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outperformed other approaches (*; p<0.05; Wilcoxon sign-rank test). For the right SN no 
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segmentations for the left putamen are shown for the six proposed segmentation approaches.
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from the population size of 150, the estimated variance approach identified that at least 150 

atlases were needed whereas the Monte-Carlo variance approach identified 136 as the optimal 
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Chapter I 

Introduction 

Improved segmentation of magnetic resonance imaging is necessary to provide 

quantitative and anatomical information for current and future analytic and radiological 

understanding of Parkinson’s disease and progression. Image Segmentation is a common task, 

accomplished by a family of approaches, for calculation of volumetric and structural biomarkers, 

endophenotypes useful for univariate or multivariate prediction of disease state and progression, 

in medical images. In Parkinson’s there is a focus on understanding subcortical grey matter, in 

particular as localization for deep brain stimulation surgery.  

Improvements in imaging of disease states has rapidly outpaced the availability of image 

processing approaches. Best practices in study design have not kept pace with the new modalities 

and approaches. For example, a wealth of data is available from studies like the Autism Brain 

Imaging Data Exchange (ABIDE) where different scanning sequences were used at each site, 

potentially biasing calculations based on where each subject was scanned. In order to study a 

disease like Parkinson’s disease, a population of both healthy and diseased patients scanned under 

an identical protocol are needed to make proper inference. Currently, datasets acquired are not 

amenable to standard segmentation approaches and thus make inter-study and retrospective 

analyses challenging due to biases induced by target imaging sequence variation and atlas 

populations.  

Image processing is an important step in biomarker acquisition from medical imaging data. 

In order to improve our statistical power and derive as much information as possible from our 

imaging approaches, the approaches developed must be aware of the biases and assumptions 
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present in the imaging. Image processing approaches which account for the sequence that the target 

sequence, and are invariant to other biases in the target data, will have improved statistical power 

due to less variance form factors external to the factors in question. 

The remainder of this section proceeds as follows. First we discuss the anatomic 

phenotypes related to Parkinson’s disease. Second, we discuss the theory behind which a 

segmentation is performed. Third we discuss the informatic challenges behind image processing 

at Vanderbilt University. Finally, we describe the contributions of this work. 

1. Parkinson’s disease 

Parkinson’s Disease (PD) is a  neurodegenerative disorder primarily effecting the central 

nervous system (CNS) [1]. In the early stages of PD, patients suffer from motor instabilities 

including tremors, rigidity, and gait instability [2]. In later stages. PD patients can develop severe 

neuropsychiatric symptoms; PD patients have over twice the likelihood of dementia compared 

with the general public [3], impaired executive function [4], and various mood disorders [2]. In 

2013, PD effected 53 million people and resulted in 103,000 deaths, making it the second most 

prevalent neurodegenerative disease [5].  

There is no diagnostic test or exact criteria for diagnosis of PD. PD diagnosis is based on 

physician review of a patient’s medical history and neurological examination [6, 7]. Often times, 

diagnosis is reinforced with decreased motor symptoms after receiving Levadopa (L-DOPA). 

Several clinical organizations provide diagnostic criteria to diagnose PD, but these criteria often 

require 5-10 years of PD symptoms [2]. Diagnosis can only be confirmed by autopsy and the 

presence of alpha-synuclein build-up in the midbrain [8, 9]. These alpha-synuclein build-ups, 

known as Lewy Bodies, are the distinguishing characteristic of PD, but their pathogenesis and role 
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are not well understood [10, 11]. Even with the diagnostic criteria, the success rate of PD diagnosis 

is 70-95% [2]. 

1.1. Neurophysiology of Parkinson’s Disease 

PD is primarily described as a disease of the basal ganglia, a series of structures in the mid-

brain consisting of the striatum, globus pallidus internal and extrenal, subthalamic nucleus, and 

substantia nigra [12]. There has also been significant interest in the limbic system [13], thalamus 

[6], and cerebellum [14], all of which are connective neighbors to the basal ganglia. 

1.1.1. Basal Ganglia 

The basal ganglia is a collection of subcortical nuclei located bilaterally in the cerebrum. 

The basal ganglia is involved in cognitive processing, motor control, and procedural learning [15-

17]. The striatum is the receives glutamatergic and dopaminergic inputs and serves as the primary 

input to the basal ganglia [18]. The external globus pallidus (GPE) receives dopaminergic signal 

from the subthalamic nucleus and has signaling neurons projecting to other parts of the basal 

ganglia. The internal globus pallidus (GPI) is an output neuron of the basal ganglia, receiving 

signals from the subthalamic nucleus and sending signals to the thalamus [19, 20]. The subthalamic 

nucleus (STN) is a transmission nucleus in the basal ganglia, involved in action selection and 

reward control [21]. The substantia nigra is the second output, sending signals from the striatum 

to various parts of the brain [22]. 

In PD the basal ganglia is effected in several ways.  The dorsal rostral portion of the 

striatum has been shown to have a severe reduction of dopamine [23]. The external globus pallidus 

has shown a unique, rhythmic spiking in its neurons [24]. The internal globus pallidus has shown 
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a significant decrease in dopaminergic discharge [25]. In a monkey model of PD the subthalamic 

nucleus showed an increase in tremor neuronal activity [26]. The substantia nigra showed 

significant regional atrophy, particularly in the lateral ventral tier, which differs from the typical 

pattern of aging [27]. 

1.1.2. Thalamus 

Located bilaterally in the diencephalon, the thalamus is a centralized relay point between 

the cortex and other portions of the brain [28, 29]. Each lateralized portion of the thalamus is 

subdivided into specialized nuclei. Divided by the internal medullary and two lamina, the medial, 

anterior, and lateral nuclei groups constitute the major regions of the thalamus [30]. The medial 

nuclei relays signals from the limbic system, in particular the amygdala, the prefrontal cortex, and 

the olfactory cortex [31, 32]. The medial nuclei are hypothesized to be involved in pain processing 

and memory [33]. The anterior thalamic nuclei receive input neurons from the hypothalamus and 

the subiculum through the fornix and relay to the cingulate gyrus [34]. The anterior nuclei are 

involved in spatial localization and navigation [35]. These nuclei are also considered to be a part 

of the limbic system. The lateral nuclei group is the largest of the thalamus and receives inputs 

from the visual cortex, internally from other thalamic nuclei, the posterior parietal cortex, and the 

cingulate [28, 36]. The lateral nuclei are involved in visual attention and attention deficit [37]. 

Due to the size and lack of contrast on MR imaging, little is known about the importance 

of the nuclei groups in PD. Most studies considering the role of the thalamic nuclei in PD use post-

mortem studies of model organisms [38, 39]. One of the major findings of these studies is a 

decrease in non-dopaminergic cells in the inter-laminar thalamic nuclei [40]. Other studies have 

shown that the pedunculopontine nuclei, in particular its feedback loop with the basal ganglia, 
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spinal cord, and limbic system, are related to motor instability and gait difficulty [41]. In humans, 

stimulation of the ventral intermediate thalamic nucleus has been shown to reduce or eliminate 

tremors in both PD and a related disorder, essential tremor (ET) [39]. 

1.1.3. Cerebellum 

The cerebellum, or “little brain”, is a sub-structure of the human brain with known 

implications in motor coordination and degenerative disorders with hypothesized involvement in 

cognitive function and emotional regulation [42, 43]. Located beneath the cerebrum in the 

posterior fossa, the cerebellum is a secondary feedback loop for the spinal cord and basal ganglia 

[44]. Anatomically, the cerebellum is divided into a left and right hemisphere, connected by a 

midline vermal layer [42]. The cerebellum has a cortical layer, similar to the cerebrum, with white 

matter beneath it, connecting the cerebellum to the remainder of the brain and spinal cord. Within 

the white cerebellar white matter, four bilateral deep nuclei, the dentate, emboliform, globose, and 

fastigii nuclie, receive GABAergic signals from the cerebellar cortex and originate most of the 

output fibers from the cerebellum [45]. The hemispheres of the cerebellum are sub-divided into 

three major lobes, the anterior, posterior, and flocculonodular lobe, based on major fissures in the 

cerebellum and ten lobules based on the folds of the cerebellum [46]. 

In PD, the cerebellum has been implicated in many of the primary phenotypes, but has not 

been researched to the same degree as the basal ganglia [47]. Recently, functional MRI has shown 

that tremors may originate from a functional network between the motor cortex, basal ganglia, and 

cerebellar vermis [24]. Results from a PET study show a correlation between balance and gait 

instability in PD and acetylcholinesterase activity in the mid-brain and cerebellum [48]. Grey 

matter volume in the cerebellum was implicated in impaired cognition in non-demented PD [49]. 
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In general, these results are presented for the full cerebellum, but the particular lobes and lobules 

have not been particularly implicated in many studies, though given their somatotopic nature, it 

would naturally conclude that there should be a relationship between particular lobules and 

phenotypes of PD. 

1.1.4. Limbic System 

The limbic system is a set of brain structures involved in memory and emotional response, 

including cortical and sub-cortical grey matter structures, and portions of the diencephalon [50, 

51]. The hypothalamus, one of the central structures of the limbic system, is located in the ventral 

part of the diencephalon [52, 53]. The hypothalamus contains several small nuclei which maintain 

numerous regulatory and metabolic systems, and is connected to the brainstem, amygdala, septum 

and several regions of the brain. The hippocampus, known famously for its role in memory and 

diseases like Alzheimer’s, is a cortical structure located in the temporal lobe is involved in spatial 

memory and sleep [54]. Though little is known about its role in emotion and other common limbic 

system functions, the hippocampus is connected to the hypothalamic mammillary body, the 

anterior portion of the thalamus, and the amygdala [55]. The amygdala consists of a series of 

interconnected nuclei involved in emotional response and decision making [56]. Interestingly, the 

subdivisions of the amygdala are split between the limbic system and basal ganglia, making it a 

particularly important structure as it is hypothesized to be involved both in motor and emotional 

processing [12]. The nucleus accumbens is a structure in the basal forebrain, involved in 

motivation, reward, and fear processing, amongst other functions [57, 58]. Anatomically, the 

nucleus accumbens is broken into a core and shell surrounding the core, where each portion has 

unique neural connections. The core has neural connections with the GPI and substania nigra, 



7 

 

making it an important connection linking the limbic system and basal ganglia. The shell is an 

extension of the amygdala and involved in similar reward processing through connections to 

hypothalamus and amygdala. 

Some research has been done on the role of the limbic system in PD, but there has been 

less work in comparison to the basal ganglia and thalamus. Lewy body buildup occurs in all of the 

sub-nuclei of the hypothalamus [59] and a significant decrease in dopaminergic activity in the 

hypothalamus has been related to obesity and weight loss as PD risk factors [60]. A post-mortem 

analysis of hippocampal dopamine and dopamine metabolites showed a significant relationship 

with L-DOPA dosage before death [61] which is significant because dopamine is necessary for 

normal memory processing in the hippocampus [62]. The amygdala has shown a particular 

lesioning pattern in PD which destroys the nuclear grey matter and may destroy neural connections 

[63]. Interestingly amygdala volume and amygdalar neuronal volume are significantly associated 

with PD disease status, but not correlated with disease progression [64]. The nucleus accumbens 

is an important processing step in dopamine uptake on L-DOPA for reversal learning tasks [65].  

1.2. Treatment of Parkinson’s Disease 

Due to a lack of understanding of PD’s mechanism of action, progression, and inception, 

there is no cure or treatment plan suitable for all patients [8]. Typical treatment begins with 

dopamine precursors, like L-DOPA, which are used to increase the dopamine content in the brain 

[66]. As L-DOPA treatment slows, many patients will be prescribed medications, paired with L-

DOPA, targeted at increasing the biosynthesis of dopamine, but these treatments are very 

dependent on the patient and prescribing physician, thus their typical course is less understood [65, 

66]. After treatment with medication has proven ineffective, deep brain stimulation (DBS) surgery 
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is used to reduce motor symptoms, but these surgeries have shown little effect on non-motor 

symptoms of PD [67]. Beyond medication and surgery, diet and rehabilitation have shown some 

effectiveness in treatment of PD, but in general are not part of standard treatment progression [68]. 

1.2.1.  Medication for treatment of Parkinson’s disease 

Treatment of PD typically begins with L-DOPA, a precursor molecule to dopamine, which 

is a precursor to dopamine and can cross the blood-brain barrier whereas dopamine cannot. Since 

there is no diagnostic criteria for PD, a positive response to L-DOPA administration is typically 

confirmation of the diagnosis. L-DOPA mitigates motor symptoms by being converted to 

dopamine and increasing dopamine levels in the substantia nigra. For several reasons, treatment 

of PD with L-DOPA is limited and in many cases other medications are paired with L-DOPA to 

increase its effectiveness. Over long periods of administration of L-DOPA patients can develop 

involuntary movements related to L-DOPA and varied responses to the medication [65, 66]. 

1.2.2. Deep Brain Stimulation Surgery  

When medication does not treat the motor phenotypes of PD, deep brain stimulation (DBS) 

surgery is an alternative to standard treatments. In DBS surgery, a neurosurgeon implants bi-lateral 

electrodes into the patient’s brain. In PD the typical anatomic targets are the GPI and STN. After 

completion of the surgery, the electrodes are activated to stimulate neural activity in the motor 

tracts and alleviate the motor symptoms of PD, though the surgery does not always restore normal 

motor function. 

 

2. Segmentation Theory 



9 

 

Segmentation is an important task in medical imaging. In segmentation, a target image or 

set of images is input into an algorithm with the goal of identifying a structure, or structures, of 

interest.  Two broad classes of segmentation algorithm exist. The first class of algorithms is model-

based segmentation algorithms, where an underlying understanding of the anatomic and 

physiological process is used to identify structures of interest [69]. These techniques are commonly 

used when there is a clear anatomic boundary between the structures of interest such as grey and 

white matter in T1-weighted brain images. The second class of algorithms is atlas-based 

segmentation techniques. In atlas-based techniques, one or more atlases, or example images with 

expertly delineated labels are non-rigidly registered to the target images [70, 71]. These registered 

atlases are then joined together to create a consensus representation of the target image’s 

segmentation. There also exist hybrid algorithms which utilize model-based techniques in 

conjunction with atlases to improve the segmentation accuracy. Many gold-standard segmentation 

approaches use a hybrid approach where models are used in several contexts [70, 72].  

2.1. Model-Based Segmentation Techniques 

In model-based segmentation approaches, underlying physiological principles are 

leveraged to identify the structures of interest. One of the classical tasks for model-based 

segmentation is delineation of gray matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF) in T1-weighted brain images. On a T1-weighted brain MRI, WM appears hyper intense and 

at a higher intensity than the background, CSF, or GM. CSF appears, on T1-weighted MRI, at a 

low intensity value and at a similar intensity value to the background. On T1-weighted MRI, GM 

is at an intensity spectrum between CSF and WM [73]. The intensity distributions from GM, WM, 

and CSF are largely non-overlapping so an algorithm like K-means or expectation maximization 
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(EM) with Gaussian distributions can identify the three distributions [74, 75]. The final class 

decision for each voxel from the K-means or Gaussian distributions can be used as the tissue 

classification into GM, WM, or CSF. 

Markov Random Fields (MRFs) can be incorporated into segmentation algorithms to 

incorporate spatial information. An MRF controls the spatial correlations between nearby voxels 

[76]. For instance, an MRF can be used with k-means to control the probability of changing tissue 

types of neighboring voxels, thus incorporating spatial information into the k-means framework 

[77]. MRFs can also be useful in estimating gain fields in MR images and in several other contexts 

[78]. 

Deformable models, such as active shape models and active contour models, use the image 

as a volume and fit a curve based on the image intensities [79, 80]. This curve can then be used to 

divide the image into tissue classes. Active shape models fit a model of the shape of a structure of 

interest to a target by iteratively conforming a shape model to the target and re-assessing the point 

correspondence [81]. Active contour models a deformable spline to detect boundaries in an image 

based on image intensity [80]. Both of these models require a decent initialization of the model 

with respect to the target and the models are non-convex, thus results are not necessarily optimal. 

Segmentation techniques are not limited to structural MR and CT images. Diffusion tensor 

imaging (DTI) is commonly used to model tractography within the WM. Fiber tracking uses 

regions of interest within the brain to identify the size and scope of WM pathways of interest [82]. 

These pathways can be used to identify the tract which connects given structures. For instance, 

TRACULA [83] utilizes the spatial relationship of well-known fiber tracts where a prior is used to 

constrain the paths between structures of interest. 
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2.2. Atlas-Based Segmentation Techniques  

An atlas is an image which, commonly, has the structures of interest manually identified 

by experts [84]. Atlases are useful in delineating structures of interest where the prior knowledge 

of an expert is helpful in identifying structural boundaries that would be challenging to identify 

without larger contextual knowledge. For instance on standard T1-weighted images, due to the 

nature of white matter connections within the thalamus there is low contrast between it and the 

white matter [85]. A trained expert can reproducibly identify the boundaries and thus create an 

atlas of the thalamus. 

Typically, atlas-based segmentation approaches start by non-rigidly registering one or 

more atlases to the target image [71]. In non-rigid registration one image volume, herein the 

moving image, is first affinely aligned to the target image. Affine registration is a 9 degree of 

freedom where the moving image can be rotated, translated, scaled, or sheered to best align with 

the target image [86]. For all works presented here the NiftyReg affine registration is used because 

it provides both an efficient and accurate affine registration [86]. After affine registration, the 

moving image is then non-rigidly registered to the target image. In non-rigid registration the 

moving image is elastically, locally warped to the target image [87]. There are several paradigms 

for non-rigid registration that have been previously reviewed for brain imaging. For all works 

presented here the Advanced Normalization Tool (ANTs) Symmetric Normalization (SyN) 

algorithm is used [88]. After the affine and non-rigid registrations, the labels from the atlas are 

deformed to the target image space following the affine and non-rigid deformations. 

If only one atlas is available, the labels transferred to the target image provide an estimate 

of the labels for the target [71]. If multiple atlases are available, then labels from the atlases can 
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be combined, or “fused”, as an ensemble of learners to produce a set of labels more consistent with 

the target image’s labels than any individual label set [89]. Several algorithms exist to produce a 

consensus representation from a set of atlases, a process herein known as label fusion. 

The simplest label fusion approach is majority vote. In majority vote, each atlas is given 

an equal weight. The label decision at each location is the mode label amongst the registered atlases 

[84].  Weighted voting algorithms determine a weight for each atlas either globally or locally [90]. 

These weights are commonly determined based on global or local image similarity respectively 

[84]. The weighted mode label at each voxel is selected as the label decision. Statistical label fusion 

techniques, such as Simultaneous Truth and Performance Level Estimation (STAPLE), compute a 

confusion matrix for each atlas [91]. A given confusion matrix consists of a matrix where entry 𝑖, 

𝑗 corresponds to the probability that rater observes label 𝑖 when the actual label is 𝑗. This confusion 

matrix is calculated using the EM algorithm where at each iteration the true label probabilities are 

estimated at each location and then the confusion matrices are re-estimated based on the label 

probabilities. This process is iterated until convergence. The STAPLE framework has expanded 

to incorporate spatially varying confusion matrices [92], hierarchical performance [93], and a 

number of other improvements. 

 Non-local correspondence assumes that registration is not perfect and performs a local 

search at each location for each atlas to determine if a better correspondence can be reached [94]. 

For a given location and atlas, non-local correspondence searches patches nearby in the atlas image 

and computes their similarity to the target image at the given location [95]. These patches are then 

weighted and the weights can be used as a local weighting for the voxel [96]. This idea was first 

presented as non-locally weighted vote. Non-local correspondence was then incorporated into the 
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STAPLE framework as part of non-local STAPLE where non-local correspondence was used as 

an initial smooth of the labels into the probabilistic STAPLE algorithm [97]. Non-local 

correspondence is also used in Joint Label Fusion (JLF) [98]. In JLF, non-local correspondence is 

used to assess the pairwise error rate of two atlases with respect to the truth. Each atlas is then 

weighted at each location based on a function of the pairwise error rate.  

Lastly, atlas selection is an important step in many label fusion algorithms. In atlas 

selection a set of the available atlases is chosen to use in the algorithm and set of atlases are 

excluded. Atlas selection can occur both in statistical and weighted voting algorithms. In weighted 

voting based algorithms, the vote weight for an atlas can be fixed to 0. By setting the atlas’s weight 

globally to zero, this eliminates any influence that atlas might have on any label decision at a given 

voxel. In statistical fusion algorithms the confusion matrix can be set to a constant value. By setting 

the confusion matrix to a constant value, the atlas will have no influence to any label estimation 

during the expectation step of the EM algorithm used to estimate their performance. Then, during 

the maximization step of EM, the confusion matrix for the atlas is not maximized but instead set 

to the same constant value.  

2.3. Hybrid Segmentation Techniques 

Many techniques are available which combine model-based techniques with atlas-based 

techniques. One example of this is the use of machine learning algorithms to identify common 

error types in segmentation algorithms [99]. A second example of this is using the probabilistic 

output of multi-atlas segmentation as the volume to fit an active shape model [100]. Other 

examples include using graph cuts to correct for segmentation boundaries [101]. 
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2.4. Evaluation of Segmentations 

In order to assess the quality of a segmentation algorithm, metrics are needed to assess the 

accuracy of the algorithm. The first metric is Dice Similarity Coefficient (DSC), which is a 

measure of overlap between two segmentations [102]. DSC is equal to 
2|T∩E|

|T|+|E|
 where |T| is the 

number of voxels in the true segmentation, |E| is the number of voxels in the estimated 

segmentation, and |T ∩ E| is the number of voxels where T and E are the same. DSC has a value 

between 0 and 1 and can be calculated for each label or globally [102]. The second and third metric 

are mean surface distance and Hausdorff distance [103]. These metrics begin by calculating the 

surface of the true and estimated segmentation, then they determine a correspondence between the 

surfaces. Mean surface distance is the average absolute distance between the segmentations. 

Hausdorff distance is the maximum absolute distance between the segmentations [103]. Mean and 

Hausdorff distance both have a lower bound of 0, but no upper bound. DSC is criticized because 

larger structures tend to have higher DSC values since a large portion of the structure can be 

consensus, for instance the label “white matter” in the human brain suffers from this. 

MeansSurface and Hausdorff distance do not suffer from this bias. 

These metrics can be used in several contexts in medical imaging, for instance comparing 

two or more segmentation algorithms or for assessing the number of atlases needed for a task. The 

common method to compare segmentation techniques is to break the atlas population into a 

training and evaluation set. The training set is used to perform the segmentation and the evaluation 

set it used to test the accuracy of the segmentation. In the case of evaluating several segmentation 

algorithms or approaches, the different techniques are calculated on the evaluation set and DSC, 

mean surface distance, and Hausdorff distance. A Wilcoxon sign-rank test is the calculated 
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between the results of the different techniques to determine if the results are significantly different. 

In the case of increasing numbers of atlases, the evaluation set is segmented with increasing 

numbers of atlases and the atlases are Monte Carlo’d to assess the accuracy with increasing 

numbers of atlases. This process is inherently biased in that it does not properly model the variance 

of each atlas and it does not model how each individual evaluation dataset’s accuracy is changing. 

In conclusion, we have presented algorithms to use jointly multiple labeling protocols for 

multi-atlas segmentation. We have compared these approaches both in simulation and an empirical 

study. Our results show statistically significant improvements in comparison to previously 

published gold-standard techniques when evaluated with defined truth models for the simulation 

and manually labeled examples for the empirical data.  

3. Informatics 

At Vanderbilt University Medical Center, the standard practice for clinical care for patients 

with PD undergoing deep brain stimulation surgery is to receive pre-operative magnetic resonance 

imaging (MRI) and computed tomography (CT) scanning. The data from these scans are then 

transferred to the (MIPS) lab via a picture archiving and communication system (PACS) . From 

there, the data are delivered to the medical and statistical inference (MASI) lab for anonymization 

and processing. 

3.1. MR Imaging and Data Transfer 

For each PD patient, the following imaging sequences were scanned. First, a T1-weighted 

MPRAGE sequence was acquired with TR/TI/TE=7.9/927/3.6ms. Second, a T2-weighted spin 

echo sequence with TR/TE=3000/80ms.  Third, a diffusion weighted sequence was acquired with 
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32 directions, B-value of 1000, and TR/TE=1000/2.3ms. Fourth, a Fast Gray Matter Acquisition 

T1 Inversion Recovery (FGATIR) scan with TR/TE/TI=3000/4.39/600ms was acquired. These 

scans were then transferred using the Digital Imaging and Communications in Medicine (DICOM) 

standard from Vanderbilt University Medical Center (VUMC) to a PACs .

3.2. Long-term Data Storage and Anonymization 

DICOM is inherently an identified format, and can contain protected health information 

(PHI). For the purposes of research, PHI is not necessary and thus it is important to exclude patient 

information from research process. The neuroimaging informatics technology initiative (NifTI) 

file format is a de-identified file format allowing for the storage of medical image volumes. The 

DICOM data containing PHI is stored on an encrypted hard drive and mounted only for storage 

and retrieval of files. After storage on the encrypted partition, the DICOM files are converted to 

NifTI files and BVAL and BVEC files when necessary, using the DICOM toolkit. These files are 

then uploaded to a project in Vanderbilt’s eXtensible Neuroimaging Archive Toolkit (XNAT). 

XNAT is a database designed with the purpose of storing medical imaging data and facilitating 

efficient processing on the data. 

3.3. Distributed Automation of Image Processing Tasks 

Image processing tasks often both have high numbers of parameters and are memory and 

processor intensive. To preserve consistent results and efficiently complete tasks, systems built to 

maintain parameter information and distribute tasks across grid and cloud computing environments 

are needed. At Vanderbilt, the Advance Computing Center for Research and Education (ACCRE) 

provides an affordable and efficient grid computing environment. In order to interface between 
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long-term storage, XNAT, and grid computing, ACCRE, the Distributed Automation for XNAT 

(DAX) was developed to download, store, and process data under these conditions. 

DAX operates using two fundamental operators to build, execute, and store data: the 

processor and the spider. For a given task that we wish to perform, for instance a whole-brain 

multi-atlas segmentation with the BrainCOLOR protocol, first, a spider is created which performs 

the task on a particular dataset. Second, a processor is developed which determines whether a 

particular scan or session is fit to perform a given task. The spider is tasked with the download, 

processing, and upload of data and the processor is tasked with determining whether a particular 

dataset has the necessary requirements to execute the task 

4. Dissertation Focus 

MRI and its applications have made several significant contributions to our understanding 

of PD. Current MRI imaging and segmentation techniques do not well compensate for changes in 

imaging sequences, when the atlases do not match the targets and multiple data sets are compared. 

There is also room for improved segmentation approaches incorporating novel or optimized 

imaging sequences into atlas-based segmentation approaches. Improved approaches for 

understanding sub-cortical fiber tracking are needed, since fiber tracts in the sub-cortex are 

challenging to disentangle in standard imaging. 

4.1.  Open Problems 

Applications of MRI in brain imaging is not a novel concept, but given recent technological 

and methodological advances, several open problems exist 



18 

 

• Currently, all available segmentation algorithms required all atlases to be 

segmented with the same protocol, even though there is useful information which 

can be used between atlases of varying protocols. In PD, there are several structures 

of interest that there are currently few or no atlases available. Leveraging atlases 

with different protocols will improve the segmentation results  

• Current segmentation approaches inherently assume that the imaging sequence of 

the target image matches the sequence of the atlas. As the imaging sequence varies, 

such as the inversion time in an T1-weighted MP-RAGE, the results of the 

segmentation may change. As a result, retrospective studies comparing PD patients 

to disease cohorts and healthy controls with different imaging sequences will have 

an implicit bias form the sequence. Thus, and approach which minimizes the bias 

between sequences will increase the statistical power of the study. 

• Robust and efficient segmentation approaches are not currently available to 

accurately segment subcortical structures. These subcortical structures are a core 

focus of research in PD and in order the understand the progression of the disease, 

better segmentation approaches are needed. 

• Segmentation algorithms do not currently support multiple imaging sequences 

effectively, and thus novel or optimized sequences cannot be incorporated in 

circumstances when they are useful. Further, segmentation algorithms can also be 

used to validate and determine which sequences from a given exam card are needed. 

In PD, many structures have contrast boundaries present in only one modality. 
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Thus, segmentation approaches incorporating multiple modalities will improve the 

accuracy. 

• Currently, atlas-based segmentation approaches do not properly model variance 

when evaluating the number of atlases needed for a given segmentation task. In 

order to build atlases for PD, an understanding of how to properly calculate the 

number of atlases needed is an important step. 

• Large-scale studies of brain development in PD compared with diseases like 

Alzheimer’s disease, essential tremor, and normal aging have currently not been 

completed. Modern imaging and the availability of large-scale studies is catching 

up, but techniques are needed to properly correct for these studies. 

Here, we propose to address these issues raised by improving on the ideas already available 

in image segmentation and fiber tracking. In Chapter II, we present a segmentation approach which 

incorporates multiple labeling protocols into segmentation. In Chapter III, we present an approach 

for decreasing the effect of having multiple imaging sequences in the study. In Chapter IV, we 

present an algorithm for efficient segmentation of the hippocampus and amygdala with nearly 200 

atlases. In Chapter V, we present an algorithm for segmentation of the cerebellum using atlases 

which significantly vary in the anatomical presentation. In Chapter VI, we present an algorithm 

for segmentation of the sub-cortical grey matter using multiple imaging sequences. In Chapter VII, 

we present an algorithm for proper estimation of variance in multi-atlas segmentation with respect 

to the number of atlases used. 
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4.2. Contributions 

• We designed a segmentation approach which incorporates multiple labeling 

protocols into segmentation. This approaches uses a generalization of the confusion 

matrix in STAPLE to incorporate differing labeling protocols. 

• We presented an approach for decreasing the effect of having multiple imaging 

sequences in the study. This approach synthesizes atlases with the target imaging 

sequence utilizing atlases with underlying biological parameter maps. 

• We present an algorithm for efficient segmentation of the hippocampus and 

amygdala with nearly 200 atlases. This approach uses a reduced field of view 

segmentation where the registration and segmentation for the multi-atlas 

segmentation are completed only on the region surrounding the hippocampus and 

amygdala. 

• We present an algorithm for segmentation of the cerebellum using a diverse 

population of atlases and strong atlas selection. This approach provides each atlas 

patch with its own confusion matrix, so that rater performance is spatially 

evaluated. 

• We present a segmentation algorithm for the evaluation and applicability of 

multiple imaging sequences in the sub-cortex. This approaches uses multi-modal 

registration and segmentation and breaking the segmentation problem into 

individual problems for each region of interest. 
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• We present an algorithm for proper estimation of variance in multi-atlas 

segmentation with respect to the number of atlases used. This approach uses monte-

carlo calculation of the underlying distribution of variance. 

5. Narrative 

This work centers on applications of image processing to the study of PD. At the 

beginning of this dissertation, multi-atlas segmentation was becoming a well-characterized 

approach when working on a restricted atlas population. In order to translate these approaches 

to PD, several important steps needed to be taken. The imaging sequences present in PD cases 

are not identical to the datasets available in other cases. Thus, a segmentation approach which 

was aware of imaging sequence of the target image was developed. Also, a segmentation 

algorithm for multi-modal segmentation of particular structures of interest was developed to 

incorporate the specific sequences commonly available in PD. 

There are several structures of interest in PD which are not of interest in other diseases or 

conditions. Thus, specialized atlases are needed to segment these structures. Two approaches 

were considered to improve our understanding of how to build atlases quickly. First, an atlas re-

use approach was developed where atlases with a variety of labeling protocols could be used in 

a multi-atlas segmentation framework. This is of interest in PD because it may decrease the 

number of newly labeled atlases needed for a given task. Second, an approach to properly 

characterize variance with respect to the number of atlases used in a segmentation task was 

considered. This is also important because it helps to better determine the number of atlases 

needed for a segmentation approach. 
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In order to characterize the structures of interest in PD, several specialized segmentation 

approaches were developed. All of these segmentation approaches used localized segmentation 

of the structure of interest. Particularly, segmentation approaches for the hippocampus and 

amygdala, cerebellum, and subcortical brain structures, were developed. Each approach utilizes 

different optimization strategies to address particular concerns within that structure of interest.  



23 

 

Chapter II 

Multi-Protocol, Multi-Atlas Statistical Fusion: Theory and 

Application 

1. Introduction 

The multi-atlas technique has become an essential medical image processing approach and 

been adopted widely for applications ranging from the brain [84] to the abdomen [104] and pelvic 

structures [105]. The promise of generalizing robust algorithms from limited collections of labeled 

data without needing to posit specific structural models is highly appealing for clinical applications 

and rapid prototyping. However, manual labeling of medical images can be extraordinarily 

resource intensive. For each new application (or even refinement of an existing application), multi-

atlas methods require labeling a new atlas set.  

Consider segmentation of the hippocampus. Numerous protocols (e.g., [106]) exist to 

delineate the hippocampus in MR images. These protocols vary on the basis of hippocampal white 

matter, the border between the hippocampus and amygdala, the hippocampal tail, and various other 

markers. With current techniques, individuals interested in studying the hippocampus are limited 

to either ignoring all other label sets or using a coarse protocol as an anatomical “stamp” and are 

left to rectify the space between the protocols. This is clearly suboptimal as it does not allow for 

joint inference between protocols and does not specifically estimate any one protocol. 

Recently, [107] illustrated that protocols need not be considered fully independent and that 

a generative latent model could be used to exploit the dependence between protocols. However, 

[107] required a specific human-provided mapping function to join protocols. Herein, we revisit 
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the need to combine atlases of different protocols and show that dependence structure between 

atlases can be learned without human intervention. Our approach leads natural generalization of 

majority vote and locally weighted vote (while maintaining computational efficiency). The 

dependence structure can also be estimated within the Simultaneous Truth and Level Estimation 

(STAPLE) perspective through jointly modeling the protocol behaviors.  

 

Figure II-1 Modeling rater performance with the STAPLE, MS-STAPLE, and SMS-STAPLE algorithms. A target 

(A) image can be labeled using atlases of multiple protocols. In STAPLE (B) only atlases with a 1:1 correspondence 

can be used in segmentation, in MS-STAPLE (C) atlases of multiple protocols can be used to jointly segment all of 

the protocols, and in SMS-STAPLE (D) atlases of multiple protocols can be used to jointly segment one target 

protocol. 
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This manuscript is organized as follows. Section 2 presents notation and derives the theory 

for fusion. Section 3 develops and characterized the performance of the methods in a simulated 

example with a well-known error model and in an empirical example of deep brain labeling. 

Section 4 concludes with a brief discussion.  

2. Theory 

We first present the underlying framework connecting generalization of voting fusion 

approaches and MS-STAPLE. Consider a target image with 𝑁 voxels and intensity values 𝑰 ∈

ℝ𝑁x1 with a set of 𝑅 registered atlases, associated intensities 𝑨 ∈ ℝ𝑁x𝑅, and registered labels 𝑫 ∈

𝓛𝑁x𝑅. Let 𝐷𝑖𝑗 be the decision of atlas 𝑗 at voxel 𝑖. In the case of multiple sets of labeling protocols, 

ℒ corresponds to an arbitrary set of labels, that is to say that the numerical label denotations 

between the atlases do not necessarily correspond to the same anatomical structure. Lastly, let 𝑳 =

{𝐿1, 𝐿2, … , 𝐿ψ}, where 𝐿𝑗 corresponds to the number of labels in atlas class 𝑗 and 𝜓 corresponds to 

the total number of different labeling protocols used with a vector 𝒅 ∈ 𝚰𝑅x1 mapping each rater to 

its atlas class. The objective of label fusion is to estimate 𝑆̂, a voxel discrete mapping of the target 

image. Figure 1 illustrates the rater models from the following sections. 

2.1. Generalized Majority, Locally Weighted, and Non-Locally Weighted Vote 

In standard majority vote (MV), the probability of label 𝑠 at voxel 𝑖, 𝑝𝑀𝑉,𝑖(𝑠|𝐷), is 

empirically determined as the fraction of atlases that observe 𝑠 at voxel 𝑖. We may generalize MV 

to include atlases (raters) of different protocols by:  

 
𝑝𝐺𝑀𝑉,𝑖(𝑠|𝐷) =

1

𝑅
∑ 𝑝𝑖(𝑠|𝐷𝑖𝑗 , 𝑑𝑗)

𝑗

 
(1) 
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where 𝑝𝑖(𝑠|𝐷𝑖𝑗 , 𝑑𝑗) is discrete probability of the co-occurrence across labeling protocols of 

registered atlases (which can be empirically estimated as seen in §2.4). Henceforth, for 

convenience, we simplify the co-occurrence probability to be spatially invariant and drop the 

subscript. Generalized majority vote (GMV) is thus 𝑆𝐺𝑀𝑉,𝑖
̂ = argmax

𝑠
𝑝𝐺𝑀𝑉,𝑖(𝑠|𝐷). Similarly, 

locally weighted vote [84] can be framed around the co-occurrence probability as:  

 
𝑝𝐿𝑊𝑉,𝑖(𝑠|𝐷, 𝑑, 𝐴, 𝐼) =

1

𝑍
∑ 𝑝𝑖(𝑠|𝐷𝑖𝑗 , 𝑑𝑗 , 𝐴𝑖𝑗 , 𝐼𝑖)

𝑗

=
1

𝑍
∑ 𝑝(𝐴𝑖𝑗|𝐼𝑖)𝑝(𝑠|𝐷𝑖𝑗 , 𝑑𝑗) 

𝑗

 
(2) 

assuming marginal independence of image intensity values and observed labels, where 𝑍 

is a partition function normalizing distribution to a valid probability distribution and 𝑝(𝐴𝑖𝑗|𝐼𝑖) is 

the likelihood of observing the intensity value of atlas 𝑗 at voxel 𝑖. Hence, 𝑆𝐿𝑊𝑉,𝑖
̂ =

argmax
𝑠

𝑝𝐿𝑊𝑉,𝑖(𝑠|𝐷𝑖 , 𝑑, 𝐴, 𝐼).  

Moreover, non-locally weighted voting (NLWV) [96, 97] can be reframed with 

𝑝𝑁𝐿𝑊𝑉,𝑖(𝑠|𝐷, 𝑑, 𝐴, 𝐼)  =
1

𝑁
∑ ∑ 𝑝𝑖,𝑗(𝑠′|𝐷, 𝑑, 𝐴, 𝐼)𝑝(𝑠|𝑠′, 𝑑𝑗)𝑠′∈𝐿𝑑𝑗

𝑗  with 𝑠′ as the latent 

correspondence and 𝑝𝑖,𝑗(𝑠′|𝐷, 𝑑, 𝐴, 𝐼) as the likelihood of atlas 𝑗 observing 𝑠′ at 𝑖. Note that the 

latent corresponding label, 𝑠′, occupies the role of the atlas labels in the NLWV model, 

and  𝑆𝑁𝐿𝑊𝑉,𝑖
̂ = argmax

𝑠
𝑝𝑁𝐿𝑊𝑉,𝑖(𝑠|𝐷𝑖 , 𝑑, 𝐴, 𝐼). 

Note that these formulations reduce to their classical definitions if all of the atlases are of 

the target class (i.e., co-occurrence matrix are 1:1) or the co-occurrence probabilities of non-target 

classes are uniform (i.e., other label protocols are uninformative and, hence, ignored). 
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2.2. Multi-Set STAPLE (MS-STAPLE) 

STAPLE label fusion maintains a confusion matrix 𝜃 for each atlas [91]. Each confusion 

matrix entry 𝜃𝑗𝑠′𝑠 ≡ 𝑝(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑠) presents a discrete probability distribution where 𝑠′ 

corresponds to the label observed and 𝑇 corresponds to a latent true segmentation. Consider 

segmentation with 𝜓 labeling protocols, each with its own confusion matrix such that the 

likelihood of observing a label is 𝑓(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 =  𝑙, {𝜃𝑗}) where 𝑠′ is the observed later by rater 𝑗 

at voxel 𝑖, 𝑙 is a set of true labels of size 1x𝜓 observed at 𝑖, and {𝜃𝑗} is a set of 𝜓 confusion matrices 

for atlas 𝑗 where 𝜃𝑗𝜌𝑠′𝑠 corresponds to the likelihood that label 𝑠′ observed by rater 𝑗 given that 

label 𝑠 of set 𝜌 is the true label. Note that 𝜃𝑗𝜌 is a possibly non-square matrix where 𝜃𝑗𝜌 is of size 

𝐿𝑑𝑗
x𝐿𝜌. This is the core of MS-STAPLE. 

To estimate the data likelihood, we follow [93] to capture dependence between protocols 

through a geometric mean: 

 

𝑓(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑙, {𝜃𝑗}) = (∏ 𝑓(𝐷𝑖𝑗 = 𝑠′|𝑇𝑖𝜌 = 𝑙𝜌, 𝜃𝑗𝜌)

𝜌𝜖𝜓

)

𝛼𝑗𝑙

 

           = (∏ 𝜃𝑗𝜌𝑠′𝑙𝜌

𝜌𝜖𝜓

)

𝛼𝑗𝑙

 

 

 

 

(3) 

where 𝑎𝑗𝑙 maintains ∑ (∏ 𝜃𝑗𝜌𝑠′𝑙𝜌𝜌∈𝜓 )
𝑎𝑗𝑙

= 1 𝑠′∈𝐿𝑑𝑗
, thus maintaining a valid probability 

distribution. Note that [93] captured joint information across specific hierarchical protocols, while 

here we are using it to normalize across relationships that must be estimated assuming conditional 

independence between sets of labels.  
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Given this model, we can apply expectation maximization (EM). Briefly, let 𝑊 ∈

ℝ∏ 𝐿𝜌𝜌∈𝜓 x𝑁 where 𝑊𝑙𝑖
(𝑘)

≡ 𝑓(𝑇𝑖 = 𝑙|𝐷, {𝜃}(𝑘)) is the probability that the true label set observed at 

voxel 𝑖 during iteration 𝑘 is 𝑙. Using a Bayesian expansion and the assumed conditional 

independence between atlases,  

 

𝑊𝑙𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑙) ∏ 𝑓 (𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑙, {𝜃𝑗

(𝑘)
})𝑗𝜖𝑅

∑ 𝑓(𝑇𝑖 = 𝑙′) ∏ 𝑓 (𝐷𝑖𝑗 = 𝑠′|𝑇𝑖 = 𝑙′, {𝜃𝑗
(𝑘)

})𝑗𝜖𝑅𝑙′

 

 

(4) 

where 𝑓(𝑇𝑖 = 𝑙) is a voxelwise a priori distribution of the underlying segmentation. The 

denominator corresponds to a partition function normalizing 𝑾 to a valid probability distribution. 

Substituting (3) in (4) yields the MS-STAPLE E-Step,  

 

𝑊𝑙𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑙) ∏ (∏ 𝜃

𝑗𝜌𝑠′𝑙𝜌

(𝑘)
𝜌𝜖𝜓 )

𝑎𝑗𝑙

𝑗𝜖𝑅

∑ 𝑓(𝑇𝑖 = 𝑙′) ∏ (∏ 𝜃
𝑗𝜌𝑠′𝑙𝜌

′
(𝑘)

𝜌𝜖𝜓 )
𝑎𝑗𝑙′

𝑗𝜖𝑅𝑙′

 

 

(5) 

To estimate the performance parameters, maximize the expected value of the conditional 

log-likelihood function. We follow the traditional M-Step expansion: 

 𝜃𝑗𝜌
(𝑘+1)

= argmax
𝜃𝑗𝜌

∑ 𝐸[ln(𝑓(𝐷𝑖𝑗|𝑇𝑖, {𝜃𝑗})| 𝐷, {𝜃𝑗}]             

𝑖

 

               = argmax
𝜃𝑗𝜌

∑ ∑ ∑ 𝑊𝑙𝑖
(𝑘)

ln (∏ 𝜃
𝑗𝜌𝑠′𝑙𝜌

(𝑘)
   

𝜌𝜖𝜓

)

𝛼𝑗𝑙
(𝑘)

 

𝑙𝑖:𝐷𝑖𝑗=𝑠′𝑠′

 

               = argmax
𝜃𝑗𝜌

∑ ∑ ∑ 𝑊𝑙𝑖
(𝑘)

αjl
(k)

∑ ln (𝜃
𝑗𝜌𝑠′𝑙𝜌

(𝑘)
) 

𝜌𝜖𝜓𝑙𝑖:𝐷𝑖𝑗=𝑠′𝑠′

 

 

 

 

 

(6) 
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where 𝑖: 𝐷𝑖𝑗 = 𝑠′ corresponds to the voxels where 𝐷𝑖𝑗 = 𝑠′. To constrain each row of the confusion 

matrix to be a valid probability distribution (∑ 𝜃𝑗𝜌𝑠′𝑠 𝑠′ = 1), we differentiate by each element and 

use a Lagrange Multiplier (𝜆): 

0 =
𝜕

𝜕𝜃𝑗𝜌𝑠′𝑠 
[∑ ∑ ∑ 𝑊𝑙𝑖

(𝑘)
𝛼𝑙𝑗

(𝑘)
∑ ln (𝜃

𝑗𝜌𝑠′𝑙𝜌

(𝑘)
)

𝜌𝜖𝜓𝑙𝑖:𝐷𝑖𝑗=𝑠′𝑠′

+ 𝜆 ∑ 𝜃
𝑗𝜌𝑠′𝑠

(𝑘)

𝑠′

] 

                    0 = ∑ ∑ (
𝑊𝑙𝑖

(𝑘)
𝑎𝑗𝑙

(𝑘)

𝜃𝑗𝜌𝑠′𝑠
)

𝑙:𝑙𝜌=𝑠𝑖:𝐷𝑖𝑗=𝑠′

+ 𝜆 

−𝜆𝜃
𝑗𝜌𝑠′𝑠

(𝑘+1)
= ( ∑ ∑ 𝑊𝑙𝑖

(𝑘)
𝑎𝑗𝑙

(𝑘)

𝑙:𝑙𝜌=𝑠𝑖:𝐷𝑖𝑗=𝑠′

) 

           𝜃(𝑘+1)
𝑗𝜌𝑠′𝑠 =

(∑ ∑ 𝑊𝑙𝑖
(𝑘)

𝑎𝑗𝑙
(𝑘)

𝑙:𝑙𝜌=𝑠  𝑖:𝐷𝑖𝑗=𝑠′ )

(∑ ∑ 𝑊𝑙𝑖
(𝑘)

𝑎𝑗𝑙
(𝑘)

𝑙:𝑙𝜌=𝑠𝑖 )
 

 

 

 

 

 

 

(7) 

 

where 𝑙: 𝑙𝜌 = 𝑠 corresponds to label sets where the voxel of atlas set 𝜌 is 𝑠. 

2.3. Simplified MS-STAPLE (SMS-STAPLE) and Non-Local-SMS-STAPLE 

Empirically, we have found the fully parameterized MS-STAPLE model (§2.2) less 

numerically stable than one would desire. Here, we present a simplified model to improve stability 

with limited data. In place of {𝜃𝑗} (with ∑𝑗𝐿𝑑𝑗
𝛱𝜌𝐿𝜌 degrees of freedom), consider 𝜃̃𝑗 , a 𝐿𝑑𝑗

× 𝐿𝑡 

confusion matrix with 𝑡 to be the index of the target label. Each element of 𝜃̃𝑗𝑠′𝑠 corresponds to 

the probability rater 𝑗 observes label 𝑠′ ∈ 𝐿𝑑𝑗
 given that the true label is 𝑠 ∈ 𝐿𝑡. Note that each 

atlas has confusion matrix with the number of rows dependent on the labeling protocol, but the 
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number columns matching the target protocol. The degree of freedom of 𝜃̃ is ∑𝑗𝐿𝑑𝑗
𝐿𝑡, a possibly 

dramatic reduction from the §2.2 model by assuming conditional independence.  

With Simplified Multi-Set STAPLE model (i.e., SMS-STAPLE), the EM update equations 

are found to be:  

 

𝑊𝑠𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑠) ∏  𝑗 𝜃̃

𝑗𝑠′𝑠

(𝑘)

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ 𝜃̃
𝑗𝑠′𝑠′′
(𝑘)

𝑗𝑠′′

 

 

(8) 

for the E-Step, and  

 

𝜃̃
𝑗𝑠′𝑠

(𝑘+1)
=

(∑ 𝑊𝑠𝑖
(𝑘)

𝑖:𝐷𝑖𝑗=𝑠′ )

(∑ 𝑊𝑠𝑖
(𝑘)

𝑖 )
 

 

(9) 

for the M-Step. 

Following [97], we derive the EM update equations to incorporate non-local 

correspondence in the SMS-STAPLE model (herein SMS-Non-Local STAPLE) as: 

 

𝑊𝑠𝑖
(𝑘)

=
𝑓(𝑇𝑖 = 𝑠) ∏ ∑ 𝜃̃

𝑗𝑠′𝑠

(𝑘)
𝑐𝑗𝑖′𝑖𝑖′∈ℵ𝑆(𝑖)𝑗

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ ∑ 𝜃̃
𝑗𝑠′𝑠′′
(𝑘)

𝑐𝑗𝑖′𝑖𝑖′∈ℵ𝑆(𝑖)𝑗𝑠′′

 

 

(10) 

for the E-Step where ℵ𝑆(𝑖) is the spatial neighborhood around voxel 𝑖 and 𝑐𝑗𝑖′𝑖 is the likelihood of 

correspondence between atlas 𝑗 at voxel 𝑖′ and the target at voxel 𝑖. The M-Step follows as: 

 

𝜃̃
𝑗𝑠′𝑠

(𝑘+1)
=

∑ (∑ 𝑐𝑗𝑖′𝑖𝑖′∈ℵ𝑆(𝑖):𝐷𝑖′𝑗=𝑠′
) 𝑊𝑠𝑖

(𝑘)
𝑖

∑ 𝑊𝑠𝑖
(𝑘)

𝑖

 

 

(11) 
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2.4. Modeling Co-Occurrence Probability and Initialization 

For the voting approaches (§2.1), the co-occurrence probability definitions were calculated 

empirically as 

𝑝(𝑠|𝑠′, 𝜌) =
∑ ∑ ∑ 𝛿(𝐷𝑖ℎ, 𝑠)𝑖:𝐷𝑖𝑗=𝑠′ℎ:𝑑ℎ=𝑡𝑗:𝑑𝑗=𝜌

∑ ∑ 𝛿(𝐷𝑖𝑗 , 𝑠′)𝑖𝑗:𝑑𝑗=𝜌

 
 

(12) 

where 𝑠 is the latent label, 𝑠′ is the observed label, and 𝜌 is the index of the label set from which 

𝑠′ is drawn. Note that this model is conditionally independent of the true label. For the MS-

STAPLE approaches (§2.2) were initialized by:  

           𝜃(0)
𝑗𝜌𝑠′𝑠  = 𝜃

𝑑𝑗𝜌𝑠′𝑠

(0)
=

∑ ∑ ∑ 𝛿(𝐷𝑖ℎ, 𝑠)𝑖:𝐷𝑖𝑘=𝑠′ℎ:𝑑ℎ=𝑡𝑘:𝑑𝑘=𝜌

∑ ∑ 𝛿(𝐷𝑖𝑘, 𝑠)𝑖𝑘:𝑑𝑘=𝑡
 

(13) 

For the SMS-STAPLE approaches (§2.3), initial confusion matrixes were: 

𝜃
𝑗𝑠′𝑠

(0)
 = 𝜃

𝑑𝑗𝑠′𝑠

(0)
=

∑ ∑ ∑ 𝛿(𝐷𝑖ℎ, 𝑠)𝑖:𝐷𝑖𝑗=𝑠′ℎ:𝑑ℎ=𝑡𝑗:𝑑𝑗=𝜌

∑ ∑ 𝛿(𝐷𝑖𝑗 , 𝑠)𝑖𝑗:𝑑𝑗=𝑡

 
 

(14) 

Convergence of EM was detected when the average change in 𝜃̃ from 𝑘 to 𝑘 + 1 was less 

than 𝜖 = 10−6, specifically:  

 

 1

𝑀
∑ ∑ ∑ 𝑎𝑏𝑠 (𝜃̃

𝑗𝑠′𝑠

(𝑘+1)
− 𝜃̃

𝑗𝑠′𝑠

(𝑘)
)

𝑠∈𝐿𝑡𝑠′∈𝐿𝑑𝑗
𝑗

 
(155) 

where 𝑀 is the total number of elements in all of the confusion matrices (i.e. ∑ 𝐿𝑑𝑗
x𝐿𝑡𝑗 ). 

3. Methods and Results 
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3.1. Simulation of Distinct Protocol  

We first consider labeling of an idealized square object within an 80x80 pixel background 

where the object consists of four distinct quadrants. There were four possible labeling protocols, 

and each protocol labels one quadrant as distinct from the other three (see Figure 2A). The 

simulated raters independently made errors in their respective protocols in terms of randomly 

shifted boundaries, which has been commonly used since [92]. Boundary shift errors were selected 

uniformly at random from between -10 and +10 pixels for boundary point (Figure 2B). Here, we 

evaluated fusion of between three and ten raters for each protocol (i.e., between 12 and 40 total 

 

Figure II-2 Simulation results based on algorithm and number of atlases used. A set of simulated truth models 

(A) were generated to model a relationship with inter-protocol spatial dependence. Simulated observations with 

increasing numbers of observations (B) were fused (C and D). For STAPLE v. MS-STAPLE and SMS- v. MS-

STAPLE: * p < 10-5. 
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simulated rater label sets) for a single target image. The experiment was Monte Carlo repeated 

with new simulated rater label sets 20 times to establish model variability.  

Each of the fusion algorithms (§2.1-2.3) was applied to each unique set of simulated rater 

observations (Figure 2C). Note that the distinct algorithms were applied to same simulated data 

for each number of raters and Monte Carlo iteration. Performance was evaluated by Dice similarity 

coefficient and Wilcoxon sign rank test. MS-STAPLE showed significant improvement over 

STAPLE with four to six  training examples of each class available (p<10-5). SMS-STAPLE 

showed significant improvement over all models with all numbers of simulated observations 

(p<10-5). Generalized Majority Vote was significantly worse than all models (p<10-5). 

3.2. Empirical Deep Brain Segmentation  

To evaluate empirical performance, we constructed a dataset with two distinct whole-brain 

protocols (a fine protocol and a coarse protocol). To ensure that true results were well known, we 

studied 40 T1-weighted MRIs expertly labeled with 14 fine deep brain structures and 12 coarse 

labels for the remainder of the brain (derived from the BrainCOLOR protocol; 

Neuromorphometrics, Inc., Somerville, MA). For ten randomly selected subjects, we reduced the 

deep brain structures to two lateralized labels (i.e., the coarse protocol), and the remaining 30 

subjects were randomly split into two groups of 15, one for training and one for testing (both with 

the fine protocol). All pairs of images were co-registered with ANTS-Syn with default parameters 

[88], and labels were deformed to match the target images with nearest neighbor interpolation.  

We evaluated a situation where the ten coarse atlases we assumed to be preexisting and 

between two and 15 of the fine training atlases were made available. For each number of new fine 

atlases (Q), we randomly selected Q atlases of the 15 training set to construct a simulated available 
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dataset of 10 coarse and Q fine atlases. For each of the 15 images in the testing set, we performed 

 

Figure II-3 Results from empirical deep brain segmentation experiment. Both SMS-STAPLE and SMS-Non-Local 

STAPLE show statistically significant improvement (*p < 0.05, ** p < 0.01) for many of the segmentation tasks 

particularly when few atlases of the target class are available. † indicates segmentation task shown in Figure 4. 
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each of label fusion algorithms and evaluated performance with the Dice similarity coefficient and 

statistically evaluated with the Wilcoxon sign-ran k test (Figure I-3).  

For non-deep brain structures (Figure 3A), generalized majority vote outperforms majority 

vote with all numbers of atlases, and generalized non-locally weighted vote, SMS-STAPLE, and 

SMS-Non-Local STAPLE outperform their counterparts when few (<6) target atlases are available 

(p<0.05). For deep-brain structures (Figure 3B), the majority vote and local weighted vote 

outperformed generalized majority vote and generalized locally weighted vote (p<0.05). 

Meanwhile, SMS-STAPLE outperformed STAPLE when few target atlases were available and 

SMS-Non-Local STAPLE outperformed Non-Local STAPLE in all experiments (p<0.01). Note 

that MS-STAPLE results are not shown and performance was worse than all methods (as discussed 

in the theory). These results are shown qualitatively in Figure 4.  

4. Discussion and Conclusion  

In manuscript presents generalizations of majority vote and locally weighted vote to 

incorporate multiple labeling protocols into the segmentation of a target label set. We also present 

a generalization of the STAPLE algorithm to jointly incorporate and segment multiple protocols 

and a simplification of this model for an individual target protocol. To achieve tractable models, 

we assume conditional independence between the labeling protocols. As an aside, an alternative 

approach would have been to design a “wide” confusion matrix 𝜃𝑗  of size 𝐿𝑑𝑗
x ∏ 𝐿𝜌𝜌∈𝜓  per rater 

to capture all potential relationships, but the degrees of freedom in such approach quickly exceed 

the number atlases likely to be available in practice and the model would reduce to classic STAPLE 

separately for each protocol unless atlases labeled with multiple protocols were included.  



36 

 

In [107], the authors develop an alternate formulation of voting based fusion and STAPLE 

for multiple protocols by defining a matching between the observed labels of the individual 

protocols, an intermediate protocol specific coarse labeling, and a set of fine labels which they 

wish to segment. To achieve the fusion, the authors build a mapping of the vector relationship 

between an individual protocol and the target, assuming there is a clear relationship that can be 

defined between the protocols, which in many cases may not be achievable. 

In comparison, the work presented here assumes a softer relationship between labels. In 

our empirical study, we found that 46.7% of pairwise label relationships contained non-zero co-

occurrence probabilities. In contrast, only 6.4% of the joint label relationships would be captured 

by [107]. By using pairwise label relationships we are both simplifying the initialization of the 

model and potentially capturing more robust relationships found within the data. 

Lastly, the work of [107] presents a natural generalization of STAPLE, which directly 

follows directly from the approaches of [91]. The generalizations of [107] assumes a hierarchically 

defined relationship between the observed labels of each atlas and the target labels. Conversely the 

 

Figure II-4 Qualitative results comparing eight segmentation algorithms (identified by † in Figure 3). Contour 

lines indicate manual truth target labels (shown lower left). 
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work presented in this dissertation provides an alternate generalization where we jointly segment 

multiple protocols and learn the relation between them as a function of the observations. We then 

simplify the proposed model to a more tractable solution for the scale of training examples 

available. 

This work has show how atlases with complementary labeling protocols can be used to 

improve segmentation of deep brain structures. These techniques hold substantial promise for 

improving fusion with existing protocols by using related atlases sets from disparate research 

groups (e.g., from the extensive list of available atlases of distinct protocols, 

http://www.mindboggle.info/data.html). Alternatively, this approach could form the basis of a 

bootstrapping technique where a new protocol is developed by extending/refining one or more 

existing protocols, as is illustrated in the empirical deep brain explain. Finally, the technique could 

be used to work towards consensus protocols while quantifying the joint information between the 

protocols. For example, hippocampal sub-field segmentation [106] is a active area of research, but 

groups providing high resolution protocols are rarely concerned with detailed manual whole-brain 

labeling. This approach could be used to jointly segment full brain [108] and hippocampus subfield 

labels without having one set of humans label both. 

http://www.mindboggle.info/data.html


38 

Chapter III 

Synthetic Atlases Improve Segmentation Consistency between 

T1-Weighted Imaging Sequences  

1. Introduction 

The intensities of T1-weighted magnetic resonance images are non-quantitative in that they 

are related to the local T1 relaxation, T2 relaxation, and proton density properties via imaging 

sequence parameters, but not directly specific individual tissue characteristics [73]. Multi-atlas 

segmentation (MAS) [109] is commonly used to quantify T1-weighted MRI through voxel-wise 

segmentation, which can be used to perform volumetric analysis [110], fMRI correlations [111], 

and tractography [112]. The relationship between intensity and T1-weighted imaging is defined 

by the parameters of the imaging sequence, e.g., for magnetization prepared rapid gradient echo 

(MPRAGE) - the inversion time (TI), repetition time (TR), echo time (TE), and flip angle (𝛼).  

Imaging sequence plays a significant role in quantitative segmentation results [113, 114], 

as illustrated in Figure 1. Volume variability is minimized by defining a selective range of 

protocols with which all subjects are scanned [115]. Within a single site study, researchers 

typically define a single protocol for all subjects. In larger, multi-site studies, such as the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), a range of sequence parameters is defined 

to ensure data consistency between sites [115]. Other recent studies, e.g., the Autism Brain 
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Imaging Data Exchange (ABIDE), employ a unique sequence at each site in the study [116]. 

Similarly, retrospective studies do not have direct control over the sequences used [117]. Large 

studies (e.g., [117, 118]) may lose statistical power as a result of the added variance in 

segmentation results or suffer from bias problems if the aspects of the subject population are 

associated with imaging sequence.  

Image synthesis has shown promise results for harmonizing T1-weighted imaging across 

sequences [119, 120]. To date, the underlying assumption for image synthesis is that one has paired 

template images. Specifically, for a given target sequence, one has a template with image pairs 

with both the source and target sequences on at least one individual, albeit on a different individual 

than the synthesis target. Hence, image synthesis enables translation between two or more 

sequences that have been simultaneously acquired.  

 

Figure III-1 (A) Absolute and relative MPRAGE signals vary non-linearly based on the sequence parameters. (B) 

These changes introduce visually apparent boundary shifts when the same structures are compared across different 

imaging sequences.  
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Herein, we focus on the situation in which we have multiple different modalities, but we 

are not able to acquire paired templates for all modalities. This would be the situation for some 

multi-site studies and for retrospective studies. As a case study, we focus on the ABIDE study 

which has 17 distinct imaging sequences. A similar problem has been addressed in the image 

synthesis literature where the authors estimate the sequence parameters of a given scan and then 

transform their atlas using imaging physics equations before synthesis to better match the target 

[119]. The authors produce synthetic target images more similar to their atlas, thus decreasing the 

error due to sequence variation. This approach is interesting but not directly applicable to multi-

atlas segmentation since we cannot assume we have atlas image pairs similar to the target image 

of multi-atlas segmentation. In this work we consider a similar underlying principle where we first 

use the imaging physics equations to synthesize atlases more similar to the target and use the new 

“synthetic” atlases for multi-atlas segmentation.  

2. Theory 

In this section, we first derive atlases with the underlying physiologic data necessary to 

synthesize atlases, with a focus on MPRAGE T1-weighted MRI data. Then, we propose a synthetic 

 

Figure III-2 Atlases with quantitative T1-relaxation and proton density maps are used to generate synthetic atlases 

from sequence parameters (i.e., inversion time, echo time, repetition time). The synthesized atlases are used in 

the standard multi-atlas segmentation procedure.  
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multi-atlas segmentation pipeline using the physiologic parameter maps to segment a target scan 

for which we know the underlying imaging sequence (Figure 2). 

2.1.  Synthetic Atlas Theory 

Signal intensity in MPRAGE images is approximately [73, 119]: 

𝑆𝑀(𝑥) = 𝐺𝑀𝑃𝐷(𝑥) (1 −
2𝑒

−
𝑇𝐼

𝑇1(𝑥)

1 + 𝑒
−

𝑇𝐼+𝑇𝐷+𝜏
𝑇1(𝑥)

) (1) 

where 𝑆𝑀(𝑥) is the signal intensity at a voxel 𝑥, 𝐺𝑀 is the scanner gain field, 𝑃𝐷(𝑥) is the proton 

density at 𝑥, 𝑇𝐼 is the inversion time, 𝑇1(𝑥) is the T1-relaxation at 𝑥, 𝑇𝐷 is the sequence delay 

time, and 𝜏 is the slice timing. The gain field is assumed to be a global scalar, which corresponds 

to performing spatial bias correction prior to analysis. Volumetric segmentation and registration 

procedures typically normalize image intensity in the correspondence calculation [97, 121, 122], 

thus it is not important to explicitly calculate the gain field.  

To derive the proton density and T1-relaxation maps, we use a T1-weighted MPRAGE 

along with a T2-weighted dual echo. The dual echo signal equation is [123]: 

𝑆𝐷𝑆𝐸𝑛
(𝑥) = 𝐺𝐷𝑆𝐸𝑃𝐷(𝑥) (1 − 2𝑒

−
𝑇𝑅−

𝑇𝐸1+𝑇𝐸2
2 

𝑇1(𝑥) + 2𝑒
−

𝑇𝑅−
𝑇𝐸2

2
𝑇1(𝑥) − 𝑒

−
𝑇𝑅

𝑇1(𝑥)) 𝑒
−

𝑇𝐸𝑛
𝑇2(𝑥) (2) 

where 𝑛 corresponds to the 𝑛th echo, 𝐺𝐷𝑆𝐸 is the dual echo gain field, 𝑇𝑅 is the repetition time, 

𝑇𝐸𝑛 is the 𝑛th echo time, and 𝑇2(𝑥) is the T2-relaxation at 𝑥. Since the repetition time of these 

scans is long, the T1-weighted component equates to effectively 0 and the equation reduces to 

𝑆𝐷𝑆𝐸𝑛
(𝑥) ≈ 𝐺𝐷𝑆𝐸𝑃𝐷(𝑥)𝑒

−
𝑇𝐸𝑛

𝑇2(𝑥) (3) 

Thus, the local T2 relaxation is 
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𝑇2(𝑥) ≈
𝑇𝐸1 − 𝑇𝐸2

ln (𝑆𝐷𝑆𝐸2
(𝑥)) − ln (𝑆𝐷𝑆𝐸1

(𝑥))
 

(4) 

which is a standard logarithmic T2-relaxation fit. The local proton density is then found as 

𝐺𝐷𝑆𝐸𝑃𝐷(𝑥) =
𝑆𝐷𝑆𝐸1

𝑒
−

𝑇𝐸1
𝑇2(𝑥)

 
(5) 

which is within a scalar factor of the proton density. From this result, the T1-relaxation map can 

be solved from (1). First, the gain field is solved by 

𝑆𝑀(𝑥)

𝐺𝐷𝑆𝐸𝑃𝐷(𝑥)
=

𝐺𝑀𝑃𝐷(𝑥)

𝐺𝐷𝑆𝐸𝑃𝐷(𝑥)
(1 −

2𝑒
−

𝑇𝐼
𝑇1(𝑥)

1 + 𝑒
−

𝑇𝐼+𝑇𝐷+𝜏
𝑇1(𝑥)

) (6) 

𝑆𝑁(𝑥) = 𝐺𝑁 (1 −
2𝑒

−
𝑇𝐼

𝑇1(𝑥)

1 + 𝑒
−

𝑇𝐼+𝑇𝐷+𝜏
𝑇1(𝑥)

) 

   

   (7) 

where 𝑆𝑁(𝑥) is a simplification of 
𝑆𝑀(𝑥)

𝐺𝐷𝑆𝐸𝑃𝐷(𝑥)
 and 𝐺𝑁 is 

𝐺𝑀

𝐺𝐷𝑆𝐸
. 𝐺𝑁is  

𝐺𝑁 =

𝑆𝑁(𝑥) (1 + 𝑒
−

𝑇𝐼+𝑇𝐷+𝜏
𝑇1(𝑥) )

(1 − 2𝑒
−

𝑇𝐼
𝑇1(𝑥))

 (8) 

Though this equation still contains and unknown, 𝑇1(𝑥), 𝐺𝑁 can be solved with known values of 

𝑇1(𝑥). To do this, the value of 𝐺𝑁 is solved with the expected values of 𝑇1(𝑥) in the grey matter, 

white matter, and CSF and the median intensity of these tissue types [124]. The final value of 𝐺𝑁 

is calculated as the mean of these three measurements. Lastly, to estimate 𝑇1(𝑥) it is necessary to 

assume that 𝑒
−

𝑇𝐼+𝑇𝐷+𝜏

𝑇1(𝑥) ≈ 𝑒
−

𝑇𝐼

𝑇1(𝑥), which a reasonable assumption since the inversion time is on the 

order of hundreds of milliseconds, whereas the delay time and slice timing is on the order of 

milliseconds. Thus, 𝑇1(𝑥) is  
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2𝑒
−

𝑇𝐼
𝑇1(𝑥)

1 + 𝑒
−

𝑇𝐼
𝑇1(𝑥)

= 1 −
𝑆𝑁(𝑥)

𝐺𝑁
 (9) 

After manipulation:  

 

𝑇1(𝑥) = −
TI

ln (
𝑆

2 − 𝑆)
 

(10) 

Given a dataset with a T1-weighted MPRAGE, T2-weighted dual echo, and labels, these images 

together with equations (1), (4), (5), and (10) can be used as synthetic atlases.  

 

Figure III-3 Volumetric segmentation results for the standard and synthetic multi-atlas segmentation approaches 

on seven acquired subjects. For most of the major tissue types, there was a significant reduction in variance using 

the synthetic segmentation compared with the standard (*, p<0.05). Cerebrospinal fluid did not show a significant 

improvement using either method. 
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2.2. Synthetic Atlas Creation 

The Kirby 21 Multi-Modal MRI Reproducibility Resource consists of 21 subjects where 

each subject was scanned consecutively with 12 anatomic and quantitative imaging sequences 

[125]. The Kirby 21 captured a T2-weighted dual echo (TR/TE1/TE2=6653ms/30ms/80ms) and 

T1-weighted MPRAGE  (TR/TE/TI=6.7/3.1/842ms) so that the underlying T1- and T2-relaxation 

and proton density maps can be derived [125]. Of the 21 subjects available, the ten subjects whose 

white matter T2-relaxation matched the literature [124] were selected to be used as atlases. Lastly, 

the labels were derived using the publicly available BrainCOLOR atlases 

(www.neuromorphometrics.com) and a previously described multi-atlas segmentation procedure 

[92, 93, 97]. The result of this is a series of T1 relaxation, T2 relaxation, PD, and label volumes. 

Herein the T1 and T2 relaxation and PD volumes are the synthetic image set. 

2.3. Synthetic Multi-Atlas Segmentation 

The synthetic MAS procedure directly follows the standard MAS procedure[109], except 

the MR signal equations are used to create atlas images of similar intensity contrast to the target. 

 
Standard Segmentation Synthetic Segmentation 

 
TI = 927 TI = 880 TI = 624 TI = 927 TI = 880 TI = 624 

Cerebral White Matter 4.14x105 4.19x105 4.21x105 4.18x105 4.18x105 4.20x105 

Cortical Grey Matter 6.13x105 6.10x105 6.25x105 6.13x105 6.11x105 6.15x105 

Subcortical Grey Matter 5.22x104 5.31x104 5.27x104 5.26x104 5.28x104 5.26x104 

Cerebellar Grey Matter 1.07x105 1.08x105 1.09x105 1.07x105 1.07x105 1.08x105 

Cerebellar White Matter 2.74x105 2.75x105 2.76x105 2.75x105 2.75x105 2.75x105 

Cerebrospinal Fluid 1.83x104 1.74x104 1.71x104 1.84x104 1.76x104 1.70x104 

Table III-1 Summary of average segmentation volumes for the three acquired scans on seven subjects.  Average 

volumes for the two segmentation techniques, standard segmentation and synthetic segmentation, are shown.  

http://www.neuromorphometrics.com/
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The synthetic atlases are used for both the registration and segmentation. It is important to note 

that the labels do not change in the synthesis process.  

3. Methods 

Briefly, three distinct MR sequences were acquired for a cohort of seven healthy control 

subjects to assess the sequence variability under controlled circumstances. These scans were 

segmented using both the standard and synthetic multi-atlas segmentation approaches. The 

acquired data are segmented with a standard multi-atlas segmentation approach. The synthetic 

image set are used as target images where the sequence parameters were varied over a practical 

range of MPRAGE parameters. We show that the acquired target data and the synthetic target data 

show a similar pattern, implying that the biases based on the different sequences are captured by 

the synthetic data. Finally, the ABIDE study is considered, where autistic and healthy subjects are 

scanned at over 20 locations around the world. At these locations, different sequences are used, 

thus decreasing the consistency in the segmentation results. 

3.1.  Data Acquisition 

Three distinct T1-weighted MPRAGE sequences were acquired on a cohort of seven 

control subjects (2F/5M, 21-58 years old, no history of neurological disorders). All scans were 

acquired without re-positioning in a one-hour session for each patient on a 3T Philips Achieva 

MRI (Philips Medical Systems, Best, The Netherlands) with a 32-channel receive coil. The first 

sequence had TI/TR/TE/α 624/8.9/4.6ms/8°, the second sequence had TI/TR/TE/α 

891/8.2/3.7ms/8°, and the third sequence had TI/TR/TE/α 927/7.9/3.6ms/5°. Note that the 

sequences are representative of MPRAGE sequences used routinely at Vanderbilt University, and 

the second sequence is within the ADNI sequence parameter limits.  
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3.2.  Synthetic Multi-Atlas Segmentation of Acquired Data 

Two multi-atlas segmentations were performed for each of the 21 acquired scans. First, 

each scan was segmented using the standard multi-atlas pipeline outlined in [109]. For this 

segmentation, the ten Kirby-21 images selected in §2.2 were used as atlases. For this segmentation, 

the acquired T1-weighted MPRAGE was used as the atlas image volume and the labels derived in 

§2.2 for these ten images were used. Second, each scan was segmented using the synthetic multi-

atlas pipeline outlined previously using the ten synthetic atlases derived in §2.2.  

3.3.  Standard Segmentation of the Acquired and Synthetic Data 

To assess the sensitivity of standard multi-atlas segmentation to inversion time, target 

images were created using each of the ten synthetic atlas images with inversion times ranging from 

 

Figure III-4 Comparison of trends in acquired data compared with synthetic. The trend lines and points for one 

subject of each are shown here, normalized to a mean of zero. Six tissue types are presented here and cerebral 

white matter, cortical grey natter, subcortical grey matter, cerebellar grey matter, and cerebellar white matter 

showed similar trends between the synthetic and acquired images. Similar trends are present across the whole 

population and are statistically significantly similar between the acquired and synthetic data. 
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600 to 1100ms in intervals of 20ms. The standard multi-atlas segmentation pipeline [109] was 

performed on the 21 synthetic and one original image for each of the ten subjects. Segmentation 

volumes for these were then correlated with the true inversion time for the acquired data and the 

synthetic inversion time.  

3.4. Synthetic Multi-Atlas Segmentation of ABIDE  

The Autism Brain Imaging Exchange (ABIDE) provides multi-site, multi-modal brain 

imaging for autistic patients and healthy controls [118]. Each subject was scanned with a T1-

weighted sequence and an fMRI, but each site designed its own sequences. No two sites share a 

sequence, which results in a significant site-effect for volumetric differences as has been reported 

in [113, 114]. We performed the standard MAS and synthetic MAS techniques on each ABIDE 

subject, matching the synthetic sequence information to where the scan was performed. A cross-

validated classification of autistic versus healthy was performed where each site was held out. An 

L1-normalized logistic regression model was built including age, age squared, gender, gender 

 

Figure III-5 Qualitative surface changes comparing the standard and synthetic multi-atlas segmentations for one 

randomly selected subject within ABIDE. Surface distance is measured as the distance between the surface of 

standard multi-atlas segmentation and the synthetic multi-atlas segmentation. Negative changes corresponds to 

cases where the synthetic segmentation’s surface was within the standard. Synthetic segmentation tends to pull 

the grey matter/CSF boundary inward whereas the synthetic segmentation extrudes the white matter at similar 

sulci peaks. The subcortical changes are less consistent.  
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cross age, gender cross age squared, and the volumes from the 132 regions of interest to predict 

autism diagnosis status [126]. This procedure was performed twice, once using the synthetic MAS 

segmentation volumetric results and once using the standard MAS segmentation volumetric 

results. The “leave-site-out” procedure examines if the learned classifier performs better on data 

from sequences it was not familiar with, since no two sites shared a sequence. 

4. Results 

For the seven subjects acquired with three distinct MPRAGE sequences (§3.2), the 132 

regions from the BrainCOLOR were condensed to six biologic types: cortical grey matter, cerebral 

white matter, subcortical grey matter, cerebrospinal fluid, cerebellar grey matter, and cerebellar 

white matter. The 132 regions were condensed to these because they are tissue groups with similar 

T1-relaxation and proton density profiles [124]. For both segmentation techniques, the variance of 

segmentation volume between the three sequences was calculated for each of the six structures. 

That is to say, for a given structure of interest (i.e. cortical grey matter) and a segmentation 

technique (i.e. synthetic multi-atlas segmentation) the variance in volume was calculated between 

the segmentations of the three T1-weighted imaging sequences. There was a significant decrease 

in the variance between the segmented volumes of total cortical grey matter, total cerebral white 
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matter, and total subcortical grey matter volume (p<0.01, Wilcox sign-rank test; Figure 3; table 1). 

Cerebrospinal fluid showed no significant difference in variance using either method. Across five 

major tissue types of interest, cortical grey matter, cortical white matter, subcortical grey matter, 

cerebrospinal fluid, cerebellar grey matter, and cerebellar white matter, the mean effect of 

sequence on volume was 9% using the standard MAS. Using the synthetic MAS, this mean effect 

dropped to 4%. Qualitatively, these segmentations show consistent surface differences (Figure 4). 

Surface changes are localized primarily at the gyri for the cortical grey matter and cerebral white 

matter and on a regional basis for the subcortical grey matter.  

The standard multi-atlas segmentations performed on the synthetic target images and the 

acquired images with varying inversion times showed similar trends. The trends of cortical grey 

matter, cortical white matter, and subcortical grey matter showed significantly similar patterns 

between the acquired and synthetic target images (Figure 5; p<0.05, Wilcox rank-sum test). 

 

Figure III-6 In the leave-site-out classification (A) of autism versus control, the mean AUC was significantly 

higher using the synthetic segmentation volumes compared with the standard segmentations. Consistent trends in 

percent volume difference between the standard and synthetic segmentations were seen for these subjects (B). 

Site was significantly correlated with percent volume difference (p<0.01, Pearson’s correlation) whereas age was 

not. 
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However, cerebrospinal fluid did not show a significant correlation between these acquired and 

synthetic data. 

In the autistic versus healthy classification, there was an improvement in classification 

using the synthetic multi-atlas segmentation compared with the standard multi-atlas segmentation. 

There was a significant improvement in area under the receiver operator characteristic (AUC) 

curve in the leave-site-out classification (p < 0.01, Wilcox sign-rank test; Figure 6 A). Mean AUC 

increased from 0.57 (standard deviation 0.03) to 0.61 (standard deviation 0.03), and these results 

are comparable to previous studies [118]. Of the 17 ABIDE sites considered, 14 showed an 

increase in AUC using the synthetic multi-atlas segmentation. There was also no significant effect 

shown between age, race, or gender with percent volume change for any region of interest (Figure 

6 B) 

5.  Discussion and Conclusions 

Multi-atlas segmentation is currently one of the leading techniques for volumetric 

segmentation, and it is not without the sequence bias. By synthesizing atlases similar to [119], 

some of these sequence effects can be mitigated. Using synthetic atlases which match the sequence 

information of the scans, provides the atlases with information more consistent with the target 

images, thus decreasing some of the variance and improving statistical power when a linear effect 

cannot be used.  

Imaging sequence plays a significant role in volumetric segmentation results, and thus 

segmentation is not an absolute quantitative process when working between sequences. This result 

has been reported previously with FreeSurfer, where a linear effect model was used to mitigate 

adverse effects [114]. We observe a primarily linear effect with inversion time, which allows linear 

effects modeling. Note that not all study designs permit modeling the sequence effect separately, 
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for instance if the control population for a study was provided separately from the patient 

population and the two populations had different sequences.  

The synthetic MAS procedure presented here has several limitations. First, the labels used 

in our presented segmentation where automatically derived through a separate MAS procedure. 

As a result, any bias from either the sequences or the MAS technique present in that original 

procedure is propagated to these atlases and further to the target images. Second, the imaging used 

were not in the same space and were not at the same resolution. Since much of the sequence effects 

are in the partial voluming, not having comparable sequences causes some of the necessary 

information for the synthetic atlases to be lost in interpolation and different voxel sizes. Third, the 

T2-weighted sequence suffered from the first relaxation times being in the steep part of the 

exponential decay curve, and thus significant bias from that measure. Even with these biases, the 

synthetic multi-atlas segmentation still showed significant improvements in the volumetric 

segmentations. 



52 

Chapter IV 

Automated, Open-Source Segmentation of the Hippocampus and 

Amygdala with the Open Vanderbilt Archive of the Temporal Lobe 

1.  Introduction 

The hippocampus and amygdala are widely studied medial temporal lobe structures critical 

for memory and emotion, respectively [127, 128]. The hippocampus has been implicated as an 

important structure in the pathophysiology of Alzheimer’s disease, schizophrenia, depression and 

epilepsy [129].  Rather than being a unitary structure, the hippocampus can be divided into 

subregions along its transverse and longitudinal axes [130, 131]. Subfields defined within the 

transverse axis, including CA fields 1-4 and the dentate gyrus, contribute to distinct memory 

functions [130, 132-134]. Anterior and posterior subregions differ in structural connectivity, 

function, and gene expression [135-137]. The amygdala is tightly connected to the hippocampus 

and plays an important role in regulating interpretation of facial expression, fear processing, and 

emotional learning [138]. Structural and functional changes in the amygdala have been identified 

in neuropsychiatric disorders including autism, anxiety, and schizophrenia [12, 139-144].  

Advances in magnetic resonance imaging (MRI) allow for high-contrast, reproducible 

methods for visualization of the amygdala and hippocampus on standard T1-weighted images 

[145]. Traditionally, volumetric studies of these regions have been done by labor-intensive manual 

segmentation. The advancement of large-scale and longitudinal imaging studies in recent years 

necessitates the development of low-cost, reliable segmentation methods. Several open-source, 

automatic techniques have been developed for segmentation of the hippocampus and amygdala 

using standard, T1-weighted MR images. One of the most common techniques, FreeSurfer, 
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reconstructs the cortical surface and several subcortical brain structures with an energy model [72]. 

Another common technique is FSL FIRST, which uses a Bayesian shape and appearance model to 

segment subcortical structures [146]. A third approach is a multi-atlas segmentation [93, 109]. 

Other approaches, such as Automated Segmentation of Hippocampal Subfields (ASHS) delineate 

the hippocampus and its subfields, but require collection of an additional MR sequence outside of 

a standard T2-weighted MR protocol  [147]. 

Multi-atlas segmentation (MAS) can provide a robust and accurate segmentation of a target 

image [109]. Previous works have used MAS to segment the whole brain focusing on the cortex, 

the optic nerve, the abdomen, and other structures [93, 148-150]. A typical multi-atlas 

segmentation procedure involves non-rigidly registering ten or more atlases, image volumes paired 

with expertly delineated labels, to a target image to be segmented. Note that atlases are image sets 

with one or more structural images and a set of labels corresponding to the structures of interest. 

These registered target images are then joined together to create a representation that is more 

accurate than any individual registered atlas. One typical assumption of many studies is that 30 

atlases is sufficient to produce a segmentation to produce a maximally accurate segmentation 

[109]. 

In this work, we present the Open Vanderbilt Archive of the temporal Lobe (OVAL). 

OVAL is a fully automated segmentation approach using 195 atlases to produce an accurate 

segmentation of the hippocampus head, body, and tail and the amygdala. OVAL uses a previous 

multi-atlas segmentation of the whole brain, a common practice in most neuroimaging techniques, 

to localize the hippocampus and amygdala. OVAL then registers the 195 atlases to the localized 

target images and fuses them following a standard MAS protocol. OVAL produces segmentations 

of the amygdala and hippocampus more accurate than other common open-source tools and 
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produces segmentations of the hippocampus head and body comparably accurate with expert 

reproducibility. Moreover, OVAL allows us to test the assumption that 30 atlases is enough for 

optimal multi-atlas segmentation, and we show that 30 atlases produce inferior results to using the 

entire population of 195 atlases. 

2. Methods 

2.1. Overview 

The OVAL algorithm produces segmentations of target images using 195 atlases of the 

hippocampus and amygdala. The atlases are generated from 195 manually delineated hippocampi 

(dataset 1) and automatically segmented amygdalae defined from training data in a second 

population of 35 subjects with manually delineated amygdalae (dataset 2). Briefly, the 195 subjects 

with manual hippocampus segmentations were segmented with the 35 amygdala atlases following 

the protocol outlined below. These atlases are then cropped to a bounding box around each 

temporal lobe, resulting in 195 left and 195 right atlases. For a given target image, the atlases are 

used in a MAS framework to segment the amygdala, hippocampus head, and body. Finally, an 

anatomical landmark defined from whole-brain segmentation is used to split the hippocampus 

body into the body and tail. 

2.2. Subjects and Image Acquisition 

Dataset 1 consisted of MR images acquired in 90 healthy adults and 105 adults with a non-

affective psychotic disorder (56 schizophrenia; 32 schizoaffective disorder; 17 schizophreniform 

disorder) taken from an ongoing study of psychiatric phenotypes (table 1). Patients were recruited 

from the Vanderbilt Psychotic Disorder Program and controls were recruited from the surrounding 

Vanderbilt community. All participants were assessed with the Structured Clinical Interview for 
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DSM-IV [151]. New York: Biometrics Research, New York State Psychiatric Institute (2002). 

Dataset 2 included 35 subjects recruited as part of a study on temperament. The Vanderbilt 

University Institutional Review Board approved both studies. Structural images were acquired 

with a 3D T1-weighted MPRAGE sequence (TI/TR/TE = 860/8.0/3.7 ms; 170 sagittal slices; voxel 

size = 1.0mm3). All images were collected on a Philips Achieva scanner (Philips Healthcare, Inc., 

Best, The Netherlands). 

2.3. Hippocampus Protocol 

Manual delineation of the hippocampus on images from dataset 1 was completed following 

a previously published protocol [152, 153]. For the purposes of this study, the term hippocampus 

includes the hippocampus proper (CA1-4 and dentate gyrus) and parts of the subiculum, together 

more often termed the hippocampal formation [154]. Briefly, the hippocampus was traced as 

follows. Beginning with the right hippocampus, the full structure was traced from lateral to medial. 

The tracing was then re-examined in the coronal plane and refined to be consistent in both planes. 

 Dataset 1: Hippocampus Dataset 2: Amygdala 

 Psychosis Control Patient Control 

N 105 90 18 17 

Age, years (Mean ± SD) 34.62 ± 12.38 33 ± 11.33 24.6 ± 5.1 23.6 ± 4.8 

Gender (Female/Male) 37/68 41/49      12/6 10/7 

Race (White/Black/Other) 63/37/5 60/26/4        13/1/3 15/2/0 

Table IV-1 Atlas demographics 
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The anterior and posterior regions were divided in the coronal plane at the slice where only one 

cut through the hippocampus remained visible. The tracing was then verified in the sagittal view. 

This process was then repeated for the left hippocampus. The resulting 195 labeled images are 

hereafter referred to as hippocampus atlases. 

 

Figure IV-1: Quantitative segmentation results for the whole hippocampus and amygdala. OVAL outperforms all 

other segmentation techniques in terms of DSC for the left hippocampus in both raters, the right hippocampus in 

rater 2, and the left and right amygdala (p<0.05, *). OVAL outperforms all other techniques for the right 

hippocampus of rater 1 except human reproducibility, which performs comparably statistically. Human 

reproducibility outperforms all other techniques in MSD for the left and right hippocampus for rater 1 (p<0.05, *). 

OVAL and OVAL with 30 atlases outperform all other automated techniques for those structures. OVAL, OVAL 

with 30 atlases, and human reproducibility perform statistically comparable for the left and right hippocampus for 

rater 2 and outperform all other techniques (p<0.05, *). OVAL and FSL FIRST perform statistically similarly for 

the left amygdala and outperform all other segmentation approaches (p<0.05, *). OVAL, OVAL with 30 atlases, 

and FSL FIRST perform statistically similarly for the right amygdala and outperform all other segmentation 

approaches (p<0.05, *). 
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2.4. Amygdala Protocol 

Manual delineation of the amygdala on images from dataset 2 was completed as described 

in Clauss et al., 2014.  Structural images were first normalized to Montreal Neurologic Institute 

(MNI) standard template space. The amygdala was then traced in the axial plane, proceeding from 

superior to inferior and boundaries were refined in the coronal and sagittal plains. The 35 labeled 

images from dataset 2 are hereafter referred to as amygdala atlases. 

2.5. Whole-Brain Segmentation  

Whole-brain segmentation (WBS) was carried out on target images from dataset 1. First, 

45 atlases labeled with the BrainCOLOR protocol (www.neuromorphometrics.com) were affinely 

registered to each target image with Niftyreg [86]. The 15 atlases geodesically closest to the target 

were selected and these atlases were non-rigidly registered to the target image using the Advanced 

Normalization Tools (ANTs) Symmetric Normalization (SyN) algorithm [87]. The 15 registered 

atlases were fused with the hierarchical Non-Local Spatial STAPLE algorithm [92, 93, 97]. 

Finally, the segmentation was refined with corrected learning following [99]. The resulting 

segmentation contained 132 labels including the hippocampus and amygdala in both hemispheres, 

along with 98 other cortical structures. This segmentation acts as a guiding mechanism for 

segmentation of the hippocampus and amygdala. 

2.6. Atlas Creation 

Initially, two populations of data were available. The first population consisted of 195 

subjects (90 healthy adults, 105 adults with Schizophrenia) scanned with a T1-weighted MPRAGE 

scan (TI/TR/TE=860/8.0/3.7ms) and manually labeled with the protocol from §2.1, herein 

hippocampus atlases. The second population consisted of 35 subjects (15 healthy, 20 adults with 
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Schizophrenia) scanned with a T1-weighted MPRAGE scan (TI/TR/TE=860/8.0/3.7ms) and 

manually labeled with the protocol from §2.2, herein amygdala atlases. To create a set of atlases 

labeled with both the amygdala and hippocampus, the 35 amygdala atlases were non-rigidly 

registered to the hippocampus atlases and the registered atlases were fused with joint label fusion 

(JLF). The resulting amygdala labels were added to the hippocampus atlases where they did not 

conflict with manual hippocampus labels.  

The hippocampus atlases were then segmented with the WBS described in §2.3. For each atlas, 

the WBS was used to determine a bounding box around the hippocampus and amygdala for each 

hemisphere; the bounding box was dilated 5mm in each direction to assure the full true 

hippocampus and amygdala was included. The bounding box was then used to extract the atlas 

image and label volume localized to the region around the hippocampus and amygdala. This 

resulted in 195 hippocampus and amygdala atlases for each hemisphere, herein temporal lobe 

atlases.  

2.7. OVAL Segmentation 

OVAL segmentation results in lateralized segmentations of the amygdala, hippocampus 

head, body, and tail. The algorithm requires an input T1-weighted MRI volume and a WBS. First, 

the input T1-weighted volume is cropped to the left hippocampus and amygdala by its WBS, herein 

the left target image. The 195 left temporal atlases are non-rigidly registered to the left target image 

with NiftyReg and the ANTs SyN algorithm [86, 87]. The atlases are fused with JLF and the  

posterior probability volumes for amygdala, hippocampus head, and body are considered [98]. At 
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voxels where the sum of the probability of these labels exceeds 0.5, the label of these three with 

the highest probability is chosen 

 𝐿𝑖 = {
argX=𝑆 max 𝑝𝑖

X    𝑝i
GM > 0.5

 background        𝑝i
GM ≤ 0.5 

 16 

where 𝐿𝑖 is the label decision at voxel 𝑖, 𝑝𝑖
𝐺𝑀 is the sum of the probability of amygdala, 

hippocampus head, and body at I, 𝑝𝑖
𝑋 is the probability of label 𝑋 at 𝑖, and 𝑆 is the set of labels of 

interest, amygdala, hippocampus head, and hippocampus body. This correction primarily applies 

 

Figure IV-2 Quantitative segmentation results for the whole hippocampus head, body, and tail. OVAL 

outperformed OVAL with 30 atlases and human reproducibility on the right head and body in Dice Similarity 

Coefficient (p<0.05; *). No technique showed significant improvement on the right or left tail. Human 

reproducibility outperformed OVAL and OVAL with 30 atlases (p<0.05, *), though OVAL outperformed OVAL 

with 30 atlases. In mean surface distance, OVAL and human reproducibility outperformed OVAL with 30 atlases 

for the right head, OVAL outperformed all other techniques for the right body, no technique outperformed any 

other for the right and left tail, and human reproducibility outperformed the other techniques for the left and right 

head (p<0.05, *). 



60 

to voxels near the boundary of two structures, for instance the hippocampus head and body, where 

JLF shows a posterior probability less than 0.5 for the background, but the probability of the head 

or body does not exceed the probability of background. For instance, a case where the probability 

of hippocampus head is 0.35, hippocampus body is 0.25, and background is 0.4. This procedure is 

then repeated for the right hippocampus.  

After the segmentation of the amygdala, hippocampus head, and hippocampus body is 

complete, the final step in the segmentation is splitting the body and tail. For the left hippocampus, 

the most posterior point on the left thalamus is identified from the WBS by finding the point on 

the thalamus nearest to the mean location of the left occipital lobe. Next, a line is fit through the 

coordinates of the voxels of the full hippocampus, defined by the OVAL segmentation. Lastly, a 

plane is fit through the posterior point of the thalamus, orthogonal to the line through the 

hippocampus. The points of the body of the hippocampus posterior to the plane are then defined 

as the tail and the points anterior to the plane defined as the body. 

3. Results 

Three experiments were considered to test the accuracy of OVAL compared with other 

segmentation approaches. A set of 10 atlases, distinct from the training population, was labeled 

with the hippocampus segmentation protocol (§2.2) by two expert raters, creating a human 

reproducibility dataset, herein the hippocampus testing atlases. A separate set of 35 atlases, distinct 

from the training population and the hippocampus reproducibility population, was labeled with the 

amygdala protocol (§2.3), herein the amygdala testing atlases. These two datasets were segmented 
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with the WBS described in (§2.4), FreeSurfer, FSL FIRST, OVAL with 30 atlases, and OVAL 

with 195 atlases to test OVAL’s accuracy. Next, the 10 hippocampus testing atlases were 

segmented with OVAL with 30 atlases and OVAL with 195 atlases to test OVAL’s accuracy on 

the hippocampus head, body, and tail. Finally, since there is a significant amount of discrepancy 

between hippocampus segmentation protocols, the Kirby21 multi-modal reproducibility dataset 

was segmented with WBS in (§2.4), FreeSurfer, FSL FIRST, and OVAL to compare OVAL’s 

intra-subject reproducibility of the amygdala and full hippocampus segmentation. 

3.1. Whole Hippocampus and Amygdala Segmentation 

The hippocampus testing atlases and amygdala testing atlases were first segmented with 

the WBS, identified as BrainCOLOR in figures and results. These atlases were segmented with 

FreeSurfer using their standard reconstruction and FSL FIRST with standard parameters. Finally, 

 

Figure 3: Reproducibility results for segmentation of the full hippocampus and amygdala on the Kirby 21 multi-

modal reproducibility dataset. There was no effect on percent volume difference (A). OVAL produced the lowest 

percent volume difference between reproducibility segmentations for all structures (B, p<0.05, *). 

 

Figure IV-3 Median qualitative segmentation results for the whole hippocampus and amygdala; red represents the 

estimated segmentation and green is the truth. FSL FIRST, BrainCOLOR, and FreeSurfer all showed large surface 

distances up to 4mm for both the hippocampus and amygdala. OVAL and OVAL with 30 atlases were typically 

within 1mm distance on the hippocampus, though OVAL produced more consistent results than OVAL with 30 

atlases. On the amygdala, OVAL and OVAL with 30 atlases captured the overall contour of the amygdala, but were 

not able to accurately localize the borders since they are defined by anatomical landmarks. 
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the atlases were segmented with OVAL and OVAL with a subset of 30 atlases. The OVAL 

hippocampus segmentations were reduced to whole hippocampus by collapsing hippocampus 

head, body, and tail into one label. Mean surface distance (MSD) and Dice similarity coefficient 

(DSC) were calculated between each segmentation and the hippocampus and amygdala testing 

atlases.  

For DSC of the hippocampus testing atlases, OVAL outperformed FSL FIRST, FreeSurfer, 

BrainCOLOR, OVAL with 30 atlases, and human reproducibility for left hippocampus for rater 1, 

left hippocampus rater 2, and right hippocampus rater 2 (p<0.05 Wilcoxon sign-rank test; figure 

1). For right hippocampus rater 1, OVAL and human reproducibility performed comparably and 

outperformed other techniques (p<0.05 Wilcoxon sign-rank test). For MSD of the hippocampus 

testing atlases, human reproducibility outperformed other techniques for the left and right 

hippocampus for rater 1, OVAL with 30 atlases and OVAL outperformed all other automated 

techniques (p<0.05 Wilcoxon sign-rank test; figure 1). For the left and right hippocampus for rater 

2, OVAL with 30 atlases, OVAL, and human reproducibility all performed statistically similarly 

and outperformed all other techniques (p<0.05 Wilcoxon sign-rank test; figure 1). 

For DSC of the amygdala testing atlases, OVAL outperformed FSL FIRST, FreeSurfer, 

BrainCOLOR, and OVAL with 30 atlases for both left and right amygdala (p<0.05 Wilcoxon sign-

rank test). For MSD of the amygdala testing atlases, OVAL and FSL FIRST outperformed 

BrainCOLOR, FreeSurfer, and OVAL with 30 atlases for the left amygdala (p<0.05 Wilcoxon 

sign-rank test; figure 1). For the right amygdala, OVAL, OVAL with 30 atlases, and FSL FIRST 

outperformed BrainCOLOR and FreeSurfer, but were not statistically separable (p<0.05 Wilcoxon 

sign-rank test; figure 1). For MSD of the amygdala, FSL FIRST and OVAL resulted in a 

significantly lower MSD for the left amygdala compared with FreeSurfer, BrainCOLOR, and 
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OVAL with 30 atlases; for the right amygdala, FSL FIRST, OVAL with 30 atlases, and OVAL 

resulted in a significantly lower MSD than BrainCOLOR and FreeSurfer (p<0.05; figure 1).  

3.2. Hippocampus Head, Body, Tail Segmentation 

The hippocampus testing atlases were segmented with OVAL, following §2.6, and OVAL 

with 30 atlases.  Since no other approach provides a segmentation of the hippocampus head, 

body, and tail, only these two approaches were compared against reproducibility. Since the 

hippocampus testing atlases only segmented the head and body, the tail was split from the body 

following the protocol in §2.6. For simplicity, only the results with respect to rater 1 are presented 

(figure 2). 

For the right head and body, OVAL significantly outperformed human reproducibility and 

OVAL with 30 atlases in DSC (p<0.05 Wilcoxon sign-rank test). OVAL significantly 

outperformed human reproducibility and OVAL with 30 atlases in MSD of the right head and 

OVAL and human reproducibility outperformed OVAL with 30 atlases in MSD of the right tail 

 

Figure IV-4 Median qualitative segmentation results for the hippocampus head, body, and tail. Green represents 

the true segmentation and red represents the estimate. Human reproducibility defined a different point for the 

head/body split and rater 2 under-segmented the tail of the hippocampus and the tip of the head compared with rater 

1. OVAL with 30 atlases produced more local errors than OVAL. Images were rotated along the axis of the 

hippocampus, gaps between the head, body, and tail are exaggerated for visualization. 
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(p<0.05 Wilcoxon sign-rank test). For the left head and body, human reproducibility outperformed 

OVAL and OVAL with 30 atlases in DSC and MSD, though OVAL outperformed OVAL with 30 

atlases on both of these structures (p<0.05 Wilcoxon sign-rank test). For the right and left tail, no 

technique performed significantly better in DSC and MSD. 

3.3. Whole Hippocampus and Amygdala Reproducibility 

The BrainCOLOR, FreeSurfer, and FSL FIRST segmentation approaches considered in 

§3.1 do not use the same protocol as the manual segmentations [155]. Thus, saying that the OVAL 

approach has higher DSC and lower MSD than the other approaches does not necessarily conclude 

that it is a better approach than the other techniques. The Kirby21 multi-modal reproducibility 

dataset is a set of 21 subjects scanned twice in immediate succession.  The two T1-weighted 

MPRAGEs for each subject was segmented with the BrainCOLOR multi-atlas segmentation 

(§2.4), FreeSurfer, FSL FIRST, and OVAL. To assess the reproducibility of each technique, the 

volume of the amygdala and whole hippocampus was calculated. The average volume (𝐴𝑉 =

volume1+volume2

2
) and absolute percent volume difference (𝑃𝑉𝐷 =

|volume1+volume2|

𝐴𝑉
) between each 

scanning session was calculated for each subject. The percent volume difference of OVAL was 

significantly lower than all other techniques for all structures (p<0.05 Wilcoxon sign-rank test; 

figure 3). In the hippocampus, OVAL had an average percent volume similarity of 0.75 and 0.66 

for the left and right respectively and for the amygdala, OVAL had an average percent volume 

similarity of 2.67 and 3.10 for the left and right respectively. 

4. Discussion 

In this work, we presented the OVAL segmentation algorithm for segmentation of the 

hippocampus and amygdala. First, we presented labeling protocols for the hippocampus head and 
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body and the amygdala. Second, we created an atlas population of 195 subjects with manually 

traced hippocampi and automatically segmented amygdalae. Third, we presented the OVAL 

segmentation algorithm which, for a given target image, uses an initialization of the temporal lobe 

from a whole-brain segmentation to efficiently perform the segmentation. 

OVAL was evaluated in three experiments. First, OVAL was compared with FreeSurfer, FSL 

FIRST, a whole-brain multi-atlas segmentation with BrainCOLOR, and OVAL with a subset of 

30 atlases for segmentation of the whole hippocampus and amygdala. OVAL outperformed all 

other approaches for segmentation of the hippocampus and amygdala. Qualitatively, the OVAL 

segmentation tends to produce a segmentation of the amygdala with smoother boundaries than the 

atlas definitions since several of the atlas boundaries are defined by global landmarks instead of 

boundaries visible in contrast (figure 4). Second, OVAL was evaluated against human 

reproducibility and OVAL with a subset of 30 atlases for segmentation of the hippocampus head, 

body, and tail. In general, OVAL performed comparably with human reproducibility and 

outperformed OVAL with 30 atlases. Qualitatively, OVAL segmentations are typically within 

1mm of the truth at all voxels including the boundary between the body and head (figure 5). Third, 

since FreeSurfer, FSL FIRST, BrainCOLOR, and OVAL use different segmentation protocols, 

these segmentation protocols were evaluated for reproducibility with the Kirby21 multi-modal 

reproducibility dataset. OVAL showed the lowest average percent volume similarity of any 

technique, implying that it is the most reproducible of any algorithm tested. 

OVAL presents an accurate and reproducible segmentation of the hippocampus and 

amygdala, two of the most studied structures in the human brain. Furthermore, since OVAL has 

195 atlases available, it was possible to test whether 30 atlases were sufficient to produce optimal 

segmentations or if the full atlas population produced better results. OVAL using all atlases 
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outperformed OVAL using only 30 atlases, proving that 30 atlases is not sufficient to produce 

optimal segmentations for this task. 
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Chapter V 

Improving Cerebellar Segmentation with Statistical Fusion 

1. Introduction 

The cerebellum is an anatomic region of the central nervous system located in the posterior 

fossa, inferior to the cerebrum and posterior to the brain stem. As with the cerebrum, the 

cerebellum consists of two hemispheres (left and right), but also contains midline gray matter 

structure known as the vermis [156-158]. The cerebellum consists of a layer of tightly folded gray 

matter surrounding densely packed white matter beneath. The white matter contains four gray 

matter nuclei: the dentate, globose, emboliform, and fastigial, which receive input fibers from the 

cerebellar cortex and output to the cerebrum; these cerebellar nuclei account for most of the fibers 

leaving the cerebellum. The somatotopically organized cerebellum plays an important role in 

motor function and secondary roles in higher order cognition and decision making. Segmentation 

of the cerebellum provides a unique challenge in that the cerebellar lobules are not easily 

differentiated in healthy subjects due to the resolution of the imaging whereas subjects with 

cerebellar atrophy have more easily differentiable structures (Figure 1). 

Automated segmentation of the cerebellum has been deeply discussed and characterized in 

the literature. Van der Lijn used atlas registration and local feature descriptors to segment the left 

and right hemispheres of the cerebellum but did not segment any of the individual lobules or the 

vermis [159]. Saeed and Puri developed a semi-automated procedure using template selection and 

local texture to segment the whole cerebellum [160]. Powell et al use machine learning with 



68 

probabilistic atlases to segment the cerebellum into upper, middle, and lower lobules but do not 

explore deeper characterization of regions and only apply their method to healthy subjects [161]. 

Diedrichsen et al present a probabilistic atlas for segmentation characterizing all of the cerebellar 

lobules but the single probabilistic atlas does not individually provide robust segmentations across 

diverse subject populations [162]. Lastly, Yang et al propose performing multi-atlas segmentation 

of the cerebellar lobules and vermis followed by a post-hoc graph cut to model the boundaries 

[101]. 

Herein we propose new segmentation algorithms which combines the ideas of patch-based 

correspondence of Coupe et al and strong internal atlas selection of Langerak and SIMPLE [96, 

105]. The first algorithms, Local SIMPLE and Local Spatial SIMPLE, incorporate intensity 

information into the generative model of SIMPLE similar to the models of locally-weighted vote 

and we extend the model to allow spatially varying performance parameters [84, 163]. The third 

 

Figure V-1: Axial, coronal, and sagittal segmentation results for a healthy (A) subject and a patient with severe 

cerebellar ataxia (B). Note the easily differentiable lobules in the patient whereas the differentiation of the lobules is 

lost to the resolution of the imaging in the healthy subject. 
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algorithm we propose, Non-Local SIMPLE, combines the ideas of patch-based fusion with the 

strong semi-parametric atlas selection of SIMPLE, but instead of treating atlases independently, 

Non-Local SIMPLE assumes an independence between local patches and develops a performance 

model around them. We evaluate the effectiveness of these models on two distinct populations of 

cerebellum atlases and compare these algorithms to previous segmentation techniques. 

2. Methods 

We begin be defining the data and the standard pipeline used for multi-atlas segmentation. 

We then define the generative models underlying Local SIMPLE and Non-Local SIMPLE. For 

these models, we define: 𝑇𝑖 is the true label at voxel 𝑖, 𝑠 is an arbitrary label, 𝐼𝑖 is the intensity 

observed at voxel 𝑖 by the target image, 𝐷𝑖 is a 1 × 𝑅 vector of labels observed at 𝑖, 𝑅 is the number 

of available raters, 𝐿 is number of observed labels, 𝑁 is the number of observed voxels, 𝑏 is an 

integer pooling region, 𝐴𝑖 is a 1 × 𝑅 vector of the intensity values observed at 𝑖, 𝑐 is a 1 × 𝑅 binary 

vector indicating the current atlas selection state for each atlas, 𝜖 is a 1 × 𝑅 rater error vector, 𝜎 is 

the standard deviation used in intensity weighting, 𝑘 is the current iteration during expectation 

maximization, 𝑗 is a particular rater, 𝜃 is a 𝑅 × 2 × 𝐿 × 𝐿 matrix where 𝜃𝑗𝑛𝑠𝑠′  is the likelihood 

rater 𝑗 observes 𝑠 given that the true label is 𝑠′ and their atlas selection status is 𝑛. For brevity the 

definitions of 𝜃 are left to Xu et al [163]. 

2.1. Data 

Two datasets were considered in this study. The first dataset, herein Anura, consisted of 25 

subjects, 13 with cerebellar ataxia and 12 healthy, ranging in age from 36 to 73, 23 female and 2 

male, scanned with a 1.5T three dimensional SPGR sequence and cerebellum manually traced by 

a trained expert. The second dataset, herein AT, consisted of 45 subjects, 15 healthy controls and 
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30 patients with various cerebellar diseases, ranging in age from 29 to 90, 21 female 24 male, 

scanned with a 3T three dimensional MPRAGE sequence. Each subject was labeled by two 

intermediate experts and gold-standard segmentations were generated by fusing the manual 

labelings together. 

2.2. Multi-Atlas Pipeline 

All data from both populations followed the same protocol for registration. The data were 

first bias corrected with N4 bias correction. For each dataset, each pair of scans was non-rigidly 

registered using the Advanced Normalization Tools (ANTs) SyN algorithm and the default 

parameters for brain registration [88]. Labels volumes were then deformed to the subject space 

using the ANTs warping tool and nearest neighbor interpolation.  

We compare our new algorithms with several previous algorithms. The first algorithms we 

compare against are majority vote and non-locally weighted [84, 96]. Second, we compare against 

 

Figure V-2 Summarized segmentation results for the Anura and AT datasets. Non-Local SIMPLE outperformed all 

other techniques on the Anura dataset (A). On the AT dataset Non-Locally Weighted Vote significantly outperformed 

all other techniques, but Non-Local SIMPLE still outperformed the previously gold-standard technique of Yang et al 

(A).Qualitatively, Non-Locally Weighted Vote seemed to oversegment the lobules whereas Non-Local SIMPLE 

tended to undersegment. The results of Yang et al visually produced results more consistent with the anatomic 

boundaries but had more internal boundary shifts than either Non-Locally Weighted Vote or Non-Local SIMPLE. 
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the SIMPLE algorithm from Langerak and a spatially varying extension, herein Spatial SIMPLE 

[105, 163, 164]. Lastly we compare our results to previous work on the same dataset by Yang et 

al where a multi-atlas segmentation was used as an initialization and a post-hoc graph cut was used 

to correct the image boundaries [165]. 

2.3. Local and Local Spatial SIMPLE 

Following the generative model definition of SIMPLE from Xu et al [163] we incorporate 

local intensity into the model as 

 

𝑓(𝑇𝑖 = 𝑠, 𝐼𝑖|𝐷𝑖 , 𝐴𝑖 , 𝑐, 𝜖, 𝜎, 𝜃) (2) 

which we can solve through expectation-maximization. We define the E-Step as 

𝑊𝑠𝑖
𝑘 =

𝑓(𝑇𝑖 = 𝑠) ∏ 𝑓(𝐴𝑖𝑗|𝐼𝑖 , 𝜎)𝑓(𝐷𝑖𝑗|𝑇𝑖 = 𝑠, 𝑐𝑗
𝑘, 𝜖𝑗

𝑘)𝑗∈𝑅

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ 𝑓(𝐴𝑖𝑗|𝐼𝑖, 𝜎)𝑓(𝐷𝑖𝑗|𝑇𝑖 = 𝑠′′, 𝑐𝑗
𝑘, 𝜖𝑗

𝑘)𝑗∈𝑅𝑠′′

 

 =
𝑓(𝑇𝑖 = 𝑠) ∏ 𝑝(𝐴𝑖𝑗|𝐼𝑖, 𝜎)𝜃

𝑗𝑐𝑗
𝑘𝑠𝑠′𝑗∈𝑅

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ 𝑓(𝐴𝑖𝑗|𝐼𝑖, 𝜎)𝜃𝑗𝑐𝑗
𝑘𝑠′′𝑠′𝑗∈𝑅𝑠′′

                     

(3) 

assuming conditional independence between the raters and the rater’s intensity and where 

𝑝(𝐴𝑖𝑗|𝐼𝑖) = exp
(𝐴𝑖𝑗−𝐼𝑖)

2

𝜎
 [84]. The M-Step directly follows Xu et al so it is excluded from this 

work. Briefly, the maximization of 𝜖𝑗
𝑘+1 is total weight of the observed label for rater 𝑗 across the 

image and 𝑐𝑗
𝑘+1 is defined based on a semi-parametric atlas selection method from the original 

SIMPLE definition [105]. To extend the model to be spatially varying we redefine 𝜃 as an 

𝑅 × 2 × 𝐿 × 𝐿 × 𝑁 matrix defined identically as before, 𝑐 as an 𝑁 × 𝑅 matrix corresponding to 
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the atlas selection decision for each rater at each voxel, and 𝜖 as an 𝑁 × 𝑅 error vector for each 

rater at each voxel. The E-Step becomes 

 

𝑊𝑠𝑖
𝑘 =

𝑓(𝑇𝑖 = 𝑠) ∏ 𝑝(𝐴𝑖𝑗|𝐼𝑖, 𝜎)𝜃
𝑗𝑐𝑗𝑖

𝑘 𝑠𝑠′𝑖𝑗∈𝑅

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ 𝑓(𝐴𝑖𝑗|𝐼𝑖, 𝜎)𝜃𝑗𝑐𝑗𝑖
𝑘 𝑠′′𝑠′𝑖𝑗∈𝑅𝑠′′

 (4) 

 

and the M-Step once again follows Xu except the values of 𝜖 are calculated over the pooling are 𝑏 

and thus 𝑐 is calculated per-voxel based on the estimates of 𝜖. 

 

Figure V-3 Quantitative segmentation results for the Anura dataset. Non-Local SIMPLE shows either significant 

improvements over other algorithms or comparable results to other algorithms for all labels. 
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2.4. Non-Local SIMPLE 

Patch-based label fusion has been incorporated into many label fusion techniques such as 

Non-Local STAPLE and Non-Locally Weighted Vote [96, 97]. In these techniques, the 

correspondence model smooths the labels over the nearby region based on the intensity 

differences. We define the generative model of Non-Local SIMPLE as 

𝑓(𝑇𝑖 = 𝑠, 𝐼 |𝐷, 𝐴, 𝑐, 𝜖, 𝜎, ℵ𝑠, ℵ𝑝, 𝜃, 𝑏) (5) 

where ℵ𝑠 are the parameters of non-local search, ℵ𝑝 are the parameters of non-local distance 

calculation, 𝑐 as an 𝑁 × 𝑅 × ℵ𝑆 matrix corresponding to the patch selection decision for each rater 

at each voxel over their non-local search space, 𝜖 as an 𝑁 × 𝑅 × ℵ𝑆 error matrix for each rater at 

each voxel over their non-local search area, and 𝜃 is a confusion 𝑅 × 2 × 𝐿 × 𝐿 × 𝑁 × ℵ𝑠 defined 

 

Figure V-4 Quantitative segmentation results for the Ataxia dataset. No algorithm shows significant improvement 

across all labels but Non-Locally Weighted Vote provides both consistent and accurate results across most labels. 
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both spatially and over the non-local correspondence search region. We estimate the solution of 

this model through expectation maximization. We define the E-Step as  

𝑊𝑠𝑖
𝑘 =

𝑓(𝑇𝑖 = 𝑠) ∏ ∏ 𝑝(𝐴𝑖′|𝐼𝑖, ℵ𝑝, 𝜎)𝜃
𝑗𝑐

𝑗𝑖𝑖′
𝑘 𝑠𝑠′𝑖𝑖′𝑖′∈ℵ𝑆𝑗∈𝑅

∑ 𝑓(𝑇𝑖 = 𝑠′′) ∏ ∏ 𝑝(𝐴𝑖′′|𝐼𝑖, ℵ𝑝, 𝜎)𝜃𝑗𝑐
𝑗𝑖𝑖′′
𝑘 𝑠′′𝑠′𝑖𝑖′′𝑖′′∈ℵ𝑆𝑗∈𝑅𝑠′′

 (6) 

where  

𝑝(𝐴𝑖′|𝐼𝑖 , ℵ𝑝, 𝜎) = exp (−
||ℵ𝑝(𝐴𝑖′) − ℵ𝑝(𝐼𝑖)||

2

𝜎
) (7) 

which is the standard definition of non-local correspondence of Euclidean distance between the 

atlas and target patches in an exponential distribution [96, 97]. This E-Step expansion assumes a 

conditional independence between patches and the non-local intensity probability model. The M-

Step follows as with Local Spatial STAPLE where the confidence is calculated over the pooling 

region 𝑏 between the patch in the atlas and the target voxel in the atlas. For instance 

𝜖𝑖𝑗𝑖′
𝑘+1 = argϵ

iji′ max ∑ ∑ ∑ 𝑊𝑠(𝑖+𝑎)
𝑘 ln 𝜃

𝑗𝑐
𝑗𝑖𝑖′
𝑘 𝑠𝑠′𝑖𝑖′

𝑠𝑎∈−𝑏:𝑏𝑠′

𝛿 (𝐷(𝑖′+𝑎)𝑗 , 𝑠′) (8) 

following from the derivation of Xu et al, where 𝛿 is the dirac delta function. Thus, Non-Local 

SIMPLE performs patch-based performance modeling with strong atlas selection following from 

the works of Langerak, Xu, and Coupe [105, 163]. 

2.5. Statistical Analysis 

To assess the performance of each statistical fusion technique, each atlas was segmented 

in a leave-one-out study with each algorithm (i.e., 24 atlases per target in the Anura set and 44 

atlases per target in the AT set). Since the registration and label propagation steps were identical 
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between algorithms, we treat the segmentation results as paired between label fusion algorithms. 

We calculate the Dice coefficient between each set of true atlas labels and each label fusion 

approach. Since we cannot assume these Dice results fit any distribution, we perform a Wilcoxon 

signed-rank test between each algorithm. All significant results reported are at a p<0.05. 

3. Results 

In the leave-one-out segmentation of the Anura dataset, Non-Local SIMPLE produced 

statistically significant improvements in mean Dice compared to all other algorithms. Non-Local 

SIMPLE had an improvement in mean Dice of 0.03 on average compared with Non-Locally 

Weighted Vote and the approach of Yang et al. On the AT dataset, Non-Locally Weighted Vote 

significantly outperformed all other techniques by at least 0.04 mean Dice. Non-Local SIMPLE 

significantly outperformed the results of Yang et al on the AT data by 0.01 Dice (Figure 2). 

 

Figure V-5 Qualitative segmentation results from the median Ataxia subject. Non-Locally Weighted Vote tends to 

slightly over-segment regions of interest while Non-Local SIMPLE tends to under-segment regions. The adaptation 

of Yang et. al appears to generate a segmentation more consistent with anatomic boundaries but can produce severe 

missegmentations as seen in the sagittal view. Other algorithms are not shown since they infrequently outperformed 

the algorithms shown here. 

 

 



76 

Qualitatively Non-Locally Weighted Vote tends to slightly over-segment the cerebellar lobules 

whereas Non-Local SIMPLE under-segments. The results of Yang et al appear to produce 

segmentations more consistent with the true anatomic boundaries but have greater issues with 

labels shifting between regions (Figure 2). The full Dice scores for all regions of interest are 

available in Figures 3 and 4 and more qualitative results are available in Figure 5. 

4. Discussion 

In this work, we investigated new algorithms for fully-automated multi-atlas segmentation 

of the cerebellum. We proposed three approaches for segmentation deriving from the work of 

Langerak and Xu on the SIMPLE atlas selection and performance model [105, 163]. The first two 

algorithms, Local SIMPLE and Local Spatial SIMPLE, incorporated local image similarity into 

the generative model definition of SIMPLE and extended the base algorithm to consider only the 

local region in performance model calculation. The third algorithm, Non-Local SIMPLE, extends 

the SIMPLE model to patches in the area around the registered atlas images, incorporating the 

work of Coupe and patch-based segmentation into SIMPLE [96]. We then evaluated these 

algorithms against several previous algorithms, including the previous gold-standard cerebellar 

segmentation algorithm, on two sets of cerebellar atlases [165]. On the first set, Non-Local 

SIMPLE beat all other techniques with a p < 0.05. On the second set, Non-Locally Weighted Vote 

produced the best segmentation results, but Non-Local SIMPLE still outperformed the previous 

gold-standard technique. In conclusion, we have shown that cerebellar segmentation is a 

challenging task and no current technique produces significant improvements over other 

techniques so application specific considerations and trade-offs should be considered. Future work 

will investigate secondary processing techniques [99] to address systematic over/under-
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segmentation concerns with the currently leading methods. We note that the proposed techniques 

are targeted at cases where a large number of atlases are available (i.e., greater than 30).  
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Chapter VI 

Multi-Modal Imaging with Specialized Sequences Improves 

Accuracy of the Automated Sub-Cortical Grey Matter 

Segmentation 

1. Introduction 

The subcortical grey matter is a collection of nuclei situated near the forebrain [16]. These 

nuclei are primarily involved in connecting distinct portions of the brain, to serve as major 

functional systems within the brain [16]. For instance, the globus pallidus internal receives 

GABAergic signaling from the putamen and relays that to the sub-thalamic nucleus. Many 

subcortical structures have been implicated in one or more diseases [166]. In addiction, dopamine 

is dysregulated in the putamen and adjacent structures causing dependence phenotypes [167]. In 

Parkinson’s disease, several subcortical structures undergo Lewy body growth and that growth 

plays a significant role in the motor phenotypes associated with the disease [168].  

Recently, specialized imaging sequences have been developed for studying subcortical 

grey matter using clinical magnetic resonance (MR) scanners. In particular, the Fast Grey Matter 

Acquisition T1 Inversion Recovery (FGATIR) sequence  was developed to improve subcortical 

grey matter contrast with the surrounding tissue [169]. The FGATIR sequence uses a longer 

inversion time than standard T1-weighted approaches, such as Magnetization Prepared Rapid 

Acquisition Gradient Echo (MPRAGE), to null the white matter and accentuate the deep brain 

structures. FGATIR images accentuate the sub-thalamic nucleus, lamina separating the internal 

and external globus pallidus, and the thalamus amongst other important structures. On the other 
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hand, many important subcortical structures are still difficult to parcellate using the FGATIR. 

Higher field strength scanners are needed, but these scans at higher field strengths are not clinically 

feasible in most contexts [114]. 

In this work, we investigate the efficacy of sequences acquirable in a clinically tolerable 

setting, namely standard T1-weighted MPRAGE scans and T1-weighted FGATIR scans acquired 

at 3T. The structures considered in this work are the substantia nigra (SN), subthalamic nucleus 

(STN), internal globus pallidus (GPI), external globus pallidus (GPE), putamen, and thalamus. 

These subcortical structures were manually delineated using a combination of scans acquired at 

3T and 7T. Furthermore, we compare segmentation using only one modality, either the MPRAGE 

or FGATIR, to multi-modal segmentation using the enhanced and complimentary contrast patterns 

present to improve the overall segmentation results.   

2. Methods 

We propose a multi-atlas segmentation algorithm for automated segmentation of the 

subcortical grey matter. This approach uses multi-modal atlases derived using imaging acquired 

at 3T and 7T. The segmentation uses the imaging sequences acquired at 3T to assess the 

effectiveness of segmenting subcortical structures using clinically feasible acquisitions.  

2.1. Atlas Imaging 

Nine healthy subjects were scanned at 3T and 7T. At 7T, a series of 0.7mm isotropic T1-

weighted MPRAGE (Inversion Time (TI)/ Repetition Time (TR)/Echo Time (TE) 

=[400,640,960,1120]/4.74/2.09ms) was acquired and a susceptibility weighted image slab through 

the midbrain acquired at 0.2x0.2x1.1mm was acquired sagitally, coronally, and axially 

(TR/TE/Flip Angle (FA)=1952/23ms/45° for all orientations). At 3T, a 1.0mm isotropic resolution 
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T1-weighted MP-RAGE (TI/TR/TE=925/8.1/2.7ms) and an FGATIR scan was acquired for 

additional mid-brain contrast (TI/TR/TE=400/7.39/3.43). 

2.2. Manual Segmentation 

For each subject, the 7T T1-weighted MP-RAGE with the inversion time of 960ms was 

used as the reference space. The other 7T MP-RAGE scans, 3T MP-RAGE, 7T high-resolution 

susceptibility weighted slabs, and 3T FGATIR were co-registered to the reference space. The 

following structures were manually labeled on the left hemisphere for one subject: GPI, GPE, 

STN, SN, thalamus, and the putamen. The labeled atlas was then registered to each of the other 

eight subjects and the labels were deformed to the target space using the Reg Aladin algorithm in 

NiftyReg [170]. The deformed labels were then manually corrected. Finally, each subject was 

flipped laterally and the flipped image was registered to the standard space image. Each subject’s 

labels were deformed in the laterally flipped space and the results were manually corrected. The 

final result was nine subjects with left and right labels for the GPI, GPE, STN, SN, thalamus, and 

putamen. All manual segmentations were done using CranialVault and the CRAVE Tools [171]. 

2.3. Segmentation Algorithm 

First, each subject, the 3T T1-weighted MRI was automatically segmented with the 

BrainCOLOR (www.neuromorphometrics.com) following a standard multi-atlas segmentation 

approach [89]. Briefly, the target image was affinely registerd to MNI space. From a population 

of 45 atlases, the 15 atlases geodesically most similar to the target are then selected. These 15 

atlases are non-rigidly registered to the target image using the Advance Normalization Tools 

(ANTs) Symmetric Normalization algorithm (SyN) [87]. Finally, the registered atlas images and 

labels are fused to the target image using Hierarchical Non-Local Spatial STAPLE [93].  
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Whole brain segmentation (WBS) was used to localize the particular regions of interest. In 

particular, the thalamus label from the WBS was used to localize the thalamus, the globus pallidus 

and putamen labels from the WBS were used to localize the GPI, GPE, and putamen, and the 

diencephalon label from the WBS was used to localize the SN and STN. The bounding box of each 

of these regions of interest was identified and dilated by 5mm. Finally, the labels and T1 and 

 

Figure VI-1 Segmentation results for structures in the dienchephalon. Quantitative segmentation results are shown 

in (A). For the left SN, multi-modal segmentation with T1 and FGATIR outperformed other approaches (*; 

p<0.05; Wilcoxon sign-rank test). For the right SN no segmentation approach outperformed other approaches. For 

the left STN, multi-modal segmentation with T1 and FGATIR outperformed other approaches (*; p<0.05; 

Wilcoxon sign-rank test). For the right STN no segmentation approach outperformed other approaches. In (B), 

surface distances between the true and estimated segmentations for the left SN are shown for the six proposed 

segmentation approaches.  
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FGATIR intensities were extracted from these bounding boxes and saved as reduced field of view 

(RFOV) atlases. 

For a given target, the target was segmented with the BrainCOLOR protocol 

(www.neuromorphometrics.com). A series of targets (RFOV) were created following the protocol 

defined above. The RFOV atlases were co-registered to the RFOV targets. All registrations were 

performed using with ANTs and the SyN algorithm [88]. After registration, joint label fusion (JLF) 

 

Figure VI-2 Segmentation results for structures in the globus pallidus. Quantitative segmentation results are shown 

in (A). For the left GPE, multi-modal segmentation with T1 and FGATIR with double atlases outperformed other 

approaches (*; p<0.05; Wilcoxon sign-rank test). For the right GPE segmentation with FGATIR outperformed 

other approaches (*; p<0.05; Wilcoxon sign-rank test). For the left GPI, multi-modal segmentation with T1 and 

FGATIR with doubled atlases and segmentation with FGATIR with doubled atlases outperformed other 

approaches but were not distinguishable amongst each other (*; p<0.05; Wilcoxon sign-rank test). For the right 

GPI no segmentation approach outperformed other approaches. In (B), surface distances between the true and 

estimated segmentations for the left GPI are shown for the six proposed segmentation approaches.   
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was used. In all cases, the same collection of imaging modalities was used for the segmentation 

[98]. Finally, each structure’s segmentation was reinserted into the standard image space. All 

operations for creating and manipulating using RFOV atlases and images used custom MATLAB 

(www.mathworks.org) code. 

3. Results 

Each of the nine healthy subjects was segmented in a leave-one-out cross validation 

scheme. First, each subject was segmented using the T1-weighted MRI, the FGATIR, and multi-

modally with the T1 and FGATIR.  Second, each subject’s scans were flipped left-right to produce 

a second set of atlases. Each subject was then segmented with the 16 atlases, leaving out the atlas 

and the flipped version of the atlas. As a result, each subject was segmented six times, twice with 

each combination of modalities. The results are divided into three pieces for ease of visualization: 

diencephalon (STN and SN), GPI and GPE, and thalamus and putamen. For each segmentation 

result the Dice Similarity Coefficient (DSC), mean surface distance (MSD), and Hausdorff 

distance (HD) were calculated. 

3.1. Diencephalon 

Four structures were segmented in the diencephalon: the left STN, right STN, left SN, and 

right SN (figure 1). For the left SN, the segmentation with T1 and FGATIR outperformed other 

approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.65, median MSD of 0.98 

mm, and a median HD of 3.11 mm. For the right SN, no approach significantly outperformed other 

approaches. For the left STN, segmentation with T1 and FGATIR outperformed other approaches 

(p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.70, median MSD of 0.61 mm, and a 

http://www.mathworks.org/
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median HD of 2.06 mm. For the right STN, no approach outperformed other approaches (Wilcoxon 

sign-rank test). 

3.2. Globus Pallidus 

Two structures were segmented in the globus pallidus: the GPI and GPE. These structures 

were segmented bilaterally and resulted in four total structures segmented (figure 2). For the left 

GPE, the segmentation with T1 and FGATIR including flipped atlases outperformed other 

 

Figure VI-3 Segmentation results for the putamen and thalamus. Quantitative segmentation results are shown in 

(A). For the left putamen, multi-modal segmentation with T1 and FGATIR with double atlases outperformed other 

approaches (*; p<0.05; Wilcoxon sign-rank test). For the right putamen segmentation with FGATIR with doubled 

atlases outperformed other approaches (*; p<0.05; Wilcoxon sign-rank test). For the left thalamus, no 

segmentation approach outperformed other approaches For the right thalamus, no segmentation approach 

outperformed other approaches. In (B), surface distances between the true and estimated segmentations for the left 

putamen are shown for the six proposed segmentation approaches.   
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approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.68, median MSD of 0.94 

mm, and a median HD of 2.70 mm. For the right GPE, segmentation with FGATIR outperformed 

other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.71, a median MSD of 

0.96 mm, and a median HD of 3.42 mm. For the left GPI, segmentation with FGATIR with flipped 

atlases and multi-modal segmentation with T1 and FGATIR and flipped atlases outperformed 

other approaches but were not statistically distinguishable from each other (p<0.05 Wilcoxon sign-

rank test), with median DSC values of 0.80 and 0.81, median MSD values of 0.68 and 0.69 mm, 

and median HD values of 2.50 and 2.52 mm respectively. For the right GPI, no approach 

significantly outperformed another. 

3.3. Thalamus and Putamen 

The left and right thalamus and putamen were segmented resulting in four total structures (figure 

3). For the left putamen the segmentation with T1 and FGATIR including flipped atlases 

outperformed other approaches (p<0.05 Wilcoxon sign-rank test) with a median DSC of 0.93, a 

median MSD of 0.42 mm, and a median HD of 2.50 mm. For the right putamen, segmentation 

with FGATIR including flipped atlases outperformed other approaches (p<0.05 Wilcoxon sign-

rank test) with a median DSC of 0.93, a median MSD of 0.45 mm, and a median HD of 2.61 mm. 

For the left thalamus, no approach significantly outperformed the others. Finally, for the right 

thalamus, no approach significantly outperformed the others. 

4. Discussion 

In this work, we presented segmentation approaches for segmenting six subcortical 

structures bilaterally. These segmentation approaches considered the effect of imaging modality 

on segmentation results. Two distinct imaging modalities were considered. First, a standard T1-
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weighted MPRAGE, a sequence commonly acquired in clinical and research settings, was acquired 

for nine subjects. Second, a T1-weighted FGATIR, a specialized sequence with enhanced contrast 

in subcortical structures, was acquired for the same nine subjects. A series of 7T T1-weighted 

MPRAGE scans with varying inversion times and high-resolution susceptibility weighted slabs 

were acquired on the nine subjects. Then, an expert in subcortical anatomy manually delineated 

the thalamus, putamen, internal and external globus pallidus, sub-thalamic nucleus, and substantia 

nigra bilaterally.  

These nine subjects were then used in a leave-one-out cross-validation to assess the 

segmentation accuracy using only T1-weighted MPRAGE, only T1-weighted FGATIR, and multi-

modally with the MPRAGE and FGATIR. In general the multi-modal segmentation outperformed 

the other approaches and furthermore including atlases flipped laterally tended to improve 

segmentation results, but there was no single approach that outperformed in all cases. Fortunately, 

the proposed segmentation approach does not require all segmentations to be performed with the 

same modalities. This allows flexibility in which sequences are used to segment each structure. 

These sequences are of interest because they are all acquirable on a clinical population. As 

a result, the proposed segmentation approaches can be translated to clinical populations and thus 

aid in the clinical workflow. In particular, the STN and GPI are common targets for deep brain 

stimulation surgery (DBS) [67]. DBS is a surgery commonly used in Parkinson’s disease to 

mitigate the motor symptoms of the disease. Overall, this work is a significant step in 

understanding the effects of imaging sequence on segmentation of subcortical grey matter 

structures. 
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Chapter VII 

Improving Variance Estimation in Multi-Atlas Segmentation to 

Accurately Characterize the Marginal Utility of Additional Atlases 

1. Introduction 

One of the most common goals of medical image processing is automated segmentation of 

regions of interest (ROIs) on structural imaging [89]. The goal of automated segmentation is to 

delineate the location in the image containing the ROI for a given target image [89]. For instance, 

given a magnetic resonance image (MRI) of the human brain, a common ROI of interest is the 

hippocampus [172]. Automated segmentation of the hippocampus seeks to accurately and 

reproducibly delineate the hippocampus from the surrounding tissue and background. 

One of the most popular and translatable techniques for automated segmentation is multi-

atlas segmentation [89]. In multi-atlas segmentation, a set of atlases (i.e., representative images 

with the structure or structures of interest delineated) is registered to a target image to be 

segmented. These registered atlases are then joined together to create a consistent representation 

of the target structure. The step of joining the atlases together is commonly referred to as “fusion” 

or “label fusion.” The goal of multi-atlas segmentation is to produce a consensus representation, 

ideally more consistent with the truth than any individual atlas could produce. The multi-atlas 

framework has been applied to structures ranging from the brain [173], to the optic nerve [174], to 

the abdomen [150], and extendible outside of humans [89]. 
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The availability of atlases covering the anatomical diversity in the target population is 

important to accurately perform the segmentation. Due to the computational complexity of the 

registration [175] and fusion steps, determining the minimum number of atlases to accurately 

segment a target image is important for the development of multi-atlas algorithms.  

Several metrics are used to estimate the accuracy of multi-atlas algorithms and are 

commonly used to compare various segmentation approaches. Each of these approaches uses 

manually defined labels as a baseline for assessing the accuracy. The first approach, Dice 

Similarity Coefficient (DSC), measures the voxel-wise overlap between the true and estimated 

segmentations [102]. In particular, it measures the magnitude of the intersection of the truth and 

estimate divided by the size of the true and estimated segmentation. DSC has come against some 

criticism since large ROIs, such as the white matter in the brain or the liver in the abdomen, will 

have artificially high DSC values compared to that of smaller structures. Two separate approaches 

for estimating segmentation accuracy utilize surfaces of the labels. The first approach, mean 

 

Figure VII-1 Example segmentations of the hippocampus using 20 atlases (A). Estimate 1 and Estimate 2 use 

unique populations of atlases. The surface estimates show significantly different estimates at several boundary 

locations (identified by the green arrows). Monte Carlo estimates of confidence intervals become invalid especially 

as the number of atlases in the sample approaches the number of atlases available (B). In cases where the total 

population size is 100 (red curves) and 200 (blue curves), the variance estimated by Monte Carlo approached 0 as 

the number of atlases used approached the total pool size.  
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surface distance (MSD) calculates the average distance between the true and estimated 

segmentation. Hausdorff distance (HD) is the maximum distance between the true and estimated 

surface [176]. These two metrics together give a stronger representation of the accuracy of the 

segmentation since they are not biased by the size of the structure. 

Typically, analyses of multi-atlas segmentation algorithms perform a leave-one-out cross 

validation to validate a particular approach against other techniques. In these leave-one-out 

approaches, N-1 atlases, where N is the total number of atlases available, are used to segment the 

remaining one atlas. DSC, MSD, and HD values are then calculated against the truth. This process 

is repeated for each atlas and for each segmentation approach. Each of the segmentation 

approaches is then compared with a paired t-test or a Wilcoxon sign-rank test to evaluate if there 

is a significant difference between approaches.  

In order to determine the number of atlases needed for a segmentation task, previous works 

have selected a random subset, k, of the atlases available and performed a segmentation of the 

target with the selected atlases. Then, accuracy measures are calculated on the data and a t-test or 

sign-rank test is used to determine the point where adding additional atlases does not improve the 

marginal segmentation results (e.g., [177]). This can be seen as a special case of the above 

framework where each approach considered is a particular number of atlases. 

This approach is limited in that it does not consider the variability in segmentation results 

with respect to the population of atlases selected. Two segmentations of the same target with 

distinct populations of atlases and the same DSC, MSD, and HD can exhibit different patterns of 

error that are not captured in the summary measures (Figure 1A). Furthermore, the approach from 

[177] considers the population of target images but does not model the variance of an individual 
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subject. By not considering each evaluation subject as an individual, summary statistics may not 

capture that a particular subject has not converged in the population. 

In this work, we present an algorithm for estimation of an individual subject’s DSC with 

respect to the number of atlases used. We first show that using standard Monte Carlo sampling of 

atlases from a population does not properly capture the variance of the segmentation with respect 

to the number of atlases used (Figure 1B). We propose a mathematical solution to this using 

increasingly large populations of atlases that we draw our pool from. We then translate this to 

voxel-level results where we estimate the likelihood of a given label at each voxel. Following the 

same formulation for DSC, we estimate the variance of each voxel’s label decision. From this 

result, we estimate the number of voxels likely to change given two distinct populations of atlases. 

 

Figure VII-2 Variance estimation results from Monte Carlo sampling. In (A) each curve represents a pool of atlases 

of increasing size. The number of atlases are sampled from the pool in increasing amounts. These results are then 

interpolated with Expected Percent Similarity (B) to identify a consistent pattern of decline of variance with respect 

the Expected Percent Similarity. (C) and (D) show the patterns of (A) and (B) with all sizes of pools sampled.  
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Given this result, we identify the number of atlases which minimizes the number of voxels likely 

to change between two segmentations as the number of atlases needed for the segmentation task.   

2. Theory 

In this section, we outline the theory underlying variance estimation. This theory is 

applicable to both estimation of variance when measuring DSC and measuring the distribution of 

a voxel’s label decision. This section first outlines Monte Carlo sampling approaches and describes 

the variance estimation approach using Monte Carlo sampling. Finally, this section describes two 

alternate approaches for variance estimation that are only valid within certain restrictions. In the 

scope of this section, an estimator is considered to be a single registered atlas. 

2.1. Monte-Carlo Sampling 

In a Monte Carlo sampling, we begin with a pool of estimators, 𝑃, which consist of all of 

the available estimators for a particular task. Then, a sample of size 𝑛 estimators is drawn without 

replacement from 𝑃. This procedure is repeated a number of times and can be used to estimate 

first-order statistics about the distribution of interest. Estimates of second-order and higher 

statistics are biased by this sampling procedure since the samples of size 𝑛 drawn from 𝑃 are 

correlated, and thus the variance estimated is lower than the true variance (Figure 1B). this 

procedure can be repeated for values of 𝑛 from 2 to 𝑃 to estimate accuracy and variance with 𝑛 

estimators for a population size of 𝑃. 

2.2. Variance Estimation through Monte-Carlo Sampling 

The algorithm to estimate the true variance with respect to the number of estimators 

proceeds as follows. First, a pool of size 𝑝 where 𝑝 ≤ 𝑃 is drawn randomly from the total 

population 𝑃 and without replacement from the population of estimators. Then, the procedure 
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outlined in A can be performed to estimate the performance of the estimators with pool size 𝑝. The 

result of this procedure is mean and variance estimate for counts of estimators and pool size 

ranging from 2 to 𝑃. Specifically, for a pool size of 100 estimators, this procedure results in mean 

and variance estimates for estimator counts ranging from 2 to 100. 

Next, we introduce expected percent similarity (EPS) which is the percent of the estimators 

in common of a sample of size 𝑛 from a population of 𝑝 estimators. This measure is defined as  

 
𝐸𝑃𝑆𝑛𝑝  =

1

𝑝
∑
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𝑖
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𝑠
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where 𝐸𝑃𝑆𝑛𝑝 is the EPS of 𝑛 samples from a pool of size 𝑝. The intuition behind this that 

for every size up to the total number of samples, determine the likelihood that there are that many 

samples in common. 

 Thus, for a given sample size, irrespective of pool size, several estimates of the 

variance have been estimated with differing percent similarities. We propose to fit this function 

with a sigmoid function, which is a natural fit for this application since, when the number of 

estimators in the sample is near the total pool size, the variance will be near zero, but when the 

number of estimators in the sample is dramatically smaller than the pool size, then the variance 

will asymptotically approach the true variance with an infinite pool. This function is modeled as 

 
𝐸𝑃𝑆𝑝𝑛 = 𝑃1 +

𝑃2 − 𝑃1

1 + 𝑃3𝑉𝑝𝑛
𝑃4

 (2) 

where 𝑃1−4 are parameters estimated in the regression, 𝑉𝑝𝑛 is the estimated variance of 𝑛 

estimators from the Monte Carlo procedure for a pool of size 𝑝, and the equation is fit for a fixed 

value of 𝑛. Though this function is solvable for 𝐸𝑃𝑆𝑝𝑛, for the purpose of fitting the model this 

form is more intuitive for parameter initialization. This function is then solved for 𝑉𝑝𝑛, and the 
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function is evaluated at a value near 0 EPS to estimate the true variance when there is little or no 

similarity between the atlases. A value near zero is used because the solution of (2) is possibly 

non-real for EPS values of 0, so a value near 0 is used to maintain numerical stability. This process 

is repeated for every sample size 𝑛 to determine the true variance with 𝑛 atlases. 

2.3. Bootstrap 

One of the common techniques to estimate a generic function given a limited pool of 

estimators is the bootstrap[178]. In bootstrapping, a sample of atlases of size 𝑛 is drawn with 

replacement from the pool of estimators available. The bootstrap estimate of variance with a 

particular number of estimators is then calculated based on the results. This procedure is unbiased 

 

Figure VII-3 Example fits of the Expected Percent Similarity to the variance estimate (A) for increasing numbers of 

atlases. Variance values are scaled to their log for visualization purposes. (B) the final fit results for the estimated 

variance from the proposed algorithm, compared with the pooling approach, standard Monte Carlo, and bootstrapping 

approaches. The estimated approach follows a similar trend to the bootstrapping and pooling based estimates. On the 

other hand, the Monte Carlo approach deviated from other approaches in particular as the number of atlases considered 

approached the total available. 
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unlike the Monte Carlo approach because the expected similarity of any two samples is zero. 

Bootstrapping is valid only when the estimator does not assume independence. For an approach 

like majority vote, this is a valid assumption, but for many modern segmentation approaches such 

as joint label fusion (JLF), independence needs to be assumed between atlases used. As a result, 

bootstrapping cannot generally be used for variance estimation with modern segmentation 

approaches. 

2.4. Pooling 

A separate technique for parameter estimation, referred to herein as pooling, uses a 

technique similar to bootstrapping, but does not sample with replacement. In estimation of variance 

with 𝑛 atlases with a pool size of 𝑁, floor (
𝑛

𝑁
) samples are drawn, where each sample is 

independent of the other samples. Variance is then estimated across the floor (
𝑛

𝑁
) samples. This 

process is then repeated and averaged to produce an estimate more accurate than any one iteration 

[179]. This approach has shown to produce accurate first-order approximations of features. Since 

this approach estimates the variance as the mean of a series of estimations, it is a valid first-order 

estimate of variance. This process is applicable to any segmentation algorithm, but is limited in 

estimating the variance since a sufficient number of data points are needed to estimate variance. 

3. Methods 

For this work, 190 atlases labeled with the right hippocampus were considered. All atlas 

subjects are healthy controls and were sequenced with a 3D T1-weighted MPRAGE (TI/TR/TE = 

860/8.0/3.7 ms; 170 sagittal slices; voxel size = 1.0mm3). Each scan was labeled following the 

protocol defined in [152]. Two studies were considered using this data. First, one subject was 

segmented using majority vote (MV) and the variance of the DSC of the segmentation with respect 
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to the truth and number of atlases used was examined. Second, ten atlases were randomly selected 

as a validation population. These ten atlases were segmented using JLF and voxel-wise variance 

estimates were established. These experiments are described in detail below. 

3.1. Dice Similarity Coefficient Variance Estimation with Majority Vote 

From the 190 atlases, one subject was randomly selected as the target subject. Of the 

remaining 189 atlases, 180 were selected as an atlas pool. The atlases were then registered to the 

target image affinely with the NiftyReg algorithm [86] and non-rigidly with the Symmetric 

Normalization (SyN) algorithm in the Advanced Normalization Tools (ANTs) package [88]. 

After registration was completed, the procedure described in §II.B was performed on the 

dataset. The procedure was performed with pool sizes of two to 180 in steps of two and sample 

sizes of two up to the pool size. For each step and pool size, the Monte Carlo sampling procedure 

was performed 1000 times to estimate the distribution (Figure 2). At each iteration, a sample of 

atlases was randomly drawn from the pool of atlases and MV was used to estimate the target. For 

each resulting segmentation, the DSC between the estimate and the target segmentation was 

calculated. Then the variance with respect to the number of atlases and the pool size was calculated. 

Once the Monte Carlo variance estimation was completed, Eq. 2 was fit based on the variance 

estimates and the variance with zero similarity was calculated (Figure 3A). The fitting was not 

performed for sample sizes less than 10 because there were not enough data points available to fit 

the four parameters.  

Since majority vote does not require independence of the atlases, the bootstrapping 

procedure described in §II.C was performed. The full population of 180 atlases was used as a pool 

and sample sizes of two up to 180 in steps of two were used in the bootstrapping. For each sample 

size, 1000 bootstrap repetitions were performed to estimate the variance. The pooling procedure 
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described in §II.D was also performed using the full population of 180 atlases. The pooling 

procedure was performed to a sample size of 40 atlases since multiple data points are needed to 

estimate the variance properly.  

 

Figure VII-4 Re-fit variance results for the Monte Carlo estimation approach (A). These variance estimations do not 

converge as the standard Monte Carlo variance estimation did. These results show that variance is still decreasing as 

the number of atlases increases, and the average is also increasing. Comparing the final distribution with 180 atlases to 

the distributions with fewer atlases, we show that 180 atlases outperforms atlas counts up to 160 (B). Furthermore, 

when comparing the results for identifying the proper number of atlases from the population size of 150, the estimated 

variance approach identified that at least 150 atlases were needed whereas the Monte-Carlo variance approach identified 

136 as the optimal number of atlases (C). 
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3.2. Voxel-Wise Variance Estimation with Joint Label Fusion 

From the 190 atlases, 10 were selected as a target population. Of the remaining 180 atlases, 

100 were randomly selected as a pool. The 100 atlases were then registered to the target images 

affinely with the NiftyReg algorithm [86] and non-rigidly with the Symmetric Normalization 

(SyN) algorithm in the Advanced Normalization Tools (ANTs) package [88]. 

 After registration was completed, the procedure described in §II.B was performed on the 

datasets. The procedure was performed with pool sizes of two to 100 in steps of two and sample 

sizes of two up to the pool size. For each step and pool size, the Monte Carlo sampling procedure 

was performed 1000 times to estimate the distribution (Figure 2). At each iteration, a sample of 

atlases was randomly drawn from the pool of atlases and JLF was used to estimate the target. 

 For each resulting segmentation, the label-wise probability volumes were calculated and 

used to establish label-wise variance maps with respect to the number of atlases used and the pool 

size. The voxel-wise variance with respect to the number of atlases used was then calculated 

following §II.B and by fitting Eq. (2) for each voxel. Finally, these voxel-wise results were used 

to determine the number of voxels likely to change labels between two random draws of atlases 

from an infinitely large pool. 

 The bootstrap was not considered on this experiment because JLF requires atlases to be 

conditionally independent, which is violated in the boostrap. Also, this experiment was not 

extended beyond 100 atlases due to computational expense of the experiment. In particular, this 

experiment took over 400 CPU months to execute. 
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4. Results 

4.1. Dice Similarity Coefficient Variance Estimation with Majority Vote 

Four procedures for variance estimation were performed: standard Monte Carlo sampling 

(§II.A), pooling (§II.D), bootstrapping (§I.C), and our proposed variance estimation technique 

(§II.B). Since the atlas fusion technique proposed does not require independence of samples, the 

bootstrap estimate of variance is a valid estimation of variance. The approximation of variance 

estimate from the pooling is also not biased by the repetition of atlases. The bootstrap estimate of 

variance and the proposed estimated variance were significantly correlated (R2=0.87, p<0.01). The 

bootstrap estimate of variance and the pooling estimate of variance were significantly correlated 

(R2=0.79, p<0.01). The pooling estimate of variance and the proposed estimate of variance were 

significantly correlated (R2=0.77, p<0.01). The Monte Carlo estimate of variance was not 

 

Figure VII-5 Percent of the total voxels likely to change between two unique draws of atlases from a population. 

The x-axis shows increasing numbers of atlases in the segmentation. Each color represents one of the subjects on 

which the experiment was performed. The filled in lines represent the estimates from the proposed approach, 

whereas the dotted lines represent the Monte Carlo estimates. We can see that as more atlases are added, a smaller 

portion of voxels are likely to change between draws from the atlas population.  The Monte Carlo estimates tend 

to underestimate the number of voxels likely to change. The proposed method shows that, though the rate of 

change is decreasing of the number of voxels likely to change between two random draws, that there is still added 

value by adding additional atlases. 
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significantly correlated with the bootstrap estimated of variance (R2=0.40, p>0.1) or the proposed 

estimate of variance (R2=0.46, p>0.1). 

After the variance estimates were established, we used the Monte Carlo estimates of mean 

Dice and the estimated variance to define a distribution for each number of atlases. From these 

distribution estimates, we determined that the segmentation with 180 atlases outperformed 

(p<0.05, t-test) the segmentation with up to 160 atlases. We also determined that though the results 

did not show significant differences after 160 atlases (p<0.05; t-test), the variance results were still 

showing a trend downward and the mean Dice were trending upward (figure 4). 

4.2.  Voxel-Wise Variance Estimation with Joint Label Fusion 

Since this is the first work considering voxel-wise segmentation, there is not a direct 

comparison available for the proposed method. In order to determine the optimal number of 

estimators, each of the ten targets was first considered individually. For each target and for each 

number of atlases up to 100, the number of voxels likely to change between iterations by 

parameterizing each voxel with a Gaussian distribution given the mean and variance estimates for 

its probability of being in the hippocampus. With that distribution, the cumulative density function 

of being below 0.5, the threshold for being called as hippocampus, was calculated, and then the 

likelihood of changing labels with a unique sample of atlases can be determined. Given these 

estimates for each number of atlases (Figure 5), we can see that with 100 atlases the percent of the 

voxels in the hippocampus that would change with a new random draw of labels is still decreasing, 

whereas the equivalent experiment using Monte Carlo estimation shows that there is no change 

with two atlas populations.  
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5. Discussion 

The typical leave-one-out paradigm for determining the sufficient number of atlases in 

multi-atlas segmentation is flawed in that (1) it does not consider the samples in the evaluation set 

as individuals, (2) it does not model the covariance of the Monte Carlo segmentation process, and 

(3) it does not consider that two segmentations can have the same accuracy while having different 

boundaries of the image. For applications such as f-MRI correlations and DTI fiber tracking, the 

accuracy and consistency of the segmentation is vital to the success of the algorithms [82, 180]. 

Several techniques are available to estimate unknown distributions from a series of estimators. The 

most common technique is bootstrapping, where a sample of estimators are drawn from the pool 

of available estimators. These estimators are then fused together to form a consistent 

representation. Unfortunately, bootstrapping and related techniques are not applicable to label 

fusion techniques since many of the top-performing algorithms require an independence between 

the atlases. For instance, the joint label fusion (JLF) algorithm determines the covariance between 

the atlases. If atlases were duplicated in JLF, the algorithm would down-weight them 

proportionally by the number of duplicates of that atlas in the sample of atlases [84, 97, 121]. This 

would be the equivalent result to simply using the number of unique atlases in the atlas sample.  

In this work, we have proposed a framework using Monte Carlo sampling to produce 

variance estimations more consistent with the true variance estimations. The proposed approach 

utilized pools of increasing numbers of atlases and the estimated percent similarity metric to fit a 

curve to the variance estimates and thus allowing us to estimate for variance values outside of the 

range of values which were empirically available in the data. These results were compared with a 

bootstrap approach and a pooled variance approach, both of which produce valid estimates of 

variance for the majority vote label fusion approach. The proposed approach produced 
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significantly more accurate results, and the proposed segmentation approach provides significantly 

different results from the standard Monte Carlo approach (Figure 4C). The Monte Carlo approach 

identified 136 as the optimal number of atlases for the segmentation, whereas the proposed 

segmentation determined that more than 150 atlases was needed for the segmentation approach. It 

is important to understand that reducing the variance is an important consideration, along with 

increasing the accuracy. In many cases, the cost of labeling more atlases may out-weigh the 

increases in accuracy and decreases in variance. Techniques like atlas selection may help account 

with these limitations, but such approaches are application dependent. 

Finally, we extended the variance estimation framework to work on voxel-wise 

probabilistic segmentation results. In this work, we considered the differences in two 

segmentations from a random draw of atlases from an infinite population. This assesses if a 

segmentation has converged to a stable result on a voxel-wise basis instead of relying on summary 

statistics that may hide the underlying results. 
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Chapter VIII 

Conclusions 

1. Summary 

When I began my dissertation, multi-atlas segmentation was a burgeoning field of research 

within the medical image processing community. Recently, several groups including the MASI 

lab at Vanderbilt had characterized approaches for accurate segmentation of various organs with 

multi-atlas segmentation. This dissertation has primarily focused on characterizing multi-atlas 

segmentation and expanding on previous theory to improve our understanding of the approaches 

available. Chapter II characterized an approach for segmentation when atlases did not have 

matching label sets associated with them. Chapter III described an algorithm for segmentation 

when the sequence of the target image does not match the sequence of the atlases. Chapters IV-VI 

present specialized segmentation approaches for particular regions of interest. Finally, Chapter VII 

describes an approach for evaluation of segmentation accuracy which is more appropriate than the 

standard and previously used approaches. 

These approaches centered on improving our ability to characterize PD. The contributions 

focused on segmentation of structures of interest to studying the disease. In several chapters, my 

work focused directly on segmentation of regions of interest that are necessary for DBS surgery in 

PD. In other chapters, my work focused on theoretic contributions to multi-atlas segmentation. 

These contributions focused on improving our understanding of the number of atlases needed for 

a segmentation task. 
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2. Segmentation with Multiple Label Sets 

We present a segmentation approach for multi-atlas segmentation allowing for 

incorporation of multiple label sets (Chapter II). This method expanded on the standard STAPLE 

framework and utilized a joint performance matrix characterization for all of the label sets 

simultaneously. This approach was then simplified to reduce the number of degrees of freedom, 

thus allowing for improved performance of the approach. These algorithms were first validated on 

a simulation against previous approaches, and the proposed algorithms outperformed the standard 

approaches. Then, the proposed algorithms were expanded to incorporate non-local 

correspondence and were applied to a real dataset on the human brain. The proposed approaches 

outperformed the previous approaches, in particular when there were few atlases of the “target” 

protocol available. 

3. Segmentation with Multiple Imaging Sequences 

We present a segmentation approach optimized to decrease variance between imaging 

sequences (Chapter III). We identified a bias present when different imaging sequences were used 

between the target and atlas images. We proposed synthesizing atlases that more similarly match 

the target scan. This approach incorporates atlases with available biological parameters maps, 

namely T1- and T2- relaxation and a PD map). We tested this approach on a population of target 

images with varying sequences and we showed that our proposed algorithm significantly decreased 

the bias between the sequences. We further compared our ability to differentiate healthy and 

autistic subjects from the ABIDE study using segmentation results from the proposed and standard 

segmentation approaches. We showed that by using our synthetic approach we gained some power 

in differentiating the different populations. 
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4. Segmentation of Specialized Anatomy 

We present three segmentation approaches for different anatomic structures. First (Chapter 

IV), we present an approach for automated segmentation of the hippocampus and amygdala. We 

use nearly 200 atlases and a “reduced field of view” segmentation to efficiently register these scans 

to the target image and automatically segment the target image. Our proposed approach 

outperformed other segmentation approaches and using the full atlas set outperformed using just 

30 atlases. Second (Chapter V), we present an approach for segmentation of the sub-cortical grey 

matter. In this work, we utilized specialized imaging sequences to improve the segmentation 

accuracy. By selectively incorporating T1-weighted MPRAGE scans and F-GATIR scans we were 

able to improve the accuracy of the segmentation approach. Third (Chapter VI), we present a 

segmentation approach for segmentation of the cerebellum. The cerebellum is an interesting 

structure to study with imaging because older and diseased subjects show a higher degree of 

anatomic differentiability. We propose a segmentation approach, non-local SIMPLE, which is a 

non-local segmentation approach where patches are treated as functional units in an atlas selection 

framework instead of the standard atlas based approach. This approach outperformed all other 

approaches on a heavily diseased population, but on a healthier population more standard 

approaches performed comparably or better than non-local SIMPLE. 

5. Estimation of Variance in Multi-Atlas Segmentation 

In order to properly determine the number of atlases needed for a segmentation, an estimate 

of the variance of a given subject’s results is necessary. Furthermore, a segmentation should seek 

to produce results with as low of variation as possible with two unique populations of atlases. 

Current approaches for estimation of the number of atlases for segmentation and the accuracy of 

segmentation approaches do not consider this difference. We propose an algorithm for proper 
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calculation of variance when it is impossible to achieve truly distinct populations of atlases. We 

use this approach to first properly estimate the performance of a segmentation result using Dice 

Similarity Coefficient. Second, we use this approach to calculate the voxel-wise variance and 

determine the number of atlases needed minimize the number of voxels changing between two 

atlas populations. 

6. Summary of Contributions 

The final contributions of this dissertation are summarized as follows 

• We developed several segmentation techniques which advance our understanding 

of statistical fusion in several contexts. In particular this includes the case where 

we have multiple labeling protocols which have similar or complimentary protocols 

and we wish to fuse them together. This also includes the case where we treat a 

patch derived from an atlas as the statistical unit in segmentation as opposed to the 

atlas itself. 

• We proposed a segmentation approach which minimizes the variability between 

T1-weighted imaging sequences. This addresses the issue where there is a 

significant bias in segmentation results as a function of the imaging sequence 

instead of any true variance in the data 

• We developed a segmentation algorithm for the temporal lobe, particularly the 

amygdala and hippocampus. This approach is both efficient and accurate for 

segmentation of two of the most studied structures in the human brain. 

• We developed a segmentation algorithm for accurate segmentation of the human 

subcortex. This approach utilized specialized imaging sequences, targeted at these 

structures 
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• We developed a segmentation approach for segmentation of the cerebellum when 

the anatomy presents in highly variable patterns. 

• We developed an algorithm for assessing the importance of different imaging 

modalities in multi-atlas segmentation. Much of imaging research is becoming 

multi-modal as structures and metrics of interest and it is necessary to have 

techniques to understand the importance and necessity of them. 

7. Impact on PD 

This dissertation focused on PD, a debilitating disease that effects patients and their 

families. The advancements in this work provide new in avenues for differentiating PD from other 

diseases, tracking the progression of PD, and understanding the mechanisms underlying the 

disease. The various segmentation approaches and theoretic advancements can also be translated 

to other conditions of interest, and thus may provide inference in other circumstances. My 

opportunity to work on PD has been a pleasure. Being able to contribute to a variety of research 

projects and work with so many passionate people has made my time working on PD a pleasure.  
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