

THE PRECISE CONSTRUCTION OF PATIENT PROTOCOLS:

MODELING, SIMULATION AND ANALYSIS OF

COMPUTER INTERPRETABLE GUIDELINES

By

Janos Laszlo Mathe

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December, 2012

Nashville, Tennessee

Approved

Professor Gabor Karsai1

Professor Gautam Biswas1

Professor Xenofon D. Koutsoukos1

Professor Bradley A. Malin2

Professor Douglas C. Schmidt1

1 Department of Electrical Engineering and Computer Science, Vanderbilt University

2 Department of Biomedical Informatics, Vanderbilt University

ii

ABSTRACT

Standardizing the care of patients with complex problems in hospital settings is a difficult challenge for

physicians, nurses and other medical professionals. Diverse conditions further complicate patient

management. While in acute care settings such as intensive care units, the inherent problems of

stabilizing and improving vital patient parameters is further complicated by the division of

responsibilities among different individuals and teams, in outpatient settings the management of

chronic diseases introduces additional complications related to the long-term treatment of patients. The

use of evidence-based guidelines for managing complex clinical problems has become the standard of

practice. Computerized support for implementing such guidelines has tremendous potential; however,

addressing this problem requires a carefully coordinated use of various techniques from the field of

computer science, as guidelines developed by the medical community are not directly interpretable by

computers.

In this thesis, first, we present a survey of literature and a study on the open questions from the field of

clinical decision support focusing on the use of model-based techniques for specifying and implementing

evidence-based guidelines. Following the survey, we describe a model-based architecture for enabling

the construction, management, verification and execution of such guidelines. The presented

architecture is model-based in the sense that it relies upon the formal modeling of medical guidelines,

including the specification of input parameters such as signs and symptoms, output parameters such as

medical actions, and other guideline-related constraints such as rules, regulations and policies. The

behavioral semantics of these models is provided by the application of custom-built formal behavioral

templates defined with the help of Matlab Simulink/Stateflow and model composition. The benefits of

our approach are illustrated with the modeling, execution and formal analysis of a clinically relevant

example, a sepsis management guideline.

Keywords

Executable medical guidelines, Model-based development, Patient workflow management system,

Design languages, Domain-specific architectures, Medical information systems, Modeling, Ontology

iii

DEDICATION

I dedicate this thesis for my family,

who offered me unconditional love and support all the way since the beginning of my studies,

including throughout the course of this thesis.

iv

ACKNOWLEDGMENTS

There are a number of people without whom this thesis might not have been written, and to whom I

owe an immense debt of gratitude.

To my advisor, Professor Gabor Karsai, who from the formative stages of this thesis, to the final draft,

provided me with his sound advice and careful guidance, which were invaluable as I attempted to

transform myself into the researcher I am today.

To my former advisor, now father-in-law, Professor Janos Sztipanovits, who inspired me to pursue the

Ph.D. candidacy in the first place. He not only handled this unique transition of roles professionally and

gracefully, but also, while being my advisor, provided me with the complex and fascinating projects that

allowed me to make a mark in my field. He is a person, who never stopped encouraging me and

enlightening me when my knowledge was lacking.

To many of my collaborators in the STEEP project, including Andras Nadas, Professor Bradley Malin and

the experts from the Medical Center and the Informatics Center at Vanderbilt University, without whom

the STEEP project would have not been possible.

To my wife, Dora, who had the patience to endure my occasional self-doubts, allowed me to have the

time to complete my work, and surrounded me with everlasting love and positivity.

At last, but not at least, to my family, especially to my parents, Janos and Eva and to my brother, Daniel,

who even though they missed me back in Hungary, have motivated and supported me throughout the

process.

This work was supported in part by TRUST (Team for Research in Ubiquitous Secure Technology), which

receives support from the National Science Foundation (NSF award number CCF-0424422) and the

following organizations: AFOSR (#FA9550-06-1-0244), BT, Cisco, ESCHER, HP, IBM, iCAST, Intel,

Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia, and United Technologies.

Support also came from the Vanderbilt HealthTech Laboratory, a research facility of Vanderbilt Medical

Center, the Division of Allergy, Pulmonary and Critical Care Medicine in the Department of Medicine of

Vanderbilt Medical Center, the Emergency Department of Vanderbilt University Hospital and the

Informatics Center of Vanderbilt Medical Center.

v

To each of the above, I extend my deepest appreciation.

vi

TABLE OF CONTENTS

ABSTRACT .. II

DEDICATION ... III

ACKNOWLEDGMENTS .. IV

TABLE OF CONTENTS .. VI

LIST OF TABLES ... IX

LIST OF FIGURES .. X

LIST OF ALGORITHMS .. XII

LIST OF ABBREVIATIONS .. XIII

LIST OF NOMENCLATURE ... XVI

LIST OF GUIDELINE-RELATED PROJECTS .. XIX

CHAPTER I. INTRODUCTION TO GUIDELINE-DRIVEN CLINICAL INFORMATION SYSTEMS 1

Challenges in health care .. 1

Potential solutions .. 1

Clinical Practice Guidelines ... 4

Computer Interpretable Guidelines: Explaining the need for computerized CPGs 6

Representing CIGs ... 13

CHAPTER II. REVIEW OF FRAMEWORKS FOR MODELING, VERIFYING AND EXECUTING GUIDELINES........ 18

Early CDSSs .. 18

CIG lifecycle ... 21

Components of a CIG-based CDSS .. 24

Evaluation criteria for guideline-based clinical information systems ... 26

Guideline modeling languages, formalisms and frameworks selected for evaluation 36

Guideline modeling languages not selected for evaluation ... 70

Other important medical formalisms, frameworks and organizations .. 70

vii

CHAPTER III. EVALUATION OF OPEN QUESTIONS IN CIG LANGUAGE DESIGN ... 75

Earlier comparison efforts .. 75

Discussion.. 80

Open problems ... 85

CHAPTER IV. OVERVIEW OF THE SEPSIS PROJECT .. 113

Medical Context: Sepsis Management ... 114

Functional Architecture of STEEP.. 115

Modeling Language and Model Development.. 118

Software design and implementation .. 119

Evaluation ... 120

CHAPTER V. A MODEL-INTEGRATED IMPLEMENTATION ARCHITECTURE FOR STEEP 121

Implementation architecture overview .. 121

Treatment Management Console ... 122

System integration interfaces ... 125

Contributions .. 126

CHAPTER VI. MODELING LANGUAGE AND MODEL DEVELOPMENT ... 128

Modeling language development approach ... 129

Design of CPML ... 131

CPML vocabulary ... 136

CPML metamodels - Structural semantics .. 147

CHAPTER VII. DEFINING THE BEHAVIORAL SEMANTICS FOR CPML .. 153

Specification of behavioral semantics .. 154

Template-based specification of behavioral semantics .. 155

Analysis tool chain .. 161

CHAPTER VIII. VALIDATION AND VERIFICATION ... 168

Validation through simulation .. 168

Verification through model checking .. 170

viii

CHAPTER IX. CONCLUSION .. 183

Summary ... 183

List of contributions .. 185

Lessons learned and future directions .. 185

APPENDIX A : LIST OF RELATED PUBLICATIONS ... 195

Peer-reviewed journal articles (first author) .. 195

Peer-reviewed journal articles (not first author) .. 195

Book chapters ... 195

Conference papers .. 195

APPENDIX B : CURRENT STATUS OF THE INTEGRATED STEEP ARCHITECTURE AT VUMC 197

APPENDIX C : ALGORITHM FOR TEMPLATE-BASED MODEL TRANSFORMATION 198

BIBLIOGRAPHY .. 202

ix

LIST OF TABLES

Table 1 Suitability of various formal language groups for satisfying requirements for modeling CPGs . 16

Table 2 Questions related to Scope .. 32

Table 3 Questions related to Knowledge concepts ... 32

Table 4 Questions related to Formal semantics .. 33

Table 5 Questions related to Protocol composition ... 33

Table 6 Questions related to Security and privacy.. 34

Table 7 Comparison of features of six CIG formalisms [157] .. 76

Table 8 CIG formalisms compared in published studies ... 80

Table 9 CPML vocabulary .. 138

Table 10 CIG-based CDSS verification opportunities .. 171

Table 11 The most significant development task in the STEEP project .. 186

x

LIST OF FIGURES

Figure 1 The specializations of CDSSs .. 13

Figure 2 Lifecycle of a CIG ... 21

Figure 3 Schematic of the components of a general CIG-based CDSS .. 26

Figure 4 The domino model, the basis of the PROforma language [26] ... 43

Figure 5 The inheritance tree of PROforma component object types [36] .. 45

Figure 6 Icons of the generic and specific task types in PROforma [97,102] .. 46

Figure 7 Contents of an example for a PROforma guideline (plan) [36] ... 46

Figure 8 PROforma task state transitions [42] .. 47

Figure 9 Arezzo's PROforma-based architecture [26] ... 48

Figure 10 PROforma patient-diagnosis scenario modeled in the Tallis composer [82] 49

Figure 11 Overview of the high-level classes in GLIF3 [109] ... 53

Figure 12 Patient-diagnosis scenario modeled in GLIF3.5 using Protégé [82] .. 55

Figure 13 Execution states of a GLIF guideline step and possible transitions in-between [116] 55

Figure 14 The internal structure of GLEE (of GLIF3), and its interactions with the environment [116] . 58

Figure 15 Screenshot of GLEE’s standalone GUI during development and testing (client side) [116] ... 59

Figure 16 Overall structure of a plan library in Asbru [124] .. 62

Figure 17 State machine of an Asbru plan [124] ... 64

Figure 18 Patient-diagnosis scenario model in AsbruView [82] .. 65

Figure 19 DeGeL architecture for Asbru guidelines [26] ... 66

Figure 20 The Asbru engine [138] ... 67

Figure 21 Extended state machine of an Asbru plan in Spock [143] ... 69

Figure 22 Deciding on protocol applicability (Directed versus empiric therapy) 94

Figure 23 Standard versus fuzzy logic for representing uncertainty ... 96

Figure 24 Forms of non-determinism in CIGs.. 97

Figure 25 Simplified decision support flowchart ... 98

Figure 26 Grey tracking (illustrated for a TNM-based CIG) ... 99

Figure 27 User aspects of a CIG ... 106

Figure 28 CIG portability.. 107

Figure 29 Functional Architecture of STEEP .. 115

Figure 30 CPMA: The implementation architecture for STEEP ... 122

xi

Figure 31 STEEP GUI: Structure of the Treatment Management Console .. 123

Figure 32 STEEP GUI: The Treatment Management Console .. 125

Figure 33 The Multiple Urgent Sepsis Treatments (MUST) protocol [22] ... 133

Figure 34 Initial version of the VUMC sepsis treatment protocol ... 135

Figure 35 Main concepts of the CPML’s Medical Library (represented with MetaGME) 140

Figure 36 Main concepts of the CPML’s Orderables (represented with MetaGME) 142

Figure 37 Example Protocol hierarchy .. 143

Figure 38 Sepsis treatment CIG component hierarchy in CMPL ... 144

Figure 39 Model-based configuration of the STEEP GUI ... 147

Figure 40 Protocol Modeling in CPML: Protocol, Process (represented with MetaGME) 148

Figure 41 Protocol Modeling in CPML: Event, Activation (represented with MetaGME) 149

Figure 42 Protocol Modeling in CPML: Activity, Step, Selection Set (represented with MetaGME) 149

Figure 43 Exert from the sepsis CIG (in CPML) .. 151

Figure 44 Generation of SF models from CPML .. 156

Figure 45 Behavioral template of an Activity (defined in MATLAB Stateflow) 157

Figure 46 CPML to Matlab Simulink/Stateflow transformation tool .. 162

Figure 47 Screenshot of the Matlab script generator tool .. 164

Figure 48 Generation of SF models from CPML (Sepsis) ... 165

Figure 49 Generated sepsis CIG in Matlab .. 166

Figure 50 Generation of SF models from CPML (Simplified sepsis) .. 174

Figure 51 Generated functional models in MATLAB (Example 1 and Example 2) 176

Figure 52 Generated functional models in MATLAB (Example 3) ... 178

Figure 53 Generated functional models in MATLAB (Example 4) ... 179

Figure 54 Generated functional models in MATLAB (Example 5) ... 180

Figure 55 STEEP project timeline .. 197

xii

LIST OF ALGORITHMS

Algorithm 1 Simplified template-based model transformation process ... 160

Algorithm 2 Detailed template-based model transformation process .. 198

xiii

LIST OF ABBREVIATIONS

ANSI - American National Standards Institute .. 37

ASTM - American Society for Testing and Materials .. 37

BNF - Backus Naur Form .. 44

CDSS - Clinical Decision Support System ... 2

CIG - Computer Interpretable Guideline .. 7

CIS - Clinical Information System ... 1

COGS - Conference on Guideline Standardization ... 5

CPG - Clinical Practice Guideline .. 4

CPM - Clinical Process Management .. 3

CPMA - Clinical Process Management Architecture ... 121

CPML - Clinical Protocol Modeling Language ... 115

CPN - Colored Petri Nets .. 79

CPOE - Computerized Physician Order Entry System .. 3

CSP - Communicating Sequential Process ... 136

CWF - Clinical Workflow ... 3

CWS - Clinical Workstation ... 122

DB - Database .. 25

DSML - Domain-Specific Modeling Language ... 13

DSS - Decision Support System ... 3

EBM - Evidence-Based Medicine .. 5

EBNF - Extended Backus-Naur Form .. 138

ECA - Event, Condition, Action .. 19

EE - Execution Engine .. 10

EHR - Electronic Health Record .. 2

eMAR - Electronic Nursing Medication Administration Records System 103

EMR - Electronic Medical Record ... 2

FOS - Free and Open Source .. 77

GELLO - Guideline Expression Language, Object-oriented .. 52

GEM - Guidelines Elements Model ... 70

GLARE - GuideLine Acquisition, Representation and Execution .. 80

xiv

GLEE - Guideline Execution Engine.. 52

GLIF - Guideline Interchange Format ... 51

GME - Generic Modeling Environment ... 132

GUI - Graphical User Interface .. 26

HCI - Human-Computer Interaction .. 119

HCO - Health care Organization ... 1

HeCaSe2 - Health Care Services (release 2) ... 80

HL7 - Health Level Seven ... 37

ICU - Intensive Care Unit ... 114

IF - Interface ... 25

ISIS - Institute for Software Integrated Systems ... 113

LTL - Linear Temporal Logic .. 176

MDA - Model-Driven Architecture .. 121

MIC - Model-Integrated Computing .. 113

MLM - Medical Logic Module .. 37

MoC - Model of Computation ... 33

PIM - Platform Independent Models ... 121

PIS - Pharmacy Information System ... 103

PRODIGY - Prescribing RatiOnally with Decision-support In General-practice studY 70

PSM - Platform Specific Models ... 121

RIM - Reference Information Model ... 52

SAGE - Standards-based Sharable Active Guideline Environment .. 70

SIRS - Systemic Inflammatory Response Syndrome... 110

SpEM - Specification Execution and Management Plan ... 70

SSC - Surviving Sepsis Campaign ... 114

STEEP - Sepsis Treatment Enhanced through Electronic Protocolization....................................... 113

TMS - Treatment Management System ... 116

TNM - Task Network Model .. 83

UI - User Interface ... 25

UML - Unified Modeling Language ... 13

UMLS - Unified Medical Language System ... 73

vMR - Virtual Medical Record ... 40

xv

VOIS - Vanderbilt Oncology Information System .. 189

VUMC - Vanderbilt University Medical Center .. 113

WSBPEL - Web Services Business Process Modeling Language ... 13

xvi

LIST OF NOMENCLATURE

The following list contains phrases, for which definitions are defined in this document. These

phrases are highlighted with a custom style (italicized and underlined). Their definitions can be

found either before or after the phrase.

Action (in CIGs) .. 9

Atomic Action (in CIGs) ... 9

Behavioral Semantics .. 33, 118

CIG-based CDSS ... 10

Clinical Decision Support System (CDSS) .. 2

Clinical Information System (CIS) .. 1

Clinical Pathway .. 11

Clinical Practice Guideline (CPG) ... 4

Clinical Process Management (CPM) .. 3

Clinical Workflow (CWF) ... 3

Cognitive Function .. 2

Communication Protocol .. 102

Composite Action (in CIGs) ... 9

Computer Interpretable Guideline (CIG) .. 7

Computerized Physician Order Entry System (CPOE) ... 3

Condition (in CIGs) .. 8

Consistency (of CIG-based treatment) .. 99

Context (in CIGs) ... 10

Contextualized Guideline (see ‘Personalized Guideline’) ... 10

Contraindication ... 12

Data Point (in CIGs) ... 8

Decision Support System (DSS) ... 3

Delegated Atomic Action (in CIGs) .. 9

Directed therapy ... 95

Domain-Specific Modeling Language (DSML) ... 13

Empiric therapy ... 95

xvii

Engine (see ‘EE’) .. 10

Event (in CIGs) ... 8

Event-Condition-Action (ECA) Rule ... 19

Evidence-Based Medicine (EBM) .. 5

Executable Atomic Action (in CIGs) ... 9

Execution Engine (EE).. 10, 24

Execution Semantics (also see ‘Behavioral Semantics’) ... 33, 118

Formal Grammar ... 13

Formal Guideline ... 6

Formal Language ... 13

Formalism (see ‘Formal Language’) .. 11

Goal (in CIGs) ... 8

Graphical User Interface (GUI) .. 26

Grey Tracking .. 98

Guideline (see ‘CPG’) .. 4

Health indicator .. 94

Health indicator - Abstract .. 109

Health indicator - Composite .. 110

Health Level Seven (HL7) .. 74

Information Exchange Interface ... 102

Instance (of a CIG or Guideline) .. 11

Interference (of two or more CIGs) .. 90

Medical Logic Module (MLM) ... 37

Medical Terminology .. 28

Mid-flight Update .. 99

Model of Computation (MoC) ... 33

Modeling ... 13

Model-Integrated .. 113

Objective data ... 94

Open World Assumption... 7

Order Sentence ... 140

Order Set ... 9, 140

xviii

Orderable (see ‘Order Set’) ... 9

Outcome Expectancy .. 6

Parameter (in CIGs) ... 8

Personalized Guideline ... 10

Problem (in CIGs) .. 8

Protocol (see ‘CIG’) ... 7

Reference Information Model (RIM) .. 72

Rule-Based CIG Language ... 83

Rule-Based System .. 19

Scope ... 17

Self Efficacy ... 6

SF - Stateflow (in Matlab) ... 155

Side Effect Free ... 82

SLDV – Simulink Design Verifier (in Matlab) ... 155

Solution (in CIGs) ... 8

Structural Semantics ... 132

Ternary Logic ... 60

TNM-Based CIG Language (see ‘Workflow-Based CIG Language’) ... 84

Unified Medical Language System (UMLS) ... 73

Validation of CIGs .. 22

Verification of CIGs ... 22, 101

Version fork ... 92

Versioning (of CIGs)... 92

Virtual Medical Record (vMR) ... 72

Workflow-Based CIG Language ... 84

xix

LIST OF GUIDELINE-RELATED PROJECTS

AAPHelp .. 19

ABEL .. 20

Arden Syntax ... 36

Arezzo (see ‘PROforma’) ... 42

Asbru ... 61

AsbruView (see ‘Asbru’) .. 64

Asgaard (see ‘Asbru’) .. 61

CareVis (see ‘Asbru’) ... 67

CASNET .. 19

DeGeL (see ‘Asbru’) ... 65

Delt/A (see ‘Asbru’) ... 67

DXplain .. 20

EMYCIN (see ‘MYCIN’) ... 19

EON ... 70

GASTON ... 80

GELLO (see ‘GLIF’) ... 52

GEM ... 70

GEODE-CM .. 80

GLARE .. 80

GLEE (see ‘GLIF’) .. 52

GLIF ... 51

GUIDE .. 70

HeCaSe2 .. 80

HELEN .. 80

INTERNIST I .. 19

MYCIN ... 19

NewGuide ... 80

ONCOCIN ... 20

PIP ... 19

Prestige ... 80

xx

PRODIGY .. 70

PROfroma .. 42

PUFF (see ‘MYCIN’) ... 20

QMR (see ‘INTERNIST’) ... 21

SAGE .. 70

SIEGFRIED .. 80

SpEM ... 70

Spock (see ‘Asbru’) .. 68

Stepper .. 80

Tallis (see ‘PROforma’) .. 42

TMYCIN (see ‘MYCIN’) ... 20

1

CHAPTER I.

INTRODUCTION TO GUIDELINE-DRIVEN CLINICAL INFORMATION SYSTEMS

In order to understand why the use of guideline-driven clinical information systems is important in

modern health care one needs to examine the current challenges that health care faces today.

Challenges in health care

According to a recent study of the Institute of Medicine, the primary challenges of health care currently

are to make health care delivery safe, effective, patient-centered, timely, efficient, and equitable [1].

The study stresses that although addressing these challenges entails many different factors (e.g.

emphasis on disease prevention rather than disease treatment), none is more important than the

effective use of information. The study provides examples for effective use of information that includes:

(1) cognitive support for health care professionals to help integrate evidence-based practice guidelines

and research results into daily practice and to help integrate patient-specific data where possible, (2)

instruments and tools that allow clinicians to manage a portfolio of patients and to highlight problems as

they arise both for an individual patient and within populations, (3) rapid integration of new

instrumentation, biological knowledge, treatment modalities, etc. into a “learning” health care system

that encourages early adoption of promising methods

Potential solutions

Clinical Information Systems

To alleviate some of the above mentioned challenges, namely to reduce preventable errors in patient

care and minimize administrative burdens, health care organizations (HCOs) are migrating from

traditional, paper-based records to clinical information systems (CISs), a collection of computer-based

applications that enables sophisticated services for patients and health care providers.

Various empirical evidence indicates that CISs can decrease health care costs [2–5], strengthen staff

productivity [6–8] and promote patient safety [9,10]. Consequently, HCOs are adopting CISs to enable a

2

wide array of functions, including data sharing, decision support, employee training, student education,

research, and access to reference materials.

Possibility for further improvements

The increasing role of CIS is reflected in another recent study published by the Committee on Engaging

the Computer Science Research Community in Health Care Informatics [11]. This study defines general

principles for success for future health care systems, developed as a guide for CIS designers.

While elaborating on these principles, the committee agreed that a 21st century vision of health care

would require intensive use of information technology to acquire, manage, analyze, and disseminate

health care information and knowledge. The primary design challenges were categorized as: (1) data

management, (2) integration and (3) medical knowledge management.

The design and use of CISs that base their operation on electronic medical records (EMRs)1 adheres to

the principles mentioned earlier and directly addresses the design challenges that fall into the first two

categories. Accordingly, data management functions (1) take advantage of advanced information

technology in creating and maintaining large-scale data repositories and in the automatic (e.g. sensor-

based) capture of patient data. Solving the integration challenge for CISs (2) includes providing support

for collaboration and for information sharing among software systems.

However, some of the most complex challenges are related to (3), the management of medical

knowledge. Open problems include support for assisting the cognitive functions2 of all caregivers (e.g.

health professionals, patients, and their families) and support for capturing, managing and executing

evidence-based guidelines. Due to their significance, we discuss these problems in more detail below.

The components of CISs that are designed to assist cognitive functions in care delivery are called clinical

decision support (advisory) systems3 (CDSSs). They form a significant part of the field of clinical

1
 The phrase EMR and EHR (electronic healthcare record) are often used synonymously. Typically, “EMR” is used in a clinical

setting, often as a direct reference to an EMR-based CIS, whereas “EHR" is more broad expression and can refer to personal
health records or home-based care.

2
 A cognitive function is a “mental process that involves symbolic operations (e.g. perception, memory, creation of imagery,

and thinking). It encompasses awareness and capacity for judgment.” [12]

3
 There are many definitions for CDSS in existence. An example can be found in [13,14], which says CDSSs “link health

observations with health knowledge to influence health choices by clinicians for improved health care”. In this document

3

knowledge management technologies through their capacity to use a combination of technology and

expert knowledge to support the clinical process, from diagnosis and investigation through treatment

and long-term care [16]. Among the full spectra of software components of a CIS there can be several

that include clinical decision support functionality in one way or another. Here, we discuss knowledge-

based versions of CDSSs4, which link health observations (patient data) with health knowledge to

generate case specific advice through inferencing, and thus influence choices made by clinicians for

improved health care [8] (see right side of Figure 1).

Below are examples for established knowledge-based CDSS system categories (a more detailed

presentation of CDSSs including their history is presented in Chapter II).

1. Computerized physician order entry systems (CPOEs): These systems in general depend on

comprehensive EMRs to provide means to physicians and nurses to create and execute orders

for medications, tests, procedures and consults. They often include CDSS functionality to

provide help with the completion and the validation of orders (e.g. recommending proper

dosing and checking for drug-drug interactions). CPOE and related systems are often termed

‘physician workflow’ systems because they are designed to fit into and assist the normative

group of activities that flow in between the specific surrounding systems and are considered the

standard practice of medicine.

2. Clinical process management (CPM) systems: In these systems knowledge, tools and techniques

are applied in a goal-oriented manner to define, visualize, measure, execute, control, report and

improve processes of a clinical workflow. A clinical workflow (CWF) in this context can be

thought of as a collection of organized tasks5 designed to carry out a process in a clinical setting

through facilitating some combination of software systems and groups of people. CWFs often

however, the term CDSS is defined to be more general: as a decision support system (DSS) in a clinical setting. The way DSS is
interpreted in this document is described in [15]. DSS is “an umbrella term used to describe any computer application that
enhances the user’s ability to make decisions. More specifically, the term is usually used to describe a computer-based
system designed to help decision-makers use data, knowledge and communications technology to identify problems and
make decisions to solve those problems.”

4
 Knowledge-driven decision support systems are systems designed to recommend actions to users. These AI-based systems

are typically designed to sift through large volumes of data, identify hidden patterns in that data and present
recommendations based on those patterns.

5
 In this thesis, we use the words task, action and step interchangeably to describe a task potentially deemed for completion

by a person or a system when dealing with a given (sub-)problem in a medical guideline.

4

incorporate the use of various CIS components, including CDSSs to implement one or multiple

steps.

The quality and usefulness of knowledge-based CDSS is determined by many factors, but most

importantly by the quality of the knowledge that they rely on. Thus, it is easy to see that representation

and management of that knowledge is an important factor.

Figuring out how to efficiently represent and manage medical expertise in general is a daunting

challenge due to the fact that it involves so many aspects of medicine. A relatively well-defined subset of

medical knowledge and one of the most desired functionalities of a CDSS is the support for guideline-

based health care delivery. This direction offers documents describing guiding decisions and criteria

regarding diagnosis, management, and treatment in specific areas of healthcare.

Clinical Practice Guidelines

The central focus of our research is to aid the process of capturing, managing, verifying and executing

evidence-based clinical guidelines. We believe that studying the general principles for future health care

systems described in [11] can help us define what guideline-driven systems need to incorporate.

Clinical practice guidelines (CPGs) (or guidelines in short) are “systematically developed statements

(recommendations, strategies) to assist practitioners in making decisions about appropriate health care

in specific clinical circumstances” [17]. CPGs are often implemented around or as a part of CWFs. In [18],

the typical uses of guidelines are listed as: screening and prevention, diagnosis and pre-diagnosis

management of patients, indications for use of surgical procedures, appropriate use of specific

technologies and tests as part of clinical care and care of specific clinical conditions.

In essence, CPGs provide guidance in (1) identifying clinical situation (e.g. diagnosis of a clinical

condition) and/or (2) the management of a clinical process associated with a predefined clinical

situation (e.g. executing the steps of a treatment).

Modern medical guidelines are based on the systematic examination of current evidence within the

paradigm of evidence-based medicine to describe appropriate care based on the best available scientific

evidence and broad consensus. Besides their primary goal, CPGs typically have additional objectives,

such as to standardize medical care, raise quality of care, support workflows (including the management

of responsibilities), reduce several kinds of risk (to the patient, to the health care provider, to medical

5

insurers and health plans), provide a focus for continuing education and achieve the best balance

between cost and other medical parameters such as effectiveness, specificity, sensitivity, etc. [19,20].

Evidence-based (or best-practice) medicine (EBM) is described in [21] as conscientious, explicit, and

judicious use of current best evidence in making decisions about the care of individual patients. It should

not be interpreted as “cookbook medicine” as in practice, EBM usually means integration of individual

clinical expertise with the best available external clinical evidence from systematic research.

Using CPGs to disseminate medical knowledge is a common practice; there are a lot of guidelines

already published [22–24] and reportedly used [25].

Relying on CPGs provides many benefits. According to [26], the use of CPGs can improve the quality of

clinical decisions and activities. This, in consequence, improves patient outcomes (e.g. a clinician will

remember to check an important aspect before ordering a specific treatment) and reduces unnecessary

and inappropriate variation in practice. CPGs promote interventions of proved benefits and discourage

those that are ineffective. They also help physicians to use the clinical knowledge about the patient at

the appropriate point of care. Furthermore, CPGs facilitate the reuse of knowledge, because guidelines

can be adapted, tailored and applied to different clinical situations. Last, but not least, guidelines

provide a relatively quick method for the dissemination of state of the art clinical knowledge, including

updates and changes.

Reusability and portability of CPGs to disseminate and promote best clinical practice has major

significance. Guideline authors are encouraged to employ rigorous formal techniques, which help to

ensure syntactic, logical and medical validity of CPGs. Two notable efforts facilitating this guideline

formalization are done by the National Guideline Clearinghouse [27] and the Conference on Guideline

Standardization (COGS).

1. The National Guideline Clearinghouse provides means for standardizing CPGs by offering

recommendations on what components guidelines should include. These recommendations

define various guideline attributes that help specify a CPG, such as categories for classifying the

major focus of the guideline (e.g. counseling, diagnosis, management), clinical specialty for

classifying the field of medicine that might use the guideline professionally (e.g. anesthesiology,

cardiology, hematology), intended users (e.g. people, such as dietitians, nurses and patients or

entities, such as hospitals), objectives, and target population [28].

6

2. The other standardization effort, provided by the COGS, is known as the “COGS checklist”. This

checklist provides a framework (i.e. a recommended schema) for supporting comprehensive

documentation of practice guidelines. The COGS checklist contains 18 topics (e.g. goal, target

population, potential benefits and harms, algorithm, etc.) and their definitions in [29].

Computer Interpretable Guidelines: Explaining the need for computerized CPGs

The use of evidence-based CPGs for managing complex clinical problems is already standard practice.

The integration of published CPGs into clinical workflows through the use of CISs has tremendous

potential and would further extend the usefulness of CPGs. However, according to [30] there are

numerous limiting factors to the adherence of CPGs. These include the lack of awareness of the

existence of guidelines, the lack of agreement with using specific guidelines (or even guidelines in

general), the lack of physician self-efficacy6, the lack of outcome expectancy7, and the inherent difficulty

to change habits in daily behavior.

Still, one of the most difficult problems in the adoption of CPGs is that they are not directly applicable in

CISs, as general guidelines are informal (regardless of the fact that guideline authors are encouraged to

employ rigorous formal techniques to help ensure syntactic, logical and medical validity of CPGs [26]).

This is because CPGs are phrased using natural languages. To be truly effective, CPGs must be captured

in a formal manner, built on information that already exists (or could exist) in CISs, and must be

customizable to different clinical situations thus be transformed into individualized clinical care plans

(guideline instances). The formalness of guidelines here means that the meaning of guidelines has to be

unambiguous in the context in which they are planned to be used. If the goal is human interpretation

then the guidelines have to use terms that are unambiguous to health care professionals. If the goal is

guideline execution on a specific (software) platform then guidelines have to use concepts that are

unambiguously understood by the platform. Finally, if the goal is theoretical execution and analysis then

the guidelines require a mathematically precise definition.

6
 Self-efficacy is the belief that one can actually perform a behavior. It influences whether a behavior will be initiated and

sustained despite poor outcomes.

7
 Outcome expectancy is the expectation that a given behavior will lead to a particular consequence.

7

The first step in this direction would be the development and acceptance of guideline representation

languages with well-defined syntax and semantics. However, the implementation of guideline-based

CDSS, including the representation of clinical knowledge still lacks proper standards. Certainly, there

have been several formalization attempts – discussed in Chapter II – each tackling a certain aspect of

clinical knowledge representation with various breadth and depth. Some of them have even been

accepted as standards. Nevertheless, none of them can be seen as a complete solution, thus the

building of these systems remains difficult.

Current implementations of knowledge-based systems typically become “one-offs”: to achieve a specific

objective, system developers study a specific clinical process and environment, then develop specific

code using high-level programming languages to address the problem in that local environment. Over

long periods of time (years to decades), adding new functionality and evolving CIS (including CDSS)

capabilities can become more difficult than initial development. Commercial vendors experience

difficulty in supporting “one size fits all” systems for diverse customer bases. The growing complexity of

biomedical research and clinical practices exacerbates the local “re-inventing the wheel” problem to a

breaking point.

The integration of CPGs into existing or future CIS requires the guidelines to be interpretable and

manipulatable by computers. We define computer interpretable guidelines (CIGs) as formal, computer-

readable versions of CPGs consisting of a coordinated composition of (medical) tasks or actions, with a

mathematically precise notation and well-defined semantics. These properties of CIGs allow them to

serve as a substitute for direct code-based implementation of CPGs.

CIGs (in this document also referred to as clinical protocols, or protocols8 in short) can be seen as more

specific than CPGs, defined in greater detail. Regular CPGs can be incomplete, which means that directly

implementing the logic described within can lead to unwanted non-determinism (i.e. ambiguity). In

addition, – in the case of CPGs – the open world assumption9 is practiced: information is provided only

on the matter of interest and a lot of the described conditions, actions, etc. are context dependent.

8
 Is this thesis, we use the terms CIG, protocol and guideline interchangeably. To resolve ambiguity for the word “guideline”

we use the term CPG whenever it is necessary to make the distinction from CIGs.

9
 The open world assumption is the opposite of the closed world assumption, which holds that any statement that is not

known to be true is false. This means that – in case of open world assumption – what is not explicitly stated cannot be
known or assumed.

8

Protocols, on the contrary, employ the closed world assumption: they provide "a comprehensive set of

rigorous criteria outlining the management steps for a single clinical condition or aspects of

organization" [20]; they also must not contain unplanned non-determinism.

Basic design of CIGs

The design of CIGs has attracted significant attention. Based on much shorter descriptions provided in

[31] and in [32], we extended the list of components of guidelines to be the following.

1. The problem (e.g. an unwanted health condition) is a situation of interest, for which a solution

(e.g. treatment) needs to be provided. The problem is defined by:

 a set of conditions describing the problem (e.g. treatment is for female subjects who

have a blood pressure reading outside of a specified target range for at least five

minutes). Conditions are usually specified with the help of logic formulas that reference

various relevant (clinical) parameters.

 a set of parameters (i.e. attributes) used in conditions. They are situational beliefs made

available directly through measurements and observations, or indirectly through

calculations, including estimations. The type of these parameters determines whether

the automatic monitoring of conditions is possible (e.g. a patient’s heart rate can be

automatically monitored with a sensor, but a condition such as “stomach ache” needs to

be entered in to the EMR by someone manually). Parameters either can be linked to

o events, which are detectable or derivable occurrences that are triggered by the

changes in the state of patients (e.g. disease progression), or the changes in the

state of treatments (e.g. performed provider action), or

o data points, which are queriable, time stamped values for storing the result of

measurements and observations.

2. The solution (e.g. treatment plan) for the problem specified. It is composed of a set of goals that

allow a solution to be determined successful (or unsuccessful) and a coordinated set of actions

that are designed to achieve these goals. Specifically:

 a goal (i.e. intention), which according to [33] represents “temporal patterns of provider

actions or patient states, to be achieved, maintained, or avoided”. In further

9

elaboration, a goal describes the motivation by associating a problem and a solution and

defines targeted patient and protocol states (e.g. blood pressure of the patient has to

stay inside a specified range for two weeks).

 a set of actions, which range from diagnostics through message exchange to clinical

interventions (e.g. administer a certain drug 3 times a day before meals). An action can

be

o an atomic (or simple) action: these actions are atomic from the point of view

of the entity interpreting the CIG. This means that decomposition of the

action is either not needed (i.e. execution is done by the interpreting entity),

or performed by another entity (i.e. delegation).

 delegated atomic action: these actions are assumed to be completed by

other (servicing) entities. The example provided above is considered

atomic if the CIG was designed for physicians and the action

(“administer a certain drug 3 times a day before meals”) is performed

by the patient. Another example for atomic, but complex actions would

be an order set10, where the entity interpreting the CIG (e.g. physician)

understands that another entity (most likely a CPOE system) will handle

all necessary tasks11 related to the order.

 executable atomic action: these actions are assumed to be completed

by the entity interpreting the CIG. An example for this would be an

information-gathering step describing the need to measure the weight

of the patient at a routine visit.

o a composite action: these actions are a coordinated composition (e.g. serial

execution) of (atomic or other composite) actions to provide a solution to an

associated problem.

10
 An order set (or orderable) is “a functional grouping of orders in support of a protocol that is derived from evidence based

best practice guidelines” [34]. Order sets have a specific purpose, they may contain conditional logic, they may be part of a
larger care plan, and some items in an order set may be fully specified, others may have more optionality.

11
 Necessary tasks, in case of a medication bundle, include checking for contraindications (e.g. drug-drug interactions, allergies,

etc.), transportation, and administration.

10

The context is also often specified, which includes all relevant clinical conditions. By extending the

definitions for the problem and the solution, this component aids in identifying the situations when a

CIG is allowed, recommended, required or contraindicated.

Composition and decomposition are important notions in the design of CIGs. On one hand, the use of

appropriate logic allows the decomposition of problems into smaller sub-problems, to which simpler

solution can be linked. On the other hand, with the help of composite actions, solutions can also be split

into a set of sub-solutions. Both of these require the ability to express precise coordination of sub-

components. Both the coordination and the decomposition are always performed by the entity

interpreting the CIG.

CIG execution - Patient management based on CIGs

Both CPGs and CIGs are designed to define what actions need to be taken in specific clinical situations.

There is however, a great difference between the two when it comes to their application.

In CPG-based patient management, clinicians study the guidelines by understanding all suggested

actions and their specified context (i.e. clinical conditions, indications, etc.). Then for any given patient in

(guideline) execution time, they apply the knowledge by deciding which parts of the CPGs are relevant.

Performed actions, the state of the patient, and the intentions of the medical staff are recorded,

observed, and abstracted over time. This process of applying general medical knowledge to a care

process and then to a specific patient’s medical condition(s) can be considered as a mapping of medical

knowledge to cognitive decision support. The result is a personalized (or contextualized) guideline. It

involves interacting with models (i.e. abstractions) of the patient placing the raw data into context and

combining them with medical knowledge in ways that make clinical sense for a given patient. The

mapping is also influenced by many non-medical factors, such as resource constraints (e.g. cost-

effectiveness analysis, value of information), patient values and preferences, cost and time.

Assuming that CIGs are captured properly, systems facilitating them can do some of this functionality

automatically. In a CIG-based CDSS12, CIGs are interpreted by a special software package called the

execution engine (EE, or engine in short). An ideal EE is developed to provide two main functionalities.

12
 A CIG-based CDSS is a software system or group of systems that rely on the internal representation of CIG for providing

clinical decision support.

11

First, it needs to understand and configure its behavior according to the guideline specifications

provided in the form of CIGs. This step involves setting up communication channels towards other CISs

(such as EMR and CPOE systems) and interpreting defined actions that can theoretically include ones,

such as displaying recommendations on a dedicated interface, automatically administering a certain

dose of medication through an intravenous line, performing a complete sub-protocol, or requesting

other systems to perform an action. Second, it needs to continuously maintain the state of the guideline

by communicating with and building on information from users and other systems. This way raw patient

data can be automatically received, filtered, monitored, put in context and (in case their initiating

condition is satisfied) a series of predefined actions can be automatically performed by the engine.

Personalized CIGs are also referred to as guideline instances. The resulting series of steps form a clinical

pathway13. The quality of support is dependent on (1) the expressivity of the CIG formalism14, (2) the

quality of the CIG models (including number of various aspects and the level of detail), (3) the quality of

the input parameters (including sampling rate and precision of objective clinical data), and (4) the

implementation of the execution system.

Benefits of Computer Interpretable Guidelines

Computerized support for implementing and executing such guidelines as formalized patient

management protocols provides several benefits over and above those offered by CPGs [20]:

 CIGs are adaptable: CIS that capture general evidence-based CPGs can be tailored to fit into

daily practice.

 CIGs can be specific: based on the evidence-based recommendations they encode, they can

automatically generate recommendations tailored for an individual patient/case.

Recommendations may include:

13
 Clinical pathway is a trajectory of a CPG/CIG; a subset of tasks and split-paths in the CPG/CIG followed by the medical team

for a given patient that results in one specific traversal of the guideline.

14
 In this thesis, we use the terms CIG representation language and CIG formalism interchangeably to refer to a method for

describing CIGs.

12

o offering a set of potential problems (i.e. diagnostics),

o offering a set of valid solutions (actions) in a given scenario,

o helping with the selection from alternatives (while considering timing,

contraindications15, cost, local preferences, etc.),

o helping with setting up their parameters of actions (e.g. dosing),

o helping with the timing of actions (including their relative order), and

o helping with the delegation of actions.

 CIGs are explicit and formal: they help improve the clarity of a guideline, e.g. in decision criteria

and clinical recommendations. CIGs also help offer better descriptions of patient states.

 CIGs support automation: they are an attractive paradigm for clinical decision support tools,

since much of the knowledge contained in guidelines has already been rendered explicit [36].

With the help of such systems, CIGs can automatically propose triggers for timely patient

screening and patient-specific decision support, and associated alerts and reminders. This

feature also enables automatic documentation of CIG execution (i.e. trace logs).

 CIGs support analysis: they can reveal errors in the content of a guideline by validation,

simulation or verification. A CIG-based system can facilitate the tracking of protocol execution,

which would help not only with encouraging compliance, but also improve the protocols

themselves by enabling the analysis of outcomes (e.g. effectiveness of one solution versus

another, time to respond metrics, cost analysis, etc.).

 CIGs can be linked to other knowledge sources: they offer a readily accessible reference,

providing selective access to guideline-specific knowledge.

 CIGs enable knowledge transfer: they are based on the best practice available at the time and

models can be updated on a regular basis as new findings emerge in the medical literature.

Figure 1 illustrates how the two different guideline representations can be used to drive guideline-based

CDSSs, which are a small subset of all possible CISs (see Euler diagram on the right side of the figure).

15
 “A contraindication is a specific situation in which a drug, procedure, or surgery should NOT be used, because it may be

harmful to the patient” [35].

13

Figure 1 - The specializations of CDSSs

Representing CIGs

The formal specification and representation of CIGs require the use of a formal language16. Using the

abstractions provided by such a language enables the precise representation of the components (main

concepts, flow of logic, etc.) of CIGs through a process called modeling.

There are many different languages that are formal17, and thus could be considered for modeling CIGs.

This list includes standard general-purpose programming languages (such as C++ and Java), standard

general-purpose modeling languages (such as UML (Unified Modeling Language) [39] and WSBPEL (Web

Services Business Process Modeling Language) [40]) and specialized, purpose-built domain-specific

(modeling) languages (DSML or DSL), which are programming or specification language designs with a

16
 A formal language is defined by a set of words (finite strings of letters, symbols, or tokens), where the letters are taken from

an alphabet over which the language is defined. The set of valid words in a formal language is a subset of all possible
combinations of letters from the alphabet, where validity of the words in the language is often defined by means of a formal
grammar (also called its formation rules). Formal languages are entirely syntactic in nature but may be given semantics that
give meaning to the elements of the language. [37] A formal grammar is a quad-tuple: G = (N, Σ, P, S), where N is a finite set
of non-terminals, Σ is a finite set of terminals and is disjoint from N, P is a finite set of production rules of the form w ∈ (N ∪
Σ)∗ → w ∈ (N ∪ Σ)∗, S ∈ N is the start symbol [38].

17
 They are formal in the sense that their constructs (or abstractions) have well-defined semantics.

CIS

CDSS

Knowledge-based CDSS

e.g. CPOE, CPM

CDSS implementing
clinical inferencing

Guideline-based CDSS

Informal
guidelines

CPG1

CPG2

CPGn

…

Formal
guidelines

CIG1

CIG2

CIGn

…

formalization

CIGs serve as configuration for a model-based implementation

CPGs serve as informal requirements for a hardcoded implementation

14

particular problem domain, a particular problem representation technique, and/or a particular solution

technique in mind [41]. Formal languages use different levels of abstractions and vary in their

expressiveness and their usability for a given task. Consequently, selecting an appropriate formal

language for modeling CPGs as CIGs is not a trivial task.

Modeling requirements

There are certain generic modeling requirements that a potential formal language would need to satisfy

in order to be considered “usable”. These are the following:

1. Protocol models (i.e. formally modeled CIGs) need to capture medical knowledge explicitly

and avoid ambiguity:

a. Having an explicit and precise semantics allows for the understanding of the CIG without

the system in which the CIG is used (e.g. EE).

b. The semantics of the language should be specified in such a way that any operation

defined by a guideline has a precisely defined and unambiguous effect [42].

Unambiguity is also the requirement of a computer-based execution. CIGs of course

often allow some degree of planned non-determinism, but these are resolved in

runtime. (E.g. during the treatment of a patient, the used guideline provides alternative

recommendations and the acting physician makes the selection on which alternative to

go with).

2. Protocol modeling languages need to represent concepts that are specific to the medical

domain: The authors of [33] describe essential characteristics of the medical domain in the

following way:

a. Actions and effects are not necessarily instantaneous: actions are often continuous (i.e.

have a duration) and their effects might be delayed,

b. goals often have temporal extensions,

c. there is uncertainty regarding the effect of available actions,

d. unobservable, underlying processes determine the observable state of the world,

e. goals may not be achievable, and

15

f. parallel and periodic execution of plans, treatment processes is common.

g. In addition to these, previously recorded clinical data is often questioned and may be

deemed to be untrusted or false.

3. Protocol modeling languages need to support various levels of specialization: Ideally, a

protocol could be phrased in a general manner without being tied to specific medications,

workflows or software systems at specific places. On the other hand, ideally, they would also

support specialization by allowing the use of local abstractions (e.g. local interpretations and

best practices). This would allow for a much faster adoption of CIGs developed by other groups

and HCOs.

4. Protocol modeling languages need to support various modeling aspects and their composition:

There are many different aspects affecting guideline execution. These include laws and

regulations, HCO-specific rules, physical constraints (such as availability of a certain medication

at a given place and time), separation of roles performing actions, locations, etc. These aspects

would ideally be separated and maintained by different personnel. The composition of these

aspects would also need to be supported.

5. Protocol modeling languages need to support end-user programmability. Medical

professionals need to comprehend and field experts need to edit and update the models easily,

eliminating the need for IT personnel to mediate between the medical and computer fields. This

would allow domain experts to directly manipulate the expected behavior of the guideline-

based system.

Selecting a suitable modeling language

There are no widely accepted textual or visual languages for capturing CPGs. By examining the three

classes of languages in the light of the previously defined requirements, we get Table 1.

16

Table 1 - Suitability of various formal language groups for satisfying requirements for modeling CPGs

Requirement 1

Unambiguous
Explicit Semantics

Requirement 2

Specialized
Medical Concepts

Requirement 3

Levels of
Specialization

Requirement 4

Composition of
Modeling Aspects

Requirement 5

End-user
Programmability

General-purpose
programming languages

Possible Not suitable Not suitable Not suitable Not suitable

General-purpose modeling
languages

Suitable Not suitable Suitable Suitable Not suitable

DSMLs Suitable Suitable Suitable Suitable Suitable

As general-purpose programming languages provide an extremely low abstraction layer for modeling

guidelines they are not ideal for representing CPGs. Similarly, general-purpose modeling languages are

not suitable if requirement 2 and 4 are important factors. DSMLs on the other hand can support all

listed requirements.

This raises an important question: Is there (or is it possible) to define a single DSML to represent all

guidelines or not? The history of standardization indicates that people usually want one, but there are

many factors making the problem of finding and ideal language difficult. In short, there are different

formalization requirements, which are based on the differences in guidelines, users, locations, etc. In

more detail:

 In practice, people use local abstractions and configurations.

 Guidelines usually provide guidance in identifying and executing the steps of a solution for

which the guideline was designed for (both in diagnosis and in treatment), but they often put

emphasis on different things. They can

o help identify a given scenario (e.g. automatic diagnosis based on background data

monitoring and evaluation),

o offer a set of valid alternative solutions in a particular scenario,

o help with the selection from a list of alternative solutions (while considering timing,

contraindications, cost, local preferences, etc.),

o help with setting up their parameters of selected solutions (e.g. dosing calculation),

o help with the scheduling of actions, including absolute timing and relative order (i.e.

scheduling triggers, alerts, and reminders),

17

o help with task assignment (i.e. who is supposed to do and what),

o provide means of documentation, and

o provide means of education.

 There are also many various types of clinical problems to be expressed. To determine the scope

of a proposed solution, the following differentiating factors need to be specified:

o Focus: to categorize the type of the problem being addressed (e.g. counseling,

diagnosis, management),

o Clinical specialty: to identify the related field/department of medicine (e.g.

anesthesiology, cardiology),

o Intended users (e.g. hospitals, dietitians, nurses, patients),

o Specificity: to determine the details included in the solution (e.g. does the CIG define a

list of specific medications or just a medication type),

o Timespan: to specify how long can the guideline be relevant (e.g. problem spanning over

a visit or a lifetime),

o Time granularity: to define the required frequency with which data needs to be updated

(e.g. millisecond-based or visit-based information sampling),

o Patient population: to mark the targeted group of patients (e.g. everyone or between

ages 12-14), and

o Representation style: by gaging the state space, including the number of alternative

routes and concurrent paths, appropriate representation can be chosen (e.g. all options

represented with relatively rigid workflows, or many options limited by constraints).

To understand the solution existing formalisms need to be analyzed first. This issue is further discussed

in the “Open problems” section.

18

CHAPTER II.

REVIEW OF FRAMEWORKS FOR MODELING, VERIFYING AND EXECUTING GUIDELINES

Today there are many different frameworks for modeling, verifying and executing medical guidelines in

existence. Built by various groups, each of these CIG-based systems18 differ in their scope and

implementation, but share the fact that they were developed with the intention that by using them non-

programmers will be able to create, maintain and facilitate computerized clinical guidelines [36].

In this chapter, first we present a quick overview of early CDSS efforts, mostly concentrating on ones

implementing clinical inferencing19 (see Figure 1). Non-inferencing CDSS, such as clinical dashboards,

which show each patient’s status in a chart are not evaluated. The historical overview is followed by an

evaluation of a selected set of current CDSSs implementing CIGs, which includes an assessment of both

guideline formalisms and their respective implementations. Finally, in the last section commonalities,

differences and shortcomings are discussed.

Early CDSSs

The formalization of medical knowledge has been an active area of research since the 1960s. Research

into the medicine-related use of artificial intelligence, knowledge representations and formal reasoning

started in the early 1970's and produced a number of experimental systems [16]. Early efforts were

focused on creating systems that mapped signs, symptoms and laboratory results to probabilistic

estimates of different diagnoses [43]. These expert systems did not prove to be practical for the

everyday practice of medicine. Only with the development and use of the EMR, have knowledge-based

systems been adopted by practitioners [44].

[16] and [45] provide an informative summary of these early systems:

18
 In this chapter, we use the words “system”, “framework” and “approach” interchangeably to refer to a CIG-based CDSS.

19
 Clinical inferencing here means logical inference over clinical knowledge.

19

 CASNET (Causal ASsociational NETworks) (1960) [46], developed at Rutgers University and

implemented in FORTRAN, is a general tool for building expert system for the diagnosis and

treatment of diseases. Its most significant application was the CASNET/Glaucoma system,

designed for the diagnosis and treatment of glaucoma.

 PIP, the Present Illness Program (1970) [47], was built by MIT and Tufts-New England Medical

Center. It gathered data and generated hypotheses about disease processes for patients with

renal disease.

 AAPHelp (1972-2002) [48], published de Dombal at Leeds University, UK [49] is a system for

supporting clinical assessment and decision-making in case of acute abdominal pain. Based on a

naive Bayesian approach this early attempt implemented automated reasoning under

uncertainty.

 INTERNIST I (1974-1985) [50–52], is a rule-based20 CDSS designed to support diagnosis

developed by Myers, Miller, Pople and Yu at the University of Pittsburgh as a successor of

DIALOG and the predecessor of CADUCEUS and Quick Medical Reference (QMR) systems, which

are discussed below. It uses patient observations to deduce a list of compatible disease states

(based on a tree-structured database that links diseases with symptoms).

 MYCIN (1976) [55,56], developed by Shortliffe and colleagues at Stanford University, is a rule-

based expert system designed to diagnose and recommend treatment for certain infectious

diseases. It uses inferencing over reported symptoms and medical test results. Clinical

knowledge is represented as a set of IF-THEN rules with heuristic certainty factors attached to

diagnoses and reasoned over to come up with its recommendations. In the case of missing

information, MYCIN would request further information concerning the patient, as well as

suggest additional laboratory tests, to arrive at a probable diagnosis, after which it would

recommend a course of treatment. Upon request, MYCIN would explain the reasoning that led

to its diagnosis and recommendation. Successors of MYCIN include:

a) EMYCIN, or Essential MYCIN (1980) [56–58], is a system that evolved from MYCIN as a

domain-independent framework for building and running new expert systems. The

20
 A rule-based system (also referred to as a production (rule) system) relies on storing and executing event-condition-action

(ECA) rules (also known as production rules) [53]. These rules are basically IF-THEN rules, where the IF part is defined by a
combination of triggering events and evaluated conditions and the THEN part is defined by the actions [54].

20

name was based on the fact that EMYCIN has MYCIN's framework without its medical

knowledge base. EMYCIN is a backward-chaining rule interpreter that has much in

common with Prolog. However, there are four important differences: (1) EMYCIN deals

with uncertainty, so predications have a certainty factor assigned to them as opposed to

true or false, (2) EMYCIN caches the results of its computation in order to avoid

duplication, (3) EMYCIN provides an easy way for the system to ask the user for

information, and (4) it provides explanations of its behavior.

b) TMYCIN, or Tiny EMYCIN (1987) [59,60], patterned after the EMYCIN, is a simple expert

system tool that only is intended to provide some of the most commonly used features

of EMYCIN in a package that is small and simple. The internal implementation of

TMYCIN has been written from scratch and is therefore different from that of EMYCIN.

c) PUFF [61] is a system designed to interpret pulmonary function tests for patients with

lung disease.

 ABEL (Acid-Base and ELectrolyte program) (1981) [62,63], developed at MIT as a successor of

PIP, is an expert system employing causal reasoning, for the management of electrolyte and acid

base derangements.

 ONCOCIN (1981-1987) [64–66], developed at Stanford University, is a rule-based medical expert

system for the management of oncology protocols. This system was the successor of MYCIN and

predecessor of the Protégé and EON systems. ONCOCIN was novel in the sense that it

attempted to model decisions and sequencing actions over time (e.g. history of past events and

the duration of actions), using a customized flowchart language (OPAL).

 DXplain (1984-today) [67], developed at the Laboratory of Computer Science at the

Massachusetts General Hospital, is DSS that accepts a set of clinical findings (e.g. signs,

symptoms, laboratory data) to produce a ranked list of diagnoses which might explain (or be

associated with) the clinical manifestations. DXplain provides justification for why each of these

diseases might be considered, suggests what further clinical information would be useful to

collect for each disease, and lists what clinical manifestations, if any, would be unusual or

atypical for each of the specific diseases. DXplain provides a description of over 2400 different

diseases over 5000 different clinical conditions.

21

 QMR (Quick Medical Reference) (1980) [68,69], developed by the University of Pittsburgh and

First Databank, California, is a diagnostic reference tool and consultation program, designed to

provide general practitioners with easy access to the INTERNIST-1 knowledge base. QMR was

designed with three types of uses in mind: (1) an electronic textbook, (2) an intermediate level

spreadsheet for the combination and exploration of simple diagnostic concepts, (3) an expert

consultant program that assists users with generating hypotheses for complex patient cases.

CIG lifecycle

An aspect, which has to be understood for our evaluation, is the lifecycle of a CIG. This will help in

understanding what the required components of a CIG-based CDSS are, which is described in the

following section. We already discussed what a guideline-based execution means in the “CIG execution -

Patient management based on CIGs” section, but the steps that get us there have not yet been

mentioned. Based on [70] we define the lifecycle of a CIG to be composed of the following steps:

Figure 2 - Lifecycle of a CIG

Conceptual
modeling

Formal
modeling

Testing

Dissemination

Local
adaptation

Use

Analysis

Update

22

The steps of Figure 2 are explained below21:

1. Conceptual modeling: The development of guidelines starts with the modeling of functional

requirements of the intended application. This helps define the details and the characteristics

that must be present in the resulting guidelines. The produced functional requirements can also

serve as explicitly defined properties, which can be validated or verified in the testing phase.

2. Formal modeling (i.e. encoding or authoring): As part of the modeling process, guidelines (and

their documentation) are created. This process can be aided by using authoring tools designed

to capture the details needed by a particular model, while guaranteeing the unambiguity of the

created models.

3. Testing: “This can be considered a step in authoring, aimed at determining that structured

elements are precise, unambiguous, and syntactically and semantically correct (terms defined,

with details for attributes such as units and allowed ranges), and that logical expressions and

pathways are consistent and fully specified.” Testing may include:

a. Validation, which in the case of CIGs, means determining the degree to which the logic

captured in a CIG implements the expected behavior. During the validation process,

domain experts often analyze this through the simulation of test cases in an

environment similar to (or the same as) the final execution environment.

b. Verification of CIGs, which means that there is support for phrasing requirements and

specifications that include a range of safety, security and privacy related properties

independently from CIGs that can then be used to check whether or not they hold for

the CIGs in a particular environment.

4. Dissemination: The encoding scheme and the storage solution of guidelines must support

retrieval and interpretation upon demand.

5. Local adaptation (i.e. customization of adopted models): There is a huge number of potential

guidelines, and many possible implementation platforms. Thus, it is desirable to configure and

customize guidelines not only for various applications (e.g. similar clinical conditions), but for

the handling of various local constraints as well. Local constraints include:

21
 Excerpts are taken from [70].

23

a. Adaptation of the medical content of guidelines, to conform to situational constraints

and distinctions such as:

i. lack of availability of certain resources specified in a guideline (e.g. no MRI

scanner)

ii. local policies (e.g. complying with local user access control rules for preserving

privacy)

iii. local preferences and workflows (e.g. substitution of one medication for

another in the same class)

iv. contextual differences (e.g. field, home, office, hospital).

b. Integration with an implementation system (local dissemination): Furthermore, the

application may need to be implemented in a variety of information system settings,

with differences in:

i. platform (i.e. the host CIS, including potentially many other interacting CIS

components)

ii. user interface

iii. workflow (i.e. defining the order in which different functions and systems are

invoked)

iv. encoding of data and knowledge.

c. Local testing (e.g. integrity, integration, etc.)

6. Use / application: The use of CIGs means their execution. During this phase, CIGs help with data

aggregation, diagnosis, order management, resource management, etc. depending on their

intended purpose22.

7. Analysis: The effectiveness – including accuracy, cost, compliance and usability – of CIGs needs

to be analyzed either during runtime or retrospectively, which means that context (including the

measured values and selected decisions) needs to be documented, monitored for effectiveness,

and used to improve the support models.

22
 More on the execution of CIG can be found in the “CIG execution - Patient management based on CIGs” section.

24

8. Revision and update (i.e. evolution): As guidelines change over time, “it is necessary to identify

the impact on local adaptations and on implementations in which guidelines are embedded, so

they can be updated appropriately.” Updates then need to be propagated to CIGs in place. In

addition, mid-flight update mechanisms are needed to be worked out in order for updates not

to interfere with critical CIG-based patient management already in place.

Components of a CIG-based CDSS

In order to evaluate CIG-based approaches their architecture needs to be studied first. We found that

such frameworks usually consist of (1) a guideline formalism for representing CIGs and (2) a supporting

software suite for capturing, managing, executing and evaluating the CIGs.

1. Guideline formalism: All examined approaches employ a DSML. The purpose of these languages

is to formally represent CIGs (and potentially other related information). Languages vary in

terms of their scope, expressivity, the levels of abstractions provided, and their degree of

formality.

2. Software suite: All examined approaches employ some sort of software suite, which consists of

one or more software components. Typical components of software suites are the following:

a. Modeling environment: The purpose of the modeling environment is to enable the

domain experts (i.e. knowledge engineers) to capture CIGs while enforcing the (syntactic

and semantic) rules defined by the DSML. The modeling environment can be text or

diagram based.

b. EE: As described in previous sections, the purpose of the execution engine is to provide

an implementation of the semantics of the general guideline formalism, or in other

words, take CIGs (defined with the help of DSMLs), interpret them and enact them for a

specific patient. This means that an ideal EE will (1) configure its behavior according to

the guideline specifications, (2) take input from a patient’s EMR and the health care

providers, and (3) compute (i.e. infer) and enact the relevant actions from the CIG using

the infrastructure provided by the CIS where it has been integrated. During operation

the EE maintains a record of the dynamic state of the CIG process, including information

on which tasks have been performed, which need (or need not) be performed, and the

values of any data items associated with the process. With the help of a dedicated

25

interface, the engine implements a set of operations to allow other components to read

or alter the state of the CIG in certain predefined ways [36]. In general, the execution of

the process will require some of these actions to be performed by external human

actors (e.g. clinicians) who will interact with the engine via some set of user interfaces.

c. Communication layer with software integration interfaces: An extension to the EE. In

order for the EE to communicate with its environment, it needs to have one or more

interfaces (IFs) to it. These IFs, together with associated communication protocols,

enable the exchange of necessary events and data (e.g. EMR and operational data)

between the execution engine and other software systems of the CIS. In an ideal case,

they build on both health care and IT standards.

d. Database: An extension to the EE. A database (DB) can be in charge of storing multiple

data sets that are vital to operation. These include:

1. The CIGs, the rules, which will configure the EE. The CIGs themselves can

contain the configurations for not only the guideline-based operation, but also

the user interface and the software integration interfaces as well.

2. User access configuration, for setting up authentication and to control who can

have access to what, when and how. This configuration might be unnecessary if

access control is achieved by other components of the host CIS.

3. An EMR cache, which is a predetermined subset of the EMR for storing patient

data relevant to the CIGs in use. The contents of this EMR snapshot are what

the engine considers as facts in execution time.

4. The EE action log, which is a log of all state changes of the EE. This includes the

user actions, such as which data items were accessed and by who, and what

instructions were given with the help of the system.

5. The current state of the EE, for providing persistency in case of a system failure.

e. Patient management user interface: Another extension to the EE (which

programmatically can be a part of either one of the previous components or can be

implemented by other components of the CIS). The purpose of the user interface (UI) is

to show the status of the CIG enacted by the EE as well as to allow interacting health

care providers to provide information, make decisions, etc. Sophisticated UIs usually

26

present a combination of textual and non-textual (graphical) information, these UIs are

often referred to as graphical user interfaces (GUIs).

f. Testing environment: This optional component can be either (1) a standalone

component or (2) one integrated into other components such as the modeling

environment or the EE. As its name suggests a testing environment allows either

validation by simulation, verification, or both.

g. Analysis environment: An analysis environment is an optional component that supports

the study of the effectiveness of the CIG-based care as well as quality metrics with

respect to cost of treatment, compliance with guidelines, etc. Thus, it provides a

feedback loop for further guideline improvement. It is not necessarily built together

with the rest of the software components as it generally involves a large amount of

manual processing.

Figure 3 below represents a schematic view of the described general software suite.

Figure 3 - Schematic of the components of a general CIG-based CDSS

Evaluation criteria for guideline-based clinical information systems

Based on the review of the published literature on relevant work, as well as personal experience gained

in the STEEP project [71], in this section we describe the list of requirements of an idealistic CIG-based

CDSS. The reason behind creating such a requirement list is to be used as a checklist in the following

CIG

Execution
Environment

Execution
Engine

UI DB
Other CIS
Services

Communication Layer

Design
Environment

Modeling
Environment

Testing
Environment

CIG

Analysis
Environment

Analysis
Tool

Data
Log

Feedback Loop

27

sections where we evaluate and compare various approaches. Evaluation points are categorized

according to three major fields: (1) medicine, (2) computer science and (3) information technology.

Clinical aspect: Utility

One of the most important components of an evaluation of a CIG-based CDSS is the clinical (or medical)

utility of such a system. A proper evaluation of clinical utility of course would need to involve rigorous

testing of the system in its prospective environment, which includes not only other software systems at

the adopting HCO, but the feedback from potential users as well. Even though in this section we list

many points regarding clinical utility, in our subsequent evaluation we can only consider evaluation

points that can be assessed from a technical point of view and without the actual integration of the

system into a specific CIS. We understand that a full evaluation (i.e. one, which includes stress testing,

system integration, clinical compliance checking, and user evaluation) would result in a more complete

evaluation, however such evaluation is out of the scope of this thesis.

Logical adequacy of the CIG formalism

Evaluating the logical adequacy of a formalism for expressing CIGs is a difficult challenge. The

requirement points defined in the “Modeling requirements” section, say that

1. Protocol models (modeled CIGs) need to capture medical knowledge explicitly and avoid

ambiguity.

2. Protocol modeling languages need to represent concepts that are specific to the medical

domain.

3. Protocol modeling languages need to support various levels of specialization (i.e. abstraction

levels).

4. Protocol modeling languages need to support various modeling aspects and their composition.

5. Protocol modeling languages need to support end-user programmability.

Based on these requirements it can be concluded that a CIG representation language needs to provide

high-level (preferably domain-specific) abstractions to hide complexity of the underlying infrastructure,

while delivering a rich enough logic to express CIGs.

28

Logical adequacy of a formalism for a given purpose is greatly dependent on its original scope (the

intended use of the language). In the previous section, “Selecting a suitable modeling language”, we

discussed the factors that determine the scope: focus, clinical specialty, intended users, etc.

Provided Functionality

Although criteria listed in this section are not all necessary conditions, having support for such

functionality can help in the clinical adoption of a formalism:

 Support for modeling and comprehension

o Domain-specificity: As opposed to generic approaches, a DSML-based formalism can

enable medical professionals to comprehend and update the CIG easier. Thus the syntax

should be as close to the domain as possible and the semantics should make it easy to

reason about the behavior of a guideline [42].

o Relying on standardized medical terminology23: As opposed to proprietary

vocabularies, relying on one or more well-known standards24 eases maintenance and

supports portability.

o Use of unambiguous and intuitive syntax

 Textual notation: A textual notation allows computers to exchange information.

The syntax should also conform to or use existing standards (e.g. XML) [42].

 Graphical models: Although there is no consensus whether graphical models are

preferred over textual ones, the existence of graphical representations and

methods for graphical model manipulation can most likely ease clinical

adoption. Having a purely graphical notation though might hinder

understanding the represented logic, so the syntax should take into account

23
 Medical terminology is a vocabulary for accurately describing the human body and associated concepts, including anatomical

terms, medical conditions, processes, procedures, medications, medical roles, medical fields, synonyms, and abbreviations
[72].

24
 Some of the well-known medical terminology standards are described in the “Other important medical formalisms,

frameworks” section.

29

that guidelines may be viewed graphically in ways that hide certain details of

the guideline text [42].

o Existence of a documentation tool: The CIGs themselves should be – as much as

possible – self-explanatory, which can be achieved using a combination of a formal

language, comments and references to external knowledge sources. Additionally, there

could be a need for a documentation tool that is capable of explaining to its users the

reasons why it has recommended a particular course of action, or drawn a particular

inference [36].

o Existence of a modeling tool: The purpose of a modeling tool is multifold: it allows users

to capture CIG and other associated models, while potentially aiding model

development by providing benefits such as enforcing correct-by-construction rules (e.g.

syntax checking and enforcing structural semantics) and acting as a representation tool

(i.e. self-documentation).

 Support for adaptation

o Control over visualization of CIG-related information: This determines whether

knowledge experts have control over how information related to CIG is rendered in the

UI (e.g. there are control mechanisms in the formalism for deciding what elements

should appear or whether a vital sign should be charted as values in a table or as a

graph).

o Support for model adoption (i.e. portability): Model adoption means that one HCO can

either directly facilitate (i.e. incorporate) CIGs defined by another HCO, or it can easily

adapt them to local needs. Support for model adoption from the clinical standpoint

means that points 3) and 4) of the “Modeling requirements” section are supported.

o Reusability of built models: Support for model reuse when constructing new CIGs is an

advocated practice. This is especially true for systems where there is a high number of

CIGs captured. This includes versioning.

 Management of continual change: Support for managing updates to CIGs including the ones in

use.

30

 Support for testing:

o Testing guidelines (prior release) from the clinical point of view means that there is a

testing environment that allows for ensuring that

 original requirements are satisfied, while

 patient safety and

 health information privacy are preserved.

o Testing requires an environment similar (or identical) to the clinical environment where

guidelines are intended to be used.

o Testing needs to effectively evaluate whether an encoded CIG faithfully reflects the

encoder’s intentions. For this evaluation inputs, outputs, decision points, etc. all need to

be recorded.

 Support for analysis: Evaluation of the existence of an (retrospective) analysis environment,

which – similarly to the test environment – at the minimum needs to be able to record the

execution trace of each enacted guideline.

Technology readiness level

Technology readiness level (TRL) is a measure used by some U.S. government agencies and companies

(including the Department of Defense and the National Aeronautics and Space Administration) to

“assess the maturity of evolving technologies (materials, components, devices, etc.) prior to

incorporating that technology into a system or subsystem. Generally speaking, when a new technology

is first invented or conceptualized, it is not suitable for immediate application. Instead, new technologies

are usually subjected to experimentation, refinement, and increasingly realistic testing. Once the

technology is sufficiently proven, it can be incorporated into a system/subsystem” [73]. Here TRL

describes parameters to indicate the readiness of a framework for clinical use:

 Number of protocols modeled

 TRL defined by [73] and adopted for evaluating clinical systems:

1. Basic principles observed and reported

2. Technology concept and/or application formulated

31

3. Analytical and experimental critical function and/or characteristic proof-of-concept

4. Component and/or breadboard validation in laboratory environment

5. Component and/or breadboard validation in relevant environment

6. System/subsystem model or prototype demonstration in a relevant environment: the

framework is operational in a test environment

7. System prototype demonstration in an operational environment: the framework is

successfully integrated into and is used in a particular CIS. This includes its integration

not only into an existing CIS, but into clinical workflows as well.

8. Actual system completed and "flight qualified" through test and demonstration: the

framework is ready to be used in other systems

9. Actual system "flight proven" through successful mission operations: the framework

successfully integrated into and used in multiple CISs

Computer science aspect: Knowledge representation and maintenance

While the previous section explained requirements from the clinical side, this section describes the

relevant properties and requirements from the computer science side. The computer science aspect

deals with the knowledge representation and maintenance, key components for enabling clinical

functionality of the formalism. Since knowledge is managed by the guideline formalism, we need to

explore its relevant properties.

Scope

As stated earlier, we only evaluate domain-specific solutions; however, because solutions vary greatly in

terms of what sub-domain they consider within the domain of medicine, the scope (or domain) of the

formalism needs to be precisely articulated (see Table 2).

32

Table 2 - Questions related to Scope

Property Description

Domain-specificity
What is the definition of the domain? (This question is only relevant if the formalism is domain-specific.)
The definition of the domain includes stating scope items such as focus (diagnosis, treatment, task
assignment, etc.), clinical specialty, intended users, etc.

Knowledge concepts

Knowledge concepts describe the functional elements of the language. Relevant properties can be seen

in Table 3.

Table 3 - Questions related to Knowledge concepts

Property Description

Support for complex structures
Complex structures include using a hierarchy for the decomposition of problems and solutions (tasks)
and reuse of existing components with some form of referencing.

Support for capturing parameters
of tasks

Parameters of tasks include intentions (goals), relevance, success condition, failure condition, etc.

Support for ranking of alternative
solutions

Offering competing alternative treatment options for a patient with a particular configuration of clinical
indicators is typical, however, it is up to the formalism whether treatment absolute priorities, or with a
help of scoring values.

Support for expressing temporality
Temporality is inherent to CIGs, but formalisms may vary greatly in terms of what time related
properties can be expressed by them. A more detailed description can be found in “P1.5 Temporal
reasoning” under the “Open problems” section.

Support for constructing derived
data points

Derived data points are data elements that are not designed to be received by the CIG system (but
could potentially be reused if made available to other systems). Construction of derived data points are
usually done using input data values and logical operators of an expression language.

Formal semantics

Defining the semantics of a DSML provides meaning for models of the language. In the case of DSMLs

that allow the modeling of CIGs, semantics attach meaning to the captured CIGs. The benefit of formal

specification of semantics25 is that it removes unintended ambiguity, thus it helps ensure consistent and

automated analysis of designs, reuse of models between tools, and increases the extent to which

models can be constructed correctly during design. Properties relevant to providing formal semantics

are described by Table 4.

25
 More on how formal semantics for DSMLs are defined can be found in [74].

33

Table 4 - Questions related to Formal semantics

Property Description

Support for execution

Support for execution is dependent on whether the behavioral (or execution) semantics26 of the
elements of the formalism is defined or not. It is important that this semantics describe a guideline-
independent execution model. In addition, where possible, the semantics should allow operations to be
performed in parallel without ambiguity [42].

Support for verification of correct
behavior

Verifying whether a CIG is correct (i.e. conforms to the specification) is only possible if the execution
semantics are clearly defined and there are concepts for formally describing the specification (e.g. in the
form of constraints) against which CIG models can be tested.

Interoperability with other
formalisms

If the semantics of the formalisms FA and FB are explicitly defined with the help of a formal model of
computation (MoC)27, the evaluation of whether a translation of the CIGs expressed with formalism FA
to formalism FB becomes possible.

Error handling
Managing the execution of a CIG in a real-life environment means that there is logic in place for dealing
with data that has been deemed false only after it has been processed by the system (e.g. supporting
the roll-back feature).

Protocol composition

Properties relevant to enabling the composition of protocols are described by Table 5.

Table 5 - Questions related to Protocol composition

Property Description

Support for reuse and
customization of existing models

Reuse of models often requires the customization of the components of the model to be reused.
Customization can range from changing parameters to completely replacing components.

Support for handling protocol-
protocol interaction

Support for handling protocol-protocol interaction allows the analysis of the effect and the resolution of
potential conflicts of multiple guideline instances that are being executed on one patient (e.g. finding
contradicting suggestions).

Security and privacy

Properties relevant to providing security and privacy are described by Table 6.

26
 Behavioral semantics in general defines the dynamic evolution of a system's state along some model of time. For a modeling

language, this means that it describes how the state of a model evolves over time [75]. Execution semantics is closely related
to behavioral semantics, and can be used interchangeably unless the difference is stated otherwise.

27
 A model of computation (MoC) defines the principles of the behavior and the interaction of components. Examples of MoC

include: Finite state machines (FSM), Statecharts – concurrent hierarchical FSM, Timed Automata (TA), Kahn Process
Networks (KPN), Dataflow Process Networks (DPN), Petri Nets (PN) [76].

34

Table 6 - Questions related to Security and privacy

Property Description

Support for security and privacy
criteria modeling

Support for security and privacy criteria modeling includes the definition as constraints or policies over
the existing CIG models.

Support for validation and
verification of the CIG models

Support for validation and verification of the CIG models against a range of safety, privacy and security
related criteria.

Information technology aspect: System integration

The information technology aspect of the evaluation means listing the requirements regarding the

integration of proposed architectures into existing CISs.

Information exchange

Information exchange is vital for any framework that intends to provide patient-based instantiation of

CIGs. Concerns include:

 Data consumption: Data points, which an executing CIG instance bases its decisions upon, must

be provided by the environment (either CIS system components or health care providers).

Unless the CIG-based system is expected to accept data entered manually, this translates to

access to data sources, such as the EMRs. This means that some form of interoperability with

the existing CIS components is required. For interoperability (e.g. automatic consumption of

data coming from a host system), many concerns need to be addressed. These include

specifying the mechanism of access (e.g. used technology and location), addressing security (e.g.

access control), managing availability (e.g. what happens if the source system is not functional,

or how often does data need to be sent), and specifying quality (i.e. minimum requirements for

the data to be accepted, including “shelf life”, acceptable range, etc.).

 Data maintenance: Patient data, health care provider actions and provider-patient interactions

unique to the system need to be automatically captured and stored (logged) according to the

policies of the HCO, state, country, etc.

 Data provisioning: As an active component, a CIG-based system should be able to act as a data

source to other systems as well.

35

 Interface towards the host CIS: In an ideal case, information exchange makes use of medical

data standards28 for easier interfacing to a host CIS.

 Interoperability with other systems that use another formalisms: Although a formalism with

fully specified behavioral semantics allows for the understanding of its relation to another, the

development of translation methods to and from other known formalism directly supports the

reuse of CIGs in systems base their operation on another kind of CIG formalism.

System validation

A given formalism must have a well-defined, publicly available syntax and semantics so that it is possible

to determine whether any given implementation is correctly reading and processing guidelines of the

formalism. If either one is missing, or not available, outsiders will not be able to understand and analyze

CIGs built using the formalism.

System scalability

System scalability is the ability of the system “to handle a growing amount of work in a capable manner

or its ability to be enlarged to accommodate that growth” [77]. Inspection of an approach from the

system scalability standpoint is critical. This means that issues, such as processing speed, request

distribution, and local customization need to be worked out.

System security

The objective of system security is to maintain quality, such as confidentiality, integrity and availability.

It includes protection of information from theft, corruption, etc., while allowing the information and

property to remain accessible and productive to its intended users.

28
 Some of the well-known medical data standards are described in the “Other important medical formalisms, frameworks”

section.

36

Guideline modeling languages, formalisms and frameworks selected for evaluation

Guideline modeling approaches are often categorized into two distinct groups [78]:

 The first group contains model-centric approaches, according to which domain experts build up

conceptual CPG models using concepts from the language. In this case, the relationship between

the model and the original (paper) document is only indirect.

 The second group contains document-centric approaches, which facilitate markup-based tools

for editing and modeling computerized CPGs. According to these approaches, experts take CPGs

(i.e. original, text-based guideline documents) and systematically mark them up in order to

create a gradually more formal model of the selected source.

Here, distinction between model-centric and document-centric approaches is not made as with both

approaches the result will need to be a CIG. Besides, the selection of the translation method is

considered a subjective preference.

The evaluation of all published CIG-based systems is out of the scope of this thesis. In this section, only a

selected set of approaches are presented. To determine which frameworks to evaluate out of the vast

set of available systems, we studied the published literature, mostly concentrating on already existing

evaluations, which helped us identify the four most popular and most comprehensive approaches. The

selected approaches, namely Arden Syntax, PROforma, GLIF and Asbru, are described in the following

subsections.

Arden Syntax

One of the longest established medical knowledge representations is the Arden Syntax [79–81]. It sets

out to provide a standard for capturing ECA rules and has been widely applied by industry [42,82]. Arden

Syntax arose from the need to make medical knowledge and logic explicit and to standardize the way

knowledge is integrated into proprietary CISs. This would allow sharing of the captured knowledge

within and between institutions and make it available for decision making at the point-of-care [34].

Development and maintenance

It was first introduced in 1989 at the Arden Homestead Conference in Harriman, New York. Arden

Syntax was the result of a project run by Columbia Presbyterian Medical Center in New York City and

37

IBM Health Industry Marketing in Atlanta, Georgia. In 1992, Arden Syntax for Medical Logic Systems

Version 1.0 was adopted by the American Society for Testing and Materials (ASTM) [83]. Version 2.0 was

adopted by the Health Level Seven (HL7)29 [84] and the American National Standards Institute (ANSI)

[85] in 1999 and it has been sponsored by HL7 since.

Arden Syntax was formerly a standard of ASTM, but currently it is a standard of HL7. Its development

and maintenance is overseen by the HL7 Arden Syntax Special Interest Group and the Clinical Decision

Support Technical Committee [86]. At the present time, the official version is 2.8 [34,81,87].

Use

Initially, the Arden Syntax was based largely on the encoding scheme for generalized decision support

used in the HELP30 system for providing alerts and reminders, developed at the LDS hospital in Salt Lake

City [86]. Now it is widely used in the medical industry, an example is the Regenstrief Institute, Inc.,

where it is used in the CARE system to deliver reminders or hints to clinicians regarding patient

treatment recommendations [88]. Other examples can be found in [89].

Syntax and Semantics

The Arden Syntax is a rule-based formalism that is used to create self-contained (i.e. independent) units,

called Medical Logic Modules (MLM), each of which encapsulates the logic necessary for an individual

medical decision.

A MLM contains information representing the context in which an individual rule may become relevant,

the logical conditions necessary for it to be activated, and the action (recommendation) that is

performed when it is activated [36]. An individual MLM should contain sufficient logic to make a single

medical decision [86].

An MLM is an ECA rule expressed using a custom procedural formalism. Each MLM can be thought of as

a single-step "condition-action" rule. However, they can be hierarchically nested, which allows their

content to describe a sequence of instructions, (including queries, calculations and logic and write

29
 HL7 is described in more detail in the “Health Level Seven” section later in this thesis.

30
 Health Evaluation through Logical Processing (HELP)

38

statements). Sequencing tasks can be modeled by chaining a sequence of MLM invocations (either

synchronous or asynchronous) inside of another MLM container. MLMs can been used to generate

clinical alerts and reminders, interpretations, diagnoses, screening for clinical research studies, quality

assurance functions, and administrative support.

Arden Syntax has a procedural syntax. The syntax of a MLM is given as a stream of text stored in an ASCII

file in statements called slots [80]. Recently XML versions were also proposed, which eliminates the

need for custom built compilers [90,91]. Each slot consists of a slot name, followed immediately by a

colon (e.g. title:), then followed by the slot body, and terminated with two adjacent (double) semicolons

(;;). The content of the slot body depends upon the actual slot, but it must not contain double

semicolons, except inside comments, string constants, and mapping clauses. Implemented by slots, each

MLM is composed of three main categories: maintenance, library, and knowledge (in this specific order).

In the MLM, the categories and (sub)slots must follow a particular order, however, some slots are

considered optional while others are required [89].

Example

An example MLM written in Arden Syntax from [92] is provided below:

maintenance:

title: CT study with contrast in patient with renal failure;;

filename: astm_ct_contrast;;

version: 1.00;;

institution: ASTM E31.15; SMS;;

author: Harm Scherpbier, M.D.;;

specialist: ;;

date: 1995-09-11;;

validation: testing;;

library:

purpose: Issue alert when physician orders CT study with contrast in

patient with renal failure;;

explanation: If physician orders CT scan with contrast, this rule retrieves

most recent serum creatinine. If the value is less than 1 week old, and

more than 1.5, the system issues an alert to the physician to consider the

possibility that his patient has renal failure, and to use other contrast

dyes.;;

keywords: ;;

citations: ;;

links: ;;

knowledge:

type: data_driven;;

data: last_creat : = read last {"Creatinine level"};

last_BUN : = read last {"BUN level"};

;;

39

evoke: ct_contrast_order;;

logic:

if last_creat is null and last_BUN is null

then alert_text : = "No recent serum creatinine available. Consider

patient's kidney function before ordering contrast studies."; conclude

true;

elseif last_creat > 1.5 or last_BUN > 30

then alert_text : = "Consider impaired kidney function when ordering

contrast studies for this patient."; conclude true;

else conclude false;

endif;

;;

action: write alert_text || "\nLast creatinine: " || last_creat || "

on: " || time of last_creat || "\nLast BUN: " || last_BUN || " on: "

|| time of last_BUN;

;;

urgency: 50;;

end:

Data types

Arden syntax provides a few basic data types essential to medicine (Boolean, number, string, time, and

duration), together with well-defined operations on them and the ability to structure them into lists.

Dynamic data typing (including automatic type conversion) is also provided, and as a result, types are

assigned to variables in MLMs at runtime [80].

Expression language

Arden Syntax also defines an MLM query language, which is an expression language. This query

language allows for the specification of the requirements of MLMs (i.e. input variables for the logic). The

query language offers:

1. a method for specifying input parameters based on what is available in CISs (e.g. vocabulary,

database schema, queries)

2. the specification of time constraints (temporal search window for data samples)

3. a set of operators for producing derived data points with filtering and aggregation (e.g. sum of

measurements, average, maximum, rate of change, newest)

4. and a method for identifying patients.

External references

Arden Syntax bypasses the problem of different institutions having different CISs with different methods

for storing and accessing local data by simply using curly brackets (“{ … }”) to allow the referencing of

40

local vocabularies and to allow the definition of local data retrieval methods [80]. It also assumes an

underlying data model specified as a Virtual Medical Record (vMR)31 [34].

Implementation

There is published information on implementation of both Arden Syntax modeling and execution

environments. An Arden Syntax prototype implementation was developed in Prolog and an EE

implementation using C++ [93] and Java [94]. In addition, in [95] a tool called the MLM Builder was

introduced. It is a self-contained, unified development environment for the creation, testing, and

maintenance of Arden Syntax MLMs. According to the authors, it also generates C and Delphi code. The

implementation of MLMs is usually event-driven. “With an appropriate computer program (known as an

event monitor), MLMs can be invoked and run automatically, generating advice where and when it is

needed, e.g. to warn when a patient develops new or worsening kidney failure” [86].

Advantages and limitations

Some of the advantages of Arden Syntax are listed in [86]:

 It is domain specific. MLMs are intended to be written and used by clinicians with little or no

programming training.

 It is formal in the sense that it has well-defined syntax and with the help of its prototype

implementations execution semantics are also provided.

 It provides mechanisms for defining explicit links to local data, triggering events and messages

to users. It also defines how MLMs can be invoked.

 It provides support for time functions and it ensures that every data element and every event

has a date/time stamp. It facilitates a three-valued logic (true, false, unknown) to support

limited uncertainty as well [32].

Some of the limitations of Arden Syntax are:

31
 The Virtual Medical Record is described in the “Other important medical formalisms, frameworks” section.

41

 The expressiveness of Arden Syntax is limited:

o Arden Syntax was not designed for encoding complex multistep guidelines that unfold

over time. [82]

o It “does not represent anchored intervals of time directly, nor does it explicitly handle

fuzzy times” [80]. However, this issue is being addressed in version 2.8 [34].

o A potential problem with using Arden Syntax is that it has a limited set of predefined

actions. For example, it does not explicitly define notification mechanisms for alerts and

reminders. Instead, this is left to local implementation and – like database queries – is

contained in curly braces in a MLM. [86]

 The maintenance of the MLM specifications is difficult:

o It does not offer mechanisms for complexity management and for managing linked

MLMs [82].

o Since MLM specifications are stored as individual text files, Arden Syntax yields CIGs that

can be neither easily queried, nor easily manipulated. Thus, Arden Syntax lacks support

for higher-level abstract constructs, modularization for its rules, and the support for the

manipulation and querying knowledge specifications. [32]

o Arden Syntax has been defined with the intention to make MLMs swappable between

disparate platforms, but much of this sort of logic has been written ad hoc into various

EMR systems and is neither transferable, nor – in the case of closed source software – is

it readily peer reviewed [96]. The major problem using the formalism to share clinical

knowledge is the lack of common format for data encoding and manipulation [34]. This

is the root cause of the problem known as the “curly braces problem”: Arden Syntax

explicitly isolates references to the local data environment in curly braces (e.g. in order

to provide alerts and reminders through interacting with local CIS components, such as

a clinical database). Database schema, clinical vocabulary and data access methods vary

widely so any encoding of clinical knowledge must be adapted to the local institution to

use the local clinical repository. This hinders knowledge sharing. Efforts are underway in

HL7 to help solve this problem, but it is not something that the Arden workgroup can do

alone; it requires industry-wide standardization. [86]

42

Although the Arden Syntax has been important and influential, it is recognized that in order to formalize

complex decisions and clinical workflows, and develop complete electronic guideline applications, a

more expressive formalism will be needed [42].

PROforma

PROforma [97–99] is a clinical guideline representation and interchange format. It is a formal process

modeling language allowing clinical guidelines to be expressed in a computer-interpretable manner.

PROforma models are executable and have been used successfully to build and deploy a range of

decision support systems, guidelines, and other clinical applications. The technology includes the

PROforma language and a set of Prolog and Java tools for building applications using the language [98].

Development and maintenance

PROforma was developed at the Advanced Computation Laboratory of Cancer Research, UK for the

general purpose of building decision support and intelligent agents [98]. Work leading to the design and

implementation of PROforma was carried out in a series of projects largely funded by European

agencies, starting in the late 1980s [100,101]. PROforma itself was a major result of the EC 4th

Framework PROMPT project, which started in 1992 and completed in 1998 [98]. The work was awarded

the 20th Anniversary Gold Medal of the European Federation of Medical Informatics in Copenhagen in

1996 [98]. The two implementations Arezzo and Tallis were introduced in 1996 and 2000 respectively

[97].

Use

PROforma is a continuing area of research at the Advanced Computation Laboratory of Cancer Research,

particularly for safety-critical applications. PROforma is the platform for a number of clinical applications

developed by the lab. Some examples include REACT, RAGs, ERA, but a much more comprehensive list

can be found in [97]. Web-based PROforma applications are currently under development [98].

Syntax and Semantics

The PROforma language forms the basis of a method and a technology for developing and publishing

executable clinical guidelines [97]. It combines logic programming and object-oriented modeling and is

formally grounded in the R2L Language [101]. PROforma is essentially a first-order logic formalism

43

extended to support decision making and plan execution, but it also incorporates a number of well-

known features of non-classical logics (e.g. modal logic, temporal logic) and two novel logics (logic of

argument (LA) and logic of obligation and time (LOT)) to support decision making and action control

[98].

The PROforma formalism is based on the domino model [98], which is a generalized model of clinical

decision-making and protocol management and can be seen in Figure 4.

Figure 4 - The domino model, the basis of the PROforma language [26]

Nodes of the domino model represent information relevant to a particular clinical situation (e.g. facts

about a patient's history, decisions, tasks in progress, or planned actions). Arrows represent inference

procedures that derive conclusions from available information. The inference procedure uses

information shown at the arrow's tail in conjunction with information from a patient record and/or

general medical knowledge base, in order to generate information shown at its head.

The inference process according to the domino model (Figure 4) is the following:

1. Initially, the computing agent is given a set of beliefs.

2. From the beliefs, it identifies the problem(s) and infers goals (e.g. to diagnose or treat a

disease).

3. Then it finds various solutions to these goals.

44

4. If there are multiple options (such as alternative diagnoses or treatments) the system must

consider the arguments for and against these alternatives and make decisions based on the

validity and ranking of these arguments.

5. A decision may commit to new beliefs, which could start the cycle all over with now new

information on hand (e.g. new diagnosis for the patient).

6. Alternatively, it could commit to a recommended plan of action instead, to achieve a goal (e.g. a

clinical care plan).

7. There is task scheduling and management needed as plans may consist of a set of actions

carried out over time.

8. Finally, an action will often produce postconditions that change the patient’s state.

This means that decision making is performed by the four nodes to the left, and planning (including

scheduling) and enactment is done by the two nodes to the right.

While the domino model provides a good framework for defining the formal semantics of PROforma, it

is rather abstract. To provide a precise, public definition of PROforma authors in [42] present a high-

level overview of the syntax and the operational semantics. A much more detailed description can be

found in [99]. The syntax is provided in Backus Naur Form (BNF) and an operational semantics for the

language is specified in terms of a combination of state machine and process flow models.

The syntax of PROforma can be divided into two parts: (1) the syntax of the high-level guideline

structure, which defines how the definitions of tasks and other guideline components should be

arranged and separated, and (2) the syntax of the expression language that defines the forms that

PROforma allows logical conditions and mathematical expressions to take.

The UML class diagram below [Figure 5] shows the concepts (i.e. object types) of the PROforma

language together with the relationships that are defined among them.

45

Figure 5 - The inheritance tree of PROforma component object types [36]

According to [82], one aim of the PROforma project is to explore the expressiveness of a deliberately

minimal set of modeling constructs. As shown in Figure 5, a guideline is modeled as a set of tasks and

data items. The tasks are organized hierarchically into plans. The PROforma task model divides tasks into

four classes:

1. Actions represent some procedure that needs to be executed in the external environment (e.g.,

administering a drug or updating a database).

2. Enquiries represent points in a guideline at which information needs to be acquired from some

person or external system.

3. Decisions are points at which some choice has to be made, either about what to believe or

about what to do.

4. Plans are collections of tasks that are grouped together for some reason, perhaps because they

share a common goal, use a common resource, or need to be done at the same time.

PROforma guidelines can be described graphically using a diagram-based convention (similar to UML

Activity Diagrams) in which nodes represent tasks and arcs represent scheduling constraints. In these

diagrams, squares represent Actions, circles represent Decisions, lozenges represent Enquiries, and

46

round-edged rectangles represent Plans. These four sub-classes and their respective icons are

represented in Figure 6 below.

Figure 6 - Icons of the generic and specific task types in PROforma [97,102]

The contents of an example PROforma plan can be seen in Figure 7.

Figure 7 - Contents of an example for a PROforma guideline (plan) [36]

Scheduling constraints express necessary, but not sufficient, conditions for the activation of tasks, which

means that the completion of a task does not imply the start of a task it precedes. Tasks in PROforma

can also have a number of graphically invisible properties (i.e. attributes) whose values determine how

they are to be interpreted. The value of a property may be a scalar value (e.g., an integer), an

expression, or it may be an object, with its own set of properties. All tasks share attributes describing

goals, control flow, preconditions, and postconditions. Logical preconditions (truth-valued expressions)

of tasks are evaluated after their scheduling constraints are satisfied, and tasks are only activated if both

their scheduling constraints and their preconditions are satisfied. There are other concepts in PROforma

keystone
(generic task)

plan

decision action

enquiry sub-classes

Patient Data Urgent Referral Decision Treatment Decision Monitoring Decision

FLAP Assessment Return In Four WeeksUrgent Referral

Return In Eight WeeksReturn In Two Weeks

47

not explained here that alter behavior, such as termination and abort conditions, and arguments for and

against candidates (alternatives) at decisions [36].

Expression language

In order to define conditions and arguments PROforma includes an expression language. The expression

language includes the usual logical, arithmetic, and comparison operators, as well as functions that

evaluate the execution states of tasks (i.e. whether they have been, or need to be performed) as well as

the values of data items [36].

Execution

During the enactment of a guideline, each task may undergo multiple state transitions. A task may be in

one of four states: dormant, in_progress, completed, or discarded (Figure 8).

Figure 8 - PROforma task state transitions [42]

The PROforma semantics do not impose any real-world interpretation of task states. However, [42]

provides a loosely defined interpretation. According to [42], a task is (1) dormant if it has not been

started, and it is not yet possible to say whether it will be started, (2) in_progress if it has been started,

(3) discarded if the logic of the guideline implies that it either should not be started or should not be

completed, and (4) completed if it has been done.

Implementation

In execution time, a PROforma process description (i.e. CIG) is loaded into a software component

referred to as the PROforma Engine, which maintains a record of the dynamic state of the process. This

includes information on which tasks have been performed, decision on which need (or need not) be

48

performed, and the values of any data items associated with the process. The EE also implements a set

of (“public”) operations to read or change the state of the engine and its guidelines in certain predefined

ways (e.g. setEngineTime, loadGuideline, evaluateExpression, etc.). Some of these actions will be

executed automatically, however the execution of a guideline often require actions to be performed by

external actors (e.g. clinicians), who will interact with the engine via some set of user interfaces [36].

There are two main implementations of a PROforma engine currently available, the Arezzo

implementation [103], which is available commercially from InferMed Ltd. (London, UK) and the Tallis

implementation [104] from Advanced Computation Laboratory of Cancer Research. The

implementations are similar, although the Arezzo implementation is based on a somewhat earlier

PROforma language model. PROforma technology includes a suite of guideline authoring and execution

software that incorporate CASE and verification tools. It has been shown to meet specific requirements

of medical applications even though the language and tools are generic [98].

The Tallis implementation is composed of the following components:

 Composer: graphical knowledge authoring tool for the creation, editing and graphical

visualization of CIGs (see Figure 10)

 Tester: for debugging of CIGs

 Parser: for reading and writing CIGs in text format

 Engine: for enactment (execution) of CIGs

 Web IF: Java Servlets for runtime visualization and control (of enactment)

The components of the Arezzo implementation – similar to the ones Tallis has – can be seen in Figure 9:

Figure 9 - Arezzo's PROforma-based architecture [26]

ArezzoTM

Composer

Tester

Performer

Arezzo
executable
guideline

EMR+

Step 1: Create a
guideline

Step 2: Test
guideline

Step 3: Run personalized
patient guideline at point

of care

49

A database server for accessing patient records is a required, but not included component. The Arezzo

implementation is similar to that for Tallis, but it has a combined engine and tester environment, called

the Performer. Another difference is that while Arezzo applications are designed to run on MS Windows

platforms, Tallis was designed for delivering web-based services and has a Java-based implementation

[97].

Figure 10 - PROforma patient-diagnosis scenario modeled in the Tallis composer [82]

Advantages and limitations

Some of the advantages of PROforma are:

 PROforma has two independent implementation platforms, namely Arezzo and Tallis.

 PROforma has a graphical notation.

 PROforma has a mapping to UML Activity Diagrams defined in [105].

Some of the limitations of PROforma are listed in [42] and [36]:

 It was reported in [36] that the lack of notational convenience (e.g. incomplete specification of

the graphical notation) led knowledge engineers to use UML activity diagrams to create models

to be used during the knowledge acquisition and analysis phases of the project instead of using

PROforma process descriptions. These UML diagrams were translated into PROforma during the

implementation of the project.

50

 The PROforma suite does not prevent guidelines containing syntactical errors (in expressions)

from being loaded or enacted.

 There is limited support for expressing constraints. There is a need for improved temporal

reasoning, including the ability to represent temporal constraints about the state of tasks (e.g.,

when a task was completed or a data value was acquired) and the evolution of values, (e.g., the

ability to define temporal predicates such as “increasing” or “decreasing”).

 The PROforma expression language is not Turing complete. This is because the PROforma

expression language does not provide any way of expressing functions that involve recursion or

iteration. The creation of recursively evaluated expressions is possible though the use of

iterative tasks, however this is a can prove to be a cumbersome solution.

 There is no way to avoid the duplication of PROforma arguments, should they need to be

attached to multiple candidates (see Figure 5).

 There is limited support for abstraction and information hiding. It is frequently useful to conceal

some aspects of a guideline description and reveal others in order to distinguish between the

essential logic of a process and the information that is required by some particular

implementation of that logic.

 There is limited support for the definition of classes of tasks. It is frequently the case that a

guideline description will contain several tasks that have the same parameters and can

therefore be regarded as forming a class. For instance, tasks that involve altering a patent's

medication might be grouped together into a class whose common properties are used to

express the modifications needed. PROforma provides facilities for the definition of task classes,

but with not enough expressive power (for instance they do not allow task classes to be grouped

into hierarchies).

 There is limited support for expressing structured data. Data types in a PROforma process are

limited to atomic values (e.g. an integer or string) or ordered list of atomic values, all of the

same type.

51

 While UML Activity Diagrams allow a transition between two states to be given a guard

condition and will only occur if that condition is satisfied, this is not directly supported in

PROforma. In PROforma, transitions between tasks can be constrained using scheduling

constraints (arcs), however it is not possible to attach a guard condition to a scheduling

constraint. Instead, preconditions are attached to the tasks themselves. This makes the

translation of guarded transitions into PROforma difficult as one needs to model the guard

transition as a precondition of a task.

 Currently, the specification of PROforma does not make use of medical terminological

standards.

 Mapping of the abstract CIGs onto a patient record system requires Java code to be written. This

problem is similar to the curly braces problem of the Arden Syntax.

 The PROforma language does not address any data security issues.

GLIF

The Guideline Interchange Format (GLIF) [106,107] is a computer-interpretable, object-oriented process

knowledge model designed for the representation, sharing and execution of CPGs. GLIF has associated

tools under development for supporting guideline authoring and execution [107].

Development

The first published version of GLIF was GLIF2 (GLIF version 2) in 1998 [107]. The latest version of GLIF is

version 3.5, also known as GLIF3, was published in 2000 [108] and updated in 2004 [109]. It has been

developed by the InterMed Collaboratory32, which includes groups from Stanford, Harvard, Columbia

and McGill universities [82].

32
 The word “collaboratory” in InterMed Collaboratory is a word play created from words "collaboration" and "laboratory".

52

GLIF is built on top of the most useful features of other guideline formalisms and it incorporates

standards that are used in health care. Its expression language was based on the Arden Syntax and its

medical data model is based on the HL7 Reference Information Model (RIM)33 [82].

Use

GLIF has been used in the modeling of a diabetes foot guideline, which has been locally adapted to the

needs of primary care physicians in outpatient clinics in Israel. There, it was linked with a web-based

EMR, and was enacted using a GLIF-specific execution engine, called the Guideline Execution Engine

(GLEE) [110]. Another example, where a GLIF-based guideline execution was implemented, includes

post-CABG (Coronary Artery Bypass Grafting) patient care planning at Columbia-Presbyterian Hospital

and Columbia University. Here full integration with the local CIS was not completed [107]. Further

examples demonstrating the effective use of GLIF3 for encoding and testing various CPGs, including

childhood immunization, cough management, and hyperkalemia patient screening, can be found in

[111].

Despite these examples and the fact that GLIF was designed to be an open standard [34], only a subset

of GLIF became a true standard. GLIF’s expression language, the Guideline Expression Language, Object-

oriented (GELLO), was adopted as an international standard by HL7 International and ANSI in 2005 [112].

The new version – GELLO Release 2, developed in coordination with the HL7 Clinical Decision Support TC

(CDSTC) – was completed and approved by ANSI in June 2010 [87]. The rest of GLIF has not received

nearly as much attention and after 2009, and its website [113] disappeared.

Syntax and semantics

GLIF was designed to support guideline modeling as a flowchart of structured steps, where steps

represent clinical actions and decisions. For its models, GLIF3 requires a formal definition of decision

criteria, action specifications and patient data.

GLIF supports three separate abstraction layers for specification: (1) an abstract flowchart level, (2) a

computable level, and (3) an implementation level of specification. Level 1, the abstract flowchart level,

33
 More on HL7 RIM can be found in the “Data models” section under the “Other important medical formalisms, frameworks”

section.

53

helps authors and users view and understand guidelines. Level 2, the computable level, formally defines

logical criteria, definitions of patient data items, clinical actions and the flow of the guidelines. Level 3,

the implementation level, includes non-shareable, institution-specific details, which enable guidelines to

be incorporated into operational clinical information systems. Thus, shareable components of a

guideline are explicitly separated from institution-specific or vendor platform-specific (non-shareable)

components [107].

GLIF uses the Protégé ontology editor and knowledge-base framework [114,115] as its modeling

environment. Conforming to Protégé modeling methodology in GLIF3 models the process of clinical care

is encoded as the algorithm of a guideline and guidelines are represented as specific guideline instances.

GLIF contains various classes and their attributes to represent CPG knowledge and the complex

relationships among them. An overview of the high-level concepts and their relationships represented

as a UML class diagram can be seen below in Figure 11 [109].

Figure 11 - Overview of the high-level classes in GLIF3 [109]

Within an algorithm, instances of five types of tasks, which are called guideline steps, can be encoded

and linked together in a flowchart to specify their scheduling and coordination during guideline

application [116]. These five main process-modeling entities, each of which is a subclass of the abstract

Guideline Step class are:

54

 the Action Step, which is a block used to specify a set of recommended tasks (clinical or

computational) to be performed without constraints set on the execution order. GLIF3, now

allows nesting of sub-guidelines in the model, thus multiple views to the care process with

different granularities can be defined [107].

 the Decision step, which are used for conditional and unconditional (user-selected) routing of

the flow to one out of multiple steps. (This step is a merged step combining a Case Step and a

Choice Step from GLIF 3.4).

 the Branch and

 Synchronization steps, which are used for modeling branching of multiple concurrent paths and

their synchronization (merging or parallel branches).

 the Patient-State Step, which is a guideline step used for specifying an entry point(s) to a

guideline and for describing the clinical state of the patient (pathophysiological or management

states in the specific contexts of a guideline’s application).

These concepts are used to formulate a guideline algorithm and provide an overview of the decision-

making process of a guideline [111]. The visual representation of the concepts and a simple GLIF patient-

diagnosis scenario built using them can be seen in the figure below (Figure 12 from [82]).

55

Figure 12 - Patient-diagnosis scenario modeled in GLIF3.5 using Protégé [82]

Execution

The execution semantics of GLIF models are implemented by the GLEE. Figure 13 shows a schematic

state machine diagram of a guideline step.

Figure 13 - Execution states of a GLIF guideline step and possible transitions in-between [116]

56

During operation, GLEE suggests a guideline step deemed executable and puts it into the prepared state.

Users then decide whether to follow GLEE’s suggestion or to deny it by stopping the suggested step and

initiating the start of another step. Users also have the ability to stop a started step that is no longer

relevant. Guideline steps deemed completed by GLEE finish their execution [116].

Data types

Clinical data in GLIF are encoded as data items. These data items are then referenced by expressions,

which are used to express decision criteria and patient state. Clinical events are encoded as triggering

events, which are used to activate specific clinical tasks [116].

Expression language: GELLO

Guideline Expression Language, Object-oriented (GELLO) [117,118], which was recently accepted as an

HL7 and ANSI standard, is a vendor and platform-independent, extensible, object-oriented, side-effect-

free, and executable expression language [82]. GELLO can be used for expressing and sharing decision

logic, eligibility criteria, calculations, patient state definitions, conditions, and system actions. GELLO

allows the specification of expressions in the form of (1) queries to extract data from EMRs in CDSS, and

(2) logical rules to manipulate data and evaluate decision criteria by building up expressions to reason

about particular data features and values such as ones found in guidelines [34]. GELLO solely focuses on

specifying logical expressions and it was not designed to support specification of entire clinical

algorithms.

GELLO’s original goal was to serve as a procedural component for the higher-level guideline format

(GLIF), but since its adoption as a standard, it has been extended to serve a similar functionality for the

current HL7 knowledge representation standard, Arden Syntax [119].

GELLO was based on OCL34 and much of the functionality of OCL has been integrated into GELLO to

provide a suitable framework for manipulation of clinical data for decision support. It provides basic

data types and a mechanism to reference underlying standard data model (vMR) in an object-oriented

fashion [119]. The authors of [112] provide further details on how GELLO expressions are parsed,

compiled, used for data aggregation and evaluation, while [119] provides some examples for (1) queries

and (2) expressions.

34
 UML’s Object Constraint Language (OCL) [120]

57

1. Queries:

Observation.select(coded_concept=’03245’)

Observation.selectSorted(coded_concept=“C0428279”)

2. Expressions:

calcium.notEmpty() and phosphate.notEmpty()

which returns true if the variables calcium and phosphate are not null, and

renal_failure and calcium_phosphate_product > threshold_for_osteodystrophy

which returns true if the patient has renal failure and the product of calcium and phosphate exceeds a

threshold signifying osteodystrophy.

Implementation

Modeling environment: Protégé

As mentioned in the previous section, GLIF uses the Protégé ontology editor and knowledge-base

framework as its modeling environment. Protégé provides the means for creating and validating models

in GLIF with the help of an ontology schema and a graph widget, which have to be loaded into the

Protégé-2000 environment [82]. As GLIF models are captured in Protégé, they automatically have an

XML-based syntactical representation as well [34].

Protégé has been used as a GUI for the development of multiple CIGs. These studies indicate that

Protégé can be used effectively to validate the encoding of CPGs in the GLIF3 format [111] and

potentially extend them through its inferencing engine35. This is showcased in [111], where the overall

goal of the presented study was to illustrate the steps involved in encoding a guideline in GLIF3 through

a case study of a depression screening and management CPG for a nursing decision support system

(DSS).

Execution engine: GLEE

The main purpose of the execution engine for GLIF, called the GLEE, is to assist in the implementation of

GLIF3-encoded CIGs and provide a test environment, where an investigation whether an encoded CIGs

faithfully reflects a CPG encoder’s intention can be performed [111]. GLEE acts as a CDSS by (1)

35
 Protégé’s inferencing engine is called Pellet.

58

interpreting guideline knowledge encoded in the GLIF3 format, (2) integrating it with patient data, and

(3) generating recommendations tailored to individual patients. This process can be observed in Figure

14. In addition to clinical decision support, GLEE aims to be used for quality assurance, guideline

development, and medical education as well.

Figure 14 - The internal structure of GLEE (of GLIF3), and its interactions with the environment [116]

GLEE is built as middleware that is intended to be integrated with the CISs at a local institution through

predefined interfaces to its EMRs and clinical applications. Figure 14 shows the GLEE middleware

integrated into a host CIS. The architecture can be classified into three conceptual layers: (1) data to

support execution, which includes repositories for clinical data and GLIF3 models, (2) the core

components implementing the execution logic (i.e. business logic), and (3) the interfaces both to users

and the host environment (UIs and data interfaces).

The communication between GLEE and the EMR back-end enables GLEE to access various resources in

the local environment, such as retrieval of patient data, and monitoring of clinical events. The

59

communication between GLEE and associated clinical applications at the front-end enables the

integration of the decision support services provided by GLEE, such as alerts and reminders, within a

clinician’s workflow. The architecture allows the simultaneous instantiation of multiple GLEE clients. It

also features a standalone GUI (Figure 15) for simulating the process of guideline execution on individual

patients; however, it is used only for development and demonstration purposes. GLEE is currently

implemented in Java [116].

Figure 15 - Screenshot of GLEE’s standalone GUI during development and testing (client side) [116]

Figure 15 demonstrates GLEE’s standalone GUI, on which the algorithm of a GLIF3 guideline for influenza

vaccination is shown as a flowchart at the upper-right portion of the screen. The upper-left portion of

the screen provides information on the list of active steps, the hierarchy of algorithms, and detailed

information on the currently highlighted step. The lower part of the screen shows the setting of the

current client and the execution trace. The pop-up window provides maintenance information of the

guideline.

60

Advantages and limitations

Some of the advantages of GLIF are:

 GLIF allows for the formal specification of CIG with an associated modeling environment

(Protégé) and execution engine (GLEE).

 GLIF incorporates GELLO36, a now standard formal expression language for specifying decision

criteria and patient states.

 GLIF uses a layered patient data model to enable GLIF3 steps to refer to patient data items

defined by a controlled terminology that includes standard medical vocabularies (such as

UMLS37), as well as standard data models for medical data (such as HL7 RIM, or vMR).

 In GLIF2, the attributes of the main constructs were defined as text strings that could not be

parsed. This prevented the resulting guidelines to be used in clinical inferencing during

execution. To address this problem, GLIF3 extended the GLIF2 specification with several new

constructs, and requires a more formal definition of decision criteria, action specifications and

patient data [107].

 Just like the Arden Syntax it facilitates a ternary logic (i.e. true, false, unknown) to support

limited uncertainty [32].

Some of the limitations of GLIF include:

 According to multiple sources [34,82,111], GLIF supports sharing of computer-interpretable

clinical guidelines across different medical institutions and system platforms. Although authors

stress the importance of sharing, there are no good published examples.

 GLIF authoring is currently bound to the Protégé environment, which might be a limiting factor

when it comes to clinical adoption.

36
 Before GELLO was adopted, GLIF had been using an expression language called GEL, which was based on the Arden Syntax's

logic grammar.

37
 More on UMLS can be found in the “Other important medical formalisms, frameworks” section.

61

Asbru

The Asbru modeling language was created as part of the Asgaard framework in the Asgaard/Asbru

project [31,33], the aim of which was to provide an architecture that supports the design and the

execution of skeletal plans by a human executing agent other than the original plan designer.

Development

The Asgaard project was introduced in 1998 [121] and has been an active area of research since. It

involves collaborators from many places, including the Vienna University of Technology, Stanford, the

Ben Gurion University and the Vrije Universiteit from Amsterdam [82,121].

Use

According to [121] and [122], Asbru has been used in a fair amount of clinical applications (e.g. diabetes,

jaundice, breast cancer and neonatal intensive care), all of which are only prototype applications. Asbru

sources for some of these examples can be found in [123].

Syntax and semantics

Asbru is a time-oriented and intention-based “skeletal plan” representation language that is used for the

specification of clinical protocols. Asbru’s (skeletal) plans facilitate reuse by capturing only the essence

of domain-specific procedural knowledge, thus leaving room for execution-time flexibility in the

achievement of particular intentions. In a plan, there are concepts defined for (1) characterizing plan

attributes such as intentions, conditions, and effects, (2) ordering of plans, and (3) defining temporal

dimensions of states and plans. Uncertainty in temporal scope and parameters can be expressed by

bounding intervals [82]. Asbru plans are written in XML, the schema specification is given in [124]. An

overview of the high-level concepts and their relationships represented as a UML class diagram – taken

from [124] – can be seen in Figure 16. An explanation of the diagram follows.

62

Figure 16 - Overall structure of a plan library in Asbru [124]

In Asbru, plans are contained in a plan library together with plan library and domain definitions, both of

which help to separate declarative data abstractions from the procedural hierarchy of plans. Plan library

definitions contain a set of reusable, domain-independent parameter definitions valid in the whole plan

library, including functions, variables, constants, types and time definitions. Domain definitions provide

an interface between the plan library and various environments in which the plans will be executed. In

other words, they specify entities of the real world, which the plan library accesses.

A plan specifies a set of actions to be taken to reach a certain goal. The actions to be taken are specified

in the plan body while the goal is given with the help of intentions and effects. Plans also have a return

value and a set of conditions, which control their execution. A brief description of these elements is

provided based on [124]:

 Arguments are values passed from the invoking or calling plan (called parent) to the invoked or

called plan (called child).

 Preferences describe the costs, resource constraints, and responsible actor.

63

 Intentions are high-level goals of the plan, an annotation specified by the designer

independently of the plan body. Intentions are temporal-pattern constraints, represented by

temporal patterns of actions and states that should be maintained, achieved or avoided.

 Conditions guard the transitions among the states of a plan. For each condition, it can be

defined whether the change in plan state occurs automatically or whether user confirmation is

required. In addition, it can be allowed to the user to induce the change on plan state even if the

condition is not fulfilled.

 Effects describe the relationship between plan arguments and measurable parameters by

means of mathematical functions or in a qualitative way. A probability of occurrence can be

denoted.

 The plan body contains set of plans to be executed in a particular way. It also specifies which of

the child plans have to be completed successfully in order to terminate (complete) the parent

plan successfully. A plan body can be one of the following:

 Subplan is a set of plan steps performed in sequence, in parallel, in any order (any order,

and unordered).

 Cyclical-plan is a plan, which can be repeated multiple times.

 Single-step is a single step of plan execution, consisting of either a plan activation, a variable

assignment or the setting of the context.

 Refer-to is a reference (link) to the plan body of another plan.

 To-be-defined is a special tag declaring that this plan is not executable. It is an abstract

pattern, which other plans can inherit, filling in the missing plan body.

 User-performed is another special tag indicating that this plan is executed through some

action by the user, for which reason it is not modeled in the system.

Execution

A partial definition of the semantics of Asbru has been given using Structured Operational Semantics

[125], however, according to [42], that effort does not provide sufficient information to permit others to

implement tools. Taken from [124] and [33], the informal description of how Asbru plans are executed is

described below.

64

Figure 17 - State machine of an Asbru plan [124]

Generic library plans are executed by the execution interpreter (i.e. EE), which implements the state

machine from Figure 17. According to the figure, plans have states that determine whether the plan is

applicable and whether a plan instance can be created. Each plan is initially considered after which

conditions control the transitions among the mutually exclusive states of the plan.

At execution time, if a plan was in ready state, it is instantiated. The decomposition of a plan into its sub-

plans is always attempted, unless the plan is not found in the guideline library, in which case the plan is

interpreted as non-decomposable. Non-decomposable plans might be decomposable into more

primitive actions at a particular clinical site. A non-decomposable plan is executed by the user or by an

external call to a computer program. Every (decomposable) sub-plan has the same structure. Thus, a

sequential plan can include several potentially decomposable concurrent or cyclical plans.

Implementation

Modeling and visualization environments

There are several tools that support the authoring and visualizing of Asbru guidelines. These include

AsbruView [126–128], Delt/A [129,130], and CareVis [131,132] and the DeGeL framework [133–135].

AsbruView is a tool to make Asbru accessible to physicians, and to give any user an overview of a plan

hierarchy, since Asbru plans cannot be understood by physicians with no or little training in formal

methods. AsbruView’s two main views, the topological view (TopoView) and temporal view (TempView),

65

are based on visual metaphors that make the underlying concepts easier to grasp. Figure 18 – from [82]

– presents a patient-diagnosis scenario model in TopoView.

Figure 18 - Patient-diagnosis scenario model in AsbruView [82]

DeGeL, the Digital electronic Guideline Library, is a hybrid, multifaceted representation language and

computerized, Web-based set of tools for storage, authoring, retrieval and enactment of hybrid Asbru

guidelines38. DeGeL supports the gradual conversion of clinical guidelines from text to fully formal,

machine-readable Asbru representations [121]. Intermediate steps include the translation of text-based

guidelines to structured text, which is an XML file, segmented and labeled by Asbru semantic tags. The

DeGeL project has developed a large set of tools to support the development and implementation of

guideline applications. Figure 19 illustrates how these components fit together.

38
 Hybrid representations of clinical guidelines include any combination of free-text, semi-structured text, semi-formal

representation, and machine-comprehensible formats in a chosen target guideline ontology (in this case Asbru).

66

Figure 19 - DeGeL architecture for Asbru guidelines [26]

Support is provided for a wide range of tasks central to guideline-based care:

 During guideline specification:

o verification of the guideline process specification (syntax)

o validation of the guideline against its goals (semantics)

 During guideline execution:

o determination of patient eligibility and guideline applicability

o visualization of one or more potentially applicable guidelines

o application (execution) of the guideline

o quality assessment of providers’ actions

o modification of guideline or provider plans

o evaluation of guideline effectiveness.

67

DELT/A – the Document Exploration and Linking Tool (with Addons) – formerly known as Guideline

Markup Tool (GMT) was developed to provide a relatively easy way to translate free text into Asbru. It

achieves this by displaying both the original text and the translation, and showing the user which parts

of the Asbru code correspond to which elements of the original text [121].

CareVis is an interactive visualization tool designed to support (Asbru) protocol-based care. CareVis

provides views for the complex underlying data structure of treatment plans and patient data. It is

designed for use, for example, during guideline execution.

Another visualization tool [136] uses flowchart-like representation (similar to what Oracle BPEL Process

Manager [137] uses) to conceptualize Asbru guidelines. Unfortunately, this tool only allows clinicians to

interpret Asbru guidelines, not to edit them.

Execution engine: AsbruRTM

Asbru’s original execution environment is called the Asbru Run Time Modules (AsbruRTM) [138–140]

and it is written in Java. In order to translate the XML-based Asbru plans to Java classes, the EE

facilitates Castor, an open source data-binding framework for Java, which generates a Java object model

out of Asbru’s XML Schema. AsbruRTM consists of three main modules: the data-abstraction unit, the

monitoring unit, and the execution unit. These can be seen in Figure 20.

Figure 20 - The Asbru engine [138]

68

The role of the data abstraction unit is to feed the incoming data to the monitoring unit, by performing

the transformation of information on two distinct data source types39: high-frequency domains (e.g.

sensory measurements), and low-frequency domains (e.g. manually entered daily measurements). The

resulting formatted data is received and stored in a list of observed parameter propositions by the

monitoring module. How long each observation is valid is specified by the data abstraction unit. The

monitoring module receives another list, which is specified by the execution module. This list contains

temporal patterns, called the monitored parameter propositions. The monitoring module then

periodically compares these two lists and if two elements match, the execution module is notified.

Mapping of plans and actual situations is accomplished by the execution module on three distinct layers:

1. Plan Synchronization: All plans in Asbru have time-annotated conditions for their start,

successful completion and failure. These annotations provide flexible means for denoting

temporal constrains on the duration of a plan. The execution of a plan lasts until its goal

conditions are satisfied or a failure is reported.

2. Plan Adaptation: Plan adaptation is implemented as plan suspension and plan replacement.

Plans stay active until they are either completed, aborted, or suspended. An alternative plan can

be activated when the original one fails.

3. Replanning: Replanning can occur only if a plan fails or there is an explicit user request for it. If a

top-level plan fails, the execution module looks for plans (in the plan library), which either have

the same intentions, or have effects which remove the reason for the failure of the current plan.

Additional user requests can be specified by either selecting a plan to be executed, an intention,

or a goal to be achieved.

Execution engine: Spock

The DeGeL framework includes another EE engine for Asbru, called Spock [142,143]. The goal of the

system is to assist providers to “apply guidelines over extended time periods in an intermittent fashion

at the point of care”. What Spock implements is an extension to the original state transition model of an

Asbru plan (Figure 17) with the ability to automatically process information coming from an EMR

39
 Extensions to this unit have been proposed in [141].

69

system; however, Spock focuses mainly on execution of semi-structured (hybrid) Asbru guidelines. Their

extended execution model is defined with the help of UML Statecharts and can be seen in Figure 21.

Figure 21 - Extended state machine of an Asbru plan in Spock [143]

70

Advantages and limitations

Some of the advantages of Asbru are:

 Asbru uses sophisticated temporal structures, which allow the representation of uncertainty in

start time, end time, and duration of time interval.

 Asbru attempts to provide support for the reuse of guidelines by providing multiple abstraction

layers. Examples for this include (1) providing concepts for capturing domain definitions

separately from guideline logic, and (2) providing abstract plans serving as placeholders for the

implementation of location-specific tasks.

Some of the limitations of Asbru are:

 Asbru is a highly complex language, but seemingly makes no use of medical standard

terminologies.

 As far as one can tell from available literature [139,144], Asbru’s execution environment - is

fairly rudimentary, as it only processes a subset of Asbru – called Asbru Light – and it lacks a

configurable interface for interacting with guidelines being executed.

Guideline modeling languages not selected for evaluation

There are many other guideline-modeling methodologies that this thesis does not discuss. Some of the

most well-known ones include SAGE, SpEM, EON, GEM, GUIDE, and PRODIGY, none of which possess any

significant features that were not covered by previously discussed approaches.

Other important medical formalisms, frameworks and organizations

As it was discussed earlier in this thesis, information exchange and reuse of knowledge are important

factors in the interoperability of CIG-based CDSS. Without trying to provide a complete picture, this

section introduces a couple of medical formalisms, frameworks and organizations, mentioned in

previous sections40, that support just that. A more thorough analysis of prominent EMR standards can

40
 Sections talking about these formalisms are the “CIG execution - Patient management based on CIGs”, the “Components of a

CIG-based CDSS”, and the “Information exchange” sections.

71

be found in [145], where standards are evaluated in four major areas, namely (1) in their level support

for interoperability, (2) functionality, (3) extensibility and complementarity and (4) market relevance.

Information exchange in this case means that CIG-based CDSS need to communicate with other

supporting CIS components (such as EMR and CPOE systems) in order to make decisions that are based

on external information, and to propagate their results into other systems that want to consume it.

Another critical requirement for these systems is the ability to reuse knowledge. This means that the

effort needs to be minimized when facilitating knowledge in one system captured in another.

Standards could help with both of the aforementioned problems, but as there are no universally

accepted CIG modeling languages today, other solution are needed. According to [119,146], the two

more easily sharable components are the data models and the expression languages. This means that

sharing of knowledge can be achieved on multiple levels, using

1. shared (medical) concept model (i.e. vocabularies), to identify concepts of interest

2. shared data models (i.e. structures), to exchange data with concepts identified using

vocabularies (e.g. patient information model)

3. shared expression languages, to communicate data-dependent condition expressions and

calculation methods (as opposed to sharing the calculated data)

Each level builds on the next, thus being more complex.

Data models

Standardizing the references to patient data in CIGs allows the prevention of the rewriting of the data

references at the time of local adoption. The idea is that there needs to be an unambiguous one-time

mapping between standard and local models, which then allows for an automated translation at the

time of local adoption.

Candidates for data models include:

 vMR

 RIM

72

Virtual Medical Record

The vMR specifications – maintained by HL7 – is described by [147] as “an interface that allows an

information system to obtain access to, create, and or modify clinical statements about a given person.

In its simplest form, the VMR could simply be viewed as an association between a person and that list of

clinical statements.” It is intended to be a computationally independent model of a person’s EMR, which

allows it to serve as a simplified and optimized input and output data structure for CDSS. vMR maps

associated data elements from standards-based data structures to vMR data structures, producing vMR

schemas and associated mappings.

Reference Information Model

The RIM is an ANSI approved component of the HL7 Version 3 standards, which was developed with the

aim to support all healthcare workflows. It provides a shared object-oriented model of the HL7 clinical

data (domains) and defines the life cycle of messages exchanged in interactions within workflows. “RIM

expresses the data content needed in a specific clinical or administrative context and provides an explicit

representation of the semantic and lexical connections that exist between the information carried in the

fields of HL7 messages.” [148]

Vocabularies

Standard data models by themselves are not enough; they need to build on standard vocabularies to be

truly effective [119]. This is achieved by data models using references to concepts defined by standard

(medical) vocabularies. Concepts in standard vocabularies are generally organized in some sort of

structure, most of the time in some sort of taxonomy, or in an ever more generic structure, an ontology.

Examples include standards such as CPT41, ICD-9 and 1042, LOINC43, SNOMED-CT44, and so on.

Even if data models were built using local concepts, a one-time mapping is needed between local

concepts and standard vocabularies in order for interoperability to be achieved.

41
 Current Procedural Terminology (CPT) [149]

42
 International Statistical Classification of Diseases and Related Health Problems version 9, 10 (ICD-9, ICD-10) [150]

43
 Logical Observation Identifiers Names and Codes (LOINC) [151]

44
 Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [152]

73

Expression languages

Expression languages, such as ones introduced in previous sections (e.g. Arden Syntax’s MLM query

language and GLIF’s recently standardized GELLO) can ease interoperability if standardized. With their

help, a higher efficiency can be achieved when exchanging information.

Let us look at an example scenario, where one system needs the minimum and the maximum

temperature values of a patient over the past two days, but temperature values with minute-based

granularity are stored in another system. If there are no expressions used, the receiving system needs to

get all data values from the other system for the past two days and find the minimum and maximum

values itself. If there is a language allowing the construction of expressions in one system and consumed

by another, the system receiving the request can calculate the minimum and maximum values and

transmit them instead.

Unified Medical Language System

Created in 1986, the Unified Medical Language System (UMLS) [153] is a collection of many controlled

vocabularies in the biomedical sciences. UMLS is an important medical ontology that ties various other

ontologies together. Its main components are:

 the Metathesaurus, which is the core database of the UMLS. It is a collection of concepts and

terms from various controlled vocabularies, and their relationships,

 the Semantic Network, which is a set of categories and relationships that are being used to

classify and relate the entries in the Metathesaurus,

 the SPECIALIST Lexicon, which is a database of lexicographic information to be used in natural

language processing,

 a set of supporting software tools.

Knowledge sources in UMLS are multi-purpose by design, which means that they are not optimized for

any one particular application, but instead can be applied in a large number of systems performing a

wide range of functions. A set of supporting software tools were created in order to assist developers in

using the UMLS knowledge sources for particular purposes.

74

The reason why an ontology of ontologies, like UMLS, is important is that it can serve as the common

language to which concepts used in different CISs could be translated to. This translator then can be

used to translate requests between CIG-based CDSS and other servicing systems, as well as to transfer

CIG specifications between two CIGs-based CDSS.

Health Level Seven

Health Level Seven [154] is a non-profit organization involved in the development of international health

care standards. The work of the HL7 group is important, because they oversee many of the standards,

on which CIG-based CDSS need to build in order to better support interoperability. These include:

 conceptual standards (e.g. HL7 RIM),

 document standards (e.g. HL7 CDA),

 application standards (e.g. HL7 CCOW),

 and messaging standards (e.g. HL7 v2.x and v3.0).

“Messaging standards are particularly important because they define how information is packaged and

communicated from one party to another. Such standards set the language, structure and data types

required for seamless integration from one system to another” [155]. As mentioned earlier HL7 oversees

the development of the Arden Syntax and GELLO as well.

75

CHAPTER III.

EVALUATION OF OPEN QUESTIONS IN CIG LANGUAGE DESIGN

While previous sections provided evaluations respective of each approach individually, this section

provides an evaluation summary on formalisms and frameworks. The current evaluation can be

considered as complementary to several comparisons, most of which are listed below. The section starts

with a description of earlier evaluation efforts, which is then followed by a discussion including the

author’s own assessment and findings.

Why is the evaluation of these approaches difficult?

The section “Evaluation criteria for guideline-based clinical information systems” contains evaluation

criteria in order to make the evaluation process easier. However, a proper assessment remains a difficult

challenge, as the terminology used in these languages is inconsistent, the semantics of the control-flow

of some of the languages is incompletely and informally defined, and the approaches used by the

languages for guideline modeling are heterogeneous. [82]

Earlier comparison efforts

There have been multiple attempts to evaluate and compare CIG formalisms and their execution. In the

following, some of the well-known attempts are listed in a chronological order. Major findings are also

listed; however, it needs to be noted that many of these findings are already incorporated throughout

this thesis.

In one of the earlier comparisons [45], Perry reviews representative knowledge bases and knowledge-

based systems in medicine current in 1990 (including Physician Data Query (PDQ), Hepatitis Knowledge

Base (HKB), MYCIN, CASNET, PIP, and INTERNIST-1). Most of these approaches are covered in the “Early

CDSSs” section.

In an article from 1994 [156], authors showcase a performance analysis of the diagnostic capabilities of

systems current at that time (Dxplain, Iliad, Meditel, and QMR). The results from the article indicate that

the evaluated systems “should be used by physicians who can identify and use the relevant information

and ignore the irrelevant information” provided these systems.

76

In an article from 2000 [157], authors provide a categorized review of guideline representation

approaches, followed by a comparison of their features and capabilities. Their evaluation summary

without further explanation can be seen in Table 7.

Table 7 - Comparison of features of six CIG formalisms [157]

Models GLIF EON Asbru PROforma Prodigy Prestige GEM

Algorithmic Yes Yes Yes
Not

primarily
Yes

Not
primarily

Not
Primarily

Sub-guideline Support Yes Yes Yes Yes Yes Yes No

Supports Decision Criteria Yes Yes
Yes

(temporal)
Yes Yes Yes Yes

Intentions and Goals Support
Possible through
sub-guidelines

Yes Yes Yes No No No

Ranking of Options Supported Yes Yes No Yes Yes Yes Yes

Temporal Abstractions
Supported

No Yes Yes No No No No

Explicitly Models Patient
Preferences

No No No No No No No

In an article from 2003 [146], which can be viewed as a follow-up to [157], the authors studied

“similarities and differences between CIGs in order to identify issues that must be resolved before a

consensus on a set of common components can be developed”. Authors compared structural semantics

of CIG languages using example models. Comparison was performed using eight major dimensions:

 Organization of guideline plan components, including plan components and capability for

hierarchical decomposition (nesting)

 Specification of goals/intentions (using expression languages)

 Model of guideline actions, including the structuring and refinement of medical actions,

expressivity of temporal constraints, and communication with host systems

 Decision models, including the expression of mutually exclusive branching of guideline control

flow (i.e. switch), preferences for alternative candidates of non-deterministic decisions (i.e.

choice alternatives), and authorizing user and system (i.e. manual and automatic) decisions

 Expression/criterion languages used to specify decision criteria, including presence criteria,

template-based criteria, first-order logic criteria, temporal criteria, context-dependent

expression, etc.

77

 Data interpretations/abstractions, including the expression of temporal abstractions and

patterns (i.e. trends), abstract terms (derived other terms), terminology abstractions via

classification hierarchies

 Representation of a medical concept model and its use describes how languages reference and

access medical concepts (e.g. referencing variable names, explicit function calls, or using

standardized terminology concepts)

 Patient information model is concerned with representing patient data and its mapping to

institutional EMR data models

Even though the authors found consensus in many aspects (including plan organization, expression

language, conceptual medical record model, medical concept model, and data abstractions), results

indicated that a common CIG language was far from feasible as there were many fundamental

differences among the languages evaluated (including in underlying decision models, goal

representation, use of scenarios, and structured medical actions).

A 2007 article [78] surveys free and open source (FOS) technologies for patient-centric, guideline-based

care, and discusses trends and future directions of their role in clinical decision support. The article

provides a high-level overview of the availability and functionalities of then existing and emerging FOS

guideline modeling tools as well as FOS supporting technologies for implementing terminology, data

interchange, and EMR standards. Authors reported active and growing trends of deploying FOS enabling

technologies and suggested some possible future directions. While a variety of sophisticated, formal

CPG representations and languages are available free, concerns are raised as “most of the modeling and

editing tools are proprietary, and have limited acceptance and usage in practice due to the complexity of

the modeling tasks”.

Another 2007 article [82], which can be considered as complementary to previous comparisons

[146,158–161], examines and compares the expressive power of CIG modeling languages using pattern-

based analysis. Authors compared the control-flow component45 of special-purpose CIG languages by

evaluating their degree of support for expressing a predefined set46 of control-flow patterns47 used

45
 Also referred to as decision models [146].

46
 A comprehensive description of the full set of control-flow patterns, 43 in total, can be found in [162].

78

normally to evaluate expressiveness of general workflows. The evaluation of support for a common set

of operators not only allows putting one CIG language in contrast with another, but it allows one to

evaluate the differences – from the control-flow perspective – between general process modeling

languages offered by workflow management systems and modeling languages used to design clinical

guidelines. Some of the more interesting findings of the article are summarized below:

 Even though the members of the computerized guidelines community have emphasized how

important it is to support flexibility in guideline formalisms, the examined guideline modeling

languages (Asbru, EON, GLIF3.5, and PROforma) showed only limited additional flexibility not

present in business process modeling languages. Only two new patterns48 were not encountered

in business process models.

 Additionally, only half of the workflow patterns elicited from business process modeling

languages are supported by CIG languages. Many of the missing patterns relate to flexibility of

process execution, which may be useful for clinical guideline applications.

 Because CIG languages do not offer substantially more control-flow constructs than business

process modeling languages, it is suggested for the medical community to “rethink the use of

more general formalisms and tools, which have formal foundation and have been widely tested

and used in industry, for expressing control flow of guideline models”.

 In addition to the set of constructs discussed in this article, to support the interoperability of

CIGs the use of configurable modeling constructs – found in business process formalisms – is

proposed.

In an article from 2008 [26], authors review and compare eight systems that allow some kind of

enactment of clinical guidelines using an EE. Several aspects related to execution are inspected. These

include CIG semantics, CIG management, and interfacing of host CIS and EE. The article identifies a

common feature related to the internal structure of the analyzed systems, according to which most of

47
 Also known as workflow patterns.

48
 The two patterns are deferred multi-choice and forced trigger. Deferred multi-choice is “a capability to defer the selection of

multiple options by a user until the user decides that no more options will be selected (for instance, selecting several
medicines from the recommended ones for the treatment of the patient). The functionality of the deferred multi-choice has
been encountered in GLIF3.5/Protege-2000, EON/Protege-2000 and PROforma/Tallis”. Forced trigger is present in scenarios
“where any internal or external event triggers the execution of a task even if the task precondition was not satisfied at the
moment of triggering. The functionality of the forced trigger has been encountered in PROforma/Tallis”. [82]

79

the evaluated systems have three main layers. These are (1) a layer with the patient’s related data, (2)

an intermediate layer with the execution engine, and (3) a layer containing a set of interfaces to connect

the execution engine with external systems. Another, rather disappointing, result of the evaluation is

that, as far as we know, none of the systems is actually in daily use in any medical center.

A 2009 article [32] presents SpEM, a generic framework for CIG management together with a case study.

The SpEM approach is based on the ECA rule paradigm and active databases. In order to display the

novel capabilities of the framework a comparison of existing formalisms is provided, with special

attention paid to the support for the manipulation (including “performing operations and issuing queries

on aspects of the guideline knowledge and information”) and “the exploitation of database features for

managing information and knowledge”.

The last article mentioned here is from 2009 [163]. It is not a comparative study in the classical sense,

but an important extension to the work presented in [82]. The work showcased is on the formal analysis

of the expressiveness and on the verification of structural, behavioral and temporal properties of clinical

workflows. With the help of Colored Petri nets (CPNs) the authors show how the chosen guideline

language, PROforma, may be mapped to a formal (CPN) representation, which allow them to provide

formal proofs on which workflow patterns (out of the 43) are supported by PROforma. It is argued (and

with an example it is demonstrated) that [163] provides a more rigorous analysis with different results

than the ad-hoc method presented in [82].

80

Table 8 - CIG formalisms compared in published studies

Articles [157] [146] [78] [82] [26] [32] [163]

Arden Syntax

[79–81]
Discussed Discussed Compared

PRODIGY

[164,165]
Compared Compared Compared

Prestige Compared Compared

PROforma

[97–99]
Compared Compared Compared

Compared
(Arezzo,

HeCaSe2)
Compared Analyzed

Asbru

[31,33]
Compared Compared Discussed Compared

Compared
(DeGeL)

Compared

EON

[166,167]
Compared Compared Discussed Compared Compared

GLIF

[106,107]
Compared Compared Discussed Compared

Compared
(GLEE)

Compared

GEODE-CM Discussed

GEM

[168,169]
Compared Discussed

GUIDE Compared Compared

HELEN

[170]
 Discussed

SAGE

[171,172]
 Discussed Compared

Stepper Discussed

GLARE

[173,174]
 Compared Compared

NewGuide Compared

SpEM

[175]
 Compared Compared

GASTON

[176,177]
 Compared

SIEGFRIED Compared

Discussion

This section aims to provide a discussion regarding commonalities and differences found in evaluated

approaches. This discussion covers the two main components of frameworks, namely the CIG formalism

and the software suite.

81

Discussion on CIG formalisms

DSML

All examined languages are custom built DSMLs49, specifically created to capture CIGs. Their syntax and

semantics are formally defined, but with various levels of degree. Nonetheless, some abstract form of

execution model is provided for all of them. Interestingly, though all languages recognize the

importance of interoperability (e.g. GLIF even was supposed to act as an interchange format), we have

not come across any form of formal mapping that would allow automated translation between the

examined CIG formalisms.

Components

The languages differ slightly as to what they consider the elements of a CIG to be, and how its objective

is expressed. However, all allow CIGs to contain, among other things, decisions, actions, and nesting (i.e.

hierarchical decomposition). Furthermore, all contain expression languages that represent criteria,

which influence decisions and control plan execution (e.g. to express conditions that determine whether

a task might be started or terminated) [36]. In summary, the types of information typically stored in CIG

models include the following independent components:

 descriptive data, which contains a (machine-readable) unique identifier for the CIG and various

other metadata such as author, source, version, and purpose. It also may state whether the CIG

is a specialization of another50.

 plan, or control logic, which is the core of the CIG. It defines the permitted or mandated set of

(clinical) actions and situations. Restrictions on structure and content of the CIG instances are

specified as a combination of an orchestrated set of allowed actions and constraint rules.

Expression languages are considered to be an integral part of the control logic and they are

generally applied in combination with the rest of the control constructs (i.e. as an extension).

49
 Even though they use concepts from medicine, medical professionals still need to invest both time and energy to learn them.

Evaluating whether one language is more intuitive than the other is not in the scope of this thesis.

50
 This can be achieved with various mechanisms, including using traditional versioning techniques, or inheritance operators of

an ontology.

82

They are used to express parts of the plan and thus they achieve a certain subset of the

functionality.

 concepts with semantic ties, which are the basic (atomic) building blocks of the CIG (e.g.

medications). Definitions for the concepts are given with the help of ontologies provided by the

language or the CIG, or with the help of semantic ties to controlled (i.e. standardized)

vocabularies.

Terminology and information exchange

Inputs (such as data points, which an executing CIG instance bases its decisions upon) and outputs

(produced by the CIG-based system) must be communicated through an interface. Unless manual

information exchange51 is an acceptable model, this translates into a communication using some form of

shared terminology. Accordingly, all, but one formalism rely on some sort of medical terminology both

to represent (atomic) concepts and to help define an interface to the host CISs. The only exception is

PROforma.

Other important aspects of information exchange, such as the ones described in the “Information

exchange” subsection of “Information technology aspect: System integration” (e.g. specifying the

mechanism of access, addressing security, managing availability, and specifying quality) are generally

omitted in the explanation provided by all examined formalism. Without these specifics, a CIG can only

be implemented on a relatively abstract level. This issue is further discussed in P2.2.

Expression language

To manage complexity, each language facilitates a custom expression language of its own. The definition

for the expression language is provided in terms of syntax and semantics, the latter of which provides a

definition for calculating the value of expressions, ideally without causing any side effects52 [42]. An

expression language may enable the implementation of information exchange (e.g. data querying in

Arden Syntax), and methods for constructing derived data points with filtering and aggregation using

51
 The manual information exchange model simply means that the system is used as a standalone tool. Accordingly, providers

manually need to enter input data in order to receive recommendations, which they need to process.

52
 Being side effect free here means that using (the operators of) the expression language causes no changes to the state of the

guideline.

83

data values and logical operators defined by the (expression) language. They can also express various

constraints (including conditions for goals, failure, an priorities over alternatives, etc.). For example,

other than Arden Syntax’s explicit placeholder, called “purpose”, the goals of plans are implicitly defined

together with the rest of the language53.

Describing the control logic

All four languages were designed to describe CIGs, but we found that there are two distinct styles in

terms of representing control logic, namely (1) the rule-based approach, which builds on ECA rules, and

(2) the workflow-based approach, which uses task network models (TNM)54. While the Arden Syntax55

uses the former, most of the other languages, including the rest of the formalisms examined in this

thesis: PROforma, GLIF, and Asbru, use the latter.

Rule-based

As described in earlier sections, rule-based systems rely on storing and executing ECA rules. These rules

implicitly define a control flow. There are many different rule-based system implementations, but their

execution logic follows a logic similar to the two methods described in the following. (1) In execution

time for systems that implement forward chaining, all (enabled) rules are considered active (i.e.

runnable). The execution environment is in charge of listening for events (both internal and ones coming

from the environment). If for a rule, its triggering event(s) is (are) observed, its conditions (associated

with the triggering event) will be evaluated. If the conditions are satisfied, the actions defined in the rule

are performed. As a result of the triggered actions, newly enabled rules are activated. These systems

need a strategy for managing the situation where multiple (potentially conflicting) rules get selected for

execution. Strategies for conflict resolution can involve preset priorities for rules or user-based

resolution methods. (2) The opposite of forward chaining is backward chaining, where the system is

working iteratively backward from a list of predefined goals by trying to search the applicable set of

rules in order to find ones that would result in one of the goals.

53
 This is especially true for Asbru’s natural language-based “intentions” implemented in the “logic” block.

54
 Definition for TNM is provided below.

55
 PRODIGY, which is not examined here, also uses the rule-based approach [146].

84

Workflow-based

The other type of approach in representing the execution logic in CIGs is using workflows. In the

literature, there are many names and many definitions, but essentially, they all mean the same thing.

The main building block of this approach is often referred to as a plan [36,146], as in "an orderly

arrangement of parts of an overall design or objective"56. However, we refrain from using this term, as

this would incorrectly imply that a collection of rules in a rule-based system would not be able to

describe a medical plan. The term “task network models” is also used to describe guideline-modeling

formats based on this approach. According to the definition, TNM languages “provide modeling

primitives specifically designed for representing complex, multistep clinical guidelines and for describing

temporal and other relationships between component tasks” [146].

Based on definitions provided by [36,82,146,157], workflow-based approaches can be viewed as a

paradigm, where multi-step guidelines are modeled as coordinated sets of interacting tasks in an explicit

control flow. A task in the CIG can be considered as a logical unit of work that is carried out as a whole.

They represent medical actions such as decisions and procedures. Coordinated by the control flow, tasks

are carried out in sequence or in parallel over a period of time using typical (i.e. basic) control flow

patterns, including sequencing, parallel split, synchronization, merge, and exclusive choice. Components

can be composed into iterative, cyclic and hierarchical structures. In addition, models support

expression of temporal (i.e. scheduling) constraints as well as various other logical preconditions on

their components.

Albeit building on the same approach, workflow-based languages differ in terms of expressivity. These

differences are due to variance in (1) supported component (both data and action) types, in (2) the

expressivity of the expression language, and (3) the support for various control flow operators (i.e.

patterns). As described in the previous section, comparison of (3) is what the authors of [82] proposed,

using workflow patterns defined by the business process-modeling community. While all basic patterns

are directly supported by the languages examined in [82], there is a greater variance in their support for

more advanced ones (e.g. multiple choice and multiple merge operators).

The typical and natural visual representation associated with this approach is a flow diagram. The flow

diagram is a directed graph where a node can either be a starting point, one of the tasks, or one of the

56
 Definition of a “plan” according to the Merriam-Webster dictionary.

85

ending points. In the graph, the arrows between the tasks represent scheduling constraints. Similarly to

UML’s activity diagrams, they prevent one task from being activated until another has finished.

Scheduling constraints, which are easy to visualize, express necessary, but not sufficient conditions for

the activation of tasks. However, each task has a set of logical preconditions that are evaluated after its

scheduling constraints are satisfied, and the task is only activated if both its scheduling constraints and

its preconditions are satisfied [36].

Discussion on software suites

Architectural requirements and a common framework have already been described in previous sections.

Figure 3 in “Components of a CIG-based CDSS” summarizes what are the essential components and how

they should interact. With various levels of detail, all examined formalisms implement the needed

components, including a CIG modeling environment, an execution engine, a communication layer, a test

environment, and finally a patient management UI.

Unfortunately, according to [26] the discussed systems are only used as prototypes and are not part of

actual live CIS systems.57

Open problems

This section discusses problems not fully addressed by any of the introduced frameworks. Provided by

various authors, partial solutions – if found – are given for the listed problems.

P1. Execution semantics and expressivity

P1.1. Seeking a common representation for all the different types of CIGs

In the section “Selecting a suitable modeling language” the question of whether it is possible or not to

define a single DSML to represent all guidelines was raised. The answer of the authors of [70] to this

question is not currently. To explain why, they list five major obstacles in their article:

1. As of now, there is no consensus in the CIG community on the most effective applications for

computer-based guidelines. Consequently, it is difficult to identify functional requirements, and

57
 Arden and GLIF are claimed to be (see Arden/Use and GLIF/Use).

86

thus what conceptual models and development environments are most likely to be important.

This is reflected by the variety of modeling approaches in existence.

2. The guideline authoring process is influenced by the specification of location and use case-

specific functional requirements. On one hand, guidelines can be developed generically, which

leaves their adaptation to the implementers of specific applications. On the other hand, they

can be developed specifically, which hinders reuse. In the latter case, to support reuse,

authoring tools need to better provide some sort of separation of local and generic components.

3. Dissemination of CIG models needs to be supported by both the modeling framework and the

anticipated delivery environment (i.e. platform). If there is a one-to-one mapping between the

models created and the ones consumed, that is the implementation is within a closed

environment, then a (proprietary) dissemination format can be agreed-upon straightforwardly.

If the mapping is many-to-many, meaning that the guidelines are developed generically for

multiple purposes, or for multiple target environments, then a common (standardized) format

needs to be adopted.

4. Despite their interest in providing CIG-based support, implementers of clinical information

systems are more interested in adopting already existing systems and methods than investing

significant resources in development and/or evaluation such systems. Accordingly, current

approaches would need to provide readily available tools for the incorporation of guideline-

based applications, including for “customization of the guideline logic, adapting to workflow

requirements, mapping of data elements and actions, and integrating user interfaces” [70].

5. Update of adapted CIGs is an unsolved problem. More on this can be found in a dedicated

problem point (see P2.9).

P1.2. Workflow versus rule-based approaches

As listed in the “Clinical Practice Guidelines” section, CIGs have a broad range of uses. However, in

summary they provide the means for two things: (1) identifying clinical situations and (2) managing

clinical processes associated with predefined clinical situations. For CIGs that put the emphasis on (1),

and implement monitoring of many potential clinical conditions and provide alerts/reminders based on

identified conditions, the critical functionality involves identifying methods for defining conditions,

automating the exchange and processing of data involved, and generating, filtering, and propagating

events. Whereas for CIGs that concentrate on (2), the emphasis needs to be on being able to express,

87

interpret, and navigate through a potentially complex graph representing dependency and causality

among observations and actions.

For example, an alert on an identified potential diagnosis and a list of associated recommended actions

would be an expected message generated by a CIG of (1). As for systematic instructions, including

orchestration based on the order of how things should be performed, or help with resource allocation

(e.g. who is supposed to what, is the appropriate equipment available) and scheduling (i.e. when is an

action need to be performed) would be expected from a CIG of (2).

It is arguable, but generally speaking (1) maps well to the rule-based paradigm, whereas (2) to the

workflow-based paradigm. The advantages and limitations of the two approaches, detailed below,

should help explain why. The benefit of using a workflow-based approach is that, unlike rule-based

systems, they represent the control flow explicitly. This means that they can explicitly model alternative

pathways (i.e. sequences of tasks) as a control flow and they provide tools for visual representation of

plans and the organization of tasks within them, thus they can be much easier to define and

comprehend. However, their use poses significant disadvantages. As they are designed to describe the

flow of execution in the form of a sequence of operations, for all non-orthogonal (i.e. non-parallel) tasks

there always needs to be a complete order defined. If permitted these tasks should be split to parallel

branches, otherwise operators related to ordering, such as “execute-in-any-order”, should be

introduced. However, this solution is far less scalable than using decision tables for example. While

experimenting with workflow-based CIG languages, we also found them to be difficult to use for

describing interrupts (i.e. events signaling the state changes of the environment in an even-driven

system). A typical group of examples, which illustrates this problem, includes cases where a sequence of

tasks is defined based on the priorities of the problems they would address. In these cases, while the

ordering can faithfully represent how physicians address problems, the execution flow is too rigid in the

sense that it would not go back to treat a high priority problem once it has already advanced to

addressing lower priority one. Potential alterations include adding (many supplemental) arrows to cover

all possible cases (i.e. all possible event combinations), or splitting up the original workflow to

independent workflows, both of which made our model much less comprehensible.

Rule-based representations can seemingly overcome this problem. In a rule-based world, all constraints

from the previously mentioned examples are represented as part of ECA rules. However, a large set of

(seemingly disjoint, but implicitly dependent) rules cause comprehension and maintenance problems.

Verification is also difficult, as rules are relatively low level and they are captured and evaluated

88

independently of each other. Yet another problem is the unhandled non-determinism among evaluated

and concurrently enabled (forward chaining) rules.

While the authors of [157] state that “CPGs are typically composed of sequences of steps that have been

arduously designed as a whole, instead of strings of single-step rules that are secondarily chained

together” it does not mean that they can easily be represented by workflows. Furthermore, it needs to

be noted that formalisms, which use rule-based specification (e.g. Asbru) can also be adapted to

represent guideline knowledge that unfold over time.

We believe that an ideal solution needs to support both paradigms. This would allow for expressing

the general sequence of logic in terms of a branching workflow, but also allow exceptions to be phrased

as a set of rules to alter the behavior defined by the workflow. In this case, exceptions define cases

either not represented by the workflow or cases that are, but need to be overridden (by the exceptions).

P1.3. Lack of formality and explicitly defined execution semantics

Defining explicit formal execution semantics is important for all CIG languages. Reasons can be found in

the previous sections, including “Benefits of Computer Interpretable Guidelines” and “Formal

semantics”. These reasons can be summarized as follows:

 Formal semantics help clarify what CIGs – defined with the help of the language – are trying to

achieve.

 It allows the implementation of software tools. More specifically, it provides a specification for

expected behavior, both in simulation and in real-life execution environments.

 It also provides means for analysis, including the comparison of various formalisms through the

assessment of what representations can and cannot capture.

 The use of a formal, well-defined representation also promotes maintainability and reusability

of the software, as the temporal structure and coordination of the tasks will be captured

explicitly. This is in sharp contrast to traditional approaches where this information is hidden in

the code.

All examined approaches have formalized semantics; however, each of them only provides a high-level,

abstract execution model, which is not sufficiently detailed for building an execution engine that could

89

be integrated into a live CIS. Part of the problem is that no formalism is able to properly (i.e. separately,

formally, and explicitly) represent and incorporate the behavior of the host CIS.

P1.4. Avoiding duplication of functionality between the CIG and the expression language

The expression languages in all examined cases are part of the language. However, based on their

description (provided in the “Expression language” section), it can be seen that expression languages

can overlap with other parts of the CIG language in terms of functionality. For example, if conditions can

refer to time, a condition (of the expression language) can potentially describe a situation that

contradicts the sequencing phrased by a sequencing operator (of CIG language). Alternatively, if a

condition can refer to the occurrence of an event58 it can express sequencing itself.

P1.5. Temporal reasoning

Temporal reasoning, specifically the representation and evaluation of temporal expressions is an

essential part of CIGs. In CIGs, temporal expressions typically are used to express constraints on possible

execution sequences, or assertions that need to be validated during execution. For their

implementation, three important questions need to be evaluated:

1. What is the expressivity of the temporal expression language? In other words, what kind of

temporal concepts are being modeled and how can they be used?

2. What are the questions expected to be answered based on the expressed constraints? In other

words, are the limitations caused by the complexity of satisfiability problem in the chosen logic

acceptable? Is, for example, simplification of the phrased constraints, or checking for

contradictions expected?

3. What is the expected evaluation strategy for the constraints? Is it pre-processed (i.e. design-

time scheduling), or lazy (i.e. evaluated at runtime)? Is it cyclical (i.e. checked with a certain

frequency), or on-demand (i.e. event-based)?

Temporal constraints in CIGs often express both qualitative temporal requirements (e.g. invariance,

precedence) and quantitative temporal requirements (i.e. “hard real-time constraints, which put timing

58
 An expression language can employ time-related expressions similar to what Allen’s interval algebra [178] defines.

90

deadlines on the behavior of the system”)59. Examples of the latter include constraints that refer to

absolute time, (i.e. metric time, e.g. drug A has to be administered before 10 am), and relative time,

meaning that there is an event ordering annotated with timing expressed relative to an event or state

change of the protocol (e.g. drug A has to be administered no later than 3 hours after drug B was).

In summary, the logic should be expressive enough to formalize a wide class of time-related constraints,

but checking compliance – satisfiability, in logical terms – should be decidable and efficient enough for

practical use [180]. However, this topic is not discussed by any of the examined approaches.

P1.6. Component-based guideline modeling

The use of CIG formalisms promises better reuse of CIG components, thus greater flexibility, scalability

and higher quality when constructing new guidelines. In this regard, CIG development shares many

common attributes with component-based software development [181]. For this reason, it is important

to leverage existing accepted solutions introduced in component-based software development where it

is possible. The following subsections discuss some of the necessary features of component-based CIG

development.

Composition of protocols

The composition of protocols is another in the list of topics, which has been neglected in the literature.

Composition here means the combination of two or more CIGs in order to produce a new one, with the

assumption that the new CIG will combine the logic of its component CIGs without any potential

interference between components. Interference can be interpreted as unwanted interaction between

two component protocols (e.g. contradictions, or contraindications). The benefit of protocol

composition is that it supports model reuse. However, its implementation is non-trivial, because

interference handling, and the automatic update of the used components are tasks needed to be

worked out.

The idea of composition was brought up in [80], because composition in Arden Syntax’s rule-based

paradigm is a natural concept. The hierarchical nesting of MLMs allows the reuse of components of

existing MLMs, however, Arden’s building blocks (i.e. subcomponents) have a fixed predefined context

59
 For example, qualitative temporal requirements can be expressed with Allen’s interval algebra [178], while quantitative ones

can be with MFOTL [179].

91

(i.e. a set of criteria describing when they are applicable). The disadvantage of using this type of protocol

composition is that it does not allow nested sub-protocols to be modified by their parents.

We believe that there are three types of sub-protocol inclusions (other than a plain copy of one

protocol’s elements to another, where no conceptual link is preserved between the two copies):

 Protocols viewed as being atomic (or black box) systems, in which case the included

(sub)protocol is not modifiable (similar to the concept of libraries in software engineering, or to

the concept of shortcuts used in many operating systems). Here the composition is rigid, but

straightforward (e.g. Arden Syntax).

 Protocols provide an interface for manipulation, in which case protocols provide an interface

for any potential host to manipulate its internal structure and/or behavior. Examples for this

would be to allow the host through predefined methods to suppress or override alerts, or set

parameters of the sub-protocol (e.g. redefine the temperature threshold for fever). This allows a

component identifying a patient with high blood pressure to have different triggering thresholds

in two different disease treatment cases.

 Protocols are copied with preserving a conceptual link to source, in which case the contents of

the (source/sub)protocol is copied into the host protocol while preserving a conceptual link to

the source for managing updates of the copy based on changes made to its source. This

approach allows the complete override of each individual element (of the copy), however

automatic update management is only possible if domain modelers understand the chosen

conflict resolution methods (e.g. source overrides changes in the copy, updates only happen if

there were no changes made to the copy, etc.).

In the latter two cases, support for handling protocol-protocol interaction needs to be provided. This will

allow the analysis of the effect and the resolution of potential conflicts of multiple guideline instances

that are being executed on one patient (e.g. finding contradicting suggestions).

Decomposition of protocols

The opposite of the previous point, decomposition of complex protocols into independently (re)usable

subprotocols is also a challenging problem. Deciding where it makes sense to split a protocol up into

subprotocols is highly dependent of the protocol’s use and can only be decided by domain experts.

92

However, if the composition of protocols is supported, creating methods for dividing protocols should

be targeted to allow maximizing the reuse of captured knowledge.

Version control

Problems described in the previous two points are both related to versioning. Versioning in the case of

CIGs deals with tracking the evolution of a protocol. It entails creating and maintaining an accessible

version history through committed user changes.

In component-based software development there are multiple versioning schemes provided [182–184],

but there is no consensus in which proposed method would be the best method. In order to decide

which one of the many proposed solutions (if any) fit the CIG development, one needs to evaluate the

types of changes that would trigger a version change in a CIG’s lifecycle. Some of the most important

aspects of CIG versioning that influence this decision are listed below:

 Type of the change

o Continuous development: Development of a complex guideline takes a lot of time,

during which multiple iterative version might accumulate.

o Correction of a discovered error: Like any other piece of software, CIGs are hardly

perfect, when being created. Analysis, testing or everyday use can reveal these errors,

which then need to be addressed.

o Creation of new protocols by composition or decomposition: These methods were

previously discussed. As an example, depending on the chosen method, their behavior

can be similar to the use of software libraries or to complete source fork60.

o Parallel development: If multiple users need to work on a set of CIGs at the same time

the creation of parallel branches and their merge need to be supported.

 Degree of the change: Projects and local workflows can require the differentiation between

minor changes, which do not affect end users, and major changes, which do (e.g. official

releases).

60
 The process of forking in software engineering produces a distinct piece of software by create a complete copy of the original

source code of software package so that development on it can be done independent of the original package.

93

 Functional and non-functional versions: In a collaborative environment even non-functional (i.e.

non-executable) versions of CIG have value, as they could be passed around between various

domain experts, each of whom can make changes in order to complete the guideline.

 Local adaptation61

o HCO-specific version

o Personalized version: Some providers could require the customization of a CIG (e.g.

adjusting certain thresholds).

As opposed to versioning of CIGs, versioning can be interpreted in a broader sense as well. In a larger

project, basically all captured CIG components that can be considered as standalone, reusable

components should be version tracked.

P1.7. Representing uncertainty

Uncertainty is inherent to medicine, as medical processes often exert complex behavior in which

outcomes are non-linear. Because of this, the representation of uncertainty is crucial in CIGs. Despite

this requirement, and the fact that various techniques have been proposed and evaluated before

[185,186], none of the examined approaches provide native support for them (e.g. probabilistic decision

models, fuzzy logic).

We found that there are two (somewhat overlapping) use cases where CIG representations could

benefit from representing uncertainty: (1) selection of the proper solution from alternatives and (2)

representing numerical parameters. These topics are discussed in the following subsections.

Selection of the proper solution from alternatives

Expressing uncertainty is important when offering competing alternative treatment options for a patient

with a particular configuration of clinical indicators. This requisite is effectively illustrated by the

example presented by Figure 22.

61
 This topic is discussed in more detail in the following sections.

94

Figure 22 - Deciding on protocol applicability (Directed versus empiric therapy)

Figure 22 shows a two axis Cartesian coordinate system, which should help clinicians decide what

treatments to choose given that there is some suspicion that a patient could have sepsis (e.g. after a

notification from an automatic health indicator62 monitoring system). The X-axis represents the

confidence level of a provider in terms of sepsis based on the available objective data63 of the patient.

The Y-axis shows the general wellbeing of the patient in terms of the same objective data. The

explanation of the grey regions of the figure is the following:

 Not sepsis (NS): here clinicians should decline starting up the sepsis protocol.

 Severe case of NS (NSS): this special case of NS requires some intervention (other than the sepsis

protocol), because the patient is very sick.

62
 Health indicator is a patient related data point that is indicative of their health status (e.g. signs and symtoms).

63
 Objective data in the health-care setting “can be defined as data that is factual, unbiased, and unchanged by personal

feelings or interpretations”, examples include lab test values, sensory data, medication history. [187]

PSNS

NSS

CS

CSS

Y Severely ill

Not sick

X

Certain
sepsis

Not
sepsis

Coordinates

• X Believed state of the patient based on
predefined diagnostic criteria

• Y Patient wellbeing based on signs and
symptoms

Regions

• NS Not sepsis
• NSS Severe case, but not sepsis
• PS Possible sepsis
• CS Confirmed sepsis
• CSS Severe case of CS

95

 Possible sepsis (PS): here empiric therapy is advised, according to which clinicians should treat

for all potential diagnoses (including sepsis, as well as others), but only do procedures that are

not conflicting (i.e. do not contradict each other) and are not harmful to the patient (i.e. do not

perform an action which would have a highly negative effect on the patient in case the assumed

diagnosis was not right).

 Confirmed sepsis (CS): here directed therapy is advised, which means devising specific

treatments for specific diseases [188]. This, in the case of sepsis, translates to the execution of a

CIG-defined sepsis protocol.

 Severe case of CS (CSS): in this special case of CS, the CIG should enable otherwise sequential

steps in parallel in order to compensate for the severity of the case (e.g. execution of the fluid

challenge and the early goal-directed therapy, both of which are components of the sepsis

treatment CIG).

As the above example illustrates, expressing uncertainty in selection of the proper solution from

alternatives is vital. We found that methods for ranking the alternatives can be one of the following

options:

 represented implicitly, meaning that the order is built into the solution (e.g. try solution A first,

afterwards evaluate parameter P, if P < threshold T, try solution B),

 represented explicitly, with a help of relative or absolute priorities, or with a help of scoring

values, which attach probabilities to alternatives, where values can be based on statistical

results, or

 it can be left to the end-user, which is a form of (intended) non-determinism that can (and

should) always be resolved by the expert users. This choice, the existence of the need to make a

decision over alternative solutions, indicates a missing (i.e. incomplete) criterion. The missing

piece of information can be absent due to various reasons.

o First, it could be that the criterion cannot be represented, because (a) the (expression)

language is not sufficiently expressive, or because (b) the information cannot be

described or obtained automatically (such as the “septic look” of a patient, a typical

condition identified by physicians when physically examining a patient).

96

o Second, it could be a deliberate decision for requiring user decision (for example if there

is no study supporting decision, or there is too much risk involved).

Representing numerical parameters

In all evaluated systems, numerical parameters (e.g. thresholds of a condition for triggering alerts) are

discretized values, even though the fact that the definition of these values are somewhat arbitrary. The

case of hypotension detection demonstrates this issue well. Hypotension is generally defined as systolic

blood pressure less than 90 mm Hg64 or diastolic less than 60 mm Hg. Does this mean that it is

acceptable to not bother looking at patients who have a diastolic blood pressure of 61 mm Hg (and

systolic over 91)? A solution building on fuzzy logic might be able to address this issue (see Figure 23),

but of course, it would have its own disadvantages, including the fact that there is usually no research

data to fill in the gap (between discrete values). For example, the effects of 250mg and 500mg doses of

Fulvestrant are well studied, but there are no studies done for a 355mg dose.

Figure 23 - Standard versus fuzzy logic for representing uncertainty

In [189], the author proposes extensions to Asbru and PROforma to include the ability to capture various

“grading systems”, which would allow for better automation of the selection among alternatives. These

grading systems base their decision on the following groups of information:

 Levels of Evidence (LoEs)

 Strengths of Recommendations (SoRs)

 Trade-off between benefits and harms

 Cost of actions

64
 millimeters of mercury

1

0

Truth
value

Diastolic blood
pressure [mmHg]

Hypotension Normal Hypertension

60 90

B) Blood pressure ranges defined with fuzzy logicA) Blood pressure ranges defined with standard logic

1

0

Truth
value

Diastolic blood
pressure [mmHg]

Hypotension Normal Hypertension

60 90

97

P1.8. Representing configurable input parameters

In an ideal world, clinical conditions either would be independent (i.e. orthogonal) problems, or would

be decomposable to independent problems. If this was true, guidelines could be defined to address each

problem independently. However, clinical conditions are often highly dependent on each other.

Unfortunately, not all dependencies are fully understood, only suspected. Some of them might not be

discovered at all. The ones that are well-understood can be divided into two groups: explicit (e.g.

chronic hypertension may lead to hypertensive retinopathy) and implicit dependencies (e.g. treatments

of both problem P1 and P2 involves X dose of medication M, however if both P1 and P2 are present it

does not mean that 2X of M should be given for a patient). These kinds of dependencies cause a state

space explosion in the space of unique problem combinations for which dedicated treatments needs to

be defined. In the worst case, CIGs would need to be defined for each element of the superset of

problems, which would be extremely difficult to manage. Thus, it makes sense to provide clinicians with

flexible CIGs, which they can tailor to the specific needs of the patient. Providing a solution specific to

the patient requires adjustable thresholds and alternative treatment options. Examples for configurable

parameters can be seen in Figure 24. These parameters represent intended non-determinism that is

resolved at either before or in runtime.

Figure 24 - Forms of non-determinism in CIGs

Nonetheless, to track protocol compliance it is important to cleanly identify which parts of guidelines

are configurable and which are not65.

65
 Clinicians may always choose to opt out from a CIG if they do not find any of the predefined options appropriate.

Process 2

Non-differentiated
(interchangeable)

alternatives

Process 1

Decision based on an
adjustable threshold

P: input parameter, T: threshold

P ≥ T

Sync

Adjustable delay
Multiple allowed

execution order based
on partial order defined

P < T
?

P < T

98

P1.9. Exception handling and state-space coverage problems

During the execution of a guideline, the actual treatment in real life implemented by a clinician might

diverge from the scenario-based gold standard, which is captured by the executing CIG (Figure 25). This

dissonance indicates (1) potential problems in the encoding of decision logic and/or (2) the quality of

(patient) data built upon66. In cases when only the former is true (i.e. (1)), there are three possible

scenarios: either (a) there is an inaccuracy in the CIG, which needs to be corrected, (b) the wrong CIG

was selected for execution, or (c) the state-space is not sufficiently covered, which means that the

particular (sub)case simply was not captured. All cases of (1) should be considered as exceptions, and as

such, have to be gracefully handled by the execution environment. Examples for a couple of graceful

methods are discussed in the following three sections. Cases involving (2) indicate issues with data

acquisition, which is not in the scope of this work, however, the related topic of rollback is discussed in

P1.12.

Figure 25 - Simplified decision support flowchart

P1.10. Grey tracking

In the context of CIGs, grey tracking is the ability of an execution environment to follow the actions of a

user even if they do not precisely line up with what the guideline suggests. Furthermore, a grey tracking

enabled EE should be able to recognize points in the (off-course) treatment trajectory where the

66
 Here we assume that overrides of CIG suggestions made by clinicians are conscious decisions and not mistakes.

Specify
reason

Execute
treatment

actions

Do delay
Exception

Abort guideline

Finish guideline

Evaluate
condition?

Recommend
associated
treatment

Perform
recommended

treatment?

no

yes

no yes

disagree
missing or false
recommendation

differ
decision

start

99

treatment does comply (again) with the CIG (Figure 26). At those points it should allow the user to opt

back into CIG execution, and if there were no compliance constraints violated, mark the execution trace

as compliant (with the guideline). A simple example for this is the case when a physician wants to

perform the same actions defined in a CIG, but in a differ order. In a more complex example, a physician

performs only a subset of the recommended actions and adds actions that are not present in the CIG.

Figure 26 - Grey tracking (illustrated for a TNM-based CIG)

The questions need to be answered for implementing grey tracking include: “What counts as still within

the protocol?” and “How can we get back (i.e. reenter) to the once abandoned treatment protocol?”

P1.11. Protocol updates “mid-flight”

One of the potential requirements of a scalable CIG model management solution is the ability to apply

updates for protocols mid-flight. Such an update mechanism would allow the exchange of a protocol to

another one during execution. Mid-flight updates can be deemed clinically important if swapping one

guideline for another promises better outcomes, or if there is a critical update to the guideline currently

in use that needs to be applied.

This is a particularly complicated problem, as the consistency of the treatment needs to be guaranteed

during the transition. Preserving the consistency here means that execution traces need to be clinically

valid and should not be confusing for experts to follow.

There are multiple options for performing such an update, but not all can guarantee consistency.

Discussing this problem in detail is out of the scope of this thesis; however, we illustrate it a consistency

S

F

F

F

R

S Starting point

Task

R Reentry point

F Finishing point

Treatment trajectory described by the CIG

Treatment trajectory not described by the CIG

100

violation with a simple example: Taking protocols that have running instances at the time of an update

and simply stopping and replacing them by their updated version could cause undesired effects. There

can be a case, where a problem that was continuously treated with medication (M) by the original

version of the protocol (P), is not covered by the updated version (P’). Accordingly, the administration of

M will not be recommended by P’, which means that in the case when M is a drug that cannot abruptly

stopped, the sequence of legal actions will generate a medical error.

P1.12. Defining rollback strategies (i.e. undo)

Another complicated problem left untouched is defining the logic for dealing with the effects of false

data67 that has only been deemed as such after it has been processed by the system. In cases, where the

unwanted changes can be undone without side effects, the problem translates into implementing a

rollback feature (i.e. undo). Ideally, this case would include complicated problems, such as rolling back a

set of transactions internal to the EE (e.g. based on a (false) decision to start something a whole set of

events are triggered). It would also include rolling back transactions that occurred between the EE and

other CIS systems, which is only possible if all affected systems support an undo capability. In cases

where changes are permanent (e.g. an injection was already administered), the introduced problem will

require the execution of appropriate counter measures, which also should be a part of an ideal system.

Additionally, not just the implementation of the mentioned features, but also the suitable

representation of mistakes and appropriate remedies needs to be worked out.

P1.13. Look-ahead feature (i.e. simulation of the “what if” scenario)

Validation by simulation is an important component of testing protocols, as it allows experts to test how

CIGs (or more precisely CIG-based systems) react to a certain situation. For simulation, usually series of

these situations – described by timed events and data points – are composed into scenarios (i.e. test

cases).

However, there are cases when this type of simulation is not flexible enough. For example, someone

might want to look ahead in the trajectory of a running CIG to understand what the protocol would do

next, but without actually taking those steps. This type of interactive simulation could be used to serve

teaching purposes, to understand the next steps, or it could be used for helping in the preparation for

67
 False data can include mistakes made by users selecting the wrong set of actions, and automatic sensors reporting incorrect

values.

101

various prognosis theories (e.g., what if I select treatment A, but the patient’s conditions do not improve

even after an hour). Solving this problem involves a sophisticated harmonization of live execution and

simulation, which includes understanding how far can steps be taken, while still preserving the ability to

roll-back and how can fictitious (e.g. prognosticated) data be separated from live ones.

P1.14. Time control in simulation

The architecture – including the internal structure – of the simulation environment is not required to be

an exact replica of the live system, however as seen in the examined approaches, they are usually the

same. This could be a problem if this common architecture does not support the use of arbitrary time

sources (i.e. custom clocks). Custom clocks are needed for interactive simulations where time often

needs to be sped up, slowed down, or even reversed to better understand what is happening in

execution time.

P1.15. Lack of verification of correctness of CIGs

As described earlier, verification means making sure that the implementation conforms to the

specification. In the case of CIGs, verification entails support for phrasing a range of properties (e.g.

goals and intentions68, including properties related safety, security and privacy) independently from CIGs

that can then be used to check whether or not they hold for the CIGs in a particular environment.

None of the examined approaches do actual verification, although potential solutions, like [163], have

been proposed. When approaches talk about verification, they refer either to validation, or to syntax

checking.

It was also mentioned in [163] that verification is only possible if there are concepts for formally

describing the specification against which CIG models can be tested. This means that CIG languages

need to include support for modeling properties, possibly defined as constraints. More on this can be

found in Chapter VIII.

68
 Verification of goals and intentions are usually performed by evaluating expressions (defined with the help of expression

languages) over the decomposed solution.

102

P2. Local adaptation

P2.1. Lack of standardized terminology

To maximize portability, CIGs need to build on standardized vocabularies and data models. However,

currently there are many vocabularies and data models (e.g. SNOMED, CPT, ICD-9, LOINC and HL7-RIM)

being maintained by many different groups with various interests, which make the selection difficult.

The good news is that with the help of the mappings provided by a common ontology layer, such as

UMLS, the adaptation can be much more straightforward.

P2.2. Communication protocol for managing interactions with the host system

Interfacing a CIG-based system with a potential host system require more than agreeing on a common

vocabulary and a data model. For seamless integration, defining the communication protocol69 with the

host system is critical. This problem is complicated by the fact that the host system often involves not

one, but a suite of different CIS systems, which a CIG-based system might be required to interact with.

Ideally, all participating systems would support (at least) one common communication protocol. This

would require all participating systems to define an information exchange interface70, which would allow

them to be arbitrarily connected. However, as there are no standard CIG formalisms, there are no

standardized communications protocols in existence either. Thus, if someone was trying to implement

CIG-based clinical care, they would have to also design their own protocol and build the interfaces

implementing the protocol for the participating CIS components.

Two related issues are discussed in the following two points.

P2.3. Feedback mechanisms in a communication protocol

One of the issues related to managing the interactions with the host system is defining the feedback

mechanism of the host for actions that were “ordered” by the CIG system. This feedback mechanism

69
 A communication protocol between a CIG-based system and its host system(s) describes a mechanism for their interaction. It

provides a formal definition for digital message formats and the rules for exchanging those messages (i.e. syntax, semantics,
and synchronization of communication). The definition includes descriptions for data abstractions, behavioral models (e.g.
message handling), addressing, etc. Furthermore, a protocol may implement other related functions, such as authentication,
error detection and correction, flow control, etc.

70
 An information exchange interface is similar to a service interface. It defines its host’s address, the required authentication

method, input and output message types, their sampling rate, max throughput, etc.

103

allows a CIG-based system to make sure that the actions it expects the host system to perform are

completed.

We see two options possible for closing the loop: (1) white and (2) black box methods. In the white box

method (1), the chain of systems serving the request provide explicit feedback messages, which allow

the tracking of each request’s state. As an example, let us consider the series of steps leading to a

successful ordering of a medication in a typical CIS system suite with the white box method. After a

CPOE system receives a request from the CIG system for ordering a 500mg dose of drug DA in an

injection form, it sends an explicit acknowledgement (or denial) for the particular request. In the next

step, the medication order (typically) gets routed to a pharmacy information system (PIS) and in turn to

an electronic nursing medication administration records system (eMAR) [190]. Both of these systems

would also report back, the PIS about the successful preparation and the eMAR on the administration of

the drug. Such series of status reports (which are sent either directly to the CIS system, or indirectly with

a series of messages propagated through the involved systems), makes the CIG system aware whether

everything goes according to plan, or not.

In the other method (2), the host systems form a black box system, where the CIG system needs to

listen and observe events of the environment confirming that the requested action was completed. For

example, if a clinician ordered drug DA to be administered through the CIG system, the CIG system will

need to listen to a shared channel for drug DA’s administration to close the loop. This “reverse

engineering” has its advantages and limitations. As a benefit, it does not require the host systems to be

modified, as long as they provide a method for observing the results (e.g. method for requesting the

complete history of administered drugs, or providing a “real-time” channel where administration events

can be observed). Additionally, they allow a more scalable integration with other systems and protocols,

as they recognize “similar” (i.e. matching type of) actions. An example for this would be recognizing and

skipping a particular procedure defined by the CIG for a patient, if another clinician already just

performed it. Conversely, the black box method does not provide support for identifying where a

particular request is in terms of completion and if assumed lost (e.g. cancelled) or stuck (e.g. waiting for

approval) where that might be. Another disadvantage is that while the information recorded in

downstream transaction systems can be visualized in multiple ways in the electronic health record, it is

not visually linked to the original order. This makes it difficult for both humans and systems to

understand the state of the order, comparing the intended plan with what the nurse actually

administered to the patient. Furthermore, the decision support logic that assisted the provider in

104

creating the order, such as parameter based dose calculations, are not carried over with the order

sentence to the transaction system. This context is lost once the order is finalized, but is essential

information for downstream healthcare professionals to verify the appropriateness of the order.

P2.4. Data provisioning

None of the publications indicate that authors have considered their CIG-based systems to be data

providers for other systems, only as consumer systems. In order for a CIG-based system to act as a data

source to other systems, the CIG formalism should support the definition of what the system can be a

source for. For example, in the case of the treatment of a particular disease, the diagnosis of the disease

confirmed in the protocol could be a piece of information that another system, such as a dashboard

indicating the status of multiple patients across multiple diseases, would want to consume. Abstract

states, such as the severity level of a condition, could be another example.

P2.5. Avoiding the duplication of functionality of the host systems

When integrating a CIG-based system into a new environment or when adopting a CIG, it is extremely

important to identify which functions will be implemented by which (system) component. This includes

addressing the problem of overlapping (i.e. duplicated) system functionality. As an example, the CIG,

consequently the CIG-based system, might implement some functionality related to patient safety

already addressed by the CPOE system in place. There is a great chance for this, as CPOE systems usually

implement the following safety measures before accepting the order for a drug:

 General drug interactions

o Drug dosing: including one time maximum, lifetime maximum, minimum to be effective,

etc. dose and dose rate checks

o Drug-drug interaction: interaction with other already administered drugs

o Drug-food interaction

o Other recommended related (needed or extending) drugs, such as pre- and post-meds

o Other (potentially better) options achieving the same, including checking the duplication

of functionality (e.g. checking the existence of multiple drugs from the same class)

 Drug-patient condition interaction

o Drug-disease interaction: potential negative effects to other medical conditions

o Drug-allergy interaction (i.e. adverse reaction)

o Pregnancy and lactation interaction

105

 Drug-patient parameter interaction

o Drug-genome interaction: genetic contraindications

o Age related interaction (e.g. for geriatric, pediatric patient populations)

 HCO’s workflow-specific restrictions (e.g. complying with safety, privacy, and quality of service

rules).

P2.6. Adapting configurable parameters

As discussed before, CIGs may contain configurable parameters, including thresholds and alternatives,

to allow clinicians to tailor the execution of CIGs to a particular patient. At integration time, not only

data and action items need to be mapped to local resources, but these options as well. Their mapping is

complicated by the fact that they might need to be altered (restricted, or broadened) to fit resource and

policy constraints.

A parallel problem is the configuration of local tools that are facilitated by CIG in execution time. The

general case of this problem is discussed in P2.2. Similarly to this problem however, all the typical

components of a CIG-based CDSS (other than the EE) can be considered as “facilitated” systems. In this

case, the CIGs can potentially be required to include configuration for those systems as well. An example

for this would be storing information regarding the UI, such as what font to use, or how to display

warning messages associated with guideline steps if there are multiple options for it.

P2.7. Separation of concerns: Lack of ability to provide multiple visual representations

Separation of concerns is a principle often applied when designing DSMLs. Not surprisingly, all examined

guideline formalisms employ it to manage the complexity inherent to CIGs. One of the typical

techniques used in formalisms is to separate guideline knowledge into groups (or aspects) related to

 maintenance, which captures meta-information on the CIG model (e.g. version, author, and

creation date)

 medical context, which captures the medical context of the CIG (e.g. purpose, keywords, and

references to external sources (such as EMR items facilitated, or cited research articles))

 plan knowledge, which capture the set of (medical) actions to reach a certain goal.

106

This separation, however, does not address two problems, namely (1) control over visualization

(including information hiding) and (2) support for local adaptation71. Both of these problems are related

to the lack of (or minimal) support in the examined languages to create specifications (in their respective

abstraction layers) on top of the existing CIG definitions.

This approach in the case of (1) would allow knowledge experts to have control over what information

was shown (from what is captured in CIG) and how it was manifested (e.g. there are control mechanisms

in the formalism for deciding whether a vital sign should be charted as values in a table or as a graph). It

also means, that the same guideline definition could be used to present different views (of the model)

for the different HCO personnel (e.g. physicians, nurses, billing personnel; see Figure 27). However, so

far none of the formalisms have proposed to support abstractions specifically designed to allow

modelers to configure the visual manifestation of (the elements of) a CIG.

Figure 27 - User aspects of a CIG

P2.8. Separation of concerns: Portability

The other problem mentioned in the previous section is the lack of support for local adaptation of

existing CIGs. Formalisms simply do not provide scalable solutions for the generalization of HCO-specific

and specialization of generic protocols. We believe that these steps are essential for adapting CIGs for

environments that are different from what they were created in. Furthermore, they allow for the

creation of tools that can (semi)automatically incorporate CIG-based applications into the existing

ecosystems of HCOs.

71
 Problems deriving from the unsatisfied requirements defined in point 3) and 4) of the “Modeling requirements” section.

Relevant to
Billing

Relevant to
System

Integration

Relevant to
Physician

Relevant to
Nurse

Relevant to
Patient

CIG

107

Figure 28 illustrates some of the typical issues with guideline portability. This simplified figure shows two

versions of a given CIG: a generic version (seen on the left side), which is built using general drug

concepts (DrugGeneral), and a HCO-specific version (seen on the right side), which is built using drug

orderables available in the provider’s CPOE (DrugHCO). In the figure, each arrow marked with a “T”

indicates a transformation: T1 and T2 are transformations between the two versions of the guideline, and

T3 and T4 are example transformations between two versions of a typical action item of guidelines,

medications.

Figure 28 - CIG portability

T2 denotes the generalization of a HCO-specific CIG. This is a difficult task, as CIGs developed to work at

a specific HCO often contain logic captured with the HCO’s local resources and constraints in mind. They

1.

2.

3.

4.

T3

T4

T1

T2

HCO-specific Solution

HCO-specific CIG

HCO-specific Constraints

• Policies

• Drug-specific
• Clinic-specific
• Hospital-specific
• Law

• Workflows
• User preferences
• Drug inventory
• Financial
• …

General Constraints

• Adapted drug-drug interactions

• Adapted drug-patient
interactions

• …

HCO-specific Drug Orderable

• Drug IDOntologyHCO

HCO-specific Constraints

• Policies

• Drug-specific
• Clinic-specific
• Hospital-specific
• Law

• Workflows
• User preferences
• Drug inventory
• Financial
• …

General Constraints

• Adapted drug-drug interactions

• Adapted drug-patient
interactions

• …

HCO-specific Drug Orderable

• Drug IDOntologyHCO

HCO-specific Constraints

• Policies

• Drug-specific
• Clinic-specific
• Hospital-specific
• Law

• Workflows
• User preferences
• Drug inventory
• Financial
• …

General Constraints

• Adapted drug-drug interactions

• Adapted drug-patient interactions
• …

HCO-specific Drug Orderable

• Drug IDOntologyHCO

contains

Generic Solution

General Constraints

• Drug-drug

interactions

• Drug-patient
interactions

• …

General Medical
Ontology Drug

• Drug IDOntologyX
General Constraints

• Drug-drug interactions

• Drug-patient interactions
• …

General Medical Ontology
Drug

• Drug IDOntologyX
General Constraints

• Drug-drug interactions

• Drug-patient interactions
• …

General Medical Ontology Drug

• Drug IDOntologyX

Generic CIG

contains

108

often contain built-in assumptions regarding the host CIS infrastructure, workflows, security policies,

etc.

T1 denotes the specialization of a generic CIG, which is another concern. HCOs need to be able to

customize CIGs in order to comply with local policy and workflow requirements, map abstract CIG

elements (data elements and actions) to local ones, and integrate UIs [70], ideally without altering the

original plan.

In order to illustrate some of these challenges we included the description of the transformations for

medications. T3 denotes the adoption process of an HCO when creating or updating their local CIS’s

action items to include drug definitions specified by a given ontology (e.g. FDB MedKnowledge [191]).

During this process, existing drug concepts are paired using a common concept id (DrugIDCommonOntology =

DrugIDOntologyHCO = DrugIDOntologyX), and existing local knowledge is updated based on the (new)

information available in the generic ontology. General constraints (ConstraintsGeneral), such as known

drug-drug interactions and associated warnings, are tailored to fit the location’s abilities and needs

(ConstraintsGeneral’) and location-specific constraints (ConstraintsHCO) are added. For drugs that cannot be

automatically paired (e.g. there are drugs described by the generic CIG that are not available at the

adopting HCO) clinically valid substitutions are needed. Additionally, such drug concepts may trigger the

creation of new orderables, but only if appropriate authorities decide to extend the HCO’s existing set of

action items to include them.

T4 denotes the inverse process of T3, during which HCO-specific concepts are stripped from locally

specified constraints (e.g. splitting up bundled a group of medications to individual medication items).

P2.9. Management of CIG updates

Management of CIG updates is generally an unsolved problem. It relates to the previously mentioned

problem of portability. “Local implementations will have modified authoritative guidelines to adapt to

local constraints, and will have done considerable work to interface them to their platforms”. “As

recommendations of authoritative guidelines change, local implementers must be notified of these

changes, and must modify their local versions. Maintaining version control and revision history is critical

to this task, and means of automating or facilitating the changes required will be needed.” [70]

109

P2.10. Representation of patient state: Management of information abstraction

Clinicians often build complex and comprehensive diagnoses from simple indicators, such as from

observed signs, and reported symptoms and objective data. However, this type of abstract reasoning is

not easy to represent with current formalisms. In the following, three specific examples are shown to

illustrate why:

Example 1: Aggregating different sources

Formalisms regularly express the execution of tasks conditional upon patient (health) indicators, for

example on cardiac output (CO): If CO < 4.0 L/min then do TreatmentActionX. The problem with

these definitions is that they are often ambiguous, as it is in the case of CO thresholds: There are a large

number of clinical methods for the measurement of CO, ranging from an invasive direct intracardiac

catheterisation to a non-invasive estimation using measurements of the arterial pulse [192]. Thus, if

different techniques or (types of) devices are used, measurement results may vary in terms of precision.

Another related problem is that the field of medicine often uses different thresholds for defining normal

value ranges for different types of measurements. A simple example for this phenomenon is the normal

values defined for the human body temperature based on where the measurements were taken at [193].

Yet another problem is resolving another issue related to the context of the measurement: Relative to

food consumption when was the blood sugar level measured, or was the weight measured with or

without clothes on? Last, but not least, measurements can be made using various measurement units,

which means that values can only be compared if they are converted to a common unit. These problems

make the aggregation of the information sources and the derivation of the abstract information difficult.

Regardless of these problems, formalisms need to support the ability to express abstraction rules to

allow clinicians to define derivation formulas (e.g. always use the most reliable source available, use the

calculated average of all available sources, if the preferred source type A is not available use source type

B with using a given conversion method).

Example 2: Defining composite indicators

The execution of CIGs relies on the availability of health indicators, which in some cases can be

automatically retrieved from an EMR. This is usually not the case with abstract indicators72. One part of

abstract indicators can only be defined informally. If not present formally in the EMR, their evaluation

72
 Abstract indicator is a patient health indicator, which requires a clinician to determine a diagnosis. It can also be interpreted

as a not directly measureable patient health indicator, or one, which cannot be directly received from the patients EMR.

110

requires users to provide the information manually to allow the EE to continue its execution. An

example for this type of abstract indicator is a clinical condition called sepsis, which can be defined as

observed systemic inflammatory response syndrome (SIRS) secondary to an infection [25]. In the case of

sepsis, without culture data it would be extremely difficult to automatically infer the presence of an

infection from other indicators, especially that the treatment often needs to be started even if there just

a suspicion on the presence of an infection.

Another difficulty in dealing with abstract indicators is that their definition can be relative to a disease,

to a patient and even to a case. Automatic interpretation of such definitions is only possible for the

other type of abstract indicators, called the composite (or derived) indicators. Composite indicators, such

as hypotension73, can be expressed from the logical composition of other (formally defined) indicators.

E.g.: 74

Hypotension = [(MAP < 65 mmHg) OR (SBP < 90 mmHg) OR (DBP < 60 mmHg)],

where MAP stands for mean arterial pressure, SBP for systolic blood pressure, and DBP for diastolic

blood pressure. Ideally, CIGs define the context of the treatment (i.e. when is the specified treatment

applicable), which includes the definition for abstract (and complex) indicators.

If in a CIG the same definition of a composite indicator is used in more than a handful of places (e.g. in

guard conditions of various specific treatment actions) it makes sense to define the indicator centrally as

a reusable concept. This centralized definition of indicators (e.g. patient condition) has multiple benefits,

including allowing users to comprehend the CIG algorithm faster, and making update process (for all

instances of these conditions) less error prone. However, it can also mislead experts, who make

incorrect assumptions on what the definition might be. Still, we believe that formalisms (including

expression languages) should support this feature.

Example 3: Identifying the source of indicators

Formalisms do not support the definition of the source of the electronically available parameters. If they

did, they might be able to discover inconsistencies in composite indicator definitions. For example, in

73
 abnormally low blood pressure

74
 Other examples include calculating the aggregate daily activity level of an elderly patient from a series of momentary

measurements of an accelerometer, and identifying trends based on multiple measurements of an elevated heart rate over
time.

111

the above-mentioned definition of hypotension the inclusion of mean arterial pressure might only make

sense if it was a value obtained from something different than averaging the same systolic and diastolic

blood pressures. Another point in favor of being able to identify the source is that while CIGs blindly

trust the information provided to them, clinicians have tremendous background knowledge, which

allows them to second-guess any of the information presented to them. Thus, clinicians would greatly

benefit from CIGs that allow them to see where and how the presented information was obtained.

P3. Clinical adoption and implementation

P3.1. Readability of models

“Great importance has to be attached to the notational convenience of these languages, by which we

mean the ease with which they can be read, written, and understood by the potential users of a system,

and to the domain experts” [36]. Notational convenience, as well as usability of the associated tools

need to be properly evaluated.

P3.2. Handling transactions with a bundle of actions

If communication protocols (discussed under P2.2) are not intelligent enough, the exchange of

composite messages could cause problems during the execution of a CIG. For example, drug interaction

checking, including checking for required supporting medications, may be handled by the CPOE system.

Furthermore, let us assume that there is a rule for drug A, saying that drug B always needs to be given to

the patient before A can be administered. In such a case, if a CIG splits up the ordering of A and B into

multiple transactions, there will be a warning if the request for A is processed first.

P3.3. Interactive simulation

The simulation of CIGs has multiple purposes. It can be used (1) to implement the look-ahead feature

(see P1.13). It can be used for (2) the validation of the correctness of the logic captured by the CIGs. It

can also be used (3a) to educate clinicians about a particular guideline, or (3b) to test their performance

in facilitating them. The common aspect of cases 2 and 3 is that they typically rely on using predefined

scenarios (i.e. test cases). Scenarios are defined by controlled data sets, in which data elements are

specified in terms of time relative to the start of the scenario. These data elements act as inputs for the

CIG in simulation time.

However, there is a significant difference between use cases 2 and 3. Whereas for defining scenarios for

the validation of CIGs (case 2) it is perfectly acceptable to use a scenario with a linear sequence of inputs

112

paired with the expected behavior, for defining scenarios for 3, a more sophisticated technique is

required. This is because with 3, and especially with 3b, human interaction is expected during simulation

for which the scenario needs to be prepared. An interactive simulation requires a patient model to be

captured, which in simulation time is able to “respond” and generate relevant physiological data based

on the actions clinicians take. Depending on the purpose of the simulation, a patient model defined as a

part of a scenario might be realized by something as simple as defining sub-scenarios and branching

logic connecting them. A complicated case might require an expert to perform a simulated reaction of

the patient, in other words create the relevant data (e.g. generate vital and lab response) in

coordination with the simulated treatment. The point is that all significant sub-cases in a scenario need

to have relevant, explicitly defined input data associated with them.

P3.4. Simulation-specific view

Both in the case of interactive simulation and in the case of building possible future treatment scenarios

for an actual patient visualization of future data is essential. This is particularly true if there are multiple

possible options to represent. Thus, it would be important to work out how future data should be

released to the execution system and how it should be represented on a UI.

113

CHAPTER IV.

OVERVIEW OF THE SEPSIS PROJECT

The previous chapters surveyed CIG-based CDSSs with an emphasis on the CIG languages and the

software architectures of each approach. As the survey demonstrates, there have been many CIG-based

CDSSs proposed, with great variance in terms of their scope. Their evaluation allowed for the

construction of a general requirements list for constructing these systems. However, it is apparent that

none of the examined solutions come close to fully addressing all of the points. Some of these

shortcomings are relevant to all approaches and are summarized in the “Open problems” section of

Chapter III.

The goal of our research is the systematic development of a prototype CDSS system using model-

integrated75 development techniques. Our hypothesis is that emerging tools and methods, such as the

Model-Integrated Computing76 (MIC) tool suite, have significant impact on the development process,

capabilities and acceptance of CDSS and has the potential to lead to a new generation of decision

support and patient management tools. Accomplishing this goal requires an application context that is

justified and realistic from a medical point of view, its complexity challenges the state-of-the-art in

computer science and provides opportunity for real-life evaluation in the clinical environment. We

achieved this purpose by establishing a collaborative research effort between the Institute for Software

Integrated Systems (ISIS) and the Vanderbilt University Medical Center (VUMC) on a project titled the

Sepsis Treatment Enhanced through Electronic Protocolization (STEEP). In this project, clinicians from

VUMC, computer scientists from ISIS and the VUMC Informatics Center worked together to provide a

CDSS for managing the complicated but well-studied problem of the identification and treatment of

sepsis. The partnership provided the interdisciplinary team an invaluable opportunity to investigate

model-based treatment management problems, and analyze/understand related technology directions.

75
 A model-integrated (i.e. model-based) system facilitates abstractions (i.e. models) to define certain properties of the system.

In the case of a model-integrated patient management system, models can be used to represent required input parameters,
users, who will access the system, and guidelines, which configure the behavior of the system.

76
 Model-integrated computing is explained in more detail later in this chapter.

114

The overall project had significant size and complexity. It included several efforts that were outside of

the contributions of this thesis (such as a clinical trial for STEEP supported by an NIH grant, the

development of a production version of the system and the integration of STEEP with the HIS

infrastructure of VUMC). In this chapter, we provide a brief overview of the overall effort and highlight

our specific areas of contributions. The specific research results will be detailed in chapters V-VI.

Medical Context: Sepsis Management

To maximize the potential impact of our prototype system and to help establish design requirements for

a CIG-based CDSS, we sought a clinical paradigm that was common, clinically and economically

important and had readily available and accepted evidence-based treatment guidelines. We found the

detection and management of septic patients to be an ideal candidate for our intervention for the

following reasons.

The sepsis syndrome results from a robust host reaction to an infection and is characterized by a

systemic inflammatory response, frequently with hypotension and multiple organ failure. The disease

process is very common, occurs with a worldwide distribution, and can impact patients of any sex, race,

or age (about 750,000 cases occur in the US annually [194], and about 30 percent of septic patients die

from the disease [195]).

The management of sepsis is a complex and extremely time and information intensive process,

performed in intensive care units (ICUs) and emergency departments. Accordingly, severely septic

patients consume many hospital resources, requiring on average 7–10 days in ICUs and 3–5 weeks total

hospital length of stay. Sepsis-related expenditures are estimated to approach US$17 billion annually in

the US alone [196].

Given the large scope of this clinical problem, it is not surprising that many treatment strategies have

been proposed and investigated. The Surviving Sepsis Campaign (SSC), led by experts from numerous

professional organizations, seeks to improve the diagnosis, management and clinical outcomes. The SSC

has published a comprehensive set of treatment guidelines based on graded clinical evidence [197]. The

guidelines are widely considered to represent the state of the art in sepsis management, but they will

evolve over time. Also, they must be customized to individual patient needs, and their correct

application has important quality and cost implications in sepsis care. The SSC guidelines are complex

and require multiple time-sensitive interventions based on dynamic patient variables. Correct and timely

115

implementation of the guidelines requires continuous assimilation and interpretation of numerous

pieces of patient data.

The STEEP project incorporated an extensive medical effort conducted by a team of attending physicians

and fellows from the VUMC. The primary results of their contributions are the STEEP guideline models,

user interface and usability evaluations and in-depth guidance to the technical work from clinical point

of view.

Functional Architecture of STEEP

The functional architecture is shown in Figure 29. The architecture is composed of a suite of existing

VUMC CISs (colored yellow) and our contributions (colored blue), namely the CIG Modeling Environment

(GME), the CIG Repository, the Execution Engine and the Treatment Management Console. The GME

Modeling Environment supports the graphical editing of STEEP models formally captured in a newly

developed modeling language, called the Clinical Protocol Modeling Language (CPML). The Modeling

Environment is not part of the system execution; it provides an interface for creating, modifying and

validating the Protocol Models.

Figure 29 - Functional Architecture of STEEP

Clinician Controlled Clinical Information Systems

Clinician

Patient
Management

System

Automated
Patient

Surveillance
System

Smart Data Repository

• Centralized Data Cache
• Historic Data Warehouse
• …

DB

Patient

Treatment Management System

Execution Engine

Console

CIG Repository
XML

Design Environment Execution Environment

Computerized
Physician

Order Entry
System

Manual data
capture

CIG Modeling Environment

CPML Models
in GME

Translator

116

The execution of the patient management system is supported by the rest of the functional components

in Figure 29. The execution includes two phases:

1. Pre-diagnosis surveillance and alerting

a. Identify patients potentially having sepsis

b. Prompt clinical teams

2. Treatment management

a. Once pending diagnosis confirmed, provide continuous real-time process management

recommendations based on live patient data

b. Process confirmed orders

Pre-diagnosis surveillance and alerting

The detailed steps are the following. The Automated Patient Surveillance System in STEEP monitors real-

time patient data streams (coming from the Smart Data Repository) and, using specific laboratory and

vital signs criteria, identifies patients with possible sepsis. These monitored abnormalities are quite

sensitive for the diagnosis of sepsis, but lack specificity without clinical input and contextual

interpretation. Therefore, patients with an “alert status” need a healthcare team’s assessment. These

patients are identified first by a visual cue on an ICU patient management dashboard (part of the Patient

Management System). If this alert is not addressed in a timely manner, an electronic notification via text

page is sent to appropriate team members. If there is a reasonable suspicion that the abnormal

physiological parameters are due to infection, the physician activates decision support.

Treatment management

Following a confirmed diagnosis by a clinician, the STEEP Execution Engine is instantiated for the patient

and starts running the treatment management process by executing the protocol model. The executable

version of the protocol models is an .xml file generated from the formal, GME-based Protocol Model.

The Execution Engine also interacts with the Treatment Management Console, a GUI that physicians use

to assess the treated patient’s health status, get decision support from evidence-based guidelines on the

screen, and actuate their decisions. Recommendations are generated by continuously interpreting the

protocol as new information from the environment (including the patient and the clinicians) arrives.

117

The interaction between the Physician and the system is facilitated by the Treatment Management

Console by means of two panels: the Monitoring Panel and the Advisory Panel. The Monitoring Panel

presents a timeline where categorized patient health information can be viewed in time in context with

the actions of the therapy provided to the patient. The Advisory Panel presents the set of actions

recommended by the protocol.

STEEP is integrated with the CIS infrastructure of VUMC via interfaces to the Patient Management

Dashboard (StarPanel) and to the Clinical Information System (StarChart). Real-time patient data are

received by the Surveillance Tool to detect sepsis symptoms using a set of rules. Additional real-time

patient data including physiological data, and a range of treatment data are stored and continuously

update in the Clinical Information System. (Further details about these components will be provided in

Chapter V.)

The model-integrated design approach is reflected in the context of the functional architecture in the

following ways:

1. The protocol models fully determine the behavior of the STEEP patient management system.

The Execution Engine serves as a model interpreter that generates responses to received input

from the user interface and the CIS interface according to the state of the patient and the state

of the treatment process.

2. The Treatment Management Console is configured/customized via models captured as an

integrated modeling aspect in CPML. This solution enables the design of a dynamic user

interface that can be adjusted according to various treatments and treatment phases.

3. The STEEP Execution Engine is integrated with the CIS via model-configured data and

information model interfaces. Configuration of the data interface requires the specification of

real-time data streams carrying patient vitals to the STEEP Monitoring Panel. The information

model interface links modeling concepts used in STEEP for describing medications, labs, and

other orderables to the terminology used in VUMC CIS-s, such as the CPOE.

Our contribution to the STEEP architecture includes the extension of the model-based approach from

the narrow protocol modeling and execution to the broader model-integrated design approach that

involves the implementation of previously described components (2) and (3). Details of this contribution

are described in Chapter V.

118

Modeling Language and Model Development

The use of the model-integrated approach in the STEEP architecture redefines the overall development

challenge from pure software development to a model and software development process. One of the

primary promises of model-integrated computing is that most (or a large part) of the overall system

complexity can be expressed using formal models that are easier to create, modify, validate, verify and

reuse. Accordingly, the traditional software development and system integration tasks are significantly

decreased and their results are becoming highly reusable in a wide range of domains. The core part of

our work focuses on the modeling process in STEEP.

We decomposed the model development process into the following tasks:

1. Design of an integrated suite of DSMLs for representing treatment protocols, component

configuration information and system integration information. The language suite must provide

sufficiently rich abstractions for the targeted domains allowing the economical representation

of knowledge components.

2. Define structural semantics77 for the DSMLs that enables the use of static model verification

techniques for checking well-formedness rules.

3. Define the execution semantics78 for the DSML components by specifying the transformation of

CIG models (protocols) onto an execution platform that ensures protocol enactment and

provides interoperation with a host CIS infrastructure.

4. Define the behavioral semantics79 for the validation and verification of protocols by specifying

the transformation of the CIG models into the input language of a CIG implementation analysis

tool suite.

77
 Structural semantics of modeling languages define the set of well-formed models. The Model-Integrated Computing tool

suite uses metamodels to express static semantics.

78
 From here on, we have to differentiate execution semantics from behavioral semantics. Execution semantics is considered as

the definition of the complete system behavior (i.e. how and when the various constructs of a DSML should produce a
program behavior). Considering the example of a CDSS that is integrated into its host CIS using SOA techniques, the
execution semantics describes the complete low-level message exchange protocol governing the communication including
the socket configuration, message rate, error handling, etc.

79
 Behavioral semantics can be considered as a subset of what the execution semantics defines: behavioral semantics only

considers system behavior that is in the focus of interest and abstracts out the rest. In this thesis the behavioral semantics is
used to analyze certain safety properties of implemented CIGs, while for example underlying reliable communication with
the host CIS is assumed.

119

5. Develop models of specific treatment protocols (i.e. CIGs) using the modeling language defined

in step 1. These models are a formal representation of guidelines that can drive the

management of clinical (treatment) processes.

6. Translate and analyze safety properties of built CIGs. The precise semantic foundation of the

MIC modeling infrastructure and related tools enable validation and verification of the models

against a range of safety, privacy and security related criteria defined as constraints or policies.

The main research contributions of this thesis are in Tasks 1, 2, 4, and 6 with additional contributions to

the execution of Tasks 3 and 5. Detailed discussion of the research results are presented in Chapter VI.

Software design and implementation

While the design and implementation of the STEEP software components were not a direct part of our

research, they progressed in tight coordination with the model development process. Implementation

of the software architecture included the following tasks:

1. Treatment management console development with specific considerations on a well-structured

user interface that helps rapid understanding of the patient state and treatment state by

clinicians. User interface design was strongly influenced by both domain experts and a VUMC

human-computer interaction (HCI) expert.

2. Design of the STEEP Execution Engine that runs simultaneous instances of the protocol. The

Treatment Management Console and the Execution Engine were implemented using the client-

server architecture.

3. Configurable integration components and interfaces to the Clinical Information Systems

including EMR, Patient Management Dashboard and Surveillance tool.

120

Evaluation

Systematic evaluation of STEEP has been a complex, multi-faceted effort. The main phases of the

evaluation include:

 Model evaluation: The goal of the model evaluation is to decide if the protocol models reflect

the current state-of-knowledge in sepsis treatment. Model evaluation is performed by an

integrated physician and computer science team working on the STEEP project. After the

development of the required models, an initial evaluation confirmed their correctness.

Subsequent evaluations are now part of the workflow that supports the necessary ongoing

continuous updates of implemented guidelines.

 System evaluation: The goal of the system evaluation is to determine if the STEEP system is

suitable for use in ICUs. The system evaluation is performed by the VUMC quality control

personnel. As a result of the successful evaluation, STEEP was integrated into the live production

environments in VUMC’s MICU and SICU.

 Clinical evaluation: The goal of the clinical evaluation is to determine improvement of outcomes

in patients with sepsis. Clinical evaluation is ongoing by a VUMC team under grant support from

NIH.

Our research contributed to the model and system evaluation processes. The language design and

development effort was tightly integrated with the model evaluation and resulted in several significant

updates to the CPML language to improve expressiveness and provide better structuring for the

protocol model. The model-integrated system architecture has profound implication on the system

evaluation. We could successfully argue, the model updates have not changed the software, therefore

the time and cost of the quality control process was increased. We will discuss this issue further in

Chapter IX.

121

CHAPTER V.

A MODEL-INTEGRATED IMPLEMENTATION ARCHITECTURE FOR STEEP

The model-integrated development of STEEP is related to the Model-Driven Architecture (MDA) [198]

software development approach. In MDA, system functionality is specified using Platform Independent

Models (PIMs) expressed in some DSML. The PIMs are automatically translated into executable Platform

Specific Models (PSMs) that are usually specified as a combination of some platform modeling language

corresponding to a composition platform (e.g. Corba) and some general purpose programming language

(e.g. Java or C++).

However, while MDA based software development traditionally stars with selecting some standard PIM

modeling language suites and a standard target platform, in STEEP we followed a different approach.

The model-integrated architecture development starts with separating models and associated modeling

languages that express the changing, rapidly evolving and complex aspects of system operation from the

model-based components of the execution platform that interpret the models. This followed by the

integration of the system into an underlying information infrastructure that provides a stable, reusable

infrastructure not only for STEEP, but, by changing the models and modeling languages, for other

guideline driven patient management systems as well.

The fundamental challenge in model-integrated architecture design is the identification of the models,

modeling languages and model-based components, their connections and their interfaces to operators

and to the given CIS infrastructure. As in most architecture design, the design decisions have major

impact on the cost of the system implementation, various aspects of system performance, testability

and future acceptance. In this Chapter, we provide a summary of the STEEP architecture design with

emphasis on specific contributions. Evaluation of the STEEP architecture decisions is discussed in

Chapter IX.

Implementation architecture overview

The functional architecture of STEEP in Figure 29 is implemented by the Clinical Process Management

Architecture (CPMA) shown in Figure 30. Design of the CPMA was driven by the needs of integrating

STEEP into VUMC’s existing CIS infrastructure.

122

Figure 30 - CPMA: The implementation architecture for STEEP

The main components of the STEEP CPMA, The Treatment Management Console and the Execution

Engine have been implemented as a client-server architecture. The client side runs in standard browsers

available at clinical workstations (CWS) dispersed in the ICUs, communicates treatment and patient

status and interacts with authorized ICU personnel. The server side includes the integrated Decision

Support and Protocol Execution Engine (briefly Execution Engine), the Persistency Database for storing

detailed treatment data for each patient and interfaces to the EMR and the CPOE systems of VUMC. The

implementation technology of STEEP utilized Java component technology (JNDI/EJB3), JDBC Hybernate

for Persistency Database, and AJAX for client-server interaction and HTTP for client-side visualization

(GWT). Since STEEP needs to serve a large number of patients simultaneously, the server side is multi-

threaded with serialized access to the Persistency database.

Treatment Management Console

The Treatment Management Console facilitates the interaction between the ICU personnel and the

system by means of two panels: the Monitoring Panel and the Advisory Panel (see Figure 31).

Sepsis Treatment
Management System

Execution Engine

Console

Server

Client

HL7
Patient

Data
Orders

Model-based
Runtime

Configuration

Fi
le

 IO

Protocol
Visualization

Protocol and Orders
Mediator

GUI

Treatment
Status

Patient
Status

AJAX

Chart
Visualization

Chart Data
Formatter

HTTP

EMR
Interface

CPOE
Interface

Decision Support
(individualized protocol execution)

Protocol Execution Engine

JNDI / EJB3

JNDI / EJB3

Persistency DB

JDBC Hibernate

JDBC Hibernate

JN
D

I / EJB
3

123

Figure 31 - STEEP GUI: Structure of the Treatment Management Console

The monitoring panel presents a timeline for viewing categorized patient health information in context

with the therapeutic actions provided to the patient. Displaying cause and effect relations involves

linking patient data and treatments so that the effect of one on the other can be seen; this is what we

refer to as the action-reaction concept. The protocol models define this information (both displayed

indicators and available treatment actions). In effect, they transform the generic GUI to a protocol-

specific interface. The timeline runs from the past, when the treatment started, to the current time.

Health indicators, fed to the system as a stream of data, include vital signs, such as temperature, blood

pressure, heart rate and central venous pressure. Laboratory test results, like the white blood cell count,

are updated on the screen when the information becomes available. The panel also shows the actions of

Vitals

Labs

Listener
alert

Patient
state
alerts

Monitoring PanelAdvisory Panel

Decision
support

Orderables

Orderables

Order check-out

124

the treatment that were, or are scheduled to be, provided to the patient (e.g. the start of a normal

saline (NS) treatment). All displayed data is temporally aligned in the same columns.

The Monitoring Panel is divided up into two fields:

1. Vitals, which represent locally and usually frequently measured physiological indicators of the

patient (e.g. temperature, heart rate, mean arterial pressure and central venous pressure data).

2. Labs, which represent infrequently and/or remotely measured physiological information (e.g.

white blood cell count, international normalized ratio and lactate levels)

The other panel, the advisory panel, helps clinicians make a formal diagnosis by using the built-in logic,

available action controls and diagnostic information for external systems. Its main components are the

following:

1. Listener Alerts displaying the status of the Surveillance Tool, including a list of the various levels

of alerts triggered over the patient and the associated objective data,

2. Patient State Alerts displaying the progression of the disease with the help of higher-level

diagnostic information (e.g. sepsis severity level),

3. Decision Support functions displaying categorized treatments for various problems that at the

lowest level include recommending specific tests, medications and procedures.

Figure 32 shows an actual instance of the state of the Treatment Management Console. The monitoring

panel shows a day worth of measurements for four vitals (temperature, heart rate, mean arterial

pressure and central venous pressure), marked red when out of the predefined normal ranges. The

advisory panel shows that as part of the treatment the user confirmed alerts from the surveillance tool

and currently being presented with the next recommendation step, called “Diagnostics”, marked with

yellow. As part of this step only the “Diagnostic orderables” component needs to be addressed, which

means the ordering of various laboratory test.

125

Figure 32 - STEEP GUI: The Treatment Management Console

System integration interfaces

Development of advanced CIS is an inherently experimental process. It requires an in-depth evaluation

of the clinical environment to understand impact on the quality of care. Unfortunately, creating credible

experiments in the form of carefully controlled clinical trials is a complex task, because of the need for

integrating the experimental system with heterogeneous health IT infrastructure, such as the EMR,

CPOE, authentication systems, audit logs and whiteboards. Integration in real life environments can be

prohibitively expensive without a systematic approach (e.g. facilitation of existing standards) that helps

rapid system integration.

Due to its complexity, addressing and discussing all aspects of the integration challenge in detail is out of

the scope of this thesis. The contributions of this thesis are restricted to those integration issues that

directly influence the modeling language design.

Advisory Panel Monitoring Panel

126

EMR Interface

To receive information from EMRs, we connected to VUMC’s centralized EMR repository system (Core

Cache) using the messaging component of HL7. Their centralized system allowed access to vital sign

measurements using SNOMED identifiers as well as to lab test results using VUMC’s proprietary coding

scheme (Chisl code). As for getting access to completed orders, STEEP needed to subscribe to a non-

standard data feed with another proprietary coding scheme (Svc code), which was provided by an order

logging system (TDQ).

CPOE Interface

Similar to the data receiving interface, communication towards VUMC’s CPOE (Horizon Expert Order)

needed to be implemented. This was a much more complicated problem, because VUMC’s CPOE was

not ready for accepting orders from external systems. A close collaboration of its design team and STEEP

collaborators allowed the design of a proprietary interface through which both partial and complete

orders could be placed (using the Portobello proprietary coding scheme).

In the aforementioned cases, the challenge in terms of language design was to represent interface

elements for both EMR and CPOE systems to enable the expected communication, while making sure

that guidelines built using these components were executable without the VUMC-specific systems in

place.

Contributions

Development of the STEEP implementation architecture and completing the system implementation has

been a significant effort by the ISIS and VUMC teams. The current status of the project is described in

Appendix B. The STEEP system implementation has been primary completed by Andras Nadas, ISIS,

while the CPOE and EMR integration was accomplished by the VUMC team led by Dan Albert. Our work

contributed to the effort in the following areas:

1. Leading the integrated modeling language development required for the model-based

configuration/customization of the Treatment Management Console and the System Integration

Interfaces

2. Contribution to the GUI design and selection of the configurable features.

127

3. Contribution to the design of the Execution Engine that runs simultaneous instances of the

protocol.

4. Contribution to the design of the proprietary CPOE communication interface.

In summary, the main research contribution of this thesis to the implementation architecture and

implementation tasks is decomposing the architecture into components and interfaces that can be

configured from models, integrating these models into the overall modeling language suite and enabling

(in a limited sense) model-based system integration.

128

CHAPTER VI.

MODELING LANGUAGE AND MODEL DEVELOPMENT

As in all model-integrated system development, modeling languages play a central role. In STEEP,

modeling languages provide the abstractions that will be used for defining all essential aspects of

managing septic patients and integrating STEEP in the CIS infrastructure. There are a number of scientific

challenges in identifying these abstractions:

1. Shared conceptualization: DSMLs include concepts that describe domains using a vocabulary.

Freedom in selecting the terms in vocabularies is restricted, because the knowledge expressed

by STEEP models is integral part of a complex “knowledge context” used in a live, evolving

clinical environment. In fact, conceptualization selected in the STEEP modeling language suite

needs to be shared by other related clinical domains: order management, treatments, drugs,

EMR and others. Since these domains evolve independently, each with a different life cycle, the

conceptualization used in CPML needs to be structured into independent vocabularies and the

vocabularies need to be composed with the modeling languages. This is a hard challenge both

scientifically and technically. Our approach was based on the iterative development of

alternative conceptualizations, continued evaluation with medical and informatics experts and

the rapid revisions of modeling environments and models.

2. Modeling language specification: Terms of the vocabularies are used as concepts in DSMLs.

However, DSMLs are richer than the superset of concepts: they define modeling domains that

include the set of well-formed models. The formal specification of domains is the structural

semantics of DSMLs. In MIC, the structural semantics is defined using metamodels. Defining the

precise structural semantics for the suite of modeling languages in STEEP constitutes a second

scientific challenge in the language development.

3. Model specification: Models defining treatment protocols, system configurations and the

integration of the STEEP execution platform to the CIS infrastructure are one of the “end

products” of the model-integrated development approach. Their simplicity, expressivity, safety

and unambiguity are essential indicators of the quality of the DSMLs developed.

In STEEP, the modeling language CPML has been defined as a suite of connected DSMLs. To utilize

existing work, our approach draws from and extends the general design principles of existing model-

129

based CIG solutions summarized in Chapters II and III. In this chapter, we focus on some of the key

challenges of the construction of CIG-based CDSS including (1) finding the appropriate level of

abstractions for the highly reactive intensive care patient management, and (2) providing the ability

for domain experts to construct HCO-specific CIGs without weaving the knowledge specific to a HCO

with medical knowledge, thus allowing for less laborious customization of CIGs for adaptation at other

HCOs. Evaluation of the modeling language development results are summarized in Chapter IX.

Modeling language development approach

In STEEP, the CPML modeling language supports the construction of three types of models:

1. treatment protocols,

2. component configurations and

3. integration specifications.

The reason for considering these models together is that they are interrelated: models of component

configurations and integration specifications are “model-level interfaces” between the STEEP patient

management system and other clinical information systems and users.

In the model-integrated framework, the first step of the development process is the specification of

DSMLs for the essential subdomains and their interactions. However, there is a fundamental question

regarding the selected approach to language design. Specifically, should we adopt an existing language

or proceed with developing a new one?

As proposed in [70], many of the problems (such as the generalization of HCO-specific protocols, or

avoiding the duplication of functionality of the host CIS) could be addressed in a more cohesive manner

if a common shared representation were to be mutually developed by modelers and implementers.

However, the same source concluded that – because the various current conceptual models for

treatment protocols are sufficiently different – it is unrealistic to build a single common modeling

language that incorporates all of their abstractions.

This pressure towards fragmentation is the basis for the well-known dichotomy between domain

specificity and reusability: utility of CIG modeling languages increases by adopting domain specific

130

abstractions, but at the same time domain specificity, which translates to decreased scope80, results in

decreased reusability of models and tools across domains. Currently, there are two common approaches

to resolving this dichotomy:

1. Development of standardized modeling languages that are sufficiently broad in scope to span

different domains with the hope that modeling, verification and synthesis tools will appear

(eventually) and adopters will accumulate assets that in turn will establish a self-sustaining

infrastructure and market. Based on our review of the state-of-the-art in CIG modeling

languages, this clearly has not happened yet. While there are numerous examples of industry-

or academy-driven attempts for standardization, there is no single emerging standard that may

count on general acceptance. Among the many reasons are the extreme heterogeneity of the

CIG domains, the lack of formally specified semantics for the modeling languages that would

enable their use in different domains, and the general lack of support tools that would make a

difference. Even more interestingly, this approach brought quite limited success in model-based

engineering as well, where generic modeling languages, such as UML, AADL, SySML and many

others have highly limited domain penetration - even more than a decade after their

introduction.

2. Adoption of a modeling language that is used by a tool (or tool suite) providing some usability

for the domain, even if the abstractions are not fully appropriate and the tool suite capabilities

have major gaps. This leads to - what Alberto Sangiovanni-Vincentelli calls – the “tyranny of

tools” in design automation, when the available tools, and not the design problems dictate the

abstractions that designers should use in problem solving [199]. This approach typically fails in

heterogeneous domains that require integration of tools – and with them – modeling languages.

The consequence is the familiar “islands of automation” infrastructure that sporadically covers

the needs of a domain.

Lately, the introduction and increased use of metaprogrammable tools, such as the MIC tool suite [200],

have started changing this situation. They enable the use of domain specific languages that are the least

complicated and most relevant to a domain, without sacrificing precision and advanced tool support.

80
 i.e. its ability to represent other problems

131

Design of CPML

These findings were further exacerbated by our intention to take advantages of model-based methods

not only for treatment modeling, but also for experimenting with various semantics, and customizing

and integrating the system in a host environment. As none of these features were supported by the

examined approaches, we decided to create a new modeling language, called CPML.

The precise specification of CPML proved to be a hard problem due to the following challenges. First,

operational protocols, policies and treatment guidelines of healthcare organizations are rarely phrased

in a mathematically sound, unambiguous manner. Second, the protocols that describe the medical

processes constituting a treatment, their triggering conditions and their coordination methods need to

be considered as guidelines and not rigid workflows that must be enacted always the same way. This

requirement is essential for the design of the execution semantics of models.

DSML design

A DSML defines a domain as the set of all structurally well-formed models [201]. A specific model is a

“point” in the domain. A well-formed model is a model that satisfies all the constraints imposed on its

construction. Formally, a domain is

1. : A set of concepts from which models are built

2. A set of possible model realizations

3. : A set of constraints over .

The model realizations represent all allowed ways that models can be built from the available primitives.

The set of well-formed models in a domain is the set of all models that satisfy the constraints. This set

construction is written as

 () { }

where the notation can be read as “r satisfies constraints C”. Domains may carry meaning beyond

their structure. This meaning (such as behavior) is expressed as a mapping of models in one domain to

models in another domain with existing behavioral semantics. This mapping is called interpretation

(⟦ ⟧):

⟦ ⟧

132

Every domain has at least one interpretation, which is the structural interpretation; this is called the

structural semantics. A domain may have other interpretations as well, expressed as a family of

mappings (⟦ ⟧) ∈ . The interpretations, together with the behavioral semantics of the target domain,

define the behavioral semantics of the domain. Based on these notions of domains and interpretations,

a DSML L is defined as a 4-tuple comprised of its domain and a set of interpretations.

 ((⟦ ⟧) ∈)

Based on these definitions, the specification of CPML includes the following steps:

1. Specification of the set of concepts providing the vocabulary of CPML

2. Specification of the () domain of CPML. This specification is provided using metamodels81

and the metamodeling language of the MIC tool suite. Once complete, these metamodels are

used for the automated customization of the metaprogrammable tools, such as the Generic

Modeling Environment (GME) and model-management tools, such as the Universal Data Model

(UDM).

3. Specification of (⟦ ⟧) ∈ interpretations for CPML as model transformations for defining

semantics as required.

Before discussing these steps in detail, below we summarize early attempts that helped in formulating

the direction of our research.

Early attempts

The formal specification of CPML has proved to be difficult for two main reasons:

1. Health care organizations rarely phrase operational protocols, policies, and treatment guidelines

in a mathematically sound, unambiguous manner. While the medical knowledge available is

rich, it is highly context dependent and provides room for different interpretations.

2. Healthcare practitioners must consider the protocols that describe the medical processes

constituting a treatment, their triggering conditions, and their coordination as guidelines—not

rigid workflows that must be enacted the same way every time.

81
 Thus, the DSML (definition) can be referred to as the metamodel.

133

Due to these challenges, the language development took several iterations. In our first attempt, the

language explicitly represented treatment trajectories as a connected, directed, bipartite graph

structure. The nodes were either decision points with predefined multiple possible outcomes or actions

representing treatment steps. The advantages of this approach were that it followed the formalization

efforts presented in the available medical literature (e.g. see Figure 33) and that it was simple enough.

However, this approach did not prove to be efficient for expressing complex treatments because of the

exponentially large number of potential trajectories generated by the many concurrent and interacting

treatment processes.

Figure 33 - The Multiple Urgent Sepsis Treatments (MUST) protocol [22]

Figure 34 shows an example for an early attempt to represent the treatment protocol using simple

workflows. The analysis allowed us to discover that treatment steps can be grouped together into

134

bundles82 that are typically executed together. However, it soon became clear that execution of these

bundles can overlap, influence each other, and may result in a wide variety of treatment trajectories

that would be impossible to capture.

82
 Bundles are “interventions related to a disease process that, when executed together, result in better outcomes than when

implemented individually” [202].

135

Figure 34 - Initial version of the VUMC sepsis treatment protocol

136

Another basic question in designing the protocol language was if it should primarily reflect the state of

the treatment process, the state of the patient or both. Discussions and experiments clarified that most

of the language complexity and expressiveness should be linked to the appropriate modeling and

tracking of the treatment process. The emphasis was on the need for describing the patient state with a

relatively low resolution (i.e. objective data) primarily to allow the physicians to formulate their own

opinion; however, a high-resolution description was also necessary to enable the automatic

construction of diagnoses.

These considerations led us to the latest iteration of the CPML semantics: the protocol modeling

language describes treatment steps that are grouped together under the concept of treatment

processes. Processes are concurrent, asynchronous and can interact with each other via events. In order

to capture the decision logic concisely, processes can be organized in a hierarchical manner. Processes

listen to events happening around them and only start running if their triggering conditions are satisfied.

Coordination of processes is done with the help of events (and related messages). The behavioral

semantics of the selected process model corresponds to the well-known Communicating Sequential

Process (CSP) model [203]. The major advantages of the CSP approach is the possibility of using

hierarchies and defining segments of a complex protocols independently from each other (processes

composition in CSP). This semantic form proved to be more intuitive to the physicians as well, because it

is closer to the way they think of the different sub-problems.

CPML vocabulary

There are two very different approaches to specifying vocabulary for DSMLs. In many engineering

communities, the selection of terms for DSMLs is frequently considered as a large informal and ad-hoc

task, where language designers have a lot of “freedom”. This view is justified by the perception that the

semantics that really matter are behavioral (i.e. dynamic). Behavioral semantics is usually defined

transformationally, so the vocabulary selected for constructing a DSML does not matter (it is basically

just “syntactic sugar”). The primary technology used for defining modeling languages is metamodeling.

Informatics communities (e.g. those working on Web service technologies) follow a remarkably different

interpretation of semantics. They consider the use of different vocabularies as the primary source of

semantic heterogeneity and identify semantic integration with mapping and translating terms across

different communities. The technology background for developing sharable models is known as an

137

ontology. Ontologies provide “a formal, explicit specification of shared conceptualization” [204],

therefore the emphasis in semantics is not behavior, but conceptualization.

STEEP is designed for and integrated into a clinical environment where both behavior and

conceptualization are essential. As a patient management system, STEEP needs to model complex,

concurrent treatment processes that receive and generate events and trace complex treatment

trajectories. As a CIS, STEEP needs to be integrated with other major CISs, where shared

conceptualization is essential. These considerations have led us to structure the CPML vocabulary into

three major conceptual categories shown in Table 9:

 The Protocol Modeling category includes concepts that model the treatment processes. These

concepts will be structured into CPML sublanguages that focus on behavior (see the Protocol

modeling section).

 The Medical Knowledge Modeling category includes information models, typically described as

ontologies.

 The Model Management and Support category includes modeling concepts that further extend

models captured by the previous two categories (e.g. meta information, GUI configuration)

required for.

A complete description of CPML is beyond the scope of this thesis; however, in this section we present

the abstractions of the language83 that are important from the point of modeling the sepsis guideline

(see Table 9).

83
 Because CPML is under continuous development, from here on we refer to version 3.12, if it is otherwise not stated. Version

3.12 is the one being used for both the currently running STEEP environment and the analysis environment presented in the
following sections.

138

Table 9 - CPML vocabulary

Category Abstraction Description

Medical
Knowledge
Modeling

Medical Library Components of the medical library serve as a knowledge base for the rest of the language. It includes
medical vocabularies for diagnoses, symptoms, conditions, vital signs, laboratory test values,
medications, procedures and non-medical actions. Concepts in the Medical Library are used to create
Orderables that are associated with Activities in the modeled Protocols.

Orderables Orderables implement both simple and complex medical actions that are scheduled as Activities in the
Protocol. Orderables form a shared vocabulary with the CPOE.

Protocol
Modeling

Activity Activities represent atomic actions in a Protocol. A physician initiates these items during the treatment
process. Activities are tied back to items defined in the Medical Knowledge vocabularies with the help
of Orderables.

Protocol Protocols are parameterized care plans involving patient and other monitored parameters, constraints,
explicit event and data-based coordination, activities and metadata (e.g. reference to clinical sources,
versioning, authors).

Process A process represents a coordinated group of activities used in Protocols. They help to decompose the
treatment protocol and to categorize the treatment steps. They are concurrent, asynchronous and can
interact with each other via Events.

Event Events are components used in Processes. Events refer to the significant status changes (e.g.
activation, starting and completion) of executable components, such as Protocols, Processes and
Activities. They help to establish coordination by creating dependencies among the mentioned
runnable components.

Explicit
Coordination

Primitives

Coordination primitives help in expressing the desired behavior. As opposed to implicit coordination
(e.g. constraints), explicit coordination primitives define rules that will determine the flow of the
execution. Explicit coordination primitives include the Activation and Step connections, control flow
operators (such as Branch, Fork and Merge) and logical operators (such as ActivitySelectionSet and
LayeredSelectionSet).

Expression
Language

The Expression Language provides a definition for calculating the value of expressions without causing
any side effects, and provides methods for constructing derived data points with filtering and
aggregation using data values and logical operators defined by the (expression) language. In addition,
it implements an implicit request for information exchange (i.e. external data points represented in
expressions will be requested by the engine). Finally, it is used to express various constraints (i.e.
implicit process coordination), including conditions for goals, failure, and priorities over alternative
treatment options.

Our expression language is defined with the help of ANTLR [205], which specifies context-free

grammars expressed using extended Backus-Naur form (EBNF) [206]. In defined expressions,

operations are identified by ANTLR’s built-in parser and are mapped to functions implemented in by
Java. Further discussion of our expression language is out of the scope of this thesis.

Model
Management
and Support

Metadata Metadata refers to meta information related to protocols and their building blocks.

GUI
Configuration

Constructs of the GUI Configuration provides the ability to control how certain components are
represented on the STEEP GUI.

Physical
Quantity

Physical Quantities were only introduced in a later version of the language. They define physical
entities, including basic (e.g. mass and length), derived (e.g. surface area), and enumerated (e.g.
gender). They are captured as an ontology of physical units extended with a system of unit
conversation equations.

139

Medical knowledge modeling

Medical Knowledge is represented as ontologies shared across CIS in the institution. Its content can be

automatically imported from standardized data sources, or manually created. Integrability of STEEP

demanded that we adopt existing ontologies to the fullest extent or, if not exist, model them such that

they can be reused in other CIS developments. To achieve this, we studied and adopted parts of the

UMLS [153] and standards (such as SNOMED-CT and FDB) and built mappings between constructs used

in VUMC CISs (Core Cache, TDQ and Horizon Expert Order) using their medication notation (Chisl, Svc

and Portobello codes).

Ontologies of Medical Knowledge are implemented in GME as model libraries. This approach is

essential, since the vocabulary terms in these libraries need to be updated on a regular basis and had to

be referenced in the protocol models. To make the implementation feasible, we defined a language for

these libraries as GME metamodels and created the model libraries first manually (by recreating the

structure of required elements) then later automatically (by importing their content from the used

standards). Since the overall size of these libraries is exceedingly large, we describe only the basic

components of these model libraries without providing all details.

Medical Library

The medical library is the lowest layer of medical knowledge modeling, its components serve as a

knowledge base for the rest of the language. Its main components, which can be organized into a

taxonomy using an arbitrary layer of grouping elements (as seen on Figure 35), allow the definition of

medical terms that describe the status of a patient (diagnosis, symptom, condition, vital sign and lab

value), and action items (both non-medical and medical ones, such as medication and procedure).

140

Figure 35 - Main concepts of the CPML’s Medical Library (represented with MetaGME)

Orderables

Orderables define executable (medical) actions that are specific to a healthcare organization; they

provide means for building bundles that are available for healthcare professionals at a given HCO.

Orderables are items that Activities of a Protocol refer to.

Finding the right abstraction layer defining orderables was a challenge in CPML. On one hand, the goal

of orderables is to provide definitions for the simplest executable (i.e. atomic) actions. On the other

hand, they need to allow the modelers to concentrate on the logic of the guideline, without having to

deal with many of the complex details of a complete order on a per order basis, including dosing, timing,

and compliance with safety and privacy policies. To resolve this dichotomy, we examined how current

ordering systems approached this problem.

The order sentence is the simplest representation of intended plans in CPOE systems and the dominant

information model used to communicate order specifications sufficient for downstream systems to

execute an order. Medication order sentences for example, include information regarding the drug

name, dose, units, route and frequency of administration.

Order sets are a more complex form of plan representation in CPOE systems. Order sets are

preconfigured groupings of order sentences for plans of short duration (hours to days) related to a

particular medical problem (e.g. chest pain admission order set) or treatment protocol (e.g. CHOP

chemotherapy order set). Order sets provide decision support for implementing clinical practice

141

guidelines and institutional policies [207]. Order sets typically group order sentences by type (e.g. lab

order, medication order), and may have simple temporal constraints and conditional logic. Order sets

serve as a starting point template that is further customized to account for variance in patient state.

While order sets are short duration plans, they may be reused for subsequent episodes of care where

orders are repeated. This is a typical implementation for many CPOE systems supporting recurrence (e.g.

repeating cycles of chemotherapy protocols). Even though order sets provide a richer form for

representing orders than order sentences, they have limited support for the representation of complex

plans especially ones with longer duration. Moreover, once the order sentence instances of an order set

are released into the transaction systems of a CIS, they generally lose their connection to the original

order set template and to each other84. Again, this makes it difficult for downstream systems and

healthcare professionals to understand the context of the orders that comprise a complex plan. Finally,

the inability to reuse knowledge in order set templates makes knowledge maintenance a significant

challenge in the face of a large number of existing order sets (e.g. 1200 standard of care order sets used

in chemotherapy [208][209]). Likewise, validation of the generated order sets is also limited to verbal

feedback from expert clinician users, increasing the risk of errors for edge cases.

We resolved this dichotomy in CPML by allowing users to represent simplified order sets as orderables

that provide the means for building bundles (i.e. sets) of order sentences. Orderables include bundles of

procedures, medications, and lab tests (as seen on Figure 36). At the highest level, similarly to one found

in the Medical Library, a grouping layer (e.g. LabBundleGroup) allows for the organization of built

bundles into a taxonomy. Components of bundles, the order sentences are defined by creating a

mapping to respective concepts in the medical library and extending them with identifiers (Vocabulary

and ConceptID) from proprietary or standardized vocabularies (e.g. UMLS, SNOMED, FDB). The first

mapping helps define the used concepts with the local ontology, the Medical Library, which could be

used for example to find substitutes for an action. The purpose of the second one is to identify order

sentences in the CPOE that are requested by STEEP. The same external vocabulary-based mapping is

provided for order sets as well. This provides a flexible approach when integrating with various CISs, as it

allows the highest level of action (or action group) available in the serving CPOE to be requested by

implemented CIGs.

84
 See “black box” method in P2.3 point of “Open problems” section.

142

Figure 36 - Main concepts of the CPML’s Orderables (represented with MetaGME)

Protocol modeling

Protocols can be conceptualized as a coordination layer over medical activities. As such, the essential

semantics of protocols is behavioral, while the essential semantics for medical knowledge was

ontological. The connection between the coordination layer and medical knowledge layer is established

by introducing the abstract concept of Activity in protocol models and providing language facilities for

relating Activities with terms coming from Medical Library and Orderables.

Protocol models are representations of treatment processes (called Processes). These processes are

concurrent, asynchronous, and interact with each other via events. To capture the decision logic

concisely, we organized processes in a hierarchical manner. Processes can listen to events happening

around them and start running only if their triggering conditions are satisfied. Processes are coordinated

with the help of events and related messages. The main concepts in CPML for protocol modeling are

summarized in Figure 37 and in the following description.

143

Figure 37 - Example Protocol hierarchy

 Protocol: Protocol is the top-level concept in protocol modeling. It includes a complex group of

coordinated activities required for managing a health problem. Protocols are considered

“manual”, as they only start their execution if a user explicitly selects them.

 Process: Processes represent a coordinated group of activities used in Protocol models.

Processes help decompose the treatment protocol and organize the treatment steps. A Process

can be considered as a container including other protocols, other processes, events and

activities. Processes are concurrent and asynchronous, and they can interact with each other via

Events. For the sake of clarity, we require processes to either only contain other processes or

protocol invocations (Intermediate Process), or to only contain Activities (Leaf Process).

Processes are considered “automatic”, as their execution is only controlled by the EE.

 Activity: Activities are the lowest-level components of a Protocol. They are the representation of

what medical actions must be performed at a given time as part of the treatment. Activities

include ordering lab bundles, medication bundles, and procedures. They can also include two

other basic actions: Inquiries and Notifications. An Inquiry defines an explicit data request, for

data usually not available in EMRs (e.g. symptoms and case severity), which will be presented to

the clinicians in the form of a pop-up question. Notifications represent explicit message requests

to systems other than the CPOE.

Figure 38 visualizes the hierarchical structure formed by the Protocol, Process and Activity concepts for

the Sepsis treatment protocol. The leaves of the tree are the medical Activities, the root of the tree is

the Protocol and between them are the Processes that perform the overall coordination using the

Coordination primitives described below (not shown in the figure).

Nodes Types

Process

Manual

Manual

Automatic

PsI PsL

A AA A AA A

Protocol

Pr

Activity

A

Intermediate Process

PsI

Leaf Process

PsL

PsLPsI PsL

PsL PsL

Pr

AA

144

Figure 38 - Sepsis treatment CIG component hierarchy in CMPL

Explicit coordination primitives

Modeling nondeterminism in treatment protocols is a highly desirable feature. It helps decrease the

“recipe-style” appearance of the protocol recommendations and provides methods for adapting the

treatment trajectory to unforeseen and unmodeled situations.

Coordination primitives help in expressing the desired behavior, for both deterministic and

nondeterministic cases. As opposed to implicit coordination (e.g. constraints expressed with the help of

the Expression Language), explicit coordination primitives presented in this section, define rules that will

determine the flow of the execution among executable components (Activities, Protocols and

Processes). Explicit coordination primitives include:

Layers

Protocol

Process

Lab Test

Medication

Procedure

145

 Step: Step is a coordination primitive, captured as a connection that specifies the execution

order (i.e. sequencing) of Activities within a Process.

o Operator: Operators can be split to the following two groups:

 Control flow operators: These operators used together with the Step

connection and the executable components describe a TNM, which is essentially

a workflow. We implemented the following three basic operators that proved to

be sufficiently expressive for representing the sepsis guideline, however if

needed, this list can be extended with minimal effort:

 Branch: Branch implements parallel split, which is “the divergence of a

branch into two or more parallel branches each of which execute

concurrently”, as defined in [162].

 Fork: Fork implements exclusive choice, which is “the divergence of a

branch into two or more branches such that when the incoming branch

is enabled, the thread of control is immediately passed to precisely one

of the outgoing branches based on a mechanism that can select one of

the outgoing branches”, as defined in [162].

 Merge: Merge implements synchronization, which is “the convergence

of two or more branches into a single subsequent branch such that the

thread of control is passed to the subsequent branch when all input

branches have been enabled.”, as defined in [162].

 Logical operators: The explicit logical operators we implemented in CPML are

set operators ActicitySelectionSet and LayeredSelectionSet. These operators

enable capturing complex choices by defining the admissible sets of treatment

choices (i.e. solutions) using contained protocols, processes and activities in

processes. In other words, solutions identify the acceptable permutations within

the superset of contained executable components. For example, they can

implement “pick at least two out of a predefined list of antibiotics”. If there are

no logical operators defined in a Process, the default solution is the set

containing all subcomponents.

146

 Activation: Activation is a coordination primitive, captured as a connection between events

generated by executable components and Protocols or Processes. This association between

events and executable components allow for an event-based coordination.

Model management, support and configuration

This category includes the following three subgroups:

 Metadata: Metadata refers to meta information related to protocols and their building blocks.

In the version of CPML discussed here, it only includes simple versioning. Later versions however

were extended with capability to represent roles in the context of an organizational structure.

Roles include actors participating in the plan creation process (e.g. author, reviewer), and in the

plan execution process (e.g. nurse, attending, resident).

 GUI Configuration: The STEEP GUI in most part is configured implicitly, which means that certain

model concepts (and their execution) will determine what will be shown to the users. Figure 39

illustrates how the top five Processes and a group of Activities is manifested in the GUI. On the

other hand, with the help of the abstractions of GUI Configuration CPML provides dedicated

constructs for explicitly controlling how certain components are represented on the STEEP GUI.

They include elements such as ordering of the elements (Priorities), coloring options for graphed

elements (normal and abnormal Ranges), and text-based descriptions regarding the use of

certain components (Help and References that link to external sources).

147

Figure 39 - Model-based configuration of the STEEP GUI

CPML metamodels - Structural semantics

The second step in the design of CPML is the specification of the () domain for the modeling

language, in other words, defining its structural semantics. In MIC there are two supported methods for

defining structural semantics:

 MetaGME-based metamodeling uses the MetaGME metamodeling language [210]. MetaGME

includes a variant of UML class diagrams as type language and the Object Constraint Language

(OCL) as constraint language.

 Logic-based metamodeling uses the FORMULA (Formal Modeling Using Logic Programming and

Analysis) [74,201] that used non-recursive Horn logic, for deciding well-formedness or mal-

formedness of model instances. In this method, MetaGME models are translated into formal

metamodels.

Since we intended to use the metaprogrammable components of the MIC tool suite (such as GME and

UDM) we chose to use the MetaGME-based path.

In this section, we discuss the metamodel of the CPML sublanguage designed for Protocol Modeling.

148

Relationship of Protocols, Processes and Activities

As described above, the primary concepts used for coordinating medical activities in CPML are

Protocols, Processes and Activities. The metamodel segments linking these concepts are shown in Figure

40, Figure 41 and Figure 42. These figures contain many abstract85 elements, which help simplify

language design and automatic model interpretation by allowing the organization of concrete

components.

Figure 40 - Protocol Modeling in CPML: Protocol, Process (represented with MetaGME)

The metamodel in Figure 40 defines ProtocolLibrary as a container of Protocols. Protocols can be built

up by a combination of references (i.e. pointers) to other Protocols, as well as Processes, Events,

Activations and CoordinationOperators (i.e. control flow operators). Missing definition for the definition

of Events and Activation connections are provided by Figure 41. As an example, it defines possible

events for an activity as start, order and complete.

85
 Abstract components do not show up as available elements in the language. Typically, they are used for grouping concrete

elements in the language definition that do. Abstract elements in MetaGME are represented with either italicized font, or
with the ≪FCO keyword.

149

Figure 41 - Protocol Modeling in CPML: Event, Activation (represented with MetaGME)

Figure 42 describes Activities as Notifications, Inquiries, or references to Orderables, namely procedures

(ProcedureRef), medication bundles (MedBundleRef), or laboratory test bundles (LabBundleRef).

Furthermore, it also explains how solutions can be constructed out of Activities using

ActivitySelectionSets and LayeredSelectionSets.

Figure 42 - Protocol Modeling in CPML: Activity, Step, Selection Set (represented with MetaGME)

In order to further specify the well-formedness rules defined by the previous diagrams, we extend the

language definitions with OCL constraints. By tying these constraints to various events monitored by

GME, models can be checked for correctness automatically. Three short examples are provided below:

150

Example 1

This constraint, associated with connections, restricts users from creating connections, where the

source and the destination are the same (i.e. only connections between two different items are

allowed):

let src = self.connectionPoint("src").target() in

let dst = self.connectionPoint("dst").target() in

src <> dst

Example 2

Language definitions often contain constructs that are references to objects, which allows users to

creating a conceptual link to some already defined element in the model (e.g. Orderables are references

to elements of the Medical Library). GME normally allows the creation of references in the model that

do not point to anything (i.e. empty references). We, however, wanted users to be able to check for

these empty references, as in CPML those are considered errors. This can be done with the help of the

following code:

let RefSet = self.referenceParts() in

let NotEmptyRefSet = RefSet->notEmpty() in

if NotEmptyRefSet then RefSet->forAll(not refersTo().isNull()) else true

endif

Example 3

In some cases, we require references to only point to “local” constructs, which means that the referrer

and the referee has to be in the same container object:

not self.refersTo().isNull() implies self.refersTo().parent() = self.parent()

Coordination primitives

In summary, the coordination of actions (Activities) in CPML is performed by layers of Processes inside

of Protocols. These layers help in identifying and decomposing sub-problems. Once the proper

decomposition is achieved, selection sets defined over the components of each Process help identify

acceptable solutions. The solutions at the lowest level are TNMs built using the Step connection and the

control flow operators that serialize the set of Activities contained in the Process. Event-based

coordination of Processes is achieved by connecting monitored triggering events (Events) and Processes

(or ProtocolRefs) with the Activation connection.

151

Review of a model example

According to the well-formedness rules defined by the metamodel, we present a simple exert from the

sepsis CIG (see Figure 43).

Figure 43 - Exert from the sepsis CIG (in CPML)

The example in Figure 43 explains how our domain experts implemented the initially86 used MUST

protocols (seen in Figure 33). In the figure, GME is configured with CPML. The main window, called

Protocols shows one implemented Protocol, the Sepsis Protocol, which contains five processes, namely

Diagnostics, Insert Central Line, Optimize MAP, Optimize CVP and Low ScVO2 Rx. These Processes are

orchestrated with the help activations, which have no direct control over the execution order of the

processes; it just constrains the order by specifying when the components start to listen. The execution

86
 While this is a good illustrative example, since the initial modeling, the VUMC sepsis CIG has changed in order to

accommodate new requirements.

152

order is not determined until runtime, when STEEP can evaluate the entry conditions for the processes.

The resulting execution behavior is as follows:

1. A user initiates the sepsis protocol.

2. Out of all the contained processes, all initially actives, in this case only the Diagnostics, will

become active. Because the skip condition of the Diagnostics process is not defined, it will

evaluate its entry condition, which being empty, will allow the processes immediate execution.

3. The contents of Diagnostics, the three laboratory tests displayed on the figure, are in no

particular order (i.e. no dependencies exist among them). This and the fact that there are no

solution sets are included means that the set of all three tests define the only solution for the

process. Accordingly, as the initial (and only) step, all of them will be initiated simultaneously

and, as a result, will be recommended to the treating physician.

4. Assuming the physician accepts the recommendations and submits the orders to the CPOE, the

Diagnostics process will complete its execution, and activate the next process, the central line

insertion.

5. After the completion of the Insert Central Line process, two independent processes, the one for

mean arterial pressure and the one for central venous pressure optimization become active.

They start executing if their respective thresholds (defined by the entry condition) are met (the

example shows bounding values for CVP). Otherwise processes are skipped.

6. Finally, after both problems have been addressed (expressed with the synchronizing merge), the

Low ScVO2 Rx process is activated.

7. If all processes complete, the sepsis protocol finishes its execution.

153

CHAPTER VII.

DEFINING THE BEHAVIORAL SEMANTICS FOR CPML

The execution of CPML models determines the behavior of STEEP. The specification of the CPML

language via its structural semantics, as described in the previous chapter, does not define how CPML

models are translated into behavior. This is clearly an important missing point, since treatment

management is manifested as a behavior: a coordinated sequence of actions and interactions.

Understanding if the behavioral traces defined by the CPML models are safe, do not lead to deadlocks or

nondeterministic behaviors, and satisfy invariants such as deconfliction of mutually exclusive treatments

are very important. Answers cannot be found to these questions without understanding how CPML is

translated into behavior.

As shown by the STEEP architecture (Figure 30), the STEEP Protocol Execution Engine interprets the

CPML models and implements the model-to-behavior translation in the implemented system. While the

source code of the engine provides a sufficient definition of the behavioral semantics, using this

description for understanding and analyzing behavior is suboptimal. This is because the execution

environment is a complex Java and web code that implements all the operationally required features of

STEEP, including user interfaces, resource management, exception handling, server management and

communication protocols with the connected systems. All of these activities result in a significant

amount of “accidental complexities” that go well beyond the complexity of behaviors of the treatment

protocol. What is needed is an abstract specification of the CPML behavioral semantics that is analyzable

and captures the model-to-behavior translation without the accidental complexities of the

implementation. The scientific challenge here is the development of a method that makes the

specification of the behavioral semantics of CPML explicit and usable for analysis. Our selected approach

is semantic anchoring, which defines behavioral semantics by specifying the transformation between

CPML and a target language with a well-defined behavioral semantics.

In this chapter, we first discuss the concept of the transformational specification of semantics. We then

describe a template-based specification of model transformations and demonstrate the semantic

anchoring of CPML to the Stateflow modeling language.

154

Specification of behavioral semantics

As described Chapter VI, CPML is defined as a 4-tuple, comprised of its domain, and a set of

interpretations:

 ((⟦ ⟧) ∈)

⟦ ⟧

Up to this point, we have discussed the conceptualization yielding specification for and the

specification of the CPML domain () (restricting our attention to the protocol modeling

sublanguage). The last step in the modeling language development is the specification of behavior that

can be described by the language constructs: specification of the behavioral semantics of CPML.

As shown in the functional and implementation architecture of STEEP (Figure 29 and Figure 30), the

system operates in the context of the VUMC’s CIS, continuously receives live data streams from patients,

interacts with physicians by presenting care decision alternatives and receiving decisions, sends out

instructions to execute medical activities (orderables) and receives status reports about their execution

and results. All of these behaviors are guided by the CPML models that are continuously interpreted by

the STEEP Execution Engine.

It is not surprising that, in light of this complexity, the semantics of CPML could be defined on many

different levels of abstractions:

1. Execution Semantics: The specification should capture in full detail all behavioral details that

the STEEP EE performs under the control of CPML models. The depth of these specifications may

be sufficient for generating a full implementation for the EE on an implementation platform.

2. Protocol Behavioral Semantics: The specification should be rich enough to understand the

abstract treatment processes and the semantics of coordinating medical activities. However,

many platform related details (regarding details of messaging protocols, DB persistency

interactions, etc.) are abstracted out.

3. Mathematical Behavioral Semantics: The goal of the specification is to map the modeling

language into a mathematical domain that is rich enough to represent all behavioral categories

the system can exhibit. Examples for such mathematical domains are Abstract State Machines

[211] and Timed Automata [212], if the semantics is defined operationally, and Trace Algebra

[213] and Abstract Algebra [214], if the semantics is defined denotationally.

155

A pragmatic approach

Decision about the level of targeted behavioral abstraction is determined by the goal of the semantic

specification. Our goal in this thesis has been practical: we define behavioral semantics for the protocol

modeling sublanguage with the purpose of establishing a bridge toward existing tools that can be used

in the validation and verification of coordination mechanism modeled in CPML. The selected tool is

Mathwork’s Matlab Simulink Stateflow87 (SF) tool suite [216], because it includes a well-known modeling

language with ample of publications on its formal behavioral semantics. It incorporates a well-developed

and widely used simulator that can be effectively used for protocol validation, and it also includes a

verification tool, Simulink Design Verifier (SLDV), which allows us to make steps toward formal

verification of protocol properties.

More formally, our research goal is the development of an interpretation for CPML that maps protocol

models in the CPML domain to Stateflow models in the SF domain:

⟦ ⟧

The mapping will be defined and implemented as a model transformation, the semantics of the CPML

protocol modeling sublanguage is defined by the transformation and the semantics of SF.

In the remaining part of the section, we discuss the design and implementation of the model

transformation, present examples for its use and summarize the overall semantics specifications for

CPML.

Template-based specification of behavioral semantics

As discussed earlier, the protocol models define a coordination layer over medical activities. The primary

active component types used in the modeling language are:

1. Protocol

2. Process

3. Activities

87
 Matlab Simulink Stateflow is an implementation of statecharts [215], which is an extension of finite state machines with

hierarchy, concurrency and broadcasting. Stateflow further extends statecharts (with for example complex types).

156

These modeling entities exist concurrently, have internal states and interact with each other using

coordination primitives. To implement such behavior, we facilitate a template-based specification for

the transformation between CPML and SF models. The basic idea is shown in Figure 44, where A) the

structure of a general CIG represented in CPML (from Figure 37) serves as a configuration for the

transformation that uses predefined behavioral templates for each executable construct. The result of

this transformation is B) a generated behavioral model that is defined using the constructs of the target

domain.

Figure 44 - Generation of SF models from CPML

Because our target domain is SF, Protocols, Processes and Activities are mapped into a hierarchically

structured concurrent state machine structure. The state machines communicate via directed event

broadcast messages (this restriction was introduced due to interoperability issues with the SLDV). The

state transitions in the state machines are governed by complex guard conditions and triggering events

that are generated by external and internal events.

Behavioral templates

The individual state machines are created as instances of the three state machine templates, defined for

Protocols, Processes and Activities respectively. The complete documentation of the state machine

templates are not part of this thesis, here we explain only the behavior of the Activity template.

157

Behavior specification of the Activity template

Figure 45 shows the states of the behavioral template for CPML’s Activity88.

Figure 45 - Behavioral template of an Activity (defined in MATLAB Stateflow)

88
 This is the original version of the Activity template. There were other versions created in order to comply with the

restrictions imposed by SLDV; however, those are not as intuitive as this one.

158

The three main parallel states of an Activity are:

 Life: This state represents the actions the Activity will perform during its existence. The first step

is a CIG initialization phase (Initialization state), which allows the users to start up the CIG with

an external event (UsrIni_Ev), which propagates down in the containment hierarchy (and arrives

at the Activity as Ini_Ev_PaId). Afterwards, as part of the Operation state, the Activity will start

its life in the Idle state, as part of the Inactive state. If it recognizes that its parent is running

(indicated by the Run_Ev_PaId event), it will transition to the WaitingTurn state, otherwise at

the end of the protocol it will transition to the Finished/NeverActivated state. From being in

WaitingTurn the Activity will start running (Running) and get recommend to the user

(Recommended) if it is either a starting point of a workflow (i.e. there are no Step connections

pointing to it: StrtPoi_Co_EnId), or if it receives an explicit message from one of its siblings that

precedes it in the workflow to do so (Fin_Ev_SiId). Users can defer decision (Deferred state) for

a certain time (DfrTO_NumEnId) upon receiving a recommendation. While a decline

(UrsDcl_Ev_EnId) puts an Activity into the Declined final state, a confirmation

(UsrCfrm_Ev_EnId) will lead to adding the recommendation to a “shopping cart”. From here

users can order the action (UsrOrd_Ev_EnId), which enables a handshake with the CPOE system

(CisOrdAck_Ev_EnId). This original template contains numerous timeouts for ending the

execution, including one for monitoring wait time for starting execution in WaitingTurn

(MonTO_Num_EnId), for decision from the users upon a recommendation

(NoDecTO_Num_EnId), for response from the CPOE upon order submission

(CisOrdAckTO_Num_EnId), and for the activity to finish execution (RunTO_Num_EnId).

 Two monitoring states: These states run in parallel to the Life state to be able to react to events

and messages independently from the state of Life:

o ParentFinReqTracking: The goal of this orthogonal state is to monitor the Activity’s

parent89. This is because when parents find a solution to the problem they are trying to

solve, they will send out a Try2Fin_Ev_PaId event to indicate that they are trying to

finish their execution. This message will inform all of the non-executing children that

they are not needed anymore (i.e. not to start their execution).

89
 The words, “parent” and “child”, refer to the relationship of concepts in the containment hierarchy.

159

o OrderCompletionTracking is a monitoring state listening to external messages arriving

from the CPOE system. With the help of this state, an Activity will be able to track

whether the medical action it is supposed to recommend has been successfully

performed within an acceptable time period90 or not (CisOrdCplTO_Num_EnId).

Template instantiation

At the time of template instantiation, a copy of the template is created. This is followed by the

specialization of the template. During specialization, after a simple renaming of the template, both the

internal behavior, and the interaction with the environment is set up according to the specification

defined by the CIG model.

Our templates were designed to be static in terms of structure91, which means that there are no states

and transitions added to, or removed from them at generation time. Instead, their specialization

involves the use of the following techniques:

 string replacement: certain (text-based) components of the template are altered

o Example 1: the name of the main state, “Activity_EnId”, is replaced with

“Ac_<Name>_<ID>”, where “<Name>” will be the name of the Activity in the CPML

model, and the “<ID>” will be a unique, hierarchical id that is generated as part of the

model transformation process)

o Example 2: replacement of the triggering event placeholder “Fin_Ev_SiId” with the

particular event’s id that the Activity needs to monitor before entering the “Running”

state

o Example 3: replacement of all occurrences of “EnId” and “PaId” to the id of the entity

and its parent’s id respectively

90
 This is often referred to as validity window, which indicates the time range in which repeating the medical action is not

needed, or allowed.

91
 The static design was possible with a simplification of the original semantic specification: Processes, as opposed to tracking

many concurrent possible defined solutions, only track one trivial solution, which is the set of all included components. This
limitation could be addressed by generating and embedding multiple solution tracking states instead of only one.

160

 variable modification: variables can be created, removed, or modified

o Example 4: moving variables that are defined by the template, but implement

information exchange between the environment (represented by Simulink) and the CIG

logic (represented by SF), or are intended to be globally observable (by all states of the

SF) from the level of the template’s main state to the level of the main SF model

 value replacement: constants and variables are initialized

o Example 5: the time out value for being in the “Deferred” state, called

“DefTO_Num_EnId”, is set to 4 hours

Transformation process

To enable the template-based specification of behavioral semantics we implemented an analysis

software tool chain as part of STEEP. This tool chain, which enables CIG analysis (as described in the next

chapter), performs a transformation of the CIG models using the templates (described in the previous

section), and an algorithm defined by Algorithm 1.

Algorithm 1 - Simplified template-based model transformation process

1: for all Protocols (contained in the model file) do

2: record data from the models as template attributes

3: traverse elements of the Medical Library

4: for all Vitals do record parameters (as template attributes)

5: for all Labs do record parameters (as template attributes)

6: traverse Protocol

7: for all contained Processes do

8: traverse Process contents

9: if contains Processes for all Processes do

10: traverse Process contents

11: else (if contains Activities) for all Activities do

12: record Activity parameters (as template attributes)

161

13: record Process parameters (as template attributes)

14: record Protocol parameters (as template attributes)

15: invoke Matlab model generation string template group with attributes recorded at step

2:

16: replace placeholders in Protocol template with appropriate attribute values

17: for all Protocol inputs (i.e. Labs and Vitals) do replace placeholders in appropriate

templates

18: for all Protocol components (i.e. Processes and Activities) do replace placeholders in

appropriate templates

19: run Matlab model generation script (created in step 15:)

20: create and initialize Matlab Simulink model (to act as the environment)

21: create and initialize Matlab Stateflow model (to act as the protocol)

22: add an instance of the Protocol behavioral template to the SF model and configure its

parameters

23: for all Vitals do create a data input channel for the SF model (i.e. interface between

SF and Simulink)

24: for all Labs do create a data input channel for the SF model (i.e. interface between SF

and Simulink)

25: for all Processes do add an instance of the Process behavioral template to the SF

model and configure its parameters

26: for all Activities do add an instance of the Activity behavioral template to the SF

model and configure its parameters

This algorithm is a simplified version of the one described in “Appendix C” (see Algorithm 2).

Analysis tool chain

The previously described transformation process is implemented by the analysis tool chain, which

translates CPML-based CIGs to Matlab Simulink/Stateflow to enable validation by simulation and

verification through formal analysis. The layers and main components of the tool chain are shown in

162

Figure 46, which provides an implementation oriented view of the software components used in the

model transformation process.

Figure 46 - CPML to Matlab Simulink/Stateflow transformation tool

The top layer is the meta layer, which shows the components used to design the CPML. The language

includes a protocol modeling sublanguage for CIG design, an information modeling sublanguage for

semantic integration of STEEP into the host CIS environment and language components for the model-

163

based, automated configuration of the Patient Management Console. The language components include

an Expression Language as well, but we have not emphasized its details in the language specifications.

The CPML specification includes the specification of its structural semantics via metamodeling and the

specification of its behavioral semantics via developing a translator to the SF language. CPML Models for

STEEP consist of protocol models, integration models and expressions defining various decision

conditions in the coordination process over medical activities.

The tool chain includes a suite of generators (Generator layer in Figure 46) that translate CPML models

into other models and artifacts. As described by the algorithm presented in “Appendix C”, the first

generator invoked is the one designed to generate the (XML) input files for the STEEP Execution Engine

from the CPML models in GME. This is followed by two generators that use the XML file as input. The

first one uses Graphviz [217] to generate a directed graph representation of protocol models for

documentation purposes (seen in Figure 38). The second one generates a MATLAB .m script that, when

invoked in Matlab, will create the executable Simulink/Stateflow models for simulation and verification

purposes. This generator would ideally also be complemented by an Expression Language Parser (Figure

46), one similar to the parser the EE uses to translate expressions used in CPML models to Java. The goal

of this future component, which is not yet implemented, is to translate CPML expressions directly to

Matlab guard conditions, which is currently done manually. These generators are combined into one

application written in C# (see Figure 47).

164

Figure 47 - Screenshot of the Matlab script generator tool

Example

In the previous chapter, with the help of Figure 39, we showed how the components of the sepsis CIG

configure the STEEP GUI. In this section, we use Figure 48 and Figure 49 to present a similar process: the

transformation of the sepsis CIG into Matlab behavioral models.

165

Figure 48 - Generation of SF models from CPML (Sepsis)

Figure 48 is a follow-up to Figure 44. It shows the model-based generation of SF models for the specific

example of the sepsis protocol. As a result, there is one template instance created for each executable

component (1 Protocol, 44 Processes and 77 Activities). More detail on the resulting SF model is

provided by the next diagram.

While Figure 48 only shows the protocol logic implemented in SF, Figure 49 shows the encapsulating

Simulink model as well. In Figure 49, the main model can be seen in the upper part of the diagram. All of

its components are generated (including the layout), except the “External Events from File” element,

which is a link to an Excel file that contains sample patient data for simulation. The SF implementation of

the CIG logic is contained by “Protocol_SF”. Its elements are the (previously mentioned) configured SF

template instances that can be seen in the callout bubble92 on the bottom of the figure, where each sub-

charted state encapsulates the appropriate template for a given element of the Protocol-Process-

Activity containment hierarchy. Even though it is not visible in this diagram, each state is configured to

exchange information only with the appropriate states in SF and components of the environment.

92
 The callout illustration and the colored bands with labels (Protocol, Process and Activity) are not part of the Matlab model.

166

Figure 49 - Generated sepsis CIG in Matlab

The SF chart has both data and event inputs. Data inputs are created for each data item that the

protocol relies on to make a decision. In the case of the sepsis protocol, there are 34 numeric data

channels, which include, for example, respiratory rate (RR), weigh and central venous O2 saturation

(ScvO2). In this particular instance, the generator was configured to create a model for validation of the

CIG using real-time user interaction together with sample patient data recorded a priori. Consequently,

the generated simulation model, which otherwise includes only components defined by the template

167

library93, requires users to have an input file manually added to it94. The interaction between users and

the simulation is facilitated by events. Events are triggered by the red switches (labeled as “UsrStrt_Ev”,

“UsrCfrm_Ev_EnId”, etc.) of the user controlled abstract GUI elements for the Protocol and the Activities

(“UI_Protocol”, “UI_Activity_1_1_1_1”), which can be “pushed” during simulation to indicate a user

action (to start the protocol, to confirm a recommended action, etc.). The last component on the

diagram is the “Real_Time_Pacer”, which allows the simulation time in Matlab to be mapped to relative

of real time. In this case, the simulation is sped up to 60 times real time, which results in minutes being

mapped to seconds.

The other option for generation is the fully sample-based execution, where the simulation does not run

relative to real-time. Instead, both patient data and clinician responses come from a sample scenario

file. This is not illustrated here.

93
 The template library also defines the format for the input file and the generator creates an empty table with the appropriate

header in an Excel file, in order to be able to be connected and provide input during simulation.

94
 By connecting the input to the SF chart through the “Data_DEMUX” component.

168

CHAPTER VIII.

VALIDATION AND VERIFICATION

Development of STEEP was a lengthy and involved process including a large team of physicians,

informatics personnel, HCI designers and computer scientists. One of the most difficult iterative

development process was the validation of the CPML modeling language and models via walkthroughs,

discussions, tests and later, simulations. Verification of well-formedness properties was provided by the

explicit specification of structural semantics of CPML and the built-in constraint checking mechanism of

the GME metaprogrammable modeling tool. The need for a simulation-based validation gradually

emerged in the project when it was clear that the complexity mandates the use of sophisticated tools.

The first validation experiments were completed in a dedicated simulation environment of VUMC and

provided early justification for the clinical use of STEEP.

The need for automated verification came with the recognition that the models and the implied

behaviors will be too complex for test-based verification. Our approach to automated verification was to

anchor the semantics of CPML to Stateflow (see Chapter VII), a modeling language with formally defined

semantics and tools supporting automated verifications of state invariants. Then, by relying on a

verification toolbox for Stateflow, we showed the feasibility of verifying state invariants in CPML models.

In this Chapter, we provide an overview of the results regarding the established validation and

verification methods and opportunities. Our goal has not included the development of a complete tool-

based solution, or completing the validation and formal verification of the current release of the STEEP

models. As it will be shown, the complexity of a real-life system is quite high and significant further

research is needed to gain a scalable solution.

Validation through simulation

Clinician walkthroughs

Protocol validation tests whether the generated decision-support guidance corresponds to clinicians’

expectations. The first step is to model walkthroughs with clinicians. The modeling language’s

expressiveness is helpful in this process and fully confirms the importance of using DSMLs that are highly

customized to the clinical environment. The walkthroughs were performed by the same clinicians who

169

actively participated in CPML’s iterative development (all together four physicians, and one nurse). Out

of our regular hour-long weekly meetings, which in average included two physicians, we spent around

one third of the time with this type of discussion in the first three years of development. In our

experience with many different domains, domain expert involvement in DSML development is an

absolute necessity.

During these walkthrough discussions, many components of the language evolved. The first, and

probably the greatest, change was the decision to move from a workflow-based representation of the

CIGs to a process-based one. Other major changes in terms of language constructs included the creation

of solution sets, to create a more sophisticated selection layer over the components of processes,

because initially, acceptable solutions only existed as textual recommendations, thus were not precisely

enforced. Another major change was the decision to create purely diagnostic processes that allowed

modelers to separate a patient condition-based diagnosis step from the associated recommendations.

This separation caused clinicians to first manually confirm the diagnosis, before any automatic

recommendations were given by the system.

Last, but not least, one of the most difficult problems that these walkthroughs allowed us to solve, was

the discussion on how models affected the behavior of the GUI. We spent countless hours trying to

figure out what were the necessary constructs we needed to include in the language to allow our

experts to configure the user interface behavior without getting lost in the details.

Simulation environment

The second validation step is simulation-based studies. The STEEP system architecture supports the

generation of simulated execution through a supervisor console. The console helps the supervisor

control the environment, including the simulated patient’s response to treatment and the behaviors of

other simulated players, such as physicians ordering drugs and procedures, nurses administering drugs,

and laboratories delivering lab results. Sample data for simulated execution of protocols are stored in

XML files that the execution engine accesses and the TMC displays just as they would with real data.

The simulation must be conducted in a realistic environment, where ICU personnel can face treatment

management situations similar to real life and can interact with the system to make decisions. The

validation process must be closely monitored and the results precisely evaluated. At one point in the

development, we relied for this evaluation on the infrastructure provided by the Simulation Center of

170

the Center for Experiential Learning and Assessment at VUMC [218]. The Simulation Center not only

helped validate the protocol models in terms of proper structuring (e.g. separation of actions into

processes related to diagnosis, treatment and prophylaxis) and sort out timing issues (e.g. fluid

challenge and early goal-directed therapy processes can happen at the same time), but also provided

valuable training to the medical personnel in terms of how to operate the system when it was time for

them to use it on actual patients after the deployment of the tool into the ICUs. In later phases of the

project, but before the completion of the Matlab-based simulation environment, we however decided

to only use the production version of the tool for simulation for the sake of simplicity, which did not

have the ability to speed up or slow down the simulation time.

While the development of the simulation environment required many resources, it had a tremendous

value when our team discovered logical flaws in the original sepsis CIG. The most obvious one is

illustrated by the workflow diagram of Figure 34, where if “no” was given to the first and “yes” to the

second question, then no antibiotic would be given to the patient, which is not the right

recommendation.

Verification through model checking

Potential benefits and examples

There are many potential benefits of using formal verification in CIG development. However, successful

verification is greatly dependent on the problem definition, including the problem space and the

property being analyzed, and the technique used (e.g. model checking, theorem proving, runtime

verification, and statistical model checking)

We gathered a categorized set of examples where facilitating verification could greatly improve CIG-

based CDSS (see Table 10):

171

Table 10 - CIG-based CDSS verification opportunities

Target of analysis Description Example

CIG language
Provide an analysis of the language in terms
of soundness

 Correctness of structural semantics: Does the model comply with the

structural requirements defined by the language?

 Compare structural and execution semantics: Is there a possibility to

create models, which do not make sense (i.e. are not executable)?

 Correctness of execution semantics: e.g. evaluate the inter-

hierarchical information exchange of concepts in CPML (Protocol-

Process, Process-Process, Process-Activity)

 Analyze expressivity: e.g. overlap and interaction of the Expression

Language and Processes in CPML

Implementations
of the EE

Provide an analysis of various execution
semantic implementations

 Compare (Java-based) real-life and (Matlab-based) simulation

environments

CIG models
Provide an analysis of CIG implementations
against execution-specific requirements

 General non-functional properties: e.g. deadlock freedom,

determinism, division by zero, integer overflow

 CIG language-specific properties: e.g. in CPML

o A defined problem should always be solved

o All solutions should be considered

o At a given time only non-interacting solutions should be running

o At a given time there should be at least one solution running

o Never finish in "Complete" (i.e. never stop treatment with claiming

success) if patient parameters are out of the specified range

CIG models
Provide an analysis of CIG implementations
against domain-specific requirements

 Dosing: e.g. no medication order should allow to surpass the

maximum permissible dose per administration threshold

 Negative outcomes: e.g. hypotension should not be explicitly

allowed, which means that no process monitoring diastolic blood

pressure should allow a minimum threshold to be set lower than 60

mm Hg

CIG models
Provide an analysis of CIG implementations
against guideline-specific requirements

 Sepsis protocol requirement examples:

o Lab test should happen before antibiotics

o There should be at least 2 different antibiotics ordered

o MAP issues should always be addressed

o Prophylaxis should always happen

172

CIG models

Provide an analysis of CIG implementations
against a set of real-life treatment scenarios
to gain knowledge on the quality of
implemented CIGs

 Figuring out how good is the sepsis treatment requires

o many actual test cases (that include the execution trace of the

treatment steps) to be compared with the recommendations of the

CIG (i.e. the "ideal treatment") to the same patient input

o alternatively, working patient models (i.e. representation of how a

patient reacts to a given input) could be feeding data to the system

to see if the CIG could sufficiently treat the patient, or not

Our approach

The benefit of using DSMLs is that the domain models can be formally verified against established

criteria. This is a significant step forward. In traditional approaches, where the system is manually

coded, the model is not explicit and cannot be independently verified. Our models support verification

on three levels.

The first level is static model verification, which the GME provides. Metamodels include well-

formedness rules that separate syntactically correct models from incorrect ones. The constraints are

expressed using OCL. During modeling, GME enforces these well-formedness rules. In CPML, the

constraints include clinical limits for parameters as well as more sophisticated rules that would be

difficult to check without automated verification (see examples in “Relationship of Protocols, Processes

and Activities” section in Chapter VI).

The next level is verification of dynamic properties at design time. The execution engine transforms

models into behaviors at runtime. In fact, protocols are instantiated into a complex, multithreaded

program that interacts with ICU personnel, patient data, and events. Using well-defined, clean execution

semantics (such as CSP) is crucial for verifiability of the models against a set of predefined behavioral

properties such as determinacy, livelock, and deadlock. Concurrently, as previously described, we have

developed a model translator to map the protocol models into an intermediate executable model using

Matlab Simulink/Stateflow. The Stateflow models can drive a number of verification tools, such as

model checkers, simulators, and reachability analysis tools. Our examples of how we use these tools in

implementing a dynamic verification of the behavioral properties of CIGs are described later in this

chapter.

At the final level, critical actions that are performed during the treatment need to be checked at

runtime. Security and privacy policies determine access rights to data published through the TMC and to

173

the invocation of actions, such as initiating treatment processes and ordering medications. In the

current implementation, we rely on general ICU access-control policies, but we intend to make this

customizable in later versions. Decisions present in the protocol let healthcare professionals order

various actions during treatment that must be not only logged but also matched against a set of legal

regulations and the hospital’s own policies. Systems interfaced to the execution engine perform several

of these checks; for example, the CPOE system checks all medication-related actions against a large suite

of rules that include dosing and timing constraints.

Tools

Simulink Design Verifier

For the verification of behavioral properties of CIGs, we chose Matlab SLDV because of its capability to

analyze our generated SF models with only moderate changes to them. SLDV uses formal methods,

provided by the Prover proof engine [219], to detect hard-to-find design errors in models without

requiring an exhaustive testing. Detected design errors include dead logic (i.e. parts of the SF model

considered unreachable), integer overflow, division by zero, and violations of design properties and

assertions. After detection, erroneous blocks in the diagram are highlighted and SLDV calculates signal-

range boundaries and generates a test vector (i.e. an example) that reproduces the error in simulation

[220]. These examples can be analyzed with the help of a “test harness” generated by another toolbox

SLDV relies on, called Simulink Verification and Validation [221].

Alternative methods

We recognize that there are many alternative approaches we could have taken for the formal analysis of

CIGs. As our primary goal was to facilitate the SF models already generated for simulation, we

predominantly focused on using existing Stateflow/statechart analysis methods. Besides Matlab SLDV,

the existing tools we have considered included HiVy [222], which translates SF models (with some

restrictions) to the input language of the Spin model checker, HyLink [223], which transforms certain

classes of SF models to UPPAAL and HyTech for verification, and Polyglot [224], which translates SF

models and temporal properties specified with a pattern-based system [225] to Java in order to perform

analysis with the help of Java Pathfinder / Symbolic Pathfinder.

174

Additionally, we have also considered the use of a simpler (i.e. less expressive) MoC as the basis for

expressing the behavioral semantics of CPML. Such solution could have the added benefit of providing

better analyzability. As an example, we have experimented with the creation of timed automata-based

templates for the generation of timed automata-based behavioral models, which would have enabled

the analysis of the behavioral semantics with the help of UPPAAL.

However, the problem with timed automata is spatial complexity. In practice, very large models [226], a

combination of states, invariants, guards (conditions + clocks) and variable ranges, often require large

amounts of memory, which during execution first results in a lot of page faults and in extreme cases, the

system will run out of memory. Based on previous research experience [227–229], we determined that

our models contained too many time-related properties for UPPAAL to handle. Furthermore, the lack of

hierarchy made the number of the behavioral models grow exponentially.

Verified examples

For testing purposes, we constructed a simple CIG using a small subset of the original sepsis CIG (Figure

48). The resulting simplified sepsis CIG can be seen on Figure 50. It contains only one Process, which has

two Activities.

Figure 50 - Generation of SF models from CPML (Simplified sepsis)

175

In the following subsections, we show five examples, in which various invariants were tested against this

simplified model. The creation and the analysis of each example were performed using the following

steps:

1. If required by the example, alter the behavioral templates (e.g. UI_Activity, Protocol state, etc.)

2. Invoke the generator of the analysis tool chain to get the Matlab model

3. Manually extend the model

a. Create an SLDV block implementing the property against which the model will be checked

b. Add data and events required by the analyzer (SLDV block) as outputs from the SF chart

c. Connect SF outputs to SLDV block

4. Run SLDV

5. Confirm results

Example 1

Figure 51 shows the contents of the first example (SP3_20120316_1706_2_A.mdl). In order to get rid of

potential variations caused by human interaction (e.g. start of the protocol, confirming the treatment),

in the following examples the Protocol and the Action controllers (UI_Protocol and UI_Activity) are

replaced. The current example is configured so that the Protocol will start automatically at a time

specified by a step function (see the upper left part of the figure). Similarly, Actions are confirmed (i.e.

started) at a fixed time set to be after the time of the start of the Protocol (see the lower left part of the

figure). The later step function, extended with appropriate delays (still acting as a user), will also order

the medication, then (acting as the CPOE system) will acknowledge and finally confirm the completion of

the Activity.

176

Figure 51 - Generated functional models in MATLAB (Example 1 and Example 2)

The property to be verified is expressed by the SLDV block (in the right lower part of the figure). With

the help of a signal detector, a comparator and an implication, the property (“P”) defines a Boolean

formula, which will only be true if, following the start of the Protocol (signaled through “In1”), after a

fixed amount of time (12 steps) the Process completes (signaled with a value of 2 through “In2”). With

the above-mentioned assumptions, the property can be expressed with the help of linear temporal logic

(LTL) in the following way:

 (()), where () ((()))⏟

Symbols denote the property, all future and the following step respectively. By replacing the two

input parameters (In1 and In2), this equation can be translated to be a function of the user triggering the

start of the protocol (emitted by the Step function of the UI_Protocol) and the completion

condition of the main process ():

 (())

If we consider the assumptions encapsulated by the UI_Protocol and the two UI_Activitys as part of the

definition, the expression will change to the following:

177

 () (⋁ ()

)

where
 (

) (
) (

), and { }

These expressions state that once the Protocol is started (permitted once per simulation) and are

followed by the Activities with an appropriate delay the original property will hold.

Using an above than average laptop computer95, SLDV proved this objective to be valid in approximately

37 hours96. We found this result to be below our expectations, as it showed that using the same

templates were not going to scale for larger models.

Example 2

We suspected that some of performance degradation in Example 1 was caused by the fact that the

models were designed to be “livelock proof”, in the sense that Activities and Processes would always

reach a final (i.e. halting) state after a preset amount of time. This was achieved with the use of various

timeouts (e.g. monitoring, running timeout). To evaluate our theory we created the next example

(SP3_20120316_1706_2_B_noTO.mdl), which used the templates from Example 1 without the timeout

transitions from the inside of the Active states.

Using the same setup, including the properties of interest, the verification took 4 hours, supporting the

hypothesis.

Example 3

Both previous examples, Example 1 and Example 2, used a manually pre-coordinated user interaction

mechanism (separately set up Step functions in UI_Protocol and UI_Activity). To improve on this design,

we created a new UI_Activity template, in which the user was guaranteed to respond automatically

(with a fixed delay) to recommendations made by the protocol. We also further simplified the Process

template by removing the goal tracking concurrent state, which was unnecessary, as a goal was not

defined for this example. The example generated with the same CIG

(SP3_20120316_1706_2_C_autoDoc.mdl) is shown in Figure 52.

95
 Intel i7-2630QM quad core CPU with 12 GB of RAM running the 64-bit version of Windows 7.

96
 To complete the verification, SLDV approximated the floating-point arithmetic with rational number arithmetic.

178

Figure 52 - Generated functional models in MATLAB (Example 3)

The new assumptions change our LTL expressions to the following:

 () (⋀
 ()

 { }

)

where
 (

) (
) (

)

With this setup, the verification took 4.6 hours.

Example 4

Figure 53 shows our next example (SP3_20120316_1706_2_D_XOR.mdl), in which we further

experimented with the property expression language of SLDV. The property specified in this example

requires all execution traces to allow the completion of one Activity only, which implements exclusive

choice. In the model, the users are assumed to accept the first (“Doc_Cfrm”) and decline the second

(“Doc_Dcl”) Activity recommendation. To this to happen, the generated model was manually

reconfigured, as our generator allows the use of only one template per executable component.

179

Figure 53 - Generated functional models in MATLAB (Example 4)

The property for this example can be written as:

(

() ((∑ { }

 { }

)) ((∑ { }

 { }

))

)

Where the completion and decline events of an Activity are signaled through with a value of and .

Alternatively, if completion and decline events are represented as
, and

 the expression

changes to the following:

(

 ((∑

 { }

)) ((∑

 { }

))

)

The verification of this property took 3.7 hours.

Example 5

The final example (SP4_20120319_1834_1_E_seqProcs.mdl) was set up to verify the sequential

execution of the two Activities in a slightly different CIG model. In this model, the two Activities were

180

placed into two separate Processes in the main Process. The reason for this was to create a simple test,

where an Activation event realized sequencing between the two lower Processes (and ultimately the

two Activities as well). Figure 54 shows the SLDV property specification, according to which both of the

lower Processes need to finish for the main Process to finish.

Figure 54 - Generated functional models in MATLAB (Example 5)

The property for this example can be written as:

 (() ())

or alternatively as

 (

)

The verification of this property took 1.1 hours.

Evaluation

The following list describes the chief limitation of the solution presented in this thesis for the verification

of CIGs:

 Simulink does not support concurrency in terms of a nondeterministic interleaving of concurrent

events. Thus, SLDV does not provide any means to check a model for any type of concurrency

related properties (e.g. race conditions) [230].

181

 SLDV currently is only compliant with a subset of the Simulink/Stateflow language, which means

that our behavioral templates had to be altered considerably. This included the need for using

“directed message broadcasting” for the dissemination of SF events, instead of regular

broadcasts. This limitation not only made the generated models far less readable for humans,

but required changes to the behavioral templates that complicated the code generation.

Furthermore, SLDV does not support the super step semantics [231] provided by SF, which

fundamentally altered the meaning of our behavioral templates.

 Another disadvantage was that the generated behavioral models for the sepsis guidelines

reached a high complexity, which Matlab and SLDV had a hard time dealing with, even after

making numerous optimizations. For example, it became apparent that the performance of the

copy/paste Matlab API command that we use in the instantiation of the templates in the

generator is dependent on the size of the model to which the new instance is being added.

While this dependency was only polynomial in time, in practice, it made the Matlab-based

generation of the full sepsis CIG impossible with most machine/version configurations97. As

another example, in order to produce results with SLDV in the magnitude of hours, we needed

to simplify behavioral templates and treatment models to the point, where their clinical

usability was diminished. The simplification was an experimental process, during which we

tested out both alternative, but equivalent behavioral models, as well as, more abstract and

simplified versions of our behavioral templates. The latter ones benefited during verification

from reduced number of transitions (e.g. removal of time-outs) and reduced number of

concurrent states, and stored information with the help of shared variables instead.

Such problems indicate that a considerable amount of energy needs to be spent on (1) further

optimizing behavioral templates or (2) finding alternative Stateflow verification methods or (3) using

alternative MoCs for defining the semantics of CPML.

However, we believe that after a thorough testing, systems, such as STEEP, should be able to operate in

a clinical environment without a complete verification of all critical properties, as currently they are not

applied as safety critical (i.e. hazardous) systems, in the sense that they are not completely autonomous.

97
 We tried several Matlab versions (v2011b, v2012a) on multiple Windows 7 machines. The only machine able to provide a

solution was Linux-based.

182

This means that every patient influencing action will only be performed after a careful evaluation of

users, who are professionals trained to solve problems without these systems in place.

183

CHAPTER IX.

CONCLUSION

Summary

Motivation

The use of evidence-based guidelines for managing complex clinical problems has become the standard

of practice, but typically, clinical guidelines are defined and disseminated in a natural language, which

inherently supports ambiguity. Furthermore, guidelines are not patient care plans, which means that to

be truly effective, they must be deployed as customized and individualized clinical care plans, in other

words, protocol instances. Our approach of using CIG models that formally capture medical knowledge

and its interaction with contextual information in care delivery systems inherently supports this idea by

allowing protocol models to be tailored and executed on a per-patient basis.

Existing approaches

Today there are many different frameworks for modeling, verifying and executing medical guidelines.

Built by various groups, each of these CIG-based systems differ in their scope and implementation, but

were developed with the intention that by using them non-programmers will be able to create, maintain

and facilitate computerized clinical guidelines [36]. Current approaches can be split into two distinct

groups: (1) ones that rely on custom-built execution environments and (2) ones that build on much

general, but robust existing industrial solutions:

Proprietary systems offered by solutions of group (1) define and implement highly specific concepts and

associated execution semantics, which are customized to the needs of the particular (clinical) domain.

The disadvantages of these systems are that they often have modeling languages with limited readily

available expressivity; their execution environment is not robust in terms of scalability and operational

reliability; and their integration to various CISs is not addressed. Some of the most well-known projects

and formalisms include the Arden Syntax, the Asgaard/Asbru project, EON, Gaston, GEM, the GLARE

framework, GLIF, HELEN, SAGE, the SpEM framework, PRODIGY, and PROforma, out of which we closely

examined four in this thesis.

184

The other types of CIG-based frameworks, members of group (2), rely on robust, standard-based

industrial solutions. Resulting frameworks range from ones building on workflow-based standards and

execution environments [232–235] to others facilitating rule-based systems [236,237]. This technique

alleviates many of the issues presented by the solutions of group 1; however, they introduce ones of

their own. The inherent problem of placing clinical applications on top of general business solutions is

that resulting systems will be constrained in terms of expressivity of the chosen business platform. For

example, special logical constructs, ones only seen in the clinical domain, are not implemented by any of

the domain-independent platforms [82]. Another issue is that currently offered general modeling

languages (e.g. BPEL, UML Activity Diagrams) do not use abstractions familiar to health care

professionals.

There is a continuing interest in improving clinical decision support systems despite all listed efforts,

most of which took several years to develop, as none of the offered solutions gained wide clinical

adoption.

Current status

Since the second half of 2007, as a result of the collaborative research projects shared between VUMC

and ISIS, we have developed and implemented a model-based patient management system for sepsis

[71,238–241]. Our research team of medical experts, computer scientists and system integrators

created

1. a language, called CPML, together with a general modeling environment for representing clinical

guidelines,

2. a computer interpretable sepsis treatment protocol

3. a general software architecture for the analysis and the execution of guidelines.

The resulting system is called STEEP. While STEEP is currently configured with the sepsis guideline, it is

capable of running any CIGs created with CPML. It provides personalized decision support to assist in

evidence-based patient management. By merging formal biomedical models with specific patient

information, it supports both bedside decision-making and clinical research. It represents the status of

the patient in workflows, management options as guided by clinical research protocols, and expected

consequences.

185

The clinical usability and effectiveness of the STEEP system is currently being evaluated in a clinical trial

at two ICUs, the medical and the surgical ICUs of VUMC. Our hypothesis is that STEEP decreases the time

it takes to detect patients developing sepsis, and improves both physician compliance with evidence-

based standards and clinical outcomes for patients.

List of contributions

Our work contributed to the design of CIG-based CDSSs in the following areas:

1. Creating a detailed list of critical open problems that CIG-based CDSSs face today.

2. Leading the development of CPML, an integrated modeling language required for the model-

based configuration of the STEEP system, which is a real-life functional experimental CIG-based

CDSS configured with a CIG for the management of sepsis and running at VUMC [71].

3. Contribution to the GUI design and the selection of its configurable features in STEEP [71].

4. Contribution to the design of the execution engine that runs simultaneous instances of the

protocol in STEEP [71].

5. Contribution to the design of the communication interface for the proprietary CPOE used in

STEEP.

6. Contribution to the modeling of the sepsis CIG with the help of CPML [71].

7. Creating a methodology and a related software suite comprised of generators and Matlab

Simulink/Stateflow to allow the template-based generation of behavioral models, as well as,

their simulation and formal analysis.

8. Formal analysis of various properties over a set of simplified examples taken from the modeled

sepsis CIG.

Lessons learned and future directions

The STEEP project provided our interdisciplinary team an invaluable opportunity to investigate model-

based treatment management problems, and analyze and understand related technology directions.

The development of the STEEP architecture and making it suitable for a clinical trial have proved to be a

significantly larger effort than we expected. Through the design and the development of our system we

gathered a list of scientific challenges. The findings generic to CIG-based CDSS were summarized in the

186

“Open problems” section of Chapter III. In this section, we discuss the lessons learned related

specifically to STEEP and provide insight into what the next steps of this research could be.

Table 11 shows the tasks in the STEEP project that took the most amounts of time and energy to

complete. Explanation of each task is provided in the following sections.

Table 11 - The most significant development task in the STEEP project

Task Effort Reusability Section containing the explanation

CPML development High High “Knowledge representation and management: Language”

CPML EE development Moderate High “System development and evolution”

Sepsis CIG development Moderate Moderate “Knowledge representation and management: Protocols”

STEEP GUI development High Moderate “System integration”

STEEP integration into
the VUMC CIS

High Limited “System integration”

CPML CIG simulation and
analysis environment

Moderate High “Validation and verification”

Knowledge representation and management: Language

The drawbacks of language development

The development of CPML was a large effort. Some of the most significant reasons are listed in the

following subsections. We, however, believe that our efforts were not in vain, as many components of

the language are novel and highly reusable in other CIG-based CDSSs.

Workflow to rule-based representation

As described in the “Early attempts” section of Chapter VI, our team started with the assumption that

some of the workflow-style standards or existing modeling languages will provide the required

abstractions for modeling sepsis treatment protocols. After much experimentation, we decided to

develop domain-specific abstractions that were built around the Process concept supporting

concurrency and event-based communication. The result was an evolving modeling language, which

provided adequate expressiveness for our clinical example.

Separation of knowledge layers

CPML integrates many different kinds of knowledge, including medical guidelines, execution semantics

and interface abstractions of connected systems. Based on our experiences, we concluded that it is

187

critical to decompose the knowledge in problem domains with complexity similar to CIGs into sub-

languages that represent separate and essential aspects of the problem space, and obtain complete

models via model composition. In CPML, we progressively identified and separated multiple sub-

languages that represent essential aspects of the problem space. As described in Chapter VI, sub-

languages were organized into three major categories: Medical Knowledge Modeling, Protocol Modeling

and Model Management and Support. We believe that the decoupling of the various sub-domains

provides flexibility on multiple levels.

With the help of sub-languages, we separated the two most important types of knowledge represented

in CPML models: (a) the medical knowledge, which represents a medical ontology and (b) the behavioral

knowledge, which defines how certain tasks described in the guideline have to be executed. These two

kinds of knowledge are significantly different and are traditionally handled by their respective

communities: medicine and computer science. Both of these aspects are complex and have semantics of

their own. Such separation allows for the independent construction and management of both

knowledge bases by their respective community. Knowledge can be updated according to their own

lifecycle. This is an important benefit, because after an initial design phase, the operational knowledge

usually has a relatively slow evolution, while medical knowledge requires more frequent updates and

extensions. In fact, the separation proved extremely useful when we were experimenting with various

execution models, as we could quickly generate and test the complete behavior after changing the

behavioral templates, while leaving the treatment models unchanged. Further decomposition in the

medicine domain allowed the sepsis treatment protocol to continuously evolve, while order sets of

medications, procedures and laboratory tests were stable as defined by the Vanderbilt’s CPOE.

Another benefit of the separation is that medical knowledge can be expressed using common existing

formalisms (e.g. OWL [242]) and existing knowledge sources (e.g. UMLS) can be employed. Decoupling

also allows for the execution semantics to be expressed explicitly with a MoC, in our case Stateflow,

which makes all the existing methods and tools for the chosen MoC available. For STEEP, this included

verification techniques and simulation and execution environments provided by the Matlab tool suite.

Learning CPML

Although the CPML environment provides health experts with the necessary domain specific concepts,

CPML still has to be learned. As an alternative, knowledge experts can rely on and collaborate with an

188

experienced modeler to capture guidelines (similarly to the collaboration that existed in the Sepsis

project), which requires time and energy spent at both sides.

Limitations

Adoption of CPML protocols

Due to the way the language was constructed, Protocols are expressed by using Orderables, and

Orderables are constructed using elements of the Medical Library. This setup means that Protocols are

always expressed with the help of building blocks specific to a HCO98. While this approach has the

benefit of allowing modelers to create CIGs that are directly runnable at a given location, it also

introduces an indirection, which makes the understanding of protocols created at one institution by an

expert at another difficult, as they need to look at how each orderable is constructed before they can

fully understand the models. Another disadvantage is that the adoption of protocols created at other

institutions becomes non-trivial. For this process to be automated, a mapping between the orderables

of the other HCO and elements of the Medical Library needs to be created.

Information aggregation

As described by “P2.10” in Chapter III, the support for information aggregation in CPML is fairly limited.

We are able to represent problems described in “Example 2: Defining composite indicators” (e.g.

diagnosis), but for solving “Example 1: Aggregating different sources” and “Example 3: Identifying the

source of indicators” we rely on our modelers and VUMC’s data cleaning and aggregating processes

respectively.

Representation of planned actions

One of our original goals was to develop a language and provide a modeling environment for capturing a

large variety of clinical guidelines. However, when trying to adopt our solution to the modeling of other

management protocols, we realized that the design of CPML was solely influenced by the problems

present in ICUs. Thus, CPML was highly oriented towards representing solutions for acute care

situations. This caused problems, as the solutions for acute problems are typically reactive in nature,

which means that as soon as a problem is detected an associated solution needs to be identified and

98
 This issue is also discussed in the “P2.8” point of Chapter III.

189

executed. Because the management of chronic diseases introduced additional complications related to

the long-term treatment of patients, we needed to extend CPML to allow a planning oriented modeling.

Our conclusion is that for future problem domains (such as the cancer management we are currently

analyzing) we need to further decompose CPML into reusable sub-languages instead of trying to apply it

as it is, or develop new domain specific modeling languages from scratch. Reusable model libraries built

for these separate aspects will then be used to generate the integrated domain specific models.

Future applications

The next version of CPML is currently under development [243]. It is being developed as part of another

collaborative project with VUMC. The project, called the Vanderbilt Oncology Information System (VOIS)

program, was launched in January 2011, with the goal of creating a robust and integrated clinical

information system to support the cancer care continuum. The program includes informatics methods

to support longitudinal cancer treatment plan management, genome-directed cancer treatment

prioritization, and team-based approaches to cancer diagnosis and treatment response assessment.

Longitudinal cancer treatment plan management is one of the more complex projects within the VOIS

program. The goal is to build a model-driven system to represent, instantiate and manage patient

chemotherapy plans integrated into the existing VUMC clinical information systems. This includes

integration with a broader range of Vanderbilt’s CIS, including the CPOE [207], the PIS, the nursing

documentation system, the EMR system [244], and the outpatient whiteboard. To facilitate the

cooperative work of the multi-disciplinary care team, the system must also represent and adapt to real

time changes in the state of the patient, operational resources, and medical knowledge.

All of these components must be represented as part of the CIGs in CPML at multiple levels of

abstraction. This problem is complicated by the fact that longitudinal patient management plans need to

be continuously adapted to compensate for the changing environment. With this ambitious scope for

modeling, a framework is needed to assist in the iterative development of these complex models to

both verify that the models are computationally satisfiable and clinically valid.

In [243], we propose an architecture and preliminary results regarding the construction a new class of

CDSSs for synthesizing and managing cancer treatment plans. In this work, our goal is to automatically

synthesize – and based on the changing environment – continuously re-plan complex treatment plans.

Our system will combine: (a) state-of-the-art formal modeling to capture treatment abstractions and

190

medical ontologies, (b) state-of-the-art finite model finding and constraint solving to synthesize

treatment plans, and (c) state-of-the-art CISs developed by VUMC.

We anticipate the development and maintenance of over 1000 different chemotherapy protocols of

varying complexity [209]. With such a high volume of CIGs, automated systems are needed to assist in

data driven validation of these models to ensure patient safety. Although in this work, our technical

solution focuses on cancer management, our approach can be applied to the plan management of other

clinical problems as well.

Knowledge representation and management: Protocols

Sepsis CIG development

Effort

The development of the sepsis CIG required a group of domain experts and computer scientists to

coordinate their efforts. Furthermore, to create an actual runnable implementation, the original sepsis

guideline needed to be extended and tailored to the match the requirements (e.g. minimize the number

of required interaction with the clinicians) and available resources (e.g. rely only on locally available data

streams) of the VUMC ICUs. Lastly, as CPML evolved, we needed to make sure that the guideline was

always migrated.

Reusability

The sepsis CIG is designed to manage sepsis, which entails solving multiple concurrent problems. Thus,

reusability is supported, as independent solutions to sub-problems can be reused in other CIG needing

them.

Improvements

Through the CIGs, decision-making is influenced by population-based evidence. If the trial confirms the

clinical suitability of STEEP, the decisions and the actions carried out with STEEP will be documented,

monitored for effectiveness, and used to improve the existing support models.

191

Importing CIG written in other languages

As we demonstrated, there has been a tremendous amount of energy put into the formalization of

medical guidelines by other research groups using various formalisms. Consequently, these efforts

resulted in a significant number of already modeled protocols. We believe that by defining mappings

between each formalism and CPML we could import and facilitate them.

CIG library

Because in the STEEP project there was only one CIG created, our team did not need to concentrate on

solving otherwise critical problems related to the management of CIGs. For handling a large number of

concurrently working guideline authors and a broad range of CIG models, GME’s single-user and “one-

file-for-all-CIGs” approach would have been inadequate. For addressing this potential issue, we have

started to work on a solution involving libraries, which would allow users to import CIGs from a central

repository and submit their changes.

Validation and verification

In STEEP, the behavior of the sepsis treatment manager is the result of the execution engine interpreting

the CPML models. Relying on the execution environment implementation extended with simulation

controls, the correctness of the created sepsis CIG was validated by multiple VUMC ICU physicians as

part of a clinical evaluation completed in 2009. The validation used a case-based test approach, where

various scenarios were run to analyze the behavior of the implemented guidelines.

To be able to formally analyze the modeled treatment models, we created a simulation and analysis

environment. This component of STEEP required the formal definition of the behavioral semantics of the

concepts in CPML, which was done by translating CPML into Matlab’s Stateflow. The resulting Stateflow

models were analyzable with Matlab’s verification tools, in our case, the SLDV package. In addition to

providing coverage metrics for identifying unreachable sections of the state space, these tools allow the

checking of functional requirements (e.g. patient safety) over the behavioral models.

Formal behavioral models driving the execution

A future idea we would like to explore is using our generated Matlab-based behavioral models to serve

as the basis for generating code for the EE. Currently, our EE and simulation environments are

192

developed independently of each other, which, as mentioned earlier in Chapter VIII, would require a

thorough analysis to ensure that their behaviors do not contradict each other.

To solve this problem, the relationship between the SF-based specification of behavioral semantics and

the execution semantics implemented by the STEEP Execution Engine need to be examined. The STEEP

project schedule did not allow the establishment of a formal relationship between the two, because the

STEEP Execution Engine, CPML and the STEEP models were developed in parallel, and the SF-based

behavioral semantics was completed in the last phase of the project. While developing the SF-based

specification of semantics, consistency with the EE was ensured via informal discussion and reviews.

However, we have not completed the modification of the Java thread package-based concurrency model

of the engine to match the “pseudo” concurrency model of SF99. This could have been possible, since the

specification of SF behavioral semantics in Java has been recently completed in a parallel running project

at ISIS, called Polyglot [224]. In future design flows, a more rigorous connection can be built by reusing

and extending the implementations of the execution models from libraries of Polyglot.

Importing standardized dosing constraints as general properties for verification

As part of our future work, we will consider importing dosing constraints defined as part of standardized

knowledge bases (e.g. FDB) to serve as general properties against which all implemented CIGs could be

verified.

System integration

The real power of CDSSs can only be harvested once integrated into a host CIS. However, we found the

integration of the STEEP tools into VUMCs CIS to be a complex challenge, both in terms of (1) user

experience and (2) interoperability. To improve the process, we applied model-based solutions to in the

following ways:

99
 While SF has a notion of parallel states, it does not implement true concurrency, as there is always a deterministic order in

execution. Polyglot uses the same model.

193

1. User experience: STEEP needed to fit into the existing workflow of clinicians. Because the GUI of

STEEP is the only way to interact with an executing CIG, our domain experts needed to make

sure that everything was conveyed in an appropriate manner. This generated two independent

requirements: (a) the UI needed to be incorporated as a part of existing patient management

solutions and (b) it needed to be easily configurable in terms of what and how it was showing.

While (a) was strictly an implementation challenge, CPML addressed (b) by offering basic model-

based constructs for CIG designers to control the elements of the UI. Because the GUI is only

moderately tailored to VUMC and to the management of sepsis (e.g. it integrates information

provided by the VUMC’s sepsis surveillance tool) and otherwise as generic as CPML, one could

argue that its reusability is high. However, a future adopter of the GUI would need to make sure

that the use of the tool fits into the workflow of their users, which includes dealing with our

customizations and the actual technology used to implement the GUI (e.g. GWT).

2. Interoperability: Information exchange between STEEP and the underlying CIS infrastructure

also benefited from formal modeling. CPML offered constructs for describing types of data

inputs (e.g. patient data and user actions) and outputs (e.g. medication orders) as part of the

interface definition of STEEP. However, we struggled with complexity, which arose from the fact

that many of VUMC’s CISs were not designed to allow other tools to drive their execution. For

these systems, new communication methods (including APIs, communication protocols and data

elements) had to be defined. It also meant that we had to build interface models in CPML.

System development and evolution

Engine

The architecture we applied in the STEEP project allows CPML and its semantic implementations (the EE

and the simulation environment) to evolve independently. While this is considered a benefit when

experimenting with various implementations, their coordination is critical. We achieve this with a help

of a set of generators.

Execution semantic variations

In the model-based framework, the EE provides semantics for the protocol models. As part of the

language design process, our interpretation of protocol semantics also shifted considerably from a

194

workflow-style view that defines behavior via observable treatment trajectories to a process view where

treatment trajectories emerge from the interaction of event-driven treatment processes. The conclusion

of our research has been that casting strongly different protocol execution models (e.g. reactive and

plan-based models) into a single execution engine is ineffective and increases complexity. We propose

that, similarly to the decomposition of languages, execution engines also need to be modularized and

composed of reusable components.

Mission critical software development

The reusability level of the engine is dependent on the reusability of language and the quality of the

implementation. Because the software was intended to be used in a clinical setting, robustness,

including reliability and speed, were critical concerns that made the development difficult and the

result, optimistically, highly usable. Once complete, the clinical trial should provide feedback on this

matter.

We have found that while the model-based generation and reconfiguration of clinical applications

provides the ability to rapidly create and modify the software, existing workflows for testing the clinical

correctness and the integration of such applications at HCOs do not share the model-oriented view. This

means that for purely model updates, where the software code is left unchanged, it does not matter

how small the changes are, or how thorough analysis the models went through afterwards, the testing

team will always consider the result as a separate version, and perform a full test of the software.

Though considering how dangerous an overlooked mistake might be, this could be a good thing.

195

APPENDIX A:

LIST OF RELATED PUBLICATIONS

Peer-reviewed journal articles (first author)

1. Mathe, J., Martin, J., Miller, P., Ledeczi, A., Weavind, L., Nadas, A., Miller, A., Maron, D. and

Sztipanovits, J. A Model-Integrated, Guideline-Driven, Clinical Decision-Support System. IEEE

Software, Special issue on Domain-Specific Languages & Modeling. 26, 4 (Aug. 2009), 54-61. [71]

2. Mathe, J., Werner, J., Lee, Y., Malin, B. and Ledeczi, A. Model-Based Design of Clinical

Information Systems. Methods of Information in Medicine. 47, 5 (2008), 399-408. [245]

Peer-reviewed journal articles (not first author)

3. Hooper, M.H., Weavind, L., Wheeler, A.P., Martin, J.B., Gowda S.S., Semler M.W., Hayes R.M.,

Albert D.W., Deane N.B., Nian H., Mathe J.L., Nadas A., Sztipanovits J., Miller A., Bernard G.R.,

Rice T.W. Randomized Trial of Automated, Electronic Monitoring to Facilitate Early Detection of

Sepsis in the Intensive Care Unit. Critical Care Medicine In press, (2011). [240]

Book chapters

4. Mathe J, Werner J and Sztipanovits J. Model-Based Design of Trustworthy Health Information

Systems. Homeland Security Facets: Threats. Countermeasures, and the Privacy Issue. Artech

House; 2011. [241]

Conference papers

5. Mathe, J.L., Sztipanovits, J., Levy, M., Jackson, E.K., and Schulte, W. Cancer Treatment Planning:

Formal Methods to the Rescue. 4rd International Workshop on Software Engineering in Health

Care (SEHC 2012), (2012). [243]

6. Mathe, J.L. Towards an Adaptable Framework for Modeling, Verifying, and Executing Medical

Guidelines. Proceedings of the Doctoral Symposium at MODELS 2009 (Denver, CO, October

2009). [239]

196

7. Mathe, J., Miller, P., Ledeczi, A., Weavind, L., Miller, A., Maron, D., Nadas, A., Sztipanovits, J. and

Martin, J. A Model-Integrated Approach to Implementing Individualized Patient Care Plans

Based on Guideline-Driven Clinical Decision Support and Process Management - A Progress

Report. 2nd International Workshop on Model-Based Design of Trustworthy Health Information

Systems (MOTHIS 2008) (Toulouse, France, October 2008). [238]

8. Duncavage, S., Mathe, J., Werner, J., Malin, B.A., Ledeczi, A. and Sztipanovits, J. A Modeling

Environment for Patient Portals. AMIA Annual Symposium Proceedings (Chicago, IL, November

2007), 201-205. [246]

9. Mathe, J., Duncavage, S., Werner, J., Malin, B., Ledeczi, A. and Sztipanovits, J. Implementing a

Model-Based Design Environment for Clinical Information Systems. First International Workshop

on Model-Based Design of Trustworthy Health Information Systems (MOTHIS 2007) (Nashville,

TN, September 2007). [247]

10. Werner, J., Mathe, J.L., Duncavage, S., Malin, B., Ledeczi, A., Jirjis, J.N. and Sztipanovits, J.

Platform-Based Design for Clinical Information Systems. Industrial Informatics, 2007 5th IEEE

International Conference on (INDIN 2007) (Vienna, Austria, July 2007), 749-754. [248]

11. Mathe, J.L., Duncavage, S., Werner, J., Malin, B.A., Ledeczi, A. and Sztipanovits, J. Towards the

Security and Privacy Analysis of Patient Portals. Special Interest Group on Embedded Systems

Review (SIGBED Rev.). 4, 2 (2007), 5-9. [249]

12. Emerson, M., Mathe, J. and Duncavage, S. WiNeSim: A Wireless Network Simulation Tool.

Proceedings of the Sixth ACM International Conference on Embedded Software (EMSOFT’06

Workshop) (Seoul, South Korea, October 2006). [250]

13. Werner, J., Eby, M., Mathe, J., Karsai, G., Xue, Y. and Sztipanovits, J. Integrating Security

Modeling into Embedded System Design. 12th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2006) (April 2006). [251]

197

APPENDIX B:

CURRENT STATUS OF THE INTEGRATED STEEP ARCHITECTURE AT VUMC

Our team developed a STEEP prototype (see). Parallel development of the CPML language, the TMS-C

and the associated EE allowed clinicians to see how changing the models (or the language) affected the

system’s behavior and allowed them to provide the development team with continuous feedback. Once

complete, the STEEP prototype served for system validation, during which domain experts manually

validated the system in terms of clinical correctness and applicability. Following the system validation,

the team successfully integrated the prototype into VUMC’s existing suite of CISs and performed

integration testing and a complete clinical evaluation in a live environment. At the time of writing, the

clinical trial of the STEEP system is in progress [240].

Figure 55 - STEEP project timeline

198

APPENDIX C:

ALGORITHM FOR TEMPLATE-BASED MODEL TRANSFORMATION

Algorithm 2 shows the detailed steps for transforming the GME-based CPML models (captured as MGA

files) into executable Matlab models (MDL files) using the model transformation tool chain developed as

part of STEEP:

Algorithm 2 - Detailed template-based model transformation process

ID Step Description

1. Run the MGA2XML100 transformation

Convert the CPML models captured by a GME model file (.MGA) to
the input of the behavioral generator (which is the same
configuration file (.XML) the EE uses to configure its behavior)

1.1. Open MGA file

1.2. Traverse models and build a data
structure from CPML’s concepts

 Medical Library

 Orderables

 Protocols

1.3. Generate XML

2. Generate the SF behavioral model
This will be a Matlab file (.MDL) based on the the input file created
in the previous step

2.1. Run the XML2M&DOT transformation

Generate documentation files and the Matlab script (.M), built from
Matlab’s API commands, that will create the SF-based behavioral
model

2.1.1. Get all inputs

 Link to the XML version of the GME models

 Link to the SL Matlab template file (.MDL) that contains

definitions for Protocols, Processes and Activities, as well as

other execution-specific components

 Link to the Main M-script generator string template file (.ST)

 Link to the Graphviz executable to generate a graphical

representation (.PNG) from a generated document file (.DOT)

2.1.2. Traverse models

2.1.2.1. Convert XML
Parse source CPML model file using a generated schema
definition101 file in order to be able to travers models in memory

100
 This transformation was built by Andras Nadas from the STEEP project.

101
 Run the Microsoft XML Schema Definition tool (Xsd.exe) [252] to generate common language runtime classes that
correspond to and are generated from the schema definition (.XSD) of the EE configuration files

199

2.1.2.2. Generate output for each Protocol

2.1.2.2.1. Create new
GraphvizContainmentHierarchy

Placeholder for DOT-style graph description

2.1.2.2.2. Create new InstanceOfStringTemplate
Placeholder for string template and attributes that will create the M-
script

2.1.2.2.3. Record model-independent attributes
of main template

String template parameters such as paths, creation time, etc.

2.1.2.2.4. Record model-specific attributes

2.1.2.2.4.1. Traverse MedicalLibrary Creation of data inputs for the protocol, specifically Labs and Vitals

2.1.2.2.4.2. Traverse Protocol

2.1.2.2.4.2.1. Record child-independent parameters
of Protocol

E.g. Protocol name

2.1.2.2.4.2.2. Traverse Processes

2.1.2.2.4.2.2.1. Record child-independent parameters
of Process

Including name, id, type, parent id, number of children, list of
condition expressions (initially active, optional, repeatable, entry,
reentry, skip, goal, fail, cancel, terminate)

2.1.2.2.4.2.2.2. Traverse children of the selected
(child) Process

2.1.2.2.4.2.2.2.1. Evaluate contents of Process
Make sure that this Process is either a (1) Process or an (2)
Activity container (not both)

2.1.2.2.4.2.2.2.2. IF (1) THEN Traverse child Processes
of the selected Process

2.1.2.2.4.2.2.2.3. IF (2) THEN Traverse child Activities
of the selected Process

2.1.2.2.4.3. Record child-dependent parameters of
Protocol

I.e. number of children

2.1.2.2.5. Write to destination files

2.1.2.2.5.1. Generate M-script by printing the
InstanceOfStringTemplate into a file

The included StringTemlate [253] library will use the recorded
attributes of the InstanceOfStringTemplate to recursively replace
special placeholders in the template files

2.1.2.2.5.1.1. Invoke template for a Protocol

Create file based on m_template.st using attributes for configuring
the generation (e.g. verbose mode, overwrite existing, source file
locations, real-time simulation, SF layout type) and attributes of
Protocol (e.g. name)

2.1.2.2.5.1.1.1. Invoke template for Vitals
Append to previous script file based on
m_template_medGroup_vital.st using attributes of Vitals

2.1.2.2.5.1.1.2. Invoke template for Labs
Append to previous script file based on
m_template_medGroup_lab.st using attributes of Labs

2.1.2.2.5.1.1.3. Invoke template for Processes
Append to previous script file based on m_template_process.st
using attributes of Processes

200

2.1.2.2.5.1.1.4. Invoke template for Activities
Append to previous script file based on m_template_activity.st
using attributes of Activities

2.1.2.2.5.2. Generate an alternative visualization
using Graphviz

 Generate DOT file based on GraphvizContainmentHierarchy

 Generate PNG file using the DOT file and Graphviz

2.2. Perform the M2MDL transformation Generate MDL by running M-script in Matlab

2.2.1. Set script parameters

 Generation configuration parameters (e.g. verbose mode, real-

time simulation)

 Execution-specific parameters that are not model-based (e.g.

default shelf-life for medications)

 Layout algorithm patterns (e.g. spacing, sizing of states in SF)

2.2.2. Get all inputs

Load custom library elements:

 Semantics template library (e.g. Protocol, Process, Activity, etc.)

 Simulation controller library (Real-time pacer)

2.2.3. Create basic components

 Simulink system (for simulation of the environment)

 SF chart (for capturing the logic of the Protocol)

 SF state (instance of the Protocol template)

2.2.4.
Create data input channels for
Protocol SF

 Create data input channels for the list of vitals

 Create data input channels for the list of lab values

 Bundle created inputs with a multiplexer

 Resize, arrange elements

2.2.5.
Create data and event inputs in
Simulink

2.2.5.1.
IF real-time (simulation time-based)
execution model THEN

 Create a protocol controller for user (from library)

 Add real-time pacer (from library)

2.2.5.2.
IF predefined (scenario-based)
execution THEN

Read scenario input from an Excel file

2.2.6.
Calculate estimated model creation
time

Because the mode generation time is dependent on the size of the
model (polynomial increase)

2.2.7. Create Processes Do this for all Processes

2.2.7.1.
Create a copy of the Process SF
template

 Establish ID

 Rename template

 Copy to main SF

 Reposition (using the layout algorithm)

201

2.2.7.2.
Create and modify events and
variables

 Replace string templates (e.g. all condition expressions
102

)

 Add value to constants (e.g. number of children, optionality)

 Rename protocol template variables (e.g. replace all

occurrences of “EnId” to the unique id of the Process, and “PaId”

to the unique id of the Process’s parent in the containment

hierarchy)

 Move events intended to be global but defined and contained

locally by the template-based Process to the level of the

container SF chart

2.2.7.3. IF verbose mode THEN append log

2.2.8. Create Activities Do this for all Activities

2.2.8.1.
Create a copy of the Activity SF
template

 Establish ID

 Rename template

 Copy to main SF

 Reposition (using the layout algorithm)

2.2.8.2.
Create and modify events and
variables

 Replace string templates (e.g. starting point)

 Add value to constants (e.g. ability to repeat the action)

 Rename protocol template variables (e.g. replace all

occurrences of “EnId” to the unique id of the Process, and “PaId”

to the unique id of the Process’s parent in the containment

hierarchy)

 Move events intended to be global but defined and contained

locally by the template-based Activity to the level of the container

SF chart

2.2.8.3. IF verbose mode THEN append log

2.2.8.4.
IF real-time (simulation time-based)
execution model THEN

Create inputs for Activities (from library)
Position them using the layout algorithm
Connect them to the event input of the SF chart

2.2.9. Set simulation parameters E.g. stop time, solver type, etc.

102
 While these conditions are manually translated from our expression language to Matlab’s expression language, an
automated translation would be possible.

202

BIBLIOGRAPHY

1. Institute of Medicine (U.S.) Committee on Quality of Health Care in America. Crossing the quality
chasm: a new health system for the 21st century. National Academies Press; 2001.

2. Kaushal R, Jha AK, Franz C, Glaser J, Shetty KD, Jaggi T, et al. Return on investment for a
computerized physician order entry system. J Am Med Inform Assoc. 2006 Jun;13(3):261–266.

3. Shabo A. A global socio-economic-medico-legal model for the sustainability of longitudinal
electronic health records. Part 1. Methods Inf Med. 2006;45(3):240–245.

4. Simon SJ, Simon SJ. An examination of the financial feasibility of Electronic Medical Records
(EMRs): a case study of tangible and intangible benefits. International Journal of Electronic
Healthcare. 2006;2(2):185 – 200.

5. Menachemi N, Brooks R. Reviewing the Benefits and Costs of Electronic Health Records and
Associated Patient Safety Technologies. Journal of Medical Systems. 2006 Jun 1;30(3):159–168.

6. Lo HG, Newmark LP, Yoon C, Volk LA, Carlson VL, Kittler AF, et al. Electronic health records in
specialty care: a time-motion study. J Am Med Inform Assoc. 2007 Oct;14(5):609–615.

7. Pizziferri L, Kittler AF, Volk LA, Honour MM, Gupta S, Wang S, et al. Primary care physician time
utilization before and after implementation of an electronic health record: a time-motion study. J
Biomed Inform. 2005 Jun;38(3):176–188.

8. Hunt DL, Haynes RB, Hanna SE, Smith K. Effects of computer-based clinical decision support
systems on physician performance and patient outcomes: a systematic review. JAMA. 1998 Oct
21;280(15):1339–1346.

9. Silver MR, Lusk R. Patient safety: a tale of two systems. Qual Manag Health Care. 2002;10(2):12–
22.

10. Frank L, Galanos H, Penn S, Wetz HF. Using BPI and emerging technology to improve patient
safety. J Healthc Inf Manag. 2004;18(1):65–71.

11. Committee on Engaging the Computer Science Research Community in Health Care Informatics,
National Research Council, Lin H, Stead WW. Computational Technology for Effective Health
Care: Immediate Steps and Strategic Directions. National Academies Press; 2009.

12. The Free Dictionary. Cognitive function definition in the Medical dictionary [Internet]. 2010 [cited
2010 Dec 14];Available from: http://medical-dictionary.thefreedictionary.com/cognitive+function

13. Arshad Ahmed. The Healthcare Battle for a Clinical Decision Support System (CDSS) Control Point
Begins [Internet]. Scientia Advisors. 2010 Dec 16 [cited 2012 Apr 10];Available from:
http://www.scientiaadv.com/blog/2010/12/16/the-healthcare-battle-for-a-clinical-decision-
support-system-cdss-control-point-begins/

203

14. Hayward R. Clinical decision support tools: Do they support clinicians? Canadian Medical
Association Journal. 2004;170(10):66–85.

15. Best Price Computers. DSS - Decision Support Systems Explained and Defined [Internet]. 2010
[cited 2010 May 10];Available from: http://www.bestpricecomputers.co.uk/glossary/decision-
support-systems.htm

16. OpenClinical.org. CDSS (Clinical Decision Support System) [Internet]. 2010 [cited 2010 Mar
18];Available from: http://www.openclinical.org/dss

17. Field MJ, Lohr KN, Institute of Medicine (U.S.) Committee on Clinical Practice Guidelines.
Guidelines for clinical practice: from development to use. National Academies Press; 1992.

18. Committee on Clinical Practice Guidelines, Institute of Medicine. Guidelines for Clinical
Practice:From Development to Use. Washington, D.C.: The National Academies Press; 1992.

19. Kelly DC, Manguno-Mire G. Commentary: Helling V. Carey, Caveat Medicus. J Am Acad Psychiatry
Law. 2008 Sep 1;36(3):306–309.

20. OpenClinical.org. CPG (Clinical Practice Guidelines) [Internet]. 2009 [cited 2009 Dec 3];Available
from: http://www.openclinical.org/guidelines.html

21. Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine:
what it is and what it isn’t. BMJ. 1996 Jan 13;312(7023):71–72.

22. Shapiro NI, Howell M, Talmor D. A blueprint for a sepsis protocol. Acad Emerg Med. 2005
Apr;12(4):352–359.

23. Berner MM, Rüther A, Stieglitz RD, Berger M. The concept of “evidence-based medicine” in
psychiatry. A path to a more rational psychiatry? Nervenarzt. 2000 Mar;71(3):173–180.

24. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 Focused
Update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: A
Report of the American College of Cardiology Foundation/American Heart Association Task Force
on Practice Guidelines Developed in Collaboration With the International Society for Heart and
Lung Transplantation. J Am Coll Cardiol. 2009 Apr 14;53(15):1343–1382.

25. Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J, et al. Implementation and outcomes of
the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit. Care Med. 2006 Apr;34(4):1025–
1032.

26. Isern D, Moreno A. Computer-based execution of clinical guidelines: A review. Int J Med Inform.
2008 Dec;77(12):787–808.

27. National Guideline Clearinghouse (NGC) of U.S. Guideline submission [Internet]. 2009 Dec 2 [cited
2009 Dec 3];Available from: http://www.guideline.gov/

204

28. National Guideline Clearinghouse (NGC) of U.S. How to Submit Guidelines - Template of Guideline
Attributes [Internet]. 2009 Dec 2 [cited 2009 Dec 3];Available from:
http://www.guideline.gov/submit/submit.aspx#kit

29. Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, Deshpande AM. Standardized
Reporting of Clinical Practice Guidelines: A Proposal from the Conference on Guideline
Standardization. Annals of Internal Medicine. 2003;139(6):493 –498.

30. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PA, et al. Why don’t physicians
follow clinical practice guidelines? A framework for improvement. JAMA. 1999 Oct
20;282(15):1458–1465.

31. Asgaard Project. Asgaard/Asbru Project [Internet]. 2011 [cited 2011 Jan 25];Available from:
http://www.asgaard.tuwien.ac.at/about/project.html

32. Dube K, Wu B. A generic approach to computer-based Clinical Practice Guideline management
using the ECA Rule paradigm and active databases. International Journal of Technology
Management. 2009;47(1/2/3):75 – 95.

33. Shahar Y, Miksch S, Johnson P. The ASGAARD Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines [Internet]. In: Artificial Intelligence
in Medicine. 1998. p. 29–51.Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.916

34. Hammond WE. Clinical Decision Support [Internet]. 2010 [cited 2010 Dec 11];Available from:
http://www.google.com/url?sa=t&source=web&cd=2&ved=0CBoQFjAB&url=http%3A%2F%2Fww
w.hl7.org%2Fdocumentcenter%2Fpublic%2Fcalendarofevents%2Fhimss%2F2010%2Fpresentatio
ns%2FHIMSS%2520CDSS%2520Hammond.pdf&rct=j&q=arden%20syntax%202.7%20pdf&ei=PfYC
TbHMHMH_lgfOy4CDCA&usg=AFQjCNFG5Sm99TBshrLI_KrJ2ZKEKRCKmw&sig2=symZtqs3WPKC0
4W472wB8A

35. MedlinePlus Medical Encyclopedia. Contraindications [Internet]. 2012 [cited 2012 Aug
7];Available from: http://www.nlm.nih.gov/medlineplus/ency/article/002314.htm

36. Sutton DR, Taylor P, Earle K. Evaluation of PROforma as a language for implementing medical
guidelines in a practical context. BMC Med Inform Decis Mak. 2006;6:20.

37. Rozenberg G, Salomaa A, editors. Handbook of Formal Languages: Vols. 1 - 3. 1st ed. Springer;
2004.

38. Chomsky N. Three models for the description of language. Information Theory, IRE Transactions
on. 1956 Sep 6;2(3):113–124.

39. Object Management Group (OMG). UML (Unified Modeling Language) [Internet]. 2010 [cited
2010 Nov 19];Available from: http://www.uml.org/

40. OASIS. WSBPEL (Web Services Business Process Execution Language) [Internet]. 2010 [cited 2010
Nov 19];Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

205

41. Kelly S, Tolvanen J-P. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
Interscience; 2008.

42. Sutton DR, Fox J. The syntax and semantics of the PROforma guideline modeling language. J Am
Med Inform Assoc. 2003 Oct;10(5):433–443.

43. Miller RA. Medical Diagnostic Decision Support Systems—Past, Present, And Future. J Am Med
Inform Assoc. 1994 Jan;1(1):8–27.

44. Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD
Comput. 1988 Oct;5(5):48–62.

45. Perry CA. Knowledge bases in medicine: a review. Bull Med Libr Assoc. 1990 Jul;78(3):271–282.

46. Weiss S, Kulikowski CA, Safir A. Glaucoma consultation by computer. Computers in Biology and
Medicine. 1978 Jan;8(1):25–40.

47. Pauker SG, Gorry GA, Kassirer JP, Schwartz WB. Towards the simulation of clinical cognition:
Taking a present illness by computer. The American Journal of Medicine. 1976 Jun;60(7):981–
996.

48. Yorkshire Centre for Health Informatics, University of Leeds. Welcome to AAPHelp - Decision
Support in Acute Abdominal Pain [Internet]. 2010 [cited 2010 Nov 24];Available from:
http://www.aaphelp.leeds.ac.uk/aaphelp/

49. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided Diagnosis of
Acute Abdominal Pain. BMJ. 1972 Apr 1;2(5804):9 –13.

50. Miller RA. CV for Randolph A. Miller [Internet]. 2010 [cited 2010 Nov 24];Available from:
http://www.mc.vanderbilt.edu/dbmi/miller/

51. Masarie Jr. FE, Miller RA, Myers JD. INTERNIST-I properties: Representing common sense and
good medical practice in a computerized medical knowledge base. Comput. Biomed. Res. 1985
Oct;18(5):458–479.

52. Miller RA, Masarie FE. Use of the Quick Medical Reference (QMR) program as a tool for medical
education. Methods Inf Med. 1989 Nov;28(4):340–345.

53. Davis R, King J. An Overview of Production Systems. Stanford AI Lab; 1975.

54. Papamarkos G, Poulovassilis A, Poulovassilis R, Wood PT. Event-Condition-Action Rule Languages
for the Semantic Web. In: Workshop on Semantic Web and Databases. 2003. p. 309–327.

55. Fisher JR. MYCIN - Medical Infromatics Class [Internet]. 2006 [cited 2010 Nov 29];Available from:
http://neamh.cns.uni.edu/MedInfo/mycin.html

56. Lazarevic Z. Mycin Expert System - A Ruby Implementation with Examples [Internet]. 2010 [cited
2010 Nov 29];Available from: http://lazax.com/software/Mycin/mycin.html

206

57. Buchanan BG. Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic
Programming Project. Addison-Wesley; 1984.

58. Van Melle WJ. A domain-independent system that aids in constructing knowledge-based
consultation programs. 1980;

59. Novak GSJ. TMYCIN Expert System Tool. 1988.

60. Novak GSJ. TMYCIN Expert System Tool [Internet]. 2010 [cited 2010 Nov 29];Available from:
http://www.cs.utexas.edu/users/novak/tmycin.html

61. Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. PUFF: An expert system for interpretation of pulmonary
function data. Comput. Biomed. Res. 1983 Jun;16(3):199–208.

62. Patil RS, Szolovits P, Schwartz WB. Causal understanding of patient illness in medical diagnosis. In:
Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2.
Vancouver, BC, Canada: Morgan Kaufmann Publishers Inc.; 1981. p. 893–899.

63. Patil RS, Szolovits P, Schwartz WB. Modeling Knowledge of the Patient in Acid-Base and
Electrolyte Disorders. In: Artificial Intelligence in Medicine. Westview Press, Boulder, Colorado:
1982.

64. Shortliffe EH, Scott AC, Bischoff MB, Campbell AB, Van Melle W, Jacobs CD. ONCOCIN: An expert
system for oncology protocol management [Internet]. In: Rule Based Expert Systems: The Mycin
Experiments of the Stanford Heuristic Programming Project. 1984 [cited 2010 Nov 30]. Available
from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.5446

65. Kahn MG, Ferguson JC, Shortliffe EH, Fagan LM. Representation and Use of Temporal Information
in ONCOCIN. Proc Annu Symp Comput Appl Med Care. 1985 Nov 13;:172–176.

66. Fagan LM. Medical Informatics: Computer Applications in Health Care and Biomedicine. 2nd ed.
Springer; 2003.

67. MGH Laboratory of Computer Science, Barnett O. DXplain Project Website [Internet]. 2010 [cited
2010 Nov 30];Available from: http://lcs.mgh.harvard.edu/projects/dxplain.html

68. Miller R, Masarie FE, Myers JD. Quick medical reference (QMR) for diagnostic assistance. MD
Comput. 1986 Oct;3(5):34–48.

69. Linton AM. QMR (Quick Medical Reference). Bull Med Libr Assoc. 1993 Jul;81(3):347–349.

70. Greenes RA, Peleg M, Boxwala A, Tu S, Patel V, Shortliffe EH. Sharable computer-based clinical
practice guidelines: rationale, obstacles, approaches, and prospects. Stud Health Technol Inform.
2001;84(Pt 1):201–205.

71. Mathe J, Martin J, Miller P, Ledeczi A, Weavind L, Nadas A, et al. A Model-Integrated, Guideline-
Driven, Clinical Decision-Support System. IEEE Softw. 2009 Aug;26(4):54–61.

207

72. Gregory V. G. O’Dowd. Building a Medical Vocabulary: A Guide for Medical Students [Internet].
2008. Available from: http://hikumano.hama-
med.ac.jp/dspace/bitstream/10271/48/1/kiyo22_2.pdf

73. United States Department of Defense. Technology Readiness Assessment (TRA) Guidance. 2011.

74. Jackson E, Thibodeaux R, Porter J, Sztipanovits J. Semantics of Domain Specific Modeling
Languages. In: Model-Based Design of Heterogeneous Embedded Systems. CRC Press; 2009. p.
437–486.

75. Balasubramanian D. Behavioral Semantics of Modeling Languages: A Pragmatic Approach
[Internet]. 2011;Available from: http://etd.library.vanderbilt.edu/available/etd-04082011-
145057/unrestricted/DanielDissertation.pdf

76. Savage JE. Models of Computation: Exploring the Power of Computing. 2008.

77. Bondi AB. Characteristics of scalability and their impact on performance [Internet]. In:
Proceedings of the 2nd international workshop on Software and performance. New York, NY,
USA: ACM; 2000. p. 195–203.Available from: http://doi.acm.org/10.1145/350391.350432

78. Leong TY, Kaiser K, Miksch S. Free and open source enabling technologies for patient-centric,
guideline-based clinical decision support: a survey. Yearb Med Inform. 2007;:74–86.

79. Pryor TA, Hripcsak G. The arden syntax for medical logic modules. J Clin Monit Comput. 1993
Nov;10(4):215–224.

80. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden Syntax.
Comput. Biomed. Res. 1994 Aug;27(4):291–324.

81. HL7. Arden Syntax [Internet]. 2010 [cited 2010 Dec 21];Available from:
http://www.hl7.org/implement/standards/ardensyntax.cfm

82. Mulyar N, van der Aalst WMP, Peleg M. A pattern-based analysis of clinical computer-
interpretable guideline modeling languages. J Am Med Inform Assoc. 2007 Dec;14(6):781–787.

83. ASTM.org. American Society for Testing and Materials (ASTM) [Internet]. 2010 [cited 2010 Dec
11];Available from: http://www.astm.org/

84. Health Level Seven International. About Health Level Seven International [Internet]. 2012 [cited
2012 Apr 10];Available from: http://www.hl7.org/about/index.cfm

85. ANSI.org. American National Standards Institute (ANSI) [Internet]. 2010 [cited 2010 Dec
11];Available from: http://www.ansi.org/

86. OpenClinical.org. Arden Syntax [Internet]. 2005 Mar 30 [cited 2010 Dec 11];Available from:
http://www.openclinical.org/gmm_ardensyntax.html

87. HL7. ANSI Approved Standards [Internet]. 2012 [cited 2012 Apr 12];Available from:
http://www.hl7.org/implement/standards/ansiapproved.cfm

208

88. Scherpbier HJ. CORBAmed RFI 3 Response - Clinical Decision Support. 1997.

89. Kyprianides P. Arden Syntax [Internet]. Medical Informatics class by Kevin C. O’Kane. 2006 [cited
2010 Dec 12];Available from: http://neamh.cns.uni.edu/MedInfo/arden_syntax.html

90. Sailors RM. ArdenML: The Arden Syntax Markup Language (or Arden Syntax: It’s Not Just Text Any
More!). AMIA Annu Symp Proc. 2001;:1016–1016.

91. Sukil Kim, Peter J. Haug, Roberto A. Rocha, Inyoung Choi. Modeling the Arden Syntax for medical
decisions in XML. Int J Med Inform. 2008 Oct 1;77(10):650–656.

92. Saltz J, Niland J, Payne P, Shah H, Stahl D. Rules Engine Technologies Across caBIG Workspaces
[Internet]. Strategic Planning Workspace; 2007 [cited 2012 Apr 12]. Available from:
https://cabig.nci.nih.gov/community/archive/caBIG_StrategicPlanning/caBIG_Rules_Engine_WP_
v4.doc

93. Kuhn RA, Reider RS. A C++ framework for developing medical logic modules and an Arden Syntax
compiler. Computers in Biology and Medicine. 1994 Sep;24(5):365–370.

94. Gietzelt M, Goltz U, Grunwald D, Lochau M, Marschollek M, Song B, et al. Arden2ByteCode: A
one-pass Arden Syntax compiler for service-oriented decision support systems based on the OSGi
platform. Computer Methods and Programs in Biomedicine. 2012 May;106(2):114–125.

95. Sailors RM. MLM Builder: An Integrated Suite for Development and Maintenance of Arden Syntax
Medical Logic Modules. AMIA Annu Fall Symp Proc. 1997;:996–996.

96. Wikipedia.org. Medical Logic Module (MLM) [Internet]. 2010 [cited 2010 Dec 11];Available from:
http://en.wikipedia.org/wiki/Medical_logic_module

97. OpenClinical.org. Syntax and Semantics of PROforma [Internet]. 2010 [cited 2010 May
26];Available from: http://www.openclinical.org/gmm_proforma.html

98. Cossac.org. PROforma project website [Internet]. 2009 [cited 2009 Nov 10];Available from:
http://www.cossac.org/technologies/proforma

99. Sutton D, Fox J. Syntax and Semantics of PROforma. 2003.

100. Fox J, Thomson R. Decision support and disease management: a logic engineering approach. IEEE
Trans Inf Technol Biomed. 1998 Dec;2(4):217–228.

101. Fox J, Das S. Safe and Sound: Artificial Intelligence in Hazardous Applications [Internet]. AAAI
Press; 2000 [cited 2011 Jan 14]. Available from:
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0262062119

102. Steele R, Fox J. PROforma tutorial: Introduction to the PROforma language and application
development using Tallis. 2002.

103. InferMed. Arezzo - Clinical Decision Support [Internet]. 2010 [cited 2010 May 26];Available from:
http://www.infermed.com/index.php/arezzo/arezzo_technology

209

104. Cossac.org. Tallis | COSSAC project website [Internet]. 2009 [cited 2009 Nov 10];Available from:
http://www.cossac.org/tallis

105. Hederman L, Smutek D, Wade V, Knape T. Representing Clinical Guidelines in UML: A
Comparative Study. Health Data in the Information Society: Proceedings of Mie2002 [Internet].
2002 [cited 2009 Sep 14];Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.3683

106. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE, et al. The GuideLine
Interchange Format: A Model for Representing Guidelines. J Am Med Inform Assoc. 1998 Jul
1;5(4):357–372.

107. OpenClinical.org. GLIF [Internet]. 2010 [cited 2010 Apr 13];Available from:
http://www.openclinical.org/gmm_glif.html

108. Peleg M, Boxwala AA, Ogunyemi O, Zeng Q, Tu S, Lacson R, et al. GLIF3: the evolution of a
guideline representation format. AMIA Annu Symp Proc. 2000;:645–649.

109. Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, et al. GLIF3: a representation format
for sharable computer-interpretable clinical practice guidelines. J Biomed Inform. 2004
Jun;37(3):147–161.

110. Wang D, Shortliffe EH. GLEE - A model-driven execution system for computer-based
implementation of clinical practice guidelines. AMIA Annu Symp Proc. 2002;:855–859.

111. Choi J, Currie LM, Wang D, Bakken S. Encoding a clinical practice guideline using guideline
interchange format: a case study of a depression screening and management guideline. Int J Med
Inform. 2007 Oct;76 Suppl 2:S302–307.

112. OpenClinical.org. GELLO [Internet]. 2011 [cited 2011 Jan 24];Available from:
http://www.openclinical.org/gmm_gello.html

113. InterMed Collaboratory. GLIF.ORG [Internet]. 2009 [cited 2009 Nov 10];Available from:
http://www.glif.org/glif_main.html

114. Stanford Center for Biomedical Informatics Research. Protégé website [Internet]. The Protégé
Ontology Editor and Knowledge Acquisition System. 2011 [cited 2011 Jan 28];Available from:
http://protege.stanford.edu/

115. Noy NF, Fergerson RW, Musen MA. The knowledge model of Protege-2000: combining
interoperability and flexibility. Proceedings EKAW ’00 Proceedings of the 12th European
Workshop on Knowledge Acquisition, Modeling and Management. 2001;:17–32.

116. Wang D, Peleg M, Tu SW, Boxwala AA, Ogunyemi O, Zeng Q, et al. Design and implementation of
the GLIF3 guideline execution engine. J Biomed Inform. 2004 Oct;37(5):305–318.

117. Sordo M, Ogunyemi O, Boxwala AA, Greenes RA. GELLO: an object-oriented query and expression
language for clinical decision support. AMIA Annu Symp Proc. 2003;:1012.

210

118. HL7. V3 Rules/GELLO [Internet]. 2011 [cited 2011 Jan 28];Available from:
http://www.hl7.org/implement/standards/v3gello.cfm

119. Jenders RA. What I Did on my (Summer) Holiday: International Clinical Decision Support
Standards [Internet]. 2004 Feb 16;Available from: www.hl7.org.au/docs/Arden-Syntax-
Workshop_MEL.pdf

120. Object Management Group (OMG). OCL (Object Constraint Language) [Internet]. 2011 [cited
2011 Jan 28];Available from:
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

121. OpenClinical.org. Asbru [Internet]. 2011 [cited 2011 Feb 4];Available from:
http://www.openclinical.org/gmm_asbru.html

122. Fuchsberger C, Hunter J, McCue P. Testing Asbru Guidelines and Protocols for Neonatal Intensive
Care [Internet]. In: Artificial Intelligence in Medicine. 2005 [cited 2009 Aug 13]. p. 101–
110.Available from: http://dx.doi.org/10.1007/11527770_14

123. Asgaard Project. Example protocols written in Asbru [Internet]. 2011 [cited 2011 Feb 5];Available
from: http://www.asgaard.tuwien.ac.at/plan_representation/protocols.html

124. Seyfang A, Kosara R, Miksch S. Asbru Reference Manual [Internet]. 2002 Jan;Available from:
http://www.asgaard.tuwien.ac.at/asbru_7_3/asbru_7.3_reference.pdf

125. Balser M, Duelli C, Reif W, Schmitt J, Balser M, Duelli C, et al. Formal Semantics of Asbru
[Internet]. 2006 Jun [cited 2011 Feb 14];Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1845

126. Asgaard Project. AsbruView [Internet]. 2011 [cited 2011 Jan 25];Available from:
http://www.asgaard.tuwien.ac.at/asbruview/

127. Kosara R, Miksch S, Shahar Y, Johnson P. AsbruView: Capturing Complex, Time-oriented Plans -
Beyond Flow-Charts [Internet]. In: 2nd Workshop on Thinking with Diagrams 1998 (TwD-98).
University of Wales; 1998 [cited 2011 Feb 15]. p. 119–126.Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3770

128. OpenClinical.org. AsbruView: Integrated Visualization of Computerized Protocols and Temporal
Patient Data [Internet]. 2011 [cited 2011 Jan 25];Available from:
http://www.openclinical.org/dld_asbruview.html

129. Votruba P. DELT/A (Document Exploration and Linking Tool (with Addons)) [Internet]. 2011 [cited
2011 Feb 15];Available from: http://www.asgaard.tuwien.ac.at/~peter/DELTA/index.html

130. Votruba P, Miksch S, Seyfang A, Kosara R. Tracing the formalization steps of textual guidelines.
Stud Health Technol Inform. 2004;101:172–176.

131. Aigner W, Miksch S. CareVis: Integrated visualization of computerized protocols and temporal
patient data. Artif Intell Med. 2006 Jul;37(3):203–218.

211

132. OpenClinical.org. CareVis [Internet]. 2011 [cited 2011 Feb 15];Available from:
http://www.openclinical.org/dld_carevis.html

133. OpenClinical.org. DeGeL [Internet]. 2011 [cited 2011 Feb 15];Available from:
http://www.openclinical.org/gmm_degel.html

134. Shahar Y, Shalom E, Mayaffit A, Young O, Galperin M, Martins S, et al. A distributed, collaborative,
structuring model for a clinical-guideline digital-library. AMIA Annu Symp Proc. 2003;:589–593.

135. Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R, et al. A framework for a
distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support
tools. J Biomed Inform. 2004 Oct;37(5):325–344.

136. Aigner W, Miksch S. Communicating the logic of a treatment plan formulated in Asbru to domain
experts. Stud Health Technol Inform. 2004;101:1–15.

137. Oracle. Oracle BPEL Process Manager [Internet]. 2011 [cited 2011 Feb 17];Available from:
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

138. Asgaard Project. Asbru Plan Execution [Internet]. 2011 [cited 2011 Feb 15];Available from:
http://www.asgaard.tuwien.ac.at/exec_unit/index.html

139. Fuchsberger C, Miksch S. Asbru’s Execution Engine: Utilizing Guidelines for Artificial Ventilation of
Newborn Infants’, Workshop on Intelligent Data Analysis. Vienna University of Technology,
Institute of Software Technology and Interactive Systems [Internet]. 2002 [cited 2011 Feb
9];Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.4961

140. OpenClinical.org. Asbru Interpreter [Internet]. 2011 [cited 2011 Feb 4];Available from:
http://www.openclinical.org/dld_asbruInterpreter.html

141. Seyfang A, Miksch S. Advanced Temporal Data Abstraction for Guideline Execution. Proceedings
of the Symposium on Computer-based Support for Clinical Guidelines and Protocols. 2004;:88–
102.

142. Young O, Shahar Y. The Spock System: Developing a Runtime Application Engine for Hybrid-Asbru
Guidelines [Internet]. In: Artificial Intelligence in Medicine. Springer Berlin / Heidelberg; 2005. p.
166–170.Available from: http://dx.doi.org/10.1007/11527770_25

143. Young O, Shahar Y, Liel Y, Lunenfeld E, Bar G, Shalom E, et al. Runtime application of Hybrid-
Asbru clinical guidelines. J Biomed Inform. 2007 Oct;40(5):507–526.

144. Bosse T. An interpreter for clinical guidelines in Asbru [Internet]. 2001 Aug;Available from:
www.cs.vu.nl/~protoc/old/Projects/TiborThesis.pdf

145. Eichelberg M, Aden T, Riesmeier J, Dogac A, Laleci GB. A survey and analysis of Electronic
Healthcare Record standards. ACM Comput. Surv. 2005;37(4):277–315.

146. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, et al. Comparing Computer-interpretable
Guideline Models: A Case-study Approach. J Am Med Inform Assoc. 2003 Jan 1;10(1):52–68.

212

147. Boone K. vMR Proposal [Internet]. 2010 Jul 29;Available from:
http://wiki.hl7.org/images/7/71/HL7vMR_Keith_Boone_Proposal_v2010-07-29.doc

148. Hl7book. HL7 version 3 [Internet]. 2012 [cited 2012 May 23];Available from:
http://hl7book.net/index.php?title=HL7_version_3

149. American Medical Association (AMA). CPT (Current Procedural Terminology) [Internet]. 2012
[cited 2012 May 23];Available from: http://www.ama-assn.org/ama/pub/physician-
resources/solutions-managing-your-practice/coding-billing-insurance/cpt.page

150. World Health Organization (WHO). ICD (International Classification of Diseases) [Internet]. 2012
[cited 2012 May 23];Available from: http://www.who.int/classifications/icd/en/

151. Regenstrief Institute, Inc., Indiana University. LOINC (Logical Observation Identifiers Names and
Codes) [Internet]. 2012 [cited 2012 May 23];Available from: http://loinc.org/

152. International Health Terminology Standards Development Organisation (IHTSDO). SNOMED CT
(Systematized Nomenclature of Medicine - Clinical Terms) [Internet]. 2012 [cited 2012 May
23];Available from: http://www.ihtsdo.org/snomed-ct/

153. National Library of Medicine (U.S.). UMLS (Unified Medical Language System) [Internet]. 2010
[cited 2010 Mar 17];Available from: http://www.nlm.nih.gov/research/umls/

154. HL7. HL7 Standards [Internet]. 2010 [cited 2010 Dec 10];Available from:
http://www.hl7.org/implement/standards/index.cfm?ref=nav

155. California HealthCare Foundation. CCDP Project Overview [Internet]. 2012. Available from:
http://www.chcf.org/documents/CCDPProjectOverview.pdf

156. Berner ES, Webster GD, Shugerman AA, Jackson JR, Algina J, Baker AL, et al. Performance of Four
Computer-Based Diagnostic Systems. New England Journal of Medicine. 1994;330(25):1792–
1796.

157. Elkin PL, Peleg M, Lacson R, Bernstam E, Tu S, Boxwala A, et al. Toward Standardization of
Electronic Guideline Representation. Md Computing. 2000;17(6):39–44.

158. de Clercq PA, Blom JA, Korsten HHM, Hasman A. Approaches for creating computer-interpretable
guidelines that facilitate decision support. Artif Intell Med. 2004 May;31(1):1–27.

159. Peleg M. Guideline representation methods: A comparison study [Internet]. 2002 [cited 2011 Mar
18];Available from: http://www.openclinical.org/gmmcomparison.html

160. Tu SW, Musen MA. Representation Formalisms and Computational Methods for Modeling
Guideline-Based Patient Care. In: 1st European Workshop on Computer-based Support for Clinical
Guidelines and Protocols. Leipzig, Germany: 2001.

161. Wang D, Peleg M, Tu SW, Boxwala AA, Greenes RA, Patel VL, et al. Representation primitives,
process models and patient data in computer-interpretable clinical practice guidelines: a

213

literature review of guideline representation models. Int J Med Inform. 2002 Dec 18;68(1-3):59–
70.

162. Russell N, Hofstede AHM ter, Aalst WMP van der, Mulyar N. Workflow Control-Flow Patterns: A
Revised View [Internet]. BPM Center; 2007. Available from:
http://workflowpatterns.com/documentation/documents/BPM-06-22.pdf

163. Grando MA, Glasspool DW, Fox J. Petri Nets as a Formalism for Comparing Expressiveness of
Workflow-Based Clinical Guideline Languages [Internet]. In: Business Process Management
Workshops. Springer Berlin Heidelberg; 2009 [cited 2009 Nov 10]. p. 348–360.Available from:
http://dx.doi.org/10.1007/978-3-642-00328-8_35

164. Purves IN. PRODIGY: implementing clinical guidance using computers. Br J Gen Pract. 1998
Sep;48(434):1552–1553.

165. Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY project - the iterative development of
the release one model. AMIA Annu Symp Proc. 1999;:359–363.

166. Mark ST, Musen M.D. Ph.D MA. A Flexible Approach to Guideline Modeling. AMIA Annu Symp
Proc. 1999;:420–424.

167. Tu SW, Musen MA. Modeling data and knowledge in the EON guideline architecture. Stud Health
Technol Inform. 2001;84(Pt 1):280–284.

168. Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S. GEM: a proposal for a more
comprehensive guideline document model using XML. J Am Med Inform Assoc. 2000
Oct;7(5):488–498.

169. Hajizadeh N, Kashyap N, Michel G, Shiffman RN. GEM at 10: A Decade’s Experience with the
Guideline Elements Model. AMIA Annu Symp Proc. 2011;2011:520–528.

170. Haschler, Skonetzki S, Gausepohl HJ, Linderkamp O, Wetter T. Evolution of the HELEN
representation for managing clinical practice guidelines. Methods Inf Med. 2004;43(4):413–426.

171. Tu SW, Campbell J, Musen MA. The SAGE guideline modeling: motivation and methodology. Stud
Health Technol Inform. 2004;101:167–171.

172. Tu SW, Campbell JR, Glasgow J, Nyman MA, McClure R, McClay J, et al. The SAGE Guideline
Model: achievements and overview. J Am Med Inform Assoc. 2007 Oct;14(5):589–598.

173. Guarnero A, Marzuoli M, Molino G, Terenziani P, Torchio M, Vanni K. Contextual and temporal
clinical guidelines. AMIA Annu Symp Proc. 1998;:683–687.

174. Terenziani P, Montani S, Torchio M, Molino G, Anselma L. Temporal Consistency Checking in
Clinical Guidelines Acquisition and Execution: the GLARE’s Approach. AMIA Annu Symp Proc.
2003;2003:659–663.

214

175. Mansour E, Wu B, Dube K, Li JX. An Event-Driven Approach to Computerizing Clinical Guidelines
Using XML [Internet]. In: IEEE Services Computing Workshops, 2006. SCW ’06. IEEE; 2006. p. 13–
20.Available from: http://arrow.dit.ie/ahfrccon/22

176. De Clercq PA, Blom JA, Hasman A, Korsten HH. GASTON: an architecture for the acquisition and
execution of clinical guideline-application tasks. Med Inform Internet Med. 2000 Dec;25(4):247–
263.

177. de Clercq P, Hasman A. Experiences with the development, implementation and evaluation of
automated decision support systems. Stud Health Technol Inform. 2004;107(Pt 2):1033–1037.

178. Allen J. Maintaining knowledge about temporal intervals. Commun. ACM. 1983;26(11):832–843.

179. Chomicki J. Efficient checking of temporal integrity constraints using bounded history encoding.
ACM Trans. Database Syst. 1995 Jun;20:149–186.

180. Basin D, Klaedtke F, Müller S. Monitoring security policies with metric first-order temporal logic.
In: Proceedings of the 15th ACM symposium on Access control models and technologies. New
York, NY, USA: ACM; 2010. p. 23–34.

181. Niekamp R. Software Component Architecture [Internet]. 2011 Jul 29;Available from:
http://congress.cimne.upc.es/cfsi/frontal/doc/ppt/11.pdf

182. Conradi R, Westfechtel B. Version models for software configuration management. ACM Comput.
Surv. 1998 Jun;30(2):232–282.

183. Stuckenholz A. Component evolution and versioning state of the art. SIGSOFT Softw. Eng. Notes.
2005 Jan;30(1):7–.

184. Driessen V. A successful Git branching model [Internet]. 2010 Jan 5 [cited 2012 Apr 25];Available
from: http://nvie.com/posts/a-successful-git-branching-model/

185. Hughes C. The representation of uncertainty in medical expert systems. Med Inform (Lond). 1989
Dec;14(4):269–279.

186. Wellbery C. Uncertainty in Medicine. The Lancet. 2010 May;375(9727):1666.

187. eHow.com. Definition of Objective Data for RNs [Internet]. 2010 May 4 [cited 2012 May
4];Available from: http://www.ehow.com/facts_6980435_definition-objective-data-rns.html

188. Angelilli A, Ritch R. Directed therapy: An approach to the improved treatment of exfoliation
syndrome [Internet]. 2009. Available from: http://www.meajo.org/article.asp?issn=0974-
9233;year=2009;volume=16;issue=1;spage=35;epage=40;aulast=Angelilli

189. Öztürk A. Embedding the Evidence Information in Computer-Supported Guidelines into the
Decision-Making Process. 2007;

190. Levy MA, Giuse DA, Eck C, Holder G, Lippard G, Cartwright J, et al. Integrated information systems
for electronic chemotherapy medication administration. J Oncol Pract. 2011 Jul;7(4):226–230.

215

191. FDB (First Databank). FDB MedKnowledge (NDDF) [Internet]. 2012 May 1 [cited 2012 May
1];Available from: http://www.fdbhealth.com/solutions/fdb-medknowledge/

192. Klabunde RE. Measurement of Cardiac Output [Internet]. 2009 Jul 1 [cited 2012 Apr 12];Available
from: http://www.cvphysiology.com/Cardiac%20Function/CF021.htm

193. Official Healthcare. Normal Body Temperature [Internet]. 2012 Mar 15 [cited 2012 Apr
12];Available from: http://www.healthcare-online.org/Normal-Body-Temperature.html

194. Martin GS, Mannino DM, Eaton S, Moss M. The Epidemiology of Sepsis in the United States from
1979 through 2000. New England Journal of Medicine. 2003;348(16):1546–1554.

195. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and
safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001 Mar
8;344(10):699–709.

196. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe
sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit.
Care Med. 2001 Jul;29(7):1303–1310.

197. Dellinger R, Levy M, Carlet J, Bion J, Parker M, Jaeschke R, et al. Surviving Sepsis Campaign:
International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care
Medicine. 2008 Jan 1;34(1):17–60.

198. Poole JD. Model-Driven Architecture: Vision, Standards And Emerging Technologies. Workshop
on Metamodeling and Adaptive Object Models, ECOOP [Internet]. 2001;Available from:
http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf

199. Pinto A, Bonivento A, Sangiovanni-Vincentelli AL, Passerone R, Sgroi M. System level design
paradigms: Platform-based design and communication synthesis. ACM Trans. Des. Autom.
Electron. Syst. 2004 Jun;11(3):537–563.

200. Sztipanovits J, Karsai G. Model-Integrated Computing. Computer. 1997;30(4):110–111.

201. Jackson E, Sztipanovits J. Formalizing the structural semantics of domain-specific modeling
languages. Software & Systems Modeling (SoSYM). 2008 Dec 17;8(4):451–478.

202. Resar R, Griffin AF, Haraden C, Nolan TW. Using Care Bundles to Improve Health Care Quality
[Internet]. Cambridge, Massachusetts: Institute for Healthcare Improvement; 2012 [cited 2012 Jul
6]. Available from: http://www.ihi.org/knowledge/Pages/IHIWhitePapers/UsingCareBundles.aspx

203. Brookes SD, Hoare CAR, Roscoe AW. A Theory of Communicating Sequential Processes. J. ACM.
1984;31(3):560–599.

204. Gruber TR. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition.
1993;5:199–220.

205. Parr T. ANTLR (ANother Tool for Language Recognition) [Internet]. 2012 [cited 2012 Jul
8];Available from: http://www.antlr.org/

216

206. Garshol LM. BNF and EBNF: What are they and how do they work? [Internet]. 2008 [cited 2012
Jul 8]. Available from: http://www.garshol.priv.no/download/text/bnf.html

207. Miller RA, Waitman LR, Chen S, Rosenbloom ST. The anatomy of decision support during
inpatient care provider order entry (CPOE): empirical observations from a decade of CPOE
experience at Vanderbilt. J Biomed Inform. 2005 Dec;38(6):469–485.

208. Sklarin NT, Granovsky S, O’Reilly EM, Zelenetz AD. Electronic Chemotherapy Order Entry: A Major
Cancer Center’s Implementation. J Oncol Pract. 2011 Jul;7(4):213–218.

209. Busby LT, Sheth S, Garey J, Ginsburg A, Flynn T, Willen MA, et al. Creating a process to
standardize regimen order sets within an electronic health record. J Oncol Pract. 2011
Jul;7(4):e8–e14.

210. Karsai G, Sztipanovits J, Ledeczi A, Bapty T. Model-integrated development of embedded
software. IEEE Proc. 2003;91:145–164.

211. Börger E. Abstract State Machines: A Method for High-Level System Design and Analysis
[Internet]. 2003 [cited 2010 Feb 24]. Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.1254

212. Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science. 1994 Apr
25;126(2):183–235.

213. Hoge T. A presentation of the trace algebra of three 3x3 matrices. arXiv:1104.0904 [Internet].
2011 Apr 5 [cited 2012 Jul 11];Available from: http://arxiv.org/abs/1104.0904

214. Allenby R. Rings, Fields, and Groups: An Introduction to Abstract Algebra [Internet]. Arnold; 1991.
Available from: http://www.getcited.org/pub/103042052

215. Harel D. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 1987
Jun;8(3):231–274.

216. MathWorks. Stateflow - State chart design and development environment [Internet]. 2012 [cited
2012 May 24];Available from: http://www.mathworks.com/products/stateflow/

217. Graphviz. Graphviz - Graph Visualization Software [Internet]. 2012 [cited 2012 Jul 19];Available
from: http://www.graphviz.org/

218. Vanderbilt University. Center for Experiential Learning & Assessment (CELA) [Internet]. 2012
[cited 2012 Jul 24];Available from: https://medschool.vanderbilt.edu/cela/

219. Andersson G, Bjesse P, Cook B, Hanna Z. A proof engine approach to solving combinational design
automation problems [Internet]. In: Design Automation Conference, 2002. Proceedings. 39th.
2002. p. 725 – 730.Available from:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1012718&contentType=
Conference+Publications

217

220. MathWorks. Simulink Design Verifier Documentation [Internet]. R2011b Documentation -
Simulink Design Verifier. 2012 [cited 2012 Feb 20];Available from:
http://www.mathworks.com/help/toolbox/sldv/

221. MathWorks. Simulink Verification and Validation [Internet]. 2012 [cited 2012 Jul 27];Available
from: http://www.mathworks.com/products/simverification/index.html

222. Pingree PJ, Mikk E. The HiVy Tool Set [Internet]. In: Alur R, Peled DA, editors. Computer Aided
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004 [cited 2011 Nov 21]. p. 466–
469.Available from: http://www.springerlink.com/content/n7g30gfex2d1u26j/

223. Manamcheri K, Mitra S, Bak S, Caccamo M. A step towards verification and synthesis from
simulink/stateflow models [Internet]. In: Proceedings of the 14th international conference on
Hybrid systems: computation and control. New York, NY, USA: ACM; 2011 [cited 2011 Nov 21]. p.
317–318.Available from: http://doi.acm.org/10.1145/1967701.1967749

224. Balasubramanian D, Păsăreanu CS, Whalen MW, Karsai G, Lowry M. Polyglot: modeling and
analysis for multiple Statechart formalisms [Internet]. In: Proceedings of the 2011 International
Symposium on Software Testing and Analysis. New York, NY, USA: ACM; 2011. p. 45–55.Available
from: http://doi.acm.org/10.1145/2001420.2001427

225. Dwyer MB, Avrunin GS, Corbett JC. Patterns in property specifications for finite-state verification
[Internet]. In: Proceedings of the 21st international conference on Software engineering. New
York, NY, USA: ACM; 1999. p. 411–420.Available from:
http://doi.acm.org/10.1145/302405.302672

226. Department of Information Technology at Uppsala University, Sweden, Department of Computer
Science at Aalborg University in Denmark. UPPAAL Benchmarks [Internet]. 2012 [cited 2012 Oct
3];Available from: http://www.it.uu.se/research/group/darts/uppaal/benchmarks/

227. Dubey A, Nordstrom S, Keskinpala T, Neema S, Bapty T, Karsai G. Towards a verifiable real-time,
autonomic, fault mitigation framework for large scale real-time systems. Information Security
Solutions Europe. 2007;:33–52.

228. Dubey A, Riley D, Abdelwahed S, Bapty T. Modeling and Analysis of Probabilistic Timed Systems
[Internet]. In: Engineering of Computer Based Systems, 2009. ECBS 2009. 16th Annual IEEE
International Conference and Workshop on the. 2009. p. 69 –78.Available from:
http://www.isis.vanderbilt.edu/sites/default/files/PTAVerification_0.pdf

229. Xing J, Theelen BD, Langerak R, de JP van, Tretmans J, Voeten JPM. UPPAAL in Practice:
Quantitative Verication of a RapidIO Network [Internet]. In: Margaria T, Steffen B, editors.
Leveraging Applications of Formal Methods, Verification, and Validation. London: Springer Verlag;
2010. p. 160–174.Available from: http://doc.utwente.nl/72602/

230. Leitner F, Leue S. Simulink Design Verifier vs. SPIN - A Comparative Case Study [Internet]. In:
Proceedings of FMICS 2008, ERCIM Working Group on Formal Methods for Industrial Critical
Systems. 2008 [cited 2012 Feb 15]. Available from: http://www.inf.uni-
konstanz.de/soft/publications_en.php

218

231. MathWorks. Types of Chart Execution - Super step semantics [Internet]. Types of Chart Execution
- MATLAB & Simulink. 2012 [cited 2012 Oct 3];Available from:
http://www.mathworks.com/help/stateflow/ug/types-of-chart-execution.html#brccxny

232. Knape T, Hederman L, Wade VP, Gargan M, Harris C, Rahman Y. A UML approach to process
modelling of clinical practice guidelines for enactment. Stud Health Technol Inform. 2003;95:635–
640.

233. Heard KM, Huang C, Noirot LA, Reichley RM, Bailey TC. Using BPEL to Define an Executable CDS
Rule Process. AMIA Annu Symp Proc. 2006;2006:947.

234. Strasser M, Pfeifer F, Helm E, Schuler A, Altmann J. Defining and reconstructing clinical processes
based on IHE and BPMN 2.0. Stud Health Technol Inform. 2011;169:482–486.

235. Huser V, Rasmussen LV, Oberg R, Starren JB. Implementation of workflow engine technology to
deliver basic clinical decision support functionality. BMC Med Res Methodol. 2011 Apr 10;11:43.

236. Greenes RA, Sordo M, Zaccagnini D, Meyer M, Kuperman GJ. Design of a standards-based
external rules engine for decision support in a variety of application contexts: report of a
feasibility study at Partners HealthCare System. Stud Health Technol Inform. 2004;107(Pt 1):611–
615.

237. Goldberg HS, Vashevko M, Postilnik A, Smith K, Plaks N, Blumenfeld BM. Evaluation of a
Commercial Rule Engine as a Basis for a Clinical Decision Support Service. AMIA Annu Symp Proc.
2006;2006:294–298.

238. Mathe J, Miller P, Ledeczi A, Weavind L, Miller A, Maron D, et al. A Model-Integrated Approach to
Implementing Individualized Patient Care Plans Based on Guideline-Driven Clinical Decision
Support and Process Management - A Progress Report. In: 2nd International Workshop on
Model-Based Design of Trustworthy Health Information Systems (MOTHIS 2008). Toulouse,
France: 2008.

239. Mathe JL. Towards an Adaptable Framework for Modeling, Verifying, and Executing Medical
Guidelines. In: Proceedings of the Doctoral Symposium at MODELS 2009. Denver, CO: 2009.

240. Hooper MH, Weavind L, Wheeler AP, Martin JB, Gowda SS, Semler MW, et al. Randomized Trial of
Automated, Electronic Monitoring to Facilitate Early Detection of Sepsis in the Intensive Care
Unit. Crit. Care Med. 2011 Aug;In press.

241. Mathe J, Werner J, Sztipanovits J. Model-Based Design of Trustworthy Health Information
Systems. In: Homeland Security Facets: Threats. Countermeasures, and the Privacy Issue. London,
UK: Artech House; 2011.

242. W3C. OWL 2 Web Ontology Language Document Overview [Internet]. 2009 Oct 27 [cited 2010
Feb 26];Available from: http://www.w3.org/TR/owl2-overview/

243. Mathe JL, Sztipanovits J, Levy M, Jackson EK, Schulte W. Cancer Treatment Planning: Formal
Methods to the Rescue. In: 4rd International Workshop on Software Engineering in Health Care
(SEHC 2012). Zurich, Switzerland: 2012.

219

244. Giuse DA, Mickish A. Increasing the availability of the computerized patient record. AMIA Annu
Fall Symp Proc. 1996;:633–637.

245. Mathe J, Werner J, Lee Y, Malin B, Ledeczi A. Model-Based Design of Clinical Information Systems.
Methods Inf Med. 2008;47(5):399–408.

246. Duncavage S, Mathe J, Werner J, Malin BA, Ledeczi A, Sztipanovits J. A Modeling Environment for
Patient Portals [Internet]. In: Proceedings of the AMIA Annual Symposium. Chicago, IL: 2007
[cited 2009 Aug 31]. p. 201–205.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/18693826

247. Mathe J, Duncavage S, Werner J, Malin B, Ledeczi A, Sztipanovits J. Implementing a Model-Based
Design Environment for Clinical Information Systems. In: First International Workshop on Model-
Based Design of Trustworthy Health Information Systems (MOTHIS 2007). Nashville, TN: 2007.

248. Werner J, Mathe JL, Duncavage S, Malin B, Ledeczi A, Jirjis JN, et al. Platform-Based Design for
Clinical Information Systems. In: Industrial Informatics, 2007 5th IEEE International Conference on
(INDIN 2007). Vienna, Austria: 2007. p. 749–754.

249. Mathe JL, Duncavage S, Werner J, Malin BA, Ledeczi A, Sztipanovits J. Towards the Security and
Privacy Analysis of Patient Portals. ACM SIGBED Review. 2007;4(2):5–9.

250. Emerson M, Mathe J, Duncavage S. WiNeSim: A Wireless Network Simulation Tool. In:
Proceedings of the Sixth ACM International Conference on Embedded Software (EMSOFT’06
Workshop). Seoul, South Korea: 2006.

251. Werner J, Eby M, Mathe J, Karsai G, Xue Y, Sztipanovits J. Integrating Security Modeling into
Embedded System Design. In: 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2006). IEEE Computer Society; 2006.

252. Microsoft. XML Schema Definition Tool [Internet]. 2012 [cited 2012 Jul 14];Available from:
http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.80).aspx

253. Parr T. StringTemplate Template Engine [Internet]. 2012 [cited 2012 Jul 16];Available from:
http://www.stringtemplate.org/

	Abstract
	Keywords

	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	List of Nomenclature
	List of Guideline-related Projects
	Chapter I. Introduction to guideline-driven clinical information systems
	Challenges in health care
	Potential solutions
	Clinical Information Systems
	Possibility for further improvements

	Clinical Practice Guidelines
	Computer Interpretable Guidelines: Explaining the need for computerized CPGs
	Basic design of CIGs
	CIG execution - Patient management based on CIGs
	Benefits of Computer Interpretable Guidelines

	Representing CIGs
	Modeling requirements
	Selecting a suitable modeling language

	Chapter II. Review of frameworks for modeling, verifying and executing guidelines
	Early CDSSs
	CIG lifecycle
	Components of a CIG-based CDSS
	Evaluation criteria for guideline-based clinical information systems
	Clinical aspect: Utility
	Logical adequacy of the CIG formalism
	Provided Functionality
	Technology readiness level

	Computer science aspect: Knowledge representation and maintenance
	Scope
	Knowledge concepts
	Formal semantics
	Protocol composition
	Security and privacy

	Information technology aspect: System integration
	Information exchange
	System validation
	System scalability
	System security

	Guideline modeling languages, formalisms and frameworks selected for evaluation
	Arden Syntax
	Development and maintenance
	Use
	Syntax and Semantics
	Example
	Data types
	Expression language
	External references

	Implementation
	Advantages and limitations

	PROforma
	Development and maintenance
	Use
	Syntax and Semantics
	Expression language
	Execution

	Implementation
	Advantages and limitations

	GLIF
	Development
	Use
	Syntax and semantics
	Execution
	Data types
	Expression language: GELLO
	1. Queries:
	2. Expressions:

	Implementation
	Modeling environment: Protégé
	Execution engine: GLEE

	Advantages and limitations

	Asbru
	Development
	Use
	Syntax and semantics
	Execution

	Implementation
	Modeling and visualization environments
	Execution engine: AsbruRTM
	Execution engine: Spock

	Advantages and limitations

	Guideline modeling languages not selected for evaluation
	Other important medical formalisms, frameworks and organizations
	Data models
	Virtual Medical Record
	Reference Information Model

	Vocabularies
	Expression languages
	Unified Medical Language System
	Health Level Seven

	Chapter III. Evaluation of open questions in CIG language design
	Why is the evaluation of these approaches difficult?
	Earlier comparison efforts
	Discussion
	Discussion on CIG formalisms
	DSML
	Components
	Terminology and information exchange
	Expression language
	Describing the control logic
	Rule-based
	Workflow-based

	Discussion on software suites

	Open problems
	P1. Execution semantics and expressivity
	P1.1. Seeking a common representation for all the different types of CIGs
	P1.2. Workflow versus rule-based approaches
	P1.3. Lack of formality and explicitly defined execution semantics
	P1.4. Avoiding duplication of functionality between the CIG and the expression language
	P1.5. Temporal reasoning
	P1.6. Component-based guideline modeling
	Composition of protocols
	Decomposition of protocols
	Version control

	P1.7. Representing uncertainty
	Selection of the proper solution from alternatives
	Representing numerical parameters

	P1.8. Representing configurable input parameters
	P1.9. Exception handling and state-space coverage problems
	P1.10. Grey tracking
	P1.11. Protocol updates “mid-flight”
	P1.12. Defining rollback strategies (i.e. undo)
	P1.13. Look-ahead feature (i.e. simulation of the “what if” scenario)
	P1.14. Time control in simulation
	P1.15. Lack of verification of correctness of CIGs

	P2. Local adaptation
	P2.1. Lack of standardized terminology
	P2.2. Communication protocol for managing interactions with the host system
	P2.3. Feedback mechanisms in a communication protocol
	P2.4. Data provisioning
	P2.5. Avoiding the duplication of functionality of the host systems
	P2.6. Adapting configurable parameters
	P2.7. Separation of concerns: Lack of ability to provide multiple visual representations
	P2.8. Separation of concerns: Portability
	P2.9. Management of CIG updates
	P2.10. Representation of patient state: Management of information abstraction
	Example 1: Aggregating different sources
	Example 2: Defining composite indicators
	Example 3: Identifying the source of indicators

	P3. Clinical adoption and implementation
	P3.1. Readability of models
	P3.2. Handling transactions with a bundle of actions
	P3.3. Interactive simulation
	P3.4. Simulation-specific view

	Chapter IV. Overview of the sepsis project
	Medical Context: Sepsis Management
	Functional Architecture of STEEP
	Pre-diagnosis surveillance and alerting
	Treatment management

	Modeling Language and Model Development
	Software design and implementation
	Evaluation

	Chapter V. A model-integrated implementation architecture for STEEP
	Implementation architecture overview
	Treatment Management Console
	System integration interfaces
	EMR Interface
	CPOE Interface

	Contributions

	Chapter VI. Modeling language and model development
	Modeling language development approach
	Design of CPML
	DSML design
	Early attempts

	CPML vocabulary
	Medical knowledge modeling
	Medical Library
	Orderables

	Protocol modeling
	Explicit coordination primitives

	Model management, support and configuration

	CPML metamodels - Structural semantics
	Relationship of Protocols, Processes and Activities
	Example 1
	Example 2
	Example 3

	Coordination primitives
	Review of a model example

	Chapter VII. Defining the behavioral semantics for CPML
	Specification of behavioral semantics
	A pragmatic approach

	Template-based specification of behavioral semantics
	Behavioral templates
	Behavior specification of the Activity template
	Template instantiation

	Transformation process

	Analysis tool chain
	Example

	Chapter VIII. Validation and verification
	Validation through simulation
	Clinician walkthroughs
	Simulation environment

	Verification through model checking
	Potential benefits and examples
	Our approach
	Tools
	Simulink Design Verifier
	Alternative methods

	Verified examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Evaluation

	Chapter IX. Conclusion
	Summary
	Motivation
	Existing approaches

	Current status

	List of contributions
	Lessons learned and future directions
	Knowledge representation and management: Language
	The drawbacks of language development
	Workflow to rule-based representation
	Separation of knowledge layers
	Learning CPML

	Limitations
	Adoption of CPML protocols
	Information aggregation
	Representation of planned actions

	Future applications

	Knowledge representation and management: Protocols
	Sepsis CIG development
	Effort
	Reusability
	Improvements

	Importing CIG written in other languages
	CIG library

	Validation and verification
	Formal behavioral models driving the execution
	Importing standardized dosing constraints as general properties for verification

	System integration
	System development and evolution
	Engine
	Execution semantic variations
	Mission critical software development

	Appendix A : List of related publications
	Peer-reviewed journal articles (first author)
	Peer-reviewed journal articles (not first author)
	Book chapters
	Conference papers

	Appendix B : Current status of the integrated STEEP architecture at VUMC
	Appendix C : Algorithm for template-based model transformation
	Bibliography

