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CHAPTER I 

 

 

INTRODUCTION 

 

 

 With the rapid growth of the semiconductor industry, channel lengths in chips have been 

reduced drastically in recent years. Clearly, scaling laws require a reduction in the thickness of 

insulator layers as well. As a result, new issues arise such as electron tunneling and dopant 

migration, which may critically affect the performance and reliability of CMOS-based devices. 

[Feldman 1998] Many approaches have been tried in the last several years to address these 

issues. The incorporation of nitrogen at the Si/SiO2 interfaces during the growth process was 

shown to reduce dopant migration significantly. [Hwang 1990] [Hattangady 1995] Later, high-K 

dielectrics were investigated as a possible replacement for silicon dioxide. [Campbell 1997] 

[Kizilyalli 1998] [Wilk 2000] This new class of materials was found to significantly reduce 

leakage current, which has been the most troubling problem for ultrathin SiO2. More recently, 

various crystalline oxides have been considered to improve interface quality, and preliminary 

results look very promising. [McKee 1998] 

 With all these progresses made in dielectric materials growth on silicon, another issue 

also starts to attract attentions. How can we probe the atomic and electronic structures at the 

silicon-insulator interfaces? Traditional electrical methods require contacts. With insulator layers 

less than 100 Å, this task becomes more challenging. More importantly, electrodes have much 

more significant effects on the interfaces below ultrathin oxides (<70 Å). It is unclear to what 

extent traditional electrical methods (C-V, I-V, etc.) can still be used to characterize the 

interfaces. For instance, low-frequency C-V measurements cannot be used here due to high 

direct tunnel currents. Effects like this can greatly complicate the interpretation of results 

detected from the interfaces. 

Optical measurements have the advantage of being contactless. They are also non-

intrusive compared to ion-beam measurements. With the recent advances in ultrafast laser 

technology, intense, tunable lasers have been developed with high reliability. This greatly 

improved capability of a variety of nonlinear optical techniques in many areas. Among them 
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second-harmonic-generation (SHG) is being widely considered. For symmetry consideration, 

SHG is very sensitive to interfaces between materials with inversion symmetry. The technique 

yields rich information on electronic structures, local fields, symmetry, and carrier dynamics at 

the interfaces. [McGilp 1996] [Aktsipetrov 1999] It can also be used for in situ measurements. It 

is therefore a promising tool for the investigation of Si-dielectric interfaces. 

In this dissertation, the first SHG measurements on Si/high-K dielectric interfaces will be 

presented. The data show features that are drastically different from the Si-SiO2 system. A model 

is proposed which indicates this difference is due to different carrier dynamics and trapping 

mechanism at/near the interfaces as well as to differences in band gaps and offsets. Wavelength-

dependent SHG measurements find the conduction band offset of about 2.8 eV at the Si-ZrSiOx 

interface. This is the first measurement of the band offset at the Si-ZrSiOx interface using any 

kind of technique. The results give strong supports to ZrSiOx�s candidacy as a replacement for 

SiO2 in future generation semiconductor devices. 

 

I.1 A Review of Si-Dielectric System 

 Si is the second most abundant element in the earth�s crust (25.7 mass %), only exceeded 

by oxygen (46.7 mass %). It is also arguably the most extensively studied elemental material on 

this earth, due to its pivotal role in modern technology. 

 Jons J. Berzelius is credited with the first isolation of silicon in 1824, in the form of 

amorphous silicon.  He accomplished this by heating potassium with silicon tetrafluoride (SiF4).  

Later in 1854, crystalline silicon was first prepared by Jacque Deville. Today although 

amorphous silicon (a-Si) is a promising material for photovoltaic devices, crystalline silicon (c-

Si) is unquestionably the primary focus of research activity since it forms the foundation of the 

semiconductor industry. Crystalline silicon is also the focus of this dissertation. 

Silicon has a diamond lattice structure. The lattice is face-centered-cubic (fcc) with a 

two-atom basis. From figure1.1 it can be seen as two interpenetrating fcc lattices displaced along 

the body diagonal of the cubic cell by one quarter the length of the diagonal. The coordination 

number, the number of nearest neighbors, is 4. The cube side is about 5.43 Å. 

Si has an indirect band gap at 1.12 eV. An indirect band gap significantly curtails the 

luminescent efficiency because of the requirement of the involvement by phonons. Due to the 

small band gap, which is in the infrared range, silicon�s usage in areas such as high-resolution 
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display is also doubtful. This makes silicon a less than desirable material for optical applications. 

The lowest direct interband transition, labeled E�0 and located at the Γ point, is about 3.3 eV. It is 

almost degenerate with the E1 transition at about 3.37 eV (figure 1.2), which is found along the Λ 

direction of the Brillouin Zone (BZ). These two direct band transitions play a significant role 

when nonlinear optical techniques are used to investigate silicon. 

 Intrinsic silicon, which has no appreciable dopants, has a conductivity of 3.16 µS/cm at 

room temperature. The electron mobility of silicon at room temperature is about 1450 cm2/V�sec, 

while the hole mobility is about 480 cm2/V�sec. Compared to those of some other 

semiconductors such as Ge (3900 cm2/V�sec for electrons, 1800 cm2/V�sec for holes) and GaAs 

(> 8000 cm2/V�sec for electrons), the numbers for carrier mobility in silicon are not large. This 

shows that intrinsically Si is not among the top candidates for many electrical applications. 

 Although both electrical and optical properties of silicon are less impressive than many 

other semiconductor materials, it has two huge advantages over them. The first is the low cost 

and relatively simple methods for processing crystalline silicon. The second is the extremely 

high quality of both the interface and bulk properties of the SiO2 passivation layer. 

Figure 1.1 Atomic structure of crystalline Si 
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 Even twenty years ago, it was not difficult to make an electronic device from materials 

such as Ge and GaAs. However it is extremely difficult if one wants to make integrated circuits 

(IC), let alone large-scale-ICs (LSIC) out of these materials. To do so requires simplicity in 

architecture and processing technology as well as a high degree of device reliability. Due chiefly 

to the requirement of a high-quality insulator layer, most semiconductor materials except silicon 

are not suitable candidates for LSIC. 

 Metal-insulator-semiconductor (MIS) structures turn out to be the ideal device 

architecture combining simplicity and high-performance. But again it turns out that only metal-

SiO2-Si (MOS) structures fit the rigorous requirements of IC technology. The water-insoluble 

oxide film makes planar technology possible and permits fabrication of diffused or ion implanted 
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Figure 1.2 Band diagram of Si (100) calculated using Linear Muffin-Tin Orbital 
method (LMTO). Courtesy of S. N. Rashkeev. 
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junctions with precisely controlled dimensions. Silicon dioxide is mechanically and chemically 

stable. As a passivation layer, it enables stable and predictable conditions at the semiconductor 

surfaces/interfaces to be manufactured during processing. It also screens devices from 

electrostatic effects caused by the ambient atmosphere.  More importantly, an ideal gate insulator 

must have a large dielectric constant, low trap density at the interface, and a low density of bulk 

fixed charges. The Si/SiO2 structure so far fulfills these requirements more perfectly than any 

other MIS structures. For example, films with bulk electron trap densities as low as 1016/cm3 can 

be obtained. [Balk 1988] A schematic of a MOS-based field-effect-transistor (MOSFET) is 

shown in figure 1.3. 

 

 

But in the last ten years the semiconductor technology has been growing rapidly and new 

challenges arise. The channel length in a MOSFET has decreased drastically and now is 

approaching sub-0.1-µm regime. This in turn requires gate oxide thickness to be scaled down to 

30 Å, eventually to less than 10 Å. However at this dimension direct electron tunneling through 

SiO2 film causes leakage current exceeding 1A/cm2 at ~1 V. This greatly degrades device 

performance and reliability. Furthermore, SiO2 is not a good diffusion barrier against boron. 

Consequently, dopant (boron) diffusion into and through the SiO2 layer from the poly-Si gate 

metal or poly-Si gate

Gate Dielectric Drain Source 

n-type doped n-type doped 

p-type Si substrate

n- channel

Figure 1.3 Schematic of an n-channel MOSFET 
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becomes a critical issue. As a result, SiO2 is not expected to be useful as a gate insulator for 

thickness below approximately 20 Å.  

 The operation of MOSFET depends on the charges generated in the channel at some 

given voltage. The total charge Q is the product of gate oxide capacitance and gate voltage. 

Therefore the crucial parameter for constant-field scaling is not the physical thickness, but 

instead the gate oxide capacitance per unit area: 

  Cox= εεεεεεεε0/tox      (1-1) 

ε is the dielectric constant of the material and tox is the physical thickness of the oxide. With 

physical oxide thickness tox, we can also define another important parameter, oxide equivalent 

thickness tox-eq, as:  

ε
εt

t 2SiOox
eqox =−      (1-2) 

where 
2SiOε  is the dielectric constant of silicon dioxide. Oxide equivalent thickness measures the 

thickness of the silicon dioxide layer, which yields the same capacitance as a material with 

dielectric constant ε and physical thickness tox does. Equation (1-2) shows that if a material with 

much higher ε than SiO2 is employed, scaling laws can be maintained while thicker physical 

layers are still used for gate dielectrics. 

 As far back as the late sixties, there was a search for alternative dielectrics to replace 

SiO2. Silicon nitride (Si3N4) has been at the top of this list from the beginning. The dielectric 

constant of Si3N4 is actually not much larger (7.0 for Si3N4, 3.9 for SiO2). Therefore Si3N4 

usually is not considered to be in the high-k (dielectric constant) materials category. Its small 

gain in the value of the dielectric constant is further complicated by its relatively small band gap 

(8.9 eV for SiO2, 5.1 eV for Si3N4). This results in higher electron tunneling probability. The 

biggest advantage of the nitride is that it can form an effective deterrent against contaminant ion 

[Sze 1981] and dopant [Ito 1982] drift and therefore may be used as a barrier against boron 

diffusion in p+ gate MOSFETs. However the Si/Si3N4 interface structure is of lower quality than 

the Si/SiO2 interface. Bulk and interface trapping efficiencies in the Si3N4/Si system are several 

orders of magnitude larger than those in the SiO2/Si system. [Balk 1988] 

Knowledge of these two systems led to the concept of stack structures. The most 

successful structures are composed of layers of silicon dioxide and silicon nitride in the 

oxide/nitride (ON) and oxide/nitride/oxide (ONO) configurations. This spatially selective 
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incorporation of nitrogen atoms into the gate dielectric exhibits some significant new advantages. 

A small concentration of nitrogen near the interface appears to reduce hot-electron degradation 

and increases the threshold for electrical breakdown. MOSFETs utilizing the ON stack have 

achieved an equivalent oxide thickness of less than 20 Å. [Parker 1998] But two issues remain 

with regard to the silicon nitride system. The first is the high leakage current arising at low film 

thickness.  The second is the relatively low quality interface between the silicon and the silicon 

nitride, leading for example to higher trap densities.  

 With regard to increased leakage current at low film thickness, currently the most popular 

approach is to use high-k dielectrics. With higher dielectric constant, the insulator thickness can 

increase accordingly while the capacitance of the insulator remains the same. Many materials in 

this category, including Al2O3, Ta2O5, TiO2, Y2O3, CeO2, ferroelectrics, ZrO2 and HfO2 are now 

being explored. [Feldman 1998] Table 1.1 shows some relevant properties of these materials. 

Close inspection of the properties of high-k dielectrics reveals a difficult challenge. Note that as 

the dielectric constant increases, the band gap of the material decreases. The inverse relationship 

between the band gap Eg and the dielectric constant ε can actually be shown by a semi-empirical 

equation [Stephen 1997]: 
2

2
302E �

�

�
�
�

�

+
≈

εg       (1-3) 

This relationship means that in the effort to reduce tunneling current by using high-k dielectrics, 

gains made by increasing insulator thickness may be neutralized by the reduction in band offset, 

which enhances tunneling. But as long as the band gap and the barrier height are not too small, 

>4 eV for the band gap and >1 eV for the barrier height relative to Si, the advantage of using 

larger insulator thickness seems to outweigh the effect arising from the smaller band gap. It is 

therefore possible to find a material having a combination of physical thickness and a barrier 

height, which is superior to silicon in this regard. 

But the challenges associated with a low-quality interface remain. MOS devices depend 

on the induction of charges in the channel resulting from the application of a voltage at the gate. 

This requires that the gate insulator and the interface between the insulator and the silicon be of 

very high quality. Fixed bulk charges and interface traps can pose serious problems for device 

performance and reliability. Traps can capture and release electrons or holes with various time 

constants. The presence of traps and the variety of trapping and detrapping lifetimes affect many  
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Table 1.1 Some important properties of metal oxides. After [Feldman 1998] 

 
 MgO Al2O3 SiO2 TiO2 Cr2O3 Y2O3 ZrO2 Nb2O5 La2O3 CeO2 HfO2 Ta2O5 WO3 

Dielectric constant 8-10.5 10.5-
12 

3.5-
4.1 

80 
167 
[30] 

9.2 14 [12 -
16] 

50 
30 
35 

20.8 21.2 [16] 
[45] 

[25] 20 
29 

Band gap (eV) 7.3 8.8 9 3.05 
2.59 

4.8 2.1 2 
3.95 

1-3.2 5.4 3.4  
4.5 

~5 2.2 -
2.5 

Work function(ev) 3.1-4.4 4.8 5 3.9 
6.2 

 2-3.9 3.1 – 
5.8 

 2.8 – 
4.2 

3.2 2.8 
3.75 

4.6  

Density (g/cm3) 3.65 3.97 2.2 
2.65 
2.32 

3.84 
4.17 
4.24 

5.21 4.84 5.56 
6.28 

4.95 6.51 7.13 10.01 8.73 6.47 

Heat of formation 
(106J/kg·mole) 

602 1676 858 
911 

942 
867 

1130 1758  1906 1799 1089 1114 2047 841 

Entropy 
(103J/kg·mole·deg) 

27 51 42 50 81 124 50 136 153 74 59 143 62 

Free energy of 
formation 

(106J/kg·mole) 

-570 -1580 -805 -882 -1047 -1796 -1037 -1771 -1703 -971 -1080 -1970 -763 

Melting point(K) 3073 2319 1993 2128 2573 2649 2963 1783 2573 2670 3063 2150 1743 
Thermal 

conductivity at 
373K/773K 
(W/m·deg) 

27/8.8 30/9.1 1.6/ 6.5/3.6   1.9/2.1       

Thermal expansion 
coeff. (10-6/deg) 

14-15 8 3 
0.5 

7-8 9.6 9.3 5-8  3.6 
8.5 

5.86 
4 
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device properties such as leakage current, capacitor storage time, threshold voltage and 

breakdown strength. The first MOS-like transistor was patented in 1935, but was not useful due 

to the charge trapping at the semiconductor surface. [Heil 1935] The success of Si/SiO2 system is 

largely due to its ability to successfully meet this challenge. 

Traps in the bulk are relatively easy to deal with. The presence of bulk traps is intimately 

related to the techniques used to grow the insulator films.  In practice it is possible to grow near 

perfect insulator films with negligible bulk traps. But traps at the interfaces are more pervasive 

and more complicated as mismatch between two materials may pose intrinsic problems. 

The SiO2/Si system is distinguished by having an excellent interface. Although this 

interface is a transition between crystal silicon and a glassy material, silicon dioxide, it still has a 

remarkable degree of structural perfection. In SiO2 the Si-O-Si bond energy changes very slowly 

as a function of bond angles and there can be rotation around the Si-O bond. Because of this 

flexibility, SiO2 can form a glassy structure, often characterized as a continuous random network 

structure. Such a structure may be non-crystalline but still maintain completely saturated 

chemical bonds as shown in figure1.4. This same flexibility also makes it possible for the oxide 

Figure 1.4 Si-SiO2 interface structure 

Si atom H atom O atom 
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to adjust to the crystalline silicon and make saturated bonds at the interface. The remaining 

dangling bonds can be further saturated by hydrogen atoms. This is why one can obtain high 

quality Si/SiO2 interface with a high degree of structural perfection. Defect densities as low as 

1014defects/m2, corresponding to one defect for every 100,000 surface atoms, are often observed. 

[Svensson 1988] But so far neither nitride nor high-k materials have been able to achieve the 

same level of perfection at the interface. 

One approach to this challenge for the high-k dielectrics is to add a very thin buffer layer 

of silicon oxide or oxynitride between the silicon substrate and the high-k dielectric. But this 

brings up a new question concerning the nature of the interface between the buffer layer and the 

high-k material. It also increases the complexity of the manufacturing process. 

Recently an alternative method has been pursued to deal with these interface problems. In 

principle, by epitaxial growth of a suitable crystalline insulator on the silicon, one can obtain a 

perfect Si-insulator interface. This approach was first explored by growing crystalline CaF2 on 

the Si (100) and (111) substrates. [Ishiwara 1982] [Fathauer 1984] However it was found that the 

lattice mismatch is not negligible (0.6%). [Fathauer 1984] More recently the possibility of 

depositing crystalline oxides on silicon (COS) has been proposed. In fact alkaline earth and 

perovskite oxides were grown in perfect registry with Si substrates. Combining the high-quality 

interface with the high dielectric constants of these oxides, a MOS capacitor with an equivalent 

oxide thickness of less than 10 Å was obtained. [McKee 1998] Still questions remain with regard 

to the compatibility of these techniques with the existing silicon processing techniques. And 

since most of the crystalline oxides are poly-crystalline, there may be problems with leakage 

current at the grain boundaries. Many electrical parameters also depend on crystal orientation. 

Poly-crystal oxides consequently may not achieve uniform device performance. But without 

doubt, crystalline oxides on silicon (COS) open a new, potentially revolutionary, path towards 

the next generation of silicon technology. 

 

I.2 A Review of Second Harmonic Generation (SHG) 

 The first second harmonic generation (SHG) experiment carried out by Franken et al. in 

1961 marked the birth of the field of nonlinear optics. [Franken 1961] Since then the effect has 

found wide applications as a means to extend coherent light sources to shorter wavelength. Then 
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in the early 80s, Shen�s group in Berkeley established the potential of SHG as a surface probe 

and opened a new chapter for SHG applications. [Shen 1985] 

 Although quantum mechanics is required to have a full, quantitative understanding of 

second harmonic generation, the classic Lorentz model of the atom is sufficient to give a 

physical picture of this phenomenon. When light interacts with a medium, the electrons and ion 

cores are pulled away from each other, creating electric dipoles in the medium. The sum of the 

electric dipole moments gives rise to the polarization (P) of the material.  

The motion of the ions is insignificant compared to that of the much lighter electrons. 

Therefore only the motion of electrons is considered in the Lorentz model. The equation of 

motion for the electron takes the form of 

eE(t)/m...)bx(axxωx2γx 322
0

−=+++++ ���    (1-4) 

where the electric field E(t) is assumed to have the form of E0cos(ωt) and γ is the damping 

constant. If one ignores the nonlinear terms ax2, bx3, � for the moment, equation (1-4) shows 

that the motion of electrons is of the form of a simple harmonic oscillation coupled with a force 

with optical frequency ω. An oscillating electric dipole can then radiate an electromagnetic field 

with the same frequency ω.  

 Simple harmonic oscillation holds only if the amplitude of the oscillation is small. This 

translates into a small incident electromagnetic field. But if the intensity of the light is high, the 

electromagnetic field will be large. This will result in anharmonic behavior of the dipole 

oscillation. The nonlinear terms ax2, bx3, � in equation (1-4) characterize the anharmonic 

oscillation of the dipoles. As shown in appendix A, the anharmonic potential will lead to higher 

order harmonic oscillations at frequencies 2ω, 3ω, and so on. This is analogous to the harmonic 

distortion of signals in an electrical circuit whose response is not linear. The oscillating electric 

dipoles then radiate field at the corresponding frequencies, which leads to second-, third-, � 

harmonic-generation.  

 Under this electric dipole approximation, the interaction between an electromagnetic 

(EM) field and condensed matter can be described by a general polarization. This polarization, 

P(ω, 2ω, �), induced by the EM field E(ω) with frequency ω,  can be written as: 

Pi ==== χχχχij
(1)Ej ++++ χχχχijk

(2) Ej Ek ++++ χχχχijkl
(3)  E jEkEl ++++ ...    (1-5) 
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The first term describes the linear optical response. The other terms describe the nonlinear 

optical responses, which become significant when the EM field becomes large. Among these 

terms the lowest one is responsible for SHG. χ(2) is called second order nonlinear susceptibility. 

It is a third rank tensor and describes the second-order nonlinear optical response from the 

medium. 

In second harmonic generation both energy ћω and momentum ћk have to be conserved. 

These conditions can be described as ω2=2ω1 and k2=2k1, where ω1 and ω2 are optical 

frequencies of the fundamental and second-harmonic beams, respectively, while k1 and k2 are 

the wave vectors of the fundamental and second-harmonic beams, respectively. The momentum 

conservation condition is also called the phase matching condition. It originates from the 

classical model. The physics can be best understood as follows. The polarization P(ω2= 2ω1) is 

proportional to E2(ω1) ∝  exp(-i2k1x). For two electric dipoles separated by a distance of d, there 

is a phase difference of 2k1d in their polarizations. The second harmonic field generated by the 

first dipole, which is proportional to exp(-ik2x), arrives at the second dipole with a phase 

difference of k2d. If the second harmonic field generated by the second dipole is to be in phase 

with the SHG from the first dipole, the phase differences 2k1d and k2d, must be equal. This leads 

to the phase matching condition k2=2k1. In the classical model, this phase matching condition 

requires the radiations from all the electric dipoles to be in phase. 

 Since k is the wave vector of the beam, the momentum conservation condition also 

means that if the fundamental beam is collinear, the SHG beam will be collinear as well and at 

the same direction as the fundamental beam. This greatly simplifies the detection of SHG beams.  

 The penetration depth of optical radiation into semiconductors and insulators is relatively 

large. This makes it difficult to isolate surface/interface contributions from bulk contributions. 

However researchers quickly recognized that symmetry differences between the bulk and the 

interface/surface may readily be exploited. Resonance associated with interface states can also be 

exploited. The linear optical response of the interface usually provides little or no information on 

the crystalline structure of the interfacial layer since the linear-optical parameters are scalars in 

the most important cubic media. In contrast, the symmetry characteristics inherent in the higher-

order optical susceptibilities, which are tensors, are indicative of the symmetry of the interfacial 

structure. Thus, second harmonic generation becomes a sensitive tool to investigate 

surface/interface structures. This technique offers several significant advantages over 
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conventional surface spectroscopies associated with charged particle beams such as electron 

beams and ion beams. By use of the contactless SHG technique, materials damage and 

contamination is eliminated; all pressure ranges are accessible; insulators can be studied without 

the problem of charging; and buried interfaces are readily accessible owing to the large 

penetration depth of the optical radiation. In addition, because the SHG technique is best used 

with an ultrafast laser, micrometer lateral resolution and femtosecond temporal resolution can be 

achieved easily. 

 Compared to traditional electrical methods, SHG still cannot quantitatively characterize a 

material under most circumstances. The advantage of being contactless can also become a 

disadvantage in some cases. Semiconductor devices usually have contacts on top of the oxide. 

After the contact is deposited, structural and electronic changes may take place underneath it. 

Therefore measurements taken on silicon with bare oxide may not reflect precisely the dynamics 

in a semiconductor device. Still the physics involved in a bare oxide system and a real device is 

very similar. Therefore SHG can still be a very effective tool for surface/interface studies, 

considering its strength mentioned earlier.  

 Initial surface SHG studies in the 1960s under non-ultra-high-vacuum (non-UHV) 

condition detected a surface signal, but found no dependence on adsorbate or surface structures. 

This held back the development of the field. An important breakthrough occurred in 1984 when 

the first SHG experiment under UHV condition was performed by Shen�s group. [Tom 1984] 

These experiments showed that the adsorption of O and CO damped the SHG signals from Rh 

(111) while the adsorption of Na enhanced the signals. The following year Heinz showed that the 

azimuthal dependency of the SHG signal was sensitive to the symmetry change between the 

(2x1) and the (7x7) reconstructions of the Si (111) surface. [Heinz 1985] Later McGilp and Yeh 

used the Si(111)-Au system to show that SHG can provide structural information about buried 

interfaces. [McGilp 1986] Since then SHG has become a proven technique in investigating 

surface/interface structures. Among the materials studied, those with inversion symmetry, also 

referred as centrosymmetry, have gained particular attention.  

 The class of centrosymmetric materials includes many important materials such as metals 

and elemental semiconductors. Furthermore, under the electric dipole approximation it is easy to 

see that in the bulk, inversion symmetry leads to χχχχ(2)=-χχχχ(2)=0. At the surface however inversion 

symmetry is broken and the SHG contribution from the electric dipole is then allowed. This 
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makes SHG especially sensitive to the surface/interface structures of centrosymmetric materials. 

Among them the power of SHG is best illustrated by studies of silicon, which is 

centrosymmetric. Those studies show SHG is very sensitive to atomic symmetry, interfacial 

preparation and roughness, interface charge, applied electric fields, local resonance, strain, and 

crystalline oxide transition layers. [McGilp 1996] 

 Still precautions have to be taken when using SHG for interface/surface investigation. 

Although the SHG contribution from electric dipoles is forbidden in centrosymmetric materials, 

Terhune et al. observed SHG from bulk calcite, which is centrosymmetric. [Terhune 1962] Later  

SHG was also detected from bulk materials such as Ag, Au, Si, Ge et al. Further studies showed 

these SHG signals are contributed by higher order, non-local multipoles, i.e. magnetic dipole and 

electric quadrupole terms. If these terms are considered, the second order nonlinear polarization 

can be written as: 

Ptot
(2)(2ωωωω) ==== P(2)(2ωωωω) −−−− ∇∇∇∇ •••• Q

↔↔↔↔ (2)
(2ωωωω) ++++

c
i2ωωωω

∇∇∇∇ ×××× M(2) (2ωωωω)    (1-6) 

The first term in the right is from electric dipole, which vanishes in centrosymmetric 

materials. The second and third are contributions from electric quadrupole and magnetic dipole, 

respectively. Together they can be described by an effective polarization as: 

Pi
eff (2ωωωω) ==== χχχχijkl

(3)  Ej (ωωωω)∇∇∇∇ kEl(ωωωω)     (1-7) 

 For cubic media, this equation can be further simplified to: 

Pi
eff (2ωωωω) ==== (δδδδ −−−− ββββ −−−− 2γγγγ)Ej (ωωωω)∇∇∇∇ jEi (ωωωω) ++++ ββββEi(ωωωω)∇∇∇∇ j Ej (ωωωω)

++++γγγγ∇∇∇∇ i Ej (ωωωω)Ej (ωωωω) ++++ ζζζζEj (ωωωω)∇∇∇∇ jEi (ωωωω)
    (1-8) 

Where   δ = 2χiiii, 

  β = 2χiijj, 

  γ = χijij, 

  ζ = δ - β - 2γ - 2χijji . 

 Sipe and Shen both showed that as far as signal detection is concerned, one cannot totally 

separate the bulk SHG contributions from the surface SHG in centrosymmetric media. [Sipe 

1987] [Guyot-Sionnest 1988]  Shen also showed that this bulk contribution is at most the same 

order of magnitude as the surface contribution. Nevertheless this bulk contribution, even though 

it may be very small in magnitude, indicates that for centrosymmetric materials, second 
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harmonic generation is a sensitive tool for the investigation of structural changes at the surface 

rather than for the absolute determination and characterization of the surface structure. 

Fortunately in many cases it is sufficient to detect that a change of surface structure occurs.  This 

can be readily achieved by using the second harmonic generation technique. 

 At about the same time that a bulk effect was observed from materials with inversion 

symmetry, Bloembergen et al. also noticed that SHG signals from Si would be greatly enhanced 

if a DC voltage were applied across the sample. [Lee, 1967] This electric-field-induced SHG 

(EFISH) later was also detected from other centrosymmetric materials. It can be described by: 

Pi (2ωωωω) ==== χχχχijk
(3) Ej (ωωωω)Ek (ωωωω)Edc      (1-9) 

where χ(3) is a third order bulk susceptibility with electric dipole origin. Edc is a quasi-static 

electric field normal to the surface. This field breaks the inversion symmetry and makes it 

possible to have an SHG contribution from the bulk electric dipole. An externally applied 

voltage, as it was carried out in the original experiment, is the most direct way to generate this 

quasi-static field. One example is the gate voltage in a MOS system. Therefore EFISH is an 

alternative, contactless, non-electric method to investigate the MOS device response from the 

gate voltage. This quasi-static field can also be generated internally. For instance, traps at the 

silicon surface can create a static field across the surface. In addition carriers which may be 

trapped/detrapped at these sites can alter this built-in field. As a result EFISH can also provide 

electronic structure information at the surface/interface. 

Since the 1980s, EFISH has developed into a powerful tool to investigate 

surface/interface structure. It is also the main experimental method utilized in the work describe 

in this dissertation. EFISH is used to study both Si-SiO2 system and Si-high-k system. There will 

be a more detailed discussion of EFISH and its application later in this work. 

 The remainder of this dissertation consists of three sections. In chapter II the 

experimental configuration is described, including the building and characterization of the 

principle experimental equipment: a Ti:Sapphire laser. In chapter III experimental results are 

presented along with relevant theories. The physical significance of these results is also 

discussed in that chapter. The last chapter summarizes the work and presents plan for future 

research.  



 

 16

CHAPTER II 

 

 

INSTRUMENTATION AND EXPERIMENTAL SETUP 

 

 

 Since second harmonic generation is a nonlinear optical process, it strongly depends on 

the intensity of the excitation source. It is no coincidence that the progress in second harmonic 

generation studies is correlated with the development of lasers.  

 Ultrafast pulsed lasers are the preferred excitation source compared to continuous 

wavelength (CW) lasers. Even with a moderate average power, a pulsed laser can still have a 

very high peak power depending on its pulse width. For a CW laser to have power comparable to 

a pulse laser’s peak power, a very high average power is required. Under many circumstances, 

this may complicate the experiment, or even damage the materials. On the other hand, pulsed 

lasers, especially ultrafast lasers with short irradiation duration, can generate nonlinear optical 

effects without the complication of local heating. This is especially crucial when SHG is used for 

spectroscopic purposes. 

The search for reliable pulsed lasers, which should also be easy to operate and maintain, 

therefore became a major task in the development of SHG as a spectroscopic tool. Nd:(YAG, 

YAP, YLF) lasers and dye lasers were among the early approaches to pulsed laser operation. The 

breakthrough came in early 1990s with the invention, and then commercial availability, of the Ti: 

Sapphire laser. This laser provides a compact, powerful, ultrafast and easy to operate excitation 

source. The Ti:Sapphire laser is also the light source used in this thesis work. A large part of this 

dissertation work was the construction and characterization of a Ti:Sapphire laser. 

 

II.1 The Construction of a Ti: Sapphire Laser 

The Ti: Sapphire laser is a new class of solid-state laser developed in the early 1990s. It 

has a wide tunable wavelength range of about 400 nm and an ultra-short pulse width (<100 fs). 

Since its appearance the Ti: sapphire laser has become the most widely used tunable solid-state 

pulsed laser. Its success is largely due to two factors: the superb properties of the Ti: Sapphire 

nonlinear crystal and the application of the mode-lock technique to this laser system. 
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In most lasers, all energy released via stimulated emissions by the exited medium is in the 

form of photons. However in some solid-state lasers, the stimulated emission of photons is 

coupled to the emission of phonons in the crystal lattice. In these lasers, although the total energy 

of the inter-state transition is fixed, the released energy can be partitioned between photons and 

phonons in a continuous fashion. This coupling leads to broad band emission, which enables the 

wavelength tunability of these lasers.  

The energy-level structure of sapphire (Al2O3) doped with titanium (Ti) is shown in 

figure 2.1. The ground state, a 2T2 state, has a broad sequence of overlapping vibrational or 

vibronic levels extending upwards from the lowest level. The first excited state is a 2E state that 

also extends upwards with a series of overlapping vibronic levels. Excitation occurs from the 

lowest vibronic level of the 2T2 ground state to the broad range of excited vibronic levels of the 
2E excited state. The population pumped to these excited levels rapidly relaxes to the lowest level 

of the 2E state. It then decays back to any one of the vibronic levels of the ground state with the 

emission of photons. 

 Due to this broad emission band Ti:Sapphire has a broad tuning range from 680nm to 

1100nm. It has exceptional chemical stability and mechanical rigidity. Its high thermal 

Collisional 
relaxation 

Collisional 
relaxation 

Pump 
absorption Tunable 

laser output 

2E 

2T2 

Figure 2.1 Energy levels of the Ti:sapphire laser 
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conductivity, comparable to metals at low temperature, enables pumping powers as high as 20W 

from a CW laser. This in turn enhances essential nonlinear optical effects in the crystal and the 

output power. High optical quality Ti:sapphire crystals are now readily available from 

commercial vendors in a variety of sizes. 

 

II.1.1 Theory of operation 

 For a high gain medium like sapphire, it is not difficult to make a CW laser. But it is 

difficult to build a pulsed laser, especially with an ultra-short pulse width. The Ti:Sapphire 

laser’s success in achieving short pulses width arises from the application of the mode-lock 

technique. 

Any longitudinal mode that satisfies nλ=2L (where n is an integer and L is the optical 

length of the laser cavity.) can oscillate inside the laser cavity. There can be as many as 104 

longitudinal modes existing in a Ti:Sapphire laser cavity [Ducasse 1998] for a given pulse 

compared to just a few hundred in a Nd:YAG laser. [Koechner 1996]  This is the major reason 

that ultra-short pulses can be achieved in a Ti:Sapphire laser, since the pulse width in the time 

domain is inversely proportional to the frequency distribution. 

 But in a free running laser, those longitudinal modes oscillate simultaneously with a 

random phase relation between each of them. The resulting laser output intensity is therefore a 

time-averaged statistical mean value with random fluctuation. If the oscillating modes can be 

forced into maintaining a fixed phase relationship to each other, the output as a function of time 

will vary in a well-defined manner. The laser is then said “mode-locked” or “phase-locked”. 

Figure 2.2 illustrates the influence of the phase relation between the modes on the resultant 

oscillating intensity. With random phase relation, the resultant intensity is like white noise. When 

the modes are “in phase”, a pulse then is formed. As the number of modes involved increases, 

the pulse also becomes sharper.  

 There are usually two mode-lock approaches: the active mode-lock technique and the 

passive mode-lock technique. The former involves the placement of an external modulator while 

the latter has an absorbing device inside the cavity. However, the mode-lock technique used in 

the Ti:Sapphire laser is based on a totally different mechanism. [Spence 1991] It utilizes the 

Kerr-Lens effect. Therefore this type of mode-lock is also known as Kerr-Lens Mode-locking 

(KLM).
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Figure 2.2 Illustration of the influence of the phase relation
between the modes on the resultant intensity of the light. a) 100
modes with random phases, b) three modes in phase, c) 100
modes in phase  

b) 

c) 

a) 
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  At sufficiently high intensities, the index of refraction n varies as a function of the beam 

intensity: n=n0+I*n1. This is called the optical Kerr effect. Sapphire has a negative n1. An 

incident high intensity Gaussian beam can then induce an index of refraction gradient on the 

crystal. This essentially forms a lens, which self focuses the beam. Therefore an intense beam 

will have a smaller diameter than a less powerful beam as it traverses the crystal. This self-

focusing “lens” is sometimes called a Kerr Lens.  

Normally in a laser, there is only one longitudinal lasing mode. This is due to the fact that 

although the gain medium may have a broad spectrum, it will only emit light at the same 

frequency as the stimulating light. Hence the earliest light to reach high intensity through the 

amplification process will establish the frequency for the subsequent emitting light. The resulting 

emission is essentially in the CW mode. Typically for this mode the beam intensity is relatively 

low and the beam diameter is then large. If there is an aperture inside the cavity with a diameter 

less than the beam diameter, there will be loss at this aperture, which further lessons the beam 

intensity.  

To reach mode-lock, there have to be some fluctuations inside the cavity that can 

generate some high intensity spikes. This can be done by simply tapping a mirror inside the 

cavity, or more sophisticated in commercial ones, by having a mirror on a Piezoelectiric (PZT) 

mount and introducing a vibration on the order of a few µm at a frequency of tens of Hz. As the 

cavity length changes, the lasing longitudinal mode will shift in wavelength. When the change in 

cavity length is fast enough, the freshly discouraged modes (previously oscillating modes) will 

die out while new modes begin to lase. This will create a transient period during which more 

longitudinal modes can exist than under normal circumstances. At some instant if those modes 

happen to have a fixed phase relationship (“in phase”), a spike with huge peak intensity then is 

generated. Due to its high peak intensity, the Kerr-Lens effect begins to operate and the beam 

spot size becomes very small. As a result the beam can pass through the aperture without 

attenuation. This gain/loss difference obviously favors the mode-lock over the CW and quickly 

leads to dominance by the former. Since many modes lase simultaneously, there are insufficient 

atoms in the excited states for a period afterwards. As a result a pulse is formed, which will be 

amplified. The more modes involved, the quicker the population-inversion is exhausted. This 

results in a shorter lasing time, which is equivalent to a shorter pulse width.  
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The aperture in the cavity can be a physical one, which is referred to as “hard aperture”. 

But the nonlinear crystal itself can also act as an aperture. Sapphire has a Gaussian spatial profile 

for its gain with the peak at the center. Since the pump intensity is also the highest at the center, a 

smaller beam will experience higher gain, which is equivalent to loss for beam with bigger spot 

size. This is amount to a gain aperture, which is called “soft aperture”. 

After the pulse is formed, the subsequent stability of the pulse is dependent upon two 

phenomena. The first is group velocity dispersion (GVD) and the second is self-phase-

modulation (SPM).  

When a pulse propagates in a medium, its group velocity can varies according to the 

frequency distribution of the pulse. This is called group velocity dispersion and is defined as: 

k" ====
d2k
dωωωω2

ωωωω0

====
d

dωωωω
1

vg(ωωωω)

����    

����    
����    
����    

����    

����    
����    
����    

ωωωω0

    (2-1) 

 GVD governs the rate at which the frequency components of a wave packet change their 

relative phases. As different frequency components travel at different velocities inside the cavity, 

the fixed phase relationship among them will be lost and this can lead to a broadening of the 

pulse, or in worse case, even destroy the pulse. This effect can be elegantly shown 

mathematically as follows. 

 A Gaussian pulse wave packet can be expressed as  

 E(t) ==== E0 exp(−−−−ΓΓΓΓ t 2)exp(iωωωωt)     (2-2) 

 As this pulse propagates in a transparent medium, the resulting dispersion can be 

described by 

E(x,t) ====
ΓΓΓΓ(x)
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where   vΦΦΦΦ(ωωωω0 ) ====
ωωωω
k
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dk

����    
����    ����    

����    
����    ����    ωωωω0

,  
1

ΓΓΓΓ (x)
====

1
ΓΓΓΓ

++++ 2ik" x.  

 Rewriting Γ(x) as 

ΓΓΓΓ (x) ====
ΓΓΓΓ

1 ++++ (2ΓΓΓΓk" x)2 −−−−
i(2ΓΓΓΓ2k"x)

1 ++++ (2ΓΓΓΓk"x)2    (2-4) 
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and substituting it into (2-3), the second exponential term on the right side of (2-3) can be written 

as: 

exp i(2ΓΓΓΓ2k" x)
1 ++++ (2ΓΓΓΓk"x)2 t −−−−

x
Vg(ωωωω0 )
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  (2-5) 

In the case of GVD, k′′  is non-zero. The real part of (2-5) is still a delayed Gaussian function. 

But its form factor 
ΓΓΓΓ

1 ++++ (2ΓΓΓΓk"x)2  is always smaller than the original Γ. This results in a 

broadening of the pulse width. The imaginary part of (2-5) corresponds to a phase modulation 

with a second order time dependency. A pulse with a time-dependent frequency is called a 

“chirped” pulse, which, under certain circumstances, will eventually dissolve. 

 Phase modulation due to interaction between a pulse and some optical element can be 

written generally as 

  ˜ E out (x,t) ==== ˜ R (x,t) ˜ E in(x,t)      (2-6) 

where ˜ R (x,t) is the complex modulation function and can be further written as  

  ˜ R (x,t) ==== R0 (x,t)eiΦΦΦΦ (x,t)     (2-7) 

where two real functions R0(x,t) and Φ(x,t) describe amplitude dependency and phase response, 

respectively. 

 If Φ(x,t) is a linear function of time, there will be at most a shift in central frequency of 

the pulse while the spectrum is left unchanged. But if higher order dependency of time exists, the 

spectrum will be altered. This nonlinear effect is referred to as phase modulation. Again the 

Gaussian representation of a pulse in (2-2) can be used as an example. For simplicity, we assume 

Φ(x,t)=αt2 and R0(x,t)=constant. 

 The modulated pulse can then be written as 

 ˜ E out (x,t) ==== R0eiααααt 2
E0 exp −−−−ΓΓΓΓ t −−−−
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 Its Fourier transform can be calculated easily 

˜ E out (x,ωωωω) ∝∝∝∝ exp −−−−
iωωωω0x
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����    

����    
����    
����    

����    

����    
����    
����    
 exp −−−−

ΓΓΓΓx2

vg
2(ωωωω0 )

����    

����    
����    
����    

����    

����    
����    
����    exp

i(ωωωω −−−− ωωωω0 ) ++++ 2xΓΓΓΓ vg(ωωωω0 )(((( ))))2
4(ΓΓΓΓ −−−− iαααα )

����    

����    

����    
����    
����    

����    

����    

����    
����    
����    

 (2-9a) 



 

 23

∝∝∝∝ exp −−−−
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  (2-9b) 

 The first term on the right side of (2-9b) gives the frequency spectrum. There is a shift in 

central frequency. More interestingly, the spectral width, which is proportional to ( ) )1( 2Γ+Γ α , 

is clearly broadened. Since the pulse width is inversely related to spectral width, this implies a 

shortening of pulse width. Unfortunately the remaining terms on the right side of (2-9b) show a 

phase modulation of the frequency spectrum. This indicates the original fixed phase relationship 

between different frequencies has been broken. In many circumstances, this prevents the 

shortening of pulse widths and in worse cases, depending on the exact form of Φ(x,t), even 

destroys the pulse. In figure 2.3 both a pure Gaussian pulse and one with phase modulation are 

shown. 

 The pulse under consideration can be responsible for the nonlinear time dependency of 

Φ(x,t). The process then is called self-phase-modulation (SPM). In contrast, if additional pulses 

cause the phase modulation, it is referred to as corss-phase-modulation.  SPM is a big concern in 

Ti:Sapphire laser due to its effect on pulse formation and stability. 

 In the time domain, a Gaussian pulse has its intensity peaked at the center. As it 

propagates in a medium, the index of refraction has a time dependency due to the Kerr effect. 

This has the effect of having the center of the pulse travelling faster than both the leading and 

trailing edges of the pulse, thereby altering the pulse shape and causing a phase modulation. For 

this situation, using the notation in (2-7), the phase factor Φ(x,t) can be written as -

2πn2xI(t,x)/λ,where  I(x,t) depends nonlinearly on time. 

Because self-phase-modulation and group velocity dispersion arise from many optical 

elements within the laser cavity, some mechanism must be employed to cancel their effect. It is 

found that in the case of Ti:Sapphire laser, the GVD k″ from lenses and mirrors is positive and 

the chirp caused by SPM has the same sign (positive) as those arising from GVD. Therefore a 

natural solution to this problem is to introduce an element inside the cavity with negative group 

velocity dispersion. It can be shown that a pair of parallel prisms can result in a negative GVD. 

[Koechner 1996] [Fork 1984] This has become a standard compensation method for the 
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a) 

b) 

Figure 2.3 Computer simulation of pulse propagation in a media. a) a 
Guassian pulse; b) a Guassian pulse with phase modulation. 
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Ti:Sapphire lasers. By adjusting the amount of glass within the cavity, one may fine tune the 

negative GVD, which may eventually balance the positive chirps.  

Because self-phase-modulation and group velocity dispersion arise from many optical 

elements within the laser cavity, some mechanism must be employed to cancel their effect. It is 

found that in the case of Ti:Sapphire laser, the GVD k″ from lenses and mirrors is positive and 

the chirp caused by SPM has the same sign (positive) as those arising from GVD. Therefore a 

natural solution to this problem is to introduce an element inside the cavity with negative group 

velocity dispersion. It can be shown that a pair of parallel prisms can result in a negative GVD. 

[Koechner 1996] [Fork 1984] This has become a standard compensation method for the 

Ti:Sapphire lasers. By adjusting the amount of glass within the cavity, one may fine tune the 

negative GVD, which may eventually balance the positive chirps.  

 The final temporal and spatial form of the pulse is dynamic in nature. Although the 

prisms and optical materials inside the cavity define the total dispersion, SPM depends on the 

intensity of the pulse. As the pulse gets shorter, its intensity becomes higher. This leads to more 

SPM, which can broaden the pulse. As a result of this process an equilibrium pulse is 

established, which remains unchanged.  

 

II1.2 Alignment and Operation 

During the earlier stage of this thesis work, it was necessary to construct a Ti:sapphire 

laser from basic components.  A schematic is shown in figure 2.4. The laser system consists of a 

focusing lens, a Ti:sapphire crystal, a pair of curved mirrors, a pair of prisms and a pair of end 

mirrors. An Innova 60 Argon ion laser was used as the pump laser. The focusing lens focused the 

pump beam onto the crystal. A pair of curved mirrors was to focus the infrared emission through 

the crystal for amplification. The prisms were used for GVD compensation. The end mirrors 

forms the cavity with one acting as an output coupler. 

The dimensions shown in fig.2.4 have different roles and importance in the operation of 

the Ti:sapphire laser. The total cavity length L determines the repetition rate f of the pulse as 

f=2L/c where c is the speed of light in vacuum. The prism separation is somewhat crucial in 

obtaining the shortest pulse width. The separation between the two curved mirrors and the 

position of the crystal are very critical. A systematic measurement of the mode-lock stability as a 

function of the mirror separation and crystal position is shown in figure 2.5. Since the two curved  
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Figure 2.4 Schematic Diagram of a mode locked Ti:Sapphire laser 
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mirrors and the sapphire crystal are mounted on separated translation stages, the readings from 

their micrometers are unrelated. Therefore the separation between the mirrors and crystal 

positions are the difference between the readings plus an arbitrary offset.  

Fig 2.5 shows that a stable mode-lock can be achieved only in two separated areas: one at 

the bottom left corner and the other at the top right corner. A gap exists between these two areas 

where no mode-lock can be obtained. This turns out to be consistent with both experimental and 

theoretical work from other groups. [Cerullo 1994]  The gap is predicted from a mathematical 

model. And Cerullo et al. found there are more stable mode-lock configurations in the bottom 

left corner, which they call low misalignment sensitivity (LMS) region, than in the top right 

corner, which they call high misalignment sensitivity (HMS) region. [Cerullo 1994] Cerullo 

explained that the HMS is in an almost confocal configuration, which is sensitive to 

misalignment, while the LMS is in a configuration with both end mirrors lie in nearly conjugated 

Figure 2.5 Mode-lock stability as a function of folding distance and crystal
position. Folding distance=mirror2-mirror1+100 (mm); Crystal position=20-
crystal-mirror1. The dots represent stable mode-lock. 
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planes. Their result is consistent with data shown in Fig. 2.5 as there are more mode-lock points 

in the upper corner than in the bottom corner.  

 

II.1.3 Characterization of Ti:Sapphire Lasers 

The characterization of an ultrafast laser here includes the spectral and temporal 

descriptions in addition to some other parameters. When the pump laser Innova 60 is running at 

5.4 Watts in a multiline mode, the Ti:sapphire laser has a CW power of 400 mW and a mode-

lock power of 350 mW. The pulse repetition rate is about 76 MHz. 

The frequency spectrum is shown in figure 2.6. It centers at 7824 Å and it has a full width 

at half maximum (FWHM) of about 230 Å. The dots are the experimental data and the solid line 

is a Gaussian fit. There is a blip at about 7570 Å, which indicates the existence of CW 

component in the beam. This component can be filtered out by tuning the prism and the curved 

mirrors. 
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Figure 2.6 Wavelength spectrum of the Ti:sapphire laser constructed at
Vanderbilt. The dots are experimental data and the solid line is a Gaussian fit.
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To measure the temporal profile of an ultrafast light pulse is obviously a challenge. 

Although some recent results for recovering pulse envelopes of a few hundreds of 

femtosenconds directly from electronic devices seems promising, [Sarger 1998] these attempts 

so far are limited by the materials’ response time arising from the photoelectric effect. The 

alternative is an all-optical method, which gives indirect measurement of pulse widths from tens 

of picoseconds to considerably less than 100 femtoseconds. But in utilizing this method, one has 

to not only take into account the technique itself, but also realize that the final pulse shapes are 

usually model dependent.  

The all-optical approach utilizes two different techniques. The first technique makes use 

of a time-space transformation. It takes only a picosecond for light to travel 300 microns in air, a 

distance which is easy to measure and calibrate. In comparison a direct measurement of time in 

the range of picoseconds is much more difficult. The second technique is the use of a 

mathematical correlation function as described below.  

Given a time-dependent function F(t), if we have a reference function G(t) already 

known, we can measure their cross correlation defined as 

A(t) ==== F(ττττ )G( ττττ ++++ t)
−∞−∞−∞−∞

∞∞∞∞
���� dττττ      (2-10) 

The Fourier transform of (2-10) is  

˜ A (ωωωω) ==== ˜ F (ωωωω) ˜ G ∗∗∗∗ (ωωωω)       (2-11) 

From equation (2-11) ˜ F (ωωωω)  can be readily obtained. An inverse Fourier transform then gives the 

final answer of F(t). 

 To have higher temporal resolution, it is intuitively clear that the reference function G(t) 

must have a shorter pulse width than the test one. This is equivalent to a broader frequency 

spectrum for ˜ G ∗∗∗∗ (ωωωω)  which enables the calculation of the full spectrum of ˜ F (ωωωω)  through (2-11). 

In the ideal case, the reference pulse should be a delta function and (2-10) yields the exact pulse 

structure of the signal F(t). But in practice for a pulse width less than 100 fs, it is very hard to 

find a shorter reference pulse. (Even if one is found, there is still the question of how to calibrate 

its pulse width.)  

 The alternative to this is to use the signal F(t) itself as the reference and measure the 

autocorrelation function. An intensity autocorrelation of order (n+1) can be defined as 
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  An (t) ==== I(ττττ )In (ττττ ++++ t)
−∞−∞−∞−∞

∞∞∞∞
���� dττττ      (2-12) 

For a reasonably peaked function I(t), as n reaches infinity, In approaches to a delta function and 

autocorrelation function An(t) becomes a good approximation of the pulse shape I(t). Though 

nonlinear order autocorrelation is very powerful to determine the pulse profile, it usually requires 

nonlinear optical process. This limits most autocorrelation measurements to the second order. 

But coupled with spectroscopic measurements, second order autocorrelation can still reveal a 

large part of the pulse structure. 

 The first order intensity autocorrelation is defined as 

  A1(t) ==== E(ττττ )E(ττττ ++++ t)
−∞−∞−∞−∞

∞∞∞∞
���� dττττ      (2-13) 

and is also called second order electric field autocorrelation. The Michelson interferometer is the 

most common device used for measuring A1(t). The Fourier transform of (2-13) yields ˜ E (ωωωω)
2

 

which is the spectral intensity of the pulse. Therefore a first order intensity autocorrelation does 

not carry much more information than that provided by a spectrometer. The Fourier transform 

results in the absolute value of the spectral intensity. This means the loss of phase information. 

As a result, an inverse Fourier transform cannot be performed except for the case of Fourier 

transform limited pulses, in which case the phase is frequency independent. 

 The second order autocorrelation is usually obtained by measuring the quantity S2(t) 

defined as 

  S2(t) = E(ττττ ) + E(t + ττττ )
-∞∞∞∞

∞∞∞∞
����

4
dττττ      (2-14) 

where E(t) is the electric field and can be written in general as E0(t)exp[i(ωt+φ(t)]. Equation (2-

14) can then be expanded into 
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 In the first term on the right side of (2-15), the first two integrands are signals due solely 

to the original beam and its delayed counterpart, respectively. They are independent of the delay 

time and form a background. The third integrand is just the second order intensity 

autocorrelation. The remaining two integrals in (2-15) contain phase information about the pulse. 

If these two terms are recorded as well as the others, an interferometric autocorrelation is 

obtained. It gives more pulse information than an intensity autocorrelation due to the phase 

information contained in the last two terms in (2-15). The interferometric autocorrelation can be 

exploited to qualitatively test the absence/presence of phase modulation, quantitatively measure a 

linear chirp and in combination with the pulse spectrum, determine the pulse shape and phase by 

a fitting procedure. Although interferometric autocorrelation is superior to the intensity 

autocorrelation, its signal analysis is more complicated. Since the pulse width is usually the 

parameter of most concern and the intensity autocorrelation approach is equally good for this 

purpose, most autocorrelation measurements are intensity autocorrelations. The two 

interferometric terms in (2-15) can be averaged out by the detection system. The resulting 

measurement is called “intensity autocorrelation with background” in contrast to the “intensity 

autocorrelation without background” when the first two integrands in the first integral of (2-15) 

are filtered out.  

 The second order intensity autocorrelation defined as 

A2(t) ==== I( ττττ )I( ττττ ++++ t)
−∞−∞−∞−∞

∞∞∞∞
���� dττττ      (2-16) 

can be obtained through a second order optical process like second harmonic generation or two 

photon absorption. The autocorrelator is usually a modified Michelson interferometer. A 

schematic of one autocorrelator using the second harmonic generation technique is shown in 

figure 2.7. It differs from a standard Michelson interferometer. It has a nonlinear crystal in front 

of the detector and the SHG signals from the crystal are recorded by the detector. Since nonlinear 

optical processes critically depend on excitation beam intensity, a lens is placed in front of the 

doubling crystal. For an autocorrelator utilizing two-photon absorption, the detection system is 

different. In place of the doubling crystal and detector, there is only a photodiode with a band 

gap greater than the photon energy, but less than twice of the photon energy. 

A second order intensity autocorrelator was constructed for research carried out for this 

thesis. It uses second harmonic generation and follows the design shown in fig. 2.7. A 50% 
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Figure 2.7 Schematics of second order intensity autocorrelator using second-
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quartz beam splitter separates the laser beam into two beams with a time delay t between them. 

One retro-reflector in the fixed arm of the interferometer sits on a translation stage. This stage is 

mainly for the purpose of calibration. Another retro-reflector in the varying arm of about equal 

length is mounted on top of an audio speaker. When the speaker is on, its vibration causes the 

movement of the second retro-reflector. 

This in turn alters the delay time between the two beams. These two beams eventually are 

incident onto a lens, which focus both beams into a β-BaB2O4 (BBO) crystal. The BBO crystal 

generates strong second harmonic signals. As beams pass through the BBO crystal, both generate 

their own second harmonic signals, which correspond to the first two integrands in the first 

integral of (2-15). These SHG signals along with their fundamental beams are blocked by an 

aperture behind the crystal. Second harmonic signals can also be generated by the two beams 

together when they are spatially and temporally overlapped. This signal corresponds to the 

second order intensity autocorrelation. Due to conservation of momentum, kSHG=k(t)+k(t+τ), the 

second harmonic generated by those two beams together is along the bisector of the two wave 

vectors of the fundamental beams. A blue filter is placed in front of a photon multiplier to block 

scattering fundamental lights. The function generator supplies a triangle wave function at about 

40Hz to the audio speaker. It also has a trigger output that is connected to the digital oscilloscope 

to synchronize its data recording with the oscillation of the delay time. 

 A raw data recording is shown in Figure 2.8a. The data is shown in real time and its time 

scale has to be converted. This requires a calibration of the autocorrelator to determine the 

conversion scale. A movement of the translation stage changes the delay time and this change 

can be calculated with the knowledge that light travels 0.3 microns in one femtosecond. Since 

the oscilloscope is synchronized to the function generator, the change in delay time leads to a 

shift of the dip on the scope screen. By comparing the time shift on the screen with the real delay 

time, the conversion scale can be determined. For the case of research carried out in this 

dissertation, a movement of 130 microns in the translation stage resulted in a shift of 1.6 ms of 

the dip on the screen. Since the beam travels back and forth at the retro-reflector, there has to be 

a factor of 2 in the consideration. The conversion rate is then 130*2/(1.6*0.3)=542fs/ms. 

The autocorrelation trace after conversion is shown in fig2.7b and the dip is also 

converted into a peak. The full width at half maximum (FWHM) is found to be about 183 fs. 

Since the figure shows the measurement of the second order intensity autocorrelation as defined
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Figure 2.8 An autocorrelation measurement of a home-built Ti-
Sapphire laser. a) Raw data; b) scaled data. 
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in (2-16), the FWHM found is not the same as the pulse width. Since in the second order 

intensity autocorrelation, the phase information is lost in a Fourier transform, an inverse Fourier 

transform is impossible except for the Fourier transform limited pulses. As a result, in second 

order intensity autocorrelation, the most common way to analyze the pulse width is to assume 

some realistic pulse shape and compute the expected signal from the autocorrelation.   

 If a Gaussian pulse shape, E(t)=Exp(-Γt2), is assumed, then the pulse intensity is 

I(t)=Exp(-2Γt2) and the pulse width ∆t, defined as FWHM of intensity, is (ln2)1/2(2/Γ)1/2. The 

second order intensity autocorrelation is Exp(-Γτ2) with a constant factor. Its width ∆τ, also 

defined as FWHM, is 2(ln2)1/2(1/Γ)1/2. The ratio between the two pulse widths, ∆t/∆τ, is then 

(1/2)1/2. Therefore from the autocorrelation trace, with certain assumption about the pulse shape, 

the pulse width can be computed. The ratios for some common pulse shapes are listed in table 

2.1. In our case, if the pulse shape is assumed to be Gaussian, the pulse width ∆t is about 137 fs. 

 Pulse spectra in the time domain and in the frequency domain are closely related. A 

Gaussian pulse can be defined as in (2-2): 

  E(t) ==== E0 exp(−−−−ΓΓΓΓ t 2)exp(iωωωωt)     (2-17) 

Its Fourier transform is easily computed as 

  ˜ E (ωωωω) ==== E0 exp −−−−(ωωωω −−−− ωωωω0 )2 / 4ΓΓΓΓ[[[[ ]]]]     (2-18) 

The directly measurable quantities are power spectra in both time and frequency domains. If both 

pulse width and bandwidth are defined as FWHM in respective spectrum, the pulse width ∆t in 

 E(t) 2 is then (ln2)1/2(2/Γ)1/2, while bandwidth ∆ω in  E(ω) 2 is 2(2Γln2)1/2. Following the 

convention of using ν, which is ω/(2π), the product of these two, called time-bandwidth product, 

is a constant equal to 2ln2/π. This time-bandwidth product actually applies to all kinds of pulse 

shapes with of course different constants. Values of this product for some pulse shapes are also 

listed in table 2.1. 

 In the discussion so far we have assumed that there is no phase modulation in the pulse. 

This is a special case and results in Fourier-transform limited or bandwidth limited pulse shapes. 

In general for phase-modulated pulse, like the one defined in (2-8) and its Fourier transform in 

(2-9), although the pulse width ∆t is still (ln2)1/2(2/Γ)1/2, the bandwidth ∆ν is 

[2Γ(1+α2/Τ2)ln2]1/2/π. So the time-bandwidth product is 2ln2(1+α2/Τ2)/π. Since (1+α2/Τ2) is 

always greater than 1, the time-bandwidth product is at its minimum in the Fourier-transform 
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limited case. The time-bandwidth product is a very important parameter of a pulse shape. It 

shows the shortest pulse width achievable for a given bandwidth, or for a given pulse width, the 

minimum bandwidth required. 

 As discussed earlier, in both first- and second-order autocorrelation, the Fourier 

transforms yield only the absolute values. This means a loss of phase information. This is 

essentially why the temporal pulse shape cannot be derived from the autocorrelation 

measurements. But with time-bandwidth product, some phase information is recovered. In the 

Fourier-transform limited case, all the frequency components are in phase and the pulse reaches 

its minimum width. In all other cases, the pulse widths are broadened due to phase modulation, 

i.e. frequency components out of phase. Therefore a measurement of the time-bandwidth product 

of a given pulse reveals how close the pulse is to the Fourier transform limited case. A big 

deviation from that constant indicates a strong phase modulation existing in the pulse. In this 

case, with bandwidth in wavelength of 230 Å and pulse width of 137 fs, a time-frequency 

product of 1.35 is calculated. Compared to the value 0.441 for a Gaussian pulse, this clearly 

indicates a strong phase modulation in the pulse. This actually can also be observed from the 

autocorrelation spectrum, for the pulse shape deviates from a Gaussian shape and is asymmetric.

 The Ti:sapphire laser has tuning rang from 780 nm to 820 nm. The tunability in this laser 

 

Table 2.1 Typical pulse shapes, their time-bandwidth products, and intensity 

autocorrelations. 
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is achieved through the tuning of the prisms. But as indicated earlier, the positions of the prisms 

have significant effects on the pulse width. Therefore as the wavelength of the Ti:sapphire laser 

is changed, its pulse width is also affected. 

 

II.1.4 Mira 900 Ti:Sapphire laser 

A commercial Ti:Sapphire laser was purchased at a later time and was also used in this 

experiment. It consists of a Mira 900 Ti:Sapphire laser, pumped by a Verdi diode laser  both 

from Coherent Corporation. This laser has a pulse width of about 100 fs. Its average power is 

about 600 mW at 800 nm when pumped at about 6 W. Its repetition rate is close to 80 MHz. Its 

time-bandwidth product is about 0.94. 

The design of this commercial ultrashort laser is almost the same as the one constructed 

here at Vanderbilt. There are however two major improvements over the “home-built” laser. 

First, unlike the “home-built” laser, which utilizes the nonlinear crystal as a soft aperture, the 

Miro 900 has a hard aperture inside the cavity. It consists of a tunable slit sitting in front of the 

output coupler. By adjusting the slit width, mode-lock initiation becomes easier and the mode-

lock mode is also more stable. 

The second improvement is actually what distinguishes the Miro 900. It uses a 

birefringent filter for its wavelength selection. When a light beam goes through a birefringent 

crystal, the ordinary and extraordinary components of the beam usually emerge with a phase 

difference. This results in a change in the polarization of the beam when these two components 

recombine. But when the crystal thickness is carefully chosen, a beam with certain wavelength 

may pass through the crystal with a phase difference in these two components equal to an integer 

number of π. The polarization of this beam then remains unchanged. 

 Inside a laser cavity, a birefringent filter situates at Brewster’s angle. Any beams with 

modified polarization after passing through the crystal will suffer losses at the Brewster surface. 

The beam with certain wavelength qualifying conditions mentioned earlier passes with no 

change in its polarization. It can then pass through the birefringent filter as if the filter were not 

present. This leads to a mechanism of wavelength selection. 

 Tunibility of the wavelength is achieved by rotating the birefringent crystal in its own 

plane. This changes the angle between the crystal optic axis and the incident plane. Hence the 

effective principal refractive indices of the crystal also change. As a result, the optical path 
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length nL through the birefringent filter is different, which means a different wavelength will 

satisfy the conditions for an unchanged polarization.  

With this technique, Mira 900 Ti:Sapphire laser has a tunability ranging from 780 nm to 

900 nm. More importantly since the tunability is achieved through the birefringent filter instead 

of a prism, the pulse width can be maintained the same. 

 

II.2 Experimental Setup 

 The experimental set-up is a standard SHG set-up. As shown in Figure 2.9, the excitation 

beam at around 800 nm first passes through a low-pass filter. This filter is to block higher order 

harmonics from the laser itself. Not shown in the figure is a pair of steering mirrors following the 

low pass filter. The beam from the laser is horizontally polarized. The sample is placed 

horizontally on a rotational table. The electric field at the interface of the sample is therefore 

vertical. To couple the field of the laser with the electric field at the interface of the samples, the 

polarization of beam has to be rotated by 90°. A pair of 45-degree-angled mirrors facing each 

other vertically is inserted to do the job. (Figure 2.10) After that a 5 cm focusing lens focuses the 

beam onto the sample. After the sample, another 5 cm lens is used to collect the second harmonic 

generation signals. Due to conservation of momentum, the fundamental beam and the SHG 

signals move in the same direction after the sample. To separate them, a prism is put in the beam 

path. Behind it a high pass filter is used to further block any scattering fundamental beams. A 

photon-multiplier-tube (PMT) is used to record the SHG signals. Not shown in the figure are 

some Al-coated mirrors used to steer SHG signals. These Al-coated mirrors have the property of 

high reflection at 400 nm while high absorption at 800 nm. In this experiment it is very important 

that the sample is level. To make sure of this, the sample is mounted on a rotating table and a 

Helium laser is used for alignment. The reflected Helium laser beam is then projected onto a 

screen about 1.5 meters away. As the Helium laser shines on the sample, the table will be 

rotating. If the sample is level, there will be no movement of the image on the screen. Otherwise 

the table is to be adjusted horizontally until no change of the image on the screen.
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CHAPTER III 

 

 

EXPERIMENTAL RESULTS 

 

 

III.1 Electric Field Induced Second Harmonic Generation (EFISH) 

 In 1967 Bloembergen et al. noticed that second harmonic light generated from silicon and 

silver showed a significant variation when a dc electric field was applied normal to the surface. 

[Lee, 1967] This effect later was also detected from other centrosymmetric materials and led to a 

new field in SHG research, which is called electric field induced second harmonic generation 

(EFISH). It can be described by: 

Pi (2ωωωω) ==== χχχχijk
(3) Ej (ωωωω)Ek (ωωωω)Edc     (3-1) 

where χ(3) is a third order bulk susceptibility with electric dipole origin. Edc is a quasi-static 

electric field normal to the surface. 

As discussed earlier, in centrosymmetric materials electric dipolar contribution to SHG is 

forbidden in the bulk. But when an electric field is applied to the bulk, it breaks the inversion 

symmetry and allows SHG contributions from the bulk electric dipole. Since the bulk 

susceptibility is third order, this electric-dipole-originated SHG is smaller than the bulk electric 

dipole contribution from compound materials like GaAs. But when the quasi-static field Edc is 

sufficiently high, this SHG signal can be comparable to or even higher than that from the surface 

with dipolar origin and that from the bulk with magnetic dipole and electric quadrupole origins. 

Externally applied voltage, as it was in the original work, is the most direct way to 

generate this quasi-static field. Since most semiconductor devices require an external voltage 

during their operation, EFISH can be an excellent tool for in situ investigation of device 

performance. Charge trapping or band bending at the interfaces can also build a static field at the 

interfaces. If this field is strong enough, it can also generate EFISH, which can then provide 

atomic and electronic information regarding the interfaces. 

Several groups have demonstrated the capability of optical SHG for probing static 

electric fields in crystalline silicon MOS/MS structures, [Dadap 1996] [Lüpke 1995] [Godefroy 

1996] Si/electrolyte and Si/SiO2/electrolyte interfacial regions [Krueger 1993] [Daschbach 1995] 
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modulated by external voltages. Ohlhoff et al. also applied EFISH for monitoring continuous 

microwave signals on free-running silicon millimeter-wave circuits. [Ohlhoff 1996] Nahata et al. 

conducted time-resolved EFISH measurements of picosecond electrical pulses propagating on a 

coplanar waveguide transmission line fabricated on silicon. [Nahata 1996] Recent works by van 

Driel et al. show EFISH as a sensitive probe of electron transfer and trapping in the Si/SiO2 

system. [Bloch 1996] 

In the theoretical front, Aktsipetrov et al. introduced a phenomenological EFISH theory 

when they were studying EFISH from silicon MOS structure. [Aktsipetrov 1984] [Aktsipetrov 

1996] Since the dc electric field varies along the penetration depth of the SHG radiation zp, a 

more rigorous expression for the electric-field-induced nonlinear polarization PBD is the form 

Pi (2ωωωω) ==== χχχχijk
(3) Ej (ωωωω)Ek (ωωωω) Edc(z)dz����     (3-2) 

where the integration is taken over the penetration depth zp. 

Aktsipetrov et al. however demonstrated that most of the EFISH features, such as the 

parabolical shape of its bias dependency and the linear dependency of its minimum vs. oxide 

thickness, can be describe by their model in which electric-field-induced nonlinear polarization 

PBD is proportional to an electric field Eint=E(z=+0) just inside the space charge region (SCR) at 

the Si/SiO2 interface. This implies that the real field distribution Edc(z) in the SCR can be 

replaced by a constant Eint inside a layer of effective length z0 that is comparable to the SCR 

width. z0 should be chosen in such a way that Eint  z0 ==== E���� dc(z)dz , where the integration over 

the SCR satisfies the conservation of charges inside the SCR. This is called interface field 

approximation, which greatly simplifies the interpretation of EFSIH experiments. 

The total second harmonic generation from Si/SiO2 system can be written as 

   
��

P(2ωωωω) ====
��

χ χ χ χ BQ : E(ωωωω)∇∇∇∇ E(ωωωω) +
��

χ χ χ χ SD : E(ωωωω)E(ωωωω)δδδδ(0) +
��

χ χ χ χ BD : E(ωωωω)E(ωωωω)Edc   (3-3) 

where the first two terms on the right represent bulk contribution with magnetic dipole/electric 

quadrupole origins and surface contribution with electric dipole origin, respectively. Both 

susceptibilities are second order. The last term is the EFISH where the susceptibility is third 

order. 

 As mentioned in an earlier chapter, as far as signal detection is concerned, the first two 

terms in (3-3) cannot be separated. If we define an effective nonlinear susceptibility χ(2),NL to 
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describe the two electric field independent SHG contributions, the overall SHG intensity can be 

written as 

  I(2ωωωω)(Edc ) ==== χχχχ(2),NL ++++ χχχχ(3)Edc
2

I2(ωωωω)     (3-4) 

 

III.2 Results and Discussion 

III.2.1 Sample Preparation and Experimental Method 

 There are two sets of samples used in the experiment. One set is Si (100) with thermally 

grown oxide. They were grown at Lucent Technologies. The oxide thickness of the samples 

varies from 10 Å to about 80 Å. The other set of samples has ZrSiOx grown on top of Si (100) 

substrates using remote controlled plasma enhanced chemical vapor deposition (RPECVD). 

They were grown at North Carolina State University at Raleigh. The thickness is estimated to be 

several hundreds angstroms. 

 The experimental set-up was shown in Chapter 2. All the measurements were done in air 

at room temperature. 

 

III.2.2 SHG from Si/SiO2 system 

 Figure 3.1 shows typical second harmonic generation measurements from a Si/SiO2 

system as a function of time. It shows a rapid initial rise and then a gradual increase towards 

saturation. As equation (3-4) shows, the overall SHG signals consist of two parts: 1. a field-

independent contribution from surface dipoles and bulk quadrupoles; and, 2. electric field 

induced SHG (EFISH). The first contribution is also time independent and contributes a constant 

background. In the second term, the time-dependent parameter is the static field Edc. Since there 

is no externally applied electric field at the sample, the dc field in equation (3-4) must be an 

internal field manifested by band bending at the Si-SiO2 interface.  

 Figure 3.2 is the band diagram of Si-SiO2 system. The barrier for electrons between the 

silicon valence band and SiO2 conduction band is about 4.3 eV. The typical photon energy of a 

Ti:sapphire laser is 1.55 eV (8000 Å in wavelength). This indicates that a three-photon process 

may possibly inject electrons from Si into silicon dioxide. This injection may then lead to a 

charge separation, which will create a dc field across the interface. As this static field breaks 

inversion symmetry in silicon, an EFISH is generated. The time-dependent nature of the 

electron-injection and field built-up dictates that EFISH is also time-dependent in this case. 
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Fig 3.1 SHG from Si-SiO2 system with a range of intensities. a) 153
mW; b) 269 mW; c) 400 mW. The dots are experimental data and the
solid lines are curve fits according to equation (3-14). The photon
energy is 1.55 eV. 
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 The experiment by Van Driel has shown some evidence to support the model of three-

photon process. [Bloch 1996] In their experiment an Hg lamp was used to pump electrons from 

silicon into silicon dioxide. A weak Ti:sapphire beam was employed for the sole purpose of 

generating second harmonic signals at the same time. When photon energy from Hg lamp is 

greater than 4.38 eV, a SHG feature similar to that in fig 3.1 is observed. This threshold of 4.38 

eV, according to Van Driel’s interpretation, corresponds to the barrier between the Si valence 

band and SiO2 conduction band.  

 However there are differences between the Hg-lamp-excited SHG experiment and a time-

dependent SHG experiment discussed here. In a regular SHG experiment such as the one shown 

in fig 3.1, due to the high intensity of the Ti:sapphire laser beam, a large amount of electron-hole 

pairs are created inside the silicon. This populates the conduction band of the silicon and in some 

cases according to [Sjodin 1998] can even bleach the valence band. Since the conduction band 

offset at the Si-SiO2 is about 3.3 eV, a three-photon process between the conduction bands of 

1.1 eV 

3.2 eV 

4.5 eV 

1.5 eV (8000 Å) 

Si SiO2 

O2
−−−−

Figure 3.2 Band structure at Si-SiO2 interface 
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silicon and silicon dioxide is also feasible. Van Driel and others recognized this possibility and 

admitted that they could not distinguish which mechanism works here.  

 In figure 3.3 the first definite evidence of three-photon process between the conduction 

bands of silicon and silicon dioxide is shown. As the photon energy decreases to about 1.38 eV 

(9000 Å), well below the threshold of 1.47 eV for three-photon process between the silicon 

valence band and oxide conduction band, second harmonic signals still exist. This shows that 

there must be three-photon electron injection from the conduction band of the silicon into the 

conduction band of the silicon dioxide.  
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 In fig. 3.3, the SHG vs. photon energy curve exhibits a secondary threshold at about 1.55 

eV. The SHG signals increase gradually as the photon energy increases from about 1.35 eV to 

1.55 eV. Then for photon energy above 1.55 eV, the SHG signals experience a sharp increase. 

There are two possible reasons for this secondary threshold. First, the threshold energy for three-

photon injection from silicon valence band to SiO2 conduction band is about 1.47 eV.  The value 

of 1.55 eV may be somehow related to this three-photon injection threshold. Second it is well 

known that in the SHG versus photon energy spectrum of silicon, there is a resonance peak at 

about 3.4 eV. [Daum 1993] This resonance corresponds to the direct band transition E1 as shown 

in Fig 1.2.  This resonance also leads to a sharp increase in the SHG signals in the photon energy 

range above 1.5 eV. 

These two effects are intimately related to each other through equation (3-4). Because of 

the multiphoton injection of electrons, the static field Edc in equation (3-4) will increase as the 

photon energy increases. On the other hand, due to the direct band transition resonance, the 

nonlinear susceptibilities, χ(2) and χ(3), in equation (3-4) also increase as the photon energy 

increases.  In our experiment, the contributions from these two effects cannot be separated. 

Further experiments or theoretical models are needed to pin down the origin of this secondary 

threshold at about 1.55 eV. However the appearance of time-dependent SHG below 1.47 eV in 

fig 3.3 constitutes definite evidence of three-photon process between the conduction bands of the 

silicon and the silicon dioxide. 

Previous experiments by Pointax [Caplan 1982] and Van Driel [Bloch 1996] have shown 

that electrons transferred from silicon into the oxide are mostly trapped at the oxide surface. Due 

to its high electron affinity, oxygen is readily adsorbed on the bare surface of n-type 

semiconductors. [Lunsford 1973] The O2 molecules can attract and trap electrons from the 

silicon to form O2
- at the surface. When light, with photon energy sufficient to inject electron 

into the oxide, is present, this trapping process is greatly enhanced.  Those traps can have 

lifetimes ranging from seconds to years. Therefore most electrons trapped at those sites will 

remain during the experiment. Figure 3.4a illustrates this scenario. After a steady state is 

reached, which means that a large amount of electrons have been transferred to the surface and 

trapped, the excitation beam is blocked for a few minutes. When the beam is unblocked, the 

SHG signals immediately return to the steady state level. This shows that the majority of the 

trapped electrons remain at the surface. In fig 3.4b though, the SHG signals start from the 
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Figure 3.4 SHG from Si-SiO2 with different oxide thickness.  
a) 40 Å oxide; b) 10 Å oxide. 
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original level after the excitation beam is blocked for a while. The difference here is the 

thickness of the oxide. In fig 3.4a, the thickness is about 40 Å while in fig 3.4b it is only 10 Å. 

As the oxide becomes very thin, the trapped electrons at the surface can easily tunnel back into 

the silicon. A threshold thickness in the neighborhood of 20-30 Å is inferred. This number is 

consistent with results from other experiments and theoretical modeling. [Bloch 1996] [Berglund 

1971] [Oldham 1986] Another interesting effect in the thin oxide samples is the “memory 

effect”. In Fig. 3.4b, after the beam was blocked and unblocked again, the SHG signal rises at a 

much faster rate to the previous intensity than it does from a fresh spot. Cernusca suggests that a 

photo-induced damage process occurs when a fresh spot is irradiated by the laser beam. 

[Cernusca 1998] The irradiation by the fundamental beams causes multiple effects. 1. The 

reversible ionization of existing traps through multi-photon injection. 2. The irreversible creation 

of new traps and their immediate ionization. 3. The generation of second harmonic signals. At a 

fresh spot, all three processes happen and the increase of the SHG intensity is relatively slow due 

to the slow process of trap creation. Since the photo-induced damage process is irreversible, for 

an already-irradiated spot, when the laser beam is on again, the fast ionization process of existing 

traps dominates and leads to a fast increase in the SHG intensity. 

 

III.2.3 An overview of Si-ZrSiOx system 

 Many high-k materials such as Ta2O5, and TiO2, though having dielectric constants as 

high as 80, are not thermally stable in direct contact with Si. [Wilk 2000] Interface engineering 

schemes have been developed to form oxynitride and oxide/nitride reaction barriers between the 

high k materials and Si in an attempt to eliminate or minimize chemical reactions. This increased 

process complexity for the deposition and control of additional utlrathin dielectric layers, as well 

as scalability to later technology, poses a great challenge. It is therefore highly desirable to use 

an advanced gate dielectric, which is stable with Si and has a Si interface quality comparable to 

SiO2. ZrSiOx turns out to be a very promising candidate. 

Zirconium silicate, formally expressed as (ZrO2)x-(SiO2)1-x (x<1), consists of SiO2 and 

ZrO2. There is no bond between Zr and Si atoms. Some important parameters are shown in Table 

3.1.  

The value of dielectric constant for (ZrO2)x-(SiO2)1-x in table 3.1 is from [Blumenthal 

1958], in which case ZrSiO4 (x=0.5) was measured. It is clear that by adjusting the ratio between 
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ZrO2 and SiO2, the dielectric constant and the band gap of Zirconium silicate can be changed. In 

the zirconium silicate sample used in this experiment, measurements carried out at North 

Carolina State University indicate a band gap of about 6 eV. [Wolfe 1999] 

The stability of Zirconium silicate when it is in direct contact with Si can be best 

understood through a ternary phase diagram (Figure3.5). The tie lines in the phase diagram 

Figure 3.5 Ternary phase diagram for the Zr-Si-O system. After [Wang 
1988] 

O 

ZrO2 SiO2 

Zr Si 
Zr2Si ZrSi  

ZrSiO4

ZrSi2

Table 3.1 Some important parameters of ZrO2, SiO2, and (ZrO2)x-(SiO2)1-x. 
 

 Dielectric Constant Band Gap (eV) 

 
ZrO2 

 
25 [Wilk 2000] 

 
5.1 [Tauber 1971] 

SiO2 3.9 8.9 

(ZrO2)x-(SiO2)1-x 12.6 ~6 
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indicate that both ZrO2 and the compound silicate ZrSiO4 are stable in direct contact with silicon. 

Actually the shaded area formed by ZrO2, SiO2 and Si denotes a large area of ZrSixOy 

compounds that are expected to be stable in direct contact with silicon. The existence of this 

large field of stable ZrSixOy compounds shows another potential advantage of zirconium silicate 

over other insulator materials. Since ZrO2 has a much higher dielectric constant than that of 

SiO2, the level of Zr incorporated into the silicate film can then be gradually increased to meet 

the demands of technology. 

 

III.2.4 SHG from Si/ZrSiOx system 

Time-dependent SHG measurements for SiZrOx are shown in figure 3.6. They are 

strikingly different from those of SiO2. Although the initial rapid rise is still present, instead of a 

gradual rise afterwards, a gradual decrease is observed.  

As discussed earlier the increase in SHG signal from Si-SiO2 system has been attributed 

to the injection, transport and trapping of electrons. The initial rise in SHG from Si-ZrSiOx has 

similar features as those from Si-SiO2. Therefore we hypothesize that in Si-ZrSiOx, the initial 

rise is also caused by electron injection, transferring and trapping. In addition, we postulate that 

the more gradual decrease in SHG signals from Si/SiZrOx system results from the injection, 

transport and trapping of holes. 

As discussed earlier, in Si/SiO2 system, it requires three photons to inject an electron into 

the oxide while four photons are needed to inject a hole into the oxide. We hypothesize that this 

asymmetry in barriers for electrons and holes accounts for the dominant role played by electrons 

in EFISH measurements in the Si/SiO2 system with little or no contribution from hole injection. 

In the Si-ZrSiOx case, both electrons and holes play an almost equal role in the EFISH 

measurements. Therefore, it is reasonable to assume that for electrons and holes to play more 

balanced roles, the barriers for each of them at the Si-ZrSiOx interface should be more 

symmetric. Possible carrier dynamics at the Si-ZrSiOx interface is shown in Figure 3.7. Both 

electrons and holes are injected into the oxide through multiphoton processes. Since the barriers 

for both electrons and holes are more symmetric, the band gap of silicon will be near the middle 

of the band gap of ZrSiOx. The exact values for these barriers are still unknown from the data 

shown so far and are the subject of experiments discussed later in this thesis. The rate difference 

between the initial rise and the following decrease is likely due to mobility and trapping cross- 
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Fig 3.6 SHG from Si-ZrSiOx system with a range of intensities. a) 71 mW; b)
139 mW; c) 222 mW. The dots are experimental data and the solid lines are
curve fits according to equation (3-15). The photon energy is 1.55 eV.  
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section differences between the holes and electrons. Although cross-sections for both hole traps 

and electron traps vary widely in SiO2, depending on the locations and the types of the electron 

and hole traps, it is known that electron mobility is several orders of magnitude larger than hole 

mobility in SiO2. [Balk 1988] Since ZrO2 is similar to SiO2, and the ZrSiOx sample in our 

measurements has higher SiO2 composite than the ZrO2, it is most likely that electrons in ZrSiOx 

will have the same advantages over holes in terms of mobility as they have in SiO2. 

 Time-dependent SHG measurements similar to that in fig.3.6 were performed at various 

photon energies with about the same laser intensities (135 mW). The results are shown in Figure 

3.8.  There is evidently an abrupt change in the initial rise at photon energy of about 1.4 eV. For 

photon energy above 1.4 eV, the initial rise is clearly visible. Its magnitude decreases as the 

photon energy decreases. But when photon energy is below 1.4 eV, the initial rise can no longer 

be seen.  

 One possibility regarding the disappearance of the initial rise is that it may be caused by a 

fast rise, which is beyond the temporal resolution of our measurements. In figure 3.9 the initial 

rises for various photon energies are shown in the same figure. For those SHG measurements 

Figure 3.7 Carrier dynamics at Si-ZrSiOx interface 
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Figure 3.8  SHG signals as a function of excitation photon energy. a. 1.63 eV; b. 1.55 eV; c. 1.46 

eV; d. 1.42 eV; e. 1.40 eV; f) 1.36 eV. The Y-axis is SHG intensity in counts/100ms. The X-axis 

is time in second. The powers are around 135 mW.   
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Figure 3.9 SHG from Si-ZrSiOx with various photon energies. 
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with photon energy above 1.4 eV, the rate of the initial rise decreases as the photon energy 

decreases. It is therefore unlikely that for those with photon energies below 1.4 eV, the rate of 

the initial rise would experience a sudden, huge increase, which goes beyond the temporal 

resolution of our measurements.   

 In the light of the data we hypothesize that the observed threshold at about 1.4 eV 

corresponds to an energy barrier associated with the injection of electrons into the oxide 

conduction band. Three representative models for band structure at the Si/ZrSiOx interface are 

shown in figure 3.10. In the first model (fig. 3.10a), the barrier for electrons injection from the 

silicon valence band to the oxide conduction band is 2.8 eV. This requires a two-photon process 

to overcome the barrier with the minimum (threshold) photon energy of 1.4 eV.  For photon 

energies above the threshold, for instance 1.55 eV as shown in the fig 3.10a, the barriers for 

electrons and holes are obviously asymmetric. Three photons are required for hole injection 

compared to the 2-photon injection for electrons. In this case electron injection should dominate 

the EFISH measurements as it does in the Si/SiO2 system.  Since contributions from both 

electrons and holes are visible in the EFISH measurements from Si/ZrSiOx, the model based on 

the band diagram in 3.10a can be ruled out.  

 In the second case (3.10b), the barrier for electron injection measured from the silicon 

valence band to the oxide conduction band is 4.2 eV. This requires a three-photon process for 

electron injection with a threshold photon energy at 1.4 eV. Again for photon energy above 

threshold, the barriers for electrons and holes are asymmetric with holes being favored in this 

case. Unlike the first case, however, we cannot immediately rule out this model. The carrier 

dynamics at the interfaces consists of carrier injection, transport and trapping. According to the 

second model (fig 3.10b), holes (two-photon process) are favored over electrons (three-photon 

process) in the injection process. But electrons are favored in the transport process due to their 

larger mobility, while there is no clear favorite in the trapping process due to unknown cross-

section difference. The combination of these three processes then may lead to more comparable 

situations for electrons and holes. Both electrons and holes then can affect the EFISH 

measurements. 

However there are two inconsistencies in the model shown in fig 3.10b. First, according 

to the model in fig 3.10b, the hole barrier between the silicon conduction band and the oxide 

valence band is about 2.9 eV. A two-photon process can inject holes across this barrier with a 
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Figure 3.10 Possible band structures at Si/ZrSiOx interfaces, with 1.4 eV 
threshold energy corresponding to a) 2-phone injection from valence to 
conduction band; b) 3-photon injection from valence to conduction band; c) 2-
photon injection from conduction to conduction band. 
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threshold photon energy at about 1.45 eV. But in the wavelength-dependent SHG measurements, 

there is no abrupt change in the decreasing part of the SHG signals at about 1.45 eV, which 

would have given signs of threshold for hole injection. Second, the barrier for electron injection 

from the silicon conduction band to the oxide conduction band is about 3.1 eV according to fig. 

3.10b. Electrons can overcome this barrier through a two-photon process with a threshold photon 

energy at about 1.55 eV. But there is no significant change in the initial rise of SHG signals 

around 1.55 eV. These inconsistencies suggest that the model shown in fig. 3.10b is 

questionable. 

In the third model (3.10c), the barrier for electron injection from the silicon conduction 

band to the oxide conduction band is 2.8 eV. A two-photon process is needed for electrons to 

cross this barrier with a threshold photon energy at or above 1.4 eV. For photon energies above 

the threshold 1.4 eV, the barriers for electrons and holes are obviously more balanced than the 

previous two models. Both electrons and holes require two photons to cross the barrier from the 

silicon conduction band to the oxide conduction band.  The holes are slightly favored in injection 

because of the smaller barrier. This combined with more favored conditions for electrons in 

transport process can lead to a more balanced roles for electrons and holes in the EFISH 

measurements. The model in fig. 3.10c shows the most likely band structure at the Si/ZrSiOx 

interface. 

From equation (3-4), the time-dependent quasi-static field Edc accounts for the SHG 

variation in time. Systems discussed in this work can be approximated as a parallel plate 

capacitor with charges with opposite sign on each plate. The electric field generated by this 

system is then proportional to the charge density on each side of the layer. From Gauss’s law, 

this electric field in silicon at the interface is 

Si
dc zE

ε
σ== )0(      (3-5) 

The SHG intensity according to equation (3-4) then is 

)(I)t()(EI 2
2

Si

)3(NL(2),
dc

)(2 ω
ε
σχ+χ=ω     (3-6) 

The only time dependent parameter in this expression is the charge density σ(t) at the surface. 

To determine the charge density σ(t), we can write down the rate equation for σ(t):  
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where σn is the trapped electron density at the surface, σtrap is the total  density  of electron traps 

at the surface. τg and τg are time constants for the electron generation process and dissipation 

process, respectively.      

The time-dependent trapped charge density at the surface is then  
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The time-dependent SHG intensity can then be written as 
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 If equation (3-11) is used to fit the time-dependent SHG measurements, the trapping time 

τn can then be extracted. τn is a measurement of the time scale for the electron injection, transport 

and trapping. Its inverse, 1/τn, is the rate of electron injection, transferring and trapping. This rate 

should be proportional to the product of the probabilities of all these three processes.  

   1/τn ∝  Winj * Wtrans * W trapping    (3-12) 

The electron injection is a multiphoton process and its probability should then be related to the 

intensity I of the excitation source through Winj ∝  In, where n is the number of photon involved. 

Since neither the transferring nor the trapping probability depends on the beam intensity, the 

overall trapping rate 1/τn will then be related to I: 

1/τn ∝  In      (3-13) 
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If time-dependent SHG measurements are performed for different powers, the trapping rates at 

these powers can be extracted through the fitting equation (3-11). If these rates are plotted versus 

the powers, the number n can be extracted, which is the number of photons required for electron 

and hole injection independently. This will of course give information about the barrier heights 

for multiphoton injection.  

When equation (3-11) is applied to our experimental data, some modifications have to be 

made. For Si-SiO2 system, it is clear that a single exponential term does not fit the data well. It is 

well known there are at least two types of electron traps existing in the Si-SiO2 system. 

[Svensson 1988] [Shamir 2000] They are called slow and fast traps, respectively. Using a two-

trap model, the SHG intensity can be expressed as 
2
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with f and s associated with fast and slow traps, respectively. 

 Equation (3-14) is used to fit the SHG experimental data from Si-SiO2 system in fig 3.1. 

The fits are reasonably good which is an indication of the validity of our model. As the excitation 

beam power is varied, the trapping rate 1/τs and 1/τs also change. Figure 3.11a shows the 

trapping rate dependency on the average excitation power. The values for n are found to be 2.3 

and 2.6 for fast and slow traps, respectively. This result is close to those from other groups. 

[Mihaychuk 1995] It is believed that these results are evidence for a three-photon excitation 

process, with some two-photon contributions arising from the silicon conduction band to the 

oxide conduction band transitions. 

 In SiZrxOy system, we present evidence that both electrons and holes are injected into the 

oxide with comparable probability.  The charge density σ in equation (3-6) therefore has to be 

the difference between trapped electron density and trapped hole density in the oxide. We 

assume that the slow-trap contribution is a higher order term, which we will ignore in this 

analysis. The time-dependent SHG intensity from Si-SiZrOx system then will be  
2
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Figure 3.11 Trapping rate dependency on average power. a) Si-SiO2 system; 
b) Si-ZrSiOx system.  
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Representative fits using equation (3-15) are shown in Fig. 3.6. A typical plot of power 

dependency on trapping rate is shown in Figure 3.11b. Averaging the values of n from several 

plots gives us the values of n for electrons and holes as 2.37±0.37 and 2.27±0.22, respectively. 

The comparable values of n for electrons and holes in ZrSiOx indicate that both electrons 

and holes require a comparable number of photons for injection. Therefore the energy barriers 

for these two carriers should be close. This is consistent with the model shown in fig 3.10c. The 

values of n from fig. 3.11b, within uncertainty, are indications of primarily two-photon injection 

for electrons and holes with perhaps some contribution from three-photon processes. For photon 

energies higher than the threshold 1.4 eV, according to the model in fig. 3.10c, electrons in the 

silicon valence band and conduction band need three photons and two photons, respectively, to 

be injected into the oxide conduction band. The holes in the silicon conduction band and valence 

band also require three photons and two photons, respectively, to cross into the oxide valence 

band. Therefore the power-dependent measurements indicate carrier dynamics consistent with 

the model in fig 3.10c, which suggests primary two-photon processes for both electrons and 

holes in the EFISH measurements with some contributions from three-photon processes.  

The time-dependent SHG measurements at various powers and the consequent curve 

fittings using equation (3-15) were also performed at other photon energies. For photon energies 

above the threshold for electron injection at 1.4 eV, the results are consistent with the model 

shown in fig. 3.10c within experimental uncertainty. But equation (3-15) does not give 

satisfactory fits for photon energies at or below the photon threshold energy, 1.4 eV. 

As the photon energy approaches the threshold for electron injection, there will be little 

or no electrons crossing the barrier into the oxide. Consequently the component from electron 

contribution in the fitting equation (3-15) is no longer physically applicable. Hole injection still 

exists although with diminished magnitude. EFISH due to carrier injection then becomes much 

smaller. Meanwhile as discussed earlier, besides EFISH caused by carrier injection, there are 

other non-time-dependent contributions to SHG as shown by equation (3-6). It is known that the 

most common defect structures in ZrO2 are doubly ionized oxygen vacancies and singly ionized 

oxygen interstitials. [Kumar 1972] These defects can attract electrons during their formation in 

the growth process. A dipole layer then can be formed with electrons in the oxide and positive 

image charges in the silicon. This results in a in-built electric field across the interface. This field 

can generate second harmonic signals, which are time-independent. The decreasing SHG signals 
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shown in fig. 3.8 for photon energy at or below 1.4 eV, which we attribute to hole injection, 

confirms the existence of this field and its effect on the SHG measurements. (Without the 

existence of this in-built field, EFISH signals below the threshold 1.4 eV would also have 

increased in time.) Time-independent SHG signals can also originate from the bulk due to 

electric quadrupole terms, and from interfaces due to broken symmetry. All these time-

independent contributions are small compared to the EFISH signals arising from carrier injection 

when the photon energy is above the threshold for electron injection at 1.4 eV. These time-

independent background contributions have a relatively large effect for photon energies go below 

1.4 eV.  Therefore, at the low photon energy range (<1.4 eV), EFISH signals due to carrier (hole) 

injection becomes much smaller than the background SHG signals from other sources. With the 

low ratio between EFISH signals from hole injection and background SHG signals, equation (3-

15) with exclusively hole contribution gives very large uncertainty in fitting the experimental 

data. Taking these into account, equation (3-15) is not applicable for measurements with photon 

energies at or below 1.4 eV. 

The values for both band offsets shown in fig 3.10c indicate that barriers for both 

electrons and holes are reasonably large, well above the minimum 1 eV required by many 

calculations. [Feldman 1998]  Hot electrons or holes cannot easily tunnel through the oxide.  

This gives strong supports to ZrSiOx as a gate oxide candidate in future generation 

semiconductor devices.  

 

III.2.5 Thermal effect in SHG from Si/ZrSiOx system  

The similarity in the values of n for SiO2 and ZrSiOx is an indication that they have 

similar origins. Both are electronic in nature instead of thermal. When a laser is used, thermal 

effects always have to be considered. Measurements for SHG at higher power are shown in 

figure 3.12. Compared to those at lower power, a third process has appeared which leads to a 

gradual, but significant, increase in SHG. At very high power this process totally dominates 

other processes, which have electronic origins (fig 3.12a). At 500-mW power, a measurement of 

the temperature at the backside of the sample shows an increase of 30° C in less than 1 minute. 

To eliminate this effect, the sample is mounted on a large aluminum block, which acts as 

a heat sink. Measurements were then repeated and compared to those without the heat sink. 

(fig3.12). The significant increase in SHG signals observed when there is no heat sink has been 
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greatly curtailed when the heat sink is put in place. (The decrease in SHG also reappears even at 

very high power as the inset in fig 3.12a shows.) This strongly indicates that at high laser 

incident intensity, the monotonic increase in SHG signal over the entire measurement time is due 

to a gradual increase in the temperature of the sample caused by the incident laser. As the power 

of the laser is reduced, this effect becomes less and less pronounced. It has essentially no effect 

at low power (fig 3.12c), which is the power range used in earlier measurements. This indicates 

that the effect observed in fig 3.6 is not due to temperature. 

 SHG increase caused by increasing temperature has been observed in Si-SiO2 system. 

[Dadap 1995] It is believed to be caused by thermoelastic strain, which arises from the 

differences in the thermal expansion rates of the oxide layer and the substrate. The strain, normal 

to the surface, creates a local structural gradient at the Si-SiO2 interface, which acts as an 

additional nonlinear polarization sources. In our experiments, since the physical thickness of the 

ZrSiOx layer is much larger than the ultra thin SiO2 layer, the strain caused by the thermal 

expansion difference is also much larger, which then dominates the SHG signals. 

There can be another factor that contributes to the large temperature effect in Si-ZrSiOx 

system. ZrSiOx is a composite of SiO2 and ZrO2 with no bonds between Si and Zr. [Blumenthal 

1958] An atomic model for ZrSiO4 is shown in figure 3.13. As Fig. 3.13 shows, the ZrSiO4 

material consists of chains of ZrSiO. There are also bonds between Zr atoms at one chain and O 

atoms at nearby chains. This makes the structure to be stable in three dimensions. 

As the temperature rises, the bonds between those chains are weakened and may break. 

This results in strains, traps and defects at the interface that breaks symmetry. This then leads to 

an increase in SHG signal. 
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Figure 3.13 Atomic structure of SiO2-ZrO2. (After [Wilk 2000]) 
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CHAPTER IV 

 

 

SUMMARY 

 

 

IV.1 Summary 

This dissertation describes research on the application of intense, tunable, ultrafast lasers 

to studies of the silicon-dielectric system.  Among the nonlinear optical effects, second harmonic 

generation (SHG) has come to be recognized as a uniquely useful tool.  SHG is sensitive to 

interfaces between materials with inversion symmetry. This technique can then yield rich 

information on electronic structure, local fields, symmetry and carrier dynamics at interfaces. It 

also has the advantages of being contactless, non-intrusive and is easily applicable to in situ 

measurements. It is therefore a promising tool for investigation of mature Si-dielectric interfaces.  

In this thesis, we use the SHG technique to study the interfaces between silicon and 

dielectrics, including both the mature Si-SiO2 system and the newly developed Si-ZrSiOx (high-

k) system.  

In Si-SiO2 system, we show the first definite evidence for the three-photon electron 

injection from the silicon conduction band to the conduction band of the silicon dioxide. A 

thickness threshold for the electron tunneling of about 20 Å is also observed. 

In particularly we present first SHG measurements of the Si-high-K dielectric material 

system. Our data show features that are drastically different from that of the Si-SiO2 system. 

Unlike the Si-SiO2 system, where a rapid initial rise in SHG intensity is followed by a gradual 

increase until saturation, SHG from Si-ZrSiOx gradually decreases to a stable level after an initial 

quick rise. We attribute this difference to different carrier dynamics in these two systems. While 

in the SiO2 system, electron injection dominates the process, holes and electrons have a much 

more equal role in ZrSiOx. This arises from characteristically different band structures in these 

two systems. Wavelength-dependent measurements of the SHG from Si/ZrSiOx are also 

performed. A threshold of about 1.4 eV for electron injection is observed. From these 

measurements, a band diagram at the Si-ZrSiOx interface can be constructed showing band 

offsets. According to this diagram, the values of both valence band offset (~3.2 eV) and 
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conduction band offset (~2.8 eV) are both reasonably large, which can prevent hot carrier 

tunneling at the interface. This gives strong support to ZrSiOx’s candidacy as a replacement for 

SiO2 in future generation semiconductor devices. 

At high laser power, it is also observed that the SHG intensity monotonically increases 

with time. This effect is believed to be of thermal origin.  A temperature rise can lead to stress 

and broken bonds, which can cause an increase in SHG. The atomic structure of ZrSiO4, which 

consists of Zr-O-Si chains, is consistent with this explanation. 

 

IV.2 Ongoing Work and Future Plan 

 This dissertation  illustrates the successful use of the SHG technique to study both Si-

SiO2 and Si-ZrSiOx systems. The potential of this technique is yet to be fully utilized and its 

applications to other systems just start to be explored. 

In Si-ZrSiOx system, the composites of SiO2 and ZrO2 affect many properties of the 

system including the band gap of ZrSIOx and the band offsets at the Si/ZrSIOx interface. Based 

on the model we proposed in this thesis work, SHG measurements can be used to investigate 

these changes.  

Diamond has a band gap of about 6 eV, close to the band gap of ZrSiOx used in our 

experiments. The mobility of holes in diamond is also comparable to electrons. These properties 

suggest SHG measurements performed on diamond-silicon system may show strong signs of 

hole injection. Some preliminary SHG experiments seem to be consistent with this suggestion. 

More systematic studies on this system not only can yield more information about the carrier 

dynamics at the diamond-silicon interface, but also will provide important information for the 

efforts to establish EFISH as a standard tool for thin film analysis.    

Some preliminary experiments have also been done on other systems. In the 

AlGaSb/InAs quantum wells, EFISH measurements show the existence of a strong internal 

electric field. This field has been indirectly detected by other methods. The results from the SHG 

experiment are the first direct evidence for the existence of this internal electric field. 

Crystalline oxides on silicon (COS) are the most recent approach to tackle the gate oxide 

problem.  Some preliminary SHG experiments have been done with the SrTiO3-Si system. A 

threshold near 8500 Å (1.37 eV) is observed. The exact nature of this threshold is still unclear.  
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Radiation effects on silicon devices have been an important topic for many years. Our 

preliminary results again show that the SHG techniques can be a sensitive tool to detect impacts 

from radiation, especially for silicon with ultra-thin oxides, which are not easily available to 

electrical measurements. 

Silicon on insulator (SOI) is another direction being pursued by many researchers. It is 

believed by some people to be the path to the future generations of semiconductor  

technology. The SHG technique once again detects differences between hydrogenated SOI and 

non-hydrogenated SOI.  

This dissertation is a pioneering effort to establish the second-harmonic-generation 

technique as an alternative method to characterize the electronic and atomic structures at the Si-

dielectric interfaces. More quantitative work with SHG will be the direction of future research.  
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APPENDIX A 

 

 

NONLINEAR SUSCEPTIBILITY OF THE CLASSICAL ANHARMONIC 
OSCILLATOR MODEL 

 

 

 The classical Lorentz model of the atom, which treats the atom as a harmonic oscillator, 

is proven to be successful in describing linear optical properties such as dispersion and resonance 

absorption. This model can be extended by introducing nonlinearity in the restoring force exerted 

on the electron. The primary shortcoming of this classical model is that it ascribes a single 

resonance frequency (ωo) to each atom. Therefore, it cannot describe the complete resonance 

nature of the nonlinear susceptibility, such as the possibility of simultaneous one- and two-

photon resonance.  In contrast, the quantum mechanical theory of the nonlinear optical 

susceptibility can adequately address such issues. 

 

A.1 Classical Harmonic Oscillator (Lorentz Model) 

  When an atom is in an electric field, the electrons and the positively charged ion core 

experience forces with opposite direction.  Therefore when an electromagnetic wave interacts 

with a material, the atoms in the materials turn into electric dipoles as their electrons and ion 

cores move in opposite directions.  In the Lorentz model, the ion core has infinite mass and does 

not move. The electron is bound to the massive ion core and oscillates in a perfect harmonic 

potential, which has the form of 

    22
0xmω

2
1U(x) =      (A-1) 

where m is the mass of the electron, ωo is the resonance frequency and x is the distance between 

the electron and the ion core. The equation of motion then is  

m
eE(t)xωxΓx 2

0
−=++ ���     (A-2) 

where Γ designates the damping rate.  

 Assuming the electromagnetic wave is a plane wave with frequency ω,  

    )tit-i
0 e(eEE(t) ωωωωωωωω +=     (A-3) 
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where E0 is real, then the steady state solution to (A-2) is of the form 

   ti*
0

t-i exexx(t) ωωωωωωωω += 0      (A-4) 

where *x0  is the complex conjugate of  xo.  

By inserting (A-4) into equation (A-2), one can find: 

   
)mD(

eEx 0

ωωωω
−=0      (A-5a) 

where    ΓΓΓΓωωωωωωωωωωωωωωωω i−−= 22
0)D(     (A-5b) 

 The electron oscillates at the same frequency of the incident electromagnetic wave. The 

resulting oscillating dipole then emits radiation at the same frequency as well.  

The electric dipole moment of an electron is given by p=ex. Suppose that there are N 

molecules per unit volume and Z electrons per molecule. And for each molecule, there are fj 

electrons with resonance frequency ωj and damping rate Γj. The summation of all electron dipole 

moments in the material gives the polarization P,   
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where C.C. stands for complex conjugate and the summation of j satisfies 

     Zf
j

j =�      (A-6b) 

It shows the linear optical response to the incident electromagnetic field. The familiar linear 

electric susceptibility χ can then be found as 
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   (A-7) 

 

A.2 Nonlinear Susceptibility of a Classical Anharmonic Oscillator 

 When the incident electromagnetic field is large, the displacements of the electrons from 

their equilibrium positions can be large enough that the potential experienced by the electrons 

deviates from the parabola function. However if the deviation is not very large, the anharmonic 

terms in the potential can be expanded in a power series: 
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  ...mbx
4
1max

3
1U 43

anharmonic ++=     (A-8) 

 If only the first two terms in (A-8) are considered, the equation of motion for the electron 

now takes the form of: 

m
eE(t)bxaxxωxΓx 322

0
−=++++ ���     (A-9) 

 Suppose the incident electromagnetic wave E(t) still takes the form of (A-3). Although no 

general solution to (A-9) can be found, one can analyze the response of the oscillator by 

expanding the displacement x(t) in powers of the electric field E(t).  

  ...(t)x(t)x(t)xx(t) (3)(2)(1) +++=     (A-10) 

where x(i)(t) is proportional to the i-th power of the field E(t).  

 Inserting (A-10) into (A-9), one has 

m
eE(t)}x)3(xx)3(xx)3(xx)3(x

x)3(xx)3(xxx6x)(x)(x)b{(x
}x2xx2xx2x)(x)(x)a{(x

xωxωxωxxxxxx

(2)2(3)(1)2(3)(1)2(2)(3)2(2)

(3)2(1)(2)2(1)(3)(2)(1)3(3)3(2)3(1)

(3)(2)(3)(1)(2)(1)2(3)2(2)2(1)
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000

−=++++

++++++
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++++++++ ��������� ΓΓΓΓΓΓΓΓΓΓΓΓ

 (A-11) 

If the deviation in the displacement x(t) is small, only terms up to the third power of E(t) 

need to be considered. And if (A-11) holds for all fields, terms with the same power of E(t) on 

both side of the equator have to be equal.  This leads to equations for the first, second, and third 

power of E(t): 

,
m

eE(t)xωxΓx (1)2(1)(1)
0

−=++ ���     (A-12a) 

0)a(xxωxΓx 2(1)(2)2(2)(2)
0

=+++ ���     (A-12b) 

0)b(xx2axxωxΓx 3(1)(2)(1)(3)2(3)(3)
0

=++++ ���   (A-12c) 

Equation (A-12a) is just the linear equation of motion for a harmonic oscillator. Its 

solution is shown in (A-4) and (A-5). Therefore one can solve x(1): 

.C.Ce
)mD(

eEC.C.ex(t)x ti-0ti-(1)
0

(1) +−=+= ωωωωωωωω

ωωωω
  (A-13)  

 Inserting (A-13) into it (A-12b) and treating a(x(1))2 as an inhomogeneous driving term 

just like –eE(t)/m, one can obtain the lowest nonlinear correction term for x(t).  
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The square of x(1)(t) leads to the double frequency 2ω, second harmonic generation 

(SHG),  and a DC-like component, optical rectification (OR). The solution to (A-14) has the 

form of  

0)(xexex(t)x (2)ti2*(2)
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 Following the definition of polarization in (A-6), one finds the expression for the second-

order nonlinear term of the polarization. 
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The second order electric susceptibility then will be 
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 After solving x(2), one can insert it and x(1) into (A-12c) and solve for x(3).  The solution to 

(A-12c) will lead to third harmonic generation (THG).  

 

A.3 Centrosymmetric Materials 

  The discussion so far does not take the symmetry of the materials into account. When the 

material under consideration possesses inversion symmetry, certain restrictions apply to the 

nonlinear polarization. 

 Under inversion symmetry, potential energy U(x) satisfies U(x)=U(-x).  Therefore all the 

odd order anharmonic terms in the potential energy (A-8) vanish. The equation of motion for an 

anharmonic oscillator will then have the form of  

m
eE(t)bxxωxΓx 32

0
−=+++ ���     (A-19) 
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 As having done previously, one can expand the displacement x(t) in the power series of 

E(t), insert the power series into (A-19), and equate like powers of E(t). This gives the group of 

equations: 

 ,
m

eE(t)xωxΓx (1)2(1)(1)
0

−=++ ���    (A-20a) 

0xωxΓx (2)2(2)(2)
0

=++ ���     (A-20b) 

0)b(xxωxΓx 3(1)(3)2(3)(3)
0

=+++ ���    (A-20c) 

 The second equation (A-20b), which gives second harmonic generation, now has no 

driving terms but only a damping term. This means its steady state solution vanishes. 

     x(2)=0      (A-21) 

Therefore in the centrosymmetric materials, second harmonic generation is forbidden under 

electric dipole approximation. It is easy to see that all the even order nonlinearity in the 

centrosymmetric materials vanish as well. 

  It is also clear from (A-20c), the third order nonlinearity still exists in the 

centrosymmetric materials.  
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