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ABSTRACT 

Standardizing the care of patients with complex problems in hospital settings is a difficult challenge for 

physicians, nurses and other medical professionals. Diverse conditions further complicate patient 

management. While in acute care settings such as intensive care units, the inherent problems of 

stabilizing and improving vital patient parameters is further complicated by the division of 

responsibilities among different individuals and teams, in outpatient settings the management of 

chronic diseases introduces additional complications related to the long-term treatment of patients. The 

use of evidence-based guidelines for managing complex clinical problems has become the standard of 

practice. Computerized support for implementing such guidelines has tremendous potential; however, 

addressing this problem requires a carefully coordinated use of various techniques from the field of 

computer science, as guidelines developed by the medical community are not directly interpretable by 

computers. 

In this thesis, first, we present a survey of literature and a study on the open questions from the field of 

clinical decision support focusing on the use of model-based techniques for specifying and implementing 

evidence-based guidelines. Following the survey, we describe a model-based architecture for enabling 

the construction, management, verification and execution of such guidelines. The presented 

architecture is model-based in the sense that it relies upon the formal modeling of medical guidelines, 

including the specification of input parameters such as signs and symptoms, output parameters such as 

medical actions, and other guideline-related constraints such as rules, regulations and policies. The 

behavioral semantics of these models is provided by the application of custom-built formal behavioral 

templates defined with the help of Matlab Simulink/Stateflow and model composition. The benefits of 

our approach are illustrated with the modeling, execution and formal analysis of a clinically relevant 

example, a sepsis management guideline. 

Keywords 

Executable medical guidelines, Model-based development, Patient workflow management system, 

Design languages, Domain-specific architectures, Medical information systems, Modeling, Ontology 
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CHAPTER I.  

 

INTRODUCTION TO GUIDELINE-DRIVEN CLINICAL INFORMATION SYSTEMS 

In order to understand why the use of guideline-driven clinical information systems is important in 

modern health care one needs to examine the current challenges that health care faces today. 

Challenges in health care 

According to a recent study of the Institute of Medicine, the primary challenges of health care currently 

are to make health care delivery safe, effective, patient-centered, timely, efficient, and equitable [1]. 

The study stresses that although addressing these challenges entails many different factors (e.g. 

emphasis on disease prevention rather than disease treatment), none is more important than the 

effective use of information. The study provides examples for effective use of information that includes: 

(1) cognitive support for health care professionals to help integrate evidence-based practice guidelines 

and research results into daily practice and to help integrate patient-specific data where possible, (2) 

instruments and tools that allow clinicians to manage a portfolio of patients and to highlight problems as 

they arise both for an individual patient and within populations, (3) rapid integration of new 

instrumentation, biological knowledge, treatment modalities, etc. into a “learning” health care system 

that encourages early adoption of promising methods 

Potential solutions 

Clinical Information Systems 

To alleviate some of the above mentioned challenges, namely to reduce preventable errors in patient 

care and minimize administrative burdens, health care organizations (HCOs) are migrating from 

traditional, paper-based records to clinical information systems (CISs), a collection of computer-based 

applications that enables sophisticated services for patients and health care providers. 

Various empirical evidence indicates that CISs can decrease health care costs [2–5], strengthen staff 

productivity [6–8] and promote patient safety [9,10]. Consequently, HCOs are adopting CISs to enable a 
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wide array of functions, including data sharing, decision support, employee training, student education, 

research, and access to reference materials. 

Possibility for further improvements 

The increasing role of CIS is reflected in another recent study published by the Committee on Engaging 

the Computer Science Research Community in Health Care Informatics [11]. This study defines general 

principles for success for future health care systems, developed as a guide for CIS designers. 

While elaborating on these principles, the committee agreed that a 21st century vision of health care 

would require intensive use of information technology to acquire, manage, analyze, and disseminate 

health care information and knowledge. The primary design challenges were categorized as: (1) data 

management, (2) integration and (3) medical knowledge management. 

The design and use of CISs that base their operation on electronic medical records (EMRs)1 adheres to 

the principles mentioned earlier and directly addresses the design challenges that fall into the first two 

categories. Accordingly, data management functions (1) take advantage of advanced information 

technology in creating and maintaining large-scale data repositories and in the automatic (e.g. sensor-

based) capture of patient data. Solving the integration challenge for CISs (2) includes providing support 

for collaboration and for information sharing among software systems. 

However, some of the most complex challenges are related to (3), the management of medical 

knowledge. Open problems include support for assisting the cognitive functions2 of all caregivers (e.g. 

health professionals, patients, and their families) and support for capturing, managing and executing 

evidence-based guidelines. Due to their significance, we discuss these problems in more detail below. 

The components of CISs that are designed to assist cognitive functions in care delivery are called clinical 

decision support (advisory) systems3 (CDSSs). They form a significant part of the field of clinical 

                                                           
 

1
  The phrase EMR and EHR (electronic healthcare record) are often used synonymously. Typically, “EMR” is used in a clinical 

setting, often as a direct reference to an EMR-based CIS, whereas “EHR" is more broad expression and can refer to personal 
health records or home-based care. 

2
  A cognitive function is a “mental process that involves symbolic operations (e.g. perception, memory, creation of imagery, 

and thinking). It encompasses awareness and capacity for judgment.” [12] 

3
  There are many definitions for CDSS in existence. An example can be found in [13,14], which says CDSSs “link health 

observations with health knowledge to influence health choices by clinicians for improved health care”. In this document 
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knowledge management technologies through their capacity to use a combination of technology and 

expert knowledge to support the clinical process, from diagnosis and investigation through treatment 

and long-term care [16]. Among the full spectra of software components of a CIS there can be several 

that include clinical decision support functionality in one way or another. Here, we discuss knowledge-

based versions of CDSSs4, which link health observations (patient data) with health knowledge to 

generate case specific advice through inferencing, and thus influence choices made by clinicians for 

improved health care [8] (see right side of Figure 1). 

Below are examples for established knowledge-based CDSS system categories (a more detailed 

presentation of CDSSs including their history is presented in Chapter II). 

1. Computerized physician order entry systems (CPOEs): These systems in general depend on 

comprehensive EMRs to provide means to physicians and nurses to create and execute orders 

for medications, tests, procedures and consults. They often include CDSS functionality to 

provide help with the completion and the validation of orders (e.g. recommending proper 

dosing and checking for drug-drug interactions). CPOE and related systems are often termed 

‘physician workflow’ systems because they are designed to fit into and assist the normative 

group of activities that flow in between the specific surrounding systems and are considered the 

standard practice of medicine. 

2. Clinical process management (CPM) systems: In these systems knowledge, tools and techniques 

are applied in a goal-oriented manner to define, visualize, measure, execute, control, report and 

improve processes of a clinical workflow. A clinical workflow (CWF) in this context can be 

thought of as a collection of organized tasks5 designed to carry out a process in a clinical setting 

through facilitating some combination of software systems and groups of people. CWFs often 

                                                                                                                                                                                           
 

however, the term CDSS is defined to be more general: as a decision support system (DSS) in a clinical setting. The way DSS is 
interpreted in this document is described in [15]. DSS is “an umbrella term used to describe any computer application that 
enhances the user’s ability to make decisions. More specifically, the term is usually used to describe a computer-based 
system designed to help decision-makers use data, knowledge and communications technology to identify problems and 
make decisions to solve those problems.” 

4
  Knowledge-driven decision support systems are systems designed to recommend actions to users. These AI-based systems 

are typically designed to sift through large volumes of data, identify hidden patterns in that data and present 
recommendations based on those patterns. 

5
  In this thesis, we use the words task, action and step interchangeably to describe a task potentially deemed for completion 

by a person or a system when dealing with a given (sub-)problem in a medical guideline. 
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incorporate the use of various CIS components, including CDSSs to implement one or multiple 

steps. 

The quality and usefulness of knowledge-based CDSS is determined by many factors, but most 

importantly by the quality of the knowledge that they rely on. Thus, it is easy to see that representation 

and management of that knowledge is an important factor. 

Figuring out how to efficiently represent and manage medical expertise in general is a daunting 

challenge due to the fact that it involves so many aspects of medicine. A relatively well-defined subset of 

medical knowledge and one of the most desired functionalities of a CDSS is the support for guideline-

based health care delivery. This direction offers documents describing guiding decisions and criteria 

regarding diagnosis, management, and treatment in specific areas of healthcare. 

Clinical Practice Guidelines 

The central focus of our research is to aid the process of capturing, managing, verifying and executing 

evidence-based clinical guidelines. We believe that studying the general principles for future health care 

systems described in [11] can help us define what guideline-driven systems need to incorporate. 

Clinical practice guidelines (CPGs) (or guidelines in short) are “systematically developed statements 

(recommendations, strategies) to assist practitioners in making decisions about appropriate health care 

in specific clinical circumstances” [17]. CPGs are often implemented around or as a part of CWFs. In [18], 

the typical uses of guidelines are listed as: screening and prevention, diagnosis and pre-diagnosis 

management of patients, indications for use of surgical procedures, appropriate use of specific 

technologies and tests as part of clinical care and care of specific clinical conditions. 

In essence, CPGs provide guidance in (1) identifying clinical situation (e.g. diagnosis of a clinical 

condition) and/or (2) the management of a clinical process associated with a predefined clinical 

situation (e.g. executing the steps of a treatment). 

Modern medical guidelines are based on the systematic examination of current evidence within the 

paradigm of evidence-based medicine to describe appropriate care based on the best available scientific 

evidence and broad consensus. Besides their primary goal, CPGs typically have additional objectives, 

such as to standardize medical care, raise quality of care, support workflows (including the management 

of responsibilities), reduce several kinds of risk (to the patient, to the health care provider, to medical 
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insurers and health plans), provide a focus for continuing education and achieve the best balance 

between cost and other medical parameters such as effectiveness, specificity, sensitivity, etc. [19,20]. 

Evidence-based (or best-practice) medicine (EBM) is described in [21] as conscientious, explicit, and 

judicious use of current best evidence in making decisions about the care of individual patients. It should 

not be interpreted as “cookbook medicine” as in practice, EBM usually means integration of individual 

clinical expertise with the best available external clinical evidence from systematic research. 

Using CPGs to disseminate medical knowledge is a common practice; there are a lot of guidelines 

already published [22–24] and reportedly used [25]. 

Relying on CPGs provides many benefits. According to [26], the use of CPGs can improve the quality of 

clinical decisions and activities. This, in consequence, improves patient outcomes (e.g. a clinician will 

remember to check an important aspect before ordering a specific treatment) and reduces unnecessary 

and inappropriate variation in practice. CPGs promote interventions of proved benefits and discourage 

those that are ineffective. They also help physicians to use the clinical knowledge about the patient at 

the appropriate point of care. Furthermore, CPGs facilitate the reuse of knowledge, because guidelines 

can be adapted, tailored and applied to different clinical situations. Last, but not least, guidelines 

provide a relatively quick method for the dissemination of state of the art clinical knowledge, including 

updates and changes. 

Reusability and portability of CPGs to disseminate and promote best clinical practice has major 

significance. Guideline authors are encouraged to employ rigorous formal techniques, which help to 

ensure syntactic, logical and medical validity of CPGs. Two notable efforts facilitating this guideline 

formalization are done by the National Guideline Clearinghouse [27] and the Conference on Guideline 

Standardization (COGS). 

1. The National Guideline Clearinghouse provides means for standardizing CPGs by offering 

recommendations on what components guidelines should include. These recommendations 

define various guideline attributes that help specify a CPG, such as categories for classifying the 

major focus of the guideline (e.g. counseling, diagnosis, management), clinical specialty for 

classifying the field of medicine that might use the guideline professionally (e.g. anesthesiology, 

cardiology, hematology), intended users (e.g. people, such as dietitians, nurses and patients or 

entities, such as hospitals), objectives, and target population [28]. 
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2. The other standardization effort, provided by the COGS, is known as the “COGS checklist”. This 

checklist provides a framework (i.e. a recommended schema) for supporting comprehensive 

documentation of practice guidelines. The COGS checklist contains 18 topics (e.g. goal, target 

population, potential benefits and harms, algorithm, etc.) and their definitions in [29]. 

Computer Interpretable Guidelines: Explaining the need for computerized CPGs 

The use of evidence-based CPGs for managing complex clinical problems is already standard practice. 

The integration of published CPGs into clinical workflows through the use of CISs has tremendous 

potential and would further extend the usefulness of CPGs. However, according to [30] there are 

numerous limiting factors to the adherence of CPGs. These include the lack of awareness of the 

existence of guidelines, the lack of agreement with using specific guidelines (or even guidelines in 

general), the lack of physician self-efficacy6, the lack of outcome expectancy7, and the inherent difficulty 

to change habits in daily behavior. 

Still, one of the most difficult problems in the adoption of CPGs is that they are not directly applicable in 

CISs, as general guidelines are informal (regardless of the fact that guideline authors are encouraged to 

employ rigorous formal techniques to help ensure syntactic, logical and medical validity of CPGs [26]). 

This is because CPGs are phrased using natural languages. To be truly effective, CPGs must be captured 

in a formal manner, built on information that already exists (or could exist) in CISs, and must be 

customizable to different clinical situations thus be transformed into individualized clinical care plans 

(guideline instances). The formalness of guidelines here means that the meaning of guidelines has to be 

unambiguous in the context in which they are planned to be used. If the goal is human interpretation 

then the guidelines have to use terms that are unambiguous to health care professionals. If the goal is 

guideline execution on a specific (software) platform then guidelines have to use concepts that are 

unambiguously understood by the platform. Finally, if the goal is theoretical execution and analysis then 

the guidelines require a mathematically precise definition. 

                                                           
 

6
  Self-efficacy is the belief that one can actually perform a behavior. It influences whether a behavior will be initiated and 

sustained despite poor outcomes. 

7
  Outcome expectancy is the expectation that a given behavior will lead to a particular consequence. 
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The first step in this direction would be the development and acceptance of guideline representation 

languages with well-defined syntax and semantics. However, the implementation of guideline-based 

CDSS, including the representation of clinical knowledge still lacks proper standards. Certainly, there 

have been several formalization attempts – discussed in Chapter II – each tackling a certain aspect of 

clinical knowledge representation with various breadth and depth. Some of them have even been 

accepted as standards. Nevertheless, none of them can be seen as a complete solution, thus the 

building of these systems remains difficult. 

Current implementations of knowledge-based systems typically become “one-offs”: to achieve a specific 

objective, system developers study a specific clinical process and environment, then develop specific 

code using high-level programming languages to address the problem in that local environment. Over 

long periods of time (years to decades), adding new functionality and evolving CIS (including CDSS) 

capabilities can become more difficult than initial development. Commercial vendors experience 

difficulty in supporting “one size fits all” systems for diverse customer bases. The growing complexity of 

biomedical research and clinical practices exacerbates the local “re-inventing the wheel” problem to a 

breaking point. 

The integration of CPGs into existing or future CIS requires the guidelines to be interpretable and 

manipulatable by computers. We define computer interpretable guidelines (CIGs) as formal, computer-

readable versions of CPGs consisting of a coordinated composition of (medical) tasks or actions, with a 

mathematically precise notation and well-defined semantics. These properties of CIGs allow them to 

serve as a substitute for direct code-based implementation of CPGs. 

CIGs (in this document also referred to as clinical protocols, or protocols8 in short) can be seen as more 

specific than CPGs, defined in greater detail. Regular CPGs can be incomplete, which means that directly 

implementing the logic described within can lead to unwanted non-determinism (i.e. ambiguity). In 

addition, – in the case of CPGs – the open world assumption9 is practiced: information is provided only 

on the matter of interest and a lot of the described conditions, actions, etc. are context dependent. 

                                                           
 

8
  Is this thesis, we use the terms CIG, protocol and guideline interchangeably. To resolve ambiguity for the word “guideline” 

we use the term CPG whenever it is necessary to make the distinction from CIGs. 

9
  The open world assumption is the opposite of the closed world assumption, which holds that any statement that is not 

known to be true is false. This means that – in case of open world assumption – what is not explicitly stated cannot be 
known or assumed. 
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Protocols, on the contrary, employ the closed world assumption: they provide "a comprehensive set of 

rigorous criteria outlining the management steps for a single clinical condition or aspects of 

organization" [20]; they also must not contain unplanned non-determinism. 

Basic design of CIGs 

The design of CIGs has attracted significant attention. Based on much shorter descriptions provided in 

[31] and in [32], we extended the list of components of guidelines to be the following. 

1. The problem (e.g. an unwanted health condition) is a situation of interest, for which a solution 

(e.g. treatment) needs to be provided. The problem is defined by: 

 a set of conditions describing the problem (e.g. treatment is for female subjects who 

have a blood pressure reading outside of a specified target range for at least five 

minutes). Conditions are usually specified with the help of logic formulas that reference 

various relevant (clinical) parameters. 

 a set of parameters (i.e. attributes) used in conditions. They are situational beliefs made 

available directly through measurements and observations, or indirectly through 

calculations, including estimations. The type of these parameters determines whether 

the automatic monitoring of conditions is possible (e.g. a patient’s heart rate can be 

automatically monitored with a sensor, but a condition such as “stomach ache” needs to 

be entered in to the EMR by someone manually). Parameters either can be linked to 

o events, which are detectable or derivable occurrences that are triggered by the 

changes in the state of patients (e.g. disease progression), or the changes in the 

state of treatments (e.g. performed provider action), or 

o data points, which are queriable, time stamped values for storing the result of 

measurements and observations. 

2. The solution (e.g. treatment plan) for the problem specified. It is composed of a set of goals that 

allow a solution to be determined successful (or unsuccessful) and a coordinated set of actions 

that are designed to achieve these goals. Specifically: 

 a goal (i.e. intention), which according to [33] represents “temporal patterns of provider 

actions or patient states, to be achieved, maintained, or avoided”. In further 
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elaboration, a goal describes the motivation by associating a problem and a solution and 

defines targeted patient and protocol states (e.g. blood pressure of the patient has to 

stay inside a specified range for two weeks). 

 a set of actions, which range from diagnostics through message exchange to clinical 

interventions (e.g. administer a certain drug 3 times a day before meals). An action can 

be 

o an atomic (or simple) action: these actions are atomic from the point of view 

of the entity interpreting the CIG. This means that decomposition of the 

action is either not needed (i.e. execution is done by the interpreting entity), 

or performed by another entity (i.e. delegation). 

 delegated atomic action: these actions are assumed to be completed by 

other (servicing) entities. The example provided above is considered 

atomic if the CIG was designed for physicians and the action 

(“administer a certain drug 3 times a day before meals”) is performed 

by the patient. Another example for atomic, but complex actions would 

be an order set10, where the entity interpreting the CIG (e.g. physician) 

understands that another entity (most likely a CPOE system) will handle 

all necessary tasks11 related to the order. 

 executable atomic action: these actions are assumed to be completed 

by the entity interpreting the CIG. An example for this would be an 

information-gathering step describing the need to measure the weight 

of the patient at a routine visit. 

o a composite action: these actions are a coordinated composition (e.g. serial 

execution) of (atomic or other composite) actions to provide a solution to an 

associated problem. 

                                                           
 

10
  An order set (or orderable) is “a functional grouping of orders in support of a protocol that is derived from evidence based 

best practice guidelines” [34]. Order sets have a specific purpose, they may contain conditional logic, they may be part of a 
larger care plan, and some items in an order set may be fully specified, others may have more optionality. 

11
 Necessary tasks, in case of a medication bundle, include checking for contraindications (e.g. drug-drug interactions, allergies, 

etc.), transportation, and administration. 
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The context is also often specified, which includes all relevant clinical conditions. By extending the 

definitions for the problem and the solution, this component aids in identifying the situations when a 

CIG is allowed, recommended, required or contraindicated. 

Composition and decomposition are important notions in the design of CIGs. On one hand, the use of 

appropriate logic allows the decomposition of problems into smaller sub-problems, to which simpler 

solution can be linked. On the other hand, with the help of composite actions, solutions can also be split 

into a set of sub-solutions. Both of these require the ability to express precise coordination of sub-

components. Both the coordination and the decomposition are always performed by the entity 

interpreting the CIG. 

CIG execution - Patient management based on CIGs 

Both CPGs and CIGs are designed to define what actions need to be taken in specific clinical situations. 

There is however, a great difference between the two when it comes to their application. 

In CPG-based patient management, clinicians study the guidelines by understanding all suggested 

actions and their specified context (i.e. clinical conditions, indications, etc.). Then for any given patient in 

(guideline) execution time, they apply the knowledge by deciding which parts of the CPGs are relevant. 

Performed actions, the state of the patient, and the intentions of the medical staff are recorded, 

observed, and abstracted over time. This process of applying general medical knowledge to a care 

process and then to a specific patient’s medical condition(s) can be considered as a mapping of medical 

knowledge to cognitive decision support. The result is a personalized (or contextualized) guideline. It 

involves interacting with models (i.e. abstractions) of the patient placing the raw data into context and 

combining them with medical knowledge in ways that make clinical sense for a given patient. The 

mapping is also influenced by many non-medical factors, such as resource constraints (e.g. cost-

effectiveness analysis, value of information), patient values and preferences, cost and time. 

Assuming that CIGs are captured properly, systems facilitating them can do some of this functionality 

automatically. In a CIG-based CDSS12, CIGs are interpreted by a special software package called the 

execution engine (EE, or engine in short). An ideal EE is developed to provide two main functionalities. 

                                                           
 

12
  A CIG-based CDSS is a software system or group of systems that rely on the internal representation of CIG for providing 

clinical decision support. 
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First, it needs to understand and configure its behavior according to the guideline specifications 

provided in the form of CIGs. This step involves setting up communication channels towards other CISs 

(such as EMR and CPOE systems) and interpreting defined actions that can theoretically include ones, 

such as displaying recommendations on a dedicated interface, automatically administering a certain 

dose of medication through an intravenous line, performing a complete sub-protocol, or requesting 

other systems to perform an action. Second, it needs to continuously maintain the state of the guideline 

by communicating with and building on information from users and other systems. This way raw patient 

data can be automatically received, filtered, monitored, put in context and (in case their initiating 

condition is satisfied) a series of predefined actions can be automatically performed by the engine. 

Personalized CIGs are also referred to as guideline instances. The resulting series of steps form a clinical 

pathway13. The quality of support is dependent on (1) the expressivity of the CIG formalism14, (2) the 

quality of the CIG models (including number of various aspects and the level of detail), (3) the quality of 

the input parameters (including sampling rate and precision of objective clinical data), and (4) the 

implementation of the execution system. 

Benefits of Computer Interpretable Guidelines 

Computerized support for implementing and executing such guidelines as formalized patient 

management protocols provides several benefits over and above those offered by CPGs [20]: 

 CIGs are adaptable: CIS that capture general evidence-based CPGs can be tailored to fit into 

daily practice. 

 CIGs can be specific: based on the evidence-based recommendations they encode, they can 

automatically generate recommendations tailored for an individual patient/case. 

Recommendations may include: 

                                                           
 

13
  Clinical pathway is a trajectory of a CPG/CIG; a subset of tasks and split-paths in the CPG/CIG followed by the medical team 

for a given patient that results in one specific traversal of the guideline. 

14
  In this thesis, we use the terms CIG representation language and CIG formalism interchangeably to refer to a method for 

describing CIGs. 
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o offering a set of potential problems (i.e. diagnostics), 

o offering a set of valid solutions (actions) in a given scenario, 

o helping with the selection from alternatives (while considering timing, 

contraindications15, cost, local preferences, etc.), 

o helping with setting up their parameters of actions (e.g. dosing), 

o helping with the timing of actions (including their relative order), and 

o helping with the delegation of actions. 

 CIGs are explicit and formal: they help improve the clarity of a guideline, e.g. in decision criteria 

and clinical recommendations. CIGs also help offer better descriptions of patient states. 

 CIGs support automation: they are an attractive paradigm for clinical decision support tools, 

since much of the knowledge contained in guidelines has already been rendered explicit [36]. 

With the help of such systems, CIGs can automatically propose triggers for timely patient 

screening and patient-specific decision support, and associated alerts and reminders. This 

feature also enables automatic documentation of CIG execution (i.e. trace logs). 

 CIGs support analysis: they can reveal errors in the content of a guideline by validation, 

simulation or verification. A CIG-based system can facilitate the tracking of protocol execution, 

which would help not only with encouraging compliance, but also improve the protocols 

themselves by enabling the analysis of outcomes (e.g. effectiveness of one solution versus 

another, time to respond metrics, cost analysis, etc.). 

 CIGs can be linked to other knowledge sources: they offer a readily accessible reference, 

providing selective access to guideline-specific knowledge. 

 CIGs enable knowledge transfer: they are based on the best practice available at the time and 

models can be updated on a regular basis as new findings emerge in the medical literature. 

Figure 1 illustrates how the two different guideline representations can be used to drive guideline-based 

CDSSs, which are a small subset of all possible CISs (see Euler diagram on the right side of the figure). 

                                                           
 

15
 “A contraindication is a specific situation in which a drug, procedure, or surgery should NOT be used, because it may be 

harmful to the patient” [35]. 
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Figure 1 - The specializations of CDSSs 

Representing CIGs 

The formal specification and representation of CIGs require the use of a formal language16. Using the 

abstractions provided by such a language enables the precise representation of the components (main 

concepts, flow of logic, etc.) of CIGs through a process called modeling. 

There are many different languages that are formal17, and thus could be considered for modeling CIGs. 

This list includes standard general-purpose programming languages (such as C++ and Java), standard 

general-purpose modeling languages (such as UML (Unified Modeling Language) [39] and WSBPEL (Web 

Services Business Process Modeling Language) [40]) and specialized, purpose-built domain-specific 

(modeling) languages (DSML or DSL), which are programming or specification language designs with a 

                                                           
 

16
  A formal language is defined by a set of words (finite strings of letters, symbols, or tokens), where the letters are taken from 

an alphabet over which the language is defined. The set of valid words in a formal language is a subset of all possible 
combinations of letters from the alphabet, where validity of the words in the language is often defined by means of a formal 
grammar (also called its formation rules). Formal languages are entirely syntactic in nature but may be given semantics that 
give meaning to the elements of the language. [37] A formal grammar is a quad-tuple: G = (N, Σ, P, S), where N is a finite set 
of non-terminals, Σ is a finite set of terminals and is disjoint from N, P is a finite set of production rules of the form w ∈ (N ∪ 
Σ)∗ → w ∈ (N ∪ Σ)∗, S ∈ N is the start symbol [38]. 

17
  They are formal in the sense that their constructs (or abstractions) have well-defined semantics. 
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particular problem domain, a particular problem representation technique, and/or a particular solution 

technique in mind [41]. Formal languages use different levels of abstractions and vary in their 

expressiveness and their usability for a given task. Consequently, selecting an appropriate formal 

language for modeling CPGs as CIGs is not a trivial task. 

Modeling requirements 

There are certain generic modeling requirements that a potential formal language would need to satisfy 

in order to be considered “usable”. These are the following: 

1. Protocol models (i.e. formally modeled CIGs) need to capture medical knowledge explicitly 

and avoid ambiguity: 

a. Having an explicit and precise semantics allows for the understanding of the CIG without 

the system in which the CIG is used (e.g. EE). 

b. The semantics of the language should be specified in such a way that any operation 

defined by a guideline has a precisely defined and unambiguous effect [42]. 

Unambiguity is also the requirement of a computer-based execution. CIGs of course 

often allow some degree of planned non-determinism, but these are resolved in 

runtime. (E.g. during the treatment of a patient, the used guideline provides alternative 

recommendations and the acting physician makes the selection on which alternative to 

go with). 

2. Protocol modeling languages need to represent concepts that are specific to the medical 

domain: The authors of [33] describe essential characteristics of the medical domain in the 

following way: 

a. Actions and effects are not necessarily instantaneous: actions are often continuous (i.e. 

have a duration) and their effects might be delayed, 

b. goals often have temporal extensions, 

c. there is uncertainty regarding the effect of available actions, 

d. unobservable, underlying processes determine the observable state of the world, 

e. goals may not be achievable, and 
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f. parallel and periodic execution of plans, treatment processes is common. 

g. In addition to these, previously recorded clinical data is often questioned and may be 

deemed to be untrusted or false. 

3. Protocol modeling languages need to support various levels of specialization: Ideally, a 

protocol could be phrased in a general manner without being tied to specific medications, 

workflows or software systems at specific places. On the other hand, ideally, they would also 

support specialization by allowing the use of local abstractions (e.g. local interpretations and 

best practices). This would allow for a much faster adoption of CIGs developed by other groups 

and HCOs. 

4. Protocol modeling languages need to support various modeling aspects and their composition: 

There are many different aspects affecting guideline execution. These include laws and 

regulations, HCO-specific rules, physical constraints (such as availability of a certain medication 

at a given place and time), separation of roles performing actions, locations, etc. These aspects 

would ideally be separated and maintained by different personnel. The composition of these 

aspects would also need to be supported. 

5. Protocol modeling languages need to support end-user programmability. Medical 

professionals need to comprehend and field experts need to edit and update the models easily, 

eliminating the need for IT personnel to mediate between the medical and computer fields. This 

would allow domain experts to directly manipulate the expected behavior of the guideline-

based system. 

Selecting a suitable modeling language 

There are no widely accepted textual or visual languages for capturing CPGs. By examining the three 

classes of languages in the light of the previously defined requirements, we get Table 1. 
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Table 1 - Suitability of various formal language groups for satisfying requirements for modeling CPGs 

 

Requirement 1 

Unambiguous 
Explicit Semantics 

Requirement 2 

Specialized 
Medical Concepts 

Requirement 3 

Levels of 
Specialization 

Requirement 4 

Composition of 
Modeling Aspects 

Requirement 5 

End-user 
Programmability 

General-purpose 
programming languages 

Possible Not suitable Not suitable Not suitable Not suitable 

General-purpose modeling 
languages 

Suitable Not suitable Suitable Suitable Not suitable 

DSMLs Suitable Suitable Suitable Suitable Suitable 

As general-purpose programming languages provide an extremely low abstraction layer for modeling 

guidelines they are not ideal for representing CPGs. Similarly, general-purpose modeling languages are 

not suitable if requirement 2 and 4 are important factors. DSMLs on the other hand can support all 

listed requirements. 

This raises an important question: Is there (or is it possible) to define a single DSML to represent all 

guidelines or not? The history of standardization indicates that people usually want one, but there are 

many factors making the problem of finding and ideal language difficult. In short, there are different 

formalization requirements, which are based on the differences in guidelines, users, locations, etc. In 

more detail: 

 In practice, people use local abstractions and configurations. 

 Guidelines usually provide guidance in identifying and executing the steps of a solution for 

which the guideline was designed for (both in diagnosis and in treatment), but they often put 

emphasis on different things. They can 

o help identify a given scenario (e.g. automatic diagnosis based on background data 

monitoring and evaluation), 

o offer a set of valid alternative solutions in a particular scenario, 

o help with the selection from a list of alternative solutions (while considering timing, 

contraindications, cost, local preferences, etc.), 

o help with setting up their parameters of selected solutions (e.g. dosing calculation), 

o help with the scheduling of actions, including absolute timing and relative order (i.e. 

scheduling triggers, alerts, and reminders), 
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o help with task assignment (i.e. who is supposed to do and what), 

o provide means of documentation, and 

o provide means of education. 

 There are also many various types of clinical problems to be expressed. To determine the scope 

of a proposed solution, the following differentiating factors need to be specified: 

o Focus: to categorize the type of the problem being addressed (e.g. counseling, 

diagnosis, management), 

o Clinical specialty: to identify the related field/department of medicine (e.g. 

anesthesiology, cardiology), 

o Intended users (e.g. hospitals, dietitians, nurses, patients), 

o Specificity: to determine the details included in the solution (e.g. does the CIG define a 

list of specific medications or just a medication type), 

o Timespan: to specify how long can the guideline be relevant (e.g. problem spanning over 

a visit or a lifetime), 

o Time granularity: to define the required frequency with which data needs to be updated 

(e.g. millisecond-based or visit-based information sampling), 

o Patient population: to mark the targeted group of patients (e.g. everyone or between 

ages 12-14), and 

o Representation style: by gaging the state space, including the number of alternative 

routes and concurrent paths, appropriate representation can be chosen (e.g. all options 

represented with relatively rigid workflows, or many options limited by constraints). 

To understand the solution existing formalisms need to be analyzed first. This issue is further discussed 

in the “Open problems” section. 
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CHAPTER II.  

 

REVIEW OF FRAMEWORKS FOR MODELING, VERIFYING AND EXECUTING GUIDELINES 

Today there are many different frameworks for modeling, verifying and executing medical guidelines in 

existence. Built by various groups, each of these CIG-based systems18 differ in their scope and 

implementation, but share the fact that they were developed with the intention that by using them non-

programmers will be able to create, maintain and facilitate computerized clinical guidelines [36]. 

In this chapter, first we present a quick overview of early CDSS efforts, mostly concentrating on ones 

implementing clinical inferencing19 (see Figure 1). Non-inferencing CDSS, such as clinical dashboards, 

which show each patient’s status in a chart are not evaluated. The historical overview is followed by an 

evaluation of a selected set of current CDSSs implementing CIGs, which includes an assessment of both 

guideline formalisms and their respective implementations. Finally, in the last section commonalities, 

differences and shortcomings are discussed. 

Early CDSSs 

The formalization of medical knowledge has been an active area of research since the 1960s. Research 

into the medicine-related use of artificial intelligence, knowledge representations and formal reasoning 

started in the early 1970's and produced a number of experimental systems [16]. Early efforts were 

focused on creating systems that mapped signs, symptoms and laboratory results to probabilistic 

estimates of different diagnoses [43]. These expert systems did not prove to be practical for the 

everyday practice of medicine. Only with the development and use of the EMR, have knowledge-based 

systems been adopted by practitioners [44]. 

[16] and [45] provide an informative summary of these early systems: 

                                                           
 

18
 In this chapter, we use the words “system”, “framework” and “approach” interchangeably to refer to a CIG-based CDSS. 

19
 Clinical inferencing here means logical inference over clinical knowledge. 
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 CASNET (Causal ASsociational NETworks) (1960) [46], developed at Rutgers University and 

implemented in FORTRAN, is a general tool for building expert system for the diagnosis and 

treatment of diseases. Its most significant application was the CASNET/Glaucoma system, 

designed for the diagnosis and treatment of glaucoma. 

 PIP, the Present Illness Program (1970) [47], was built by MIT and Tufts-New England Medical 

Center. It gathered data and generated hypotheses about disease processes for patients with 

renal disease. 

 AAPHelp (1972-2002) [48], published de Dombal at Leeds University, UK [49] is a system for 

supporting clinical assessment and decision-making in case of acute abdominal pain. Based on a 

naive Bayesian approach this early attempt implemented automated reasoning under 

uncertainty. 

 INTERNIST I (1974-1985) [50–52], is a rule-based20 CDSS designed to support diagnosis 

developed by Myers, Miller, Pople and Yu at the University of Pittsburgh as a successor of 

DIALOG and the predecessor of CADUCEUS and Quick Medical Reference (QMR) systems, which 

are discussed below. It uses patient observations to deduce a list of compatible disease states 

(based on a tree-structured database that links diseases with symptoms). 

 MYCIN (1976) [55,56], developed by Shortliffe and colleagues at Stanford University, is a rule-

based expert system designed to diagnose and recommend treatment for certain infectious 

diseases. It uses inferencing over reported symptoms and medical test results. Clinical 

knowledge is represented as a set of IF-THEN rules with heuristic certainty factors attached to 

diagnoses and reasoned over to come up with its recommendations. In the case of missing 

information, MYCIN would request further information concerning the patient, as well as 

suggest additional laboratory tests, to arrive at a probable diagnosis, after which it would 

recommend a course of treatment. Upon request, MYCIN would explain the reasoning that led 

to its diagnosis and recommendation. Successors of MYCIN include: 

a) EMYCIN, or Essential MYCIN (1980) [56–58], is a system that evolved from MYCIN as a 

domain-independent framework for building and running new expert systems. The 

                                                           
 

20
  A rule-based system (also referred to as a production (rule) system) relies on storing and executing event-condition-action 

(ECA) rules (also known as production rules) [53]. These rules are basically IF-THEN rules, where the IF part is defined by a 
combination of triggering events and evaluated conditions and the THEN part is defined by the actions [54]. 
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name was based on the fact that EMYCIN has MYCIN's framework without its medical 

knowledge base. EMYCIN is a backward-chaining rule interpreter that has much in 

common with Prolog. However, there are four important differences: (1) EMYCIN deals 

with uncertainty, so predications have a certainty factor assigned to them as opposed to 

true or false, (2) EMYCIN caches the results of its computation in order to avoid 

duplication, (3) EMYCIN provides an easy way for the system to ask the user for 

information, and (4) it provides explanations of its behavior. 

b) TMYCIN, or Tiny EMYCIN (1987) [59,60], patterned after the EMYCIN, is a simple expert 

system tool that only is intended to provide some of the most commonly used features 

of EMYCIN in a package that is small and simple. The internal implementation of 

TMYCIN has been written from scratch and is therefore different from that of EMYCIN. 

c) PUFF [61] is a system designed to interpret pulmonary function tests for patients with 

lung disease. 

 ABEL (Acid-Base and ELectrolyte program) (1981) [62,63], developed at MIT as a successor of 

PIP, is an expert system employing causal reasoning, for the management of electrolyte and acid 

base derangements. 

 ONCOCIN (1981-1987) [64–66], developed at Stanford University, is a rule-based medical expert 

system for the management of oncology protocols. This system was the successor of MYCIN and 

predecessor of the Protégé and EON systems. ONCOCIN was novel in the sense that it 

attempted to model decisions and sequencing actions over time (e.g. history of past events and 

the duration of actions), using a customized flowchart language (OPAL). 

 DXplain (1984-today) [67], developed at the Laboratory of Computer Science at the 

Massachusetts General Hospital, is DSS that accepts a set of clinical findings (e.g. signs, 

symptoms, laboratory data) to produce a ranked list of diagnoses which might explain (or be 

associated with) the clinical manifestations. DXplain provides justification for why each of these 

diseases might be considered, suggests what further clinical information would be useful to 

collect for each disease, and lists what clinical manifestations, if any, would be unusual or 

atypical for each of the specific diseases. DXplain provides a description of over 2400 different 

diseases over 5000 different clinical conditions. 
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 QMR (Quick Medical Reference) (1980) [68,69], developed by the University of Pittsburgh and 

First Databank, California, is a diagnostic reference tool and consultation program, designed to 

provide general practitioners with easy access to the INTERNIST-1 knowledge base. QMR was 

designed with three types of uses in mind: (1) an electronic textbook, (2) an intermediate level 

spreadsheet for the combination and exploration of simple diagnostic concepts, (3) an expert 

consultant program that assists users with generating hypotheses for complex patient cases. 

CIG lifecycle 

An aspect, which has to be understood for our evaluation, is the lifecycle of a CIG. This will help in 

understanding what the required components of a CIG-based CDSS are, which is described in the 

following section. We already discussed what a guideline-based execution means in the “CIG execution - 

Patient management based on CIGs” section, but the steps that get us there have not yet been 

mentioned. Based on [70] we define the lifecycle of a CIG to be composed of the following steps: 

 

Figure 2 - Lifecycle of a CIG 
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The steps of Figure 2 are explained below21: 

1. Conceptual modeling: The development of guidelines starts with the modeling of functional 

requirements of the intended application. This helps define the details and the characteristics 

that must be present in the resulting guidelines. The produced functional requirements can also 

serve as explicitly defined properties, which can be validated or verified in the testing phase. 

2. Formal modeling (i.e. encoding or authoring): As part of the modeling process, guidelines (and 

their documentation) are created. This process can be aided by using authoring tools designed 

to capture the details needed by a particular model, while guaranteeing the unambiguity of the 

created models. 

3. Testing: “This can be considered a step in authoring, aimed at determining that structured 

elements are precise, unambiguous, and syntactically and semantically correct (terms defined, 

with details for attributes such as units and allowed ranges), and that logical expressions and 

pathways are consistent and fully specified.” Testing may include: 

a. Validation, which in the case of CIGs, means determining the degree to which the logic 

captured in a CIG implements the expected behavior. During the validation process, 

domain experts often analyze this through the simulation of test cases in an 

environment similar to (or the same as) the final execution environment. 

b. Verification of CIGs, which means that there is support for phrasing requirements and 

specifications that include a range of safety, security and privacy related properties 

independently from CIGs that can then be used to check whether or not they hold for 

the CIGs in a particular environment. 

4. Dissemination: The encoding scheme and the storage solution of guidelines must support 

retrieval and interpretation upon demand. 

5. Local adaptation (i.e. customization of adopted models): There is a huge number of potential 

guidelines, and many possible implementation platforms. Thus, it is desirable to configure and 

customize guidelines not only for various applications (e.g. similar clinical conditions), but for 

the handling of various local constraints as well. Local constraints include: 

                                                           
 

21
  Excerpts are taken from [70]. 
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a. Adaptation of the medical content of guidelines, to conform to situational constraints 

and distinctions such as: 

i. lack of availability of certain resources specified in a guideline (e.g. no MRI 

scanner) 

ii. local policies (e.g. complying with local user access control rules for preserving 

privacy) 

iii. local preferences and workflows (e.g. substitution of one medication for 

another in the same class) 

iv. contextual differences (e.g. field, home, office, hospital). 

b. Integration with an implementation system (local dissemination): Furthermore, the 

application may need to be implemented in a variety of information system settings, 

with differences in: 

i. platform (i.e. the host CIS, including potentially many other interacting CIS 

components) 

ii. user interface 

iii. workflow (i.e. defining the order in which different functions and systems are 

invoked) 

iv. encoding of data and knowledge. 

c. Local testing (e.g. integrity, integration, etc.) 

6. Use / application: The use of CIGs means their execution. During this phase, CIGs help with data 

aggregation, diagnosis, order management, resource management, etc. depending on their 

intended purpose22. 

7. Analysis: The effectiveness – including accuracy, cost, compliance and usability – of CIGs needs 

to be analyzed either during runtime or retrospectively, which means that context (including the 

measured values and selected decisions) needs to be documented, monitored for effectiveness, 

and used to improve the support models. 

                                                           
 

22
  More on the execution of CIG can be found in the “CIG execution - Patient management based on CIGs” section. 
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8. Revision and update (i.e. evolution): As guidelines change over time, “it is necessary to identify 

the impact on local adaptations and on implementations in which guidelines are embedded, so 

they can be updated appropriately.” Updates then need to be propagated to CIGs in place. In 

addition, mid-flight update mechanisms are needed to be worked out in order for updates not 

to interfere with critical CIG-based patient management already in place. 

Components of a CIG-based CDSS 

In order to evaluate CIG-based approaches their architecture needs to be studied first. We found that 

such frameworks usually consist of (1) a guideline formalism for representing CIGs and (2) a supporting 

software suite for capturing, managing, executing and evaluating the CIGs. 

1. Guideline formalism: All examined approaches employ a DSML. The purpose of these languages 

is to formally represent CIGs (and potentially other related information). Languages vary in 

terms of their scope, expressivity, the levels of abstractions provided, and their degree of 

formality. 

2. Software suite: All examined approaches employ some sort of software suite, which consists of 

one or more software components. Typical components of software suites are the following: 

a. Modeling environment: The purpose of the modeling environment is to enable the 

domain experts (i.e. knowledge engineers) to capture CIGs while enforcing the (syntactic 

and semantic) rules defined by the DSML. The modeling environment can be text or 

diagram based. 

b. EE: As described in previous sections, the purpose of the execution engine is to provide 

an implementation of the semantics of the general guideline formalism, or in other 

words, take CIGs (defined with the help of DSMLs), interpret them and enact them for a 

specific patient. This means that an ideal EE will (1) configure its behavior according to 

the guideline specifications, (2) take input from a patient’s EMR and the health care 

providers, and (3) compute (i.e. infer) and enact the relevant actions from the CIG using 

the infrastructure provided by the CIS where it has been integrated. During operation 

the EE maintains a record of the dynamic state of the CIG process, including information 

on which tasks have been performed, which need (or need not) be performed, and the 

values of any data items associated with the process. With the help of a dedicated 
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interface, the engine implements a set of operations to allow other components to read 

or alter the state of the CIG in certain predefined ways [36]. In general, the execution of 

the process will require some of these actions to be performed by external human 

actors (e.g. clinicians) who will interact with the engine via some set of user interfaces. 

c. Communication layer with software integration interfaces: An extension to the EE. In 

order for the EE to communicate with its environment, it needs to have one or more 

interfaces (IFs) to it. These IFs, together with associated communication protocols, 

enable the exchange of necessary events and data (e.g. EMR and operational data) 

between the execution engine and other software systems of the CIS. In an ideal case, 

they build on both health care and IT standards. 

d. Database: An extension to the EE. A database (DB) can be in charge of storing multiple 

data sets that are vital to operation. These include: 

1. The CIGs, the rules, which will configure the EE. The CIGs themselves can 

contain the configurations for not only the guideline-based operation, but also 

the user interface and the software integration interfaces as well. 

2. User access configuration, for setting up authentication and to control who can 

have access to what, when and how. This configuration might be unnecessary if 

access control is achieved by other components of the host CIS. 

3. An EMR cache, which is a predetermined subset of the EMR for storing patient 

data relevant to the CIGs in use. The contents of this EMR snapshot are what 

the engine considers as facts in execution time. 

4. The EE action log, which is a log of all state changes of the EE. This includes the 

user actions, such as which data items were accessed and by who, and what 

instructions were given with the help of the system. 

5. The current state of the EE, for providing persistency in case of a system failure. 

e. Patient management user interface: Another extension to the EE (which 

programmatically can be a part of either one of the previous components or can be 

implemented by other components of the CIS). The purpose of the user interface (UI) is 

to show the status of the CIG enacted by the EE as well as to allow interacting health 

care providers to provide information, make decisions, etc. Sophisticated UIs usually 
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present a combination of textual and non-textual (graphical) information, these UIs are 

often referred to as graphical user interfaces (GUIs). 

f. Testing environment: This optional component can be either (1) a standalone 

component or (2) one integrated into other components such as the modeling 

environment or the EE. As its name suggests a testing environment allows either 

validation by simulation, verification, or both. 

g. Analysis environment: An analysis environment is an optional component that supports 

the study of the effectiveness of the CIG-based care as well as quality metrics with 

respect to cost of treatment, compliance with guidelines, etc. Thus, it provides a 

feedback loop for further guideline improvement. It is not necessarily built together 

with the rest of the software components as it generally involves a large amount of 

manual processing. 

Figure 3 below represents a schematic view of the described general software suite. 

 

Figure 3 - Schematic of the components of a general CIG-based CDSS 
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sections where we evaluate and compare various approaches. Evaluation points are categorized 

according to three major fields: (1) medicine, (2) computer science and (3) information technology. 

Clinical aspect: Utility 

One of the most important components of an evaluation of a CIG-based CDSS is the clinical (or medical) 

utility of such a system. A proper evaluation of clinical utility of course would need to involve rigorous 

testing of the system in its prospective environment, which includes not only other software systems at 

the adopting HCO, but the feedback from potential users as well. Even though in this section we list 

many points regarding clinical utility, in our subsequent evaluation we can only consider evaluation 

points that can be assessed from a technical point of view and without the actual integration of the 

system into a specific CIS. We understand that a full evaluation (i.e. one, which includes stress testing, 

system integration, clinical compliance checking, and user evaluation) would result in a more complete 

evaluation, however such evaluation is out of the scope of this thesis. 

Logical adequacy of the CIG formalism 

Evaluating the logical adequacy of a formalism for expressing CIGs is a difficult challenge. The 

requirement points defined in the “Modeling requirements” section, say that 

1. Protocol models (modeled CIGs) need to capture medical knowledge explicitly and avoid 

ambiguity. 

2. Protocol modeling languages need to represent concepts that are specific to the medical 

domain. 

3. Protocol modeling languages need to support various levels of specialization (i.e. abstraction 

levels). 

4. Protocol modeling languages need to support various modeling aspects and their composition. 

5. Protocol modeling languages need to support end-user programmability. 

Based on these requirements it can be concluded that a CIG representation language needs to provide 

high-level (preferably domain-specific) abstractions to hide complexity of the underlying infrastructure, 

while delivering a rich enough logic to express CIGs. 
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Logical adequacy of a formalism for a given purpose is greatly dependent on its original scope (the 

intended use of the language). In the previous section, “Selecting a suitable modeling language”, we 

discussed the factors that determine the scope: focus, clinical specialty, intended users, etc. 

Provided Functionality 

Although criteria listed in this section are not all necessary conditions, having support for such 

functionality can help in the clinical adoption of a formalism: 

 Support for modeling and comprehension 

o Domain-specificity: As opposed to generic approaches, a DSML-based formalism can 

enable medical professionals to comprehend and update the CIG easier. Thus the syntax 

should be as close to the domain as possible and the semantics should make it easy to 

reason about the behavior of a guideline [42]. 

o Relying on standardized medical terminology23: As opposed to proprietary 

vocabularies, relying on one or more well-known standards24 eases maintenance and 

supports portability. 

o Use of unambiguous and intuitive syntax 

 Textual notation: A textual notation allows computers to exchange information. 

The syntax should also conform to or use existing standards (e.g. XML) [42]. 

 Graphical models: Although there is no consensus whether graphical models are 

preferred over textual ones, the existence of graphical representations and 

methods for graphical model manipulation can most likely ease clinical 

adoption. Having a purely graphical notation though might hinder 

understanding the represented logic, so the syntax should take into account 

                                                           
 

23
  Medical terminology is a vocabulary for accurately describing the human body and associated concepts, including anatomical 

terms, medical conditions, processes, procedures, medications, medical roles, medical fields, synonyms, and abbreviations 
[72]. 

24
  Some of the well-known medical terminology standards are described in the “Other important medical formalisms, 

frameworks” section. 
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that guidelines may be viewed graphically in ways that hide certain details of 

the guideline text [42]. 

o Existence of a documentation tool: The CIGs themselves should be – as much as 

possible – self-explanatory, which can be achieved using a combination of a formal 

language, comments and references to external knowledge sources. Additionally, there 

could be a need for a documentation tool that is capable of explaining to its users the 

reasons why it has recommended a particular course of action, or drawn a particular 

inference [36]. 

o Existence of a modeling tool: The purpose of a modeling tool is multifold: it allows users 

to capture CIG and other associated models, while potentially aiding model 

development by providing benefits such as enforcing correct-by-construction rules (e.g. 

syntax checking and enforcing structural semantics) and acting as a representation tool 

(i.e. self-documentation). 

 Support for adaptation 

o Control over visualization of CIG-related information: This determines whether 

knowledge experts have control over how information related to CIG is rendered in the 

UI (e.g. there are control mechanisms in the formalism for deciding what elements 

should appear or whether a vital sign should be charted as values in a table or as a 

graph). 

o Support for model adoption (i.e. portability): Model adoption means that one HCO can 

either directly facilitate (i.e. incorporate) CIGs defined by another HCO, or it can easily 

adapt them to local needs. Support for model adoption from the clinical standpoint 

means that points 3) and 4) of the “Modeling requirements” section are supported. 

o Reusability of built models: Support for model reuse when constructing new CIGs is an 

advocated practice. This is especially true for systems where there is a high number of 

CIGs captured. This includes versioning. 

 Management of continual change: Support for managing updates to CIGs including the ones in 

use. 
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 Support for testing: 

o Testing guidelines (prior release) from the clinical point of view means that there is a 

testing environment that allows for ensuring that 

 original requirements are satisfied, while 

 patient safety and 

 health information privacy are preserved. 

o Testing requires an environment similar (or identical) to the clinical environment where 

guidelines are intended to be used. 

o Testing needs to effectively evaluate whether an encoded CIG faithfully reflects the 

encoder’s intentions. For this evaluation inputs, outputs, decision points, etc. all need to 

be recorded. 

 Support for analysis: Evaluation of the existence of an (retrospective) analysis environment, 

which – similarly to the test environment – at the minimum needs to be able to record the 

execution trace of each enacted guideline. 

Technology readiness level 

Technology readiness level (TRL) is a measure used by some U.S. government agencies and companies 

(including the Department of Defense and the National Aeronautics and Space Administration) to 

“assess the maturity of evolving technologies (materials, components, devices, etc.) prior to 

incorporating that technology into a system or subsystem. Generally speaking, when a new technology 

is first invented or conceptualized, it is not suitable for immediate application. Instead, new technologies 

are usually subjected to experimentation, refinement, and increasingly realistic testing. Once the 

technology is sufficiently proven, it can be incorporated into a system/subsystem” [73]. Here TRL 

describes parameters to indicate the readiness of a framework for clinical use: 

 Number of protocols modeled 

 TRL defined by [73] and adopted for evaluating clinical systems: 

1. Basic principles observed and reported 

2. Technology concept and/or application formulated 
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3. Analytical and experimental critical function and/or characteristic proof-of-concept 

4. Component and/or breadboard validation in laboratory environment 

5. Component and/or breadboard validation in relevant environment 

6. System/subsystem model or prototype demonstration in a relevant environment: the 

framework is operational in a test environment 

7. System prototype demonstration in an operational environment: the framework is 

successfully integrated into and is used in a particular CIS. This includes its integration 

not only into an existing CIS, but into clinical workflows as well. 

8. Actual system completed and "flight qualified" through test and demonstration: the 

framework is ready to be used in other systems 

9. Actual system "flight proven" through successful mission operations: the framework 

successfully integrated into and used in multiple CISs 

Computer science aspect: Knowledge representation and maintenance 

While the previous section explained requirements from the clinical side, this section describes the 

relevant properties and requirements from the computer science side. The computer science aspect 

deals with the knowledge representation and maintenance, key components for enabling clinical 

functionality of the formalism. Since knowledge is managed by the guideline formalism, we need to 

explore its relevant properties. 

Scope 

As stated earlier, we only evaluate domain-specific solutions; however, because solutions vary greatly in 

terms of what sub-domain they consider within the domain of medicine, the scope (or domain) of the 

formalism needs to be precisely articulated (see Table 2). 
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Table 2 - Questions related to Scope 

Property Description 

Domain-specificity 
What is the definition of the domain? (This question is only relevant if the formalism is domain-specific.) 
The definition of the domain includes stating scope items such as focus (diagnosis, treatment, task 
assignment, etc.), clinical specialty, intended users, etc. 

Knowledge concepts 

Knowledge concepts describe the functional elements of the language. Relevant properties can be seen 

in Table 3. 

Table 3 - Questions related to Knowledge concepts 

Property Description 

Support for complex structures 
Complex structures include using a hierarchy for the decomposition of problems and solutions (tasks) 
and reuse of existing components with some form of referencing. 

Support for capturing parameters 
of tasks 

Parameters of tasks include intentions (goals), relevance, success condition, failure condition, etc. 

Support for ranking of alternative 
solutions 

Offering competing alternative treatment options for a patient with a particular configuration of clinical 
indicators is typical, however, it is up to the formalism whether treatment absolute priorities, or with a 
help of scoring values. 

Support for expressing temporality 
Temporality is inherent to CIGs, but formalisms may vary greatly in terms of what time related 
properties can be expressed by them. A more detailed description can be found in “P1.5 Temporal 
reasoning” under the “Open problems” section. 

Support for constructing derived 
data points 

Derived data points are data elements that are not designed to be received by the CIG system (but 
could potentially be reused if made available to other systems). Construction of derived data points are 
usually done using input data values and logical operators of an expression language. 

Formal semantics 

Defining the semantics of a DSML provides meaning for models of the language. In the case of DSMLs 

that allow the modeling of CIGs, semantics attach meaning to the captured CIGs. The benefit of formal 

specification of semantics25 is that it removes unintended ambiguity, thus it helps ensure consistent and 

automated analysis of designs, reuse of models between tools, and increases the extent to which 

models can be constructed correctly during design. Properties relevant to providing formal semantics 

are described by Table 4. 

                                                           
 

25
 More on how formal semantics for DSMLs are defined can be found in [74]. 
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Table 4 - Questions related to Formal semantics 

Property Description 

Support for execution 

Support for execution is dependent on whether the behavioral (or execution) semantics26 of the 
elements of the formalism is defined or not. It is important that this semantics describe a guideline-
independent execution model. In addition, where possible, the semantics should allow operations to be 
performed in parallel without ambiguity [42]. 

Support for verification of correct 
behavior 

Verifying whether a CIG is correct (i.e. conforms to the specification) is only possible if the execution 
semantics are clearly defined and there are concepts for formally describing the specification (e.g. in the 
form of constraints) against which CIG models can be tested. 

Interoperability with other 
formalisms 

If the semantics of the formalisms FA and FB are explicitly defined with the help of a formal model of 
computation (MoC)27, the evaluation of whether a translation of the CIGs expressed with formalism FA 
to formalism FB becomes possible. 

Error handling 
Managing the execution of a CIG in a real-life environment means that there is logic in place for dealing 
with data that has been deemed false only after it has been processed by the system (e.g. supporting 
the roll-back feature). 

Protocol composition 

Properties relevant to enabling the composition of protocols are described by Table 5. 

Table 5 - Questions related to Protocol composition 

Property Description 

Support for reuse and 
customization of existing models 

Reuse of models often requires the customization of the components of the model to be reused. 
Customization can range from changing parameters to completely replacing components. 

Support for handling protocol-
protocol interaction 

Support for handling protocol-protocol interaction allows the analysis of the effect and the resolution of 
potential conflicts of multiple guideline instances that are being executed on one patient (e.g. finding 
contradicting suggestions). 

Security and privacy 

Properties relevant to providing security and privacy are described by Table 6. 

                                                           
 

26
 Behavioral semantics in general defines the dynamic evolution of a system's state along some model of time. For a modeling 

language, this means that it describes how the state of a model evolves over time [75]. Execution semantics is closely related 
to behavioral semantics, and can be used interchangeably unless the difference is stated otherwise. 

27
 A model of computation (MoC) defines the principles of the behavior and the interaction of components. Examples of MoC 

include: Finite state machines (FSM), Statecharts – concurrent hierarchical FSM, Timed Automata (TA), Kahn Process 
Networks (KPN), Dataflow Process Networks (DPN), Petri Nets (PN) [76]. 
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Table 6 - Questions related to Security and privacy 

Property Description 

Support for security and privacy 
criteria modeling 

Support for security and privacy criteria modeling includes the definition as constraints or policies over 
the existing CIG models. 

Support for validation and 
verification of the CIG models 

Support for validation and verification of the CIG models against a range of safety, privacy and security 
related criteria. 

Information technology aspect: System integration 

The information technology aspect of the evaluation means listing the requirements regarding the 

integration of proposed architectures into existing CISs. 

Information exchange 

Information exchange is vital for any framework that intends to provide patient-based instantiation of 

CIGs. Concerns include: 

 Data consumption: Data points, which an executing CIG instance bases its decisions upon, must 

be provided by the environment (either CIS system components or health care providers). 

Unless the CIG-based system is expected to accept data entered manually, this translates to 

access to data sources, such as the EMRs. This means that some form of interoperability with 

the existing CIS components is required. For interoperability (e.g. automatic consumption of 

data coming from a host system), many concerns need to be addressed. These include 

specifying the mechanism of access (e.g. used technology and location), addressing security (e.g. 

access control), managing availability (e.g. what happens if the source system is not functional, 

or how often does data need to be sent), and specifying quality (i.e. minimum requirements for 

the data to be accepted, including “shelf life”, acceptable range, etc.). 

 Data maintenance: Patient data, health care provider actions and provider-patient interactions 

unique to the system need to be automatically captured and stored (logged) according to the 

policies of the HCO, state, country, etc. 

 Data provisioning: As an active component, a CIG-based system should be able to act as a data 

source to other systems as well. 
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 Interface towards the host CIS: In an ideal case, information exchange makes use of medical 

data standards28 for easier interfacing to a host CIS. 

 Interoperability with other systems that use another formalisms: Although a formalism with 

fully specified behavioral semantics allows for the understanding of its relation to another, the 

development of translation methods to and from other known formalism directly supports the 

reuse of CIGs in systems base their operation on another kind of CIG formalism. 

System validation 

A given formalism must have a well-defined, publicly available syntax and semantics so that it is possible 

to determine whether any given implementation is correctly reading and processing guidelines of the 

formalism. If either one is missing, or not available, outsiders will not be able to understand and analyze 

CIGs built using the formalism. 

System scalability 

System scalability is the ability of the system “to handle a growing amount of work in a capable manner 

or its ability to be enlarged to accommodate that growth” [77]. Inspection of an approach from the 

system scalability standpoint is critical. This means that issues, such as processing speed, request 

distribution, and local customization need to be worked out. 

System security 

The objective of system security is to maintain quality, such as confidentiality, integrity and availability. 

It includes protection of information from theft, corruption, etc., while allowing the information and 

property to remain accessible and productive to its intended users. 

                                                           
 

28
  Some of the well-known medical data standards are described in the “Other important medical formalisms, frameworks” 

section. 
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Guideline modeling languages, formalisms and frameworks selected for evaluation 

Guideline modeling approaches are often categorized into two distinct groups [78]: 

 The first group contains model-centric approaches, according to which domain experts build up 

conceptual CPG models using concepts from the language. In this case, the relationship between 

the model and the original (paper) document is only indirect. 

 The second group contains document-centric approaches, which facilitate markup-based tools 

for editing and modeling computerized CPGs. According to these approaches, experts take CPGs 

(i.e. original, text-based guideline documents) and systematically mark them up in order to 

create a gradually more formal model of the selected source. 

Here, distinction between model-centric and document-centric approaches is not made as with both 

approaches the result will need to be a CIG. Besides, the selection of the translation method is 

considered a subjective preference. 

The evaluation of all published CIG-based systems is out of the scope of this thesis. In this section, only a 

selected set of approaches are presented. To determine which frameworks to evaluate out of the vast 

set of available systems, we studied the published literature, mostly concentrating on already existing 

evaluations, which helped us identify the four most popular and most comprehensive approaches. The 

selected approaches, namely Arden Syntax, PROforma, GLIF and Asbru, are described in the following 

subsections. 

Arden Syntax 

One of the longest established medical knowledge representations is the Arden Syntax [79–81]. It sets 

out to provide a standard for capturing ECA rules and has been widely applied by industry [42,82]. Arden 

Syntax arose from the need to make medical knowledge and logic explicit and to standardize the way 

knowledge is integrated into proprietary CISs. This would allow sharing of the captured knowledge 

within and between institutions and make it available for decision making at the point-of-care [34]. 

Development and maintenance 

It was first introduced in 1989 at the Arden Homestead Conference in Harriman, New York. Arden 

Syntax was the result of a project run by Columbia Presbyterian Medical Center in New York City and 
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IBM Health Industry Marketing in Atlanta, Georgia. In 1992, Arden Syntax for Medical Logic Systems 

Version 1.0 was adopted by the  American Society for Testing and Materials (ASTM) [83]. Version 2.0 was 

adopted by the Health Level Seven (HL7)29 [84] and the American National Standards Institute (ANSI) 

[85] in 1999 and it has been sponsored by HL7 since. 

Arden Syntax was formerly a standard of ASTM, but currently it is a standard of HL7. Its development 

and maintenance is overseen by the HL7 Arden Syntax Special Interest Group and the Clinical Decision 

Support Technical Committee [86]. At the present time, the official version is 2.8 [34,81,87]. 

Use 

Initially, the Arden Syntax was based largely on the encoding scheme for generalized decision support 

used in the HELP30 system for providing alerts and reminders, developed at the LDS hospital in Salt Lake 

City [86]. Now it is widely used in the medical industry, an example is the Regenstrief Institute, Inc., 

where it is used in the CARE system to deliver reminders or hints to clinicians regarding patient 

treatment recommendations [88]. Other examples can be found in [89]. 

Syntax and Semantics 

The Arden Syntax is a rule-based formalism that is used to create self-contained (i.e. independent) units, 

called Medical Logic Modules (MLM), each of which encapsulates the logic necessary for an individual 

medical decision. 

A MLM contains information representing the context in which an individual rule may become relevant, 

the logical conditions necessary for it to be activated, and the action (recommendation) that is 

performed when it is activated [36]. An individual MLM should contain sufficient logic to make a single 

medical decision [86]. 

An MLM is an ECA rule expressed using a custom procedural formalism. Each MLM can be thought of as 

a single-step "condition-action" rule. However, they can be hierarchically nested, which allows their 

content to describe a sequence of instructions, (including queries, calculations and logic and write 

                                                           
 

29
 HL7 is described in more detail in the “Health Level Seven” section later in this thesis. 

30
  Health Evaluation through Logical Processing (HELP) 
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statements). Sequencing tasks can be modeled by chaining a sequence of MLM invocations (either 

synchronous or asynchronous) inside of another MLM container. MLMs can been used to generate 

clinical alerts and reminders, interpretations, diagnoses, screening for clinical research studies, quality 

assurance functions, and administrative support. 

Arden Syntax has a procedural syntax. The syntax of a MLM is given as a stream of text stored in an ASCII 

file in statements called slots [80]. Recently XML versions were also proposed, which eliminates the 

need for custom built compilers [90,91]. Each slot consists of a slot name, followed immediately by a 

colon (e.g. title:), then followed by the slot body, and terminated with two adjacent (double) semicolons 

(;;). The content of the slot body depends upon the actual slot, but it must not contain double 

semicolons, except inside comments, string constants, and mapping clauses. Implemented by slots, each 

MLM is composed of three main categories: maintenance, library, and knowledge (in this specific order). 

In the MLM, the categories and (sub)slots must follow a particular order, however, some slots are 

considered optional while others are required [89]. 

Example 

An example MLM written in Arden Syntax from [92] is provided below: 

maintenance: 

title: CT study with contrast in patient with renal failure;; 

filename: astm_ct_contrast;; 

version: 1.00;; 

institution: ASTM E31.15; SMS;; 

author: Harm Scherpbier, M.D.;; 

specialist: ;; 

date: 1995-09-11;; 

validation: testing;; 

library: 

purpose: Issue alert when physician orders CT study with contrast in 

patient with renal failure;; 

explanation: If physician orders CT scan with contrast, this rule retrieves 

most recent serum creatinine. If the value is less than 1 week old, and 

more than 1.5, the system issues an alert to the physician to consider the 

possibility that his patient has renal failure, and to use other contrast 

dyes.;; 

keywords: ;; 

citations: ;; 

links: ;; 

knowledge: 

type: data_driven;; 

data: last_creat : = read last {"Creatinine level"}; 

last_BUN : = read last {"BUN level"}; 

;; 
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evoke: ct_contrast_order;; 

logic: 

if last_creat is null and last_BUN is null 

then alert_text : = "No recent serum creatinine available. Consider 

patient's kidney function before ordering contrast studies."; conclude 

true; 

elseif last_creat > 1.5 or last_BUN > 30 

then alert_text : = "Consider impaired kidney function when ordering 

contrast studies for this patient."; conclude true; 

else conclude false; 

endif; 

;; 

action: write alert_text || "\nLast creatinine:  " || last_creat || " 

on:  " || time of last_creat || "\nLast BUN:  " || last_BUN || " on:  " 

|| time of last_BUN; 

;; 

urgency: 50;; 

end: 

Data types 

Arden syntax provides a few basic data types essential to medicine (Boolean, number, string, time, and 

duration), together with well-defined operations on them and the ability to structure them into lists. 

Dynamic data typing (including automatic type conversion) is also provided, and as a result, types are 

assigned to variables in MLMs at runtime [80]. 

Expression language 

Arden Syntax also defines an MLM query language, which is an expression language. This query 

language allows for the specification of the requirements of MLMs (i.e. input variables for the logic). The 

query language offers: 

1. a method for specifying input parameters based on what is available in CISs (e.g. vocabulary, 

database schema, queries) 

2. the specification of time constraints (temporal search window for data samples) 

3. a set of operators for producing derived data points with filtering and aggregation (e.g. sum of 

measurements, average, maximum, rate of change, newest) 

4. and a method for identifying patients. 

External references 

Arden Syntax bypasses the problem of different institutions having different CISs with different methods 

for storing and accessing local data by simply using curly brackets (“{ … }”) to allow the referencing of 
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local vocabularies and to allow the definition of local data retrieval methods [80]. It also assumes an 

underlying data model specified as a Virtual Medical Record (vMR)31 [34]. 

Implementation 

There is published information on implementation of both Arden Syntax modeling and execution 

environments. An Arden Syntax prototype implementation was developed in Prolog and an EE 

implementation using C++ [93] and Java [94]. In addition, in [95] a tool called the MLM Builder was 

introduced. It is a self-contained, unified development environment for the creation, testing, and 

maintenance of Arden Syntax MLMs. According to the authors, it also generates C and Delphi code. The 

implementation of MLMs is usually event-driven. “With an appropriate computer program (known as an 

event monitor), MLMs can be invoked and run automatically, generating advice where and when it is 

needed, e.g. to warn when a patient develops new or worsening kidney failure” [86]. 

Advantages and limitations 

Some of the advantages of Arden Syntax are listed in [86]: 

 It is domain specific. MLMs are intended to be written and used by clinicians with little or no 

programming training. 

 It is formal in the sense that it has well-defined syntax and with the help of its prototype 

implementations execution semantics are also provided. 

 It provides mechanisms for defining explicit links to local data, triggering events and messages 

to users. It also defines how MLMs can be invoked. 

 It provides support for time functions and it ensures that every data element and every event 

has a date/time stamp. It facilitates a three-valued logic (true, false, unknown) to support 

limited uncertainty as well [32]. 

Some of the limitations of Arden Syntax are: 

                                                           
 

31
  The Virtual Medical Record is described in the “Other important medical formalisms, frameworks” section. 
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 The expressiveness of Arden Syntax is limited: 

o Arden Syntax was not designed for encoding complex multistep guidelines that unfold 

over time. [82] 

o It “does not represent anchored intervals of time directly, nor does it explicitly handle 

fuzzy times” [80]. However, this issue is being addressed in version 2.8 [34]. 

o A potential problem with using Arden Syntax is that it has a limited set of predefined 

actions. For example, it does not explicitly define notification mechanisms for alerts and 

reminders. Instead, this is left to local implementation and – like database queries – is 

contained in curly braces in a MLM. [86] 

 The maintenance of the MLM specifications is difficult: 

o It does not offer mechanisms for complexity management and for managing linked 

MLMs [82]. 

o Since MLM specifications are stored as individual text files, Arden Syntax yields CIGs that 

can be neither easily queried, nor easily manipulated. Thus, Arden Syntax lacks support 

for higher-level abstract constructs, modularization for its rules, and the support for the 

manipulation and querying knowledge specifications. [32] 

o Arden Syntax has been defined with the intention to make MLMs swappable between 

disparate platforms, but much of this sort of logic has been written ad hoc into various 

EMR systems and is neither transferable, nor – in the case of closed source software – is 

it readily peer reviewed [96]. The major problem using the formalism to share clinical 

knowledge is the lack of common format for data encoding and manipulation [34]. This 

is the root cause of the problem known as the “curly braces problem”: Arden Syntax 

explicitly isolates references to the local data environment in curly braces (e.g. in order 

to provide alerts and reminders through interacting with local CIS components, such as 

a clinical database). Database schema, clinical vocabulary and data access methods vary 

widely so any encoding of clinical knowledge must be adapted to the local institution to 

use the local clinical repository. This hinders knowledge sharing. Efforts are underway in 

HL7 to help solve this problem, but it is not something that the Arden workgroup can do 

alone; it requires industry-wide standardization. [86] 
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Although the Arden Syntax has been important and influential, it is recognized that in order to formalize 

complex decisions and clinical workflows, and develop complete electronic guideline applications, a 

more expressive formalism will be needed [42]. 

PROforma 

PROforma [97–99] is a clinical guideline representation and interchange format. It is a formal process 

modeling language allowing clinical guidelines to be expressed in a computer-interpretable manner. 

PROforma models are executable and have been used successfully to build and deploy a range of 

decision support systems, guidelines, and other clinical applications. The technology includes the 

PROforma language and a set of Prolog and Java tools for building applications using the language [98]. 

Development and maintenance 

PROforma was developed at the Advanced Computation Laboratory of Cancer Research, UK for the 

general purpose of building decision support and intelligent agents [98]. Work leading to the design and 

implementation of PROforma was carried out in a series of projects largely funded by European 

agencies, starting in the late 1980s [100,101]. PROforma itself was a major result of the EC 4th 

Framework PROMPT project, which started in 1992 and completed in 1998 [98]. The work was awarded 

the 20th Anniversary Gold Medal of the European Federation of Medical Informatics in Copenhagen in 

1996 [98]. The two implementations Arezzo and Tallis were introduced in 1996 and 2000 respectively 

[97]. 

Use 

PROforma is a continuing area of research at the Advanced Computation Laboratory of Cancer Research, 

particularly for safety-critical applications. PROforma is the platform for a number of clinical applications 

developed by the lab. Some examples include REACT, RAGs, ERA, but a much more comprehensive list 

can be found in [97]. Web-based PROforma applications are currently under development [98]. 

Syntax and Semantics 

The PROforma language forms the basis of a method and a technology for developing and publishing 

executable clinical guidelines [97]. It combines logic programming and object-oriented modeling and is 

formally grounded in the R2L Language [101]. PROforma is essentially a first-order logic formalism 
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extended to support decision making and plan execution, but it also incorporates a number of well-

known features of non-classical logics (e.g. modal logic, temporal logic) and two novel logics (logic of 

argument (LA) and logic of obligation and time (LOT)) to support decision making and action control 

[98]. 

The PROforma formalism is based on the domino model [98], which is a generalized model of clinical 

decision-making and protocol management and can be seen in Figure 4. 

 

Figure 4 - The domino model, the basis of the PROforma language [26] 

Nodes of the domino model represent information relevant to a particular clinical situation (e.g. facts 

about a patient's history, decisions, tasks in progress, or planned actions). Arrows represent inference 

procedures that derive conclusions from available information. The inference procedure uses 

information shown at the arrow's tail in conjunction with information from a patient record and/or 

general medical knowledge base, in order to generate information shown at its head. 

The inference process according to the domino model (Figure 4) is the following: 

1. Initially, the computing agent is given a set of beliefs. 

2. From the beliefs, it identifies the problem(s) and infers goals (e.g. to diagnose or treat a 

disease). 

3. Then it finds various solutions to these goals. 



44 
 

4. If there are multiple options (such as alternative diagnoses or treatments) the system must 

consider the arguments for and against these alternatives and make decisions based on the 

validity and ranking of these arguments. 

5. A decision may commit to new beliefs, which could start the cycle all over with now new 

information on hand (e.g. new diagnosis for the patient). 

6. Alternatively, it could commit to a recommended plan of action instead, to achieve a goal (e.g. a 

clinical care plan). 

7. There is task scheduling and management needed as plans may consist of a set of actions 

carried out over time. 

8. Finally, an action will often produce postconditions that change the patient’s state. 

This means that decision making is performed by the four nodes to the left, and planning (including 

scheduling) and enactment is done by the two nodes to the right. 

While the domino model provides a good framework for defining the formal semantics of PROforma, it 

is rather abstract. To provide a precise, public definition of PROforma authors in [42] present a high-

level overview of the syntax and the operational semantics. A much more detailed description can be 

found in [99]. The syntax is provided in Backus Naur Form (BNF) and an operational semantics for the 

language is specified in terms of a combination of state machine and process flow models. 

The syntax of PROforma can be divided into two parts: (1) the syntax of the high-level guideline 

structure, which defines how the definitions of tasks and other guideline components should be 

arranged and separated, and (2) the syntax of the expression language that defines the forms that 

PROforma allows logical conditions and mathematical expressions to take. 

The UML class diagram below [Figure 5] shows the concepts (i.e. object types) of the PROforma 

language together with the relationships that are defined among them. 
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Figure 5 - The inheritance tree of PROforma component object types [36] 

According to [82], one aim of the PROforma project is to explore the expressiveness of a deliberately 

minimal set of modeling constructs. As shown in Figure 5, a guideline is modeled as a set of tasks and 

data items. The tasks are organized hierarchically into plans. The PROforma task model divides tasks into 

four classes: 

1. Actions represent some procedure that needs to be executed in the external environment (e.g., 

administering a drug or updating a database). 

2. Enquiries represent points in a guideline at which information needs to be acquired from some 

person or external system. 

3. Decisions are points at which some choice has to be made, either about what to believe or 

about what to do. 

4. Plans are collections of tasks that are grouped together for some reason, perhaps because they 

share a common goal, use a common resource, or need to be done at the same time. 

PROforma guidelines can be described graphically using a diagram-based convention (similar to UML 

Activity Diagrams) in which nodes represent tasks and arcs represent scheduling constraints. In these 

diagrams, squares represent Actions, circles represent Decisions, lozenges represent Enquiries, and 
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round-edged rectangles represent Plans. These four sub-classes and their respective icons are 

represented in Figure 6 below. 

 

Figure 6 - Icons of the generic and specific task types in PROforma [97,102] 

The contents of an example PROforma plan can be seen in Figure 7. 

 

Figure 7 - Contents of an example for a PROforma guideline (plan) [36] 

Scheduling constraints express necessary, but not sufficient, conditions for the activation of tasks, which 

means that the completion of a task does not imply the start of a task it precedes. Tasks in PROforma 

can also have a number of graphically invisible properties (i.e. attributes) whose values determine how 

they are to be interpreted. The value of a property may be a scalar value (e.g., an integer), an 

expression, or it may be an object, with its own set of properties. All tasks share attributes describing 

goals, control flow, preconditions, and postconditions. Logical preconditions (truth-valued expressions) 

of tasks are evaluated after their scheduling constraints are satisfied, and tasks are only activated if both 

their scheduling constraints and their preconditions are satisfied. There are other concepts in PROforma 

keystone
(generic task)

plan

decision action

enquiry sub-classes

Patient Data Urgent Referral Decision Treatment Decision Monitoring Decision

FLAP Assessment Return In Four WeeksUrgent Referral

Return In Eight WeeksReturn In Two Weeks
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not explained here that alter behavior, such as termination and abort conditions, and arguments for and 

against candidates (alternatives) at decisions [36]. 

Expression language 

In order to define conditions and arguments PROforma includes an expression language. The expression 

language includes the usual logical, arithmetic, and comparison operators, as well as functions that 

evaluate the execution states of tasks (i.e. whether they have been, or need to be performed) as well as 

the values of data items [36]. 

Execution 

During the enactment of a guideline, each task may undergo multiple state transitions. A task may be in 

one of four states: dormant, in_progress, completed, or discarded (Figure 8). 

 

Figure 8 - PROforma task state transitions [42] 

The PROforma semantics do not impose any real-world interpretation of task states. However, [42] 

provides a loosely defined interpretation. According to [42], a task is (1) dormant if it has not been 

started, and it is not yet possible to say whether it will be started, (2) in_progress if it has been started, 

(3) discarded if the logic of the guideline implies that it either should not be started or should not be 

completed, and (4) completed if it has been done. 

Implementation 

In execution time, a PROforma process description (i.e. CIG) is loaded into a software component 

referred to as the PROforma Engine, which maintains a record of the dynamic state of the process. This 

includes information on which tasks have been performed, decision on which need (or need not) be 
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performed, and the values of any data items associated with the process. The EE also implements a set 

of (“public”) operations to read or change the state of the engine and its guidelines in certain predefined 

ways (e.g. setEngineTime, loadGuideline, evaluateExpression, etc.). Some of these actions will be 

executed automatically, however the execution of a guideline often require actions to be performed by 

external actors (e.g. clinicians), who will interact with the engine via some set of user interfaces [36]. 

There are two main implementations of a PROforma engine currently available, the Arezzo 

implementation [103], which is available commercially from InferMed Ltd. (London, UK) and the Tallis 

implementation [104] from Advanced Computation Laboratory of Cancer Research. The 

implementations are similar, although the Arezzo implementation is based on a somewhat earlier 

PROforma language model. PROforma technology includes a suite of guideline authoring and execution 

software that incorporate CASE and verification tools. It has been shown to meet specific requirements 

of medical applications even though the language and tools are generic [98]. 

The Tallis implementation is composed of the following components: 

 Composer: graphical knowledge authoring tool for the creation, editing and graphical 

visualization of CIGs (see Figure 10) 

 Tester: for debugging of CIGs 

 Parser: for reading and writing CIGs in text format 

 Engine: for enactment (execution) of CIGs 

 Web IF: Java Servlets for runtime visualization and control (of enactment) 

The components of the Arezzo implementation – similar to the ones Tallis has – can be seen in Figure 9: 

 

Figure 9 - Arezzo's PROforma-based architecture [26] 
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A database server for accessing patient records is a required, but not included component. The Arezzo 

implementation is similar to that for Tallis, but it has a combined engine and tester environment, called 

the Performer. Another difference is that while Arezzo applications are designed to run on MS Windows 

platforms, Tallis was designed for delivering web-based services and has a Java-based implementation 

[97]. 

 

Figure 10 - PROforma patient-diagnosis scenario modeled in the Tallis composer [82] 

Advantages and limitations 

Some of the advantages of PROforma are: 

 PROforma has two independent implementation platforms, namely Arezzo and Tallis. 

 PROforma has a graphical notation. 

 PROforma has a mapping to UML Activity Diagrams defined in [105]. 

Some of the limitations of PROforma are listed in [42] and [36]: 

 It was reported in [36] that the lack of notational convenience (e.g. incomplete specification of 

the graphical notation) led knowledge engineers to use UML activity diagrams to create models 

to be used during the knowledge acquisition and analysis phases of the project instead of using 

PROforma process descriptions. These UML diagrams were translated into PROforma during the 

implementation of the project. 
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 The PROforma suite does not prevent guidelines containing syntactical errors (in expressions) 

from being loaded or enacted. 

 There is limited support for expressing constraints. There is a need for improved temporal 

reasoning, including the ability to represent temporal constraints about the state of tasks (e.g., 

when a task was completed or a data value was acquired) and the evolution of values, (e.g., the 

ability to define temporal predicates such as “increasing” or “decreasing”). 

 The PROforma expression language is not Turing complete. This is because the PROforma 

expression language does not provide any way of expressing functions that involve recursion or 

iteration. The creation of recursively evaluated expressions is possible though the use of 

iterative tasks, however this is a can prove to be a cumbersome solution. 

 There is no way to avoid the duplication of PROforma arguments, should they need to be 

attached to multiple candidates (see Figure 5). 

 There is limited support for abstraction and information hiding. It is frequently useful to conceal 

some aspects of a guideline description and reveal others in order to distinguish between the 

essential logic of a process and the information that is required by some particular 

implementation of that logic. 

 There is limited support for the definition of classes of tasks. It is frequently the case that a 

guideline description will contain several tasks that have the same parameters and can 

therefore be regarded as forming a class. For instance, tasks that involve altering a patent's 

medication might be grouped together into a class whose common properties are used to 

express the modifications needed. PROforma provides facilities for the definition of task classes, 

but with not enough expressive power (for instance they do not allow task classes to be grouped 

into hierarchies). 

 There is limited support for expressing structured data. Data types in a PROforma process are 

limited to atomic values (e.g. an integer or string) or ordered list of atomic values, all of the 

same type. 
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 While UML Activity Diagrams allow a transition between two states to be given a guard 

condition and will only occur if that condition is satisfied, this is not directly supported in 

PROforma. In PROforma, transitions between tasks can be constrained using scheduling 

constraints (arcs), however it is not possible to attach a guard condition to a scheduling 

constraint. Instead, preconditions are attached to the tasks themselves. This makes the 

translation of guarded transitions into PROforma difficult as one needs to model the guard 

transition as a precondition of a task. 

 Currently, the specification of PROforma does not make use of medical terminological 

standards. 

 Mapping of the abstract CIGs onto a patient record system requires Java code to be written. This 

problem is similar to the curly braces problem of the Arden Syntax. 

 The PROforma language does not address any data security issues. 

GLIF 

The Guideline Interchange Format (GLIF) [106,107] is a computer-interpretable, object-oriented process 

knowledge model designed for the representation, sharing and execution of CPGs. GLIF has associated 

tools under development for supporting guideline authoring and execution [107]. 

Development 

The first published version of GLIF was GLIF2 (GLIF version 2) in 1998 [107]. The latest version of GLIF is 

version 3.5, also known as GLIF3, was published in 2000 [108] and updated in 2004 [109]. It has been 

developed by the InterMed Collaboratory32, which includes groups from Stanford, Harvard, Columbia 

and McGill universities [82]. 

                                                           
 

32
  The word “collaboratory” in InterMed Collaboratory is a word play created from words "collaboration" and "laboratory". 
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GLIF is built on top of the most useful features of other guideline formalisms and it incorporates 

standards that are used in health care. Its expression language was based on the Arden Syntax and its 

medical data model is based on the HL7 Reference Information Model (RIM)33 [82]. 

Use 

GLIF has been used in the modeling of a diabetes foot guideline, which has been locally adapted to the 

needs of primary care physicians in outpatient clinics in Israel. There, it was linked with a web-based 

EMR, and was enacted using a GLIF-specific execution engine, called the Guideline Execution Engine 

(GLEE) [110]. Another example, where a GLIF-based guideline execution was implemented, includes 

post-CABG (Coronary Artery Bypass Grafting) patient care planning at Columbia-Presbyterian Hospital 

and Columbia University. Here full integration with the local CIS was not completed [107]. Further 

examples demonstrating the effective use of GLIF3 for encoding and testing various CPGs, including 

childhood immunization, cough management, and hyperkalemia patient screening, can be found in 

[111]. 

Despite these examples and the fact that GLIF was designed to be an open standard [34], only a subset 

of GLIF became a true standard. GLIF’s expression language, the Guideline Expression Language, Object-

oriented (GELLO), was adopted as an international standard by HL7 International and ANSI in 2005 [112]. 

The new version – GELLO Release 2, developed in coordination with the HL7 Clinical Decision Support TC 

(CDSTC) – was completed and approved by ANSI in June 2010 [87]. The rest of GLIF has not received 

nearly as much attention and after 2009, and its website [113] disappeared. 

Syntax and semantics 

GLIF was designed to support guideline modeling as a flowchart of structured steps, where steps 

represent clinical actions and decisions. For its models, GLIF3 requires a formal definition of decision 

criteria, action specifications and patient data. 

GLIF supports three separate abstraction layers for specification: (1) an abstract flowchart level, (2) a 

computable level, and (3) an implementation level of specification. Level 1, the abstract flowchart level, 

                                                           
 

33
  More on HL7 RIM can be found in the “Data models” section under the “Other important medical formalisms, frameworks” 

section. 
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helps authors and users view and understand guidelines. Level 2, the computable level, formally defines 

logical criteria, definitions of patient data items, clinical actions and the flow of the guidelines. Level 3, 

the implementation level, includes non-shareable, institution-specific details, which enable guidelines to 

be incorporated into operational clinical information systems. Thus, shareable components of a 

guideline are explicitly separated from institution-specific or vendor platform-specific (non-shareable) 

components [107]. 

GLIF uses the Protégé ontology editor and knowledge-base framework [114,115] as its modeling 

environment. Conforming to Protégé modeling methodology in GLIF3 models the process of clinical care 

is encoded as the algorithm of a guideline and guidelines are represented as specific guideline instances. 

GLIF contains various classes and their attributes to represent CPG knowledge and the complex 

relationships among them. An overview of the high-level concepts and their relationships represented 

as a UML class diagram can be seen below in Figure 11 [109]. 

 

Figure 11 - Overview of the high-level classes in GLIF3 [109] 

Within an algorithm, instances of five types of tasks, which are called guideline steps, can be encoded 

and linked together in a flowchart to specify their scheduling and coordination during guideline 

application [116]. These five main process-modeling entities, each of which is a subclass of the abstract 

Guideline Step class are: 
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 the Action Step, which is a block used to specify a set of recommended tasks (clinical or 

computational) to be performed without constraints set on the execution order. GLIF3, now 

allows nesting of sub-guidelines in the model, thus multiple views to the care process with 

different granularities can be defined [107]. 

 the Decision step, which are used for conditional and unconditional (user-selected) routing of 

the flow to one out of multiple steps. (This step is a merged step combining a Case Step and a 

Choice Step from GLIF 3.4). 

 the Branch and 

 Synchronization steps, which are used for modeling branching of multiple concurrent paths and 

their synchronization (merging or parallel branches). 

 the Patient-State Step, which is a guideline step used for specifying an entry point(s) to a 

guideline and for describing the clinical state of the patient (pathophysiological or management 

states in the specific contexts of a guideline’s application). 

These concepts are used to formulate a guideline algorithm and provide an overview of the decision-

making process of a guideline [111]. The visual representation of the concepts and a simple GLIF patient-

diagnosis scenario built using them can be seen in the figure below (Figure 12 from [82]). 
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Figure 12 - Patient-diagnosis scenario modeled in GLIF3.5 using Protégé [82] 

Execution 

The execution semantics of GLIF models are implemented by the GLEE. Figure 13 shows a schematic 

state machine diagram of a guideline step. 

 

Figure 13 - Execution states of a GLIF guideline step and possible transitions in-between [116] 
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During operation, GLEE suggests a guideline step deemed executable and puts it into the prepared state. 

Users then decide whether to follow GLEE’s suggestion or to deny it by stopping the suggested step and 

initiating the start of another step. Users also have the ability to stop a started step that is no longer 

relevant. Guideline steps deemed completed by GLEE finish their execution [116]. 

Data types 

Clinical data in GLIF are encoded as data items. These data items are then referenced by expressions, 

which are used to express decision criteria and patient state. Clinical events are encoded as triggering 

events, which are used to activate specific clinical tasks [116]. 

Expression language: GELLO 

Guideline Expression Language, Object-oriented (GELLO) [117,118], which was recently accepted as an 

HL7 and ANSI standard, is a vendor and platform-independent, extensible, object-oriented, side-effect-

free, and executable expression language [82]. GELLO can be used for expressing and sharing decision 

logic, eligibility criteria, calculations, patient state definitions, conditions, and system actions. GELLO 

allows the specification of expressions in the form of (1) queries to extract data from EMRs in CDSS, and 

(2) logical rules to manipulate data and evaluate decision criteria by building up expressions to reason 

about particular data features and values such as ones found in guidelines [34]. GELLO solely focuses on 

specifying logical expressions and it was not designed to support specification of entire clinical 

algorithms. 

GELLO’s original goal was to serve as a procedural component for the higher-level guideline format 

(GLIF), but since its adoption as a standard, it has been extended to serve a similar functionality for the 

current HL7 knowledge representation standard, Arden Syntax [119]. 

GELLO was based on OCL34 and much of the functionality of OCL has been integrated into GELLO to 

provide a suitable framework for manipulation of clinical data for decision support. It provides basic 

data types and a mechanism to reference underlying standard data model (vMR) in an object-oriented 

fashion [119]. The authors of [112] provide further details on how GELLO expressions are parsed, 

compiled, used for data aggregation and evaluation, while [119] provides some examples for (1) queries 

and (2) expressions. 

                                                           
 

34
  UML’s Object Constraint Language (OCL) [120] 
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1. Queries: 

Observation.select(coded_concept=’03245’) 

Observation.selectSorted(coded_concept=“C0428279”) 

2. Expressions: 

calcium.notEmpty() and phosphate.notEmpty() 

which returns true if the variables calcium and phosphate are not null, and 

renal_failure and calcium_phosphate_product > threshold_for_osteodystrophy 

which returns true if the patient has renal failure and the product of calcium and phosphate exceeds a 

threshold signifying osteodystrophy. 

Implementation 

Modeling environment: Protégé 

As mentioned in the previous section, GLIF uses the Protégé ontology editor and knowledge-base 

framework as its modeling environment. Protégé provides the means for creating and validating models 

in GLIF with the help of an ontology schema and a graph widget, which have to be loaded into the 

Protégé-2000 environment [82]. As GLIF models are captured in Protégé, they automatically have an 

XML-based syntactical representation as well [34]. 

Protégé has been used as a GUI for the development of multiple CIGs. These studies indicate that 

Protégé can be used effectively to validate the encoding of CPGs in the GLIF3 format [111] and 

potentially extend them through its inferencing engine35. This is showcased in [111], where the overall 

goal of the presented study was to illustrate the steps involved in encoding a guideline in GLIF3 through 

a case study of a depression screening and management CPG for a nursing decision support system 

(DSS). 

Execution engine: GLEE 

The main purpose of the execution engine for GLIF, called the GLEE, is to assist in the implementation of 

GLIF3-encoded CIGs and provide a test environment, where an investigation whether an encoded CIGs 

faithfully reflects a CPG encoder’s intention can be performed [111]. GLEE acts as a CDSS by (1) 

                                                           
 

35
 Protégé’s inferencing engine is called Pellet. 
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interpreting guideline knowledge encoded in the GLIF3 format, (2) integrating it with patient data, and 

(3) generating recommendations tailored to individual patients. This process can be observed in Figure 

14. In addition to clinical decision support, GLEE aims to be used for quality assurance, guideline 

development, and medical education as well. 

 

Figure 14 - The internal structure of GLEE (of GLIF3), and its interactions with the environment [116] 

GLEE is built as middleware that is intended to be integrated with the CISs at a local institution through 

predefined interfaces to its EMRs and clinical applications. Figure 14 shows the GLEE middleware 

integrated into a host CIS. The architecture can be classified into three conceptual layers: (1) data to 

support execution, which includes repositories for clinical data and GLIF3 models, (2) the core 

components implementing the execution logic (i.e. business logic), and (3) the interfaces both to users 

and the host environment (UIs and data interfaces). 

The communication between GLEE and the EMR back-end enables GLEE to access various resources in 

the local environment, such as retrieval of patient data, and monitoring of clinical events. The 
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communication between GLEE and associated clinical applications at the front-end enables the 

integration of the decision support services provided by GLEE, such as alerts and reminders, within a 

clinician’s workflow. The architecture allows the simultaneous instantiation of multiple GLEE clients. It 

also features a standalone GUI (Figure 15) for simulating the process of guideline execution on individual 

patients; however, it is used only for development and demonstration purposes. GLEE is currently 

implemented in Java [116]. 

 

Figure 15 - Screenshot of GLEE’s standalone GUI during development and testing (client side) [116] 

Figure 15 demonstrates GLEE’s standalone GUI, on which the algorithm of a GLIF3 guideline for influenza 

vaccination is shown as a flowchart at the upper-right portion of the screen. The upper-left portion of 

the screen provides information on the list of active steps, the hierarchy of algorithms, and detailed 

information on the currently highlighted step. The lower part of the screen shows the setting of the 

current client and the execution trace. The pop-up window provides maintenance information of the 

guideline. 
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Advantages and limitations 

Some of the advantages of GLIF are: 

 GLIF allows for the formal specification of CIG with an associated modeling environment 

(Protégé) and execution engine (GLEE). 

 GLIF incorporates GELLO36, a now standard formal expression language for specifying decision 

criteria and patient states. 

 GLIF uses a layered patient data model to enable GLIF3 steps to refer to patient data items 

defined by a controlled terminology that includes standard medical vocabularies (such as 

UMLS37), as well as standard data models for medical data (such as HL7 RIM, or vMR). 

 In GLIF2, the attributes of the main constructs were defined as text strings that could not be 

parsed. This prevented the resulting guidelines to be used in clinical inferencing during 

execution. To address this problem, GLIF3 extended the GLIF2 specification with several new 

constructs, and requires a more formal definition of decision criteria, action specifications and 

patient data [107]. 

 Just like the Arden Syntax it facilitates a ternary logic (i.e. true, false, unknown) to support 

limited uncertainty [32]. 

Some of the limitations of GLIF include: 

 According to multiple sources [34,82,111], GLIF supports sharing of computer-interpretable 

clinical guidelines across different medical institutions and system platforms. Although authors 

stress the importance of sharing, there are no good published examples. 

 GLIF authoring is currently bound to the Protégé environment, which might be a limiting factor 

when it comes to clinical adoption. 

                                                           
 

36
 Before GELLO was adopted, GLIF had been using an expression language called GEL, which was based on the Arden Syntax's 

logic grammar. 

37
  More on UMLS can be found in the “Other important medical formalisms, frameworks” section. 
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Asbru 

The Asbru modeling language was created as part of the Asgaard framework in the Asgaard/Asbru 

project [31,33], the aim of which was to provide an architecture that supports the design and the 

execution of skeletal plans by a human executing agent other than the original plan designer. 

Development 

The Asgaard project was introduced in 1998 [121] and has been an active area of research since. It 

involves collaborators from many places, including the Vienna University of Technology, Stanford, the 

Ben Gurion University and the Vrije Universiteit from Amsterdam [82,121]. 

Use 

According to [121] and [122], Asbru has been used in a fair amount of clinical applications (e.g. diabetes, 

jaundice, breast cancer and neonatal intensive care), all of which are only prototype applications. Asbru 

sources for some of these examples can be found in [123]. 

Syntax and semantics 

Asbru is a time-oriented and intention-based “skeletal plan” representation language that is used for the 

specification of clinical protocols. Asbru’s (skeletal) plans facilitate reuse by capturing only the essence 

of domain-specific procedural knowledge, thus leaving room for execution-time flexibility in the 

achievement of particular intentions. In a plan, there are concepts defined for (1) characterizing plan 

attributes such as intentions, conditions, and effects, (2) ordering of plans, and (3) defining temporal 

dimensions of states and plans. Uncertainty in temporal scope and parameters can be expressed by 

bounding intervals [82]. Asbru plans are written in XML, the schema specification is given in [124]. An 

overview of the high-level concepts and their relationships represented as a UML class diagram – taken 

from [124] – can be seen in Figure 16. An explanation of the diagram follows. 
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Figure 16 - Overall structure of a plan library in Asbru [124] 

In Asbru, plans are contained in a plan library together with plan library and domain definitions, both of 

which help to separate declarative data abstractions from the procedural hierarchy of plans. Plan library 

definitions contain a set of reusable, domain-independent parameter definitions valid in the whole plan 

library, including functions, variables, constants, types and time definitions. Domain definitions provide 

an interface between the plan library and various environments in which the plans will be executed. In 

other words, they specify entities of the real world, which the plan library accesses. 

A plan specifies a set of actions to be taken to reach a certain goal. The actions to be taken are specified 

in the plan body while the goal is given with the help of intentions and effects. Plans also have a return 

value and a set of conditions, which control their execution. A brief description of these elements is 

provided based on [124]: 

 Arguments are values passed from the invoking or calling plan (called parent) to the invoked or 

called plan (called child). 

 Preferences describe the costs, resource constraints, and responsible actor. 
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 Intentions are high-level goals of the plan, an annotation specified by the designer 

independently of the plan body. Intentions are temporal-pattern constraints, represented by 

temporal patterns of actions and states that should be maintained, achieved or avoided. 

 Conditions guard the transitions among the states of a plan. For each condition, it can be 

defined whether the change in plan state occurs automatically or whether user confirmation is 

required. In addition, it can be allowed to the user to induce the change on plan state even if the 

condition is not fulfilled. 

 Effects describe the relationship between plan arguments and measurable parameters by 

means of mathematical functions or in a qualitative way. A probability of occurrence can be 

denoted. 

 The plan body contains set of plans to be executed in a particular way. It also specifies which of 

the child plans have to be completed successfully in order to terminate (complete) the parent 

plan successfully. A plan body can be one of the following: 

 Subplan is a set of plan steps performed in sequence, in parallel, in any order (any order, 

and unordered). 

 Cyclical-plan is a plan, which can be repeated multiple times. 

 Single-step is a single step of plan execution, consisting of either a plan activation, a variable 

assignment or the setting of the context. 

 Refer-to is a reference (link) to the plan body of another plan. 

 To-be-defined is a special tag declaring that this plan is not executable. It is an abstract 

pattern, which other plans can inherit, filling in the missing plan body. 

 User-performed is another special tag indicating that this plan is executed through some 

action by the user, for which reason it is not modeled in the system. 

Execution 

A partial definition of the semantics of Asbru has been given using Structured Operational Semantics 

[125], however, according to [42], that effort does not provide sufficient information to permit others to 

implement tools. Taken from [124] and [33], the informal description of how Asbru plans are executed is 

described below. 
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Figure 17 - State machine of an Asbru plan [124] 

Generic library plans are executed by the execution interpreter (i.e. EE), which implements the state 

machine from Figure 17. According to the figure, plans have states that determine whether the plan is 

applicable and whether a plan instance can be created. Each plan is initially considered after which 

conditions control the transitions among the mutually exclusive states of the plan. 

At execution time, if a plan was in ready state, it is instantiated. The decomposition of a plan into its sub-

plans is always attempted, unless the plan is not found in the guideline library, in which case the plan is 

interpreted as non-decomposable. Non-decomposable plans might be decomposable into more 

primitive actions at a particular clinical site. A non-decomposable plan is executed by the user or by an 

external call to a computer program. Every (decomposable) sub-plan has the same structure. Thus, a 

sequential plan can include several potentially decomposable concurrent or cyclical plans. 

Implementation 

Modeling and visualization environments 

There are several tools that support the authoring and visualizing of Asbru guidelines. These include 

AsbruView [126–128], Delt/A [129,130], and CareVis [131,132] and the DeGeL framework [133–135]. 

AsbruView is a tool to make Asbru accessible to physicians, and to give any user an overview of a plan 

hierarchy, since Asbru plans cannot be understood by physicians with no or little training in formal 

methods. AsbruView’s two main views, the topological view (TopoView) and temporal view (TempView), 
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are based on visual metaphors that make the underlying concepts easier to grasp. Figure 18 – from [82] 

– presents a patient-diagnosis scenario model in TopoView. 

 

Figure 18 - Patient-diagnosis scenario model in AsbruView [82] 

DeGeL, the Digital electronic Guideline Library, is a hybrid, multifaceted representation language and 

computerized, Web-based set of tools for storage, authoring, retrieval and enactment of hybrid Asbru 

guidelines38. DeGeL supports the gradual conversion of clinical guidelines from text to fully formal, 

machine-readable Asbru representations [121]. Intermediate steps include the translation of text-based 

guidelines to structured text, which is an XML file, segmented and labeled by Asbru semantic tags. The 

DeGeL project has developed a large set of tools to support the development and implementation of 

guideline applications. Figure 19 illustrates how these components fit together. 

                                                           
 

38
  Hybrid representations of clinical guidelines include any combination of free-text, semi-structured text, semi-formal 

representation, and machine-comprehensible formats in a chosen target guideline ontology (in this case Asbru). 
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Figure 19 - DeGeL architecture for Asbru guidelines [26] 

Support is provided for a wide range of tasks central to guideline-based care: 

 During guideline specification: 

o verification of the guideline process specification (syntax) 

o validation of the guideline against its goals (semantics) 

 During guideline execution: 

o determination of patient eligibility and guideline applicability 

o visualization of one or more potentially applicable guidelines 

o application (execution) of the guideline 

o quality assessment of providers’ actions 

o modification of guideline or provider plans 

o evaluation of guideline effectiveness. 
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DELT/A – the Document Exploration and Linking Tool (with Addons) – formerly known as Guideline 

Markup Tool (GMT) was developed to provide a relatively easy way to translate free text into Asbru. It 

achieves this by displaying both the original text and the translation, and showing the user which parts 

of the Asbru code correspond to which elements of the original text [121]. 

CareVis is an interactive visualization tool designed to support (Asbru) protocol-based care. CareVis 

provides views for the complex underlying data structure of treatment plans and patient data. It is 

designed for use, for example, during guideline execution. 

Another visualization tool [136] uses flowchart-like representation (similar to what Oracle BPEL Process 

Manager [137] uses) to conceptualize Asbru guidelines. Unfortunately, this tool only allows clinicians to 

interpret Asbru guidelines, not to edit them. 

Execution engine: AsbruRTM 

Asbru’s original execution environment is called the Asbru Run Time Modules (AsbruRTM) [138–140] 

and it is written in Java. In order to translate the XML-based Asbru plans to Java classes, the EE 

facilitates Castor, an open source data-binding framework for Java, which generates a Java object model 

out of Asbru’s XML Schema. AsbruRTM consists of three main modules: the data-abstraction unit, the 

monitoring unit, and the execution unit. These can be seen in Figure 20. 

 

Figure 20 - The Asbru engine [138] 
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The role of the data abstraction unit is to feed the incoming data to the monitoring unit, by performing 

the transformation of information on two distinct data source types39: high-frequency domains (e.g. 

sensory measurements), and low-frequency domains (e.g. manually entered daily measurements). The 

resulting formatted data is received and stored in a list of observed parameter propositions by the 

monitoring module. How long each observation is valid is specified by the data abstraction unit. The 

monitoring module receives another list, which is specified by the execution module. This list contains 

temporal patterns, called the monitored parameter propositions. The monitoring module then 

periodically compares these two lists and if two elements match, the execution module is notified. 

Mapping of plans and actual situations is accomplished by the execution module on three distinct layers: 

1. Plan Synchronization: All plans in Asbru have time-annotated conditions for their start, 

successful completion and failure. These annotations provide flexible means for denoting 

temporal constrains on the duration of a plan. The execution of a plan lasts until its goal 

conditions are satisfied or a failure is reported. 

2. Plan Adaptation: Plan adaptation is implemented as plan suspension and plan replacement. 

Plans stay active until they are either completed, aborted, or suspended. An alternative plan can 

be activated when the original one fails. 

3. Replanning: Replanning can occur only if a plan fails or there is an explicit user request for it. If a 

top-level plan fails, the execution module looks for plans (in the plan library), which either have 

the same intentions, or have effects which remove the reason for the failure of the current plan. 

Additional user requests can be specified by either selecting a plan to be executed, an intention, 

or a goal to be achieved. 

Execution engine: Spock 

The DeGeL framework includes another EE engine for Asbru, called Spock [142,143]. The goal of the 

system is to assist providers to “apply guidelines over extended time periods in an intermittent fashion 

at the point of care”. What Spock implements is an extension to the original state transition model of an 

Asbru plan (Figure 17) with the ability to automatically process information coming from an EMR 

                                                           
 

39
  Extensions to this unit have been proposed in [141]. 
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system; however, Spock focuses mainly on execution of semi-structured (hybrid) Asbru guidelines. Their 

extended execution model is defined with the help of UML Statecharts and can be seen in Figure 21. 

 

Figure 21 - Extended state machine of an Asbru plan in Spock [143] 
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Advantages and limitations 

Some of the advantages of Asbru are: 

 Asbru uses sophisticated temporal structures, which allow the representation of uncertainty in 

start time, end time, and duration of time interval. 

 Asbru attempts to provide support for the reuse of guidelines by providing multiple abstraction 

layers. Examples for this include (1) providing concepts for capturing domain definitions 

separately from guideline logic, and (2) providing abstract plans serving as placeholders for the 

implementation of location-specific tasks. 

Some of the limitations of Asbru are: 

 Asbru is a highly complex language, but seemingly makes no use of medical standard 

terminologies. 

 As far as one can tell from available literature [139,144], Asbru’s execution environment - is 

fairly rudimentary, as it only processes a subset of Asbru – called Asbru Light – and it lacks a 

configurable interface for interacting with guidelines being executed. 

Guideline modeling languages not selected for evaluation 

There are many other guideline-modeling methodologies that this thesis does not discuss. Some of the 

most well-known ones include SAGE, SpEM, EON, GEM, GUIDE, and PRODIGY, none of which possess any 

significant features that were not covered by previously discussed approaches. 

Other important medical formalisms, frameworks and organizations 

As it was discussed earlier in this thesis, information exchange and reuse of knowledge are important 

factors in the interoperability of CIG-based CDSS. Without trying to provide a complete picture, this 

section introduces a couple of medical formalisms, frameworks and organizations, mentioned in 

previous sections40, that support just that. A more thorough analysis of prominent EMR standards can 

                                                           
 

40
  Sections talking about these formalisms are the “CIG execution - Patient management based on CIGs”, the “Components of a 

CIG-based CDSS”, and the “Information exchange” sections. 
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be found in [145], where standards are evaluated in four major areas, namely (1) in their level support 

for interoperability, (2) functionality, (3) extensibility and complementarity and (4) market relevance. 

Information exchange in this case means that CIG-based CDSS need to communicate with other 

supporting CIS components (such as EMR and CPOE systems) in order to make decisions that are based 

on external information, and to propagate their results into other systems that want to consume it. 

Another critical requirement for these systems is the ability to reuse knowledge. This means that the 

effort needs to be minimized when facilitating knowledge in one system captured in another. 

Standards could help with both of the aforementioned problems, but as there are no universally 

accepted CIG modeling languages today, other solution are needed. According to [119,146], the two 

more easily sharable components are the data models and the expression languages. This means that 

sharing of knowledge can be achieved on multiple levels, using 

1. shared (medical) concept model (i.e. vocabularies), to identify concepts of interest 

2. shared data models (i.e. structures), to exchange data with concepts identified using 

vocabularies (e.g. patient information model) 

3. shared expression languages, to communicate data-dependent condition expressions and 

calculation methods (as opposed to sharing the calculated data) 

Each level builds on the next, thus being more complex. 

Data models 

Standardizing the references to patient data in CIGs allows the prevention of the rewriting of the data 

references at the time of local adoption. The idea is that there needs to be an unambiguous one-time 

mapping between standard and local models, which then allows for an automated translation at the 

time of local adoption. 

Candidates for data models include: 

 vMR 

 RIM 
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Virtual Medical Record 

The vMR specifications – maintained by HL7 – is described by [147] as “an interface that allows an 

information system to obtain access to, create, and or modify clinical statements about a given person. 

In its simplest form, the VMR could simply be viewed as an association between a person and that list of 

clinical statements.” It is intended to be a computationally independent model of a person’s EMR, which 

allows it to serve as a simplified and optimized input and output data structure for CDSS. vMR maps 

associated data elements from standards-based data structures to vMR data structures, producing vMR 

schemas and associated mappings. 

Reference Information Model 

The RIM is an ANSI approved component of the HL7 Version 3 standards, which was developed with the 

aim to support all healthcare workflows. It provides a shared object-oriented model of the HL7 clinical 

data (domains) and defines the life cycle of messages exchanged in interactions within workflows. “RIM 

expresses the data content needed in a specific clinical or administrative context and provides an explicit 

representation of the semantic and lexical connections that exist between the information carried in the 

fields of HL7 messages.” [148] 

Vocabularies 

Standard data models by themselves are not enough; they need to build on standard vocabularies to be 

truly effective [119]. This is achieved by data models using references to concepts defined by standard 

(medical) vocabularies. Concepts in standard vocabularies are generally organized in some sort of 

structure, most of the time in some sort of taxonomy, or in an ever more generic structure, an ontology. 

Examples include standards such as CPT41, ICD-9 and 1042, LOINC43, SNOMED-CT44, and so on. 

Even if data models were built using local concepts, a one-time mapping is needed between local 

concepts and standard vocabularies in order for interoperability to be achieved. 

                                                           
 

41
  Current Procedural Terminology (CPT) [149] 

42
  International Statistical Classification of Diseases and Related Health Problems version 9, 10 (ICD-9, ICD-10) [150] 

43
  Logical Observation Identifiers Names and Codes (LOINC) [151] 

44
  Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [152] 
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Expression languages 

Expression languages, such as ones introduced in previous sections (e.g. Arden Syntax’s MLM query 

language and GLIF’s recently standardized GELLO) can ease interoperability if standardized. With their 

help, a higher efficiency can be achieved when exchanging information. 

Let us look at an example scenario, where one system needs the minimum and the maximum 

temperature values of a patient over the past two days, but temperature values with minute-based 

granularity are stored in another system. If there are no expressions used, the receiving system needs to 

get all data values from the other system for the past two days and find the minimum and maximum 

values itself. If there is a language allowing the construction of expressions in one system and consumed 

by another, the system receiving the request can calculate the minimum and maximum values and 

transmit them instead. 

Unified Medical Language System 

Created in 1986, the Unified Medical Language System (UMLS) [153] is a collection of many controlled 

vocabularies in the biomedical sciences. UMLS is an important medical ontology that ties various other 

ontologies together. Its main components are: 

 the Metathesaurus, which is the core database of the UMLS. It is a collection of concepts and 

terms from various controlled vocabularies, and their relationships, 

 the Semantic Network, which is a set of categories and relationships that are being used to 

classify and relate the entries in the Metathesaurus, 

 the SPECIALIST Lexicon, which is a database of lexicographic information to be used in natural 

language processing, 

 a set of supporting software tools. 

Knowledge sources in UMLS are multi-purpose by design, which means that they are not optimized for 

any one particular application, but instead can be applied in a large number of systems performing a 

wide range of functions. A set of supporting software tools were created in order to assist developers in 

using the UMLS knowledge sources for particular purposes. 
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The reason why an ontology of ontologies, like UMLS, is important is that it can serve as the common 

language to which concepts used in different CISs could be translated to. This translator then can be 

used to translate requests between CIG-based CDSS and other servicing systems, as well as to transfer 

CIG specifications between two CIGs-based CDSS. 

Health Level Seven 

Health Level Seven [154] is a non-profit organization involved in the development of international health 

care standards. The work of the HL7 group is important, because they oversee many of the standards, 

on which CIG-based CDSS need to build in order to better support interoperability. These include: 

 conceptual standards (e.g. HL7 RIM), 

 document standards (e.g. HL7 CDA), 

 application standards (e.g. HL7 CCOW), 

 and messaging standards (e.g. HL7 v2.x and v3.0). 

“Messaging standards are particularly important because they define how information is packaged and 

communicated from one party to another. Such standards set the language, structure and data types 

required for seamless integration from one system to another” [155]. As mentioned earlier HL7 oversees 

the development of the Arden Syntax and GELLO as well. 
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CHAPTER III.  

 

EVALUATION OF OPEN QUESTIONS IN CIG LANGUAGE DESIGN 

While previous sections provided evaluations respective of each approach individually, this section 

provides an evaluation summary on formalisms and frameworks. The current evaluation can be 

considered as complementary to several comparisons, most of which are listed below. The section starts 

with a description of earlier evaluation efforts, which is then followed by a discussion including the 

author’s own assessment and findings. 

Why is the evaluation of these approaches difficult? 

The section “Evaluation criteria for guideline-based clinical information systems” contains evaluation 

criteria in order to make the evaluation process easier. However, a proper assessment remains a difficult 

challenge, as the terminology used in these languages is inconsistent, the semantics of the control-flow 

of some of the languages is incompletely and informally defined, and the approaches used by the 

languages for guideline modeling are heterogeneous. [82] 

Earlier comparison efforts 

There have been multiple attempts to evaluate and compare CIG formalisms and their execution. In the 

following, some of the well-known attempts are listed in a chronological order. Major findings are also 

listed; however, it needs to be noted that many of these findings are already incorporated throughout 

this thesis. 

In one of the earlier comparisons [45], Perry reviews representative knowledge bases and knowledge-

based systems in medicine current in 1990 (including Physician Data Query (PDQ), Hepatitis Knowledge 

Base (HKB), MYCIN, CASNET, PIP, and INTERNIST-1). Most of these approaches are covered in the “Early 

CDSSs” section. 

In an article from 1994 [156], authors showcase a performance analysis of the diagnostic capabilities of 

systems current at that time (Dxplain, Iliad, Meditel, and QMR). The results from the article indicate that 

the evaluated systems “should be used by physicians who can identify and use the relevant information 

and ignore the irrelevant information” provided these systems. 
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In an article from 2000 [157], authors provide a categorized review of guideline representation 

approaches, followed by a comparison of their features and capabilities. Their evaluation summary 

without further explanation can be seen in Table 7. 

Table 7 - Comparison of features of six CIG formalisms [157] 

Models GLIF EON Asbru PROforma Prodigy Prestige GEM 

Algorithmic Yes Yes Yes 
Not 

primarily 
Yes 

Not 
primarily 

Not 
Primarily 

Sub-guideline Support Yes Yes Yes Yes Yes Yes No 

Supports Decision Criteria Yes Yes 
Yes 

(temporal) 
Yes Yes Yes Yes 

Intentions and Goals Support 
Possible through 
sub-guidelines 

Yes Yes Yes No No No 

Ranking of Options Supported Yes Yes No Yes Yes Yes Yes 

Temporal Abstractions 
Supported 

No Yes Yes No No No No 

Explicitly Models Patient 
Preferences 

No No No No No No No 

In an article from 2003 [146], which can be viewed as a follow-up to [157], the authors studied 

“similarities and differences between CIGs in order to identify issues that must be resolved before a 

consensus on a set of common components can be developed”. Authors compared structural semantics 

of CIG languages using example models. Comparison was performed using eight major dimensions: 

 Organization of guideline plan components, including plan components and capability for 

hierarchical decomposition (nesting) 

 Specification of goals/intentions (using expression languages) 

 Model of guideline actions, including the structuring and refinement of medical actions, 

expressivity of temporal constraints, and communication with host systems 

 Decision models, including the expression of mutually exclusive branching of guideline control 

flow (i.e. switch), preferences for alternative candidates of non-deterministic decisions (i.e. 

choice alternatives), and authorizing user and system (i.e. manual and automatic) decisions 

 Expression/criterion languages used to specify decision criteria, including presence criteria, 

template-based criteria, first-order logic criteria, temporal criteria, context-dependent 

expression, etc. 
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 Data interpretations/abstractions, including the expression of temporal abstractions and 

patterns (i.e. trends), abstract terms (derived other terms), terminology abstractions via 

classification hierarchies 

 Representation of a medical concept model and its use describes how languages reference and 

access medical concepts (e.g. referencing variable names, explicit function calls, or using 

standardized terminology concepts) 

 Patient information model is concerned with representing patient data and its mapping to 

institutional EMR data models 

Even though the authors found consensus in many aspects (including plan organization, expression 

language, conceptual medical record model, medical concept model, and data abstractions), results 

indicated that a common CIG language was far from feasible as there were many fundamental 

differences among the languages evaluated (including in underlying decision models, goal 

representation, use of scenarios, and structured medical actions). 

A 2007 article [78] surveys free and open source (FOS) technologies for patient-centric, guideline-based 

care, and discusses trends and future directions of their role in clinical decision support. The article 

provides a high-level overview of the availability and functionalities of then existing and emerging FOS 

guideline modeling tools as well as FOS supporting technologies for implementing terminology, data 

interchange, and EMR standards. Authors reported active and growing trends of deploying FOS enabling 

technologies and suggested some possible future directions. While a variety of sophisticated, formal 

CPG representations and languages are available free, concerns are raised as “most of the modeling and 

editing tools are proprietary, and have limited acceptance and usage in practice due to the complexity of 

the modeling tasks”. 

Another 2007 article [82], which can be considered as complementary to previous comparisons 

[146,158–161], examines and compares the expressive power of CIG modeling languages using pattern-

based analysis. Authors compared the control-flow component45 of special-purpose CIG languages by 

evaluating their degree of support for expressing a predefined set46 of control-flow patterns47 used 

                                                           
 

45
  Also referred to as decision models [146]. 

46
  A comprehensive description of the full set of control-flow patterns, 43 in total, can be found in [162]. 
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normally to evaluate expressiveness of general workflows. The evaluation of support for a common set 

of operators not only allows putting one CIG language in contrast with another, but it allows one to 

evaluate the differences – from the control-flow perspective – between general process modeling 

languages offered by workflow management systems and modeling languages used to design clinical 

guidelines. Some of the more interesting findings of the article are summarized below: 

 Even though the members of the computerized guidelines community have emphasized how 

important it is to support flexibility in guideline formalisms, the examined guideline modeling 

languages (Asbru, EON, GLIF3.5, and PROforma) showed only limited additional flexibility not 

present in business process modeling languages. Only two new patterns48 were not encountered 

in business process models. 

 Additionally, only half of the workflow patterns elicited from business process modeling 

languages are supported by CIG languages. Many of the missing patterns relate to flexibility of 

process execution, which may be useful for clinical guideline applications. 

 Because CIG languages do not offer substantially more control-flow constructs than business 

process modeling languages, it is suggested for the medical community to “rethink the use of 

more general formalisms and tools, which have formal foundation and have been widely tested 

and used in industry, for expressing control flow of guideline models”. 

 In addition to the set of constructs discussed in this article, to support the interoperability of 

CIGs the use of configurable modeling constructs – found in business process formalisms – is 

proposed. 

In an article from 2008 [26], authors review and compare eight systems that allow some kind of 

enactment of clinical guidelines using an EE. Several aspects related to execution are inspected. These 

include CIG semantics, CIG management, and interfacing of host CIS and EE. The article identifies a 

common feature related to the internal structure of the analyzed systems, according to which most of 

                                                                                                                                                                                           
 

47
  Also known as workflow patterns. 

48
 The two patterns are deferred multi-choice and forced trigger. Deferred multi-choice is “a capability to defer the selection of 

multiple options by a user until the user decides that no more options will be selected (for instance, selecting several 
medicines from the recommended ones for the treatment of the patient). The functionality of the deferred multi-choice has 
been encountered in GLIF3.5/Protege-2000, EON/Protege-2000 and PROforma/Tallis”. Forced trigger is present in scenarios 
“where any internal or external event triggers the execution of a task even if the task precondition was not satisfied at the 
moment of triggering. The functionality of the forced trigger has been encountered in PROforma/Tallis”. [82] 
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the evaluated systems have three main layers. These are (1) a layer with the patient’s related data, (2) 

an intermediate layer with the execution engine, and (3) a layer containing a set of interfaces to connect 

the execution engine with external systems. Another, rather disappointing, result of the evaluation is 

that, as far as we know, none of the systems is actually in daily use in any medical center. 

A 2009 article [32] presents SpEM, a generic framework for CIG management together with a case study. 

The SpEM approach is based on the ECA rule paradigm and active databases. In order to display the 

novel capabilities of the framework a comparison of existing formalisms is provided, with special 

attention paid to the support for the manipulation (including “performing operations and issuing queries 

on aspects of the guideline knowledge and information”) and “the exploitation of database features for 

managing information and knowledge”. 

The last article mentioned here is from 2009 [163]. It is not a comparative study in the classical sense, 

but an important extension to the work presented in [82]. The work showcased is on the formal analysis 

of the expressiveness and on the verification of structural, behavioral and temporal properties of clinical 

workflows. With the help of Colored Petri nets (CPNs) the authors show how the chosen guideline 

language, PROforma, may be mapped to a formal (CPN) representation, which allow them to provide 

formal proofs on which workflow patterns (out of the 43) are supported by PROforma. It is argued (and 

with an example it is demonstrated) that [163] provides a more rigorous analysis with different results 

than the ad-hoc method presented in [82]. 
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Table 8 - CIG formalisms compared in published studies 

Articles [157] [146] [78] [82] [26] [32] [163] 

Arden Syntax 

[79–81] 
Discussed   Discussed  Compared  

PRODIGY 

[164,165] 
Compared Compared    Compared  

Prestige Compared     Compared  

PROforma 

[97–99] 
Compared Compared  Compared 

Compared 
(Arezzo, 

HeCaSe2) 
Compared Analyzed 

Asbru 

[31,33] 
Compared Compared Discussed Compared 

Compared 
(DeGeL) 

Compared  

EON 

[166,167] 
Compared Compared Discussed Compared  Compared  

GLIF 

[106,107] 
Compared Compared Discussed Compared 

Compared 
(GLEE) 

Compared  

GEODE-CM Discussed       

GEM 

[168,169] 
Compared  Discussed     

GUIDE  Compared    Compared  

HELEN 

[170] 
  Discussed     

SAGE 

[171,172] 
  Discussed  Compared   

Stepper   Discussed     

GLARE 

[173,174] 
    Compared Compared  

NewGuide     Compared   

SpEM 

[175] 
    Compared Compared  

GASTON 

[176,177] 
     Compared  

SIEGFRIED      Compared  

Discussion 

This section aims to provide a discussion regarding commonalities and differences found in evaluated 

approaches. This discussion covers the two main components of frameworks, namely the CIG formalism 

and the software suite. 
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Discussion on CIG formalisms 

DSML 

All examined languages are custom built DSMLs49, specifically created to capture CIGs. Their syntax and 

semantics are formally defined, but with various levels of degree. Nonetheless, some abstract form of 

execution model is provided for all of them. Interestingly, though all languages recognize the 

importance of interoperability (e.g. GLIF even was supposed to act as an interchange format), we have 

not come across any form of formal mapping that would allow automated translation between the 

examined CIG formalisms. 

Components 

The languages differ slightly as to what they consider the elements of a CIG to be, and how its objective 

is expressed. However, all allow CIGs to contain, among other things, decisions, actions, and nesting (i.e. 

hierarchical decomposition). Furthermore, all contain expression languages that represent criteria, 

which influence decisions and control plan execution (e.g. to express conditions that determine whether 

a task might be started or terminated) [36]. In summary, the types of information typically stored in CIG 

models include the following independent components: 

 descriptive data, which contains a (machine-readable) unique identifier for the CIG and various 

other metadata such as author, source, version, and purpose. It also may state whether the CIG 

is a specialization of another50. 

 plan, or control logic, which is the core of the CIG. It defines the permitted or mandated set of 

(clinical) actions and situations. Restrictions on structure and content of the CIG instances are 

specified as a combination of an orchestrated set of allowed actions and constraint rules. 

Expression languages are considered to be an integral part of the control logic and they are 

generally applied in combination with the rest of the control constructs (i.e. as an extension). 

                                                           
 

49
  Even though they use concepts from medicine, medical professionals still need to invest both time and energy to learn them. 

Evaluating whether one language is more intuitive than the other is not in the scope of this thesis. 

50
  This can be achieved with various mechanisms, including using traditional versioning techniques, or inheritance operators of 

an ontology. 



82 
 

They are used to express parts of the plan and thus they achieve a certain subset of the 

functionality. 

 concepts with semantic ties, which are the basic (atomic) building blocks of the CIG (e.g. 

medications). Definitions for the concepts are given with the help of ontologies provided by the 

language or the CIG, or with the help of semantic ties to controlled (i.e. standardized) 

vocabularies. 

Terminology and information exchange 

Inputs (such as data points, which an executing CIG instance bases its decisions upon) and outputs 

(produced by the CIG-based system) must be communicated through an interface. Unless manual 

information exchange51 is an acceptable model, this translates into a communication using some form of 

shared terminology. Accordingly, all, but one formalism rely on some sort of medical terminology both 

to represent (atomic) concepts and to help define an interface to the host CISs. The only exception is 

PROforma. 

Other important aspects of information exchange, such as the ones described in the “Information 

exchange” subsection of “Information technology aspect: System integration” (e.g. specifying the 

mechanism of access, addressing security, managing availability, and specifying quality) are generally 

omitted in the explanation provided by all examined formalism. Without these specifics, a CIG can only 

be implemented on a relatively abstract level. This issue is further discussed in P2.2. 

Expression language 

To manage complexity, each language facilitates a custom expression language of its own. The definition 

for the expression language is provided in terms of syntax and semantics, the latter of which provides a 

definition for calculating the value of expressions, ideally without causing any side effects52 [42]. An 

expression language may enable the implementation of information exchange (e.g. data querying in 

Arden Syntax), and methods for constructing derived data points with filtering and aggregation using 

                                                           
 

51
  The manual information exchange model simply means that the system is used as a standalone tool. Accordingly, providers 

manually need to enter input data in order to receive recommendations, which they need to process. 

52
  Being side effect free here means that using (the operators of) the expression language causes no changes to the state of the 

guideline. 
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data values and logical operators defined by the (expression) language. They can also express various 

constraints (including conditions for goals, failure, an priorities over alternatives, etc.). For example, 

other than Arden Syntax’s explicit placeholder, called “purpose”, the goals of plans are implicitly defined 

together with the rest of the language53. 

Describing the control logic 

All four languages were designed to describe CIGs, but we found that there are two distinct styles in 

terms of representing control logic, namely (1) the rule-based approach, which builds on ECA rules, and 

(2) the workflow-based approach, which uses task network models (TNM)54. While the Arden Syntax55 

uses the former, most of the other languages, including the rest of the formalisms examined in this 

thesis: PROforma, GLIF, and Asbru, use the latter. 

Rule-based 

As described in earlier sections, rule-based systems rely on storing and executing ECA rules. These rules 

implicitly define a control flow. There are many different rule-based system implementations, but their 

execution logic follows a logic similar to the two methods described in the following. (1) In execution 

time for systems that implement forward chaining, all (enabled) rules are considered active (i.e. 

runnable). The execution environment is in charge of listening for events (both internal and ones coming 

from the environment). If for a rule, its triggering event(s) is (are) observed, its conditions (associated 

with the triggering event) will be evaluated. If the conditions are satisfied, the actions defined in the rule 

are performed. As a result of the triggered actions, newly enabled rules are activated. These systems 

need a strategy for managing the situation where multiple (potentially conflicting) rules get selected for 

execution. Strategies for conflict resolution can involve preset priorities for rules or user-based 

resolution methods. (2) The opposite of forward chaining is backward chaining, where the system is 

working iteratively backward from a list of predefined goals by trying to search the applicable set of 

rules in order to find ones that would result in one of the goals. 

                                                           
 

53
  This is especially true for Asbru’s natural language-based “intentions” implemented in the “logic” block. 

54
  Definition for TNM is provided below. 

55
  PRODIGY, which is not examined here, also uses the rule-based approach [146]. 
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Workflow-based 

The other type of approach in representing the execution logic in CIGs is using workflows. In the 

literature, there are many names and many definitions, but essentially, they all mean the same thing. 

The main building block of this approach is often referred to as a plan [36,146], as in "an orderly 

arrangement of parts of an overall design or objective"56. However, we refrain from using this term, as 

this would incorrectly imply that a collection of rules in a rule-based system would not be able to 

describe a medical plan. The term “task network models” is also used to describe guideline-modeling 

formats based on this approach. According to the definition, TNM languages “provide modeling 

primitives specifically designed for representing complex, multistep clinical guidelines and for describing 

temporal and other relationships between component tasks” [146]. 

Based on definitions provided by [36,82,146,157], workflow-based approaches can be viewed as a 

paradigm, where multi-step guidelines are modeled as coordinated sets of interacting tasks in an explicit 

control flow. A task in the CIG can be considered as a logical unit of work that is carried out as a whole. 

They represent medical actions such as decisions and procedures. Coordinated by the control flow, tasks 

are carried out in sequence or in parallel over a period of time using typical (i.e. basic) control flow 

patterns, including sequencing, parallel split, synchronization, merge, and exclusive choice. Components 

can be composed into iterative, cyclic and hierarchical structures. In addition, models support 

expression of temporal (i.e. scheduling) constraints as well as various other logical preconditions on 

their components. 

Albeit building on the same approach, workflow-based languages differ in terms of expressivity. These 

differences are due to variance in (1) supported component (both data and action) types, in (2) the 

expressivity of the expression language, and (3) the support for various control flow operators (i.e. 

patterns). As described in the previous section, comparison of (3) is what the authors of [82] proposed, 

using workflow patterns defined by the business process-modeling community. While all basic patterns 

are directly supported by the languages examined in [82], there is a greater variance in their support for 

more advanced ones (e.g. multiple choice and multiple merge operators). 

The typical and natural visual representation associated with this approach is a flow diagram. The flow 

diagram is a directed graph where a node can either be a starting point, one of the tasks, or one of the 

                                                           
 

56
  Definition of a “plan” according to the Merriam-Webster dictionary. 
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ending points. In the graph, the arrows between the tasks represent scheduling constraints. Similarly to 

UML’s activity diagrams, they prevent one task from being activated until another has finished. 

Scheduling constraints, which are easy to visualize, express necessary, but not sufficient conditions for 

the activation of tasks. However, each task has a set of logical preconditions that are evaluated after its 

scheduling constraints are satisfied, and the task is only activated if both its scheduling constraints and 

its preconditions are satisfied [36]. 

Discussion on software suites 

Architectural requirements and a common framework have already been described in previous sections. 

Figure 3 in “Components of a CIG-based CDSS” summarizes what are the essential components and how 

they should interact. With various levels of detail, all examined formalisms implement the needed 

components, including a CIG modeling environment, an execution engine, a communication layer, a test 

environment, and finally a patient management UI. 

Unfortunately, according to [26] the discussed systems are only used as prototypes and are not part of 

actual live CIS systems.57 

Open problems 

This section discusses problems not fully addressed by any of the introduced frameworks. Provided by 

various authors, partial solutions – if found – are given for the listed problems. 

P1. Execution semantics and expressivity 

P1.1. Seeking a common representation for all the different types of CIGs 

In the section “Selecting a suitable modeling language” the question of whether it is possible or not to 

define a single DSML to represent all guidelines was raised. The answer of the authors of [70] to this 

question is not currently. To explain why, they list five major obstacles in their article: 

1. As of now, there is no consensus in the CIG community on the most effective applications for 

computer-based guidelines. Consequently, it is difficult to identify functional requirements, and 

                                                           
 

57
 Arden and GLIF are claimed to be (see Arden/Use and GLIF/Use). 
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thus what conceptual models and development environments are most likely to be important. 

This is reflected by the variety of modeling approaches in existence. 

2. The guideline authoring process is influenced by the specification of location and use case-

specific functional requirements. On one hand, guidelines can be developed generically, which 

leaves their adaptation to the implementers of specific applications. On the other hand, they 

can be developed specifically, which hinders reuse. In the latter case, to support reuse, 

authoring tools need to better provide some sort of separation of local and generic components. 

3. Dissemination of CIG models needs to be supported by both the modeling framework and the 

anticipated delivery environment (i.e. platform). If there is a one-to-one mapping between the 

models created and the ones consumed, that is the implementation is within a closed 

environment, then a (proprietary) dissemination format can be agreed-upon straightforwardly. 

If the mapping is many-to-many, meaning that the guidelines are developed generically for 

multiple purposes, or for multiple target environments, then a common (standardized) format 

needs to be adopted. 

4. Despite their interest in providing CIG-based support, implementers of clinical information 

systems are more interested in adopting already existing systems and methods than investing 

significant resources in development and/or evaluation such systems. Accordingly, current 

approaches would need to provide readily available tools for the incorporation of guideline-

based applications, including for “customization of the guideline logic, adapting to workflow 

requirements, mapping of data elements and actions, and integrating user interfaces” [70]. 

5. Update of adapted CIGs is an unsolved problem. More on this can be found in a dedicated 

problem point (see P2.9). 

P1.2. Workflow versus rule-based approaches 

As listed in the “Clinical Practice Guidelines” section, CIGs have a broad range of uses. However, in 

summary they provide the means for two things: (1) identifying clinical situations and (2) managing 

clinical processes associated with predefined clinical situations. For CIGs that put the emphasis on (1), 

and implement monitoring of many potential clinical conditions and provide alerts/reminders based on 

identified conditions, the critical functionality involves identifying methods for defining conditions, 

automating the exchange and processing of data involved, and generating, filtering, and propagating 

events. Whereas for CIGs that concentrate on (2), the emphasis needs to be on being able to express, 
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interpret, and navigate through a potentially complex graph representing dependency and causality 

among observations and actions. 

For example, an alert on an identified potential diagnosis and a list of associated recommended actions 

would be an expected message generated by a CIG of (1). As for systematic instructions, including 

orchestration based on the order of how things should be performed, or help with resource allocation 

(e.g. who is supposed to what, is the appropriate equipment available) and scheduling (i.e. when is an 

action need to be performed) would be expected from a CIG of (2). 

It is arguable, but generally speaking (1) maps well to the rule-based paradigm, whereas (2) to the 

workflow-based paradigm. The advantages and limitations of the two approaches, detailed below, 

should help explain why. The benefit of using a workflow-based approach is that, unlike rule-based 

systems, they represent the control flow explicitly. This means that they can explicitly model alternative 

pathways (i.e. sequences of tasks) as a control flow and they provide tools for visual representation of 

plans and the organization of tasks within them, thus they can be much easier to define and 

comprehend. However, their use poses significant disadvantages. As they are designed to describe the 

flow of execution in the form of a sequence of operations, for all non-orthogonal (i.e. non-parallel) tasks 

there always needs to be a complete order defined. If permitted these tasks should be split to parallel 

branches, otherwise operators related to ordering, such as “execute-in-any-order”, should be 

introduced. However, this solution is far less scalable than using decision tables for example. While 

experimenting with workflow-based CIG languages, we also found them to be difficult to use for 

describing interrupts (i.e. events signaling the state changes of the environment in an even-driven 

system). A typical group of examples, which illustrates this problem, includes cases where a sequence of 

tasks is defined based on the priorities of the problems they would address. In these cases, while the 

ordering can faithfully represent how physicians address problems, the execution flow is too rigid in the 

sense that it would not go back to treat a high priority problem once it has already advanced to 

addressing lower priority one. Potential alterations include adding (many supplemental) arrows to cover 

all possible cases (i.e. all possible event combinations), or splitting up the original workflow to 

independent workflows, both of which made our model much less comprehensible. 

Rule-based representations can seemingly overcome this problem. In a rule-based world, all constraints 

from the previously mentioned examples are represented as part of ECA rules. However, a large set of 

(seemingly disjoint, but implicitly dependent) rules cause comprehension and maintenance problems. 

Verification is also difficult, as rules are relatively low level and they are captured and evaluated 
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independently of each other. Yet another problem is the unhandled non-determinism among evaluated 

and concurrently enabled (forward chaining) rules. 

While the authors of [157] state that “CPGs are typically composed of sequences of steps that have been 

arduously designed as a whole, instead of strings of single-step rules that are secondarily chained 

together” it does not mean that they can easily be represented by workflows. Furthermore, it needs to 

be noted that formalisms, which use rule-based specification (e.g. Asbru) can also be adapted to 

represent guideline knowledge that unfold over time. 

We believe that an ideal solution needs to support both paradigms. This would allow for expressing 

the general sequence of logic in terms of a branching workflow, but also allow exceptions to be phrased 

as a set of rules to alter the behavior defined by the workflow. In this case, exceptions define cases 

either not represented by the workflow or cases that are, but need to be overridden (by the exceptions). 

P1.3. Lack of formality and explicitly defined execution semantics 

Defining explicit formal execution semantics is important for all CIG languages. Reasons can be found in 

the previous sections, including “Benefits of Computer Interpretable Guidelines” and “Formal 

semantics”. These reasons can be summarized as follows: 

 Formal semantics help clarify what CIGs – defined with the help of the language – are trying to 

achieve. 

 It allows the implementation of software tools. More specifically, it provides a specification for 

expected behavior, both in simulation and in real-life execution environments. 

 It also provides means for analysis, including the comparison of various formalisms through the 

assessment of what representations can and cannot capture. 

 The use of a formal, well-defined representation also promotes maintainability and reusability 

of the software, as the temporal structure and coordination of the tasks will be captured 

explicitly. This is in sharp contrast to traditional approaches where this information is hidden in 

the code. 

All examined approaches have formalized semantics; however, each of them only provides a high-level, 

abstract execution model, which is not sufficiently detailed for building an execution engine that could 
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be integrated into a live CIS. Part of the problem is that no formalism is able to properly (i.e. separately, 

formally, and explicitly) represent and incorporate the behavior of the host CIS. 

P1.4. Avoiding duplication of functionality between the CIG and the expression language 

The expression languages in all examined cases are part of the language. However, based on their 

description (provided in the “Expression language” section), it can be seen that expression languages 

can overlap with other parts of the CIG language in terms of functionality. For example, if conditions can 

refer to time, a condition (of the expression language) can potentially describe a situation that 

contradicts the sequencing phrased by a sequencing operator (of CIG language). Alternatively, if a 

condition can refer to the occurrence of an event58 it can express sequencing itself. 

P1.5. Temporal reasoning 

Temporal reasoning, specifically the representation and evaluation of temporal expressions is an 

essential part of CIGs. In CIGs, temporal expressions typically are used to express constraints on possible 

execution sequences, or assertions that need to be validated during execution. For their 

implementation, three important questions need to be evaluated: 

1. What is the expressivity of the temporal expression language? In other words, what kind of 

temporal concepts are being modeled and how can they be used? 

2. What are the questions expected to be answered based on the expressed constraints? In other 

words, are the limitations caused by the complexity of satisfiability problem in the chosen logic 

acceptable? Is, for example, simplification of the phrased constraints, or checking for 

contradictions expected? 

3. What is the expected evaluation strategy for the constraints? Is it pre-processed (i.e. design-

time scheduling), or lazy (i.e. evaluated at runtime)? Is it cyclical (i.e. checked with a certain 

frequency), or on-demand (i.e. event-based)? 

Temporal constraints in CIGs often express both qualitative temporal requirements (e.g. invariance, 

precedence) and quantitative temporal requirements (i.e. “hard real-time constraints, which put timing 

                                                           
 

58
  An expression language can employ time-related expressions similar to what Allen’s interval algebra [178] defines. 
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deadlines on the behavior of the system”)59. Examples of the latter include constraints that refer to 

absolute time, (i.e. metric time, e.g. drug A has to be administered before 10 am), and relative time, 

meaning that there is an event ordering annotated with timing expressed relative to an event or state 

change of the protocol (e.g. drug A has to be administered no later than 3 hours after drug B was). 

In summary, the logic should be expressive enough to formalize a wide class of time-related constraints, 

but checking compliance – satisfiability, in logical terms – should be decidable and efficient enough for 

practical use [180]. However, this topic is not discussed by any of the examined approaches. 

P1.6. Component-based guideline modeling 

The use of CIG formalisms promises better reuse of CIG components, thus greater flexibility, scalability 

and higher quality when constructing new guidelines. In this regard, CIG development shares many 

common attributes with component-based software development [181]. For this reason, it is important 

to leverage existing accepted solutions introduced in component-based software development where it 

is possible. The following subsections discuss some of the necessary features of component-based CIG 

development. 

Composition of protocols 

The composition of protocols is another in the list of topics, which has been neglected in the literature. 

Composition here means the combination of two or more CIGs in order to produce a new one, with the 

assumption that the new CIG will combine the logic of its component CIGs without any potential 

interference between components. Interference can be interpreted as unwanted interaction between 

two component protocols (e.g. contradictions, or contraindications). The benefit of protocol 

composition is that it supports model reuse. However, its implementation is non-trivial, because 

interference handling, and the automatic update of the used components are tasks needed to be 

worked out. 

The idea of composition was brought up in [80], because composition in Arden Syntax’s rule-based 

paradigm is a natural concept. The hierarchical nesting of MLMs allows the reuse of components of 

existing MLMs, however, Arden’s building blocks (i.e. subcomponents) have a fixed predefined context 
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  For example, qualitative temporal requirements can be expressed with Allen’s interval algebra [178], while quantitative ones 

can be with MFOTL [179]. 
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(i.e. a set of criteria describing when they are applicable). The disadvantage of using this type of protocol 

composition is that it does not allow nested sub-protocols to be modified by their parents. 

We believe that there are three types of sub-protocol inclusions (other than a plain copy of one 

protocol’s elements to another, where no conceptual link is preserved between the two copies): 

 Protocols viewed as being atomic (or black box) systems, in which case the included 

(sub)protocol is not modifiable (similar to the concept of libraries in software engineering, or to 

the concept of shortcuts used in many operating systems). Here the composition is rigid, but 

straightforward (e.g. Arden Syntax). 

 Protocols provide an interface for manipulation, in which case protocols provide an interface 

for any potential host to manipulate its internal structure and/or behavior. Examples for this 

would be to allow the host through predefined methods to suppress or override alerts, or set 

parameters of the sub-protocol (e.g. redefine the temperature threshold for fever). This allows a 

component identifying a patient with high blood pressure to have different triggering thresholds 

in two different disease treatment cases. 

 Protocols are copied with preserving a conceptual link to source, in which case the contents of 

the (source/sub)protocol is copied into the host protocol while preserving a conceptual link to 

the source for managing updates of the copy based on changes made to its source. This 

approach allows the complete override of each individual element (of the copy), however 

automatic update management is only possible if domain modelers understand the chosen 

conflict resolution methods (e.g. source overrides changes in the copy, updates only happen if 

there were no changes made to the copy, etc.). 

In the latter two cases, support for handling protocol-protocol interaction needs to be provided. This will 

allow the analysis of the effect and the resolution of potential conflicts of multiple guideline instances 

that are being executed on one patient (e.g. finding contradicting suggestions). 

Decomposition of protocols 

The opposite of the previous point, decomposition of complex protocols into independently (re)usable 

subprotocols is also a challenging problem. Deciding where it makes sense to split a protocol up into 

subprotocols is highly dependent of the protocol’s use and can only be decided by domain experts. 
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However, if the composition of protocols is supported, creating methods for dividing protocols should 

be targeted to allow maximizing the reuse of captured knowledge. 

Version control 

Problems described in the previous two points are both related to versioning. Versioning in the case of 

CIGs deals with tracking the evolution of a protocol. It entails creating and maintaining an accessible 

version history through committed user changes. 

In component-based software development there are multiple versioning schemes provided [182–184], 

but there is no consensus in which proposed method would be the best method. In order to decide 

which one of the many proposed solutions (if any) fit the CIG development, one needs to evaluate the 

types of changes that would trigger a version change in a CIG’s lifecycle. Some of the most important 

aspects of CIG versioning that influence this decision are listed below: 

 Type of the change 

o Continuous development: Development of a complex guideline takes a lot of time, 

during which multiple iterative version might accumulate. 

o Correction of a discovered error: Like any other piece of software, CIGs are hardly 

perfect, when being created. Analysis, testing or everyday use can reveal these errors, 

which then need to be addressed. 

o Creation of new protocols by composition or decomposition: These methods were 

previously discussed. As an example, depending on the chosen method, their behavior 

can be similar to the use of software libraries or to complete source fork60. 

o Parallel development: If multiple users need to work on a set of CIGs at the same time 

the creation of parallel branches and their merge need to be supported. 

 Degree of the change: Projects and local workflows can require the differentiation between 

minor changes, which do not affect end users, and major changes, which do (e.g. official 

releases). 
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 The process of forking in software engineering produces a distinct piece of software by create a complete copy of the original 

source code of software package so that development on it can be done independent of the original package. 
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 Functional and non-functional versions: In a collaborative environment even non-functional (i.e. 

non-executable) versions of CIG have value, as they could be passed around between various 

domain experts, each of whom can make changes in order to complete the guideline. 

 Local adaptation61 

o HCO-specific version 

o Personalized version: Some providers could require the customization of a CIG (e.g. 

adjusting certain thresholds). 

As opposed to versioning of CIGs, versioning can be interpreted in a broader sense as well. In a larger 

project, basically all captured CIG components that can be considered as standalone, reusable 

components should be version tracked. 

P1.7. Representing uncertainty 

Uncertainty is inherent to medicine, as medical processes often exert complex behavior in which 

outcomes are non-linear. Because of this, the representation of uncertainty is crucial in CIGs. Despite 

this requirement, and the fact that various techniques have been proposed and evaluated before 

[185,186], none of the examined approaches provide native support for them (e.g. probabilistic decision 

models, fuzzy logic). 

We found that there are two (somewhat overlapping) use cases where CIG representations could 

benefit from representing uncertainty: (1) selection of the proper solution from alternatives and (2) 

representing numerical parameters. These topics are discussed in the following subsections. 

Selection of the proper solution from alternatives 

Expressing uncertainty is important when offering competing alternative treatment options for a patient 

with a particular configuration of clinical indicators. This requisite is effectively illustrated by the 

example presented by Figure 22. 
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 This topic is discussed in more detail in the following sections. 
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Figure 22 - Deciding on protocol applicability (Directed versus empiric therapy) 

Figure 22 shows a two axis Cartesian coordinate system, which should help clinicians decide what 

treatments to choose given that there is some suspicion that a patient could have sepsis (e.g. after a 

notification from an automatic health indicator62 monitoring system). The X-axis represents the 

confidence level of a provider in terms of sepsis based on the available objective data63 of the patient. 

The Y-axis shows the general wellbeing of the patient in terms of the same objective data. The 

explanation of the grey regions of the figure is the following: 

 Not sepsis (NS): here clinicians should decline starting up the sepsis protocol. 

 Severe case of NS (NSS): this special case of NS requires some intervention (other than the sepsis 

protocol), because the patient is very sick. 

                                                           
 

62
 Health indicator is a patient related data point that is indicative of their health status (e.g. signs and symtoms). 

63
 Objective data in the health-care setting “can be defined as data that is factual, unbiased, and unchanged by personal 

feelings or interpretations”, examples include lab test values, sensory data, medication history. [187] 
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 Possible sepsis (PS): here empiric therapy is advised, according to which clinicians should treat 

for all potential diagnoses (including sepsis, as well as others), but only do procedures that are 

not conflicting (i.e. do not contradict each other) and are not harmful to the patient (i.e. do not 

perform an action which would have a highly negative effect on the patient in case the assumed 

diagnosis was not right). 

 Confirmed sepsis (CS): here directed therapy is advised, which means devising specific 

treatments for specific diseases [188]. This, in the case of sepsis, translates to the execution of a 

CIG-defined sepsis protocol. 

 Severe case of CS (CSS): in this special case of CS, the CIG should enable otherwise sequential 

steps in parallel in order to compensate for the severity of the case (e.g. execution of the fluid 

challenge and the early goal-directed therapy, both of which are components of the sepsis 

treatment CIG). 

As the above example illustrates, expressing uncertainty in selection of the proper solution from 

alternatives is vital. We found that methods for ranking the alternatives can be one of the following 

options: 

 represented implicitly, meaning that the order is built into the solution (e.g. try solution A first, 

afterwards evaluate parameter P, if P < threshold T, try solution B), 

 represented explicitly, with a help of relative or absolute priorities, or with a help of scoring 

values, which attach probabilities to alternatives, where values can be based on statistical 

results, or 

 it can be left to the end-user, which is a form of (intended) non-determinism that can (and 

should) always be resolved by the expert users. This choice, the existence of the need to make a 

decision over alternative solutions, indicates a missing (i.e. incomplete) criterion. The missing 

piece of information can be absent due to various reasons. 

o First, it could be that the criterion cannot be represented, because (a) the (expression) 

language is not sufficiently expressive, or because (b) the information cannot be 

described or obtained automatically (such as the “septic look” of a patient, a typical 

condition identified by physicians when physically examining a patient). 
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o Second, it could be a deliberate decision for requiring user decision (for example if there 

is no study supporting decision, or there is too much risk involved). 

Representing numerical parameters 

In all evaluated systems, numerical parameters (e.g. thresholds of a condition for triggering alerts) are 

discretized values, even though the fact that the definition of these values are somewhat arbitrary. The 

case of hypotension detection demonstrates this issue well. Hypotension is generally defined as systolic 

blood pressure less than 90 mm Hg64 or diastolic less than 60 mm Hg. Does this mean that it is 

acceptable to not bother looking at patients who have a diastolic blood pressure of 61 mm Hg (and 

systolic over 91)? A solution building on fuzzy logic might be able to address this issue (see Figure 23), 

but of course, it would have its own disadvantages, including the fact that there is usually no research 

data to fill in the gap (between discrete values). For example, the effects of 250mg and 500mg doses of 

Fulvestrant are well studied, but there are no studies done for a 355mg dose. 

 

Figure 23 - Standard versus fuzzy logic for representing uncertainty 

In [189], the author proposes extensions to Asbru and PROforma to include the ability to capture various 

“grading systems”, which would allow for better automation of the selection among alternatives. These 

grading systems base their decision on the following groups of information: 

 Levels of Evidence (LoEs) 

 Strengths of Recommendations (SoRs) 

 Trade-off between benefits and harms 

 Cost of actions 
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P1.8. Representing configurable input parameters 

In an ideal world, clinical conditions either would be independent (i.e. orthogonal) problems, or would 

be decomposable to independent problems. If this was true, guidelines could be defined to address each 

problem independently. However, clinical conditions are often highly dependent on each other. 

Unfortunately, not all dependencies are fully understood, only suspected. Some of them might not be 

discovered at all. The ones that are well-understood can be divided into two groups: explicit (e.g. 

chronic hypertension may lead to hypertensive retinopathy) and implicit dependencies (e.g. treatments 

of both problem P1 and P2 involves X dose of medication M, however if both P1 and P2 are present it 

does not mean that 2X of M should be given for a patient). These kinds of dependencies cause a state 

space explosion in the space of unique problem combinations for which dedicated treatments needs to 

be defined. In the worst case, CIGs would need to be defined for each element of the superset of 

problems, which would be extremely difficult to manage. Thus, it makes sense to provide clinicians with 

flexible CIGs, which they can tailor to the specific needs of the patient. Providing a solution specific to 

the patient requires adjustable thresholds and alternative treatment options. Examples for configurable 

parameters can be seen in Figure 24. These parameters represent intended non-determinism that is 

resolved at either before or in runtime. 

 

Figure 24 - Forms of non-determinism in CIGs 

Nonetheless, to track protocol compliance it is important to cleanly identify which parts of guidelines 

are configurable and which are not65. 
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  Clinicians may always choose to opt out from a CIG if they do not find any of the predefined options appropriate. 
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P1.9. Exception handling and state-space coverage problems 

During the execution of a guideline, the actual treatment in real life implemented by a clinician might 

diverge from the scenario-based gold standard, which is captured by the executing CIG (Figure 25). This 

dissonance indicates (1) potential problems in the encoding of decision logic and/or (2) the quality of 

(patient) data built upon66. In cases when only the former is true (i.e. (1)), there are three possible 

scenarios: either (a) there is an inaccuracy in the CIG, which needs to be corrected, (b) the wrong CIG 

was selected for execution, or (c) the state-space is not sufficiently covered, which means that the 

particular (sub)case simply was not captured. All cases of (1) should be considered as exceptions, and as 

such, have to be gracefully handled by the execution environment. Examples for a couple of graceful 

methods are discussed in the following three sections. Cases involving (2) indicate issues with data 

acquisition, which is not in the scope of this work, however, the related topic of rollback is discussed in 

P1.12. 

 

Figure 25 - Simplified decision support flowchart 

P1.10. Grey tracking 

In the context of CIGs, grey tracking is the ability of an execution environment to follow the actions of a 

user even if they do not precisely line up with what the guideline suggests. Furthermore, a grey tracking 

enabled EE should be able to recognize points in the (off-course) treatment trajectory where the 
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treatment does comply (again) with the CIG (Figure 26). At those points it should allow the user to opt 

back into CIG execution, and if there were no compliance constraints violated, mark the execution trace 

as compliant (with the guideline). A simple example for this is the case when a physician wants to 

perform the same actions defined in a CIG, but in a differ order. In a more complex example, a physician 

performs only a subset of the recommended actions and adds actions that are not present in the CIG. 

 

Figure 26 - Grey tracking (illustrated for a TNM-based CIG) 

The questions need to be answered for implementing grey tracking include: “What counts as still within 

the protocol?” and “How can we get back (i.e. reenter) to the once abandoned treatment protocol?” 

P1.11. Protocol updates “mid-flight” 

One of the potential requirements of a scalable CIG model management solution is the ability to apply 

updates for protocols mid-flight. Such an update mechanism would allow the exchange of a protocol to 

another one during execution. Mid-flight updates can be deemed clinically important if swapping one 

guideline for another promises better outcomes, or if there is a critical update to the guideline currently 

in use that needs to be applied. 

This is a particularly complicated problem, as the consistency of the treatment needs to be guaranteed 

during the transition. Preserving the consistency here means that execution traces need to be clinically 

valid and should not be confusing for experts to follow. 

There are multiple options for performing such an update, but not all can guarantee consistency. 

Discussing this problem in detail is out of the scope of this thesis; however, we illustrate it a consistency 
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violation with a simple example: Taking protocols that have running instances at the time of an update 

and simply stopping and replacing them by their updated version could cause undesired effects. There 

can be a case, where a problem that was continuously treated with medication (M) by the original 

version of the protocol (P), is not covered by the updated version (P’). Accordingly, the administration of 

M will not be recommended by P’, which means that in the case when M is a drug that cannot abruptly 

stopped, the sequence of legal actions will generate a medical error. 

P1.12. Defining rollback strategies (i.e. undo) 

Another complicated problem left untouched is defining the logic for dealing with the effects of false 

data67 that has only been deemed as such after it has been processed by the system. In cases, where the 

unwanted changes can be undone without side effects, the problem translates into implementing a 

rollback feature (i.e. undo). Ideally, this case would include complicated problems, such as rolling back a 

set of transactions internal to the EE (e.g. based on a (false) decision to start something a whole set of 

events are triggered). It would also include rolling back transactions that occurred between the EE and 

other CIS systems, which is only possible if all affected systems support an undo capability. In cases 

where changes are permanent (e.g. an injection was already administered), the introduced problem will 

require the execution of appropriate counter measures, which also should be a part of an ideal system. 

Additionally, not just the implementation of the mentioned features, but also the suitable 

representation of mistakes and appropriate remedies needs to be worked out. 

P1.13. Look-ahead feature (i.e. simulation of the “what if” scenario) 

Validation by simulation is an important component of testing protocols, as it allows experts to test how 

CIGs (or more precisely CIG-based systems) react to a certain situation. For simulation, usually series of 

these situations – described by timed events and data points – are composed into scenarios (i.e. test 

cases). 

However, there are cases when this type of simulation is not flexible enough. For example, someone 

might want to look ahead in the trajectory of a running CIG to understand what the protocol would do 

next, but without actually taking those steps. This type of interactive simulation could be used to serve 

teaching purposes, to understand the next steps, or it could be used for helping in the preparation for 
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  False data can include mistakes made by users selecting the wrong set of actions, and automatic sensors reporting incorrect 

values. 
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various prognosis theories (e.g., what if I select treatment A, but the patient’s conditions do not improve 

even after an hour). Solving this problem involves a sophisticated harmonization of live execution and 

simulation, which includes understanding how far can steps be taken, while still preserving the ability to 

roll-back and how can fictitious (e.g. prognosticated) data be separated from live ones. 

P1.14. Time control in simulation 

The architecture – including the internal structure – of the simulation environment is not required to be 

an exact replica of the live system, however as seen in the examined approaches, they are usually the 

same. This could be a problem if this common architecture does not support the use of arbitrary time 

sources (i.e. custom clocks). Custom clocks are needed for interactive simulations where time often 

needs to be sped up, slowed down, or even reversed to better understand what is happening in 

execution time. 

P1.15. Lack of verification of correctness of CIGs 

As described earlier, verification means making sure that the implementation conforms to the 

specification. In the case of CIGs, verification entails support for phrasing a range of properties (e.g. 

goals and intentions68, including properties related safety, security and privacy) independently from CIGs 

that can then be used to check whether or not they hold for the CIGs in a particular environment. 

None of the examined approaches do actual verification, although potential solutions, like [163], have 

been proposed. When approaches talk about verification, they refer either to validation, or to syntax 

checking. 

It was also mentioned in [163] that verification is only possible if there are concepts for formally 

describing the specification against which CIG models can be tested. This means that CIG languages 

need to include support for modeling properties, possibly defined as constraints. More on this can be 

found in Chapter VIII. 
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  Verification of goals and intentions are usually performed by evaluating expressions (defined with the help of expression 

languages) over the decomposed solution. 
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P2. Local adaptation 

P2.1. Lack of standardized terminology 

To maximize portability, CIGs need to build on standardized vocabularies and data models. However, 

currently there are many vocabularies and data models (e.g. SNOMED, CPT, ICD-9, LOINC and HL7-RIM) 

being maintained by many different groups with various interests, which make the selection difficult. 

The good news is that with the help of the mappings provided by a common ontology layer, such as 

UMLS, the adaptation can be much more straightforward. 

P2.2. Communication protocol for managing interactions with the host system 

Interfacing a CIG-based system with a potential host system require more than agreeing on a common 

vocabulary and a data model. For seamless integration, defining the communication protocol69 with the 

host system is critical. This problem is complicated by the fact that the host system often involves not 

one, but a suite of different CIS systems, which a CIG-based system might be required to interact with. 

Ideally, all participating systems would support (at least) one common communication protocol. This 

would require all participating systems to define an information exchange interface70, which would allow 

them to be arbitrarily connected. However, as there are no standard CIG formalisms, there are no 

standardized communications protocols in existence either. Thus, if someone was trying to implement 

CIG-based clinical care, they would have to also design their own protocol and build the interfaces 

implementing the protocol for the participating CIS components. 

Two related issues are discussed in the following two points. 

P2.3. Feedback mechanisms in a communication protocol 

One of the issues related to managing the interactions with the host system is defining the feedback 

mechanism of the host for actions that were “ordered” by the CIG system. This feedback mechanism 

                                                           
 

69
  A communication protocol between a CIG-based system and its host system(s) describes a mechanism for their interaction. It 

provides a formal definition for digital message formats and the rules for exchanging those messages (i.e. syntax, semantics, 
and synchronization of communication). The definition includes descriptions for data abstractions, behavioral models (e.g. 
message handling), addressing, etc. Furthermore, a protocol may implement other related functions, such as authentication, 
error detection and correction, flow control, etc. 

70
  An information exchange interface is similar to a service interface. It defines its host’s address, the required authentication 

method, input and output message types, their sampling rate, max throughput, etc. 
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allows a CIG-based system to make sure that the actions it expects the host system to perform are 

completed. 

We see two options possible for closing the loop: (1) white and (2) black box methods. In the white box 

method (1), the chain of systems serving the request provide explicit feedback messages, which allow 

the tracking of each request’s state. As an example, let us consider the series of steps leading to a 

successful ordering of a medication in a typical CIS system suite with the white box method. After a 

CPOE system receives a request from the CIG system for ordering a 500mg dose of drug DA in an 

injection form, it sends an explicit acknowledgement (or denial) for the particular request. In the next 

step, the medication order (typically) gets routed to a pharmacy information system (PIS) and in turn to 

an electronic nursing medication administration records system (eMAR) [190]. Both of these systems 

would also report back, the PIS about the successful preparation and the eMAR on the administration of 

the drug. Such series of status reports (which are sent either directly to the CIS system, or indirectly with 

a series of messages propagated through the involved systems), makes the CIG system aware whether 

everything goes according to plan, or not. 

In the other method (2), the host systems form a black box system, where the CIG system needs to 

listen and observe events of the environment confirming that the requested action was completed. For 

example, if a clinician ordered drug DA to be administered through the CIG system, the CIG system will 

need to listen to a shared channel for drug DA’s administration to close the loop. This “reverse 

engineering” has its advantages and limitations. As a benefit, it does not require the host systems to be 

modified, as long as they provide a method for observing the results (e.g. method for requesting the 

complete history of administered drugs, or providing a “real-time” channel where administration events 

can be observed). Additionally, they allow a more scalable integration with other systems and protocols, 

as they recognize “similar” (i.e. matching type of) actions. An example for this would be recognizing and 

skipping a particular procedure defined by the CIG for a patient, if another clinician already just 

performed it. Conversely, the black box method does not provide support for identifying where a 

particular request is in terms of completion and if assumed lost (e.g. cancelled) or stuck (e.g. waiting for 

approval) where that might be. Another disadvantage is that while the information recorded in 

downstream transaction systems can be visualized in multiple ways in the electronic health record, it is 

not visually linked to the original order. This makes it difficult for both humans and systems to 

understand the state of the order, comparing the intended plan with what the nurse actually 

administered to the patient. Furthermore, the decision support logic that assisted the provider in 
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creating the order, such as parameter based dose calculations, are not carried over with the order 

sentence to the transaction system. This context is lost once the order is finalized, but is essential 

information for downstream healthcare professionals to verify the appropriateness of the order. 

P2.4. Data provisioning 

None of the publications indicate that authors have considered their CIG-based systems to be data 

providers for other systems, only as consumer systems. In order for a CIG-based system to act as a data 

source to other systems, the CIG formalism should support the definition of what the system can be a 

source for. For example, in the case of the treatment of a particular disease, the diagnosis of the disease 

confirmed in the protocol could be a piece of information that another system, such as a dashboard 

indicating the status of multiple patients across multiple diseases, would want to consume. Abstract 

states, such as the severity level of a condition, could be another example. 

P2.5. Avoiding the duplication of functionality of the host systems 

When integrating a CIG-based system into a new environment or when adopting a CIG, it is extremely 

important to identify which functions will be implemented by which (system) component. This includes 

addressing the problem of overlapping (i.e. duplicated) system functionality. As an example, the CIG, 

consequently the CIG-based system, might implement some functionality related to patient safety 

already addressed by the CPOE system in place. There is a great chance for this, as CPOE systems usually 

implement the following safety measures before accepting the order for a drug: 

 General drug interactions 

o Drug dosing: including one time maximum, lifetime maximum, minimum to be effective, 

etc. dose and dose rate checks 

o Drug-drug interaction: interaction with other already administered drugs 

o Drug-food interaction 

o Other recommended related (needed or extending) drugs, such as pre- and post-meds 

o Other (potentially better) options achieving the same, including checking the duplication 

of functionality (e.g. checking the existence of multiple drugs from the same class) 

 Drug-patient condition interaction 

o Drug-disease interaction: potential negative effects to other medical conditions 

o Drug-allergy interaction (i.e. adverse reaction) 

o Pregnancy and lactation interaction 
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 Drug-patient parameter interaction 

o Drug-genome interaction: genetic contraindications 

o Age related interaction (e.g. for geriatric, pediatric patient populations) 

 HCO’s workflow-specific restrictions (e.g. complying with safety, privacy, and quality of service 

rules). 

P2.6. Adapting configurable parameters 

As discussed before, CIGs may contain configurable parameters, including thresholds and alternatives, 

to allow clinicians to tailor the execution of CIGs to a particular patient. At integration time, not only 

data and action items need to be mapped to local resources, but these options as well. Their mapping is 

complicated by the fact that they might need to be altered (restricted, or broadened) to fit resource and 

policy constraints. 

A parallel problem is the configuration of local tools that are facilitated by CIG in execution time. The 

general case of this problem is discussed in P2.2. Similarly to this problem however, all the typical 

components of a CIG-based CDSS (other than the EE) can be considered as “facilitated” systems. In this 

case, the CIGs can potentially be required to include configuration for those systems as well. An example 

for this would be storing information regarding the UI, such as what font to use, or how to display 

warning messages associated with guideline steps if there are multiple options for it. 

P2.7. Separation of concerns: Lack of ability to provide multiple visual representations 

Separation of concerns is a principle often applied when designing DSMLs. Not surprisingly, all examined 

guideline formalisms employ it to manage the complexity inherent to CIGs. One of the typical 

techniques used in formalisms is to separate guideline knowledge into groups (or aspects) related to 

 maintenance, which captures meta-information on the CIG model (e.g. version, author, and 

creation date) 

 medical context, which captures the medical context of the CIG (e.g. purpose, keywords, and 

references to external sources (such as EMR items facilitated, or cited research articles)) 

 plan knowledge, which capture the set of (medical) actions to reach a certain goal. 
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This separation, however, does not address two problems, namely (1) control over visualization 

(including information hiding) and (2) support for local adaptation71. Both of these problems are related 

to the lack of (or minimal) support in the examined languages to create specifications (in their respective 

abstraction layers) on top of the existing CIG definitions. 

This approach in the case of (1) would allow knowledge experts to have control over what information 

was shown (from what is captured in CIG) and how it was manifested (e.g. there are control mechanisms 

in the formalism for deciding whether a vital sign should be charted as values in a table or as a graph). It 

also means, that the same guideline definition could be used to present different views (of the model) 

for the different HCO personnel (e.g. physicians, nurses, billing personnel; see Figure 27). However, so 

far none of the formalisms have proposed to support abstractions specifically designed to allow 

modelers to configure the visual manifestation of (the elements of) a CIG. 

 

Figure 27 - User aspects of a CIG 

P2.8. Separation of concerns: Portability 

The other problem mentioned in the previous section is the lack of support for local adaptation of 

existing CIGs. Formalisms simply do not provide scalable solutions for the generalization of HCO-specific 

and specialization of generic protocols. We believe that these steps are essential for adapting CIGs for 

environments that are different from what they were created in. Furthermore, they allow for the 

creation of tools that can (semi)automatically incorporate CIG-based applications into the existing 

ecosystems of HCOs. 
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Figure 28 illustrates some of the typical issues with guideline portability. This simplified figure shows two 

versions of a given CIG: a generic version (seen on the left side), which is built using general drug 

concepts (DrugGeneral), and a HCO-specific version (seen on the right side), which is built using drug 

orderables available in the provider’s CPOE (DrugHCO). In the figure, each arrow marked with a “T” 

indicates a transformation: T1 and T2 are transformations between the two versions of the guideline, and 

T3 and T4 are example transformations between two versions of a typical action item of guidelines, 

medications. 

 

Figure 28 - CIG portability 
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often contain built-in assumptions regarding the host CIS infrastructure, workflows, security policies, 

etc. 

T1 denotes the specialization of a generic CIG, which is another concern. HCOs need to be able to 

customize CIGs in order to comply with local policy and workflow requirements, map abstract CIG 

elements (data elements and actions) to local ones, and integrate UIs [70], ideally without altering the 

original plan. 

In order to illustrate some of these challenges we included the description of the transformations for 

medications. T3 denotes the adoption process of an HCO when creating or updating their local CIS’s 

action items to include drug definitions specified by a given ontology (e.g. FDB MedKnowledge [191]). 

During this process, existing drug concepts are paired using a common concept id (DrugIDCommonOntology = 

DrugIDOntologyHCO = DrugIDOntologyX), and existing local knowledge is updated based on the (new) 

information available in the generic ontology. General constraints (ConstraintsGeneral), such as known 

drug-drug interactions and associated warnings, are tailored to fit the location’s abilities and needs 

(ConstraintsGeneral’) and location-specific constraints (ConstraintsHCO) are added. For drugs that cannot be 

automatically paired (e.g. there are drugs described by the generic CIG that are not available at the 

adopting HCO) clinically valid substitutions are needed. Additionally, such drug concepts may trigger the 

creation of new orderables, but only if appropriate authorities decide to extend the HCO’s existing set of 

action items to include them. 

T4 denotes the inverse process of T3, during which HCO-specific concepts are stripped from locally 

specified constraints (e.g. splitting up bundled a group of medications to individual medication items). 

P2.9. Management of CIG updates 

Management of CIG updates is generally an unsolved problem. It relates to the previously mentioned 

problem of portability. “Local implementations will have modified authoritative guidelines to adapt to 

local constraints, and will have done considerable work to interface them to their platforms”. “As 

recommendations of authoritative guidelines change, local implementers must be notified of these 

changes, and must modify their local versions. Maintaining version control and revision history is critical 

to this task, and means of automating or facilitating the changes required will be needed.” [70] 
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P2.10. Representation of patient state: Management of information abstraction 

Clinicians often build complex and comprehensive diagnoses from simple indicators, such as from 

observed signs, and reported symptoms and objective data. However, this type of abstract reasoning is 

not easy to represent with current formalisms. In the following, three specific examples are shown to 

illustrate why: 

Example 1: Aggregating different sources 

Formalisms regularly express the execution of tasks conditional upon patient (health) indicators, for 

example on cardiac output (CO): If CO < 4.0 L/min then do TreatmentActionX. The problem with 

these definitions is that they are often ambiguous, as it is in the case of CO thresholds: There are a large 

number of clinical methods for the measurement of CO, ranging from an invasive direct intracardiac 

catheterisation to a non-invasive estimation using measurements of the arterial pulse [192]. Thus, if 

different techniques or (types of) devices are used, measurement results may vary in terms of precision. 

Another related problem is that the field of medicine often uses different thresholds for defining normal 

value ranges for different types of measurements. A simple example for this phenomenon is the normal 

values defined for the human body temperature based on where the measurements were taken at [193]. 

Yet another problem is resolving another issue related to the context of the measurement: Relative to 

food consumption when was the blood sugar level measured, or was the weight measured with or 

without clothes on? Last, but not least, measurements can be made using various measurement units, 

which means that values can only be compared if they are converted to a common unit. These problems 

make the aggregation of the information sources and the derivation of the abstract information difficult. 

Regardless of these problems, formalisms need to support the ability to express abstraction rules to 

allow clinicians to define derivation formulas (e.g. always use the most reliable source available, use the 

calculated average of all available sources, if the preferred source type A is not available use source type 

B with using a given conversion method). 

Example 2: Defining composite indicators 

The execution of CIGs relies on the availability of health indicators, which in some cases can be 

automatically retrieved from an EMR. This is usually not the case with abstract indicators72. One part of 

abstract indicators can only be defined informally. If not present formally in the EMR, their evaluation 

                                                           
 

72
  Abstract indicator is a patient health indicator, which requires a clinician to determine a diagnosis. It can also be interpreted 

as a not directly measureable patient health indicator, or one, which cannot be directly received from the patients EMR. 
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requires users to provide the information manually to allow the EE to continue its execution. An 

example for this type of abstract indicator is a clinical condition called sepsis, which can be defined as 

observed systemic inflammatory response syndrome (SIRS) secondary to an infection [25]. In the case of 

sepsis, without culture data it would be extremely difficult to automatically infer the presence of an 

infection from other indicators, especially that the treatment often needs to be started even if there just 

a suspicion on the presence of an infection. 

Another difficulty in dealing with abstract indicators is that their definition can be relative to a disease, 

to a patient and even to a case. Automatic interpretation of such definitions is only possible for the 

other type of abstract indicators, called the composite (or derived) indicators. Composite indicators, such 

as hypotension73, can be expressed from the logical composition of other (formally defined) indicators. 

E.g.: 74 

Hypotension = [ (MAP < 65 mmHg) OR (SBP < 90 mmHg) OR (DBP < 60 mmHg) ], 

where MAP stands for mean arterial pressure, SBP for systolic blood pressure, and DBP for diastolic 

blood pressure. Ideally, CIGs define the context of the treatment (i.e. when is the specified treatment 

applicable), which includes the definition for abstract (and complex) indicators. 

If in a CIG the same definition of a composite indicator is used in more than a handful of places (e.g. in 

guard conditions of various specific treatment actions) it makes sense to define the indicator centrally as 

a reusable concept. This centralized definition of indicators (e.g. patient condition) has multiple benefits, 

including allowing users to comprehend the CIG algorithm faster, and making update process (for all 

instances of these conditions) less error prone. However, it can also mislead experts, who make 

incorrect assumptions on what the definition might be. Still, we believe that formalisms (including 

expression languages) should support this feature. 

Example 3: Identifying the source of indicators 

Formalisms do not support the definition of the source of the electronically available parameters. If they 

did, they might be able to discover inconsistencies in composite indicator definitions. For example, in 

                                                           
 

73
  abnormally low blood pressure 

74
  Other examples include calculating the aggregate daily activity level of an elderly patient from a series of momentary 

measurements of an accelerometer, and identifying trends based on multiple measurements of an elevated heart rate over 
time. 
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the above-mentioned definition of hypotension the inclusion of mean arterial pressure might only make 

sense if it was a value obtained from something different than averaging the same systolic and diastolic 

blood pressures. Another point in favor of being able to identify the source is that while CIGs blindly 

trust the information provided to them, clinicians have tremendous background knowledge, which 

allows them to second-guess any of the information presented to them. Thus, clinicians would greatly 

benefit from CIGs that allow them to see where and how the presented information was obtained. 

P3. Clinical adoption and implementation 

P3.1. Readability of models 

“Great importance has to be attached to the notational convenience of these languages, by which we 

mean the ease with which they can be read, written, and understood by the potential users of a system, 

and to the domain experts” [36]. Notational convenience, as well as usability of the associated tools 

need to be properly evaluated. 

P3.2. Handling transactions with a bundle of actions 

If communication protocols (discussed under P2.2) are not intelligent enough, the exchange of 

composite messages could cause problems during the execution of a CIG. For example, drug interaction 

checking, including checking for required supporting medications, may be handled by the CPOE system. 

Furthermore, let us assume that there is a rule for drug A, saying that drug B always needs to be given to 

the patient before A can be administered. In such a case, if a CIG splits up the ordering of A and B into 

multiple transactions, there will be a warning if the request for A is processed first. 

P3.3. Interactive simulation 

The simulation of CIGs has multiple purposes. It can be used (1) to implement the look-ahead feature 

(see P1.13). It can be used for (2) the validation of the correctness of the logic captured by the CIGs. It 

can also be used (3a) to educate clinicians about a particular guideline, or (3b) to test their performance 

in facilitating them. The common aspect of cases 2 and 3 is that they typically rely on using predefined 

scenarios (i.e. test cases). Scenarios are defined by controlled data sets, in which data elements are 

specified in terms of time relative to the start of the scenario. These data elements act as inputs for the 

CIG in simulation time. 

However, there is a significant difference between use cases 2 and 3. Whereas for defining scenarios for 

the validation of CIGs (case 2) it is perfectly acceptable to use a scenario with a linear sequence of inputs 
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paired with the expected behavior, for defining scenarios for 3, a more sophisticated technique is 

required. This is because with 3, and especially with 3b, human interaction is expected during simulation 

for which the scenario needs to be prepared. An interactive simulation requires a patient model to be 

captured, which in simulation time is able to “respond” and generate relevant physiological data based 

on the actions clinicians take. Depending on the purpose of the simulation, a patient model defined as a 

part of a scenario might be realized by something as simple as defining sub-scenarios and branching 

logic connecting them. A complicated case might require an expert to perform a simulated reaction of 

the patient, in other words create the relevant data (e.g. generate vital and lab response) in 

coordination with the simulated treatment. The point is that all significant sub-cases in a scenario need 

to have relevant, explicitly defined input data associated with them. 

P3.4. Simulation-specific view 

Both in the case of interactive simulation and in the case of building possible future treatment scenarios 

for an actual patient visualization of future data is essential. This is particularly true if there are multiple 

possible options to represent. Thus, it would be important to work out how future data should be 

released to the execution system and how it should be represented on a UI. 
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CHAPTER IV.  

 

OVERVIEW OF THE SEPSIS PROJECT 

The previous chapters surveyed CIG-based CDSSs with an emphasis on the CIG languages and the 

software architectures of each approach. As the survey demonstrates, there have been many CIG-based 

CDSSs proposed, with great variance in terms of their scope. Their evaluation allowed for the 

construction of a general requirements list for constructing these systems. However, it is apparent that 

none of the examined solutions come close to fully addressing all of the points. Some of these 

shortcomings are relevant to all approaches and are summarized in the “Open problems” section of 

Chapter III. 

The goal of our research is the systematic development of a prototype CDSS system using model-

integrated75 development techniques. Our hypothesis is that emerging tools and methods, such as the 

Model-Integrated Computing76 (MIC) tool suite, have significant impact on the development process, 

capabilities and acceptance of CDSS and has the potential to lead to a new generation of decision 

support and patient management tools. Accomplishing this goal requires an application context that is 

justified and realistic from a medical point of view, its complexity challenges the state-of-the-art in 

computer science and provides opportunity for real-life evaluation in the clinical environment. We 

achieved this purpose by establishing a collaborative research effort between the Institute for Software 

Integrated Systems (ISIS) and the Vanderbilt University Medical Center (VUMC) on a project titled the 

Sepsis Treatment Enhanced through Electronic Protocolization (STEEP). In this project, clinicians from 

VUMC, computer scientists from ISIS and the VUMC Informatics Center worked together to provide a 

CDSS for managing the complicated but well-studied problem of the identification and treatment of 

sepsis. The partnership provided the interdisciplinary team an invaluable opportunity to investigate 

model-based treatment management problems, and analyze/understand related technology directions. 

                                                           
 

75
 A model-integrated (i.e. model-based) system facilitates abstractions (i.e. models) to define certain properties of the system. 

In the case of a model-integrated patient management system, models can be used to represent required input parameters, 
users, who will access the system, and guidelines, which configure the behavior of the system. 

76
 Model-integrated computing is explained in more detail later in this chapter. 
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The overall project had significant size and complexity. It included several efforts that were outside of 

the contributions of this thesis (such as a clinical trial for STEEP supported by an NIH grant, the 

development of a production version of the system and the integration of STEEP with the HIS 

infrastructure of VUMC). In this chapter, we provide a brief overview of the overall effort and highlight 

our specific areas of contributions. The specific research results will be detailed in chapters V-VI. 

Medical Context: Sepsis Management 

To maximize the potential impact of our prototype system and to help establish design requirements for 

a CIG-based CDSS, we sought a clinical paradigm that was common, clinically and economically 

important and had readily available and accepted evidence-based treatment guidelines. We found the 

detection and management of septic patients to be an ideal candidate for our intervention for the 

following reasons. 

The sepsis syndrome results from a robust host reaction to an infection and is characterized by a 

systemic inflammatory response, frequently with hypotension and multiple organ failure. The disease 

process is very common, occurs with a worldwide distribution, and can impact patients of any sex, race, 

or age (about 750,000 cases occur in the US annually [194], and about 30 percent of septic patients die 

from the disease [195]). 

The management of sepsis is a complex and extremely time and information intensive process, 

performed in intensive care units (ICUs) and emergency departments. Accordingly, severely septic 

patients consume many hospital resources, requiring on average 7–10 days in ICUs and 3–5 weeks total 

hospital length of stay. Sepsis-related expenditures are estimated to approach US$17 billion annually in 

the US alone [196]. 

Given the large scope of this clinical problem, it is not surprising that many treatment strategies have 

been proposed and investigated. The Surviving Sepsis Campaign (SSC), led by experts from numerous 

professional organizations, seeks to improve the diagnosis, management and clinical outcomes. The SSC 

has published a comprehensive set of treatment guidelines based on graded clinical evidence [197]. The 

guidelines are widely considered to represent the state of the art in sepsis management, but they will 

evolve over time. Also, they must be customized to individual patient needs, and their correct 

application has important quality and cost implications in sepsis care. The SSC guidelines are complex 

and require multiple time-sensitive interventions based on dynamic patient variables. Correct and timely 
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implementation of the guidelines requires continuous assimilation and interpretation of numerous 

pieces of patient data. 

The STEEP project incorporated an extensive medical effort conducted by a team of attending physicians 

and fellows from the VUMC. The primary results of their contributions are the STEEP guideline models, 

user interface and usability evaluations and in-depth guidance to the technical work from clinical point 

of view. 

Functional Architecture of STEEP 

The functional architecture is shown in Figure 29. The architecture is composed of a suite of existing 

VUMC CISs (colored yellow) and our contributions (colored blue), namely the CIG Modeling Environment 

(GME), the CIG Repository, the Execution Engine and the Treatment Management Console. The GME 

Modeling Environment supports the graphical editing of STEEP models formally captured in a newly 

developed modeling language, called the Clinical Protocol Modeling Language (CPML). The Modeling 

Environment is not part of the system execution; it provides an interface for creating, modifying and 

validating the Protocol Models. 

 

Figure 29 - Functional Architecture of STEEP 
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The execution of the patient management system is supported by the rest of the functional components 

in Figure 29. The execution includes two phases: 

1. Pre-diagnosis surveillance and alerting 

a. Identify patients potentially having sepsis 

b. Prompt clinical teams 

2. Treatment management 

a. Once pending diagnosis confirmed, provide continuous real-time process management 

recommendations based on live patient data 

b. Process confirmed orders 

Pre-diagnosis surveillance and alerting 

The detailed steps are the following. The Automated Patient Surveillance System in STEEP monitors real-

time patient data streams (coming from the Smart Data Repository) and, using specific laboratory and 

vital signs criteria, identifies patients with possible sepsis. These monitored abnormalities are quite 

sensitive for the diagnosis of sepsis, but lack specificity without clinical input and contextual 

interpretation. Therefore, patients with an “alert status” need a healthcare team’s assessment. These 

patients are identified first by a visual cue on an ICU patient management dashboard (part of the Patient 

Management System). If this alert is not addressed in a timely manner, an electronic notification via text 

page is sent to appropriate team members. If there is a reasonable suspicion that the abnormal 

physiological parameters are due to infection, the physician activates decision support. 

Treatment management 

Following a confirmed diagnosis by a clinician, the STEEP Execution Engine is instantiated for the patient 

and starts running the treatment management process by executing the protocol model. The executable 

version of the protocol models is an .xml file generated from the formal, GME-based Protocol Model. 

The Execution Engine also interacts with the Treatment Management Console, a GUI that physicians use 

to assess the treated patient’s health status, get decision support from evidence-based guidelines on the 

screen, and actuate their decisions. Recommendations are generated by continuously interpreting the 

protocol as new information from the environment (including the patient and the clinicians) arrives. 
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The interaction between the Physician and the system is facilitated by the Treatment Management 

Console by means of two panels: the Monitoring Panel and the Advisory Panel. The Monitoring Panel 

presents a timeline where categorized patient health information can be viewed in time in context with 

the actions of the therapy provided to the patient. The Advisory Panel presents the set of actions 

recommended by the protocol. 

STEEP is integrated with the CIS infrastructure of VUMC via interfaces to the Patient Management 

Dashboard (StarPanel) and to the Clinical Information System (StarChart). Real-time patient data are 

received by the Surveillance Tool to detect sepsis symptoms using a set of rules. Additional real-time 

patient data including physiological data, and a range of treatment data are stored and continuously 

update in the Clinical Information System. (Further details about these components will be provided in 

Chapter V.) 

The model-integrated design approach is reflected in the context of the functional architecture in the 

following ways: 

1. The protocol models fully determine the behavior of the STEEP patient management system. 

The Execution Engine serves as a model interpreter that generates responses to received input 

from the user interface and the CIS interface according to the state of the patient and the state 

of the treatment process. 

2. The Treatment Management Console is configured/customized via models captured as an 

integrated modeling aspect in CPML. This solution enables the design of a dynamic user 

interface that can be adjusted according to various treatments and treatment phases. 

3. The STEEP Execution Engine is integrated with the CIS via model-configured data and 

information model interfaces. Configuration of the data interface requires the specification of 

real-time data streams carrying patient vitals to the STEEP Monitoring Panel. The information 

model interface links modeling concepts used in STEEP for describing medications, labs, and 

other orderables to the terminology used in VUMC CIS-s, such as the CPOE. 

Our contribution to the STEEP architecture includes the extension of the model-based approach from 

the narrow protocol modeling and execution to the broader model-integrated design approach that 

involves the implementation of previously described components (2) and (3). Details of this contribution 

are described in Chapter V. 
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Modeling Language and Model Development 

The use of the model-integrated approach in the STEEP architecture redefines the overall development 

challenge from pure software development to a model and software development process. One of the 

primary promises of model-integrated computing is that most (or a large part) of the overall system 

complexity can be expressed using formal models that are easier to create, modify, validate, verify and 

reuse. Accordingly, the traditional software development and system integration tasks are significantly 

decreased and their results are becoming highly reusable in a wide range of domains. The core part of 

our work focuses on the modeling process in STEEP. 

We decomposed the model development process into the following tasks: 

1. Design of an integrated suite of DSMLs for representing treatment protocols, component 

configuration information and system integration information. The language suite must provide 

sufficiently rich abstractions for the targeted domains allowing the economical representation 

of knowledge components. 

2. Define structural semantics77 for the DSMLs that enables the use of static model verification 

techniques for checking well-formedness rules. 

3. Define the execution semantics78 for the DSML components by specifying the transformation of 

CIG models (protocols) onto an execution platform that ensures protocol enactment and 

provides interoperation with a host CIS infrastructure. 

4. Define the behavioral semantics79 for the validation and verification of protocols by specifying 

the transformation of the CIG models into the input language of a CIG implementation analysis 

tool suite. 

                                                           
 

77
 Structural semantics of modeling languages define the set of well-formed models. The Model-Integrated Computing tool 

suite uses metamodels to express static semantics.  

78
 From here on, we have to differentiate execution semantics from behavioral semantics. Execution semantics is considered as 

the definition of the complete system behavior (i.e. how and when the various constructs of a DSML should produce a 
program behavior). Considering the example of a CDSS that is integrated into its host CIS using SOA techniques, the 
execution semantics describes the complete low-level message exchange protocol governing the communication including 
the socket configuration, message rate, error handling, etc. 

79
 Behavioral semantics can be considered as a subset of what the execution semantics defines: behavioral semantics only 

considers system behavior that is in the focus of interest and abstracts out the rest. In this thesis the behavioral semantics is 
used to analyze certain safety properties of implemented CIGs, while for example underlying reliable communication with 
the host CIS is assumed. 
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5. Develop models of specific treatment protocols (i.e. CIGs) using the modeling language defined 

in step 1. These models are a formal representation of guidelines that can drive the 

management of clinical (treatment) processes. 

6. Translate and analyze safety properties of built CIGs. The precise semantic foundation of the 

MIC modeling infrastructure and related tools enable validation and verification of the models 

against a range of safety, privacy and security related criteria defined as constraints or policies. 

The main research contributions of this thesis are in Tasks 1, 2, 4, and 6 with additional contributions to 

the execution of Tasks 3 and 5. Detailed discussion of the research results are presented in Chapter VI. 

Software design and implementation 

While the design and implementation of the STEEP software components were not a direct part of our 

research, they progressed in tight coordination with the model development process. Implementation 

of the software architecture included the following tasks: 

1. Treatment management console development with specific considerations on a well-structured 

user interface that helps rapid understanding of the patient state and treatment state by 

clinicians. User interface design was strongly influenced by both domain experts and a VUMC 

human-computer interaction (HCI) expert. 

2. Design of the STEEP Execution Engine that runs simultaneous instances of the protocol. The 

Treatment Management Console and the Execution Engine were implemented using the client-

server architecture. 

3. Configurable integration components and interfaces to the Clinical Information Systems 

including EMR, Patient Management Dashboard and Surveillance tool. 



120 
 

Evaluation 

Systematic evaluation of STEEP has been a complex, multi-faceted effort. The main phases of the 

evaluation include: 

 Model evaluation: The goal of the model evaluation is to decide if the protocol models reflect 

the current state-of-knowledge in sepsis treatment. Model evaluation is performed by an 

integrated physician and computer science team working on the STEEP project. After the 

development of the required models, an initial evaluation confirmed their correctness. 

Subsequent evaluations are now part of the workflow that supports the necessary ongoing 

continuous updates of implemented guidelines. 

 System evaluation: The goal of the system evaluation is to determine if the STEEP system is 

suitable for use in ICUs. The system evaluation is performed by the VUMC quality control 

personnel. As a result of the successful evaluation, STEEP was integrated into the live production 

environments in VUMC’s MICU and SICU. 

 Clinical evaluation: The goal of the clinical evaluation is to determine improvement of outcomes 

in patients with sepsis. Clinical evaluation is ongoing by a VUMC team under grant support from 

NIH. 

Our research contributed to the model and system evaluation processes. The language design and 

development effort was tightly integrated with the model evaluation and resulted in several significant 

updates to the CPML language to improve expressiveness and provide better structuring for the 

protocol model. The model-integrated system architecture has profound implication on the system 

evaluation. We could successfully argue, the model updates have not changed the software, therefore 

the time and cost of the quality control process was increased. We will discuss this issue further in 

Chapter IX. 
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CHAPTER V.  

 

A MODEL-INTEGRATED IMPLEMENTATION ARCHITECTURE FOR STEEP 

The model-integrated development of STEEP is related to the Model-Driven Architecture (MDA) [198] 

software development approach. In MDA, system functionality is specified using Platform Independent 

Models (PIMs) expressed in some DSML. The PIMs are automatically translated into executable Platform 

Specific Models (PSMs) that are usually specified as a combination of some platform modeling language 

corresponding to a composition platform (e.g. Corba) and some general purpose programming language 

(e.g. Java or C++). 

However, while MDA based software development traditionally stars with selecting some standard PIM 

modeling language suites and a standard target platform, in STEEP we followed a different approach. 

The model-integrated architecture development starts with separating models and associated modeling 

languages that express the changing, rapidly evolving and complex aspects of system operation from the 

model-based components of the execution platform that interpret the models. This followed by the 

integration of the system into an underlying information infrastructure that provides a stable, reusable 

infrastructure not only for STEEP, but, by changing the models and modeling languages, for other 

guideline driven patient management systems as well. 

The fundamental challenge in model-integrated architecture design is the identification of the models, 

modeling languages and model-based components, their connections and their interfaces to operators 

and to the given CIS infrastructure. As in most architecture design, the design decisions have major 

impact on the cost of the system implementation, various aspects of system performance, testability 

and future acceptance. In this Chapter, we provide a summary of the STEEP architecture design with 

emphasis on specific contributions. Evaluation of the STEEP architecture decisions is discussed in 

Chapter IX. 

Implementation architecture overview 

The functional architecture of STEEP in Figure 29 is implemented by the Clinical Process Management 

Architecture (CPMA) shown in Figure 30. Design of the CPMA was driven by the needs of integrating 

STEEP into VUMC’s existing CIS infrastructure. 
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Figure 30 - CPMA: The implementation architecture for STEEP 

The main components of the STEEP CPMA, The Treatment Management Console and the Execution 

Engine have been implemented as a client-server architecture. The client side runs in standard browsers 

available at clinical workstations (CWS) dispersed in the ICUs, communicates treatment and patient 

status and interacts with authorized ICU personnel. The server side includes the integrated Decision 

Support and Protocol Execution Engine (briefly Execution Engine), the Persistency Database for storing 

detailed treatment data for each patient and interfaces to the EMR and the CPOE systems of VUMC. The 

implementation technology of STEEP utilized Java component technology (JNDI/EJB3), JDBC Hybernate 

for Persistency Database, and AJAX for client-server interaction and HTTP for client-side visualization 

(GWT). Since STEEP needs to serve a large number of patients simultaneously, the server side is multi-

threaded with serialized access to the Persistency database. 

Treatment Management Console 

The Treatment Management Console facilitates the interaction between the ICU personnel and the 

system by means of two panels: the Monitoring Panel and the Advisory Panel (see Figure 31). 
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Figure 31 - STEEP GUI: Structure of the Treatment Management Console 

The monitoring panel presents a timeline for viewing categorized patient health information in context 

with the therapeutic actions provided to the patient. Displaying cause and effect relations involves 

linking patient data and treatments so that the effect of one on the other can be seen; this is what we 

refer to as the action-reaction concept. The protocol models define this information (both displayed 

indicators and available treatment actions). In effect, they transform the generic GUI to a protocol-

specific interface. The timeline runs from the past, when the treatment started, to the current time. 

Health indicators, fed to the system as a stream of data, include vital signs, such as temperature, blood 

pressure, heart rate and central venous pressure. Laboratory test results, like the white blood cell count, 

are updated on the screen when the information becomes available. The panel also shows the actions of 
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the treatment that were, or are scheduled to be, provided to the patient (e.g. the start of a normal 

saline (NS) treatment). All displayed data is temporally aligned in the same columns. 

The Monitoring Panel is divided up into two fields: 

1. Vitals, which represent locally and usually frequently measured physiological indicators of the 

patient (e.g. temperature, heart rate, mean arterial pressure and central venous pressure data). 

2. Labs, which represent infrequently and/or remotely measured physiological information (e.g. 

white blood cell count, international normalized ratio and lactate levels) 

The other panel, the advisory panel, helps clinicians make a formal diagnosis by using the built-in logic, 

available action controls and diagnostic information for external systems. Its main components are the 

following: 

1. Listener Alerts displaying the status of the Surveillance Tool, including a list of the various levels 

of alerts triggered over the patient and the associated objective data, 

2. Patient State Alerts displaying the progression of the disease with the help of higher-level 

diagnostic information (e.g. sepsis severity level), 

3. Decision Support functions displaying categorized treatments for various problems that at the 

lowest level include recommending specific tests, medications and procedures. 

Figure 32 shows an actual instance of the state of the Treatment Management Console. The monitoring 

panel shows a day worth of measurements for four vitals (temperature, heart rate, mean arterial 

pressure and central venous pressure), marked red when out of the predefined normal ranges. The 

advisory panel shows that as part of the treatment the user confirmed alerts from the surveillance tool 

and currently being presented with the next recommendation step, called “Diagnostics”, marked with 

yellow. As part of this step only the “Diagnostic orderables” component needs to be addressed, which 

means the ordering of various laboratory test. 
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Figure 32 - STEEP GUI: The Treatment Management Console 

System integration interfaces 

Development of advanced CIS is an inherently experimental process. It requires an in-depth evaluation 

of the clinical environment to understand impact on the quality of care. Unfortunately, creating credible 

experiments in the form of carefully controlled clinical trials is a complex task, because of the need for 

integrating the experimental system with heterogeneous health IT infrastructure, such as the EMR, 

CPOE, authentication systems, audit logs and whiteboards. Integration in real life environments can be 

prohibitively expensive without a systematic approach (e.g. facilitation of existing standards) that helps 

rapid system integration. 

Due to its complexity, addressing and discussing all aspects of the integration challenge in detail is out of 

the scope of this thesis. The contributions of this thesis are restricted to those integration issues that 

directly influence the modeling language design. 

Advisory Panel Monitoring Panel
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EMR Interface 

To receive information from EMRs, we connected to VUMC’s centralized EMR repository system (Core 

Cache) using the messaging component of HL7. Their centralized system allowed access to vital sign 

measurements using SNOMED identifiers as well as to lab test results using VUMC’s proprietary coding 

scheme (Chisl code). As for getting access to completed orders, STEEP needed to subscribe to a non-

standard data feed with another proprietary coding scheme (Svc code), which was provided by an order 

logging system (TDQ). 

CPOE Interface 

Similar to the data receiving interface, communication towards VUMC’s CPOE (Horizon Expert Order) 

needed to be implemented. This was a much more complicated problem, because VUMC’s CPOE was 

not ready for accepting orders from external systems. A close collaboration of its design team and STEEP 

collaborators allowed the design of a proprietary interface through which both partial and complete 

orders could be placed (using the Portobello proprietary coding scheme). 

In the aforementioned cases, the challenge in terms of language design was to represent interface 

elements for both EMR and CPOE systems to enable the expected communication, while making sure 

that guidelines built using these components were executable without the VUMC-specific systems in 

place. 

Contributions 

Development of the STEEP implementation architecture and completing the system implementation has 

been a significant effort by the ISIS and VUMC teams. The current status of the project is described in 

Appendix B. The STEEP system implementation has been primary completed by Andras Nadas, ISIS, 

while the CPOE and EMR integration was accomplished by the VUMC team led by Dan Albert. Our work 

contributed to the effort in the following areas: 

1. Leading the integrated modeling language development required for the model-based 

configuration/customization of the Treatment Management Console and the System Integration 

Interfaces 

2. Contribution to the GUI design and selection of the configurable features. 
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3. Contribution to the design of the Execution Engine that runs simultaneous instances of the 

protocol. 

4. Contribution to the design of the proprietary CPOE communication interface. 

In summary, the main research contribution of this thesis to the implementation architecture and 

implementation tasks is decomposing the architecture into components and interfaces that can be 

configured from models, integrating these models into the overall modeling language suite and enabling 

(in a limited sense) model-based system integration. 
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CHAPTER VI.  

 

MODELING LANGUAGE AND MODEL DEVELOPMENT 

As in all model-integrated system development, modeling languages play a central role. In STEEP, 

modeling languages provide the abstractions that will be used for defining all essential aspects of 

managing septic patients and integrating STEEP in the CIS infrastructure. There are a number of scientific 

challenges in identifying these abstractions: 

1. Shared conceptualization: DSMLs include concepts that describe domains using a vocabulary. 

Freedom in selecting the terms in vocabularies is restricted, because the knowledge expressed 

by STEEP models is integral part of a complex “knowledge context” used in a live, evolving 

clinical environment. In fact, conceptualization selected in the STEEP modeling language suite 

needs to be shared by other related clinical domains: order management, treatments, drugs, 

EMR and others. Since these domains evolve independently, each with a different life cycle, the 

conceptualization used in CPML needs to be structured into independent vocabularies and the 

vocabularies need to be composed with the modeling languages. This is a hard challenge both 

scientifically and technically. Our approach was based on the iterative development of 

alternative conceptualizations, continued evaluation with medical and informatics experts and 

the rapid revisions of modeling environments and models. 

2. Modeling language specification: Terms of the vocabularies are used as concepts in DSMLs. 

However, DSMLs are richer than the superset of concepts: they define modeling domains that 

include the set of well-formed models. The formal specification of domains is the structural 

semantics of DSMLs. In MIC, the structural semantics is defined using metamodels. Defining the 

precise structural semantics for the suite of modeling languages in STEEP constitutes a second 

scientific challenge in the language development. 

3. Model specification: Models defining treatment protocols, system configurations and the 

integration of the STEEP execution platform to the CIS infrastructure are one of the “end 

products” of the model-integrated development approach. Their simplicity, expressivity, safety 

and unambiguity are essential indicators of the quality of the DSMLs developed. 

In STEEP, the modeling language CPML has been defined as a suite of connected DSMLs. To utilize 

existing work, our approach draws from and extends the general design principles of existing model-
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based CIG solutions summarized in Chapters II and III. In this chapter, we focus on some of the key 

challenges of the construction of CIG-based CDSS including (1) finding the appropriate level of 

abstractions for the highly reactive intensive care patient management, and (2) providing the ability 

for domain experts to construct HCO-specific CIGs without weaving the knowledge specific to a HCO 

with medical knowledge, thus allowing for less laborious customization of CIGs for adaptation at other 

HCOs. Evaluation of the modeling language development results are summarized in Chapter IX. 

Modeling language development approach 

In STEEP, the CPML modeling language supports the construction of three types of models: 

1. treatment protocols, 

2. component configurations and 

3. integration specifications. 

The reason for considering these models together is that they are interrelated: models of component 

configurations and integration specifications are “model-level interfaces” between the STEEP patient 

management system and other clinical information systems and users. 

In the model-integrated framework, the first step of the development process is the specification of 

DSMLs for the essential subdomains and their interactions. However, there is a fundamental question 

regarding the selected approach to language design. Specifically, should we adopt an existing language 

or proceed with developing a new one? 

As proposed in [70], many of the problems (such as the generalization of HCO-specific protocols, or 

avoiding the duplication of functionality of the host CIS) could be addressed in a more cohesive manner 

if a common shared representation were to be mutually developed by modelers and implementers. 

However, the same source concluded that – because the various current conceptual models for 

treatment protocols are sufficiently different – it is unrealistic to build a single common modeling 

language that incorporates all of their abstractions. 

This pressure towards fragmentation is the basis for the well-known dichotomy between domain 

specificity and reusability: utility of CIG modeling languages increases by adopting domain specific 
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abstractions, but at the same time domain specificity, which translates to decreased scope80, results in 

decreased reusability of models and tools across domains. Currently, there are two common approaches 

to resolving this dichotomy: 

1. Development of standardized modeling languages that are sufficiently broad in scope to span 

different domains with the hope that modeling, verification and synthesis tools will appear 

(eventually) and adopters will accumulate assets that in turn will establish a self-sustaining 

infrastructure and market. Based on our review of the state-of-the-art in CIG modeling 

languages, this clearly has not happened yet. While there are numerous examples of industry- 

or academy-driven attempts for standardization, there is no single emerging standard that may 

count on general acceptance. Among the many reasons are the extreme heterogeneity of the 

CIG domains, the lack of formally specified semantics for the modeling languages that would 

enable their use in different domains, and the general lack of support tools that would make a 

difference. Even more interestingly, this approach brought quite limited success in model-based 

engineering as well, where generic modeling languages, such as UML, AADL, SySML and many 

others have highly limited domain penetration - even more than a decade after their 

introduction. 

2. Adoption of a modeling language that is used by a tool (or tool suite) providing some usability 

for the domain, even if the abstractions are not fully appropriate and the tool suite capabilities 

have major gaps. This leads to - what Alberto Sangiovanni-Vincentelli calls – the “tyranny of 

tools” in design automation, when the available tools, and not the design problems dictate the 

abstractions that designers should use in problem solving [199]. This approach typically fails in 

heterogeneous domains that require integration of tools – and with them – modeling languages. 

The consequence is the familiar “islands of automation” infrastructure that sporadically covers 

the needs of a domain. 

Lately, the introduction and increased use of metaprogrammable tools, such as the MIC tool suite [200], 

have started changing this situation. They enable the use of domain specific languages that are the least 

complicated and most relevant to a domain, without sacrificing precision and advanced tool support. 

                                                           
 

80
 i.e. its ability to represent other problems 
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Design of CPML 

These findings were further exacerbated by our intention to take advantages of model-based methods 

not only for treatment modeling, but also for experimenting with various semantics, and customizing 

and integrating the system in a host environment. As none of these features were supported by the 

examined approaches, we decided to create a new modeling language, called CPML. 

The precise specification of CPML proved to be a hard problem due to the following challenges. First, 

operational protocols, policies and treatment guidelines of healthcare organizations are rarely phrased 

in a mathematically sound, unambiguous manner. Second, the protocols that describe the medical 

processes constituting a treatment, their triggering conditions and their coordination methods need to 

be considered as guidelines and not rigid workflows that must be enacted always the same way. This 

requirement is essential for the design of the execution semantics of models. 

DSML design 

A DSML defines a domain as the set of all structurally well-formed models [201]. A specific model is a 

“point” in the domain. A well-formed model is a model that satisfies all the constraints imposed on its 

construction. Formally, a domain is 

1.  : A set of concepts from which models are built 

2.     A set of possible model realizations 

3.  : A set of constraints over   . 

The model realizations represent all allowed ways that models can be built from the available primitives. 

The set of well-formed models in a domain   is the set of all models that satisfy the constraints. This set 

construction is written as 

 (   )  {          } 

where the notation     can be read as “r satisfies constraints C”. Domains may carry meaning beyond 

their structure. This meaning (such as behavior) is expressed as a mapping of models in one domain to 

models in another domain with existing behavioral semantics. This mapping is called interpretation 

(⟦ ⟧): 

⟦ ⟧          
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Every domain has at least one interpretation, which is the structural interpretation; this is called the 

structural semantics. A domain may have other interpretations as well, expressed as a family of 

mappings (⟦ ⟧ ) ∈ . The interpretations, together with the behavioral semantics of the target domain, 

define the behavioral semantics of the domain. Based on these notions of domains and interpretations, 

a DSML L is defined as a 4-tuple comprised of its domain and a set of interpretations. 

  (       (⟦ ⟧ ) ∈ ) 

Based on these definitions, the specification of CPML includes the following steps: 

1. Specification of the set of concepts   providing the vocabulary of CPML 

2. Specification of the  (   ) domain of CPML. This specification is provided using metamodels81 

and the metamodeling language of the MIC tool suite. Once complete, these metamodels are 

used for the automated customization of the metaprogrammable tools, such as the Generic 

Modeling Environment (GME) and model-management tools, such as the Universal Data Model 

(UDM). 

3. Specification of (⟦ ⟧ ) ∈  interpretations for CPML as model transformations for defining 

semantics as required. 

Before discussing these steps in detail, below we summarize early attempts that helped in formulating 

the direction of our research. 

Early attempts 

The formal specification of CPML has proved to be difficult for two main reasons: 

1. Health care organizations rarely phrase operational protocols, policies, and treatment guidelines 

in a mathematically sound, unambiguous manner. While the medical knowledge available is 

rich, it is highly context dependent and provides room for different interpretations. 

2. Healthcare practitioners must consider the protocols that describe the medical processes 

constituting a treatment, their triggering conditions, and their coordination as guidelines—not 

rigid workflows that must be enacted the same way every time. 

                                                           
 

81
 Thus, the DSML (definition) can be referred to as the metamodel. 
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Due to these challenges, the language development took several iterations. In our first attempt, the 

language explicitly represented treatment trajectories as a connected, directed, bipartite graph 

structure. The nodes were either decision points with predefined multiple possible outcomes or actions 

representing treatment steps. The advantages of this approach were that it followed the formalization 

efforts presented in the available medical literature (e.g. see Figure 33) and that it was simple enough. 

However, this approach did not prove to be efficient for expressing complex treatments because of the 

exponentially large number of potential trajectories generated by the many concurrent and interacting 

treatment processes. 

 

Figure 33 - The Multiple Urgent Sepsis Treatments (MUST) protocol [22] 

Figure 34 shows an example for an early attempt to represent the treatment protocol using simple 

workflows. The analysis allowed us to discover that treatment steps can be grouped together into 
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bundles82 that are typically executed together. However, it soon became clear that execution of these 

bundles can overlap, influence each other, and may result in a wide variety of treatment trajectories 

that would be impossible to capture. 

                                                           
 

82
 Bundles are “interventions related to a disease process that, when executed together, result in better outcomes than when 

implemented individually” [202]. 
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Figure 34 - Initial version of the VUMC sepsis treatment protocol 
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Another basic question in designing the protocol language was if it should primarily reflect the state of 

the treatment process, the state of the patient or both. Discussions and experiments clarified that most 

of the language complexity and expressiveness should be linked to the appropriate modeling and 

tracking of the treatment process. The emphasis was on the need for describing the patient state with a 

relatively low resolution (i.e. objective data) primarily to allow the physicians to formulate their own 

opinion; however, a high-resolution description was also necessary to enable the automatic 

construction of diagnoses. 

These considerations led us to the latest iteration of the CPML semantics: the protocol modeling 

language describes treatment steps that are grouped together under the concept of treatment 

processes. Processes are concurrent, asynchronous and can interact with each other via events. In order 

to capture the decision logic concisely, processes can be organized in a hierarchical manner. Processes 

listen to events happening around them and only start running if their triggering conditions are satisfied. 

Coordination of processes is done with the help of events (and related messages). The behavioral 

semantics of the selected process model corresponds to the well-known Communicating Sequential 

Process (CSP) model [203]. The major advantages of the CSP approach is the possibility of using 

hierarchies and defining segments of a complex protocols independently from each other (processes 

composition in CSP). This semantic form proved to be more intuitive to the physicians as well, because it 

is closer to the way they think of the different sub-problems. 

CPML vocabulary 

There are two very different approaches to specifying vocabulary for DSMLs. In many engineering 

communities, the selection of terms for DSMLs is frequently considered as a large informal and ad-hoc 

task, where language designers have a lot of “freedom”. This view is justified by the perception that the 

semantics that really matter are behavioral (i.e. dynamic). Behavioral semantics is usually defined 

transformationally, so the vocabulary selected for constructing a DSML does not matter (it is basically 

just “syntactic sugar”). The primary technology used for defining modeling languages is metamodeling. 

Informatics communities (e.g. those working on Web service technologies) follow a remarkably different 

interpretation of semantics. They consider the use of different vocabularies as the primary source of 

semantic heterogeneity and identify semantic integration with mapping and translating terms across 

different communities. The technology background for developing sharable models is known as an 
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ontology. Ontologies provide “a formal, explicit specification of shared conceptualization” [204], 

therefore the emphasis in semantics is not behavior, but conceptualization. 

STEEP is designed for and integrated into a clinical environment where both behavior and 

conceptualization are essential. As a patient management system, STEEP needs to model complex, 

concurrent treatment processes that receive and generate events and trace complex treatment 

trajectories. As a CIS, STEEP needs to be integrated with other major CISs, where shared 

conceptualization is essential. These considerations have led us to structure the CPML vocabulary into 

three major conceptual categories shown in Table 9: 

 The Protocol Modeling category includes concepts that model the treatment processes. These 

concepts will be structured into CPML sublanguages that focus on behavior (see the Protocol 

modeling section). 

 The Medical Knowledge Modeling category includes information models, typically described as 

ontologies. 

 The Model Management and Support category includes modeling concepts that further extend 

models captured by the previous two categories (e.g. meta information, GUI configuration) 

required for. 

A complete description of CPML is beyond the scope of this thesis; however, in this section we present 

the abstractions of the language83 that are important from the point of modeling the sepsis guideline 

(see Table 9). 

                                                           
 

83
 Because CPML is under continuous development, from here on we refer to version 3.12, if it is otherwise not stated. Version 

3.12 is the one being used for both the currently running STEEP environment and the analysis environment presented in the 
following sections. 



138 
 

Table 9 - CPML vocabulary 

Category Abstraction Description 

Medical 
Knowledge 
Modeling 

Medical Library Components of the medical library serve as a knowledge base for the rest of the language. It includes 
medical vocabularies for diagnoses, symptoms, conditions, vital signs, laboratory test values, 
medications, procedures and non-medical actions. Concepts in the Medical Library are used to create 
Orderables that are associated with Activities in the modeled Protocols. 

Orderables Orderables implement both simple and complex medical actions that are scheduled as Activities in the 
Protocol. Orderables form a shared vocabulary with the CPOE. 

Protocol 
Modeling 

Activity Activities represent atomic actions in a Protocol. A physician initiates these items during the treatment 
process. Activities are tied back to items defined in the Medical Knowledge vocabularies with the help 
of Orderables. 

Protocol Protocols are parameterized care plans involving patient and other monitored parameters, constraints, 
explicit event and data-based coordination, activities and metadata (e.g. reference to clinical sources, 
versioning, authors). 

Process A process represents a coordinated group of activities used in Protocols. They help to decompose the 
treatment protocol and to categorize the treatment steps. They are concurrent, asynchronous and can 
interact with each other via Events. 

Event Events are components used in Processes. Events refer to the significant status changes (e.g. 
activation, starting and completion) of executable components, such as Protocols, Processes and 
Activities. They help to establish coordination by creating dependencies among the mentioned 
runnable components. 

Explicit 
Coordination 

Primitives 

Coordination primitives help in expressing the desired behavior. As opposed to implicit coordination 
(e.g. constraints), explicit coordination primitives define rules that will determine the flow of the 
execution. Explicit coordination primitives include the Activation and Step connections, control flow 
operators (such as Branch, Fork and Merge) and logical operators (such as ActivitySelectionSet and 
LayeredSelectionSet). 

Expression 
Language 

The Expression Language provides a definition for calculating the value of expressions without causing 
any side effects, and provides methods for constructing derived data points with filtering and 
aggregation using data values and logical operators defined by the (expression) language. In addition, 
it implements an implicit request for information exchange (i.e. external data points represented in 
expressions will be requested by the engine). Finally, it is used to express various constraints (i.e. 
implicit process coordination), including conditions for goals, failure, and priorities over alternative 
treatment options. 

Our expression language is defined with the help of ANTLR [205], which specifies context-free 

grammars expressed using extended Backus-Naur form (EBNF) [206]. In defined expressions, 

operations are identified by ANTLR’s built-in parser and are mapped to functions implemented in by 
Java. Further discussion of our expression language is out of the scope of this thesis. 

Model 
Management 
and Support 

Metadata Metadata refers to meta information related to protocols and their building blocks. 

GUI 
Configuration 

Constructs of the GUI Configuration provides the ability to control how certain components are 
represented on the STEEP GUI. 

Physical 
Quantity 

Physical Quantities were only introduced in a later version of the language. They define physical 
entities, including basic (e.g. mass and length), derived (e.g. surface area), and enumerated (e.g. 
gender). They are captured as an ontology of physical units extended with a system of unit 
conversation equations. 
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Medical knowledge modeling 

Medical Knowledge is represented as ontologies shared across CIS in the institution. Its content can be 

automatically imported from standardized data sources, or manually created. Integrability of STEEP 

demanded that we adopt existing ontologies to the fullest extent or, if not exist, model them such that 

they can be reused in other CIS developments. To achieve this, we studied and adopted parts of the 

UMLS [153] and standards (such as SNOMED-CT and FDB) and built mappings between constructs used 

in VUMC CISs (Core Cache, TDQ and Horizon Expert Order) using their medication notation (Chisl, Svc 

and Portobello codes). 

Ontologies of Medical Knowledge are implemented in GME as model libraries. This approach is 

essential, since the vocabulary terms in these libraries need to be updated on a regular basis and had to 

be referenced in the protocol models. To make the implementation feasible, we defined a language for 

these libraries as GME metamodels and created the model libraries first manually (by recreating the 

structure of required elements) then later automatically (by importing their content from the used 

standards). Since the overall size of these libraries is exceedingly large, we describe only the basic 

components of these model libraries without providing all details. 

Medical Library 

The medical library is the lowest layer of medical knowledge modeling, its components serve as a 

knowledge base for the rest of the language. Its main components, which can be organized into a 

taxonomy using an arbitrary layer of grouping elements (as seen on Figure 35), allow the definition of 

medical terms that describe the status of a patient (diagnosis, symptom, condition, vital sign and lab 

value), and action items (both non-medical and medical ones, such as medication and procedure). 
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Figure 35 - Main concepts of the CPML’s Medical Library (represented with MetaGME) 

Orderables 

Orderables define executable (medical) actions that are specific to a healthcare organization; they 

provide means for building bundles that are available for healthcare professionals at a given HCO. 

Orderables are items that Activities of a Protocol refer to. 

Finding the right abstraction layer defining orderables was a challenge in CPML. On one hand, the goal 

of orderables is to provide definitions for the simplest executable (i.e. atomic) actions. On the other 

hand, they need to allow the modelers to concentrate on the logic of the guideline, without having to 

deal with many of the complex details of a complete order on a per order basis, including dosing, timing, 

and compliance with safety and privacy policies. To resolve this dichotomy, we examined how current 

ordering systems approached this problem. 

The order sentence is the simplest representation of intended plans in CPOE systems and the dominant 

information model used to communicate order specifications sufficient for downstream systems to 

execute an order. Medication order sentences for example, include information regarding the drug 

name, dose, units, route and frequency of administration. 

Order sets are a more complex form of plan representation in CPOE systems. Order sets are 

preconfigured groupings of order sentences for plans of short duration (hours to days) related to a 

particular medical problem (e.g. chest pain admission order set) or treatment protocol (e.g. CHOP 

chemotherapy order set). Order sets provide decision support for implementing clinical practice 
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guidelines and institutional policies [207]. Order sets typically group order sentences by type (e.g. lab 

order, medication order), and may have simple temporal constraints and conditional logic. Order sets 

serve as a starting point template that is further customized to account for variance in patient state. 

While order sets are short duration plans, they may be reused for subsequent episodes of care where 

orders are repeated. This is a typical implementation for many CPOE systems supporting recurrence (e.g. 

repeating cycles of chemotherapy protocols). Even though order sets provide a richer form for 

representing orders than order sentences, they have limited support for the representation of complex 

plans especially ones with longer duration. Moreover, once the order sentence instances of an order set 

are released into the transaction systems of a CIS, they generally lose their connection to the original 

order set template and to each other84. Again, this makes it difficult for downstream systems and 

healthcare professionals to understand the context of the orders that comprise a complex plan. Finally, 

the inability to reuse knowledge in order set templates makes knowledge maintenance a significant 

challenge in the face of a large number of existing order sets (e.g. 1200 standard of care order sets used 

in chemotherapy [208][209]). Likewise, validation of the generated order sets is also limited to verbal 

feedback from expert clinician users, increasing the risk of errors for edge cases. 

We resolved this dichotomy in CPML by allowing users to represent simplified order sets as orderables 

that provide the means for building bundles (i.e. sets) of order sentences. Orderables include bundles of 

procedures, medications, and lab tests (as seen on Figure 36). At the highest level, similarly to one found 

in the Medical Library, a grouping layer (e.g. LabBundleGroup) allows for the organization of built 

bundles into a taxonomy. Components of bundles, the order sentences are defined by creating a 

mapping to respective concepts in the medical library and extending them with identifiers (Vocabulary 

and ConceptID) from proprietary or standardized vocabularies (e.g. UMLS, SNOMED, FDB). The first 

mapping helps define the used concepts with the local ontology, the Medical Library, which could be 

used for example to find substitutes for an action. The purpose of the second one is to identify order 

sentences in the CPOE that are requested by STEEP. The same external vocabulary-based mapping is 

provided for order sets as well. This provides a flexible approach when integrating with various CISs, as it 

allows the highest level of action (or action group) available in the serving CPOE to be requested by 

implemented CIGs. 

                                                           
 

84
 See “black box” method in P2.3 point of “Open problems” section. 
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Figure 36 - Main concepts of the CPML’s Orderables (represented with MetaGME) 

Protocol modeling 

Protocols can be conceptualized as a coordination layer over medical activities. As such, the essential 

semantics of protocols is behavioral, while the essential semantics for medical knowledge was 

ontological. The connection between the coordination layer and medical knowledge layer is established 

by introducing the abstract concept of Activity in protocol models and providing language facilities for 

relating Activities with terms coming from Medical Library and Orderables. 

Protocol models are representations of treatment processes (called Processes). These processes are 

concurrent, asynchronous, and interact with each other via events. To capture the decision logic 

concisely, we organized processes in a hierarchical manner. Processes can listen to events happening 

around them and start running only if their triggering conditions are satisfied. Processes are coordinated 

with the help of events and related messages. The main concepts in CPML for protocol modeling are 

summarized in Figure 37 and in the following description. 



143 
 

 

Figure 37 - Example Protocol hierarchy 

 Protocol: Protocol is the top-level concept in protocol modeling. It includes a complex group of 

coordinated activities required for managing a health problem. Protocols are considered 

“manual”, as they only start their execution if a user explicitly selects them. 

 Process: Processes represent a coordinated group of activities used in Protocol models. 

Processes help decompose the treatment protocol and organize the treatment steps. A Process 

can be considered as a container including other protocols, other processes, events and 

activities. Processes are concurrent and asynchronous, and they can interact with each other via 

Events. For the sake of clarity, we require processes to either only contain other processes or 

protocol invocations (Intermediate Process), or to only contain Activities (Leaf Process). 

Processes are considered “automatic”, as their execution is only controlled by the EE. 

 Activity: Activities are the lowest-level components of a Protocol. They are the representation of 

what medical actions must be performed at a given time as part of the treatment. Activities 

include ordering lab bundles, medication bundles, and procedures. They can also include two 

other basic actions: Inquiries and Notifications. An Inquiry defines an explicit data request, for 

data usually not available in EMRs (e.g. symptoms and case severity), which will be presented to 

the clinicians in the form of a pop-up question. Notifications represent explicit message requests 

to systems other than the CPOE. 

Figure 38 visualizes the hierarchical structure formed by the Protocol, Process and Activity concepts for 

the Sepsis treatment protocol. The leaves of the tree are the medical Activities, the root of the tree is 

the Protocol and between them are the Processes that perform the overall coordination using the 

Coordination primitives described below (not shown in the figure). 
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Figure 38 - Sepsis treatment CIG component hierarchy in CMPL 

Explicit coordination primitives 

Modeling nondeterminism in treatment protocols is a highly desirable feature. It helps decrease the 

“recipe-style” appearance of the protocol recommendations and provides methods for adapting the 

treatment trajectory to unforeseen and unmodeled situations. 

Coordination primitives help in expressing the desired behavior, for both deterministic and 

nondeterministic cases. As opposed to implicit coordination (e.g. constraints expressed with the help of 

the Expression Language), explicit coordination primitives presented in this section, define rules that will 

determine the flow of the execution among executable components (Activities, Protocols and 

Processes). Explicit coordination primitives include: 

Layers

Protocol

Process

Lab Test

Medication

Procedure
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 Step: Step is a coordination primitive, captured as a connection that specifies the execution 

order (i.e. sequencing) of Activities within a Process. 

o Operator: Operators can be split to the following two groups: 

 Control flow operators: These operators used together with the Step 

connection and the executable components describe a TNM, which is essentially 

a workflow. We implemented the following three basic operators that proved to 

be sufficiently expressive for representing the sepsis guideline, however if 

needed, this list can be extended with minimal effort: 

 Branch: Branch implements parallel split, which is “the divergence of a 

branch into two or more parallel branches each of which execute 

concurrently”, as defined in [162]. 

 Fork: Fork implements exclusive choice, which is “the divergence of a 

branch into two or more branches such that when the incoming branch 

is enabled, the thread of control is immediately passed to precisely one 

of the outgoing branches based on a mechanism that can select one of 

the outgoing branches”, as defined in [162]. 

 Merge: Merge implements synchronization, which is “the convergence 

of two or more branches into a single subsequent branch such that the 

thread of control is passed to the subsequent branch when all input 

branches have been enabled.”, as defined in [162]. 

 Logical operators: The explicit logical operators we implemented in CPML are 

set operators ActicitySelectionSet and LayeredSelectionSet. These operators 

enable capturing complex choices by defining the admissible sets of treatment 

choices (i.e. solutions) using contained protocols, processes and activities in 

processes. In other words, solutions identify the acceptable permutations within 

the superset of contained executable components. For example, they can 

implement “pick at least two out of a predefined list of antibiotics”. If there are 

no logical operators defined in a Process, the default solution is the set 

containing all subcomponents. 



146 
 

 Activation: Activation is a coordination primitive, captured as a connection between events 

generated by executable components and Protocols or Processes. This association between 

events and executable components allow for an event-based coordination. 

Model management, support and configuration 

This category includes the following three subgroups: 

 Metadata: Metadata refers to meta information related to protocols and their building blocks. 

In the version of CPML discussed here, it only includes simple versioning. Later versions however 

were extended with capability to represent roles in the context of an organizational structure. 

Roles include actors participating in the plan creation process (e.g. author, reviewer), and in the 

plan execution process (e.g. nurse, attending, resident). 

 GUI Configuration: The STEEP GUI in most part is configured implicitly, which means that certain 

model concepts (and their execution) will determine what will be shown to the users. Figure 39 

illustrates how the top five Processes and a group of Activities is manifested in the GUI. On the 

other hand, with the help of the abstractions of GUI Configuration CPML provides dedicated 

constructs for explicitly controlling how certain components are represented on the STEEP GUI. 

They include elements such as ordering of the elements (Priorities), coloring options for graphed 

elements (normal and abnormal Ranges), and text-based descriptions regarding the use of 

certain components (Help and References that link to external sources). 
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Figure 39 - Model-based configuration of the STEEP GUI 

CPML metamodels - Structural semantics 

The second step in the design of CPML is the specification of the      (   ) domain for the modeling 

language, in other words, defining its structural semantics. In MIC there are two supported methods for 

defining structural semantics: 

 MetaGME-based metamodeling uses the MetaGME metamodeling language [210]. MetaGME 

includes a variant of UML class diagrams as type language and the Object Constraint Language 

(OCL) as constraint language. 

 Logic-based metamodeling uses the FORMULA (Formal Modeling Using Logic Programming and 

Analysis) [74,201] that used non-recursive Horn logic, for deciding well-formedness or mal-

formedness of model instances. In this method, MetaGME models are translated into formal 

metamodels. 

Since we intended to use the metaprogrammable components of the MIC tool suite (such as GME and 

UDM) we chose to use the MetaGME-based path. 

In this section, we discuss the metamodel of the CPML sublanguage designed for Protocol Modeling. 
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Relationship of Protocols, Processes and Activities 

As described above, the primary concepts used for coordinating medical activities in CPML are 

Protocols, Processes and Activities. The metamodel segments linking these concepts are shown in Figure 

40, Figure 41 and Figure 42. These figures contain many abstract85 elements, which help simplify 

language design and automatic model interpretation by allowing the organization of concrete 

components. 

 

Figure 40 - Protocol Modeling in CPML: Protocol, Process (represented with MetaGME) 

The metamodel in Figure 40 defines ProtocolLibrary as a container of Protocols. Protocols can be built 

up by a combination of references (i.e. pointers) to other Protocols, as well as Processes, Events, 

Activations and CoordinationOperators (i.e. control flow operators). Missing definition for the definition 

of Events and Activation connections are provided by Figure 41. As an example, it defines possible 

events for an activity as start, order and complete. 

                                                           
 

85
 Abstract components do not show up as available elements in the language. Typically, they are used for grouping concrete 

elements in the language definition that do. Abstract elements in MetaGME are represented with either italicized font, or 
with the ≪FCO  keyword. 
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Figure 41 - Protocol Modeling in CPML: Event, Activation (represented with MetaGME) 

Figure 42 describes Activities as Notifications, Inquiries, or references to Orderables, namely procedures 

(ProcedureRef), medication bundles (MedBundleRef), or laboratory test bundles (LabBundleRef). 

Furthermore, it also explains how solutions can be constructed out of Activities using 

ActivitySelectionSets and LayeredSelectionSets. 

 

Figure 42 - Protocol Modeling in CPML: Activity, Step, Selection Set (represented with MetaGME) 

In order to further specify the well-formedness rules defined by the previous diagrams, we extend the 

language definitions with OCL constraints. By tying these constraints to various events monitored by 

GME, models can be checked for correctness automatically. Three short examples are provided below: 
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Example 1 

This constraint, associated with connections, restricts users from creating connections, where the 

source and the destination are the same (i.e. only connections between two different items are 

allowed): 

let src = self.connectionPoint("src").target() in 

let dst = self.connectionPoint("dst").target() in 

src <> dst 

Example 2 

Language definitions often contain constructs that are references to objects, which allows users to 

creating a conceptual link to some already defined element in the model (e.g. Orderables are references 

to elements of the Medical Library). GME normally allows the creation of references in the model that 

do not point to anything (i.e. empty references). We, however, wanted users to be able to check for 

these empty references, as in CPML those are considered errors. This can be done with the help of the 

following code: 

let RefSet = self.referenceParts() in 

let NotEmptyRefSet = RefSet->notEmpty() in 

if NotEmptyRefSet then RefSet->forAll( not refersTo().isNull() ) else true 

endif 

Example 3 

In some cases, we require references to only point to “local” constructs, which means that the referrer 

and the referee has to be in the same container object: 

not self.refersTo().isNull() implies self.refersTo().parent() = self.parent() 

Coordination primitives 

In summary, the coordination of actions (Activities) in CPML is performed by layers of Processes inside 

of Protocols. These layers help in identifying and decomposing sub-problems. Once the proper 

decomposition is achieved, selection sets defined over the components of each Process help identify 

acceptable solutions. The solutions at the lowest level are TNMs built using the Step connection and the 

control flow operators that serialize the set of Activities contained in the Process. Event-based 

coordination of Processes is achieved by connecting monitored triggering events (Events) and Processes 

(or ProtocolRefs) with the Activation connection. 
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Review of a model example 

According to the well-formedness rules defined by the metamodel, we present a simple exert from the 

sepsis CIG (see Figure 43). 

 

Figure 43 - Exert from the sepsis CIG (in CPML) 

The example in Figure 43 explains how our domain experts implemented the initially86 used MUST 

protocols (seen in Figure 33). In the figure, GME is configured with CPML. The main window, called 

Protocols shows one implemented Protocol, the Sepsis Protocol, which contains five processes, namely 

Diagnostics, Insert Central Line, Optimize MAP, Optimize CVP and Low ScVO2 Rx. These Processes are 

orchestrated with the help activations, which have no direct control over the execution order of the 

processes; it just constrains the order by specifying when the components start to listen. The execution 

                                                           
 

86
 While this is a good illustrative example, since the initial modeling, the VUMC sepsis CIG has changed in order to 

accommodate new requirements. 
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order is not determined until runtime, when STEEP can evaluate the entry conditions for the processes. 

The resulting execution behavior is as follows: 

1. A user initiates the sepsis protocol. 

2. Out of all the contained processes, all initially actives, in this case only the Diagnostics, will 

become active. Because the skip condition of the Diagnostics process is not defined, it will 

evaluate its entry condition, which being empty, will allow the processes immediate execution. 

3. The contents of Diagnostics, the three laboratory tests displayed on the figure, are in no 

particular order (i.e. no dependencies exist among them). This and the fact that there are no 

solution sets are included means that the set of all three tests define the only solution for the 

process. Accordingly, as the initial (and only) step, all of them will be initiated simultaneously 

and, as a result, will be recommended to the treating physician. 

4. Assuming the physician accepts the recommendations and submits the orders to the CPOE, the 

Diagnostics process will complete its execution, and activate the next process, the central line 

insertion. 

5. After the completion of the Insert Central Line process, two independent processes, the one for 

mean arterial pressure and the one for central venous pressure optimization become active. 

They start executing if their respective thresholds (defined by the entry condition) are met (the 

example shows bounding values for CVP). Otherwise processes are skipped. 

6. Finally, after both problems have been addressed (expressed with the synchronizing merge), the 

Low ScVO2 Rx process is activated. 

7. If all processes complete, the sepsis protocol finishes its execution. 
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CHAPTER VII.  

 

DEFINING THE BEHAVIORAL SEMANTICS FOR CPML 

The execution of CPML models determines the behavior of STEEP. The specification of the CPML 

language via its structural semantics, as described in the previous chapter, does not define how CPML 

models are translated into behavior. This is clearly an important missing point, since treatment 

management is manifested as a behavior: a coordinated sequence of actions and interactions. 

Understanding if the behavioral traces defined by the CPML models are safe, do not lead to deadlocks or 

nondeterministic behaviors, and satisfy invariants such as deconfliction of mutually exclusive treatments 

are very important. Answers cannot be found to these questions without understanding how CPML is 

translated into behavior. 

As shown by the STEEP architecture (Figure 30), the STEEP Protocol Execution Engine interprets the 

CPML models and implements the model-to-behavior translation in the implemented system. While the 

source code of the engine provides a sufficient definition of the behavioral semantics, using this 

description for understanding and analyzing behavior is suboptimal. This is because the execution 

environment is a complex Java and web code that implements all the operationally required features of 

STEEP, including user interfaces, resource management, exception handling, server management and 

communication protocols with the connected systems. All of these activities result in a significant 

amount of “accidental complexities” that go well beyond the complexity of behaviors of the treatment 

protocol. What is needed is an abstract specification of the CPML behavioral semantics that is analyzable 

and captures the model-to-behavior translation without the accidental complexities of the 

implementation. The scientific challenge here is the development of a method that makes the 

specification of the behavioral semantics of CPML explicit and usable for analysis. Our selected approach 

is semantic anchoring, which defines behavioral semantics by specifying the transformation between 

CPML and a target language with a well-defined behavioral semantics. 

In this chapter, we first discuss the concept of the transformational specification of semantics. We then 

describe a template-based specification of model transformations and demonstrate the semantic 

anchoring of CPML to the Stateflow modeling language. 
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Specification of behavioral semantics 

As described Chapter VI, CPML is defined as a 4-tuple, comprised of its domain, and a set of 

interpretations: 

  (       (⟦ ⟧ ) ∈ ) 

⟦ ⟧          

Up to this point, we have discussed the conceptualization yielding specification for   and the 

specification of the CPML domain      (   ) (restricting our attention to the protocol modeling 

sublanguage). The last step in the modeling language development is the specification of behavior that 

can be described by the language constructs: specification of the behavioral semantics of CPML. 

As shown in the functional and implementation architecture of STEEP (Figure 29 and Figure 30), the 

system operates in the context of the VUMC’s CIS, continuously receives live data streams from patients, 

interacts with physicians by presenting care decision alternatives and receiving decisions, sends out 

instructions to execute medical activities (orderables) and receives status reports about their execution 

and results. All of these behaviors are guided by the CPML models that are continuously interpreted by 

the STEEP Execution Engine. 

It is not surprising that, in light of this complexity, the semantics of CPML could be defined on many 

different levels of abstractions: 

1. Execution Semantics: The specification should capture in full detail all behavioral details that 

the STEEP EE performs under the control of CPML models. The depth of these specifications may 

be sufficient for generating a full implementation for the EE on an implementation platform. 

2. Protocol Behavioral Semantics: The specification should be rich enough to understand the 

abstract treatment processes and the semantics of coordinating medical activities. However, 

many platform related details (regarding details of messaging protocols, DB persistency 

interactions, etc.) are abstracted out. 

3. Mathematical Behavioral Semantics: The goal of the specification is to map the modeling 

language into a mathematical domain that is rich enough to represent all behavioral categories 

the system can exhibit. Examples for such mathematical domains are Abstract State Machines 

[211] and Timed Automata [212], if the semantics is defined operationally, and Trace Algebra 

[213] and Abstract Algebra [214], if the semantics is defined denotationally. 
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A pragmatic approach 

Decision about the level of targeted behavioral abstraction is determined by the goal of the semantic 

specification. Our goal in this thesis has been practical: we define behavioral semantics for the protocol 

modeling sublanguage with the purpose of establishing a bridge toward existing tools that can be used 

in the validation and verification of coordination mechanism modeled in CPML. The selected tool is 

Mathwork’s Matlab Simulink Stateflow87 (SF) tool suite [216], because it includes a well-known modeling 

language with ample of publications on its formal behavioral semantics. It incorporates a well-developed 

and widely used simulator that can be effectively used for protocol validation, and it also includes a 

verification tool, Simulink Design Verifier (SLDV), which allows us to make steps toward formal 

verification of protocol properties. 

More formally, our research goal is the development of an interpretation for CPML that maps protocol 

models in the CPML domain to Stateflow models in the SF domain: 

⟦ ⟧        
     

 

The mapping will be defined and implemented as a model transformation, the semantics of the CPML 

protocol modeling sublanguage is defined by the transformation and the semantics of SF. 

In the remaining part of the section, we discuss the design and implementation of the model 

transformation, present examples for its use and summarize the overall semantics specifications for 

CPML. 

Template-based specification of behavioral semantics 

As discussed earlier, the protocol models define a coordination layer over medical activities. The primary 

active component types used in the modeling language are: 

1. Protocol 

2. Process 

3. Activities 

                                                           
 

87
 Matlab Simulink Stateflow is an implementation of statecharts [215], which is an extension of finite state machines with 

hierarchy, concurrency and broadcasting. Stateflow further extends statecharts (with for example complex types). 
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These modeling entities exist concurrently, have internal states and interact with each other using 

coordination primitives. To implement such behavior, we facilitate a template-based specification for 

the transformation between CPML and SF models. The basic idea is shown in Figure 44, where A) the 

structure of a general CIG represented in CPML (from Figure 37) serves as a configuration for the 

transformation that uses predefined behavioral templates for each executable construct. The result of 

this transformation is B) a generated behavioral model that is defined using the constructs of the target 

domain. 

 

Figure 44 - Generation of SF models from CPML 

Because our target domain is SF, Protocols, Processes and Activities are mapped into a hierarchically 

structured concurrent state machine structure. The state machines communicate via directed event 

broadcast messages (this restriction was introduced due to interoperability issues with the SLDV). The 

state transitions in the state machines are governed by complex guard conditions and triggering events 

that are generated by external and internal events. 

Behavioral templates 

The individual state machines are created as instances of the three state machine templates, defined for 

Protocols, Processes and Activities respectively. The complete documentation of the state machine 

templates are not part of this thesis, here we explain only the behavior of the Activity template. 
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Behavior specification of the Activity template 

Figure 45 shows the states of the behavioral template for CPML’s Activity88. 

 

Figure 45 - Behavioral template of an Activity (defined in MATLAB Stateflow) 

                                                           
 

88
 This is the original version of the Activity template. There were other versions created in order to comply with the 

restrictions imposed by SLDV; however, those are not as intuitive as this one. 
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The three main parallel states of an Activity are: 

 Life: This state represents the actions the Activity will perform during its existence. The first step 

is a CIG initialization phase (Initialization state), which allows the users to start up the CIG with 

an external event (UsrIni_Ev), which propagates down in the containment hierarchy (and arrives 

at the Activity as Ini_Ev_PaId). Afterwards, as part of the Operation state, the Activity will start 

its life in the Idle state, as part of the Inactive state. If it recognizes that its parent is running 

(indicated by the Run_Ev_PaId event), it will transition to the WaitingTurn state, otherwise at 

the end of the protocol it will transition to the Finished/NeverActivated state. From being in 

WaitingTurn the Activity will start running (Running) and get recommend to the user 

(Recommended) if it is either a starting point of a workflow (i.e. there are no Step connections 

pointing to it: StrtPoi_Co_EnId), or if it receives an explicit message from one of its siblings that 

precedes it in the workflow to do so (Fin_Ev_SiId). Users can defer decision (Deferred state) for 

a certain time (DfrTO_NumEnId) upon receiving a recommendation. While a decline 

(UrsDcl_Ev_EnId) puts an Activity into the Declined final state, a confirmation 

(UsrCfrm_Ev_EnId) will lead to adding the recommendation to a “shopping cart”. From here 

users can order the action (UsrOrd_Ev_EnId), which enables a handshake with the CPOE system 

(CisOrdAck_Ev_EnId). This original template contains numerous timeouts for ending the 

execution, including one for monitoring wait time for starting execution in WaitingTurn 

(MonTO_Num_EnId), for decision from the users upon a recommendation 

(NoDecTO_Num_EnId), for response from the CPOE upon order submission 

(CisOrdAckTO_Num_EnId), and for the activity to finish execution (RunTO_Num_EnId). 

 Two monitoring states: These states run in parallel to the Life state to be able to react to events 

and messages independently from the state of Life: 

o ParentFinReqTracking: The goal of this orthogonal state is to monitor the Activity’s 

parent89. This is because when parents find a solution to the problem they are trying to 

solve, they will send out a Try2Fin_Ev_PaId event to indicate that they are trying to 

finish their execution. This message will inform all of the non-executing children that 

they are not needed anymore (i.e. not to start their execution). 

                                                           
 

89
 The words, “parent” and “child”, refer to the relationship of concepts in the containment hierarchy. 
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o OrderCompletionTracking is a monitoring state listening to external messages arriving 

from the CPOE system. With the help of this state, an Activity will be able to track 

whether the medical action it is supposed to recommend has been successfully 

performed within an acceptable time period90 or not (CisOrdCplTO_Num_EnId). 

Template instantiation 

At the time of template instantiation, a copy of the template is created. This is followed by the 

specialization of the template. During specialization, after a simple renaming of the template, both the 

internal behavior, and the interaction with the environment is set up according to the specification 

defined by the CIG model. 

Our templates were designed to be static in terms of structure91, which means that there are no states 

and transitions added to, or removed from them at generation time. Instead, their specialization 

involves the use of the following techniques: 

 string replacement: certain (text-based) components of the template are altered 

o Example 1: the name of the main state, “Activity_EnId”, is replaced with 

“Ac_<Name>_<ID>”, where “<Name>” will be the name of the Activity in the CPML 

model, and the “<ID>” will be a unique, hierarchical id that is generated as part of the 

model transformation process) 

o Example 2: replacement of the triggering event placeholder “Fin_Ev_SiId” with the 

particular event’s id that the Activity needs to monitor before entering the “Running” 

state 

o Example 3: replacement of all occurrences of “EnId” and “PaId” to the id of the entity 

and its parent’s id respectively 

                                                           
 

90
 This is often referred to as validity window, which indicates the time range in which repeating the medical action is not 

needed, or allowed. 

91
 The static design was possible with a simplification of the original semantic specification: Processes, as opposed to tracking 

many concurrent possible defined solutions, only track one trivial solution, which is the set of all included components. This 
limitation could be addressed by generating and embedding multiple solution tracking states instead of only one. 
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 variable modification: variables can be created, removed, or modified 

o Example 4: moving variables that are defined by the template, but implement 

information exchange between the environment (represented by Simulink) and the CIG 

logic (represented by SF), or are intended to be globally observable (by all states of the 

SF) from the level of the template’s main state to the level of the main SF model 

 value replacement: constants and variables are initialized 

o Example 5: the time out value for being in the “Deferred” state, called 

“DefTO_Num_EnId”, is set to 4 hours 

Transformation process 

To enable the template-based specification of behavioral semantics we implemented an analysis 

software tool chain as part of STEEP. This tool chain, which enables CIG analysis (as described in the next 

chapter), performs a transformation of the CIG models using the templates (described in the previous 

section), and an algorithm defined by Algorithm 1. 

Algorithm 1 - Simplified template-based model transformation process 

1: for all Protocols (contained in the model file) do 

2: record data from the models as template attributes 

3: traverse elements of the Medical Library 

4: for all Vitals do record parameters (as template attributes) 

5: for all Labs do record parameters (as template attributes) 

6: traverse Protocol 

7: for all contained Processes do 

8: traverse Process contents 

9: if contains Processes for all Processes do 

10: traverse Process contents 

11: else ( if contains Activities ) for all Activities do 

12: record Activity parameters (as template attributes) 
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13: record Process parameters (as template attributes) 

14: record Protocol parameters (as template attributes) 

15: invoke Matlab model generation string template group with attributes recorded at step 

2: 

16: replace placeholders in Protocol template with appropriate attribute values 

17: for all Protocol inputs (i.e. Labs and Vitals) do replace placeholders in appropriate 

templates 

18: for all Protocol components (i.e. Processes and Activities) do replace placeholders in 

appropriate templates 

19: run Matlab model generation script (created in step 15:) 

20: create and initialize Matlab Simulink model (to act as the environment) 

21: create and initialize Matlab Stateflow model (to act as the protocol) 

22: add an instance of the Protocol behavioral template to the SF model and configure its 

parameters 

23: for all Vitals do create a data input channel for the SF model (i.e. interface between 

SF and Simulink) 

24: for all Labs do create a data input channel for the SF model (i.e. interface between SF 

and Simulink) 

25: for all Processes do add an instance of the Process behavioral template to the SF 

model and configure its parameters 

26: for all Activities do add an instance of the Activity behavioral template to the SF 

model and configure its parameters 

This algorithm is a simplified version of the one described in “Appendix C” (see Algorithm 2). 

Analysis tool chain 

The previously described transformation process is implemented by the analysis tool chain, which 

translates CPML-based CIGs to Matlab Simulink/Stateflow to enable validation by simulation and 

verification through formal analysis. The layers and main components of the tool chain are shown in 
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Figure 46, which provides an implementation oriented view of the software components used in the 

model transformation process. 

 

Figure 46 - CPML to Matlab Simulink/Stateflow transformation tool 

The top layer is the meta layer, which shows the components used to design the CPML. The language 

includes a protocol modeling sublanguage for CIG design, an information modeling sublanguage for 

semantic integration of STEEP into the host CIS environment and language components for the model-
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based, automated configuration of the Patient Management Console. The language components include 

an Expression Language as well, but we have not emphasized its details in the language specifications. 

The CPML specification includes the specification of its structural semantics via metamodeling and the 

specification of its behavioral semantics via developing a translator to the SF language. CPML Models for 

STEEP consist of protocol models, integration models and expressions defining various decision 

conditions in the coordination process over medical activities. 

The tool chain includes a suite of generators (Generator layer in Figure 46) that translate CPML models 

into other models and artifacts. As described by the algorithm presented in “Appendix C”, the first 

generator invoked is the one designed to generate the (XML) input files for the STEEP Execution Engine 

from the CPML models in GME. This is followed by two generators that use the XML file as input. The 

first one uses Graphviz [217] to generate a directed graph representation of protocol models for 

documentation purposes (seen in Figure 38). The second one generates a MATLAB .m script that, when 

invoked in Matlab, will create the executable Simulink/Stateflow models for simulation and verification 

purposes. This generator would ideally also be complemented by an Expression Language Parser (Figure 

46), one similar to the parser the EE uses to translate expressions used in CPML models to Java. The goal 

of this future component, which is not yet implemented, is to translate CPML expressions directly to 

Matlab guard conditions, which is currently done manually. These generators are combined into one 

application written in C# (see Figure 47). 
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Figure 47 - Screenshot of the Matlab script generator tool 

Example 

In the previous chapter, with the help of Figure 39, we showed how the components of the sepsis CIG 

configure the STEEP GUI. In this section, we use Figure 48 and Figure 49 to present a similar process: the 

transformation of the sepsis CIG into Matlab behavioral models. 
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Figure 48 - Generation of SF models from CPML (Sepsis) 

Figure 48 is a follow-up to Figure 44. It shows the model-based generation of SF models for the specific 

example of the sepsis protocol. As a result, there is one template instance created for each executable 

component (1 Protocol, 44 Processes and 77 Activities). More detail on the resulting SF model is 

provided by the next diagram. 

While Figure 48 only shows the protocol logic implemented in SF, Figure 49 shows the encapsulating 

Simulink model as well. In Figure 49, the main model can be seen in the upper part of the diagram. All of 

its components are generated (including the layout), except the “External Events from File” element, 

which is a link to an Excel file that contains sample patient data for simulation. The SF implementation of 

the CIG logic is contained by “Protocol_SF”. Its elements are the (previously mentioned) configured SF 

template instances that can be seen in the callout bubble92 on the bottom of the figure, where each sub-

charted state encapsulates the appropriate template for a given element of the Protocol-Process-

Activity containment hierarchy. Even though it is not visible in this diagram, each state is configured to 

exchange information only with the appropriate states in SF and components of the environment. 

                                                           
 

92
 The callout illustration and the colored bands with labels (Protocol, Process and Activity) are not part of the Matlab model. 
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Figure 49 - Generated sepsis CIG in Matlab 

The SF chart has both data and event inputs. Data inputs are created for each data item that the 

protocol relies on to make a decision. In the case of the sepsis protocol, there are 34 numeric data 

channels, which include, for example, respiratory rate (RR), weigh and central venous O2 saturation 

(ScvO2). In this particular instance, the generator was configured to create a model for validation of the 

CIG using real-time user interaction together with sample patient data recorded a priori. Consequently, 

the generated simulation model, which otherwise includes only components defined by the template 
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library93, requires users to have an input file manually added to it94. The interaction between users and 

the simulation is facilitated by events. Events are triggered by the red switches (labeled as “UsrStrt_Ev”, 

“UsrCfrm_Ev_EnId”, etc.) of the user controlled abstract GUI elements for the Protocol and the Activities 

(“UI_Protocol”, “UI_Activity_1_1_1_1”), which can be “pushed” during simulation to indicate a user 

action (to start the protocol, to confirm a recommended action, etc.). The last component on the 

diagram is the “Real_Time_Pacer”, which allows the simulation time in Matlab to be mapped to relative 

of real time. In this case, the simulation is sped up to 60 times real time, which results in minutes being 

mapped to seconds. 

The other option for generation is the fully sample-based execution, where the simulation does not run 

relative to real-time. Instead, both patient data and clinician responses come from a sample scenario 

file. This is not illustrated here. 

                                                           
 

93
 The template library also defines the format for the input file and the generator creates an empty table with the appropriate 

header in an Excel file, in order to be able to be connected and provide input during simulation. 

94
 By connecting the input to the SF chart through the “Data_DEMUX” component. 



168 
 

CHAPTER VIII.  

 

VALIDATION AND VERIFICATION 

Development of STEEP was a lengthy and involved process including a large team of physicians, 

informatics personnel, HCI designers and computer scientists. One of the most difficult iterative 

development process was the validation of the CPML modeling language and models via walkthroughs, 

discussions, tests and later, simulations. Verification of well-formedness properties was provided by the 

explicit specification of structural semantics of CPML and the built-in constraint checking mechanism of 

the GME metaprogrammable modeling tool. The need for a simulation-based validation gradually 

emerged in the project when it was clear that the complexity mandates the use of sophisticated tools. 

The first validation experiments were completed in a dedicated simulation environment of VUMC and 

provided early justification for the clinical use of STEEP. 

The need for automated verification came with the recognition that the models and the implied 

behaviors will be too complex for test-based verification. Our approach to automated verification was to 

anchor the semantics of CPML to Stateflow (see Chapter VII), a modeling language with formally defined 

semantics and tools supporting automated verifications of state invariants. Then, by relying on a 

verification toolbox for Stateflow, we showed the feasibility of verifying state invariants in CPML models. 

In this Chapter, we provide an overview of the results regarding the established validation and 

verification methods and opportunities. Our goal has not included the development of a complete tool-

based solution, or completing the validation and formal verification of the current release of the STEEP 

models. As it will be shown, the complexity of a real-life system is quite high and significant further 

research is needed to gain a scalable solution. 

Validation through simulation 

Clinician walkthroughs 

Protocol validation tests whether the generated decision-support guidance corresponds to clinicians’ 

expectations. The first step is to model walkthroughs with clinicians. The modeling language’s 

expressiveness is helpful in this process and fully confirms the importance of using DSMLs that are highly 

customized to the clinical environment. The walkthroughs were performed by the same clinicians who 
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actively participated in CPML’s iterative development (all together four physicians, and one nurse). Out 

of our regular hour-long weekly meetings, which in average included two physicians, we spent around 

one third of the time with this type of discussion in the first three years of development. In our 

experience with many different domains, domain expert involvement in DSML development is an 

absolute necessity. 

During these walkthrough discussions, many components of the language evolved. The first, and 

probably the greatest, change was the decision to move from a workflow-based representation of the 

CIGs to a process-based one. Other major changes in terms of language constructs included the creation 

of solution sets, to create a more sophisticated selection layer over the components of processes, 

because initially, acceptable solutions only existed as textual recommendations, thus were not precisely 

enforced. Another major change was the decision to create purely diagnostic processes that allowed 

modelers to separate a patient condition-based diagnosis step from the associated recommendations. 

This separation caused clinicians to first manually confirm the diagnosis, before any automatic 

recommendations were given by the system. 

Last, but not least, one of the most difficult problems that these walkthroughs allowed us to solve, was 

the discussion on how models affected the behavior of the GUI. We spent countless hours trying to 

figure out what were the necessary constructs we needed to include in the language to allow our 

experts to configure the user interface behavior without getting lost in the details. 

Simulation environment 

The second validation step is simulation-based studies. The STEEP system architecture supports the 

generation of simulated execution through a supervisor console. The console helps the supervisor 

control the environment, including the simulated patient’s response to treatment and the behaviors of 

other simulated players, such as physicians ordering drugs and procedures, nurses administering drugs, 

and laboratories delivering lab results. Sample data for simulated execution of protocols are stored in 

XML files that the execution engine accesses and the TMC displays just as they would with real data. 

The simulation must be conducted in a realistic environment, where ICU personnel can face treatment 

management situations similar to real life and can interact with the system to make decisions. The 

validation process must be closely monitored and the results precisely evaluated. At one point in the 

development, we relied for this evaluation on the infrastructure provided by the Simulation Center of 
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the Center for Experiential Learning and Assessment at VUMC [218]. The Simulation Center not only 

helped validate the protocol models in terms of proper structuring (e.g. separation of actions into 

processes related to diagnosis, treatment and prophylaxis) and sort out timing issues (e.g. fluid 

challenge and early goal-directed therapy processes can happen at the same time), but also provided 

valuable training to the medical personnel in terms of how to operate the system when it was time for 

them to use it on actual patients after the deployment of the tool into the ICUs. In later phases of the 

project, but before the completion of the Matlab-based simulation environment, we however decided 

to only use the production version of the tool for simulation for the sake of simplicity, which did not 

have the ability to speed up or slow down the simulation time. 

While the development of the simulation environment required many resources, it had a tremendous 

value when our team discovered logical flaws in the original sepsis CIG. The most obvious one is 

illustrated by the workflow diagram of Figure 34, where if “no” was given to the first and “yes” to the 

second question, then no antibiotic would be given to the patient, which is not the right 

recommendation. 

Verification through model checking 

Potential benefits and examples 

There are many potential benefits of using formal verification in CIG development. However, successful 

verification is greatly dependent on the problem definition, including the problem space and the 

property being analyzed, and the technique used (e.g. model checking, theorem proving, runtime 

verification, and statistical model checking) 

We gathered a categorized set of examples where facilitating verification could greatly improve CIG-

based CDSS (see Table 10): 
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Table 10 - CIG-based CDSS verification opportunities 

Target of analysis Description Example 

CIG language 
Provide an analysis of the language in terms 
of soundness 

 Correctness of structural semantics: Does the model comply with the 

structural requirements defined by the language? 

 Compare structural and execution semantics: Is there a possibility to 

create models, which do not make sense (i.e. are not executable)? 

 Correctness of execution semantics: e.g. evaluate the inter-

hierarchical information exchange of concepts in CPML (Protocol-

Process, Process-Process, Process-Activity) 

 Analyze expressivity: e.g. overlap and interaction of the Expression 

Language and Processes in CPML 

Implementations 
of the EE 

Provide an analysis of various execution 
semantic implementations 

 Compare (Java-based) real-life and (Matlab-based) simulation 

environments 

CIG models 
Provide an analysis of CIG implementations 
against execution-specific requirements 

 General non-functional properties: e.g. deadlock freedom, 

determinism, division by zero, integer overflow 

 CIG language-specific properties: e.g. in CPML 

o A defined problem should always be solved 

o All solutions should be considered 

o At a given time only non-interacting solutions should be running 

o At a given time there should be at least one solution running 

o Never finish in "Complete" (i.e. never stop treatment with claiming 

success) if patient parameters are out of the specified range 

CIG models 
Provide an analysis of CIG implementations 
against domain-specific requirements 

 Dosing: e.g. no medication order should allow to surpass the 

maximum permissible dose per administration threshold 

 Negative outcomes: e.g. hypotension should not be explicitly 

allowed, which means that no process monitoring diastolic blood 

pressure should allow a minimum threshold to be set lower than 60 

mm Hg 

CIG models 
Provide an analysis of CIG implementations 
against guideline-specific requirements 

 Sepsis protocol requirement examples: 

o Lab test should happen before antibiotics 

o There should be at least 2 different antibiotics ordered 

o MAP issues should always be addressed 

o Prophylaxis should always happen 
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CIG models 

Provide an analysis of CIG implementations 
against a set of real-life treatment scenarios 
to gain knowledge on the quality of 
implemented CIGs 

 Figuring out how good is the sepsis treatment requires 

o many actual test cases (that include the execution trace of the 

treatment steps) to be compared with the recommendations of the 

CIG (i.e. the "ideal treatment") to the same patient input 

o alternatively, working patient models (i.e. representation of how a 

patient reacts to a given input) could be feeding data to the system 

to see if the CIG could sufficiently treat the patient, or not 

Our approach 

The benefit of using DSMLs is that the domain models can be formally verified against established 

criteria. This is a significant step forward. In traditional approaches, where the system is manually 

coded, the model is not explicit and cannot be independently verified. Our models support verification 

on three levels. 

The first level is static model verification, which the GME provides. Metamodels include well-

formedness rules that separate syntactically correct models from incorrect ones. The constraints are 

expressed using OCL. During modeling, GME enforces these well-formedness rules. In CPML, the 

constraints include clinical limits for parameters as well as more sophisticated rules that would be 

difficult to check without automated verification (see examples in “Relationship of Protocols, Processes 

and Activities” section in Chapter VI). 

The next level is verification of dynamic properties at design time. The execution engine transforms 

models into behaviors at runtime. In fact, protocols are instantiated into a complex, multithreaded 

program that interacts with ICU personnel, patient data, and events. Using well-defined, clean execution 

semantics (such as CSP) is crucial for verifiability of the models against a set of predefined behavioral 

properties such as determinacy, livelock, and deadlock. Concurrently, as previously described, we have 

developed a model translator to map the protocol models into an intermediate executable model using 

Matlab Simulink/Stateflow. The Stateflow models can drive a number of verification tools, such as 

model checkers, simulators, and reachability analysis tools. Our examples of how we use these tools in 

implementing a dynamic verification of the behavioral properties of CIGs are described later in this 

chapter. 

At the final level, critical actions that are performed during the treatment need to be checked at 

runtime. Security and privacy policies determine access rights to data published through the TMC and to 
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the invocation of actions, such as initiating treatment processes and ordering medications. In the 

current implementation, we rely on general ICU access-control policies, but we intend to make this 

customizable in later versions. Decisions present in the protocol let healthcare professionals order 

various actions during treatment that must be not only logged but also matched against a set of legal 

regulations and the hospital’s own policies. Systems interfaced to the execution engine perform several 

of these checks; for example, the CPOE system checks all medication-related actions against a large suite 

of rules that include dosing and timing constraints. 

Tools 

Simulink Design Verifier 

For the verification of behavioral properties of CIGs, we chose Matlab SLDV because of its capability to 

analyze our generated SF models with only moderate changes to them. SLDV uses formal methods, 

provided by the Prover proof engine [219], to detect hard-to-find design errors in models without 

requiring an exhaustive testing. Detected design errors include dead logic (i.e. parts of the SF model 

considered unreachable), integer overflow, division by zero, and violations of design properties and 

assertions. After detection, erroneous blocks in the diagram are highlighted and SLDV calculates signal-

range boundaries and generates a test vector (i.e. an example) that reproduces the error in simulation 

[220]. These examples can be analyzed with the help of a “test harness” generated by another toolbox 

SLDV relies on, called Simulink Verification and Validation [221]. 

Alternative methods 

We recognize that there are many alternative approaches we could have taken for the formal analysis of 

CIGs. As our primary goal was to facilitate the SF models already generated for simulation, we 

predominantly focused on using existing Stateflow/statechart analysis methods. Besides Matlab SLDV, 

the existing tools we have considered included HiVy [222], which translates SF models (with some 

restrictions) to the input language of the Spin model checker, HyLink [223], which transforms certain 

classes of SF models to UPPAAL and HyTech for verification, and Polyglot [224], which translates SF 

models and temporal properties specified with a pattern-based system [225] to Java in order to perform 

analysis with the help of Java Pathfinder / Symbolic Pathfinder. 
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Additionally, we have also considered the use of a simpler (i.e. less expressive) MoC as the basis for 

expressing the behavioral semantics of CPML. Such solution could have the added benefit of providing 

better analyzability. As an example, we have experimented with the creation of timed automata-based 

templates for the generation of timed automata-based behavioral models, which would have enabled 

the analysis of the behavioral semantics with the help of UPPAAL. 

However, the problem with timed automata is spatial complexity. In practice, very large models [226], a 

combination of states, invariants, guards (conditions + clocks) and variable ranges, often require large 

amounts of memory, which during execution first results in a lot of page faults and in extreme cases, the 

system will run out of memory. Based on previous research experience [227–229], we determined that 

our models contained too many time-related properties for UPPAAL to handle. Furthermore, the lack of 

hierarchy made the number of the behavioral models grow exponentially. 

Verified examples 

For testing purposes, we constructed a simple CIG using a small subset of the original sepsis CIG (Figure 

48). The resulting simplified sepsis CIG can be seen on Figure 50. It contains only one Process, which has 

two Activities. 

 

Figure 50 - Generation of SF models from CPML (Simplified sepsis) 
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In the following subsections, we show five examples, in which various invariants were tested against this 

simplified model. The creation and the analysis of each example were performed using the following 

steps: 

1. If required by the example, alter the behavioral templates (e.g. UI_Activity, Protocol state, etc.) 

2. Invoke the generator of the analysis tool chain to get the Matlab model 

3. Manually extend the model 

a. Create an SLDV block implementing the property against which the model will be checked 

b. Add data and events required by the analyzer (SLDV block) as outputs from the SF chart 

c. Connect SF outputs to SLDV block 

4. Run SLDV 

5. Confirm results 

Example 1 

Figure 51 shows the contents of the first example (SP3_20120316_1706_2_A.mdl). In order to get rid of 

potential variations caused by human interaction (e.g. start of the protocol, confirming the treatment), 

in the following examples the Protocol and the Action controllers (UI_Protocol and UI_Activity) are 

replaced. The current example is configured so that the Protocol will start automatically at a time 

specified by a step function (see the upper left part of the figure). Similarly, Actions are confirmed (i.e. 

started) at a fixed time set to be after the time of the start of the Protocol (see the lower left part of the 

figure). The later step function, extended with appropriate delays (still acting as a user), will also order 

the medication, then (acting as the CPOE system) will acknowledge and finally confirm the completion of 

the Activity. 
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Figure 51 - Generated functional models in MATLAB (Example 1 and Example 2) 

The property to be verified is expressed by the SLDV block (in the right lower part of the figure). With 

the help of a signal detector, a comparator and an implication, the property (“P”) defines a Boolean 

formula, which will only be true if, following the start of the Protocol (signaled through “In1”), after a 

fixed amount of time (12 steps) the Process completes (signaled with a value of 2 through “In2”). With 

the above-mentioned assumptions, the property can be expressed with the help of linear temporal logic 

(LTL) in the following way: 

    (       (     )), where   (    )    ( (   (    )))⏟            
 

 

Symbols       denote the property, all future and the following step respectively. By replacing the two 

input parameters (In1 and In2), this equation can be translated to be a function of the user triggering the 

start of the protocol (            emitted by the Step function of the UI_Protocol) and the completion 

condition of the main process (      ): 

    (               (      )) 

If we consider the assumptions encapsulated by the UI_Protocol and the two UI_Activitys as part of the 

definition, the expression will change to the following: 
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These expressions state that once the Protocol is started (permitted once per simulation) and are 

followed by the Activities with an appropriate delay the original   property will hold. 

Using an above than average laptop computer95, SLDV proved this objective to be valid in approximately 

37 hours96. We found this result to be below our expectations, as it showed that using the same 

templates were not going to scale for larger models. 

Example 2 

We suspected that some of performance degradation in Example 1 was caused by the fact that the 

models were designed to be “livelock proof”, in the sense that Activities and Processes would always 

reach a final (i.e. halting) state after a preset amount of time. This was achieved with the use of various 

timeouts (e.g. monitoring, running timeout). To evaluate our theory we created the next example 

(SP3_20120316_1706_2_B_noTO.mdl), which used the templates from Example 1 without the timeout 

transitions from the inside of the Active states. 

Using the same setup, including the properties of interest, the verification took 4 hours, supporting the 

hypothesis. 

Example 3 

Both previous examples, Example 1 and Example 2, used a manually pre-coordinated user interaction 

mechanism (separately set up Step functions in UI_Protocol and UI_Activity). To improve on this design, 

we created a new UI_Activity template, in which the user was guaranteed to respond automatically 

(with a fixed delay) to recommendations made by the protocol. We also further simplified the Process 

template by removing the goal tracking concurrent state, which was unnecessary, as a goal was not 

defined for this example. The example generated with the same CIG 

(SP3_20120316_1706_2_C_autoDoc.mdl) is shown in Figure 52. 

                                                           
 

95
 Intel i7-2630QM quad core CPU with 12 GB of RAM running the 64-bit version of Windows 7. 

96
 To complete the verification, SLDV approximated the floating-point arithmetic with rational number arithmetic. 
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Figure 52 - Generated functional models in MATLAB (Example 3) 

The new assumptions change our LTL expressions to the following: 

              (            )    ( ⋀           
  (  )

  {   }

)    

where                  
    (            

)     (            
)     (            

) 

With this setup, the verification took 4.6 hours. 

Example 4 

Figure 53 shows our next example (SP3_20120316_1706_2_D_XOR.mdl), in which we further 

experimented with the property expression language of SLDV. The property specified in this example 

requires all execution traces to allow the completion of one Activity only, which implements exclusive 

choice. In the model, the users are assumed to accept the first (“Doc_Cfrm”) and decline the second 

(“Doc_Dcl”) Activity recommendation. To this to happen, the generated model was manually 

reconfigured, as our generator allows the use of only one template per executable component. 
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Figure 53 - Generated functional models in MATLAB (Example 4) 

The property for this example can be written as: 
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Where the completion and decline events of an Activity are signaled through    with a value of   and    . 

Alternatively, if completion and decline events are represented as          
, and          

 the expression 

changes to the following: 
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The verification of this property took 3.7 hours. 

Example 5 

The final example (SP4_20120319_1834_1_E_seqProcs.mdl) was set up to verify the sequential 

execution of the two Activities in a slightly different CIG model. In this model, the two Activities were 
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placed into two separate Processes in the main Process. The reason for this was to create a simple test, 

where an Activation event realized sequencing between the two lower Processes (and ultimately the 

two Activities as well). Figure 54 shows the SLDV property specification, according to which both of the 

lower Processes need to finish for the main Process to finish. 

 

Figure 54 - Generated functional models in MATLAB (Example 5) 

The property for this example can be written as: 

    (    (     )  (     )) 

or alternatively as 

    (              
        

) 

The verification of this property took 1.1 hours. 

Evaluation 

The following list describes the chief limitation of the solution presented in this thesis for the verification 

of CIGs: 

 Simulink does not support concurrency in terms of a nondeterministic interleaving of concurrent 

events. Thus, SLDV does not provide any means to check a model for any type of concurrency 

related properties (e.g. race conditions) [230]. 
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 SLDV currently is only compliant with a subset of the Simulink/Stateflow language, which means 

that our behavioral templates had to be altered considerably. This included the need for using 

“directed message broadcasting” for the dissemination of SF events, instead of regular 

broadcasts. This limitation not only made the generated models far less readable for humans, 

but required changes to the behavioral templates that complicated the code generation. 

Furthermore, SLDV does not support the super step semantics [231] provided by SF, which 

fundamentally altered the meaning of our behavioral templates. 

 Another disadvantage was that the generated behavioral models for the sepsis guidelines 

reached a high complexity, which Matlab and SLDV had a hard time dealing with, even after 

making numerous optimizations. For example, it became apparent that the performance of the 

copy/paste Matlab API command that we use in the instantiation of the templates in the 

generator is dependent on the size of the model to which the new instance is being added. 

While this dependency was only polynomial in time, in practice, it made the Matlab-based 

generation of the full sepsis CIG impossible with most machine/version configurations97. As 

another example, in order to produce results with SLDV in the magnitude of hours, we needed 

to simplify behavioral templates and treatment models to the point, where their clinical 

usability was diminished. The simplification was an experimental process, during which we 

tested out both alternative, but equivalent behavioral models, as well as, more abstract and 

simplified versions of our behavioral templates. The latter ones benefited during verification 

from reduced number of transitions (e.g. removal of time-outs) and reduced number of 

concurrent states, and stored information with the help of shared variables instead. 

Such problems indicate that a considerable amount of energy needs to be spent on (1) further 

optimizing behavioral templates or (2) finding alternative Stateflow verification methods or (3) using 

alternative MoCs for defining the semantics of CPML. 

However, we believe that after a thorough testing, systems, such as STEEP, should be able to operate in 

a clinical environment without a complete verification of all critical properties, as currently they are not 

applied as safety critical (i.e. hazardous) systems, in the sense that they are not completely autonomous. 

                                                           
 

97
 We tried several Matlab versions (v2011b, v2012a) on multiple Windows 7 machines. The only machine able to provide a 

solution was Linux-based. 
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This means that every patient influencing action will only be performed after a careful evaluation of 

users, who are professionals trained to solve problems without these systems in place. 
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CHAPTER IX.  

 

CONCLUSION 

Summary 

Motivation 

The use of evidence-based guidelines for managing complex clinical problems has become the standard 

of practice, but typically, clinical guidelines are defined and disseminated in a natural language, which 

inherently supports ambiguity. Furthermore, guidelines are not patient care plans, which means that to 

be truly effective, they must be deployed as customized and individualized clinical care plans, in other 

words, protocol instances. Our approach of using CIG models that formally capture medical knowledge 

and its interaction with contextual information in care delivery systems inherently supports this idea by 

allowing protocol models to be tailored and executed on a per-patient basis. 

Existing approaches 

Today there are many different frameworks for modeling, verifying and executing medical guidelines. 

Built by various groups, each of these CIG-based systems differ in their scope and implementation, but 

were developed with the intention that by using them non-programmers will be able to create, maintain 

and facilitate computerized clinical guidelines [36]. Current approaches can be split into two distinct 

groups: (1) ones that rely on custom-built execution environments and (2) ones that build on much 

general, but robust existing industrial solutions: 

Proprietary systems offered by solutions of group (1) define and implement highly specific concepts and 

associated execution semantics, which are customized to the needs of the particular (clinical) domain. 

The disadvantages of these systems are that they often have modeling languages with limited readily 

available expressivity; their execution environment is not robust in terms of scalability and operational 

reliability; and their integration to various CISs is not addressed. Some of the most well-known projects 

and formalisms include the Arden Syntax, the Asgaard/Asbru project, EON, Gaston, GEM, the GLARE 

framework, GLIF, HELEN, SAGE, the SpEM framework, PRODIGY, and PROforma, out of which we closely 

examined four in this thesis. 
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The other types of CIG-based frameworks, members of group (2), rely on robust, standard-based 

industrial solutions. Resulting frameworks range from ones building on workflow-based standards and 

execution environments [232–235] to others facilitating rule-based systems [236,237]. This technique 

alleviates many of the issues presented by the solutions of group 1; however, they introduce ones of 

their own. The inherent problem of placing clinical applications on top of general business solutions is 

that resulting systems will be constrained in terms of expressivity of the chosen business platform. For 

example, special logical constructs, ones only seen in the clinical domain, are not implemented by any of 

the domain-independent platforms [82]. Another issue is that currently offered general modeling 

languages (e.g. BPEL, UML Activity Diagrams) do not use abstractions familiar to health care 

professionals. 

There is a continuing interest in improving clinical decision support systems despite all listed efforts, 

most of which took several years to develop, as none of the offered solutions gained wide clinical 

adoption. 

Current status 

Since the second half of 2007, as a result of the collaborative research projects shared between VUMC 

and ISIS, we have developed and implemented a model-based patient management system for sepsis 

[71,238–241]. Our research team of medical experts, computer scientists and system integrators 

created 

1. a language, called CPML, together with a general modeling environment for representing clinical 

guidelines, 

2. a computer interpretable sepsis treatment protocol 

3. a general software architecture for the analysis and the execution of guidelines. 

The resulting system is called STEEP. While STEEP is currently configured with the sepsis guideline, it is 

capable of running any CIGs created with CPML. It provides personalized decision support to assist in 

evidence-based patient management. By merging formal biomedical models with specific patient 

information, it supports both bedside decision-making and clinical research. It represents the status of 

the patient in workflows, management options as guided by clinical research protocols, and expected 

consequences. 
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The clinical usability and effectiveness of the STEEP system is currently being evaluated in a clinical trial 

at two ICUs, the medical and the surgical ICUs of VUMC. Our hypothesis is that STEEP decreases the time 

it takes to detect patients developing sepsis, and improves both physician compliance with evidence-

based standards and clinical outcomes for patients. 

List of contributions 

Our work contributed to the design of CIG-based CDSSs in the following areas: 

1. Creating a detailed list of critical open problems that CIG-based CDSSs face today. 

2. Leading the development of CPML, an integrated modeling language required for the model-

based configuration of the STEEP system, which is a real-life functional experimental CIG-based 

CDSS configured with a CIG for the management of sepsis and running at VUMC [71]. 

3. Contribution to the GUI design and the selection of its configurable features in STEEP [71]. 

4. Contribution to the design of the execution engine that runs simultaneous instances of the 

protocol in STEEP [71]. 

5. Contribution to the design of the communication interface for the proprietary CPOE used in 

STEEP. 

6. Contribution to the modeling of the sepsis CIG with the help of CPML [71]. 

7. Creating a methodology and a related software suite comprised of generators and Matlab 

Simulink/Stateflow to allow the template-based generation of behavioral models, as well as, 

their simulation and formal analysis. 

8. Formal analysis of various properties over a set of simplified examples taken from the modeled 

sepsis CIG. 

Lessons learned and future directions 

The STEEP project provided our interdisciplinary team an invaluable opportunity to investigate model-

based treatment management problems, and analyze and understand related technology directions. 

The development of the STEEP architecture and making it suitable for a clinical trial have proved to be a 

significantly larger effort than we expected. Through the design and the development of our system we 

gathered a list of scientific challenges. The findings generic to CIG-based CDSS were summarized in the 
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“Open problems” section of Chapter III. In this section, we discuss the lessons learned related 

specifically to STEEP and provide insight into what the next steps of this research could be. 

Table 11 shows the tasks in the STEEP project that took the most amounts of time and energy to 

complete. Explanation of each task is provided in the following sections. 

Table 11 - The most significant development task in the STEEP project 

Task Effort Reusability Section containing the explanation 

CPML development High High “Knowledge representation and management: Language” 

CPML EE development Moderate High “System development and evolution” 

Sepsis CIG development Moderate Moderate “Knowledge representation and management: Protocols” 

STEEP GUI development High Moderate “System integration” 

STEEP integration into 
the VUMC CIS 

High Limited “System integration” 

CPML CIG simulation and 
analysis environment 

Moderate High “Validation and verification” 

Knowledge representation and management: Language 

The drawbacks of language development 

The development of CPML was a large effort. Some of the most significant reasons are listed in the 

following subsections. We, however, believe that our efforts were not in vain, as many components of 

the language are novel and highly reusable in other CIG-based CDSSs. 

Workflow to rule-based representation 

As described in the “Early attempts” section of Chapter VI, our team started with the assumption that 

some of the workflow-style standards or existing modeling languages will provide the required 

abstractions for modeling sepsis treatment protocols. After much experimentation, we decided to 

develop domain-specific abstractions that were built around the Process concept supporting 

concurrency and event-based communication. The result was an evolving modeling language, which 

provided adequate expressiveness for our clinical example. 

Separation of knowledge layers 

CPML integrates many different kinds of knowledge, including medical guidelines, execution semantics 

and interface abstractions of connected systems. Based on our experiences, we concluded that it is 
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critical to decompose the knowledge in problem domains with complexity similar to CIGs into sub-

languages that represent separate and essential aspects of the problem space, and obtain complete 

models via model composition. In CPML, we progressively identified and separated multiple sub-

languages that represent essential aspects of the problem space. As described in Chapter VI, sub-

languages were organized into three major categories: Medical Knowledge Modeling, Protocol Modeling 

and Model Management and Support. We believe that the decoupling of the various sub-domains 

provides flexibility on multiple levels. 

With the help of sub-languages, we separated the two most important types of knowledge represented 

in CPML models: (a) the medical knowledge, which represents a medical ontology and (b) the behavioral 

knowledge, which defines how certain tasks described in the guideline have to be executed. These two 

kinds of knowledge are significantly different and are traditionally handled by their respective 

communities: medicine and computer science. Both of these aspects are complex and have semantics of 

their own. Such separation allows for the independent construction and management of both 

knowledge bases by their respective community. Knowledge can be updated according to their own 

lifecycle. This is an important benefit, because after an initial design phase, the operational knowledge 

usually has a relatively slow evolution, while medical knowledge requires more frequent updates and 

extensions. In fact, the separation proved extremely useful when we were experimenting with various 

execution models, as we could quickly generate and test the complete behavior after changing the 

behavioral templates, while leaving the treatment models unchanged. Further decomposition in the 

medicine domain allowed the sepsis treatment protocol to continuously evolve, while order sets of 

medications, procedures and laboratory tests were stable as defined by the Vanderbilt’s CPOE. 

Another benefit of the separation is that medical knowledge can be expressed using common existing 

formalisms (e.g. OWL [242]) and existing knowledge sources (e.g. UMLS) can be employed. Decoupling 

also allows for the execution semantics to be expressed explicitly with a MoC, in our case Stateflow, 

which makes all the existing methods and tools for the chosen MoC available. For STEEP, this included 

verification techniques and simulation and execution environments provided by the Matlab tool suite. 

Learning CPML 

Although the CPML environment provides health experts with the necessary domain specific concepts, 

CPML still has to be learned. As an alternative, knowledge experts can rely on and collaborate with an 
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experienced modeler to capture guidelines (similarly to the collaboration that existed in the Sepsis 

project), which requires time and energy spent at both sides. 

Limitations 

Adoption of CPML protocols 

Due to the way the language was constructed, Protocols are expressed by using Orderables, and 

Orderables are constructed using elements of the Medical Library. This setup means that Protocols are 

always expressed with the help of building blocks specific to a HCO98. While this approach has the 

benefit of allowing modelers to create CIGs that are directly runnable at a given location, it also 

introduces an indirection, which makes the understanding of protocols created at one institution by an 

expert at another difficult, as they need to look at how each orderable is constructed before they can 

fully understand the models. Another disadvantage is that the adoption of protocols created at other 

institutions becomes non-trivial. For this process to be automated, a mapping between the orderables 

of the other HCO and elements of the Medical Library needs to be created. 

Information aggregation 

As described by “P2.10” in Chapter III, the support for information aggregation in CPML is fairly limited. 

We are able to represent problems described in “Example 2: Defining composite indicators” (e.g. 

diagnosis), but for solving “Example 1: Aggregating different sources” and “Example 3: Identifying the 

source of indicators” we rely on our modelers and VUMC’s data cleaning and aggregating processes 

respectively. 

Representation of planned actions 

One of our original goals was to develop a language and provide a modeling environment for capturing a 

large variety of clinical guidelines. However, when trying to adopt our solution to the modeling of other 

management protocols, we realized that the design of CPML was solely influenced by the problems 

present in ICUs. Thus, CPML was highly oriented towards representing solutions for acute care 

situations. This caused problems, as the solutions for acute problems are typically reactive in nature, 

which means that as soon as a problem is detected an associated solution needs to be identified and 

                                                           
 

98
 This issue is also discussed in the “P2.8” point of Chapter III. 
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executed. Because the management of chronic diseases introduced additional complications related to 

the long-term treatment of patients, we needed to extend CPML to allow a planning oriented modeling. 

Our conclusion is that for future problem domains (such as the cancer management we are currently 

analyzing) we need to further decompose CPML into reusable sub-languages instead of trying to apply it 

as it is, or develop new domain specific modeling languages from scratch. Reusable model libraries built 

for these separate aspects will then be used to generate the integrated domain specific models. 

Future applications 

The next version of CPML is currently under development [243]. It is being developed as part of another 

collaborative project with VUMC. The project, called the Vanderbilt Oncology Information System (VOIS) 

program, was launched in January 2011, with the goal of creating a robust and integrated clinical 

information system to support the cancer care continuum. The program includes informatics methods 

to support longitudinal cancer treatment plan management, genome-directed cancer treatment 

prioritization, and team-based approaches to cancer diagnosis and treatment response assessment. 

Longitudinal cancer treatment plan management is one of the more complex projects within the VOIS 

program. The goal is to build a model-driven system to represent, instantiate and manage patient 

chemotherapy plans integrated into the existing VUMC clinical information systems. This includes 

integration with a broader range of Vanderbilt’s CIS, including the CPOE [207], the PIS, the nursing 

documentation system, the EMR system [244], and the outpatient whiteboard. To facilitate the 

cooperative work of the multi-disciplinary care team, the system must also represent and adapt to real 

time changes in the state of the patient, operational resources, and medical knowledge. 

All of these components must be represented as part of the CIGs in CPML at multiple levels of 

abstraction. This problem is complicated by the fact that longitudinal patient management plans need to 

be continuously adapted to compensate for the changing environment. With this ambitious scope for 

modeling, a framework is needed to assist in the iterative development of these complex models to 

both verify that the models are computationally satisfiable and clinically valid. 

In [243], we propose an architecture and preliminary results regarding the construction a new class of 

CDSSs for synthesizing and managing cancer treatment plans. In this work, our goal is to automatically 

synthesize – and based on the changing environment – continuously re-plan complex treatment plans. 

Our system will combine: (a) state-of-the-art formal modeling to capture treatment abstractions and 
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medical ontologies, (b) state-of-the-art finite model finding and constraint solving to synthesize 

treatment plans, and (c) state-of-the-art CISs developed by VUMC. 

 

We anticipate the development and maintenance of over 1000 different chemotherapy protocols of 

varying complexity [209]. With such a high volume of CIGs, automated systems are needed to assist in 

data driven validation of these models to ensure patient safety. Although in this work, our technical 

solution focuses on cancer management, our approach can be applied to the plan management of other 

clinical problems as well. 

Knowledge representation and management: Protocols 

Sepsis CIG development 

Effort 

The development of the sepsis CIG required a group of domain experts and computer scientists to 

coordinate their efforts. Furthermore, to create an actual runnable implementation, the original sepsis 

guideline needed to be extended and tailored to the match the requirements (e.g. minimize the number 

of required interaction with the clinicians) and available resources (e.g. rely only on locally available data 

streams) of the VUMC ICUs. Lastly, as CPML evolved, we needed to make sure that the guideline was 

always migrated. 

Reusability 

The sepsis CIG is designed to manage sepsis, which entails solving multiple concurrent problems. Thus, 

reusability is supported, as independent solutions to sub-problems can be reused in other CIG needing 

them. 

Improvements 

Through the CIGs, decision-making is influenced by population-based evidence. If the trial confirms the 

clinical suitability of STEEP, the decisions and the actions carried out with STEEP will be documented, 

monitored for effectiveness, and used to improve the existing support models. 
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Importing CIG written in other languages 

As we demonstrated, there has been a tremendous amount of energy put into the formalization of 

medical guidelines by other research groups using various formalisms. Consequently, these efforts 

resulted in a significant number of already modeled protocols. We believe that by defining mappings 

between each formalism and CPML we could import and facilitate them. 

CIG library 

Because in the STEEP project there was only one CIG created, our team did not need to concentrate on 

solving otherwise critical problems related to the management of CIGs. For handling a large number of 

concurrently working guideline authors and a broad range of CIG models, GME’s single-user and “one-

file-for-all-CIGs” approach would have been inadequate. For addressing this potential issue, we have 

started to work on a solution involving libraries, which would allow users to import CIGs from a central 

repository and submit their changes. 

Validation and verification 

In STEEP, the behavior of the sepsis treatment manager is the result of the execution engine interpreting 

the CPML models. Relying on the execution environment implementation extended with simulation 

controls, the correctness of the created sepsis CIG was validated by multiple VUMC ICU physicians as 

part of a clinical evaluation completed in 2009. The validation used a case-based test approach, where 

various scenarios were run to analyze the behavior of the implemented guidelines. 

To be able to formally analyze the modeled treatment models, we created a simulation and analysis 

environment. This component of STEEP required the formal definition of the behavioral semantics of the 

concepts in CPML, which was done by translating CPML into Matlab’s Stateflow. The resulting Stateflow 

models were analyzable with Matlab’s verification tools, in our case, the SLDV package. In addition to 

providing coverage metrics for identifying unreachable sections of the state space, these tools allow the 

checking of functional requirements (e.g. patient safety) over the behavioral models. 

Formal behavioral models driving the execution 

A future idea we would like to explore is using our generated Matlab-based behavioral models to serve 

as the basis for generating code for the EE. Currently, our EE and simulation environments are 
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developed independently of each other, which, as mentioned earlier in Chapter VIII, would require a 

thorough analysis to ensure that their behaviors do not contradict each other. 

To solve this problem, the relationship between the SF-based specification of behavioral semantics and 

the execution semantics implemented by the STEEP Execution Engine need to be examined. The STEEP 

project schedule did not allow the establishment of a formal relationship between the two, because the 

STEEP Execution Engine, CPML and the STEEP models were developed in parallel, and the SF-based 

behavioral semantics was completed in the last phase of the project. While developing the SF-based 

specification of semantics, consistency with the EE was ensured via informal discussion and reviews. 

However, we have not completed the modification of the Java thread package-based concurrency model 

of the engine to match the “pseudo” concurrency model of SF99. This could have been possible, since the 

specification of SF behavioral semantics in Java has been recently completed in a parallel running project 

at ISIS, called Polyglot [224]. In future design flows, a more rigorous connection can be built by reusing 

and extending the implementations of the execution models from libraries of Polyglot. 

Importing standardized dosing constraints as general properties for verification 

As part of our future work, we will consider importing dosing constraints defined as part of standardized 

knowledge bases (e.g. FDB) to serve as general properties against which all implemented CIGs could be 

verified. 

System integration 

The real power of CDSSs can only be harvested once integrated into a host CIS. However, we found the 

integration of the STEEP tools into VUMCs CIS to be a complex challenge, both in terms of (1) user 

experience and (2) interoperability. To improve the process, we applied model-based solutions to in the 

following ways: 

                                                           
 

99
 While SF has a notion of parallel states, it does not implement true concurrency, as there is always a deterministic order in 

execution. Polyglot uses the same model. 
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1. User experience: STEEP needed to fit into the existing workflow of clinicians. Because the GUI of 

STEEP is the only way to interact with an executing CIG, our domain experts needed to make 

sure that everything was conveyed in an appropriate manner. This generated two independent 

requirements: (a) the UI needed to be incorporated as a part of existing patient management 

solutions and (b) it needed to be easily configurable in terms of what and how it was showing. 

While (a) was strictly an implementation challenge, CPML addressed (b) by offering basic model-

based constructs for CIG designers to control the elements of the UI. Because the GUI is only 

moderately tailored to VUMC and to the management of sepsis (e.g. it integrates information 

provided by the VUMC’s sepsis surveillance tool) and otherwise as generic as CPML, one could 

argue that its reusability is high. However, a future adopter of the GUI would need to make sure 

that the use of the tool fits into the workflow of their users, which includes dealing with our 

customizations and the actual technology used to implement the GUI (e.g. GWT). 

2. Interoperability: Information exchange between STEEP and the underlying CIS infrastructure 

also benefited from formal modeling. CPML offered constructs for describing types of data 

inputs (e.g. patient data and user actions) and outputs (e.g. medication orders) as part of the 

interface definition of STEEP. However, we struggled with complexity, which arose from the fact 

that many of VUMC’s CISs were not designed to allow other tools to drive their execution. For 

these systems, new communication methods (including APIs, communication protocols and data 

elements) had to be defined. It also meant that we had to build interface models in CPML. 

System development and evolution 

Engine 

The architecture we applied in the STEEP project allows CPML and its semantic implementations (the EE 

and the simulation environment) to evolve independently. While this is considered a benefit when 

experimenting with various implementations, their coordination is critical. We achieve this with a help 

of a set of generators. 

Execution semantic variations 

In the model-based framework, the EE provides semantics for the protocol models. As part of the 

language design process, our interpretation of protocol semantics also shifted considerably from a 
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workflow-style view that defines behavior via observable treatment trajectories to a process view where 

treatment trajectories emerge from the interaction of event-driven treatment processes. The conclusion 

of our research has been that casting strongly different protocol execution models (e.g. reactive and 

plan-based models) into a single execution engine is ineffective and increases complexity. We propose 

that, similarly to the decomposition of languages, execution engines also need to be modularized and 

composed of reusable components. 

Mission critical software development 

The reusability level of the engine is dependent on the reusability of language and the quality of the 

implementation. Because the software was intended to be used in a clinical setting, robustness, 

including reliability and speed, were critical concerns that made the development difficult and the 

result, optimistically, highly usable. Once complete, the clinical trial should provide feedback on this 

matter. 

We have found that while the model-based generation and reconfiguration of clinical applications 

provides the ability to rapidly create and modify the software, existing workflows for testing the clinical 

correctness and the integration of such applications at HCOs do not share the model-oriented view. This 

means that for purely model updates, where the software code is left unchanged, it does not matter 

how small the changes are, or how thorough analysis the models went through afterwards, the testing 

team will always consider the result as a separate version, and perform a full test of the software. 

Though considering how dangerous an overlooked mistake might be, this could be a good thing. 



195 
 

APPENDIX A: 

 

LIST OF RELATED PUBLICATIONS 

Peer-reviewed journal articles (first author) 

1. Mathe, J., Martin, J., Miller, P., Ledeczi, A., Weavind, L., Nadas, A., Miller, A., Maron, D. and 

Sztipanovits, J. A Model-Integrated, Guideline-Driven, Clinical Decision-Support System. IEEE 

Software, Special issue on Domain-Specific Languages & Modeling. 26, 4 (Aug. 2009), 54-61. [71] 

2. Mathe, J., Werner, J., Lee, Y., Malin, B. and Ledeczi, A. Model-Based Design of Clinical 

Information Systems. Methods of Information in Medicine. 47, 5 (2008), 399-408. [245] 

Peer-reviewed journal articles (not first author) 

3. Hooper, M.H., Weavind, L., Wheeler, A.P., Martin, J.B., Gowda S.S., Semler M.W., Hayes R.M., 

Albert D.W., Deane N.B., Nian H., Mathe J.L., Nadas A., Sztipanovits J., Miller A., Bernard G.R., 

Rice T.W. Randomized Trial of Automated, Electronic Monitoring to Facilitate Early Detection of 

Sepsis in the Intensive Care Unit. Critical Care Medicine In press, (2011). [240] 

Book chapters 

4. Mathe J, Werner J and Sztipanovits J. Model-Based Design of Trustworthy Health Information 

Systems. Homeland Security Facets: Threats. Countermeasures, and the Privacy Issue. Artech 

House; 2011. [241] 

Conference papers 

5. Mathe, J.L., Sztipanovits, J., Levy, M., Jackson, E.K., and Schulte, W. Cancer Treatment Planning: 

Formal Methods to the Rescue. 4rd International Workshop on Software Engineering in Health 

Care (SEHC 2012), (2012). [243] 

6. Mathe, J.L. Towards an Adaptable Framework for Modeling, Verifying, and Executing Medical 

Guidelines. Proceedings of the Doctoral Symposium at MODELS 2009 (Denver, CO, October 

2009). [239] 



196 
 

7. Mathe, J., Miller, P., Ledeczi, A., Weavind, L., Miller, A., Maron, D., Nadas, A., Sztipanovits, J. and 

Martin, J. A Model-Integrated Approach to Implementing Individualized Patient Care Plans 

Based on Guideline-Driven Clinical Decision Support and Process Management - A Progress 

Report. 2nd International Workshop on Model-Based Design of Trustworthy Health Information 

Systems (MOTHIS 2008) (Toulouse, France, October 2008). [238] 

8. Duncavage, S., Mathe, J., Werner, J., Malin, B.A., Ledeczi, A. and Sztipanovits, J. A Modeling 

Environment for Patient Portals. AMIA Annual Symposium Proceedings (Chicago, IL, November 

2007), 201-205. [246] 

9. Mathe, J., Duncavage, S., Werner, J., Malin, B., Ledeczi, A. and Sztipanovits, J. Implementing a 

Model-Based Design Environment for Clinical Information Systems. First International Workshop 

on Model-Based Design of Trustworthy Health Information Systems (MOTHIS 2007) (Nashville, 

TN, September 2007). [247] 

10. Werner, J., Mathe, J.L., Duncavage, S., Malin, B., Ledeczi, A., Jirjis, J.N. and Sztipanovits, J. 

Platform-Based Design for Clinical Information Systems. Industrial Informatics, 2007 5th IEEE 

International Conference on (INDIN 2007) (Vienna, Austria, July 2007), 749-754. [248] 

11. Mathe, J.L., Duncavage, S., Werner, J., Malin, B.A., Ledeczi, A. and Sztipanovits, J. Towards the 

Security and Privacy Analysis of Patient Portals. Special Interest Group on Embedded Systems 

Review (SIGBED Rev.). 4, 2 (2007), 5-9. [249] 

12. Emerson, M., Mathe, J. and Duncavage, S. WiNeSim: A Wireless Network Simulation Tool. 

Proceedings of the Sixth ACM International Conference on Embedded Software (EMSOFT’06 

Workshop) (Seoul, South Korea, October 2006). [250] 

13. Werner, J., Eby, M., Mathe, J., Karsai, G., Xue, Y. and Sztipanovits, J. Integrating Security 

Modeling into Embedded System Design. 12th IEEE Real-Time and Embedded Technology and 

Applications Symposium (RTAS 2006) (April 2006). [251] 



197 
 

APPENDIX B: 

 

CURRENT STATUS OF THE INTEGRATED STEEP ARCHITECTURE AT VUMC 

Our team developed a STEEP prototype (see). Parallel development of the CPML language, the TMS-C 

and the associated EE allowed clinicians to see how changing the models (or the language) affected the 

system’s behavior and allowed them to provide the development team with continuous feedback. Once 

complete, the STEEP prototype served for system validation, during which domain experts manually 

validated the system in terms of clinical correctness and applicability. Following the system validation, 

the team successfully integrated the prototype into VUMC’s existing suite of CISs and performed 

integration testing and a complete clinical evaluation in a live environment. At the time of writing, the 

clinical trial of the STEEP system is in progress [240]. 

 

Figure 55 - STEEP project timeline 
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APPENDIX C: 

 

ALGORITHM FOR TEMPLATE-BASED MODEL TRANSFORMATION 

Algorithm 2 shows the detailed steps for transforming the GME-based CPML models (captured as MGA 

files) into executable Matlab models (MDL files) using the model transformation tool chain developed as 

part of STEEP: 

Algorithm 2 - Detailed template-based model transformation process 

ID Step Description 

1. Run the MGA2XML100 transformation 

Convert the CPML models captured by a GME model file (.MGA) to 
the input of the behavioral generator (which is the same 
configuration file (.XML) the EE uses to configure its behavior) 

1.1. Open MGA file  

1.2. Traverse models and build a data 
structure from CPML’s concepts 

 Medical Library 

 Orderables 

 Protocols 

1.3. Generate XML  

2. Generate the SF behavioral model  
This will be a Matlab file (.MDL) based on the the input file created 
in the previous step 

2.1. Run the XML2M&DOT transformation 

Generate documentation files and the Matlab script (.M), built from 
Matlab’s API commands, that will create the SF-based behavioral 
model 

2.1.1. Get all inputs 

 Link to the XML version of the GME models 

 Link to the SL Matlab template file (.MDL) that contains 

definitions for Protocols, Processes and Activities, as well as 

other execution-specific components 

 Link to the Main M-script generator string template file (.ST) 

 Link to the Graphviz executable to generate a graphical 

representation (.PNG) from a generated document file (.DOT) 

2.1.2. Traverse models  

2.1.2.1. Convert XML 
Parse source CPML model file using a generated schema 
definition101 file in order to be able to travers models in memory 

                                                           
 

100
 This transformation was built by Andras Nadas from the STEEP project. 

101
 Run the Microsoft XML Schema Definition tool (Xsd.exe) [252] to generate common language runtime classes that 
correspond to and are generated from the schema definition (.XSD) of the EE configuration files 
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2.1.2.2. Generate output for each Protocol  

2.1.2.2.1. Create new 
GraphvizContainmentHierarchy 

Placeholder for DOT-style graph description 

2.1.2.2.2. Create new InstanceOfStringTemplate 
Placeholder for string template and attributes that will create the M-
script 

2.1.2.2.3. Record model-independent attributes 
of main template 

String template parameters such as paths, creation time, etc. 

2.1.2.2.4. Record model-specific attributes  

2.1.2.2.4.1. Traverse MedicalLibrary Creation of data inputs for the protocol, specifically Labs and Vitals 

2.1.2.2.4.2. Traverse Protocol  

2.1.2.2.4.2.1. Record child-independent parameters 
of Protocol 

E.g. Protocol name 

2.1.2.2.4.2.2. Traverse Processes  

2.1.2.2.4.2.2.1. Record child-independent parameters 
of Process 

Including name, id, type, parent id, number of children, list of 
condition expressions (initially active, optional, repeatable, entry, 
reentry, skip, goal, fail, cancel, terminate) 

2.1.2.2.4.2.2.2. Traverse children of the selected 
(child) Process 

 

2.1.2.2.4.2.2.2.1. Evaluate contents of Process 
Make sure that this Process is either a (1) Process or an (2) 
Activity container (not both) 

2.1.2.2.4.2.2.2.2. IF (1) THEN Traverse child Processes 
of the selected Process 

 

2.1.2.2.4.2.2.2.3. IF (2) THEN Traverse child Activities 
of the selected Process 

 

2.1.2.2.4.3. Record child-dependent parameters of 
Protocol 

I.e. number of children 

2.1.2.2.5. Write to destination files  

2.1.2.2.5.1. Generate M-script by printing the 
InstanceOfStringTemplate into a file 

The included StringTemlate [253] library will use the recorded 
attributes of the InstanceOfStringTemplate to recursively replace 
special placeholders in the template files 

2.1.2.2.5.1.1. Invoke template for a Protocol 

Create file based on m_template.st using attributes for configuring 
the generation (e.g. verbose mode, overwrite existing, source file 
locations, real-time simulation, SF layout type) and attributes of 
Protocol (e.g. name) 

2.1.2.2.5.1.1.1. Invoke template for Vitals 
Append to previous script file based on 
m_template_medGroup_vital.st using attributes of Vitals 

2.1.2.2.5.1.1.2. Invoke template for Labs 
Append to previous script file based on 
m_template_medGroup_lab.st using attributes of Labs 

2.1.2.2.5.1.1.3. Invoke template for Processes 
Append to previous script file based on m_template_process.st 
using attributes of Processes 
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2.1.2.2.5.1.1.4. Invoke template for Activities 
Append to previous script file based on m_template_activity.st 
using attributes of Activities 

2.1.2.2.5.2. Generate an alternative visualization 
using Graphviz 

 Generate DOT file based on GraphvizContainmentHierarchy 

 Generate PNG file using the DOT file and Graphviz 

2.2. Perform the M2MDL transformation Generate MDL by running M-script in Matlab 

2.2.1. Set script parameters 

 Generation configuration parameters (e.g. verbose mode, real-

time simulation) 

 Execution-specific parameters that are not model-based (e.g. 

default shelf-life for medications) 

 Layout algorithm patterns (e.g. spacing, sizing of states in SF) 

2.2.2. Get all inputs 

Load custom library elements: 

 Semantics template library (e.g. Protocol, Process, Activity, etc.) 

 Simulation controller library (Real-time pacer) 

2.2.3. Create basic components 

 Simulink system (for simulation of the environment) 

 SF chart (for capturing the logic of the Protocol) 

 SF state (instance of the Protocol template) 

2.2.4. 
Create data input channels for 
Protocol SF 

 Create data input channels for the list of vitals 

 Create data input channels for the list of lab values 

 Bundle created inputs with a multiplexer 

 Resize, arrange elements 

2.2.5. 
Create data and event inputs in 
Simulink 

 

2.2.5.1. 
IF real-time (simulation time-based) 
execution model THEN 

 Create a protocol controller for user (from library) 

 Add real-time pacer (from library) 

2.2.5.2. 
IF predefined (scenario-based) 
execution THEN 

Read scenario input from an Excel file 

2.2.6. 
Calculate estimated model creation 
time 

Because the mode generation time is dependent on the size of the 
model (polynomial increase) 

2.2.7. Create Processes Do this for all Processes 

2.2.7.1. 
Create a copy of the Process SF 
template 

 Establish ID 

 Rename template 

 Copy to main SF 

 Reposition (using the layout algorithm) 
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2.2.7.2. 
Create and modify events and 
variables 

 Replace string templates (e.g. all condition expressions
102

) 

 Add value to constants (e.g. number of children, optionality) 

 Rename protocol template variables (e.g. replace all 

occurrences of “EnId” to the unique id of the Process, and “PaId” 

to the unique id of the Process’s parent in the containment 

hierarchy) 

 Move events intended to be global but defined and contained 

locally by the template-based Process to the level of the 

container SF chart 

2.2.7.3. IF verbose mode THEN append log  

2.2.8. Create Activities Do this for all Activities 

2.2.8.1. 
Create a copy of the Activity SF 
template 

 Establish ID 

 Rename template 

 Copy to main SF 

 Reposition (using the layout algorithm) 

2.2.8.2. 
Create and modify events and 
variables 

 Replace string templates (e.g. starting point) 

 Add value to constants (e.g. ability to repeat the action) 

 Rename protocol template variables (e.g. replace all 

occurrences of “EnId” to the unique id of the Process, and “PaId” 

to the unique id of the Process’s parent in the containment 

hierarchy) 

 Move events intended to be global but defined and contained 

locally by the template-based Activity to the level of the container 

SF chart 

2.2.8.3. IF verbose mode THEN append log  

2.2.8.4. 
IF real-time (simulation time-based) 
execution model THEN 

Create inputs for Activities (from library) 
Position them using the layout algorithm 
Connect them to the event input of the SF chart 

2.2.9. Set simulation parameters E.g. stop time, solver type, etc. 
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 While these conditions are manually translated from our expression language to Matlab’s expression language, an 
automated translation would be possible. 
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