
SIMULATION USING TRANSACTION LEVEL MODELING : IMPLEMENTATION FOR ARA™

MODULES

By

Arul Moondra

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December, 2015

Nashville, Tennessee

Approved:

Janos Sztipanovits, Ph.D.

Janos Sallai, Ph.D.

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Professor Janos Sztipanovits for the useful comments,

remarks and engagement through the learning process of this master thesis. Furthermore, I would like to

thank Peter Volgyesi for introducing me to the topic as well for the support on the way. Also, I like to

thank Adam Nagel from Metamorph Inc and other team members who provided me help whenever needed

and guided me to the right direction. Finally, I would like to thank my parents for their continuous support

throughout the entire process and keeping me harmonious and helping me put my thesis together. I will be

grateful forever for your love.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

I Introduction . 1

I.1 Google Ara . 2
I.2 Organization of Thesis . 3

II SystemC and TLM: An overview . 4

II.1 SystemC Basics . 4
II.2 TLM-2.0 . 5

II.2.1 Coding Styles . 7

III Google Project ARA™ and Greybus . 9

III.1 Unipro . 9
III.2 Endoskeleton . 11
III.3 Greybus . 12

III.3.1 Greybus Operation and Setup . 12
III.3.2 Special Protocols . 15
III.3.3 Device Class and Bridged PHY Protocol . 15

III.4 Summary of the ARA System . 15

IV Our Approach . 17

IV.1 Challenges . 17
IV.2 System Model . 18

IV.2.1 Development Kit . 18
IV.2.2 USB-Bridge . 18
IV.2.3 SystemC Application . 19
IV.2.4 User Module . 19

IV.3 Tasks performed by USB-Bridge . 19
IV.3.1 Initial Setup . 20
IV.3.2 Insertion of Module . 21
IV.3.3 After the Insertion of Module . 22

IV.4 SystemC Application Design . 23
IV.4.1 Block Diagram . 23
IV.4.2 TCP-Bridge . 24
IV.4.3 Router . 25
IV.4.4 Control Handler . 25
IV.4.5 I2C handler . 26

IV.4.5.1 I2C Transfer Operation . 27
IV.4.6 I2C Controller . 28

iii

V Experiment and Results . 30

V.1 Implementation Details . 30
V.2 The Compass Module . 31
V.3 Communication Traces . 32

VI Conclusion . 34

VI.1 Future Work . 34

BIBLIOGRAPHY . 36

iv

LIST OF TABLES

Table Page

II.1 Generic Payload [4] . 6

III.1 Unipro Protocol Stack [1] . 10

III.2 Greybus Header Format [13] . 13

IV.1 SVC Operation Types [13] . 21

IV.2 Manifest Descriptor [13] . 22

IV.3 Descriptor Types [13] . 22

IV.4 Control Protocol Operations [13] . 26

IV.6 I2C OP [13] . 27

IV.5 I2C protocol Operation Types [13] . 27

IV.7 I2C Protocol Transfer Request [13] . 28

v

LIST OF FIGURES

Figure Page

II.1 Key components in an OSCI TLM 2.0 model [5]. 6

II.2 TLM 2.0 Classes [12] . 7

II.3 Speed vs. Coding Style [15] . 8

III.1 Example system architecture showing multiple UniPro devices connected via UniPro switches 10

III.2 EndoSkeleton [9] . 11

III.3 Logical parts of a module . 14

III.4 Network Stack over software and Hardware . 16

IV.1 Top Level Abstract Model . 18

IV.2 Top-Level Model of SystemC Application . 24

V.1 Compass Module Flow Chart . 31

V.2 I2C data transfer over a period of 20 ms . 32

V.3 Zoomed wave form of a single I2C transaction . 32

vi

CHAPTER I

Introduction

Current digital devices and applications are composed of deeply integrated hardware and software compo-

nents that form a complex web of interacting subsystems. In the past, hardware and software were indepen-

dently designed and then combined in the later design cycles. The hardware designs were modeled at Register

Transaction Level (RTL) level primarily using Verilog and VHDL and software was written in higher level

languages such C++/JAVA. This design methodology poses a number of disadvantages such as

1. The separation of hardware and software design flows severely increases the system integration effort

and makes it difficult and error-prone. For example, if the HW/SW interface definitions show deficits

or if the communication between hardware and software designers is insufficient, system integration

requires a lot of debugging and re-design.

2. The Later the defects are revealed, the more expensive is their removal. If they were injected in early

development phases, the designers often have to go back through the complete design cycle to detect

and mend them.

3. Besides the cost and quality issues, a major drawback of the separated development of hardware and

software is the issue of performance. The early HW/SW partitioning does not allow the evaluation of

different design alternatives, and thus sacrifices significant optimization potential.

To remove these shortcomings a new design methodology, HW/SW co-design methodology was proposed.

The central point is that hardware and software are developed together in an integrated system design process.

The design process starts with an abstract specification, but now, the HW/SW partitioning is not fixed

at the beginning. Instead, it is part of an iterative process, where different design alternatives are evaluated

and compared. As a consequence, it is possible to explore the whole design space and to find an optimal

HW/SW architecture. Furthermore, it allows an early analysis of HW/SW interfaces and thus reduces the

cost of integration and defect removal.

An essential component of co-design methods is HW/SW co-simulation, which is necessary to evaluate

and compare different design alternatives. In a HW/SW co-simulation, hardware and software parts of a

system are simulated together. Among these tools SystemC Initiative et al. [12], System-Verilog [3], and

SpecC [7] are the most popular.

SystemC, developed by Open System Initiative (OSCI), is a set of C++ libraries that provide an event-

driven kernel. SystemC is a system level design language that supports design space exploration and per-

1

formance evaluation efficiently throughout the whole design process even for large and complex HW/SW

systems, and thus, it is widely used in HW/SW co-design. It allows the description of both hardware and

software, and the designs are executable on different levels of abstraction. As a consequence, co-simulation,

i.e. the simultaneous execution of hardware and software, can be used for validation and verification through-

out the whole design process. SystemC also provides TLM-2.0 (Transaction Level Modeling) which provides

the capability to model hardware designs at a higher levels of abstraction concerning only with data trans-

fer, which facilitate in increased simulation speeds but sacrifice accuracy. The models in TLM-2.0 can have

incremental amount of timing information added that increases the accuracy of the model, but slows the sim-

ulation time. TLM 2.0 provides an advantage that one can model a system composed of modules at different

level of abstractions thus constructing a hybrid of abstracted and refined models. One module can be cycle

accurate while the other can be loosely timed. In this thesis, we discuss the simulation of a fairly complex

system known as Google Project ARA™ using SystemC. We discuss the use of TLM 2.0 and hybrid nature

of SystemC to provide real-time simulation of the system as well as SystemC ports that are cycle accurate

and can communicate with a generic SystemC module.

I.1 Google Ara

Project Ara™ [2] is a development effort to create a modular hardware ecosystem that aims at enabling users

to create a modular smartphone that is precisely tailored to their functional and aesthetic preferences. The

modular phone will have multi-functioning modules that can be hot swapped (swapped while the system is

running) from an endo-skeleton to allow the user to configure the phone according to their needs. These

modules will support complex hardware and software subsystems. To make this possible Google has intro-

duced a protocol called Greybus which works on top UniPro™ [1], which is high-speed interface technology

for interconnecting integrated circuits. It allows these modules to communicate with the main processor and

facilitates inter-module communication. An important characteristic of these modules subsystems is their

support for legacy protocols like UART, I2S, I2C, etc. This means that a module can have embedded chips

supporting legacy protocols and still communicate with the phone using a bridge irrespective of protocol

differences. This thesis aims to provide a framework that can simulate the ARA system in real time commu-

nicating to an actual hardware device to provide a user the means to verify and simulate an abstracted model

of the ARA module. This eliminates the use of expensive development boards provided by Google, in early

phases of development. While discussing the details of implementation, we also discuss the hybrid nature

of SystemC and particularly TLM 2.0 which allows us to jump between abstractions and refinements of the

model to strike a balance between accuracy of the model and speed of simulation.

2

I.2 Organization of Thesis

This thesis starts with outlining important aspects of SystemC with detailing some aspects that are used in this

thesis and are important to grasp the whole context. Then we delve into basics of Google Ara™ infrastructure,

which helps in discussing the actual implementation of the whole system. Then we discuss the challenges

of this thesis and the approach taken to design this framework. Finally, we take up an example module that

supports the I2C protocol and explain how it can be used to simulate a compass and communicate in real

time with an Android application. Finally in the results we analyze the system and discuss the benefits of

abstraction and refinement in a simulation system.

3

CHAPTER II

SystemC and TLM: An overview

Embedded systems developed today are composed of hardware and software specific to an application, which

are co-developed, usually on a tight schedule. Furthermore, some systems have strict real time performance

constraints. Such systems require thorough verification, which otherwise may lead to very expensive and

sometimes catastrophic failures. Software languages such as C++ and Java are not suited to model hardware

systems and are very different in philosophy to Verilog and VHDL, which were developed to support hard-

ware simulation. SystemC was developed to provide features that aid modeling of hardware, particularly the

parallelism of hardware in a mainstream programming language. It uses C++ and provides certain libraries

and Macros with an event driven software engine. This approach offers real productivity gains by letting

engineers co-designing both the hardware and software components as they would exist in a real system.

SystemC provides features for modeling hardware at clock accurate Register Transaction level (RTL)

similar to Verilog or VHDL but what makes it special is the concept of Transaction Level Modeling (TLM).

TLM is an abstract approach of modeling systems where the semantics of communication among modules

is separated from the semantics of the functional units that implement them. Communication mechanisms

are modeled as channels that are presented to SystemC modules via SystemC interface classes. In essence,

the designer is more concerned about what data is transferred rather than how it is transferred allowing

experimentation, for example, with different bus architectures.

II.1 SystemC Basics

This section provides high level details of SystemC and its basic constructs.1

• Modules: Modules are C++ classes that serve as the basic building blocks of a SystemC model. These

modules can contain other module providing a hierarchical system. They encapsulate hardware or

software description and communicate to other modules via ports.

• Ports and Interfaces: Ports are defined as objects inside a module which allow it to communicate with

other modules. SystemC provides a multitude of ports such as sc in<>,sc out <>sc fifo in<>etc.It

also allows user defined ports and interfaces.

• Processes: A process is a sequence of statements that define the behavior of a module. A module can

contain more than one processes that run concurrently. Processes contain an attribute which notifies

1It is assumed that the reader has experience with SystemC, and this only serves as a refresher

4

the simulation kernel that, a process is ready to be executed called sensitivity list. SystemC supports

both static and dynamic sensitive processes.

– SC METHOD: This process cannot be preempted. That means once it has started it will finish

off in the same time quantum and cannot call wait().

– SC THREAD: This process can be suspended in between by calling the wait() method, where

it waits for the next event or specified simulation time. Also, it is only executed once during

simulation and thus, generally needs an infinite loop to rerun.

The wait statement has very powerful consequence in SystemC. SystemC kernel is designed such that

the processes are run one by one, having pseudo-concurrency. This means a mechanism is required

so that processes can yield control to the kernel. This is done by calling wait(). After getting the

control, the kernel can increment the simulation time or run a process queued to be executed at the

same simulation time. Thus, a process that does not call wait() will not render its control to the kernel

and the simulation time will never increase. By the same logic, SC METHOD executes in the same

instance of simulation time.

• Channels: Channels are the communication medium or a generalized form of signals. SystemC pro-

vides multitude of predefined channels such as sc signal, sc fifo etc. It also allows user-defined chan-

nels. This feature is what differentiates SystemC from other hardware modeling languages since, mod-

eling abstraction at interface level allows great design and modeling flexibility [12] and [10].

II.2 TLM-2.0

On the simplest level, TLM-2.0 is a set of SystemC modules each providing one or more TLM sockets through

which the SystemC modules may communicate with each other. The behavior is provided by a number of

parallel threads whose execution is controlled by the SystemC kernel. Figure II.1 shows the key components

in a TLM 2.0 model. The communication between two modules is known as a transaction (hence the name),

and the data is called payload.

TLM-2.0 consists of a set of core-interfaces, the global quantum, the initiator and target sockets, the

generic payload, the base protocol, and the utilities. The TLM-2.0 core-interfaces consist of the blocking and

non-blocking transport interfaces, the direct memory interface (DMI), and the debug transport interface [4].

The primary purpose of SystemC and TLM-2.0 is interoperability and simulation speed. Speed here means

to execute an application software as fast as or faster than the hardware model. Interoperability means to

integrate models from different sources with a minimum engineering effort and without sacrificing simulation

speed. However, using SystemC alone is insufficient to ensure interoperability. SystemC offers too many

5

Figure II.1: Key components in an OSCI TLM 2.0 model [5].

degrees of freedom for writing a communication wrapper, thus the probability that two modules will talk to

each other off the shelf is minimal. Thus, the generic payload is introduced to support abstract modeling of

transaction (message passing) while maximizing interoperability. The TLM-2.0 classes are layered on top

of the SystemC class library as shown in Figure II.2. However it is entirely possible for anyone to write

their own payload and sockets to interface with them but, to maximize interoperability, it is recommended

that the TLM-2.0 core interfaces, sockets, generic payload and base protocol be used together in concert.

These classes are collectively known as the interoperability layer. In cases where the generic payload is

inappropriate, it is possible for the core interfaces and the initiator and target sockets, or the core interfaces

alone, to be used with an alternative transaction type.

Table II.1: Generic Payload [4]

Payload Description

Command Is this Read or Write?

Address Address of the memory

Data The pointer to the data

Response Response when the transaction

return signifying failure or success

6

Figure II.2: TLM 2.0 Classes [12]

The payload maybe defined by the programmer but, the generic payload provided by the TLM interface

(recommended for interoperability) is summarized in Table II.1. TLM 2.0 also recognizes the fact that there

can be a variety of use cases for TLM with abstraction levels based on different criteria such as function

abstraction, communication abstraction, granularity of time. The above-defined interfaces can be used to

design transaction level models using different coding styles that are appropriate for, but not locked to, the

various use cases [8] and [4].

II.2.1 Coding Styles

A coding style is a programming language idiom; that works well together. They do not define a specific

abstraction level. The coding styles can be broadly described as follows

• Untimed coding style, there is no notion of time and processes run as fast as possible to completion.

This method is not very useful in hardware modeling as any bus based system will need some notion

of time.

• Loosely Timed(LT) models are where each transaction has just two timing point, marking the start

and the end of the transaction. Simulation time is used, but to increase simulation speed the processes

are allowed to run ahead of the simulation time thus, they are temporally decoupled. Each process thus

7

Figure II.3: Speed vs. Coding Style [15]

has to keep its local time, and it is synchronized with the rest of the system when a wait is called, or it

has consumed its quantum.

• Approximately-timed (AT), each transaction has multiple timing points or phases. Processes run

in synchronization with SystemC simulation time. Delays defined onto the interaction between the

processes are implemented using timeouts (wait) or event notifications. As expected, this is slower

than the LT coding style but more accurate [4].

As mentioned earlier, TLM provides a two interfaces, Blocking and Non-Blocking for transfer of pay-

loads. Their definition is quite clear by their name, one providing blocking calls and the other non-blocking

calls. An LT (loosely timed) approach will most likely consist of Blocking calls and AT (approximately timed)

approach uses Non-Blocking calls. The coding style chosen greatly affects the simulation speed where Clock

Timed (CT) being the slowest used by VHDL and Verilog and Application Software (untimed) being the

fastest. SystemC acts as the bridge between the two with LT and AT. It gains speed and loses accuracy as it

moves from CT to Untimed. The speed of the simulation offered is also in between these two approaches as

presented by the Figure II.3.

8

CHAPTER III

Google Project ARA™ and Greybus

Project ARA™ is an initiative by Google™ to develop an open hardware platform for creating highly modular

smartphones. It allows the users to swap in and out multi-functioning ‘modules’ according to their need. This

not only provides ease of use to the users, but it also greatly reduces electronic waste and leads to longer

lifetime cycles for the handset.

Modules are the building blocks of Ara phone. They are the hardware equivalent of software applications.

They implement various phone functions such as a screen, camera, battery, etc. These modules connect on

an endoskeleton that provides with the locking mechanism as well as the connection ports for the module to

interact with other components of the phone.

These modules communicate via UniPro™ Protocol. On top of UniPro protocol, the Greybus proto-

col is built which provides semantics to the communication packets. The following sections describe the

aforementioned parts of the ARA phone in detail

III.1 Unipro

The architecture of the Project Ara requires an application layer specification, which can handle the insertion

and removal of modules dynamically, without constraint on time or location. It also requires that modules

can communicate and operate together with other modules that will be introduced at a later stage. Project Ara

uses the UniPro protocol for inter-module communication that fulfills these specifications. UniPro protocol

follows the OSI Layer and specifies how the communication shall occur up to the Application layer. It is

a high-speed interface technology for interconnecting integrated circuits in mobile and mobile-influenced

electronics. Its major features include gigabit/sec range data communication, low power operation, data

reliability and robustness (error checking and correction).

UniPro on an abstract level is analogous to LAN network. In such an environment, UniPro devices are

connected via links and messages are routed towards the destination using UniPro switches. The difference

being that UniPro is designed to connect chips within a terminal, as opposed to computers in a building.

Though a complete detail of UniPro is not required for following this thesis the Table III.1 describes the

different layers of UniPro.

9

Table III.1: Unipro Protocol Stack [1]

Layer # Layer Name Functionality Data Unit Name

LA Application Payload and Transaction Semantics Message

DME

Layer 4 Transport Ports, multiplexing and flow-control Segment

Layer 3 Network Addressing, Routing Packet

Layer 2 Data Link Single hop reliability, and priority based arbitration Frame

Layer 1.5 PHY adapter Physical layer abstraction and multi-lane support UniPro symbol

Layer 1 Physical Layer Signaling, clocking, line encoding, power modes PHY symbol

Each end of a connection in a UniPro communication environment is a UniPro Cport. A Cport is a

5-bit identifier, that is analogous to the port number in a TCP or a UDP connection, and serves as a sub-

address inside a UniPro device. The messages are addressed to a specific Cport of a specific UniPro device.

Each UniPro device has multiple Cports that are associated with different protocols as shown in Figure

III.1. Continuing with our previous analogy with TCP/UDP, as messages meant for different protocols are

forwarded to the respective port numbers (e.g. 8080 for HTTP), messages meant for different protocols are

forwarded to their respective Cport number [1].

Figure III.1: Example system architecture showing multiple UniPro devices connected via UniPro switches

The process of establishing a connection starts as soon as the AP (Application Processor) module learns

about the existence of a Cport in another module. This initial communication is handled by SVC (a special

unit explained later in this section). The AP Module allocates a Cport for its end of the connection, and

once the UniPro network switch is configured properly the connection can be used for data transfer (and in

10

particular, for operations).

III.2 Endoskeleton

The Ara Endoskeleton (or Endo) is the frame and backplane of the device, determining the size and layout

of the phone. Ara modules slide in and attach to the endos slots, which has connectors to electrically and

logically connect the modules together as shown in Figure III.2.

Figure III.2: EndoSkeleton [9]

An Endo, consists of the following elements:

• One UniPro switch, which distribute the UniPro messages throughout the network. This is the spine of

the endo.

• Exactly one Application Processor Module, hereafter referred to as the “AP” Module. The AP Module

is responsible for storing user data and executing applications. The Module that contains the AP is the

AP Module.

• One or more Interface blocks, these interface blacks are the connectors that allow the modules to

connect to the endo’s communication interface and other modules in the system.

• Exactly one Supervisory Controller, referred as “SVC”. The SVC oversees the ARA system, including

11

the system’s UniPro switches, its power bus, its wake/detect pins, and its RF bus. When a new module

is inserted only way of communication with the system is via this SVC.

The SVC has direct control over and responsibility for the endo, including detecting when modules

are present, configuring the UniPro switch, powering module Interfaces, and attaching and detaching

modules. The AP Module controls the endo through operations sent over the SVC connection, and the

SVC informs the AP Module about endo events (such as the presence of a new module, or notification

of changing power conditions). SVC also resides inside the spine of the endo.

• One or more Modules, which are physically inserted in the slots on the endo [1].

III.3 Greybus

Greybus communication defines how modules communicate over the UniPro network. Although UniPro

offers reliable transfer of data frames between interfaces, it is necessary to build a protocol that provides

semantics to the data being transferred. This allows the sender to confirm that the information or instructions

in the message had the expected result. For example, a request sent to a UniPro switch controller requesting

a reconfiguration of the routing table could fail, and proceeding as if a failure had not occurred in this case

leads to undefined behavior. Similarly, the AP Module likely needs to retrieve information from other mod-

ules. This requires that a message that is requesting information should be paired with a returned message

containing the information requested.

For this reason, Project Ara performs communication between the modules using Greybus Operations.

A Greybus Operation defines an activity (such as a data transfer) initiated in one module that is implemented

(or executed) by another. The particular activity performed is defined by the operation’s type. An operation

is implemented by a pair of messages one containing a request, and the other containing a response. Both

messages contain a simple header that includes the type of the operation and size of the message. In addition,

each operation has a unique ID, and both messages in an operation contain this value so that a response

can be associated with its matching request. Finally, all responses contain a byte in the message header to

communicate the status of the operation, either success or a reason for a failure [13]. The size and data

associated with a header are in Table III.2.

III.3.1 Greybus Operation and Setup

Greybus Operations are performed over Greybus Connections. A Greybus connection is a communication

path between two modules. As explained earlier, each end of a connection is a UniPro Cport. Each Cport in a

module is associated with a protocol. The protocol dictates the way the Cport interprets incoming operation

messages. In other words, the operation type in a request message has a different meaning for different

12

Table III.2: Greybus Header Format [13]

Offset Field Size Value Description
0 Size 2 Number Size of the operation
2 ID 2 ID Requestor supplied request identifier
4 type 1 Number Type of Greybus Operation
5 status 1 Number Operation result
6 (pad) 2 0 Reserved(pad to 8 bytes)

protocols. Operation type 5 might mean“receive data” in one protocol while operation type 5 might mean

“go to sleep” in another protocol.

A module is a physical thing that a user may plug in. The Linux kernel which is the base of the Android

stack and thus the ARA phone does not see this. However, the kernel sees a logical thing that is called an

Interface. These are electrical points on the endo for the connection and have associated interface ids. The

endo is designed such that each module will have at least two interfaces or more. Inside these interfaces are

Cports. However, each interface needs a way to handle housekeeping, to describe itself to the descriptors and

for network management. Thus, every interface has Cport 0 which is reserved for this task.

Also, there is a need to group up Cports according to the functions they perform. This is because a module

can perform various functions. The kernel drivers control these functions. For example, a module can be a

wi-fi device and a battery. A battery needs a single Cport to talk to the AP however, the wi-fi will need

a multitude of Cports. Cports associated with the same functionality are grouped together. This group of

Cports associated with the same functionality is called a Bundle. When the Cports are grouped up according

to their function in bundles, the bundles can be bound to Linux drivers.

To summarize a module essentially consists of two or more interfaces each supporting a “Cport 0” and a

number of bundles. These bundles are a group of Cports that are related to a specific protocol, Figure III.3.

13

Figure III.3: Logical parts of a module

Now we can understand how the connections and are established and modules interact with each other in

a Greybus system.

Firstly, as soon as the module is inserted the SVC is notified, which in turn informs the AP module that, a

new module has been inserted. The AP gives instruction to the SVC to bind one of its Cports to Cport 0 of the

module inserted. Till now the AP has no information about the number of Cports and the type of protocols it

will use.

Next the AP Module asks for the Manifest from the module. The Manifest is a contiguous block of data

that includes a Manifest Header and a set of Descriptors. These descriptors define the number of Cports, the

protocols supported and the number of bundles, to the AP. When read, a Manifest is transferred completely.

This allows the Interface to be described to the AP Module in a single communication sequence, removing the

need for multiple back and fro messages during the enumeration phase. Details of the Manifest are discussed

in Chapter IV.

Reading the Manifest, the AP Module establishes the connections mentioned in the Manifest and also

directs the SVC to reconfigure the UniPro switch to direct the messages to the correct destination. The

switch is configured according to Interface id and Cport number. The connections use the associated Cport’s

advertised protocol.

The Greybus Operation mechanism forms a base layer on which other protocols are built. Protocols define

the format of request messages, their expected response data, and the effect of the request on the state in one

or both Modules. Users of a protocol can rely on the Greybus core getting the operation request message to

its intended target and transferring the operation status and any other data back. The process of establishing

a connection is concretely defined using two special protocols that are detailed in the next section.

14

III.3.2 Special Protocols

This section defines two Protocols, each of which serves a special purpose in a Greybus system.

The first is the Control Protocol. Every Interface provides a Cport (Cport 0) that uses the Control

Protocol. It is used by the SVC to do initial probes of interfaces at system power on. It is also used by the

AP Module to notify interfaces when connections are available for them to use. A Greybus connection is

established, whenever a control connection is used, but the interface is never notified that such a connection

exists. Only the SVC and AP Module can send control requests. Any other interface shall only send control

response messages, and such messages shall only be sent in reply to a request received at its control Cport.

The second is the SVC Protocol, which is used only between the SVC and the AP Module. The SVC

provides low-level control of the UniPro network. The SVC performs almost all of its activities under the

direction of the AP Module, and the SVC Protocol is used by the AP Module to exert this control. The SVC

also uses this protocol to notify the AP Module of events, such as the insertion or removal of a module [13].

III.3.3 Device Class and Bridged PHY Protocol

Greybus also defines a group of protocols that are primarily designed to provide a device abstraction for

functionality commonly found in mobile phones. These may include cameras that utilize MIPI CSI-3 [1],

vibrators, battery. These protocols are called Device Class Protocol. On the hardware level these devices

connect directly to the UniPro bus, however, devices without native UniPro will utilize a Bridge called GP-

Bridge to communicate over the UniPro network. The GPBridge converts common interfaces such as I2C,

USB and UART for transmission over the UniPro network to an AP Module. Any device that does not support

the Device Class Protocol should support the Bridged PHY Protocol which is a protocol whose purpose is

to support communication with Modules on the Greybus network that do not comply with an existing Device

Class Protocol.

III.4 Summary of the ARA System

The Figure III.4 presents the whole architecture of networking in Project ARA. The dotted line divides the

software and the hardware components of the system. The hardware side includes the UniPro controller,

UniPro switch and the Modules with the GPBridge. The software part consists of the Greybus system inside

a Linux kernel and an Android Stack. The software also includes the protocols defined earlier, the Device

Class and the Bridged PHY protocol.

On the hardware side, we have an AP Module, which interacts with a UniPro switch. The UniPro switch

can talk to the modules in two primary ways. By using native Unipro Bus or via a bridge called GPBridge

which converts UniPro messages to a legacy protocol such as I2C, UART, etc.

15

On the software side, we have the Greybus Subsystem, which resides over the UniPro protocol stack. The

Greybus lies inside the kernel of the Android stack. The Greybus system also talks to the modules in two

primary ways that are analogous to the two ways defined in the hardware side defined earlier. These are the

Device Class and the Bridged PHY protocols that allow direct communication or communication via a bridge

respectively. Thus, a module using a Device Class Protocol interacts directly with the UniPro Bus. However,

any device that is not Device Class conformant uses the Bridged PHY Protocol and connects to the UniPro

bus via the GPBridge.

Figure III.4: Network Stack over software and Hardware

16

CHAPTER IV

Our Approach

The primary aim of this framework is to provide the user, the capability to model and simulate the ARA

modules in real time. It also seeks to allow the user to attach Android applications to the system so that the

system can be simulated as it would exist in the real world. In developing such a system there were many

challenges. This chapter first discusses the challenges faced. Then it describes the System Model which is

divided into four parts and our approach to counter these challenges with each part in detail.

IV.1 Challenges

There we many challenges to this framework. The following section outlines the challenges faced. We discuss

the solution to these challenges and the design choices in the next sections.

• The Ara system uses the UniPro protocol at the hardware level and the Greybus protocol at the Appli-

cation layer. Though UniPro protocol is well defined, it has a serious limitation. There are no commer-

cially available devices that support this protocol. The Greybus messages need to be encapsulated in

an existing protocol so that it can communicate with a different device.

• The next challenge is a consequence of the previous limitation. The messages are routed according

to the Cport number, and each module can contain a number of Cports according to the protocol it

supports. Thus, it is necessary to relay the Cports number with the messages to route them to the

correct destination. Again, since Cport is a UniPro construct and is not available to any other protocol

or in the Greybus messages.

• Since, the system should run in real-time, it is necessary to execute the simulation as fast as or faster

than the hardware. The obvious choice for speeding up simulation is abstracting the model, where it

loses accuracy but gains speed. However, we also want cycle accurate interfaces from the system to

connect to the user designed models of the ARA modules. For cycle accurate interfaces, the SystemC

modules to should be designed at a very refined RTL level that is counter intuitive to speeding up the

simulation.

• Another major challenge was the synchronization between the Android application and the SystemC

application. Since, the SystemC simulation depends on the internal simulation clock that is controlled

by the SystemC kernel, we need to find a mechanism so that the real clock time can be synchronized

with simulation time.

17

IV.2 System Model

To counter the challenges effectively the whole system is divided into four major parts. The System Model

presents an abstract view of the system. This classification is derived as per the functionality and existence

of these sub-systems in the ARA eco-system. The Figure IV.1 is a block diagram of the abstract model of

the system. The left most blocks together represent the AP module and the Endoskeleton. They have the

processor that runs the Android stack and the SVC, which takes care of the housekeeping work for the whole

system. The right part is the GPBridge and the Test Module. The Test Module is provided by the user.

The GPBridge takes the Greybus messages, converts them into legacy protocols, that are processed by the

Test Module and sends them back as Greybus messages. The GPBridge is designed such that legacy protocol

handlers can be added without major modification. Later in this chapter we discuss an I2C handler that serves

as an example for the handlers that can be introduced.

Figure IV.1: Top Level Abstract Model

The different blocks in the diagram are explained in the following sections

IV.2.1 Development Kit

The Development kit on the leftmost part of the figure is a board that supports Android. This works as

the “phone” in our setup. It has a stock Android installed on it, with the only modification being that the

Greybus kernel modules were loaded on it1. The Greybus kernel modules also have an interface for routing

the Greybus messages to a USB gadget. Thus, the system can communicate with the kernel modules and the

kernel stack using a USB link. The Greybus messages are encapsulated in USB packets and can be received

by a USB gadget.

IV.2.2 USB-Bridge

The middle part called the USB-Bridge is connected with the Development kit on the left using a USB

cable and to the SystemC application on the right using a TCP link. The USB-Bridge acts as a bridge

between incoming USB packets and the outgoing TCP packets. Since, the Greybus modules inherently

1Greybus Repo: https://github.com/projectara/greybus

18

 https://github.com/projectara/greybus

support channeling the Greybus messages to a USB gadget, they can be retrieved and processed. This part is

necessary because, the Greybus kernel modules allow a USB gadget to attach to it. The PC being primarily,

the host of a USB, it does not have a USB gadget (“slave”) functionality.

It also acts as the SVC and Endoskeleton of our system. Thus, it is primarily used for initial setup when

a module is inserted and for further housekeeping.

As mentioned earlier, the Cport number are a UniPro construct are not available at a higher level. To

counter this problem, the Greybus messages have the Cport number embedded in its reserved bytes. The

Greybus Header is detailed in the Table III.2. Thus, when a message arrives its Cport number is extracted and

is used for the decision about its associated protocol. Also, the application has to put the Cport number back

into the messages when delivering it to the AP module. The details of the tasks performed by the USB-Bridge

are detailed in section IV.3.

IV.2.3 SystemC Application

The rightmost part of the figure is the SystemC application. This simulates the GPbridge part of the system.

It receives Greybus messages from the AP, processes them and transmits the results back. It also exposes ex-

ternal SystemC ports that generate cycle accurate signals and can be connected to generic modules supporting

legacy protocols.

The SystemC application simulates the“GPbridge” subsystem of the Project ARA. A GPbridge is a bridge

between the Greybus messages and the modules that support the legacy protocol. The primary aim of this

application is to receive Greybus messages coming from the AP, process them and present them to any other

module, as a legacy protocol. In doing so, it also takes care that the whole system is as close to the real time

as possible. In section IV.4 we delve deep into its design.

IV.2.4 User Module

Finally, the user module is the module of the ARA module under test. The user of this framework can connect

it via ports exposed by the SystemC application and simulate the module under test. In chapter V an example

module with a compass is explained.

IV.3 Tasks performed by USB-Bridge

The USB-Bridge not only acts as the Bridge between the Development kit and the SystemC application it

also acts as an SVC and endoskeleton. The various task performed by it as as follows:

• Its primary function is, to receive Greybus messages from the AP Module and the user module and

forward them to their appropriate destination.

19

• It also acts as the SVC of the system. Thus, it implements the SVC protocol and takes care of the

housekeeping work for the AP module. This includes establishing the Cport connections and informing

the AP about new modules.

• Since the endo and the AP Module are physically separated from each other in this approach, it provides

initial configuration for the USB-gadget functionality required for receiving Greybus messages from

the AP module.

• When a module is inserted in an actual system, the AP module’s only point of communication for

retrieving the Manifest is the SVC. Thus, when we insert a module via the SystemC application, the

USB-Bridge aids in the initial setup and the steps during the insertion of a module.

IV.3.1 Initial Setup

Here, we describe the steps taken during the initial setup. This is the stage where the SystemC application

has not been executed. These steps perform the basic plumbing required for the Development kit and the

USB-Bridge to work together as an AP module and SVC. It can be broken down into following steps:

1. USB-Bridge creates a USB gadget. It creates a single configuration for this USB gadget that supports a

single function inside it. For more information about the USB gadget configuration setup, please refer

to [14]. It uses four endpoints for the USB gadget as follows:

• control - USB control messages and messages from AP to SVC

• svc in - messages from SVC to AP

• to ap- Cport data out to the AP

• from ap - Cport data in coming from the AP

2. Next, the gadget is enabled. A thread is created which monitors for events on the control endpoint.

As the gadget is enabled it waits for the Greybus kernel modules to bind the drivers. After this, file

descriptors to all the endpoints are opened. Also, it immediately sends out a handshake request, Table

IV.1

On an actual system, this handshake is not required as the SVC is already present on the endo. However,

in our approach we need to inform the AP about the existence of the SVC. Thus, it sends a “handshake”

request to the kernel module. It sends a Greybus message with the request value set as“0x00” (invalid),

and its protocol version. The Greybus kernel module sees this request as a handshake message. The

kernel module responses back with a“hello” message confirming the protocol version and the hand-

shake is complete.

20

3. The AP Module is required to provide a Cport that uses the SVC Protocol on an interface. The Grey-

bus kernel module sends an Interface and Device ID for the SVC, which are hard coded as 0 and 1

respectively. That means that any message for Cport 0 and device ID 1 is meant for the SVC.

4. The USB-Bridge now creates two non-blocking threads that have the following functions:

• A Thread that monitors the SystemC application for insertion of any new modules using the TCP

link.

• A Thread that monitors new incoming messages on the from ap endpoint. This thread also routes

messages that have arrived for the SVC, to appropriate function calls and forwards the remaining

messages to the SystemC application.

Table IV.1: SVC Operation Types [13]

SVC Operation Type Request Value Description

Handshake (Invalid) 0x00 Used as handshake signal from SVC. This code in Invalid

in actual greybus subsystem

Interface Device ID 0x01 Send by the AP, It supplies the device ID that the SVC

should associate with the indicated Interface

Interface Hotplug 0x02 Send by SVC when a module is inserted

Interface hot Unplug 0x03 Send by SVC when a module is removed

Interface Reset 0x04 Send by SVC to reset a particular link

Connection Create 0x05 Send by AP to SVC, indicating it to create a connection between Cports

Connection destroy 0x06 Send by AP to SVC, indicating it to destroy a connection between Cports

IV.3.2 Insertion of Module

The insertion of a module is simulated by executing the SystemC application. When the SystemC application

executes, it is assumed that a module has been inserted. The SystemC application sends a message to the

USB-bridge on the TCP link. This includes the Manifest file-name and the Manifest itself. The USB-Bridge

saves the information in the Manifest since it needs the Cport list to filter out messages arriving for SVC. It

checks the Cport numbers of arriving messages and filters the SVC messages for itself and sends the rest of

the messages forward. The Insertion phase includes the following steps

1. The USB-Bridge gets in preparation to receive the Manifest blob itself.

21

Table IV.2: Manifest Descriptor [13]

Field Size Description
Size 2 Size of this descriptor
Type 1 Descriptor Type IV.3
Pad 1 Pad to 4 bytes

Table IV.3: Descriptor Types [13]

Descriptor Type Value Description
Invalid 0x00 Invalid, not used
Interface 0x01 Descriptors for the interface, the access point for a module
String 0x02 A string descriptor provides a human-readable string for a specific value,

such as a vendor or product string
Bundle 0x03 A Bundle represents a device in Greybus, they are essentially a collection of cports
Cport 0x04 Cports are end points of connection in UniPro subsystem

2. The USB-Bridge now parses the Manifest blob and saves its information in a structure that replicates

the Manifest description as shown in Table IV.2.

3. At this moment, the USB -bridge sends an “Interface Hotplug” event, TableIV.1

4. Since, there are many interfaces, and there is no information in the Manifest that informs about the

interface id, thus the Interface ID (IID) is provided in the Manifest file-name. This information in

an actual system is known to the SVC because the interfaces are hardware connection points that are

arranged sequentially around the endo. The Manifest file-name must be of the format “IID#*” where #

represent the IID the user wants and * represents any valid characters for a file system. It extracts this

IID and sends an interface ID request.The device id is hardcoded to be “2”.

5. Next, the USB-Bridge creates another thread that monitors the data from the TCP link closing the

previous thread. The difference between these two threads is, though both monitor the TCP link, the

first thread expect a file-name and goes through the initial setup, the second thread assumes that the

initial setup is done and just forwards the Greybus messages it receives, to the AP.

IV.3.3 After the Insertion of Module

After the initial steps and insertion of module the USB Bridge’s function reduces to a small but important

role. It receives all the Greybus requests from the AP and checks the Cport number if it is for the SVC. In

case, it is for the SVC it processes it according to the SVC protocol. If it is meant for other Cports, it forwards

them to the SystemC application. It also monitors the TCP link and just channels the messages to the AP

from the SystemC application without interference.

22

IV.4 SystemC Application Design

This section discusses the design of the SystemC application. We first look at an abstract block diagram of

the SystemC application. Then each of the blocks and its functions are explained in detail. Finally, we also

discuss an I2C handler that serves as an example for any other handlers that can be introduced at a later stage.

IV.4.1 Block Diagram

The abstract model is a high-level view of the different SystemC modules and the communication between

them. The whole SystemC application is organized as shown in the Figure IV.2. The TCP-bridge is the only

point of communication for the SystemC application to the USB bridge. It is connected via TLM sockets

to a Router which, as the name suggest routes the Greybus messages according to the Cport number. The

messages are routed to the Control Handler, or the I2C handler or the GPIO handler or any other protocol

in the Bridged PHY class explained in section III.3.3. These protocols can be UART, USB, SPI, etc. These

handler-modules understand the different Greybus identifiers for their protocol. For example, a “0x02” in I2C

can mean to send data, and the same can mean to toggle a pin in the GPIO module. These handlers extract the

information from the Greybus packet and process them to decide what action should be taken. They forward

this data to Controller-Modules to their right. These controller-modules do not understand Greybus protocol

but act as a generic controller that can spew out information on SystemC ports. These controller-modules

are clock accurate. Thus, the system jumps from the abstracted TLM protocol to very refined cycle accurate

model. The Controller modules also expose ports to the outside which can connect to any generic module

that support the advertised protocol.

These modules can describe a complete cycle of Greybus message. After the insertion of an ARA module,

the Greybus messages arrive at the TCP bridge where they are forwarded to the router and then to the final

handler, according to the Cport number embedded in the reserved bytes. The handler processes the Greybus

messages and forwards them to the controller to perform the action required. These controllers return the

result of the action to the handler. The handlers wrap the data back into a Greybus message and forward it

back to the router, which it forwards to the TCP bridge. The TCP bridge encapsulates them in TCP packet

and sends them to the USB-Bridge where it is further forwarded to the AP hence completing a cycle of the

message.

23

Figure IV.2: Top-Level Model of SystemC Application

The next sections detail each module and their functions.

IV.4.2 TCP-Bridge

The TCP-Bridge is the first point of communication for the USB Bridge, but it perform other very important

functions as well which render the whole system to work in real time.

• When the system is executed, it asks for a Manifest file for the particular module the user wants to insert

in the system. The TCP-Bridge parses through the Manifest file and creates a list of all the Cports and

their associated protocols. This list is used by the router to decide the protocol associated with the

particular Cport as new Greybus messages arrive.

• It starts the initial communication with USB-Bridge by sending the Manifest file-name. This file-name

also include the interface ID as explained earlier in section IV.3. This is the cue for USB-Bridge, that

module is inserted, and it can start further processing.

• It keeps on monitoring the TCP socket for any incoming Greybus messages.

• Sometimes, many Greybus messages arrive in the same TCP packet. The TCP-Bridge checks the size

mentioned in the first byte of the Greybus message header, described in Table III.2. It confirms the

size of the total message arrived. In the case of a mismatch, it assumes multiple Greybus messages and

breaks them in individual messages and forwards them.

24

• The SystemC kernel does not furnish real concurrency for its models. It only offers simulated concur-

rency through the process construct. Therefore, when writing high-level models, it is not required to

use synchronization primitives (e.g., locks or semaphores) to protect data shared by different processes,

since at any one time, only one process is executing. Each process allows the other thread to execute

by calling wait().

This is the only thread in our system that calls the wait() function allowing other threads to run for a

fixed period of simulation time. After passing a Greybus message to the router, a wait is called for

2 ms. It is assumed that all other modules will complete their current task in less than or equal to 2

ms, where this value is approximated by numerous runs and experimentation. When it forwards the

Greybus message, it also starts a timer and checks for the time when it returns. By subtracting the value

from “2 ms”, it gets the surplus time and pauses the whole system for this surplus time. For example,

if all the thread except the TCP-Bridge runs in 1.5 ms it needs to sleep the whole system for .5 ms for

both the clocks to catch up.

In essence, the whole system is working on a quantum of 2 ms.The system allows the SystemC clock

(simulation time) to progress by 2 ms (by calling wait()), and then it delays the real clock by this time

to catch up with simulation time. This renders the system, real time in this quantum.

IV.4.3 Router

The Router is the intermediary module between the handlers and TCP-Bridge. It consists of sockets to route

the packets to the correct destination. It needs at least two pairs of TLM sockets. As more handlers are added,

more socket pairs have to be added to this router.

• One pair, for receiving and sending greybus packets to and from the TCP-Bridge

• The second pair, for communication with the control handler which handler the Control Protocol

When it receive a Greybus packets, it retrieves the Cport number embedded in the reserved bytes of the

packet. Then, it goes through the list of Cports created earlier when parsing the Manifest file and finds the

associated protocol. Next, it just forwards the packet to that module using the appropriate socket.

IV.4.4 Control Handler

Control handler takes care of the Control Protocol that is a special protocol defined in the Greybus system.

Every Interface provides a Cport that uses the Control Protocol. It is used by the SVC to do initial probes

of the Interface at system power-on. Control Protocol also manages the passing of Manifest file at the initial

phase. It is also used by the AP Module to notify Interfaces when connections are available for them to use.

25

The Cport that uses the Control Protocol must have an id of ’0’. Cport ID ’0’ is a reserved CPort address

for the Control Protocol. Since, the Cport is reserved when parsing the manifest, this Cport is automatically

allocated to the Control Protocol thus, is not necessary to be mentioned in the Manifest. If Cport 0 is used for

any other protocol, it renders an error. The table refers to the function this handler performs.Table IV.4

Table IV.4: Control Protocol Operations [13]

Control Operation Type Request Value Decription

Invalid 0x00 Invalid, not used

Protocol Version 0x01 Allows both ends of a connection to

negotiate the version of the Control Protocol to use

Probe AP 0x02 Sent by the SVC to all Interfaces

at power-on to determine which Module contains the AP

Get Manifest Size 0x03 Used by the AP, on hotplug event, to determine the size of the manifest.

Get Manifest 0x04 Used by the AP, on hotplug event, to determine

the functionality provided by the module via that interface.

Connected 0x05 Sent to notify an Interface that one of

its CPorts now has a connection established

Disconnected 0x06 sent to notify an Interface that a CPort shall no longer be used

IV.4.5 I2C handler

In this design approach, the handlers for various protocols can be added as required. However, for the sake

of an example, we model the I2C protocol and its handler. This section not only discusses the I2C protocol

but also explains the transition from high-level TLM packets to low-level RTL modeling. Before dwelling

deep, it is necessary to understand how Greybus handles I2C Protocol. The operation supported by the I2C

protocol are summarized in Table IV.5.

Initial handshake operation when a module with I2C protocol is inserted includes, confirming the protocol

version with “Protocol Version Request” and the Functions that I2C supports with “Functionality Request”

operation type. Functionality Request supplies a bit mask with values taken directly from the <linux/ i2c.h>

header file2. The actual transfer of I2C data transfer is requested by “Transfer” operation by the Greybus are

detailed in Table IV.6.
2http://lxr.free-electrons.com/source/include/linux/i2c.h

26

http://lxr.free-electrons.com/source/include/linux/i2c.h

Table IV.6: I2C OP [13]

Field Size Description
Address 2 Slave Address
Flags 2 I2c Operation flag bit mask taken directly from linux/i2c.h
Size 2 Size of the data transfer

Table IV.5: I2C protocol Operation Types [13]

I2C Operation Type Value Description

Invalid 0x00 Invalid, not Used

Protocol Version 0x01 Allows both ends of a connection to

negotiate the version of the Control Protocol to use

Functionality 0x02 Allows the requestor to determine the details of the functionality provided

by the I2C controller. Derived from linux/i2c.h header file.

TimeOut 0x03 Allows the requestor to set the timeout value to

be used by the I2C adapter for non-responsive slave devices.

Retries 0x04 allows the requestor to set the number of

times the I2C adapter retries I2C messages.

Transfer 0x05 I2C transfer operation requests that the I2C adapter perform

an I2C transaction. The operation consists of a set of one or more “I2C ops”

to be performed by the I2C adapter

IV.4.5.1 I2C Transfer Operation

The transfer operation requires a number of steps to be processed so that it can be used by a generic I2C

controller. The operation consists of a set of one or more“I2C ops” to be performed by the I2C adapter. The

transfer operation request includes data for each I2C op involving a write operation. The data is concatenated

(without padding) and is sent immediately following the set of I2C op descriptors. The transfer operation

response includes data for each I2C op involving a read operation, with all read data transferred contiguously.

Table IV.6 and Table IV.7 provide a concrete structure to the transfer request.

1. The transfer request supplies an operation-count that is the number of operation to be taken place in this

particular operation. The operation-count is the number of times these steps have to be run to complete

a single Greybus transaction.

2. Next, the flags are read to determine if the particular operation is read or write an operation.

27

Table IV.7: I2C Protocol Transfer Request [13]

Offset Field Size Value Description
0 op count 2 Number Number of I2C ops in transfer
2 op[1] 6 i2c op Descriptor for first I2C op in the transfer
... ... 6 i2c op ...
2+6*(N-1) op[N] 6 i2c op Descriptor for last I2C op
2+6*(N) data 6 Data Data for first write op in the transfer

... ... Data Data for last write op on the transfer

• In case of a read, the last bit of the address byte has to bet set.

• In case of a write, reset the last bit of the address

3. The controller writes the address of the device it wants to communicate with, on the I2C bus, where

the address is the modified address with the last bit set (or reset) as previously mentioned

4. The next step involves reading or writing from the bus. Since, this step has to be done at RTL level it

needs synchronized clocks that fire specific functions every clock cycle for the correct port to be set or

reset. This approach, however, will make the system very slow, hence losing all the speed gained by

using the abstracted TLM model. However, by using the fact that I2C communications have a fixed

frequency, the speed of data transfer can be precisely determined for a particular frequency. The I2C

handler uses this fact and after sending a TLM message to the I2C controller the system calls wait() for

200 us. This value is an approximate high limit that 1 byte of data will take to be transferred to the I2C

bus and receive acknowledgement. The controller can run for only 200 us, and has to return the control

back to the handler after this time. If the data is not transmitted in this time, it is lost and cannot be

received. This approach allows us to have a strict cap on the time spent on the RTL simulation which

is the most time consuming.

Any other handler designed should have a mechanism for capping the maximum time the application

spends in the refined stage. Failing to do so might lead to huge delays and the system will lose the real

time capability.

IV.4.6 I2C Controller

This controller is designed as a generic controller that can spew out I2C data on the ports. It contains the

following SystemC constructs inside it. The threads and methods are only used for functions that actively

modify a port. The rest of the system is modeled as C++ functions to avoid the overhead of the SystemC

kernel3.
3Here we assume knowledge of basic I2C constructs and its data lines

28

• Ports

– SDA IN: In port for receiving SDA data.

– SDA OUT: Out port for sending SDA data.

– SCL: Out ports which sends out the SCL clock.

– clock: IN port that received the SystemC clock.

• SC METHOD

– toggleSCL: A method that toggle the SCL as required.

– write a bit: A method that writes a bit on the SDA line.

• SC THREAD, a single Send data, this send any data presented to it. Thus, it is also responsible for

sending out the address of the device as well the register addresses.

• Helper functions

– Read data, called when we need to read data from the SDA IN line

– read a bit, helper function for read data similar to write a bit, the difference being this read a

single bit at a time

We have used two ports for SDA one for out and in because SystemC does not allow the control of a single

port by multiple processes. This is just simplification and can be removed by adding another process which

ANDs both the signals

As the controller receives an instruction to send out the address of the slave, it also prepends a start bit to it

and sets a flag. Now as it sends data it also waits for 5 clock cycles for the acknowledgement and reports back

the status as “FAILED”, if an acknowledgement is not received. Finally, the I2C handler sends a special byte

when it wants to send a stop bit. The controller recognizes this and sends the stop bit. This step is repeated

for every transfer operation by the AP module [16].

29

CHAPTER V

Experiment and Results

The implementation of this framework allows us the practical evaluation of our approach. The most important

aspect for the practical applicability is that the system should run in real time and allow it to connect to generic

modules with no knowledge of the underlying Greybus system. In the following sections we first briefly

describe the implementation of our design. Then we present the module we used for our experimentation

namely, the HMC5843 Compass. Finally, we present the result from the communication traces between this

test module and our framework.

V.1 Implementation Details

The design discussed in about three major blocks. These blocks exist on three different physical devices.

• For the development kit, we used the Jetson Development Kit. It has Tegra K1 SOC with 16GB of

memory. It innately supports the Android stack. For information about the setup, please refer to [11].

For our purpose, we used this device to run Android and provides USB host capability. It also has the

Greybus kernel modules loaded. These modules are available at [6].

• The USB-Bridge runs on a Beagle-Bone Black since it has the capability to act as USB slave. The USB

Bridge is derived from the gbsim 1 provided by the ARA team. It has basic constructs for receiving the

Greybus messages via a USB link. It uses the USB Gadget-Configfs Library called Libusbg2. Libusbg

is a C library encapsulating the USB gadget-configfs API functionality. We add the TCP link and the

further channeling for the SystemC application.

This Bridge was intended to be a part of the Android Board. The Linux kernel version > 3.8 provides

a kernel module called DUMMY HCD3 which allows loop back of the USB connection. However,

Android is still based on kernel < 3.14. In the future however it possible to port it to the new kernel

eliminating the use of a new device.

• The SystemC application can be run on any computer with a network device since it connects via a TCP

link. Thus, in theory, it is possible to have the machine in any corner of the world with a connection to

the Internet. However, in our system we have strict timing constraints with a quantum of 2 ms. Thus,

a direct wired connection is preferable.

1https://github.com/projectara/gbsim
2https://github.com/libusbg/libusbg
3http://lxr.free-electrons.com/source/drivers/usb/gadget/dummy hcd.c?v=3.14

30

https://github.com/projectara/gbsim
https://github.com/libusbg/libusbg
http://lxr.free-electrons.com/source/drivers/usb/gadget/dummy_hcd.c?v=3.14

• The User-Module needs to be attached and compiled together with the SystemC application. In the

main file, proper bindings for the signals should be made. When the SystemC application runs it asks

for the Manifest file of the module being tested and the IP-address of the USB-Bridge. It connects to

the USB-Bridge and sends the Manifest file-name to indicate insertion of a module.

V.2 The Compass Module

This example module had a compass module based on HMC5843 4. Since, HMC5843 interfaces using an

I2C, it serves as a good example to demonstrate the utility of the such a system. It has three in-ports for

SDA IN, clock and SCL, and one out-port for SDA OUT.

Our model of the compass module does not produce any credible data, but each time it is queried it

increases its reading by one. It also supports multiple modes, as supported by the actual data sheet. The

actual functioning of this module is straight forward. It waits in a loop reading its SDA IN line for a start bit.

As soon as it receives it gets ready for receiving an address. On receiving 8 bits, it compares its address with

the seven most significant bits of the address received. If they match, it again waits for the next 8 bits which

specify the register address in its memory. After receiving this, it read or write value from or to the register as

specified in the slave address bit, and keeps on repeating its process. When it receives the data, and it changes

any command register it makes changes to it and continues. The flowchart in FigureV.1 neatly represents the

execution.

Figure V.1: Compass Module Flow Chart

In the main file for the application, a clock is provided to the compass and it ports are attached to the ports

provided by the SystemC application, for example, SDA OUT from SystemC is connected to SDA IN from

4https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf

31

https://www.sparkfun.com/datasheets/Sensors/Magneto/HMC5843.pdf

the compass module. Now the whole system can be executed as a single executable. If we insert a Manifest,

which supports I2C protocol, we can see a device appear in the Linux devices pretending to be an I2C device.

Querying data from it would produce the compass’s ever increasing data.

V.3 Communication Traces

Th Figure V.2 shows the run of the system over a period of 20 ms. We can see the SDA lines (separated as

SDA OUT and SDA IN) in sda to master and sda to slave respectively.We can also see the SCL line. Every

tick in the graph is instance of data being sent or received.

Figure V.2: I2C data transfer over a period of 20 ms

The Figure V.3 shows a zoomed version of a single I2C transaction with the address being sent and data

being received from the compass. The master sends a start-bit and follows the address (0x03), the slave

response with the requested data. This shows that how the whole application has transformed from a highly

abstract TLM model to a cycle accurate model.

Figure V.3: Zoomed wave form of a single I2C transaction

Finally, an Android application was attached to the whole system, where we queried the data and it

responded in real time. This is where this application can be used to model systems is early stages of de-

32

velopment and allow the user, not only to simulate the hardware simulation of the module (in our example a

compass), it also allows them to model software and hardware together where they are tightly coupled.

33

CHAPTER VI

Conclusion

In this thesis, OSCI SystemC Transaction-Level Model for Project Ara was presented. Project Ara uses

UniPro protocol for communication between the modules and Greybus protocol to give semantics to the

UniPro protocol. However, it also supports legacy protocol by connecting them via a bridge called GP-

Bridge. The framework in this thesis simulates the GPBridge and allows external user defined modules to be

connected to it. The thesis describes the flow of data packet from an Application Processor to the module

that supports a legacy protocol. In doing this is it also simulates the endoskeleton and the Supervisory Con-

troller(SVC) of the Greybus system. The messages travel from a processor running an Android stack via a

USB cable to the USB-Bridge, which models the SVC controller. They now go along a TCP link to SystemC

application where they are processed, and results are sent back.

The SystemC application is modeled as an abstraction of the GPBridge using TLM 2.0 and loosely timed

coding style. This provides speed of simulation while losing accuracy. However, the application switches

to a much more refined cycle accurate model while processing the data in the final stage. It also provides

SystemC ports for connecting a generic module to the application that supports a legacy protocol. In this

thesis, only the I2C protocol is shown as an example. The whole system runs in soft real time with a quantum

of 2 ms. Thus, messages arriving faster than 2 ms may be dropped.

Finally, as an example a model of a compass which supports a compass is designed and connected to

the SystemC Application. This module presents itself to the Greybus subsystem as an I2C device. Also,

an Android application which communicates with an I2C device is installed on the Android device. This

application communicates to the I2C device without any modifications and displays the compass readings.

VI.1 Future Work

• Greybus Subsystem supports a lot of legacy protocol such as UART, GPIO, USB, I2S. These protocols

can be supported by creating appropriate handlers in the application.

• To model the Greybus subsystem ultimately, we also need to model Class Protocol. These protocols are

special protocols designed for devices primarily found in a phone, for example, a vibrator and battery.

These can also be modeled and connected to the application.

• The USB-Bridge can be incorporated in the device running the Android stack via a loopback USB

called Dummy HCD. However, it is supported on kernel >3.8. Since Android runs on kernel version

34

< 3.14, either the Android can be ported to the new kernel or DUMMY HCD patch can be developed

for the kernel. This might remove having additional hardware device required for simulation of this

system.

35

BIBLIOGRAPHY

[1] Alliance, M. (2011). Mipi alliance launches new m-phy and unipro specifications for mobile device
applications. Jun, 10:1.

[2] ARA, P. (2015). Project ARA faqs. http://www.projectara.com/faq/. Accessed: 2015-10-15.

[3] Association, I. S. et al. (2010). IEEE Standard for SystemVerilog–unified Hardware Design, Specification,
and Verification Language. IEEE.

[4] Aynsley, J. (2009). Osci tlm-2.0 language reference manual. Open SystemC Initiative, 24.

[5] Bennett, J. (2008). Building a loosely timed soc model with osci tlm 2.0. A Case Study Using an Open
Source ISS and Linux, 2.

[6] Elder, A., O’Donoghue, B., and Porter, M. (2015). Greybus kernel modules.

[7] Gajski, D. D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. (2012). SPECC: Specification Language
and Methodology. Springer Science & Business Media.

[8] Ghenassia, F. et al. (2005). Transaction-level modeling with SystemC. Springer.

[9] Google (2015). Project ara module developers kit.

[10] Grötker, T., Liao, S., Martin, G., and Swan, S. (2002). System Design with SystemC. Springer Science
& Business Media.

[11] Inc., M. S. (2015). Tegra board setup information.

[12] Initiative, O. S. et al. (2006). Ieee standard systemc language reference manual. IEEE Computer Society.

[13] Kroah-Hartman, G., Bolivar, M., Elder, A., and Hovold, J. (2015). Greybus-specification.

[14] Logic, B. (2014). Usb in a nutshell.

[15] Neifert, B. (2012). Thoughts on systemc tlm-2.0 and accurate models. Accessed : 2015-10-19.

[16] Semiconductors, N. (2007). I2c-bus specification and user manual. Rev, 3:19.

36

http://www.projectara.com/faq/

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	I Introduction
	I.1 Google Ara
	I.2 Organization of Thesis

	II SystemC and TLM: An overview
	II.1 SystemC Basics
	II.2 TLM-2.0
	II.2.1 Coding Styles

	III Google Project ARA™ and Greybus
	III.1 Unipro
	III.2 Endoskeleton
	III.3 Greybus
	III.3.1 Greybus Operation and Setup
	III.3.2 Special Protocols
	III.3.3 Device Class and Bridged PHY Protocol

	III.4 Summary of the ARA System

	IV Our Approach
	IV.1 Challenges
	IV.2 System Model
	IV.2.1 Development Kit
	IV.2.2 USB-Bridge
	IV.2.3 SystemC Application
	IV.2.4 User Module

	IV.3 Tasks performed by USB-Bridge
	IV.3.1 Initial Setup
	IV.3.2 Insertion of Module
	IV.3.3 After the Insertion of Module

	IV.4 SystemC Application Design
	IV.4.1 Block Diagram
	IV.4.2 TCP-Bridge
	IV.4.3 Router
	IV.4.4 Control Handler
	IV.4.5 I2C handler
	IV.4.5.1 I2C Transfer Operation

	IV.4.6 I2C Controller

	V Experiment and Results
	V.1 Implementation Details
	V.2 The Compass Module
	V.3 Communication Traces

	VI Conclusion
	VI.1 Future Work

	 BIBLIOGRAPHY

