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 CHAPTER 1 

INTRODUCTION1 

 

The prevalence of blast injuries  

 Blast trauma has become increasingly commonplace over the past several 

decades. According to the RAND Database of Worldwide Terrorism Incidents 

(http://www.rand.org/nsrd/projects/terrorism-incidents.html), the number of terrorist 

bombings increased from 1,190 in the 1970’s to 15,239 in the 2000’s. Collectively, these 

explosive attacks injured 118,018 people and killed 36,518 people worldwide.  In the 

United States alone, 28,529 bombings injured 5,931 people and killed 699 people within 

a 20 year period (Kapur et al., 2005). 

 Blast trauma is also the hallmark injury of recent conflicts in Iraq and 

Afghanistan, accounting for 80% of all injuries reported to the Joint Theater Trauma 

Registry (Bass et al., 2012). Ocular blast injuries are common among blast-exposed 

veterans, with over 186,000 veterans diagnosed with ocular injuries over a ten year 

period (Hilber, 2011). Ocular blast injury is also a common comorbid condition with 

traumatic brain injury and was estimated to affect 66% of veterans with mild traumatic 

brain injury (Weichel et al., 2009). Ocular blast trauma encompasses a wide variety of 

clinical and pathological manifestations, which is likely due to the multiple injurious 

components of explosive devices (DePalma et al., 2005; Scott, 2011). 

 

 

                                            
1 Portions of this chapter were published as Bricker-Anthony, C (2014). Ocular blast 
trauma: models, mechanisms, and a potential therapeutic strategy. VRN 6. 

http://www.rand.org/nsrd/projects/terrorism-incidents.html
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Categorizing blast injuries 

 Blast injuries are split into four major categories: primary, secondary, tertiary and 

quaternary (Scott, 2011). Explosive devices emit a shockwave or overpressure airwave 

upon detonation that causes primary blast injuries. Computer modeling of primary 

ocular blast injuries predicts sharp increases in intraocular pressure, tissue strain and 

reflection and amplification of pressure waves within the orbit upon exposure to a blast 

wave (Rossi et al., 2012).  Clinically, primary ocular blast injuries are indistinguishable 

from those caused by blunt force trauma, as both injury mechanisms can cause 

cataracts, vitreous hemorrhage, retinal edema and traumatic optic neuropathy (Scott, 

2011).  

 Shrapnel and other flying debris from an explosion cause secondary ocular blast 

injuries (Scott, 2011). Secondary ocular blast injuries include perforations, contusions, 

lacerations and corneal or intraocular foreign bodies. Pathological features of secondary 

ocular blast injury include corneal abrasions, damage to structures of the anterior 

chamber (iris, ciliary body, trabecular meshwork, lens), hyphema, commotio retinae, 

globe rupture and traumatic optic neuropathy (Scott, 2011). 

 The remaining two categories of blast injury, tertiary and quaternary, are caused 

by being thrown against objects and chemical/thermal burns, respectively (Scott, 2011). 

Tertiary ocular blast trauma can manifest as Purtscher’s retinopathy, a condition 

characterized by vaso-occulsion and hemorrhages in the retinal vasculature (Scott, 

2011). Chemical and thermal burns typically damage the sclera, corneal epithelium and 

conjunctiva. 
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Categorizing ocular blast trauma 

Given the complex nature of explosions, it is no surprise that ocular blast injuries 

vary widely in severity and visual prognosis from one individual to the next (Erdurman et 

al., 2011; Phillips et al., 2013; Weichel et al., 2009). These diverse injuries are further 

classified as either closed globe injuries (contusions and lamellar lacerations) or open 

globe injuries (Scott, 2011). Both closed and open globe injuries negatively impact 

vision, but open globe injuries are typically associated with poorer visual outcomes 

(Erdurman et al., 2011). 

 Despite occupying different categories, closed and open globe injuries share 

much common pathology. Both can cause corneal abrasions, hyphema, cataracts, 

retinal detachment, optic neuropathy and retinal pigment epitheliopathy (Alam et al., 

2012; Cockerham et al., 2011; Erdurman et al., 2011; Phillips et al., 2013; Thach et al., 

2008). The main difference between the two injury types is the physical disruption of 

ocular immune privilege with open globe injuries.  

 The eye is a tightly regulated, immune privileged space that works in concert with 

the spleen to preserve the integrity of the visual axis (Streilein, 2003). Ocular immune 

privilege consists of both physical barriers and a complex signaling cascade known as 

anterior chamber-associated immune deviation (ACAID). Immune privilege within the 

eye exists to provide controlled responses to infection and injury, avoiding excessive 

production of inflammatory cytokines that can lead to corneal and lens opacification, as 

well as retinal edema (Streilein, 2003). Loss of immune privilege and the ensuing 

inflammation likely contributes to vision loss after blast-induced open globe injuries. 

 



 4 

Modeling ocular blast trauma: differences in murine and human ocular anatomy 

Every model of human injury or disease confronts several common limitations. 

Species differences are a substantial challenge for every researcher wishing to mimic 

any disease or injury in a controlled environment. As with most pre-clinical research, in 

vivo ocular blast injury models are currently limited to rodents (Hines-Beard et al., 2012; 

Mohan et al., 2013; Por et al., 2016; Wang et al., 2014; Zou et al., 2013). Numerous 

transgenic and knockout mice are commercially available to study human genetic 

diseases, which gives mice a slight advantage over rats. In terms of basic anatomy, the 

eyes of mice and rats are quite similar to human eyes, with some exceptions. Since 

mice are the most commonly used animals in ocular blast models, I will focus on this 

species. 

 Humans have a well-defined lamina cribrosa, a meshwork of elastin and collagen 

fibers through which the retinal ganglion cell axons converge and exit the eye 

(Hernandez, 1992). In contrast, mice lack an identifiable lamina cribrosa and instead 

have a glial lamina composed of astrocytes (Tansley, 1956). Pathological changes in 

the lamina cribrosa are associated with several forms of glaucoma, especially primary 

open-angle glaucoma (Hernandez, 1992). At the present time, it is not clear how much 

stress ocular blast trauma exerts upon the optic nerve head and lamina cribrosa in the 

patient population. Potentially, mechanical stress from blast exerted upon the human 

lamina cribrosa could cause the elastin and collagen fibers to physically impinge upon 

the retinal ganglion cell axons, causing direct injury. Injury to the human lamina cribrosa 

could also cause increased secretion of matrix metalloproteinases from reactive 

astrocytes over time, leading to damaging, long-term structural changes (Agapova et 
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al., 2001). In the mouse glial lamina, mechanical stress could lead to reactive gliosis of 

the astrocytes, ultimately also leading to pinching of the retinal ganglion cell axons. 

Blast could also stretch the axons and cause direct injury. 

 Another key species difference between rodents and humans is the lens. The 

lens is a translucent structure in the anterior chamber of the eye, composed primarily of 

α-A and B crystallins (Bloemendal et al., 2004). The structure and conformation of the 

crystallins contributes to the refractive index of the eye (Bloemendal et al., 2004). While 

the proteins within the lens are largely the same between species, the shape and size of 

the lens vary, which results in differences in how light travels through the lens. Mouse 

and rat lenses are spherical in shape and take up a substantial amount of space within 

eye, when compared to the human lens (Lei and Yao, 2006). This difference in lens size 

between mice, rats and humans may pose an issue for models of ocular blast trauma. A 

larger lens may result in higher numbers of traumatic cataracts, which only occurred in 

6% of Veterans in a recent study (Cockerham et al., 2011). Using a porcine model 

instead of a rodent model may be better for lens research in ocular blast trauma, as the 

porcine lens is similar in shape and size to the human lens (Lei and Yao, 2006). 

 Additional differences include the structure and photoreceptor populations of the 

retina. The ratio of rods to cones varies between the human and mouse retina, with 

95% rods to 5% cones in the human retina (Curcio et al., 1990) and 97% rods and 3% 

cones in the mouse retina (Carter-Dawson and Lavail, 1979). Humans are also 

trichromats, with short, medium and long wavelength cones, while mice are dichromats 

and only have short and medium wavelength cones (Huberman and Niell, 2011). The 

human retina contains a foveal pit densely and exclusively packed with cone 
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photoreceptors. The fovea is important for high acuity vision, which is created by low 

convergence of cones to retinal ganglion cells (1:1) and downstream magnification of 

the foveal representation within the visual cortex (Curcio and Allen, 1990). In contrast, 

there is no analogous structure to the fovea in the mouse retina. Instead, cones in the 

mouse retina are segregated by wavelength in the dorsal and ventral retina (Szel et al., 

1993). Cockerham and colleagues reported macular damage in 15% of veterans with 

ocular blast trauma (Cockerham et al., 2011). A recent finite element model of human 

ocular blast trauma also predicted significant strain on the macula (Rossi et al., 2012). In 

order to appropriately model visual deficits created by damage to the macula, an 

alternative to the mouse is required. One of the few other species with a macula and 

fovea is the non-human primate. Other smaller mammalian alternatives include the cat 

and the ferret, which lack a fovea and macula but have an area centralis, a region in the 

central retina specialized for high acuity vision (Rapaport and Stone, 1984). 

 Even though mice lack some important ocular anatomical structures seen in 

humans, the structure and function of the anterior chamber of the eye (cornea, iris, 

aqueous humor, angle, ciliary body) are largely the same in both species. Furthermore, 

the cell biology of the retina is highly conserved between the two species. Much of our 

understanding of phototransduction comes from studies conducted in mouse models 

(Calvert et al., 2000; Humphries et al., 1997). While mice rely heavily upon olfaction to 

learn about their environment, they also have well-characterized responses to tests of 

visual function, including visual acuity, contrast sensitivity and evoked potentials 

(Douglas et al., 2005; Hetling and Pepperberg, 1999). Thus, despite some limitations, a 
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mouse model is appropriate for studying basic biological responses and changes in 

retinal cell physiology following ocular blast trauma. 

 

Current models of ocular blast trauma 

 To date, most ocular blast trauma models only manage to reproduce certain 

aspects of the plethora of possible pathologies. Additionally, there are no models of 

open globe blast injury. Current models of ocular blast injury include the shock tube 

(Mohan et al., 2013; Por et al., 2016; Wang et al., 2014), trinitrotoluene (Zou et al., 

2013) and modified paintball marker (Hines-Beard et al., 2012).   

 

Shock tube model 

The shock tube model is a two-chambered apparatus divided by a mylar 

membrane. Compressed air is pumped into one chamber until the mylar membrane 

ruptures and releases an overpressure airwave into the neighboring chamber, which 

contains a rat or mouse. Animal placement and restraints vary among researchers and 

range from full head exposure with body shielding to full body exposure. The shock tube 

produces low-level overpressure waves ranging from 9.9-20 psi; 20psi is the minimum 

pressure level for damaging air-filled organs such as the ears and lungs in humans 

(DePalma et al., 2005). However, repeated exposure to blast pressures as low as 6psi 

is associated with abnormal changes in visual field and cell loss within the cornea in 

soldiers during breacher training (Capó-Aponte et al., 2015), so the eye is potentially 

more vulnerable to low-level blasts. These low-level blasts produce a mild injury 

phenotype with corneal inflammation and neutrophil infiltration (Por et al., 2016), cell 



 8 

death within the inner retina and optic nerve pathology (Mohan et al., 2013; Wang et al., 

2014), reduced nerve fiber layer thickness (Mohan et al., 2013), acute increases in 

oxidative stress and degenerative markers and a reduction in pattern electroretinogram 

(pERG) amplitude (Mohan et al., 2013).  

Corneal damage (Por et al., 2016) is consistent with previous findings in blast-

exposed individuals (Capó-Aponte et al., 2015; Cockerham et al., 2013; Yonekawa et 

al., 2014). Transient potential vanilloid 1 channel, endothelin 1, calcitonin gene-related 

peptide and substance P increases in the cornea (Por et al., 2016) are unsurprising, 

given the well-established roles of these proteins in nociception (Julius and Basbaum, 

2001; Plant et al., 2007). Ocular discomfort is common complaint in blast-exposed 

patients (Cockerham et al., 2013), so targeted antagonists for nociceptors in the cornea 

may prove effective at reducing ocular surface pain. 

Neutrophil infiltration in the cornea in Por and colleagues’ model is important as 

peripheral immune cell infiltration indicates loss of ACAID in the absence of an open 

wound. While neutrophils are effective at combating bacterial infections and 

phagocytosing debris in peripheral sites, they pose a significant threat to the cornea and 

the rest of the anterior chamber due to their excretion of reactive oxygen species, 

reactive nitrogen species and inflammatory cytokines (Smith, 1994). Neutrophil-

mediated inflammation in the cornea can eventually lead to corneal opacities and 

blindness (Hall et al., 2001).  

Retinal ganglion cell death (Wang et al., 2014), retinal nerve fiber layer thinning 

(Mohan et al., 2013) and optic nerve degeneration (Mohan et al., 2013; Wang et al., 

2014) also align with previously identified pathology in blast-exposed veterans 
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(Cockerham et al., 2009, 2011; Weichel et al., 2008). The decreased pERG amplitudes 

and lack of full-field ERG deficits in this model represent the functional outcomes of 

retinal ganglion cell dysfunction and loss, as the pERG response is specific to retinal 

ganglion cells (Maffei et al., 1985).  Blast-induced optic nerve injury is also associated 

with poor visual outcomes (Cockerham et al., 2009; Weichel et al., 2008) and is thought 

to progress in stages (Samardzic et al., 2012).   

It is currently postulated that the first stage of traumatic optic neuropathy is 

mechanical insult to the nerve, such as axonal shearing from globe rotation or a 

penetrating injury, while the second stage is ischemia in the supporting vasculature 

(Steinsapir and Goldberg, 1994). These injury phases cause retinal ganglion cell death, 

inflammation and permanent vision loss in roughly half of patients (Steinsapir and 

Goldberg, 1994). Unfortunately, the only available treatments are large doses of 

corticosteroids and decompression surgery (Samardzic et al., 2012; Steinsapir and 

Goldberg, 1994). These treatment measures are less effective than observation alone 

(Levin et al., 1999), which suggests that the true molecular mechanisms of traumatic 

optic neuropathy are still unknown. 

Both oxidative stress and beta amyloid are known participants in 

neurodegenerative changes in several brain and eye diseases and trauma (Dentchev et 

al., 2003; Ethen et al., 2007; Hardy and Selkoe, 2002; Petersen and Doorn, 2004; 

Readnower et al., 2010). The presence of 4-hydroxynonenal (4-HNE) in the retina is 

particularly troubling due to its known cytotoxic effects (Niki et al., 2005). Beta amyloid 

is also highly toxic to retinal neurons (Jen et al., 1998) and works synergistically with 4-

HNE to disrupt cell membrane integrity and neuronal ion homeostasis (Mark et al., 
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1997). 4-HNE and beta amyloid were only observed acutely in the shock tube model 

and likely represent the first phases of blast-induced neurodegeneration (Mohan et al., 

2013).  

However, the shock tube model does not appear to damage other anterior 

structures such as the lens, iris and pupil (Mohan et al., 2013; Wang et al., 2014). There 

are also no reports of gross pathology (edema, hyphema or neovascularization), outer 

retinal damage (retinal detachments or outer nuclear layer thinning) or pathological 

changes in the RPE (retinal pigment epitheliopathy or vacuoles). Another potential issue 

with this model is that the blast is head-directed and not eye-directed. While it may be 

more valid to opt for full head exposure, it becomes difficult to determine whether the 

changes in the inner retina and optic nerve are due to ocular injury or brain injury from 

blast. 

A previous study identified axon degeneration in primary visual pathway and 

inner retinal cell death after a head-directed blast (Koliatsos et al., 2011). Axonal 

shearing in the optic nerve during blast exposure could initiate Wallerian degeneration 

of the retinal ganglion cells in the inner retina (Strich, 1961). Currently, the shock tube 

model is an ideal platform for further characterization of visual deficits in mild traumatic 

brain injury, but is unlikely to provide specific information about the pathogenesis of 

ocular blast trauma. 

 

TNT model 

While the TNT model of ocular blast trauma also utilizes a whole head exposure 

approach, it succeeds in inducing some pathology absent in the shock tube model and 



 11 

accurately recapitulates both primary (overpressure wave) and quaternary (thermal 

exposure) aspects of blast injury (Zou et al., 2013). This model also incorporates two 

blast pressures into a single study, including both 70psi and 26psi blasts, which are 

much higher than the pressures in the shock tube model. A 26psi blast is sufficient to 

injure the ears, lungs and eyes and possibly the brain and spinal cord, while a 70psi 

blast can injure nearly every organ in the human body (DePalma et al., 2005). The body 

is shielded and restrained in this model, which prevents secondary and tertiary injuries, 

as well as internal organ damage. Unfortunately, the authors did not provide any 

information regarding the anterior chamber or assess visual function after blast.  

In contrast with the shock tube model, the TNT model mainly elicits cell death in 

the outer retina, as well as increased retinal thickness. The authors also show that 

increased inducible nitric oxide, aquaporin-4 and vascular endothelial growth factor 

immunostaining mostly occur within the inner retina, which suggests a significant 

inflammatory immune response and the potential for future cell death within the inner 

retina. Additionally, the increased retinal thickness and aquaporin-4 expression imply 

retinal edema, which is one of the clinical manifestations of ocular blast injury (Abbotts 

et al., 2007). Surprisingly, the 26psi and 70psi blasts induce similar retinal pathology; 

this finding suggests that both moderate and high-pressure level blasts are equally 

damaging when the body is shielded. Overall, the TNT model successfully recapitulates 

some features of ocular blast injury, but needs further characterization with gross 

pathology and visual function assessments to determine whether it truly reproduces the 

injuries observed in clinical settings. 
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Modified paintball marker 

Our laboratory utilizes the modified paintball marker model (Hines-Beard et al., 

2012). This model system consists of a paintball marker with a machined barrel that 

produces overpressure airwaves. C57Bl/6J (Bl/6) mice are secured and completely 

shielded from the overpressure wave, with the exception of the exposed left eye. This 

model system is unique because it isolates primary blast trauma to eye alone; this 

allows us to study the effects of blast exposure on the neural retina and optic nerve 

without contributions from traumatic brain injury.  

Unlike the shock tube model, the modified paintball marker damages multiple 

anterior structures, including the cornea, lens and extraocular muscles. Intraocular 

pressure (IOP) decreases significantly over time after blast exposure, which is indicative 

anterior chamber inflammation and/or injury to the iris or ciliary body (Sanders, SP, 

2016). Damage to the anterior chamber is also a significant risk factor for the 

development of post-traumatic glaucoma (Ozer et al., 2007). 

The modified paintball marker also injures the retina. Outer retinal thinning 

occurs in a small area in the mid-peripheral after injury. Discrete areas of outer retinal 

thinning (due photoreceptor loss) are commonly observed in commotio retinae and 

ballistic trauma (Blanch et al., 2012; Blight and Hart, 1977; Sipperley et al., 1978), which 

suggests the model has a blunt injury component. Blast-exposed individuals also 

experience retinal thinning in the macula, an area highly enriched with photoreceptors 

(Phillips et al., 2013).  

Additionally, the model induces decreased visual acuity, as measured by 

optokinectic nystagmus (OKN), in a subset of animals.  In a previous study, over 30% of 
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blast-exposed veterans with ocular injuries had no light perception, while 75% of the 

veterans with open globe injuries had a final best-corrected visual acuity of 20/200 or 

less (Weichel and Colyer, 2008). Since we only measured visual acuity in mice without 

corneal or lens opacities, the changes were likely due to retinal injury. In the mouse, 

functional directional-selective retinal ganglion cells and starburst amacrine cells are 

necessary for the OKN response (Yoshida et al., 2001). Therefore, our model system 

potentially induces both inner and outer retinal injuries. 

Given the ability of our model system to recapitulate multiple features of ocular 

blast injury, we decided to continue characterizing any cellular and molecular changes 

that occurred after injury. Since ocular blast injuries vary widely in affected individuals, 

we characterized the injury response in two additional inbred strains of mice, the 

DBA/2J (D2) and Balb/cJ strains, to determine if different genetic backgrounds would 

respond uniformly to injury. Following our initial characterization of Bl/6 mice, we chose 

26psi as our pressure level of choice moving forward because it consistently induced 

ocular injuries with a fairly low mortality rate (Hines-Beard et al., 2012). 

 

Summary and specific aims of dissertation 

 Ocular blast trauma is a persistent threat to vision in both civilian and military 

populations. There are currently no treatments that can block degeneration of the retina 

or optic nerve following ocular blast injury. The specific molecular mechanisms 

underlying ocular blast trauma are also currently unknown. Given our laboratory’s ability 

to effectively recapitulate key features of ocular blast trauma in the mouse (Hines-Beard 

et al., 2012), we will further characterize the pathological effects of our model system on 
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the murine retina and optic nerve. Oxidative stress is a common marker of blast trauma, 

so we will assess the role of oxidative stress in the pathogenesis of ocular blast trauma. 

Since EPO has both neuroprotective and antioxidant properties, we will evaluate its 

efficacy for the treatment of ocular blast trauma. We hypothesize that ocular blast 

trauma causes both acute and long-term neurodegeneration and vision loss that can be 

blocked by decreasing oxidative stress after blast with EPO treatment. The specific 

goals of this study are to characterize the progression of neuronal degeneration, test the 

efficacy of EPO and EPO-R76E at reducing oxidative stress and preserving vision after 

blast and elucidate the role of oxidative stress.  

 

 Aim 1. Determine the progression of neuronal degeneration and vision loss after 

blast. We will test the hypothesis that ocular blast trauma induces both acute and long-

term neuronal injury and vision loss.  

We will expose adult Balb/cJ, C57Bl/6J and DBA2/J mice to an eye-directed 

blast. Assessments of visual function will include optokinetics (OKN) and 

electroretinogram (ERG). We will collect eyes at 3 days and 1 week (acute) or at 1 

month (long-term) post-injury to measure retinal structure. Markers of cell death, lipid 

peroxidation and nitrosylation will be examined using immunohistochemistry (IHC). Both 

ipsilateral and contralateral eyes will be examined. 

 

Aim 2. Test the efficacy of EPO-R76E as an antioxidant and neuroprotective agent 

for blast injury. We will test the hypothesis that acute treatment via EPO protein and 
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long-term treatment via gene therapy with rAAV2/8.Epo-R76E will protect the retina 

from blast injury by reducing oxidative stress. 

 Prior to blast, C57Bl/6J mice will receive an intramuscular injection of viral vector 

delivering Epo-R76E. Assessments of visual function will include OKN and ERG. We 

will collect eyes at 28 days and 3 months post-injury to measure retinal structure and 

cell death. We will perform: 1) in vivo imaging to quantify levels of hydrogen peroxide 

and superoxide, 2) an oxidative stress RT-PCR array, and 3) immunolabeling with 

markers of lipid peroxidation, nitrosylation, and cell death. Both ipsilateral and 

contralateral eyes will be examined. 

 

Specific Aim 3: Determine the role of oxidative stress in neuronal degeneration 

and vision loss after blast. We will test the hypothesis that vision loss after blast is 

mediated by oxidative-stress.  

Aim 3A: To test if decreased antioxidant load will exacerbate blast-induced injury, 

C57Bl/6J mice will be compared to low vitamin C Gulo-/- mice after an eye-directed 

blast. 

Aim 3B: To test if increased antioxidant load will protect the retina from blast injury by 

decreasing oxidative stress, C57Bl/6J mice will be maintained on a high antioxidant 

regimen, consisting of dietary supplementation of both vitamin C and E, prior to and 

following blast. 

 Assessments of visual function will include OKN and ERG. We will collect eyes 

at both acute (3 days and 1 week) and long-term (1 month) time points post-injury to 

measure retinal structure and cell death. We will perform: 1) in vivo imaging to quantify 
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levels of hydrogen peroxide and superoxide, 2) an oxidative stress RT-PCR array, and 

3) immunolabeling with markers of lipid peroxidation, nitrosylation, and cell death. Both 

ipsilateral and contralateral eyes will be examined. 
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CHAPTER 2 

 

OCULAR BLAST TRAUMA ELICITS RETINAL CELL DEATH, NITROSATIVE 

STRESS AND VISUAL DEFICITS IN THREE GENETICALLY DISTINCT INBRED 

MOUSE LINES2 

Introduction 

 Genetic susceptibility contributes the pathogenesis of multiple human diseases 

and injuries, including glaucoma (Libby et al., 2005), age-related macular degeneration 

(Abecasis et al., 2004), traumatic brain injury (Friedman et al., 1999) and sympathetic 

ophthalmia (Kilmartin et al., 2001). Several studies have also uncovered varying 

degrees of genetic susceptibility to ischemia/reperfusion injury (Burne et al., 2000), 

experimental autoimmune uveitis (Sun et al., 1997) and optic nerve crush (Li et al., 

2007) among different strains of inbred mice. Different alleles or even single nucleotide 

polymorphisms can dramatically alter biological responses to injury or disease. For 

example, in both Alzheimer’s disease and traumatic brain injury, the apolipoprotein E4 

allele of the APOE gene reduces amyloid-beta clearance and interferes with 

phospholipid metabolism, which results in the accumulation of toxic amyloid-beta 

                                            
2 Portions of this chapter were published as Bricker-Anthony C, Hines-Beard J and Rex 
T (2014) Molecular changes and vision loss in a mouse model of closed-globe blast 
trauma. IOVS 55:4853-4862; Bricker-Anthony C, Hines-Beard J, D’Surney L and Rex 
TS (2014) Exacerbation of blast-induced ocular trauma by an immune response. J 
Neuroinflammation 11: 192; Bricker-Anthony C and Rex TS (2015) Neurodegeneration 
and vision loss after mild blunt trauma in the C57Bl/6J and DBA/2J mouse. PLOS One 
10(7); Bricker-Anthony C, Hines-Beard J and Rex TS (2016) Eye-directed overpressure 
airwave-induced trauma causes lasting damage to the anterior and posterior globe: a 
model for testing cell-based therapies. J Ocul Pharmacol Ther Epub ahead of print. 
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plaques, impaired synaptic function and exacerbation of disease or injury (Zhu et al., 

2015). 

Currently, the role of genetic susceptibility in ocular blast injury is unknown. 

Responses to ocular blast injury in human patients vary widely in terms of pathological 

features and visual outcomes (Weichel et al., 2008; Erdurman et al., 2011), but this 

could due to differences in injury mechanism (e.g., primary vs. secondary blast injury) or 

severity (closed vs. open globe injury). However, genetic susceptibility should not be 

ruled out as a contributing factor to the pathogenesis of ocular blast injury, as a simple 

genetic variant could protect against injury or exacerbate it. Given the genetic 

heterogeneity of the human population, a single inbred mouse strain is unlikely to 

capture the full range of potential genetic susceptibility to ocular blast injury. Therefore, 

we decided to characterize our model of ocular blast injury in three inbred strains of 

mice commonly used in vision research, including C57Bl/6J (Bl/6) mice, Balb/cJ mice 

and DBA/2J (D2) mice, which are summarized below.  

The Bl/6 is one of the most widely used inbred mouse strains in laboratory 

research, often serves as the background strain for transgenic and knockout mice and 

is well-characterized on a wide variety of behavioral assessments (Crawley et al., 

1997). The Bl/6 strain is also one of the parental strains (the other parental strain is the 

D2, described below) for the BXD recombinant inbred mouse line, which is used to map 

complex genetic traits and explore gene function (Peirce et al., 2004). Among inbred 

mouse strains, Bl/6 mice are mildly susceptible to both optic nerve injury (Li et al., 2007) 

and experimental glaucoma (Cone et al., 2010) and are highly resistant to light-induced 

retinal degeneration (Wenzel et al., 2001). While the genes underlying the Bl/6 mouse’s 
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susceptibility to various ocular insults are still being actively pursued, there is some 

evidence suggesting that downregulation of crystallin gene expression after optic nerve 

injury may exacerbate axon loss in the Bl/6 mouse (Templeton et al., 2009). 

Additionally, a variation in the RPE65 gene in the Bl/6 mouse reduces recycling of 

rhodopsin in the RPE and reduces light-induced apoptosis of rod photoreceptors 

(Wenzel et al., 2001). Altogether, the Bl/6 mouse is ideal for characterization of ocular 

blast injury because it allows for comparison to other models of blast injury using Bl/6 

mice, is only mildly susceptible to ocular injury and could be used to explore potential 

genetic contributors to ocular blast injury. 

D2 mice are commonly used in vision research as an animal model of 

pigmentary dispersion glaucoma (Libby et al., 2005). Mutations in two genes that 

encode melanosomal proteins, GPNMP and TYRP1, cause leakage of toxic 

intermediates from melanin production in melanosomes, which leads to inflammation, 

pigment dispersion and IOP elevation in the D2 mouse (Anderson et al., 2002). The D2 

mouse develops glaucoma at approximately 6 months of age (John et al., 1998), but 

reactive microglia are present in the D2 retina at 3 months of age, indicating a 

heightened neuroinflammatory state prior to the onset of glaucoma (Bosco et al., 2011). 

In addition to the glaucoma-related mutations, there are also deletions in the C5 gene 

and CD94 gene that result in complement component 5 deficiency (Wetsel et al., 1990) 

and lack of cell surface expression of CD94 (Wilhelm et al., 2003), respectively. C5 is 

involved in all three complement cascades (classical, alternative and lectin pathways) 

and is critical for assembly of the membrane attack complex, which forms in the 

membrane of target cells and initiates lysis (Howell et al., 2013). C5 deficiency makes 
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the D2 mouse more vulnerable to infection; however, restoration of C5 expression in the 

D2 exacerbates glaucoma possibly through deposition of the membrane attack complex 

in diseased retinal ganglion cells (Howell et al., 2013). CD94 is important for induction of 

anterior chamber-associated immune deviation (ACAID), a molecular cascade that 

maintains ocular immune privilege in the anterior chamber after infection or injury (He et 

al., 2008). The lack of CD94 expression in the D2 mouse results in defective ACAID 

signaling, which allows peripheral immune infiltrate to enter the anterior chamber in 

response to infection or injury (Chattopadhyay et al., 2008). Surprisingly, despite their 

susceptibility to glaucoma, D2 mice are highly resistant to optic nerve injury (Li et al., 

2007; Templeton et al., 2009). After optic nerve injury, crystallin gene expression 

increases in the D2 and may exert a protective effect (Templeton et al., 2009). Overall, 

the D2 mouse is another good candidate for characterization of ocular blast injury 

because it allows for exploration of altered immune status in an injured state and, like 

the Bl/6, can also be used to research potential genetic contributors to ocular injury. 

Balb/cJ mice are another widely used inbred strain in laboratory research that 

have been historically used for antibody production and autoimmune research (Pal-

Ghosh et al., 2008). When compared to other inbred strains like the Bl/6 and D2, the 

Balb/cJ strain is highly susceptible to optic nerve injury (Li et al., 2007). The genetic 

differences underlying the Balb/cJ’s susceptibility to optic nerve injury are currently 

unknown, but several researchers have hypothesized that it is immune-mediated, as the 

Balb/cJ and Bl/6 vary in their immune responses to experimental autoimmune disease 

(Li et al., 2007; Kipnis et al., 2001). Other researchers have postulated that 

downregulation of genes involved in axonal regeneration and synaptic plasticity in the 
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Balb/cJ after optic nerve injury exacerbate axonal degeneration, but it is unclear if these 

changes are unique to the Balb/cJ strain (Sharma et al., 2014). The Balb/cJ is also 

highly susceptible to retinal degeneration induced by light exposure, which is due to 

genetic variability in the RPE65 gene (Wenzel et al., 2001). Unlike the Bl/6, the Balb/cJ 

lacks the RPE65 Leu450Met variant and efficiently recycles rhodopsin during light 

exposure, allowing rhodopsin-mediated apoptosis of photoreceptors to occur (Wenzel et 

al., 2001). In conclusion, the Balb/cJ mouse is another good candidate for 

characterizing ocular blast injury as its susceptibility to optic nerve damage may make it 

useful for studying traumatic neuropathy after blast exposure. 

 To characterize the progression of ocular blast injury in all three mouse strains, 

we chose both acute (3 and 7 days) and long-term (1-2 months) time points. At multiple 

time points, we assessed gross pathology, in vivo retinal structure (OCT), visual 

responses (i.e. optokinetics and electroretinogram), retinal and optic nerve histology, 

mRNA expression (rt-PCR) and immunohistochemistry to provide a complete 

characterization of ocular blast injury in each mouse strain.  
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Materials and Methods 

Animals 

Three strains of commercially available mice, Bl/6 (n=89), D2 (n=170) and 

Balb/cJ (n=160) (The Jackson Laboratory, Bar Harbor, ME), between 8-12 weeks of age 

were used for our characterization studies. All mice were maintained on a 12hr 

light/dark cycle and provided food and water ad libitum. All experimental procedures 

were approved by the Institutional Animal Care and Use Committee of Vanderbilt 

University and were in accordance with the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Vision and Ophthalmic research. 

 

Ocular blast injury 

 For our initial experiments, mice were anesthetized with an intraperitoneal 

injection of ketamine/xylazine (105/8 mg/kg). Due to rising mouse mortality rates (22% 

and higher (Hines-Beard et al., 2012)), we switched to inhalable isofluorane (4%, Vet 

Equip, Pleasanton, CA), which caused a decline in the mortality rate. The mice were 

secured and padded within a housing chamber. The housing chamber was placed 

inside of a pipe. The left eye of the mouse was positioned against the hole in the pipe, 

which was aligned with the barrel of a paintball marker. All experiments were performed 

at a blast pressure of 26psi. Sham mice were anesthetized and placed in the housing 

chamber within the pipe like the blast mice, but a shield was placed between the marker 

barrel and the eye hold to prevent blast exposure. Mice were provided gel recovery food 

(Clear H2O, Portland, ME) for the first 3 days post-injury. Following initial 

characterization of the blast injury, we applied lubricating, non-medicated eye drops 
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(Systane Ultra drops, Alcon, Fort Worth, TX) to the corneas of both eyes immediately 

post-injury to prevent anterior pathologies, which allowed us to conduct assessments of 

visual function. 

 

Gross pathology 

The eyes of awake mice were assessed prior to blast injury and at 0, 3, 7, 14, 28 

and 60 days post-injury using an SZX16 stereomicroscope (Olympus, Center Valley, 

PA). Representative images were taken using a DP71 camera (Olympus). Eyes were 

examined for the presence of corneal abrasions, corneal edema, hyphemas, cataracts 

and corneal neovascularization (CNV).  

 

Ultra high resolution optical coherence tomography  

Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine 

(25/10 mg/kg) or inhalable isofluorane (Vet Equip). A 1% tropicamide solution was used 

to dilate the eyes. Genteal lubricating eye gel (Alcon, Fort Worth, TX) was used to keep 

the eyes moist. The mice were wrapped in gauze, placed in a holding chamber and 

head position was stabilized with a bite bar. A Bioptigen ultra-high resolution spectral 

domain OCT system with a mouse retinal bore and cornea bore (Bioptigen LLC, 

Morrisville, NC) was used to image the retina and anterior chamber, respectively.  

 

Visual acuity  

Photopic spatial frequency thresholds (i.e. visual acuity) were assessed by 

optokinetic nystagmus (OKN) (OptoMotry, Canada) in awake mice at baseline and post-
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blast or sham. A step-wise, masked paradigm was used. Mice were acclimated to the 

testing chamber for 5 min prior to the initiation of each test. The speed of sinusoidal 

grating rotation and contrast were maintained at 0.042 c/d and 100%, respectively. 

 

Electroretinogram (ERG)  

Flash ERGs were performed at baseline and 28 days post-blast in mice dark-

adapted overnight, anesthetized with ketamine/xylazine, dilated with 1% tropicamide, 

and placed on a heated mouse platform within the Ganzfeld dome of a Diagnosys LLC 

Espion Electrophysiology system (Lowell, MA). Mice were exposed to flashes of light 

ranging from -2 to 2.88 log cd*s/m2 with a flash frequency of 2000Hz. For flashes below 

-1 log cd*s/m2, the inter sweep delay was 10 sec, for the -1 log cd*s/m2 flash it was 

15sec, and for all remaining flashes, the delay was 20 sec. Oscillatory potentials (OPs) 

were measured at 3 log cd*s/m2 sampled at 2000Hz with an inter sweep delay of 15sec. 

Amplitudes were measured from trough to peak. 

 

Tissue collection 

Mice were euthanized by an overdose of avertin delivered via intraperitoneal 

injection and transcardially perfused with 4% paraformaldehyde (PFA, Electron 

Microscopy Sciences, Hatfield, PA) and phosphate buffered saline (PBS). The tissues 

were collected and stored in either 4% PFA (for immunohistochemistry) or 4% PFA with 

0.5% glutaraldehyde (Electron Microscopy Sciences, for resin).  
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Retina histology 

For histological analysis, eyecups were bisected to allow infiltration of Spurr’s 

resin (Electron Microscopy Sciences), sectioned at 1 micron-thickness on a Reichardt-

Jung Ultracut E microtome (Leica Microsystems, Vienna, Austria) and stained with 

toluidine blue. Representative images were collected on an Olympus Provis AX70 with 

a 60x oil objective lens. To quantify RPE damage, a grading scale was developed to 

classify the vacuoles: 1 (normal, very infrequent and small); 2 (small and infrequent); 3 

(small and frequent); 4 (large and infrequent); and 5 (large and frequent). The number 

of pyknotic nuclei in the outer nuclear layer (ONL) or inner nuclear layer (INL) was 

quantified within a single section of retina through the middle of each eye. A masked 

experimenter performed the imaging. 

 

Optic nerve histology 

Optic nerves were placed in 1% osmium tetroxide in 0.1 M cacodylate buffer, 

dehydrated in a graded ethanol series and embedded in Spurr’s resin (Electron 

Microscopy Sciences). Starting from the proximal (near the eye) end of the optic nerve, 

1 μm-thick sections were collected from a Reichert-Jung Ultracute E microtome and 

stained with 1% p-phenylenediamine in 50% methanol (Sigma-Aldrich). Sections were 

imaged on an Olympus Provis AX70 microscope using a 100x oil immersion objective 

lens. Imaging was performed in a masked fashion. 
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Retina immunohistochemistry 

For immunohistochemistry, eyes were cryo-protected in 30% sucrose overnight 

at 4oC, embedded in Tissue Freezing Medium (Triangle Biomedical, Durham, NC) and 

then sectioned on a cryostat (Fisher, Pittsburgh, PA). Ten µm-thick sections were 

collected on 12 slides, with each slide containing representative sections from the entire 

eye. The sections were rinsed with PBS and incubated at room temperature in normal 

donkey serum at 1:20 in 0.1 M phosphate buffer with 0.5% bovine serum albumin and 

0.1% Triton X 100 (PBT) for 2 hours, followed by an overnight incubation at 4°C in a 

primary antibody in PBT. The sections were rinsed with PBS and incubated with a 

secondary antibody at a 1:200 dilution (Life Technologies, Grand Island, NY) for 2 hours 

at room temperature, rinsed with PBS and mounted in Vectashield Mounting medium 

with DAPI (Vector Laboratories, Burlingame, CA). Imaging was performed on a Nikon 

Eclipse epifluorescence microscope (Nikon, Melville, NY). The tissue was assessed in a 

masked fashion. 

 

TUNEL quantification 

Retina sections were labeled with the TUNEL Apoptosis Detection Kit adhering to 

the manufacturer’s protocol (Merck Millipore, Darmstadt, Germany) and mounted with 

Vectashield Mounting Medium with DAPI. TUNEL positive cells within the ONL, INL and 

GCL were counted and the lengths of the regions with TUNEL positive cells (affected 

regions) were measured using NIS Elements Advanced Research software (Nikon, 

Melville, NY). The total length of each retinal section with TUNEL positive cells (affected 

section) was also measured. In order to determine the percentage of the retina with cell 
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death, we measured and summed the lengths of all sections on the slide. Then, we 

divided the sum of affected region lengths by the total length of all sections and 

multiplied this value by 100, which yielded the percentage of retina with TUNEL positive 

cells. Quantification was performed in a masked fashion. 

 

Statistical analysis 

 The mean and standard error of the mean were calculated and presented for 

each data set. We performed both one-way and two-way ANOVAs with a Bonferroni’s 

post-hoc test on the visual acuity, ERG, and immunofluorescence quantification data 

using GraphPad Prism software (GraphPad, La Jolla, CA). We also used GraphPad 

Prism to calculate a student’s t-test to compare the means from the TUNEL and 

immunofluorescence quantification data. 
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Results  

Mild progressive trauma in the C57Bl/6J mouse 

Ocular blast trauma causes focal retinal detachments and outer segment 

disruption 

   

 After blast-exposure, the majority of the retina appeared normal (Figure 2.1A-B). 

However, we detected discrete areas of photoreceptor outer segment disruption (Figure 

2.1C-D) in 12% of eyes examined. Outer segment disruption occurred within the mid-

peripheral retina and mostly resolved by 1 month post-injury. We also detected retinal 

detachments (Figure 2.1E-F) in the mid-peripheral retina of 9% of eyes examined. The 

retinal detachments had a average height of 0.02 mm ± 0.03 and resolved by 1 month 

post-injury. 

Figure 2.1. Outer segment disruption and retinal detachments occur after blast 
exposure. B-scan images (A, C, E) show a normal retina (A), outer segment 
disruption post-blast (C, arrow) and a retinal detachment (E, arrow) post-blast. The 
green line on the fundus images (B, D, F) denote the location of the b-scan images 
and the red boxes denote the location of the pathology. 
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Ocular blast trauma damages the retina, RPE and optic nerve 

 

 Blast exposure induced focal damage in all eyes examined at 1 week and 1 

month post-blast. At 1 week post-injury (Figure 2.2C-D), the ONL contained an average 

of 2 ± 1 pyknotic nuclei and the INL contained an average of 2 ± 2. The number of 

pyknotic nuclei increased to 15 ± 12 in the ONL and 7 ± 4 in the INL at 1 month post-

injury (Figure 2.2E-F). In contrast, small RPE vacuoles occurred in all eyes examined at 

1 week post-injury (Figure 2.2C, insert), but rarely occurred at 1 month post-injury 

(Figure 2.2F, insert).    

 At 1 and 2 weeks post-injury, the optic nerves appeared similar to controls 

(Figure 2.3A). However, at 1 month post-injury (Figure 2.3, B, arrowheads), we detected 

a few degenerating axon profiles in 60% of nerves examined.  

 

  

Figure 2.2. Pyknotic nuclei and RPE vacuoles occur after blast exposure. 
Brightfield micrographs show a control (Ctrl) retina (A-B) and RPE (B, insert), RPE 
vacuoles at 1 week post-blast (D, arrowheads in insert) and pyknotic nuclei (E-F, 
arrows) at 1 month post-blast. GCL= ganglion cell layer, IPL= inner plexiform layer, 
INL= inner nuclear layer, OPL= outer plexiform layer, ONL= outer nuclear layer, IS= 
inner segments. 
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Ocular blast trauma elicits focal, delayed cell death in a subset of mice 

 All control, 3 day post-injury and 1-week post-injury retinal sections were TUNEL-

negative. At 1 month post-injury, we observed TUNEL-positive nuclei in 3 ± 2 % of the 

retina in 44% of eyes examined. Clusters of TUNEL-positive cells (defined as 5 or more 

TUNEL-positive nuclei in an 85 μm2 area) were primarily located in the mid-peripheral 

retina and occasionally in the central retina (Figure 2.4A-B,D). The clusters contained 

91 ± 49 TUNEL-positive cells, while the average number per mm total retina was 4 ± 3. 

The majority of TUNEL-positive nuclei were located in the ONL (92%), 8% were present 

in the INL and none were detected in the GCL. At 3 months post-injury, the percent 

retina containing TUNEL-positive cells increased to 10 ± 5 % in 83% of eyes examined. 

Similar to 1-month post-injury, clusters of TUNEL-positive nuclei were restricted to the 

mid-peripheral retina. The clusters contained 147 ± 38 TUNEL-positive cells, while the 

average per mm total retina was 53 ± 28. Unlike 1 month post-injury, TUNEL-positive 

Figure 2.3. Blast causes mild axonal degeneration. Brightfield 
micrographs show a healthy control optic nerve (A), a 1-month post-
injury optic nerve with degenerating axons (B, arrowheads) and a 3 
month optic nerve degenerating axons (C, arrowheads). 
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cells were present in all layers, with 77% in the ONL, 20% in the INL and 2% in the 

GCL. 

 

Blast induces nonapoptotic cell death 

At all time points post-blast, changes in RIP1 and RIP3 immunolabeling were 

restricted to 2-3 sections in the mid-peripheral and sometimes central retina, consistent 

with the localization and extent of TUNEL labeling. Antibody specificity was confirmed 

by immunolabeling of retinas from buffer or LPS-injected eyes (Figure 2.5B). At 3 days 

post-injury, there was a strong increase in RIP1 staining within the Müller glia and IPL 

Figure 2.4. Cell death post-blast is focal. Schematic of a flat-mounted retina, red 
bars indicate regions within retinal cross-sections that are TUNEL-positive (A). 
Epifluorescence micrograph of a TUNEL-positive mid-peripheral retinal cross-
section from a 1-month post-blast eye (B). The white box indicates a cluster of 
TUNEL-positive cells. Representative epifluoresence micrographs of retinas from 
control (C) or 1-month post-blast retinas labeled with TUNEL (red) and DAPI (blue). 
A cluster of TUNEL positive cells (D) and a TUNEL-negative area (E) from the 
same blast eye are shown. ON= optic nerve. 
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and a reduction in RIP3 labeling, as compared to controls (Figure 2.5A, C). At 1-month 

after blast, RIP1 labeling was slightly elevated while RIP3 labeling appeared to increase 

above control levels in the IPL and INL (Figure 2.5D). RIP3 labeling was also present in 

the ONL at 1 month post-blast (Figure 2.5D).  

No caspase-1 labeling was detected in control retinas (Figure 2.5E), but positive 

cells were detected in inner retinal neurons throughout the retinas of LPS-injected eyes 

(Figure 2.5F). A few caspase-1 labeled cells were present in the inner portion of the INL 

in 1 of 4 retinas at 3 days after blast. Positive cells were restricted to small regions, 

primarily in the mid-peripheral retina (Figure 2.5G). Caspase-1-positive cells were 

present throughout the ganglion cell layer (GCL) in 2 of 3 retinas at 1-week post-injury 

(Figure 2.5H). At 1-month post-injury, caspase-1-positive cells were present throughout 

the retina in the inner portion of the INL and occasionally in the GCL in 4 of 5 eyes 

(Figure 2.5I). The density of caspase-1-positive cells was much higher at 1 month than 

at 3 days or 1-week post-blast. However, at 3 months post-blast, caspase-1 positive 

cells were only occasionally observed in the GCL within the mid-peripheral retina. 

Double-labeling with choline acetyltransferase (ChAT) revealed colocalization in the 

majority of cells (Figure 2.5J). There was no colocalization of caspase-1 with tyrosine 

hydroxylase (TH), a marker of dopaminergic amacrine cells (Figure 2.5K).  
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Figure 2.5. Increased cell death pathway marker labeling after blast. Confocal 
micrographs of RIP1 (green) and RIP3 (red) immunolabeling in control (A), LPS-
injected (B) and affected areas (mid-periphery) of 3 day (C) and 1 week (D) post-blast 
retinas. Epifluorescence micrographs of caspase-1 immunolabeling (green) and DAPI 
(blue) in control (E), LPS-injected (F) and affected areas in 3 day (G) and 1 week (H) 
post-injury retinas. The entire retina was caspase-1 positive at 1 month post-blast (I). 
Epifluorescence micrographs of caspase-1 (green) and ChAT (red, J) or TH (red, K) 
double-labeling, arrows indicate caspase-1 positive nuclei. 
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Blast induces glial reactivity 

 

Glial fibrillary acidic protein (GFAP) labeling was similar to controls at all time 

points post-blast (Figure 2.6A-D). In the normal retina and in unaffected regions of the 

blast retinas, microglia had a typical ramified appearance and small cell body, and their 

localization was restricted to the inner retina (Figure 2.6E). Within small regions in the 

mid-peripheral and, occasionally, central retina of 3 day and 1 week post-blast retinas, 

the microglia exhibited shorter processes and larger cell bodies, indicative of a more 

reactive state (Figure 2.6F-G). At 1 month after blast, the microglia were amoeboid in 

appearance and were detected in the ONL (Figure 2.6H). 

Figure 2.6. Microglia, but not Müller glia, become reactive in response to blast in 
focal regions of the retina. Epifluorescence micrographs of GFAP immunolabeling 
(green) in control (A) and in 3 day (B), 1 week (C), and 1-month (D) post-blast 
retinas. Iba-1 immunolabeling (green) of microglia in control (E), 3 day (F), 1 week 
(G) and 1-month (H) post-blast retinas. Insets show higher magnification of 
representative microglia. DAPI labeled nuclei (blue). 
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Blast causes increased nitrotyrosine immunolabeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.7. Nitrotyrosine immunolabeling increases regionally after 
blast. Epifluorescence micrographs of control (A), LPS-injected (B) 
and mid-peripheral (C,E,G) and central (D,F,H) regions of 3 day 
(C,D), 1 week (E,F) and 1 month (G,H) post-blast retinas labeled 
with anti-nitrotyrosine (green) and DAPI (blue). 
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Light nitrotyrosine immunolabeling was present in the normal retina (Figure 2.7A) 

and labeling was brighter in retinas from LPS injected eyes, as expected (Figure 2.7B).  

At 3 days and 1 week post-injury, nitrotyrosine was elevated in the inner retina of the 

mid-peripheral (Figure 2.7C,E), but not central (Figure 2.7D,F), retina. The labeling 

appeared strongest in the inner portion of the INL (Figure 2.7E).  At 1 month post-blast, 

increased and diffuse immunolabeling was detected in the inner and outer retina and 

extended throughout the retina (Figure 2.7G-H).  

 

Ocular blast trauma induces transient visual deficits  

 

 

 

 

Within the first month post-injury, blast-exposed mice exhibited subtle, but 

statistically significant deficits in visual acuity when compared with sham mice (Figure 

2.8). Visual acuity in blast mice was significantly lower than sham mice at 1 week (0.33 

± 0.01 c/d vs. 0.40 ± 0.005 c/d), 2 weeks (0.36 ± 0.01 vs. 0.42 ± 0.01) and 3 weeks 

Figure 2.8. Blast induces visual acuity deficits. Visual acuity 
(mean ± SEM) was significantly reduced in blast-exposed mice 
at 1 week, 3 weeks and 1 month post-blast when compared to 
sham mice. *p<0.05 
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(0.31 ± 0.02 vs. 0.43 ± 0.01) post-blast. At 1 month post-injury, visual acuity improved in 

blast-exposed mice and was not significantly different from sham mice. In contrast, ERG 

a wave amplitudes (Figure 2.9A, C, E, G, I), b wave amplitudes (Figure 2.9B, D, F, H, J) 

and oscillatory potential amplitudes (Figure 2.10A-C) were not significantly different 

among blast and sham mice at any time point. 
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Figure 2.9. Ocular blast trauma does not affect ERG amplitudes. Both 
ERG amax values (A, C, E, G, I) and bmax values (B, D, F, H, J) were 
not significantly different between blast and sham animals. All values 
represent the mean ± SEM.  
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Figure 2.10. Blast exposure does not change oscillatory potential 
amplitudes. There were no differences between blast and sham mice in 
OP1 (A), OP2 (B) or OP3 (C). All values represent the mean ± SEM. 
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Severe trauma in the DBA/2J mouse 

Blast exposure damages the anterior pole 

 

Blast caused numerous anterior injuries that varied depending on time after blast 

(Table 1). Representative images of these pathologies after exposure to a 26psi blast 

are shown in Figure 1. The eyes appeared normal immediately after blast, but at 3 days 

(Figure 2.11B) significant pathologies were present including corneal edema (CE), 

hyphema, cataracts, and a few cases of corneal neovascularization (CNV). The 

incidence of CE after a 26psi blast remained high (86% of eye examined) out to 1 

month post-injury (Figure 2.11E). The incidence of hyphema peaked at 3 days after 

blast and was completely absent at 1 month post-blast. The incidence of hyphema at 3 

days after blast was 26%. In contrast, the number of eyes with CNV increased over time 

post-blast. At 3 days post-blast 17% of blast eyes exhibited signs of CNV. At 1 month, 

29% of blast eyes had CNV.  

 

 

Figure 2.11. Blast trauma injures the ocular surface. The majority of mice had 
calcium deposits in the cornea at baseline (A). Corneal edema and hyphema at 3 
days post-blast (B). Corneal edema and neovascularization at 1 week post-blast (C). 
A corneal growth with neovascularization and hyphema at 2 weeks post-blast (D). 
Corneal scarring and neovascularization at 1 month post-blast. Arrows indicate 
pathologies (E). 
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Table 1. DBA/2J gross pathology post-blast     

Type of Injury 

0 day 3 days 1 week 2 weeks 1 month 

(24)a 23 14 9 7 

Corneal abrasion 4 (17)b 1 (4) 0 0 0 

CE 0 16 (70) 5 (36) 5 (56) 6 (86) 

CNV 1 (4) 4 (17) 2 (14) 4 (44) 2 (29) 

Corneal scarring 0 2 (9) 1 (7) 4 (44) 5 (71) 

Hyphema 0 6 (26) 1 (7) 0 0 

Corneal growth 0 0 0 1 (11) 1 (14) 

Torn iris 0 0 0 1 (11) 2 (29) 

Traumatic cataract 0 8 (35) 1 (7) 1 (11) 1 (14) 
a Total number of eyes examined  
b Number of eyes with pathology (percentage) 

 

Ocular blast trauma causes retinal detachments 

  

 

 

 

 

 

Figure 2.12. Blast exposure damages the retina. At baseline, each layer of the 
retina appears normal in the b-scan image and the corresponding fundus image 
shows no signs of pathology (ONH: optic nerve head).  The green lines in the 
fundus images denote the location of the b-line scan images. An example of a 
retinal detachment after blast is shown. It appears as a dark area between the 
RPE and photoreceptors (arrow) and as a dark shadow in the mid-peripheral 
region of the retina fundus image (box). An example of retinal folds with 
corresponding retinal detachments (arrows; boxes) is shown. 
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The majority of post-blast retinas appeared normal at all time-points by OCT 

imaging, despite repositioning the eye multiple times during imaging to examine all 

retinal quadrants (Figure 2.12). When retinal detachments were detected they were 

primarily in the mid-peripheral retina and less frequently near the optic nerve head 

(ONH). At 3 days post-blast, 40% of eyes had a single retinal detachment that had an 

average height of 0.03mm ± 0.005 (Figure 2.12). At 1 week post-blast, only one eye had 

retinal detachments. The average height and number of the detachments at 1 week was 

0.05mm ± 0.03 and 6 per eye, respectively. One retina had a wavy appearance 

suggestive of epiretinal membranes and multiple retinal detachments (Figure 2.12). No 

detachments were observed at 2 weeks post-injury, but it is possible that detachments 

were missed during imaging. At 1 month, only the retina that appeared wavy at the 1 

week time point had retinal detachments, a total of 2, averaging 0.03mm ± 0.00 in 

height.  

 

Blast damages the retina, RPE and optic nerve 

In the normal RPE, there were no vacuoles or debris accumulation present 

(Figure 2.13A). In contrast, the RPE contained grade 5 vacuoles at 3 days post-blast in 

the majority of eyes (67%, Figure 2.13B). At 1 month after blast, the RPE vacuoles 

decreased in size to grade 2 (Figure 2.13C). At both time-points the RPE vacuoles were 

present throughout the retina. Subretinal debris, consisting of red blood cells and 

photoreceptor inner and outer segments, were detected in areas of retinal detachments 

at 3 days post-blast (Figure 2.13B), but appeared to resolve at 1 month post-blast 

(Figure 2.13C). 
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Figure 2.13. Neuronal death, RPE vacuoles and optic nerve degeneration occur after 
blast. Representative brightfield micrographs of the retina and RPE (A-C). 
Representative brightfield micrographs of the optic nerve (D-E). Control retina and RPE 
shows normal histology (A). A retinal detachment with subretinal debris is present in 
conjunction with pyknotic nuclei (arrows) in the ONL (B). The RPE contains grade 5 
vacuoles (arrowheads), and phagocytosed debris. There are fewer pyknotic nuclei 
(arrow) in the retina and the RPE vacuoles (arrowheads) are smaller in size at 1 month 
(1 mo) post-blast (C). The control optic nerve appears normal (D). At 1 month post-blast, 
the optic nerve contains degenerating axons with collapsed myelin (arrowheads) (E).  
The scale bars in the low and high magnification retina images are 50μm and the scale 
bar in the RPE images is 20μm. The scale bar for the optic nerve images is 5μm. 
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While much of the post-blast retina looked normal, clusters of pyknotic nuclei 

were observed at 3 days and 1 month (Figure 2.13B, C). The average number of 

pyknotic nuclei at 3 days post-blast was 14±10 in the ONL and 31±21 in the INL. At 1 

month post-blast, the average number of pyknotic nuclei decreased to 3±2 and 0±0 in 

the ONL and INL, respectively. Optic nerves from the first week post-injury (data not 

shown) looked the same as those from controls (Figure 2.13D). In contrast, 

degenerating axons with collapsed myelin were prevalent at 28 days post-injury (Figure 

2.13E). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. Immune infiltrate appear after blast exposure. Immune infiltrate is 
present in the anterior chamber, including the cornea (A) and the aqueous 
humor near the ciliary body (B) and the aqueous humor near the cornea (C). An 
epiretinal membrane after blast (D, arrows). The epiretinal membranes are 
positive for C3d indicating that they are immune-mediated (E). The scale bar in 
(A) is 50μm and also applies to (B) and (D); the scale bar in (C) is 5μm; the 
scale bar in (E) is 25μm.  
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Immune infiltrate was present in a subset of eyes (33%) at both 3 days and 1 

month post-blast. Infiltrate was detected in both the anterior and posterior portions of 

the eye, including the cornea, aqueous humor, vitreous humor and surface of the retina 

(Figure 2.14A-C). Immune-mediated (C3d-positive) epiretinal membranes were 

occasionally detected in areas of retinal detachment (Figure 2.14D-E). 

 

Regional cell death occurs at multiple time points post-blast 

After blast, all retinas had areas with TUNEL-positive cells (i.e. affected areas) at 

3 days and 1 week post-injury, while 82% of retinas were TUNEL-positive at 1 month 

post-injury. Cell death was typically present in patches and not evenly distributed across 

the retina (Figure 2.15). These affected areas were primarily in the mid-peripheral 

retina, but occasionally were also detected in central retina (Figure 2.15A).  

The percentage of total retina containing TUNEL-positive cells, density of 

TUNEL-positive cells and retinal layer affected were quantified (Figure 2.16A). The 

majority of TUNEL-positive nuclei, 82%, 70% and 83%, were located in the ONL at 3 

days, 1 week and 1 month after injury, respectively (Figure 2.16A). A smaller 

percentage of TUNEL-positive cells, 12%, 27% and 16% were detected in the INL at 3 

days, 1 week and 1 month post-blast, respectively. Finally, 6%, 3% and 1% of all 

TUNEL-positive cells were in the GCL at 3 days, 1 week and 1 month post-injury, 

respectively. TUNEL positive nuclei were present in 13±8% of the retina at 3 days post-

injury, 2±0.2% at 1 week post-blast, and 5±1% of the retina at 1 month post-injury 

(Figure 2.16B). When calculated in terms of total retina length, the density of TUNEL 

was very low, but retained the same trend of higher levels at 3 days as compared to 1 
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month. The number of TUNEL-positive nuclei per mm total retina was 15±9, 0.1±0.1, 

and 11±4 at 3 days, 1 week and 1 month post-blast (Figure 2.16C). Within the affected 

regions, the density of TUNEL-positive cells was 87±44, 10±3, and 215±57 nuclei per 

mm retina at 3 days, 1 week and 1 month after blast, respectively (Figure 2.16D). These 

results demonstrate that the area occupied by TUNEL-positive cells decreases over 

time, but the density of TUNEL-positive cells within affected areas increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Cell death occurs in small, focal areas after blast. A schematic 
representing an enface view of the retina showing the average number and 
distribution of affected (i.e. TUNEL positive) areas (red bars) detected in 
retinal cross-sections collected in serial through the 3 day post-blast eye (A). 
Montage of low magnification epifluorescence micrographs of a 3 day post-
blast retina (B). White boxes indicate affected areas (scale bar is 250μm). 
Higher magnification epifluorescence micrographs of TUNEL (red) and DAPI 
(blue) in a control retina (C), and affected (D) and unaffected (E) regions of the 
retina shown in (B). The scale bar in (C) represents 50μm and also applies to 
(D) and (E). 
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Figure 2.16. Cell death occurs in two waves after blast. Pie chart showing the 
distribution of TUNEL positive cells through the retinal layers after blast (A). The 
percentage of total retina containing TUNEL-positive cells at each time point (B). The 
average number of TUNEL positive cells per mm total retina after blast (C). The 
average number of TUNEL positive cells per mm within the affected areas after blast 
(D). Error bars represent SEM for each time point. 
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Blast induces changes in cell death pathway markers 

Labeling for markers for necroptosis (programmed necrosis; RIP1 and RIP3) was 

increased after blast. In the normal retina, RIP1 localized to the Müller glia, the IPL and 

the INL, with some light staining in the OPL (Figure 2.17A). Light RIP3 staining in the 

normal retina was restricted to the GCL, IPL and INL (Figure 2.17A). At 3 days post-

injury, RIP1 increased in the ONL, INL, and Müller glia, while RIP3 increased in the 

Figure 2.17. Changes in cell death markers after blast suggest a non-apoptotic 
mode of cell death. Confocal micrographs of retinas immunolabeled for RIP1 
(green) and RIP3 (red; scale bar in A-C is 30μm). Epifluorescence micrographs of 
Caspase-1 (green) immunolabeling and DAPI (blue; scale in D-F is bar is 25μm). 
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ONL, INL, IPL, and GCL (Figure 2.17B). As cell death progressed at 1 month post-blast, 

RIP1 remained elevated in the ONL and INL, while RIP3 remained elevated in the IPL 

and maintained some light labeling in the ONL (Figure 2.17C).  

Caspase-1 was present within the INL and GCL throughout the control retinas 

(Figure 2.17D).  At 3 days post-injury, only one third of retinas exhibited caspase-1 

positive cells in the INL and GCL (Figure 2.17E). At 1 month after blast, all retinas were 

caspase-1 negative (Figure 2.17F). Immunolabeling with anti-ChAT in the DBA/2J 

showed that starburst amacrine cells were still present at 1 month post-blast (data not 

shown). 

 

Protein nitration increases in the retina after blast  

 In the normal retina, nitrotyrosine immunolabeling was light and restricted to the 

inner retina (Figure 2.18A). Three days after blast, immunolabeling was greatly 

increased throughout both the inner and outer retina (Figure 2.18B). The 

immunolabeling seemed less increased, but still elevated in both the inner and outer 

retina at 1 month post-blast (Figure 2.18C). 

 

Glial reactivity increases in the retina after blast 

In the normal retina, GFAP immunolabeling was restricted to the Müller glia 

endfeet and astrocytes (Figure 2.19A). At both 3 days and 1 month post-injury, GFAP 

immunolabeling was increased in the Müller cell processes (Figure 2.19B-C). In age-

matched control retinas, IBA-1 immunolabeling showed that microglia were  
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Figure 2.18. Nitrotyrosine increases following blast. Representative 
epifluorescence micrographs of control (A), 3 days (B) and 1 month (C) 
post-blast retinas immunolabeled for nitrotyrosine (green) and labeled 
with DAPI (blue). Scale bar is 25μm and applies to all images. 
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restricted to the inner retina and were fairly low in density (Figure 2.19D). Microglia were 

more prevalent after blast when compared to controls beginning at 3 days and 1 month 

post-blast (Figure 2.19E-F). Reactive microglia, which are amoeboid in appearance, 

were detected (Figure 2.19E-F, inserts).  

 

 
 
Ocular blast trauma causes visual deficits  

 The ERG a wave amplitude was diminished to approximately 40% of baseline at 

1 week post-blast based on an average of the responses at each light intensity (Figure 

2.20A). At 2 weeks post-blast, a statistically significant decrease was still present, but 

the level of decrease was less substantial at an average of 55% of baseline. At 1 month 

Figure 2.19. Both Müller glia and microglia are reactive after injury. Representative 
epifluorescence micrographs of control (A), 3 days (B) and 1 month (C) post-blast 
retinas immunolabeled for GFAP (green). Representative epifluorescence 
micrographs of  control (D), 3 days (E) and 1 month (F) post-blast retinas 
immunolabeled for Iba1 (green). Higher magnification images of representative 
microglia are present in inserts. Scale bar is 25μm and applies to all images; DAPI is 
shown in blue. 
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post-blast, the a wave amplitude was similar to baseline at the brightest flash, but was 

still reduced at the other flash intensities (Figure 2.20A). The average deficit from 

baseline at the lower light intensities was 63% at 1 month post-blast.  

The ERG b wave amplitude was similar to baseline at the brightest light intensity 

at all time points post-blast (Figure 2.20B). However, at all other light intensities, there 

was a deficit averaging 52% below baseline at 1 week post-blast, 74% of baseline at 2 

weeks post-blast, and 48% of baseline at 1 month post-blast. The decrease in the b 

wave amplitude at 1 week post-blast seems to correspond to the decrease in the a 

wave amplitude at this time point (Figure 2.20B). In contrast, the decrease in the b wave 

amplitude, particularly at 0 and 1 log cd*s/m2 (p<0.01) at 1 month post-blast was greater 

than at earlier time-points despite a recovery of a wave.  

The OPs were also affected after blast (Figure 2.20C). OP1 was diminished at all 

time-points after blast (p<0.01). OP2 was significantly lower than baseline at both 1 

week and 1 month (p<0.01). OP3 appeared lower than baseline, but only reached 

statistical significance at 1 week post-blast (p<0.01). A significant decline in visual acuity 

was observed at 3 days (0.34 ± 0.07, p<0.05) and 1 month (0.09±0.02, p<0.01) post-

blast (Figure 2.20D).  
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Figure 2.20. Blast causes early and late visual deficits. Bar graph of the ERG 
amax over light intensity (A). Bar graph of ERG bmax over light intensity (B). Bar 
graph of the oscillatory potential (OP) peak amplitude at each time point (C). 
Photopic spatial threshold (i.e. visual acuity) is significantly decreased at 3 days 
and 1 month post-blast (D). *p<0.05. Error bars represent SEM for each graph. 



 54 

Moderate trauma in the Balb/cJ mouse 
 
Blast induces anterior pathologies 

 

  Immediately post-blast, we observed corneal edema, corneal neovascularization 

(CNV) and traumatic cataracts in 15% of the mice (Table 2, Figure 2.20 A-C). The 

incidence of pathology increased over time post-blast. At 1 month post-blast, the 

hyphemas and corneal abrasions resolved, but corneal edema, CNV, corneal scarring 

and traumatic cataract remained in 42%, 37%, 42% and 10% of eyes, respectively. At 2 

months post-blast, only corneal edema and CNV remained, which were present in 

100% and 60% of eyes, respectively. Due to the prevalence of anterior pathologies, we 

did not assess visual function. 

 

 

 

 

Figure 2.21. Blast causes anterior pathologies. Representative images of 
common pathologies detected after blast: corneal edema (A), cataract and 
corneal neovascularization (B), cataract, corneal edema, and hyphema (B). 
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Type of Injury 0d (72)a 3d (67) 
1 wk 
(46) 

2 wk 
(9) 

1 mo 
(19) 

2 mo 
(5) 

Corneal abrasions 0 6 (8) 2 (4) 5 (55) 0 0 

Corneal edema 9 (10)b 32 (42) 
36 

(78) 4 (44) 8 (42) 
5 

(100) 

CNV 2 (2) 11 (14) 
11 

(24) 5 (55) 7 (37) 
3 

(60) 

Hyphema 0 0 3 (6) 3 (33) 0 0 

Corneal scarring 0 0  5 (11) 0 8 (42) 0 

Traumatic Cataract 3 (3) 9 (12) 
10 

(22) 2 (22) 2 (10) 0 

aTotal number of eyes examined 
     bNumber of eyes with pathology (percentage); d=days, 

wk=week, mo=month 

     
 
Blast exposure causes retinal detachments 

 Most retinas appeared similar to non-blast controls (Figure 2.22A). Large retinal 

detachments were detected in 37% of blast-exposed eyes (Figure 2.22B-C). The 

appearance of the retinal detachments with high and low areas is suggestive of a fusion 

of many small retinal detachments (Figure 2.22B-C). The retinal detachments were 

present in the mid-peripheral retina, which appeared as mottled and/or darkened areas 

in the fundus images (Figure 2.22D-E, arrows).  

Figure 2.22. Blast induces large retinal detachments. OCT B-line scans of retinas 
from an uninjured eye (A) and a 3d post-blast eye (B). Three-dimensional 
reconstruction of a stack of OCT B-line scans from a post-blast eye showing multiple 
retinal detachments (C). En face OCT images of post-blast retinas showing the 
peripheral localization and grouping of the retinal detachments (D-E).  

Table 2. The incidence of gross pathology in the Balb/cJ 
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Ocular blast trauma damages the retina and RPE 

 

Naïve control eyes had healthy retinas and RPE (Figure 2.23A). At 1 week post-

blast, small, infrequent vacuoles (grade 2 ± 0.4) were present in the RPE and the retina 

contained an average of 11 ± 2 pyknotic nuclei in the ONL and 1±0.6 pyknotic nuclei in 

the INL (Figure 2.23B). At 1 month post-blast, the average grade for RPE vacuoles was 

3 ± 0.7, indicative of small, frequent vacuolization. The ONL and INL at this time-point 

contained 14 ± 9 and 14 ± 13 pyknotic nuclei, respectively. At 60 days post-blast, RPE 

vacuolization remained high (grade 3 ± 0.6; Figure 2.23C). Pyknotic nuclei were also 

still detected in the ONL (3 ± 0.4), and INL (2 ± 0.4) even at 60 days post-blast (Figure 

2.23D). 

 

 

 

Figure 2.23. Blast injures the retina and RPE. Representative brightfield micrographs 
of retina (A-B) and RPE (C-D) from uninjured (A), 1 week post-blast (B) and 2 months 
post-blast (C-D) mice. Arrows indicate pyknotic nuclei. Arrowheads in C indicate RPE 
vacuoles. Scale bar in A represents 25μm and applies to all images. 
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Optic nerve degeneration occurs after blast  

 

In the optic nerves from non-blast mice, the axons were tightly ensheathed by 

myelin and the axoplasm was clear (Figure 2.24A). In contrast at 1 week, 1 month and 2 

months post-blast, the optic nerves contained degenerating axon profiles, marked by 

collapsed and thickened myelin (Figure 2.24B-D, arrows). 

 

Figure 2.24. Blast trauma causes optic nerve degeneration. Representative 
brightfield micrographs of optic nerves from uninjured (A), 1 week post-blast (B), 1 
month post-blast (C) and 2 months post-blast (D) mice. Arrows indicate degenerating 

axons. Scale bar represents 50m and applies to all images. 
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Blast exposure causes retinal cell death 

  

All non-blast retinas were TUNEL-negative (Figure 2.25A). In contrast, at 3 days 

post-blast, 16 ± 4% of the retina was TUNEL-positive (data not shown). At 1week post-

blast, 51 ± 12% of the retina contained TUNEL-positive cells (Figure 2.25B), which was 

significantly higher than the amount of cell death observed at 3 days post-blast (Figure 

2.25D). Cell death persisted at 1 month post-blast, with 14 ± 4% of the retina containing 

Figure 2.25. Ocular blast trauma induces cell death in the retina. 
Representative fluorescence micrographs of TUNEL in retina (A-C) from 
uninjured (A), 1 week post-blast (B) and 1 month post-blast (C) mice. TUNEL 

(red), DAPI (blue). Scale bar represents 50m. Box and whisker plot of 
retinal TUNEL quantification at 3 days and 1 week post-blast, *p<0.05. 
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TUNEL-positive nuclei (Figure 2.25C). At all time points, the majority of the TUNEL-

positive nuclei were located in the ONL. 

 

Neuroinflammation occurs in first week post-trauma 

  

 

Figure 2.26. Blast induces mild neuroinflammation. Representative fluorescence 
micrographs of GFAP immunolabeling in retinas from uninjured (A), 1 week post-
blast (B) and 1 month post-blast retinas (C). Anti-GFAP (green), DAPI (blue). 

Scale bar represents 50m and applies to all images. Bar graphs of cytokines 
altered or trending towards an increase after injury (D-E). *p<0.05, #p<0.0001; 
S=sham, T=trauma 
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In the retinas from non-blast mice, GFAP immunolabeling was present in the 

Müller glia endfeet and astrocytes (Figure 2.26A). In contrast, GFAP immunolabeling 

extended into the Müller glial process at 3d (data not shown), 1 week (Figure 2.26B) 

and 1 month post-blast (Figure 2.26C). These changes were uniform throughout the 

retina at all time points post-injury. We then assessed if the glial cell hypertrophy also 

correlated with increased levels of pro-inflammatory cytokines and chemokines (Figure 

2.26D-E).  A statistically significant increase was detected for KC (i.e. chemokine C-X-C 

motif ligand-1) at 3 days post-blast as compared to the 3 days post-sham (p<0.05; 

Figure 2.26D). Levels of interleukin 1 alpha (IL-1, interferon-gamma-inducible protein 

10 (IP-10 or chemokine C-X-C motif ligand-10), interleukin 10 (IL-10) appeared equally 

increased at both 3 days and 1 week after trauma, but were not significantly different 

from matched sham controls. Due to high variability and small sample size, we 

combined the 3 days and 1 week groups together to create the all trauma and all sham 

groups. A statistically significant increase was detected in both IP-10 (Figure 2.26D, 

p<0.0001) and IL-10 (Figure 2.26E, p<0.05) in the all trauma group as compared to all 

sham. Monocyte chemoattractant protein-1 (MCP-1 or chemokine C-C motif ligand-2) 

trended higher at 3 days, but not 1 week after trauma (Figure 2.26D). 

 

Reactive oxygen species (ROS) are increased after trauma 

 Using the in vivo fluorescent markers CM-H2DCFDA and DHE, an increase in 

ROS was detected at 1 week post-blast as compared to shams (Figure 2.27A-D). No 

fluorescence was detected in sham eyes after injection of either probe (Figure 2.27A,C). 

In contrast, fluorescence for both markers was present after trauma (Figure 2.27B,D).  
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The eyes with the greatest amount of fluorescence are shown. In particular, levels of 

superoxide (as measured by DHE) and ROS (as measured by CM-H2DCFDA) appear to 

be elevated at 1 week post-blast (Figure 2.27B,D). Nitrotyrosine immunolabeling was 

also significantly increased in the inner, but not outer, retina at 1 week post-trauma. 

 

Figure 2.27. Blast induces oxidative stress. In vivo images of CM-H2DCFDA 
fluorescence, a general indicator of reactive oxygen species, in sham (A) and 1 week 
post-blast eyes (B). In vivo images of DHE fluorescence, an indicator of superoxide, 
in sham (C) and 1 week post-blast eyes (D). Representative epifluorescence 
micrographs of nitrotyrosine immunolabeling (green) of sham (E) and 7d post-trauma 
(F) retinas double labeled with DAPI (blue). Bar graph of nitrotyrosine 
immunofluorescence quantification in the inner (G) and outer (H) retina. **p<0.01. 
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Mild blunt trauma in the contralateral eye after blast  
 
Blunt trauma causes anterior injuries in the D2 mouse 
  

Figure 2.28. The ocular surface is injured in the D2 contralateral eye. Calcium deposits are 
common in the D2 eye prior to injury (A). Hyphema, CE and cataracts occur at 3 days post-
injury (B). CE and calcium deposits occur at 1 week post-injury (C). CE, CNV and calcium 
deposits at 2 weeks post-injury (D). A corneal scar and CNV at 1 month post-injury (E). 
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As in the blast-exposed eye, no anterior pathology was detected in the 

contralateral Bl/6 eye (Bricker-Anthony et al., 2014b). In the contralateral D2 eye, 

corneal edema (CE) occurred in 52% of eyes at 3 days post-injury (Figure 2.28B) and 

remained in 43% of mice at 1 month (Figure 2.28E). Cataracts were observed in 30% of 

D2 contralateral eyes at both 3 days and 1 month post-injury (Figure 2.28B,E). Corneal 

neovascularization (CNV) and corneal calcifications became more prevalent over time. 

CNV was detected in 44% and 29% of eyes at 2 weeks and 1 month post-injury, 

respectively (Figure 2.28D-E). Corneal scarring was detected in 33% and 43% of eyes 

at 2 weeks and 1 month post-injury, respectively (Figure 2.28D-E).  

 
Ocular trauma causes retinal detachments 

In the Bl/6 mouse, disruption of the outer segments (as determined by a bright 

area on the fundus, (Figure 2.29C) was observed in 25% of contralateral retinae within 

the mid-periphery at 1 week and in 8% of contralateral retinae at 2 weeks and 1 month 

post-injury. Retinal detachments were detected in 13% and 15% of Bl/6 contralateral 

retinae at 1 week and 2 weeks post-injury, respectively (Figure 2.29C). This decreased 

to 8% of retinas at 1 month post-injury. Up to eight retinal detachments per eye were 

detected and the average height of the retinal detachments was 0.02±0.003mm at all 

time points.  

In the D2 mice at 2 weeks post-injury, an average of 13 retinal detachments per 

eye were detected in 17% of contralateral eyes (Figure 2.29D). The average height of 

the retinal detachments was 0.04±0.07mm. No retinal detachments were detected at 1 

week or 1 month post-injury.  
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Figure 2.29. Blast induces retinal detachments in both Bl/6 and D2 
contralateral eyes. Both Bl/6 (A) and D2 (B) retinas appear normal at 
baseline in both the b-scan and fundus images. The green line in the 
fundus image denotes the location of the b-scan. A retinal detachment 
(arrow) is present at 1 week post-injury in the Bl/6 retina  and is visible on 
the fundus image as a small, round dark area (C, red box). Areas of outer 
segment disruption appear as white, patchy areas on the fundus image 
(C, arrows). Retinal detachments in a D2 retina at 2 weeks post-injury (D, 
arrows, red boxes). 
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Ocular trauma doesn’t displace the lens 

In order to detect lens displacement, we imaged and measured the depth of the 

anterior chamber in a subset of mice (n=16; D2) at baseline and several hours post-

injury. There was no statistically significant difference between baseline chamber depth 

(0.37mm±0.00) and post-injury chamber depth (0.38±0.01mm) in the contralateral eyes. 

 

Trauma damages both the retina and RPE 

Figure 2.30. Focal retinal and RPE damage occurs in the contralateral eyes of 
both strains post-blast. Both Bl/6 (A) and D2 (B) control retina and RPE have no 
pyknotic nuclei and no RPE vacuoles. Both pyknotic nuclei (arrows) and RPE 
vacuoles (arrowheads) occur at 1 week post-injury in the Bl/6 (C) and at 3 days 
post-injury the D2 (D). At 1 month post-injury, pyknotic nuclei (arrow) and RPE 
vacuoles (arrowhead) are rare in the Bl/6 (E), while the D2 eyes contains pyknotic 
nuclei and smaller RPE vacuoles (F). The scale bars are: 50µm in the low 
magnification retina image; 25µm in the high magnification retina image; and 5µm 
in the RPE image. 
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 Controls for both strains had healthy RPE with no vacuoles and retinas lacked 

pyknotic nuclei or other pathology (Figure 2.30A-B). Due to the lack of pathology at 3 

days post-injury, Bl/6 retinas were examined at 1 week and 1 month post-injury. D2 

retinas were examined at 3 days and 1 month post-injury. While much of the retina 

looked normal, focal damage was detected in both strains. 

Pyknotic nuclei were present in Bl/6 contralateral eyes post-blast (Figure 2.30C, 

E). The average number of pyknotic nuclei at 1 week post-injury was 16±6 in the ONL 

and 21±7 in the INL. At 1 month post-injury, the average number of pyknotic nuclei 

within contralateral retinae decreased to 3±2 in the ONL and 1±1 in the INL. Grade 3 

vacuoles were observed in all contralateral eyes at 1 week post-injury (Figure 2.30C). 

By 1 month post-injury, the RPE was normal (grade 1) in all of the eyes examined 

(Figure 2.30E).   

In the D2 mice, pyknotic nuclei were also observed in contralateral retinae post-

injury (Figure 2.30D, F). At 3 days post-injury, the average number of pyknotic nuclei 

was 10±3 and 13±1 in the ONL and INL, respectively. At 1 month post-injury, the 

average number of pyknotic nuclei in the contralateral retinae was 12±1 in the ONL and 

4±2 in the INL. The RPE of contralateral D2 eyes contained grade 5 RPE vacuoles at 3 

days post-injury in 67% of eyes (Figure 2.30D). At 1 month post-injury, 60% of 

contralateral eyes contained RPE vacuoles, ranging from grade 2-4 (Figure 2.30F).  

 

Delayed cell death occurs after trauma in both strains 

In the Bl/6 contralateral eyes, cell death was not detected until 1 week post-injury 

and was limited to small patches in the mid-peripheral and occasionally central retina 
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(Figure 2.30C, E). The majority of the TUNEL-positive nuclei were located in the ONL 

(Figure 2.30G). TUNEL-positive cells were present in only 4±2% and 3±1% of the 

retina, at 1 week and 1 month post-injury, respectively (Figure 2.32A). The density of 

cell death throughout the entire retina was also low at 1 week and 1 month post-injury 

with 18±11 cells/mm retina and 11±4 cells/mm retina, respectively (Figure 2.32B). 

Within areas of cell death (affected regions, Figure 2.31E, 2.32A), the density of 

TUNEL-positive nuclei was 383±179 cells/mm retina at 1 week and 373±77 cells/mm 

retina at 1 month post-injury (Figure 2.32C). The comparable density and percent retina 

affected at both time points suggests ongoing cell death in the Bl/6 from 1 week to 1 

month post-trauma. 

The onset of cell death also occurred at 1 week post-injury in the D2 and was 

limited to small patches in the mid-peripheral and central retina (Figure 2.31D, F). Like 

the Bl/6, many TUNEL-positive nuclei were present in the ONL (Figure 2.31H). At 1 

week post-injury, 19±8% of the retina contained TUNEL-positive cells (Figure 2.32A). At 

1 month post-injury, the percentage of TUNEL-positive contralateral retina decreased to 

3±2% (Figure 2.32A). The density of TUNEL-positive nuclei throughout the entire retina 

of the D2 was low; 49±30 cells/mm retina at 1 week post-injury, decreasing to 12±8 

cells/mm retina at 28 dpi (Figure 2.32B). The density of TUNEL-positive nuclei within 

the affected regions of the D2 retina was 475±81 cells/mm retina at 1 week post-injury 

and 212±135 cells/mm retina at 1 month (Figure 2.32C). The decrease in both the 

percent retina affected and the density of cell death in those areas at 1 month post-

injury suggests that in the D2 there is a peak of cell death at 1 week that decreases at 1 

month post-injury. 
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Figure 2.31. Cell death occurs in focal regions after blast in both strains. 
Epifluorescence micrographs of retinal cross-sections from control Bl/6 (A), 1 
week post-injury Bl/6 (C), control D2 (B) and 1 week post-injury D2 (D). TUNEL 
(red), DAPI (blue). The scale bar in (E) is 50µm and applies to all micrographs. 
Schematics illustrating the locations of TUNEL-positive retinal cross-sections in 
relation to the optic nerve (ON) in the Bl/6 (E) and the D2 (F). Pie charts showing 
the percentage of TUNEL-positive cells in each retinal layer in the Bl/6 (G) and D2 
(G). 
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Figure 2.32. Cell death occurs at 1 week and 1 month post-injury in both 
strains. Bar graphs show the percentage of retina containing TUNEL-positive 
cells (A), the density of TUNEL-positive cells in the retina (B), and the density of 
TUNEL-positive cells within the affected region (C). The bar graphs represent 
the average ± SEM for each time point and strain. 
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Necroptotic and pyroptotic pathways are activated following injury in both strains 

In both Bl/6 and D2 control retinae, RIP1 localized to the Müller glia, the INL and 

the IPL, with some light staining in the OPL (Figure 2.33A-B). RIP3 immunolabeling was 

present in the IPL and INL in control retinas from both Bl/6 and D2 mice (Figure 2.33A-

B). At 3 days post-injury, RIP1 staining increased within the Müller glia and IPL, but 

there were no changes in RIP3 labeling (Figure 2.33C). The increased labeling was 

limited to 3-4 sections from each eye, indicative of focal damage.  At 1 month post-

injury, no increased RIP1 labeling was present, but RIP3 labeling was increased in the 

ONL, IPL and GCL (Figure 2.33E). Again, these changes were limited to 3-4 sections in 

each eye.  

In the D2 retina, both RIP1 and RIP3 labeling was similar to controls throughout 

the eye at 3 days post-injury (Figure 2.33D). At 28 dpi, RIP1 staining was brighter in the 

ONL and INL, while RIP3 staining was brighter in the ONL, INL, IPL, and GCL (Figure 

2.33F). Similar to the Bl/6, these changes were limited to 3-4 sections in each eye. 

Caspase-1 immunolabeling was absent in control and 3 day post-injury Bl/6 

retinas (Figure 2.34A, B). At 1 month post-injury, 75% of contralateral C57Bl/6J retinae 

contained caspase-1 positive cells at the inner edge of the INL and in the GCL (Figure 

2.34C). The caspase-1 positive cells were present throughout the retina and the 

labeling did not appear different between central (Figure 2.34D) and mid-peripheral 

retina (Figure 2.34E). In contrast, caspase-1 positive nuclei were present within the INL 

and GCL of control D2 retinas (Figure 2.35A). However, at both 3 days and 1 month 

post-injury in the D2 retinae, no caspase-1 positive nuclei were detected (Figure 2.35B-

C). 
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Figure 2.33. RIP1 and RIP3 immunolabeling increases after blast in both the Bl/6 
and D2. Confocal micrographs of retinas from control Bl/6 (A), control D2 (B), 3 
day post-injury Bl/6 (C), 3 day post-injury D2 (D), 1 month post-injury Bl/6 (E) and 
1 month post-injury D2 (F). RIP1 is pictured in green and RIP3 is in red. The scale 
bar in (A) is 50µm. 
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Figure 2.34. Caspase-1 immunolabeling increases at 1 month post-injury in the Bl/6 
retina. Epifluorescence micrographs of retinas from control (A), 3 days post-injury (B) 
and 1 month post-injury (C) eyes labeled with anti-caspase-1 (green) and DAPI 
(blue). Caspase-1 immunolabeling at 1 month post-injury is the same in both central 
(D) and mid-peripheral (E) retina. The scale bar is 50µm in (A-C) and 250µm in (D-
E). 
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Figure 2.35. Caspase-1 immunolabeling is reduced after trauma in the D2. 
Representative epifluorescence micrographs of control (A), 3 days post-
injury (B) and 1 month post-injury (C) retinas immunolabeled for caspase-
1. The scale bar in (A) is 50µm and applies to all micrographs. 



 74 

Glial reactivity occurs after trauma  

 Similar to the blast-exposed Bl/6 retina, GFAP immunolabeling was restricted to 

the astrocytes and Müller glia endfeet at all time points post-injury (Figure 2.36A-D). In 

contrast, GFAP immunolabeling extended up the Müller cell processes in the D2 retinas 

(Figure 2.37B-C). At 3 days post-injury, the GFAP positive processes were detected 

uniformly across the retina (Figure 2.37B). At 1 week post-injury, GFAP positive 

processes were only detected in small patches in the mid-peripheral and central retina 

(Figure 2.37C). Increased GFAP immunolabeling was not detected in any region of the 

retina at 1 month post-injury (Figure 2.37D). 

In the normal Bl/6 and D2 retina, microglia had small somas with dendritic 

ramifications and were present only in the inner retina (Figure 2.38A-B). In the Bl/6 

retina, all changes in microglial morphology after injury were limited to focal areas (e.g. 

1-2 sections from each eye). At 3 days post-injury, reactive microglia (enlarged somas 

with fewer shorter processes) were observed in the ONL and INL and microglial 

processes extended into the ONL (Figure 2.38C). At 1 week and 1 month post-injury, 

there were no reactive microglial somas in the ONL, but a few reactive microglia were 

present in the INL and occasional processes were detected in the ONL (Figure 2.38E, 

G).  

Reactive microglia were commonly observed throughout the D2 retina at 3 days 

post-injury (Figure 2.38D). Macrophages were also occasionally observed in the outer 

segment layer of the photoreceptors in areas of retinal detachment (Figure 2.38D). At 1 

week and 1 month post-injury, microglial reactivity was limited to focal areas of the inner 

retina in the mid-periphery and occasionally the central retina (Figure 2.38F, H). 
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Figure 2.36. GFAP immunolabeling remains restricted to the astrocytes 
and Müller glia endfeet in the Bl/6 after injury. Representative 
epifluorescence micrographs of control (A), 3 days post-injury (B), 1 week 
post-injury (C) and 1 month post-injury (D) retinas immunolabeled for 
GFAP. The scale bar in (A) is 50µm and applies to all micrographs. 
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Figure 2.37. GFAP labeling is increased in the Müller glia of D2 eyes at 3 
days and 1 week post-injury. Low and high magnification epifluorescence 
micrographs of control (A), 3 days post-injury (B), 1 week post-injury and 1 
month post-injury (D) retinas labeled with GFAP (green) and DAPI (blue). The 
scale bar for the high magnification micrographs is 50µm. The scale bar for 
the low magnification micrographs is 250µm. 
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Figure 2.38. Reactive microglia are present in Bl/6 and D2 retinas after 
injury. Low magnification epifluorescence micrographs and high 
magnification micrographs (insets) of control (A-B), 3 days post-injury 
(C-D), 1 week post-injury (E-F) and 1 month post-injury (G-H) retinas 
immunolabeled with Iba1 (green) and DAPI (blue). The scale bar for the 
low magnification micrographs is 50µm. The scale bar for the inserts is 
10µm. 
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Figure 2.39. Nitrotyrosine immunolabeling increases after blast in the retina of 
both strains. Epifluorescence micrographs of control (A-B), 3 days (C-D), 1 
week (E-F) and 1 month post-injury (G-H) retinal cross-sections labeled for 
nitrotyrosine (green) and DAPI (blue). The scale bar is 50µm and applies to all 
micrographs. 
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Protein nitration increases in the retina after blast  

In the Bl/6 mouse, all eyes exhibited a slight increase in nitrotyrosine 

immunolabeling in the inner retina at 3 days and 1 week post-injury when compared to 

controls (Figure 2.39C, E). Changes in nitrotyrosine immunolabeling were limited to 

focal areas within both the mid-peripheral and central retina. At 1 month post-injury, 

there was nitrotyrosine immunolabeling in the outer retina (absent in the normal retina), 

in addition to more labeling in the inner retina (Figure 2.39G). The changes in labeling 

were uniform across the retina.  

 At 3 days post-injury in the D2 mouse, nitrotyrosine immunolabeling was greatly 

increased in the inner retina of all eyes with no apparent regional differences when 

compared to controls (Figure 2.39D). Labeling remained elevated throughout the inner 

retina of all eyes 1 week and 1 month post-injury, with no apparent regional differences 

(Figure 2.39F, H).  

 

Ocular trauma causes visual deficits  

 Both strains showed decreased OKN scores (i.e. visual acuity) in the 

contralateral eye post-blast (Figure 2.40A-B). In the Bl/6 mouse, OKN scores were only 

significantly different from baseline (0.41±0.01 c/d) at 1 week post-injury (0.30±0.04 c/d, 

p<0.01, Figure 2.40A). In the D2 mice, OKN scores first declined significantly at 3 days 

post-injury (0.40±0.06 c/d, p<0.01) when compared to baseline values (0.60±0.03 c/d, 

Figure 2.40B). OKN scores were also significantly different from baseline at 2 weeks 

and 1 month post-injury (0.25±0.06 and 0.07±0.03 c/d, p<0.01, respectively). 
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There were no significant changes in the ERG amax, bmax or oscillatory potentials 

at any time point assessed in the Bl/6 eye after injury (Figure 2.41A, C, E). However, 

there were significant reductions in both amax and bmax in the D2 after blast when 

compared to baseline values (Figure 2.41B, D). At 1 week post-injury, the amax was 

significantly lower than baseline at light intensities that correlate with daytime light 

levels. At 0 log cd*s/m2 the amax was decreased by 39% from 135.7 ± 9.6 μV at baseline 

to 82.5 ± 14.2 μV, p<0.01 (Figure 2.41B). At 1 log cd*s/m2 the amax was decreased by 

29% from 194.3 ± 12.2 μV to 137.9 ± 20.2 μV, p<0.05 (Figure 2.41B). At 1 month post-

injury, the amax recovered, but the bmax was significantly reduced at several light 

Figure 2.40. Visual acuity declines after blast in both Bl/6 (A) 
and D2 (B). The average cycles/degree ± SEM are plotted over 
time. **p<0.01 
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intensities. At -1 log cd*s/m2 the bmax was decreased 42% from 335.2 ± 18.2 μV to 193.7 

± 31.4 μV, p<0.01 (Figure 2.41D). At 1 log cd*s/m2 the bmax was decreased 33% from 

451.3 ± 25.9 μV at baseline to 301.2 ± 35.7 μV, p<0.01 (Figure 2.41D). The oscillatory 

potentials did not change after blast in the D2 (Figure 2.41E). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.41. Blast causes ERG deficits in the D2, but not the Bl/6. 
Graphs of the average ± SEM of amax (A-B), bmax (C-D) and oscillatory 
potentials (E-F) for Bl/6 and D2 mice, respectively, at baseline, 1 
week and 1 month post-injury. *p<0.05 
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Ocular trauma did not damage the olfactory epithelium or optic nerves 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The olfactory epithelium was examined in 1 week post-injury Bl/6 mice for evidence of 

blast injury to the tissue between the eyes (Figure 2.42A-D). We observed no 

differences between sham and blast animals with either nitrotyrosine immunolabeling 

(Figure 2.42A, C) or TUNEL (Figure 2.42B, D). 

 

 

 

Figure 2.42. Blast has no effect on the Bl/6 olfactory epithelium. 
Representative epifluorescence micrographs of sham (A-B) and 1 week 
post-injury (C-D) olfactory epithelium immunolabeled for nitrotyrosine 
(A,C, green) and TUNEL (B,D, red). The scale bar in (A) is 50µm and 
applies to all images. 
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Since degenerative axons in the blast-exposed optic nerve were most evident at 

1 month post-injury, we examined contralateral optic nerves from both strains at 1 

month post-injury (Figure 2.43A-D). There were no differences between contralateral 

optic nerves (Figure 2.43C-D) and control optic nerves (Figure 2.43A-B). 

 

 

 

 

Figure 2.43. The optic nerve is unaffected by trauma. Representative 
micrographs of control (A-B) and 1 month post-injury (C-D) optic nerve 
cross-sections. The scale bar in (A) is 20µm and applies to all 
micrographs. 
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Discussion 

Mild, progressive trauma in the Bl/6 mouse  

Ocular blast trauma in the Bl/6 mouse induces a delayed injury response similar 

to what has also been described in models of TBI (Johnson et al., 2013) and in 

Veterans with blast-induced mild TBI (Cockerham et al., 2009, 2011; Weichel et al., 

2009). The injury phenotype is mild when compared to the D2 and Balb/cJ mice 

(Bricker-Anthony et al., 2014a, 2016b) and is similar to closed-globe injuries reported in 

blast-exposed veterans (Cockerham et al., 2011). However, certain findings such as 

delayed cell death and optic nerve degeneration, as well increased oxidative stress and 

inflammation over time, are suggestive of subtle, ongoing degeneration after blast 

exposure. 

Cell death did not occur in the Bl/6 eye until 1 month post-injury and only covered 

3% of the retina, whereas substantial cell death occurred in the D2 and Balb/cJ retinas 

within days of the injury. Since most cell death occurred in the outer retina, we expected 

to see deficits in the ERG. However, the small, focal pockets of cell death we observed 

are likely insufficient to interfere with visual function. Normal ERG amplitudes after blast 

is also consistent with findings in the shock tube model (Mohan et al., 2013).  

RIP3, a marker of necroptosis, was the only cell death marker substantially 

increased in the outer retina after blast. RIP3 directly interacts with several 

mitochondrial enzymes and pushes metabolism into overdrive when overexpressed, 

resulting in excess production of reactive oxygen species and necrosis (Bergsbaken et 

al., 2009). Both TNF-α and RIP3 have also been reported to increase activation of 

microglia (Trichonas et al., 2010). Detection of RIP3 in the ONL at 1 month after blast 
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correlated with detection of reactive microglia and increased nitrotyrosine 

immunolabeling in the ONL. These findings suggest that RIP3 may also contribute to 

both microglial activation and oxidative stress in the outer retina, which may result in 

ongoing retinal degeneration after blast.  

TUNEL-positive cells were also detected in the INL in a subset of retinas. In other 

blast models, the most consistent and robust molecular changes were detected in the 

inner retina and involved nitrosative stress (Mohan et al., 2013; Zou et al., 2013). 

Exposure to TNT at the same the same blast pressure used in our study elicited 

increased iNOS labeling in the inner retina (Zou et al., 2013). Therefore, it is possible 

that increased peroxynitrite immunolabeling and increased RIP1, RIP3 and caspase-1 

immunolabeling in the INL are linked, as oxidative stress both initiates and results from 

pyroptosis and necroptosis (Bergsbaken et al., 2009; Fink et al., 1999; Jin and Flavell, 

2010). 

Caspase-1 immunolabeling in the starburst amacrine cells has interesting 

implications for both functional and pathological outcomes following blast injury. 

Starburst amacrine cells are critical for signaling directional selectivity onto downstream 

RGCs and are, therefore, necessary for the OKN response that is used to measure 

visual acuity (Taylor and Smith, 2012). Damage to the starburst amacrine cells could 

explain the decrease in visual acuity after blast in our model. Caspase-1 

immunolabeling was also present in inner retinal cells negative for ChAT. AII amacrine 

cells, which belong to a major amacrine cell population (glycinergic amacrine cells) in 

the retina (Haverkamp and Wässle, 2000), are involved in the transmission of rod 

photoreceptor signals to the retinal ganglion cells (Helga Kolb, 2016).  The spread of 
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caspase-1 labeling from small retinal regions at 3 days post-blast to amacrine cells 

throughout the entire retina at 1 month post-blast suggests spread of a molecular signal 

inducing increased levels of caspase-1 in neighboring cells. AII amacrine cells are 

connected to each other by connexin-mediated gap junctions (Hampson et al., 1992), 

through which small signaling molecules can travel to enact neuroprotection or 

neurodegeneration (Danesh-Meyer et al., 2012; Massey et al., 2003; Paschon et al., 

2012; Striedinger et al., 2005; Yoon et al., 2010).  

 Despite the lack of RGC death in our model at 28 days post-blast, our results 

suggest that the RGCs may die at later time points, as reported in other blast models 

(Koliatsos et al., 2011; Mohan et al., 2013). First, we begin to detect axon degeneration 

at 1 month post-blast, which may precede RGC death as it does in traumatic optic 

neuropathy (Warner and Eggenberger, 2010). Second, labeling for nitrotyrosine and 

markers of pyroptosis and necroptosis in the GCL are increased at 1 month post-blast, 

which is consistent with other studies showing the first evidence of RGC death at 4 

months post-blast (Mohan et al., 2013). 

In summary, markers of oxidative stress and inflammation increase over time 

after blast and are primarily localized to the inner retina, suggesting that inner retinal 

changes may drive visual deficits and that further cell death may be expected at later 

time points after blast. This study provides molecular insight into the effects of ocular 

trauma on the neural retina that may underlie the delayed vision loss that occurs in 

blast-exposed patients despite a normal ophthalmological exam.  
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Severe trauma in the D2 mouse 

 A large influx of immune cells into the eye occurred after blast in the D2, but not 

in the Bl/6 or Balb/cJ, which have a fully intact ACAID. The immune response after 

trauma elicited formation of epiretinal membranes, increased nitrosative stress, greater 

cell death, and more severe vision loss than was detected in the Bl/6 or Balb/cJ mice 

(Bricker-Anthony et al., 2014b, 2016b). The RPE damage in the D2 at 3 days post-injury 

was severe when compared to the Bl/6 and Balb/cJ at 1 week post-blast. Remarkably, 

despite the early and dramatic vacuolization and significant amount of subretinal debris 

present within days after blast, the RPE and subretinal space appeared near normal at 

1 month after injury, like the Bl/6. These findings show that the RPE cells are very 

resilient and are adept at phagocytosing and removing subretinal debris.  

The differences in response to blast between the D2 mouse and the Bl/6 and 

Balb/cJ mouse strains are consistent with comparisons between open globe and closed 

globe trauma patients (Scott, 2011). Blast injury in the D2 mouse resulted in rapid, 

severe vision loss that failed to recover by 1 month (Bricker-Anthony et al., 2014a). In 

contrast, blast injury in the Bl/6 mouse only induced a mild deficit in visual acuity that 

recovered by 1 month (Bricker-Anthony et al., 2014b). In blast-exposed human patients, 

open globe injuries initially caused severe visual acuity deficits, ranging from 5/200 to 

no light perception (Erdurman et al., 2011). After 6 months, 45% of the patients had no 

light perception, while the remaining 55% of patients had visual acuity ranging from 

>20/40 to light perception (Erdurman et al., 2011). In contrast, human patients with 

blast-induced closed injuries had better initial visual acuity (ranging from >20/40 to light 

perception) and 66% of the patients had visual acuity >20/40 after 6 months (Erdurman 
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et al., 2011). Blast injury in the D2 mouse also induced peripheral immune cell 

infiltration, which was absent in both the Bl/6 and Balb/cJ mice after blast. Peripheral 

immune cell infiltration also occurs in endophthalmitis, an inflammatory intraocular 

condition (Egan et al., 2016) that can affect human patients with open globe injuries, but 

typically does not affect patients with closed globe injuries (Cebulla and Flynn, 2009).  

In endophthalmitis, ocular immune privilege is lost and peripheral immune cells invade 

the eye and secrete damaging inflammatory cytokines  that can lead to retinal cell death 

and profound vision loss (Callegan et al., 2002). 

 As in the post-blast Bl/6 retina, the cell death pathway appeared to be non-

apoptotic in the D2 retina (Bricker-Anthony et al., 2014b). In both mice, we detected 

increases in markers for necroptosis (RIP1 and RIP3) after blast, suggesting that 

necroptosis is the main cell death pathway activated after blast. The peak of cell death 

was earlier in the D2 – 3 days as compared to 1 month in the Bl/6 or 1 week in the 

Balb/cJ (Bricker-Anthony et al., 2014b, 2016b). Additionally, we observed more TUNEL-

positive nuclei in the D2 retina than in the Bl/6 or Balb/cJ retinas. Like the Bl/6, optic 

nerve damage occurred at 1 month post-injury, but it was more severe than in the Bl/6 

or Balb/cJ at the same time point.  

There were also differences between our blast model in the D2 and other models 

of blast injury. Unlike the whole body/head blast models (Goldstein et al., 2012; Mohan 

et al., 2013), photoreceptor cell death was present in this model and in a TNT blast 

study (Zou et al., 2013). The discrepancies may be due to the physics of head 

movement in their model as compared to our model and the TNT model (Zou et al., 

2013). Similar to Mohan et al., we detected RGC death and degeneration in the optic 
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nerve (Mohan et al., 2013). They reported axon degeneration and RGC loss at 10 

months post-blast in the Bl/6 mouse while we showed that it may begin as early as 3 

days in the D2 and Balb/cJ mice or 1 month post-blast in the Bl/6 mice.  

The pathological changes after blast in the D2 mouse, such as Mϋller glia 

reactivity, nitrosative stress and immune infiltrate, were consistent with findings in the 

high-level blast exposure group at 2 weeks post-injury in the TNT model (Zou et al., 

2013). The Bl/6 and Balb/cJ mice exhibited a milder phenotype like the low-level blast 

group in the TNT study. We suspect these differences are due to the presence of 

immune infiltrate in the D2 mouse and their high-level blast animals, which was absent 

from our Bl/6 and Balb/cJ mice and their low-level blast animals.  

Compared to Bl/6, the D2 mice had significant visual function deficits post-injury 

as measured by the ERG. Acutely, the visual acuity and ERG amplitude deficits appear 

to be driven by damage to the outer retina. Photoreceptor and RPE damage likely drove 

the early ERG deficits, as the a wave was more affected than the b wave. These deficits 

in visual function correlated with the presence of retinal detachments and extensive 

vacuolization in the RPE, indicative of oxidative stress (Fujihara et al., 2008), in the first 

week after injury. The RPE damage may have temporarily impaired recycling of 11-cis-

retinal (Schraermeyer and Heimann, 1999), which could have driven the transient 

reduction in the ERG a wave.  The recovery of the OKN at 1 week post-blast may reflect 

resolution of the RPE damage in combination with an improvement in the OKN 

response as a result of repeat testing (Prusky et al., 2008).  A similar decrease and 

subsequent recovery of visual function occurred in our model with the Bl/6 mouse and in 

Mohan and colleagues’ blast model (Bricker-Anthony et al., 2014b; Mohan et al., 2013). 
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Temporary deficits in visual acuity are also observed in patients following blast injury 

(Alam et al., 2012; Phillips et al., 2013).  

At 1 month post-blast, the ERG amplitudes were affected in a different manner. 

The ERG b wave and visual acuity continued to decrease at 1 month post-blast as the a 

wave improved. These findings suggest ongoing dysfunction in the inner retina after 

blast. These results are supported by the detection of a second wave of TUNEL-positive 

cells and significant optic nerve degeneration at 1 month post-blast. The detection of 

TUNEL positive cells prior to any degenerating axons in the optic nerve suggests that 

the axon degeneration is secondary to RGC death.  

In summary, this study demonstrates that an overpressure air-wave directed at 

the eyes of adult DBA/2J mice could be potentially used as a model for open-globe 

ocular trauma. This model is attractive because the globe remains intact, avoiding 

complications from potential bacterial infections. Treatment options for open globe 

trauma patients are very limited and none have shown a high degree of success. We 

expect that this model will be useful as a platform for identifying the mechanisms 

underlying ongoing vision loss and testing potential therapeutics for the treatment of 

open-globe ocular trauma. 

 

Moderate trauma in the Balb/c mouse 

Optic nerve degeneration occurred rapidly in the Balb/c after blast, compared to 

the Bl/6 and D2. We did not detect any degenerating axon profiles in the Bl/6 and D2 

optic nerves until 1 month post-injury (Bricker-Anthony et al., 2014b; a). In contrast, the 

Balb/c optic nerves contained degenerating axons as early as 1 week post-injury. 
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Traumatic optic neuropathy, which can occur after blast or blunt trauma in humans 

(Phillips et al., 2013; Thach et al., 2008; Weichel and Colyer, 2008), is thought to be 

induced by two different injury mechanisms: primary (shearing of the axons and 

ischemia) and secondary (initial damage and death of the retinal ganglion cells) 

(Samardzic et al., 2012). We detected very little cell death in the GCL after blast, so it is 

possible that the retinal ganglion cells remained alive prior to axon degeneration, 

supporting a role for primary optic nerve injury. The Balb/cJ is more susceptible to optic 

nerve crush than the Bl/6 and the D2 (Li et al., 2007), so it is possible that genetic 

differences are driving the early onset of axonal degeneration in the Balb/cJ post-blast. 

Further, this model may be more representative of clinical traumatic optic neuropathy 

than the optic nerve crush or axotomy models.  

Vacuolization of the RPE, a symptom of oxidative stress (Fujihara et al., 2008), 

occurred in all three mouse strains post-injury. RPE damage was also reported in 36% 

of blast-exposed soldiers (Phillips et al., 2013). In contrast to the Bl/6 and D2 mice, RPE 

vacuolization did not resolve in the Balb/cJ (Bricker-Anthony et al., 2014b; a). The RPE 

is an important component of the blood-retina barrier (Peyman and Bok, 1972) and is 

essential for photoreceptor health and function (Strauss, 2005). Enduring oxidative 

damage to the RPE could potentially cause loss of ocular immune privilege and ensuing 

inflammation. Oxidative stress and blood-brain-barrier permeability also occur in models 

in blast-induced traumatic brain injury, suggesting a similar mechanism in the eye and 

brain (Abdul-Muneer et al., 2013; Readnower et al., 2010).  

 Delayed neuronal cell death after blast exposure is a common finding in models 

of blast-induced traumatic brain injury (Koliatsos et al., 2011; Mohan et al., 2013). The 
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accelerated cell death in the D2 and Balb/cJ as compared to the Bl/6 in our model might 

be due to the greater inflammatory response exhibited by these two strains including 

Müller cell reactivity and peripheral immune cell infiltration (Bricker-Anthony et al., 

2014b; a). Reactive Müller cells can cause retinal edema, secrete inflammatory 

cytokines and promote macrophage infiltration (Tong and Verkman, AS, 2004; 

Nakazawa et al., 2006). We also detected increases in some pro-inflammatory 

cytokines and chemokines as early as a few days post-trauma, including IP-10 and KC. 

IL-1 can induce expression of IP-10, KC, and MCP-1 from neurons (Tsakiri et al., 

2008). While we did not detect a statistically significant increase in IL-1, levels at both 

time points trended up and might explain the increases in these chemokines. These 

chemokines are also increased in other models of CNS injury and can act on both glia 

and neurons to mediate the recruitment and infiltration of peripheral immune cells into 

the CNS (Barbero et al., 2002; Cho and Miller, 2002). These findings suggest that there 

may be an increase in microglia in the retina after ocular blast trauma. While acute 

neuroinflammation is protective, chronic neuroinflammation can contribute to 

neurodegeneration.  

 The increase in IL-10 in the combined 3 day and 1 week post-trauma retinas is 

suggestive of an endogenous protective response. IL-10 is an anti-inflammatory 

cytokine that inhibits activation of macrophages, microglia and astrocytes and blocks 

production of pro-inflammatory cytokines and iNOS, resulting in lower levels of 

peroxynitrite (Bogdan et al., 1992; Cunha et al., 1992; de Waal Malefyt et al., 1991; 

Ledeboer et al., 2000; Lodge and Sriram, 1996; Pousset et al., 1999; Sawada et al., 

1999). Gene delivery of IL-10 decreases nitrotyrosine immunolabeling and preserves 
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ganglion cells in an optic nerve axotomy model (Koeberle et al., 2004). This strategy 

may also be effective in the treatment of ocular blast trauma. 

In conclusion, the Balb/cJ mouse model of ocular blast trauma provides a good 

platform for testing cell-based therapies. These therapies are much needed, as there 

are currently no treatment options for eye trauma patients. 

 

Mild blunt trauma in the contralateral eye after blast 

 The mechanism of injury to the contralateral eye in this model system appears to 

be mild blunt trauma based on three main findings. First, absence of cell death and 

nitrosative stress in the olfactory epithelium argues against blast wave propagation 

through the head, as this would likely damage the delicate tissue. Second, the lack of 

damage to the contralateral optic nerve also supports this hypothesis since blast waves 

contain shearing forces that are particularly damaging to long structures such as axons 

(Garman et al., 2011). Third, the timing of cell death was the same in the contralateral 

eyes of both mouse strains, but was different from the respective blast-exposed eyes 

(Bricker-Anthony et al., 2014b; a). One would expect similar timing of cell death if both 

eyes were injured by the same injury mechanism (i.e. blast). 

Our injury system produced pathology similar to that observed in animal models 

of blunt ocular trauma and in patients with commotio retinae (Blight and Hart, 1977; 

Sipperley et al., 1978; Bunt-Milam et al., 1986; Blanch et al., 2012). Commotio retinae is 

characterized by focal damage to the RPE and photoreceptors that spontaneously 

resolves in the majority of patients (Blight and Hart, 1977; Sipperley et al., 1978; Bunt-

Milam et al., 1986; Blanch et al., 2012). Similar to our findings, focal pyknotic 
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photoreceptor nuclei were also detected soon after ocular trauma in both primate and 

rodent models (Sipperley et al., 1978; Blanch et al., 2012). Finally, porcine and feline 

models of blunt trauma also exhibit RPE vacuolization and focal photoreceptor damage 

within the first week post-injury, which resolved at one month post-injury (Blight and 

Hart, 1977; Bunt-Milam et al., 1986). Also consistent with trauma, we detected retinal 

detachments in both strains. Surprisingly, in the D2 mouse, we detected retinal 

detachments at 2 weeks, but not 1 week post-trauma. One possible explanation is that 

we missed the retinal detachments at 1 week due to how the mouse was positioned in 

the OCT system, or which retinal regions were imaged. However, since we rotate the 

mouse and probe to visualize as much of the retina as possible, we find this explanation 

unlikely. Another possible explanation is that the retinal detachments developed over 

time. A recent study detected delayed retinal detachments in trauma patients (Xia et al., 

2015). 

 In contrast with these other models, we also observed TUNEL-positive nuclei and 

labeling with necroptotic cell death markers in the inner retina. In a rat model of ocular 

trauma, the authors stated that the inner retina was mostly spared and did not report 

TUNEL quantification for the inner retina (Blanch et al., 2012). The pattern of their ERG 

deficits is also incongruous with our findings. They reported a deficit in both the amax and 

bmax with equal timing and extent, while we saw an initial decrease in the amax, followed 

by a recovery of the amax and subsequent decline in the bmax in the D2 mice. These 

findings suggest that the ERG deficits observed in their model were due to 

photoreceptor cell loss that resulted in loss of downstream signaling to the inner retina. 

In contrast, our ERG results show an early, transient deficit in the photoreceptor cells 
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followed by inner retina dysfunction. These incongruent results are likely due to 

differences between the injury models and the rodent species (Bl/6 and D2 mice were 

used in our study and Lister hooded rates were used in their study). 

The visual acuity in the Bl/6 eyes were consistent with our previous findings in 

the blast-exposed eyes (Bricker-Anthony et al., 2014b). While OKN scores normally 

improve with repeat testing in mice, there was no improvement in the Bl/6 eyes after 

injury (Prusky et al., 2008). The ongoing cell death from 1 week to 1 month post-injury in 

the Bl/6 eyes may contribute to the decreased OKN response. There were also no 

changes in the ERG post-injury, like the blast-exposed eye (Bricker-Anthony et al., 

2014b). The lack of lens displacement suggests that the discrepancy is not due to 

altered optics. It is feasible that the blunt trauma injured other, non-retinal, neuronal 

pathways necessary for the OKN response (Chevallier et al., 2013). In contrast, the 

OKN scores and ERG results were very similar between D2 blast-exposed and 

contralateral eyes (Bricker-Anthony et al., 2014a).  

In conclusion, our model, which directs a blast of air towards one eye, causes injury to 

the contralateral eye likely because of pushing the head onto the cushioning within the 

housing chamber. The lack of ERG deficits, optic nerve damage, anterior pathologies 

and the spontaneous recovery of the outer retina damage suggest that this is a model of 

mild blunt trauma. The injury profile in the contralateral retina of the D2 mouse is more 

severe than that of the Bl/6 mouse, which is consistent with the greater 

neuroinflammation in the D2. Thus, our model system can be used to explore 

mechanisms and functional outcomes of both blast and blunt ocular trauma (e.g. 

damage from both the primary and secondary effects of blast) separately. Future 
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studies may investigate the effects of combining both blast and blunt injuries in the 

same eye, as this is relevant for blast-injured U.S. military veterans who often 

experience a combination of both primary and secondary blast trauma. 
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CHAPTER 3 

 

DELAYED TREATMENT WITH ERYTHROPOIETIN REDUCES RETINAL CELL 

DEATH AND NITROSATIVE STRESS AFTER OCULAR BLAST TRAUMA3 

 

Introduction 

 EPO is an endogenous cytokine best known for its role in stimulating 

hematopoiesis and is clinically approved for the treatment of anemia (Eschbach et al., 

1987). Many laboratories became interested in EPO when it was shown to exert 

neuroprotection in vitro (Morishita et al., 1996). Previous studies demonstrated that 

EPO is neuroprotective and improves cognitive outcomes following traumatic brain 

injury (Lu et al., 2005; Yatsiv et al., 2005). As such, the efficacy of EPO treatment for 

traumatic brain injury is currently being evaluated in several clinical trials 

(www.clinicaltrials.gov).  EPO is composed of four α-helices joined together by three 

crossover loops (Cheetham et al., 1998). There are two binding sites for the EPO 

receptor homodimer (EPOR) on the surface of EPO, consisting of a high affinity and a 

low affinity binding site (Cheetham et al., 1998). EPO mRNA is highly expressed in the 

kidney and liver, but is also present in neuronal tissue (Tan et al., 1992). EPO is a 

potentially promising treatment for traumatic brain injury and other insults, but systemic 

                                            
3 Portions of this chapter were published as Bricker-Anthony C (2014). Ocular blast 
trauma: models, mechanisms and a potential therapeutic strategy. VRN 6; Bricker-
Anthony C, D’Surney L, Lunn B, Hines-Beard J, Jo M, Bernardo-Colon A and Rex TS 
(2016). Erythropoietin either prevents or exacerbates retinal damage from eye trauma 
depending on treatment timing. Optom Vis Sci 93. 

https://clinicaltrials.gov/ct2/home


 98 

treatment with EPO can lead to the development of polycythemia, a potentially life-

threatening condition. 

 To reduce the risk of polycythemia when EPO is used for neuroprotection, Leist 

and colleagues generated several modified forms of EPO (Leist et al., 2004). 

Carbamylation of EPO (CEPO) resulted in a dearth of binding to the EPOR homodimer, 

yet it remained neuroprotective both in vitro and in vivo (Leist et al., 2004). Two 

separate mutations in the low affinity binding site, S100E and R103E, were also 

effective at preventing binding to the EPOR homodimer while maintaining 

neuroprotection (Leist et al., 2004). Our lab also developed a mutant form of EPO, EPO-

R76E, which protected RGCs in D2 glaucomatous mice and displayed attenuated 

erythropoiesis, indicative of poor binding to EPOR homodimer (Sullivan et al., 2011). 

Brines and colleagues demonstrated that EPO and CEPO bind an EPO R and ILβ-

subunit R heterodimer, which provides tissue protection without stimulation of 

hematopoiesis (Brines et al., 2004).  

 Though EPO is neuroprotective in multiple models of neuronal stress and 

disease, its precise mechanisms are still unclear. The addition of neurprotective EPO 

mutants with attenuated or abolished hematopoietic activity by Leist and colleagues and 

our lab also complicates the question of EPO’s protective mechanisms (Leist et al., 

2004; Sullivan et al., 2011). Binding of EPO to its native receptor homodimer initiates 

erythropoiesis via the Jak/Stat signaling cascade and appears to promote erythrocyte 

survival via GATA-1-mediated upregulation of anti-apoptotic Bcl-XL (Gregory et al., 

1999; Parganas et al., 1998). However, EPO neuroprotective pathways appears to vary 
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even among different neuronal populations and may have a more widespread impact 

than just preventing cell death at the level of the individual neuron. 

In an in vitro model of neuronal hypoxia, administration of EPO induced 

increased phosphorylation of Stat5, Akt, ERK1 and ERK2 in hippocampal neurons 

(Sirén et al., 2001b). Addition of inhibitors of the MAPK and PI3K pathways in 

conjunction with EPO treatment prevented phosphorylation of ERK1, ERK2 and Akt and 

abolished EPO neuroprotection (Sirén et al., 2001b). Activation of the MAPK pathway 

provides protection via inhibition of pro-apoptotic BAD and phosphorylation of CREB, 

which transcribes pro-survival genes (Bonni et al., 1999). Phosphorylation of Akt within 

the P13K pathway also prevents activation of BAD and leads to downstream activation 

of Nf-κB, which promotes transcription of pro-survival genes (Brunet et al., 2001). 

 Another in vitro model of excitotoxicity and neuroinflammation in cerebrocortical 

neurons showed that Jak2-mediated activation of Nf-κB was necessary for EPO 

neuroprotection (Digicaylioglu and Lipton, 2001). Following phosphorylation of Jak2 by 

the EPOR, Jak2 phosphorylated IκBα, a potent suppressor of Nf-κB (Digicaylioglu and 

Lipton, 2001). Together, these findings support a common pathway for EPO 

neuroprotection, as Jak2 contributes to both MAPK and PI3K signaling cascades (De 

Vos et al., 2000; Wolf et al., 2013).  

 However, findings from Weishaupt and colleagues challenged the notion that 

MAPK signaling was involved in EPO neuroprotection within RGCs (Weishaupt et al., 

2004). To test the efficacy of EPO neuroprotection in RGCs, Weishaupt and colleagues 

used both an in vitro (trophic factor deprivation in RGC cultures) and in vivo (optic nerve 

transection, an acute model of glaucoma) approach. The authors documented EPOR 
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expression, RGC survival, phosphorylated Akt expression and the effects of a PI3K 

inhibitor, Wortmannin.  

 The authors detected EPOR on the RGCs of both control and optic nerve 

transected rats. The authors claimed that the EPOR expression was much weaker in 

other cell types of the retina. However, this finding disagrees with data from Xie and 

others, who reported EPOR expression throughout the layers of the retina without 

strong localization within the RGCs in normal Sprague-Dawley rats, the same rat breed 

used by Weishaupt and colleagues (Xie et al., 2007). Grimm and colleagues also 

reported a different EPOR expression pattern within the normal mouse retina (strong 

staining within photoreceptor inner segments and the outer plexiform layer, weak 

labeling within the inner retina), but these results could be due to a species difference 

(Grimm et al., 2002). A current challenge in the field is the lack of specificity of EPOR 

antibodies (Elliott et al., 2006). 

EPOR expression also failed to change significantly in response to optic nerve 

transection or EPO treatment. The lack of change in EPOR expression is not surprising, 

given that HIF-1α induces increases in EPO and increases in both EPO and EPOR 

have been reported in the hypoxic brain (Semenza, 2001; Sirén et al., 2001a). In 

contrast, optic nerve transection is not a hypoxic injury and is not likely to induce 

increased expression of HIF-1α.  

Surprisingly, EPO treatment elicited phosphorylation of Akt, but not of ERK1/2 in 

optic nerve transected retinas. Both the MAPK and PI3K pathways are active and 

involved in EPO neuroprotection in cerebral ischemia and intracerebral hemorrhage 

(Kilic et al., 2005; Lee et al., 2006b; Sirén et al., 2001b). A possible explanation for the 
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lack of ERK1/2 phosphorylation in this study is that the neuroprotective cascade 

initiated by EPO differs in RGCs compared to cerebral neurons. However, a recent 

study demonstrated that inhibition of MAPK, PI3K, or Stat5 in cultured rat RGCs 

challenged with trophic factor withdrawal, TNF-α, or NMDA resulted in a significant loss 

of EPO neuroprotection (Chang et al., 2013). However, the reduction in EPO 

neuroprotection varied among RGC types and with the type of insult. These findings 

suggest that different cytotoxic stimuli and cell types may result in alterations in EPO’s 

neuroprotective signaling cascades, which needs to be explored further in future 

experiments.  

In addition to preventing apoptosis at the level of the individual neuron, EPO has 

also been shown to affect both astrocytes in the brain and Müller glia in the retina 

(Gunnarson et al., 2009; Hu et al., 2010). EPO treatment significantly reduced water 

permeability within AQP4 positive astrocytes and decreased abnormal calcium 

oscillations following induction of edema (Gunnarson et al., 2009). In a model of diabetic 

retinopathy, EPO treatment also reduced reactive gliosis and promoted expression of 

neurotrophins in Müller glia (Hu et al., 2010). EPO may also modulate immune 

responses in neuronal disease and injury, as recently discussed by Brines and Cerami 

(Brines and Cerami, 2012).  

EPO may also provide neuroprotection through reduction of oxidative stress. 

Previous studies demonstrated that EPO treatment reduces oxidative stress in both 

diseased and injured states (Wang et al., 2010; Yazihan et al., 2008). EPO may reduce 

oxidative stress directly by scavenging reactive oxygen species or indirectly by 

activating the antioxidant response element and increasing antioxidant enzyme levels 



 102 

(Bond and Rex, 2014). If oxidative stress contributes to neurodegeneration after blast 

exposure, then EPO may block its effects.  

Given its ability to protect neurons in a variety of cytotoxic conditions, EPO is a 

promising treatment for ocular blast trauma. However, many important questions about 

EPO neuroprotection remain. Several studies reported dose-response differences with 

EPO treatment (Chang et al., 2013; Digicaylioglu and Lipton, 2001; Sirén et al., 2001b; 

Weishaupt et al., 2004). Determining an optimal dosage for EPO neuroprotection will be 

crucial for moving forward into patient populations.  

Two final questions include local versus systemic administration and the timing of 

treatment. Weishaupt and colleagues obtained neuroprotection with an intravitreal 

injection of EPO protein (Weishaupt et al., 2004). However, an intravitreal injection may 

not be suitable for the injured eye. If EPO mutants are utilized, then systemic 

administration is an option, given that hematopoiesis is attenuated with EPO mutants 

and EPO can cross the blood-retina barrier. For acute treatment of ocular blast trauma, 

systemic administration of wild-type EPO is also acceptable, as it would not greatly 

impact hematocrit as it would in the context of chronic treatment. Another possible 

treatment method is gene therapy. Rex and colleagues showed significant therapeutic 

benefit with intramuscular injection of a viral vector (recombinant adeno-associated 

virus; rAAV)  driving expression of EPO protein in a rat model of retinal light damage, a 

mouse model of retinal degeneration and mouse model of glaucoma (Rex et al., 2004; 

Sullivan et al., 2011b). A gene therapy approach may be beneficial for ocular blast 

trauma, as it allows for sustained expression of EPO over time, which could combat any 
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long-term neurodegeneration, which was observed Mohan and colleagues’ model of 

ocular blast trauma (Mohan et al., 2013). 

 To evaluate the efficacy of EPO for the treatment of ocular blast trauma, we used 

D2 and Balb/cJ mice, which exhibited severe and moderate damage, respectively, after 

blast exposure. We used EPO protein to determine if short-term treatment with EPO 

soon after blast would be sufficient to protect the D2 retina. We chose a 3 day time point 

to coincide with the peak of cell death after blast in the D2 mouse and a 7 day time-

point to allow sufficient time for changes in gene expression to overcome the elevation 

in erythropoiesis. Since EPO has a short half-life, frequent re-injection was needed so 

the shortest duration was optimal to limit the number of re-injections necessary. To 

provide long-term, sustained delivery, we used an rAAV in the Balb/cJ mice, which 

exhibited the most retinal damage with 7 days of injury and the most optic nerve 

damage within 1 month of injury. To avoid the large increase in erythropoiesis that is 

caused by sustained production of EPO, we instead delivered EpoR76E, a form of EPO 

with attenuated erythropoietic activity and well-characterized neuroprotective properties 

in multiple models of retinal disease and injury (Sullivan et al., 2011b; a, 2012). We 

injected mice with rAAV.EpoR76E either before or one day after blast to compare the 

efficacy of treatment (elevated EPO-R76E) at blast to treatment initiated at 3 weeks 

after blast, long after the early rise in oxidative stress.  
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Materials and Methods 

Animals 

Three-month old DBA/2J or Balb/cJ mice (The Jackson Laboratory, Bar Harbor, 

ME) were maintained on a 12h light/dark cycle and provided access to food and water 

ad libitum. All experimental procedures were approved by the Institutional Animal Care 

and Use Committee of Vanderbilt University, according to AALAC guidelines. Age-

matched controls were used throughout the study. For histological analyses mice were 

perfused with 4% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA) 

and phosphate buffered saline (PBS), enucleated, and the eyes were stored in 4% PFA.  

For RNA collection mice were euthanized, corneas were bisected, and forceps were 

used to separate the retina from the posterior globe. The vitreous was removed from the 

isolated retina, which was then frozen on dry ice and stored at -80oC. 

 

Ocular Blast Injury 

Isofluorane anesthetized mice were secured and padded within a housing 

chamber that was placed within a larger tube, which shielded the body and head of the 

mouse from blast. The left eye of the mouse was positioned against a hole in the tube 

and was aligned with the barrel of the blast device. An overpressure air-wave with a 

peak pressure of 26psi was produced by a modified paintball marker (Empire Paintball, 

Sewell, NJ).  

 

 

 



 105 

Erythropoietin Therapy – DBA/2J 

 Mice were given three intraperitoneal injections of 5,000U/kg EPO (Procrit, Ortho 

Biotech, Bridgewater, NJ) at 24h intervals. Control mice received Ringer’s buffer. There 

were four treatment groups based on the timing of EPO delivery after blast and timing of 

tissue collection: 1) EPO delivered at 0, 24, and 48h post-blast, tissue collected at 7-

days post-blast; 2) EPO delivered at 6, 30, and 54h post-blast, tissue collected 7-days 

post-blast; 3) EPO delivered at 24, 48, and 72h post-blast, tissue collected at 7-days 

post-blast; and 4) EPO delivered at 24, 48, and 72h post-blast, tissue collected at 3-

days post-blast.  

 

Gene Therapy – Balb/cJ 

 Mice were given a single intramuscular injection of recombinant adeno-

associated virus (rAAV) carrying either enhanced green fluorescent protein 

(rAAV2/8.CMV.eGFP) or a mutated form of EPO with attenuated erythropoietic activity 

(rAAV2/8.CMV.EpoR76E) at 1x109gc into the quadriceps. Vectors were produced, 

purified, and titred at the University of Pennsylvania Vector Core (Philadelphia, PA). In 

the pre-blast group mice were injected 1-month prior to blast and collected at 1-month 

post-blast. In the post-blast group mice were injected 1-day post-blast and collected at 

1-month post-blast. The rAAV2/8 serotype reaches peak gene expression levels three 

weeks after intramuscular injection (Louboutin et al., 2005). The collection time point 

was chosen based on the amount of time necessary for gene expression from rAAV and 

our previous data showing persistence of cell death at this time point. This paradigm 

allowed us to test if delayed delivery of EPO-R76E was therapeutic. 
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Immunohistochemistry  

Eyes were embedded in Tissue Freezing Medium (Electron Microscopy 

Sciences) and 10m thick sections were collected in-round on 12 slides such that each 

slide contained a representation of all areas of the eye/retina. Slides were rinsed with 

phosphate buffered saline (PBS) and incubated at room temperature in normal donkey 

serum at 1:20 in 0.1 M phosphate buffer with 0.5% bovine serum albumin and 0.1% 

Triton X 100 (PBT) for 2 hours. The slides were incubated overnight at 4°C in anti-

nitrotyrosine (1:500, Millipore, Billerica, MA), anti-glial fibrillary acidic protein (GFAP, 

1:400, DAKO, Carpinteria, CA), or anti-H ferritin (1:100, Abcam, Cambridge, MA) in 

PBT, rinsed with PBS and incubated with a secondary antibody (Life Technologies, 

Grand Island, NY) for 2 hours at room temperature. Slides were rinsed with PBS and 

mounted in Vectashield Mounting medium with 4’,6-diamidino-2-phenylindole (DAPI; 

Vector Laboratories, Burlingame, CA) for imaging on a Nikon Eclipse epifluorescence 

microscope (Nikon, Melville, NY).  

 

Quantification of Fluorescence Intensity 

 Non-overlapping, but adjacent images of all areas of all retinal sections were 

collected using the same gain and exposure settings. Fluorescence was quantified 

within a rectangle of a set width and a height equivalent to the height of the retinal layer 

of interest using Image J according to previously published methods (Weitlauf et al., 

2014).  
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Quantification of GFAP-positive processes 

 Non-overlapping, but adjacent images of all areas of all retinal sections, with the 

exception of the far periphery, were collected at low magnification and montages were 

assembled in Photoshop (Adobe). Using Image J, the total length of retina and the 

length of retina containing GFAP-positive processes were measured. The percent of 

retina containing GFAP-positive Müller cell processes was calculated by dividing the 

length of GFAP-positive retina by the total length of retina and multiplying by 100. 

 

Tdt dUTP Nick End Labeling (TUNEL) Quantification 

Retina sections were labeled with the TUNEL Apoptosis Detection Kit according 

to manufacturer’s protocol (Millipore, Billerica, MA) and mounted with Vectashield 

Mounting Medium with DAPI. Each slide contained 24 representative sections from all 

retinal regions. All sections were imaged and used in the quantification resulting in the 

analysis of an average of 57mm retina/group. The length of retina assessed in each 

group was not statistically different from the other groups with the following exceptions. 

The 3-day EPO and pre-blast therapy groups had less overall length of retina imaged 

and the 6hr EPO 7d post-blast group had slightly more retina imaged (p<0.05). A 

TUNEL-positive cluster was defined as an 85m2 area of retina containing five or more 

TUNEL-positive cells. Clusters within the inner retina (INL and GCL) and outer retina 

(ONL) were counted separately. The total number of TUNEL positive cells within each 

defined cluster was also quantified. Measurements were performed using NIS Elements 

Advanced Research software (Nikon, Melville, NY). The number of 3-day retinas 

analyzed was 3 for buffer-injected and 7 for EPO-injected. The number of 7-day post-
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blast retinas assessed per group was 17 for Buffer treated, 13 for 0h EPO, 9 for Group 

6h EPO, and 9 for 24h EPO. The number of Balb/c mouse retinas quantified was: 9 

rAAV.eGFP, 7 pre-blast rAAV.EpoR76E, and 9 post-blast rAAV.EpoR76E. 

 

Optic Nerve Histology 

Optic nerves were post-fixed in 4% paraformaldehyde and 1% glutaraldehyde 

and subsequently placed in 1% osmium tetroxide in 0.1 M cacodylate buffer, 

dehydrated in a graded ethanol series and embedded in Spurr’s resin (Electron 

Microscopy Sciences). Starting from the proximal end of the optic nerve, 1 μm-thick 

sections were collected using a Reichert-Jung Ultracute E microtome and stained with 

1% p-phenylenediamine in 50% methanol (Sigma-Aldrich). Sections were imaged on an 

Olympus Provis AX70 microscope using a 100x oil immersion objective lens. Axons 

were manually counted using ImageJ software by sampling 20% of the total nerve 

cross-sectional area using a fixed grid overlay to estimate axon density in the nerve 

(axons/mm2). Total number of surviving axons was estimated as the product of mean 

axon density and nerve cross-sectional area. Imaging and quantification were 

performed in a masked fashion. 

 

Oxidative Stress PCR Array 

The Qiagen oxidative stress RT2 profiler mouse oxidative stress kit was used 

according to manufacturers’ protocol. Five retinas were pooled for each plate. Data was 

normalized to the housekeeping gene, monogalactosyldiacylglycerol. 
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Statistical Analysis 

 All statistical analyses were calculated using Graphpad Prism software (San 

Diego, CA). The 7-day DBA/2J analyses were performed using ANOVA and a Tukey 

post-hoc test. All other data-sets were pair-wise comparisons and thus the Student’s t-

test was performed. The means ± SEM were calculated and presented for each data 

set. 
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Results 

Delayed, not acute, EPO therapy decreases retinal cell death after blast 

 No TUNEL-positive cells were detected in sham blast retinas (Figure 3.1A). In 

the buffer-injected DBA/2J mice, 85% contained small clusters of TUNEL positive cells 

in the retina at 3 days and 1 week post-blast, consistent with our previously published 

findings (Figure 3.1B, D; (Bricker-Anthony et al., 2014a). We have defined these 

clusters as an 85m2 area of retina containing 5 or more TUNEL-positive cells. Clusters 

of TUNEL-positive cells were also present in 3 day post-blast retinas from mice that 

received EPO (Figure 3.1C). Occasional TUNEL-positive cells were detected in the 

EPO-treated 1 week post-blast retinas, but no clusters were found (Figure 3.1E). There 

was no quantitative difference in the number of TUNEL-positive clusters between 

groups at 3 days or 1 week post-blast (Figure 3.1F, G). However, there was an increase 

in the density of TUNEL-positive cells within the clusters in the 3 day post-blast retinas 

from EPO-treated mice, p<0.05 (Figure 3.1H). In contrast, there were no TUNEL-

positive cells detected in the 24h EPO treated, 1 week post-blast retinas as compared 

to an average of 9.8 ± 3.7 dying cells in the other groups, p<0.001 (Figure 3.1I).   
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Figure 3.1. Treatment with EPO beginning at 24h post-blast decreases cell death at 1 week, but 
not 3 days post-blast. Representative fluorescence micrographs of clusters of TUNEL-positive 
cells in sham blast (A), buffer-injected 3-day post-blast (B), EPO-injected 3-day post-blast (C), 
buffer-injected 1 week post-blast (D) and EPO-injected 1 week post-blast (E) DBA/2J retinas. 

Scale bar represents 50m. Bar graphs of clusters of TUNEL-positive cells at 3-days (F) and 1 
week post-blast (G). Bar graphs of the density of TUNEL-positive cells within each cluster at 3 
days (H) and 1 week post-blast (I). ***p<0.001.  
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 Clusters of TUNEL-positive cells were present in retinas from 1-month post-blast 

Balb/c mice treated with rAAV.eGFP (Figure 3.2A) or rAAV.EpoR76E (Figure 3.2B,C) 

regardless of treatment timing. The average number of clusters of TUNEL positive cells 

was similar across groups (Figure 3.2D). However, a subset of retinas from rAAV.eGFP 

treated mice had as many as 25-55 clusters, whereas the rAAV.EpoR76E treated mice 

never had more than 20 clusters of TUNEL-positive cells per retina (Figure 3.2D, red 

Figure 3.2. Treatment with rAAV.EpoR76E after blast decreases the number of TUNEL-positive 
cells at 1 month post-blast in Balb/c mice. Representative fluorescence micrographs of clusters 
of TUNEL-positive cells in retinas from mice injected with rAAV.eGFP (A), rAAV.EpoR76E 1-
month prior to blast (B, pre-blast), or rAAV.EpoR76E 1-day after blast (C, post-blast). TUNEL 

(red), DAPI (blue). Scale bar represents 50m. Scatter plots of the number of clusters of TUNEL-
positive cells (D) and the density of TUNEL-positive cells within each cluster (E). **p<0.01. Red 
boxes indicate statistically significant difference in variance between rAAV.eGFP and both 
rAAV.EpoR76E treatment groups. 
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box; Bartlett’s test of variance, p<0.0001). The density of TUNEL-positive cells within 

each cluster was comparable between the rAAV.eGFP and pre-blast rAAV.EpoR76E 

mice (Figure 3.2E). In contrast, there were fewer TUNEL-positive cells per cluster in the 

retinas of Balb/c mice treated with rAAV.EpoR76E post-blast, p<0.01 (Figure 3.2E). In 

addition, there was a statistically significant difference in density variance between 

these groups, p<0.0001 (Figure 3.2E, red box). With the exception of one cluster in the 

post-blast treatment group, the TUNEL-positive cell densities within the clusters were 

less than 300 cells in the rAAV.EpoR76E groups (Figure 3.2E) while the rAAV.eGFP 

group had several clusters with densities between 400-600 cells.  

 

Timing of EPO therapy affects optic nerve axons after blast 

 A small number of degenerated axons were present at 1 month post-blast in the 

Balb/c mouse injected with rAAV.eGFP as determined by dark profiles from collapsed 

myelin, or loose myelin (Figure 3.3A, C). Rare degenerating axons were also detected 

in the optic nerves of mice treated with rAAV.EpoR76E (Figure 3.3B,D). Upon 

quantification, a decrease in degenerating axons was detected in the mice injected with 

rAAV.EpoR76E after, but not in those injected prior, to blast (Figure 3.3E). The total 

number of axons was similar in all groups, likely due to the small number of 

degenerating axons (Figure 3.3F). 
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Figure 3.3. Treatment with rAAV.EpoR76E decreases axon degeneration in the Balb/c 
optic nerve at 1 month post-blast. Representative brightfield micrographs of optic nerve 
cross-sections from mice given: rAAV.eGFP pre-blast (A), rAAV.EpoR76E pre-blast (B), 

rAAV.eGFP post-blast (C), or rAAV.EpoR76E post-blast (D). Scale bar represents 10m 
and applies to all images. Bar graphs of the percent degenerating axons (E) and the total 
number of axons (F). *p<0.05. 
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Timing of EPO therapy affects glial reactivity after blast 

 

Figure 3.4. Treatment with EPO beginning at 24h post-blast decreases glial reactivity at 1 
week, but not 3 days post-blast. Representative fluorescence micrographs of GFAP 
immunolabeling in retinas from sham blast mice (A), or 3 day post-blast mice injected with 
buffer (B) or EPO (C). GFAP (red), DAPI (blue). Representative fluorescence micrographs of 
GFAP immunolabeling in retinas from sham blast mice (D), or 1 week post-blast mice injected 
with: buffer (E) or EPO beginning at 0hr (F), 6h (G), or 24h (H) after blast. GFAP (green), DAPI 

(blue). Scale bar in D represents 50m and applies to all images. I) Bar graph of the percent of 
retina containing GFAP-positive Müller cell processes. *p<0.05. 
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  In retinas from sham blast mice, GFAP immunolabeling was restricted to 

astrocytes and Müller cell endfeet (Figure 3.4A, D). Focal increases in GFAP 

immunolabeling occurred in the Müller cells of DBA/2J mice at both 3 and 7-days post-

blast (Figure 3.4B, E). GFAP-positive Müller cell processes were typically located within 

the mid-peripheral retina. GFAP-positive Müller cell processes were also present in 

EPO-treated post-blast retinas, although to a lesser extent in the 7-day post-blast group 

that received EPO beginning at 24h after blast (Figure 3.4C, F-H). The decrease in 

GFAP labeling in the latter group was statistically significant when compared to the 

buffer treated group, p<0.05 (Figure 3.4I). The extent of GFAP immunolabeling in the 3-

day post-blast mice was not quantified since the labeling appeared equivalent between 

the buffer and EPO-treated mice. 

 In sham blast Balb/c mice, GFAP immunolabeling was also restricted to 

astrocytes and Müller cell endfeet (data not shown). After blast, GFAP immunolabeling 

extends into the Müller cell processes regardless of treatment (data not shown). 

Quantification confirmed no difference in the extent of retina containing GFAP-positive 

Müller cell processes between groups. 

 

Nitrosative stress post-blast is affected by EPO therapy 

 We detected low levels of immunolabeling in sham blast DBA/2J mouse retinas 

(Figure 3.5A) and bright immunolabeling for nitrotyrosine in focal areas of the retina 

primarily localized to the inner retina after blast (Figure 3.5C,E). Immunolabeling was 

also present, primarily within the inner retina, in all EPO-treated retinas regardless of 

blast exposure (Figure 3.5B,D,F-H). In the 3-day post-blast DBA/2J retinas there was a 



 117 

large increase in nitrotyrosine immunofluorescence in retinas from EPO-treated mice as 

compared to buffer-treated mice, p<0.0001 (Figure 3.5I). In the 7-day post-blast cohort 

nitrotyrosine levels were also increased as compared to sham controls, p<0.001 (Figure 

3.5J). This increase was blunted by treatment with EPO, p<0.001.  

 

 

Figure 3.5. Treatment with EPO beginning at 24h post-blast decreases oxidative stress at 1 
week, but not 3 days post-blast in the DBA/2J mouse. Representative fluorescence micrographs 
of nitrotyrosine immunolabeling in retinas from: sham blast mice injected with buffer (A) or EPO 
(B); 3 day post-blast mice treated with buffer (C) or EPO (D); and 1 week post-blast mice treated 
with buffer (E) or EPO beginning at 0h (F), 6h (G), or 24h (H) post-blast. Nitrotyrosine (green), 

DAPI (blue). Scale bar represents 50m and applies to all images. Bar graphs of quantification of 
the mean anti-nitrotyrosine immunofluorescence intensity in the inner retina of 3-day post-blast 
DBA/2J mice (I) and 7 day sham and post-blast DBA/2J mice treated with buffer or EPO at 24, 
48, and 72h after blast (J). ***p<0.001, ****p<0.0001. 
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Figure 3.6. Treatment with rAAV.EpoR76E alters nitrotyrosine 
immunofluorescence in the inner retina of Balb/c mice after blast. 
Representative fluorescence micrographs of nitrotyrosine immunolabeling in 
retinas from mice injected with rAAV.eGFP (A), rAAV.EpoR76E prior to blast 

(B), or  rAAV.EpoR76E after blast (C). Scale bar represents 50m and applies 
to all images. Bar graph of quantification of anti-nitrotyrosine 
immunofluorescence in the inner retina at 1-month post-blast. *p<0.05, 
**p<0.01. 
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Immunolabeling for nitrotyrosine was also evident at 1-month post-blast in the 

Balb/c mice (Figure 3.6A-C). Nitrotyrosine immunofluorescence was increased in the 

pre-blast rAAV.EpoR76E group, p<0.05, and decreased in the post-blast 

rAAV.EpoR76E group, p<0.01, as compared to rAAV.eGFP injected Balb/c mice (Figure 

3.6D). 

 

EPO therapy increases hematocrit and retinal ferritin levels  

 In the 3-day post-blast mice the hematocrit increased from 43 ± 3.1% (avg ± sd) 

in buffer-injected mice to 46 ± 2.2% in EPO-injected mice, p<0.01 (Figure 4.7A). In the 

7-day post-blast mice, the hematocrit was increased from 42 ± 2.1% in the buffer-

injected mice to 50.5 ± 3.4%, 48.5 ± 3.0%, and 47.6 ± 2.1% in the 0h, 6h, and 24h EPO-

treated mice, respectively, p<0.0001 compared to buffer (Figure 3.7B). The hematocrit 

was also statistically significantly higher in the 0h EPO group as compared to the 24h 

EPO group, p<0.05.  

 We then performed anti-ferritin immunolabeling and quantification of 

fluorescence to determine if these slight increases in hematocrit were sufficient to cause 

an increase in retinal iron levels. The anti-ferritin labeled the photoreceptor inner 

segments, inner nuclear layer, and punctate structures in the inner plexiform layer 

(Figure 3.7). Ferritin immunolabeling appeared similar in buffer-treated, sham and blast-

exposed mice (Figure 3.7C, E, G). However, the amount of labeling appeared increased 

in retinas of mice that received EPO (Figure 3.7D, F, H-J) regardless of exposure to 

blast. Quantification confirmed an increase in ferritin levels in the retinas from EPO 

treated 3-day post-blast retinas as compared to buffer-injected mice, p<0.0001 (Figure 
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3.7K). This increase was primarily due to EPO and not blast since a large increase was 

detected in sham blast mice treated with EPO as compared to buffer injected sham 

mice, p<0.0001 (Figure 3.7L). Like the 3-day post-blast result, there was also an 

increase in ferritin immunolabeling in the EPO treated 7-day post-blast retinas as 

compared to buffer-injected 7-day blast mice, p<0.0001 (Figure 3.7L).  

Despite expressing Epo-R76E rather than wild-type EPO, the Balb/c mice 

exhibited a rise in hematocrit similar to what we detected in the short-term EPO protein 

study in the DBA/2J mice. The hematocrit in mice injected with rAAV.eGFP was 45 ± 

4.0%. In contrast mice treated with rAAV.EpoR76E had a hematocrit of 50 ± 5.0% (pre-

blast cohort) and 57 ± 11% (post-blast cohort), p<0.05 as compared to rAAV.eGFP 

mice. The ferritin immunolabeling pattern in Balb/c mouse retinas appeared similar in all 

post-blast groups regardless of treatment (data not shown). Quantification confirmed 

that there was no difference in ferritin levels between the pre-blast rAAV.eGFP and 

rAAV.EpoR76E groups (data not shown). In contrast, despite an elevated hematocrit, 

ferritin immunolabeling levels were lower in the post-blast rAAV.EpoR76E group, 53 ± 

1.8 (mean fluorescence ± SEM), as compared to the post-blast rAAV.eGFP group, 69 ± 

2.1, p<0.0001. 
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Figure 3.7. EPO increases hematopoiesis and retinal ferritin in the DBA/2J mouse. 
Box plots of hematocrit level at 3 days (A) or 1 week post-blast (B) showing an 
increase in all EPO treated mice. ****p<0.0001. *p<0.05, **p<0.01. Representative 
fluorescence micrographs of retinas labeled with anti-H-ferritin from sham blast 
mice injected with buffer (C) or EPO (D); 3 day post-blast mice injected with buffer 
(E), or EPO (F); 7 day post-blast mice injected with buffer (G), or EPO beginning at 
0h (H), 6h (I), or 24h after blast (J). H-ferritin (green), DAPI (blue). Scale bar 

represents 50m and applies to all images. Bar graphs of the mean anti-ferritin 
immunofluorescence intensity in retinas from 3 days post-blast DBA/2J mice (K), 
****p<0.0001, and sham and 7 days post-blast DBA/2J mice (L), *p<0.05, **p<0.01, 
****p<0.0001. 
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EPO and blast exposure alter oxidative stress gene expression in the DBA/2J 

mouse  

 In the 3 day post-blast, buffer-injected retinas there were increases in the mRNA 

levels of several NADPH oxidases (Figure 3.8A). In particular, Nox4 transcript was 

increased. In addition, expression of Nox 1, Noxa1, and Noxo1 were also increased. 

The expression of these proteins returned to sham levels at 1 week post-blast, however, 

mRNA levels of cytochrome b-245 alpha (Cyba), a NOX interacting protein, were 

increased at that time-point. EPO did not appear to alter expression levels of any of 

these proteins with the exception of decreasing Cyba message levels at 1 week post-

blast.  

 The mRNAs were organized into functional groups and plotted to assess trends 

(Figure 3.8B). There was an increase in expression of peroxireductases (Prdx) and 

superoxide dismutases in the 3 day post-blast, buffer-injected retinas, suggestive of an 

endogenous protective mechanism. In contrast, in all groups there was a decrease in 

gene expression in the EPO-treated 3 day post-blast retinas as compared to the buffer 

group.  

At 1 week post-blast gene expression levels of the antioxidant enzymes were 

comparable to or higher than the 3 day post-blast group. At 1 week post-blast, EPO 

again appeared to cause a decrease in expression of most of these enzymes, although 

levels were higher than in the EPO-treated 3 day post-blast group. One notable 

exception was an increase in Prdx in the EPO-treated 1 week post-blast group. In order 

to further investigate this effect, the expression of individual mRNAs with changes from 

sham of greater than 2-fold was graphed (Figure 3.8C). The increase in Prdx overall is 
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due to increases specifically in Prdx2 and Prdx6. This individual analysis also showed 

increases of 2-fold or greater in Gpx4, Gclm, Sod1, and Sod3 in buffer-injected post-

blast mice at 3 days and/or 1 week and not in the EPO-treated 1 week post-blast 

retinas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8. Both blast exposure and EPO treatment induce expression 
changes in oxidative stress-related genes. Bar graph of message 
levels of superoxide ion producing enzymes (A). Bar graph of message 
levels of antioxidant enzymes grouped into functional families (B). B= 
buffer, E=EPO. Bar graph of mRNA transcripts at least 2-fold different 
from the sham controls (C). 
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Discussion 

In agreement with TBI studies, we detected less cell death, optic nerve 

degeneration, glial reactivity, and oxidative stress by systemic injection of EPO (Peng et 

al., 2014). Further, as in other models, we also detected efficacy with EPO when 

treatment was delayed until 24h post-injury (Gawad et al., 2009; Xiong et al., 2010). 

However, the effect was timing specific with efficacy only detected when treatment was 

initiated at least 1 day post-injury and assessed at 1 week or 1 month post-injury. When 

treatment was initiated or stopped earlier, no benefit was found. This effect was not 

strain-specific since we also detected protection in the Balb/c mouse when treatment 

was initiated 3 weeks after blast, but not when it was initiated prior to blast.  

 A surprise finding was the lack of protection in 1 week post-blast retinas treated 

with EPO beginning at 0 or 6h post-blast. In these groups the last EPO injection was 

performed at or before 54h post-injury. Erythropoiesis was increased in all EPO-treated 

mice, causing a correlative increase in retina ferritin levels. The increase in iron could 

promote the Fenton reaction, converting hydrogen peroxide to the much more 

damaging hydroxyl radical and causing greater cell death. The peak of cell death after 

an eye-directed blast in the D2 mouse is 3 days post-blast (Bricker-Anthony et al., 

2014a). EPO has a rapid systemic half-life of approximately 2.5h in rodents (Fisher, 

2003; Lee et al., 2006a). Thus, in addition to having elevated tissue iron levels from an 

increased hematocrit, these mice likely did not have sufficient levels of EPO in the retina 

during the peak of cell death to induce expression of antioxidant enzymes and 

counteract the ongoing oxidative stress. EPO can activate Nrf2 within neuronal tissue to 

induce transcription from the antioxidant response element resulting in increased levels 



 125 

of many antioxidant enzymes (Bond and Rex, 2014). In agreement with this analysis, 

the oxidative stress microarray showed low levels of all tested antioxidant enzymes in 

the EPO-treated 3 day post-blast retinas. This lack of increase in antioxidant enzymes 

likely also explains the lack of benefit in the EPO-treated retinas at 3 days post-blast. 

These results suggest that the benefit of EPO treatment at 1 week post-blast was in 

spite of greater damage at 3 days post-blast.  

  Based on these results, greater therapeutic benefit would be expected by 

treatment with EPO if increased erythropoiesis is reduced. This can be achieved either 

through local delivery of EPO (King et al., 2007; Rex et al., 2009; Tsai et al., 2005; 

Weishaupt et al., 2004) or by systemic delivery of forms of EPO that have attenuated 

erythropoietic activity and yet maintain their neuroprotective function (Dumont and 

Bischoff, 2010; Leist et al., 2004; Sullivan et al., 2012, 2010, 2011a). To test this 

hypothesis, we treated mice with rAAV.EpoR76E and we detected less cell death when 

therapy was initiated after injury, but not prior to injury. EPO-R76E does induce a slight 

rise in hematocrit that is comparable, or lower, than what was induced by EPO 

treatment in the DBA/2J mice. Retinal ferritin levels were not increased in the pre-blast 

treatment group, and were surprisingly decreased in the post-blast group. The greater 

benefit in the post-blast group demonstrates that providing therapeutic levels of EPO as 

late as 3 weeks after blast is still effective.  

 In terms of clinical translation, these results suggest that: 1) oxidative stress is an 

important early component of retinal damage after blast trauma, 2) rapid treatment is 

not critical, 3) intraocular treatment with EPO maybe more effective than systemic 
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therapy as it would avoid induction of erythropoiesis and 4) EPO is protective to retinal 

neurons and axons in the optic nerve after ocular blast trauma. 
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CHAPTER 4 

 

GULO-/- MICE ARE SIMILAR TO BL/6 MICE AFTER BLAST EXPOSURE 

 

Introduction 

Oxidative and nitrosative stress play a significant role in the pathogenesis of 

ocular disease and injury (Ethen et al., 2007; Leal et al., 2007; Neufeld et al., 1999; 

Tanito et al., 2005). Elevations in oxidative stress also occur in both human patients 

with traumatic brain injury (Cernak et al., 2000) and animal models of traumatic brain 

injury (Readnower et al., 2010; Tyurin et al., 2000).  The high metabolic activity of the 

outer retina predisposes both photoreceptors and the RPE to damage from these 

stressors (Strauss, 2005). However, the inner retina is not immune to these stressors 

either, as levels of reactive oxygen species (ROS) in glaucomatous eyes can make the 

difference between cell survival and cell death (Tezel, 2006). 

 High levels of ROS can initiate lipid peroxidation within a cell membrane, which 

ripples through the membrane as one lipid radical steals electrons from a neighboring 

lipid, creating another lipid radical and threatening membrane integrity (Halliwell and 

Chirico, 1993). 4-HNE, a product of lipid peroxidation, modifies several proteins in the 

retina and RPE, including α enolase, triosephosphate isomerase and βB2 crystallin 

(Kapphahn et al., 2006). Modification of α enolase and triosephosphate, which are 

involved in glycolysis and gluconeogenesis, respectively, implies that 4-HNE may 

compromise cellular metabolism, while the impact of βB2 crystallin modification is 

currently unclear (Kapphahn et al., 2006). Modification of photoreceptor outer segments 
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with 4-HNE and malondialdehyde resulted in accumulation of shed outer segments 

within lysosomal compartments of the RPE in vitro (Kaemmerer et al., 2007).  

 In a similar manner, elevations in iNOS within the retina can lead to the formation 

of 3-nitrotyrosine residues on adolase A, another enzyme involved in energy 

metabolism (Koeck et al., 2004). Increased iNOS production is also linked to inner 

retinal cell death in ischemic injury and capillary damage in diabetic retinopathy 

(Sennlaub et al., 2002; Zheng et al., 2007). There is evidence of both lipid peroxidation 

(Mohan et al., 2013) and nitrosative stress (Bricker-Anthony et al., 2014b; a, 2016b) in 

the retina after ocular blast trauma. If 4-HNE and iNOS act on similar proteins and 

pathways in ocular blast trauma, then there is a strong possibility that energy 

metabolism will be impaired in both the retina and RPE. Additionally, photoreceptor 

outer segment turnover could also be impaired within the RPE due to 4-HNE adducts. 

Together, iNOS and 4-HNE can potentially exacerbate retinal injury following ocular 

blast trauma and should be considered when designing a therapeutic strategy. 

 To investigate the role of oxidative stress in ocular blast injury, we used 

gulonolactone oxidase knockout mice (Gulo-/-). The Gulo-/- mice lack the enzyme 

necessary for vitamin C synthesis and must receive vitamin C in their diet, like humans 

(Maeda et al., 2000). In the retina, vitamin C directly scavenges reactive oxygen species 

and regenerates vitamin E (Stoyanovsky et al., 1995). Additionally, Gulo-/- mice 

maintained on a low vitamin C diet exhibit increased levels of oxidative stress in 

neuronal tissue (Harrison et al., 2010), making them an ideal model for exploring the 

role of oxidative stress in ocular blast injury. 
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Materials and Methods 

Animals 

Gulonolactone (L-) oxidase knockout mice (Gulo-/-, n=8) were generously 

provided by Dr. Fiona Harrison. Gulo-/- mice were maintained on a low vitamin C diet 

comprised of 0.033 g/l ascorbic acid (Sigma Aldrich, St. Louis, MO) mixed into their 

deionized drinking water, along with 20 μl EDTA to stabilize the ascorbic acid in 

solution. All experimental procedures were approved by the Institutional Animal Care 

and Use Committee of Vanderbilt University, according to AALAC guidelines. Age-

matched Bl/6 animals were used throughout the study.  

 

Ocular Blast Injury 

Isofluorane anesthetized mice were secured and padded within a housing 

chamber that was placed within a larger tube, which shielded the body and head of the 

mouse from blast. The left eye of the mouse was positioned against a hole in the tube 

and was aligned with the barrel of the blast device. An overpressure air-wave with a 

peak pressure of 26psi was produced by a modified paintball marker (Empire Paintball, 

Sewell, NJ).  

 

Ascorbic acid quantification 

The Harrison laboratory measured ascorbic acid concentration in the cortex and 

liver of Gulo-/- mice. Tissue samples were weighed and homogenized in a 1.5 ml 

microfuge tube with 25% (w/v) aqueous metaphosphoric acid and 100 mM sodium 

phosphate buffer containing 5 mM EDTA (pH 8.0), mixed together in a ratio of 2:7. A 
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total of 10 µl of buffer solutions was used for each mg of tissue. The samples were then 

centrifuged at 13,600 g for 4 min at 3° C, and aliquots of the clear supernatant were 

taken for assay of ascorbic acid with ion pair HPLC. 

 

Visual acuity  

Photopic spatial frequency thresholds (i.e. visual acuity) were assessed by 

optokinetic nystagmus (OKN) (OptoMotry, Canada) in awake mice at baseline and post-

blast or sham. A step-wise, masked paradigm was used. Mice were acclimated to the 

testing chamber for 5 min prior to the initiation of each test. The speed of sinusoidal 

grating rotation and contrast were maintained at 0.042 c/d and 100%, respectively. 

 

Electroretinogram (ERG)  

Flash ERGs were performed at baseline and 28 days post-blast in mice dark-

adapted overnight, anesthetized with ketamine/xylazine, dilated with 1% tropicamide, 

and placed on a heated mouse platform within the Ganzfeld dome of a Diagnosys LLC 

Espion Electrophysiology system (Lowell, MA). Mice were exposed to flashes of light 

ranging from -2 to 2.88 log cd*s/m2 with a flash frequency of 2000Hz. For flashes below 

-1 log cd*s/m2, the inter sweep delay was 10 sec, for the -1 log cd*s/m2 flash it was 

15sec, and for all remaining flashes, the delay was 20 sec. Oscillatory potentials (OPs) 

were measured at 3 log cd*s/m2 sampled at 2000Hz with an inter sweep delay of 15sec. 

Amplitudes were measured from trough to peak. 
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Tissue collection 

Mice were euthanized by an overdose of avertin delivered via intraperitoneal 

injection and transcardially perfused with 4% paraformaldehyde (PFA, Electron 

Microscopy Sciences, Hatfield, PA) and phosphate buffered saline (PBS). The tissues 

were collected and stored in 4% PFA. All mice were collected at 1 month post-injury to 

coincide with the peak of cell death and oxidative stress in the Bl/6 mouse (Bricker-

Anthony et al., 2014b) 

 

Statistical analysis 

 The mean and standard error of the mean were calculated and presented for 

each data set. We performed a two-way ANOVA with a Bonferroni’s post-hoc test on 

the visual acuity and ERG data using GraphPad Prism software (GraphPad, La Jolla, 

CA).  
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Results 

Low vitamin C gulo-/- mice and bl/6 mice exhibit similar responses to ocular blast 

trauma 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

 

 

 

To make the Gulo-/- mice vulnerable to oxidative stress, we placed them on a low 

vitamin C diet (0.033 g/l in their drinking water) 1 month prior to any baseline 

assessments.  The Harrison laboratory confirmed the low vitamin C levels using HPLC 

on liver homogenates and found that mice on a low vitamin C diet had significantly 

lower levels than those maintained on a high vitamin C diet (1.0 g/l; Figure 4.1). Despite 

their diminished defenses against oxidative stress, the Gulo-/- mice only exhibited 

slightly diminished visual acuity at 1 month post-blast when compared to Bl/6 mice 

(Figure 4.2). 

Figure 4.1. Confirmation of low ascorbic acid levels by HPLC. 
Ascorbic acid levels in the livers of mice on a low ascorbic acid diet 
(0.033 g/l) are significantly lower than those of mice on a high 
ascorbic acid diet (1.0 g/l). Values represent the mean ± SEM. 
****p<0.0001 
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We also measured ERG amplitudes at baseline and 1 month post-blast in the Gulo-/- 

mice. There were no statistically significant differences between blast-exposed Bl/6 

mice and Gulo-/- mice at 1 month post-injury (Figure 4.3). 

 

 

Figure 4.2. Gulo-/- mice exhibit modest deficits in visual acuity at 1 
month post-blast when compared to Bl/6 mice. Values represent the 
mean ± SEM. *p<0.05. 
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Figure 4.3. Gulo-/- ERG amplitudes don’t change after blast exposure. The ERG 
amax (A), bmax (B) and oscillatory potentials (C) in Bl/6 and Gulo-/- mice at baseline 
and 1 month post-blast. Values represent the mean ± SEM. 
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Discussion 

These initial findings in the Gulo-/- mice suggest that vitamin C deficiency is 

insufficient to exacerbate visual dysfunction after ocular blast trauma. However, these 

are preliminary results based on a small number of mice and we still need to perform 

immunolabeling on the retinas to see if vitamin C deficiency results in increased 

nitrosative stress and cell death. Given these results, a review of the role of vitamin C in 

the regulation of retinal oxidative stress is warranted. 

Among the various cells and tissues in the body, vitamin C levels are highest in 

leukocytes, eyes, adrenal glands, pituitary gland and the brain (Office of Dietary 

Supplements - Vitamin C, 2016). In the eye, vitamin C levels are highest in the retina, 

aqueous humor, lens, retinal pigment epithelium and choroid (Woodford et al., 1983). 

Previous studies have demonstrated that vitamin C supplementation protects the retina 

from light-induced damage in animal models (Woodford et al., 1983; Li et al., 1985) and 

potentially lowers the risk of age-related macular degeneration (AMD) in human patients 

(Seddon et al., 1994; Age-Related Eye Disease Study Research Group, 2001). Vitamin 

C in the aqueous humor can also inhibit neutrophil secretion of myeloperoxidase, which 

contributes to and serves as a marker of oxidative stress (Rosenbaum et al., 1985), but 

we did not observe any invading neutrophils in the Bl/6 eye after blast, so this protective 

mechanism is not relevant for the Gulo-/-. 

The pathogenesis of both light-induced retinal damage and AMD are unlike the 

pathogenesis of ocular blast injury. Retinal light damage causes increased oxidative 

stress that can cause cell death in the outer retina, but its pathogenesis is primarily 

mediated by RPE65 recycling of rhodopsin (Wenzel et al., 2001). AMD is also 
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characterized by increased oxidative stress in the outer retina, but one of the strongest 

risk factors for developing the disease is a common polymorphism in the complement 

factor H gene (Klein et al., 2005). Oxidative stress from retinal light damage and AMD 

often causes lipid peroxidation in the photoreceptor outer segments, which can be 

blocked by vitamin C (Woodford et al., 1983; Bendich et al., 1986; Pennesi et al., 2012). 

However, we have performed some preliminary immunolabeling for 4-HNE in blast 

exposed retinas from Bl/6 mice and have not observed positive immunolabeling. Thus, if 

lipid peroxidation does not contribute to the pathogenesis of ocular blast injury, loss of 

vitamin C would not exacerbate the injury.  

Vitamin C also functions as a direct scavenger of superoxide, singlet oxygen and 

hydroxyl radicals (Bendich et al., 1986). We showed that markers of superoxide and 

reactive oxygen species increased in vivo in the Balb/cJ retina after blast (Bricker-

Anthony et al., 2016b). While we have not tested those markers in the Bl/6 or Gulo-/- 

retinas after blast, we do know that peroxynitrite is likely elevated after blast injury in the 

Bl/6 retina (Bricker-Anthony et al., 2014b) because we observed increased 

immunolabeling for 3-nitrotyrosine. 

 Peroxynitrite, produced by the interaction of superoxide anions with nitric oxide, 

causes the formation of 3-nitrotyrosine (Ahsan, 2013). Interestingly, vitamin C is 

inefficient at competing with nitric oxide for superoxide to block peroxynitrite formation at 

physiological levels (1 mmol/L) and is only partially effective at blocking peroxynitrite 

formation well beyond physiological levels (10 mmol/L) in vitro (Jackson et al., 1998). In 

turn, elevated peroxynitrite can deplete both vitamin C and vitamin E through oxidation 

and then uncouple oxidative phosphorylation in the mitochondria (Vatassery et al., 
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2004). These reactions are incredibly damaging for several reasons. First, oxidation of 

vitamin C prevents it from scavenging reactive oxygen species and blocks its ability to 

regenerate vitamin E (Bendich et al., 1986). Second, depletion of vitamin C causes 

depletion of glutathione (Henning et al., 1991), a critical antioxidant for both lens and 

retinal health (Ganea and Harding, 2006). Third, loss of vitamin E increases lipid 

peroxidation in the retina, which causes photoreceptor cell loss and oxidative damage to 

the RPE (Robison et al., 1979). Finally, uncoupling oxidative phosphorylation in the 

mitochondria reduces ATP production (Vatassery et al., 2004).  

If vitamin C is inefficient at blocking the formation of peroxynitrite at normal 

physiological levels, then low levels of vitamin C are unlikely to exacerbate ocular blast 

injury. Thus, to assess the role of oxidative stress in ocular blast injury, we will need to 

examine the effects of losing an antioxidant that efficiently blocks peroxynitrite 

formation. One such candidate is manganese superoxide dismutase (SOD2), which can 

scavenge reactive oxygen species and effectively prevent formation of peroxynitrite in 

the presence of elevated nitric oxide (Jackson et al., 1998). Mice with only one copy of 

the Sod2 gene exhibit increased oxidative stress in the brain (Liang and Patel, 2004), as 

well as cell loss and mitochondrial abnormalities in the retina (Sandbach et al., 2001). 

Using the Sod2+/- mouse moving forward may provide us with a clearer picture of how 

oxidative stress contributes to the pathogenesis of ocular blast injury. 
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CHAPTER 5 

 

DISCUSSION 

 

Mechanisms of vision loss after ocular blast injury 

 Vision loss is a common consequence of ocular blast injuries in both civilians and 

members of the military (Alam et al., 2012; Erdurman et al., 2011; Thach et al., 2008; 

Weichel et al., 2008; Yonekawa et al., 2014; Phillips et al., 2013).  We also 

demonstrated that vision loss occurs in both Bl/6 (Bricker-Anthony et al., 2014b) and D2 

(Bricker-Anthony et al., 2014a) mice after ocular blast trauma. We do not know the 

specific mechanisms underlying vision loss after blast exposure, but there are several 

possibilities. 

 During the first week post-injury, visual acuity deficits occurred in both Bl/6 and 

D2 mice and ERG deficits occurred in the D2 mice. These alterations in visual function 

coincided with multiple pathological changes in the eye, including RPE vacuoles, 

accumulated debris in the RPE, photoreceptor outer segment damage and 

accumulation in the subretinal space, retinal detachments, photoreceptor cell death and 

increased nitrosative stress. The RPE is critical for visual function in the outer retina, 

due to its role in photoreceptor outer segment phagocytosis, transfer of oxygen and 

nutrients from the choriocapillaris to the photoreceptors, retinoid metabolism and 

forming part of the blood-retinal barrier (Schraermeyer and Heimann, 1999). We 

observed RPE vacuoles throughout the eye in all mouse strains studied; these vacuoles 

are indicative of oxidative stress (Fujihara et al., 2008). Oxidative stress in the RPE is 
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associated with cell death (Garg and Chang, 2003), disruption of tight junctions and loss 

of the blood-retinal barrier (Bailey et al., 2004) and mitochondrial DNA damage and 

impaired energy production (Liang and Godley, 2003). Oxidative stress-induced 

damage to the RPE could also potentially impair retinoid metabolism and could explain 

why we observed a transient decrease in visual acuity in both the D2 and Bl/6 mice 

during the first week post-blast and the transient decrease in the ERG a wave amplitude 

in the D2 mice during the first week post-blast, as both mouse strains exhibited 

extensive RPE damage in the first week post-blast that resolved by 1 month post-blast.  

 However, RPE damage does not explain why we observed decreases in the 

ERG b wave and visual acuity in the D2 mice at 1 month post-blast. It is possible that 

visual dysfunction at 1 month post-blast in the D2 mice was driven by inner retinal 

changes, as damage to the inner retina is associated with reductions in the ERG b wave 

(Block and Schwarz, 1998; Li et al., 2002) and oscillatory potential amplitudes 

(Holcombe et al., 2008). We also observed cell death and nitrosative stress in the inner 

retina at 1 month post-blast in the D2 mice that could have negatively impacted the 

ERG b wave, oscillatory potentials and visual acuity. Since we also observed optic 

nerve degeneration after retinal ganglion cell loss in the D2 retina after blast, 

transmission of visual information to the primary visual cortex may also be impaired 

after blast, which could be assessed using visually evoked potentials (Creel, 2012).  

Altogether, these findings suggest that inner retinal damage and dysfunction may drive 

long-term visual deficits after blast, which is supported by findings in Mohan and 

colleagues’ blast model (Mohan et al., 2013) and by deficits in visually evoked potentials 

in patients with traumatic brain injury (Freed and Fishman-Hellerstein, 1997).  
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Translating mechanical insults into pathological changes 

 While we successfully recapitulated features of ocular blast trauma in three 

different inbred strains of mice and determined how EPO influences neuronal survival 

through modulation of oxidative stress after ocular blast injury, we still lack a true 

mechanistic understanding of what happens in the eye during blast exposure. 

Specifically, we do not know how exposure to a blast wave causes elevations in 

oxidative stress and focal cell death in the retina. However, we can place our data in the 

context of known mechanisms in traumatic brain injury and other biomechanical insults 

to piece together an understanding of what occurs when the eye is exposed to blast.  

 In our injury model, the first event is the impact of the overpressure air-wave. 

Finite element modeling, a computational method used to simulate physics problems, 

has been used to model the impact of an overpressure air-wave on the eye (Rossi et 

al., 2012). The finite element model of blast injury to the eye showed that the pressure 

wave initially impacted the cornea and anterior chamber, caused globe deformation, 

traveled through the vitreous and hit the posterior pole of the eye, as well the bony orbit 

surrounding the eye. Interestingly, the blast wave didn’t stop when it hit the posterior 

pole and orbit, but reverberated throughout the globe, causing small sinusoidal waves of 

positive pressure and negative pressure to impact various posterior structures, such as 

the retina, optic nerve head, RPE and choroid. The reverberation of these small waves 

throughout the posterior chamber could potentially explain why we observed focal 

pockets of damage in the mid-peripheral and central retina instead of uniform damage 

at a single point. This pattern of damage was also seen in blunt ocular trauma 

(Giovinazzo, 1986) and ocular blast trauma (Cockerham et al., 2011) in human patients. 
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Demonstrating that these pressure waves occur in the eye in vivo may be technically 

challenging, but is not impossible. Recent advances in fabrication of pressure sensing 

devices led to the creation of implantable devices capable of measuring intraocular 

pressure in both mouse (Ha et al., 2012) and human (Melki et al., 2014) eyes. An 

implantable device could potentially measure oscillations in intraocular pressure 

produced by a blast wave in the living mouse eye. 

 Reverberating pressure waves in the eye likely subject ocular tissues, including 

the retina, vasculature, optic nerve head, RPE and choroid, to significant mechanical 

stress (Rossi et al., 2012). In our injury model, the gross pathological features of 

mechanical damage were manifested by retinal detachments, photoreceptor outer 

segment damage and RPE damage, which are observed in both blunt ocular trauma 

(Johnston, 1991; Sarrazin et al., 2004) and ocular blast trauma (Erdurman et al., 2011; 

Weichel et al., 2008). Physical separation of the photoreceptor outer segments from the 

RPE disrupts the flow of oxygen and nutrients from the RPE to the photoreceptors and 

causes hypoxia and apoptosis of the photoreceptors within 3 days (Cook et al., 1995; 

Mervin et al., 1999). Retinal detachment also places significant stress upon the RPE 

cells (Mervin et al., 1999), which might explain the extensive vacuolization. However, 

the retinal detachments in our injury model were infrequent in all three mouse strains. 

We also did not observe evidence of apoptotic cell death in the retina after blast, even in 

the photoreceptors. Additionally, RPE damage also occurred in the absence of retinal 

detachments, which is suggestive of direct injury from the blast or cytotoxic stress from 

another source. If photoreceptors underwent necrosis directly in response to blast, 

which has been observed in traumatic brain injury (Zhou et al., 2012), the process 
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would generate reactive oxygen species, extracellular ATP and TNF-α and stress the 

neighboring RPE cells (Zhang et al., 2009). However, this explanation is unlikely as we 

mostly saw positive immunolabeling for markers of necrosis in the Bl/6 and D2 after the 

resolution of RPE damage at 1 month. Therefore, blast likely directly damaged the RPE.  

 Direct mechanical stress from the blast could have also induced pathological 

changes in the retinal vasculature. Endothelial cells are capable of transducing 

mechanical stress into biochemical cascades through ion channels, integrins and 

caveolae (Traub and Berk, 1998). In response to mechanical stress and 

ischemia/reperfusion injury, endothelial cells released nitric oxide (Traub and Berk, 

1998; Topper et al., 1996; Goldstein et al., 1996). This provides a potential explanation 

for the increased nitrotyrosine immunolabeling in the inner retina within days of blast 

injury in our model, as nitric oxide contributes to the formation of peroxynitrite (Pacher et 

al., 2007). Possible contributions of the retinal vasculature to the pathogenesis of ocular 

blast injury could be assessed using an endothelial nitric oxide knockout mouse (Le 

Gouill et al., 2007). 

 Mϋller glia (Lindqvist et al., 2010) and microglia (Sappington and Calkins, 2008) 

are also capable of transducing mechanical stress into signaling cascades that could 

contribute to the pathogenesis of ocular blast trauma. Mechanical stress induced 

elevated intracellular calcium and changes in gene expression in Mϋller glia (Lindqvist 

et al., 2010); these changes could lead to Mϋller glia reactivity, disruption of ion and 

neurotransmitter homeostasis and promotion of retinal degeneration after blast 

(Bringmann et al., 2006). Mϋller glial reactivity occurred within days of blast injury in our 

model and could have possibly been initiated by direct mechanical strain from the blast. 
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Previous research also demonstrated that microglial transduce mechanical stimuli 

through the TRPV1 receptor, which caused increased intracellular calcium, changes in 

gene expression and secretion of Il-6 (Sappington and Calkins, 2008). In another study, 

TRPV1 receptor activation caused microglia to secrete reactive oxygen species, 

indicating that TRPV1 activation might promote microglial reactivity (Schilling and Eder, 

2009). We observed some microglia with morphology suggestive of reactivity in 

conjunction with nitrosative stress and cell death after blast injury in our model, but we 

would need to conduct additional studies to confirm their reactive status. Thus, blast 

injury may have also directly induced microglial reactivity in our model and contributed 

to elevated oxidative stress levels. Since transduction of mechanical stress in both 

Mϋller glia and microglia appears to be mediated by calcium influx (Lindqvist et al., 

2010; Sappington and Calkins, 2008), intraocular injection of a calcium chelator after 

blast could be used to test the hypotheses that glial reactivity is directly induced by 

mechanical stress from blast and results in elevated oxidative stress post-blast. 

 Moving forward, more research is needed to provide a comprehensive 

understanding of the pathological mechanisms of blast injury to the eye. Multiple tissues 

in the retina are affected by blast and may drive excess production of oxidative stress 

after injury, which likely caused the cell death, inflammation and vision loss that we 

observed in our model. Hopefully, this research will inform the development of 

therapeutic agents for the treatment of ocular injuries, as over 2 million people 

experience ocular trauma and related vision loss every year (Kuhn et al., 2006). 
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Potential sources of oxidative stress after blast injury 

 Oxidative stress is common after blast-induced traumatic brain injury in both 

animal models (Readnower et al., 2010; Abdul-Muneer et al., 2013) and human patients 

(Cernak et al., 2000). Due to its heavy oxygen consumption, light exposure and 

enrichment in chromophores and polyunsaturated fatty acids (Beatty et al., 2000), the 

retina is naturally prone to oxidative stress. We also demonstrated that oxidative stress 

increased in the retina after blast injury. There are multiple potential sources of 

increased oxidative stress after blast injury to the eye, which I describe below. 

The retina vasculature could contribute to elevated oxidative stress after blast 

injury. As mentioned in the previous section, endothelial cells secrete nitric oxide in 

response to mechanical stress (Traub and Berk, 1998). There are three known isoforms 

of nitric oxide synthase, including endothelial nitric oxide synthase (eNOS), neuronal 

nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) (Goldstein et 

al., 1996). eNOS and nNOS are produced constitutively and play important roles in 

vasodilation and synaptic transmission, respectively, while iNOS is produced in 

response to inflammatory stimuli such as TNF-α (Goldstein et al., 1996). eNOS and 

nNOS typically produce small amounts of nitric oxide for a few hours, but iNOS 

produces relatively large amounts of nitric oxide for several days (Goldstein et al., 

1996). All three isoforms of nitric oxide synthase can contribute to the formation of 

reactive nitrogen species like peroxynitrite, which causes 3-nitroyrosine formation (Fink 

et al., 1999). Elevated intraocular pressure (Rokicki et al., 2015) or exposure to 

inflammatory cytokines (Chakravarthy et al., 1995) can trigger iNOS expression in 

endothelial cells. Additionally, superoxide is also required for the formation of 
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peroxynitrite (Pacher et al., 2007). One potential source of superoxide after blast injury 

is red blood cells (Elsayed et al., 1997). Blast exposure was previously shown to induce 

lysis of red blood cells, which subsequently released superoxide (Elsayed et al., 1997). 

Reactive microglial cells also secrete superoxide (Schilling and Eder, 2009). Elevated 

superoxide was also present in the retina after blast injury in our model. The 

combination of superoxide released from damaged red blood cells and reactive 

microglial cells with nitric oxide from the endothelial cells could lead to peroxynitrite 

formation in the inner retina. Peroxynitrite is also capable of diffusing through cell 

membranes (Pacher et al., 2007) and could initiate the spread of injury from focal 

pockets of damage in the retina.  

Mitochondria could also contribute to elevated oxidative stress after blast injury. 

Numerous studies have demonstrated that mitochondrial dysfunction contributes to 

neuronal death and oxidative stress in the aftermath of traumatic brain injury (Xiong et 

al., 1997; Lifshitz et al., 2004; Singh et al., 2006). These effects appear to be primarily 

mediated by an influx of calcium into neurons after injury, which depolarizes the 

mitochondrial membrane and uncouples the electron transport chain, resulting in 

increased production of mitochondrial reactive oxygen species (Singh et al., 2006). We 

do not have any data on calcium homeostasis after blast injury to the retina, but it is 

possible that changes in intraocular pressure during blast exposure could activate TRP 

channels and cause an influx of calcium that disrupts the electron transport chain. The 

TRP channels are mechanoreceptors that are expressed throughout the retina (Gilliam 

and Wensel, 2011); in response to mechanical stress, the TRP channels open and 

allow calcium to the enter the cell (Yin and Kuebler, 2010). Interestingly, one of the TRP 
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family members, TRPM1, is necessary for the ON-bipolar cell response that drives the 

ERG b wave (Shen et al., 2009). Changes in TRPM1 activation could contribute to the 

ERG b wave deficits we observed in the D2 mice.  

Another potential source of post-blast oxidative stress is the necroptosis 

pathway. RIP1 and RIP3, markers of necroptosis, were both increased in the retina after 

blast in both Bl/6 and D2 mice. Downstream of TNF-α receptor activation, RIP1 and 

RIP3 form a complex called the necrosome (Li et al., 2012). RIP3 directly interacts with 

several enzymes involved in cellular energy metabolism, specifically glycogen 

phosphorylase L, glutamate ammonia ligase and glutamate dehydrogenase (Zhang et 

al., 2009). Interaction with RIP3 pushes these enzymes into overdrive and causes 

increased production of reactive oxygen species, depletion of ATP and necrosis (Zhang 

et al., 2009; Moriwaki and Chan, 2013). The necroptosis pathway can also increase 

microglial reactivity and further exacerbate oxidative stress (Trichonas et al., 2010).  

Finally, we also identified another set of contributors to post-blast oxidative stress 

in the D2 mice: the NADPH oxidases (Bricker-Anthony et al., 2016a). The NADPH 

oxidase family, which consists of NOX1-5 and DUOX1-2, was first discovered in 

immune cells (Donkó et al., 2005). In neutrophils, NADPH oxidases were shown to 

catalyze the transfer of electrons from NADPH to molecular oxygen, which generated 

superoxide radicals that the neutrophil utilized to attack foreign invaders (Donkó et al., 

2005). Since their initial characterization in peripheral immune cells, the NADPH 

oxidases have also been identified in other cell types throughout the body and the 

retina, including RGCs, Mϋller glia and microglia (Deliyanti and Wilkinson-Berka, 2015). 

In response to increased intraocular pressure or retinal ischemia, RGCs, microglia and 



 147 

Mϋller glia upregulate expression of the NADPH oxidases, resulting in excess 

production of reactive oxygen species and cell death (Deliyanti and Wilkinson-Berka, 

2015; Dvoriantchikova et al., 2012). Interestingly, the NADPH oxidases are activated by 

increased intracellular calcium (Nauseef, 2008), which could be one the first signals that 

initiates neurodegenerative changes after blast.  

 

Summary 

 These studies demonstrate several things. First, ocular blast trauma induces 

both acute and long-term changes in the retina and optic nerve. Our findings indicate 

that cell death, inflammation and oxidative stress are persistent up to 2 months post-

injury and may continue over time without therapeutic intervention. We also 

demonstrated that we can model various degrees of injury using genetically distinct 

mouse strains, with the Bl/6 representing a mild closed-globe injury phenotype, the D2 

representing a severe open-globe like phenotype and the Balb/cJ representing a 

closed-globe phenotype with features of traumatic optic neuropathy.  

 Secondly, we showed that erythropoietin reduces cell death, nitrosative stress 

and optic nerve damage after injury. However, the timing and treatment delivery method 

are critical. Acute systemic treatment with EPO boosts retinal iron levels and further 

increases oxidative stress in the retina through the Fenton reaction. To avoid these 

damaging side effects, less hematopoietic forms of EPO should be delivered 

intraocularly to prevent increased systemic hematopoiesis.  

 Finally, our preliminary results with the Gulo-/- mice suggest that vitamin C 

depletion is not sufficient to exacerbate ocular blast injuries. Oxidative stress is common 
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after blast in all three of our mouse models and appears to contribute to worse 

outcomes with acute EPO treatment. It is possible that the increased oxidative stress in 

the Gulo-/- retina is too mild to exacerbate the injury. However, we need still need to 

quantify oxidative stress in the Gulo-/- after blast.  

 Together, these findings demonstrate that we can effectively model various 

aspects of ocular blast trauma and test potential treatments for injury, which are greatly 

needed. 
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