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Chapter I 

 

Introduction 

 

In the earliest days of molecular biology, scientists realized that the constant value of haploid 

DNA content, “C-value”, does not correlate with the organismal complexity (Mirsky and Hans 

1951). This is referred as the “C-value paradox” (Thomas 1971), because it is contradictory to 

the common assumption that there is a positive correlation between organism complexity and 

genome size. As technology advanced and enabled the sequencing of human genome, scientists 

were able to determine the composition of the human genome.  One of the major questions was, 

how many genes are there? To many scientists’ surprise, the answer from the human genome 

project (HGP) is only about 20,000 – 25,000 genes, which is about the same size as the nematode 

worm (C. elegans sequencing consortium 1998). This further expanded the “C-value paradox”: 

not only the total size of the genome, but also the gene count, does not correlate with organismal 

complexity (Hahn and Wray 2002). However, once many sequences were known from multiple 

species, it became possible to use genes to measure the genetic distance between species. One 

could ask: what genes are different and how different are they? Early efforts to compare genes 

between species in 1963 showed that some of the blood proteins of human and chimpanzees are 

virtually identical in amino acid sequences. This and other following analyses of additional 

proteins and DNA in the 1970s led King and Wilson to propose that non-protein-coding gene 

regulatory mutations account for the major biological differences between human and 

chimpanzees (King and Wilson 1975) rather than differences in protein coding genes. Later, 

sequencing of the chimpanzee genome in 2005 enabled whole genome comparison between 

human and chimpanzee and made this hypothesis even more plausible — the careful comparison 

between the human and chimpanzee typical proteins showed only two amino acid differences 

(Varki and Altheide 2005).  

Among the 3 billion base pair human genome, less than 2% code proteins and the vast 

majority are non-coding sequences. The massive amount of noncoding DNA was once thought 

as “junk DNA” (Ohno 1972) and a large portion of them is consist of transposons, and thought to 

be “selfish”, which means that they function for themselves but not for their host (Orgel and 

Crick 1980). Although the term, “junk DNA”, is rarely used in modern day research of 
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noncoding genome, the idea that the majority of noncoding DNA is nonfunctional is maintained 

till today.  In 2012, ENCODE project estimated 80.4% of the genome participates in at least one 

biochemical RNA and/or chromatin associated event in at least one cell type (Bernstein et al. 

2012), strongly opposing the idea of most noncoding regions is nonfunctional. However, 

ENCODE’s definition of “function” is based on the biomedically marks and it is arguable 

whether 'biochemically active’ is an accurate approximation of functionality. Eddy argued that 

biochemically ‘active’ DNA does not mean that they are there primarily because they’re useful 

for the organism, including host suppression of mobile element (Eddy 2012, 2013). Sequence 

conservation analyses estimated about 9% of the human genome shows detectable conservation, 

which also questions the claim of 80% of noncoding genome is functional. But at the mean time 

sequence conservation is not required for functionality because some of the genome may have 

human specific function and more importantly, the regulatory landscape turnover rapidly (Villar 

et al. 2014a, 2015b). All in all, it is still debatable how much of the noncoding genome is 

actually functional but at least we know that a substantial fraction of them have regulatory 

activity. 

The regulatory regions of the genome encode the information for orchestrating the dynamic 

spatiotemporal patterns of gene expression required for the proper differentiation and 

development of multi-cellular organisms (Shlyueva et al. 2014; Kundaje et al. 2015; Villar et al. 

2015b). Promoters and enhancers are two main types of regulatory elements. Promoters are in 

the immediate vicinity of the transcription start sites of the target gene and can initiate the 

transcription of the gene. However, the transcription driven by the promoters is usually at a low 

level. The more precise regulation of gene expression requires a class of distant regulatory 

elements, called enhancers. As a result of their essential role, mutations that disrupt proper 

enhancer activity can lead to diseases. For example, preaxial polydactyly, a frequently observed 

limb malformation, is due to point mutations in the ZRS enhancer that disrupt its proper 

regulation of the Shh gene, which is located 1 megabase (Mb) away (Lettice et al. 2003). 

Another example is a homozygous point mutation in an enhancer of the TBX5 gene that leads to 

congenital heart disease (Smemo et al. 2012). More broadly, significant evidence for the 

functional importance of gene regulatory regions comes from genome-wide association studies 

(GWAS)—the majority of genetic variants associated with complex disease are non-protein 

coding, suggesting that they are influencing diseases by disrupting proper gene expression levels  
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(Maurano et al. 2012; Lee et al. 2018). Given the significance of enhancers, it is critical to 

understand the complex mechanisms of enhancers. 

Enhancers were first described as a 72 base pair (bp) DNA element in the simian virus 

(SV40) genome that enhances the expression of a cloned rabbit hemoglobin b1 gene in HeLa 

cells by 200 fold (Banerji et al. 1981b) from thousands of base pairs away independent of the 

relative orientation of enhancer and the target gene. Since then, extensive studies have been 

performed to identify and investigate the function and properties of enhancers. One characteristic 

of enhancers is the above-mentioned distant location from their target genes. They can locate 

several kilobases, or even megabases, away from the target gene and can act from either 

upstream or downstream of the transcription start site (TSS). They are thought to regulate gene 

expression by looping to the proximity of target promoters in the 3D genome (Amano et al. 

2009; Miguel-Escalada et al. 2015; Schoenfelder and Fraser 2019). Active enhancers are often 

found in accessible open chromatin regions (Boyle et al. 2008). This enables the binding of 

transcription factors (TFs) to the short DNA motifs in the enhancer sequences for gene 

regulation. The histones in the active enhancer regions show a characteristic set of modifications 

at their N-terminal tails, such as histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 

acetylation (H3K27ac) (Heintzman et al. 2009; Mendenhall et al. 2013).  

Using the above characteristics as proxies for enhancer activity, many genome-wide 

methods for profiling of enhancers have been developed, such as DNase-seq (DNase I 

hypersensitive sites sequencing) (Boyle et al. 2008) and FAIRE-seq (formaldehyde-assisted 

isolation of regulatory elements) that identify open chromatin (Giresi et al. 2007), chromatin 

immunoprecipitation coupled with highthroughput sequencing (ChIP-seq) of H3K4me1 and 

H3K27ac histone modifications (Liu and Hauser 2007; Shlyueva et al. 2014; Villar et al. 2015c), 

massively parallel reporter assays (MPRA) (Melnikov et al. 2012) and bi-directionally 

transcribed enhancer RNAs (eRNAs) (Andersson et al. 2014).  These various ways of enhancer 

profiling result in an abundant database of enhancers across a diverse set of cellular contexts and 

species, enabling the further analyses of the complex mechanisms of enhancers.  
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I-1 A seeming evolutionary paradox: rapid enhancer turnover and stable gene expression 

There exist hundreds of thousands of sequences within non-coding regions of genomes that have 

identifiable evolutionary conservation across more than 400 million years of evolution. Some of 

these conserved non-coding elements (CNEs) have been shown to act as developmental 

enhancers (Polychronopoulos et al. 2017). This elevated level of evolutionary conservation has 

been used to as a way to computationally identify enhancers genome wide. However, many 

pieces of evidence suggested that enhancers may be rapidly evolving.  For example, in a study of 

ret gene expression in zebrafish, researchers found that although there is no apparent sequence 

similarity between human and zebrafish ret enhancers, the majority of human ret enhancers drive 

similar gene expression profiles when introduced into the zebrafish as the zebrafish ret enhancers 

(Fisher et al. 2006), suggesting that conserved enhancers are not required for maintaining similar 

gene expression profiles.  The comparison of transcription factor binding sites across mammals 

also suggested rapid evolution. In an experiment comparing four tissue specific transcription 

factors between human and mouse revealed 41-89% of the binding sites are species specific 

(Odom et al. 2007). Another more recent piece of evidence came from a direct comparison of 

histone modification based genome-wide liver enhancer maps across 20 mammalian species 

(Villar et al. 2015b). They found that among about 30,000 human liver enhancers, only 1% of 

them are highly conserved across mammals, suggesting rapid turnover of active enhancer regions 

in mammal. In contrast, 16% of the promoters are highly conserved.  

 On the other hand, gene expression has shown to be highly conserved. Analysis of gene 

expression of all known and predicted genes across twenty tissues in human, mouse, chicken, 

frog, and pufferfish found that more than a third of unique orthologous genes have conserved 

expression despite the large evolutionary distance between these species. Moreover, the 

conservation of expression correlates poorly with the amount of conserved non-exonic sequence 

(Chan et al. 2009). Brawand et al. in 2011 also showed the slow evolution of gene expression in 

mammals. They analyzed RNA-Seq from six organs across ten species that represent all major 

mammalian lineages (placentals, marsupials and monotremes). They showed that gene 

expression profiles cluster by tissue rather than by species, suggesting the variation of gene 

expression is largely between cellular contexts rather than between species (Brawand et al. 

2011). Berthelot et al. also showed high correlation of gene expression in liver across 25 

mammalian species (Berthelot et al. 2017). These pieces of evidence suggest the decoupling of 



5 

  

the conservation of gene expression and that of regulatory elements, raising the question of what 

mechanism is governing the evolution of enhancers so that even though the regulatory landscape 

is rapidly changing, there is still considerably high conservation of gene expression. These pieces 

of evidence raise the question that how the rapidly evolving regulatory drives largely conserved 

gene expression.  

 

I-2 Enhancer sequence architecture 

Transcription factors bind enhancers to exert their regulatory function. There are about 1600 TFs 

in the human genome, exerting control over cell differentiation, developmental patterning, and 

activation of specific pathways in response to environmental cues, such as immune responses 

(Lambert et al. 2018). These proteins have DNA-binding domains and preferentially bind to a 

certain set of short DNA sequences. Such TF-DNA binding specificities can be summarized in the 

form of sequence motifs, which are usually represented in the form of a position weight matrix 

indicating relative preference of the TF for each base in the binding site. TF binding motifs can be 

determined through various techniques both in vivo and in vitro. For example, the protein binding 

microarray (PBM) is an in vitro way for determining TF motifs where a GST-tagged TF is bound 

to a glass slide with arrays of short DNA sequences and the binding specificity is then determined 

through the fluorescence emitted from the bound DNA sequences (Mukherjee et al. 2004). Another 

common in vitro experiment method is high-throughput systematic evolution of ligands by 

exponential enrichment (HT-SELEX). In HT-SELEX, TF protein is mixed with a randomized pool 

of short DNA sequences and bound regions are selected for multiple rounds and sequenced (Jolma 

et al. 2013a).  These in vitro assays deepened our understanding of TF binding specificities; 

however, the binding of TFs may be different in vivo, where chromatin accessibility, other 

proteins, and other factors all play a role in determining binding. In contrast, ChIP-Seq can assay 

TF binding sites in vivo. In ChIP-Seq, proteins bound to DNA are first cross-linked to the DNA. 

Then, the DNA is fragmented and treated with exonuclease to trim unbound sequences. Next, 

protein-specific antibodies are used to immunoprecipitate the DNA-protein complex. Finally, the 

DNA is extracted and sequenced, giving high-resolution sequences of the protein-binding sites 

(Johnson et al. 2007; Rhee and Pugh 2011). ChIP-Seq also has some weaknesses. For example, it 

does not measure equilibrium binding because of the use of cross-linkers and the data quality is 

highly dependent on the antibody efficiency (Lambert et al. 2018).  
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 The above-mentioned methods have enabled characterization of binding sites for about two 

thirds of human TF proteins. However, consensus TF motifs are not sufficient for inferring TF 

binding. As shown in TF binding analyses of ChIP-seq peaks, TFs only bind to a small fraction of 

all motif occurrences in the genome, and some binding sites do not contain the consensus TF 

binding motif (Wang et al. 2012). Indeed, many additional features have been suggested to play a 

role in determining in vivo TF binding. For example, local variations in DNA shape have been 

shown to influence TF binding. Combinatorial binding is another important factor, especially in 

enhancer regulatory activity (Stampfel et al. 2015). Enhancer sequences have many short DNA 

motifs that can be bound by transcription factors. TFs often bind cooperatively as homodimers 

(e.g., bZIPs and bHLHs), trimers (heat shock factors) (Lambert et al. 2018), or higher-order 

structures, such homotypic clusters (Mathelier and Wasserman 2013), heterotypic clusters (Luna-

Zurita et al. 2016) and enhanceosomes (Slattery et al. 2014). The combinatorial binding of TFs 

can occur through protein-protein interactions or mediated by DNA. A recent study identified 315 

pairs of TFs with clear spacing and orientation preferences among 9400 tested pairs of TFs, and 

some of the cooperative binding is directly mediated by DNA (Jolma et al. 2015). These findings 

suggest that the “regulatory code” of enhancers, unlike the clear three codon genetic code, is 

complex not only in the sense that the binding specificities of individual TFs are degenerative and 

diverse, but that TF binding also has “grammar”—how multiple TF binding events in the enhancer 

sequence work in synergy to direct precise pattern of gene expression regulation,  such as 

cooccurrences, ordering, spacing, and orientation of TF binding sites. 

 

I-3 Modeling of enhancers with machine learning algorithms 

Enhancers are essential to the orchestration of proper spatio-temporal gene expression in diverse 

cellular contexts. With the development of next generation sequencing, large amounts of genome-

wide data about the location of epigenetic marks associated with enhancer activity has been 

produced, this has created the need for more efficient analytical methods for analyzing enhancer 

sequences and epigenetic properties. Machine learning algorithms can extract common patterns 

from large volumes of data and extrapolate the learned knowledge to predict unknowns. Therefore, 

machine learning algorithms are especially promising for mining meaningful biological 

information from the high volume of high dimensional genomic data. In recent studies, researchers 

have successfully applied machine learning models to enhancer sequences and enhancer-related 
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data. These methods can be divided to two main types: unsupervised and supervised learning 

methods. 

I-3.1 Unsupervised learning methods 

Unsupervised learning methods are the group of algorithms that draw inferences from the 

unlabeled input data. The goal of unsupervised learning can be clustering data points by their 

similarity in features, reducing their redundancy, or extracting general rules about their properties. 

Some common unsupervised methods are Hidden Markov models (HMMs), Gaussian mixture 

models, dimension reduction techniques, restricted Boltzmann machines (RBMs), self-organizing 

maps (SOMs), and clustering algorithms. Many unsupervised learning algorithms have been 

applied to solve problems in regulatory genomics (Li et al. 2015). For example, HMMs have been 

applied to automatically annotate the chromatin state genome-wide (ChromHMM) (Ernst and 

Kellis 2012) by modeling large-scale epigenetic datasets. In ChromHMM, the genome is first split 

into 200 bp bins, and each epigenetic mark is converted to a binary label (0 or 1) representing 

whether the mark is present at a particular genomic segment. Then a first-order multivariate model 

is trained on the whole genome to infer the hidden state of each genomic segment and the hidden 

states are mapped to annotations, such as enhancer, TSS, and heterochromatin. Another example 

is use self-organizing maps to infer the combinatorial binding rules of transcription factors (Boyle 

et al. 2014a). A self-organizing map is a type of artificial neural network that is trained using a 

neighborhood function to preserve the topological properties of the input space and visualize high-

dimensional data in a low-dimensional view. Analysis of the binding of orthologous transcription 

factors between human-worm and human-fly identified cis-regulatory modules (CRMs) with at 

least two transcription factor binding sites. These CRMs were then fed into the SOM algorithm to 

find similarities of combinatorial TF binding within and between species. The co-associations of 

TFs were found to be mostly conserved in promoters and much less conserved in the distal regions, 

like enhancers. 

I-3.2 Supervised learning methods 

Experimental genome-wide profiling of enhancers through enhancer activity proxies has generated 

abundant labeled data of enhancers in various tissues and species. Supervised learning is used to 

model labeled data. Some common supervised algorithms include regression models, tree 

algorithms, support vector machines (SVMs), and the recently popular deep neural networks 

(DNNs). One of the first attempts to apply machine learning methods to enhancer prediction 
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trained a correlation-based model with histone modification profiles of established transcriptional 

regulatory elements and then applied the trained model to make new enhancer predictions 

(Heintzman et al. 2007). The majority of predicted enhancers were supported by at least one of the 

previous known enhancer-associated marks, such as DNaseI hypersensitivity, binding of p300, or 

binding of TRAP220. Tree methods have been applied to enhancer prediction as well. For instance,  

a vector-random-forest-based supervised model called RFECS was applied to enhancer prediction 

using the 24 histone modifications (Rajagopal et al. 2013). Though many methods, like those 

above, are based on epigenetic marks, enhancer prediction is also possible directly using DNA 

sequence as features. Lee et al. (Lee et al. 2011) extracted the sequence features of enhancers with 

a k-mer spectrum, which is the frequency spectrum of all possible short fixed-length DNA 

sequences (k-mer), and used that to train an SVM to predict EP300/CREBBP-bound mouse 

enhancers from background genomic sequences. They obtained good performing models and 

identified predictive k-mers that are similar to biologically relevant transcription factor motifs. 

Later in 2014, the same group enhanced this method using a gapped k-mer kernel (Ghandi et al. 

2014). Erwin et al. integrated the DNA sequence information with evolutionary conservation, 

regulatory protein binding, and chromatin modifications with a multiple kernel SVM to predict 

developmental heart enhancers (Erwin et al. 2014).  

More recently, with development of deep neural network algorithms and the availability of 

GPUs, deep learning models have become the dominant approach for the modeling regulatory 

sequences. DeepBind was developed to predict the sequence specificities of DNA- and RNA-

binding proteins using a convolutional neural network (Alipanahi et al. 2015). The convolutional 

neural network in general has a similar architecture as an artificial neural network, that is, a layered 

structure of neurons. Each neuron performs a mathematical transformation of the input to output 

to the neurons in the next layer. The key difference is in the addition of convolution layers where 

the convolutional operation is used. In the case of DNA sequences, the convolutional operation in 

the first layer can be viewed as sliding a kernel (a weight matrix, similar to a position weight 

matrix) along the different positions in the DNA sequences. Intuitively, in the training of the 

convolutional neural network, this helps the model to learn recurring patterns, like transcription 

factor motifs, in the input sequences. These convolutional layers are stacked with optional pooling 

layers and fully connected layers, and finally connected to output neurons. The pooling layer is 

useful for making the neural network robust to variances in the input. The fully connected layer 
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can integrate all information from the previous layer and feed into the final output neurons. By 

using this algorithm, DeepBind achieved higher accuracy at DNA- and RNA- binding protein 

sequence specificity prediction than previous methods and demonstrated that the neurons in the 

first convolutional layer learned relevant transcription factors. Since then, there has been a burst 

of deep learning publications using genomic data. For example, Zhou et al. modeled genome-wide 

epigenetic marks identified by the ENCODE consortium with a convolutional neural network 

(Zhou and Troyanskaya 2015). Quang et al. improved the performance of this approach with a 

hybrid neural network with convolutional layers and bidirectional long short-term memory 

(LSTM) (Quang and Xie 2015). There are also many studies focused on enhancer prediction 

directly. For instance, BiRen integrates the sequence encoding power of a convolutional neural 

network and the benefits in learning long-term dependency of a gated recurrent unit (GRU)-based 

recurrent neural network (RNN) to accurately predict enhancers (Yang et al. 2017).  

I-3.3 Interpretability of machine learning models 

In many cases, the interpretability of machine learning models is as important, if not more 

important, than their accuracy. There is often a trade-off between the accuracy of the model 

versus the interpretability. As the model becomes more complex, it becomes more powerful at 

modeling complex patterns in the data and less interpretable at the same time. For example, in 

regression models, the importance of the features can be directly derived from their correlation 

coefficients. Tree models, such as random forest and gradient boosted decision trees, are better at 

modeling non-linear functions than regression models. Although we cannot directly obtain the 

feature importance from the model, there are multiple ways to calculate it, such as information 

gain and split counts.  In SVMs, we can interpret features weights as feature importance, because 

the weights of features in a linear SVM can be thought as how important that feature is at 

determining the separation hyperplane (Iguyon and Elisseeff 2003). More complex models, like 

neural networks, are much harder to interpret compared to the above models. The multi-layer 

feed forward architecture of neural networks makes them powerful, and they have been proven 

to be universal function approximators (Hornik 1991; Lu et al. 2017). Neural networks are 

dominating performance in computer vision and natural language processing and are gaining 

increasing popularity in genomics and genetics. However, the millions of weights that interact in 

a complex way in the neural network make it hard to understand what it learns. Interpretability of 

models is paramount in many cases, especially in fields where researchers strive to uncover 
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underlying mechanisms. With the rising need for interpretability, several methods are developed 

to visualize the features learned by neural networks. 

 The main approaches for interpreting deep neural networks can be categorized as perturbation 

based, backpropagation gradient based, and gradient ascent based methods. Many of these methods 

were developed in the context of image classification and analysis. For example, occlusion is a 

perturbation-based method in which patches of an image are excluded in the input and then the 

changes in neuron activations in higher level layers and classifier output are visualized (Zeiler and 

Fergus 2014). The resulting maps are meaningful to humans and demonstrate that the neural 

network trained on large amount of image data did learn relevant features. Perturbation-based 

methods have also been applied to genomic sequence trained deep learning models DeepSEA uses 

an in silico mutagenesis to assign importance score to individual nucleotides based on how the 

perturbation of the single nucleotide influences epigenetic mark predictions (Zhou and 

Troyanskaya 2015). The derived scores were then used to train boosted logistic regression 

classifiers for predicting functional noncoding variants, and these scores achieved state-of-the-art 

performance. However, a recent study performed experimental saturation mutagenesis on 20 

disease-associated gene promoters and enhancers for over 30000 single nucleotides showed that 

the variant effect prediction made by DeepSEA has low correlation with the experimental results 

on gene expression (Kircher et al. 2019).  This suggests either the features learned by deep learning 

model trained on the epigenetic data is not accurate enough for explaining the single nucleotide 

variant effect on gene expression or the in silico mutagenesis method is not reliable. 

The second group of neural network interpretation methods are backpropagation gradient 

based approaches. This group of methods is more computationally efficient than the perturbation 

methods because it only takes one back propagation to compute the importance score for all input 

positions. Simonyan et al. (Simonyan et al. 2013a) generated saliency maps by computing the 

gradient of the output with respect to pixels of an input image. The intuition is that if the gradient 

at certain pixel of the image is high, then change in the value of pixel will have a higher impact on 

the neuron’s output. Then this approach was further developed to zero out the gradients when the 

input to the rectified linear unit (ReLu) during forward propagation is negative or the gradients to 

the ReLu during back propagation is negative (Springenberg et al. 2014). This method is referred 

as guided back propagation and generates sharper explanations for image trained neural networks. 

Layer-wise Relevance Propagation (LRP) is another approach using back propagation to calculate 
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feature importance (Bach et al. 2015). This computation is later found to be equivalent to multiply 

of gradient and input matrices (Shrikumar et al. 2017b). DeepLIFT also uses backpropagation 

(Shrikumar et al. 2017a). The difference is that DeepLIFT calculates the difference between the 

inputs of interest versus a set of reference inputs. With the help of the reference sequences, 

DeepLIFT can capture the meaningful difference of the inputs even when the gradients are zero 

and avoid the caveats that the gradients through ReLu are not continuous. DeepLIFT applied to 

genomic sequence was able to recover simulated transcription factor motifs in the DNA sequences 

better than the gradients x input and guided back propagation gradient x input method.  

The last group of neural network interpretation methods are gradient ascent based methods. 

The logic behind this group of methods is that the feature learned by an internal neuron can be 

found by computing the gradients with respect to the input and iteratively tweaking the input to 

maximally activate the neuron. This group of methods is also referred as activation maximization 

or visualization by optimization. It was first proposed by Erhan and colleagues (Erhan et al. 2009). 

They applied this technique to interpret the neurons in Deep Belief Nets and Stacked Denoising 

Auto-encoders trained on the MNIST dataset, which consists of handwritten digits. They found 

that with random initialization, they could visualize human recognizable digits from the neurons 

in the hidden layers. In neural networks trained with more sophisticated image samples, the naïve 

version of activation maximization can give unrealistic images. Because not all possible input 

spaces for maximally activating a neuron have been explored by the neural network trained with 

the limited set of images. This problem can be addressed by constraining the optimization process. 

Using L2-regularization in the optimization function can improve the image quality for the final 

layers of a convolutional neural network (Simonyan et al. 2013a). Similarly, using natural image 

priors for the optimization also helped produce more realistic images (Mahendran and Vedaldi 

2015a). Other regularization techniques, such as Gaussian blur (Yosinski et al. 2015), total 

variation (Mahendran and Vedaldi 2015b), and jitter (Mordvintsev et al. 2015), also can improve 

the resulting optimized image. However, the neurons in higher layers of the neural network 

sometimes learn multiple features. For example, a face detecting neuron in a DNN responds to 

both human and lion faces (Yosinski et al. 2015). Based on this observation, Yosinski et al. 

proposed to first perform unsupervised clustering of the input images based on their neuron 

activating patterns and then compute the mean image for each cluster as the prior for the activation 

maximization process (Nguyen et al. 2016). The gradient ascent approach has been modified for 
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interpretation of DNA-sequence-trained neural networks. Using activation maximization with L2-

regularization, motifs for individual transcription factors were extracted from the output neurons 

in a neural work trained with transcription factor binding sites (Lanchantin et al. 2017).  

 In summary, many machine learning algorithms have been applied to model enhancers. The 

current state-of-the-art methods are based on deep neural networks. Although much effort has been 

made to understand the features learned by neural networks in image classification, our 

understanding of neural networks trained on DNA sequences, especially complex regulatory 

elements like enhancers, is limited. This raises the question of what these neural networks with 

superior performance learned about enhancer sequence architecture and what are the benefits and 

limitations of neural network at modeling enhancer sequences. More specifically, whether the 

neural network can learn the complex combinatorial binding pattern of transcription factors when 

trained to perform common enhancer prediction tasks, such as predicting enhancers from 

difference cellular contexts. 

In this dissertation, I present the work I have done investigating evolution of enhancers and 

dissecting their sequence architectures. In this Chapter, I outline the background and the 

motivation for studying these questions. In Chapter II, I show that conserved enhancers in 

mammalian species are more pleiotropic than species-specific enhancers, suggesting 

evolutionary constraint underpinning the loss and gain of enhancers. In Chapter III, I 

demonstrate the conservation of enhancer sequence properties despite the rapid turnover of the 

location of active enhancers in mammalian species through a machine learning based, cross-

species prediction framework. In Chapter IV, I investigate the power of a state-of-art enhancer 

prediction algorithm, deep neural networks, at modeling enhancer architecture. Finally, in 

Chapter V, I summarize the conclusions of the proceeding chapters and discuss future work that 

could be done to answer questions raised by the findings in this dissertation. 
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Chapter II 

 

II. Gene regulatory enhancers with evolutionarily conserved activity are more pleiotropic than 

those with species-specific activity 

 

This chapter is a collaboration with Alex Fish. I was co-first author on the manuscript published 

in Genome Biology and Evolution in 2017 (Fish et al. 2017). 

 

II-1 Introduction 

Mammalian genomes harbor hundreds of thousands of regulatory enhancer sequences that are 

essential for directing spatiotemporal patterns of gene expression during development and 

differentiation (Shlyueva et al. 2014; Consortium et al. 2015). Enhancers contain binding sites 

for transcription factors (TFs), the binding patterns of which regulate gene expression. Genetic 

variants that disrupt the functionality of enhancer sequences, and thereby alter gene expression 

levels, are major contributors to both speciation events (Romero et al. 2012) and risk for 

complex disease (Maurano et al. 2012; Corradin and Scacheri 2014). Given their functional 

importance, there is considerable interest in better understanding the evolutionary processes 

underlying both enhancer sequence conservation and, more importantly, enhancer activity 

conservation. 

Much of the transcriptional machinery responsible for regulating gene expression levels is 

conserved across species. For example, TFs and the sequence motifs they recognize are often 

conserved between human and fly (Amoutzias et al. 2007; Wei et al. 2010b; Cheng et al. 2014; 

Nitta et al. 2015a). Consequently, a sequence’s TF binding profile across different species is 

typically similar (Wilson et al. 2008); however, the enhancer activity of orthologous sequences is 

less consistent. Ritter et al. 2010 examined the activity profiles of 41 pairs of conserved 

regulatory elements between human and zebrafish. Roughly a third of these pairs demonstrated 

consistent activity patterns between species, but the majority did not (Ritter et al. 2010). Villar et 

al. 2015 demonstrated that regulatory activity turnover is pervasive between even more closely 

related species; only 1% of human liver enhancers had conserved activity across 20 mammals 

(Villar et al. 2015a). Thus, despite similarity in TFs and their binding motifs, orthologous 

sequences can have highly variable enhancer activity across species. 
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Pleiotropy—broadly defined as a single genetic locus influencing multiple traits (Paaby and 

Rockman 2013) —has been proposed to contribute to the evolutionary conservation of both 

genes and regulatory activity (Galis et al. 2002; He and Zhang 2006; Cheng et al. 2014; 

Papakostas et al. 2014; Chesmore et al. 2016; Huang et al. 2017). Mutations in pleiotropic 

regions face a trade-off: Variants potentially advantageous to one function may be deleterious for 

others (Guillaume and Otto 2012). Consequently, pleiotropic regions may be more likely to be 

constrained by selection than nonpleiotropic regions. The relationship between pleiotropy and 

conservation has been demonstrated on several scales. Highly pleiotropic genes are more likely 

to have conserved orthologs in other species (He and Zhang 2006) and are more likely to have 

constrained expression levels (Papakostas et al. 2014). In the context of regulatory functions, 

binding sites for transcription factors that are observed in multiple cellular contexts, and are 

therefore presumed to be more pleiotropic, are more likely to be conserved between human and 

mouse (Cheng et al. 2014). Thus, we predicted a positive relationship between pleiotropy and 

enhancer activity conservation across species. 

In this study, we investigated whether enhancers with conserved regulatory activity between 

species were more likely to be pleiotropic than enhancers with similarly alignable sequences, but 

species-specific regulatory activity. We quantified pleiotropy at several stages of human gene 

regulation: Density and diversity of TF binding motifs, extent of regulatory activity across 

cellular contexts, and number of target genes. We investigated these measures of pleiotropy in 

liver enhancers recently identified from genome-wide histone modification profiles across ten 

diverse mammalian species. We compared two groups of sequences present and alignable across 

all ten species: 1) those with liver activity in all ten mammals considered (conserved-activity) 

and 2) those with liver enhancer activity in only one species (species-specific-activity). We 

found that the conserved-activity enhancers consistently had stronger evidence of more, and 

more diverse, regulatory functions than the species-specific-activity enhancers. We also 

demonstrated that machine learning classifiers can accurately distinguish these two classes of 

enhancers using these measures of functional potential and diversity. Overall, our results argue 

that conserved-activity enhancers are more pleiotropic than species-specific-activity enhancers 

with similar levels of sequence alignability. This suggests that more diverse functional activity 

contributes to conserved activity across species, and that conserved activity may facilitate 

acquisition of additional functions. 
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II-2 Materials and Methods 

II-2.1 Identifying Enhancers and Cross-Species Alignments 

Enhancers were previously identified by Villar et al. (Villar et al. 2015a) in primary liver tissues 

collected from 20 mammalian species. Using ChIP-seq, Villar et al. (2015) identified H3K27ac 

and H3K4me3 peaks across the entire genome; putative enhancers were defined as genomic 

regions exclusively containing H3K27ac peaks (i.e., H3K27ac peaks that did not overlap 

H3K4me3 peaks) found in at least two representatives of the species. We restricted our analysis to 

the following ten species with high quality genome builds: Human (Homo sapiens), macaque 

(Macaca mulatta), marmoset (Callithrix jacchus), mouse (Mus musculus), rat (Rattus norvegicus), 

rabbit (Oryctolagus cuniculus), cow (Bos taurus), pig (Sus scrofa), dog (Canis familiaris), and cat 

(Felis catus). Cross-species comparisons to identify whether or not a sequence was present and 

active in other species were performed in reference to the eutherian mammal EPO alignment. To 

determine enhancer activity in cellular contexts other than the liver, we used enhancers identified 

by CAGE by the FANTOM Consortium (http://enhancer.binf.ku.dk/presets/; last accessed 

September 21, 2017) (Andersson et al. 2014). 

II-2.2 Standardizing Enhancer Length  

To avoid confounding by length, we restricted enhancer sequences used in the majority of analyses 

to 5 kb centered on the middle of the enhancer. If a putative enhancer was shorter than 5 kb, we 

extended the enhancer boundaries symmetrically in both directions until it was 5 kb. The length of 

5 kb was selected as it the intermediate point between the average length of the conserved-activity 

enhancers (7,895 bp) and species-specific-activity enhancers (2,545 bp). For sequences shorter 

than 5 kb, standardizing length could potentially dilute the density of TF binding motifs; however, 

it would increase the likelihood of overlapping enhancers in multiple cellular contexts or mapping 

to additional gene targets. In other words, it would have inconsistent effects on measures of 

pleiotropy; only in the TF binding motif analysis would the potential for pleiotropy for shorter 

sequences possibly be reduced. We demonstrated that the decreased density of TF binding motifs 

in human-specific-activity enhancers was not a product of length standardization (Figure I-1). 

Consequently, any influence of the length standardization in the subsequent analyses of breadth of 

activity and gene targets would only increase the likelihood of pleiotropic effects in species-
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specific-activity enhancers. This would reduce our power to detect increased evidence for 

pleiotropy in conserved-activity enhancers, but would not result in false positives. 
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Figure II-1. Conserved-activity enhancers have greater regulatory potential and diversity relative to human-

specific-activity enhancers when lengths are not standardized. We investigated whether standardizing enhancer 

sequences to 5 kb—the intermediate point between the average length of human-specific-activity enhancers and 

conserved-activity enhancers—diluted the frequency of TF binding motifs in human-specific-activity enhancers 

because they were, on average, shorter. To do so, we examined the frequency of TF binding motifs (JASPAR, Core 

Vertebrates) in sequences prior to length standardization. We first determined the total count of TF binding motifs 

(A), and observed that conserved-activity enhancers had a significantly greater number of TF binding motifs (p < 

2.2x10-16, Mann-Whitney U test).  We then investigated the diversity of TF binding motifs by counting the number of 

distinct TF binding motifs per enhancer sequence (B). In comparing distinct motifs, we do not expect the number of 
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distinct motifs to scale linearly with enhancer length. Essentially, the longer a sequence is, the more likely it is to 

contain a greater number of motifs, meaning that each subsequent motif is less likely to be unique. This results in a 

non-linear relationship with distinct TF motifs and enhancer length. Consequently, we examined the number of distinct 

TF motifs as a function of enhancer length. The LOESS curve fit for the conserved-activity enhancers consistently 

remained above the LOESS curve for human-specific-activity enhancers, indicating that conserved-activity enhancers 

have a greater diversity of TF binding motifs across all observed enhancer lengths. We additionally examined the 

density of TF binding motifs per base pair of the enhancer sequence. (C) Conserved-activity enhancers have a 

significantly greater density of total TF binding motifs per base pair (p < 2.2x10-16, Mann-Whitney U test) than their 

human-specific-activity counterparts.  We similarly compared the density of distinct TF binding motifs using the same 

approach previously described (B). (D) The LOESS curve for conserved-activity enhancers remained above that of 

human-specific-activity enhancers, indicating that they had a greater density of distinct TF binding motifs across all 

observed enhancer lengths.  

 

II-2.3 Identification of TF Binding Motifs 

We identified TF binding motifs using four databases derived across diverse sets of species and 

using different experimental approaches: Motifs derived from ChIP-Seq peaks in human by the 

ENCODE Project (n = 2,065) (Kapur et al. 2011); motifs derived from ChIP-Seq peaks and HT-

SELEX in vertebrates by JASPAR (Core Vertebrates) (n = 519) (Mathelier et al. 2016); motifs 

derived from ChIP-Seq peaks in human and HT-SELEX by HOCOMOCOv9 (n = 426) 

(Kulakovskiy et al. 2016); and motifs derived from ChIP-Seq peaks and HT-SELEX from human 

and mouse (n = 843) (Jolma et al. 2013a). For each of these data sets, we scanned the putative 

enhancer sequences for motif occurrences using FIMO (Grant et al. 2011), using the default 

settings and requiring a q-value of <0.1 to be considered a match. 

II-2.4 SVM Classifiers 

We trained SVM classifiers to distinguish between conserved-activity enhancers and species-

specific-activity enhancers using three different kinds of features: TF binding motif frequencies, k-

mer spectra, and functional genomics annotations. For the TF motif-based classifiers, each 

enhancer was associated with a feature vector that included the frequency of all possible TF motifs 

in its sequence. We then trained a linear SVM to distinguish the two classes of enhancers. The 

kernel was normalized using the square root diagonal kernel normalizer. All training and testing 

was done in the EnhancerFinder framework (Erwin et al. 2014). 

K-mer spectra quantify sequence content with the frequency of each unique nucleotide 

combination of length k in the enhancer sequence. We determined the k-mer spectra of each 
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enhancer sequence using EnhancerFinder (Erwin et al. 2014);the kernel was normalized using the 

square root diagonal kernel normalizer. The reverse complement of the sequence was considered 

(i.e., counts for ATG and CAT were combined). We examined various k (4, 5, 6, 7, 8) and found 

consistent results across settings (Figure I-2). 

 

 
Figure II-2. k-mer spectrum classifiers distinguish conserved-activity from species-specific-activity enhancers 

with moderate accuracy. Performance of SVM classifiers trained to distinguish conserved-activity enhancers from 

human-specific-activity enhancers based on their k-mer spectra, the frequency of each unique nucleotide combination 

of length k, is similar across a range of possible k (4, 5, 6, 7, 8). There was little variation in the classifiers’ ability to 

distinguish between the two enhancer categories across this range. (B) Performance of SVM classifiers trained to 

distinguish conserved-activity enhancers from species-specific-activity enhancers based on their 6-mer spectra is 

similar across human, mouse, dog, and cow. The area under each ROC curve is provided in the parentheses in the 

legend.  

 

To investigate whether functional genomics annotations were predictive of enhancer activity 

conservation, we used data collected by the ENCODE Project. Specifically, we used DNase-Seq, 

histone modifications, and TFBS Peaks (SPP) curated by the ENCODE Analysis Hub at the 

European Bioinformatics Institute (https://genome.ucsc.edu/ENCODE/downloads.html; last 

accessed September 21, 2017). We considered each genome-wide annotation as a binary feature, 

and each enhancer was assigned 0 if it did not overlap an element of the annotation set or 1 if it 

A B
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did overlap. Training and testing of the functional genomics classifier was also carried out in the 

EnhancerFinder framework (Erwin et al. 2014) . 

II-2.5 Target Gene Mapping and Analysis of Gene Expression across Contexts 

We used two methods to map the enhancers to their target genes: 1) GTEx eQTL association based 

target gene mapping. We first identified SNPs in the enhancer regions of interest and SNPs in high 

linkage disequilibrium with them (r2 > 0.9, based the 1000 Genomes EUR super population). 

Then, using expression data from GTEx, we considered genes for which these SNPs were eQTL 

to be putative target genes (The GTEx Consortium et al. 2015). 2) FANTOM enhancer–TSS 

associations. The FANTOM consortium released a set of target predictions for each of their 

predicted transcribed enhancers based on the coexpression of the enhancer and genes across tissues 

(Andersson etal. 2014). We overlapped each liver enhancer of interest with the FANTOM 

enhancers. We then considered any genes associated with an overlapping FANTOM enhancer as 

putative target genes. To analyze the breadth of activity of target genes, we used the median Reads 

Per Kilobase of transcript per Million mapped reads (RPKMs) for genes from the GTEx v6 RNA-

Seq data, which includes 53 types of tissue (The GTEx Consortium 2015). 

 

II-3 Results and Discussion 

In this study, we explored attributes that distinguish genomic regions with both alignable sequence 

and regulatory activity across diverse mammals from those with similarly alignable sequences, but 

regulatory activity isolated to a single species. We analyzed genome-wide maps of histone 

modifications in primary liver tissue from ten mammals to quantify the regulatory activity 

conservation spectrum for liver regulatory sequences. Following Villar et al. (2015), we defined 

regulatory activity as peaks of H3K27ac histone modifications without the H3K4me3 

modification. As histone modifications are correlated with enhancer activity in reporter assays 

(Creyghton et al. 2010; Nord et al. 2013; Villar et al. 2015b), we refer to these sequences as 

enhancers for brevity. As illustrated in Figure II-3, we considered two enhancer sets of interest: 

Sequences that can be aligned across the genomes of ten mammalian species with evidence of 

enhancer activity in each species (conserved-activity enhancers; n = 283) and sequences that can 

be aligned across the ten species with evidence of enhancer activity exclusively in a single species 

(species-specific-activity enhancers). We examined species-specific-activity liver enhancer sets 
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across four different mammalian species: Human (n = 1,913), mouse (n = 1,526), dog (n = 1,894), 

and cow (n = 3,093).  

 

 
Figure II-3. Defining the enhancers analyzed in this study. We analyzed enhancers previously identified in primary 

liver tissue from ten mammals (Villar et al. 2015b). Enhancers were defined on the basis of histone modifications 

(presence of H3K27ac peaks, absence of H3K4me3 peak). We analyzed sequences alignable across all ten species to 

disentangle sequence conservation from regulatory activity conservation across species. To identify trends that would 

hold across all mammals, we restricted our analysis to extremes of the activity conservation spectrum: conserved-

activity enhancers (green), and species-specific-activity enhancers (red). We considered species-specific-activity 

enhancers from human, mouse, cow, and dog to represent a diverse array of clades. 

 

II-3.1 Conserved-Activity Enhancers Have Greater Density and Diversity of TF Binding Motifs 

than Species-Specific-Activity Enhancers 

The differential enhancer activity of alignable sequences may be attributable to differences in 

sequence properties that determine their regulatory potential, as quantified by both the density of 
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TF binding motifs and the diversity of distinct TFs with binding motifs. Within a species, 

enhancers with a greater density of TF binding motifs are both stronger (Erceg et al. 2014) and 

more robust to disruptive genetic variation (Ludwig et al. 2011). We hypothesized that these 

principles generalize to enhancer conservation between species. To investigate this, we scanned 

all enhancer sequences for matches to a curated set of nonredundant TF binding motifs from the 

JASPAR database (Mathelier et al. 2016). Unless otherwise noted, enhancers were length 

standardized (Materials and Methods) to avoid confounding. 

Conserved-activity liver enhancers have a greater density of TF binding motifs than human-

specific-activity enhancers (Figure II-4A; median: 61 versus 44 per enhancer; Mann–

Whitney U (MWU) test, P < 2.2 × 10−16). Moreover, conserved-activity enhancers contain binding 

sites for almost double the number of distinct TFs (Figure II-4B; median: 10 versus 6 per enhancer; 

MWU test, P < 2.2 × 10−16). This finding is robust across other databases of TF binding motifs, 

including motifs from the ENCODE Project (Kapur et al. 2011), HOCOMOCO  (Kulakovskiy et 

al. 2016), and SELEX (Jolma et al. 2013a) studies. Furthermore, the other species-specific-activity 

(mouse, dog, and cow) enhancers also had both lower density and diversity of TF binding motifs 

relative to conserved-activity enhancers. This trend also was consistent when enhancers were not 

length standardized. Thus, conserved-activity enhancers have both a greater density and diversity 

of TF binding motifs than species-specific-activity enhancers, across multiple species and TF motif 

databases. 
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Figure II-4. Conserved-activity enhancers have greater TF binding motif density and diversity than species-

specific-activity enhancers. We quantified the total number of TF binding motifs (JASPAR, Core Vertebrates 

(Mathelier et al. 2016)) and of distinct TF motifs within the enhancer sequences. The 283 conserved-activity enhancers 

have (A) significantly more TF binding motifs per enhancer (median of 61 vs. 44) and (B) binding motifs for 

significantly more distinct TFs (median of 10 vs. 6) than the 1,913 human-specific activity enhancers. Each box covers 

the first through third quartiles, and the whiskers extend to the most extreme data point within 1.5 times the 

interquartile range of the full distribution. The distributions are summarized using the R vioplot package with default 

parameters applied to each distribution with boxplot outliers removed. The enhancers were standardized by length and 

compared with the Mann–Whitney U test. 

 

We next examined whether differences in TF binding motif profiles were sufficient to 

distinguish conserved-activity enhancers from species-specific-activity enhancers in a machine 

learning framework. First, we trained linear support vector machine (SVM) classifiers with 

conserved-activity enhancers as positives and species-specific-activity enhancers as negatives 

using the frequency of each distinct TF binding motif in the enhancer sequence as features. We 

performed 10-fold cross validation, computed receiver operator characteristic (ROC) curves, and 

evaluated classifier performance by the area under the ROC curve (auROC). 

The classifiers accurately discriminated the conserved-activity enhancers from the species-

specific-activity enhancers in each species (auROC: 0.88–0.97, Figure II-5A). We hypothesize 

that the particularly strong performance of the mouse classifier may be due to rodent-specific 
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differences in the genomic GC content distribution compared with other mammals (Romiguier et 

al. 2010). To benchmark the performance of the classifiers, we ranked enhancers by the density of 

TF binding motifs in the sequence and evaluated the predictive ability of this single feature (Figure 

II-5B). Performance notably decreased when only considering the density of TF binding motifs 

(auROC: 0.53–0.74) for all species, especially mouse. Other approaches for quantifying enhancer 

sequence properties, such as k-mer spectra (Materials and Methods), were not as effective at 

predicting the conservation of regulatory activity. These results indicate that not only do 

conserved-activity enhancers have a greater density and diversity of TF binding motifs than 

species-specific-activity enhancers, but the occurrence patterns of specific TF binding motifs are 

informative about the conservation of enhancer activity across species.  

 

 
Figure II-5. TF binding motif patterns can distinguish between conserved-activity and species-specific-activity 

enhancers. (A) In each species (human, mouse, dog, and cow), we trained SVM classifiers to distinguish conserved-

activity from species-specific-activity enhancers using the frequency of each TF binding motif individually as features. 

(B) For comparison, we attempted to distinguish the two classes of enhancers based only on the total number of TF 

binding motifs. The ROC curves display classifier performance, and the area under the curves is provided in the 

legend. 
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II-3.2 Conserved-Activity Enhancers Are Active in More Cellular Contexts than Human-

Specific-Activity Enhancers 

We next investigated whether the greater density and diversity of TF binding motifs of conserved-

activity enhancers translated to increased regulatory activity across biological contexts within a 

species. We focused on human, as enhancers have been identified in a more diverse set of biological 

contexts for human than other species. We used enhancers in 108 cellular contexts identified by the 

FANTOM consortium, which used cap analysis of gene expression (CAGE) assays to identify bi-

directionally transcribed “eRNA” transcripts (Andersson et al. 2014). On average, conserved-activity 

enhancers overlapped an active FANTOM enhancer in more than seven cellular contexts, which was 

double the number of cellular contexts expected from all human liver enhancers (mean: 7.2 vs. 3.6 per 

enhancer; P = 1.09 × 10−6, MWU test) and almost quadruple the number of active contexts for human-

specific-activity enhancers (mean: 7.2 vs. 1.9 per enhancer; P = 2.22 × 10−12, MWU test) (Figure II-

6A). We next tested whether specific cellular contexts in FANTOM drove this enrichment by 

evaluating the overlap with enhancers from each FANTOM context separately. Conserved-activity 

enhancers were significantly more likely to overlap FANTOM enhancers relative to all human liver 

enhancers in 36 of 108 cellular contexts, and relative to human-specific-activity enhancers in 72 of 108 

cellular contexts (P < 0.05 after Bonferroni correction, Fisher’s exact test). The converse—significant 

depletion of conserved-activity enhancers relative to all enhancers, or human-specific-activity 

enhancers—was never observed. These results demonstrate that conservation of activity across species 
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within one cellular context (the liver) is positively correlated with the breadth of activity across other 

cellular contexts in humans. 

 

 
Figure II-6. Breadth of activity across cellular contexts within species is positively associated with conservation 

of regulatory activity across species. We identified the overlap of conserved-activity liver enhancers, all human liver 

enhancers (regardless of their conservation status), and human-specific-activity enhancers with enhancers identified 

across 108 human cellular contexts via CAGE by the FANTOM consortium. In addition to being less active across 

contexts than conserved-activity enhancers (P = 4.23 × 10−14, MWU test), the human-specific-activity enhancers 

were active in significantly fewer cellular contexts than expected based on all liver enhancers (P = 2.22 × 10−12). (B) 

We then trained an SVM on DNase I hypersensitivity sites (DHS), histone modifications, and TF binding profiles 

identified genome-wide in 125 cellular contexts by ENCODE in human to distinguish conserved-activity enhancers 

from human-specific-activity-enhancers (auROC = 0.84). We considered each genome-wide annotation as a binary 

feature, and each enhancer was assigned 0 if it did not overlap an element of the annotation set or 1 if it did overlap. 

Shaded areas are bounded by the max and min ROC obtained across 10-fold cross validation. (C) We examined the 
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weights assigned to each feature by the classifier; the absolute value of a feature’s weight indicates its overall 

importance, and the sign indicates whether it is more associated with conserved-activity enhancers (positive) or 

human-specific-activity enhancers (negative). The weights for features associated with active genomic regions (i.e., 

active histone modifications (HM), DHS, and TF binding) are positively skewed regardless of the cellular context, 

indicating they are generally more associated conserved-activity enhancers. The weights for features from liver 

contexts (red) are consistently more positive than similar features from other contexts (gray). Distributions are 

summarized as described for Figure II-4. 

 

We next examined whether patterns in functional genomics data indicative of regulatory 

activity (and inactivity) across diverse cellular contexts within a species could predict the activity 

conservation of liver enhancers across species. We used human data collected by the ENCODE 

Project for this component of the analysis (Bernstein et al. 2012; Sloan et al. 2016). In contrast to 

FANTOM, ENCODE performed a broad array of functional genomic assays, including DNase I 

hypersensitivity sites (DHS), histone modifications, and TF binding profiles genome-wide in 125 

cellular contexts. In 10-fold cross-validation, the ENCODE classifier was able to distinguish many 

conserved-activity enhancers from human-specific-activity enhancers (auROC = 0.84; Figure II-

6B); however, it was not as accurate as the TF binding motif based classifier (Figure II-

5A; auROC = 0.91). As anticipated, the majority of the most predictive features for both 

conserved-activity and human-specific-activity enhancers were from liver contexts (Table II-1 and 

II-2). Additionally, there was a general association between active functional annotations and 

conserved-activity enhancers (Figure II-6C), regardless of the cellular context in which the 

annotation was identified. This association between conserved-activity enhancers and active 

annotations across contexts argues that they are active in a broader range of cellular contexts. 
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Table II-1. The features most associated with conserved-activity liver enhancers are primarily associated with 

active regions and are from liver cells. The top five features most associated with conserved-activity enhancers, 

along with the weight assigned to them by the SVM classifier, are shown. 

 

Feature Weight Tissue Activity Status 

HEPG2 H3K4me2 0.0076 Liver Active 

HEPG2 H3K27ac 0.0075 Liver Active 

CMK DNase 0.0059 Blood Active 

HEPG2 H3K79me2 0.0058 Liver Active 

Huh-7 DNase 0.0055 Liver Active 

 
 

 

Table II-2. The features most associated with human-specific enhancers are primarily indicative of inactive 

genomic regions. The top five features most associated with human-specific-activity enhancers, along with the weight 

assigned to them by the SVM classifier, are shown. 

Feature Weight Tissue Activity Status 

NT2-D1 H3K9me3  -0.0022 Testis Inactive 

HEPG2 H3K27me3 -0.0020 Liver Inactive 

HELA-S3 H3K27me3 -0.0018 Cervix Inactive 

HEPG2 FOSL2-Peak -0.0018 Liver Active 

HUVEC H3K27me3 -0.0016 Blood Vessel Inactive 

 

Motivated by these differences in the breadth of activity of the conserved-activity and human-

specific liver enhancers, we analyzed the weights assigned to each TF motif by the trained human 

enhancer SVM classifier from the previous section. Three transcription factors’ motifs (SP1, SP2, 

and EWSR1-FLI) were assigned notably higher weights than others (Figure II-7). SP1 and SP2 

are broadly expressed zinc finger TFs from the Sp/XKLF family that recognize common GC box 

motifs and carry out diverse functions across many tissues (Philipsen and Suske 1999). EWSR1-

FLI1 is a fusion of EWSR1 and FLI1, an ETS family TF, that is involved in oncogenesis in Ewing 

tumors (Guillon et al. 2009). The ETS family is a diverse family of TFs with broad functions, but 

all members have a conserved DNA-binding domain that recognizes diverse motifs with a core 

GGA(A/T) sequence. While many specific ETS family TFs are present in the motif database, the 
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EWSR1-FLI1 motif consists of GGAA repeats, so we believe that this motif is likely highly 

weighted as a proxy for this family of broadly active factors. Thus, motifs useful in distinguishing 

the conserved-activity from human-specific-activity enhancers can be bound by diverse, broadly 

expressed TFs, further supporting their potential for activity in many cellular contexts. 

 

 
Figure II-7. Distribution of weights assigned to TF motifs in the trained SVM classifier. We trained a SVM 

classifier to distinguish conserved-activity enhancers from human-specific-activity enhancers using the frequencies of 

all TF binding motifs in the JASPAR database. The classifier assigned weights to each motif. The absolute values 

indicate the magnitude of the contribution of the motif to the prediction, and the sign indicates whether the motif was 

associated with conserved-activity enhancer (positive) or human-specific-activity enhancers (negative). Three motifs 

were assigned notably larger weights than the others: SP2, SP1, and EWSR1-FLI, in decreasing order. 

 

II-3.3 Conserved-Activity Enhancers Have More Target Genes and Their Target Genes Are 

More Broadly Active than Human-Specific-Activity Enhancers 

Conserved-activity enhancers have a higher density and diversity of TF binding sites, and they 

exhibit regulatory activity in more genomic contexts than human-specific-activity enhancers. 

Given their greater regulatory potential and function, we hypothesized that conserved-activity 

enhancers may regulate more genes, genes with more diverse functions, or both, than do human-

specific-activity enhancers. To investigate this, we mapped enhancers to target genes using two 
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complementary approaches. First, we considered the enhancer–gene pairs predicted by the 

FANTOM project, which are derived from the coexpression patterns of eRNA and mRNA across 

many cellular contexts in human (Andersson et al. 2014). FANTOM target data are available for 

89 of 283 (31.4%) conserved-activity enhancers and 317 of 1,913 (16.6%) human-specific-activity 

enhancers. Second, we mapped enhancers to genes using genotype and expression data from the 

GTEx project (The GTEx Consortium et al. 2015). We identified genetic variants within the 

enhancer sequences that were significantly associated with gene expression levels, and we then 

used these expression quantitative trait loci (eQTLs) to match enhancers to potential target genes 

(Materials and Methods). Using this approach, 174 out of 283 (61.4%) conserved-activity 

enhancers and 1,250 of 1,913 (65.0%) human-specific-activity enhancers mapped to at least one 

target gene. 

In both the FANTOM and GTEx target sets, conserved-activity enhancers map to significantly 

more gene targets than human-specific-activity enhancers (Figure II-8A ; mean FANTOM: 2.4 vs. 

1.9, P = 0.01; mean GTEx: 3.9 vs. 3.0, P = 0.05; MWU test). Conserved-activity enhancers target 

a similar number of genes as human liver enhancers in general (mean FANTOM: 2.4 vs. 

2.5, P = 0.6; mean GTEx: 3.9 vs. 3.7, P = 0.8), and thus the lower number of targets predicted for 

human-specific-activity enhancers suggests that human-specific-activity enhancers are depleted of 

targets. However, the gene targets of conserved-activity enhancers are expressed in a more diverse 

array of cellular contexts than both all liver enhancers (mean FANTOM: 23.6 vs. 16.4, P = 1.84 × 

10−7; mean GTEx: 17.8 vs. 15.9, P = 0.02; MWU test) and human-specific-activity enhancers 

(mean FANTOM: 23.6 vs. 11.6, P = 1.14 × 10−13; mean GTEx: 17.8 vs. 14.7, P = 0.002; MWU 

test), for both FANTOM and GTEx mappings (Figure II-8B ). Ultimately, conserved-activity 

enhancers appear to regulate the expression of more genes than human-specific-activity enhancers, 

and their gene targets are more broadly expressed than those of human liver enhancers collectively. 

We next hypothesized that the gene targets of conserved-activity enhancers would be more 

likely to be evolutionarily constrained. To investigate this, we analyzed probability of loss-of-

function intolerance (pLI) scores computed by the Exome Aggregation Consortium (ExAC) to 

quantify constraint on genes. Using the FANTOM enhancer-gene mappings, conserved-activity 

enhancers mapped to genes with significantly higher pLI scores than the target genes of all human 

liver enhancers (mean pLI: 0.53 vs. 0.41, P = 1.6 × 10−3; MWU test) (Figure II-8C). This finding 

generalized to the GTEx enhancer-gene mappings (P = 2.0 × 10−3). As expected, the human-
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specific-activity enhancer targets had lower median pLI than the conserved-activity targets from 

FANTOM, but surprisingly, the pLI of human-specific-activity enhancers was greater than for 

liver enhancers overall (Figure II-8C). However, this was not true among the GTEx targets; the 

pLI scores for the human-specific-activity enhancer targets from GTEx were not significantly 

different from the targets of all human liver enhancers. This will require further study as enhancer–

target mappings improve. 
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Figure II-8. Conserved-activity enhancers have more target genes than human-specific-activity enhancers; 

their targets are expressed in more cellular contexts; and their targets are under stronger evolutionary 

constraint.Conserved-activity enhancers have significantly more target genes than human-specific-activity 

enhancers, but a similar number as all human liver enhancers. (B) The gene targets of conserved-activity enhancers 

were active in significantly more contexts than either human-specific-activity or all liver enhancers. Target gene 

expression was determined from GTEx (The GTEx Consortium et al. 2015). (C) The target genes for conserved-

activity enhancers have significantly higher probabilities of being loss-of-function intolerant (pLI) according to ExAC 

than target genes for all human liver enhancers. Thus, the target genes of conserved-activity enhancers are under more 

evolutionary constraint. The targets of human-specific-activity enhancers were also less tolerant of loss of function 

than liver enhancers overall. Enhancers were mapped to target genes based on coexpression patterns by the FANTOM 

Consortium. Results were similar when identifying targets based on eQTL (Figure II-9). The Mann–Whitney U test 

was used for all comparisons. Distributions are summarized as described for Figure II-2. 
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Overall, these results indicate that conserved-activity enhancers regulate the expression of 

more genes than human-specific-activity enhancers, and that these genes are both more broadly 

expressed and experience stronger constraint than the gene targets of all human liver enhancers. 

 

 
Figure II-9. Conserved-activity enhancers have more target genes, which are expressed in more cellular 

contexts, than human-specific-activity enhancers. Using the GTEx enhancer–gene mappings (Methods), we 

observed that (A) conserved-activity enhancers had significantly more target genes than human-specific-activity 

enhancers, but a similar number as all human liver enhancers. Thus, conserved-activity enhancers appear to regulate 

more genes than human-specific-activity enhancers, but they do not regulate more genes than would be anticipated by 

virtue of being a human liver enhancer. (B) Genes targeted by conserved-activity enhancers are expressed in more 

cellular contexts than human-specific-activity or human liver enhancers overall. (C) The pLI score of target genes 

identified by GTEx for conserved-activity enhancers was significantly greater than that of target genes for all human 

liver enhancers, illustrating that their target genes are under more constraint. The Mann-Whitney U test was used for 

all comparisons. 
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II-4 Conclusion and Discussion 

In this study, we demonstrated that liver enhancers with conserved activity across mammals have 

greater evidence for pleiotropy than similarly alignable sequences with only species-specific 

activity across three levels of regulatory function: TF binding potential, enhancer activity across 

tissues, and downstream gene targets. We first found that conserved-activity enhancers have both 

significantly more TF binding motifs and binding motifs for more distinct TFs, illustrating a 

greater potential for diverse regulatory activity. We then demonstrated that this increased 

potential is realized: Conserved-activity liver enhancers are active enhancers in significantly 

more cellular contexts than species-specific-activity liver enhancers. Furthermore, these 

differences in activity are also apparent in the attributes of their gene targets; conserved-activity 

enhancers have more gene targets, and their targets are both more broadly expressed and under 

greater levels of constraint than species-specific-activity enhancers. These overall differences are 

sufficiently large that we could accurately classify conserved-activity and human-specific-

activity enhancers in a machine learning framework. 

Several previous studies have suggested that pleiotropy may play a role in the conservation 

of regulatory activity across species, but the relationship between pleiotropy and regulatory 

conservation has not been comprehensively evaluated. For example, the conservation of TF 

binding at orthologous sequences was positively correlated with the number of cellular contexts 

in which the sequence had an open chromatin conformation (Cheng et al. 2014). Similarly, an 

enhancer’s breadth of activity across cellular contexts is positively correlated with the predicted 

deleteriousness of variants within the enhancer sequence, suggesting that breadth of enhancer 

activity across contexts is associated with stronger purifying selection (Huang et al. 2017). Our 

results significantly expand these previous findings beyond the breadth of enhancer activity to 

other dimensions of regulatory activity, including TF binding density and diversity and gene 

targets. Additionally, we demonstrate that these trends generalize across mammalian species. 

Thus, our results provide consistent evidence that enhancers with conserved activity are more 

pleiotropic than other enhancers. 

Given the fast turnover of liver enhancers relative to species divergence (Villar et al. 2015b), 

we anticipate that the majority of species-specific enhancers are young, rather than being 

remnants of ancestral enhancer elements lost in other lineages. Newly created enhancers likely 

vary in their regulatory potential. For example, an enhancer that first gains activity in a genomic 
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region that is accessible in many cellular contexts or by gaining a binding site for a broadly 

expressed TF is likely to have greater pleiotropic potential than an enhancer that arises in a more 

context-specific region. Over time, the first enhancer would have an easier path to expanding its 

regulatory role, and thus its constraint. However, constrained activity in one context could also 

promote pleiotropy by providing a stable functional substrate for developing regulatory activity 

in additional contexts. Furthermore, enhancers are a diverse and heterogeneous assortment of 

DNA elements, and other factors likely contribute to their evolutionary dynamics. For instance, 

our results on the density and diversity of TF binding sites suggest that the robustness of 

enhancer sequences to disruptive genetic variation may influence activity conservation. More 

work on the interactions of pleiotropy, activity, and constraint is needed to shed light on the 

development and evolution of regulatory sequences. Comprehensive mapping of enhancer 

activity across multiple tissues and species will help resolve these questions. 

Several technical limitations may impact the interpretation of our results. Genome-wide 

profiles of histone modifications have a limited resolution to identify the boundaries of enhancer 

elements (Shlyueva et al. 2014). As a consequence, it is possible that separate enhancers in close 

proximity to one another might not be distinguished as separate elements; if multiple enhancers 

were merged together, this could result in apparent signatures of pleiotropy. However, we 

demonstrate pleiotropy for these genomic regions at the finest resolution achievable using 

current, high-throughput techniques. Second, we focused on deeply alignable sequences with 

extreme differences in activity conservation—those active in all species versus those active only 

in one. We focused on these extremes to increase our likelihood of detecting differences and to 

identify patterns that hold across mammals. However, it is possible this may have obfuscated 

lineage-specific (e.g., primate-specific) patterns underlying conservation of regulatory activity in 

some clades. Third, mapping enhancers to target genes is a challenging problem, and our current 

knowledge of gene targets is incomplete. Many enhancers do not have any predicted target genes 

identified and those that do are likely to include false positives. To account for this uncertainty, 

we considered two independent mapping strategies and found consistently more targets for the 

conserved-activity enhancers compared with those with species-specific-activity. Despite these 

caveats, our findings are consistent across multiple methods of defining TF binding motifs, 

breadth of enhancer activity, and downstream gene targets. 
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Finally, the identification of enhancers is an imperfect process, and no genome-wide 

identification strategy is completely accurate. Histone modification profiles, in particular 

H3K27ac without H3K4me3, are strongly correlated with enhancer activity in reporter assays, 

and their use has enabled fundamental studies of enhancer activity genome-wide (Creyghton et 

al. 2010; Nord et al. 2013; Villar et al. 2015b). Nonetheless, there is the possibility of both false 

positives and false negatives using this approach. False negatives could potentially result in some 

sequences with true enhancer activity in multiple species being considered species-specific-

activity enhancers. Their inclusion would be unlikely to create spurious results as they would 

likely diminish differences between the species-specific and conserved-activity-enhancer 

categories. In contrast, false positives are more concerning as they could include nonenhancers in 

the species-specific-activity enhancer category. However, we demonstrate that all human 

enhancers, regardless of conservation, demonstrate reduced pleiotropy relative to conserved-

activity enhancers, which suggests this finding is not a product of false positives within the 

species-specific-activity enhancer category. Furthermore, observation of the histone modification 

signature was required in two biological replicates to define an enhancer, decreasing the risk for 

false positives. Thus, while the use of histone modifications to identify putative enhancers has 

caveats, the difference in pleiotropy between enhancer categories is unlikely to be a product of 

false positives or negatives. 

Overall, our work argues that pleiotropy influences the conservation of enhancer activity of 

noncoding sequences across mammalian evolution. The functional diversity of regulatory 

sequences must be integrated into models of their evolution. In addition to improving our 

theoretical understanding of evolutionary constraint on regulatory regions, better understanding 

the evolutionary forces acting upon the genomic regulatory landscape will also have practical 

benefits. For example, we demonstrate that machine-learning classifiers can be trained to 

distinguish conserved-activity from species-specific-activity enhancers using features that reflect 

their pleiotropy. In the future, these classifiers could be adapted to predict which enhancers will 

generalize between species, prioritize new tissues for genome-wide assays, and estimate the 

effects of mutations on enhancer activity.  
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Chapter III 

 

III. Prediction of gene regulatory enhancers across species reveals evolutionarily conserved 

sequence properties 

 

This chapter is a collaboration with Alex Fish. I was co-first author on the manuscript published 

in PLoS Computational Biology (Chen et al. 2018). 

 

III-1 Introduction 

Enhancers are genomic regions distal to promoters that bind transcription factors (TFs) to regulate 

the dynamic spatiotemporal patterns of gene expression required for proper differentiation and 

development of multi-cellular organisms (Shlyueva et al. 2014; Consortium et al. 2015).  It is 

critical to understand the mechanisms underlying enhancer evolution and function, as alterations 

in their activity influence both speciation and disease (Maurano et al. 2012; Corradin and Scacheri 

2014; Brazel and Vernimmen 2016). Recent genome-wide profiling of TF occupancy and histone 

modifications associated with enhancer activity revealed that the regulatory landscape changes 

dramatically between species—both enhancer activity and TF occupancy at orthologous regions 

distal to promoters are extremely variable across closely related mammals (Taher et al. 2011; Woo 

and Li 2012; Cotney et al. 2013; Hsu and Ovcharenko 2013; Villar et al. 2014b, 2015a; Reilly et 

al. 2015). However, the gene regulatory circuits (Stergachis et al. 2014) and expression of 

orthologous genes in similar tissues are largely conserved across mammals (Chan et al. 2009; 

Brawand et al. 2011; Merkin et al. 2012). Much of the gene regulatory machinery is also 

conserved; TFs and the short DNA motifs they bind are highly similar between human, mouse, 

and fly (Amoutzias et al. 2007; Wei et al. 2010a; Cheng et al. 2014; Nitta et al. 2015b). In short, 

there is considerable change in the enhancer activity of orthologous regions across mammals, 

despite the relative conservation of gene expression and TF binding preferences. 

  The rapid turnover in enhancer activity between orthologous regions in different species has 

largely been attributed to differences in the DNA sequences of the elements involved, rather than 

differences in the broader nuclear context (Wilson et al. 2008; Ritter et al. 2010; Schmidt et al. 

2010; Li and Ovcharenko 2015; Prescott et al. 2015a). Genome-wide profiles of TF binding have 

shown that 60–85% of binding differences in human, mouse, and dog for the TFs CEBPB and 
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HNF4A can be explained by genetic variation that disrupts their binding motifs (Schmidt et al. 

2010). Genetic differences are also often responsible for differential enhancer activity between 

more closely related species; for example, variation in TF motifs at orthologous enhancers was 

predictive of activity differences between human and chimp neural crest enhancers (Prescott et al. 

2015a). This suggests that, while there is turnover at orthologous sequences, sequence properties 

predictive of enhancer activity may still be conserved. 

 Until recently, investigation of the conservation of enhancer sequence properties across 

mammalian evolution has been hampered by a lack of known enhancers across diverse species 

within the same cellular context.  The canonical definition of enhancer activity is the ability to 

drive expression in transgenic reporter assays (Banerji et al. 1981a; Shlyueva et al. 2014), which 

cannot currently be scaled to assess regulatory potential genome-wide. However, high-throughput 

assays such as ChIP-seq can assess histone modifications associated with enhancer activity 

(Creyghton et al. 2010; Nord et al. 2013) to identify putative enhancers genome-wide in many 

tissues and species (Cotney et al. 2012; Villar et al. 2015a). Using known enhancers, machine 

learning approaches have learned their sequence properties and successfully distinguished 

enhancers active in specific cellular contexts from both the genomic background and enhancers 

active in other tissues (Lee et al. 2011, 2015; Burzynski et al. 2012; Taher et al. 2012; Erwin et al. 

2014; Ghandi et al. 2014; Quang and Xie 2015; Zhou and Troyanskaya 2015; Min et al. 2017; 

Yang et al. 2017). Moreover, some of these studies suggested the potential for cross-species 

enhancer prediction. For instance, the similarity of co-occurrence of sequence patterns can be used 

to identify orthologous enhancers in distantly related Drosophila species (Arunachalam et al. 

2010), and annotated cis-regulatory modules (CRMs) in Drosophila can predict CRMs in highly 

diverged insect species based on binding site composition similarity (Kazemian et al. 2014). 

However, TF binding sites have been suggested  to evolve and turnover much more rapidly 

between closely related mammals than Drosophila species (Stefflova et al. 2013; Villar et al. 

2014b). Nonetheless, a comprehensive analysis across clades suggests that transcriptional 

networks and gene regulatory sequences evolve at similar rates across animals (Carvunis et al. 

2015).  Indeed, in mammals, a machine learning model trained on mouse enhancers accurately 

predicted orthologous regions of the human genome (Lee et al. 2011). However, due to the rapid 

turnover of enhancer activity between human and mouse, the majority of orthologous regions are 

not active human enhancers (Villar et al. 2015a). Overall, these previous studies suggest the 
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potential for evolutionary conservation of sequence properties of mammalian enhancers, but 

comprehensive genome-wide quantification of the degree and dynamics of this conservation is 

needed.   

In this study, we investigate the degree of regulatory sequence property conservation by 

applying machine learning classifiers to genome-wide enhancer datasets across diverse mammals. 

We first confirm that SVM classifiers trained using short DNA sequence patterns can accurately 

identify many enhancers genome-wide in the adult liver, developing limb and developing brain. 

Then, by using classifiers trained in one species to predict enhancers in the others, we demonstrate 

that many enhancer sequence properties are conserved across species, even though the enhancer 

activity of specific loci is not. We establish the robustness of this conservation to different enhancer 

identification techniques by showing that classifiers trained using high-confidence human and 

mouse enhancer sequences validated in transgenic assays also generalize across species and are 

similar to classifiers trained on histone-modification-defined enhancers. Furthermore, the short 

DNA patterns most predictive of enhancer activity in each species matched a common set of 

binding motifs for TFs enriched for expression in relevant tissues. This suggests the patterns 

learned by classifiers capture biologically relevant sequences that influence TF binding. In addition 

to SVM classifiers, we also trained CNNs on liver enhancers in each species. The multilayer 

structures of CNNs are promising for modeling more complex sequence patterns beyond short 

DNA motifs (Alipanahi et al. 2015; Quang and Xie 2015, 2019; Zhou and Troyanskaya 2015; 

Kelley et al. 2016; Min et al. 2017; Yang et al. 2017).  The CNNs predicted enhancers with higher 

accuracy than SVM models, but the CNNs generalized less well across species, suggesting less 

conservation of some patterns they learned. Together, our results argue that, though there is rapid 

change of active gene regulatory sequences between mammalian species, many of the short 

sequence patterns encoding enhancer regulatory activity have been conserved over 180 million 

years of mammalian evolution. Our findings also suggest avenues for identifying enhancers in 

species without genome-wide enhancer-associated histone modification data and establish a 

framework for future exploration of the conservation and divergence of regulatory sequence 

properties between species. 
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III-2 Materials and Methods 

III-2.1 Genomic data 

All work presented in this paper is based on hg19, rheMac2, mm10 (mouse liver dataset), mm9 

(mouse limb and brain dataset), bosTau6, canFam3 and monDom5 DNA sequence data from the 

UCSC Genome Browser. For consistency with the original studies, liver gene annotations are from 

Ensembl v73, limb and brain gene annotations are from Ensembl v67 (Flicek et al. 2014). The 

sequence divergence between each pair of species was computed from the tree model built from 

fourfold degenerate sites in the 100-way multiple species alignment from UCSC Genome Browser 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/hg19.100way.phastCons.m

od). 

III-2.2 Enhancer and genomic background datasets 

We evaluated the ability of machine learning models to distinguish different sets of enhancers 

(positives) from sets of matched regions from the genomic background (negatives). In this 

section, we describe the collection and processing of the enhancer and genomic background sets. 

In the next section, we describe the training and evaluation of the SVM classifiers. 

We analyzed three multi-species histone-modification-defined enhancer datasets in this 

study. The first consisted of liver enhancers identified by genome-wide ChIP-seq profiling of 

histone modifications (H3K27ac without H3K4me3) in 20 species from five mammalian orders 

(Villar et al. 2015a). These regions are almost entirely distal to coding regions (i.e., more than 

1kb away from the nearest TSS) (Villar et al. 2015c). We use the definition of “high-quality 

genomes” from Villar et al. 2015 (Villar et al. 2015b). We selected a member of each order with 

a high-quality genome build for analysis when possible; however, the most diverged order—

marsupials—did not have a species with a high-quality genome build. We consequently selected 

opossum, as it was the most diverged from humans. For all analyses, we did not consider 

enhancers or random regions that fell in genome assembly gaps (UCSC gap track) when 

generating negatives. For human and mouse, we also excluded the ENCODE blacklist regions 

(Bernstein et al. 2012) (https://sites.google.com/site/anshulkundaje/projects/blacklists).  This 

resulted in the following number of observed enhancers in each species: human (N=29152), 

macaque (N=22911), mouse (N=18517), cow (N=30892), dog (N=18966), and opossum 

(N=23160) (Villar et al. 2015a). A small fraction of liver enhancers overlapped with one another 

(3.0% in human, 2.0% in macaque, 3.0% in mouse, 6.2% in cow and 1.6% in dog), and the 
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overlaps were mostly under 10% of the enhancers’ lengths. Thus, these overlaps are unlikely to 

cause overfitting during within-species cross-validation runs. We also performed cross-species 

analyses both with and without orthologous sequences. 

We generated four different sets of matched genomic background regions for use as 

negatives in the training and evaluation of the liver classifiers for each of the six species. The 

first are random genomic regions matched on length and chromosome to the observed enhancers. 

Second, for the GC-controlled analyses, we generated genomic background regions matched to 

the enhancers on length, chromosome, and GC-content. Third, for the repeat controlled analysis, 

we obtained repetitive elements identified by RepeatMasker for each species (Smit et al. 2013) 

and generated random regions from the genomic background matched on length, chromosome, 

GC-content, and proportion overlap with repetitive elements. Finally, we generated negatives 

using flanking regions of enhancers. We define the flanking region of an enhancer is 10 times of 

its length on either side. We then randomly select 10 negative regions of same length as the 

enhancer that do not overlap other enhancers from the candidate flanking regions. To reflect the 

fact that enhancers make up a small portion of the genome, we chose an imbalanced data design 

with 10 times as many of the genomic background (negative) regions as there were enhancers.  

The second enhancer dataset contained human (N=25304), macaque (N=88560), and 

mouse (N=87406) enhancers identified from profiling the H3K27ac modification in developing 

limb tissue (Cotney et al. 2013). The third enhancer dataset contained human (N=48853), 

macaque (N=57446), and mouse (N=51888) enhancers identified from profiling the H3K27ac 

modification in developing brain tissue (Reilly et al. 2015).  For limb and brain enhancers, we 

excluded regions within 1 kb of a transcription start site. For each species, we combined the 

enhancer regions from different development stages. The genomic background regions for each 

species were defined following the same procedure as for the liver enhancers. 

To determine how well classifiers generalized across additional tissue types, we used 

human enhancers identified by the Roadmap Epigenomics Project (Consortium et al. 2015) in 

nine tissues from diverse body systems: liver (GI, E066), hippocampus middle (brain, E071), 

pancreas (exocrine-endocrine, E098), gastric (GI, E094), left ventricle (heart, E095), lung 

(E096), ovary (reproductive, E097), bone marrow derived mesenchymal stem cell cultured cells 

(stromal-connective, E026) and CD14 primary cells (white blood, E029). We defined enhancers 

in these tissues as H3K27ac without H3K4me3 regions. For each tissue, we generated not-GC-



42 

  

controlled and GC-controlled negative training examples as described for the liver enhancers 

above. 

In addition to the histone-modification-defined enhancers, we also analyzed enhancers 

validated in transgenic reporter assays in embryonic day 11.5 mouse embryos from VISTA 

(Visel et al. 2007). We investigated all six tissues with at least 50 positive enhancer elements in 

both species: forebrain, midbrain, hindbrain, limb, heart and branchial arch. These enhancers 

comprised the positive training examples. For each positive, we generated 10 length and 

chromosome matched random genomic regions as negative training examples. There are not 

enough failed reporter assays across all selected tissues to generate ten sets of negatives, and 

there are biases in how the human and mouse regions were selected for testing in VISTA. Thus, 

we did not use classifiers trained on regions with failed reporter assays as negatives for cross-

species analyses.   

To demonstrate the histone-defined enhancer classifier can predict VISTA enhancers, we 

removed the regions of VISTA limb enhancers that overlap Cotney et al. 2013 limb H3K27ac 

regions from the VISTA set and the regions of limb H3K27ac regions that overlap VISTA from 

the H3K27ac set to ensure no overlapping regions between training and testing. There are 96 

human VISTA limb enhancers left and 32 mouse VISTA limb enhancers. Because of the small 

number of mouse enhancers, we only applied the human limb H3K27ac classifier to predict the 

human VISTA limb enhancers.   

III-2.3 Spectrum kernel SVM classification 

An SVM is a discriminative classifier that learns a hyperplane to separate the positive and negative 

training data in feature space. We used the k-mer spectrum kernel to quantify sequence features 

for the SVM (Leslie et al. 2002). Training, classification, evaluation, and the computation of 

features weights were performed with the kebabs R package (v1.4.1) (Palme et al. 2015). We used 

the default kernel normalization to the unit sphere, considered reverse complements separately, 

used the cosine similarity. We initially performed a grid search with k=5 and C in the range of 1, 

15, 50, 100, 1000 using the human liver enhancer dataset. We found that the performance of the 

SVMs in cross-validation is robust in C=1,15 with cross validation errors of 0.2610, 0.2608 and 

ROC AUCs of 0.8213, 0.8209. We chose C=15 for training SVMs in human and other species. 

The good performance in cross-validation runs suggest the SVMs are well regularized with C=15 

and any slight over-estimation of performance would result in an underestimation of cross-species 
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generalization. Due to the imbalanced training dataset, we set class weights of 10 for the positives 

and 1 for the negatives to increase the penalty on misclassification of positives. We report all 

analyses with k = 5, but classifier performance and generalization were similar for k = 4–7 (0.81, 

0.82, 0.82, 0.82, respectively for liver). 

 To evaluate classifier performance within-species, we performed ten-fold cross validation. 

In other words, for each set of positives and negatives, the entire data set was randomly partitioned 

into ten independent sets that maintained the ratio of positives and negatives. Positives and 

negatives from nine of the ten sets were then used to train the classifier, the trained classifier was 

then applied to the remaining partition, and these predictions were used to evaluate the classifier. 

This process was performed ten times, testing each partition once. To summarize performance, we 

averaged the auROC and auPR over the ten runs. For cross-species classification, we trained on 

the whole dataset in the training species and evaluated the performance on the test species. 

  We also evaluated more flexible models, such as the mismatch (Leslie et al. 2002; Palme et 

al. 2015) and gappy pair kernels (Mahrenholz et al. 2011; Palme et al. 2015), These k-mer-based 

prediction models are similar to the spectrum kernel, but the mismatch kernel allows a maximum 

mismatch of m nucleotides in the k-mer and the gappy pair kernel considers pairs of k-mers with 

maximum gap of length m between them. For comparison, we trained the gappy pair kernel with 

k = 2, m = 1 and mismatch kernel with k = 5, m = 1 to compare with the 5-mer spectrum kernel. 

The mismatch and gappy pair kernels did not significantly increase the performance (auROCs of 

0.82 and 0.82, respectively for liver) and are less interpretable than the k-mer spectra. It is possible 

that other parameter settings could yield slightly improved performance, but the resulting models 

would be more difficult to interpret, and optimizing performance was not the goal of our study. 

III-2.4 Transcription factor motif analysis 

5-mers were matched to known TF binding motifs in the JASPAR 2014 Core vertebrate database 

(Mathelier et al. 2014) using the TOMTOM package with default parameters (Gupta et al. 2007). 

The sharing of 5-mers and TFs across species was visualized using UpSetR (Conway et al. 2017).  

III-2.5 Transcription factor expression data 

For the human TF expression analysis, we obtained RNA-seq data for TFs across 12 tissues from 

the Gene Expression Atlas (https://expressionatlas.org/hg19/adult/). Genes with non-zero FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) in a tissue were considered as 

expressed. For all the other species, we obtained the expression of TFs from Berthelot et al. 2017 
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(Berthelot et al. 2017). The mouse TF expression in Berthelot et al. 2017 was first reported in 

Rudolph et al. 2016 (Rudolph et al. 2016), so we obtained the mouse gene expression from in 

Rudolph et al. 2016. 

III-2.6 Convolutional neural network (CNN) classifier training and interpretation 

Because of the fixed-length input of CNNs and the challenges of training CNNs using unbalanced 

datasets, we used the center 3000 bp (approximately the median length) of liver enhancers in six 

selected species as the positive training sequences and the same number of length matched random 

genomic regions in the corresponding species as negative training sequences During data 

preparation, we partitioned the data into training (80%), validation (10%), and hold-out testing sets 

(10%).  

 A typical convolutional neural network consists of convolutional layers, max-pooling layers, 

fully connected layers, and an output layer. To determine the CNN structure, we defined a 

hyperparameter space, including a range of learning rates (0.0001, 0.0005, 0.001), number of 

convolutional layers (3 to 5), number of neurons in each layer (32, 64, 128, 256, 512) of the 

window size of the filters (4, 8, 16), the window size of pooling (0, 4), and the regularization 

strength (dropout fraction 0–1). We trained 100 CNN models on human liver enhancers with the 

training dataset and selected the structure of CNN (Figure III-1) based on the smallest loss on the 

validation set using keras 2.0.8 (Chollet and others 2015) with hyperparameters suggested by the 

Tree-structured Parzen Estimator (TPE) approach implemented in the hyperopt (Bergstra et al. 

2013) library. Then, we trained the enhancer CNN model with the best human CNN structure in 

the other five species, but different regularization strengths, 30 times in order to find the best 

performing CNN model for each species based on the loss of validation set. The performance of 

within-species prediction is reported based on the auROC of predicting the hold-out testing set of 

the training species and the performance of cross-species prediction is reported based on the 

auROC of predicting all data in the testing species. To prevent the model overfitting the training 

data, we used an early stopping strategy during the training, together with dropout layers, and data 

partitioning. More specifically, we monitored the loss on the validation set and stopped the training 

process if the validation loss ceased decreasing.  



45 

  

 
Figure III-1. The convolutional neural network (CNN) structure for training CNN classifiers of liver enhancers. 

 

 To interpret the first layer of the human liver CNN, we forward propagated sequences in the 

human liver validation dataset through the CNN and selected the sequence patches that maximally 

activate each neuron (> 0.5 maximum activation value of the neuron) in the first layer. Then, we 

converted the resulting sets of sequence patches to position weight matrices (PWMs) and mapped 

the PWMs to human TF motifs from the HOCOMOCO v11 (Kulakovskiy et al. 2016) database 

using TOMTOM with default parameters (Gupta et al. 2007). 

III-2.7 Comparison of CNNs to k-mer SVM, polynomial kernel SVM, and gkm-SVM models 

For comparison to the performance of CNNs, we trained gkm-SVM (Gupta et al. 2007), 

polynomial kernel SVM and a 5-mer spectrum kernel SVM on the same balanced dataset as the 

CNNs. For gkm-SVM, we split the training data into 90% training set and 10% testing set. Then 

we trained gkm-SVMs with default parameters (wgkm kernel, l=11, k=7, d=3) for 2 different Cs 

(0.1, 1). With C of 0.1, the training of gkm-SVM took 15.5 hours on a machine with a 2.4 GHz 

Intel Xeon CPU E5-2630 v3, 8 cores, and 2 CPUs; with C of 1, the training took 2 days and 13.5 

hours. We report the performance of gkm-SVM on prediction of the testing set. For the polynomial 

kernel SVM, we split the training data into 90% training set and 10% testing set for each species. 

Then, we trained 5-mer 2nd degree polynomial kernel SVMs on the k-mer spectrum of the training 

sequences in human. We selected C of 0.001 and performed the training of the polynomial kernel 
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SVMs for every species. We report the performance of the polynomial kernel SVMs on the 

prediction of testing set. For the 5-mer spectrum SVMs, the performance of within-species 

prediction is reported based on the average auROC of ten-fold cross validation and the 

performance of cross-species prediction is reported based on the auROC of predicting all data in 

the testing species. The better performance of CNNs compared to the SVMs is not driven by 

differences in the testing set. When using the exact same training and testing set of the human liver 

enhancer dataset, the 5-mer SVM achieved ROC AUC of 0.782 and PR AUC of 0.756, which are 

very similar to the average performance over cross-validation folds: ROC AUC of 0.783, PR AUC 

of 0.761. Similarly, the gkm-SVM achieved ROC AUC of 0.767 and PR AUC of 0.749, which are 

similar to the reported performance of gkm-SVM in cross validation: ROC AUC of 0.763 and PR 

AUC of 0.745. 

 

III-3 Results 

III-3.1 Enhancers can be predicted from short DNA sequence patterns in mammals 

Genome-wide enhancer activity across many mammalian species has been assayed via ChIP-seq 

profiling of enhancer-associated histone modifications in the adult liver (Villar et al. 2015a), 

developing limb (Cotney et al. 2013) and developing brain (Reilly et al. 2015). Certain chemical 

modifications to histones, such as acetylation of lysine 27 of histone H3 (H3K27ac) and lack of 

trimethylation of lysine 4 of H3 (H3K4me3), are associated with active enhancers and provide a 

genome-wide proxy for the active enhancer landscape (Creyghton et al. 2010; Nord et al. 2013). 

For brevity, we refer to genomic regions with enhancer-associated histone modification 

combinations identified in these previous studies as “enhancers.”  

 For this study, we selected six representative diverse mammals with cross-species 

enhancer data and high-quality genome builds: human, macaque, mouse, cow, dog, and opossum 

(Methods). Liver enhancers were available for all species; developing limb and brain enhancers 

were available for human, macaque, and mouse. For each species and tissue, we evaluated how 

well short DNA sequence patterns identified enhancers. We trained two machine learning 

algorithms, k-mer SVMs and CNNs, on raw DNA sequence patterns. This approach has the 

advantage that it is not dependent on previous knowledge of TF motifs. For the k-mer SVMs, we 

quantified DNA sequence patterns present in each genomic region by computing its k-mer 

spectrum—the observed frequencies of all possible nucleotide substrings of length k. We then 
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trained SVM classifiers on the k-mer spectra to distinguish enhancers from random genomic 

regions matched to the enhancers on various attributes, such as length, GC-content, and repeat-

content, as appropriate. To reflect the fact that most of the genome does not have enhancer activity, 

we trained and evaluated the SVM classifiers on positive and negative sets containing ten times as 

many negative non-enhancer regions as enhancers and weighted misclassification costs. We used 

ten-fold cross validation to evaluate the classifiers, and we quantified performance by computing 

the average area under receiver operating characteristic (auROC) and precision-recall (auPR) 

curves over the ten cross-validation folds (Figure III-2; Methods). We also trained CNN models 

for this problem. Due to the challenges of training CNNs, these analyses were performed on 

balanced training, validation, and testing sets. For all comparisons with SVMs, we compared CNN 

performance to both the average SVM performance over cross-validation folds and the 

performance of the SVM on the single CNN test set. (See CNN results and Methods for details.) 

To document the training setup and performance, we assigned each prediction task an experiment 

number (Appendix A). We report the experiment number for results throughout the paper for 

clarity.  

  



48 

  

 
Figure III-2. Overview of the framework for evaluating DNA patterns predictive of enhancer activity across 

diverse mammals. Starting with liver, limb and brain enhancers and genomic background regions from six mammals, 

the first step of the pipeline quantified each of these genomic regions by their 5-mer spectrum—the frequency of 

occurrence of all possible length five DNA sequence patterns. Using the spectra as features, we trained a spectrum 

kernel support vector machine (SVM) to distinguish enhancers from non-enhancers in each species and evaluated their 

performance with ten-fold cross validation. Then, we applied classifiers trained on one species to predict enhancer 

activity in all other species. Finally, we evaluated the performance of cross-species prediction compared to within 

species prediction and quantified the similarity of different species’ classifiers by the sharing of TF motifs among the 

most predictive 5-mers. Limb and brain enhancer data were only available for human, macaque, and mouse. 

 

We first evaluated the ability of SVM classifiers trained on 5-mer spectra to identify liver 

enhancers in the six selected mammals: human, macaque, mouse, cow, dog and opossum 

(experiments 1, 8, 15, 22, 29, 36). As expected from previous work (Lee et al. 2011; Burzynski et 

al. 2012; Gorkin et al. 2012), all classifiers could distinguish active liver enhancers from length-

matched random background regions; auROCs ranged from 0.78 in dog to 0.84 in mouse (Figure 

III-3a; auPRs ranged from 0.27 to 0.35, Figure III-4a). Next, we trained 5-mer spectrum SVM 

classifiers to predict enhancers active in limb (experiments 147, 151, 155) and brain (experiment 

165, 169, 173) for human, macaque, and mouse. Again, classifiers accurately distinguished 

enhancers from the background with even stronger performance than the liver classifiers. The limb 

classifiers achieved auROCs of  ~0.89 in each species (Figure III-3b; auPRs from 0.43 to 0.46, 

Figure III-4b), and the brain classifiers had auROCs from 0.90–0.93 (Figure III-3c; auPRs from 

0.54 to 0.56, Figure III-4c). However, we note that the auPRs are lower than auROCs due to the 

unbalanced training set. 
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Figure III-3. Performance of DNA sequence-based enhancer identification in diverse mammals.ROC curves 

for classification of liver enhancers vs. the genomic background in six diverse mammals: human (Hsap), macaque 

(Mmul), mouse (Mmus), cow (Btau), dog (Cfam), and opossum (Mdom). (b) ROC curves for classification of 

developing limb enhancers in human, macaque, and mouse. (c) ROC curves for classification of developing brain 

enhancers in human, macaque, and mouse. Area under the curve (AUC) values are given after the species name. 

Ten-fold cross validation was used to generate all ROC and PR curves (Figure III-4a-c).  

  



50 

  

 
Figure III-4. Precision-recall (PR) curves for the classification of enhancers vs. the genomic background (non-

GC-controlled). (a) Classification of liver enhancers in six diverse mammals: human (Hsap, experiment 1), macaque 

(Mmul, experiment 8), mouse (Mmus, experiment 15), cow (Btau, experiment 22), dog (Cfam, experiment 29), and 

opossum (Mdom, experiment 36). (b) Classification of developing limb enhancers in human (experiment 147), 

macaque (experiment 151), and mouse (experiment 155). (c) Classification of developing brain enhancers in human 

(experiment 165), macaque (experiment 169), and mouse (experiment 173). (d) Generalization of the human-trained 

liver enhancer classifier to the other five mammals (experiment 1s-6). The cross-validation PR curve for a classifier 

trained and tested on human is included for reference. (e) Generalization of the human-trained limb enhancer classifier 

to macaque and mouse (experiment 147-149). (f) Generalization of the human-trained brain enhancer classifier to 

macaque and mouse (experiment 165-167). AUC values are given after the species name. The cross-validation PR 

curve for a classifier trained and tested on human is included for reference. 

 

The choice of k did not substantially influence performance; the auROCs for human liver 

classifiers are 0.81, 0.82, 0.82, 0.82, respectively across k of 4, 5, 6, and 7. We also explored the 

application of classifiers based on more flexible k-mer features, i.e., the gappy and mismatch k-

mer kernels (experiments 145, 146) (Palme et al. 2015), but they did not improve performance 

(auROCs of 0.82 and 0.82). The gkm-SVM approach also performed similarly to the k-mer SVM 
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on the liver enhancers (auROC 0.76); because of the long computation time of gkm-SVM 

(experiment 347, Methods), we could only compare it on the balanced liver enhancer set (5-mer 

SVM auROC of 0.78). These results illustrate that SVMs trained only on DNA sequence patterns 

can distinguish many enhancers from background sequences across a variety of mammals for 

three tissues and two developmental time-points. 

III-3.2 Short sequence properties predictive of enhancers are conserved across species 

We then investigated whether learned DNA sequence patterns predictive of enhancer activity were 

conserved across mammals by testing whether classifiers trained in one species could distinguish 

enhancers from the genomic background in another species. First, we applied the human liver 

classifier to the five other species (experiments 2–6). We quantified cross-species performance 

using the relative AUCs—the auROC or auPR of the enhancer classifier trained on species A and 

applied to species B, divided by the average auROC or auPR over cross-validation folds obtained 

by the classifier trained and tested on species B. In other words, the relative auROC is the 

proportion of within-species performance achieved by a classifier trained in a different species. 

The classifier trained on human liver enhancers predicted liver enhancers in other mammals nearly 

as accurately as classifiers trained in each species (Figure III-5a, PR curves in Figure III-4d), and 

its relative performance decreased only slightly across species (Figure III-5b, relative auROCs > 

95.5%, relative auPRs > 87%). Furthermore, the scores from the human classifier applied to human 

enhancers were significantly positively correlated with the scores from non-human classifiers 

(Figure III-6; Spearman’s ρ between 0.90 for macaque and 0.66 for opossum).  When expanded to 

all pair-wise combinations of species (experiments 1–36), classifiers accurately predicted 

enhancers in every mammalian species tested, regardless of the specific species they were trained 

in; the average relative auROC was 96.0% (Figure III-5b; average relative auPR was 85%, raw 

AUCs in Appendix A). The human classifier was generally the best at cross-species prediction; 

this is likely due to the higher genome assembly quality and other biases towards human sequences.  
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Figure III-5. Human-trained enhancer classifiers accurately predicted liver, limb and brain enhancers in 

diverse mammals.ROC curves of the performance of the human liver enhancer classifier applied to the human (Hsap), 

macaque (Mmul), mouse (Mmus), cow (Btau), dog (Cfam) and opossum (Mdom) datasets. Area under the curve 

(auROC) values are given after the species name. (b) Heat map showing the relative auROC of liver enhancer 

classifiers applied across species compared to the performance of classifiers trained and evaluated on the same species 

(Figure III-3a). The classifiers were trained on the species listed on the x-axis and tested on species on the y-axis. (c) 

ROC curves showing the performance of the human limb enhancer classifier on human, macaque and mouse. (d) Heat 

map showing the relative auROC of limb enhancer classifiers applied across species compared to the performance of 

classifiers trained and evaluated on the same species (Fig III-3b). (e) ROC curves showing the performance of the 

human brain enhancer classifier on human, macaque and mouse. (f) Heat map showing the relative auROC of brain 

enhancer classifiers applied across species compared to the performance of classifiers trained and evaluated on the 

same species (Fig III-3c). The raw auROC and auPR values for all comparisons are given in Appendix A. 
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Figure III-6. The predictions of enhancer classifiers (not-GC-controlled) trained in different species were 

strongly correlated. Scatter plots showing the correlation between scores assigned to human enhancers by the human-

trained classifier and the classifiers trained on other species: (a) Human (Hsap, experiment 1) vs. Macaque (Mmul, 

experiment 7). (b) Human vs. Mouse (Mmus, experiment 13) (c) Human vs. Cow (Btau, experiment 19) (d) Human 

vs. Dog (Cfam, experiment 25) (e) Human vs. Opossum (Mdom, experiment 31). Each dot represents a human liver 

enhancer sequence. The enhancer score assigned by the human-trained classifier is plotted on the x-axis, and the score 

assigned by the classifier trained on the other specified species is plotted on the y-axis. The color indicates the GC 

content. Correlation is quantified by Spearman’s rank correlation coefficient (ρ). (f) The GC content distribution of 

liver enhancers in human, macaque, mouse, cow, dog, and opossum. Human, macaque, cow and dog enhancers have 

a similar GC distribution. Mouse and opossum have less variation in GC content and are depleted of high GC 

enhancers compared to the other species. (g) The GC content of human enhancers is positively correlated with the 

scores assigned by the human-trained classifier (Pearson’s r=0.54, P<2.2e-16). 
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Classifiers generalized better to more closely related species; generalization was inversely 

correlated with the species’ evolutionary divergence, as quantified by substitutions per neutrally 

evolving site (Figure III-7, Spearman’s rho = –0.4, P = 0.14; Methods). This trend became even 

stronger when controlling for differences in GC content between species (Spearman’s rho = –0.72, 

P < 2.2e–16; S15 Fig). 

 

 
Figure III-7. Neutral sequence divergence is inversely correlated with the cross-species prediction 

accuracy.Correlation of relative auROCs from the non-GC-controlled classifiers (experiments 1–36) with sequence 

divergence. Spearman’s rho is –0.4 (P = 0.14). (b) Correlation of relative auPRs from the non-GC-controlled 

classifiers (experiments 1–36) with sequence divergence. Spearman’s rho is –0.38 (P = 0.16). Both correlations 

increased significantly when accounting for GC-content in the classifiers (Fig. S15). Sequence divergence is quantified 

as the expected number of substitutions per neutrally evolving site as derived from four-fold degenerate sites in codons 

in the UCSC Genome Browser’s100-way multiple species alignments (Methods). To determine the relative 

auROC/PR for each pair of species, the mean was taken across the two classifiers when applied cross-species (i.e., the 

relative auROC/PR from the human classifier applied to mouse and the relative auROC/PR mouse classifier applied 

to human were averaged). 

 

Classifiers trained to identify enhancers in developing limb and brain also accurately 

generalized across species. The average relative auROC for the developing limb classifiers was 

95.0% across all species pairs (Fig III-5c-d; raw AUCs in Appendix A), and the average relative 

a b
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auROC for the developing brain classifiers was 98.6% (Fig III-3e-f; raw AUCs in Appendix A). 

The ability of classifiers to generalize to other species illustrates the conservation of sequence 

properties predictive of enhancers across mammals. 

To ensure that the small fraction of liver enhancers shared between pairs of species were not 

driving performance, we identified human liver enhancers that overlapped enhancers from three 

other mammalian species with genome-wide multiple sequence alignments (mouse: 13.6%; cow: 

20.0%; dog: 16.7%) and vice versa. For each pair of species, the overlapping enhancers were 

removed from both the human training set and the other species’ testing set, and then new human 

classifiers were trained and evaluated (experiments 183–188). The classifiers achieved relative 

auROCs of 0.962 (mouse), 0.957 (cow) and 0.968 (dog), very similar to the analyses that did not 

remove shared enhancers (mouse: 0.964, cow: 0.964, and dog: 0.974), suggesting that the shared 

enhancers do not drive the cross-species generalization. 

III-3.3 Enhancers validated in transgenic assays show similar cross-species patterns 

Genome-wide mapping of enhancer-associated histone modifications is a cost-effective means to 

identify putative enhancers; however, the presence of these modifications does not guarantee 

enhancer activity. Many experimental and computational approaches have been used to identify 

enhancers (Shlyueva et al. 2014; Kleftogiannis et al. 2016), and there is considerable disagreement 

among different strategies (Benton et al. 2017). To investigate the generality of our conclusions 

drawn from histone-modification-derived enhancers, we also analyzed enhancers validated in vivo 

via transgenic assays from the VISTA enhancer database. We included six tissues (limb, forebrain, 

midbrain, hindbrain, heart and branchial arch) with a sufficient number of validated enhancers 

(>=50) in human and mouse. Consistent with the results from classifiers trained on histone-

modification defined enhancers, the classifiers trained and evaluated on VISTA human enhancers 

accurately predicted VISTA mouse enhancers in the corresponding tissue from genomic 

background, and vice versa (experiments 189–212; Figure III-8; average relative auROC = 96.3%, 

average auPR = 81.6%). This suggests that sequence patterns in enhancers confirmed via reporter 

assays are conserved between human and mouse. Moreover, the limb classifier trained on 

H3K27ac regions (excluding VISTA overlaps) accurately predicted VISTA enhancers (auROC = 

0.82, auPR=0.35 in human; experiment 237; Methods) and was competitive with the VISTA-

trained limb classifier itself (auROC = 0.80, auPR=0.39 in human; experiment 238). This suggests 

that sequence properties predictive of histone-modification defined enhancers are also predictive 
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of enhancers validated in transgenic assays. Thus, in spite of the limited number and biases present 

in the sequences tested for enhancer activity by VISTA, our models capture conserved sequence 

attributes of these functionally validated enhancers. 
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Figure III-8. Evaluation of between human (Hsap) and mouse (Mmus) VISTA enhancer classification tasks 

(non-GC-controlled, experiment 189-232). The number of enhancers in each tissue is indicated in brackets. (a) 

Forebrain enhancers (Human, 312; Mouse, 85) (b) Midbrain (Human, 259; Mouse 69) (c) Hindbrain (Human, 239; 

Mouse 58) (d) Heart (Human, 97; Mouse, 120) (e) Branchial arch (Human, 73; Mouse, 73). (f) Limb (Human 168; 

Mouse, 84). The human classifier usually generalized better than mouse classifiers. This may be due to the larger 

sample size of human enhancers in most of the tissues. 

a

b

c

d

e

f

raw auROCs relative auROCs raw auPRs relative auPRs
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Overall, these results show that the DNA sequence profiles of enhancer sequences captured 

by species-specific 5-mer spectrum SVM classifiers are predictive of enhancers in other 

mammalian species in corresponding tissues. The strong generalization of performance and 

correlation of the predictions for specific sequences by classifiers trained in different species 

indicates that many sequence properties predictive of enhancers are conserved across mammals. 

Short DNA sequence patterns remain predictive of enhancer activity after controlling for GC 

content and repetitive elements 

III-3.4 Short DNA sequence patterns remain predictive of enhancer activity after controlling 

for GC content and repetitive elements 

Enhancer activity is positively correlated with GC content (Figure III-6), and enhancers are often 

born from repetitive sequences derived from transposable elements (Rebollo et al. 2012; Chuong 

et al. 2013; Su et al. 2014; Simonti et al. 2017). Thus, we sought to evaluate the extent to which 

these properties influenced the generalization of our enhancer prediction models across species. 

First, we trained GC-controlled classifiers using negative sets of random genomic regions matched 

on GC content (experiments 37¬–72, 156–164, and 174–182). The predictive power of the GC-

controlled classifiers was substantial (average auROC of 0.75 for liver, 0.79 for limb and 0.81 for 

brain; average auPR of 0.24 for liver, 0.28 for limb and 0.34 for brain; Appendix A), but as 

expected, less than the corresponding classifiers without GC-control (average auROC of 0.81 for 

liver, 0.89 for limb and 0.92 for brain; Fig III-3). Nevertheless, GC-controlled classifiers 

maintained strong cross-species generalization: liver classifiers had an average relative auROC of 

94.8% (average relative auPR of 86.3%) when applied to the other five species (Figure III-9); limb 

classifiers had an average relative auROC of 95.0% (relative auPR of 82.4%) when applied across 

species; brain classifier had an average relative auROC of 94.8% (relative auPR of 84.2%). We 

observed similar cross-species generalization with classifiers trained on VISTA enhancers and 

GC-controlled negatives as well (experiment 214-237). The enhancer predictions for individual 

sequences by the GC-controlled classifiers were significantly correlated, and as expected, high 

GC-content sequences no longer received consistently high scores (Figure III-10). Ultimately, the 

strong cross-species generalization of the GC-controlled classifiers suggests that enhancers differ 

from the genomic background in sequence patterns beyond GC-content, and that those patterns are 

conserved. In addition, we trained classifiers to distinguish enhancers from their flanking regions 

(within 10x enhancer length) (experiments 372–407). These classifiers also performed similarly 
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and generalized across species (Figure III-11); this suggests that the conserved sequence properties 

are specific to enhancers, not just regulatory genomic neighborhoods. 

 

 
Figure III-9. Enhancer sequence properties remain conserved across diverse mammals after controlling for 

both GC-content and repetitive elements. The heat maps give the cross-species relative auROCs for SVM classifiers 

trained on 5-mer spectra to identify enhancers in the species along the x-axis, and then used to predict enhancers in 

the species on the y-axis. The “negative” training regions from the genomic background were matched to the 

enhancers’: (a) GC-content, and (b) GC-content and proportion overlap with repetitive elements.  
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Figure III-10. The predictions of enhancer classifiers trained in different species are strongly correlated (GC-

controlled analysis). Scatter plots showing the correlation between scores assigned to human enhancers by the 

human-trained classifier and the classifiers trained on other species in GC-controlled analysis: (a) Human (experiment 

37) vs. Macaque (experiment 43). (b) Human vs. Mouse (experiment 49) (c) Human vs. Cow (experiment 55) (d) 

Human vs. Dog (experiment 61) (e) Human vs. Opossum (experiment 67). Each dot represents a human liver enhancer 

sequence. The enhancer score assigned by the human-trained classifier is plotted on the x-axis, and the score assigned 

by the classifier trained on the other specified species is plotted on the y-axis. The color indicates the GC content. The 

correlation between enhancer scores produced by different species classifiers is quantified by Spearman’s rank 

correlation coefficient (ρ). (f) The GC content of human enhancers has low correlation with the scores assigned by the 

human-trained classifier (Pearson’s r=–0.076, P<2.2e-16). 
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Figure III-11. Evaluation of between species liver enhancer classification using flanking regions as negatives 

(experiments 372–407). We evaluated the ability of the 5-mer spectrum classifier to distinguish enhancers from 

flanking regions and the ability of these classifiers to generalize across species: (a) auROC, (b) auPR, (c) relative 

auROC, (d) relative auPR. We defined the flanking region of an enhancer as 10 times its length on either side. We 

then randomly selected 10 negative regions of same length as the enhancer that did not overlap other enhancers from 

the candidate flanking regions. Classifiers were then applied across species. The classifiers performed similarly to the 

GC-controlled classifiers and generalized very well across species. The dog classifier had much lower performance 

and generalization than the other classifiers. This could indicate differences in the sequence similarity of regulatory 

neighborhoods in dogs or be due to the quality of the dog genome assembly. 

 

The generalization of each liver GC-controlled classifier across species had the same pattern 

as the classifiers without GC-control: the human classifier had the best generalization (average 

relative auROC = 96.1%), while the opossum had the worst (average relative auROC = 92.8%), 

which is likely due to the quality of genome assembly. In these GC-controlled analyses, we 

observed a stronger inverse correlation between the relative performance across species and 

sequence divergence (Figure III-12, Spearman’s rho = –0.72, P < 2.2e–16) than in the non-GC-

a b

c d
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controlled analysis (Figure III-7). This indicates that both genomic differences in GC content 

distribution and overall evolutionary divergence influence the conservation of the sequence 

patterns predictive of putative enhancers.  

 

 
Figure III-12. Neutral sequence divergence is significantly inversely correlated with the GC-controlled cross-

species prediction accuracy.Correlation of relative auROCs from the GC-controlled classifiers (experiments 37–72) 

with sequence divergence. Spearman’s rho is –0.72 (P = 0). (b) Correlation of relative auPRs from the GC-controlled 

classifiers (experiments 37–72) with sequence divergence. Spearman’s rho is –0.52 (P = 0.05). Sequence divergence 

is quantified as the number of substitutions per neutrally evolving site as derived from four-fold degenerate sites in 

codons in the UCSC Genome Browser’s100-way multiple species alignments (Methods). To determine the relative 

auROC/PR for each pair of species, the mean was taken across the two classifiers when applied cross-species (i.e., the 

relative auROC/PR from the human classifier applied to mouse and the relative auROC/PR mouse classifier applied 

to human were averaged). 

(b)  

To evaluate the influence of repetitive elements on the ability to distinguish enhancers from 

the background and the observed conservation of sequence properties across species, we trained 

classifiers to distinguish enhancers that did not overlap a repetitive element (only 3.3% of all 

enhancers in human) from matched non-repetitive regions from the genomic background 

(experiments 73–108). Neither the ability to distinguish enhancers from the background in a 

species, nor the ability of predictive sequence properties to generalize across species, was 

ba
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substantially reduced (Figure III-13). This demonstrates that, while repetitive elements contribute 

to enhancer activity, the conservation of sequence properties predictive of enhancers is not 

contingent on their presence. 

 

 
Figure III-13. Classifiers trained on enhancers lacking repetitive elements generalize across species 

(experiments 73–108). In liver enhancers from each species, we identified those that did not overlap a repetitive 

element (Methods). The vast majority of enhancers overlapped at least one repetitive element, leaving at total of 966 

(human), 1321 (macaque), 914 (mouse), 2772 (cow), 451 (dog), 556 (opossum) enhancers.  Classifiers trained on 

these ‘repeat-free’ enhancers generalized well across species as measured by (a) raw auROC and (b) relative auROC. 

Surprisingly, classifiers trained in other species better predicted dog and opossum enhancers than the dog and opossum 

trained classifiers. This is likely a consequence of the small training sets remaining for dog and opossum; these two 

species had the fewest liver enhancers without repeat overlap (451 and 556, respectively, while the other species each 

had at least 900 remaining). 

 

To further examine the influence of GC-content and repetitive elements across all observed 

enhancer sequences, we also trained classifiers to distinguish all enhancer regions from genomic 

background regions matched for both GC-content and the proportion of overlap with a repeat 

element (experiments 109–144). The performance of these classifiers slightly decreased (average 

auROC of 0.73, auPR of 0.21, Appendix A) relative to when not controlling for repeat overlap 

(average auROC of 0.75, auPR of 0.24) or neither repeats or GC-content (average auROC of 0.81, 

auPR of 0.32; Figure III-3). This indicates that, as expected, both features are informative about 

enhancer function. However, the repeat and GC-controlled classifiers still generalized across 
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species (average relative auROC = 94.0%, Figure III-9b; average relative auPR = 85.4%); this 

demonstrates that enhancer sequence properties beyond both GC and repeat content are conserved 

across species. 

III-3.5 Enhancer sequence properties are more similar across the same tissue in different 

species than across different tissues in the same species 

Gene expression patterns are significantly more similar in corresponding tissues across species 

than between different tissues in the same species (Chan et al. 2009; Brawand et al. 2011; Merkin 

et al. 2012), and we demonstrated that enhancer sequence properties are strongly conserved in the 

same tissue across species (Figure III-3). Thus, we hypothesized that, as for gene expression, 

enhancer sequence properties would be more similar in the same tissue across species (cross-

species) than between different tissues in the same species (cross-tissue). To test this, we 

performed cross-tissue analysis using human enhancers identified in nine diverse cellular contexts, 

including liver, by the Roadmap Epigenomics Project (Consortium et al. 2015) (experiments 239–

274; Methods). We applied the classifier trained on human liver enhancers (from Villar et al. 2015) 

to Roadmap Epigenomics enhancers from: liver, brain hippocampus middle, pancreas, gastric, left 

ventricle, lung, ovary, CD14 cells, and bone marrow. We compared the relative auROC between 

the cross-tissue and cross-species prediction tasks (Figure  III-14). In the non-GC-controlled 

analysis, the human liver enhancer classifier predicts enhancers in macaque, mouse, cow, dog and 

opossum better than all non-liver Roadmap tissues. In the GC-controlled analysis, we observed 

the same trend. The cross-species predictions are more accurate than cross-tissue predictions, with 

the exception of the Roadmap gastric tissue (dark green), which is also a digestive tissue. When 

compared to the relative auROCs of all pairwise cross-species analyses in liver, limb and brain, 

those of human liver to non-liver Roadmap tissues are significantly lower (all P < 0.008, Mann-

Whitney U test; Figure III-14b). In addition to the human cross-tissue analysis, we also examined 

the cross-tissue performance of the liver, limb and brain classifiers over all three species with 

enhancer data: human, macaque and mouse. For each species, we applied the classifiers trained in 

liver, limb, and brain to that species’ enhancers in the other two tissues. Again, cross-species 

performance (all pairwise relative auROCs) was significantly higher than cross-tissue performance 

in both GC-controlled and non-GC-controlled analyses (Figure III-14b). We observed the same 

trend in relative auPRs (Figure III-15). The ability of enhancers to regulate gene expression is 

often contingent on both cell-type specific attributes, such as expression patterns of  TFs 
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(Vaquerizas et al. 2009),  and properties that are shared across active enhancers in general. The 

stronger performance of the trained classifiers in the cross-species compared to cross-tissue 

prediction tasks suggests that they capture cell-type-specific sequence attributes and that these 

features are conserved across species. 

 

 
Figure III-14. Enhancer classifiers generalize more accurately across the same tissue in different species than 

across different tissues in the same species.The human-trained liver classifier obtains better performance when 

applied to liver enhancers from other species (gray dots) than when applied to enhancers from other human tissues. 

This also holds for GC-controlled analyses, with the exception of predicting enhancers active in the gastric mucosa.  

(b) In the not-GC-controlled analysis, the cross-species performance (average relative auROC = 96.2%) is 

significantly better than the cross-tissue (roadmap) performance (88.4%, Mann Whitney U test, P = 0.00005) and the 

cross-tissue (Villar, Cotney, Reilly) performance (92.0%, Mann Whitney U test, P = 2.2E-05). This also holds true 

for the GC-controlled analysis. The cross-species performance (average relative auROC = 94.6%) is significantly 

better than the cross-tissue (roadmap) performance (91.2%, Mann Whitney U test, P = 0.008) and the cross-tissue 

(Villar, Cotney, Reilly) performance (85.8%, Mann Whitney U test, P = 7.6E-07). 

 



66 

  

 
Figure III-15. Enhancer classifiers generalize more accurately across the same tissue in different species than 

across different tissues in the same species (relative auPRs).The human-trained liver classifier obtains better 

performance when applied to liver enhancers from other species (gray dots) than when applied to enhancers from 

other human tissues. This also holds for GC-controlled analyses, with the exception of predicting enhancers active in 

the gastric mucosa.  (b) In the not-GC-controlled analysis, the cross-species performance is significantly better than 

the cross-tissue (roadmap) performance (P = 0.00015, Mann Whitney U test) and the cross-tissue (Villar, Cotney, 

Reilly) performance (P = 4.9E-05). This also holds true for the GC-controlled analysis. The cross-species performance 

is significantly better than the cross-tissue (roadmap) performance (P = 0.049) and the cross-tissue (Villar, Cotney, 

Reilly) performance (P = 7.58E-08). 

 

III-3.6 The most predictive sequence patterns in different species match binding motifs for many 

of the same transcription factors 

To interpret the biological relevance of the sequence patterns learned by the trained SVM enhancer 

prediction models in each species, we analyzed the similarity of the sequence properties in a 

functional context: TF binding motifs. First, we matched the 5% (n = 52) most enhancer-associated 

5-mers learned by the human GC-controlled liver classifier to a database of 205 known TF motifs 

(Mathelier et al. 2014) using TOMTOM (Figure III-16a). The enhancer-associated 5-mers were 

significantly more likely to match at least one TF motif than expected at random (46.1% vs. 27.7%; 

one-tailed P = 0.0035, binomial test). The 5% (n=52) most background-associated 5-mers were 

not significantly different from random (21.6% matched at least one TF, two-tailed P = 0.43, 

binomial test). This illustrates that the classifiers learned sequence patterns with regulatory 

potential. 

 

p= 4.9E-05

p= 0.00015 p=0.049
p=7.58E-08a b
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Figure III-16. The DNA sequence patterns most predictive of liver activity across species matched a common 

set of transcription factors.Transcription factor analysis workflow. For each species enhancer classifier, we found 

TF motifs matched by the top 5% positively weighted 5-mers. Note that different 5-mers (marked with black box on 

the left) can match the same motif, e.g., MAFB and its reverse complement (RC). The overlap of matched TFs were 

then compared across each species’ classifier. (b) 33 of the TF motifs matched by the top 5% positive 5-mers from 

each GC-controlled liver classifier are shared in all species. The total number of TFs matched by top 5-mers in each 

species was: 121 (human), 104 (macaque), 100 (mouse), 81 (cow), 118 (dog), 102 (opossum). Similar results were 

observed for the non-GC-controlled classifier (Figure III-17). (c) The number of TFs matched by all species based on 

5-mers in top positive, top negative, and 100 random sets of 5% of all possible 5-mers. The 33 TF motifs shared 

among the high-weight set for each species is thus significantly more than expected. 
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Next, we investigated whether the TF binding motifs matched by enhancer-associated 5-

mers were shared between species. The highly weighted 5-mers in the human-trained classifier 

matched 121 TF motifs. Of these, the binding motifs for 33 TF were also matched by enhancer-

associated 5-mers in all other species (Fig III-16b). This is significant enrichment for shared TF 

motifs among the enhancer-associated 5-mers compared to the number of TF motifs shared 

across all species on average over 100 random sets of 5% of 5-mers from each species (Figure 

III-16c, P = 0). Similarly, only one TF motif (MZF1) was shared among all the species’ most 

background-associated 5-mers; this is not significantly different from the number expected at 

random (P = 0.97). Moreover, the sharing of TFs matched by the top positive 5-mers between 

the human liver classifier and other species’ liver classifiers is significantly higher than that 

between the human liver classifier and classifiers for other human tissues (P = 0.019, Mann 

Whitney U test; Figure III-17). This also suggests more conservation of enhancer sequence 

properties across species within the same tissue than within the same species across different 

tissues. We obtained similar results when comparing the TFs matched by 5-mers from non-GC-

controlled liver SVM models (27 shared TFs by enhancer-associated 5-mers in all species, P =0, 

Figure III-18). The limb and brain classifiers also shared more TFs among the top 5% of 

enhancer-associated 5-mers than expected from random sets: 12 TFs (P = 0.33, GC-controlled) 

and 20 TFs (P = 0.1) were shared among the limb classifiers; 22 TFs (P = 0.05, GC-controlled) 

and 16 TFs (P = 0.14, non-GC-controlled) were shared among the brain classifiers. However, it 

is likely that the smaller number of available species for developing limb and brain enhancers, 

our limited knowledge of binding motifs for TFs active in developing limb and brain, and the 

heterogeneity of developing limb and brain tissue reduced power to detect sharing compared to 

liver.  
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Figure III-17. TFs matched by the top positive k-mers between the human classifier and other species are more 

similar than those between the human liver tissue and other Roadmap tissues (GC-controlled negatives). For 

each pair of SVM classifiers, the Jaccard similarity of the top positive k-mer-mapped TFs is plotted. 

 

 
Figure III-18.The DNA sequence patterns most predictive of liver enhancer activity across species matched a 

common set of transcription factors (non-GC-controlled).  Of the TFs matched by the top k-mers from each non-

GC-controlled liver classifier (experiments 1, 8, 15, 22, 29, 36), 27 are shared by all six species. 
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To evaluate the relevance of the shared TF motifs to liver function, we analyzed 

expression patterns of the TFs across 12 tissues (Bernstein et al. 2012). Shared TFs among liver 

enhancer-associated 5-mers were significantly enriched for liver expression (Table III-1, P = 

0.011, one-tailed Fisher’s exact test), and 6 out of the 7 shared TFs not expressed in liver have a 

liver-expressed TF in the same subfamily (Appendix B). Many of the shared TFs play essential 

roles in liver function. For instance, they are enriched for activity in the TGF-β signaling 

pathway compared to non-shared TFs; the enrichment is mainly due to members of the AP-1 

(JUN, FOS, and MAF subfamilies) and SMAD families (Methods) (The Gene Ontology 

Consortium 2000, 2015). TGF-4 signaling is a central regulatory mechanism that is disrupted in 

all stages of chronic liver disease (Dooley and ten Dijke 2012). Further, mice deficient in c-JUN 

or MAF have an embryonic lethal liver phenotype (Eferl et al. 1999; Yamazaki et al. 2012). The 

only TF shared among the background-associated 5-mers, MZF1, is lowly expressed in the liver 

and not detected at the protein level (Uhlen et al. 2015). We also searched for matches to the 

binding motifs of known liver master regulators among the highly weighted motifs. While none 

of them were shared among all models, several including, HNF1A, HNF4A, and FOXA1 

matched highly weighted motifs in three or more species. This demonstrates that the sequence 

patterns learned in each species capture similar motifs that are recognized by TFs important to 

the relevant tissue context. 

 
Table III-1. TFs motifs shared among the top 5-mers across all species’ liver enhancer SVM classifiers are 

significantly enriched for liver expression (P = 0.011, one-tailed Fisher’s exact test). 

 Shared TFs Not shared TFs 

Liver expressed 26 89 

Not liver expressed 7 70 

Percent Liver expressed  78.8% 56.0% 

 

 

III-3.7 Convolutional neural networks predict enhancers more accurately than SVMs, but 

generalize less well across species 

Convolutional neural networks have recently achieved the state-of-art performance at predicting 

regulatory sequences (Quang and Xie 2015; Zhou and Troyanskaya 2015) and may be better at 

capturing more complex sequence patterns than k-mer SVMs. To investigate the performance and 
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generalization of CNNs at identifying enhancers across species, we trained CNNs to distinguish 

liver enhancers from the random genomic background in each species. Here, we used the center 

3000 bp of enhancers and a balanced negative set due to the fixed-length input of CNNs and the 

challenges of training CNNs on unbalanced sets (Methods). To compare the performance of CNNs 

with the SVM models, we trained a CNN model (experiment 275), a 5-mer spectrum SVM 

classifier (experiment 325), a 5-mer polynomial kernel SVM (Methods, experiment 351) and an 

11-mer gkm-SVM (Methods, experiment 347) on the same human dataset using training, 

validation, and testing partitions to avoid overfitting (Methods). We found that the k-mer SVM, 

polynomial kernel SVM, 11-mer gkm-SVM achieved similar performance on this human dataset, 

with auROCs of 0.78, 0.78, 0.76 and auPRs of 0.75, 0.76, 0.76, respectively (Figure III-19). The 

CNN performed considerably better, achieving an auROC of 0.86 and auPR of 0.84. Although we 

did not explore the full hyperparameter space for SVMs, CNN out-performed SVMs by a 

substantial margin. This was true for the three SVM algorithms we tested across a range of Cs 

(Figure III-19). Because the prohibitive runtime of gkm-SVM (Methods) and small difference in 

performance, we continued the CNN comparison with the 5-mer spectrum SVMs. We trained 

CNNs (experiment 275-310) and 5-mer spectrum SVMs (experiment 311-346) on the 3,000bp 

long, balanced enhancer datasets for each species and performed cross-species enhancer 

predictions. The CNN model is substantially better than the SVMs at distinguishing enhancers 

from genomic background in each species (Figure III-20a), suggesting that the ability to model 

more complex sequence patterns improves predictions. Moreover, the first layer of the human liver 

CNN learned many binding motifs for TFs relevant to liver biology, including CEBPB, HNF4A, 

and HNF1A (Figure III-20b). 
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Figure III-19. CNNs perform substantially better than 5-mer spectrum SVMs, 5-mer polynomial kernel SVMs, 

and 11-mer gkm-SVMs across C values. We evaluate the performance of SVMs across a range of C values (0.001 

to 15, x-axis, experiments 348–354, 366–371) and compare it with the CNN model (experiment 275, hyper-parameter 

selection is described in the Methods). (a) Comparison of auROCs between different classifiers. (b) Comparison of 

auPRs between different classifiers. 

a b
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Figure III-20. CNNs identify enhancers more accurately than 5-mer spectrum SVM models, but generalize less 

well across species. The auROCs of CNN models perform substantially better than the 5-mer SVM model in each 

species. The error bars give the standard error of ten-fold cross-validation for the SVM models.  (b) Neurons in the 

first layer of the CNN learned the motifs of important liver TFs, including HNF4A, HNF1A, and CEBPB. (c) The 

relative auROCs of the CNN models applied across species are consistently lower than for the 5-mer SVMs applied 

across the same species. This suggests that the CNN models do not generalize as well across species as the SVM 

models. 

 

Next, we performed the cross-species enhancer prediction with the CNNs. The CNN models 

generalize well across species (relative auROC from 0.79 to 0.97), but their generalization is 

consistently worse than the SVM models (Figure III-20c; Raw auROCs and auPRs is Appendix 

A). We observed similar results with repeat and GC-control, and the removal of shared orthologous 
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enhancers (Figure III-21). In addition, we applied the 5-mer polynomial kernel SVM across species 

to test if the worse generalization of the CNNs could be explained by its ability to capture k-mer 

interactions (experiments 408–443). The polynomial kernel SVMs perform similarly to the k-mer 

SVMs within species and do not generalize substantially worse than k-mer SVMs across species, 

suggesting little influence of global k-mer interaction patterns on enhancer identification (Figure 

III-22). This is consistent with the finding that the co-binding patterns of TFs are mostly conserved 

between human and mouse (Boyle et al. 2014a). These results suggest that the sequence properties 

learned by the CNNs are less conserved across species than those learned by the k-mer spectrum 

SVMs. These could include better representations of TF motifs or more sophisticated interactions 

between TFs, such as their orientation, spacing and ordering. However, developing clear biological 

interpretations for the patterns learned by the CNNs is challenging. 

  



75 

  

 
Figure III-21.  The CNNs trained on GC-controlled, repeat-controlled enhancer datasets with orthologous 

enhancers removed performed better than the 5-mer spectrum SVMs trained on the same data and generalized 

worse across species (experiments 354–365).  (a) The auROCs of CNN models were substantially better than the 5-

mer SVM models in each species. The error bars give the standard error of ten-fold cross-validation for the SVM 

models.  We removed the enhancer orthologs between each pair of human and another species. For instance, “Hsap 

without Mmus” means human enhancers with mouse enhancer orthologs removed from consideration. (b) The auPRs 

of CNN models were substantially better than the 5-mer SVM models in each species. The error bars give the standard 

error of ten-fold cross-validation for the SVM models. (c) The relative auROCs of the CNN models applied across 

species are consistently lower than for the 5-mer spectrum SVMs applied across the same species. (d) The relative 

auPRs of the CNN models applied across species are consistently lower than for the 5-mer spectrum SVMs applied 

across the same species. This suggests that the CNN models did not generalize as well across species as the SVM 

models. 

a
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Figure III-22.  The 5-mer polynomial kernel SVMs trained on enhancers and random genomic regions 

(experiments 408–443) performed similarly to 5-mer spectrum SVMs within and across species.The auROCs of 

5-mer polynomial kernel SVMs are similar to 5-mer spectrum SVMs within species and are substantially worse than 

the CNNs in each species. The error bars give the standard error of ten-fold cross-validation for the 5-mer spectrum 

SVM models. (b) The auPRs of 5-mer polynomial kernel SVMs are similar to 5-mer spectrum SVMs within species 

and are substantially worse than the CNNs in each species. (c) The relative auROCs of the 5-mer polynomial kernel 

SVMs applied across species are similar to the 5-mer SVMs applied across the same species. (d) The relative auPRs 

of the 5-mer polynomial kernel SVMs applied across species are similar to the 5-mer SVMs applied across the same 

species. This suggests that the 5-mer polynomial kernel SVMs generalized as well across species as the simpler SVM 

models. 

 

III-4 Discussion 

In this study, we trained SVM and CNN classifiers based on DNA sequence patterns to 

distinguish enhancers from the genomic background in diverse mammalian species. We showed 

that, in spite of significant changes in the enhancer landscape between species, the SVM models 

trained using short sequence patterns as features exhibited minimal decreases in performance 

when applied across species. This indicates that short sequence patterns predictive of enhancer 

activity captured by these models are largely conserved across mammals. Furthermore, the DNA 

patterns most predictive of liver enhancer activity across species matched a common set of TF 

a

c d
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binding motifs with enrichment for expression in the relevant tissue. The sequence properties 

predictive of histone-mark defined enhancers were also predictive of enhancers confirmed in 

transgenic reporter assays. We then showed that CNN models performed better than SVMs at 

identifying enhancers. They also generalized well across species, but not as well as SVMs. These 

results suggest that conserved regulatory mechanisms have maintained constraints on short 

sequence motifs present in enhancers for more than 180 million years.  

Confidently identifying and experimentally validating enhancers remains challenging 

(Benton et al. 2017). We showed that short sequence properties are conserved across species 

using enhancers identified via two complementary techniques: histone modification profiling and 

transgenic assays. Each of these approaches has strengths and weaknesses. The histone-

modification based enhancer predictions enable genome-wide characterizations across many 

species, but this approach is prone to false positives (Andersson et al. 2014; Dogan et al. 2015). 

On the other hand, the transgenic assays clearly demonstrate the competence of a sequence to 

drive gene expression, but are restricted to a biased set of relatively few sequences from two 

species that are tested at one developmental stage. By showing the cross-species conservation is 

maintained in both categories, and that models trained on each set perform similarly, we argue 

the conservation of enhancer short sequence properties is robust to the methodology used to 

define enhancers. 

The design of this study can serve as a framework for further examining the conservation 

and divergence of regulatory sequence patterns across species. We trained sequence-based 

machine learning models within a species, and then applied them to other species; this approach 

can be applied on a genome-wide scale, is not dependent on knowledge of TF binding motifs, 

and allows some flexibility in the weights assigned to each feature while directly testing the 

generalization of overall sequence patterns. Identification of enhancers in more divergent species 

would enable us to better quantify the depth of enhancer sequence properties conservation. This 

remains an open question, as more divergent animal species have very little conservation of TF 

co-associations at putative enhancers despite conservation of TF binding preferences (Boyle et 

al. 2014b); however, enhancer properties appear to be conserved over greater evolutionary 

timescales in insects (Stefflova et al. 2013; Kazemian et al. 2014; Villar et al. 2014c) and 

transcriptional networks seem to evolve at relatively constant rates across animals (Carvunis et 

al. 2015). Identification of enhancers in the same cellular context for more closely related species 



78 

  

would also enable the investigation of lineage-specific regulatory sequence patterns. Thus, 

additional comparative studies of regulatory sequence features in more species are needed to 

better understand both recent and ancient influences on regulatory sequences.  

While both the SVM and CNN classifiers correctly distinguished many enhancers from the 

genomic background, neither performed perfectly. Many factors contribute to this, including: 

false positives in the training data, noise from the low resolution of the histone modification 

peaks (i.e., they include non-functional sequence flanking the enhancer), errors in the genome 

assemblies, and the features considered in our models. As enhancer datasets and prediction 

methods improve, it will be valuable to continue to evaluate generalization across species. It will 

also be valuable to train, evaluate, and interpret CNNs on unbalanced data sets. Additionally, the 

features learned by the enhancer CNNs are difficult to interpret biologically, especially for 

higher-level neurons. Thus, it is not clear whether the CNN classifiers achieved better 

performance within species but had worse generalization across species by capturing 

sophisticated interactions between simpler motifs, by more accurately modeling the sequence-

preferences of TFs in each species, via better recognition of the genomic background, or 

recognition of other unappreciated patterns. The interpretation of sequence features learned by 

the accurate CNNs could facilitate the understanding of how more complex rules of enhancer 

sequence architectures change during evolution. The identification and interpretation of 

conserved and diverged gene regulatory patterns between species is an important area for future 

work.   
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Chapter IV 

 

IV. Learning and interpreting regulatory grammar through a deep learning framework 

 

IV-1 Introductions 

Enhancers are genomic regions distal to promoters that regulate the dynamic spatiotemporal 

patterns of gene expression required for the proper differentiation and development of multi-

cellular organisms (Shlyueva et al. 2014; Kundaje et al. 2015; Villar et al. 2015b). As a result of 

their essential role, mutations that disrupt proper enhancer activity can lead to diseases. Indeed, 

the majority of genetic variants associated with complex disease in genome-wide association 

studies (GWAS) are non-protein coding, and thought to influence disease by disrupting proper 

gene expression levels (Maurano et al. 2012; Corradin and Scacheri 2014; Brazel and 

Vernimmen 2016).   

 Enhancers function through the coordinated binding of transcription factors (TFs). Recent 

advances in high-throughput sequencing techniques, such as high-throughput systematic 

evolution of ligands by exponential enrichment (HT-SELEX), protein binding microarray 

(PBM), chromatin immunoprecipitation sequencing (ChIP-Seq), have greatly deepened our 

knowledge of TF binding specifies (Bernstein et al. 2012; Jolma et al. 2013b; Lambert et al. 

2018). However, identifying consensus TF binding motifs is not sufficient for inferring TF 

binding. As shown in many ChIP-seq studies, TFs only bind to a small fraction of all motif 

occurrences in the genome, and some binding sites do not contain the consensus TF binding 

motif, indicating a necessity for additional features (Wang et al. 2012). Indeed, many additional 

features have been suggested to play a role in determining in vivo TF binding, such as 

heterogeneity of a TF’s binding motif (Levy and Hannenhalli 2002a), local DNA properties 

(Dror et al. 2015), broader sequence context and interposition dependence (Mathelier and 

Wasserman 2013), clusters of homotypic binding sites (Dror et al. 2015), cooperative binding of 

the TF with its partners (Wang et al. 2006; Yáñez-Cuna et al. 2013; Jolma et al. 2015; Liu et al. 

2015), and condition-specific chromatin context (Wang et al. 2006; Heintzman et al. 2009; 

Kumar and Bucher 2016). While both genomic and epigenomic features are important in 

determining the in vivo occupancy of a TF, recent studies have suggested that the epigenome can 

be accurately predicted from genomic context (Arvey et al. 2012; Benveniste et al. 2014; Dror et 
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al. 2015; Whitaker et al. 2015), supporting the fundamental role of sequence in dictating the 

binding of TFs (Wilson et al. 2008; Ritter et al. 2010; Schmidt et al. 2010; Li and Ovcharenko 

2015; Prescott et al. 2015b). Therefore, it is critical to understand the complex mechanisms 

underlying enhancer regulatory functions and build sufficiently sophisticated models of enhancer 

sequence architecture. 

Combinatorial binding of TFs, i.e., the regulatory grammar, is thought to be essential in 

determining in vivo condition-specific binding (Levy and Hannenhalli 2002b; Arvey et al. 2012; 

Mathelier and Wasserman 2013; Sharmin et al. 2015). However, how enhancers integrate 

multiple TF inputs to direct precise patterns of gene expression is not well understood. Most 

enhancers likely fall on a spectrum represented by two extreme models of enhancer architecture: 

the enhanceosome model and the billboard model (Slattery et al. 2014; Long et al. 2016). The 

“enhanceosome model” proposes that enhancer activity is dependent on the cooperative 

assembly of a set of TFs at enhancers. The cooperative assembly of an enhanceosome is based 

on physical protein-protein interactions and highly constrained patterns of TF-DNA binding 

sites. The enhanceosome model does not tolerate shifts in the spacing, orientation, or ordering of 

the binding site, which can disrupt protein-protein interactions and cooperativity. This model is 

proposed based on in-depth study of the interferon-b (IFN-b) enhancer (Thanos and Maniatis 

1995). Binding sites for the heterodimer ATF-2/c-Jun, interferon response factors IRF-3 and 

IRF-7, and NFkB (p50:RelA) are tightly clustered in a 55 base pair (bp) stretch of DNA. The 

individual factors do not activate IFN-b gene expression by themselves, and failure to mobilize 

any one of the factors abrogates IFN-b transcription entirely (Maniatis et al. 1998). This model 

likely presents an extreme example because only very few enhancers are found under similarly 

stringent constraints (Erives and Levine 2004; Papatsenko and Levine 2007; Crocker et al. 2008; 

Swanson et al. 2010, 2011). However, many examples of less extreme spatial constraints on 

paired TF-TF co-association and binding-site combinations are found in genome-wide ChIP 

sequencing studies (Sorge et al. 2012; Cheng et al. 2013; Kazemian et al. 2013) and in vitro 

consecutive affinity-purification systematic evolution of ligands by exponential enrichment 

(CAP-SELEX) studies. On the other end of the spectrum is the “billboard model”, also known as 

the “information display model” (Kulkarni and Arnosti 2003; Arnosti and Kulkarni 2005), which 

hypothesizes that instead of functioning as a cooperative unit, enhancers work as an ensemble of 

separate elements that independently affect gene expression. That is, the positioning of binding 
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sites within an enhancer is not subject to strict spacing, orientation, or ordering rules. The TFs at 

billboard enhancers work together to direct precise patterns of gene expression, but their function 

does not strongly depend on each other. For instance, the loss of a TF binding may lead to 

change in the target gene expression, but will not cause the complete collapse of enhancer 

function. The actual mechanisms by which multiple TFs assemble on enhancers are likely a 

mixture of the two models. Indeed, a massively parallel reporter assay (MPRA) of synthetic 

regulatory sequences suggested that while certain transcription factors act as direct drivers of 

gene expression in homotypic clusters of binding sites, independent of spacing between sites, 

others function only synergistically (Smith et al. 2013). 

In recent years, deep neural networks (DNNs) have achieved state-of-art prediction 

accuracies for many tasks in regulatory genomics, such as predicting splicing activity (Leung et 

al. 2014; Xiong et al. 2015), specificities of DNA- and RNA-binding proteins (Alipanahi et al. 

2015), transcription factor binding sites (TFBS) (Quang and Xie 2015, 2019; Zhou and 

Troyanskaya 2015), epigenetic marks (Quang and Xie 2015; Zhou and Troyanskaya 2015; 

Kelley et al. 2016), enhancer activity (Min et al. 2016; Yang et al. 2017) and enhancer-promoter 

interactions (Singh and Yang 2016). However, in spite of their superior performance, little 

biological knowledge or mechanistic understanding has been gained from DNN models. In 

computer vision, the interpretation of DNNs trained on image classification tasks demonstrate 

that high-level neurons often learn increasingly complex patterns building on those learned by 

lower level neurons (Zeiler et al. 2010; Springenberg et al. 2014; Zeiler and Fergus 2014; 

Yosinski et al. 2015; Olah et al. 2017, 2018; Shrikumar et al. 2017a). DNNs trained on DNA 

sequences might behave similarly, with neurons in low levels learning building blocks of the 

regulatory grammar, short TF motifs, and those in higher levels learning the regulatory grammar 

itself, the combinatorial binding rules of TFs (Kelley et al. 2016; Quang and Xie 2016; Chen et 

al. 2018).  

The majority of DNNs trained with genomic sequences use a convolution layer as a first 

layer and then stack convolution or recurrent layers on top of it. A common approach to interpret 

the features learned by such DNNs is to convert the first convolution layer neurons to position 

weight matrices by counting nucleotide occurrences in the set of input sequences that activate the 

neurons (Alipanahi et al. 2015; Kelley et al. 2016; Chen et al. 2018). With the development of 

more advanced DNN visualization and interpretation techniques in computer vision, many other 
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DNN interpretation methods emerged, such as occlusion (Zeiler and Fergus 2014), saliency maps 

(Simonyan et al. 2013b), guided propagation (Zeiler and Fergus 2014), gradient ascent (Yosinski 

et al. 2015). Some of these techniques have been applied to visualize features learned by DNNs 

trained with genomic sequences. For instance, a gradient based approach, DeepLIFT, identified 

relevant transcription factor motifs in the input sequences learned by a convolutional neural 

network (Shrikumar et al. 2017a). Saliency maps, gradient ascent and temporal output scores 

have been used to visualize the sequence features learned by a DNN model for TFBS 

classification and found informative TF motifs (Lanchantin et al. 2017). These studies 

demonstrate the power of DNNs in recognizing the TF motifs in the input sequences. However, 

these studies focused only on the interpretation of the output layer in models for predicting 

TFBS. Enhancers are much more complex than individual TFBS; they have multiple binding 

sites in a range of combinations and organizations. It is also unclear whether the intermediate 

layers of DNNs have the capability of learning rules of combinatorial TF binding from 

regulatory regions with many TFs, such as enhancers.  

Another substantial challenge in the development of methods to interpret DNNs applied to 

regulatory sequences is our lack of knowledge of the combinatorial rules governing enhancer 

function in different cell types. Beyond a few foundational examples used to propose possible 

enhancer architectures, the constraints and interactions that drive enhancer function are largely 

unknown. Thus, it is difficult to determine if a pattern learned by a neuron is “correct” or 

biologically relevant. The generation of synthetic DNA sequences that reflect different 

constraints on regulatory element function has promise to help address these challenges and 

enable evaluation of the ability of DNNs to learn different regulatory architectures and of 

algorithms for reconstructing these patterns from the trained networks. Indeed, DeepResolve was 

recently proposed to interpret the combinatorial logic from intermediate layers of DNNs, and the 

ability of the neural network to learn the AND, OR, NOT and XOR of two short sequence 

patterns was demonstrated in a synthetic dataset (Liu and Gifford). However, these simulated 

combinatorial logics and sequence patterns were not biologically motivated and were simpler 

than most proposed enhancer architectures.  

Here, we develop a biologically motivated framework for simulating enhancer sequences 

with different regulatory architectures, including homotypic clusters, heterotypic clusters, and 

enhanceosomes, based on real TF motifs from diverse TF families. We then apply state-of-the-
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art residual neural network (ResNet) algorithms to classify these sequences and use this 

framework to investigate whether the intermediate layers the networks learn the complex 

combinatorial TF architectures present in the simulated regulatory grammars. In particular, we 

developed a gradient-based unsupervised clustering approach to interpret the regulatory grammar 

from the intermediate layers of the neural network. We evaluate the efficiency in retrieving 

regulatory grammar under a range of scenarios that mimic real-world multi-label regulatory 

sequence prediction tasks, considering possible heterogeneity in the output enhancer categories 

and fraction of TFBS not in the regulatory grammar. We demonstrate that ResNet can accurately 

model simulated regulatory grammar in many multi-label prediction tasks, even when there is 

heterogeneity in the output categories or a large fraction of TFBS outside of regulatory grammar. 

We also identified scenarios where the ResNet fails to learn an accurate representation of the 

regulatory grammar, including using inappropriate control sequences as negative training 

examples, considering output categories differing in multiple sequence features, and having an 

overwhelming amount of TFBS outside of the regulatory grammar. In summary, our work makes 

three main contributions: i) We demonstrate that the ability of DNNs to learn interpretable 

regulatory grammars is highly dependent on the design of the prediction task. ii) We provide a 

flexible tool for simulating regulatory sequences based on biologically driven hypotheses about 

regulatory grammars. iii) We develop and evaluate an algorithm for interpreting the regulatory 

grammar from the intermediate layers of DNNs trained on enhancer DNA sequences. 

 

IV-2 Materials and Methods 

IV-2.1 Data preparation for the simulated sequence analysis 

IV.2.1.1 Simulation of regulatory grammar 

We used TF binding motifs from the HOCOMOCO v11 database (Kulakovskiy et al. 2017). To 

make sure that the TF motifs are distinct and diverse, we select one TF from each TF subfamily. 

This results in a set of 26 TFs. Then the selected TFs are arranged into three types of regulatory 

grammar representing homotypic clusters, heterotypic clusters, and enhanceosomes. 

For the homotypic cluster, we simulated multiple occurrences (3-5) of the same TF in a 

small window (120 bp) at random locations. For the heterotypic clusters, we simulated a set of 

four diverse TFs in a small window (120 bp) at random locations. Each TF occurs once in the 

heterotypic cluster. For the enhanceosome, we simulated a set of four TFs in a small window 
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with fixed order and spacing. Because it is possible in real enhancers that the same TF factor is 

used in different regulatory grammars, we allow some of TFs to occur in more than one 

grammar. We simulated five homotypic TF clusters, five heteotypic clusters and two 

enhanceosomes. 

IV.2.1.2 Simulation of regulatory sequences with different sets of regulatory grammar 

To mimic the common enhancer prediction tasks, such as predicting enhancers from different 

cellular contexts, we designed twelve regulatory sequence classes (Supplementary Table 3) with 

each regulatory sequence class representing one type of enhancer sequence.  Sequences in each 

class have two different regulatory grammars. Because it is possible that the same regulatory 

grammar is used in regulatory sequences in different cellular contexts, we allow one regulatory 

grammar occur in two different regulatory sequence classes. We implemented this design by 

letting the regulatory sequence classes overlap in one regulatory grammar. For instance, the first 

regulatory sequence class has homotypic cluster 1 and heterotypic cluster 1, then the second 

regulatory sequence class has heterotypic cluster 1 and homotypic cluster 2 and then the third 

regulatory sequence class has homotypic cluster 2 and heterotypic cluster 3, etc. Next, we 

randomly generated a background DNA sequences of 3000 bp with equal probability of A, C, G, 

T and inserted 2-4 of each simulated regulatory grammar at random location into the background 

sequences based on the corresponding regulatory class under the assumption that in the real 

enhancers, multiple regulatory grammar could occur in one enhancer sequence. 

IV.2.1.3 Multiclass classification and heterogenous class classification 

We performed two types of classification, including multiclass classification in which each 

output neuron representing a homogenous set of regulatory sequences and heterogenous class 

classification in which each output neuron representing a heterogenous set of regulatory 

sequences. The heterogenous class classification tasks is based on the assumption that in the real 

enhancer prediction tasks, enhancers in one category, say in one specific cellular context, may 

have a heterogenous set of sequences harboring different sets of regulatory grammar.  

The first one (multiclass classification) has twelve homogeneous output classes, each one 

corresponding to sequences representing one regulatory sequence class. The second one 

(heterogenous class classification) has five heterogeneous output classes, each one corresponding 

to a subset of regulatory sequence classes. More specifically, heterogeneous class 1 has 

regulatory sequence class 1, 3, and 5; heterogeneous class 2 has regulatory sequence class 2, 4, 
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and 6; heterogeneous class 3 has regulatory sequence class 7, 9, and 11; heterogeneous class 4 

has regulatory sequence class 5, 8, and 10; heterogeneous class 2 has regulatory sequence class 

1, 6, and 12. 

IV.2.1.4 Negative set of sequences 

We used three approaches to negatives when training the classifiers: no negatives, k-mer 

shuffled negatives, and TF-shuffled negatives. For the k-mer shuffled negative sequence set, we 

matched the frequency of k-mers in the negatives to the simulated regulatory (positive) 

sequences. For the TF-shuffled sequence set, we shuffled the TFBS of the simulated regulatory 

sequences.   

IV-2.2 Model design and training 

CNNs have achieved the state-of-art performance on regulatory sequence prediction (Zhou and 

Troyanskaya 2015; Quang and Xie 2016). The integration of a convolution operation into 

standard neural networks enables CNNs to learn common patterns that occur at different spatial 

positions, such as TF motifs in the DNA sequences. Here we use a residual CNN (ResNet), a 

variant of CNNs that allows connections between non-sequential layers (He et al. 2016) to model 

the regulatory sequences. Each simulated DNA sequence is represented by a sequence length x 4 

matrix with columns representing A, G, C and T. 

The basic layers in the network include a convolutional layer, batch normalization layer, 

pooling layer, and fully connected layer. Every two convolutional layers are grouped into a 

residual block where an identity shortcut connection adds the input to the residual block to the 

output of the residual block. This additional identity mapping is an efficient way to deal with 

vanished gradients that occur in neural networks with large depth and improves performance in 

many scenarios. The batch normalization layers are added after the activation of each residual 

block. Batch normalization (Ioffe and Szegedy 2015) helps reduce the covariance shift of the 

hidden unit and allows each layer of a neural network to learn more independently of other 

layers. The pooling layers are added after each batch normalization layer. Finally, a dense (fully 

connected) layer and an output layer are added at the top of the neural network. We used 4 

residual blocks, each has two convolutional layers with 32 neurons. The final residual block is 

connected to a dense layer with 32 neurons and then connected to output layer.  
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We used rectified (ReLU) activation for all the residual blocks and sigmoid activation for 

the output fully connected layer activation. We used binary cross-entropy as the loss function 

and Adam (Kingma and Ba 2014) as the optimizer. 

IV-2.3 Model interpretation and grammar reconstruction 

IV.2.3.1 Computing saliency values with respect to neuron 

We considered two approaches for estimating the importance of each nucleotide in the input 

sequence with respect to each neuron’s activation. The first is guided back-propagation in which 

we calculated the gradient of the neuron of interest with respect to the input through guided 

back-propagation and then multiplied the gradient by input sequences. The second is calculating 

the DeepLIFT score (Shrikumar et al. 2017a) of the neuron of interest with respect to the input 

using the DeepLIFT algorithm implemented in SHAP (Lundberg and Lee 2017) against the TF-

shuffled negatives and then multiplying the DeepLIFT score by input sequences. We refer the 

resulting values from the above as saliency values and the vector of saliency values for an input 

sequence as saliency map. We found that the DeepLIFT score performed the better than guided 

back-propagation. Therefore, for all the main text results we present were calculated with the 

DeepLIFT approach. 

IV-2.4 Box plot, heatmap and hierarchical clustering of TF saliency maps 

To analyze which TFs are learned by a specific neuron, we calculate the gradient of a TF binding 

site with respect to a neuron by averaging a 10 bp window from the start position of the TF 

binding site. Then, we visualize the distribution of saliency values of the binding sites of each TF 

in a specific regulatory grammar with respect to a neuron with box plot.  

The median saliency values of the binding sites of each TF in a specific regulatory grammar 

with respect to neurons is stored in a matrix with the shape of number of neurons by the number 

of TFs. This data matrix is first scaled by column to identify which neurons mostly detect the TF 

and the scaled matrix is used to generate a heatmap. Then, we performed hierarchical clustering 

with k=12 (12 is the number of simulated regulatory grammars) or k=13 (when there are non-

grammar TFBSs) for both neurons and TFs based on the same data matrix. 

IV-2.5 t-SNE and k-means clustering 

To reconstruct the regulatory grammar and evaluate how accurately neurons in a layer capture 

the simulated regulatory grammar, we performed a two dimensional t-SNE and a k-means 

clustering (k=12) of TFBS using their saliency value profiles across neurons in a layer. To assign 
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the name of regulatory grammar of a predicted cluster, we used a majority vote, which is the 

majority of the true labels of regulatory grammar in that cluster. We visualize the k-means 

clustering by overlaying the predicted regulatory grammar from k-means clustering on top of the 

t-SNE visualization. We evaluated the accuracy of reconstructing the regulatory grammar by 

calculating the accuracy (TP+TN/All), the sensitivity (TP/TP+FN), and the precision 

(TP/TP+FP) of the predicted regulatory grammar. 

 

IV-3 Results 

To evaluate the performance of residual neural networks (ResNets) on modeling the regulatory 

grammar, we performed a simulation analysis (Figure 1a). We designed a set of 12 biologically 

motivated regulatory grammars consisting of TFs from diverse families. These include five 

homotypic clusters of the same TF, five heterotypic clusters of different TFs, and two 

enhanceosomes of different TFs with requirements on the spacing and orientation of their 

binding sites. Motivated by the fact that enhancers active in a given cellular context likely consist 

of multiple types with different grammars, we designed twelve “classes” of regulatory 

sequences. Each class contains a different set of regulatory grammars, but the grammars can 

occur within multiple classes, and TFs can occur within multiple grammars. Then, using these 

classes, we simulated 30,000 enhancer sequences which each contain a sequence that matches 

the pattern defined by one of the classes (Methods).  

Our goal is to evaluate the ability of ResNets to learn regulatory grammars and the ability of 

our proposed framework to reconstruct and visualize these grammars. Using sequences generated 

from the simulated regulatory grammars, we trained several models corresponding to different 

classification scenarios found in real-world regulatory sequence prediction tasks (Figure 1b). First, 

we trained a ResNet on a multi-class classification task using sequences from each of the 

regulatory classes and TF-shuffled negative sequences. Then, we investigated how well the 

approach performed when trained in more challenging situations, including no negative training 

sequences, k-mer matched negatives, heterogeneity in the output categories, and large fractions of 

TFBSs outside of regulatory grammars in the input sequences. 
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Figure IV-1 Pipeline for analyzing regulatory grammar learned by ResNet models trained on simulated 

regulatory sequences.Regulatory sequence and negative sequences simulation. Based on the current hypotheses of 

the types of regulatory grammar, we designed twelve regulatory grammars, including five homotypic clusters, five 

heterotypic clusters, and two enhanceosomes as prototypes for simulated regulatory sequences. Note that the same 

TF can be in more than one regulatory grammar. Then, to reflect that regulatory regions active in a cellular context 

may have multiple grammars, we defined twelve regulatory sequence classes, each with two different grammars. 

Each regulatory grammar is shared between two classes. Finally, we generated two sets of negative sequences: k-

mer shuffled and TF shuffled versions of the simulated positive sequences. (b) Classification tasks. ResNets are 

trained on simulated regulatory sequences and the negative sets in three increasingly realistic scenarios: 1) 

multiclass classification in which each output neuron corresponds to one simulated regulatory sequence class, 2) 

heterogenous multi-label classification in which each output neuron corresponds to a mix of regulatory sequence 

classes, and 3) noisy heterogenous multi-label classification in which 80% of TFBSs are simulated to occur outside 

of grammars. (c) Regulatory grammar reconstruction framework. We first calculate the saliency maps of input 

sequences with respect to the neurons in the penultimate layer. Then we extract the saliency values for each TFBS 

instance to generate a TFBS by neuron matrix. We then cluster the TFBS by neuron matrix and assign predicted 

regulatory grammar membership to TFBSs based on the cluster membership. Finally, we quantify the reconstructed 

grammar by calculating the accuracy, sensitivity, and specificity of the predicted regulatory grammar membership. 
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We also implemented an intermediate step (2.5) to check if saliency profiles of TFs in the same grammar are similar, 

which is an indicator whether the model learned the regulatory grammar. In this intermediate step, we group TFBSs 

by TF into a specific regulatory grammar and then perform hierarchical clustering of the TFs. 

 

IV-3.1 ResNet trained on simulated regulatory sequences and TF-shuffled negatives accurately 

captures simulated regulatory grammars. 

To explore if the ResNet model can learn the regulatory grammar, we started with a multi-class 

classification task based on simulated regulatory sequences from 12 classes and TF-shuffled 

negative sequences (Methods; Supplementary Table 1 and 2). We trained a classifier to predict 

the class of the sequence, either not a regulatory sequence or member of one of the regulatory 

sequence classes. By constructing the prediction task with TF matched negative sequences, the 

neural network is forced not only to learn the individual TF motifs, but also learn the 

combinatorial patterns between the TFs. 

The ResNet model accurately predicts the class label of input DNA sequences with near 

perfect performance: average area under the ROC curve (auROC) of 0.999 and average area 

under the precision-recall curve (auPR) of 0.982. We then analyzed what features were learned 

by calculating saliency maps (Methods) of input sequences with respect to each neuron in the 

penultimate layer (the dense layer immediately before the output layer). We found that neurons 

in the penultimate layer detect the location of the simulated TFBS. For instance, when we 

compute the saliency map of a class 6 simulated regulatory sequence with respect to neuron 1 in 

the penultimate layer, the TFBS have higher saliency value compared to other locations in the 

sequence, indicating the higher importance of those nucleotides to the activation of neuron 1 

(Figure IV-2a). 

Next, we visualized the features learned by neuron 1 of the penultimate layer by plotting the 

mean saliency value of a 10 bp window from the start of each TF binding site using 240 

sequences from all simulated regulatory sequence classes (Figure IV-2b). For example, the TFBS 

from heterotypic cluster 3 have elevated gradients compared to TFBS from other simulated 

regulatory grammars. This suggests that neuron 1 of the penultimate layer detects TFBS from 

heterotypic cluster 3. We then took the median gradients of TFBSs in a specific regulatory 

grammar and generated a matrix with rows of neurons and columns of each TF. We scaled the 

matrix column-wise. This scaling helps identify which neurons recognize the TF. We plotted the 
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scaled matrix as a heatmap with hierarchical clustering (Method; Figure IV-2c). We found that: 

(i) TFBSs from the same regulatory grammar have elevated gradients together and therefore are 

clustered; (ii) neurons of the penultimate layer can “multi-task”, that is, one neuron can detect 

one or more regulatory grammars. This suggests that the penultimate layer captured the 

simulated regulatory grammars. 

In order to evaluate how well the regulatory grammar can be reconstructed from the 

penultimate layer, we performed unsupervised clustering of TFBS based on their saliency values 

with respect to the neurons in the penultimate layer. More specifically, we performed a k-means 

clustering (k=12) of TFBSs from 240 sequences using their gradients with respect to each neuron 

of the penultimate layer and visualized it with t-SNE (Figure IV-2d). Each TFBS has a predicted 

clustering label that is assigned by the k-means clustering algorithm and a true regulatory 

grammar. We first used majority voting to determine the predicted regulatory grammar for a 

cluster. For instance, the majority of cluster 1 is from heterotypic cluster 1, so we assign 

heterotypic cluster 1 as the predicted regulatory grammar for all TFBS in cluster 1. We then 

calculate the accuracy of the regulatory grammar reconstruction by comparing the predicted 

regulatory grammar and the true regulatory grammar. On average, 85.1% of TFBS are correctly 

classified (Figure IV-2e), and homotypic clusters are learned better (sensitivity > 0.97) than 

heterotypic clusters and enhanceosomes.  
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Figure IV-2. ResNet trained on simulated regulatory sequences and TF-shuffled negatives accurately models 

the regulatory grammar.The saliency map of simulated regulatory sequence from class 6 with respect to neuron 1 

in the penultimate layer. (b) The saliency values of the binding sites of each TF in a specific regulatory grammar with 

respect to neuron 1 in the penultimate layer. (c) Heatmap of the median gradient of the binding sites of each TF in a 

specific regulatory grammar (x axis) across neurons of the penultimate layer (y axis). The order of x and y axis labels 

are determined by hierarchical clustering. The color bars on the side indicate the group label assigned by hierarchical 

clustering. (d) Actual labels of simulated regulatory grammar of the TFBS overlaid on t-SNE visualization of TFBS 

saliency values across neurons. Correct predictions of the regulatory grammar for a TF is represented by a dot, that is 

the predicted label agree with the actual label. Incorrect predictions of the regulatory grammar of a TF are indicated 

by crosses. (e) The sensitivity (TP/TP+FN) of the regulatory grammar predictions. 

 

The same analysis approach can be applied to any layer of the neural network. We found 

that the neural network built up its representation of the regulatory grammar by first learning the 
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individual TF motifs in the lower level neurons and gradually grouping TF motifs in the same 

regulatory grammar together (Figure IV-3). 

 
Figure IV-3. ResNet learned individual TF binding motifs in the lower convolutional layer and gradually 

build up its understanding of regulatory grammar in higher level layers. (a). Simulated TF motifs are learned 

by neurons in the third convolutional layer. From left to right are four selected examples, neuron 9 learned the FOS 

motif; neuron 20 learned the COT2 motif; neuron 22 learned the P53 motif; neuron 25 learned ERR1 motif. (b). 

From layer 7 (third convolutional layer) to Layer 43 (the penultimate dense layer), the ResNet gradually learned the 

regulatory grammar. The correlation matrix of the saliency value profiles of TFs in a specific regulatory grammar is 

plotted as the heatmap. In layer 7, TFs from the same regulatory grammar are not clustered. In layer 37, TFs within 

the same regulatory grammar begin to have a higher correlation. In layer 43, TFs within the same regulatory 

grammar have near perfect correlation. 

 

Taken together, these results demonstrate that ResNet models can largely capture simulated 

regulatory grammars if trained to perform a multi-class prediction with TF-shuffled negatives, 

and that our unsupervised clustering method based on saliency maps is able to reconstruct the 

regulatory grammar. 

IV-3.2 Regulatory grammar can be learned by the ResNet model without TF-shuffled 

negatives 

Although the ResNet model demonstrated the ability to capture the simulated regulatory 

grammars when trained against TF-shuffled negatives, we cannot construct perfect TF-shuffled 
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negatives in the real-world, because the true TFs are not known. Indeed, in many applications, 

only the positive regulatory sequences (Zhou and Troyanskaya 2015; Quang and Xie 2016; Zhou 

et al. 2018) or k-mer shuffled negatives are used for training machine learning models. 

Therefore, we tested whether the ResNet model can learn the simulated regulatory grammar if 

trained with no negatives or k-mer shuffled negatives. 

We trained five models for multi-class classification against: no negatives, 1-mer shuffled 

negatives, 4-mer shuffled negatives, 8-mer shuffled negatives, and 12-mer shuffled negatives. 

Then, we evaluate their performance at predicting simulated regulatory sequences. The model 

trained with 8-mer shuffled negatives achieved the highest accuracy at distinguishing TF-

shuffled negatives from simulated regulatory sequences (average auROC 0.998, auPR 0.957, 

Figure IV-4a).  

To further explore the regulatory grammar learned by the ResNet model trained against 8-

mer shuffled negatives, we calculated saliency maps over a set of input sequences (n=240) from 

each class of simulated regulatory sequences with respect to neurons in the penultimate layer.  

We performed hierarchical clustering on the median gradients for the binding sites for each TF in 

a specific regulatory grammar as we did in the previous results section. We found that TFBS 

from the same regulatory grammar were grouped together. Next, we performed k-means 

clustering (k=12) of the TFBS from the 240 sequences and overlaid the clustering label on the 

tSNE visualization (Figure IV-4b). We calculated the accuracy of predicted regulatory grammar 

for each TF. The average grammar reconstruction accuracy of this model is on par with the 

model trained against TF-shuffled negatives (85.3% vs. 85.1%).  

These results suggest that the model trained against 8-mer shuffled negatives can learn a good 

representation of the regulatory grammar and therefore 8-mer shuffled negatives can be used as a 

substitute for TF-shuffled negatives in practice. 
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Figure IV-4. ResNet trained on simulated regulatory sequences against 8-mer shuffled negatives accurately 

models the regulatory grammar. (a) The performance of five different ResNet models trained on simulated 

regulatory sequences against different k-mer shuffled negatives at predicting the regulatory class of the simulated 

regulatory sequences vs. TFs-shuffled negatives test dataset. (b) Actual labels of simulated regulatory grammar of the 

TFBS overlaid on t-SNE visualization of TFBS saliency values across neurons. (c) The sensitivity of predicted labels 

in (b) of the ResNet model trained on the simulated regulatory sequences against 8-mer shuffled negatives. 
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IV-3.3 Regulatory grammar can be learned by the ResNet model in the presence of 

heterogeneity in the regulatory sequences 

A common task in regulatory sequence prediction is to predict regulatory sequences that exert a 

certain set of functions, e.g., sequences active in different cellular contexts. For instance, in the 

DeepSEA model, some of the predicted epigenetic marks are H3K27ac peaks—a marker for active 

regulatory regions—from different cellular contexts. It is likely that sequences with a 

heterogeneous set of grammars are active in each cellular context. 

  To mimic this type of heterogeneity, we performed a heterogenous multi-label classification 

by pooling a number of simulated regulatory classes together as one heterogeneous class to 

generate five heterogeneous classes (Method; Figure IV-1b). We also allowed one regulatory class 

to be used in several heterogeneous classes. For example, in our simulation, regulatory sequences 

in heterogenous class 1 consist of regulatory class 1, 3, and 5. Regulatory class 1 sequences also 

belong to heterogenous class 5, and regulatory class 5 sequences also belong to heterogenous class 

4. This multi-function of a regulatory sequence class is often observed in real-word regulatory 

sequences as many enhancers are active in more than one cellular context. 

We trained the ResNet model against k-mer shuffled negatives (k=1, 4, 8, 12). Again, the 

model trained against 8-mer shuffled negatives performed the best when evaluated against the TF-

shuffled negatives (average auROC 0.99, auPR 0.93). We performed hierarchical clustering and 

unsupervised clustering (Figure IV-5a, b) as we did in the previous sections. The model trained to 

predict the heterogenous classes can still learn the majority of the regulatory grammars. The 

average accuracy of reconstructing regulatory grammar in this setting is 89.2%, which is similar 

to that of the multi-class classifications against TF-shuffled negatives (85.1%) and against k-mer 

shuffled negatives (85.3%). 

These results suggest that the model trained on regulatory sequences with heterogenous output 

categories can still largely capture the regulatory grammars that are essential for the heterogenous 

multi-label classification. 
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Figure IV-5. Regulatory grammar can be learned by ResNet despite heterogeneity in the regulatory 

sequences.Actual labels of simulated regulatory grammar of the TFBSs overlaid on t-SNE visualization of TFBS 

saliency values across neurons. (b) The sensitivity of predicted labels in (b) across regulatory grammars. 

 

IV-3.4 Regulatory grammar can be learned by ResNet when a large fraction of TFBSs are not 

in grammars and there is heterogeneity in the regulatory sequences 

In all previous prediction tasks, the simulated TFBSs in the input sequences are always in a 

regulatory grammar. However, in the real regulatory sequences, it is likely that only a fraction of 

TFBS are in regulatory grammars, while others are individual motifs scattered along the 

sequence. To mimic this scenario, we simulated a set of regulatory sequences with 80% of 

TFBSs randomly scattered in the sequence outside of any regulatory grammar and 20% of 

TFBSs in regulatory grammar. 

We trained a ResNet model on this 80% non-grammar TFBSs dataset with the five heterogenous 

classes as output categories against 8-mer shuffled negatives. We found that the TFBSs outside 
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of the regulatory grammars (single TFBS) have lower saliency values compared to the TFs in 

simulated regulatory grammars (Figure IV-6a) except for those in enhanceosome 2. 

Next, we performed unsupervised clustering analysis as in the previous sections (Figure IV-

6b). Although the TFBSs in regulatory grammars still cluster, many of the TFBSs outside of 

regulatory grammar overlap the TFBSs in regulatory grammars in t-SNE space. This makes 

identifying the regulatory grammars challenging. To better reconstruct the regulatory grammar 

from the unsupervised clustering analysis, we took advantage of the fact that the non-grammar 

TFBSs have lower saliency values and only kept the TFBSs with top 10% sum of saliency values 

across neurons in the penultimate layer. Intuitively, this filtering helps improve the 

reconstruction of regulatory grammar by only focusing on TFBSs with high influence on the 

prediction. We repeated the unsupervised clustering analysis on these filtered TFBSs (Figure IV-

6c). We found that nearly all TFBSs outside of regulatory grammars are filtered out (97.7%) and 

a smaller fraction of TFBSs in regulatory grammars are filtered (59.3%). After filtering, the 

remaining TFBSs are sufficient to reconstruct 11 of the 12 simulated regulatory grammars. The 

regulatory grammar that we failed to reconstruct, enhanceosome 2, has the lowest sum of 

saliency values across neurons in the penultimate layer (Figure IV-6a), suggesting their lower 

importance for accurate predictions. 

These results suggest that even with only a small fraction of TFBSs in regulatory grammars 

and heterogeneity in the output categories, we can still reconstruct most of the simulated regulatory 

grammars. 
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Figure IV-6. Regulatory grammar can be learned by ResNet when TFBSs are outside of regulatory grammars 

and there is heterogeneity in the regulatory sequence categories.Sum of saliency values for TFBSs in each 

regulatory grammar across neurons in penultimate layer (b) Actual labels of simulated regulatory grammar of the 

TFBS overlaid on t-SNE visualization of TFBS saliency values across neurons. (c) Actual labels of simulated 

regulatory grammar of the TFBS filtered to only those in the top 10% sum of saliency values across neurons in 

penultimate layer overlaid on the t-SNE visualization. (d) The sensitivity of predicted labels in (c) across regulatory 

grammars. 

 

IV-3.5 Regulatory grammar cannot be learned if multiple grammars are able to distinguish 

one regulatory sequence class from another 

As shown in Figure IV-4 and Figure IV-5, some regulatory grammars, especially enhanceosome 

2, are reconstructed from ResNet model with limited accuracy. This suggests that the essentiality 

of a regulatory grammar may influence the ability to reconstruct regulatory grammars from the 

model. To further investigate this hypothesis, we simulated three heterogenous regulatory classes 

(Table 1) with non-overlapping subsets of regulatory grammars, so that multiple regulatory 

grammars could distinguish one heterogenous regulatory class from another.  Then we trained the 

a

b All TFBSs

c
Only use top 10% TFBSs

d
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model against TF-shuffled negative sequences. By setting up the training this way, the model will 

have to distinguish sequences with TFBSs in regulatory grammars from those with TFBSs not in 

regulatory grammars. However, the model does not need to learn all the regulatory grammars or 

distinguish one regulatory grammar from the other to make accurate predictions.  

 
Table 1. Simulated heterogenous regulatory sequence classes with multiple regulatory grammars that can 

distinguish one class from another. 

 

Regulatory grammar used in 

the first type of sequence 

Regulatory grammar used in 

the second type of sequence 

Heterogeneous Regulatory 

Sequence Class 1 

homotypic cluster 1, 

homotypic cluster 2 

homotypic cluster 4, 

heterotypic cluster 4 

Heterogeneous Regulatory 

Sequence Class 2 

heterotypic cluster 1, 

heterotypic cluster 2 

homotypic cluster 5, 

enhanceosome 1 

Heterogeneous Regulatory 

Sequence Class 3 

homotypic cluster 3, 

heterotypic cluster 3 

heterotypic cluster 5, 

enhanceosome 2 

 

As expected, the model performed well at distinguishing positives and negatives (average 

auROC 0.995, auPR 0.978). However, when visualizing the saliency values of TFBSs of the 

neurons in the penultimate layer, there is limited resolution to recover individual regulatory 

grammars; multiple regulatory grammars have similar saliency profiles and overlap in the t-SNE 

space (Figure IV-7a). More specifically, the grammars that co-occur in the same regulatory 

sequence classes tend to cluster together. For example, in regulatory sequence class 1, homotypic 

cluster 4 clustered with homotypic cluster 1; in regulatory class 2, homotypic cluster 5 clustered 

with heterotypic cluster 2 and heterotypic cluster 1; in regulatory sequence class 3, homotypic 

cluster 3 clustered with heterotypic cluster 5. However, the remaining regulatory grammars, 

including homotypic cluster 2, heterotypic cluster 3, heterotypic cluster 4, enhanceosome 1, and 

enhanceosome 2, are scattered in the t-SNE visualization (Figure IV-7a). The regulatory grammars 

that are scattered show lower sum of saliency values across neurons, suggesting lower attention 

they received from the neural network (Figure IV-7b). This observation is consistent with our 

hypothesis that if there are multiple regulatory grammars that can distinguish one class of 

sequences from another, the neural network will not learn to distinguish one regulatory grammar 
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from another nor learn all the distinct regulatory grammars. This scenario is likely to happen in 

many real enhancer classification tasks and would make reconstruction of individual regulatory 

grammars challenging. 

 

 
Figure IV-7. The ResNet model fails to learn the correct representation of individual grammars when 

there are multiple regulatory grammars that can distinguish one heterogenous regulatory class from 

another. a) Actual labels of simulated regulatory grammar of the TF binding sites overlaid on t-SNE 

visualization of TFBS saliency values across neurons. b) Sum of saliency values for TFBSs in each 

regulatory grammar across neurons in the penultimate layer. 

 

IV-3.6 ResNet trained on developmental heart enhancers failed to capture the known heart 

heterotypic clusters 

Transcription factors TBX5, NKX2-5, and GATA4 function as a heterotypic cluster and 

coordinately control cardiac gene expression and differentiation (Luna-Zurita et al. 2016). To test 

if the neural network can learn the heterotypic cluster from known heart enhancers, I trained a 

residual neural network with enhancers from three stages of mouse heart development, including 

embryonic stem cells (ESC, N=6359), mesoderm (MES, N=4775), cardiac precursors (CP, 

N=5549), and cardiomyocytes (CM, N=6894), against 8-mer shuffled negatives (Wamstad et al. 

2012). I used a Bayesian hyperparameter search approach to select the best number of neurons in 

each layer and the number of layers. The neural network achieved only moderate accuracy for 

developmental stage prediction (ROC AUCs of 0.79, 0.72, 0.62, and 0.64, PR AUCs of 0.70, 0.42, 

0.36, and 0.47 for ESC, MES, CP, and CM enhancers). The lower accuracy at predicting CM and 

CP stage enhancers reflects the similarity between those two stages.  

a b
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 Next, we calculated saliency maps for the top 150 sequences for the CM enhancer category 

using the 8-mer shuffled negative sequences as reference with respect to the neurons in the 

penultimate layer. We chose CM stage because it has largest overlap with TF binding sites of 

TBX-5, NKX2-5, and GATA4 among the four stages (Wamstad et al. 2012). We then used FIMO 

to identify transcription factor binding site in those sequences using HOCOMOCO mouse motif 

database (Grant et al. 2011; Kulakovskiy et al. 2016). We then visualized the saliency profile of 

the representative TF from each TF family (we select the TF with median motif counts within a 

TF family) and also TBX5, NKX2-5, GATA4, and MEIS1 with t-SNE.  We include MEIS1 

because it has been suggested to be similar to the in vivo binding motifs for TBX5 in hear 

developmental enhancers (Luna-Zurita et al. 2016). However, TBX5, NKX2-5 and GATA4 are 

not clustered, suggesting that the neural network did not learn this heterotypic cluster (Figure IV-

8). Several factors could have prevented the neural network from learning the heterotypic cluster. 

First, the model has only moderate accuracy at predicting enhancers from different stages. This 

suggests that the representation learned by the neural network is not very accurate. Second, as in 

the previous simulation analysis, it is likely that many sequence features can be used to distinguish 

enhancers from one stage to another so that it is not necessary for the neural network to learn the 

full heterotypic cluster. These results illustrate the difficulties in learning the correct representation 

of regulatory grammar through neural networks in common real enhancer prediction tasks.  
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Figure IV-8. ResNet trained on developmental heart enhancers did not learn the heterotypic cluster of TBX-5, 

NKX2-5, and GATA4. TF binding sites overlaid on t-SNE visualization of TFBS saliency values across neurons. 

The colored dots are motifs that either belong to TBX5, NKX2-5, and GATA4 or motifs that have been suggested to 

correlate with TBX5 binding (MEIS1).  

 

IV-4 Conclusion and discussion 

We trained a variant of CNNs, ResNets, to model sequences with simulated regulatory grammars 

(combinatorial binding of TFs). Then we developed a gradient-based unsupervised clustering 

approach to interpret the features learned by neurons in the intermediate layers of the neural 

network. We found that ResNets can model the simulated regulatory grammars even when there 

is heterogeneity in the regulatory sequences and a large fraction of TFBSs outside of regulatory 

grammars. 

We also identified scenarios when the ResNet model failed to learn the regulatory grammar. 

The networks strive to learn simple representations of the training data. As a result, the ResNet 

models in our studies failed to learn the simulated regulatory grammar when there is a lack of 

constraint in negative training samples or between the positive output categories. For instance, 

we found that the choice of negative training samples influences the ability of the neural network 

to learn regulatory grammar. The model trained against no negatives or short k-mer shuffled 
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negatives (k=1-6) or very long k-mer shuffled negatives (k=12) did not learn accurate 

representation of the regulatory grammar and often misclassified TF-shuffled negatives as 

positives. The model trained against 8-mer shuffled negatives performed the best when evaluated 

on the TF-shuffled negatives. This is because when shorter k-mers (k=1-6) are used to generate 

the negative training samples, the neural network can distinguish the positives from negatives by 

learning the individual TF motifs, many of which are longer than 6 bp, rather than learning the 

regulatory grammar of the TFs. With longer k-mers (k=12), the reason is likely that k-mers are 

not well shuffled in the negatives and very similar to the positives. Indeed, the ResNet model 

trained against 12-mer shuffled negatives has a low accuracy (auPR 0.506). The 8-mer shuffled 

negative provides a sweet spot where the negatives are well shuffled and the network is forced to 

learn the TF motifs and regulatory grammars. Another challenging situation occurs when there 

are multiple sequence features that can distinguish one output category from another. Under this 

scenario, it is not necessary for the neural network to accurately learn all the features nor 

distinguish one feature from another. 

In addition to these scenarios, there is also another situation in which the ResNet model 

failed to learn the regulatory grammar. When the majority of the TFBSs are not in a regulatory 

grammar, the non-grammar TFBSs overlap those in regulatory grammars in the unsupervised 

clustering analysis and make it impossible to recover the grammars. Fortunately, we could use 

the observation that many of the TFBSs outside of regulatory grammars have low saliency values 

to filter out those TFBSs, and focus the unsupervised clustering analysis on TFBS with high 

saliency values to improve the accuracy of grammar reconstruction. This gradient magnitude- 

based filtering method may be less efficient when there is an overwhelmingly large number of 

TFBSs outside of regulatory grammar and larger sample sizes might be needed to train the neural 

network to better retrieve the regulatory grammars. 

While we demonstrate potential to interpret biologically relevant patterns learned by deep 

neural network models in some realistic scenarios, our work has several caveats. First, the 

synthetic dataset and proposed methods assume that combinatorial binding of TFs does not 

change their motifs. However, this assumption may not be always true. In vitro analyses of the 

combinatorial binding of pairs of TFs indicate that many pairs of TFs have different binding 

motifs when they bind together compared to their consensus motifs (Jolma et al. 2015). Although 

there is nothing preventing the neural network from learning such altered motifs, the 
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unsupervised clustering methods based on individual TFBS may have limited accuracy in 

identifying such altered motifs. Second, we did not simulate noisy labels in the synthetic dataset 

which could occur in the real regulatory sequence prediction tasks. The common methods of 

experimentally finding enhancers, such as ChIP-seq on histone modifications, DNase-Seq, 

CAGE-seq, and MPRAs, often produce mislabeled regulatory regions and vague region 

boundaries. This could be improved in the future by integrating methods for learning from noisy 

labeled data. 

In summary, we demonstrated the power and limitation of convolutional neural network at 

modeling the regulatory grammar and provided a backpropagation gradient based unsupervised 

learning approach to retrieve the learned regulatory grammar from inner layers of the neural 

network.  
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Chapter V 

 

V. Conclusions and future directions 

 

In this dissertation, I investigated the mechanism underlying the rapidly evolving regulatory 

landscape of enhancers and evaluated the capability of state-of-the-art deep neural networks at 

modeling enhancer sequence architectures. In Chapter II, I demonstrated differences in the 

functional activity across cells between highly conserved enhancers and enhancer with species-

specific regulatory activity. Defining the conservation of enhancers that are alignable across ten 

mammalian species based on active histone modification marks (H3K27ac and H3K4me1) in 

primary liver tissue, I found that the conserved-activity enhancers had higher density and 

diversity of TF binding sites, more target genes and more broadly active target genes and were 

active in more cellular contexts comparing to species-specific enhancers. These pieces of 

evidence suggest that highly conserved enhancers are more pleiotropic and under more 

evolutionary constraint. In Chapter III, I investigated the evolution of enhancer sequence 

properties across mammalian species. I demonstrated that enhancer sequence k-mer spectrum 

SVM models trained on enhancer sequences from one species could be applied to predict 

enhancers in another species with great accuracy in adult liver, developing limb, and developing 

brain tissues. Furthermore, the top predictive k-mers in species-specific enhancer SVM models 

matched a common set of binding motifs for TFs enriched for expression in relevant tissues. This 

suggests the overall conservation of the enhancer sequence properties over 180 million years of 

mammalian evolution even though the enhancer activity of specific loci often changes between 

closely related species. I also applied convolutional neural networks (CNN) to the cross-species 

prediction framework. I found that the CNN predicted enhancers with better accuracy, but worse 

generalization across species. It has been hypothesized that the higher layer neurons of CNNs 

capture the combinatorial effects of transcription factor binding. The better within-species 

performance and worse cross-species performance of CNNs compared to SVM models 

motivated me to investigate whether the CNNs have the capability to learn such “regulatory 

grammar” and whether we can extract such information from the neural networks. Therefore, in 

Chapter IV, I created synthetic dataset of enhancers with simulated regulatory grammars based 

on previous hypothesis of combinatorial TF binding rules, such as homotypic clusters, 
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heterotypic clusters, and enhanceosomes, with real TF motifs from all TF families to test the 

capability of CNNs to learn regulatory grammars. I also created scenarios mimicking the current 

common tasks of enhancer prediction, such as predicting heterogenous set of enhancers active in 

a specific cellular context, having the majority of TF binding sites outside of regulatory 

grammar, and training against differently created negative sets. As a proof of concept, I 

demonstrated that the CNNs are capable of learning the correct association of TFs in the 

regulatory grammar when trained against TF-switched negatives, that is the positions of TFs are 

maintained but the specific motifs simulated at a position is randomized, using the 

backpropagation gradient based feature importance score. Moreover, I found that it is common 

for neurons in CNNs to multitask and learn multiple regulatory grammars and only when 

considering the activation pattern of the whole layer can I recover the individual regulatory 

grammar. Next, I demonstrated that the CNNs were capable of capturing regulatory grammar 

under more realistic situations—output categories containing a heterogenous set of enhancers 

and input sequences, and/or input sequences have large amount of non-grammar TFs. Finally, I 

identified situations where CNNs failed to capture accurate representation of individual 

regulatory grammars. This happens if the model is not trained against constrained negative 

samples like TF-switched negatives or k-mer shuffled negatives, or if the output categories are 

not constrained, e.g., when multiple sequence features can distinguish one output category of 

enhancers from another.  Neural network models strive to learn the simplest representation for 

accurate predictions. This result suggests that in most current trained regulatory sequence 

models, it is likely that the neural network did not learn accurate, biologically relevant 

representations of individual higher-order TF interactions, because of lack of constraint in the 

output labels of enhancers or lack of a stringent set of negative sequences. 

 

V-1 Mechanisms of enhancer turnover and redundancy 

In Chapter II and III, I investigated the underlying mechanisms of rapid enhancer evolution. I 

mainly focused on the function and sequence properties of individual enhancer elements. 

However, studies suggest that the nearby regulatory landscape play an important role on the 

turnover of the regulatory elements. For example, genes with complex regulatory landscapes 

exhibit high expression levels that remain evolutionarily stable and conserved regulatory activity 

associates with high and evolutionarily stable gene expression (Berthelot et al. 2017). Their 
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observation of correlation between evolutionally stable gene expression and the presence of many 

regulatory elements regardless of their conservation is consistent with the idea of redundancy 

among regulatory elements. Another recent study used genome editing to create 23 mouse deletion 

lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct 

loci required for limb development (Osterwalder et al. 2018). They found that none of that the ten 

deletions of individual enhancers caused noticeable changes in limb morphology but removal of 

pairs of enhancers showed effects, also suggesting the redundancy of enhancer functions.  

 These pieces of evidence suggest that the regulatory elements in the same regulatory 

neighborhood function in synergy. It will be interesting to investigate the interplay between the 

function of gene, the density of regulatory elements, the TF composition of the regulatory 

elements, and the evolutionary conservation. More specifically, one can ask the following 

questions: If one enhancer is lost during evolution, would there be replacement enhancers? Would 

this answer be different based on the density of existing regulatory element and the function or 

expression conservation level of target genes? If there were replacement enhancers, would the new 

enhancers have the similar TF composition as the lost one or does only the number of enhancers 

matter? Is there a location preference for the new enhancers? And also questions about enhancer 

gain. This question is partially addressed by an analysis of recently evolved enhancers that 

suggested that recently evolved enhancers contributed only weakly to gene expression (Berthelot 

et al. 2017). However, it hasn't been analyzed in close examination of TF composition similarities 

with other nearby regulatory elements. For example, if one enhancer is gained, does it compensate 

for the loss of others with similar TF composition? Would the answer change based on the density 

of existing regulatory elements and the function or expression conservation level of target genes? 

Can we find cases of recently evolved enhancers contributed greatly to gene expression? If so, 

what genes they are affecting? What sequence characteristics do they have? 

 

 

V-2 Towards more accurate and interpretable machine learning model of regulatory 

sequences 

In this Chapter IV, I analyzed the capability of deep neural networks to learn representations of 

the regulatory grammar—the combinatorial binding rules of transcription factors—under 

different scenarios with both simulated and real enhancer data. Deep neural networks showed 



108 

  

limited power at learning individual regulatory grammars when there is not enough constraint in 

the training sequences and output enhancer categories. This observation is different from the 

neural network trained with millions of images where the neurons in the inner layers of the 

network have been demonstrated to learn human-recognizable features. This could due to several 

reasons. First, the range of values of one hot encoded DNA sequence matrix for neural network 

training is binary, either 0 or 1, while pixels can take a wider range of values in image 

classification. This could make some interpretation methods that are efficient for image based 

neural network not efficient for DNA sequences. For example, when I used gradient ascent to 

optimize the input sequence that maximally activate a neuron, the input sequence was often 

trapped in local minimum and different initialization generated different final optimal input 

sequence with limited information content. Moreover, the binary nature of the input DNA 

sequence matrices could make the training process different too. For example, it may be easier 

for the neurons of sequence-based neural network to multitask. Second, the output categories of 

regulatory sequences are often not as homogenous as those in the image classification tasks. In 

image classification, the output categories are usually very distinct classes of objects that share 

same set of properties and very different from other classes. For example, cat images will usually 

have ears, eyes, noses, whiskers, legs, tails, and a body. However, this is not true with most of 

the regulatory sequence classifications. For example, the enhancers active in heart may have 

different sets of TF binding sites and some of the heart enhancers may also be enhancers in 

another tissue, say, brain. Third, the data are noisy. The current labels of regulatory sequences 

are usually from genome-wide functional genomics experiments, which likely have many false 

positives and false negatives. Finally, the size of data for neural network training is important. 

ImageNet has 14,197,122 well-defined images in 21841 synsets. While in DNA sequences, we 

usually have limited noisy annotations (currently the maximum number of annotation used is 

2002, (Zhou et al. 2018)). More data could give more constraint to the neural network and 

encourages it to learn an accurate representation of features.  

 There are improvements we can implement to solve some of the above-mentioned problems. 

The first is improving the neural network to learn with noisy labels. Deep neural networks are so 

powerful that they can “memorize” noisy data in the training set and overfit. Therefore, it is 

important to train neural networks that are robust to noisy labels. Goldberger et al. used an 

additional softmax layer that connects the correct labels to the noisy labels to estimate the noise 
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transition matrix. Under the intuition that as the labels become less noisy, the performance of the 

neural network would improve, Jiang et al. proposed MentorNet, which pre-trained an neural 

network for selecting clean instances to guide the actual training (Jiang et al. 2018). Arplt  et al. 

demonstrated that neural networks start with learning easy samples and gradually adapt to hard 

instances in the later stages of training (Arplt et al. 2017). This observation could also be used to 

stop the training early to focus on clean training examples. Han et al. proposed a co-teaching 

paradigm to solve this problem, which trained two peer neural networks to teach each other the 

errors in the data (Han et al. 2018). Applying these techniques to the deep learning of regulatory 

sequences would improve the accuracy of the network as well as identify false positives in 

enhancer datasets. 

 Another way to possibly improve performance is to use a complex but interpretable learning 

algorithm. Poon et al. proposed a fully traceable deep leaning network, the Sum-Product network 

(SPN), which has full probabilistic semantics and tractable inference over many layers and is better 

at stating rules expressively than convolutional neural networks (CNNs) or recurrent neural 

networks (RNNs) (Poon and Domingos 2011). SPNs have not been used in modeling regulatory 

sequences, but they outperform CNNs and RNNs in many tasks (Poon and Domingos 2011; Gens 

and Domingos 2012). The following is a potential structure of SPNs that could be used to train 

enhancer sequence predictors. There are two classes of sequences in this task: S1 are enhancers 

and S2 are non-enhancers. The regulatory sequences may consist of parts (multiple regulatory 

units), and then each part is a mixture of subtype of parts. For each subtype of parts, it may consist 

of smaller parts, which is a mixture of subtypes of smaller parts, and at the end would be a 4 x W 

filter to learn the individual transcription factor motifs. In the SPNs, the decomposition of parts is 

performed by the product nodes and the clustering of subtypes is performed by the sum nodes. 

Given the deep but fully traceable structure, SPNs have the potential of being accurate and 

interpretable at same time for enhancer sequence modeling. 
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Figure V-1. The structure of a sum-product network trained with enhancer sequences 

 

V-3 Towards disease prediction from genetic data for individuals 

The investigation of enhancer evolution and enhancer sequence architecture performed in this 

dissertation are efforts towards understanding the non-coding genome to facilitate the 

interpretation of non-coding variants’ effects on phenotypic traits. Researchers have tried to 

uncover the effect of non-coding variants on human health at different levels, from directly testing 

the association between non-coding variants and diseases, to analyzing influence on gene 

expression, to measuring the effect on regulatory activity.  

 Genome-wide association studies (GWAS) are a popular method of linking genomic variants 

to human disease. In GWAS, the association between the variants is tested using either generalized 

linear model (GLM) if the phenotypic is a quantitative trait or contingency table/logistic regression 

if the phenotypic is a dichotomous trait. GWAS has generated over 100,000 variant-disease 

associations to date and greatly deepened our understanding for the genetic etiology of diseases. 

However, this method suffers from the following weaknesses: 1) It cannot identify the causative 

single nucleotide polymorphsims (SNPs) because of linkage disequilibrium (LD). 2) It cannot 

determine the effect of rare variants because power in GWAS studies is strongly influenced by 

variant frequency. Many pieces of evidence suggest that rare variants play an important role in 

human diseases. For example, a recent study demonstrated that ultrarare variants drive substantial 

cis heritability of human gene expression in lymphoblastoid cell lines (Hernandez et al. 2019). 4) 

The power for identifying risk variants is dependent on the sample size. Variants with small effects 

or with low minor allele frequency may not be identified.  3) It only produces the association 

between a single variant and the disease. For complex diseases, there is no direct way for obtaining 

Figure 4. The structure of the SPN enhancer 
classifier
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the overall disease risk for an individual, who has abundant variants across the genome. Genome-

wide polygenic scores (GPS) have been proposed as a way to summarize the risk scores from 

GWAS studies across variants for a disease.  Khera et al. demonstrate that with larger studies and 

improved algorithms, they were able to use GPS to identify 8.0, 6.1, 3.5, 3.2, and 1.5% of the 

population at greater than threefold increased risk for coronary artery disease, atrial fibrillation, 

type 2 diabetes, inflammatory bowel disease, and breast cancer, respectively (Khera et al. 2018). 

4) GWASs has population biases.  The vast majority of the GWAS studies are done with the 

individuals of European descent. This limit the generalization of the genetic risk prediction from 

GWASs to other populations (Need and Goldstein 2009; Popejoy and Fullerton 2016; Hindorff et 

al. 2018; Martin et al. 2019). 

 Analyzing influence of variants on lower level molecular measurements, such as gene 

expression and regulatory activity, may mitigate the issue of power due to small variant effect on 

organism-level phenotypic traits. Because even though the variant does not cause a significant 

change on the phenotype, it may show detectable effect on the level of gene expression or 

regulatory activity. The GTEx project aims to identify expression quantitative trait loci (eQTL), 

variants that have a significant influence on gene expression in various tissues. However, eQTL 

analyses share some caveats with GWAS, such as the difficulty of identifying the casual variants 

and its limitation on detecting effects of rare variants.  

 Another lower level measurement of non-coding variant effect is at the level of regulatory 

activity. This is usually done with reporter assay, especially the high throughput massively parallel 

reporter assay (MPRA). In this type of assay, the regulatory activity of DNA sequence is tested by 

how well they drive the expression of reporter gene in when constructed in the same plasmid. 

MPRA has been done at different scales. The largest MPRA experiment to date surveyed the effect 

of 5.9 million SNPs in K562 and HepG2 cells, including 57% of the known common SNPs, on 

enhancer and promoter activity and identified more than 30,000 SNPs that alter the activity of 

putative regulatory elements. The majority of DNA elements tested in this study only contain a 

single SNP, so they can assign the alteration of regulatory activity to the SNP. Because the effect 

on regulatory activity is directly read from the experiment, this approach largely avoids power and 

rare variant problem. The caveats of this study in terms of linking variants to diseases is that the 

effect on the regulatory activity cannot be directly translated to the effect on the phenotypic trait.  
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 Some other measurements of non-coding variant effects are evolution-based metrics, like 

constraint calculated based on the allele frequency in the population (Di Iulio et al. 2018) or 

computational approaches integrating evolutionary conservation, genomic, chromatin, and  gene 

expression information (Fu et al. 2014; Kircher et al. 2014; Ritchie et al. 2014; Zhou and 

Troyanskaya 2015; Zhou et al. 2018). These computational methods achieve state-of-art prediction 

performance at many disease variant prioritization tasks and are a powerful way to integrate 

various data sources. However, there is still much room for improvement in the computational 

methods. As shown in the work of Kircher and colleagues (Kircher et al. 2019),  experimental 

saturation mutagenesis on 20 disease-associated gene promoters and enhancers for over 30000 

single nucleotides showed low correlation with the predicted variant effect prediction made by 

many of the computation methods, such as DeepSEA (Zhou et al. 2018), CADD (Kircher et al. 

2014), Eigen (Ionita-Laza et al. 2016), and FATHMM-MKL (Shihab et al. 2015), suggesting poor 

performance of these computational methods at predicting variants effect on gene expression. 

As I discussed above, there are several problems to solve to achieve an accurate estimation of 

an individual’s risk of disease, including fine mapping the causal variant, measuring effects of rare 

variants, identifying variants with small effects, summarizing the effects of variants across 

genome, and population biases. Modern experimental techniques suffer from different sets of these 

problems. A future method for better linking the non-coding variants to diseases and predicting 

the disease risk for individuals should address all these problems. In my opinion, machine learning 

models trained from DNA sequences with integrated data and better ensemble algorithms are a 

promising path to achieving this goal. There is likely a finite set of rules governing the genetic 

effect of non-coding variants on phenotypic traits. With the help with larger and more diverse data 

and better algorithms for integrating them, machine learning models may learn the principle 

biological rules that act upon non-coding variants, such as how they affect regulatory activity, gene 

expression, and ultimately phenotypic traits. Such a model could detect causal variants, be agnostic 

to rare variants because of learning the principle rules, be sensitive enough to capture even changes 

in the regulatory activity, and be able to summarize the variant effects across an individual’s 

genome because the variants would be modeled together.  

Several DNA sequence based machine learning methods have been developed to realize some 

of the steps (non-coding variants to regulatory activity, to gene expression, to phenotypic traits). 

Movva et al. developed a deep learning model predicting regulatory activity of MPRA experiments 
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from DNA sequences (Movva et al. 2019). Zhou et al. chained the first two steps, modeling the 

regulatory activity from DNA-sequences, and then modeling the gene expression,  through training 

a two-step model to predict tissue specific gene expression from DNA sequences (Zhou et al. 

2018). They first trained deep learning models predicting ~2000 epigenetic marks from DNA 

sequences and then use the representation learned from the model to encode the sequences nearby 

a gene as feature to train a regression model for gene expression. A logical next step would be 

chaining all steps, from variants in an individual’s genome, to models of regulatory activity, to 

models of gene expression, and finally to phenotypic traits. To get to this step, we might need more 

regulatory activity data, gene expression, and phenotypic traits to ensure that the model at each 

step is accurate and reliable for next step. Even today, all available data have not yet been used in 

training such models. For example, the newly generated data by van Arensbergen et al (van 

Arensbergen et al. 2019) has not been included in any machine leaning models. This dataset of 5.9 

million SNPs is >100 times larger than previous MPRA dataset and would likely be powerful for 

learning a better representation of genomic sequences for regulatory activity.  

Another under-utilized resource is biobanks linked to electronic health records (EHRs). There 

have been many studies, especially phenome-wide association studies (Denny et al. 2010), that use 

billing codes in EHRs and DNA samples from biobanks to find associations between genetic 

variants and phenotypes. However, this kind of approach cannot be used to directly predict disease 

risk for individuals and have not integrated other function annotations of variants.  

As the size of such data continue to grow, I see the potential to integrate EHR and biobanks 

with existing evolutionary, genomic, and population genetic information with complex, non-linear 

machine learning algorithms to aggregate variants in an individual for better disease risk 

prediction. This would be even better if not only the genotyping information, but also exome 

sequencing or whole genome sequencing (WGS) data were available. Similarly, natural language 

processing models could be used to generate better representation of phenotypic traits than 

provided by billing codes. An example of the effort of integrating health record and genetic 

information for individual disease risk prediction is done by Guturu et al (Guturu et al. 2016). They 

identified ancestral transcription factor binding sites disrupted by an individual’s variants and then 

look for the affected target genes. They compared the function of potential affected genes with the 

individuals’ health record and found some concordance. This is only done in five people with 
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simple quantification of genetic information and limited heath data. With the biobank, EHR, the 

abundant genomic data, and population genetics data, there is potential for a much better model. 

In this dissertation, I demonstrated two uses of machine learning methods at improving our 

understanding of regulatory genome. In Chapter I and II, I demonstrated the difference in 

pleiotropic function between conserved and species-specific enhancers and the largely conserved 

underlying sequence properties of enhancers sequence elements through support vector machine 

algorithms. In Chapter IV, I demonstrated the power and limitation of deep neural networks at 

learning the accurate representation of complex regulatory grammar in enhancer sequences.  These 

results contribute to our understanding of regulatory genome and the machine learning model of 

regulatory genome. Ultimately, there is still much room for machine learning methods to improve 

our understanding of the regulatory genome, learn biologically interpretable features from the 

resulting models, and dissect noncoding variant effects. 
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Appendix 

A. Summary of performance of all classification tasks 
Columns Description 

classifiers The type of classifier. This can be SVM, CNN, gkm-SVM, gappy k-mer SVM or mistach 

k-mer SVM. 

C C parameter for SVM training 

enhancer_length Whether the original length is used or center 3000 bp is used 

training_tissue Enhancers in which tissue is used for training  

testing_tissue Enhancers in which tissue is used for testing  

training_species Enhancers and genomic background in which species is used for training  

testing_species Enhancers and genomic background in which species is used for testing 

negative_set_size Whether unbalanced negatives (10x) or balanced negatives(1x) are used 

gc_controlled Whether the negatives are GC-controlled or not 

repeats_controlled Whether the negatives are repeats-controlled or not 

repeats_removed Whether this experiment is done with enhancers and negatives that are both devoid of 

repeats or not 

shared_removed If the training and testing species are different, "shared_removed=TRUE" means 

orthologous enhancers are removed from both training and testing species; If the training 

and testing species are the same, "shared_removed=TRUE" means overlapped enhancers 

are removed from both training and testing set. 

tenfold_cross_valida

tion 

Whether the experiment is done by tenfold cross validation or not 

auROC The Area under ROC curves for this prediction tasks. If the prediction is done by tenfold 

cross-validation within the same data, the mean auROC is shown. 

auROC_std The standard deviation of auROC if the prediction is done by ten-fold cross-validation 

within the same data. 

relative_auROC The relative auROC is calculated by dividing the auROC of this prediction task by the 

mean auROC of ten fold cross-validation of the testing data. 

auPR The Area under PR curves for this prediction tasks. If the prediction is done by ten fold 

cross-validation within the same data, the mean auPR is shown. 

auPR_std The standard deviation of auPR if the prediction is done by ten fold cross-validation 

within the same data. 

relative_auPR The relative auPR is calculated by dividing the auROC of this prediction task by the mean 

auPR of ten fold cross-validation of the testing data. 



116 

  

E
xp

er
im

en
t n

um
be

r 

cl
as

si
fie

rs
 

C
 

en
ha

nc
er

_l
en

gt
h 

tr
ai

ni
ng

_t
is

su
e 

te
st

in
g_

tis
su

e 

tr
ai

ni
ng

_s
pe

ci
es

 

te
st

in
g_

sp
ec

ie
s 

ne
ga

tiv
e_

se
t_

si
ze

 

gc
_c

on
tr

ol
le

d 

re
pe

at
s_

co
nt

ro
lle

d 

re
pe

at
s_

re
m

ov
ed

 

sh
ar

ed
_r

em
ov

ed
 

te
nf

ol
d_

cr
os

s_
va

lid
at

io

n 
au

R
O

C
 

au
R

O
C

_s
td

 

re
la

tiv
e_

au
R

O
C

 

au
PR

 

au
PR

_s
td

 

re
la

tiv
e_

au
PR

 

1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
82

1 

0.
00

3 

1.
00

0 

0.
33

2 

0.
01

0 

1.
00

0 

2  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
80

3 

N
A

 

0.
98

9 

0.
32

2 

N
A

 

0.
99

1 

3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
81

1 

N
A

 

0.
96

4 

0.
30

6 

N
A

 

0.
88

4 

4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
80

3 

N
A

 

0.
96

4 

0.
30

6 

N
A

 

0.
91

3 

5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

9 

N
A

 

0.
97

4 

0.
23

7 

N
A

 

0.
88

8 

6  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
do

m
 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
75

8 

N
A

 

0.
95

5 

0.
25

2 

N
A

 

0.
86

9 

7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
81

0 

N
A

 

0.
98

7 

0.
30

7 

N
A

 

0.
92

5 

8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
81

2 

0.
00

4 

1.
00

0 

0.
32

5 

0.
00

8 

1.
00

0 

9  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
82

3 

N
A

 

0.
97

9 

0.
30

5 

N
A

 

0.
88

2 



117 

  

10
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
80

0 

N
A

 

0.
96

0 

0.
30

0 

N
A

 

0.
89

6 

11
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
76

6 

N
A

 

0.
98

3 

0.
23

9 

N
A

 

0.
89

5 

12
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
76

2 

N
A

 

0.
96

0  

0.
25

0 

N
A

 

0.
86

2  

13
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
76

8 

N
A

 

0.
93

5 

0.
25

0 

N
A

 

0.
75

3 

14
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

0 

N
A

 

0.
94

8 

0.
27

0 

N
A

 

0.
83

1 

15
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
84

1 

0.
00

4 

1.
00

0 

0.
34

6 

0.
01

2 

1.
00

0 

16
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

5 

N
A

 

0.
95

4 

0.
29

6 

N
A

 

0.
88

4 

17
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

5 

N
A

 

0.
96

9 

0.
23

1 

N
A

 

0.
86

5 

18
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
76

1 

N
A

 

0.
95

8 

0.
20

1 

N
A

 

0.
69

3 

19
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
78

5  

N
A

 

0.
95

6 

0.
27

4 

N
A

 

0.
82

5 

20
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
78

1 

N
A

 

0.
96

2 

0.
28

6 

N
A

 

0.
88

0 



118 

  

21
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
83

2 

N
A

 

0.
98

9 

0.
33

6 

N
A

 

0.
97

1 

22
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

B
ta

u 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
83

3 

0.
00

3 

1.
00

0 

0.
33

5 

0.
00

5 

1.
00

0 

23
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
75

2 

N
A

 

0.
96

5  

0.
23

6 

N
A

 

0.
88

4  

24
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
76

2 

N
A

 

0.
96

0 

0.
25

7 

N
A

 

0.
88

6 

25
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

3 

N
A

 

0.
94

2 

0.
24

8 

N
A

 

0.
74

7 

26
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

4 

N
A

 

0.
95

3 

0.
25

7 

N
A

 

0.
79

1 

27
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
82

0 

N
A

 

0.
97

5 

0.
31

7 

N
A

 

0.
91

6 

28
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
78

9 

N
A

 

0.
94

7 

0.
28

3 

N
A

 

0.
84

5 

29
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

9 

0.
00

4 

1.
00

0 

0.
26

7 

0.
01

0 

1.
00

0 

30
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

4  

N
A

 

0.
95

0 

0.
23

6 

N
A

 

0.
81

4 

31
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
75

9 

N
A

 

0.
92

4 

0.
24

5 

N
A

 

0.
73

8 



119 

  

32
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
75

7 

N
A

 

0.
93

2 

0.
25

2 

N
A

 

0.
77

5 

33
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
81

5 

N
A

 

0.
96

9 

0.
30

9 

N
A

 

0.
89

3 

34
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
77

7 

N
A

 

0.
93

3  

0.
27

0 

N
A

 

0.
80

6  

35
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
74

0 

N
A

 

0.
95

0 

0.
22

2 

N
A

 

0.
83

1 

36
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
79

4 

0.
00

3 

1.
00

0 

0.
29

0 

0.
00

7 

1.
00

0 

37
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
75

1 

0.
00

4 

1.
00

0 

0.
23

3 

0.
00

5 

1.
00

0 

38
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
72

0 

N
A

 

0.
98

2 

0.
21

4 

N
A

 

0.
96

4 

39
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
73

1 

N
A

 

0.
95

4 

0.
22

3 

N
A

 

0.
85

1 

40
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

B
ta

u 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
71

7 

N
A

 

0.
96

0 

0.
20

2 

N
A

 

0.
89

8 

41
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
70

5  

N
A

 

0.
96

7 

0.
19

5 

N
A

 

0.
91

1 

42
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
70

5 

N
A

 

0.
94

1 

0.
19

3 

N
A

 

0.
84

3 



120 

  

43
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
73

3 

N
A

 

0.
97

6 

0.
20

9 

N
A

 

0.
89

7 

44
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
73

3 

0.
00

5 

1.
00

0 

0.
22

2 

0.
00

6 

1.
00

0 

45
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
73

7 

N
A

 

0.
96

2  

0.
22

9 

N
A

 

0.
87

4  

46
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
71

3 

N
A

 

0.
95

4 

0.
19

4 

N
A

 

0.
86

2 

47
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
71

5 

N
A

 

0.
98

1 

0.
19

9 

N
A

 

0.
93

0 

48
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
69

4 

N
A

 

0.
92

7 

0.
18

3 

N
A

 

0.
79

9 

49
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

6 

N
A

 

0.
92

7 

0.
19

4 

N
A

 

0.
83

3 

50
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

4 

N
A

 

0.
94

7 

0.
20

8 

N
A

 

0.
93

7 

51
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
76

6 

0.
00

5 

1.
00

0 

0.
26

2 

0.
01

0 

1.
00

0 

52
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
70

5  

N
A

 

0.
94

4 

0.
20

4 

N
A

 

0.
90

7 

53
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
69

9 

N
A

 

0.
95

9 

0.
19

8 

N
A

 

0.
92

5 



121 

  

54
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
69

7 

N
A

 

0.
93

1 

0.
18

9 

N
A

 

0.
82

5 

55
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
71

5 

N
A

 

0.
95

2 

0.
20

1 

N
A

 

0.
86

3 

56
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
70

1 

N
A

 

0.
95

6  

0.
20

3 

N
A

 

0.
91

4  

57
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
74

4 

N
A

 

0.
97

1 

0.
23

7 

N
A

 

0.
90

5 

58
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

B
ta

u 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
74

7 

0.
00

4 

1.
00

0 

0.
22

5 

0.
00

6 

1.
00

0 

59
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
71

0 

N
A

 

0.
97

4 

0.
19

6 

N
A

 

0.
91

6 

60
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

5 

N
A

 

0.
92

8 

0.
18

2 

N
A

 

0.
79

5 

61
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
68

5 

N
A

 

0.
91

2 

0.
16

9 

N
A

 

0.
72

5 

62
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
70

2 

N
A

 

0.
95

8 

0.
19

5 

N
A

 

0.
87

8 

63
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
73

6  

N
A

 

0.
96

1 

0.
22

8 

N
A

 

0.
87

0 

64
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
71

1 

N
A

 

0.
95

2 

0.
19

7 

N
A

 

0.
87

6 



122 

  

65
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
72

9 

0.
00

4 

1.
00

0 

0.
21

4 

0.
00

7 

1.
00

0 

66
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
69

7 

N
A

 

0.
93

1 

0.
18

2 

N
A

 

0.
79

5 

67
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
68

6 

N
A

 

0.
91

3  

0.
18

1 

N
A

 

0.
77

7  

68
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
67

0 

N
A

 

0.
91

4 

0.
17

6 

N
A

 

0.
79

3 

69
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
72

5 

N
A

 

0.
94

6 

0.
22

0 

N
A

 

0.
84

0 

70
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
69

6 

N
A

 

0.
93

2 

0.
18

4 

N
A

 

0.
81

8 

71
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
68

2 

N
A

 

0.
93

6 

0.
18

5 

N
A

 

0.
86

4 

72
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
74

9 

0.
00

4 

1.
00

0 

0.
22

9 

0.
00

8 

1.
00

0 

73
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

TR
U

E 

0.
87

7 

N
A

 

1.
00

0 

0.
34

4 

N
A

 

1.
00

0 

74
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

0.
83

4  

N
A

 

0.
98

6 

0.
27

0 

N
A

 

0.
92

2 

75
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

FA
LS

E  

0.
79

0 

N
A

 

0.
95

4 

0.
22

7 

N
A

 

0.
81

9 



123 

  

76
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E  

0.
68

5 

N
A

 

0.
87

7 

0.
16

6 

N
A

 

0.
68

0 

77
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

10
x 

FA
LS

E  

FA
LS

E  

TR
U

E 

FA
LS

E 

FA
LS

E  

0.
66

3 

N
A

 

1.
07

1 

0.
15

3 

N
A

 

1.
08

5 

78
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
do

m
 

10
x 

FA
LS

E  

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
78

2 

N
A

 

1.
06

8  

0.
23

8 

N
A

 

1.
18

4  

79
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
88

7 

N
A

 

1.
01

1 

0.
35

7 

N
A

 

1.
03

8 

80
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

TR
U

E 

0.
84

6 

0.
01

5 

1.
00

0 

0.
29

3 

0.
03

5 

1.
00

0 

81
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E  

0.
80

7 

N
A

 

0.
97

5 

0.
24

1 

N
A

 

0.
87

0 

82
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
71

5 

N
A

 

0.
91

5 

0.
17

9 

N
A

 

0.
73

4 

83
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
66

9 

N
A

 

1.
08

1 

0.
15

6 

N
A

 

1.
10

6 

84
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
80

2 

N
A

 

1.
09

6 

0.
28

3 

N
A

 

1.
40

8 

85
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

0.
84

6  

N
A

 

0.
96

5 

0.
30

2 

N
A

 

0.
87

8 

86
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

FA
LS

E  

0.
81

5 

N
A

 

0.
96

3 

0.
25

4 

N
A

 

0.
86

7 



124 

  

87
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

TR
U

E 

0.
82

8 

0.
01

7 

1.
00

0 

0.
27

7 

0.
04

2 

1.
00

0 

88
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

10
x 

FA
LS

E  

FA
LS

E  

TR
U

E 

FA
LS

E 

FA
LS

E  

0.
70

0 

N
A

 

0.
89

6 

0.
17

9 

N
A

 

0.
73

4 

89
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

10
x 

FA
LS

E  

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
64

4 

N
A

 

1.
04

0  

0.
15

1 

N
A

 

1.
07

1  

90
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
78

9 

N
A

 

1.
07

8 

0.
25

6 

N
A

 

1.
27

4 

91
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E  

0.
89

3 

N
A

 

1.
01

8 

0.
38

4 

N
A

 

1.
11

6 

92
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E  

0.
85

9 

N
A

 

1.
01

5 

0.
32

1 

N
A

 

1.
09

6 

93
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
84

5 

N
A

 

1.
02

1 

0.
30

7 

N
A

 

1.
10

8 

94
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

B
ta

u  

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

TR
U

E 

0.
78

1 

0.
00

9 

1.
00

0 

0.
24

4 

0.
02

0 

1.
00

0 

95
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
69

1 

N
A

 

1.
11

6 

0.
17

8 

N
A

 

1.
26

2 

96
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

0.
80

8  

N
A

 

1.
10

4 

0.
30

6 

N
A

 

1.
52

2 

97
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

FA
LS

E  

0.
85

4 

N
A

 

0.
97

4 

0.
29

5 

N
A

 

0.
85

8 



125 

  

98
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E  

0.
81

3 

N
A

 

0.
96

1 

0.
25

3 

N
A

 

0.
86

3 

99
 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

10
x 

FA
LS

E  

FA
LS

E  

TR
U

E 

FA
LS

E 

FA
LS

E  

0.
76

2 

N
A

 

0.
92

0 

0.
20

6 

N
A

 

0.
74

4 

10
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

10
x 

FA
LS

E  

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
64

7 

N
A

 

0.
82

8  

0.
14

9 

N
A

 

0.
61

1  

10
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

TR
U

E 

0.
61

9 

0.
04

1 

1.
00

0 

0.
14

1 

0.
03

0 

1.
00

0 

10
2  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E  

0.
74

7 

N
A

 

1.
02

0 

0.
21

0 

N
A

 

1.
04

5 

10
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E  

0.
82

5 

N
A

 

0.
94

1 

0.
26

8 

N
A

 

0.
77

9 

10
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
78

8 

N
A

 

0.
93

1 

0.
22

5 

N
A

 

0.
76

8 

10
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
75

7 

N
A

 

0.
91

4 

0.
20

0 

N
A

 

0.
72

2 

10
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

0.
64

5 

N
A

 

0.
82

6 

0.
14

8 

N
A

 

0.
60

7 

10
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

0.
61

7  

N
A

 

0.
99

7 

0.
13

4 

N
A

 

0.
95

0 

10
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

10
x 

FA
LS

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

TR
U

E 

0.
73

2 

0.
03

0 

1.
00

0 

0.
20

1 

0.
04

0 

1.
00

0 



126 

  

10
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
70

9 

0.
00

4 

1.
00

0 

0.
19

1 

0.
00

3 

1.
00

0 

11
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
69

8 

N
A

 

0.
98

4 

0.
19

1 

N
A

 

0.
99

0 

11
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
72

5 

N
A

 

0.
94

8  

0.
20

7 

N
A

 

0.
83

1  

11
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

B
ta

u 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
68

1 

N
A

 

0.
96

7 

0.
17

3 

N
A

 

0.
92

5 

11
3  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

C
fa

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
69

4 

N
A

 

0.
97

6 

0.
18

4 

N
A

 

0.
94

8 

11
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

M
do

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
70

5 

N
A

 

0.
89

6 

0.
19

7 

N
A

 

0.
73

2 

11
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p 

10
x 

TR
U

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

6 

N
A

 

0.
98

2 

0.
18

1 

N
A

 

0.
94

8 

11
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
70

9 

0.
00

5 

1.
00

0 

0.
19

3 

0.
00

4 

1.
00

0 

11
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
72

5 

N
A

 

0.
94

8 

0.
20

1 

N
A

 

0.
80

7 

11
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

10
x 

TR
U

E  

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
67

6  

N
A

 

0.
96

0 

0.
16

5 

N
A

 

0.
88

2 

11
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
69

9 

N
A

 

0.
98

3 

0.
18

4 

N
A

 

0.
94

8 



127 

  

12
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
68

7 

N
A

 

0.
87

3 

0.
18

2 

N
A

 

0.
67

7 

12
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
66

8 

N
A

 

0.
94

2 

0.
17

4 

N
A

 

0.
91

1 

12
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
66

7 

N
A

 

0.
94

1  

0.
18

0 

N
A

 

0.
93

3  

12
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
76

5 

0.
00

6 

1.
00

0 

0.
24

9 

0.
00

6 

1.
00

0 

12
4  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
67

5 

N
A

 

0.
95

9 

0.
17

6 

N
A

 

0.
94

1 

12
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
67

6 

N
A

 

0.
95

1 

0.
18

1 

N
A

 

0.
93

3 

12
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

10
x 

TR
U

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

9 

N
A

 

0.
88

8 

0.
19

7 

N
A

 

0.
73

2 

12
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t  a
l. 

liv
er

 

B
ta

u  

H
sa

p  

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
68

4 

N
A

 

0.
96

5 

0.
17

7 

N
A

 

0.
92

7 

12
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
68

5 

N
A

 

0.
96

6 

0.
18

1 

N
A

 

0.
93

8 

12
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

10
x 

TR
U

E  

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
73

2  

N
A

 

0.
95

7 

0.
21

1 

N
A

 

0.
84

7 

13
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

B
ta

u 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
70

4 

0.
00

5 

1.
00

0 

0.
18

7 

0.
00

6 

1.
00

0 



128 

  

13
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

C
fa

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
70

0 

N
A

 

0.
98

5 

0.
18

4 

N
A

 

0.
94

8 

13
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
do

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
70

6 

N
A

 

0.
89

7 

0.
19

1 

N
A

 

0.
71

0 

13
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
67

6 

N
A

 

0.
95

3  

0.
16

4 

N
A

 

0.
85

9  

13
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
68

7 

N
A

 

0.
96

9 

0.
17

9 

N
A

 

0.
92

7 

13
5  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
72

9 

N
A

 

0.
95

3 

0.
20

9 

N
A

 

0.
83

9 

13
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
68

4 

N
A

 

0.
97

2 

0.
17

3 

N
A

 

0.
92

5 

13
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

TR
U

E 

TR
U

E  

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
71

1 

N
A

 

1.
00

0 

0.
19

4 

N
A

 

1.
00

0 

13
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
69

7 

N
A

 

0.
88

6 

0.
18

6 

N
A

 

0.
69

1 

13
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p  

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
63

2 

N
A

 

0.
89

1 

0.
14

4 

N
A

 

0.
75

4 

14
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

10
x 

TR
U

E  

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
62

3  

N
A

 

0.
87

9 

0.
14

4 

N
A

 

0.
74

6 

14
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
70

2 

N
A

 

0.
91

8 

0.
18

7 

N
A

 

0.
75

1 



129 

  

14
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
65

1 

N
A

 

0.
92

5 

0.
15

5 

N
A

 

0.
82

9 

14
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
64

1 

N
A

 

0.
90

2 

0.
15

0 

N
A

 

0.
77

3 

14
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

10
x 

TR
U

E 

TR
U

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
78

7 

0.
00

4 

1.
00

0  

0.
26

9 

0.
00

9 

1.
00

0  

14
5 

ga
pp

y 
km

er
 

SV
M

 (k
=2

, 

m
=1

) 
15

 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
81

8 

N
A

 

1.
00

0 

0.
31

9 

0.
00

9 

1.
00

0 

14
6  

m
is

m
at

ch
 

km
er

 S
V

M
 

(k
=5

, m
=1

) 
15

 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
81

8 

N
A

 

1.
00

0 

0.
31

3 

0.
00

7 

1.
00

0 

14
7 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
88

9 

0.
00

3 

1.
00

0 

0.
44

3 

0.
00

7 

1.
00

0 

14
8 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

H
sa

p 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
86

4 

N
A

 

0.
96

2 

0.
40

9 

N
A

 

0.
88

9 

14
9 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b  

H
sa

p  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

6 

N
A

 

0.
89

0 

0.
29

4 

N
A

 

0.
69

0 

15
0 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

ul
 

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
86

2 

N
A

 

0.
97

0 

0.
35

2 

N
A

 

0.
79

5 

15
1 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b  

M
m

ul
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
89

8  

0.
00

1  

1.
00

0 

0.
46

0 

0.
00

4  

1.
00

0 

15
2 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

ul
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
87

0 

N
A

 

0.
97

3 

0.
37

7 

N
A

 

0.
88

5 



130 

  

15
3 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b  

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
82

3 

N
A

 

0.
92

6 

0.
29

2 

N
A

 

0.
65

9 

15
4 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

us
 

M
m

ul
 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
87

4 

N
A

 

0.
97

3 

0.
42

1 

N
A

 

0.
91

5 

15
5 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
89

4 

0.
00

1 

1.
00

0  

0.
42

6 

0.
00

5 

1.
00

0  

15
6 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
82

9 

0.
00

4 

1.
00

0 

0.
33

4 

0.
00

9 

1.
00

0 

15
7  

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

H
sa

p  

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
74

6 

N
A

 

0.
96

5 

0.
26

2 

N
A

 

0.
97

0 

15
8 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

H
sa

p  

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
66

4 

N
A

 

0.
87

8 

0.
16

9 

N
A

 

0.
72

5 

15
9 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

ul
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
80

6 

N
A

 

0.
97

2 

0.
29

1 

N
A

 

0.
87

1 

16
0 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b  

M
m

ul
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

3 

0.
00

2 

1.
00

0 

0.
27

0 

0.
00

4 

1.
00

0 

16
1 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

ul
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
72

2 

N
A

 

0.
95

5 

0.
20

1 

N
A

 

0.
86

3 

16
2 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b  

C
ot

ne
y 

et
 a

l. 

lim
b  

M
m

us
 

H
sa

p 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

2  

N
A

 

0.
90

7 

0.
21

9 

N
A

 

0.
65

6 

16
3 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b 

M
m

us
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
73

5 

N
A

 

0.
95

1 

0.
23

2 

N
A

 

0.
85

9 



131 

  

16
4 

SV
M

 

15
 

or
ig

in
al

 

C
ot

ne
y 

et
 a

l. 

lim
b 

C
ot

ne
y 

et
 a

l. 

lim
b  

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
75

6 

0.
00

4 

1.
00

0 

0.
23

3 

0.
00

4 

1.
00

0 

16
5 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
92

9 

0.
00

2 

1.
00

0 

0.
56

0 

0.
00

9 

1.
00

0 

16
6 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

H
sa

p 

M
m

ul
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
89

6 

N
A

 

0.
99

3  

0.
52

7 

N
A

 

0.
97

2  

16
7 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

H
sa

p 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
90

2 

N
A

 

0.
98

3 

0.
49

3 

N
A

 

0.
90

5 

16
8  

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

ul
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
92

5 

N
A

 

0.
99

6 

0.
54

5 

N
A

 

0.
97

3 

16
9 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

ul
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
90

2 

0.
00

2 

1.
00

0 

0.
54

2 

0.
00

5 

1.
00

0 

17
0 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

ul
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
90

1 

N
A

 

0.
98

1 

0.
48

9 

N
A

 

0.
89

7 

17
1 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

M
m

us
 

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
91

8 

N
A

 

0.
98

8 

0.
52

9 

N
A

 

0.
94

5 

17
2 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

M
m

us
 

M
m

ul
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
88

4 

N
A

 

0.
98

0 

0.
52

1 

N
A

 

0.
96

1 

17
3 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
91

8  

0.
00

1  

1.
00

0 

0.
54

5 

0.
00

6  

1.
00

0 

17
4 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
81

1 

0.
00

3 

1.
00

0 

0.
31

7 

0.
00

5 

1.
00

0 



132 

  

17
5 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

H
sa

p 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
75

6 

N
A

 

0.
95

5 

0.
34

7 

N
A

 

0.
96

4 

17
6 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
79

0 

N
A

 

0.
95

4 

0.
29

5 

N
A

 

0.
87

8 

17
7 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

M
m

ul
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
77

9 

N
A

 

0.
96

1  

0.
26

6 

N
A

 

0.
83

9  

17
8 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

ul
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
79

2 

0.
00

3 

1.
00

0 

0.
36

0 

0.
00

4 

1.
00

0 

17
9  

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

ul
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

3 

N
A

 

0.
93

4 

0.
25

6 

N
A

 

0.
76

2 

18
0 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

7 

N
A

 

0.
95

8 

0.
24

7 

N
A

 

0.
77

9 

18
1 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n 

R
ei

lly
 e

t a
l. 

br
ai

n 

M
m

us
 

M
m

ul
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
73

4 

N
A

 

0.
92

7 

0.
29

8 

N
A

 

0.
82

8 

18
2 

SV
M

 

15
 

or
ig

in
al

 

R
ei

lly
 e

t a
l. 

br
ai

n  

R
ei

lly
 e

t a
l. 

br
ai

n  

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
82

8 

0.
00

2 

1.
00

0 

0.
33

6 

0.
00

8 

1.
00

0 

18
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

0.
80

4 

N
A

 

0.
96

3 

0.
28

9 

N
A

 

0.
86

8 

18
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

B
ta

u 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E  

FA
LS

E 

0.
78

0  

N
A

 

0.
95

7 

0.
26

8 

N
A

 

0.
89

9 

18
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

TR
U

E 

FA
LS

E  

0.
73

1 

N
A

 

0.
96

8 

0.
20

8 

N
A

 

0.
88

5 



133 

  

18
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

TR
U

E 

0.
83

5 

0.
00

6 

1.
00

0 

0.
33

3 

0.
01

5 

1.
00

0 

18
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

B
ta

u 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

TR
U

E 

0.
81

5 

0.
00

3 

1.
00

0 

0.
29

8 

0.
00

9 

1.
00

0 

18
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

TR
U

E 

TR
U

E 

0.
75

5 

0.
00

3 

1.
00

0  

0.
23

5 

0.
00

8 

1.
00

0  

18
9 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h  

V
IS

TA
 

br
an

ch
ia

la
rc

h 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
82

2 

N
A

 

1.
00

0 

0.
38

9 

N
A

 

1.
00

0 

19
0  

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h  

V
IS

TA
 

br
an

ch
ia

la
rc

h 

H
sa

p  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
79

1 

N
A

 

0.
99

7 

0.
29

6 

N
A

 

0.
86

8 

19
1 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h  

V
IS

TA
 

br
an

ch
ia

la
rc

h 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
81

6 

N
A

 

0.
99

3 

0.
37

7 

N
A

 

0.
96

9 

19
2 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
79

3 

0.
09

5 

1.
00

0 

0.
34

1 

0.
16

0 

1.
00

0 

19
3 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n 

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
91

9 

N
A

 

1.
00

0 

0.
63

8 

N
A

 

1.
00

0 

19
4 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n 

H
sa

p  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
76

2 

N
A

 

1.
06

7 

0.
24

2 

N
A

 

1.
14

2 

19
5 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n  

V
IS

TA
 

fo
re

br
ai

n 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
80

1  

N
A

 

0.
87

2 

0.
30

5 

N
A

 

0.
47

8 

19
6 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n  

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
71

4 

0.
09

9 

1.
00

0 

0.
21

2 

0.
16

9 

1.
00

0 



134 

  

19
7 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n  

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
89

8 

N
A

 

1.
00

0 

0.
56

2 

N
A

 

1.
00

0 

19
8 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

H
sa

p 

M
m

us
 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
76

0 

N
A

 

0.
94

3 

0.
28

2 

N
A

 

0.
70

7 

19
9 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
78

5 

N
A

 

0.
87

4  

0.
34

6 

N
A

 

0.
61

6  

20
0 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
80

6 

N
A

 

1.
00

0 

0.
39

9 

N
A

 

1.
00

0 

20
1  

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
89

5 

N
A

 

1.
00

0 

0.
55

6 

N
A

 

1.
00

0 

20
2 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

H
sa

p  

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
82

1 

N
A

 

1.
02

2 

0.
36

1 

N
A

 

1.
04

3 

20
3 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n  

V
IS

TA
 

hi
nd

br
ai

n  

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

3 

N
A

 

0.
84

1 

0.
28

1 

N
A

 

0.
50

5 

20
4 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
80

3 

N
A

 

1.
00

0 

0.
34

6 

N
A

 

1.
00

0 

20
5 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt  

V
IS

TA
 h

ea
rt  

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
82

4 

N
A

 

1.
00

0 

0.
36

6 

N
A

 

1.
00

0 

20
6 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt  

V
IS

TA
 h

ea
rt  

H
sa

p 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

3  

N
A

 

0.
96

4 

0.
22

6 

N
A

 

0.
73

9 

20
7 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt 

V
IS

TA
 h

ea
rt 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
82

5 

N
A

 

1.
00

1 

0.
32

8 

N
A

 

0.
89

6 



135 

  

20
8 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt  

V
IS

TA
 h

ea
rt 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

1 

N
A

 

1.
00

0 

0.
30

6 

N
A

 

1.
00

0 

20
9 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b 

V
IS

TA
 

vi
st

al
im

b 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
81

1 

N
A

 

1.
00

0 

0.
43

2 

N
A

 

1.
00

0 

21
0 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b  

V
IS

TA
 

vi
st

al
im

b  

H
sa

p 

M
m

us
 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
78

6 

N
A

 

1.
00

9  

0.
30

4 

N
A

 

1.
10

5  

21
1 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b 

V
IS

TA
 

vi
st

al
im

b 

M
m

us
 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
79

0 

N
A

 

0.
97

4 

0.
31

2 

N
A

 

0.
72

2 

21
2  

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b  

V
IS

TA
 

vi
st

al
im

b 

M
m

us
 

M
m

us
 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

9 

N
A

 

1.
00

0 

0.
27

5 

N
A

 

1.
00

0 

21
3 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h  

V
IS

TA
 

br
an

ch
ia

la
rc

h 

H
sa

p  

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
80

8 

N
A

 

1.
00

0 

0.
36

1 

N
A

 

1.
00

0 

21
4 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
78

7 

N
A

 

1.
10

7 

0.
37

1 

N
A

 

1.
95

3 

21
5 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

M
m

us
 

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
80

7 

N
A

 

0.
99

9 

0.
34

8 

N
A

 

0.
96

4 

21
6 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

V
IS

TA
 

br
an

ch
ia

la
rc

h 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
71

1 

0.
10

2 

1.
00

0 

0.
19

0 

0.
06

9 

1.
00

0 

21
7 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n  

V
IS

TA
 

fo
re

br
ai

n 

H
sa

p 

H
sa

p 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
90

8  

N
A

 

1.
00

0 

0.
63

4 

N
A

 

1.
00

0 

21
8 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n  

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
76

6 

N
A

 

1.
07

6 

0.
25

6 

N
A

 

0.
94

5 



136 

  

21
9 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
83

9 

N
A

 

0.
92

4 

0.
40

2 

N
A

 

0.
63

4 

22
0 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

fo
re

br
ai

n 

V
IS

TA
 

fo
re

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
71

2 

N
A

 

1.
00

0 

0.
27

1 

N
A

 

1.
00

0 

22
1 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
90

7 

N
A

 

1.
00

0  

0.
65

4 

N
A

 

1.
00

0  

22
2 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
78

0 

N
A

 

1.
16

8 

0.
31

7 

N
A

 

1.
77

1 

22
3  

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
81

8 

N
A

 

0.
90

2 

0.
43

6 

N
A

 

0.
66

7 

22
4 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

m
id

br
ai

n 

V
IS

TA
 

m
id

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
66

8 

0.
08

9 

1.
00

0 

0.
17

9 

0.
09

3 

1.
00

0 

22
5 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n  

V
IS

TA
 

hi
nd

br
ai

n  

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
88

3 

N
A

 

1.
00

0 

0.
55

4 

N
A

 

1.
00

0 

22
6 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

H
sa

p  

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
76

9 

N
A

 

0.
98

2 

0.
26

6 

N
A

 

0.
92

7 

22
7 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

M
m

us
 

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

4 

N
A

 

0.
84

3 

0.
29

0 

N
A

 

0.
52

3 

22
8 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

hi
nd

br
ai

n 

V
IS

TA
 

hi
nd

br
ai

n 

M
m

us
 

M
m

us
 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

3  

N
A

 

1.
00

0 

0.
28

7 

N
A

 

1.
00

0 

22
9 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt 

V
IS

TA
 h

ea
rt 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
71

7 

N
A

 

1.
00

0 

0.
20

4 

N
A

 

1.
00

0 



137 

  

23
0 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt  

V
IS

TA
 h

ea
rt 

H
sa

p 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
66

7 

N
A

 

0.
89

8 

0.
17

8 

N
A

 

0.
86

8 

23
1 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt 

V
IS

TA
 h

ea
rt  

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
69

7 

N
A

 

0.
97

2 

0.
14

2 

N
A

 

0.
69

6 

23
2 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 h

ea
rt  

V
IS

TA
 h

ea
rt 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
74

3 

0.
05

2 

1.
00

0  

0.
20

5 

0.
09

8 

1.
00

0  

23
3 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b 

V
IS

TA
 

vi
st

al
im

b 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
82

8 

N
A

 

1.
00

0 

0.
46

6 

N
A

 

1.
00

0 

23
4  

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b  

V
IS

TA
 

vi
st

al
im

b 

H
sa

p  

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
76

8 

N
A

 

1.
00

3 

0.
30

6 

N
A

 

1.
14

2 

23
5 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b 

V
IS

TA
 

vi
st

al
im

b 

M
m

us
 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
79

7 

N
A

 

0.
96

3 

0.
34

6 

N
A

 

0.
74

2 

23
6 

SV
M

 

15
 

or
ig

in
al

 

V
IS

TA
 

vi
st

al
im

b 

V
IS

TA
 

vi
st

al
im

b 

M
m

us
 

M
m

us
 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
76

6 

N
A

 

1.
00

0 

0.
26

8 

N
A

 

1.
00

0 

23
7 

SV
M

 

15
 

or
ig

in
al

 

no
n-

V
IS

TA
 

C
ot

ne
y 

et
 a

l. 

lim
b  

no
n-

H
3K

27
ac

 

V
IS

TA
 li

m
b  

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

0.
82

3 

N
A

 

1.
02

5 

0.
35

2 

N
A

 

0.
90

5 

23
8 

SV
M

 

15
 

or
gi

na
l 

no
n-

H
3K

27
ac

 

V
IS

TA
 li

m
b  

no
n-

H
3K

27
ac

 

V
IS

TA
 li

m
b  

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
80

3 

0.
05

0 

1.
00

0 

0.
38

9 

0.
12

3 

1.
00

0 

23
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

4  

N
A

 

0.
92

0 

0.
21

0 

N
A

 

0.
67

3 

24
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Pa
nc

re
as

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
67

2 

N
A

 

0.
88

3 

0.
17

5 

N
A

 

0.
84

5 



138 

  

24
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
78

8 

N
A

 

0.
96

8 

0.
25

1 

N
A

 

0.
79

7 

24
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

G
as

tri
c  

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
73

3 

N
A

 

0.
93

1 

0.
20

9 

N
A

 

0.
81

6 

24
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
77

9 

N
A

 

0.
92

8  

0.
24

5 

N
A

 

0.
69

8  

24
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Lu
ng

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
73

9 

N
A

 

0.
84

7 

0.
22

5 

N
A

 

0.
62

3 

24
5  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

O
va

ry
 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
68

5 

N
A

 

0.
82

5 

0.
18

9 

N
A

 

0.
66

8 

24
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
69

7 

N
A

 

0.
85

7 

0.
16

8 

N
A

 

0.
53

5 

24
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

4 

N
A

 

0.
88

0 

0.
21

7 

N
A

 

0.
65

0 

24
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

H
sa

p  

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
68

3 

N
A

 

0.
90

9 

0.
17

2 

N
A

 

0.
75

8 

24
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Pa
nc

re
as

 

H
sa

p  

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
61

7 

N
A

 

0.
93

9 

0.
14

2 

N
A

 

0.
93

4 

25
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt 

H
sa

p 

H
sa

p 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

5  

N
A

 

0.
98

1 

0.
23

8 

N
A

 

0.
92

2 

25
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

G
as

tri
c  

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
68

8 

N
A

 

0.
96

2 

0.
18

6 

N
A

 

0.
93

5 



139 

  

25
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
72

6 

N
A

 

0.
93

3 

0.
21

0 

N
A

 

0.
79

5 

25
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

Lu
ng

 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
64

2 

N
A

 

0.
89

2 

0.
16

8 

N
A

 

0.
79

2 

25
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

O
va

ry
 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
60

8 

N
A

 

0.
87

7  

0.
14

5 

N
A

 

0.
79

7  

25
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
71

3 

N
A

 

0.
89

3 

0.
19

7 

N
A

 

0.
67

5 

25
6  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

H
sa

p  

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
64

5 

N
A

 

0.
88

0 

0.
15

4 

N
A

 

0.
70

3 

25
7 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

H
sa

p  

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
82

0 

0.
00

4 

1.
00

0 

0.
31

2 

0.
00

8 

1.
00

0 

25
8 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Pa
nc

re
as

 

R
oa

dm
ap

 

Pa
nc

re
as

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
76

1 

0.
00

5 

1.
00

0 

0.
20

7 

0.
00

4 

1.
00

0 

25
9 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt 

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt 

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
81

4 

0.
00

4 

1.
00

0 

0.
31

5 

0.
00

9 

1.
00

0 

26
0 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

G
as

tri
c 

R
oa

dm
ap

 

G
as

tri
c 

H
sa

p  

H
sa

p  

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

7 

0.
00

5 

1.
00

0 

0.
25

6 

0.
00

8 

1.
00

0 

26
1 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e  

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e  

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
83

9  

0.
00

3  

1.
00

0 

0.
35

1 

0.
00

8  

1.
00

0 

26
2 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Lu
ng

 

R
oa

dm
ap

 

Lu
ng

 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
87

3 

0.
00

2 

1.
00

0 

0.
36

1 

0.
00

4 

1.
00

0 



140 

  

26
3 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

O
va

ry
 

R
oa

dm
ap

 

O
va

ry
 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
83

0 

0.
00

2 

1.
00

0 

0.
28

3 

0.
00

4 

1.
00

0 

26
4 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
81

3 

0.
00

3 

1.
00

0 

0.
31

4 

0.
00

9 

1.
00

0 

26
5 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
84

5 

0.
00

3 

1.
00

0  

0.
33

4 

0.
00

9 

1.
00

0  

26
6 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

R
oa

dm
ap

 

B
ra

in
 

H
ip

po
ca

m
pu

s 

M
id

dl
e 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
75

1 

0.
00

4 

1.
00

0 

0.
22

7 

0.
00

9 

1.
00

0 

26
7  

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Pa
nc

re
as

 

R
oa

dm
ap

 

Pa
nc

re
as

 

H
sa

p  

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
65

7 

0.
00

4 

1.
00

0 

0.
15

2 

0.
00

4 

1.
00

0 

26
8 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt  

R
oa

dm
ap

 

Li
ve

r, 
A

du
lt 

H
sa

p  

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

0 

0.
00

4 

1.
00

0 

0.
25

8 

0.
00

8 

1.
00

0 

26
9 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

G
as

tri
c 

R
oa

dm
ap

 

G
as

tri
c 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
71

5 

0.
00

4 

1.
00

0 

0.
19

9 

0.
00

6 

1.
00

0 

27
0 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e 

R
oa

dm
ap

 

Le
ft 

V
en

tri
cl

e 

H
sa

p  

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

8 

0.
00

3 

1.
00

0 

0.
26

4 

0.
00

4 

1.
00

0 

27
1 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

Lu
ng

 

R
oa

dm
ap

 

Lu
ng

 

H
sa

p  

H
sa

p  

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
72

0 

0.
00

3 

1.
00

0 

0.
21

2 

0.
00

4 

1.
00

0 

27
2 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

O
va

ry
 

R
oa

dm
ap

 

O
va

ry
 

H
sa

p 

H
sa

p 

10
x 

TR
U

E  

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
69

3  

0.
00

5  

1.
00

0 

0.
18

2 

0.
00

6  

1.
00

0 

27
3 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

R
oa

dm
ap

 

B
on

e 
M

ar
ro

w
 

D
er

iv
ed

 

M
es

en
ch

ym
al

 

St
em

 C
el

l 

C
ul

tu
re

d 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
79

8 

0.
00

4 

1.
00

0 

0.
29

2 

0.
00

7 

1.
00

0 



141 

  

27
4 

SV
M

 

15
 

or
ig

in
al

 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

R
oa

dm
ap

 

C
D

14
, 

Pr
im

ar
y 

C
el

ls
 

H
sa

p 

H
sa

p 

10
x 

TR
U

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
73

3 

0.
00

6 

1.
00

0 

0.
21

9 

0.
00

4 

1.
00

0 

27
5 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
85

5 

N
A

 

1.
00

0 

0.
84

3 

N
A

 

1.
00

0 

27
6 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
82

1 

N
A

 

0.
95

7  

0.
81

8 

N
A

 

0.
96

9  

27
7 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
84

1 

N
A

 

0.
95

1 

0.
82

0 

N
A

 

0.
94

6 

27
8  

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
82

0 

N
A

 

0.
94

3 

0.
80

1 

N
A

 

0.
93

6 

27
9 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
80

4 

N
A

 

0.
93

2 

0.
79

1 

N
A

 

0.
92

8 

28
0 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

4 

N
A

 

0.
94

2 

0.
77

8 

N
A

 

0.
94

1 

28
1 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
82

2 

N
A

 

0.
96

1 

0.
80

0 

N
A

 

0.
94

9 

28
2 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
85

8 

N
A

 

1.
00

0 

0.
84

4 

N
A

 

1.
00

0 

28
3 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
84

7  

N
A

 

0.
95

8 

0.
82

6 

N
A

 

0.
95

3 

28
4 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
82

5 

N
A

 

0.
94

8 

0.
80

2 

N
A

 

0.
93

7 



142 

  

28
5 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
82

4 

N
A

 

0.
95

5 

0.
81

0 

N
A

 

0.
95

1 

28
6 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
79

8 

N
A

 

0.
94

7 

0.
78

1 

N
A

 

0.
94

4 

28
7 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
74

9 

N
A

 

0.
87

6  

0.
74

0 

N
A

 

0.
87

8  

28
8 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
76

7 

N
A

 

0.
89

4 

0.
77

3 

N
A

 

0.
91

6 

28
9  

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
88

4 

N
A

 

1.
00

0 

0.
86

7 

N
A

 

1.
00

0 

29
0 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
80

3 

N
A

 

0.
92

3 

0.
79

7 

N
A

 

0.
93

1 

29
1 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
77

4 

N
A

 

0.
89

7 

0.
77

7 

N
A

 

0.
91

2 

29
2 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

5 

N
A

 

0.
94

3 

0.
77

9 

N
A

 

0.
94

2 

29
3 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
76

3 

N
A

 

0.
89

2 

0.
73

9 

N
A

 

0.
87

7 

29
4 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

9  

N
A

 

0.
93

1 

0.
78

8 

N
A

 

0.
93

4 

29
5 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
85

7 

N
A

 

0.
96

9 

0.
83

8 

N
A

 

0.
96

7 



143 

  

29
6 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
87

0 

N
A

 

1.
00

0 

0.
85

6 

N
A

 

1.
00

0 

29
7 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
80

8 

N
A

 

0.
93

6 

0.
80

2 

N
A

 

0.
94

1 

29
8 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
do

m
 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
79

3 

N
A

 

0.
94

1  

0.
77

7 

N
A

 

0.
94

0  

29
9 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
75

8 

N
A

 

0.
88

7 

0.
72

9 

N
A

 

0.
86

5 

30
0  

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
71

3 

N
A

 

0.
83

1 

0.
60

7 

N
A

 

0.
71

9 

30
1 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
85

7 

N
A

 

0.
96

9 

0.
84

0 

N
A

 

0.
96

9 

30
2 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
83

0 

N
A

 

0.
95

4 

0.
81

1 

N
A

 

0.
94

7 

30
3 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
86

3 

N
A

 

1.
00

0 

0.
85

2 

N
A

 

1.
00

0 

30
4 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
81

6 

N
A

 

0.
96

8 

0.
80

3 

N
A

 

0.
97

1 

30
5 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
76

0  

N
A

 

0.
88

9 

0.
73

9 

N
A

 

0.
87

7 

30
6 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
68

1 

N
A

 

0.
79

4 

0.
58

2 

N
A

 

0.
69

0 



144 

  

30
7 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
83

7 

N
A

 

0.
94

7 

0.
81

7 

N
A

 

0.
94

2 

30
8 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
78

2 

N
A

 

0.
89

9 

0.
75

9 

N
A

 

0.
88

7 

30
9 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
78

7 

N
A

 

0.
91

2  

0.
77

2 

N
A

 

0.
90

6  

31
0 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
84

3 

N
A

 

1.
00

0 

0.
82

7 

N
A

 

1.
00

0 

31
1  

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
79

1 

0.
00

5 

1.
00

0 

0.
76

8 

0.
00

6 

1.
00

0 

31
2 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
74

0 

N
A

 

0.
98

5 

0.
72

1 

N
A

 

0.
98

5 

31
3 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

7 

N
A

 

0.
96

6 

0.
73

6 

N
A

 

0.
96

7 

31
4 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

3 

N
A

 

0.
95

7 

0.
72

9 

N
A

 

0.
96

3 

31
5 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
75

8 

N
A

 

0.
97

7 

0.
73

8 

N
A

 

0.
98

0 

31
6 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
79

9  

N
A

 

0.
98

4 

0.
77

7 

N
A

 

0.
99

0 

31
7 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
76

4 

N
A

 

0.
96

6 

0.
74

5 

N
A

 

0.
97

0 



145 

  

31
8 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
75

1 

0.
00

5 

1.
00

0 

0.
73

2 

0.
01

1 

1.
00

0 

31
9 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
74

6 

N
A

 

0.
95

2 

0.
71

7 

N
A

 

0.
94

2 

32
0 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
73

4 

N
A

 

0.
94

6  

0.
71

6 

N
A

 

0.
94

6  

32
1 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
75

3 

N
A

 

0.
97

0 

0.
72

7 

N
A

 

0.
96

7 

32
2  

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
79

1 

N
A

 

0.
97

4 

0.
76

3 

N
A

 

0.
97

2 

32
3 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
77

4 

N
A

 

0.
97

9 

0.
75

0 

N
A

 

0.
97

7 

32
4 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
73

9 

N
A

 

0.
98

4 

0.
71

8 

N
A

 

0.
98

1 

32
5 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

4 

0.
00

5 

1.
00

0 

0.
76

1 

0.
00

9 

1.
00

0 

32
6 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

7 

N
A

 

0.
96

3 

0.
72

9 

N
A

 

0.
96

3 

32
7 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
77

3  

N
A

 

0.
99

6 

0.
75

1 

N
A

 

0.
99

9 

32
8 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E  

0.
78

8 

N
A

 

0.
97

0 

0.
76

1 

N
A

 

0.
96

9 



146 

  

32
9 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
75

0 

N
A

 

0.
94

8 

0.
73

5 

N
A

 

0.
95

7 

33
0 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
71

6 

N
A

 

0.
95

3 

0.
70

1 

N
A

 

0.
95

8 

33
1 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
72

7 

N
A

 

0.
92

7  

0.
71

2 

N
A

 

0.
93

6  

33
2 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

TR
U

E 

0.
77

6 

0.
00

8 

1.
00

0 

0.
75

7 

0.
00

9 

1.
00

0 

33
3  

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
72

3 

N
A

 

0.
93

2 

0.
71

0 

N
A

 

0.
94

4 

33
4 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
79

3 

N
A

 

0.
97

7 

0.
77

1 

N
A

 

0.
98

2 

33
5 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
77

1 

N
A

 

0.
97

5 

0.
74

6 

N
A

 

0.
97

1 

33
6 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

2 

N
A

 

0.
98

8 

0.
71

6 

N
A

 

0.
97

8 

33
7 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
77

5 

N
A

 

0.
98

9 

0.
75

2 

N
A

 

0.
98

8 

33
8 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

0.
74

1  

N
A

 

0.
95

5 

0.
72

2 

N
A

 

0.
95

4 

33
9 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

TR
U

E 

0.
77

6 

0.
00

4 

1.
00

0 

0.
75

2 

0.
00

9 

1.
00

0 



147 

  

34
0 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
79

0 

N
A

 

0.
97

3 

0.
75

9 

N
A

 

0.
96

7 

34
1 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

FA
LS

E  

0.
75

6 

N
A

 

0.
95

6 

0.
74

2 

N
A

 

0.
96

6 

34
2 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
72

1 

N
A

 

0.
96

0  

0.
70

8 

N
A

 

0.
96

7  

34
3 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

FA
LS

E 

0.
73

4 

N
A

 

0.
93

6 

0.
72

1 

N
A

 

0.
94

7 

34
4  

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
75

1 

N
A

 

0.
96

8 

0.
73

4 

N
A

 

0.
97

0 

34
5 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E  

0.
72

5 

N
A

 

0.
93

4 

0.
71

6 

N
A

 

0.
95

2 

34
6 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
81

2 

0.
00

6 

1.
00

0 

0.
78

5 

0.
01

1 

1.
00

0 

34
7 

gk
m

 S
V

M
 

(L
=1

1,
 k

=7
, 

d=
3)

 
1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
3 

N
A

 

N
A

 

0.
74

5 

N
A

 

N
A

 

34
8 

gk
m

 S
V

M
 

(L
=1

1,
 k

=7
, 

d=
3)

 
0.

1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
1 

N
A

 

N
A

 

0.
72

2 

N
A

 

N
A

 

34
9 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

70
9  

N
A

 

N
A

 

0.
67

6 

N
A

 

N
A

 

35
0 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
5 

N
A

 

N
A

 

0.
72

3 

N
A

 

N
A

 



148 

  

35
1 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

01
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

78
9 

N
A

 

N
A

 

0.
75

9 

N
A

 

N
A

 

35
2 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

78
9 

N
A

 

N
A

 

0.
75

7 

N
A

 

N
A

 

35
3 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
15

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

70
9 

N
A

 

N
A

 

0.
67

6 

N
A

 

N
A

 

35
4 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E  

TR
U

E 

FA
LS

E 

0.
64

4 

N
A

 

0.
94

7 

0.
63

9 

N
A

 

0.
96

3 

35
5  

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

B
ta

u 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E 

TR
U

E 

FA
LS

E  

0.
65

8 

N
A

 

0.
97

4 

0.
64

3 

N
A

 

0.
97

5 

35
6 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

C
fa

m
 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E 

TR
U

E 

FA
LS

E  

0.
64

7 

N
A

 

0.
95

4 

0.
63

1 

N
A

 

0.
95

3 

35
7 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

1x
 

TR
U

E 

TR
U

E  

FA
LS

E 

TR
U

E 

FA
LS

E 

0.
69

6 

N
A

 

0.
95

5 

0.
67

3 

N
A

 

0.
95

8 

35
8 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t  a
l. 

liv
er

 

B
ta

u  

H
sa

p  

1x
 

TR
U

E 

TR
U

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

0.
65

7 

N
A

 

0.
97

0 

0.
63

9 

N
A

 

0.
97

3 

35
9 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p  

1x
 

TR
U

E 

TR
U

E 

FA
LS

E 

TR
U

E 

FA
LS

E 

0.
65

8 

N
A

 

0.
97

7 

0.
64

3 

N
A

 

0.
98

1 

36
0 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

1x
 

TR
U

E  

TR
U

E  

FA
LS

E 

TR
U

E  

FA
LS

E 

0.
67

0  

N
A

 

0.
87

6 

0.
66

8 

N
A

 

0.
89

1 

36
1 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

B
ta

u 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

0.
67

5 

N
A

 

0.
89

0 

0.
66

1 

N
A

 

0.
90

4 



149 

  

36
2 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E 

TR
U

E 

FA
LS

E  

0.
68

8 

N
A

 

0.
90

9 

0.
67

5 

N
A

 

0.
91

1 

36
3 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E  

TR
U

E 

FA
LS

E  

0.
76

4 

N
A

 

0.
95

7 

0.
74

6 

N
A

 

0.
94

6 

36
4 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E  

TR
U

E 

FA
LS

E 

0.
72

2 

N
A

 

0.
93

8  

0.
70

7 

N
A

 

0.
93

2  

36
5 

C
N

N
 

N
A

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

1x
 

TR
U

E 

TR
U

E 

FA
LS

E  

TR
U

E 

FA
LS

E 

0.
71

7 

N
A

 

0.
89

6 

0.
70

7 

N
A

 

0.
89

6 

36
6  

SV
M

 

0.
00

1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
72

6 

0.
00

7 

N
A

 

0.
69

8 

0.
00

9 

N
A

 

36
7 

SV
M

 

1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

4 

0.
00

5 

N
A

 

0.
76

1 

0.
01

0 

N
A

 

36
8 

SV
M

 

0.
1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

5 

0.
00

3 

N
A

 

0.
76

3 

0.
00

7 

N
A

 

36
9 

SV
M

 

0.
01

 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
77

6 

0.
00

5 

N
A

 

0.
75

2 

0.
00

7 

N
A

 

37
0 

SV
M

 

10
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

3 

0.
00

4 

N
A

 

0.
76

0 

0.
00

8 

N
A

 

37
1 

SV
M

 

15
 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

TR
U

E 

0.
78

2  

0.
00

5  

N
A

 

0.
76

0 

0.
00

8  

N
A

 

37
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
75

1 

N
A

 

1.
00

0 

0.
22

6 

N
A

 

1.
00

0 



150 

  

37
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
73

3 

N
A

 

0.
98

7 

0.
21

9 

N
A

 

0.
98

2 

37
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
70

6 

N
A

 

0.
93

8 

0.
19

7 

N
A

 

0.
83

1 

37
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
71

3 

N
A

 

0.
95

2  

0.
19

9 

N
A

 

0.
89

6  

37
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
69

5 

N
A

 

1.
11

2 

0.
38

1 

N
A

 

1.
24

1 

37
7  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
68

1 

N
A

 

0.
95

0 

0.
17

1 

N
A

 

0.
84

7 

37
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

H
sa

p 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
73

8 

N
A

 

0.
98

3 

0.
20

9 

N
A

 

0.
92

5 

37
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
74

3 

N
A

 

1.
00

0 

0.
22

3 

N
A

 

1.
00

0 

38
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
71

2 

N
A

 

0.
94

6 

0.
19

3 

N
A

 

0.
81

4 

38
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
70

5 

N
A

 

0.
94

1 

0.
19

0 

N
A

 

0.
85

6 

38
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
70

5  

N
A

 

1.
12

8 

0.
38

9 

N
A

 

1.
26

7 

38
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

ul
 

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
68

1 

N
A

 

0.
95

0 

0.
16

9 

N
A

 

0.
83

7 



151 

  

38
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

H
sa

p 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
69

2 

N
A

 

0.
92

1 

0.
18

8 

N
A

 

0.
83

2 

38
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
68

8 

N
A

 

0.
92

6 

0.
19

3 

N
A

 

0.
86

5 

38
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
75

3 

N
A

 

1.
00

0  

0.
23

7 

N
A

 

1.
00

0  

38
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
69

4 

N
A

 

0.
92

7 

0.
19

2 

N
A

 

0.
86

5 

38
8  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
68

2 

N
A

 

1.
09

1 

0.
37

6 

N
A

 

1.
22

5 

38
9 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
m

us
 

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
67

8 

N
A

 

0.
94

6 

0.
16

7 

N
A

 

0.
82

7 

39
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

H
sa

p 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
69

2 

N
A

 

0.
92

1 

0.
18

3 

N
A

 

0.
81

0 

39
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
69

0 

N
A

 

0.
92

9 

0.
18

6 

N
A

 

0.
83

4 

39
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
72

3 

N
A

 

0.
96

0 

0.
20

9 

N
A

 

0.
88

2 

39
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
74

9  

N
A

 

1.
00

0 

0.
22

2 

N
A

 

1.
00

0 

39
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
69

1 

N
A

 

1.
10

6 

0.
37

3 

N
A

 

1.
21

5 



152 

  

39
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

B
ta

u  

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
67

1 

N
A

 

0.
93

6 

0.
16

1 

N
A

 

0.
79

7 

39
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

H
sa

p 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
60

8 

N
A

 

0.
81

0 

0.
12

5 

N
A

 

0.
55

3 

39
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
60

6 

N
A

 

0.
81

6  

0.
12

2 

N
A

 

0.
54

7  

39
8 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
61

6 

N
A

 

0.
81

8 

0.
13

1 

N
A

 

0.
55

3 

39
9  

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
61

0 

N
A

 

0.
81

4 

0.
12

8 

N
A

 

0.
57

7 

40
0 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
62

5 

N
A

 

1.
00

0 

0.
30

7 

N
A

 

1.
00

0 

40
1 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

C
fa

m
 

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
60

4 

N
A

 

0.
84

2 

0.
12

5 

N
A

 

0.
61

9 

40
2 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

H
sa

p  

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
69

3 

N
A

 

0.
92

3 

0.
19

1 

N
A

 

0.
84

5 

40
3 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

ul
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
69

0 

N
A

 

0.
92

9 

0.
19

3 

N
A

 

0.
86

5 

40
4 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
m

us
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
71

5  

N
A

 

0.
95

0 

0.
20

3 

N
A

 

0.
85

7 

40
5 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

B
ta

u 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
68

9 

N
A

 

0.
92

0 

0.
18

3 

N
A

 

0.
82

4 



153 

  

40
6 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

C
fa

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s  

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s  

TR
U

E 

0.
68

3 

N
A

 

1.
09

3 

0.
38

0 

N
A

 

1.
23

8 

40
7 

SV
M

 

15
 

or
ig

in
al

 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

M
do

m
 

M
do

m
 

10
x 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

Fl
an

ki
ng

 

re
gi

on
s 

TR
U

E 

0.
71

7 

N
A

 

1.
00

0 

0.
20

2 

N
A

 

1.
00

0 

40
8 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

72
5 

N
A

 

N
A

 

0.
70

6 

N
A

 

N
A

 

40
9 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
1 

N
A

 

N
A

 

0.
73

1 

N
A

 

N
A

 

41
0  

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
3 

N
A

 

N
A

 

0.
75

7 

N
A

 

N
A

 

41
1 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

73
0 

N
A

 

N
A

 

0.
71

9 

N
A

 

N
A

 

41
2 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
7 

N
A

 

N
A

 

0.
74

7 

N
A

 

N
A

 

41
3 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

73
9 

N
A

 

N
A

 

0.
71

9 

N
A

 

N
A

 

41
4 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

73
1 

N
A

 

N
A

 

0.
71

6 

N
A

 

N
A

 

41
5 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

80
3  

N
A

 

N
A

 

0.
77

0 

N
A

 

N
A

 

41
6 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
3 

N
A

 

N
A

 

0.
73

7 

N
A

 

N
A

 



154 

  

41
7 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
4 

N
A

 

N
A

 

0.
74

0 

N
A

 

N
A

 

41
8 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
7 

N
A

 

N
A

 

0.
74

9 

N
A

 

N
A

 

41
9 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

74
1 

N
A

 

N
A

 

0.
72

1 

N
A

 

N
A

 

42
0 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
2 

N
A

 

N
A

 

0.
74

4 

N
A

 

N
A

 

42
1  

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

70
9 

N
A

 

N
A

 

0.
68

3 

N
A

 

N
A

 

42
2 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

74
9 

N
A

 

N
A

 

0.
70

9 

N
A

 

N
A

 

42
3 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
8 

N
A

 

N
A

 

0.
73

2 

N
A

 

N
A

 

42
4 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

74
1 

N
A

 

N
A

 

0.
71

4 

N
A

 

N
A

 

42
5 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
7 

N
A

 

N
A

 

0.
76

3 

N
A

 

N
A

 

42
6 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

66
7  

N
A

 

N
A

 

0.
58

2 

N
A

 

N
A

 

42
7 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

76
0 

N
A

 

N
A

 

0.
73

9 

N
A

 

N
A

 



155 

  

42
8 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

77
7 

N
A

 

N
A

 

0.
74

8 

N
A

 

N
A

 

42
9 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

74
2 

N
A

 

N
A

 

0.
72

4 

N
A

 

N
A

 

43
0 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
2 

N
A

 

N
A

 

0.
76

0 

N
A

 

N
A

 

43
1 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
5 

N
A

 

N
A

 

0.
77

2 

N
A

 

N
A

 

43
2  

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
8 

N
A

 

N
A

 

0.
73

5 

N
A

 

N
A

 

43
3 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
3 

N
A

 

N
A

 

0.
77

9 

N
A

 

N
A

 

43
4 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

72
9 

N
A

 

N
A

 

0.
70

7 

N
A

 

N
A

 

43
5 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

80
5 

N
A

 

N
A

 

0.
77

7 

N
A

 

N
A

 

43
6 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p  

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

78
9 

N
A

 

N
A

 

0.
75

7 

N
A

 

N
A

 

43
7 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1  

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

77
8  

N
A

 

N
A

 

0.
75

1 

N
A

 

N
A

 

43
8 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E  

FA
LS

E  

FA
LS

E  

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

77
8 

N
A

 

N
A

 

0.
75

4 

N
A

 

N
A

 



156 

  

43
9 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
0 

N
A

 

N
A

 

0.
72

4 

N
A

 

N
A

 

44
0 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E  

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

79
2 

N
A

 

N
A

 

0.
75

8 

N
A

 

N
A

 

44
1 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E  

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

77
8 

N
A

 

N
A

 

0.
74

8 

N
A

 

N
A

 

44
2 

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p 

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E  

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

74
7 

N
A

 

N
A

 

0.
72

0 

N
A

 

N
A

 

44
3  

km
er

 

po
ly

no
m

ia
l 

ke
rn

el
 S

V
M

 
0.

00
1 

ce
nt

er
 

30
00

bp
 

V
ill

ar
 e

t a
l. 

liv
er

 

V
ill

ar
 e

t a
l. 

liv
er

 

H
sa

p  

H
sa

p 

1x
 

FA
LS

E 

FA
LS

E 

FA
LS

E 

FA
LS

E 

90
%

 tr
ai

n 
an

d 

10
%

 te
st

 
0.

75
4 

N
A

 

N
A

 

0.
73

1 

N
A

 

N
A

 

 

  



157 

  

B. Liver expression of the shared TF motifs in the liver GC-controlled analysis 

The combined TF motifs are considered liver expressed when all of the components are expressed 

in liver. NA means that the TF or at least one of the TFs in the compound TF motifs is not found. 
TF motifs matched by all 

species’ top 5-mers 

Liver 

expression in 

human 

Other TFs in the same 

subfamily that are liver 

expressed in human 

Liver 

expressi

on in 

macaqu

e 

Liver 

expressi

on in 

mouse 

Liver 

expressi

on in 

cow 

Liver 

expressi

on in 

dog 

Liver 

expressi

on in 

opossu

m 

BACH1::MAFK Yesa 
 

Yesa Yesa Yesa Yesa Yesa 

NFE2L1::MAFG Yesa 
 

Yesa Yesa Yesa Yesa Yesa 

NR1H2::RXRA Yesa 
 

Yesa Yesa Yesa Yesa NA 

PPARG::RXRA Yesa 
 

Yesa Yesa Yesa Yesa Yesa 

SMAD2::SMAD3::SMA

D4 

Yesa 
 

Yesa Yesa Yesa Yesa NA 

STAT5A::STAT5B Yesa 
 

Yesa Yesa Yesa Yesa Yesa 

E2F1 Yes 
 

Yes Yes Yes Yes Yes 

E2F4 Yes 
 

Yes Yes Yes Yes Yes 

E2F6 Yes 
 

Yes Yes Yes Yes Yes 

ESR1 Yes 
 

Yes Yes Yes Yes Yes 

FOS Yes 
 

Yes Yes Yes Yes Yes 

FOSL2 Yes 
 

Yes Yes Yes Yes Yes 

GABPA Yes 
 

Yes Yes Yes Yes Yes 

JUN Yes 
 

Yes Yes Yes Yes Yes 

JUNB Yes 
 

Yes Yes Yes Yes NA 

JUND Yes 
 

Yes Yes NA Yes Yes 

MAFB Yes 
 

Yes Yes Yes Yes Yes 

MAFF Yes 
 

Yes Yes Yes Yes Yes 

MAFK Yes 
 

Yes Yes Yes Yes Yes 

NFE2L2 Yes 
 

Yes Yes Yes Yes Yes 

NR5A2 Yes 
 

Yes Yes Yes Yes Yes 

RXRA Yes 
 

Yes Yes Yes Yes Yes 

SREBF1 Yes 
 

Yes Yes Yes Yes Yes 

SREBF2 Yes 
 

Yes Yes Yes Yes Yes 

THAP1 Yes 
 

Yes Yes Yes Yes Yes 

USF2 Yes 
 

Yes Yes Yes Yes Yes 

NFE2::MAF Noa NFE2L1, NFE2L2 (NF-E2-like 

factors, 1.1.1.2) 

Yes Yes Yes Yes NA 

RXRA::VDR Noa NR1I2 (Vitamin D receptor 

2.1.2.4) 

Yes Yes Yes Yes Yes 
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ESR2 No ESRRA, ESR1 (ER-like 

receptors 2.1.1.2) 

Yes Yes No No Yes 

FEV No ETS1, ETS2, GABPA, FLI1, 

ETV2, ETV3, ERF(Ets-like 

factors 3.5.2.1 ) 

Yes NA No NA No 

FOSL1 No FOSL2 (Fos factors 1.1.2.1) Yes Yes No No NA 

PAX2 No NA(PAX-2-like factors 3.2.2.2) No Yes No No Yes 

SOX2 No SOX5, SOX6, SOX7, SOX12, 

SOX13(SOX-related factors, 

4.1.1) 

No No No No No 

Data source Gene 

Expression 

Atlas 

(https://expressi

onatlas.org/hg1

9/adult/) 

Gene Expression Atlas 

(https://expressionatlas.org/hg19

/adult/) 

Berthelo

t et al 

2017 

Rudolph 

et al. 

2016 

Berthelo

t et al 

2017 

Berthelo

t et al 

2017 

Berthelo

t et al 

2017 
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