = 0.0 
                tan_angle = 0.0 
                H = 0.0 
 
                #vel_vector = velocity_vector(pos_history[-2],pos_history[-1],1) 
                orient_vector = (robot[1][0] - robot[0][0],robot[1][1] - robot[0][1])  
                (dx,dy)=orient_vector 
                v_angle = math.atan2(dy,dx) 
                if v_angle < 0: 
                    v_angle = v_angle + 2*math.pi 
                v_angle = v_angle * 360. / (2.*math.pi) 
                v_mag = mag(orient_vector)/inches*fps 
 
                pos_vector = (robot_pos[0]-center[0],robot_pos[1]-center[1]) 
                (dx,dy)=pos_vector 
                # Get tangent vector by rotating position pi/2 radians 
                tan_vector = (dx*math.cos(-math.pi/2.) - dy*math.sin(-math.pi/2.), 
                              dx*math.sin(-math.pi/2.) + dy*math.cos(-math.pi/2.)) 
                tan_vector = unit_vector(tan_vector) 
                # Angle between orientation and tangent 
                H = math.acos( dot(orient_vector,tan_vector)/(mag(orient_vector)*mag(tan_vector))) # radians 
                #H = math.atan2(tan_vector[1],tan_vector[0]) - math.atan2(vel_vector[1],vel_vector[0]) 
 
                #print "F=%d T=%0.3g sec" % (frame_count, frame_count/float(fps)), 
                #print " P=(%.3g in, %.3g in)" % ((robot[0]-center[0])/inch, (robot[1]-center[1])/inch), 
                #print " E=%.3g in" % (error/inches), 
                #print " V=(%.3g in/sec,%.3g deg)" % (v_mag, v_angle), 
                #print frame_count, pos_history[-1][0], pos_history[-1][1] 
                ang = H * 360 / (2.*math.pi) 
                if ang > 90: 
                    ang = 180 - ang 
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                    orient_vector = (-orient_vector[0],-orient_vector[1]) 
                orient_vector = unit_vector(orient_vector) 
 
                # Is the orientation inside or outside? 
                a=distance_from_center(add_vector(pos_vector,orient_vector),center) 
                b=distance_from_center(add_vector(pos_vector,tan_vector),center) 
                if a > b: 
                    # Moving outside 
                    ang = abs(ang) 
                    ocolor = (0,255,0) 
                else: 
                    # Moving inside 
                    ang = -abs(ang) 
                    ocolor = (0,0,255) 
 
                draw_vector(blur,robot_pos,[100*x for x in tan_vector]) 
                draw_vector(blur,robot_pos,[100*x for x in orient_vector],ocolor) 
 
                #print frame_count, ang 
                time.sleep(0.1) 
 
        cv2.imshow('video', blur) 
        #out.write(blur) 
        if cv2.waitKey(10) == 27: 
            break 
 
# Functions that work on the image 
def threshold(img,hue=(0,179),sat=(0,255),val=(0,255)): 
    hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) 
 
    if hue[0] < 0: 
        low = (0,sat[0],val[0]) 
        high = (hue[1],sat[1],val[1]) 
        cv = cv2.inRange(hsv,np.array(low),np.array(high)) 
 
        low = (179+hue[0],sat[0],val[0]) 
        high = (179,sat[1],val[1]) 
        cv = cv2.add(cv,cv2.inRange(hsv,np.array(low),np.array(high))) 
    else: 
        low = (hue[0],sat[0],val[0]) 
        high = (hue[1],sat[1],val[1]) 
        cv = cv2.inRange(hsv,np.array(low),np.array(high)) 
    cv = cv2.erode(cv,None,10)         
    return cv 
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def arrow(img,pt1,pt2,color): 
    ipt1=(int(pt1[0]),int(pt1[1])) 
    ipt2=(int(pt2[0]),int(pt2[1])) 
    cv2.line(img,ipt1,ipt2,color,2) 
 
def draw_vector(img,pt,direction,color=-1): 
    arrow(img,pt,(pt[0]+direction[0],pt[1]+direction[1]),color) 
 
def unit_vector(v): 
    (dx,dy) = v 
    l=math.sqrt(dx**2 + dy**2) 
    return (dx/l, dy/l) 
 
def add_vector(v1,v2): 
    return (v1[0]+v2[0],v1[1]+v2[1]) 
 
def annotate_marker(img,center,w,text,hue=255,sat=255,val=255): 
    cv2.circle(img,center,w/2,(hue,sat,val),2) 
    cv2.putText(img,'%s' % (text),(center), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255,255,255)) 
 
def place_tag(img,position,text=None): 
    cv2.circle(img,position,5,(255,255,255),2) 
    if text: 
        cv2.putText(img,text,position,cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255,255,255)) 
 
def locate_circle(img,hue=(0,179),sat=(0,255),val=(0,255),sz=(35,50),show=False): 
    """Take an HSV bound and locate the markers within the image.""" 
    objects = threshold(img,hue,sat,val) 
    contours,hierarchy = cv2.findContours(objects,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) 
    # Remove artifacts 
    # Filter by area 
    contours = filter(lambda c: cv2.contourArea(c) > 3.14*(sz[0]/2.)**2, contours) 
    contours = filter(lambda c: cv2.contourArea(c) < 3.14*(sz[1]/2.)**2, contours) 
    contours = filter(lambda c: 2*cv2.minEnclosingCircle(c)[1] >= sz[0], contours)  
    contours = filter(lambda c: 2*cv2.minEnclosingCircle(c)[1] <= sz[1], contours)  
 
    retval = [ cv2.boundingRect(c) for c in contours ] 
    # Draw a circle over the object 
    if show: 
        for (x,y,w,h) in retval: 
            center = (x+w/2,y+h/2) 
            avghue = sum(hue)/2 
            if avghue < 0: avghue = avghue + 179 
            cv2.circle(img,center,w/2,(avghue,sum(sat)/2,255),2) 
    return retval 
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def locate_markers(img,hue=(0,179),sat=(0,255),val=(0,255),sz=(35,50),show=False): 
    """Find all boundary markers in the frame and return the pixel coordinates""" 
    markers = locate_circle(img,hue,sat,val,sz,show) 
    return markers 
 
def locate_boundary(img,show=False): 
    """Find four boundary markers in the frame and return the pixel coordinates""" 
    if view == 1: 
        markers = locate_markers(img,hue=(-20,60),sat=(0,200),val=(0,60),sz=(17,23),show=True) 
    else: 
        markers = locate_markers(img,hue=(-20,60),sat=(0,200),val=(0,60),sz=(5,15),show=True) 
 
    if len(markers) != 4: 
        print >> sys.stderr, "Lost boundary markers=%d"%(len(markers)) 
        return 
    markers = sorted(markers, key=lambda m: m[0]**2+m[1]**2) 
    return markers 
 
def locate_center(img,markers,show=True): 
    """Return the center pixel position using the boundary markers""" 
    cx=0 
    cy=0 
    if not markers: 
        return 
    m = len(markers) 
    for (x,y,w,h) in markers: 
        cx = cx+(x+w/2.) 
        cy = cy+(y+h/2.) 
    if show: 
        cv2.circle(img,(int(cx/m),int(cy/m)),15,(255,255,255),2) 
        place_tag(img,(int(cx/m),int(cy/m)),text="C (%d,%d)" % (int(cx/m),int(cy/m))) 
    return (cx/m,cy/m) 
 
def locate_robot(img,show=False): 
    # Find the yellow vehicle markers 
    markers = locate_markers(img,hue=(20,40),sat=(100,255),val=(60,240),sz=(0.4*inch,1.5*inch),show=True) 
    if len(markers) != 2: 
        print >> sys.stderr, "Lost robot, markers = %d" % (len(markers)) 
        return [] 
    return markers 
 
def velocity_vector(p1,p2,dt): 
    # Compute the differences 
    if p1 and p2 and dt: 
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        dx=(p2[0]-p1[0]) 
        dy=(p2[1]-p1[1]) 
        return (dx/dt,dy/dt) 
    else: 
        return None 
 
def distance_from_center(pos,center): 
    (x1,y1) = pos 
    (x0,y0) = center 
    dx = (x1-x0) 
    dy = (y1-y0) 
    r = math.sqrt(dx**2 + dy**2) 
    return r 
 
def annotate_boundaries(img,markers): 
    # Locate first boundary marker 
    if not markers: 
        return None 
    (x,y,w,h) = markers[0] 
    origin = (x+w/2.,y+h/2.) 
    for (x,y,w,h) in markers: 
        center = (x+w/2,y+h/2) 
        pos = (center[0]-origin[0],center[1]-origin[1]) 
        cv2.putText(img,'M: %d,%d,%d' % (pos[0],pos[1],w),(center), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 
(255,255,255)) 
    return origin 
 
def annotate_robot(img,markers,origin): 
    robot = [] 
    for (x,y,w,h) in markers: 
        center = (x+w/2,y+h/2) 
        pos = (center[0]-origin[0],center[1]-origin[1]) 
        robot.append(pos) 
        cv2.putText(img,'R: %d,%d,%d' %(pos[0],pos[1],w),(center), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 
(255,255,255)) 
    return robot 
 
def annotate_track(img,center,radius): 
    if center: 
        cv2.circle(img,center,int(radius),(0,0,0),2) 
 
# Functions that work in real dimensions 
def calibrateDistance(markers,dist=18.): 
    """Calibrate dimension knowing that boundary markers are 18 inches apart""" 
    global inches, inch 



145 

    # Markers 0 and 1 should be adjacent 
    if not markers or len(markers) != 4: 
        return 
    (x0,y0,w0,h0) = markers[0] 
    (x1,y1,w1,h1) = markers[1] 
    inches = max((x1-x0),(y1-y0))/dist 
    inch = inches 
    #print "Calibration: %g pixels/inch" % (inches) 
 
if __name__ == '__main__': 
    import os, sys, string 
    # Get the argument 
    fileName, fileExtension = None, None 
    if len(sys.argv) > 1: 
        h = sys.argv[1] 
        fileName, fileExtension = os.path.splitext(h) 
        fileExtension = string.lower(fileExtension) 
    if fileExtension in ['.jpg']: 
        process_image(h) 
    elif fileExtension in ['.mov']: 
        process_video(h) 
    else: 
        process_video(0) 
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APPENDIX F – PyMC TUTORIAL 

 

Below is a tutorial on using the PyMC approach for radiation effects. The content below is intended 

to be displayed as an IPython Notebook and contains all the code necessary to execute the tutorial. 

 

Bayesian Inference for Radiation Effect using Python: A Tutorial 

Zachary Diggins 

zdiggins@gmail.com 

Contents 

1. Introduction 

2. Chapter 1: Inference on Normally Distributed Data 

3. Chapter 2: Modeling Lot-to-Lot Variability with a Hierarchical Model 

4. References 

Introduction 

The purpose of this document is to demonstrate how to perform Bayesian inference in Python, and 

to demonstrate the numerous advantages of the approach. Many tutorials and resources have been 

extremely helpful in the construction of this document. The goal of this tutorial is to describe in 

detail how the technique works for engineers and scientists who rarely work with statistics. 

In this document I generate all the data before I model it. The goal of this notebook is to test the 

modeling methods, so knowing the "correct answer" ensures that we are building the models and 

using the tools correctly.  

mailto:zdiggins@gmail.com
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1d2b7628aa&view=att&th=155c7175a599f7d6&attid=0.1&disp=inline&realattid=f_iqcs2m1n0&safe=1&zw&saddbat=ANGjdJ9lcCOhNQAKaTWS0vkIH4orPa-IDv-zxOanr3l0CKMrDg6D9Q4PrNSXFsprphaikzjm908xRu3LpL5G1fd6wfHUvYU9M33EuFGGikgHqBjPcUux7k978qulHzBt0xqQZ5GPyYJcnAk-5wzubh3T_ujcQjbgXkqNs57iXxsmYq5RhcLgA6aJM3UQgbDyN33QZ0GlSoU6GLp9VNl3ypLAnk0Z3jrh8dO8vJc-X1fansKMzz_oaS96mgVRZe_fBps5Bh2VN4FMFh_L3P2S4jEnh6GrGV_CXUSbqwYp3HG1MSQmQPCP-LUFK0_yR85Nbu2Umt0bJr0Xpa1RCkDFFmj119bARWyHr4NCXvKzs1_6ZRuvrrQCtaNxv-V9IpXGCVIriE8VjzFMxDG0g54CHHBb7DbSF-5XYFRTOUdM2ezR1oCDjakkDtGa3-rpwV5-PMZ87AIghvy6p9R7NQDyl1zuQII1dEPTxmWs6Og7ayJPkQ-CJVxVotBPmpjymvLHr0dF6gU68GqNANAp_KW16Ry0ChhzsUI9b-8kYa7I1tr7GiDBxCej6j_1rQM2RLyqExq42hvGVtcmw11FlisQ-8ISwxj59vWH8p_6Msk4PCCw8lTiqITxWCoQhZ89MQWRrlenACh5krOeoBpJjDOJ#0.1_introduction
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1d2b7628aa&view=att&th=155c7175a599f7d6&attid=0.1&disp=inline&realattid=f_iqcs2m1n0&safe=1&zw&saddbat=ANGjdJ9lcCOhNQAKaTWS0vkIH4orPa-IDv-zxOanr3l0CKMrDg6D9Q4PrNSXFsprphaikzjm908xRu3LpL5G1fd6wfHUvYU9M33EuFGGikgHqBjPcUux7k978qulHzBt0xqQZ5GPyYJcnAk-5wzubh3T_ujcQjbgXkqNs57iXxsmYq5RhcLgA6aJM3UQgbDyN33QZ0GlSoU6GLp9VNl3ypLAnk0Z3jrh8dO8vJc-X1fansKMzz_oaS96mgVRZe_fBps5Bh2VN4FMFh_L3P2S4jEnh6GrGV_CXUSbqwYp3HG1MSQmQPCP-LUFK0_yR85Nbu2Umt0bJr0Xpa1RCkDFFmj119bARWyHr4NCXvKzs1_6ZRuvrrQCtaNxv-V9IpXGCVIriE8VjzFMxDG0g54CHHBb7DbSF-5XYFRTOUdM2ezR1oCDjakkDtGa3-rpwV5-PMZ87AIghvy6p9R7NQDyl1zuQII1dEPTxmWs6Og7ayJPkQ-CJVxVotBPmpjymvLHr0dF6gU68GqNANAp_KW16Ry0ChhzsUI9b-8kYa7I1tr7GiDBxCej6j_1rQM2RLyqExq42hvGVtcmw11FlisQ-8ISwxj59vWH8p_6Msk4PCCw8lTiqITxWCoQhZ89MQWRrlenACh5krOeoBpJjDOJ#0.1_chapter1
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1d2b7628aa&view=att&th=155c7175a599f7d6&attid=0.1&disp=inline&realattid=f_iqcs2m1n0&safe=1&zw&saddbat=ANGjdJ9lcCOhNQAKaTWS0vkIH4orPa-IDv-zxOanr3l0CKMrDg6D9Q4PrNSXFsprphaikzjm908xRu3LpL5G1fd6wfHUvYU9M33EuFGGikgHqBjPcUux7k978qulHzBt0xqQZ5GPyYJcnAk-5wzubh3T_ujcQjbgXkqNs57iXxsmYq5RhcLgA6aJM3UQgbDyN33QZ0GlSoU6GLp9VNl3ypLAnk0Z3jrh8dO8vJc-X1fansKMzz_oaS96mgVRZe_fBps5Bh2VN4FMFh_L3P2S4jEnh6GrGV_CXUSbqwYp3HG1MSQmQPCP-LUFK0_yR85Nbu2Umt0bJr0Xpa1RCkDFFmj119bARWyHr4NCXvKzs1_6ZRuvrrQCtaNxv-V9IpXGCVIriE8VjzFMxDG0g54CHHBb7DbSF-5XYFRTOUdM2ezR1oCDjakkDtGa3-rpwV5-PMZ87AIghvy6p9R7NQDyl1zuQII1dEPTxmWs6Og7ayJPkQ-CJVxVotBPmpjymvLHr0dF6gU68GqNANAp_KW16Ry0ChhzsUI9b-8kYa7I1tr7GiDBxCej6j_1rQM2RLyqExq42hvGVtcmw11FlisQ-8ISwxj59vWH8p_6Msk4PCCw8lTiqITxWCoQhZ89MQWRrlenACh5krOeoBpJjDOJ#0.1_chapter2
https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=1d2b7628aa&view=att&th=155c7175a599f7d6&attid=0.1&disp=inline&realattid=f_iqcs2m1n0&safe=1&zw&saddbat=ANGjdJ9lcCOhNQAKaTWS0vkIH4orPa-IDv-zxOanr3l0CKMrDg6D9Q4PrNSXFsprphaikzjm908xRu3LpL5G1fd6wfHUvYU9M33EuFGGikgHqBjPcUux7k978qulHzBt0xqQZ5GPyYJcnAk-5wzubh3T_ujcQjbgXkqNs57iXxsmYq5RhcLgA6aJM3UQgbDyN33QZ0GlSoU6GLp9VNl3ypLAnk0Z3jrh8dO8vJc-X1fansKMzz_oaS96mgVRZe_fBps5Bh2VN4FMFh_L3P2S4jEnh6GrGV_CXUSbqwYp3HG1MSQmQPCP-LUFK0_yR85Nbu2Umt0bJr0Xpa1RCkDFFmj119bARWyHr4NCXvKzs1_6ZRuvrrQCtaNxv-V9IpXGCVIriE8VjzFMxDG0g54CHHBb7DbSF-5XYFRTOUdM2ezR1oCDjakkDtGa3-rpwV5-PMZ87AIghvy6p9R7NQDyl1zuQII1dEPTxmWs6Og7ayJPkQ-CJVxVotBPmpjymvLHr0dF6gU68GqNANAp_KW16Ry0ChhzsUI9b-8kYa7I1tr7GiDBxCej6j_1rQM2RLyqExq42hvGVtcmw11FlisQ-8ISwxj59vWH8p_6Msk4PCCw8lTiqITxWCoQhZ89MQWRrlenACh5krOeoBpJjDOJ#0.1_references
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The examples in this notebook are centered around my area of research, the effects of radiation on 

electronics. Domain specific knowledge is very important in choosing appropriate model forms, 

but the analysis techniques demonstrated here can be applied to a wide range of reliability or 

statistical inference problems. This notebook models the impact of radiation on a bipolar junction 

transistor's (BJT) gain, which is the ratio of base current to the collector current in the forward 

active region, commonly referred to as Beta. This parameter usually decreases with increasing 

total-ionization dose due to radiation (TID). 

We will first model the part-to-part variation in Beta's post-irradiation value. We will expand this 

model to include variations between different manufacturing lots of the transistor. We will then 

expand the analysis again to include different types of transistors as well as different lots and part-

to-part variation using hierarchical modeling. 

Next, we explore longitudinal analysis, modeling how a parameter changes over time (or in this 

case increasing radiation dose). We will compare linear regression and random effects models to 

Bayesian analysis. Finally, we will extend this analysis a simple system, a voltage regulator 

consisting of multiple transistors of the same type as our model. 

Import Dependencies 

I have chosen to import all the dependencies at the start of the document. A description of each 

package is included below:  

Numpy: Provides powerful numerical computation capabilities to python. 

Pandas: Used for data organization. Provides dataframe support that is easy to plot and index. 

Scipy: Scientific computation package. Provides statistical functions. 
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Matplotlib: Provides plotting capabilities, similar to Matlab. 

Seaborn: Plotting supplement to Matplotlib that improves graphics quality and allows for 

quickly plotting statistical distributions. 

Pymc: Provides model building and Markov Chain Monte Carlo capabilities. 

In [3]: 

%matplotlib inline 

import numpy as np 

import pandas as pd 

import scipy as sp 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pymc3 

import daft 

Chapter 1 - Inference on Normally Distributed Data 

Generate Data: Transistor gain after irradiation 

The first step is to generate some data to work with. We will make up a transistor that 

has a post-irradiation Beta value of 75, with a standard deviation of 5. Let’s generate 

and print the data. We use the Scipy Stats package random variates sampling function 

to generate 10 samples and save it in the "transistor1_data" array. 

In [4]: 

beta_postrad_mean = 75.0 

beta_postrad_std_dev = 5.0 

transistor1_data = 

sp.stats.norm.rvs(beta_postrad_mean,beta_postrad_std_dev,10) 

print(transistor1_data) 

[ 72.13163412  84.4397247   73.56069485  74.82876467  71.43288644 

  71.92564894  73.97212881  72.41094776  74.83938552  80.85544353] 
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Seaborn has some very nice distribution plotting functions. Here we use "distplot" to 

plot the generated values as a histogram, overlaying the data with a normal distribution 

fit from the Scipy package. 

In [5]: 

sns.distplot(transistor1_data, fit=sp.stats.norm, bins=5, kde=False) 

Out[5]: 

<matplotlib.axes._subplots.AxesSubplot at 0x7ff634093bd0> 

 

Figure 60. Visualization of generated data. 

 

Let’s print those normal distribution values resulting from the Scipy fit using least-

squared methods. They should be close to 75 and 5 (they will be slightly different since 

we have a relatively small number of samples. 

In [6]: 
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least_sq_mean, least_sq_sd = sp.stats.norm.fit(transistor1_data) 

print(least_sq_mean, least_sq_sd) 

(75.039725933553854, 4.0455991483175788) 

Fit using MCMC methods 

Everything we have done up to this point is very basic. Let's start using Bayesian 

analysis and fit the 10 data points with a normal model using Markov Chain Monte 

Carlo. 

What does a Bayesian model of this data look like? We need to specify a distribution 

for the parameter we are observing. Beta will follow a normal distribution. A normal 

distribution is parameterized with 2 parameters, a location parameter (the mean) and a 

scale parameter (the standard deviation or precision). So our model will look like using 

equations: 

β=Normal(μ,σ)  

Let’s draw the Directed Acyclic Graph representation using the Daft Package: 

In [7]: 

from matplotlib import rc 

rc("font", family="serif", size=16) 

rc("text", usetex=False) 

pgm = daft.PGM([4, 2], origin=[1.15, 0.65]) 

pgm.add_node(daft.Node("mean", r"$\mu$", 2, 2, aspect=1.5)) 

pgm.add_node(daft.Node("std. dev.", r"$\sigma$", 4, 2, aspect=3)) 

pgm.add_node(daft.Node("beta", r"$\beta$", 3, 1, aspect=2.4, observed=True)) 

pgm.add_edge("mean", "beta") 

pgm.add_edge("std. dev.", "beta") 

pgm.render() 

Out[7]: 

<matplotlib.axes._axes.Axes at 0x7ff5fb67b590> 
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Figure 61. Basic Bayesian network for normally distributed transistor Beta. 

 

We need priors for the mean and standard deviation values. We want our model to be 

dominated by the data so we can use weakly informative or flat priors. 

For the mean value we will use a uniform prior over the parameter space. Beta will not 

be larger than 200 for our transistor and can't be negative, so let's use a uniform 

distribution with a range of  0 to 1. For the std. dev. parameter we can use a half normal 

distribution with a large standard deviations, which is a normal distribution centered 

around 0, restricted to non-negative values. 

Notice in the plots that the value for the prior is positive for each and very low (<0.01 

probability for each entry). 

In [8]: 

x = np.linspace(-200,200,100) 

y_mean = sp.stats.uniform.pdf(x,0,200) 

y_sd = sp.stats.halfnorm.pdf(x,0,15) 

f, (ax1, ax2) = plt.subplots(1, 2, sharey=False) 

ax1.plot(x,y_mean,label='mean prior') 

ax1.set_title('Mean Prior') 

ax2.plot(x,y_sd,label='std. dev. prior') 

ax2.set_title('Std. Dev. Prior') 

ax1.set_ylabel('Probability') 

ax1.set_xlabel('Mean') 

ax2.set_xlabel('Std. Dev.') 
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Out[8]: 

<matplotlib.text.Text at 0x7ff8062eedd0> 

 

Figure 62. Comparison of step function prior versus std. dev. prior. 

We are now ready to specify our Bayesian model using Pymc3 notation. 

First we create a new model, and name it "basic model". 

Next we specify the model's priors as described above. 

Finally, we specify the transistor_beta parameter as we described above in Output 6. 

Notice we add the observed tag and insert our data into the model here. This is the 

likelihood distribution. The combination of the likelihood and priors produces the 

posterior distribution, which is what we use for inference. 

In [9]: 
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basic_model = pymc3.Model() 

 

with basic_model: 

 

    # Non-informative priors 

    mean=pymc3.Uniform('mean',lower=0, upper=200) 

    standard_deviation = pymc3.HalfNormal('standard_deviation',sd=15) 

     

    # Likelihood (sampling distribution) of observations 

    transitor_beta = pymc3.Normal('transistor_beta', mu=mean, 

sd=standard_deviation, observed=transistor1_data) 

    beta_samples = pymc3.Normal('beta_samples', mu=mean, sd= 

standard_deviation) 

Now that we have the model specified, we need to sample the model using Pymc3's 

sampling methods. We will generate 10,000 samples of the posterior of our model. 

There are many options in this step, such as burn-in, sampling algorithms, number of 

sample, how to store the samples. For now we will use the recommended sampler, the 

No-U-Turn_Sampler (NUTS) and use a Pymc3 optimization function to find the 

starting point [29].  

Note: We can do the whole Markov Chain Monte Carlo process for any model we can 

think of in 2 lines! This is why Bayesian analysis is now practical for specialists who 

aren't experts in the details of Bayesian algorithms, described in more detail in the end 

of the tutorial. 

In [10]: 

with basic_model: 

 

    # obtain starting values via MAP 

    start = pymc3.find_MAP(fmin=sp.optimize.fmin_powell) 

 

    # draw 2000 posterior samples 

    trace = pymc3.sample(10000, start=start)  

Assigned NUTS to mean_interval 

Assigned NUTS to standard_deviation_log 

Assigned NUTS to beta_samples 

 [-----------------100%-----------------] 10000 of 10000 complete in 306.5 

sec 
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The results of the sampling are stored in a data structure in the variable trace. Let's use 

Pymc's summary and plotting functions to display the results below. 

Notice a few things, the mean is close to 75 and the std. dev. is close to 5. Looks like 

our model worked. 

In [11]: 

pymc3.summary(trace) 

pymc3.traceplot(trace) 

mean_interval: 

 

  Mean             SD               MC Error         95% HPD interval 

  ------------------------------------------------------------------- 

   

  -0.498           0.042            0.000            [-0.585, -0.420] 

 

  Posterior quantiles: 

  2.5            25             50             75             97.5 

  |--------------|==============|==============|--------------| 

   

  -0.583         -0.522         -0.497         -0.473         -0.417 

 

 

standard_deviation_log: 

 

  Mean             SD               MC Error         95% HPD interval 

  ------------------------------------------------------------------- 

   

  1.700            0.276            0.008            [1.223, 2.254] 

 

  Posterior quantiles: 

  2.5            25             50             75             97.5 

  |--------------|==============|==============|--------------| 

   

  1.248          1.499          1.676          1.868          2.318 

 

 

beta_samples: 

 

  Mean             SD               MC Error         95% HPD interval 

  ------------------------------------------------------------------- 

   

  75.622           6.656            0.073            [61.948, 87.898] 

 

  Posterior quantiles: 

  2.5            25             50             75             97.5 

  |--------------|==============|==============|--------------| 

   

  62.586         71.597         75.626         79.656         88.624 
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mean: 

 

  Mean             SD               MC Error         95% HPD interval 

  ------------------------------------------------------------------- 

   

  75.601           1.991            0.020            [71.552, 79.308] 

 

  Posterior quantiles: 

  2.5            25             50             75             97.5 

  |--------------|==============|==============|--------------| 

   

  71.641         74.459         75.632         76.785         79.432 

 

 

standard_deviation: 

 

  Mean             SD               MC Error         95% HPD interval 

  ------------------------------------------------------------------- 

   

  5.702            1.793            0.051            [3.127, 9.051] 

 

  Posterior quantiles: 

  2.5            25             50             75             97.5 

  |--------------|==============|==============|--------------| 

   

  3.483          4.478          5.342          6.473          10.160 

 

Out[11]: 

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff8043be450>, 

        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff802f5e090>], 

       [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff8030f6bd0>, 

        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff8030fd750>], 

       [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff803fab3d0>, 

        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff8030ac890>], 

       [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff803cfbbd0>, 

        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff803ff61d0>], 

       [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff803eceb90>, 

        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff803dce190>]], 

dtype=object) 
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Figure 63. Distributions and chain plots for modeled parameters in the basic_model. 

Comparison between Bayesian and Frequentist methods: 

Let’s compare the mean, sd, and lower 10th percentile for the least-squares fit and the 

Bayesian fit. Both methods reveal comparable results. Our standard deviation is slightly 

off for the Bayesian analysis, which could be improved with a better prior (ours is 

probably too broad) or with appropriate burn-in or thinking. It is being biased by some 

very large values visible in the summary, which is a result of the relatively low sample 

count. 
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In [12]: 

least_sq_tenth_percentile = sp.stats.norm.ppf(.1,least_sq_mean, least_sq_sd) 

print("Least-squares:") 

print(least_sq_mean, least_sq_sd, least_sq_tenth_percentile) 

print("Bayesian analysis:") 

print(np.mean(trace['mean']),np.mean(trace['standard_deviation']),np.sort(tra

ce['beta_samples'])[1000]) 

Least-squares: 

(75.603516710915258, 4.2040204665486733, 70.21584770042827) 

Bayesian analysis: 

(75.601049252196219, 5.7018737169843838, 67.766081176503405) 

Chapter 2 - Modeling Lot-to-Lot Variability with a Hierarchical Model. 

Generate data for multiple lots. 

Let’s use the same approach as before, generate data, model it, and compare back to the 

original values. For this section a "part" is a single transistor. A "lot" is a group of 

transistors all produced at the same time that are expected to follow a normal 

distribution. We want to now add the complexity of lot-to-lot variation, a variation in 

the mean of each lot based on some value. We need to generate a value that we will 

shift the mean value of each simulated lot by, in order to introduce lot-to-lot variation 

in the mean of the lot. A reasonable assumption is that all the lots will be centered 

around some mean with a giving variation, so the variation for each lot will be 

consistent, but the center of each lot will vary. Let's assume that the mean of each lot is 

offset by a random sample from a normal distribution with a mean of 0 (so it can be 

offset positive or negative) and a standard deviation of 10. This will keep the mean of 

the overall dataset in the same location while producing lots with their own skewed 

means. 
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We need to do something more eloquent with data handling for this larger data sets, so 

we will use a Pandas dataframe. Below is the code to generate the data and the resulting 

dataframe displayed. 

In [13]: 

process_mean = 75 

lot_to_lot_sd = 10 

part_to_part_sd = 5 

 

#draw lot center 

lot_offset = sp.stats.norm.rvs(0,lot_to_lot_sd,10) 

 

temp = [] 

columns = [] 

 

for i in range(0,10): 

    beta=np.zeros(10) 

    beta = sp.stats.norm.rvs(process_mean + lot_offset[i], part_to_part_sd, 

10) 

    temp.append(beta) 

    columns.append("Lot "+str(i+1)) 

     

transistorData = pd.DataFrame(temp, index=columns).transpose() 

pd.set_option('display.precision', 2) 

print(transistorData) 

print(lot_offset) 

   Lot 1  Lot 2  Lot 3  Lot 4  Lot 5  Lot 6  Lot 7  Lot 8  Lot 9  Lot 10 

0  79.41  81.14  92.95  75.07  70.33  81.68  63.78  68.27  68.03   90.81 

1  71.11  62.58  81.85  75.48  78.56  75.99  72.98  65.61  69.34   85.73 

2  72.77  83.38  92.42  72.02  74.83  80.00  68.39  74.43  67.27   86.49 

3  79.56  70.59  97.98  76.21  68.58  75.38  68.12  65.65  72.50   93.99 

4  76.49  77.55  85.72  56.75  71.49  79.24  67.71  73.48  70.05   86.25 

5  66.59  73.28  91.34  73.05  75.71  79.06  74.01  69.91  76.78   93.81 

6  73.87  79.33  87.61  74.79  77.83  77.92  71.42  70.13  70.23   82.70 

7  74.36  75.49  83.66  71.51  74.38  63.70  78.32  69.14  80.56   78.26 

8  74.95  72.09  94.44  69.62  73.99  72.23  77.98  63.96  67.10   82.38 

9  73.69  70.94  95.01  72.18  70.84  73.64  71.98  64.21  77.49   89.67 

[ -1.06641884   0.47448023  17.60927772  -0.48260833  -1.47066097 

   1.94082845  -6.03870594  -5.63501337  -4.09269033  12.76469513] 

Now we have a good dataset to work with, lets plot all the distributions using Seaborn. 

In [14]: 

for column in transistorData.columns: 

    sns.distplot(transistorData[column],bins=20, rug=True, hist=True, 

fit=sp.stats.norm, kde=False) 

    sns.axlabel("Transistor Post-rad Beta", "Probability") 
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#sns.distplot(transistorData['Lot 2'],bins=20, rug=True, hist=False, 

fit=stats.norm, kde=False) 

 

We will first analyze the dataset by performing a least-squares normal distribution fit 

on each lot and then performing the fit on the lot means: 

In [15]: 

temp = [] 

for lot in transistorData.columns: 

    temp.append(sp.stats.norm.fit(transistorData[lot])) 

     

lot_fits = pd.DataFrame(temp,columns=['Mean','Std. Dev.']) 

print(lot_fits) 

 

lot_to_lot_mean = sp.stats.norm.fit(lot_fits['Mean']) 

print(lot_to_lot_mean) 

lot_fits.plot(style='.') 

    Mean  Std. Dev. 

0  74.28       3.62 

1  74.63       5.78 

2  90.30       5.05 

3  71.67       5.34 

4  73.65       3.12 

5  75.88       4.93 

6  71.47       4.39 

7  68.48       3.47 

8  71.94       4.50 

9  87.01       4.85 

(75.931178457020081, 6.6951041911414277) 

Out[15]: 

<matplotlib.axes._subplots.AxesSubplot at 0x7ff8010b7e50> 
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Figure 64. Lot-to-lot variability plot. 

These results match with our data generation model well. Now let's do the analysis 

using Bayesian analysis. First we need to write the equations for our new lot-to-lot 

variation model and draw the DAG. This model is considered hierarchical and 

introduces plate notation. 

β=Normal(μpart,i,σpart,i)  

μi=Normal(μlot,σlot) 

In [16]: 

pgm = daft.PGM([5, 5], origin=[0, 0]) 

 

pgm.add_node(daft.Node("mu_lot", r"$\mu^{lot}$", 1.5, 4.5, scale=1.5,)) 

pgm.add_node(daft.Node("sigma_lot", r"$\sigma^{lot}$", 2.5, 4.5,scale=1.5)) 

pgm.add_node(daft.Node("mu_part", r"$\mu^{part}_i$", 2, 3.5,scale=1.5)) 
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pgm.add_node(daft.Node("sigma_part", r"$\sigma^{part}_i$", 3, 3.5,scale=1.5)) 

pgm.add_node(daft.Node("beta", r"$\beta_i$", 2.5, 2,observed=True,scale=1.5)) 

 

pgm.add_edge("mu_lot", "mu_part") 

pgm.add_edge("sigma_lot", "mu_part") 

pgm.add_edge("sigma_part", "beta") 

pgm.add_edge("mu_part", "beta") 

 

# And a plate. 

pgm.add_plate(daft.Plate([1.5, 1, 2, 3], label=r"lot $i$", 

    shift=-0.1)) 

 

pgm.render() 

Out[16]: 

<matplotlib.axes._axes.Axes at 0x7ff800f20bd0> 

 

Figure 65. Lot-to-Lot variability model. 

In [17]: 

ten_lot_model = pymc3.Model() 

 

with ten_lot_model: 

 

    #hyperpriors for group parameters 
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    mu_lot=pymc3.Uniform('mu_lot',lower=0, upper=200) 

    sigma_lot=pymc3.HalfNormal('sigma_lot',sd=20) 

     

    # Non-informative priors 

    sigma_part = pymc3.HalfNormal('sigma_part',sd=20,shape=10) 

    mu_part = pymc3.Normal('mu_part',mu=mu_lot,sd=sigma_lot,shape=10) 

     

    # Likelihood (sampling distribution) of observations 

    transitor_beta = pymc3.Normal('transistor_beta', mu=mu_part, 

sd=sigma_part, observed=True) 

    beta_samples = pymc3.Normal('beta_samples', mu=mu_part, sd=sigma_part, 

shape=10) 

In [18]: 

with ten_lot_model: 

 

    # obtain starting values via MAP 

    pymc3.start = pymc3.find_MAP(fmin=sp.optimize.fmin_powell) 

 

    # draw 2000 posterior samples 

    trace = pymc3.sample(1000, start=pymc3.start)  

Assigned NUTS to mu_lot_interval 

Assigned NUTS to sigma_lot_log 

Assigned NUTS to sigma_part_log 

Assigned NUTS to mu_part 

Assigned NUTS to beta_samples 

In [ ]: 

pymc3.summary(pymc3.trace) 

pymc3.traceplot(pymc3.trace) 

In [ ]: 

These models generate the posterior distributions used for further analysis. See the 

following section for more tutorials and resources on this type of analysis. 

References and Helpful Resources 

Bayesian Data Analysis using Pymc3: Thomas Wiecki's blog post on video with 

accompanying notebook describing how to use Pymc3 for a linear model. 

http://twiecki.github.io/blog/2013/12/12/bayesian-data-analysis-pymc3/ 

 

http://twiecki.github.io/blog/2013/12/12/bayesian-data-analysis-pymc3/
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