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CHAPTER I 
 
 

Introduction 
 
 
I.1 Introduction 

The human adaptive immune system is mediated in part by B cells, which produce antibodies 

to protect the body from infection. Antibodies are protein molecules responsible for recognizing 

and binding pathogenic targets (i.e., antigens) to mediate effective neutralization of the 

microorganism. In this thesis, I will show how an understanding of antibody sequence and 

structure can be leveraged to predict the function of an antibody, particularly in the context of the 

human antibody response to influenza virus.  

This first chapter introduces the fields of B cell immunology, particularly focusing on how B 

cells develop and the mechanisms that produce antibodies. I will also introduce influenza A virus 

as a target for antibody responses. Finally, I will discuss the emerging technologies that I used to 

study the human antibody repertoire, specifically next generation sequencing and computational 

structural modeling using Rosetta. 

Chapter II of this thesis focuses on the impact that these new sequencing technologies had on 

studies of the human antibody repertoire. Our recent ability to analyze large populations of 

antibody sequences has begun to improve our understanding of the mechanisms of 

diversification, the size of the repertoire, and methods of repertoire regulation conserved between 

individuals. In the second chapter I will also discuss populations of human antibodies produced 

in response to influenza vaccine that I identified from repertoires by sequence, which are 

predicted to be clonally related to known anti-influenza antibodies. 

The third chapter discusses techniques for computational structural modeling of antibodies. 
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Prior to this work, protein loop modeling techniques were limited in the length of loop that could 

be accurately predicted. The structures of protein loops on human antibodies are critically 

important for antibody function, and many of these loops are longer than existing technologies 

could model at the start of this work. The third chapter discusses how knowledge-based restraints 

that I calculated from analysis of a conserved structural motif in the most critical of the antibody 

protein loops improved the accuracy of antibody modeling in Rosetta. 

 Chapter IV describes the development of a novel method for structure-based discovery of 

antibodies from next generation sequencing data. It was known at the beginning of this work that 

antibodies that share structural features have similar function, however no techniques existed to 

leverage this understanding for the discovery of novel antibodies. I developed a method that 

paired next generation sequencing and structural similarity predictions in Rosetta to discover 

novel anti-influenza antibodies from human donors.  

In the final chapter, I summarize these studies and discuss the sequence-structure-function 

relationships of antibodies as a cohesive concept. An understanding of these relationships may be 

applied to future work in this field, and I propose additional experiments and applications of 

these technologies that will benefit therapeutic discovery and vaccination efforts to come. 

 

I.2 B cell development 

B cells arise from hematopoietic stem cells in the bone marrow. During the course of their 

development each B cell produces a unique immunoglobulin (Ig) molecule made up of heavy 

and light chain (HC, LC) proteins. Immunoglobulin can be either retained on the surface of the B 

cell as part of the B cell receptor (BCR), or be secreted as soluble antibodies (Abs). Successful 

surface expression of immunoglobulin is necessary for development of the B cell, and expression 
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of the immunoglobulin heavy and light chains mark the distinct stages of B cell development.  

Pluripotent hematopoietic stem cells undergo stages of differentiation to commit to the B cell 

lineage; first to early lymphocyte progenitor cells, which may further differentiate to either T- or 

B-lymphocytes, and later to pro-B cells, the earliest defined B-lineage cells. Over the course of 

development from pro-B cells to pre-B cells, and later to immature B cells, human differentiating 

B cells undergo stages of genetic rearrangement within their immunoglobulin loci. These gene 

rearrangements are referred to as V(D)J recombination, and result in the creation of functional 

immunoglobulin heavy and light chain genes.  

The organization of the immunoglobulin loci allows for a vast diversity of antibody proteins. 

An understanding of the loci provides important insight into the further study of antibody 

structure and function. Immunoglobulin molecules are made up of two different protein subunits, 

referred to as the heavy and light chains. In humans, light chains may be produced from either 

the kappa or lambda loci located on chromosomes 2 or 22, respectively. The heavy chain is 

produced from a third loci located on chromosome 14. Each chain can be subdivided into two 

regions referred to as the variable region (V region, also referred to in the literature as the V 

domains) and the constant region (C region or C domains). The V region is so named due to its 

inherent variability in the final immunoglobulin molecule; within each loci this region is made 

up of multiple gene segments referred to as the variable (V), diversity (D; only present in the 

heavy chain), and joining (J) genes, of which one of each recombines to create the final exon 

encoding the V domain. Further consequences of V(D)J recombination on the diversification and 

function of the antibody repertoire are discussed in the next section. 

Over the course of B cell development, these immunoglobulin loci are rearranged following a 

prescribed order determined by expression of enzyme complexes and by unique features of the 
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immunoglobulin gene sequences. Expression of the V(D)J recombinase complex triggers 

immunoglobulin loci rearrangement via recognition of recombination signal sequences (RSSs) 

adjacent to V(D)J gene segments, cleavage of intervening genetic material between two RSSs 

resulting in hair-pinning of the DNA ends by the recombination-activating proteins (RAG), 

processing of the cleaved ends by terminal deoxynucleotidyl transferase (TdT), and finally 

joining of the processed ends by DNA repair enzymes. These mechanisms occur repeatedly, 

beginning with the heavy chain locus D-J joining event during the early pro-B cell phase, 

followed by V-DJ rearrangement in the late pro-B cell phase. The fully recombined 

immunoglobulin heavy chain is then expressed into a protein signaling complex on the surface of 

the large pre-B cell, creating a checkpoint that ensures successful gene recombination, protein 

expression and protein folding of the heavy chain. The process continues similarly for the light 

chain, which undergoes only V-J rearrangement. Expression of a complete immunoglobulin 

molecule with both rearranged heavy and light chains signifies the development of the immature 

B cell. In the final phases of B cell development within the bone marrow, immature B cells 

expressing immunoglobulin as part of a functional BCR are tested for tolerance to self-antigens, 

referred to as central tolerance. Immature B cells that lack self-antigen recognition mature, 

escaping the bone marrow to circulate and function in the periphery.  

 

I.3 Diversification of the antibody repertoire 

The development of a population of B cells each encoding a novel recombined 

immunoglobulin molecule, referred to henceforth as the antibody repertoire, is a key element of 

acquired immunity. The central tolerance checkpoint at the end of B cell development results in 

removal of antibodies from the peripheral repertoire that are self- or otherwise non-specific (e.g., 
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‘sticky’ antibodies able to broadly bind to other molecules). It is generally understood that the 

resulting antibodies in the peripheral repertoire are able to bind only one or a very small number 

of molecules. Therefore a diverse antibody repertoire, each member specific to a particular 

pathogenic protein (i.e., antigen), is a necessary component for the prevention or resolution of 

disease caused by most viruses (Crotty & Ahmed, 2004). 

Diversity in the naïve antibody repertoire is mediated by three principal mechanisms that are 

illustrated in Figure 1: (1) random pairing of heavy and light chains to form the antigen-binding 

site in the immunoglobulin molecule; (2) combinatorial diversity generated by V(D)J 

recombination, which together with heavy and light chain pairing results in approximately 2.3 x 

106 possible combinations; and (3) junctional diversity generated by P- and N-nucleotide 

addition or deletion at recombination sites during V(D)J processing by TdT, which theoretically 

results in 1011 different antibody specificities.  

 

Once developed in the bone marrow, the antibody repertoire patrols peripheral tissues, 

further developing and differentiating in response to antigen exposure. Somatic hypermutation, a 

fourth mechanism of diversification, introduces point mutations into the rearranged 

 
Figure 1. Diversity in the antigen-combining site of the B cell receptor repertoire (and 
thus also in the corresponding secreted antibody repertoire) is mediated by three principal 
molecular mechanisms, illustrated in the three panels, V(D)J Recombination, Junctional 
Diversity, and Heavy/Light Chain Pairing. 
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immunoglobulin molecule after B cell activation by antigen. Additional functional diversity in 

secreted antibodies is conferred by differences between C region isotypes determined by a 

process called class switching. The C region of an immunoglobulin determines the valency of the 

antibody, and enables other functions such as complement fixation or interaction with various C 

region receptors, which play important roles in pathogen neutralization.  

It is critical to acknowledge that the antibody repertoire is a constantly changing population 

shaped by expansion and contraction events in response to infection. Upon B cell recognition of 

antigen, activation and stimulation by T helper cells in the germinal center reaction encourages 

differentiation into one or more specialized B cell types. The first of these are plasmablasts, 

which expand prolifically and produce antibody for short periods of time before dying or 

developing further. Surviving germinal center B cells develop into smaller populations of long-

lived memory B cells (which persist in the repertoire for perhaps as long as a lifetime), or 

terminally differentiated plasma B cells (which cease proliferating and instead expend energy 

producing vast amounts of soluble antibody). Each of these B cell types, and their associated 

diverse antibody population, play a key role in the immune response to infection.  

 

I.4 Influenza virus 

In opposition to the adaptive immune system, viruses have developed mechanisms of 

diversification that allow escape from immune recognition. A prime example is influenza, an 

infectious disease caused by zoonotic RNA viruses. Despite continued vaccination efforts, 

influenza A virus (IAV) continues to cause high rates of annual disease as it escapes 

immunological resistance through subtype changes (i.e., antigenic shift) and point mutation (i.e., 

antigenic drift) mediated primarily by changes to its envelope proteins. Furthermore, studies 
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published at the time this work began showed that experimentally generated mutations in IAV 

envelope proteins confer respiratory transmission between humans, revealing the potential for 

development of highly pathogenic human IAVs with pandemic possibility. Improving our 

understanding of the human immune response to IAVs and identifying novel antibodies specific 

for IAV became the two key goals for this work.  

Influenza A virus is a member of Orthomyxoviridae, a family of viruses characterized by 

having an envelope derived from the host cell membrane that incorporates viral glycoproteins 

and non-glycosylated proteins, encapsulating a genome consisting of numerous linear negative-

sense single stranded RNA segments. In IAV, the major envelope glycoproteins are 

hemagglutinin (HA), which is responsible for host cell binding and entry into cells, and 

neuraminidase (NA), involved in viral egress from infected cells via enzymatic cleavage of sialic 

acid. These two proteins are the means by which IAVs are classified into subtypes; the 18 known 

HAs and 11 known NAs have many combinations, and result in the naming of IAV subtypes 

such as H1N1 and H3N2, which are the two IAV subtypes currently circulating in humans. 

While antibodies specific to both HA and NA have been identified following human 

infection with IAV, the work presented in the following chapters focuses on the human antibody 

response to HA. HA is a homotrimeric glycoprotein with a molecular mass greater than 180 kDa, 

dependent upon the number and complexities of each N-linked glycosylation added to the 

protein surface (Sriwilaijaroen & Suzuki, 2012). The HA trimers project off the surface of the 

IAV virion as ‘spikes’, held in place by type I transmembrane domains. Each HA monomer is 

expressed as a precursor protein referred to as HA0. During viral maturation, each HA0 is 

cleaved by proteases to form the fusion-capable HA1 and HA2 molecules, which remain linked 

by a disulfide bond and continue to form a stable homotrimer at physiological conditions. The 
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HA molecule is subdivided into two domains related to the cleavage of HA1 and HA2. The head 

domain is formed by HA1, is distal to the virion surface, and is responsible for binding to the 

host cell via the receptor binding site (RBS). The stem domain is primarily made up of HA2, 

although contains a small portion of HA1, forms a cylindrical stalk that connects the head 

domain to the transmembrane domain, and undergoes considerable structural rearrangement 

during fusion.  

Infection with IAV is mediated first by HA binding to specific terminal sialic acids found on 

host cell receptors. While sialic acids are commonly found on animal tissues, the distribution of 

particular sialic acid forms is specific to both animal species and tissues within those species. 

Human IAVs preferentially bind to sialic acids that attach to galactose via α2-6 linkages, which 

are commonly found on tissues in the human upper respiratory tract. Upon binding of sialic acid, 

IAV virions are taken up into cells by receptor-mediated endocytosis. As the endosome acidifies, 

cleaved HA undergoes a profound pH-dependent structural rearrangement to reveal the fusion 

domain. While the stages of this structural rearrangement are unclear, it is known that it results in 

host endosomal membrane fusion with the viral membrane, releasing the genetic components of 

the virus into the host cell, completing host cell infection.  

A number of antibody-dependent, HA-mediated IAV neutralization mechanisms were known 

at the beginning of this work. Broadly, these mechanisms can be divided into two categories; 

head-binding antibodies, which were the larger known population of human anti-HA antibodies 

at the start of this work and which primarily function to block HA binding to host sialic acid 

receptors, and stem-binding antibodies, which are thought to interrupt the structural changes 

necessary for viral membrane fusion. Evidence suggests that stem-binding antibodies are often 

broadly specific to HA, in that one monoclonal antibody (mAb) specific to the HA stem is 
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capable of binding to many IAV strains within a subtype, and even to HA stems across subtypes 

(Avnir et al., 2014; Ekiert et al., 2009). This is due to the higher amount of sequence and 

structural conservation in the stem, caused by the necessity of functional conservation of this 

domain. A computational structural modeling experiment published by Sarel Fleishman in the 

Baker group at the beginning of this thesis work showed that small proteins could be engineered 

to mimic known antibody-HA stem interactions, and that these engineered proteins bind HA with 

low-nanomolar affinity (Fleishman et al., 2011). Therefore, I have chosen instead to focus these 

studies on antibodies against the head domain of IAV HA. 

The head domain of IAV HA is far less conserved than the stem domain, even within a given 

HA subtype. This membrane-distal portion of the HA molecule is less involved in gross 

structural rearrangements during fusion, therefore only the receptor binding site (RBS) 

responsible for binding to host sialic acid receptors must be conserved for viral function. Sialic 

acid is a small molecule, and the functional footprint of this RBS pocket on the HA head domain 

is only 175 Å2. IAV-neutralizing human antibodies are often specific for the RBS and function 

by physically blocking access to the host receptor (Kadam & Wilson, 2018). However, the 

average footprint of an antibody on the surface of an antigen is 1103 Å2, much larger than the 

sialic acid binding site itself, and viral mutations that occur around the edge of the RBS pocket 

effectively escape antibody recognition while conserving sialic acid receptor binding (Ramaraj, 

Angel, Dratz, Jesaitis, & Mumey, 2012). Additional antigenic sites have been mapped on the HA 

head domain using mouse antibodies, and it is known that these sites also undergo considerable 

selective pressure to evade the antibody repertoire (Caton, Brownlee, Yewdell, & Gerhard, 1982; 

Wiley, Wilson, & Skehel, 1981). A few broadly-neutralizing human antibodies targeting the HA 

head domain were known at the beginning of this thesis, providing a starting point for the 
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development of methods to discover or engineer similar monoclonal antibodies (Krause, 

Tsibane, Tumpey, Huffman, Basler, et al., 2011a; Whittle, Zhang, Khurana, King, Manischewitz, 

Golding, Dormitzer, Haynes, Walter, Moody, Kepler, Liao, & Harrison, 2011a; R. Xu et al., 

2013). One such antibody, CH65, is discussed in further detail in Chapter IV. 

 

I.5 Antibody repertoire sequencing 

Prior to the time of this work, immunologists understood diversification of B cell populations 

specific to particular foreign antigens involved a burst of diversification within a clone of B cells 

in the activated germinal center, followed by a selection for survival of the highest affinity clone 

and drastic loss of related somatic variants with lower affinity. Although this ‘single winner’ 

model correctly describes the typical panel of B cell clones isolated from experimental studies 

using isolation of hybridomas and mAbs, the technical approach to isolation of mAbs likely 

biases such studies toward the isolation of only the most avidly binding antibodies. Emerging 

techniques using high-throughput DNA and RNA sequence analysis are increasingly revealing 

that this paradigm is not correct. Instead human B cell repertoires maintain very large 

populations of somatic variants within clones (Krause, Tsibane, Tumpey, Huffman, Briney, et 

al., 2011b); see Figure 2. It may seem metabolically wasteful and counter-intuitive that the 

immune system would allow hundreds or thousands of related clones to persist in circulation 

when many of those variants possess many fewer somatic mutations than the most mature 

clones, and thus by inference are likely to have lower affinity of binding for the inciting epitope. 

This may be rationalized, however, if persisting diversity in the B cell repertoire allows the 

subject to respond to antigenic variation in the target, such as antigenic drift in IAV. Dealing 

with the enormous sequence and structural plasticity of IAV HA likely requires an equivalent 



 11 

breadth of diversity in the responding antibody repertoire. Therefore, recent observations that 

human antibody repertoires engage pathogens with large clonal families of highly related 

antibodies make sense from a strategic standpoint for the immune system. Studying the diverse 

antibody response to antigen as a swarming population instead of as a one-to-one, specific 

interaction informs our understanding of disease and immunity in a new way.  

 

Next generation sequencing (NGS) technologies developed in tandem with the work 

presented herein. These new technological advances in gene sequencing and microfluidics to 

provided evidence regarding the mechanisms of repertoire diversification, the size of the 

 
Figure 2. [A] Classical models of somatic hypermutation conceive of rapid 
generation of variants in the activated germinal center followed by a severe 
down-selection in number of variants, resulting in selection of only the clones 
with the most avidly binding B cell receptors for survival. [B] Newer repertoire 
studies using large-scale sequence analysis reveal that human B cell repertoires 
retain a large number of variants with diverse numbers of point mutations within 
clones, even in the peripheral blood. 
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antibody repertoire and methods of repertoire regulation shared by different individuals, and 

were the foundation upon which the applications within this thesis were developed. At the 

beginning of this project, the Crowe laboratory had developed an antibody sequencing method 

for the Roche 454 pyrosequencing platform. Using this platform, the Crowe laboratory 

previously studied antibody repertoire sequences from a pool of human donors to discover highly 

related families of antibodies responding to viral infection, novel mechanisms of antibody 

recombination, and very long antigen-binding antibody loops (Briney, Willis, & Crowe, 2012a; 

Briney, Willis, Hicar, Thomas, & Crowe, 2012c; Krause, Tsibane, Tumpey, Huffman, Briney, et 

al., 2011b).  

Although Roche 454 pyrosequencing was capable of generating large data sets, the previous 

studies of antibody repertoires were still plagued with uncertainties due to under-sampling. In 

this body of work, I have translated our Roche 454 methods to the Illumina MiSeq and HiSeq 

platforms to perform even higher-throughput NGS of antibody repertoires. These Illumina 

platforms have become the mainstream methods for sequencing large amplicon libraries, and 

most of the projects presented here make use of data collected with those techniques. The NGS 

techniques that I developed over the course of this thesis and applications of those techniques are 

discussed further in Chapter II. 

 

I.6 Modeling antibody structure with Rosetta 

De novo protein structure prediction is one of the greatest challenges remaining in 

computational structural biology. This process models the tertiary structure of a protein from its 

primary amino acid sequence. Importantly, de novo modeling differs from template-based or 

homology protein modeling in that structural predictions are not based upon a previous 
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homologous structure. To address the challenge of predicting a protein’s structure de novo, 

Rosetta uses short peptide “fragments” to piecewise assemble a complete protein structure. 

Briefly, the Rosetta de novo protein-folding algorithm uses short peptide fragments of known 

proteins obtained from structures deposited in the Protein Data Bank (PDB), and inserts them 

into an extended-chain protein following a Monte Carlo strategy (Rohl, Strauss, Misura, & 

Baker, 2004b). These fragments alter the backbone conformation of the extended-chain protein, 

folding it toward the native tertiary structure. Finally, these low-resolution models can be filtered 

based on user-defined pass/fail criteria, and an energy minimization step can be applied to refine 

and idealize the model. 

De novo protein folding relies on the assembly of short peptide fragments, and many tools 

are available to generate these fragment libraries. Each of these tools follow a similar protocol to 

select fragments: first, the primary protein sequence is used to generate secondary structure 

predictions; next, the sequence, secondary structure predictions and NMR data (if available) are 

used to pick candidate 3- and 9-amino acid fragments from the PDB; finally, these candidate 

fragments are scored and the best N fragments are written to a fragment library file. The 

ROBETTA webserver (http://robetta.bakerlab.org) is available for non-commercial use, and 

allows users to generate fragment libraries for academic or research purposes using a simple 

interface. Additionally, Gront et al. have developed the FragmentPicker that provides users with 

total control over the fragment picking protocol (Gront, Kulp, Vernon, Strauss, & Baker, 2011). 

The TopologyBroker, a tool that allows for more complex simulations, was one of the recent 

improvements added to Rosetta at the time of this work (Porter, Weitzner, & Lange, 2015). The 

conformational space searched during a de novo modeling simulation is vast, and successful 

searches often integrate prior knowledge with sampling. In de novo protein folding, this prior 
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knowledge may be in the form of β-strand pairing constraints as well as the formation of a rigid 

chunk based on a structurally homologous domain, to cite two examples. Previously, protocol 

developers were restricted to a sequential sampling approach in which Rosetta could readily 

violate one set of these constraints by sampling to satisfy the other, as it was in most cases 

unreasonable to write a unique sampling algorithm for each new combination of constraints. The 

TopologyBroker was developed to create a consensus sampling approach that satisfies all of the 

requested constraints without requiring additional code development for each unique system; 

instead, the Broker provides an API that allows for plug-and-play application to generate 

complex sampling strategies. 

De novo structure prediction is a powerful tool. As such, it is critically important to 

understand the limitations of the algorithm. Rosetta performs well at folding small, globular, 

soluble proteins as well as small, simple membrane proteins containing 80-100 residues. 

However, large and complex proteins present additional difficulties that are not easily overcome 

by de novo techniques. In addition to de novo modeling of whole proteins, Rosetta is capable of 

de novo modeling of protein loops, an often-necessary step in protein homology modeling. The 

accuracy of protein loop modeling declines as the loops become longer based on the increasing 

degrees of freedom that must be sampled. De novo structural prediction algorithms sample many 

potential folds, and it is necessary to generate large numbers of models (10,000+) in order to 

adequately sample the native structure. Vast computational resources are needed to generate 

these numbers of models, and use of distributed computational methods (such as computational 

clusters) is recommended. 

De novo protein structure prediction algorithms are regularly assessed in the Critical 

Assessment of protein Structure Prediction (CASP) and reviews of Rosetta’s performance in 
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these assessments have been widely published (Ovchinnikov et al., 2015; Raman et al., 2009). In 

addition to assessments of its ability to de novo model whole proteins, a Rosetta-based group 

participated in the 2011 and 2014 Antibody Modeling Assessments (AMA and AMA-II), which 

compares state-of-the-art structure modeling approaches to model previously unpublished 

antibodies (Almagro et al., 2011; 2014; Weitzner, Kuroda, Marze, Xu, & Gray, 2014). These 

comparative assessments reveal weaknesses and bottlenecks in existing methodologies, 

identifying areas for development of future improvements. 

  

I.7 Discussion 

Antibodies play a critical role in human anti-influenza immunity. Despite continued 

vaccination efforts, IAV continues to cause high rates of disease, and recently generated 

mutations in influenza HAs have been shown to confer respiratory transmission mimicking the 

development of highly pathogenic IAV with pandemic potential (Herfst et al., 2012; Imai et al., 

2012). It is critically important that we improve our understanding of the human immune 

response to IAV, and I propose to do so using a hybrid-methods technique. Emerging 

technologies such as NGS and computational structural modeling allow us to study the human 

antibody repertoire as an unbiased population, examining both sequence and structural features 

of anti-influenza antibodies. In this hybrid-methods approach, these techniques are married to 

traditional experimental methods that validate antibody function. In this thesis I will describe the 

relationships between sequence, structure and function of human antibodies. In the course of 

studying these relationships, I have developed a novel structure-based antibody discovery 

method and applied it to find new anti-influenza antibodies with therapeutic potential. 
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CHAPTER II 
 
 

Impact of New Sequencing Technologies on Studies of the Human Antibody Repertoire 
 

Adapted from Finn and Crowe, Current Opinion in Immunology, 2013 
 
 

II.1 Introduction 

Next generation sequencing (NGS) technologies emerged in the mid-2000’s with the 

development of Roche’s 454 pyrosequencing platform. The power of this technology was 

immediately recognized, and the NGS commercial sector has continued to evolve at a rapid rate. 

Newer platforms have since replaced the Roche 454, such as the Illumina MiSeq and HiSeq 

platforms. Many of these modern NGS technologies developed considerably while this body of 

work was being performed, improving in both quality and in quantity of reads produced. This 

exciting era in technological advancement allowed us to study, for the first time, the diverse 

antibody response to antigenic exposure (either through infection or through vaccination) as a 

population response instead of as a one-to-one interaction. One of the earliest goals of this work 

was to review the available literature from the field of antibody repertoire sequencing in order to 

come to an understanding of the strengths and limits of each of these emerging technologies and 

see how these technologies could be used to study the antibody repertoire. These early studies 

began to change our understanding of the mechanisms of repertoire diversification, the size of 

the antibody repertoire, and the methods of repertoire regulation shared among individuals, and 

provided the foundation upon which the rest of this thesis work was developed.  

 

II.2 Sequencing the antibody repertoire  

Next generation sequencing methods can be used to determine the sequence of recombined 
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immunoglobulin genes amplified from primary cell or tissue samples, generating large sequence 

databases that allow the antibody repertoire to be studied as a population. It is possible to 

sequence these recombined genes isolated from genomic DNA by PCR, or more commonly from 

transcribed genes using cDNA made from mRNA by reverse transcription, which is then 

amplified by PCR. The sequences of these resulting amplicons are then determined using high-

throughput DNA sequencing technologies. Many of these NGS techniques were available at the 

time of this work, and specifications of these methods are detailed in Table 1. Undoubtedly, the 

capabilities and proprietary formats of these types of technologies will continue to evolve 

rapidly.  

 

The antibody amplicon sequences that result from NGS must be analyzed with specialized 

software. Several web-based approaches to antibody gene analysis were available prior to this 

work, such as IMGT V-QUEST, JOINSOLVER and IgBLAST, each of which identify the 

inferred V(D)J gene segments used during recombination via template-based alignments, as well 

Table 1. Run statistics for common next generation sequencing techniques 

 
Roche 454 GS FLX 

Titanium [1] 
Illumina 

MiSeq [2] 
Illumina 

HiSeq 2500 [3] 

Read Length Up to 600 bp Up to 500 bp 
(250 x 2) 

Up to 200 bp 
(100 x 2) 

Output 450 Mb 7.5-8.5 Gb 540-600 Gb 

Reads / Run 700,000 15 Million 3 Billion 

Quality Consensus accuracy 
of 99.995% 

> 75% bases 
above Q30 

> 80% bases 
above Q30 

 [1] “GS FLX+ System.” 454 Life Sciences, a Roche Company. Web. Accessed 05 Aug 
2013. [2] “MiSeq Benchtop Sequencer Specifications.” Illumina: sequencing and array-
based solutions for genetic research. Web. Accessed 05 Aug 2013. [3] “HiSeq 2500/1500 
Specifications.” Illumina: sequencing and array-based solutions for genetic research. 
Web. Accessed 05 Aug 2013.  
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as provide robust annotative data for further study (Alamyar, Duroux, Lefranc, & Giudicelli, 

2012; Souto-Carneiro, Longo, Russ, Sun, & Lipsky, 2004; Ye, Ma, Madden, & Ostell, 2013). 

These tools are limited in their ability to efficiently process large datasets, and as NGS 

techniques continue to improve in throughput, these inefficiencies become more problematic. In 

addition to these tools we have developed PyIR (unpublished), a Python wrapper for IgBLAST 

that distributes execution over multiple CPUs, improving our ability to process millions of raw 

NGS reads. Although the output of IgBLAST is parsed to a user-friendly JSON format, our 

library does not manipulate the original data. Additional fields have been added to the original 

IgBLAST output for ease of analysis and reporting. For the purposes of this thesis, all sequences 

discussed herein have been analyzed using PyIR. 

  

II.3 Endogenous heavy and light chain pairs 

Antibody heavy and light chain pairing is an important aspect of the diversification of the 

antibody repertoire, and it has been shown that antibody heavy chains are capable of pairing with 

many light chains (Zhu et al., 2013). Therefore, identifying the correct heavy and light chain 

pairing partners during repertoire sequencing is of critical importance to understand repertoire 

diversity. At the time of this work, technical limitations prevented large-scale sequence analysis 

of naturally paired heavy and light chain genes. Two principal approaches were pursued to 

accomplish the task of pairing heavy and light chain genes on a massive scale. The first approach 

aimed to pair the heavy and light chain sequences from separately sequenced repertoires using 

informatic approximations, while the other approach aimed to link the sequences during variable 

gene amplification by PCR, followed by sequence analysis of both chains in one amplicon. 

Indexed sequencing protocols can be readily applied to barcode both the heavy and light 
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chain sequences from a single sample, after which the heavy and light chain sequences can be 

paired. One study paired heavy and light chain variable gene sequences according to their 

relative frequencies within the repertoire, with a majority (21/27, or 78%) of the pairings tested 

generating antigen-specific antibodies (Reddy et al., 2010). A second study found that heavy and 

light chain pairs could be identified often using an evolution-based analysis, wherein coevolution 

of the heavy and light chains resulted in correlations between both the frequency and topology of 

the corresponding phylogenetic tree branches (Zhu et al., 2013). In either case, although these 

techniques may allow isolation of antigenic binding antibodies, they do not assuredly retain the 

original heavy and light chain gene pairing information. Later, techniques were developed to 

retain the endogenous pairing information by linking the heavy and light chains during gene 

amplification (DeKosky et al., 2013; White et al., 2011). In one study, single B cells were lysed 

in isolation using a high-density microwell plate, after which mRNA transcripts were captured 

on magnetic beads for emulsion PCR amplification with linking primers (DeKosky et al., 2013). 

This process annealed the heavy and light chain complementarity determining region 3 (HCDR3 

and LCDR3, respectively) sequences together into one amplicon for NGS. A similar technique 

was employed by another study, which used advances in microfluidics to successfully 

accomplish on-chip single cell RT-qPCR (White et al., 2011). While published results are limited 

to 300 single-cell RT-qPCR measurements per run, the success of this protocol suggests that the 

chip could be scaled up to more than 1000 measurements per chip. While these techniques likely 

highlight the future of antibody repertoire studies, the current read lengths of next generation 

sequencing limits the application to only HCDR3:LCDR3 paired sequences. Longer read lengths 

will be required to identify full-length antibody variable gene sequences that can be used to 

synthesize cDNA encoding the native sequence of the original antibody including all six CDRs. 
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II.4 Mechanisms of repertoire diversification 

NGS analysis of the antibody variable gene repertoire broadens our understanding of the 

critical V(D)J recombination events that are central to antibody repertoire diversification. While 

the mechanisms of recombination activating gene (RAG)-mediated V(D)J recombination are 

relatively well understood, rare events that occur during V(D)J recombination have been difficult 

to study using individual antibodies isolated by hybridoma or single B cell sorting techniques 

because of the limited scale of such techniques. In contrast, rare genetic events representing 

additional methods of repertoire diversification are observed readily in large antibody gene 

repertoire sequence databases generated by NGS.  

For example, V(DD)J recombination events that appear to violate the 12/23 rule of 

recombination, occurring when the 12-bp recombination signal sequences (RSS) flanking the D 

gene segment incorrectly pair to allow fusion of two D gene segments. V(DD)J recombination 

has been observed in both in vitro and in vivo systems, but accurate calculations of the 

frequencies of these events were difficult to establish in the past. Furthermore, it was unclear if 

the perceived V(DD)J recombinations were instead artifacts of random N-additions that simply 

mimicked natural D gene genomic sequences. In one study, human peripheral blood antibody 

repertoires collected using Roche 454 technology were analyzed using stringent criteria that 

revealed that V(DD)J recombination events occur in approximately 1 in 800 circulating B human 

cells (Briney, Willis, Hicar, Thomas, & Crowe, 2012c). A second study of human peripheral 

blood antibody repertoires generated with Illumina HiSeq technology found that tandem D gene 

sequences occur in human pro-B cells more frequently than would be expected by random 

chance (Larimore, McCormick, Robins, & Greenberg, 2012). Additionally, these V(DD)J 
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recombination events appear to be selected against during B cell development, occurring at much 

lower frequencies in the population of productive antibody sequences. Analysis of the larger data 

set produced by Illumina HiSeq found V(DD)J recombination events in approximately 1 in 

25,000 B cells.  

These preliminary studies offer a glimpse into the depth of information made available by 

antibody repertoire analysis. While rare, there are unusual recombination events that contribute 

to repertoire diversification with unusual structural elements, such as the formation of long 

complementarity determining region 3 (CDR3) loops, which are important in the recognition and 

neutralization of viruses such as HIV. Repertoire sequencing has delineated particular areas of 

structural plasticity in immunoglobulins that accommodate insertions and deletions (Briney, 

Willis, & Crowe, 2012b); however, the studies reveal that most long heavy chain CDR3 

(HCDR3) loops are formed at the time of recombination through use of long D and J segments 

and extended N addition regions, not by insertions (Briney, Willis, & Crowe, 2012a).  

 

II.5 Predicting the repertoire size 

Repertoire diversification leads to the generation of a large population of unique antibody 

sequences. It is theorized that the human antibody repertoire may contain up to 1011 unmutated 

sequences, however laboratory studies suggest the circulating population of B cells contains far 

fewer sequences.  

To predict the size of the circulating antibody repertoire, one study applied the ‘birthday 

paradox’ from probability theory, which concerns the probability of two people in a population 

of n random individuals sharing a birthday; the paradox being that it takes far fewer individuals 

than would otherwise be assumed to generate a 99% probability that two share a birthday. The 
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study estimated that there are minimally 2 x 106 unique rearrangements in the peripheral blood 

compartment (Boyd et al., 2009). This algorithm, however, does not estimate the upper boundary 

of unique sequences due to the possibility of very low copy number sequences that are not 

observed using the then-current sequencing techniques.  

Roche 454 sequencing can be used to generate large antibody sequence databases from 

human PBMC samples. Using these data, the total number of productive HCDR3 sequences in 

each of two healthy human subjects was calculated following a simple algorithm (Arnaout et al., 

2011). The number of unique sequences added to the repertoire per 1000 additional sequences 

was counted and found to decrease regularly, following a pattern of logarithmic decay. The point 

where no additional unique sequences would be observed was calculated, and that value was 

expanded to encompass the total blood volume of a human adult. The upper bound of the 

circulating human HCDR3 repertoire was estimated to be between 3 and 9 million unique 

sequences (Arnaout et al., 2011). As discussed previously, the three principal recognized 

mechanisms underlying antibody diversification result in a theorized population of 1011 possible 

antibody sequences, far more than this technique predicted in the circulating repertoire.  

 

II.6 Global repertoire regulation across individuals 

Regulatory mechanisms exist that account for the inconsistency between the theorized 

number of possible recombined antibody sequences and the actual number of unique sequences 

observed to be circulating in the blood. For example, it is known that self-reactive antibodies are 

removed from the population by negative selection of B cells during early B cell development. 

Antibody repertoire studies have shown recently that these mechanisms of regulation seem 

common among many individuals, suggesting that global regulatory mechanisms may be more 
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sophisticated than previously theorized.  

One study quantitated the presence of the same HCDR3 amino acid sequence in two different 

individuals, also referred to as the overlap of sequences between two repertoires (Arnaout et al., 

2011). Synthetic HCDR3 repertoires then were generated computationally using knowledge-

based rules developed from actual human antibody repertoires. The number of sequences the two 

synthetic data sets shared was related directly to the mutation rate used to develop those data 

sets. From these data, the researchers were able to determine that the overlap between two 

different HCDR3 repertoires occurs significantly more frequently than would be expected by 

chance, supporting the possibility of a global mechanism for antibody repertoire regulation 

(Arnaout et al., 2011). It is now possible to conceive of several types of repertoires (see Figure 

3): (1) private repertoires, derived from the clones of one donor, (2) shared (or public) 

repertoires, representing antibody sequences found in more than one donor, and (3) global 

repertoires, representing the collection of all antibody sequences in a population of subjects.  

 

Cell surface markers can be used to sort naïve and memory B cell subsets before high 

 
Figure 3. Types of repertoires: 1) Private, from one donor, 2) Shared, sequences 
found in two or more donors, and 3) Global, the sequences shared among an 
entire population of subjects. 
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throughput sequencing. In one study, such sequence data then were analyzed in the context of 

V(D)J recombinations to find that the hypothesized global mechanism of regulation results in 

increased oligoclonality in memory repertoire subsets when compared to the naïve B cell subset 

repertoire [17]. Furthermore, phylogenetic clustering revealed that subset repertoires cluster 

exclusively in an inter-donor dependent manner among four donors, revealing that the 

similarities between inter-donor repertoire subsets were significantly greater than the similarities 

between intra-donor repertoire subsets.  

 

II.7 Identifying antibody clonal lineages 

In collaboration with Sandhya Bangaru et al. (unpublished work), I developed a method to 

identify clonally related antibody sequences from NGS repertoires. Prior to this collaboration, 

Sandhya had discovered a novel anti-influenza antibody, FluA-20, using human hybridoma 

technology. FluA-20 recognizes a unique site on the HA head domain and is broadly specific to 

many subtypes of IAV, shown by capture ELISA against recombinant HA proteins derived from 

H1 (A/California/04/2009, A/Texas/36/1991), H3 (A/Hong Kong/1/1968, A/Victoria/3/1975), 

H7 (A/Shanghai/2/2013, A/Netherlands/219/2003) and H9 (A/Hong Kong/1073/99) subtypes 

(data not shown). This antibody was isolated from a donor with extensive influenza vaccination 

history, and its epitope may represent a new target for future influenza vaccines. 

We were interested in studying the development of this antibody by tracing back the clonal 

lineage from which it arose. FluA-20 was isolated from a peripheral blood sample drawn day 31 

after vaccination with the 2014-2015 trivalent influenza vaccine (TIV). Additional peripheral 

blood samples were drawn on days 0, 3, 4, 5, 6, 7, 10, 11 and 14 post-vaccination. Peripheral 

blood mononuclear cells (PBMCs) were isolated from these samples and frozen for future study.  
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After discovery of FluA-20, we prepared an antibody sequence database from these 

cryopreserved cells to perform clonal lineage analysis. Total RNA was isolated from 10 million 

PBMCs at each time point, and an antibody amplicon library was generated by RT-PCR as 

previously described (Bangaru et al 2016, Thornburg et al 2016). These antibody amplicon 

libraries were prepared using the Illumina TruSeq Library Preparation Kit (Illumina, FC-121-

3001) and sequenced on an Illumina MiSeq using the PE-300 v3 reagent kit (Illumina, MS-102-

3001). These raw sequences were analyzed using PyIR (unpublished), a Python wrapper for 

IgBLAST described in section II.2.   

I performed a search for sequences clonally related to FluA-20 (i.e., “siblings”). From the 

database of annotated antibody sequences obtained from this donor, I first filtered for antibody 

sequences with VH4-61/JH4 lineage. The HCDR3 region of these sequences was pairwise aligned 

to the HCDR3 of FluA-20 using a PAM30 matrix, with penalties for gap opening and gap 

extension of -14 and -3, respectively. HCDR3 sequences with a Hamming distance of <= 3 to 

FluA-20 were selected as siblings and the ‘full length’ nucleotide and amino acid sequence was 

queried from our database for further analysis. We identified siblings to FluA-20 in blood 

samples from four time points: days 5, 6, 11 and 14 post-vaccination with TIV. We inferred that 

the majority of these siblings arose from one common ancestor, and clustered into three major 

groups (designated Cluster A, B and C) that differ by point mutations across the VH gene region. 

I constructed a network graph from the aligned, full-length sequences to visualize the 

relationships between these clusters (see Figure 4). Identical sequences were grouped into single 

nodes, and edges were drawn between two nodes if their Hamming distance was the lowest 

compared to all other nodes. Nodes denoting the inferred unmutated common ancestor (UCA) 

and the germline VH4-61/JH4 sequence were added manually. This network was visualized using 
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Cytoscape and manually adjusted for visual clarity (to prevent nodes from overlapping edges to 

which they are not connected, and to shorten distances between nodes that are closely related). 

The network analysis of these sequences revealed that FluA-20 arose from blasting cells present 

at day 6 that also were observed at day 14.  

 

To validate that these siblings were indeed related to FluA-20, we recombinantly expressed 

several of the identified antibodies as Fab fragments and Sandhya assessed their binding to 

recombinant HA via ELISA. Three of these sibling antibodies, Sib 2, Sib 3 and Sib 45, have very 

similar activity and breadth as FluA-20, despite mutations in the paratope. We identified two 

sibling antibodies in a cluster that had mutated more than FluA-20, Sib 28 and Sib 48, whose 

paratope mutations abrogated binding to some subtypes of H3 and H5, but not others. Finally, 

Sib 7 and Sib 33 lost activity to all 13 HAs tested, likely due to the addition of deleterious 

 
Figure 4. Network analysis of sequences clonally related to FluA-20. Nodes represent 
unique sequences observed in our database, with the size of the node correlating to the 
count of replicate sequences observed. The colour of each node denotes the time point at 
which it was found; white for day 5, yellow for day 6, orange for day 11 and red for day 
14. The black node represents the VH4-61/JH4 germline sequence and the gray node 
represents an inferred unmutated common ancestor (UCA). The maroon, triangle-shaped 
node represents FluA-20. Edges drawn between nodes show that those sequences are 
more closely related to each other than to any other sequence. Edge distances are 
arbitrary and used only to visually clarify the graph. 
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somatic mutations (see Appendix 1). 

 In addition to testing somatic variants of FluA-20 identified by clonal lineage analysis, we 

expressed the FluA-20 UCA as recombinant Fab or IgG. Despite reverting 17 somatic mutations 

in the heavy chain variable gene and 12 mutations in the light chain variable gene, these 

recombinant UCA antibodies retained substantial binding breadth (see Appendix 1). As 

expected, however, both FluA-20 and the somatically mutated sibling antibodies we discovered 

displayed an increase in binding potency and breadth.  

This study shows that NGS data can be leveraged to study the development of a broadly 

protective anti-influenza antibody. Clonal lineage assessment revealed that FluA-20, a 

monoclonal antibody discovered using human hybridoma technology, may have arisen from a 

naïve B cell carrying a low-affinity, broadly specific anti-HA antibody with a sequence similar to 

the inferred UCA. Based on our analysis, it is suggested that this B cell expanded as a 

plasmablast through days 5 and 6, undergoing somatic hypermutation to generate a population of 

somatic variants with differing functions that persisted at least until day 31 in the circulating 

repertoire.  The knowledge gained from this study is helpful in the development of future IAV 

vaccines targeted at eliciting broadly protective anti-influenza antibodies. 

 

II.8 Discussion 

Recent and ongoing development of high-throughput amplicon sequence analysis techniques 

is providing a new and detailed view of the complexity and composition of human B cell 

repertoires. These technologies will continue to evolve, with the most likely next leap the 

acquisition of the ability to link heavy and light chain sequences at high throughput with high 

facility. Proteomics sequencing of the expressed antibody repertoire in serum is on the horizon 



 28 

(Cheung et al., 2012). Robust computational methods for modeling the structure and function of 

antibodies, such as Rosetta, are starting to provide important insights and are a major focus of 

this thesis work (Willis, Briney, Deluca, Crowe, & Meiler, 2013). Early views of the human B 

cell repertoire suggest that the size of antigenic-specific clones that persist after exposure to 

foreign pathogens is much larger than previously thought. In contrast, and perhaps paradoxically, 

the size of the total antibody repertoire in circulating B cells may be orders of magnitude smaller 

than predicted. Future studies will need to address how large epitope-specific ‘swarms’ of 

somatic variants can be maintained in a repertoire of relatively small and fixed size without 

compromising responses to future exposures. Finally, the high level of concordance of the 

structure and size of repertoires between individuals suggests that there are strong regulatory 

programs that we understand only in part.  
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CHAPTER III 
 
 

Improving Antibody Loop Modeling with Restraints 
 

Adapted from Finn et al., PLOS ONE, 2016 
 

 
III.1 Introduction 

The field of antibody-mediated immunity has long benefited from structural studies of 

protein-protein interactions, in most cases through the determination of co-crystal structures of 

antibodies in complex with their antigens. Such studies often reveal the molecular mechanism of 

pathogen neutralization (Hashiguchi et al., 2015; Hong et al., 2013; Y. Li et al., 2011; Whittle, 

Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, Haynes, Walter, Moody, Kepler, 

Liao, & Harrison, 2011a). However, the size and complexity of the antibody repertoire coupled 

with the substantial resources needed for experimental structure determination prohibit such 

studies on a comprehensive scale. B cell development leads to the generation of a large 

population of unique antibody proteins, and it is theorized that this diverse antibody repertoire 

may contain 1011 or more different protein sequences (Glanville et al., 2009; Trepel, 1974). 

Recent studies determined that the circulating antibody repertoire contains at least 106 unique 

sequences, a number still far too large for comprehensive experimental structural studies 

(Arnaout et al., 2011; Boyd et al., 2009). 

Analysis of antibody structures determined by X-ray crystallography revealed conservation 

of structural features even in the regions of the antibody with the most sequence diversity, the six 

complementarity determining region (CDR) loops, which are responsible for antigen binding. 

Three of these loops are contributed by the heavy chain component of the fragment variable (Fv) 

domain of the antibody (HCDRs), and three are contributed by the light chain Fv domain 
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(LCDRs). Two studies have identified robust rules that define canonical structures for five of the 

six CDR loops (Morea, Tramontano, Rustici, Chothia, & Lesk, 1998; North, Lehmann, & 

Dunbrack, 2011). However, the HCDR3 defies classification attempts. The HCDR3 is encoded 

by the junction of three gene segments (V, D and J genes) connected by random nucleotide 

additions or deletions that are not encoded in the antibody germline gene segments, but rather 

introduced by the host enzyme terminal deoxynucleotidyl transferase during antibody gene 

recombination. The HCDR3 is therefore significantly more diverse in sequence length and 

composition than the other CDR loops, which are encoded by either a single gene segment 

(heavy and light chain CDRs 1 and 2) or by a simplified junction (LCDR3) (Fanning, Connor, & 

Wu, 1996; Finn & Crowe, 2013; Tonegawa, 1983). As a result a large and diverse 

conformational space is observed for HCDR3s. Accordingly, HCDR3 is often especially 

important for antigen recognition and binding as has been revealed in previous structural studies 

(Weitzner, Dunbrack, & Gray, 2015).  

The Rosetta software suite for macromolecular modeling can de novo predict the structure of 

a protein or portions thereof. The tertiary structure of a protein is determined from its primary 

sequence by pairing effective sampling techniques with knowledge-based energy functions. 

These energy functions for the most part assume that optimal geometries within proteins can be 

derived from a statistical analysis of the available structural information stored in the Protein 

Data Bank (Kaufmann, Lemmon, Deluca, Sheehan, & Meiler, 2010; Simons, Kooperberg, 

Huang, & Baker, 1997). Similar approaches are used during comparative modeling, when 

structurally divergent regions (typically loops) of otherwise homologous proteins must be 

predicted (Rohl, Strauss, Chivian, & Baker, 2004a). Rosetta is capable of predicting antibody 

structures with low root mean square deviation (RMSD) to experimental structures outside the 
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HCDR3; however accurately modeling the HCDR3 loop remains a challenge (Almagro et al., 

2011; 2014; Sircar, Kim, & Gray, 2009; Weitzner et al., 2014). 

In an effort to classify canonical structures of the HCDR3 loop, prior work has subdivided it 

into two domains: the less diverse “torso” and the more variable “head” (Morea et al., 1998; 

North et al., 2011) (see Figure 5). Two major families of canonical torso structures have been 

identified, and are referred to as “bulged” and “non-bulged” torsos (North et al., 2011). In this 

study, the geometries of the bulged torso domain have been used to develop restraints that 

restrict the sampling space of the HCDR3 torso and result in more native-like models when de 

novo modeling the entire HCDR3 loop.  

 

Previous studies have used restraints to model the bulged HCDR3 torso, following rules 

previously described by Shirai et al. wherein a pseudodihedral angle restraint was calculated 

from the Cα atoms of residues T5, T6, T7 and the following initial residue of Framework 4 to 

 
Figure 5. Defining the HCDR3 torso. The torso is defined as the first three and 
last four residues of the HCDR3 loop, numbered from T1 to T7. Main chain 
atoms are shown for bulged (panel A; PDBID 1UYW) and non-bulged (panel 
B; PDBID 2J88) torsos. In many (but not all) bulged torsos, a side-chain 
interaction between T2 and T6 causes the C-terminal side of the torso to bulge 
outward; the lack of such an interaction in non-bulged torsos leaves the beta-
strand structure intact. 
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define the bulged or non-bulged torso (Almagro et al., 2014; Shirai et al., 2014; Shirai, Kidera, & 

Nakamura, 1996; Weitzner et al., 2014; Whitelegg & Rees, 2000). Weitzner et al. utilized 

RosettaAntibody implemented within the Rosetta 3 framework to predict the structures of 11 

previously unpublished antibody structures for the second antibody modeling assessment (AMA-

II) (Weitzner et al., 2014). The longest HCDR3 loop in AMA-II contained 16 residues, and was 

predicted by the RosettaAntibody team with an RMSD of 3.70Å to the native HCDR3 loop. 

Shirai et al. also competed in AMA-II, and used their torso restraint rules to filter results 

generated by a pipeline that includes both Spanner and OSCAR for loop structure prediction; in 

comparison to the RosettaAntibody team described above, their best model for the longest 

HCDR3 loop had an RMSD of 3.29Å to the native HCDR3 loop (Shirai et al., 2014). 

In this study, a novel set of restraints was tested on 28 previously crystallized apo human 

antibodies with HCDR3 loops of increasing length and structural complexity. We expect that 

these restraints will improve modeling of antibodies for which no structural information is 

available, providing a means by which comprehensive structural studies of antibodies may be 

accomplished. 

 

III.2 Results 

Measuring bulged and non-bulged torso dihedral angles 

An annotated list of antibodies was used to cull experimentally derived structures from the 

Protein Data Bank (PDB), expanding upon the list published by North et al. (North et al., 2011). 

Following the IMGT conventions for defining the HCDR3, where the first HCDR3 residue 

occurs immediately following the V-gene residue Cys104 and the last HCDR3 residue occurs 

immediately preceding the J-gene residue Trp118, the torso is defined as the first three and the 
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last four residues of the HCDR3 (Lefranc et al., 2003; North et al., 2011). Accordingly, torso 

domain regions were pulled from these structures as two short peptide fragments (T1-T3 and T4-

T7) and clustered using Rosetta at a threshold of 2 Å to separate bulged and non-bulged torsos. 

Previous studies identified a sequence motif (Arg or Lys at T2 and Asp at T6) that contributes to 

bulged torso formation in some but not all cases; these key residues were conserved in our 

bulged cluster, with 80% of bulged structures presenting Arg or Lys at T2, 73% presenting Asp 

at T6, and 65% retaining the complete T2/T6 sequence motif (see Appendix 2) (Morea et al., 

1998; North et al., 2011). We found that germline-encoded regions of the antibody sequence 

often contribute these critical residues, as the end of the V gene segment contributes the first two 

to three torso residues while the J gene segment contributes the last four torso residues. The 

T2/T6 sequence motif that is often found in bulged torsos is present in 73% of naïve V and 92% 

of J germline gene allele segments (see Appendix 2.  

The φ and ψ angles of the seven torso residues of each antibody structure were measured, 

with key differences between bulged and non-bulged torsos identified in the ψ angles of residues 

T4 and T6 (see Table 2). However, upon further study of previously defined torso clusters we 

observed that the ψ angle of T4 is able to form two distinct conformations in both bulged and 

non-bulged torso clusters, and the T4 ψ angle does not distinguish between bulged and non-

bulged torso clusters; the differences we observed when comparing all bulged antibodies to all 

non-bulged antibodies were due to the limited sample size of structures available in the PDB for 

these sub-conformations (see Appendix 2) (North et al., 2011). This is in contrast to for example 

T5, where a larger standard deviation is observed but still a statistically significant preference for 

a smaller ψ angle in a bulged torso exists. Average φ and ψ angles were calculated as follows: 

𝑎𝑡𝑎𝑛2 !"#!
!

, !"#!
!

  (1) 
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An approximate standard deviation was found using the following equations. For the vector 

v: 

!
 =  !"#!

!
, !"#!

!
   (2) 

Approximate standard deviation is calculated using: 

2 ×  1− 
!

   (3) 

It is worth noting that straightforward average and standard deviation calculations are 

insufficient when handling circular values such as dihedral angles. 

 

 

Derivation of restraints for bulged torso conformation 

It has been observed that Rosetta rarely samples the bulged torso conformation when 

modeling HCDR3 loops (Weitzner et al., 2015). Due to this limitation, coupled with the greater 

amount of experimentally derived structural data available for bulged torsos than non-bulged 

torsos and the fact that bulged torsos are more prevalent in the human antibody repertoire, we 

chose to focus on developing restraints to improve modeling of HCDR3 loops with bulged 

Table 2. Bulged and non-bulged dihedral angle measurements. 

Torso 
Residue 

Bulged Non-bulged 
φ ψ φ ψ 

T1 -145 ± 9 148 ± 12 -146 ± 12 145 ± 16 
T2 -101 ± 22 142 ± 13 -109 ± 20 136 ± 26 
T3 -107 ± 32 137 ± 33 -119 ± 44 138 ± 51 
T4 -121 ± 49 161 ± 48 -82 ± 49 3 ± 59 
T5 -95 ± 35 98 ± 26 -126 ± 43 136 ± 53 
T6 -87 ± 18 -30 ± 26 -118 ± 34 129 ± 24 
T7 -126 ± 14 134 ± 10 -125 ± 19 136 ± 11 

The average and standard deviation of φ and ψ angles were calculated from existing 
human and mouse antibody crystal structures available in the PDB. Torso structures were 
clustered as bulged (n = 218) and non-bulged (n = 38) using a cluster radius of 2 Å. 
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torsos. Rosetta uses a defined format to read in experimentally derived restraints. We used our 

measurements to generate dihedral angle restraints following a circular harmonic scoring 

function. Since the ψ angle measurement of T4 varies by 180 degrees between known bulged 

torso clusters, this measurement was omitted from our calculated restraints (see Appendix 2).  

 

Modeling HCDR3 loops using bulged torso restraints 

Following the protocol capture outlined in Supplemental Information, these restraints were 

used to model and score the HCDR3 loops from 28 benchmark antibodies whose structures had 

been previously determined by X-ray crystallography (see Table 3). These 28 benchmark 

structures represent HCDR3 lengths from 11 to 26 residues, with a mean length of 16 residues, 

spanning a range regularly observed in human antibody repertoires that also have a mean 

HCDR3 length of 16 amino acids (Briney, Willis, Hicar, Thomas, & Crowe, 2012d). Each of the 

benchmark antibodies was crystallized in the absence of an antigen (i.e., apo) in order to avoid 

attempts to model conformations achieved by induced fit with a binding partner. 

Restraints function as a penalty during Rosetta’s scoring protocol, i.e., a positive energy 

value is added when a dihedral angle leaves the allowed range. In this case, models formed with 

native-like bulged torso dihedral angles would have no (or only a very small) penalty from the 

restraint term, whereas models that deviated from the bulged torso dihedral angles would be 

penalized with a positive energy score. When restraints were applied during modeling, we 

observed a higher density of low-scoring, low-RMSD models (see Figure 6C, blue circles, n=26) 

than when modeling without restraints (see Figure 6A, blue circles, n=2). These low-scoring, 

low-RMSD models are defined as scoring in the top 10% of models, with Cα RMSD16 to the 

native structure of ≤ 2 Å (represented as blue circles, whereas models scoring below the top 10%  
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Table 3. Experimentally derived antibodies used to benchmark bulged torso restraints. 
PDB ID HCDR3 Length Resolution (Å) Source 
1WT5 11 2.10 Humanized 
2G75 11 2.28 Human 
4G5Z 11 1.83 Human 
3QRG 12 1.70 Human 
4G6K 12 1.90 Humanized 
4LLU 12 2.16 Human 
1FVC 13 2.20 Humanized 
3HI5 13 2.50 Human 

4HFW 13 2.60 Human 
4FQH 14 2.05 Human 
4NM4 14 2.65 Human 
8FAB 14 1.80 Human 
3G6A 15 2.10 Human 
3TNM 15 1.85 Human 
3W9D 15 2.32 Human 
1AQK 16 1.84 Human 
1DQL 16 2.60 Human 
1OM3 16 2.20 Human 
1U6A 17 2.81 Human 
3AAZ 17 2.20 Humanized 
4M5Y 17 1.55 Human 
3INU 18 2.50 Human 
3QEH 18 2.59 Human 
4F58 18 2.49 Human 
1HZH 20 2.70 Human 
4LKC 22 2.20 Human 
1RHH 24 1.90 Human 
4FNL 26 2.30 Human 

28 high-resolution antibody structures solved by X-ray crystallography were used to 
benchmark the bulged torso restraints. Each of these antibody structures was solved in 
the absence of antigen (i.e., apo structures) and all residues in the HCDR3 loops were 
resolved. 



 37 

 

 

 
Figure 6. Bulged torso restraints improve native-like HCDR3 sampling and recovery. 
Using Rosetta LoopModel, 1,000 models of the benchmark antibody 4G5Z (circles) were 
generated with or without bulged restraints and these models were then scored with or 
without bulged restraints (panel A, modeled and scored without restraints; panel B, 
modeled without but scored with restraints; panel C, modeled with but scored without 
restraints; panel D, modeled and scored with restraints). The native crystal structure 4G5Z 
was also minimized using Rosetta FastRelax, generating 20 structures (black x’s). The 
total HCDR3 score (in Rosetta Energy Units, or REU) is shown versus the Cα root mean 
square deviation of the HCDR3 loop, normalized to that of a protein loop containing 16 
residues (RMSD16, in Å) to the native crystal structure. Models with scores ranked in the 
top 10% and RMSD16 ≤ 2 Å have been colored blue, while models with scores ranked 
below the top 10% and RMSD16 > 2 Å have been colored red. Improved native-like 
HCDR3 sampling is observed as a greater density of low RMSD16 models (blue circles) 
in comparison to Panel A, while improved model recovery is defined as a greater 
correlation between RMSD16 and score (colored vs. gray circles) in comparison to Panel 
A, as seen in panels C and D. 
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of models with Cα RMSD16 > 2 Å are represented as red circles in Figure 6 and Appendix 2. 

When restraints were applied during scoring but not during modeling (see Figure 6B) we found 

that the resulting models incur substantial restraint penalties due to non-native-like sampling of 

the torso domain, however the correlation between score and RMSD16 is improved. During 

application of this protocol wherein a native structure is unavailable, the ability to identify 

native-like models by score alone is extremely valuable. When applying restraints during both 

modeling and scoring, Rosetta generates a model population where an increased number of 

native-like structures correlate with low scores (see Figure 6D, blue circles, n=30) as compared 

to experiments modeled and scored without restraints (see Figure 6A, blue circles, n=2). Finally, 

we found that the application of these restraints results in more models whose backbone 

structures agree with bulged torso measurements defined in the literature (n=719 with restraints, 

n=33 without restraints; see Appendix 2) (Shirai et al., 1996; Weitzner et al., 2015). 

The results of modeling the 28 benchmark HCDR3 loops with or without bulged torso 

restraints can be found in Figures 7-9. We observed changes in both conformational sampling 

and in model discretion by score when restraints were applied. To analyze improvements in 

conformational sampling, models were ranked by RMSD16 to their native structure (see Figure 

7) and to study changes in scoring discretion the models were ranked by HCDR3 score (see 

Figure 8). Finally, models were clustered using a package called Calibur and the best cluster by 

average HCDR3 score was analyzed (see Figure 9). 

 

Bulged HCDR3 restraints improve native-like conformational sampling 

Modeling with bulged torso restraints improved native-like conformational sampling (the 

number of models with RMSD16 below 2 Å) in 26 out of 28 benchmark cases (see Figure 7); in 
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the remaining case of benchmark antibody 1RHH with an HCDR3 loop of 24 residues, no 

models below 2 Å were observed when modeling with or without restraints, and in the case of 

4FNL with an HCDR3 loop of 26 residues, 2 models below 2 Å were observed when modeling 

without restraints, compared to no models sampled below 2 Å when modeling with restraints. On 

average, 90 models below 2 Å were generated with restraints, compared to only 12 models 

below 2 Å without restraints. The best RMSD sampled using bulged torso restraints was below 1 

Å in 18 out of 28 cases with restraints, compared to 10 out of 28 cases without restraints. The 

average difference in the best RMSD sampled was 0.33 Å lower when restraints were applied 

during modeling. Furthermore, the average RMSD16 of the most native-like 10% of models 

(when ranked by RMSD16) is below 1 Å in 11 out of 28 cases when restraints are applied, 

compared to just 1 of 28 cases without restraints, revealing improved depth of high-resolution 

native-like sampling.  

State-of-the-art computational methods to construct loop regions in proteins work reliably 

until about eight residues, and provide good results from some loops up to twelve residues. 

Beyond this limit, the conformational space often becomes too large to be sampled exhaustively. 

Many HCDR3 loops are longer and specialized methods are needed to limit the conformational 

space. Our analyses describe better sampling of native-like structures during modeling of these 

diverse HCDR3 loops when our torso restraints are used, with qualitative changes in 

performance observed at 14 and 18 amino acids. 
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Figure 7. Torso restraints improve sampling of bulged HCDR3 loops. For each 
benchmark antibody structure, 1,000 models were generated with or without bulged torso 
restraints. The number of models below 2 Å RMSD16 to the native structure, the best 
RMSD16 sampled, and the average RMSD16 of the best 10 models ranked by RMSD16 
are provided. For RMSD16-containing cells, blue shading represents RMSD16 ≤ 1 Å; 
yellow shading represents RMSD16 between 1 and 2 Å; red represents RMSD16 > 2 Å. 
For cells containing the number of models below 2 Å, blue shading represents ≥ 100 
models; yellow shading represents ≥ 10 models; red shading represents fewer than 10 
models. 
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Bulged HCDR3 restraints improve scoring discretion 

The ability to identify native-like HCDR3 loops by score when de novo modeling using 

Rosetta is of critical importance. Unfortunately, we found the predictive ability of Rosetta’s 

scoring function in the absence of restraints to be lacking; when ranking models by HCDR3 

score, only 2 of 28 benchmark cases resulted in a top-scoring model with RMSD16 < 2 Å (see 

Figure 8). However when restraints were applied, ranking models by score resulted in 7 of 28 

cases with an RMSD16 below 2 Å and two of those with RMSD16 below 1 Å (antibody 3QRG, 

12 amino acids long and 4FQH, 14 amino acids long). On average, the RMSD16 of the best 

scoring model improved by 0.84 Å when restraints were used during modeling and scoring. 

Because restraints improve sampling, there was also a marked improvement in the average 

RMSD16 of the top 10 models ranked by score; when restraints are applied, the average is below 

2 Å in 9 out of 28 cases, but no results below 2 Å were found when restraints were not used. On 

average, there is an improvement of 1.22 Å in the average RMSD16 of the top 10 models ranked 

by score. The average rank of the first model below 2 Å is 17 when restraints are applied and in 

8 of 28 cases the first-ranking model is below 2 Å, compared to only 2 out of 28 cases resulting 

in a first-ranking model below 2 Å and an average rank of 82 when restraints are not used. 

Altogether these analyses reveal that the bulged torso restraints improve scoring discretion of 

native-like structures, but that further improvement to the scoring of HCDR3 loops is needed 

(Das & Baker, 2008). 
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Figure 8. Torso restraints improve recovery of native-like bulged HCDR3 loops. For each 
benchmark antibody structure, 1,000 models were generated with or without bulged torso 
restraints. The number of models below 2 Å RMSD16 to the native structure, best 
RMSD16 sampled, average RMSD16 of the best 10 models ranked by RMSD16, 
RMSD16 of the best model ranked by Rosetta score, average RMSD16 of the top 10 
models ranked by Rosetta score, and the rank of the first model below 2 Å when sorted by 
Rosetta score are provided. For RMSD16-containing cells, blue shading represents 
RMSD16 ≤ 1 Å; yellow shading represents RMSD16 between 1 and 2 Å; red represents 
RMSD16 > 2 Å. For rank-containing cells, blue shading represents rank 1; yellow 
shading represents ranks 2 to 10; red shading represents ranks > 10. 
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Clustering bulged HCDR3 loop models 

Using the clustering package Calibur (S. C. Li & Ng, 2010), we analyzed the HCDR3 models 

generated with and without bulged restraints (see Figure 9). Only clusters containing >1% of 

models (10 or more) were considered. For models made based on structures with 20 or more 

amino acids in the HCDR3 loop, no sufficiently large clusters were found. For the other 

benchmark structures, clusters were sorted by average cluster HCDR3 score, with the lowest 

average HCDR3 score being chosen as the “correct” cluster. This approach to selecting the 

“correct” conformation is common when de novo modeling HCDR3 loops, as the native structure 

of the loop is not known outside of benchmark studies. When restraints were used during 

modeling, the rank of the cluster size (how large a cluster is compared to other clusters) 

improved in 18 out of 24 cases over experiments where restraints were not used. When restraints 

were applied during modeling, the average RMSD16 of the correct cluster improved in 21 out of 

24 cases. The average RMSD16 for the best cluster by score was top-ranking in 9 out of 24 cases 

when restraints were applied during modeling, compared to just 3 out of 24 cases when restraints 

were not used, which reveals the predictive power of our scoring metrics when restraints are 

applied.  
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Figure 9. Cluster analysis of bulged HCDR3 loop modeling. Calibur was used to cluster 
the 1,000 models generated with or without bulged torso restraints for each antibody, 
using a threshold of 2.0. Clusters containing less than 1% of the total models were 
omitted from analysis; models generated for benchmark antibodies 4F58, 1HZH, 4LKC, 
1RHH and 4FNL did not produce any large clusters upon analysis (N/A). Average 
Rosetta score was calculated for each cluster, and the cluster with the lowest average 
score was selected as the “correct” cluster. The size of this correct cluster (and it’s rank 
among cluster sizes), its average RMSD16 to the native structure (and rank among 
average RMSD16 measurements) are provided. Cells containing rank data are shaded 
blue if the value represents the top rank, yellow for ranks 2-3, and red for ranks >3; if 
only one cluster (1*) was found, the cell is shaded gray. For RMSD16-containing cells, 
blue shading represents RMSD16 ≤ 1 Å; yellow shading represents RMSD16 between 1 
and 2 Å; red represents RMSD16 > 2 Å. Values were omitted from column averages if ≤1 
cluster was found. 
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III.3 Discussion 

There is a growing body of work surrounding canonical structures of antibody CDR loops, 

first described by Chothia and colleagues and updated as recently at 2011 by the Dunbrack group 

(Morea et al., 1998; North et al., 2011). These groups have shown that that five of the six CDR 

loops take on canonical structures, and that the remaining HCDR3 forms only a few canonical 

classes of structure in its torso domain. Our work builds upon this background, and has led to the 

development of knowledge-based structural restraints from available crystal structures of 

HCDR3 loops with bulged torsos. We have shown that these restraints can be used to restrict the 

sampling space Rosetta searches during de novo loop modeling, limiting the torso domain to the 

φ and ψ angles of these residues that have been experimentally observed. These torso restraints 

improve native-like structure sampling and score-based differentiation of native-like HCDR3 

models. We have also shown that such structural restraints improve Rosetta’s ability to model 

longer HCDR3 loops than previously possible, extending the range of the technique to cover 

more biologically relevant HCDR3 loop lengths. 

While this study focuses on benchmarking new knowledge-based restraints against 

antibodies whose structures have been experimentally determined, the true value of these 

restraints is in their ability to improve de novo antibody modeling. Such antibody structural 

predictions are a more rapid approach than experimental structural techniques, and can improve 

our understanding of host-pathogen interactions, provide insight into mechanisms of viral 

infection, and may lead to new monoclonal antibody therapeutics or vaccine candidates. 

Combined with our prior understanding of canonical CDR loops, which had made it possible to 

homology model much of the functional surface of the antibody (the “paratope”) using Rosetta, 

we can now predict the remaining HCDR3 which is critical in many antibody-antigen 
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interactions. The central dogma of structural biology, that structure dictates function, lets us 

expect that improved accuracy in modeling HCDR3 will lead to improved accuracy in modeling 

antibody/antigen interactions which in turn leads to improved prediction of antibody function. 

We recognize that further experiments would be needed to prove this. Finally, upcoming 

advances in antibody sequencing, including the ability to sequence endogenously paired heavy 

and light chains, will provide the last critical insight in antibody modeling; we must now come to 

understand restrictions at the heavy and light chain interface that alter the paratope, and 

incorporate such restrictions into our structural predictions. 

Although we have applied this approach to improving human antibody modeling, we 

recognize that this approach to structural restraint development is applicable to many other 

protein families in which structurally diverse surface loops with key functional importance are 

supported upon more structurally restricted framework regions (Das & Baker, 2008). Obvious 

examples include proteins with the PDZ domain and peptidase C1 domain protein families, 

which were found to use bulged HCDR3-like loops to recognize and bind their substrates 

(Weitzner et al., 2015). Finally, we have shown that knowledge-based structural restraints can be 

calculated easily and applied to improve modeling of novel loops not previously solved by 

experimental techniques, provided enough experimentally derived structural data is available for 

framework regions of functional loops in other protein families, and that canonical classes of 

those regions can be defined. 
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CHAPTER IV 
 
 

Structure-Based Discovery of Human Anti-Influenza Antibodies 
 
 
IV.1 Introduction 

The amount of available antibody repertoire sequence information is expanding rapidly, but 

our ability to predict the function of antibodies from sequence alone is limited. Here, we describe 

a sequence-to-function prediction method that couples structural data for a single 

antibody/antigen complex with repertoire data. We used a position-specific structure-scoring 

matrix (P3SM) incorporating structure-prediction scores from Rosetta to identify antibody 

variable loops that have predicted structural similarity to the influenza virus-specific human 

antibody CH65. While a conventional sequence similarity search failed to identify new influenza 

antibodies, the P3SM approach identified new members of this class. Recombinant antibody 

expression, crystallography, and virus inhibition assays showed that the HCDR3 loops of the 

newly identified antibodies possessed similar structure and antiviral activity as the comparator 

CH65. This approach enables rapid discovery of new human antibodies with desired structure 

and function using cDNA repertoires that are obtained readily with current amplicon sequencing 

techniques. 

Functional annotation of the emerging B and T cell immunome data will require 

development of new methods for predicting protein function from sequence. In some cases, 

when germline gene segment sequences encode a particular amino acid motif that binds an 

antigen in a canonical way, antibody specificity can be inferred because of germline gene usage. 

Examples include VH1-69-encoded influenza hemagglutinin stem antibodies, VH1-02-encoded 

HIV-1 CD4 binding site antibodies, or VH4-34-encoded autoreactive antibodies that bind to 
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polylactosamine (Navis et al., 2014; Sui et al., 2009; Thompson et al., 1991). However, methods 

that predict the functional properties of encoded amino sequences without regard to the VH gene 

segment origin or evolutionary gene history of an antibody are lacking. We interrogated a large 

repository of human antibody variable gene sequences from healthy individuals to identify 

antibodies with similar specificity and function to the influenza H1 HA-specific human antibody 

CH65 (Whittle, Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, Haynes, Walter, 

Moody, Kepler, Liao, & Harrison, 2011b). Although a sequence motif has been described to 

assess CH65-like functionality, sequence-based similarity or motif searches of our antibody gene 

repertoires failed to identify clones that bound to influenza HA in a manner similar to CH65 

(Schmidt, Therkelsen, et al., 2015b). The central dogma of structural biology states that sequence 

determines structure determines function, thus we hypothesized that an antibody search strategy 

that predicts structural similarity of antibody sequences and evaluates their fitness to bind 

antigen will have an increased sensitivity compared to a pure sequence-based search. In effect, 

such a structure-based search weights each sequence position based on the predicted 

consequences on structure and binding, while in a sequence-based search all sequence positions 

are weighted equally. To test this hypothesis, using only antibody sequences, we deployed a 

novel method to make predictions of antibody protein structures to identify a class of anti-

influenza antibodies with members that shared structural features with the comparator antibody, 

bound to the same epitope on influenza HA, and mediated potent virus inhibition. By integrating 

an efficient sequence-based prediction method for the structure and function of antibodies, 

coupled with experimental data using rapid recombinant antibody expression, we accelerated 

discovery of diverse members of this antibody structural class. This sophisticated yet efficient 

method of predicting structural and functional networks of antibodies from sequences allows 
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rapid, targeted discovery of new antiviral antibodies and will facilitate improved understanding 

of the diversification of function in antibody structural families. 

Antibody/antigen interactions are mediated by shape complementarity and biochemical 

properties of side chains in the interface. It is generally expected that more than one antibody 

amino acid sequence can achieve a given structural solution needed to interact with an antigen, 

but currently there are no efficient methods for predicting members of such structural classes 

based on antibody gene sequence alone. We recently developed a novel structure-based antibody 

discovery method that uses a P3SM to predict structural homologs rapidly from antibody gene 

sequences (Willis et al., 2016). Using Rosetta comparative modeling and a linear regression 

method to predict the thermostability and interaction energy of antibody heavy chain 

complementarity determining region 3 (HCDR3) loops with a target antigen, we screened a large 

database of antibody variable gene sequences. We selected sequences whose HCDR3 structure 

was predicted to be similar to the previously characterized monoclonal antibody CH65, 

regardless of their amino acid sequence. We found that when expressed in the context of the 

original antibody framework, these newly identified HCDR3 sequences functioned with similar 

specificity and affinity as CH65, even though they were unrelated in sequence and could not be 

identified by sequence similarity only. Crystal structures of the new antibodies identified by the 

P3SM search validated that the HCDR3 structures possessed a high degree of structural 

similarity to that of the original CH65 antibody on which the structural prediction was based. 

 

IV.2 Results  

Criteria for selecting a representative antibody  

We sought to identify a structural class of antibodies, starting with a representative antibody 
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having an available co-crystal structure with its target antigen and known virus neutralizing 

function as a target for our structure-based search. The influenza HA-specific human antibody 

CH65 binds to many influenza virus type A subtype H1 HA proteins, and this antibody was 

crystallized in complex with the H1 HA (PDB ID: 5UGY) from A/Solomon Islands/3/2006 

(designated here as SI06) (Whittle, Zhang, Khurana, King, Manischewitz, Golding, Dormitzer, 

Haynes, Walter, Moody, Kepler, Liao, & Harrison, 2011b). A genetically related antibody with a 

differing junctional sequence, designated CH67 (PDB ID: 4HKX), also was described (Schmidt 

et al., 2013). These antibodies possess interesting structural features that determine their 

function, namely a dipeptide motif on the tip of HCDR3 that interacts with the HA protein in a 

way that directly mimics the atomic features of the HA/sialic acid interaction. In addition, the 

CH65 and CH67 HCDR3 hypervariable loops exhibit a high level of thermostability, and 

preconfigure the paratope to bind HA, reducing entropic cost for an optimal interaction (H. Xu et 

al., 2015). 

 

Sequence-based similarity searches have restricted efficacy 

We used an existing database of antibody variable domain sequences from the Vanderbilt 

Vaccine Center Biorepository that were obtained by next generation amplicon sequencing of 

peripheral blood B cells from human subjects. The antibodies CH65 and CH67 are encoded by 

the antibody germline VH and JH genes IGHV1-2 and IGHJ6 and they possess a HCDR3 length 

of 19 amino acids. Our antibody variable gene database contained ~67,000 unique junctional 

sequences using IGHV1-2/IGHJ6 and HCDR3 length of 19. We did not identify any HCDR3 

sequences in our database with high sequence identity to CH65. We chimerized the junctional 

sequences with the highest ranked sequence similarity on CH65 and displayed these antibodies 



 51 

as yeast surface-display scFv, however, we did not detect binding for any of those antibodies to 

the SI06 HA head domain protein in a flow cytometric yeast binding assay (see Table 4). 

 

 

Filtering sequences using a position-specific structure scoring matrix 

We next used a rapid method to screen the nucleotide sequence databases for predicted 

antibody structural similarity and antigen binding affinity using the P3SM method, a Rosetta-

based heuristic model. Performance of this method varied between antibody/antigen systems, but 

we found that calculating the P3SM using linear ridge regression is a robust, reproducible way to 

map Rosetta Energy Units (REU) to a position-specific scoring matrix (see Figure 10).  

Table 4. CH65-like HCDR3s identified by sequence similarity did not bind SI06 HA. 

ID HCDR3 Sequence Muts Gaps scFv 
Exp 

scFv 
Bind 

CH65 ARGGLEPRSVDYYYYGMDV - - 59% 91% 

21415 ARGALEPRSQYYYYYGMDV 3 0 58% 0% 

18723 ARGALEPRSRYYYYYGMDV 3 0 57% 0% 

8890 ARGHLEPR-GDYYYYGMDV 2 1 58% 0% 

11101 ARGGLEGR-V-YYYYGMDV 1 2 49% 0% 

10116 ARG-LEPG-VDYYYYGMDV 1 2 55% 0% 

From our human antibody sequencing database, the HCDR3 loop from all sequences 
sharing IGHV1-2/IGHJ6 germline gene use were pairwise aligned to the native CH65 
HCDR3 sequence. The number of mutations (muts) and sequence gaps were quantified, 
as shown. Sequences with the lowest total number of mutations and gaps were expressed 
as chimerized HCDR3 on yeast surface-display CH65 scFv. The percentage of cells 
expressing scFv as well as the percentage of scFv(+) cells that bound to SI06 HA in a 
flow cytometric assay are described. Although all of the sequences were expressed on 
the surface of yeast, none of the sequence-based HCDR3 siblings bound SI06 HA. 
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We randomly selected 400 HCDR3 sequences from our antibody gene dataset and modeled 

each sequence ten times over each of the three CH65 Fab structures in the asymmetric unit of the 

co-crystal structure (PDB ID 5UGY). Using linear ridge regression analysis of the per-residue 

Rosetta scores for the best 5 out of 10 models for each sequence/Fab pair, we calculated the 

P3SM in which each cell of the matrix contained the weighted score for an amino acid at the 

given position (see Figure 11A). Next, we scored each HCDR3 sequence in our dataset with this 

P3SM and selected the top 600 rank-ordered sequences for further analysis (see Figure 11B). 

These 600 HCDR3 sequences were modeled by threading onto the CH65/SI06 HA complex 

crystal structure (PDB ID 5UGY) using Rosetta, and we filtered these hits by predicted 

thermostability and binding energy to identify 15 sequences for experimental validation (see 

Figure 11C). These HCDR3 sequences failed to score better than wild-type CH65 and lacked the 

Val106-Asp107 dipeptide motif previously described to be critical for CH65-HA binding. These  

 
Figure 10. Linear ridge regression analysis improves the correlation between P3SM and 
Rosetta HCDR3 score. In the past, we calculated P3SMs using a means-based algorithm 
to determine the weighted score at each position (A). Both means-based and linear ridge 
regression P3SMs (B) correlate well with Rosetta homology modeling scores when 
searching for CH65-like antibodies, however linear-ridge regression analysis has been 
shown to be more robust across all antibody-antigen pairs (data not shown) and is now 
our preferred method. 
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Figure 11. The position-specific structure scoring matrix (P3SM) rapidly identifies potential 
structural homologs to CH65. In (A), linear ridge regression analysis of per-residue Rosetta 
energy scores from homology modeling simulations of 400 HCDR3 sequences over the 
CH65 crystal structure 5UGY determined a weight for each amino acid at each HCDR3 
position (PDB residues 312-330), resulting in our position-specific structure scoring matrix 
(P3SM). In (B), the top 1000 sequences rank-ordered by P3SM score were each homology 
modeled on the CH65/SI06 complex structure, and the average score versus the root mean 
square deviation of the HCDR3 loop is shown. The native CH65 sequence is shown in red 
for comparison. Limited HCDR3 loop deviation was observed and sequences with good 
scores (low REU) retained the native CH65 structure during modeling. In (C), the best 15 
homology modeled sequences rank-ordered by HCDR3 score were selected for further 
analysis of the antibody/antigen interaction. Sequence IDs denoted by an asterisk (*) belong 
to a cluster of clonally related sequences identified from a single donor. Apo (uncomplexed) 
HCDR3 scores as well as the complex DDG were calculated by separating the antibody 
from the antigen and rescoring the antibody while allowing limited side-chain 
minimization. These sequences were expressed as chimeric HCDR3 on yeast surface-
display CH65 scFv, and the percentage of cells expressing scFv as well as the percentage of 
scFv(+) cells that bound to SI06 HA in a flow cytometric assay are listed. 
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15 HCDR3 sequences were expressed in the framework of CH65 on the surface of yeast as scFv, 

but as expected none bound to the SI06 HA protein when screened using a flow cytometric 

binding assay. 

Within these 15 antibodies selected by our P3SM and filtering, however, we identified a 

cluster with similar HCDR3 sequences (see Figure 11C, denoted by asterisk). This cluster of 

sequences belongs to a population of related sequences observed in the sequence repertoires of 

one of the donors with repertoire sequence data obtained at four separate time points between 

2004 and 2005. These samples are among the oldest in our database and were collected near in 

time to the discovery of the CH65 antibody, which was identified in a sample from 2008 after 

vaccination with the seasonal trivalent influenza vaccine (Schmidt, Do, et al., 2015a). In early 

2009, significant changes were introduced to circulating H1s due to genetic reassortment 

between human and swine influenza viruses, and CH65 does not bind to the 2009 pandemic 

H1N1 virus HA. In keeping with our focus on CH65-like antibodies, we chose to narrow our 

study to these pre-2009 HCDR3 sequences. 

 First, we expressed two members of this family as antigen-binding Fabs using the full heavy 

chain variable domain sequence from our database to see if the lack of binding affinity we 

observed in yeast surface display was caused by the chimerization of HCDR3 sequences onto the 

CH65 framework in the scFv format. The database of antibody sequences we used does not 

contain linked heavy and light chain sequences, and the native light chain pairing for these 

antibodies is unknown, therefore we paired these heavy chains with either the CH65 or CH67 

light chain. The resulting Fabs for those sequences identified using our P3SM bound SI06 HA 

exclusively when paired with the CH65 light chain, albeit at significantly lower affinity than 

wild-type Fab (see Figure 12).  
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Minimal in silico affinity maturation rescues antibody function 

To determine if minimal mutations to the HCDR3 of the chimeric antibodies rescued antigen 

binding, we performed in silico affinity maturation using Rosetta Design (see Figure 13A). 

Although a limited number of mutations improved the P3SM and Rosetta HCDR3 scores of 

many of these sequences, upon visual inspection of the models these mutations were not 

expected to contribute significantly to antibody/antigen binding (data not shown). Three 

mutations significantly improved the Rosetta score of sequence 1203, although only one altered 

the critical binding dipeptide (W101L, V102H and S107E). Rosetta converged on a similar 

solution for sequence 7969 (W101L, V102H and Y107D). These sequences were expressed as 

chimerized CH65 or CH67 scFv, and we observed native-like binding to SI06 HA for many of 

the designed HCDR3 sequences in the CH67 background (see Figure 13B, C). This bias toward 

better performance of the HCDR3s in the CH67 background was unexpected and may be caused 

by interactions between the HCDR3 loops and the CH67 light chain variable domain, or an 

overall improved fit between the CH67 variable domains in the scFv format. 

 

Figure 12. Two HCDR3 sequences identified using P3SM were chimerized into either 
CH65 or CH67 recombinant Fab backgrounds, and binding to SI06 HA is assessed as 
half-maximal binding (EC50 values, A) calculated from representative binding curves 
(B). The sequences identified using our method showed preferential bias to the CH65 
Fab background. 
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Figure 13. In silico affinity maturation rescued function of P3SM-identified HCDR3 loops. 
(A) Sequence alignment of native and affinity matured HCDR3 sequences, with residues 
numbered in Harrison, IMGT and Kabat formats for reference. The dark red residues (C96 
and W116) are the canonical flanking residues of the HCDR3 loop. Blue shading represents 
residues that differ from the wildtype CH65 sequence, while bold red highlighting 
represents residues that were mutated by Rosetta design. (B) These sequences were 
expressed as chimeric HCDR3 on yeast surface-display CH65 scFv. scFv expression was 
measured by tagging with FITC-conjugated anti-V5 antibody, while binding of scFv to 
biotinylated SI06 HA was measured by tagging with APC-conjugated streptavidin. 
Duplicate flow cytometric experiments are shown for each HCDR3 sequence in both CH65 
and CH67 scFv backgrounds. (C) The percentage of cells expressing scFv as well as the 
percentage of scFv(+) cells that bound to SI06 HA in a flow cytometric assay are shown. 
Unexpectedly, the designed HCDR3 loops showed a preference for the CH67 scFv 
background.  
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To characterize the binding affinity and antiviral function of these designed HCDR3 loops 

further, we chimerized the HCDR3 loops on mammalian cell-expressed forms of CH65 or CH67 

Fab proteins. We measured virus inhibition function using hemagglutinin inhibition (HAI) and 

virus microneutralization assays. The experiments for determining EC50 (n = 2) and IC50 (n = 3) 

were conducted four and three times independently, and representative data is presented in Table 

5. Many of the designed HCDR3 sequences had comparable binding to HA as that of wild-type 

CH65 and CH67. These sequences also mediated similar levels of antiviral function in HAI and 

neutralization assays. The exception was HCDR3 1203d4, which showed a bias toward superior 

performance in the CH67 Fab background, but which performed poorly in the CH65 Fab 

background.  

 

Table 5. In silico affinity maturation of P3SM-identified sequences rescues wildtype function. 

Antibody HCDR3 Sequence EC50 
(µg/mL) 

KD 
(nM) 

HAI 
(µg/mL) 

IC50 
(µg/mL) 

CH65 ARGGLEPRSVDYYYYGMDV 0.0410 17.75 
± 0.08 6.25 0.7726 

CH65:1203d4 
Chimera ARAGLHPTTTEYYYYGMDV 0.9172 116.2 

± 2.55 25.0 3.026 

CH65:7969d2 
Chimera ARAGLHPTTTDYYYYGMDV 0.1159 36.52 

± 0.04 3.13 0.9642 

CH67 ARAGLEPRSVDYYFYGLDV 0.5756 45.49 
± 0.46 12.5 0.6464 

CH67:1203d4 
Chimera ARAGLHPTTTEYYYYGMDV 0.2568 55.55 

± 1.34 12.5 0.8325 

CH67:7969d2 
Chimera ARAGLHPTTTDYYYYGMDV 0.1014 26.22 

± 0.02 6.25 0.5787 

CH65 V106D ARGGLEPRSDDYYYYGMDV > 50 n.d. n.d. > 40 

EEEV-16 ARADGYNFDY > 50 n.d. n.d. > 40 
Half-maximal binding determined by ELISA (EC50), binding affinity calculated using Octet 
BLI (KD), hemagglutinin inhibition (HAI) and half-maximal viral neutralization (IC50) of the 
designed HCDR3 sequences chimerized to CH65 or CH67 Fab are shown. Two negative 
controls were included in the study; CH65 V106D is a loss-of-function point mutant of the 
wildtype CH65 sequence, while EEEV-16 is a recombinant Fab not specific to influenza. 
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Experimental confirmation of structural similarity 

Once we confirmed that these chimeric Fabs had similar function to CH65 and CH67, we 

sought to validate that our method correctly predicted their structural similarity. We successfully 

crystallized and solved structures for three of our four constructs as apo protein (i.e., 

uncomplexed with HA; see Figure 14 and Table 6). Our structural analysis aimed to confirm 

that, like CH65 and CH67, these chimeras possess structural pre-configuration of the HCDR3 

loop before binding the HA interface, taking on the conformation observed in the native crystal 

structures. Indeed, our three new structures exhibited HCDR3 conformations highly consistent 

with the available apo crystal structures of CH65 and CH67. When superimposed, chimeric 

HCDR3s 1203d4 and 7969d2 in the CH65 background had RMSD to the native CH65 HCDR3 

of 0.198 Å and 0.219 Å, respectively. For chimeric HCDR3 7969d2 in the CH67 background, 

the RMSD to native CH67 HCDR3 was 0.685 Å; the larger deviation is caused mostly by a 

backbone movement at residue T104, which differs from the position of the native CH67 residue 

R104. 

 

Figure 14. X-ray crystallography confirms structural homology of P3SM-selected antibody 
sequences. (A) CH65:7969d2 in rainbow, aligned to the variable domain of CH65 (PDBID 
4WUK) in gray. (B) CH65:1203d4 in rainbow, aligned to the variable domain of CH65 
(PDBID 4WUK) in gray. (C) CH67:1203d4 in rainbow, aligned to the variable domain of 
CH67 (PDBID 4HKB) in gray. In each structure, the HCDR3 loop is shown in cyan. 
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IV.3 Discussion 

In this work, we present a framework for large-scale structure similarity prediction and 

functional assignment of human antibodies. Using next generation immunome data. We used this 

framework to identify new members of the CH65 antibody structural class, which binds to 

influenza HA in a manner similar to the native host ligand, sialic acid. The method predicts 

similarity of structure and function of antibody loops even though the loops diverge in sequence 

and genetic origin. Such structure-based functional assignment of Abs represents a new approach 

to human therapeutic monoclonal antibody discovery based on immunome sequencing data.   

Table 6. Data collection and refinement statistics for P3SM-selected protein crystals. 
Data collection    
Crystal CH65:7969d2 CH65:1203d4 CH67:1203d4 
PDB ID 6DLA 6DLB 6DL8 
Wave Length (Å) 0.97750 0.97750 0.97750 
Space group P212121 P212121 P1 
Unit cell dimensions    
a, b, c (Å) 57.4, 67.2, 130.4 57.5, 67.3, 130.8 72.2, 73.7, 76.9 
α, β, γ 90.0, 90.0, 90.0 90.0, 90.0, 90.0 62.9, 88.9, 62.1 
Resolution (Å) 46.80 – 2.00 46.91 – 2.20 40.53 – 3.80 
Unique reflections 34481 (4897) 26563 (3819) 11641 (1661) 
Redundancy 6.6 (6.5) 6.5 (6.3) 1.8 (1.7) 
Completeness (%) 99.5 (98.6) 100.0 (100.0) 98.1 (95.3) 
Rmerge (%) 10.1 (39.1) 10.4 ( 61.4) 5.9 (11.3) 
I/σ(I) 10.4 (4.0) 10.7 (3.1) 10.1 (6.5) 
Refinement statitics    
Rfactor 17.77 19.03 23.29 
Rfree 20.65 22.24 28.37 
R.m.s.d. (bond) (Å) 0.0072 0.0057 0.0021 
R.m.s.d. (angle) (deg) 0.836 0.599 0.581 
Ramachandran plot    
Favored (%) 98.38 98.38 94.02 
Allowed (%) 1.62 1.62 5.74 
Outliers (%) 0.00 0.00 0.24 

 



 60 

CHAPTER V 
 
 

Concluding Remarks and Future Directions 
 
 
V.1 Review 

At the beginning of this thesis, I hypothesized that an understanding of antibody sequence 

and structure could be leveraged to predict the function of an antibody, and I sought to do so 

particularly in the context of identifying human antibodies targeting influenza HA. Emergent 

technologies such as next generation sequencing and computational structural modeling of 

antibodies aided these understandings, and were incorporated into methods I developed over the 

course of this work. These methods were successful at identifying novel anti-influenza 

antibodies using either sequence- or structure-based approaches, and we have shown that these 

antibodies would not have been discovered using methods that existed previously. 

Sequence-based approaches, which identify functionally related antibodies by classifying 

members of clonal lineages from antibody repertoires, were made possible due to continued 

development of next generation sequencing techniques. These techniques and the antibodies 

discovered using them were discussed thoroughly in Chapter II. In brief, antibodies that are 

related by germline gene use and that have few amino acid mutations in the HCDR3 region (the 

V(D)J junctional site) are theorized to have arisen from the same naïve B cell. Upon recognition 

of antigen by this naïve B cell, somatic hypermutation and proliferation in the germinal center 

expands the single cell to a population of functionally-related, although not sequence-identical, 

daughter B cells. Previous techniques, including immortalization of human B cells using 

hybridoma technology, did not have the throughput necessary to identify multiple members of a 

specific B cell lineage within a single human donor. Next generation sequencing, on the other 
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hand, has allowed researchers for the first time to study millions of antibody sequences from 

many individuals in an economical and timely manner. I leveraged this technology to track, over 

time, the changing antibody repertoire of an individual from whom we had discovered an 

interesting anti-influenza monoclonal antibody (FluA-20) via hybridoma technology. We found 

that FluA-20 arose from a population of cells blasting on days 5 and 6 following vaccination 

with the 2014-2015 TIV. Furthermore, we found that recombinantly expressed members of this 

antibody’s lineage were able to similarly bind a broad panel of influenza HAs despite mutations 

in the paratope, some paratope mutations altered breadth or abrogated binding to HA, and that 

the inferred UCA antibody retained some function despite the reversal of 29 amino acid 

mutations in the variable domain.   

While we have shown that sequence-based discovery of human antibodies with targeted 

function is informative, we hoped to broaden our ability to define the function of “orphan” 

antibodies in our database; those for whom no clonally related antibodies had been previously 

discovered. Similar to Crick’s famous “Central Dogma” (DNA makes RNA and RNA makes 

protein), the “Central Dogma of genomics and structural biology” states that an amino acid 

sequence determines a protein’s structure, and that the structure of that protein determines its 

function. This is supported by evidence that antibodies bind to their antigenic partners via 

reversible non-covalent interactions that involve shape complementarity, electrostatic 

interactions, hydrogen bonds, and hydrophobic interactions. Shape complementarity is generated 

by the backbone dihedral angles of the amino acids in the CDR loops, while the latter three 

features are generated primarily by interactions of specific side chain residues within the protein-

protein interface. Therefore we theorized that predicting the structures of these orphan antibodies 

from our sequence database would be possible, and that these structural predictions would bring 
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us closer to determining antibody function.  

When I began this thesis work, it was known that five of the six CDR loops on the surface of 

the antibody took on canonical structures that could be determined by sequence alone. The 

remaining HCDR3 loop defied canonical definition, leading many researchers to determine the 

structure using de novo prediction techniques. De novo modeling of protein loops was restricted 

to relatively short loops containing 12 or fewer amino acids. We had determined, through next 

generation sequencing, that the average human HCDR3 loops were 16 amino acids long, with the 

longest HCDR3 loops containing more than 30 residues, far outside the possibilities of previous 

de novo modeling techniques.  By analyzing the available crystallographic data deposited in the 

Protein Data Bank, which had been collected from hundreds of human antibodies, I was able to 

calculate a set of structural restraints that improves both sampling and scoring of HCDR3 loops 

during de novo antibody modeling in Rosetta. These results are discussed in detail in Chapter III 

of this work, but in brief, we were able to extend the capabilities of Rosetta de novo modeling to 

accurately predict HCDR3 loops containing upward of 17 amino acids.  

While this study improved our ability to predict antibody structure, it also provided critical 

information about sequence-structure relationships and restrictions inherent in human (and 

perhaps other species’) antibodies. We found that the “bulged torso” structure conserved in many 

antibodies is conferred via the germline genes used to form the junction. The torso domain is 

made up from the final two to three amino acids encoded by the V gene, and by the first three to 

four amino acids encoded by the J gene. Unless altered by exonucleases during V(D)J 

recombination, or by somatic hypermutation, these genes strictly encode for amino acid residues 

that will form the bulged beta structure that makes up this conserved domain. 

Finally to bring together our understanding of antibody sequence, structure, and function, we 
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developed a novel structure-based antibody discovery method, discussed in Chapter IV. This 

method leverages structural similarity predicted from sequence to identify functionally related 

classes of antibodies. No method of structure-based antibody discovery existed before the 

development of this technology; the closest comparison is structure-based design algorithms, 

which could predict functional antibody sequences based on a desired structure, however these 

sequences were potentially non-native and may not naturally occur in a human repertoire. Using 

this technique, we were able to identify antibody sequences from a human donor that were not 

predicted to emulate the function of a target anti-influenza antibody by sequence similarity alone. 

The identified antibodies were, upon minimal in silico affinity maturation, capable of binding the 

target influenza HA with near-native affinity, and functioned similarly in hemagglutinin 

inhibition as well as neutralization assays. Furthermore, the recent influenza vaccination or 

infection status of the human donor was unknown, providing increased support for the ability of 

this technique to identify orphan antibodies that would not be otherwise obvious from sequence 

data alone. 

 

V.2 Concluding Remarks 

It is critically important that we further our understanding of the human immune system, 

particularly in regards to the sequence-structure-function relationships of antibodies. The ability 

to generate specific antibody responses, via diversification of the antibody repertoire, is a key 

element of acquired immunity and is necessary to effectively clear viral infections such as 

influenza. Our recent ability to study the antibody repertoire as a population, rather than 

individual members studied discretely, is due to emerging technologies such as next generation 

sequencing and computational structural modeling. Continued efforts to develop these 
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technologies have led to an increased ability to identify potential therapeutic antibodies. These 

efforts have also improved our understanding of the mechanisms of antibody repertoire 

regulation within and between individuals, which will inform future vaccination strategies. 

Finally, while applied to influenza virus for the duration of this work, these techniques are target-

agnostic and able to be used to study human antibody responses to any number of infectious or 

immunogenic targets.  

 

V.3 Future Directions 

It remains both important and timely to continue leveraging new technologies in the study of 

influenza virus immunity. This year we mark the one hundredth anniversary of the 1918 

influenza pandemic, one of the deadliest global health crises in human history. To date, our 

greatest weapon against another influenza pandemic is the seasonal influenza vaccine. However, 

data from recent years has shown that the seasonal influenza vaccine is less effective when 

circulating viruses are antigenically distinct from vaccine strains, revealing that the pandemic 

potential of influenza is unabated by these efforts. 

One approach to combating influenza virus is the development of a “universal influenza 

vaccine” (UIV). The goal of such a vaccine is to trigger a broad, lasting antibody response 

capable of neutralizing many or all subtypes of influenza. This approach typically focuses on 

antibody responses to regions of influenza HA that are conserved between subtypes due to their 

importance in host receptor binding or viral fusion. In February of 2018, the National Institute of 

Allergy and Infectious Diseases (NIAID) released their plan for the development of a UIV that 

includes continued study and characterization of the antibodies elicited by influenza infection or 

vaccination. In addition, NIAID has called for increased study of rationally designed influenza 
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vaccines, to include novel immunogens and alternative vaccine delivery techniques. 

I propose that a third critical aspect of antibody-mediated immunity must be studied to aid 

efforts in developing new vaccines, including UIV; global mechanisms of regulation that restrict 

the human antibody repertoire. The mechanisms that generate a diverse antibody repertoire are 

theorized to result in 1011 different antibody sequences, which are then subjected to strict 

selection criteria during negative selection in the bone marrow, and less understood selection 

criteria in the periphery. Antibody repertoire studies have shown that these mechanisms of 

regulation seem common among individuals, suggesting that global regulatory mechanisms may 

be more sophisticated than previously theorized. These studies were described in Chapter II, but 

in brief: one study of synthetic HCDR3 repertoires showed that the overlap between two 

different HCDR3 repertoires occurs significantly more frequently than expected by chance, and 

another study showed that some regulatory mechanism results in increased clonality as B cells 

progress from naïve to memory subsets. In a third study, phylogenetic clustering revealed that B 

cell subset repertoires (i.e., naïve or memory subsets) cluster more closely to similar subsets in 

other donors (inter-donor) than they do to other subsets within the same donor (intra-donor). 

These findings support the existence of global mechanisms of regulation that are shared between 

individuals. 

The population of circulating B cells resulting from such regulatory mechanisms has been 

shown to contain a limited number of unique sequences. Due to convergent evolution the likes of 

which we observed with our structure-based discovery method, even fewer unique structural 

solutions exist. These restrictions suggest that some antibody-mediated binding solutions may 

not naturally occur because they are eliminated from the antibody repertoire during negative 

selection or via later regulatory mechanisms, limiting our ability to successfully elicit these 
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responses by vaccination.  

One initial study that may be performed with existing next generation sequencing technology 

involves sequence-based analysis of early B cell populations that are undergoing development in 

the bone marrow. At two critical stages, immunoglobulin loci are transcribed and expressed on 

the surface of the developing B cell. These checkpoints confirm proper gene recombination, 

structural stability of the resulting protein, and regular signaling function. In the first checkpoint, 

the recombined heavy chain loci is expressed on the surface of large pre-B cells in complex with 

the surrogate light chain made up of VpreB and λ5. VpreB expression can be used as a surface 

marker to differentiate large pre-B cells from other B cells in the bone marrow, allowing this 

population of cells to be sorted and sequenced independently. Sequence analysis of this 

population of cells would reveal the heavy chain recombinations that are able to be formed and 

expressed discrete from light chain recombination and pairing, which occurs later in B cell 

development. This study could reveal sequence restraints imposed on antibodies by V(D)J 

recombination machinery in the context of the cellular environment. The second checkpoint, 

which confirms expression and function of both heavy and light chain as a complete 

immunoglobulin molecule, occurs at the immature B cell stage prior to cells migrating to the 

periphery. These cells can be sorted using light chain as a surface marker, as this is the first and 

only time light chain is expressed during B cell development in the bone marrow. Studying the 

differences between this immature B cell population and the naïve B cell repertoire in peripheral 

tissues could identify specific sequences that are removed by regulatory mechanisms such as, but 

not limited to, negative selection of self-specific antibodies or selection against incompatible 

heavy-light chain pairs.  

It is known that very flexible protein loops, referred to as loops with high plasticity, are able 
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to bind a broader range of targets in a less-specific manner than loops with more organized 

structure. I hypothesize that, in addition to sequence restraints imposed by V(D)J recombination 

machinery and structural restraints imposed by heavy-light chain pairing, additional structural 

restraints exclude certain antibody sequences from the naïve repertoire because stable antibody 

loops are required for normal B cell development. Secondary protein structure is known to 

stabilize long protein loops, as structural elements such as alpha helices and beta strands order 

the atoms in a protein backbone, limiting flexibility. Following the sequencing experiments 

proposed above, I recommend an additional study that measures the predicted secondary 

structure of HCDR3 loop sequences using available techniques such as PSI-PRED or JUFO. The 

existence of a positive correlation between HCDR3 loop length and secondary structure after 

negative selection would support the hypothesis that long loops must be stabilized to improve 

antibody function. In addition to secondary structural analysis, the tools developed within this 

work provide, for the first time, the ability to perform de novo tertiary structural predictions of 

most human HCDR3 loops with atomic-resolution accuracy. The presence of a subset of long, 

disordered, unstructured HCDR3 loops in early B cell populations in the bone marrow, but not in 

peripheral populations, would suggest that such loops are non-specific and potentially auto-

reactive and are actively removed by negative selection. 

These experiments are aimed at defining some of the global regulatory mechanisms that 

restrict the human antibody repertoire. Such restrictions are currently poorly understood, and 

increased study of these mechanisms will improve our knowledge of the scope and range of the 

human antibody repertoire. Future vaccination efforts, including development of the critical UIV, 

will be aided by an improved understanding of the naïve antibody repertoire that can be targeted 

and manipulated by vaccination. These studies are greatly aided by modern technologies such as 
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next generation sequencing and computational structural modeling, which must continue to be 

supported and developed for increased throughput and accuracy. 
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APPENDIX 1 
 
 

Supplemental Information for Chapter II 
 

With unpublished data from Sandhya Bangaru 
 
 

Materials and Methods 

Expression of soluble HA proteins. Sequences encoding the HA genes of interest were 

optimized for mammalian cell expression, and cDNAs were synthesized (Genscript) as soluble 

trimeric constructs as described previously (Bangaru et al., 2016). HA protein was expressed by 

transient transfection of 293F cells with polyethylenimine (PEI) transfection reagent and grown 

in expression medium (Freestyle 293 Expression Medium; Invitrogen, 12338). Cell supernatants 

were harvested after 7 days, filtered sterilized with a 0.4 µm filter and recombinant protein 

purified with HisTrap TALON FF crude columns (GE Healthcare Life Sciences).  

 

Next-generation DNA sequence analysis of expressed antibody variable genes. Total RNA 

was extracted from 10 million PBMCs. A one-step RT-PCR was performed for 25 cycles using 

heavy-chain BIOMED-2 variable antibody gene-specific primers (van Dongen et al., 2003) and 

the OneStep SuperScript III with Platinum® Taq High Fidelity kit (Invitrogen, 11304011). The 

Illumina-specific adapters were added using the Illumina TruSeq Library Preparation Kit 

(Illumina, FC-121-3001) according to the manufacturer’s recommendations. The final amplicon 

libraries were sequenced on an Illumina MiSeq instrument using the MiSeq PE-300 v3 reagent 

kit (Illumina, MS-102-3001). Sequence analysis was performed using IG-BLAST v1.4, and 

results were parsed to MongoDB for further study.  

 



 

Identifying clonally related sequences. From a database of annotated antibody sequences 

obtained from this donor, we queried HCDR3s with VH4-61/JH4 lineage. These HCDR3 

sequences were pairwise aligned to the HCDR3 of FluA20 using a PAM30 matrix, with penalties 

for gap opening and gap extension of -14 and -3, respectively. HCDR3 sequences with a 

Hamming distance of <= 3 to FluA20 were selected as siblings and the ‘full length’ nucleotide 

and amino acid sequences were queried from our database for further analysis.  

 

Visualizing clonally related sequences. A network graph was built from the aligned, full length 

sequences queried as described previously. Identical sequences were clustered into single nodes, 

and edges were drawn between two nodes if their Hamming distance was the lowest compared to 

all other nodes. Nodes denoting the inferred common ancestor and the germline VH4-61/JH4 

sequence were manually added. This network was visualized using Cytoscape and manually 

adjusted for visual clarity (to prevent nodes from overlapping edges to which they are not 

connected, and to shorten distances between nodes that are closely related).  

 

Fab and IgG cloning, expression and purification for binding assays. FluA-20 and sibling 

Fab and IgG were expressed in 293F mammalian cells. The heavy and light chains of the Fab 

were cloned independently into the phCMV3 vector and fused with the N-terminal IgK secretion 

signal peptide. A His6 tag was added to the C-terminus of the Fab heavy chain. Recombinant 

DNAs for both heavy and light chains were purified separately and co-transfected into 293F 

cells. The cells were cultured for 6-7 days at 37C, while shaking at 125 r.p.m. Secreted Fabs 

were purified Ni- NTA Superflow (Qiagen), monoS chromatography (GE Healthcare).  

 



 

Determination of half maximal effective concentration (EC50) for binding. To determine 

EC50 concentrations for binding, we performed ELISA using 384-well plates that were coated 

overnight at 2 µg/mL with the recombinant HA protein of interest. The plates then were blocked 

with 50 µL of 5% non-fat dry milk, 2% goat serum and 0.1% Tween-20 in PBS for 1 h at RT. 

The plates were washed and three-fold dilutions of the mAb starting from 10 µg/mL were added 

to the wells and incubated for an hour. The plates were washed and 25 µL of 1:4,000 dilution of 

anti-human IgG alkaline phosphatase conjugate (Meridian Life Science, W99008A) was added. 

After a final wash, 25 µL of phosphatase substrate solution (1 mg/mL p-nitrophenol phosphate in 

1 M Tris aminomethane) was added to the plates, incubated for 20 minutes and the optical 

density values were measured at 405 nm wavelength on a BioTek plate reader. The plates were 

washed 3 times between each step with PBS containing 0.1% Tween-20. Each dilution was 

performed in quadruplicate, and the EC50 values were calculated in Prism software (GraphPad) 

using non-linear regression analysis. The experiment was conducted twice independently.  

 

Additional Figures 

 
Figure 1. Binding of FluA-20 sibling antibodies to HAs derived from different subtypes (Sandhya 
Bangaru, unpublished data). > indicates EC50 values 10-fold higher than FluA-20 and NB indicates that 
no binding was observed at antibody concentrations below 10 µg/mL.  
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M:QVQLEESGPGLVKPSETLSLTCSVSGVSVTSDIYYWTWIRQPPGKGLEWIGYIFYNGDTNYN 
G:QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYN 
 
 
M:PSLKSRVTMSIDTSKNEFSLRLTSVTAADTAVYFCARGTEDLGYCSSGSCPNHWGQGTLVTV 
G:PSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGTEDLGYCSGGSCPNHWGQGTLVTV 
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Figure 2. Sequence of FluA-20 and the unmutated common ancestor (UCA) of FluA-20 are aligned 
(Sandhya Bangaru, unpublished data). Mutated residues are colored as red and a unique disulfide bond in 
CDR H3 is highlighted in yellow. The key residues Asp98 (H), Tyr100a (H), Tyr48 (L), and Gln55 (L) 
that were later identified to be critical for the interaction with HA originate from the UCA (in red circles).  

 
 

 
Figure 3. Binding EC50 (ng/mL) for FluA-20, recombinant FluA-20 (rFluA-20) and unmutated common 
ancestor of FluA-20 (FluA-20-UCA) to HAs derived from different strains representing group 1 (green) 
and group 2 (blue) IAVs (Sandhya Bangaru, unpublished data). The table is displayed in purple-white 
color scale corresponding to strong-weak binding, respectively. The > symbol indicates no binding 
observed at concentrations less than 10 µg/mL. 
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FluA-20 0 100 83 100 100 96

5J8 100 0 85 100 100 94

CR9114 100 100 0 0 0 1

FI6v3 100 100 2 0 0 3

39-29 100 98 6 4 0 5

H3v-86 87 86 0 3 0 0
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FluA-20	Fab	to	A/South	Carolina/1/1918	(H1N1):	Kd≈	48	nM	
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FluA-20	Fab	to	A/Hong	Kong/1/1968	(H3N2):	Kd	<	1	nM	

FluA-20	Fab	to	A/Perth/16/2009	(H3N2):	Kd	<	1	nM	
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FluA-20	Fab	to	A/Adachi/2/1957	(H2N2):	Kd	<	1	nM	

FluA-20	Fab	to	A/Indonesia/05/2005	(H5N1):	Kd≈	88	nM	

FluA-20	Fab	to	A/Vietnam/1203/2004	(H5N1):	Kd≈	122	nM	

FluA-20	Fab	to	A/Netherlands/219/2003	(H7N7):	Kd	<	1	nM	

FluA-20	Fab	to	A/Shanghai/02/2013	(H7N9):	Kd<	1	nM	

FluA-20	Fab	to	A/Victoria/3/1975	(H3N2):	Kd≈	3460	nM	
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FluA-20_UCA	Fab	to	A/California/04/2009	(H1N1):	Kd≈	1430	nM	

FluA-20_UCA	Fab	to	A/South	Carolina/1/1918	(H1N1):	Kd≈	937	nM	

FluA-20_UCA	Fab	to	A/Texas/36/1991	(H1N1):	Kd≈	348	nM	

FluA-20_UCA	Fab	to	A/Adachi/2/1957	(H2N2):	Kd≈	201	nM	

FluA-20_UCA	Fab	to	A/Netherlands/219/2003	(H7N7):	Kd≈	1020	nM	

FluA-20_UCA	Fab	to	A/Shanghai/02/2013	(H7N9):	Kd≈	745	nM	

FluA-20_UCA	Fab	to	A/Hong	Kong/1/1968	(H3N2):	Kd≈	486	nM	

FluA20_L	aligned	with	UCA_L:		12	muta8ons	

M:QVQLEESGPGLVKPSETLSLTCSVSGVSVTSDIYYWTWIRQPPGKGLEWIGYIFYNGDTNYN 
G:QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYN 
 
 
M:PSLKSRVTMSIDTSKNEFSLRLTSVTAADTAVYFCARGTEDLGYCSSGSCPNHWGQGTLVTV 
G:PSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGTEDLGYCSGGSCPNHWGQGTLVTV 
 
 
 
 
 
 
 
M: DIVMTQSPSSLSASIGDRVTITCRPSQNIRSFLNWFQHKPGKAPKLLIYAASNLQSGVPS 
G: DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPS 
 
 
M: RFSGSGSGTEFTLTIRSLQPEDFATYYCQQSYNTPPTFGQGTKVEIK 
G: RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKVEIK 
	

FluA20_H	aligned	with	UCA_H:	17	muta8ons	

M:QVQLEESGPGLVKPSETLSLTCSVSGVSVTSDIYYWTWIRQPPGKGLEWIGYIFYNGDTNYN 
G:QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYN 
 
 
M:PSLKSRVTMSIDTSKNEFSLRLTSVTAADTAVYFCARGTEDLGYCSSGSCPNHWGQGTLVTV 
G:PSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGTEDLGYCSGGSCPNHWGQGTLVTV 
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APPENDIX 2 
 
 

Supplemental Information for Chapter III 
 

Adapted from Finn et al., PLOS ONE, 2016 
 
 

Materials and Methods 

Calculating bulged and non-bulged torso dihedral angles. A collection of antibody heavy 

chain variable domains was manually curated from the PDB, building upon a published list. The 

torso residues of these structures were extracted from the PDB files and were clustered using 

Rosetta Cluster with a cluster radius of 2 Å to separate bulged and non-bulged antibody torsos. φ 

and ψ dihedral angles of the seven torso residues were found using Biopython, with average and 

approximate standard deviation calculated using Equations 1 and 2. 

 

Generating HCDR3 loop models. The complete protocol for generating the HCDR3 loop 

models using Rosetta is described in the following Rosetta Protocol Capture. In brief, structure 

files for each benchmark antibody were downloaded from the PDB and were cleaned such that 

only a single variable domain remained. Input files for loop modeling were generated with the 

assistance of a suite of python scripts, and fragments were selected using the fragment picker. 

Centroid loop modeling was accomplished using cyclic coordinate descent (CCD), followed by a 

kinematic closure (KIC) full-atom refinement. 

 

HCDR3 torso sequence analysis. Sequences of the seven torso residues were taken from each 

of the PDB files of the bulged antibody torso cluster found above and used to generate a 

WebLogo using the default webserver settings. A second WebLogo was generated using the 



 

sequences of the torso residues taken from the IMGT human VH and JH gene segments. 

 

Rosetta Protocol Capture 

All Rosetta protocols were performed using version 
6d19a9e478a3fc1cf369591953624a66990855ae (2013-11-15 14:37:19). 
 
I De novo modeling of bulged HCDR3 loops without restraints 

I.1 Prepare a PDB input file. Typically, this is accomplished by removing unnecessary 
chains, waters and non-protein molecules (e.g. gold) leaving behind one asymmetric unit 
containing a heavy and light chain. Cleaned PDB files are then renumbered using the 
renumber_pdb.py script: 

/path/to/Rosetta/tools/protein_tools/scripts/pdb_renumber.py --norestart 
XXXX.pdb XXXX_renum.pdb 

I.2 Generate a FASTA sequence file from the PDB file. 

/path/to/Rosetta/tools/protein_tools/scripts/get_fasta_from_pdb.py 
XXXX_renum.pdb H > XXXX_.fasta 

I.3 Generate a loops file (XXXX_.loops) containing one line as follows: 

LOOP [residue before HCDR3 loop begins] [residue after HCDR3 loop ends] 0 0 0 

LOOP 96 108 0 0 0 

I.4 Generate fragments.  

There are two ways to prepare files for the fragment picker: either by using the 
make_fragments.pl script, or by running the Robetta webserver (http://www.robetta.org/). For 
ease of use, the instructions below describe preparing these files using Robetta. 

Submit a job to the Robetta Fragment Server by clicking the “Submit” link under Fragment 
Libraries from the main Robetta page (http://www.robetta.org/). Enter your registered username, 
the target name, and the FASTA file in the provided fields. For benchmarking purposes, select 
“Exclude Homologues”. Click “Submit” to place the job in queue. Jobs typically complete in less 
than 1 hour once they become active. 

Once complete, download the following files from the webserver for use by the fragment picker: 

XXXX_.checkpoint, XXXX_.psipred_ss2, XXXX_jufo_ss, XXXX_.homolog_vall 

 

 



 

Finally, update the fragment_picker_quota.options file to point to the correct input files, then 
run: 

/path/to/Rosetta/main/source/bin/fragment_picker.default.linuxgccrelease 
@fragment_picker_quota.options 

I.5 Prepare the model_wo_rest.options file to point to the correct input files, then run Rosetta 
LoopModel: 

/path/to/Rosetta/main/source/bin/loopmodel.default.linuxgccrelease 
@model_wo_rest.options -out:prefix ex1- >& OUT1.log & 

 

II De novo modeling of bulged HCDR3 loops with restraints 

II.1 As before, prepare a PDB input file, a FASTA sequence file, a loops file and generate 
fragments (Protocol I steps 1-4). 

II.2 Prepare a restraint file. A script has been provided to make restraint file formatting easy, 
however these files can be manually created from the values available in Table 1. 

/HCDR3_prot_capture/scripts/maketorsoconstraints.py –b –s 97 –e 107 > 
XXXX_bulged.constraints 

II.3 Prepare the model_w_rest.options file to point to the correct input files. Note the added 
flags for restraint file handling.  

II.4 Finally, run Rosetta LoopModel: 

/path/to/Rosetta/main/source/bin/loopmodel.default.linuxgccrelease 
@model_w_rest.options -out:prefix ex2- >& OUT2.log & 

 

III Comparing models generated with and without restraints 

III.1 For comparison purposes, re-score the models generated in Protocol 1 using the restraint 
penalties. Prepare the scoring_wrest.options file to point to the correct input files, then score the 
models with restraints: 

/path/to/Rosetta/main/source/bin/score_jd2.default.linuxgccrelease 
@scoring_wrest.options -s ex1-*.pdb -out:prefix wrest- 

 
  



 

Additional Figures 

 
Figure 1. Bulged torso structures share similar sequences, which are germline-encoded. Previous studies 
identified a sequence motif in bulged torso structures, which are formed primarily via a side-chain 
interaction between either Arg or Lys (R/K) at T2 and Asp (D) at T6. A consensus sequence from bulged 
torsos culled from the PDB shows the prevalence of these residues at these positions (panel A). These 
residues are germline-encoded, as observed in a consensus sequence of the VH and JH gene segments that 
contribute to the torso domain (panel B). 
 

 
Figure 2. Average φ and ψ angles observed for each torso residue in known bulged and non-bulged 
clusters. North et al. defined seven canonical torso conformations from experimentally-determined 
antibody structures. Two of these clusters are considered bulged (H3-anchor-1 and H3-anchor-3; blue) 
and two are considered non-bulged (H3-anchor-2 and H3-anchor-5; red). φ and ψ angles are well defined 
for both bulged and non-bulged HCDR3 torso residues. Bulged and non-bulged torsos are differentiated 
by their ψ angle at T6. The ψ angle at T4 is bimodal for both bulged and non-bulged HCDR3 torsos, with 
~180 degrees separating the two clusters within each definition. 



 

 
 

 
 
 
 
 
 

 



 

 
Figure 3. Bulged torso restraints improve native-like HCDR3 sampling and recovery. 1,000 models of 
each benchmark antibody were generated and scored with or without bulged restraints using Rosetta 
LoopModel (comparable to Figs 2A and 2D). Models with scores ranked in the top 10% and RMSD16 ≤ 
2 Å have been colored blue, while models with scores ranked below the top 10% and RMSD16 > 2 Å 
have been colored red. The native crystal structure was also minimized using Rosetta FastRelax, 
generating 20 structures (black x’s). The total HCDR3 score vs. the HCDR3 Cα RMSD16 to the native 
crystal structure is shown. 

 
 

 



 

 
Figure 4. Bulged torso restraints improve sampling of HCDR3 torso angles. Using Rosetta LoopModel, 
1,000 models of the benchmark antibody 4G5Z were generated without (red) or with (blue) bulged 
restraints. The τ101 angle and α101 dihedral angle defined by Weitzner et al. were calculated for each 
model. Gray regions of the plot denote ± 3σ of the mean angles calculated for bulged HCDR3 torsos by 
Weitzner et al. Improved recovery of bulged torsos was observed as a greater density of points in the 
center gray region when restraints were applied (n=719), versus when no restraints were applied (n=33). 
 
  



 

APPENDIX 3 
 
 

Supplemental Information for Chapter IV 
 

 
 

Materials and Methods 

Next-generation DNA sequence analysis of expressed antibody variable genes. As described 

previously (Appendix 1), total RNA was extracted from cryopreserved PBMCs, and a one-step 

RT-PCR was performed for using heavy-chain BIOMED-2 variable antibody gene-specific 

primers (van Dongen et al., 2003) and high-fidelity Taq polymerases. The Illumina-specific 

adapters were added using the Illumina TruSeq Library Preparation Kit (Illumina, FC-121-3001) 

according to the manufacturer’s recommendations. The final amplicon libraries were sequenced 

on an Illumina MiSeq instrument using the MiSeq PE-300 v3 reagent kit (Illumina, MS-102-

3001). Sequence analysis was performed using PyIG (unpublished), and results were parsed to 

MongoDB for further study.  

 

Yeast transformation. EBY-100 yeast cells were transformed following the protocol by Gietz 

and Schiestl. Briefly, yeast cells were washed and resuspended in sterile water to 108 cells/mL. 

107 cells were transferred to each well of a 96-well plate. The plate was centrifuged at 1500 g for 

5 minutes to pellet the cells and the supernatant was removed by inverting the plate. 

Transformation mix was prepared following the published protocol. 50 µL transformation mix 

added to each well, and cells were resuspended by pipetting. 100 µL PEG3350 (50% w/v) was 

added to each well and contented mixed by pipteting. Cells were heat shocked by incubating at 

42°C for one hour. The plate was centrifuged for ten minutes at 1500 g and the supernatant again 

removed by inverting the plate. 50 µL of sterile water was added to each well and the cells were 



 

resuspended by pipetting. The transformed yeast were plated on SD-CIT.CAA selective plates 

and incubated at 30°C, for 72 hours.  

 

Yeast growth and scFv expression. Transformed colonies were picked to 4 mL SD-CIT.CAA 

medium and grown at 30°C, shaking at 225 rpm for 24 hours. Next, yeast were pelleted by 

centrifugation, washed with SG-CIT.CAA expression medium, and transferred to SG-CIT.CAA. 

Yeast were incubated at room temperature shaking at 225 rpm for 24 to 48 hours to allow for 

scFv expression.  

 

Recombinant antibody expression and purification. The heavy and light chain variable 

regions were cloned into Mclean Fab and lambda vector, respectively. The Fab fragment was 

expressed by transient co-transfection of the expression vector containing heavy chain and light 

chain into Expi-CHO cells. Recombinant Fab was purified from culture supernatant using a anti-

CH1 CaptureSelect column. Purified Fab was measured by optical absorbance at 280 nm, and 

purity and integrity were analyzed by reducing and nonreducing SDS-PAGE. The purified Fab 

was concentrated to ~10 mg/mL for crystallization and KD determination. 

 

Production of recombinant soluble HA proteins. The design and expression of recombinant 

HA proteins for binding studies were described previously. Sequences encoding the HA genes 

were synthesized as soluble trimeric constructs by replacing the transmembrane and cytoplasmic 

domain sequences with cDNAs encoding the GCN4 trimerization domain and a His-tag at the C-

terminus. Synthesized genes were subcloned into the pcDNA3.1(+) mammalian expression 

vector (Thermo Fisher Scientific) and expressed in FreeStyle 293-F cells (Thermo Fisher 



 

Scientific).  

 

Flow cytometric binding analysis of yeast surface display scFv. After inducing surface-

display scFv expression in yeast cells, 5 x 105 cells were added to each well of a 96-well V-

bottom plate. The cells were pelleted by centrifugation at 1500 g for 5 minutes, and washed once 

in PBS containing 0.05% BSA (wash buffer). The cells were resuspended in 50 µL 10 nM 

biotinylated SI06 HA prepared in wash buffer. The cells were allowed to incubate in antigen for 

one hour at room temperature, after which they were washed three times. Next, the cells were 

resuspended in 50 µL stain solution (1:250 FITC-conjugated V5 peptide and 0.1 µg/well APC-

conjugated streptavidin prepared in wash buffer). The cells were again allowed to incubate for 

one hour at room temperature, after which they were pelleted and washed one time. Finally, the 

cells were resuspended in 250 µl wash buffer and kept on ice until analyzed by flow cytometry. 

 

Half maximal effective concentration (EC50) analysis. ELISAs were performed to obtain EC50 

values for binding using 384-well plates coated with the HA of interest at a 2 µg/mL 

concentration and incubated overnight at 4°C. The plates were blocked with 5% non-fat dry 

milk, 2% goat serum, and 0.1% Tween-20 in PBS for one hour. Three-fold dilutions of the mAb, 

starting from 50 µg/mL, were added to the wells, incubated for one hour, followed by a one hour 

incubation of 1:4,000 dilution of goat F(ab')2 anti-human lambda light chain horseradish 

peroxidase conjugate (SouthernBiotech, 2072-05). The plates were washed three times between 

each step with PBS containing 0.1% Tween-20. 1-Step TMB Ultra-ELISA Substrate solution 

(Thermo Fisher) was added to the plates, incubated for ten minutes, and the optical density 

values were measured at 450 nm wavelength on a BioTek plate reader. Each dilution was 



 

performed in duplicate, and the EC50 values were calculated in Prism software (GraphPad) using 

non-linear regression analysis.  

 

Hemagglutination inhibition (HAI) assay. Neutralization potential function of Fabs was 

determined by HAI assay as previously described (Bangaru et al., 2016).  

 

Half maximal inhibitory concentration (IC50) analysis. 40 TCID50 of A/Solomon 

Islands/3/2006 H1N1 (FR-331, IRR; Batch HA128 Immunology Core) virus was mixed with 

serial two-fold dilutions of Fabs starting from 40 µL/mL and incubated for 1 hour at RT. This 

virus-antibody mixture was added to monolayers of MDCK cells and incubated for 24 hours at 

37°C with 5% CO2. Human IgG CH65 was used as a positive control, and an unrelated antibody, 

EEEV-16 Fab, was used as negative control. All experiments were performed at triplicate. After 

24 hours cells were fixed and virus inactivated by 80% methanol in PBS. Cells were incubated 

with blocking buffer PBS with 0.05% Tween-20 for 1 hour at RT, primary anti-Influenza 

Nucleoprotein mouse antibodies (1:6000, BEI, NR-4282) for 1 hour at RT, and secondary anti-

mouse IgG AP conjugated antibodies (1:3000, Novex, DKXMO AP AFFINITY, A16014) for 1 

hour at RT. Wells with virus infected cell monolayers were visualized by AP substrate. Low 

OD405 values correspond to samples without influenza virus. High OD405 values correspond to 

samples with infected by Influenza virus MDCK cells. EC50 values were calculated using a non-

linear regression analysis by Prism v. 5.0 (GraphPad). 

 

KD determination. KD values were determined by bio-layer interferometry using an Octet RED 

instrument (ForteBio, Inc.), as described previously. Biotinylated SI06 HA protein (10 µg/ml) 



 

was loaded onto streptavidin-coated biosensors in kinetics buffer (1× PBS, pH 7.4, 1% bovine 

serum albumin [BSA], and 0.05% Tween 20) for 300 sec. For measurement of kon, association of 

Ab was measured for 120 sec by exposing the sensors to seven concentrations of Fab (2-fold 

dilutions starting at 200 nM) in kinetics buffer. For measurement of koff, dissociation of Ab was 

measured for 120 sec in kinetics buffer. Experiments were performed at 30°C. KD was calculated 

as the ratio of koff to kon determined from binding curves of at least four concentrations for each 

Fab. 

 

Crystallization and x-ray structure determination. All recombinant Fabs were concentrated to 

~ 10 mg/ml in 20 mM Tris-HCl, 50 mM NaCl for crystallization trials, and Fab crystals were 

grown using sitting-drop vapor diffusion method at 18ºC. Crystals of Fab CH65:1203d4 were 

obtained in 1.8 – 2.2 M (NH4)2SO4, 100 mM Tris-HCl pH8.3, crystals of Fab CH65:7969d2 

in1.8 – 2.2 M (NH4)2SO4, 100 mM Bis-tris pH 6.5, and crystals of Fab CH67:1203d4 in 22% - 

32% PEG 1000, 100 mM HEPES pH 7.0 – 8.0. Crystals were cryo-protected in mother liquor 

supplemented with 20% (w/v) glycerol  (CH65:1203d4 and CH65:7969d2) or 40% PEG 1000 

(CH67:1203d4), flash frozen, and stored in liquid nitrogen until data collection. X-ray diffraction 

data for the CH65:7969d2, CH65:1203d4, CH67:1203d4 apo Fabs were collected to 2.00 Å, 2.20 

Å and 3.80 Å resolutions at the Cornell High Energy Synchrotron Source (CHESS) F1 beamline. 

The diffraction data sets were processed and scaled with XDS and scala. The crystal structure of 

Fabs was determined by molecular replacement with Phaser using the variable and constant 

domains of Fabs in the PDB (4WUK, 4HKB) as search models for CH65:1203d4/CH65:7969d2 

and CH67:1203d4 respectively. The model was iteratively rebuilt using Coot and refined in 

Phenix.  



 

 

Accession codes: Atomic coordinates and structure factors for the crystal structures of apo Fabs 

CH65:7969d2, CH65:1203d4, CH67:1203d4 have been deposited in the Protein Data Bank with 

the accession codes 6DLA, 6DLB, and 6DL8, respectively. 

 

 
 


