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Chapter I 
 
 

INTRODUCTION 
 
 

Enzymes with phospholipase D activity 
 

Overview 
 
 Lipids are essential biomolecules that fulfill roles as structural building blocks, 

energy storage units and both inter-cellular and intra-cellular signaling molecules.  The 

term “lipid” encompasses a structurally diverse group of molecules including (but not 

limited to) fat-soluble vitamins, sterols, fatty acids and glycerophospholipids.  Many 

lipids, and the enzymes that modify them, play fundamental roles in both human 

physiology and various human pathologies (Vance and Vance, 2002).   

 Many enzymes, including phospholipases, facilitate the biochemical 

transformation of various lipids.  Phospholipase D’s (PLD) phosphodiesterase enzyme 

activity was first observed in various plant species (Hanahan and Chaikoff, 1947a; 

Hanahan and Chaikoff, 1947b; Hanahan and Chaikoff, 1948).  Subsequently, enzymes 

from a plethora of organisms, including humans, were reported to display PLD activity.  

Over a timespan of about 60 years more than 4000 PLD enzyme sequences have been 

entered into the NCBI GenBank database (Selvy et al., 2011).  Endogenously, PLD 

catalyzes the hydrolysis of phosphatidylcholine (PtdCho) into phosphatidic acid (PtdOH) 

and free choline; however, in the presence of some primary alcohols (n-butanol is shown 

in Figure 1) PLD catalyzes a transphosphatidylation reaction (Figure 1).  In fact, it is 

possible to monitor PLD enzyme activity in intact cells and model organisms (such as 
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zebrafish) by monitoring the amount of phosphatidylalcohol produced by PLD in the 

presence of deuterated n-butanol (Brown, 2007; Zeng et al., 2009).  

Figure 1. PLD-catalyzed hydrolysis and transphosphatidylation.  The hydrolysis reaction is highlighted in 
blue, and the transphosphatidylation reaction is depicted in red.  A transphosphatidylation reaction utilizing 
deuterated n-butanol is shown in purple.  
 

PtdOH plays roles in both normal physiological processes and a variety of disease 

states.  As an example, because of its relatively the small, polar head group PtdOH causes 

changes in membrane curvature that promote membrane fusion events, such as vesicular 

trafficking and endocytosis (Stace and Ktistakis, 2006).  Yet, altered PtdOH signaling has 

been observed in multiple cancer types (Noh et al., 2000; Park et al., 2009; Yamada et al., 

2003; Zhao et al., 2000), neurodegenerative diseases (Oliveira and Di Paolo, 2010), and 

thrombotic diseases (Elvers et al., 2010).  These observations coupled with the fact that 
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the first reported PLD1 knockout mice (Elvers et al., 2010) were viable, fertile, 

developed normally and did not display morphological or behavioral abnormalities 

suggest that PLD and other enzymes that modulate cellular levels of PtdOH may be 

viable drug targets.  

PtdOH can be generated by sequential enzyme-catalyzed acylations of glycerol-3-

phosphate, or generated in response to changes in cell signaling pathways (Athenstaedt 

and Daum, 1999; Athenstaedt et al., 1999; Gibellini and Smith, 2010).  All 

glycerophospholipids synthesized in eukaryotic membranes transition through PtdOH, a 

pathway characterized by Eugene Kennedy and his colleagues in the 1950s (Gibellini and 

Smith, 2010; Kennedy, 1958).  PtdOH that is utilized for cell signaling purposes is 

typically generated by enzymes that modify lipids already present in a cell membrane.  In 

addition to PLD this includes enzymes such as lysophosphatidic acid acyltransferase 

(LPAAT) which acylates lysophosphatidic acid (LPtdOH) and diacyglycerol kinase 

(DAG kinase), which phosphorylates diacylglycerol (DAG) at the sn-3 position (Selvy et 

al., 2011) (Figure 2). Thus, it is important to consider both that PtdOH generated from 

these different signaling sources may not be identical in function and that 

pharmacologically blocking the production of PtdOH from one source may alter the 

amount of PtdOH being produced by a different enzyme.       
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Figure 2.  Various enzyme-catalyzed reactions that produce PtdOH and some of the cellular functions 
regulated by PtdOH.  In this figure only PC=phosphatidylcholine, PA=phosphatidic acid and 
LPA=lysophosphatidic acid (Figure reproduced with permission from Selvy et al. 2011). 

 

Many enzymes with PLD activity share a conserved HxKxxxxDx6GSxN catalytic 

motif (HKD) (Ponting and Kerr, 1996).  Based on sequence, these enzymes compose the 

PLD superfamily, and are thought to follow a similar reaction mechanism.  The two 

human PLD isoforms discussed extensively herein both contain bilobal HKD catalytic 

domains (Hammond et al., 1995; Lopez et al., 1998).  Enzymes that possess PLD 

catalytic activity yet do not contain even a single HKD catalytic motif display a variety of 

structures and possible catalytic mechanisms.  While many of these non-HKD enzymes 

play important biological roles that are relevant to human physiology at times they are 

not the focus of this dissertation and are only discussed briefly below. 

 

Non-HKD Enzymes 

Enzymes that possess PLD-like catalytic activity yet do not contain a conserved 

HKD catalytic motif are termed non-HKD PLDs.  A detailed discussion of these enzymes 

is not relevant to this dissertation, but a brief overview of some of them for completeness 
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and comparison to the conserved HKD-containing PLDs is included.  A more thorough 

discussion of these enzymes can be found in Selvy et al. 2011.   

The most well characterized non-HKD PLD is a 57 kDa enzyme secreted by 

Streptomyces chromofuscus, scPLD (Imamura and Horiuti, 1979; Yoshioka, 1991).  

Unlike the conserved HKD PLDs, scPLD can act as both a phosphodiesterase and a 

phosphatase (Zambonelli et al., 2003).  Site-directed mutagenesis studies utilizing scPLD 

show that catalysis occurs via a metal-dependent mechanism similar to that of the purple-

acid phosphatase family (PAP); a Fe3+ cation is required for the one-step, acid-base 

catalyzed reaction mechanism, whereas substrate binding appears to occur in a Mn2+ 

cation dependent fashion (Zambonelli et al., 2003).  Like HKD-containing PLDs, scPLD 

can catalyze a transphosphatidylation reaction, although it does so far less efficiently than 

HKD-containing PLD enzymes (Yang and Roberts, 2003).  

 A key difference in the enzymology between HKD-containing PLDs and 

scPLD is that HKD-containing PLD enzyme activity is dependent on the surface mole 

fraction of substrate within a lipid micelle or vesicle whereas scPLD activity is not 

dependent on the surface mole fraction of substrate within a lipid micelle or vesicle 

(Stieglitz et al., 1999).  Put another way the HKD-containing PLD enzymes are sensitive 

to how a substrate is presented whereas scPLD activity is not sensitive to how a substrate 

is presented.  These different modes of catalysis are also referred to as the “hopping” 

versus “scooting” mode of enzyme activity (Figure 3).  
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Figure 3.  Hopping versus scooting modes of catalysis occuring at a lipid bilayer.  A. A “hopping” mode 
enzyme does not depend on a lipid cofactor to facilitate substrate binding/turnover B. A “scooting” mode 
enzyme is sensitive to substrate presentation (Figure reproduced with permission from Selvy et al. 2011). 
 

Interestingly, bacteria and poisonous spiders both utilize non-HKD-containing, 

PLD-like enzymes as virulence factors or toxins.  The Gram-positive pathogens 

Corynebacterium and Arcanobacterium both secrete divalent cation dependent, non-

HKD PLDs (Cuevas and Songer, 1993; McNamara et al., 1995; Yabu et al., 2008).  

These enzymes have been shown to function as virulence factors (Hodgson et al., 1992; 

McNamara et al., 1994; Soucek and Souckova, 1974).  In contrast to the conserved HKD 

PLD enzymes that hydrolyze PtdCho these bacterial enzymes hydrolyze sphingomyelin 

(SM).  Again in contrast to mammalian sphingomyelinases that release PtdCho and 

ceramide these bacterial enzymes release choline and ceramide-1-phosphate (Hodgson et 

al., 1990; Lucas et al., 2010).  The PLD-like enzyme from Corynebacterium has been 

shown to possess lysophospholipase D activity, that is to say this enzyme can hydrolyze 

lysophosphatidylcholine (LPtdCho) to generate lysophosphatidic acid (LPtdOH) (van 
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Meeteren et al., 2004).  LPtdOH is a ligand for various G protein-coupled receptors 

(GPCR) and this activity of the PLD-like enzyme from Corynebacterium may initiate a 

variety of inflammatory signaling events concomitant with bacterial infection.    

The non-HKD-containing, PLD-like enzymes from Corynebacterium and 

Arcanobacterium both function as virulence factors in vivo.  They cause a range of 

clinical symptoms including thrombosis, hemolysis and vascular leakage (Lucas et al., 

2010).  Additionally, the LPtdOH from Corynebacterium likely causes platelet 

aggregation, endothelial cell permeability and a generalized pro-inflammatory response 

to infection (van Meeteren et al., 2004).    

The non-HKD-containing, PLD-like enzyme from the brown recluse spider, 

Loxosceles reclusa, shares significant sequence homology with the Corynebacterium and 

Arcanobacterium non-HKD-containing, PLD-like enzyme that catalyzes the hydrolysis 

of SM to ceramide-1-phosphate (Murakami et al., 2005).  Other spiders of the genus 

Loxosceles also express this enzyme as it a critical component of various spider venoms.  

Much the same as the bacterial enzymes discussed above these enzymes cause clinical 

symptoms such as dermonecrosis, thrombosis, vascular leakage, hemolysis and 

generalized inflammation (Futrell, 1992; Tambourgi et al., 1998; van Meeteren et al., 

2004).  The crystal structures of the two subtypes of this enzyme, both from Loxosceles 

laeta, have been determined and the active site structural differences lead to a likely 

explanation for their differences in catalytic activity (de Giuseppe et al., 2011; Murakami 

et al., 2005).   

Prior to a more in-depth discussion of the classical HKD-containing PLD 

enzymes there are several human enzymes with PLD-like activity that will be briefly 
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addressed: (1) Glycosylphosphatidylinositol phospholipase D (GPI-PLD), (2) N-acyl 

phosphatidylethanolamine phospholipase D (NAPE-PLD) and (3) autotaxin (ATX).  

Although these enzymes differ from the HKD-containing PLD superfamily enzymes 

significantly in sequence, structure and enzymology they perform PLD-like reactions and 

play important roles in human biology.  

GPI-PLD catalyzes the hydrolysis of the phosphodiester bond of 

glycosylphosphatidylinositol (GPI) thereby releasing inositolphosphoglycan (a non-N-

acylated hexosamine coupled to inositol phosphate, IPG) and PtdOH (Jones et al., 1997; 

Jones and Varela-Nieto, 1998).  GPI-PLD catalysis occurs at its N-terminus via a Zn2+ 

binding site coordinated by five histidine residues (Raikwar et al., 2005).  Notably, GPI-

PLD shares distant homology with PI-PLC (Li et al., 1994).  GPI-PLD is a secreted 

enzyme and perturbations in serum levels of this enzyme have been identified in several 

diseases including acute hepatitis (Raymond et al., 1994), nonalcoholic fatty liver disease 

(Chalasani et al., 2006), and type 1 diabetes (Deeg et al., 2001; Schofield et al., 2002).  

Pharmacological modulation of GPI-PLD activity has been suggested as a possible 

therapeutic modality for some of these diseases (Brunner et al., 1996; Chalasani et al., 

2006; Deeg et al., 2007; Tang et al., 2009). 

NAPE-PLD catalyzes the hydrolysis of various N-acyl phosphatidylethanolamine 

species to generate the endocannabinoid N-acylethanolamine (NAE) and PtdOH 

(Okamoto et al., 2004; Schmid et al., 1983).  Like GPI-PLD, NAPE-PLD utilizes Zn2+ to 

catalyze hydrolysis (Wang et al., 2006).  NAPE-PLD displays substrate specificity for 

NAPE and does not appear to hydrolyze PtdCho or other potential lipid substrates (Wang 

et al., 2006).  Additionally, this enzyme does not catalyze a transphosphatidylation 
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reaction (Okamoto et al., 2004).  When the N-acyl chain of NAPE is arachidonate, the 

NAE generated by NAPE-PLD is anandamide, a cannabinoid receptor (CB1 and CB2) 

antagonist.  These receptors are expressed in the central nervous system or immune 

system, respectively (Wang and Ueda, 2009).  Endocannabinoid signaling is implicated 

in a diverse range of physiological processes such as appetite, pain sensation, mood, 

memory, and fertility (Pertwee, 2008).  Endocannabinoid signaling is proving to be a 

highly complex network that is currently under intense investigation and has generated 

significant interest from the pharmaceutical industry.   

The NAPE-PLD knockout mice generated by Leung and colleagues were viable, 

healthy and showed no overt differences in behavior compared to wild-type controls 

(Leung et al., 2006).  In these mice, levels of NAPE increased in the brain, while total 

NAE decreased, as one might reasonably expect with a NAPE-PLD knockout animal.  

However, levels of polyunsaturated NAE (including anandamide) were not significantly 

altered indicating that some NAPE-PLD independent pathway is likely to be generating 

certain NAE species (Leung et al., 2006).  Potent, small molecule inhibitors of NAPE-

PLD are not present in the literature at this time, but may have clinical utility.  The 

perturbation of various endocannabinoid signaling pathways is an active area of drug 

development as a variety of disease states appear to display altered endocannabinoid 

signaling (Burch et al., 2009; Pacher et al., 2006; Zajicek et al., 2003; Zhang et al., 2011). 

Technically, Autotaxin (ATX) is a Lysophospholipase D.  ATX possesses a 

variety of enzyme activities including phospholipase activity (Aoki et al., 2002; Clair et 

al., 2003; Umezu-Goto et al., 2002) and nucleotide pyrophosphate hydrolytic activity 

(Clair et al., 1997).  Lysophospholipids, including lysophosphatidylcholine (LPtdCho), 



 

 10 

lysophosphatidylethanolamine  (LPE), and lysophosphatidylserine (LPS) are all ATX 

substrates (van Meeteren et al., 2005).  Like both previously discussed non-HKD PLDs 

ATX catalysis is dependent on Zn2+ ions.  However, unlike the other human non-HKD 

enzymes previously discussed, ATX can catalyze both hydrolysis and 

transphosphatidylation (Tania et al., 2010).  ATX is expressed as a preproenzyme and 

subsequently secreted via an N-terminal secretion signal.  ATX is present in human blood 

and its lysoPLD activity is the main source of LPtdOH in human blood (Tokumura et al., 

2002; Tsuda et al., 2006).  Depending on its immediate microenvironment, ATX will 

either hydrolyze LPtdCho to form LPtdOH, or transphosphatidylate LPtdCho, and use the 

free hydroxyl group in the sn-2 position to generate cyclic LPtdOH (cLPtdOH) (Tsuda et 

al., 2006).  These different products appear to exert different physiological effects.  

LPtdOH (Ren et al., 2006) is important in chemotactic cell migration and platelet 

aggregation, whereas cLPtdOH (Murakami-Murofushi et al., 1993) inhibits cell 

proliferation, cell invasion and metastasis.  

ATX knockout mice die at approximately embryonic day 10 (Tanaka et al., 2006).  

While normally this would not be evidence in favor of pursuing ATX as a drug target this 

case is somewhat unique.  Further research into which product of ATX is necessary for 

life (or if both are) may yet allow for highly specific pharmacological modulation of 

ATX in various disease states.    
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HKD Enzymes 

Primary sequence 

Whereas the so termed “non-HKD” PLDs display a wide range of primary 

sequence/structure variability and catalytic mechanisms the HKD enzymes all (by 

definition) share a conserved catalytic domain.  Hence, the HKD enzymes share a 

mechanism for the hydrolysis of phosphodiester bonds.  As with any attempt to neatly 

(and artificially) categorize biological entities no one system can be considered perfect; 

we have argued for the inclusion of all phosphodiesterases with a conserved HKD (or 

HKD-like) motif in the PLD superfamily (Selvy et al., 2011).  The rationale for this 

nomenclature is one based on function: these enzymes share a SN2 ping-pong reaction 

mechanism that proceeds through a covalent phospho-histidine intermediate (Liscovitch 

et al., 2000; Stanacev and Stuhne-Sekalec, 1970). 

PLD enzymes have been identified in nearly all forms of life.  After a significant 

number of PLD genes from different organisms were sequenced a common set of 

conserved motifs (I-IV) were observed including the conserved catalytic sequence 

HxKxxxxDx6G(G/S)xN (HKD) (Ponting and Kerr, 1996).  It appears likely that a gene 

duplication event occurred during evolution as a variety of viruses and prokaryotes 

contain a single HKD catalytic domain, whereas many PLDs (including the human 

enzyme) contain two HKD motifs comprising a bilobal catalytic domain (Koonin, 1996) 

(Figure 4).   
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Figure 4.  Comparison of the domain architectures of PLD enzymes from various organisms (Figure 
reproduced with permission from Selvy et al. 2011). 

 

Structure  

Most of the structure-function relationships inferred about eukaryotic PLDs are 

necessarily based on the structures of bacterial PLDs, because the eukaryotic enzymes 

have proven exceptionally challenging to express, purify, stabilize and crystallize.  From 

the limited number of crystal structures that have been reported from bacterial enzymes it 

does appear that a conserved tertiary structure about the HKD catalytic motif(s) exists 

(Abergel et al., 2001; Davies et al., 2002a; Davies et al., 2002b; Leiros et al., 2000a; 

Leiros et al., 2000b; Rudolph et al., 1999; Stuckey and Dixon, 1999). 

In 2000 the first bilobal catalytic domain-containing PLD enzyme structure was 

reported (Leiros et al., 2000b).  Biochemical experiments performed on this Streptomyces 

sp. PMF PLD have provided some evidence about the function(s) of certain domains 

(Uesugi and Hatanaka, 2009).  In terms of the HxKxxxxDx6G(G/S)xN catalytic motif the 
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histidine and lysine residues, which interact directly with a substrate, are on β-strands 

whereas the GG/GS residues sit in the base of the active site and appear to have an effect 

on substrate specificity and overall thermostability of the enzyme (Ogino et al., 2007).    

 

Catalytic mechanism: hydrolysis versus transphosphatidylation  

In the 1960s and 1970s Yang et al. (Yang et al., 1967) and Stanacev and Stuhne-

Sekalec et al. (Stanacev and Stuhne-Sekalec, 1970) proposed that PLD catalysis proceeds 

through a two-step “ping-pong” reaction mechanism including the formation of a 

covalent phospho-protein intermediate.  Understandably so, the tools available to these 

groups at the time limited their ability to precisely examine the specific residues required 

for catalysis.  In the 1990s with developments in fields such as DNA sequencing and 

phylogenetics it became ever more practical to ask biochemical questions based on 

evidence from molecular evolution.  Based on the observations of Ponting and Kerr 

(Ponting and Kerr, 1996) and Koonin (Koonin, 1996) which showed conserved, duplicate 

HxKxxxxDx6G(G/S)xN motifs in the PLD superfamily members, it was suggested that 

the key residue(s) for PLD catalysis reside within this stretch of amino acids.  

Studies performed in the 1990s using a 1-HKD bacterial enzyme, Nuc 

endonuclease (Gottlin et al., 1998), and a 2-HKD bacterial PLD, Yersinia pestis murine 

toxin (YMT) (Rudolph et al., 1999), showed that histidine residues are the key residues in 

the PLD catalytic mechanism.  These studies both support the reaction mechanism that is 

currently favored within the field (Figure 5) and are in agreement with additional, 

independent evidence discussed below. 
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Figure 5.  Proposed PLD reaction mechanism.  In this figure only PC=phosphatidylcholine and 
PA=phosphatidic acid (Figure reproduced with permission from Selvy et al. 2011). 
 

In this enzyme-catalyzed reaction mechanism the N-terminal histidine residue within the 

HKD motif acts as a nucleophile and attacks the phosphate group of the substrate, (step 1, 

Figure 5) and forms a covalent phospho-histidine intermediate. The histidine residue of 

the C-terminal HKD motif behaves as a general acid, and donates a proton to the choline 

leaving group (step 2, Figure 5).  Formation of the phospho-histidine intermediate has 

been proposed to be the rate-limiting step.  Subsequent nucleophilic attack by a hydroxyl 

group from either a water molecule or a primary alcohol (steps 3 and 4, Figure 5) 

followed by PtdOH or phosphatidylalcohol product release rapidly occurs in parallel 

(Yang and Roberts, 2003).  For human PLD, and most HKD PLDs, short chain primary 

alcohols are actually preferred as a nucleophile over water.  Thus, transphosphatidylation 

can occur even at very low concentrations of alcohol (Stanacev and Stuhne-Sekalec, 

1970).  
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Independent evidence from structural studies and biophysics work supports the 

validity of the reaction mechanism described above.  Whether present as a homodimer or 

in a bilobal catalytic domain the two HKD catalytic motifs appear in close proximity to 

each other (Leiros et al., 2000b; Stuckey and Dixon, 1999).  Even more provocatively, 

Leiros et al. were able to soak a short chain PtdCho (dibutyrylphosphatidylcholine) 

substrate into PMF PLD crystals and capture crystal structures of reaction intermediates, 

including the phospho-histidine intermediate (Leiros et al., 2004).  Additionally, Orth et 

al. were able to capture the covalent phospho-histidine intermediate using electrospray 

ionization mass spectrometry (ESI-MS) (Orth et al., 2010).  Thus, a consilience of 

evidence from the fields of phylogenetics, biochemistry and structural biology appears to 

indicate that the reaction mechanism discussed above (Figure 5) is correct. 

 

Interfacial kinetics 

In vivo, lipids are often present as parts of a complex mixture of components in a 

biological membrane.  Therefore, the substrates of many lipid-modifying enzymes are 

neither freely soluble nor are they in great excess compared to relevant enzyme 

concentrations (Deems, 2000).  These two conditions mean that many lipid-modifying 

enzymes violate some of the basic assumptions of Michaelis-Menten kinetics.  PLD fits 

into this category of lipid-modifying enzymes and actually demonstrates interfacial 

kinetics (Henage et al., 2006).  

One important, practical consequence of studying interfacial enzymes is that in 

addition to what are commonly termed Km and kcat an additional variable, Ks, must also be 

taken into account.  This additional variable describes the membrane association step of a 
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lipid-modifying enzyme during catalysis.  Much like other steps in catalysis, membrane 

association can be affected by a multitude of variables including charge, local pH, 

membrane fluidity, substrate presentation etc. (Deems, 2000).   

In order to study kinetic parameters for “scooting” (Figure 3) enzymes, such as 

human PLD, interfacial binding, Ks, must be measured separately from Km and kcat.  

There are a variety of ways to study protein-lipid binding (and in turn Ks) ranging from 

classic methods such as the sedimentation of sucrose loaded vesicles (Buser and 

McLaughlin, 1998) to a rather interesting, new liposome microarray technology (Saliba 

et al., 2014).  Following determination of Ks, Michaelis-Menten kinetic assumptions can 

be applied for “scooting" mode enzymes if the bulk lipid concentration is much, much 

greater than Ks, and interfacial binding is saturated.  The mole fraction of substrate is 

varied while bulk lipid concentration is held constant by compensating for variation in 

the mole fraction of substrate with a neutral lipid, called a neutral diluent.  This format 

for studying kinetic parameters of an interfacial enzyme is referred to as surface dilution 

kinetics (Carman et al., 1995).  A thorough kinetic analysis of mammalian PLD (Henage 

et al., 2006) has been reported.  

 

In vitro enzyme activity assays 

The first biochemical assays of PLD activity were performed using radioactivity 

to monitor the amount of substrate depleted or product formed over time via thin layer 

chromatography (TLC).  In these experiments the migration of lipid species (substrate 

and product) on a TLC plate was compared to the migration of known standards (Yang et 

al., 1967).  Following these initial experiments a variety of assay types have been 
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described.  Commercial kits are available for measuring PLD activity in vitro; however, 

these kits indirectly measure choline release via a color change caused by two subsequent 

enzyme-catalyzed reactions (Amplex® Red PLD assay kit, Life Technologies 

http://www.lifetechnologies.com/order/catalog/product/A12219).  This method of 

assaying PLD activity can be useful because it can be utilized with a monomeric (short 

chain) PtdCho substrate thus removing the lipid association step from the reaction 

mechanism.  However, the correct controls must be performed in order to ensure that 

nothing in the assay conditions interferes with either of the two enzymes responsible for 

using choline to catalyze a color change via the formation of resorufin (emission at 585 

nm) from the amplex® red reagent.     

Enzyme activity assays in which the substrate is presented as part of a liposome 

are more laborious and complex, but are unequivocally more physiologically relevant 

(Brown et al., 1993; Brown et al., 2007).  In these assays a tritium-containing choline 

headgroup remains in the soluble portion of a reaction mixture while the insoluble lipids 

are precipitated and subsequently pelleted via centrifugation.  In this fashion, the amount 

of substrate turned over can be directly measured and quantified via scintillation 

counting.  Sonication can be used to prepare liposomes; however, sonication causes the 

formation of multilamellar vesicles.  These vesicles do allow for the measurement of 

enzyme activity, and the comparison of different reaction conditions within the same 

assay.  However, the inter-assay variability in surface concentration of substrate can be 

significant, making multilamellar vesicles less than ideal for precise measurements.  

Extrusion is the gold-standard method for generating nearly uniform, unilamellar 

vesicles.  
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Cellular enzyme activity assays   

As far back as the 1960s it was known that, in addition to hydrolysis, PLD 

enzymes could also catalyze a transphosphatidylation reaction (Yang et al., 1967).  

Importantly, Stanacev and Stuhne-Sekalec showed that a significant amount of 

transphosphatidylation occurs even with very small amount of alcohol present (Stanacev 

and Stuhne-Sekalec, 1970).  As with in vitro PLD enzyme activity assays, TLC was used 

to visualize phosphatidylalcohols by monitoring the co-migration of radioisotopically 

labeled lipids with phosphatidylalcohol standards.  More recently, a robust, non-

radioisotope-based cellular enzyme activity assay was developed (Brown et al., 2007).  In 

this assay ESI-MS is utilized to monitor the formation of deuterated phosphatidylbutanol 

following incubation of cells with low concentrations of deuterated n-butanol.  The use of 

deuterated n-butanol facilitates measurement of the resultant deuterated 

phosphatidylbutanol species because the mass to charge ratio of the species formed using 

non-deuterated n-butanol is located in a noisy area of the mass spectrum observed when 

examining a cellular lipid extract.  

 

PLD enzymes from microorganisms and model organisms 

Plant PLD 

 As is the case with many important human genes and proteins the basis for much 

(if not most) of what we known about human PLD was originally discovered in model 

organisms.  Plants in particular have played a central role in the history of PLD.  While 

an extremely comprehensive review of plant PLD enzymes can be found in Selvy et al. 
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2011, a brief overview of the PLD enzymes from several model/eukaryotic organisms, 

including plants, is included below.     

 The first report of PLD enzyme activity was from a carrot extract in 1947 

(Hanahan and Chaikoff, 1947b) and about 20 years later the hydrolytic and 

transphosphatidylation activities of PLD were measured in cabbage extracts (Yang et al., 

1967).  In 1994 the first PLD was cloned from a castor bean (Wang et al., 1994).  Most of 

the plant PLD literature has made use of the model organism Arabidopsis thaliana.  

Given that the entire genome of this organism has been sequenced the identification and 

genetic manipulation of plant PLDs in this organism was quite feasible.   

Plant PLD enzymes contain two-conserved HKD motifs and can be divided into 

essentially two groups, C2-PLDs and PXPH-PLDs, based on the type of amino-terminal 

regulatory domains present upstream of the catalytic domain (Elias et al., 2002; Wang, 

2000).  C2-PLDs have an N-terminal C2 calcium-binding domain that is not found in 

mammalian PLDs (Hong et al., 2010).  The PXPH-PLDs from plants are more closely 

related to mammalian PLDs, and have amino-terminal phox homology (PX) and 

pleckstrin homology (PH) domains important for mediating specific lipid interactions 

(Hong et al., 2010; Qin and Wang, 2002).  At least 12 Arabidopsis PLD genes have been 

identified, of which ten are classified as C2-PLD genes and two are classified as PXPH 

PLD genes (Li et al., 2009).  

Members of the Plant C2-PLD subdomain have been divided into 5 groups: 

PLDα, PLDβ, PLDγ, PLDδ, PLDε.  The defining characteristic of all C2-PLDs is the C2 

domain at the amino terminus that is important in calcium sensing and phospholipid 

binding (Wang, 1999; Wang, 2000).  Two plant PLDs, PLDζ1 and PLDζ2, have been 
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identified that contain N-terminal phox homology (PX) and pleckstrin homology (PH) 

lipid binding domains (Qin and Wang, 2002; Taniguchi et al., 2010).  These PXPH-

containing PLDs do not require calcium for catalysis, rather these enzymes catalyze 

PtdCho hydrolysis in a PI(4,5)P2 dependent manner (Qin and Wang, 2002).  These 

enzymes are more similar to the mammalian PLD enzymes than their C2 domain-

containing counterparts.   

 

Fungal PLD 

Budding yeast 

 PLD enzyme activity was observed in yeast long before any specific PLD genes 

were identified in yeast.  In the 1970s PLD activity was observed in Saccharomyces 

cerevisiae following glucose stimulation (Dharmalingam and Jayaraman, 1971; 

Grossman et al., 1973).  It wasn’t until about 20 years later that a variety of studies 

identified PLD enzymes in various yeast species.  PLD1 from yeast, called Spo14, was 

identified in Saccharomyces cerevisiae (Ella et al., 1995; Honigberg et al., 1992; Kishida 

and Shimoda, 1986; Rose et al., 1995).  Spo14 shares sequence and biochemical 

similarities the other eukaryotic PLDs discussed herein.  Spo14 has been shown play a 

role in yeast sporulation (Honigberg et al., 1992; Rose et al., 1995), vesicular trafficking 

(Neiman, 1998) and mating (Harkins et al., 2008). 

 

Fission yeast 

 A 2-HKD-containing PLD enzyme was also cloned from Schizosaccharomyces 

pombe (Harkins et al., 2010).  The PLD enzyme from Schizosaccharomyces pombe 
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shares significant sequence homology with Spo14, but does display some clear 

biochemical differences from Spo14.  Unlike Spo14, PI(4,5)P2 does not have any effect 

on Schizosaccharomyces pombe PLD enzyme activity.  Similar to Spo14, S. pombe 

PLD1 plays functional roles in sporulation and mating.  Also similar to Spo14, this S. 

pombe PLD1 was shown to catalyze both hydrolysis and transphosphatidylation (Harkins 

et al., 2010).  

 

C. elegans PLD 

 As recently as a 2009 review article (Raghu et al., 2009b) there is very little 

information published about the PLD gene from Caenorhabditis elegans (C. elegans).  A 

single, 1427 aa PLD has been cloned from C. elegans and although this enzyme is 

expressed throughout the pharyngeal muscles and neurons a clear function for this 

enzyme has not been shown (Nakashima, 2000).  PLD knockout animals do not 

demonstrate a visible phenotype (Liu et al., 1999; Matthies et al., 2006).  A recent study 

performed by Kinchen et al. suggests this enzyme may regulate phagosome dynamics, 

which would be in agreement with some work on the mammalian PLD enzymes 

(Kinchen et al., 2008).  

 

Drosophila melanogaster PLD 

 Drosophila PLD (dPLD) is quite similar to C. elegans PLD in many respects.  

The dPLD enzyme contains 2 HKD catalytic motifs as well as PX and PH domains 

(Raghu et al., 2009b).  Drosophila PLD enzyme activity was first described in larvae 

grown on ethanol-containing food (Miller et al., 1993).  LaLonde et al. later isolated 
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dPLD cDNA from Drosophila (LaLonde et al., 2005).  Drosophila PLD plays roles in 

vesicular trafficking (LaLonde et al., 2006) and phototransduction (Raghu et al., 2009a).  

Much like the case of C. elegans, dPLD null mutants are viable; however, unlike the C. 

elegans knockouts the dPLD null mutants do display some clear abnormalities. 

Drosophila PLD deficient animals demonstrate problems with cellularization and 

decreased photoreceptor signal transduction rendering the animals less sensitive to light 

stimulus (LaLonde et al., 2006). 

 

Zebrafish PLD 

 In 2003 Ghosh et al. cloned a portion of a PLD enzyme from zebrafish (Danio 

rerio) (Ghosh et al., 2003).  Several years later Zeng et al. reported the complete zPLD1 

sequence along with substantial in vitro and in vivo characterization of zPLD1 (Zeng et 

al., 2009).  Zebrafish PLD is strikingly similar to human mammalian PLD1 in many 

ways.  This enzyme possesses the two HKD motifs present in most eukaryotic PLDs and 

responds to many of the same regulatory factors as the mammalian PLD1 enzyme.    

 PLD activity can be measured in intact zebrafish simply by treating zebrafish with 

a solution containing deuterated n-butanol.  Zeng et al. monitored zPld1 activity via ESI-

MS as was depicted in Figure 1.  Using several independent approaches Zeng et al. 

showed that zPLD1 plays a role in vascular development.  Knocking zPLD1 down with 

morpholinos caused impaired intersegmental blood vessel formation (Zeng et al., 2009).  

Further utilization of zebrafish as a model system in which to monitor PLD activity in 

vivo could facilitate a greater understanding of the functional roles of PLD with respect to 

both physiology and various pathologies.  
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Mammalian PLD 

Isoforms  

 The focus of this dissertation is, of course, the pharmacological inhibition of 

human PLD enzymes and as such the rest of the text will focus almost exclusively on the 

mammalian PLD enzymes.  PLD activity in mammalian tissues was first observed in 

1973 (Saito and Kanfer, 1973).  Since that observation has taken place various 

mammalian PLD enzymes have been cloned and studied.  For many years biochemical 

and genetic means were used to probe the functions PLD plays in cells and whole 

animals, but more recently serious attempts at creating small-molecule enzyme inhibitors 

have been undertaken (Selvy et al., 2011).      

 The two PLD enzymes most relevant to this dissertation (and most well 

characterized) are PLD1 (Hammond et al., 1995) and PLD2 (Colley et al., 1997; Lopez et 

al., 1998; Steed et al., 1998).  These two isoforms share about 50% sequence identity 

including near complete identity around the two conserved HKD catalytic motifs present 

in each isoform.  A notable region of difference among the two isoforms is a loop region 

N-terminal to a conserved polybasic PI(4,5)P2 binding domain (Sciorra et al., 1999) 

(Figure 6).  PLD1 contains a thermolabile loop region that varies in size depending on 

the splice variant expressed (PLD1a = 116 aa versus PLD1b = 78 aa) (Hammond et al., 

1997).  PLD2 essentially does not have this loop region at all.  Shortened, inactive splice 

variants with unknown functions of both PLD1 and PLD2 have been identified (Steed et 

al., 1998).    
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Figure 6.  Mammalian PLD domain architecture (Figure reproduced with permission from Selvy et al. 
2011). 
 

Similar to PLD enzymes from some of the eukaryotic model organisms discussed 

above both PLD1 and PLD2 contain the same regulatory domains at their N-termini.  The 

PX and PH domains are known to facilitate interactions with lipid membranes (Steed et 

al., 1998).  These N-terminal regulatory domains are not required for catalytic activity 

(Sung et al., 1999).  In the case of PLD, removing portions of the N-terminus of the 

protein (up to a point) actually appears to increase PLD1 activity (Henage et al., 2006).  

Notably, removing more than about 311 amino acids from the N-terminus of PLD1 leads 

to catalytically inactive constructs (unpublished data, Lavieri and Brown).  In contrast to 

the N-terminus, any perturbations at the C-terminus of either PLD1 or PLD2 seem to 

decrease catalytic activity (Liu et al., 2001).    

In addition to the relatively well characterized PLD1 and PLD2 isoforms there are 

two other reported human PLD enzymes that are not nearly as well characterized and 

differ quite substantially from PLD1/PLD2 in overall domain architecture and sequence 

identity.  A single-HKD enzyme, called mitoPLD, was recently identified (Choi et al., 
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2006).  It appears that the physiologically relevant substrate of this PLD is cardiolipin.  

Cardiolipin is abundant in mitochondrial membranes and mitoPLD appears to play a role 

in promoting mitochondrial fusion events (Choi et al., 2006).  The PLD3 enzyme 

contains two HxKxxxxD/E motifs (one motif contains aspartic acid, the other contains 

glutamic acid) (Cao et al., 1997).  However, essentially no biochemical characterization 

of this gene or protein has taken place and the protein does not appear to possess 

canonical PLD enzyme activity (Osisami et al., 2012).     

 

Tissue expression and subcellular localization 

Tissue expression 

 PLD1 and PLD2 are both expressed in nearly all mammalian tissues.  In general, 

it seems that PLD is regulated at the level of cell signaling as opposed to being regulated 

at the level of gene expression.  PLD1 is expressed particularly well in the human heart, 

pancreas, brain, uterus and intestine.  PLD2 is expressed particularly well in the brain, 

placenta lung, thymus, prostate and uterus (Lopez et al., 1998).  

 

PLD1 subcellular localization 

 Under basal conditions PLD1 tends to localize to perinuclear membranes, 

lysosomes and endosomes (Brown et al., 1998; Colley et al., 1997; Du et al., 2003; 

Hughes and Parker, 2001).  The biochemical basis for this localization has been 

investigated to some extent and features such as palmitoylation have been used to explain 

membrane association under basal conditions (Sugars et al., 1999).  Notably, catalytically 

inactive point mutants (PLD1b K466E and K860E) localize to endosomes in a similar 
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fashion as wildtype enzyme, indicating that catalytic activity and membrane binding are, 

to some extent, independent biochemical events.  Following stimulation with agents such 

as IgE or PMA PLD1 translocates to the plasma membrane (Brown et al., 1998; Du et al., 

2003).  These results seem to suggest a model wherein some extracellular stimulus must 

cause PLD to translocate to the cell membrane thereby activating the enzyme.   

 

PLD2 subcellular localization 

 Unlike the dynamic membrane interactions observed in the case of PLD1, PLD2 

is typically found at the cell membrane.  This has been shown using overexpressed and 

native expression levels of PLD2 (Colley et al., 1997; Du et al., 2004).  Under agonist 

stimulation PLD2 appears to co-localize with the relevant receptor(s) and participate in 

receptor desensitization/recycling (Du et al., 2004).  Various extracellular stimuli can in 

fact alter PLD2 localization.  As an example, EGF-stimulation causes PLD2 to localize to 

membrane ruffles (Honda et al., 1999)      

 

Regulation 

Divalent cations 

 As was the case with the PLD enzymes from various organisms discussed earlier 

mammalian PLD enzyme activity is influenced by divalent cation concentrations.  In 

vivo, PLD activity is affected by changes in calcium concentration, which suggests 

calcium facilitates some kind of signaling cascade involving PLD, such as PKC 

signaling, and indirectly modulates PLD activity (Ohguchi et al., 1996).  In vitro PLD 

activity is sensitive to both magnesium and calcium concentrations; however, about half 
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maximal enzyme activity can be obtained in the absence of either cation (Brown et al., 

1995).  Magnesium concentrations at or above 1 mM have stimulatory effects.  By 

contrast calcium does not seem to exert a large effect in vitro (Brown et al., 1995). 

    

Post-translational modification 

 While PLD activity in vivo largely appears to be regulated quite acutely at the cell 

signaling level PLD is subject to several classic mechanisms of post-translational 

modification.  Both PLD1 (Sugars et al., 1999) and PLD2 (Xie et al., 2002b) are 

palmitoylated at two cysteine residues within their respective PH domains.  In PLD1, 

C240 and C241 are palmitoylated (Sugars et al., 1999), and in PLD2 C223 and C224 are 

palmitoylated (Xie et al., 2002b).  Based on studies comparing wildtype to Cys to Ala 

point mutants (unable to be palmitoylated), these modifications do not significantly affect 

in vitro catalytic activity; however, in vivo catalytic activity and proper cellular 

localization of the protein are both decreased (Sugars et al., 1999).  

A number of papers have reported various phosphorylations of PLD1 and PLD2.  

The physiological consequence of these phosphorylations, if any, is not always known 

and can be highly dependent on a variety of other signaling events occurring in parallel.   

It has been known for some time that various PKC isoforms can stimulate PLD1 activity 

both in vitro and in vivo (Singer et al., 1995).  Interestingly, several residues on PLD1 are 

phoshporylated by PKC (Kim et al., 1999), yet activation of PLD1 in vitro appears to be 

phosphorylation-independent (Hu and Exton, 2003).   

Recently, several papers have reported some precise PLD2 phosphorylation sites 

and some of the relevant physiological consequences.  Proteomics analyses of COS-7 
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cells stimulated with PMA resulted in the identification of several phosphorylated 

residues: S134, S146, S243, T72, T99, T252 (Chen and Exton, 2005).  However, the 

exact functional consequences of many of these events are not known, and may depend 

on many dependent variables.  Henkels et al. utilized MS-based proteomic analysis to 

identify phosphorylated residues on PLD2 (Henkels et al., 2010).  The Epidermal growth 

factor receptor (EGFR) decreases PLD2 catalytic activity via phosphorylation at Tyr296.  

In response to JAK3 phosphorylation of Tyr415 PLD2 activity increases and Src 

phosphorylation Tyr511 has no effect on catalytic activity (Henkels et al., 2010).  

However, the Src phosphorylation likely exerts a structural/biophysical change that 

affects intermolecular interactions.  

In 2010 Yin et al. showed that PLD1, but not PLD2, is multi-monoubiquitinated 

(Yin et al., 2010).  Interestingly, inhibition of PLD1 activity either via genetic or 

pharmacological means decreases the amount of ubiquitination observed.  Similarly, 

interfering with the proper localization of the PLD1 also caused a lower level of 

ubiquitination to occur.  Thus it appears that to be targeted for degradation PLD1 must be 

both catalytically active and properly localized.  Also, the degradation of PLD1 was 

blocked by proteasome inhibitors, but not by inhibitors of other proteases (Yin et al., 

2010).  Ubiquitination appears to be a previously unrecognized PLD1 negative regulatory 

mechanism.        

In addition to being palmitoylated, phosphorylated and ubiquitinated PLD can be 

cleaved by caspases.  Both PLD1 and PLD2 can be cleaved by caspases 3 and 8, and 

PLD1 is also a substrate of caspase 7 (Jang et al., 2008a; Jang et al., 2008b; Riebeling et 

al., 2008).  Unlike PLD2, caspase proteolysis appears to regulate PLD1 localization and 
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activity in a complex fashion.  In vivo, caspase 3 cleaves PLD1 primarily at position 545 

resulting in the liberation of a 56 kDa C-terminal fragment which localizes to the nucleus 

via an exposed nuclear localization sequence and a 60 kDa N-terminal fragment (NF-

PLD1) that remains in the cytosol (Jang et al., 2008a).  Full length PLD1 acts to suppress 

apoptosis by decreasing p53 signaling.  Once protealyzed, the PLD1 fragment acts as a 

dominant negative (for the full length PLD1 enzyme) thereby causing an increase in p53 

signaling (Jang et al., 2008b).  Ultimately, the caspase 3 cleavage of PLD1 causes an 

increase in p53 dependent apoptotic signaling.   

 

Lipid cofactors 

 The importance of PIP2 as a cofactor for mammalian PLD enzymes is highlighted 

by the fact that during the development of the gold standard in vitro reconstitution 

enzyme activity assay it was discovered that PIP2 was required to detect choline 

hydrolysis catalyzed by PLD purified from HL-60 membranes (Brown et al., 1993).  

Liscovitch et al. also showed that PIP2 stimulates brain membrane PLD activity in vitro 

(Liscovitch et al., 1994).  A few years later when PLD1 and PLD2 were recombinantly 

expressed and purified PIP2 was again required to measure PLD catalytic activity in vitro 

(Colley et al., 1997; Hammond et al., 1995; Lopez et al., 1998).  Other PIP species, 

including PIP3, are also able to stimulate PLD activity, albeit to a lesser extent than PIP2 

(Hammond et al., 1997). 

 PIP2 is known to bind to PLD at two separate sites.  The polybasic PI(4,5)P2 

binding motif binds PIP2 with high specificity and affinity.  Both in vitro catalytic 

activity and PIP2 binding decreased substantially when these residues in PLD2 were 
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mutated (Sciorra et al., 1999).  Interestingly, these mutations did not affect PLD2 

subcellular localization leading naturally to the hypothesis that the PIP2 binding site 

contained within the PH domain must govern subcellular localization.  Mutation of the 

conserved residues (compared to other PH domains) in the PLD2 PH domain yielded an 

enzyme that was inactive in intact cells, but was in fact catalytically active in vitro.  

Additionally, mutating Arg237 and Trp238 to alanine residues resulted in PLD2 

partitioning into detergent-soluble membrane fractions instead of detergent-insoluble 

membrane fractions, where the wildtype enzyme is normally located (Sciorra et al., 

2002).  

 

Regulatory proteins  

 The ADP-ribosylation factor (Arf) proteins are small GTPases that play roles in a 

variety of cellular events such as vesicle formation and cytoskeletal rearrangement 

(Campa and Randazzo, 2008).  A significant number of studies have shown that various 

small GTPases regulate PLD activity.  Initially, it was found that adding cytosol and 

GTPγS (a non-hydrolysable GTP analog that activates small G proteins) to HL-60 cell 

membranes stimulated PLD activity.  Subsequently, the specific factor responsible for 

stimulating PLD activity was isolated and identified as an Arf GTPase (Brown et al., 

1993; Cockcroft et al., 1994).  Arf1 and Arf6 were the first proteins shown to stimulate 

PLD activity in an in vitro reconstitution assay (Brown et al., 1993).  Soon after these 

discoveries data seemed to suggest that only PLD1 (and not PLD2) is highly responsive 

to Arf stimulation (Colley et al., 1997).  Indeed, several groups have shown PLD 
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activation by Arf in excess of 10-fold (Hammond et al., 1997; Henage et al., 2006; Lopez 

et al., 1998). 

 Much like Arf, the Rho family of small GTPases, including RhoA, Cdc42, Rac1 

and Rac2, plays roles in regulating cytoskeletal rearrangement (Boureux et al., 2007).  

Studies utilizing purified PLD1a and PLD1b have shown that RhoA, Rac1 and Cdc42 all 

directly activate PLD1 (Singer et al., 1995; Hammond et al., 1997; Henage et al., 2006; 

Walker and Brown, 2002).  Much like Arf, the Rho family proteins do not causes robust 

changes in PLD2 activity (Colley et al., 1997).  While the exact points of interaction 

between PLD1 and Rho are not known, various studies indicate that the interaction likely 

occurs near the C-terminus of PLD1 (Cai and Exton, 2001).            

 In addition to Arf and Rho, several other small GTPases have been shown to 

modulate PLD activity.  Both in vitro and in vivo (mouse) work has shown that Ras can 

signal through PLD in a physiologically relevant manner (Buchanan et al., 2005; Carnero 

et al., 1994).  RalA appears to be involved in PLD activation and can be co-

immunoprecipitated with PLD1, but it seems that the relationship between RalA and 

PLD1 is not direct (Kim et al., 1998; Luo et al., 1997).  Additionally, Rheb has also been 

reported to activate PLD1 in vitro (Sun et al., 2008).  

The interactions between PLD and PKC are fairly complex and only a brief 

summary is included below.  In intact cells PKC stimulates both PLD1 and PLD2 activity 

downstream of phospholipase C (PLC) activation.  PKC phosphorylates PLD1 and PLD2 

at serine and threonine residues, but it appears that PLD activation is not 

phosphorylation-dependent (Chen and Exton, 2004; Kim et al., 1999).  PKC stimulated 

(via PMA) PLD activity occurs immediately, but maximal PLD phosphorylation occurs 
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roughly an hour later with a concomitant decrease in PLD activity, suggesting 

phosphorylation of PLD by PKC actually decreases PLD activity (Chen and Exton, 2004; 

Hu and Exton, 2003).  The PKC binding domain on PLD was mapped to the N-terminus 

of PLD1b (Kook and Exton, 2005); however, PKC is able to activate N-terminally 

truncated PLD1 in a phosphorylation-independent mechanism (Henage et al., 2006) and 

N-terminally truncated PLD1 still co-immunoprecipitated with PKC (Sung et al., 1999).  

Thus, it appears that there are actually two PKC binding sites on PLD1, an N-terminal 

site and a C-terminal site (Park et al., 1998).  In vitro, PKC stimulates the activity of full-

length PLD1 to a greater magnitude than PKC stimulates an N-terminally truncated 

PLD1 construct (Henage et al., 2006).  The various ways in which PKC and the various 

small GTPases interact with PLD likely contribute to a multifaceted regulatory network 

in vivo.    

 

Signaling pathways 

Receptor tyrosine kinases 

 The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine 

kinase (RTK).  Binding of EGFR to its ligand, epidermal growth factor, leads to RTK 

dimerization and autophosphorylation.  The subsequent activation of various signal 

transduction pathways includes those that regulate cell proliferation, differentiation and 

survival.  Both wildtype and mutant EGFR receptors are often overexpressed in cancer 

cells and targeting EGFR directly, or indirectly, has been an ongoing approach utilized to 

treat various cancers (Herbst, 2004).  The autophosphorylation of several tyrosine resides 

located in the cytoplasmic portion of the receptor creates a high affinity binding site for 



 

 33 

several important intracellular proteins containing Src-homology 2 (SH2) domains 

including Src, PLCγ1, Grb2 and PI3K (Riese et al., 2007).  It has been appreciated for 

some time that EGFR activation leads to an increase in PLD activity (Fisher et al., 1991). 

 There are several possible ways that EGFR activation can cause an increase in 

PLD activity.  The most thoroughly characterized EGFR-PLD activation pathway starts 

when PLCγ1 binds to an activated EGFR receptor.  Next, PLCγ1 hydrolyzes PI(4,5)P2 to 

produce DAG and IP3.  IP3 causes an increase in calcium levels, which in addition to 

DAG, activates PKC (Rana and Hokin, 1990).  As was previously discussed, PKC is a 

well-established activator of PLD (Henage et al., 2006).  In addition to the well known 

PLCγ1-PKC signaling pathway EGFR can also signal to PLD though the Ras signaling 

pathway.  RalA is a Ras effector and GTP-bound RalA appears to activate PLD (Luo et 

al., 1997; Voss et al., 1999).  In a distinct mechanism, PLD2 is directly, physically 

activated by an activated EGFR complex.  PLD2 binds directly to the SH2 domain of the 

EGFR-bound Grb2 (Di Fulvio et al., 2007).  

 

G protein-coupled receptors 

G protein-coupled receptors (GPCR) are cell surface, transmembrane receptors 

that mediate an enormous number of physiologically relevant cell signaling events and as 

such have been the focus of many drug development projects.  Under basal conditions, 

GPCRs bind various heterotrimeric G-proteins.  Ligand binding to the extracellular 

domain(s) of a GPCR leads to a conformational change in the receptor that causes GDP 

to GTP exchange in the Gα subunit of a G-protein (Qin et al., 2011).  The GTP-bound Gα 

subunit then dissociates from the Gβγ subunit and each subunit can participate in various 
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downstream signaling events.  The various classes of heterotrimeric G-proteins activate 

different cell signaling pathways.  After a ligand bound GPCR triggers guanine 

nucleotide exchange, GTP-bound Gαq causes PLCβ to hydrolyze PI(4,5)P2 leading to the 

formation of DAG and IP3 (Rhee, 2001).  IP3 triggers calcium release from intracellular 

stores which activates PKC, and DAG also activates PKC.  As was previously discussed 

in more detail, PKC activates PLD (Plonk et al., 1998; Xie et al., 2002a).  In addition to 

the classical Gαq activation pathway several GPCRs and G-proteins are capable of 

stimulating PLD activity, including Gα12/13.   

The Gα12/13 class of heterotrimeric G-proteins activates PLD in a small GTPase 

dependent manner (Mitchell et al., 1998).  In the case of Gα12, PLD1 is ultimately 

activated by RhoA through a Pyk2-dependent mechanism.  Gα13 activates the γ subtype 

of PI3K thereby causing the production of PIP3.  Upon PIP3 binding, ARNO and Rho 

GEF cause guanine nucleotide exchange to occur on Arf and RhoA, respectively (Plonk 

et al., 1998).  These activated small GTPases can then directly activate PLD.  The GPCR 

activation of PLD pathways described above are by no means comprehensive as there are 

many ways that GPCRs can activate PLD.   

 

The mammalian target of rapamycin 

While it appears likely that there is some signaling relationship between PLD and 

mTOR the precise mechanism of such a relationship is likely complicated and many 

studies to date have utilized methods which can very easily lead to incorrect conclusions.  

Initial reports associating the PtdOH produced by PLD with mTOR activation used 

primary alcohols (at very high concentrations) to cause a decrease in the amount of 
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PtdOH formed (instead phosphatidylalcohols were formed) (Fang et al., 2001; Toschi et 

al., 2009).  In these studies the treatment of cells with primary alcohols caused a decrease 

in mTOR kinase activity, as measured by the amount of phospho p70S6K kinase.  In two 

separate papers Chen et al. utilized MBA-MB-231 breast cancer cells to argue that 

elevated PLD activity provides an alternative survival signal (from PI3K) in mTOR-

dependent cancer cells (Chen et al., 2005; Chen et al., 2003).       

A more recent biophysics study utilized NMR spectroscopy to examine the 

PtdOH binding site on the FRB domain of mTOR (Leone et al., 2006).  This work is 

undoubtedly significant and interesting; however, it is important to keep in mind that 

enzymes other than PLD can produce PtdOH.  Both LPAAT (Blaskovich et al., 2013) 

and DAGK (Avila-Flores et al., 2005; Gorentla et al., 2011) have been shown to 

modulate mTOR signaling.  Furthermore, recent work utilizing shRNA targeting PLD1 

appears to show a decrease in phospho p70S6K compared to control shRNA (Sun et al., 

2008).  Somewhat puzzlingly, pharmacological inhibition of PLD with small-molecule 

inhibitors developed in our own lab has not yielded results consistent with some 

published findings concerning PLD and mTOR (unpublished data, Lavieri, Brown and 

Lindsley).  This may simply be a case where the immediate pharmacological inhibition of 

PLD enzyme activity does something very different than the much longer-term 

knockdown of enzyme expression caused by RNA interference techniques.  To make 

things even more confusing, mTOR signaling is one of the most complex, redundant, 

intertwined signaling networks known and more in depth characterization of many 

mTOR targets, simultaneously, will probably be necessary to better understand the 

relationship between PLD and mTOR.       
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Functional consequences of PLD inhibition or overexpressiona 

Respiratory burst 

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) is a 

membrane bound enzyme complex that sits quiescently in neutrophils, eosinophils and 

mononuclear phagocytes until activated during respiratory burst.  Upon activation, 

NADPH oxidase generates superoxide by transferring electrons from NADPH inside the 

cell across the cell membrane and then coupling the electrons to molecular oxygen.  The 

superoxide radical is further transformed into hydrogen peroxide and hypohalous acids 

(e.g., hypochlorous acid), which are used as a form of ‘chemical warfare’ by human cells 

to attack human pathogens (Babior et al., 2002).   

A host of experiments done in cells have indicated a role for PLD in NADPH 

oxidase activation.  When PtdOH production in cultured human neutrophils is blocked 

via the use of n-butanol, the respiratory burst, as measured by O2 production, was almost 

completely blocked (Rossi et al., 1990).  There is additional evidence that PLD is 

involved in regulating NADPH oxidase activity both in cells and in vitro: when the 

leukotriene B4 receptor is activated, levels of presqualene diphosphate rapidly decline 

thereby removing a negative regulatory element from inhibiting PLD’s capacity to 

stimulate NADPH oxidase activity (Levy et al., 1999).     

Agwu and colleagues gathered the first evidence suggesting that didecanoyl-

PtdOH activates NADPH oxidase in vitro by combining subcellular fractions in order to 

reconstitute NADPH oxidase activity and showing that didecanoyl-PtdOH activated this 

combination of subcellular fractions (Agwu et al., 1991).  Almost a decade later McPhail 
                                                
a The text appearing on pages 36-68 is reproduced almost exactly with permission from Selvy et al. 
Chemical Reviews. 2011. Copyright 2011 American Chemical Society.  
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et al. showed that, in vitro, PtdOH activates a protein kinase that phosphorylates and 

activates a component of the NADPH oxidase complex, p47-phox (McPhail et al., 1999).  

In 2011 Norton et al. utilized small molecule PLD inhibitors and PLD2 knockout mice to 

show that PLD1 (and not PLD2) regulates the production of reactive oxygen species in 

neutrophils (Norton et al., 2011).  An excellent review of PLD function in respiratory 

physiology was provided by Cummings and colleagues (Cummings et al., 2002). 

 

Transport and endocytosis 

Vesicles are the primary means by which cells store, move and dispose of a 

multitude of cellular components.  Eukaryotic cells are composed of various organelles 

that effectively share information and cargo via vesicular trafficking, which involves 

three steps: (1) budding from the donor compartment; (2) transport and/or targeting to a 

specific acceptor compartment, and (3) fusion of the vesicle with the acceptor 

compartment.  Vesicular trafficking is a fundamental biological process and an excellent 

review was written by Bonifacino and Glick (Bonifacino and Glick, 2004).  For a concise 

review of the role PLD plays in membrane trafficking the reader is referred to a review 

by Roth (Roth, 2008).  Previous efforts to characterize the role of PLD in vesicular 

trafficking relied heavily on primary alcohols to block PLD-mediated PtdOH formation, 

but more recently drug-like, small molecules have been utilized to study the role of PLD 

in vesicular trafficking.  

The use of primary alcohols to block PLD-mediated PtdOH formation or monitor 

product formation in cells by several groups yielded the first evidence supporting a role 

for PLD in exocytosis.  Xie et al. measured significant increases in the amount of 
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phosphatidylethanol formed by HL60 granulocytes treated with ethanol during primary 

granule secretion.  Additionally, ethanol dose-dependently decreased the release of 

myeloperoxidase from the HL60 granulocytes (Xie et al., 1991) and ethanol also blocked 

IgE-receptor-mediated mast cell degranulation (Gruchalla et al., 1990).  Chen et al. 

showed that 1% n-butanol was sufficient to decrease the release of nascent secretory 

vesicles from the trans-golgi network, which they independently confirmed in parallel by 

treating permeabilized cells with a catalytically inactive PLD mutant (K898R).  PLD also 

increases the release of nascent secretory vesicles in permabilized cells (Chen et al., 

1997).  Additional evidence that PLD plays an important role in exocytosis was acquired 

via genetic manipulations in Saccharomyces cerevisiae.  Ella et al. discovered a PLD 

gene in yeast and generated a genetic knockout, noting that diploid yeast lacking the PLD 

gene were unable to sporulate (Ella et al., 1996).  These results suggest a broad role for 

PLD in regulating cell growth and division.  

A role for PLD in endocytosis has been described and supported by the use of n-

butanol, catalytically inactive mutants, and RNAi.  PLD activity is required for agonist 

mediated-epidermal growth factor receptor internalization: (1) n-butanol decreases the 

agonist-stimulated internalization of the epidermal growth factor receptor; (2) 

overexpression of PLD1 or PLD2 increases the agonist-stimulated internalization of the 

epidermal growth factor receptor and (3) overexpression of catalytically inactive PLD1 or 

PLD2 decreases the agonist-stimulated internalization of the epidermal growth factor 

receptor (Shen et al., 2001).  PLD activity is also required for µ-opioid receptor 

internalization: (1) n-butanol decreases the internalization of the µ-opioid receptor, and 

(2) overexpression of catalytically inactive PLD2 decreases the internalization of the µ-
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opioid receptor (Koch et al., 2004; Koch et al., 2003).  Recently, studies have taken 

advantage of RNAi as a means to examine the effects of PLD inhibition on endocytosis.  

Bhattacharya et al. showed that n-butanol, overexpression of a catalytically inactive 

PLD2, or PLD2 RNAi treatment all decrease the internalization of the mGluR1a 

metabotropic glutamate receptor (Bhattacharya et al., 2004).  Du et al. also utilized RNAi 

to show that overexpression of a dominant-negative PLD2 (K758R) or transfection with 

PLD2 RNAi decreased the internalization of the angiotensin II type 1 receptor (Du et al., 

2004).   

A role for PLD1 in macroautophagy has been established by a rigorous set of 

experiments employing n-butanol, a pharmacological inhibitor, RNAi treatment and 

genetic knockout of PLD1 in a mouse.  All of these treatments decreased autophagy as 

measured by a variety of different readouts (Dall'armi et al., 2010).  Inhibition of 

autophagy via PLD1 inhibition may be desirable in some disease states and not others; 

the recent development of a 1700-fold PLD1-selective inhibitor (Lewis et al., 2009) 

should facilitate testing this hypothesis in vivo.  PLD2 ablation via gene targeting in mice 

rescues memory deficits in a mouse model of Alzheimer’s disease (Oliveira and Di 

Paolo, 2010).  The recent development of a centrally penetrant PLD2-selective inhibitor 

(Lavieri et al., 2010) should facilitate rigorous in vivo target validation of PLD2 for 

Alzheimer’s disease. 

 

Platelet aggregation 

A role for PLD in platelet activation has been previously suggested (Vorland and 

Holmsen, 2008).  Due to the lack of small molecule inhibitors, previous studies had to 
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utilize imprecise tools that could not address how inhibiting PLD activity affected platelet 

aggregation (Haslam and Coorssen, 1993).  However, in 2009 Disse et al. determined 

that PLD1 regulates the secretion of von Willebrand factor from endothelial cells 

utilizing either n-butanol or RNAi (Disse et al., 2009).  Von Willebrand factor is one of 

the major procoagulant and proinflammatory proteins required for hemostasis and a 

deficiency of von Willebrand factor (von Willebrand disease) is the most common 

inherited bleeding disorder.  Disse et al. first suggested that PLD might be involved in 

regulating the secretion of von Willebrand factor from vascular endothelial cells by 

showing that n-butanol decreased its histamine-induced secretion from vascular 

endothelial cells.  Using an independent method of decreasing PLD activity, RNAi, 

Sadler et al. showed that PLD1 knockdown dramatically decreased the histamine-induced 

secretion of von Willebrand factor, whereas PLD2 RNAi had no effect on its histamine-

induced secretion (Sadler, 1998).     

  

Neuronal physiology 

There has long been an association between PLD and neuronal physiology and 

pathology, but some truly provocative animal model data facilitated by gene targeting 

have recently emerged.  A comprehensive review of the role of PLD in brain function is 

provided by Oliveira (Oliveira and Di Paolo, 2010).  In the 1970s PLD activity was 

reported in mammalian brain tissue (Kobayashi and Kanfer, 1987; Saito and Kanfer, 

1973).  Reports have implicated PLD in the process of neurite outgrowth (Zhang et al., 

2004) and functional roles for PLD in receptor trafficking, specifically the internalization 
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of opioid receptors and metabotropic glutamate receptors have also been reported 

(Bhattacharya et al., 2004; Koch et al., 2003).   

A possible pathophysiological role for PLD in Alzheimer’s disease has been 

suggested.  Two groups independently reported increased PLD activity in brain tissue 

homogenates from Alzheimer’s patients as compared to controls  (Jin et al., 2007; Kanfer 

et al., 1996).  Overexpressing amyloid precursor protein causes an increase in PLD 

activity in P19 mouse embryonic carcinoma cells (Lee et al., 2001).  The amyloid β (1-

40)-stimulated increase in PLD activity was correlated with the release of lactate 

dehydrogenase, which makes it reasonable to speculate that some of the neurotoxic 

actions of amyloid β (1-40) are mediated by PLD (Cox and Cohen, 1997).     

The neurotoxic peptide α-synuclein has been implicated in the pathophysiology 

of both Parkinson’s disease and Alzheimer’s disease (Leong et al., 2009).  Additionally, 

two point mutations in α-synuclein are genetically linked to familial Parkinson’s disease 

(Kruger et al., 1998; Polymeropoulos et al., 1997).  All three naturally occurring 

synuclein isoforms α, β, and γ-synuclein were reported to inhibit PLD2 in vitro (Jenco et 

al., 1998).  Ahn et al. reported that PLD1 and PLD2 co-immunoprecipitate with α-

synuclein, but also showed that PLD does not appear to impact the physiological lesions 

caused by α-synuclein (Ahn et al., 2002).  By contrast, a collaborative investigation by 

the Selkoe and Brown laboratories found that under numerous experimental conditions α-

synuclein does not inhibit PLD in cells or in vitro (Rappley et al., 2009).    
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Cell invasion and metastasis 

Cancer cell invasion and metastasis are distinct, but not unrelated processes.  

Invasion refers to the ability of cancer cells to invade adjacent normal tissue, whereas 

metastasis refers to the ability of cancer cells to gain access to a circulatory system (blood 

or the lymphatic system) and colonize distinct and spatially distant physiological 

environments (Poste and Fidler, 1980).  One of the critical early steps in metastasis is the 

invasion of surrounding tissue in order to gain access to either the blood or lymphatic 

system (Bacac and Stamenkovic, 2008).  Some of the hallmarks of this invasion process 

include rearrangement of the actin cytoskeleton, increased cell motility and secretion of 

matrix metalloproteinases (Bacac and Stamenkovic, 2008).  PLD has been shown to play 

a role in regulating all of these processes (Foster and Xu, 2003).  

Experiments utilizing inactivating mutations of PLD suggest that inhibiting PLD 

enzymatic activity decreases cancer cell invasion (Zheng et al., 2006) and cells 

transfected with a dominant-negative PLD1 were unable to form actin stress fibers when 

stimulated with either phorbol myristate acetate (PMA) or lysophosphatidic acid 

(LPtdOH), whereas wildtype cells were able to form actin stress fibers (Kam and Exton, 

2001).  A number of studies have shown that increased PLD activity leads to an increase 

in the invasion of cancer cells as measured by transwell migration assays and decreased 

PLD activity leads to a decrease in the invasion of cancer cells (Imamura, 1993; Knoepp 

et al., 2008; Park et al., 2009; Scott et al., 2009; Williger et al., 1999).  PLD activity also 

regulates the expression of MMP-2 and MMP-9, the 72 kDa and 92 kDa gelatinases, 

respectively (Kato, 2005; Park et al., 2009; Reich et al., 1995; Williger et al., 1999).    
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The signaling pathways that connect PLD enzymatic activity to MMP expression 

are not entirely clear.  A more complete understanding of how PLD drives MMP 

expression in specific cancers may lead to a better understanding of how to tailor 

antimetastatic therapies.  To date, the vast majority of evidence implicating PLD in cell 

invasion comes from experiments utilizing n-butanol, overexpression of wildtype or 

dominant-negative PLD1/2 and/or RNAi.  Furthermore, pharmacological inhibition of 

PLD1 and PLD2 with a dual-isoform inhibitor, VU0155056, decreases the invasion of 

several cancer cell lines in a Matrigel™ transwell invasion assay (Scott et al., 2009).  

Another group used the halopemide analog (FIPI), which was originally reported by 

Monovich et al. (Monovich, 2007) and showed that PLD inhibition blocked actin 

cytoskeleton reorganization, cell spreading and chemotaxis (Su et al., 2009).  

 

Cell proliferation and apoptosis 

Increased PLD expression and enzymatic activity have been observed in a variety 

of human cancers including breast (Noh et al., 2000), renal (Zhao et al., 2000), brain 

(Park et al., 2009), and colorectal (Yamada et al., 2003).  Overexpression of PLD 

promotes cell growth and proliferation despite the presence of a variety of apoptotic 

stimuli (Joseph et al., 2002; Zhong et al., 2003).  Furthermore, PLD activity is required 

for mutant Ras driven tumorigenesis in mice (Buchanan et al., 2005).  Experiments 

utilizing inactivating mutations of PLD suggest that inhibiting PLD enzymatic activity 

increases cancer cell apoptosis (Shi et al., 2007).  On a molecular level PLD has been 

implicated in oncogenic signaling pathways involving the epidermal growth factor 

receptor (Snider et al., 2010), matrix metalloproteinase (MMP) expression (Park et al., 
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2009; Williger et al., 1999), p53 (Hui et al., 2004; Hui et al., 2006), the mammalian target 

of rapamycin (mTOR) (Chen et al., 2005) and Ras (Zhao, 2007).  The signaling network 

interactions between PLD and the various Ras signaling pathways constitute a series of 

complex interactions.  One such example is the observation that the recruitment of Raf-1 

kinase (which is activated by Ras) to the plasma membrane is dependent upon a direct 

interaction with PtdOH (Rizzo, 1999; Rizzo et al., 2000).  PLD activity contributes to key 

events in the oncogenic process including growth signaling, gatekeeper override, 

suppression of apoptosis and metastasis (Foster and Xu, 2003).  

A wide variety of extracellular factors that stimulate cell proliferation have been 

shown to increase PLD activity.  Platelet derived growth factor (PDGF) (Plevin et al., 

1991), fibroblast growth factor (FGF) (Motoike et al., 1993) and EGF (Song et al., 1994) 

are able to significantly increase PLD activity in a variety of different cell lines under 

physiological conditions.  Additionally, cells that are transformed by mutations in several 

robustly validated oncogenes also display increased PLD activity.  Notably, cells 

transformed by v-Ras (Buchanan et al., 2005) or v-Raf (Frankel et al., 1999) display PLD 

activity that is several-fold higher than untransformed cells.  PLD also facilitates the 

activation of the mitogen-activated protein kinase (MAPK) cascade (Foster and Xu, 

2003).  Treatment of cells with PtdOH (the enzymatic product of PLD) suppresses p53 

expression (Jang et al., 2008b).  PLD also acts to suppress the expression of p53 by 

stabilizing the MDM2-p53 complex (Hui et al., 2004).  There are studies suggesting that 

PLD regulates the activity of mTOR, but the exact molecular mechanism of the PLD-

mTOR interaction is being interrogated (Foster, 2009). 
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The laboratory of David Foster and other laboratories have reported that PLD 

activity regulates hypoxia inducible factor (HIF) expression.  Under normoxic conditions 

the von Hippel-Lindau (VHL) tumor suppressor gene is expressed and encodes part of an 

E3 ubiquitin ligase that targets the α subunits of HIF for degradation by the proteasome 

(Kaelin, 2007).  There are two known conditions in which overexpression of HIF occurs 

and provides a survival advantage to cancer cells: (1) von Hippel-Lindau disease and (2) 

in the hypoxic tumor microenvironment.  The result is that unregulated overexpression of 

HIF leads to angiogenesis, increased red blood cell production, and a shift to anaerobic 

metabolism (Ohh, 2006).  Toschi et al. utilized two VHL-deficient renal cancer cell lines 

(786-0 and RCC4) to show that HIF2α expression is dependent on PLD.  The authors 

provide evidence for this conclusion by using three independent approaches: (1) treating 

cells with n-butanol, (2) the expression of dominant-negative PLD constructs and (3) the 

use of RNAi targeted to PLD1 and/or PLD2 (Toschi et al., 2008).              

  It has been shown that decreasing PLD activity via genetic or biochemical 

approaches can increase cancer cell apoptosis (Foster and Xu, 2003; Zhong et al., 2003).  

There are also previous reports linking PLD to changes in caspase activity (Jang et al., 

2008a; Jang et al., 2008b).  However, few accounts exist of how pharmacological 

inhibition of PLD affects cancer cell apoptosis.  In 2010, we showed that a PLD2-

selective inhibitor, VU0364739, decreased the proliferation of MDA-MB-231 cells in a 

dose and time-dependent manner.  VU0364739 also caused a several-fold increase in 

caspase 3/7-activity indicating that VU0364739 likely causes a decrease in cell 

proliferation (at least in part) by inducing apoptosis (Lavieri et al., 2010).  

The Wnt signaling pathway has emerged as a central regulator of cell proliferation 
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and mutations in this pathway are clearly linked to oncogenesis.  Briefly, there are several 

known Wnt signaling pathways (for reviews of the other Wnt pathways see (Katoh, 2005) 

and (Kohn and Moon, 2005)) and the canonical Wnt signaling pathway leads to the 

stabilization of β-catenin, which in turn activates T-cell factor-dependent transcription of 

a variety of target genes (Clevers, 2006).  Kang et al. utilized n-butanol, RNAi and 

pharmacological inhibitors to provide good evidence of a relationship between PLD and 

the Wnt signaling pathway.  Their principal findings were that: (1) Wnt3a increases 

PLD1 expression and activity in cultured cells, and β-catenin and TCF4 were required for 

this effect; (2) decreasing PLD activity decreases the ability of β-catenin to increase the 

transcription of PLD1 and other Wnt target genes; (3) PLD1 is necessary for Wnt-driven 

anchorage-independent growth and β-catenin/TCF4 are necessary for PLD1-driven 

anchorage-independent growth; and (4) the expression levels of PLD1 and PLD2 were 

substantially increased in the colon, liver and stomach tissues of mice after injection with 

LiCl (a known Wnt pathway agonist) (Kang et al., 2011; Kang et al., 2010; Kang and 

Min do, 2010).    

The mitogen activated protein kinase (MAPK) pathway is a well-characterized 

mechanism by which cells transmit extracellular signals from the cell surface to the 

nucleus and ultimately alter gene transcription.  Several components of the MAPK 

pathway are frequently mutated, overexpressed and/or hyperactivated in human cancers 

(McCubrey et al., 2007).  The three known mammalian Raf isforms, A-Raf, B-Raf and C-

Raf, are serine/threonine kinases that lie in the middle of the MAPK pathway and have 

normal physiological roles as well as roles as oncogenes.  All three Raf isoforms have 

been studied extensively in vitro and in cells.  Additionally, all three Raf isoforms have 
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been knocked out in mice (Leicht et al., 2007).  A-Raf knockout mice die within days of 

birth (Pritchard et al., 1996), while both B-Raf (Wojnowski et al., 1997) and C-Raf 

(Wojnowski et al., 1998) knockouts are lethal in utero.  Raf kinase signaling has also 

been exploited into FDA approved drugs.  Sorafenib, a small molecule C-Raf inhibitor 

developed by Bayer and Onyx, is approved for the treatment of advanced renal cell 

carcinoma http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2005/021923ltr.pdf 

and advanced hepatocellular carcinoma 

http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2007/021923s004,s005,s006,s0

07.pdf.  Additionally, several other companies have Raf inhibitors at various stages of 

development in their pipelines (Schreck and Rapp, 2006).      

Recent work done by several different groups has provided evidence for a strong 

link between PLD and C-Raf kinase.  In 1996 Ghosh et al. reported several findings that 

have been confirmed and expanded upon by other groups.  They found that: (1) C-Raf 

binds to PtdOH; (2) The PtdOH binding site of C-Raf is between residues 389 and 423; 

(3) C-Raf does not bind phosphatidylalcohols and (4) treatment of Madin-darby canine 

kidney cells (MDCK) with 1% ethanol reduced the translocation of C-Raf from the 

cytosol to the plasma membrane following treatment with 12-O-tetradecanoylphorbol-13-

acetate (Ghosh et al., 1996).  In agreement with earlier findings, Rizzo et al. showed that 

C-Raf binds PtdOH and found that mutating arginine 398 to an alanine substantially 

reduced C-Raf’s ability to bind PtdOH.  Phosphatidic acid does not activate C-Raf kinase 

either in vitro or in vivo (Rizzo, 1999).  Mutations that disrupt the C-Raf-PtdOH 

interaction prevent the recruitment of C-Raf to membranes, but disruption of the Ras-Raf 

interaction does not prevent the recruitment of C-Raf to membranes.  Expression of a 
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dominant-negative Ras mutant did not prevent insulin-dependent C-Raf translocation to 

the plasma membrane, but did inhibit the phosphorylation of MAPK and the PtdOH 

binding region of C-Raf was sufficient to target green fluorescent protein to membranes.  

Taken together these results suggest a model whereby PtdOH is both necessary and 

sufficient to target C-Raf to membranes, whereas Ras is not required to target C-Raf to 

membranes.  However, in order for C-Raf to be activated, Ras must be present. 

Therefore, PtdOH is required to bring C-Raf into proximity of Ras, then Ras activates C-

Raf (Rizzo et al., 2000).  Much of the data in support of this paradigm were gathered via 

dominant-negative, overexpression and mutation experiments, because RNAi and 

pharmacological inhibitors were not widely available at the time of the relevant studies.  

Two reports have also shown that overexpression of C-Raf can either stimulate or inhibit 

PLD activity depending on the level of C-Raf activity.  Low intensity C-Raf activity 

stimulates PLD activity (Frankel et al., 1999), whereas high intensity C-Raf activity 

inhibits PLD activity (Joseph et al., 2002).    

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that 

belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family and serves as one 

of the master regulators of cell growth and division (Sabatini, 2006).  The ability of PI3K 

to modulate mTOR activity is well-established (Vivanco and Sawyers, 2002), but a 

detailed, well-substantiated understanding of the interaction between PLD and mTOR is 

currently still being developed (Foster, 2009).  In 2001 Fang et al. showed that the 

treatment of cells with n-butanol decreases mTOR downstream signaling, as measured by 

the activity of p70S6K.  In the same studies n-butanol blocked a serum-induced increase 

in p70S6K activity suggesting that PLD might be involved in mTOR signaling.  It should 
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be noted that the PtdOH produced by PLD appears to be necessary, but not sufficient, for 

mTOR signaling.  In experiments where cells were deprived of amino acids, PtdOH was 

not able to stimulate mTOR signaling (Fang et al., 2001).  This original report linking 

PLD to mTOR provides relatively modest evidence in favor of the conclusion that PLD 

regulates mTOR signaling, because n-butanol was the only tool used to block PLD-

mediated PtdOH production.   

  In 2003 Chen et al. noted that PLD appears to confer resistance to rapamycin-

induced cell death (Chen et al., 2003).  They showed that the IC50 value for rapamycin-

induced cell death in a cell line with relatively low PLD activity was about 10 nM, 

whereas the IC50 for rapamycin-induced cell death in a cell line with relatively high PLD 

activity was about 10 µM.  Additionally, when a dominant-negative PLD2 construct was 

transfected into cells with high PLD activity, the cells showed increased sensitivity to 

rapamycin (Chen et al., 2005).  A different group showed that PLD1 RNAi decreases the 

amount of phosphorylated p70S6K in B16 melanoma cells (Ohguchi et al., 2005).  

 Interestingly, Veverka et al. published a solution NMR structure of phosphatidic 

acid bound to the FKBP12-rapamycin binding domain of mTOR (Veverka et al., 2008).  

This is compelling evidence that PtdOH binds to mTOR, but in and of itself does not 

provide proof as to whether or not the PtdOH that binds mTOR in vivo is made by PLD.  

Data from two different reports suggest the role PLD may play in mTOR signaling.  Sun 

et al. showed that the suppression of TSC2 (via the transfection of a dominant-negative 

TSC2) strongly activates PLD in cells.  They subsequently showed that recombinant 

Rheb purified from bacteria activates PLD1-immunocomplexes pulled-down from CHO 

cells.  This suggests a model where the small GTPase Rheb (known to be regulated by 



 

 50 

TSC2 (Zhang, 2003)) either activates PLD directly or activates a protein pulled-down 

with PLD, which then in turn activates PLD (Sun et al., 2008).  Toschi et al., through the 

use of n-butanol and dominant-negative PLD constructs, showed that PtdOH produced by 

PLD is required for the formation of mTORC1 and mTORC2 complexes in 786-0 cells 

(Toschi et al., 2009).  Recently, Xu et al. showed that when T24 cells are treated with a 

combination of both a PLD1 (VU0379595) inhibitor and a PLD2 inhibitor (VU0364739), 

there is a decrease in mTOR activation as measured by phosphorylated p70S6K (Xu et 

al., 2011).  Interestingly, Lehman et al. observed that PtdOH produced by PLD can 

directly activate p70S6K independently of mTOR signaling (Lehman et al., 2007).  In 

2011 Arous et al. reported that oleate activated mTOR in cultured cells suggesting a 

possible mechanistic explanation for the increase in liver cancer seen in the obese 

population.  Arous et al. claim that the oleate activation of mTOR is dependent on PLD, 

but provided only indirect evidence for this claim by using n-butanol as a “PLD 

inhibitor.” Furthermore, the effect of n-butanol on well-validated readouts of mTOR 

activation, such as p70S6K phosphorylation, was relatively small (Arous et al., 2011).    

A preponderance of evidence collected by independent groups indicates that PLD 

provides a survival signal in human cancer cells.  Most of this evidence is from 

experiments in cultured cells that utilized n-butanol.  Some groups have used primary 

cells isolated from humans and more recently groups have begun using RNAi, dominant-

negatives, overexpression and small molecule inhibitors.  Additionally, animal model 

experiments have only recently been published (Buchanan et al., 2005; Zeng et al., 2009).  

Many of the cell signaling details about both PLD1 and PLD2 can now be more 
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rigorously investigated through the use of molecular genetic techniques and small 

molecule inhibitors in both cell culture experiments and animal models of disease.  

 

PLD as a potential therapeutic target 

Druggability 

Although the biochemistry, enzymology and pharmacology of PLD have been 

studied for more than half a century, the systematic investigation of PLD as a therapeutic 

target only began in the last few years.  With the advent and commercialization of RNAi 

technology a generally better, more direct and more specific method to inhibit PLD has 

become available.  The report of small molecule PLD inhibitors (Monovich, 2007) and 

the extensive effort that resulted in the development of drug-like, isoform-selective PLD 

inhibitors present a new opportunity for research within the field of lipid signaling 

(Lavieri et al., 2009; Lavieri et al., 2010; Lewis et al., 2009; Scott et al., 2009).   

While the exact mechanism of action of these small molecule PLD inhibitors is 

still under investigation, the traditional view of PLD signaling is that PLD signals 

through the production of PtdOH, but there are still protein-protein and protein-lipid 

interactions to be taken into account.  In 2011 Doti et al. showed that amino acids 762-

801 of PLD1 interact with phosphoprotein enriched in diabetes/phosphoprotein enriched 

in astrocytes (PED/PEA15) (Doti et al., 2010).  The PED/PEA15 protein is overexpressed 

in several tissues in individuals with type 2 diabetes and its overexpression in cultured 

cells and transgenic animals impairs insulin regulation of glucose transport by a 

mechanism that is dependent on its physical interaction with PLD (Viparelli et al., 2008).  

It is interesting to consider the possibility of pharmacological agents that would act not to 
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inhibit PLD catalytic activity, but rather to block interactions between PLD and 

PED/PEA15. 

In 2010 PLD1-/- and PLD2-/- mice were reported for the first time (Dall'armi et al., 

2010; Elvers et al., 2010; Oliveira et al., 2010).  The recent publication of viable PLD1 

and PLD2 knockout mice and the report of isoform-selective, small molecule PLD 

inhibitors have made PLD a target of interest for several disease states.    

 

Cancer 

Buchanan et al. reported a provocative set of experiments utilizing xenograft 

tumor models in mice.  In order to explore how decreasing PLD activity would affect the 

ability of oncogenic Ras to transform cells, Buchanan et al. generated rat fibroblasts that 

stably overexpress a dominant-negative PLD, referred to as Rat-2V25 cells (Kam and 

Exton, 2001).  They showed that PLD activity is necessary for the H-Ras induced 

transformation of Rat-2 fibroblasts.  Wildtype Rat-2 fibroblasts transfected with H-RasV12 

grow in soft agar and form tumors in nude mice, but Rat-2V25 cells (that overexpress a 

dominant-negative PLD) do not form colonies in soft agar and do not form tumors in 

nude mice when transfected with H-RasV12.  Additionally, when exogenous PtdOH was 

added to the Rat-2V25 cells these cells were able to grow in soft agar and form tumors in 

nude mice (Buchanan et al., 2005).  This study provided some of the first in vivo 

validation of PLD as a viable cancer target situated downstream of one of the most 

commonly mutated genes in all human cancer types. 

Using zebrafish as a vertebrate model organism, Zeng et al. showed that zPld1 is 

required for angiogenesis (Zeng et al., 2009).  Zebrafish treated with morpholino 
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oligonucleotides targeted to zPld1 showed impaired intersegmental blood vessel 

development.  While clearly a less specific approach, zebrafish embryos incubated with 

n-butanol also showed impaired intersegmental blood vessel development.  Although 

intended to investigate the role of PLD in vertebrate development, the major finding of 

these studies is certainly additional evidence that inhibiting PLD may be a useful 

therapeutic approach in the treatment of cancer.  The identification of PLD as a possible 

cancer drug target is based on observations of increased PLD activity or expression in 

tissue samples obtained from cancer patients (Buchanan et al., 2005; Noh et al., 2000; 

Shen et al., 2010; Uchida et al., 1997; Yamada et al., 2003; Zhao et al., 2000).  

Furthermore, PLD1-/- and PLD2-/- mice are viable, develop normally, are fertile and 

exhibit behavior indistinguishable from wildtype littermates (Dall'armi et al., 2010; 

Elvers et al., 2010; Oliveira et al., 2010) suggesting that prolonged inhibition of one PLD 

isoform would be therapeutically viable.  While many diseases cause both human pain 

and suffering as well as economic loss, cancer continues to be a particularly challenging 

disease to treat or cure.  We have made great strides in treating certain, specific cancer 

types but there is a clearly a significant unmet medical need for new, better cancer 

treatments.  Compared to other diseases, we have not made the same progress in helping 

cancer patients over the last ~50 years despite massive investments by both the public 

and private sectors (Figure 7).    
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Figure 7.  Causes of mortality in the United States of America:  1950 versus 2006.  Sources: 1950 
Mortality Data - CDC/NCHS, NVSS, Mortality Revised.  U.S. Mortality Data 2006, Centers for Disease 
Control and Prevention, 2009.  Adapted from American Cancer Society. 
  

    
 

Alzheimer’s disease 

The recent reports of PLD1 and PLD2 knockout mice described viable animals 

with protection from various disease states (Dall'armi et al., 2010; Elvers et al., 2010; 

Oliveira et al., 2010).  The PLD2-/- mice (generated via gene targeting) facilitated 

research on a possible role for PLD in Alzheimer’s disease (Oliveira et al., 2010).  

Oligomeric amyloid β stimulates PLD activity in cultured neurons and ablation of PLD2 

via gene targeting blocks this effect.  In vivo PLD activity is increased in the brain of a 

mouse model of Alzheimer’s disease and PLD2 ablation via gene targeting rescues 

memory deficits and confers neuronal protection in a mouse model of Alzheimer’s 

disease despite a significant amyloid β load.  Mass spectrometry-based analysis of lipids 

in the brains of animals with PLD2 knocked out in the background of a wildtype or 

Alzheimer’s mouse model shows striking acyl chain specificity and compensatory 
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mechanisms in PtdOH metabolism.  Interestingly, the total amount of PtdOH present in 

either the mouse model of Alzheimer’s disease or the mouse model of Alzheimer’s 

disease crossed with a PLD2 knockout mouse (ADxPLD2KO) is essentially the same, but 

specific PA molecular species change by as much as 50% in the ADxPLD2KO (Oliveira 

et al., 2010).  The preparation of a PLD2 knockout mouse and the cross between a PLD2 

knockout mouse and a mouse model of Alzheimer’s disease yielded excellent in vivo data 

on the role of PLD in a neurodegenerative disease. Additionally, the recent report of a 

centrally penetrant PLD2 inhibitor sets the stage for potential, preclinical target validation 

(Lavieri et al., 2010).   

 

Thrombotic disease   

In 2010 Elvers et al. reported the generation of PLD1 homozygous knockout 

mice.  The PLD1-/- mice display impaired αIIbβ3 intergrin activation in response to major 

agonists and show defective glycoprotein 1b-dependent aggregate formation under “high 

shear” conditions.  These molecular alterations resulted in protection from thrombosis 

and ischemic brain injury without increasing bleeding time.  Blood flow was monitored 

in two arterial thrombosis models triggered by chemical or mechanical perturbations and 

showed decreased occlusion in the PLD1-/- mice compared to wildtype mice, thus 

showing protection against thrombosis.  This highly provocative study also reported no 

difference in bleeding time between wildtype mice and PLD1-/- mice.  The implications 

of this work are exciting as the current pharmacological approaches used to prevent 

stroke and other thrombotic events (e.g., aspirin, clopidogrel and warfarin) increase 

bleeding times, which can be problematic.  In summary, Elvers et al. showed that PLD1 
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is not required for normal hemostasis, but PLD1 is required for occlusive thrombus 

formation (Elvers et al., 2010).  Clearly, mouse model data must be extrapolated to 

human physiology with caution, but this study provides exceptionally strong evidence 

that PLD1 should be interrogated as a therapeutic target in thrombotic disease.  The 

development of a drug that protects against thrombosis and ischemic brain injury without 

affecting a patient’s ability to form clots in the case of trauma would be a major clinical 

advancement. 
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Chapter IIb 
 

 
SYNTHESIS AND BIOCHEMICAL CHARACTERIZATION OF POTENT, 

ISOFORM-SELECTIVE PLD INHIBITORS 
 
 

Introduction 
 
History 
 

Until recently, there were few chemical tools available to probe PLD function, 

and no small molecules existed that would allow one to dissect the individual roles of 

PLD1 and PLD2.  Historically, the field has relied on the overexpression of catalytically 

active or inactive forms of either PLD1 or PLD2, or utilized RNAi targeted to the 

individual isoforms in an effort to discern discrete roles for PLD1 and PLD2.  In order to 

assess the therapeutic potential of PLD1 or PLD2 inhibition, and/or dual inhibition of 

both isoforms, the historical data must be verified with small molecule inhibitors.  Until 

recently, direct, small molecule PLD inhibitors were not available, and none of the early 

small molecule PLD inhibitors afforded isoform selectivity.   

Moreover, the most utilized class of molecules to study PLD function over the 

past 20 years has been primary alcohols, (e.g., n-butanol).  Alcohols are often, incorrectly 

described in the literature as “PLD inhibitors.”  It is important to emphasize that alcohols 

are not PLD inhibitors, rather n-butanol (as well as some other primary alcohols) blocks 

PLD-catalyzed PtdOH production by competing with water as a nucleophile, thereby 

                                                
b Significant portions of this chapter are adapted with permission from the following journal articles: 
Lavieri et al. Journal of Medicinal Chemistry. 2010. Copyright 2010 American Chemical Society.  Lavieri 
et al. Bioorganic and Medicinal Chemistry Letters. 2009. Copyright 2009 Elsevier Ltd. Lewis et al. 
Bioorganic and Medicinal Chemistry Letters. 2009. Copyright 2009 Elsevier Ltd.   
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causing the formation of phosphatidylbutanol in a transphosphatidylation reaction.  

Additionally, there are concerns that n-butanol may not fully block PtdOH production 

and that it may also be promiscuous in cell-based assays affecting multiple “targets” in 

addition to PLD/transphosphatidylation.  Thus, conclusions reached in the literature from 

studies employing n-butanol alone should be viewed with caution.  Those data require 

further confirmation with isoform-selective small molecule PLD inhibitors, RNA 

interference (RNAi) knockdowns, and genetic knockouts. 

Over the past twenty years, a diverse range of chemotypes 1-20 have been 

reported as inhibitors of either PLD or PLD signaling (Figures 1 and 2) based on activity 

in an equally diverse array of PLD assays.  Thus, quantitative, and in some instances 

qualitative, comparisons with regards to PLD activity are not possible.  As a result, early 

PLD inhibitors fall into two categories, direct and indirect inhibitors.  As many of these 

inhibitors have not been thoroughly studied, these divisions by mechanism of action must 

be interpreted with caution.   
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Indirect Inhibitors of PLD Activity 

 

Figure 1.  Reported indirect PLD inhibitors 1-10 (Figure reproduced with permission from Selvy et al. 
2011). 

 
Several compounds, 1-10, have been identified that inhibit PLD enzymatic 

activity in cells and/or decrease PLD protein expression in cells, but do not directly 

inhibit PLD enzymatic activity in vitro (Figure 1).  These compounds are not ideal 

chemical probes, because many of them are not potent and/or have a large number of 

known molecular targets in a variety of different signaling pathways.  Resveratrol (1), a 

polyphenol found in the skin of red grapes, inhibits the production of PtdOH by human 

neutrophils with an IC50 of approximately 50 µM.  Additionally, in experiments where 

cells were treated with 1% ethanol, resveratrol blocked the formation of 

phosphatidylethanol, which suggests that resveratrol decreases PLD enzymatic activity 

(Tou and Urbizo, 2001).  Honokiol (2), a natural product that was isolated from the seed 

cones of Magnolia grandiflora, has been shown to have antimicrobial (Clark et al., 

1981), antiangiogenic (Bai et al., 2003) and proapoptotic (Shigemura et al., 2007) 
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properties.  Honokiol (20 µM) was shown to block the formation of phosphatidylbutanol 

in MDA-MB-231 cells treated with 0.8% n-butanol indicating that honokiol decreases 

PLD activity in cells.  However, honokiol (concentrations up to 50 µM) had no effect on 

PLD enzymatic activity in vitro (Garcia et al., 2008).  Trans-diethylstilbestrol (3), a 

synthetic compound that is structurally similar to resveratrol, inhibits the formation of 

both PtdOH and phosphatidylethanol (in cells treated with 1% ethanol) slightly more 

potently than resveratrol (Tou and Urbizo, 2008).  Triptolide (4), a diterpene triepoxide 

isolated from Triptergium wilfordii that has been used in traditional Chinese medicine for 

centuries, and recently entered clinical trials (Kitzen et al., 2009) (semisynthetic 

derivative).  Triptolide was a hit in a screen designed to identify compounds that decrease 

PLD expression (Kang et al., 2009).  However, triptolide was also a hit in an earlier 

screen designed to identify compounds that suppress the human heat shock response 

(Westerheide et al., 2006) and more recently Titov et al. identified XPB, a subunit of the 

transcription factor TFIIH, as a molecular target of triptolide (Titov et al., 2011).  

Regardless of its therapeutic potential, triptolide’s indirect mechanism of action and other 

known molecular targets render the compound inadequate as a chemical probe for 

studying the cellular functions of PLD. 

In the mid 1990s, Schering-Plough reported on the isolation of a series of 

polycyclic ketoepoxide metabolites from fungal cultures.  SCH49211 (5) and SCH49212 

(6), isolated from cultures of Nattrassia mangiferae, were shown to inhibit PLD 

activation with IC50s of 11 mM and 12 mM, respectively, in HL60 cells treated with 

formyl-Met-Leu-Phe (fMLP) (Chu et al., 1994).  Shortly after this first report, the same 

group disclosed SCH53823 (7), isolated from the dead leaves of Ruercus virginiana, and 
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then prepared the corresponding acylated derivative, SCH53827 (8) to enable structure 

determination.  Interestingly, the unnatural product 8 inhibited PLD activation, with an 

IC50 of 17 mM in HL60 cells employing the fMLP PLD assay (Chu et al., 1996). Around 

the same time, Hedge and co-workers described the isolation and characterization of 

saponin 1 (9) and saponin 2 (10) from the extract of the leaves of Myrsine australis 

(Hegde et al., 1995).  Both natural products were shown to inhibit fMLP stimulated PLD 

with IC50s of 8 mM and 24 mM, respectively.  It has previously been observed that 

certain ceramide lipids and the aminoglycoside antibiotic neomycin also inhibit PLD 

activity.  

 

Direct inhibitors of PLD activity 

First generation  

Over the past 10 years several compounds that inhibit PLD directly have been 

identified.  These compounds decrease PLD enzymatic activity measured by 

transphosphatidylation in cells and measured by the hydrolysis of 3H-PtdCho in an in 

vitro reconstitution assay (Figure 2).  These direct-acting inhibitors can be categorized 

into three classes: (1) phosphate mimetics, (2) natural products and (3) synthetic, drug-

like small molecules.  The identification and subsequent optimization of some of these 

compounds was a major advance in the field of lipid cell signaling.  Indeed, the lack of 

small molecule ligands to use as tools to probe both the cellular and in vivo roles of each 

PLD isoform has arguably hindered the validation of PLD as a potential therapeutic 

target, and studies with n-butanol (11) have clearly provided some erroneous data. 
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Figure 2.  Reported direct PLD inhibitors 11-20 (Figure reproduced with permission from Selvy et al. 
2011). 
 

Crystal structures have not been determined for either human PLD1 or PLD2, but 

a crystal structure of a bacterial PLD, Streptomyces sp. strain PMF, was published in 

2000 and this structure contains a phosphate molecule bound in the enzyme’s active site 

(Leiros et al., 2000b).  In 2002 Davies et al. reported that tungstate (12) and vanadate 
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(13) inhibit a PLD superfamily member, tyrosyl-DNA phosphodiesterase, as evidenced 

by both an in vitro enzyme activity assay and multiple crystal structures (Davies et al., 

2002a; Davies et al., 2003).  Subsequently, tungstate and vanadate, both phosphate 

mimetics, were identified as PLD inhibitors via the in vitro reconstitution assay of PLD.  

Gomez-Cambronero reported that during purification of PLD from human granulocytes a 

standard protease cocktail inhibited PLD activity (Andrews et al., 2000).  Deconvolution 

of the six inhibitor cocktail identified the serine protease inhibitor 4-(2-

aminoethyl)benzene sulfonyl fluoride, (AEBSF) (14), as the active compound.  AEBSF 

inhibits both basal and stimulated PLD activity with an IC50 of 75 mM.  Interestingly, 14 

is an electrophilic compound with the capacity to covalently modify proteins, limiting its 

potential as a chemical probe.  Moreover, the S-F bond may be hydrolyzed to the 

corresponding sulfonic acid by water to generate a phosphate mimetic.  SCH420789 (15), 

a fungal metabolite, was isolated and shown to inhibit PLD in vitro with an IC50 value of 

approximately 10 µM (McDonald et al., 2004).  Calphostin-c (16), a perylenequinone 

compound from the fungus Cladosporium caldosporoides, was identified as a direct-

acting inhibitor of PLD and previously shown to inhibit protein kinase C directly in vitro 

(Diwu et al., 1994).  Protein kinase C activates PLD in cells and directly in vitro (Brown 

et al., 2007) so it could be reasonably inferred that the most plausible explanation for 

calphostin-c’s ability to inhibit PLD activity in cells would be its ability to block PKC 

activation of PLD.  However, calphostin-c inhibits both PLD1 and PLD2 directly with 

reported IC50 values of 100-200 nM for both isoforms (Sciorra et al., 2001).  Presqualene 

diphosphate (17), a constituent of human leukocyte membranes, was shown to inhibit 

both Streptomyces chromofucscus PLD (IC50 = 100 nM) and human PLD1b (IC50 > 1 
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µM) in vitro (Levy, 2005).  Curcumin (18), the predominant yellow pigment in turmeric 

(Curcuma longa), is a polyphenolic compound that has been used in Ayurvedic medicine 

for thousands of years and currently is the subject of a large number of basic and clinical 

research studies (Hatcher et al., 2008).  Yamamoto et al. showed that curcumin inhibits 

the PLD activity present in a membrane preparation with an IC50 of 10 µM (Yamamoto et 

al., 1997).  Furthermore, we have observed that curcumin inhibits recombinant, purified 

PLD1 and PLD2 in vitro (Scott, Armstrong, and Brown, unpublished observations). 

Two selective estrogen receptor modulators (SERMs), raloxifene (19) and 4-OH 

tamoxifen (20), were identified as direct modulators of human PLD1 and PLD2 (Eisen 

and Brown, 2002).  Their identification as modulators of PLD activity is consistent with 

an interesting, continuing trend that SERMs appear to have a myriad of estrogen 

receptor-independent effects.  SERMs have hydroxyl groups positioned so as to mimic 

the structure of estradiol; this allows SERMs to bind to the estrogen receptor and block 

activation of the receptor by its endogenous ligand.  Therefore, SERMs are typically used 

to treat estrogen receptor-positive breast cancer.  However, an interesting observation is 

that tamoxifen decreases tumor growth in about 10-15% of estrogen receptor-negative 

tumors (Jaiyesimi et al., 1995).  Additionally, tamoxifen inhibits the growth of estrogen 

receptor-negative cancer cell lines and induces apoptosis in these cells (Perry et al., 

1995).  PLD activity and/or expression are frequently increased in breast cancer (Noh et 

al., 2000) so it is plausible that one of the estrogen receptor-independent effects of 

SERMs could be PLD inhibition.  Indeed, raloxifene inhibits PLD1 (IC50 = 4.3 µM) and 

PLD2 (IC50 = 3.4 µM) directly in vitro and in several different cell lines (IC50 = 5-10 µM) 

(Eisen and Brown, 2002; Scott et al., 2009).   
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The actions of tamoxifen on PLD both in vitro and in cells are more complicated. 

Tamoxifen is a prodrug; the actions of tamoxifen are realized primarily through its active 

metabolites, including 4-OH tamoxifen (Borgna and Rochefort, 1981).  4-OH tamoxifen 

is 100-fold more potent than tamoxifen at suppressing estrogen receptor-dependent cell 

proliferation and 4-OH tamoxifen binds to the estrogen receptor with 20 to 30-fold higher 

affinity than tamoxifen (Coezy et al., 1982; Jordan et al., 1977).  Tamoxifen actually 

stimulates PLD1 and PLD2 activity in vitro and in some cell lines (during a 30 minute 

treatment); however, the active metabolite of tamoxifen, 4-OH tamoxifen, stimulates 

PLD1 in vitro yet inhibits PLD2 in vitro, albeit with poor potency (IC50 > 20 µM).  4-OH 

tamoxifen inhibits PLD1 and PLD2 in cells with an IC50 of about 5 µM on each isoform 

(Eisen and Brown, 2002).  Interestingly, tamoxifen blocked phorbol ester stimulated PLD 

activity in an estrogen receptor-negative human breast cancer cell line (MCF-7) at 

concentrations of 2-5 µM only during longer (24 h) treatments and did not block phorbol 

ester stimulated PLD activity during a short (0.5 h) treatment (Kiss and Anderson, 1997).    

 

Second generation: The identification of halopemide as a PLD Inhibitor 

A renaissance in the PLD inhibitor field began in 2007 with a brief report from a 

group at Novartis on a high throughput screen to identify PLD2 inhibitors for use as 

inflammatory mediators.  This effort identified halopemide (21), a psychotropic agent 

originally reported by Janssen in the late 1970s and early 1980s for numerous 

neuroscience indications (Figure 3) as a PLD2 inhibitor with an IC50 value of 1.5 µM 

(Monovich, 2007).  This short report was limited to a succinct description of the synthesis 

of fourteen halopemide analogs where alternative amide moieties were surveyed, 
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resulting in the discovery of 22, later coined FIPI, with an IC50 of 200 nM and good rat 

pharmacokinetics.  However, there was no mention of PLD1 inhibition in this initial 

paper, but it was subsequently found that halopemide (21) potently inhibits both PLD1 

(cellular IC50 = 21 nM, in vitro IC50 = 220 nM) and PLD2 (cellular IC50 = 300 nM, in 

vitro IC50 = 310 nM) as does 22 (PLD1 cellular IC50 = 1 nM, in vitro IC50 = 9.5 nM; 

PLD2 cellular IC50 = 44 nM, in vitro IC50 = 17 nM) (Scott et al., 2009).  Thus, 

halopemide (21) and all the halopemide analogs presented in this initial report are more 

accurately described as dual PLD1/2 inhibitors, and even show a slight preference for 

PLD1 inhibition.  Despite these issues, the halopemide (21) scaffold is an excellent 

starting point for a PLD inhibitor development campaign due to the potent PLD 

inhibition, favorable preclinical drug metabolism and pharmacokinetic profile, and most 

importantly, extensive history in multiple clinical trials (Loonen and Soudijn, 1985).       

 

Figure 3. Structure of halopemide (21) and an optimized analog called FIPI (22) (Figure reproduced with 
permission from Selvy et al. 2011). 

  

Halopemide (21), also known as R 34301, is related to the butyrphenone-based 

neuroleptics such as spirerone and haloperidol, and was originally developed as an anti-

emetic drug, but was later found to possess unique psychotropic effects as a dopamine 

antagonist (Loonen and Soudijn, 1985).  21 was found to be a ‘psychic energizer’ having 

effects on the negative symptoms, as well as the positive symptoms of schizophrenia 
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without the extrapyramidal side effects common to standard atypical antipsychotic agents 

(Loonen et al., 1981).  As was eluded to above, halopemide (21) was evaluated in five 

separate clinical trials with over 100 schizophrenic, oligophrenic and autistic patients 

receiving the drug (Loonen and Soudijn, 1985).  Efficacy was observed in the majority of 

patients, and importantly, no adverse side effects or toxicities were noted, despite 

achieving plasma exposures of 100 ng/mL to 360 ng/mL from the 20 mg/kg and 60 

mg/kg doses of 21, respectively (van Rooij et al., 1979).  At these plasma concentrations, 

PLD1 was clearly inhibited, suggesting inhibition of PLD by this chemotype is safe in 

humans and a therapeutically viable mechanism.    

 

Initial SAR studies based on the halopemide scaffold 

Human PLD1 and PLD2 respond to different stimuli both in vitro and in vivo 

(Brown et al., 2007).  Additionally, in some cancer types only one PLD isoform is 

upregulated at the protein expression and/or enzyme activity level (Noh et al., 2000; 

Yamada et al., 2003).  More recently, studies in PLD knockout animals have defined 

clear, non-overlapping roles and therapeutic potential for both PLD1 and PLD2.  For 

these reasons the development of isoform-selective PLD inhibitors is a desirable goal not 

only from a discovery science perspective, but also from the vantage point of a drug 

discovery effort.  After the initial report on halopemide synthesis and inhibitor properties, 

we have synthesized and assayed numerous analogs in an effort to develop isoform-

specific PLD inhibitors via an iterative analog library synthesis workflow (Figure 4) 

(Lavieri et al., 2009; Lavieri et al., 2010; Lewis et al., 2009; Scott et al., 2009).  
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Figure 4. An iterative analog synthesis workflow diagram for the development of isoform selective PLD 
inhibitors. 

  

The first phase of isoform-specific PLD inhibitor development was reported in 

early 2009 (Scott et al., 2009).  As shown in Figure 5, a matrix library approach was 

employed to survey three regions of 21 simultaneously to afford a 3 x 3 x 30 library of 

~270 halopemide analogs employing standard solution phase parallel synthesis 

techniques combined with mass-directed preparative LC-MS.  Rigorous pharmacological 

characterization of a representative subset of the ~270 compounds was performed; IC50 

values were reported in cell systems engineered to give only a PLD1 or a PLD2 response 

as wells as IC50 values that were determined on recombinant PLD1 and PLD2 enzymes 

purified from insect cells.  Data from both an in vitro enzyme activity assay and a cellular 

activity assay show that the compounds inhibit PLD1/2 directly and that the compounds 

effectively permeate the cell membrane.  Many of the compounds display low nanomolar 

potency values, and this library produced a number of dual PLD1/2 inhibitors and a 
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number of moderately preferring PLD1 analogs.  This first generation effort did afford 

the first PLD1-selective inhibitor, VU0155069 (23), where the chiral (S)-methyl group 

significantly enhanced PLD1 preference to ~163-fold over PLD2 in a cell-based assay. 

Subsequent iterations of lead optimization found the chiral (S)-methyl group as a general 

moiety that increased PLD1 inhibition.  While the piperidinyl benzimidazolone-

containing analogs failed to display any preference for PLD2 inhibition, a triazaspirone 

congener uniformly increased PLD2 inhibition to provide the first PLD2 (10-fold PLD2 

preferring) selective inhibitor, VU0155072 (24).  Additionally, some of the compounds 

decreased the ability of several breast cancer cell lines to invade through a Matrigel™ 

membrane in a transwell migration assay, which is consistent with earlier studies 

showing this enzyme’s role in regulating cell migration (Park et al., 2009; Scott et al., 

2009; Williger et al., 1999; Zheng et al., 2006).   
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Figure 5. Initial SAR studies on halopemide (Figure reproduced with permission from Selvy et al. 2011). 
 

 

Optimization of halopemide for PLD1 specificity 

The impact of various halogenated privileged structures on PLD1 potency and 

selectivity 

 Initial PLD inhibitor libraries based on halopemide (21) were diversity-oriented in 

an effort to explore a broad chemical space and identify molecular entities that would 

engender PLD isoform-selective inhibition.  Subsequent optimization strategies were 
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more focused and driven from a medicinal chemistry perspective (Figure 6) to improve 

PLD1 and PLD2 potency and selectivity within 25 and 26, respectively.  

 

Figure 6. Focused lead optimization strategy to improve PLD1 potency and selectivity within scaffold 25, 
and parallel strategy to improve PLD2 potency and selectivity within scaffold 26 (Figure reproduced with 
permission from Selvy et al. 2011). 
 

Several important pieces of information were discovered or confirmed in this round of 

analog synthesis based on 25:  (1) homologation of the ethylenediamaine linker of an 

analog by just one carbon to a propyl chain eliminated all activity; (2) heteroaromatic and 

aromatic amides on the right side of analogs confer excellent potency; (3) a racemic 

trans-cyclopropyl phenyl amide dramatically increased PLD1 selectivity; (4) a 5-bromo 

substituted benzimidazolone increased potency and PLD1 selectivity.  

 The synthetic route to nearly all of the compounds reported in Scott et al. 2009 

was straightforward and all materials used were commercially available (Figure 5).  With 

the help of the VICB synthesis core (primarily Dr. Kwangho Kim) we explored the 

impact of halogenating the benzimidazolone scaffold present in 21 at various positions.  

After receiving the halogenated scaffolds these libraries were straightforward to prepare.  

We followed the general approach reported by Monovich et. al in their 2007 paper 

(Monovich, 2007).  
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Figure 7. Synthetic scheme for various halogenated benzimidazolones.  Reagents and conditions: (a) MP-
B(Oac)3 DCE/MeOH, rt, 16 h (75-95%); (b) 4N HCl/dioxane, MeOH (98%); (c) DMF/DCM, DIPEA, rt, 1 
hour (50-95%)  

 
 

 In the initial report by Scott et al. a compound ~163-fold selective for PLD1 over 

PLD2 in a cell-based assay was described (Scott et al., 2009).  In an attempt to gain 

improved PLD1 selectivity we prepared compounds containing a variety of halogenated 

privileged structures including the 4-F, 5-F, 5-Cl, 5-Br, and 6-F congeners (Figure 8).  

We initially acquired these scaffolds from the VICB synthesis core (except the 5-Cl 

which was commercially available), but eventually I prepared multigram quantities of the 

5-Br scaffold in the complete synthesis of the most PLD1 selective compound described 

to date, VU0359595.    
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Figure 8. Chemical structures of plain, 4-F, 5-F, 5-Cl, 5-Br, and 6-F benzimidazolone scaffolds used in an 
attempt to improve PLD1 potency and selectivity.  

 
 

 We prepared several hundred compounds according to scheme shown in Figure 7 

and colleagues in the Brown lab (primarily Dr. Sarah Scott) assayed them for inhibitory 

activity against PLD1 and PLD2.  Many representative compounds, including the most 

isoform-selective compound, are shown on the following pages.  For comparison, a small 

subset of compounds and corresponding potency values containing the unsubstituted 1-

(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one are shown below (Figure 9).  



 

 74 

 

Figure 9. Chemical structures and activities of various unsubstituted 1-(piperidin-4-yl)-1H-
benzo[d]imidazol-2(3H)-ones.  Chemical synthesis performed by Jana Lewis, Jason Buck, and myself.  
Enzyme activity assays performed by Sarah Scott (Figure adapted with permission from Lewis et al. 2009).      

 
 In terms of the unsubstituted 1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, 

aromatic/heteroaromatic moieties off of the eastern amide tend to confer good potency.  

Interestingly, the trans-phenyl cyclopropane-containing compound 39b showed a 

noticeable increase in PLD1 selectivity compared to any other functional groups prepared 
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and tested (Figure 9).  Next, we evaluated the various halogenated benzimidazolones 

lacking a chiral (S)-methyl group in the ethylenediamaine linker (Figure 10).  
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Figure 10. Chemical structures and activities of various halogenated 1-(piperidin-4-yl)-1H-
benzo[d]imidazol-2(3H)-ones. Chemical synthesis performed by Jana Lewis, Jason Buck, and myself.  
Enzyme activity assays performed by Sarah Scott (Figure adapted with permission from Lewis et al. 2009).     
 

Incorporation of a key (S)-methyl group that allows for the 1,700-fold PLD1 

selective inhibitor VU0359595 

 The various halogenations shown in Figure 10 confirmed previous SAR with 

respect to the eastern amide cap and ethylenediamaine linker.  In general, halogen 

substitution increased PLD1 potency to the low nanomolar range regardless of the 

position of the halogen; however, PLD2 potency also increased as well.  Next, we turned 

to exploring the effects of various halogen substitutions combined with a chiral (S)-

methyl group in the ethylenediamaine linker (Figure 11).  
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Figure 11. Chemical structures and activities of various halogenated 1-(piperidin-4-yl)-1H-
benzo[d]imidazol-2(3H)-ones coupled to an ethylenediamine linker containing a chiral (S)-methyl group.  
Chemical synthesis performed by Jana Lewis, Jason Buck, and myself.  Enzyme activity assays performed 
by Sarah Scott (Figure adapted with permission from Lewis et al. 2009). 
 

 Incorporation of a chiral (S)-methyl group in the ethylenediamine linker had an 

astounding effect on PLD1 selectivity.  For many compounds, the addition of the chiral 

(S)-methyl group drove PLD1 potency into the low, single-digit nanomolar range and 

simultaneously drove PLD2 potency up into the micromolar range (Figure 11).  In terms 

of potency and selectivity, the 5-Br (41m-p) substituted benzimidazolones provided the 

best results, providing PLD1 IC50 values ranging from about 3 nM to 6 nM and with 

extraordinarily high PLD1 selectivity.  Of all of these analogs, 41p (VU0359595) was the 

standout molecule and possesses unprecedented selectivity for PLD1.  Compound 41p 

(VU0359595), with the 5-bromo-1-(piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-

one scaffold, the (S)-methyl group linker and the trans-phenyl cyclopropane amide is the 

most potent (IC50 = 3.7 nM) and selective versus PLD2 (IC50 = 6.4 µM, ~1,700-fold 

selective) PLD1 inhibitor ever described.  The concentration-response-curves for 41p 

(VU0359595) in cellular PLD1 (Calu-1) and PLD2 (293-PLD2) enzyme assays are 

shown below (Figure 12). 
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Figure 12. Concentration response curves for 41p (VU0359595) in the cellular PLD1 and PLD2 enzyme 
activity assays.  Enzyme activity assays performed by Sarah Scott (Figure adapted with permission from 
Lewis et al. 2009). 
 

Summary of the SAR leading to VU0359595 

 At this point it is useful to review the steps taken to go from halopemide, 

essentially a dual isoform PLD inhibition, to 41p (VU0359595), a highly selective PLD1 

inhibitor.  We synthesized and assayed several hundred compounds in order to develop 

robust SAR that ultimately let to the development of 41p (VU0359595).  A visual 

overview of the PLD1 SAR we established is shown below (Figure 13).  
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Figure 13.  Key structure activity relationships that led to the development of 41p (VU0359595).   
 

 In our initial libraries we coupled a large number of eastern amide caps to the 

benzimidazolone scaffold and determined that, in general, aromatic or heteroaromatic 

functional groups conferred the most potency.  However, these functional groups offered 

little in the way of PLD1 selectivity.  We did discover that the incorporation of trans-

phenyl cyclopropane amide increased PLD1 specificity quite substantially.  Also, by 

exploring various halogenations about the benzimidazolone scaffold we identified the 5-

Br congener as giving excellent potency and selectivity.  Ultimately, it was the 

installation of the (S)-methyl group in the ethylenediamaine linker that facilitated a 

massive increase in PLD1 selectivity.  We also discovered several clear steric constraints.  

Any homologation of the ethylenediamaine linker resulted in a completely inactive 

compound.  Likewise, methylating the amides or reversing them resulted in massive 

losses in potency.  The key changes that enabled continuous improvements in both PLD1 

potency and selectivity are shown below, highlighted in red (Figure 14).      



 

 82 

 
 

Figure 14.  Key structural modifications (shown in red) that led to the development of 41p (VU0359595) 
(Figure adapted with permission from Selvy et al. 2011).   
 

Synthesis and characterization of VU0359595 

Chemical synthesis of VU0359595 

 Initially we obtained various halogenated 1-(piperidin-4-yl)-1H-

benzo[d]imidazol-2(3H)-ones from the VICB chemical synthesis core.  However, after 

we identified 41p (VU0359595) as our most potent, selective PLD1 inhibitor I 

synthesized a considerable amount of this compound (and fully characterized every 

synthetic intermediate) from commercially available starting materials (my staff scientist 

colleagues also prepared future batches of various compounds). Additionally, we were 

able to resolve the diastereomers of VU0359595 using supercritical fluid chromatography 

(and a chiral column).  
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Figure 15.  Chemical synthesis of 41p (VU0359595) from commercially available starting materials.   
 

  The synthesis of VU0359595 in 7 steps at a 26% overall yield proceeds as shown 

above (Figure 15).  First, a microwave synthesizer is utilized to perform a nucleophilic 

aromatic substitution reaction followed by a zinc-mediated reduction of a nitro group to 

an aniline.  Triphosgene is utilized to close a ring thereby forming the benzimidazolone 

scaffold portion of the compound.  A microwave synthesizer is again utilized to facilitate 

the removal of an ethyl carbamate.  The rest of the synthesis is identical to the scheme 

shown in Figure 7; reductive amination, BOC deprotection and an amide coupling. 
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Chiral resolution of VU0359595 diastereomers and PLD inhibitory activities thereof 

 VU0359595 (described up to this point) is actually present as a mixture of two 

diastereomers, because the trans-2-phenylcyclopropanecarbonyl chloride 50 used to 

acylate the free amine 49 is actually trans-racemic (Figure 16).  In order to assess the 

relative contributions of each stereoisomer we utilized supercritical fluid chromatography 

(and a chiral column) to separate the diastereomers and assay their inhibitory activity 

against PLD1 and PLD2.  

 

Figure 16.  Chemical structures of the two diastereomers of 41p (VU0359595). 
 

 After screening several chiral columns we determined that an isocratic run 

utilizing ethanol and liquid CO2 on a Regiscell™ column allowed for excellent separation 

of the two diastereomers (Figure 17).  Based on the UV absorbance data it appears that 

that the diastereomers are present in a roughly 1:1 ratio; they eluted roughly 2 minutes 

apart.     
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Figure 17.  UV absorbance trace showing the separation of the two diastereomers of 41p (VU0359595).  
Supercritical fluid chromatography performed by Nathan Kett. 
 

 After separating the diastereomers via stacked injections we analyzed each 

collected peak for purity (Figure 18).  We were able to completely resolve the two 

diastereomers.      
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Figure 18.  UV absorbance trace showing the purity of each diastereomer of 41p (VU0359595).  
Supercritical fluid chromatography performed by Nathan Kett. 
 

 Ultimately, we wanted to determine if all of the activity resided in one 

stereoisomer of 41p (VU0359595).  Previous SAR work had shown us that the (S)-

methyl group in the middle of the compound was super to the (R)-methyl version; 

however, we had not examined if different stereochemistry about the cyclopropane ring 

conferred different activity.   
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Figure 19. Concentration response curves for each diastereomer of 41p (VU0359595) in the cellular PLD1 
and PLD2 enzyme activity assays.  Supercritical fluid chromatography performed by Nathan Kett.  Enzyme 
activity assays performed by Sarah Scott.   
 

 Somewhat surprisingly, the diastereomers were roughly equipotent with respect to 

PLD1 inhibition (Figure 19).  The only significant difference compared to the 1:1 

mixture of diastereomers was an apparent decrease in potency for PLD2 in the 

stereoisomer that eluted as the second peak; however, given such high selectivity present 

with VU0359595 (present as a mixture of diastereomers) we saw no need to pursue an 

enantioselective synthesis of VU0359595.     

 

Optimization of an alternative scaffold that confers PLD2 selectivity 

Initial SAR containing the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure  

 Halopemide (21) proved to be a viable starting point for a PLD1 specific inhibitor 

optimzation campaign that ultimately led to VU0359595, a 1,700-fold PLD1 selective 
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inhibitor.  However, even after preparing ~500 compounds based on halopemide (21) 

PLD2 selective inhibitors remained elusive.  In a limited diversity-oriented synthesis 

effort we identified the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure (52) as 

being able to confer slight PLD2 selectivity (Figure 20).  

 

Figure 20.  Chemical structures of various scaffolds tested for their ability to confer PLD2 selectivity. 
 

 We prepared a variety of compounds in much the same fashion as we initially did 

for PLD1 (Figure 7); these initial compounds consisted essentially of the 1,3,8-

triazaspiro[4,5]decan-4-one privileged structure, an ethylenediamine linker, and an amide 

cap (Figure 21).  
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Figure 21. Synthetic scheme for various 1,3,8-triazaspiro[4,5]decan-4-one-containing PLD inhibitors.  
Reagents and conditions: (a) MP-B(Oac)3 DCE/MeOH, rt, 16 h (75-95%); (b) 4N HCl/dioxane, MeOH 
(98%); (c) R2COCl, DMF/DCM, DIPEA, rt, 1 hour (50-95%).  (Figure adapted with permission from 
Lavieri et al. 2009).  
 

 All materials used in this initial PLD2 SAR work were commercially available 

and the syntheses were straightforward.  As we observed in the previous series of PLD1 

selective inhibitors the ethylenediamine linker was absolutely required.  Homologations 

of the linker to the corresponding 3- and 4-carbon tethers (or longer) yielded inactive 

compounds, as did cyclic constraints.  Figure 22 highlights unsubstituted 

ethylenediamine linker congeners 63 without the (S)-methyl group and examines only 

alternative amides.  Compound 63a was our lead PLD2-preferring compound previously 

identified in our diversity-oriented synthesis campaign, with a PLD2 IC50 of 110 nM and 

~9-fold selectivity versus PLD1 (IC50 = 1,000 nM).  In general, analogs 63 with PLD 

inhibitory activity were PLD2-preferring (1- to 20-fold).  Incorporation of the PLD1 

preferring trans-phenyl cyclopropane amide moiety, provides 63b, and a complete loss of 
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PLD inhibition.  The most potent analog in the series, 63e (PLD2 IC50 = 30 nM), 

incorporated a 2-benzothiophene amide, but displayed only 5-fold PLD2 selectivity.  A 2-

quinoline amide congener (63c) displayed comparable PLD 2 potency (PLD2 IC50 = 90 

nM) to the lead 63a but selectivity versus PLD1 (PLD1 IC50 = 1,990 nM) was improved 

(>20-fold).  Interestingly, incorporation of a second nitrogen atom to provide the 

corresponding quinoxaline derivative (63h) results in a complete loss of PLD inhibitory 

activity.  Compound 63c was the most PLD2-selective inhibitor to come out of this round 

of analogs aimed at improving PLD2 selectivity.  
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Figure 22. Chemical structures and activities of various 1,3,8-triazaspiro[4,5]decan-4-ones.  Chemical 
synthesis performed by Jana Lewis and myself.  Enzyme activity assays performed by Sarah Scott (Figure 
adapted with permission from Lavieri et al. 2009). 
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While we were highly encouraged about being able to continue to improve PLD2 

selectivity within this series the results from a directed library exploring the impact of 

incorporation of the (S)-methyl group (PLD1-preferring moiety) on the ethylenediamine 

linker with the 1,3,8-triazaspiro[4,5]decan-4-one scaffold (PLD2-preferring) were quite 

surprising.  Incorporation of the (S)-methyl group into analogs 64 had significant impact, 

providing few active compounds, but PLD1 inhibitory activity was dramatically 

increased within a PLD2-preferring privileged structure (Figure 23).  For example, 

compound 64a, the (S)-methyl analog of the ~9-fold PLD2 selective 63a, displayed 

comparable PLD2 inhibitory activity (PLD2 IC50 = 140 nM), but PLD1 inhibitory activity 

increased 40-fold (PLD1 IC50 = 25 nM), relative to 63a.  Thus, 64a is considered a 

PLD1/2 dual inhibitor, and the in vitro biochemical enzyme activity assay verified this 

result (PLD1 IC50 = 299 nM, PLD2 IC50 = 235 nM).  Another well-established PLD1-

preferring moiety, the trans-phenyl cyclopropane moiety of VU0359595, was inactive on 

both PLD isoforms in analogs such as 63b, but in combination with the (S)-methyl group, 

congener 64b now possessed measureable PLD1 inhibitory activity (PLD1 IC50 = 2.6 

µM) with no effect, relative to 63b, on PLD2 inhibition.  
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Figure 23. Chemical structures and activities of various 1,3,8-triazaspiro[4,5]decan-4-ones.  Chemical 
synthesis performed by Jana Lewis and myself.  Enzyme activity assays performed by Sarah Scott (Figure 
adapted with permission from Lavieri et al. 2009). 
 

PLD inhibitor 63c (Cellular assay: PLD IC50 = 1,900 nM, PLD2 IC50 = 90 nM, 21-

fold selective; In vitro biochemical assay: PLD IC50 = >20,000 nM, PLD2 IC50 = 500 

nM, >40-fold selective) represents a significant milestone in working toward a PLD2 

selective inhibitor.  Indeed, until we were able to identify a scaffold other than the 

benzimidazolone scaffold we were not able to obtain any preference for PLD2 inhibition.  

Next, I completed more involved syntheses of analogs of 63c in an attempt to further 

improve PLD2 selectivity within the 1,3,8-triazaspiro[4,5]decan-4-one series.  
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Synthesis of various 3 and/or 4 halogenated 1,3,8-triazaspiro[4,5]decan-4-ones 

From the initial SAR described above we gleaned that we did not have much 

room for variability/optimization with respect to the eastern amide moiety in 63a.  We 

decided to focus on functionalization of the 1,3,8-triazaspiro[4,5]decan-4-one scaffold by 

the incorporation of various halogens, as this proved successful in the benzimidazolone-

based PLD1 inhibitor 41p (VU0359595).  Only the unsubstituted 1-phenyl-1,3,8-

triazaspiro[4,5]decan-4-one was commercially available, so while known in the literature, 

the halogenated congeners had to be synthesized.  As shown in Figure 24, N-benzyl 

piperidinone 65 underwent a Strecker reaction with 3-fluoroaniline to provide 66a, and 

acidic hydrolysis delivered the carboxamide 67a in 68% yield for the two steps.  Closing 

of the spirocyclic five-membered ring required forcing microwave-assisted conditions 

(150 oC for 15 minutes in AcOH), followed by reduction to provide 68a in 12% yield.  A 

final hydrogenation with Pd/C removed the benzyl protecting group affording the key 

scaffold 69a in 96% yield.   In a similar manner, key scaffolds 69b-f were prepared in 

overall yields from 65 averaging about 8%. 
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Figure 24. Chemical synthesis of various halogen substituted 1,3,8-triazaspiro[4,5]decan-4-ones. Reagents 
and conditions: (a) KCN, AcOH, 12 h, rt; (b) H2SO4, 12 h, 68%-74% for two steps; (c) i.) trimethyl 
orthoformate, AcOH, microwave, 150 oC, 15 min; ii.) NaBH4, MeOH, 3 hr, 12%-20%; (d)  H2, Pd/C, 
MeOH, AcOH, 20 hr, 89-96% (Figure adapted with permission from Lavieri et al. 2010). 
 

With the requisite synthetically derived halogenated congeners 69a-f in hand, we 

initiated the synthesis of a 4x6 matrix library of twenty-four analogs based on the PLD2 

preferring inhibitor 63a (Figure 22).  Accordingly, 1,3,8-triazaspiro[4,5]decan-4-ones 

69a-f underwent a reductive amination reaction with tert-butyl 2-oxoethylcarbamate to 

provide, after deprotection, amines 70a-f in 58-78% yields (Figure 25).  Then, the six 

amines 70a-f were acylated with four acid chlorides (2-naphthyl, 3-quinolyl, 4-
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fluorobenzoyl and 5-fluoro-2-indolyl) to deliver the 24-member library of analogs 71(a-

d) - 76(a-d)  in 75-85% yields.   

 

Figure 25. Chemical synthesis of various halogen substituted 1,3,8-triazaspiro[4,5]decan-4-one-containing 
PLD2 inhibitors. Reagents and conditions: (a) i. tert-butyl 2-oxoethylcarbamate, MP-B(OAc)3H, DCM, 
MeOH, 18 hr, ii. 4.0M HCl/dioxane, DCM, MeOH, 4 hr, 58-78%; (b) RCOCl, DIEA, DMF, rt, 4 hr, 75-
85%.  (Figure adapted with permission from Lavieri et al. 2010). 
 

All library members 71(a-d) - 76(a-d) were evaluated for their ability to inhibit 

PLD1 and PLD2 in a cellular assay (Calu-1 and HEK293-gfpPLD2, respectively) as well 

as a biochemical assay with recombinant PLD1 and PLD2 enzymes.  The cellular assays 

drove the SAR, with routine confirmation in the in vitro biochemical assay to ensure 

compounds were direct acting inhibitors.  SAR for the 24-member library marked a clear 

departure from the SAR of the earlier PLD1 selective benzimidazolone-based inhibitors, 

and all but two of the analogs 71(a-d) - 76(a-d) displayed a preference for PLD2 

inhibition, with the two exceptions, 75c and 76c, being dual PLD1/2 inhibitors with 

comparable PLD1 and PLD2 inhibition.  
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Figure 26. Chemical structures and activities of various 1,3,8-triazaspiro[4,5]decan-4-one-containing 
PLD2 inhibitors.  Cellular enzyme activity assays performed by Sarah Scott; in vitro enzyme activity 
assays performed by Paige E. Selvy.  (Figure adapted with permission from Lavieri et al. 2010). 
 
 

Both PLD2 potency and selectivity were dependent on the halogen employed, the 

substitution pattern on the phenyl ring of the 1,3,8-triazaspiro[4,5]decan-4-one scaffold 

and on the nature of the eastern amide moiety.  As with many allosteric ligands, SAR was 

shallow and somewhat unpredictable.  However, this matrix library approach identified 

several PLD2 inhibitors that represented a significant improvement over the original 

PLD2 inhibitor 63a, and highlights the power and utility of a matrix library approach, as 

the SAR would not have informed a singleton approach towards optimal PLD2 inhibitors.   
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For example, 72c and 74b displayed ~50-fold selectivity for PLD2, with PLD2 IC50s of 

70 nM and 40 nM, respectively; interestingly, 72c contains the 3-Cl moiety and a 4-

fluorphenyl amide whereas 74b is based on a 4-F scaffold and a 3-quinolinyl amide.  Any 

other combination within these scaffolds results in a decrease of either PLD2 potency or 

PLD2 selectivity.  

 From this effort we discovered the most potent and selective PLD2 inhibitor to 

date, 71a (VU0364739), with a PLD2 IC50 of 20 nM and possessing 75-fold selectivity 

versus PLD1 in the cellular assay (Figure 27A).   

 

Figure 27.  Concentration-Response-Curves (CRCs) for A) cellular PLD1 ■ (Calu-1) assay and PLD2 ▲ 
(HEK293-gfpPLD2) assay and B) biochemical inhibition assay CRCs with purified ■ PLD1 and ▲ PLD2 
highlighting the unprecedented 75-fold PLD2 versus PLD1 selectivity for 71a (VU0364739) in both PLD 
assays.  Cellular enzyme activity assays performed by Sarah Scott; in vitro enzyme activity assays 
performed by Paige E. Selvy.  (Figure adapted with permission from Lavieri et al. 2010). 
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In our in vitro biochemical assay using purified PLD1 and PLD2, 71a possessed a 

PLD1 IC50 of 7,500 nM and a PLD2 IC50 of 100 nM, replicating the unprecedented 75-

fold selectivity for PLD2 (Figure 27B).  Subsequent efforts to replace the halogens with 

alternative functional groups (nitriles, heterocycles, cycloalkyls and numerous polar 

functionalities) led to a complete loss of PLD2 potency.  While we could not replicate the 

1,700-fold PLD1 selectivity of 41p (VU0359595) in a PLD2 preferring inhibitor, the 75-

fold PLD2 selectivity of 71a (VU0364739) afforded a small molecule probe to 

effectively evaluate PLD2 pharmacology in various systems.  

 

Preliminary evaluation of N-(2-(1-(3-Fluorophenyl)-4-oxo-1,3,8-

triazaspiro[4.5]decan -8-yl)ethyl)-2-naphthamide (VU0364739) and VU0359595  

Biological activity 

In earlier work with moderately isoform selective PLD inhibitors we found that 

inhibitors selective for both isoforms blocked the in vitro invasive migration of a triple 

negative breast cancer cell line (MDA-MB-231); however, siRNA studies indicated that 

PLD2 played a dominant role.  With significantly improved isoform selective PLD1 

(VU0359595) and PLD2 (VU0364739) inhibitors, we extended our previous work to 

dissect the roles of PLD1 and PLD2 in regulating cell proliferation and apoptosis in 

MDA-MB-231 breast cancer cells.    

PLD2 inhibitor 71a (VU0364739) provided a striking effect in a 48 hour cell 

proliferation assay, wherein inhibition of PLD2 causes a pronounced decrease in cell 

proliferation of MDA-MB-231 cells, as compared to an equivalent 10 µM concentration 

of the PLD1 inhibitor 41p (VU0359595) (Figure 28A).  When cultured under serum free 



 

 100 

conditions, the same assay in MDA-MB-231 cells resulted in almost a complete blockade 

of proliferation with 71a (VU0364739), and under these conditions, PLD1 inhibition has 

a significant effect as well (Figure 28B).   These data do show a preferential sensitization 

of MDA-MB-231 cells to PLD2 inhibition.     

 

Figure 28.  Inhibition of PLD2 with 71a (VU0364739) leads to decreased proliferation of MDA-MB-231 
cells. MDA-MB-231 cells were cultured in the presence of PLD inhibitor for 48 hours after which cell 
viability was assayed using WST-1 cell proliferation reagent. A. MDA-MB-231 cells cultured in the 
presence of 10% FBS were fairly resistant to PLD inhibitor treatment with only 10 µM 71a (VU0364739) 
treatment leading to a significant decrease in cell proliferation. B. MDA-MB-231 cells cultured under 
serum free conditions had a more pronounced response to PLD inhibition with both PLD1 41p 
(VU0359595) and PLD2 71a (VU0364739)selective compounds significantly decreasing cell proliferation.  
Cell proliferation assays performed by Sarah Scott. (Figure adapted with permission from Lavieri et al. 
2010). 
 

We also evaluated the effect of 71a (VU0364739) on cell proliferation in MDA-

MB-231 cells over a 96 hour time course and with a dose-response paradigm (Figure 

29).   In the presence of 10% FBS, 71a (VU0364739) displayed a dose-dependent 

decrease in cell proliferation over the time course, with significant effects at both a 5 µM 
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and 10 µM dose (Figure 29A).   Under serum free conditions (Figure 29B), a more 

pronounced effect was observed at in a dose (1 µM, 5 µM and 10 µM) and time 

dependent manner.  Importantly, 71a (VU0364739) was significantly less cytotoxic in 

standard cell viability assays in non-transformed cells (data not shown).   
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Figure 29. Inhibition of PLD2 leads to a time-dependent decrease in proliferation of MDA-MB-231 cells.  
MDA-MB-231 cells were cultured in the presence of PLD inhibitor and cell viability was assayed using 
WST-1 cell proliferation reagent over 96 hours. A. MDA-MB-231 cells cultured in the presence of 10% 
FBS showed a dose dependent attenuation of cell proliferation over time. Cultures with 10 and 5 µM 71a 
(VU0364739) treatment led to a significant decrease in cell proliferation while 1 mM inhibitor had no 
effect. B. MDA-MB-231 cells cultured in the absence of serum had a more pronounced response to PLD 
inhibition with all concentrations of the PLD2 selective compound significantly decreasing cell 
proliferation in a dose and time dependent manner. WST-1 Cell proliferation assays performed by Sarah 
Scott. (Figure adapted with permission from Lavieri et al. 2010). 
 

Next, we evaluated the role of PLD1 and PLD2 inhibition on apoptosis in MDA-

MB-231 with and without serum, employing Caspase 3 and 7 as a surrogate marker for 

apoptosis (Figure 30).  Once again, our isoform selective inhibitors were able to 

distinguish differential roles for PLD1 and PLD2.  In the standard 48 hour apoptosis 

assay, a 10 µM dose of PLD2 inhibitor 71a (VU0364739) provided a significant (3-fold 

increase) increase in Caspase 3 and 7 activity, whereas inhibition of PLD1 with 41p 

(VU0359595) led to a marginal increase in Caspase 3 and 7 activity (Figure 30A).  

Under serum free conditions, both 41p (VU0359595) and 71a (VU0364739) had similar 

effects on Caspase 3 and 7 activity (Figure 30B).  These data again suggest that PLD2 
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signaling plays a critical role in the invasive migration, proliferation and survival of 

MDA-MB-231 breast cancer cells.   

 

Figure 30. Inhibition of PLD2 leads to increased apoptosis in MDA-MB-231 cells compared with minimal 
effect of PLD1 inhibition. MDA-MB-231 cells were cultured in the presence of PLD inhibitor for 48 hours 
after which time Capase 3 & 7 activity was measured. A. MDA-MB-231 cells cultured in the presence of 
10% FBS were fairly resistant to PLD inhibitor treatment (41p or 71a) with only 10 µM 71a (VU0364739) 
treatment leading to a significant increase in Caspase 3 & 7 activity compared to vehicle control. B. MDA-
MB-231 cells cultured under serum free conditions had increased Caspase 3 & 7 activity upon 10 µM PLD 
inhibitor treatment as compared to the vehicle control. Caspase assays performed by Sarah Scott (Figure 
adapted with permission from Lavieri et al. 2010). 
 

Pharmacokinetics 

We evaluated 41p (VU0359595) and 71a (VU0364739) in a battery of in vitro 

and in vivo DMPK assays to determine if these isoform selective PLD inhibitors would 

be suitable candidates with which to dissect PLD function in vivo.  PLD1 inhibitor 41p 

(VU0359595) was lipophilic (clogP = 4.5), yet possessed ~2% free fraction in rat and 

human plasma protein binding experiments (equilibrium dialysis) and was easily 

formulated into acceptable vehicles.  In rat iv PK experiments, 41p (VU0359595) was 

found to be a highly cleared compound (Cl = 60 mL/min/kg) with a moderate half-life 

(t1/2 = 0.75 hr) and high volume of distribution (Vdss = 4.7 L/kg) (Figure 31).  A similar 



 

 103 

profile was obtained for PLD2 inhibitor 71a (VU0364739).  While less lipophilic (clogP 

= 3.2), 71a (VU0364739) also displayed ~2% free fraction in rat and human plasma 

protein binding experiments (equilibrium dialysis) and was easily formulated into 

acceptable vehicles.  In rat iv PK experiments, 71a (VU0364739) was found to be a 

highly cleared compound (Cl = 61 mL/min/kg) with a moderate half-life (t1/2 = 1.5 hr) 

and high volume of distribution (Vdss = 8.1 L/kg).   

 

Figure 31.  Pharmacokinetic profile of 41p (VU0359595) and 71a (VU0364739) in rat. Pharmacokinetic 
analyses performed by Satyawan Jadhav, Ryan Morrison and J. Scott Daniels (Figure adapted with 
permission from Lavieri et al. 2010). 

 

Recent genetic and knock-out studies have suggested therapeutic roles for PLD 

inhibition in Alzheimer’s disease and stroke; therefore, centrally penetrant PLD inhibitors 

would be of great value for preclinical target validation.  To address this, both 41p 

(VU0359595) and 71a (VU0364739) were dosed at 10 mpk po in a standard 90 minute 

single point brain:plasma (PBL) study.  While levels of 41p (VU0359595) were below 

quantitation in the brain, 71a (VU0364739) displayed a Brain/Plasma ratio of 0.73 

thereby representing the first centrally penetrant PLD inhibitor we have prepared.  Due to 

their overall PK properties, 41p (VU0359595) and 71a (VU0364739) remain important 

in vitro tools to probe and dissect the differential roles and pharmacology of PLD1 and 

PLD2; however, additional optimization is required to develop robust in vivo proof-of-



 

 104 

concept compounds.  Specifically, the clearance values that are approximately equal to 

liver blood flow in a rat need to be improved.   

 

A (S)-methyl group dramatically increases PLD1 potency within a PLD2-preferring 

chemotype 

The addition of a (S)-methyl group dramatically increased isoform selectivity in 

the PLD1-selective benzimidazolone series culminating in the identification of 41p 

(VU0359595).  Installation of the (S)-methyl group into the modestly PLD2-preferring 

63a (PLD1 IC50 = 1,000 nM, PLD2 IC50 = 110 nM), within the triazaspirone series 

(Figure 32), resulted in 64a with enhanced (40-fold) PLD1 inhibition and essentially no 

effect on PLD2 activity (PLD1 IC50 = 25 nM, PLD2 IC50 = 140 nM).  

 

Figure 32.  Chemical structures and activities of PLD2 preferring inhibitor 63a and the impact of adding a 
chiral (S)-methyl group providing 64a and a 40-fold increase in PLD1 inhibitory activity (Figure adapted 
with permission from Lavieri et al. 2010). 
 

This type of ‘molecular switch’ has been noted before for allosteric modulators of 

GPCRs engendering either subtype selectivity or reversing the mode of pharmacology 

(NAM to PAM or PAM to NAM).  Thus, we wanted to evaluate if the addition of the 

PLD1-preferring (S)-methyl ‘molecular switch’ would increase PLD1 inhibitory activity 
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in a highly PLD2 preferring compound such as 71a (VU0364739).  We prepared an 

analog 77 of 71a (VU0364739) containing the relevant (S)-methyl group (Figure 33).  

Evaluation of 77 in PLD1 and PLD2 cellular enzyme activity assays further showcased 

the impact of the (S)-methyl group as a ‘molecular switch’, providing a 150-fold increase 

in PLD1 inhibitory activity (PLD1 IC50 = 10 nM) while maintaining PLD2 activity 

(PLD2 IC50 = 60 nM).   Thus, a 75-fold PLD2 preferring inhibitor 71a (VU0364739) is 

converted into a potent dual PLD1/2 inhibitor 77 by the addition of a single (S)-methyl 

group. 

 

Figure 33.  Chemical structures and activities of PLD2 preferring inhibitor 71a (VU0364739) and the 
impact of adding a chiral (S)-methyl group providing 77 and a 150-fold increase in PLD1 inhibitory 
activity.  Enzyme activity assays performed by Sarah Scott (Figure adapted with permission from Lavieri et 
al. 2010). 
 

 While we were not able to match the 1,700-fold selectivity for PLD1 present in 

41p (VU0359595) we able to prepare a centrally penetrant, potent (PLD2 IC50 = 20 nM), 

75-fold selective PLD2 inhibitor, 71a (VU0364739).  It was not until the identification of 

the 1,3,8-triazaspiro[4,5]decan-4-one scaffold that we were able to make progress toward 

the 75-fold selective PLD2 inhibitor, 71a (VU0364739) (Figure 34).  
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Figure 34. Key structural modifications (shown in blue) that led to the development of 71a (VU0364739) 
(Figure adapted with permission from Selvy et al. 2012). 
 

Interestingly, introduction of a ‘molecular switch’, in the form of a (S)-methyl 

group, to 71a (VU0364739) increased PLD1 activity 150-fold providing a potent PLD1/2 

inhibitor 77.  Both 41p (VU0359595) and 71a (VU0364739) should prove useful as tools 

to study the role(s) of PLD1 and PLD2 in various cell lines/tissues.  Future compounds 

optimized for DMPK properties may prove useful for in vivo target validation and 

perhaps even as therapeutics for diseases such as cancer, schizophrenia, stroke and 

Alzheimer’s disease, where aberrant PLD activity has been noted.   

 

Materials and methods 

Cell culture 

Calu-1, and MDA-231 cells were purchased from American Type Culture 

Collection (Manassas, VA).  Calu-1 and MDA-231 cells were maintained in DMEM 

supplemented with 10% FBS, 100 µg/mL penicillin-streptomycin and 0.25 µg/mL 

amphotericin.  HEK293 cells stably expressing GFP tagged human PLD2A were 

generated in the lab.  To sustain selection pressure low passage-number HEK293-

gfpPLD2 cells were maintained in DMEM supplemented with 10% FBS, 100 µg/mL 
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penicillin-streptomycin, 2 µg/mL puromycin and 600 µg/mL G418. All HEK293-

gfpPLD2 experiments were done on tissue culture plates that had been coated with low 

levels of poly-lysine.  All cells were maintained in a humidified 5% CO
2 

incubator at 

37°C.  

 

Endogenous PLD enzyme activity assay 

Endogenous PLD activity was determined using a modified in vivo deuterated 1-

butanol PLD assay.  All cell types aside from the stable HEK293-gfpPLD2 cells were 

serum-starved 18 h before experiment.  Cells were pretreated with PLD inhibitor or 

DMSO for 5 min at room temperature (20 °C).  After pretreatment, Calu-1 cells were 

treated with 1 mM PMA + 0.3% (v/v) 1-butanol-D10 and either PLD inhibitor or DMSO, 

or medium alone for 30 min at 37 °C.  HEK293-gfpPLD2 cells were treated in the 

presence of 0.3% 1-butanol- D10 and PLD inhibitor or vehicle.  After treatment, samples 

were extracted and internal standard was added.  The resulting lipids were dried and 

resuspended in MS solvent.  Samples were directly injected into a Finnigan TSQ 

Quantum triple quadrupole MS and data were collected in negative ion mode.  Data were 

analyzed as a ratio of major phosphatidylbutanol-D9 lipid products and internal standard. 

Background signal was subtracted using cells not treated with 1-butanol-D10 as a negative 

control.  The data were then expressed as percent of PMA-stimulated PLD activity or as 

percent of basal PLD activity and IC50 values for each compound were estimated from 

concentration response curves in both cell types.  

 

 



 

 108 

Assessment of cell proliferation via WST-1 assay  

Cells are plated into 96-well tissue culture plates at 15,000 cells/well in tissue 

culture treated 96-well black wall/clear bottom assay plates (Corning Inc. Costar plates) 

in complete growth medium and allowed to grow overnight.  After 24 hours of growth 

media was removed and cells are treated with PLD inhibitor or DMSO vehicle control in 

100 µL of DMEM 1% AA either +/- 10% FBS.  Media and inhibitor are replenished 

every 24 hours and after 48 hours cells were treated with 10 µL/well of a modified MTT 

reagent, WST-1 Cell Proliferation Reagent (Roche Diagnostics Corporation, 

Indianapolis, IN).  Plates were then incubated for 1 hr at 37 °C.  After incubation UV 

absorbance was measured at 450 nm with, BioTek Synergy HT plate reader (BioTek Inc., 

Winooski, VT).  Background signal was subtracted from wells with no cells present. Data 

is expressed as absorbance at 450 nm.  For time course experiments cells were seeded at 

7,500 cells/well into media containing PLD inhibitor or DMSO vehicle control.  Media 

was removed and replaced every 24 hours and at set time points (24, 48, 72, and 96 

hours) cells were treated with WST-1 reagent as described above.  

 

Assessment of caspase 3/7 activity 

Caspase-3/7 activity was measured using a homogeneous bioluminescent method 

according to manufacturer’s directions (Caspase-Glo 3/7 Assay, Promega, Madison, WI). 

In this assay, caspase-3/7 activity is measured by the ability to cleave the proluminescent 

Caspase 3/7 specific DEVD-aminoluciferin substrate to liberate the free aminoluciferin 

which is then consumed by luciferase generating a luminescent signal.  The luminescent 

signal is directly proportional to the amount of Caspase 3/7 activity.  Cells were plated at 
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15,000 cells/well in tissue culture treated 96-well black wall/clear bottom assay plates 

(Corning Inc. Costar plates) in 50 µL growth medium at 37 °C.  After 24 hours media 

was removed and replaced with DMEM, 1%AA, +/- 10% FBS with either PLD inhibitor 

or DMSO vehicle control.  Media was replenished every 24 hours to account for 

metabolism of the compounds.  After 48 hours growth in the presence of PLD inhibitor 

50 µL Caspase-Glo 3/7 reagent was added to each well, plates were incubated at room 

temperature for 1 h, and luminescent signal was then detected with BioTek Synergy HT 

plate reader (BioTek Inc.; Winooski, VT). Caspase 3/7 activity was normalized to vehicle 

control and expressed as fold stimulation of Caspase activity. 

 

In vitro pharmacokinetic studies   

The metabolism of PLD inhibitors, 41p (VU0359595) and 71a (VU0364739), was 

investigated in rat hepatic microsomes (BD Biosciences, Billerica, MA) using substrate 

depletion methodology (% test article remaining).  A potassium phosphate-buffered 

reaction mixture (0.1 M, pH 7.4) of test article (1 µM) and microsomes (0.5 mg/mL) was 

pre-incubated (5 min) at 37°C prior to the addition of NADPH (1 mM).  The incubations, 

performed in 96-well plates, were continued at 37°C under ambient oxygenation and 

aliquots (80 µL) were removed at selected time intervals (0, 3, 7, 15, 25 and 45 min).  

Protein was precipitated by the addition of chilled acetonitrile (160 µL), containing 

glyburide as an internal standard (50 ng/mL), and centrifuged at 3000 rpm (4°C) for 10 

min.  Resulting supernatants were transferred to new 96-well plates in preparation for 

LC/MS/MS analysis.  The in vitro half-life (t1/2, min, Eq. 1), intrinsic clearance (CLint, 
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mL/min/kg, Eq. 2) and subsequent predicted hepatic clearance (CLhep, mL/min/kg, Eq. 3) 

was determined employing the following equations: 

(1) t1/2 = Ln(2) / k ; where k represents the slope from linear regression analysis 

(% test article remaining) 

(2) CLint = (0.693 / t1/2) (rxn volume / mg of microsomes) (45 mg microsomes / gram 

of liver) (20a gm of liver / kg body weight); ascale-up factors of 20 (human) and 

45 (rat) 

(3)  

In vivo pharmacokinetic studies  

Male Sprague-Dawley rats (n=2) weighing around 300g were purchased from 

Harlon laboratories (Indianapolis, IN) and implanted with catheters in the carotid artery 

and jugular vein.  The cannulated animals were acclimated to their surroundings for 

approximately one week before dosing and provided food and water ad libitum.   

Compounds 41p (VU0359595) and 71a (VU0364739) were administered intravenously 

(IV) to rats via the jugular vein catheter in 20% DMSO/80% saline at a dose of 1 mg/kg 

and a dose volume of 1 mL/kg.  Blood collections via the carotid artery were performed 

at pre-dose, and at 2 min, 7 min, 15 min, 30 min, and 1, 2, 4, 7 and 24 hrs post dose.  

Samples were collected into chilled, EDTA-fortified tubes, centrifuged for 10 minutes at 

3000 rpm (4°C), and resulting plasma aliquoted into 96-well plates for LC/MS/MS 

analysis.  All pharmacokinetic analysis was performed employing noncompartmental 

analysis.  For oral exposure studies, measuring both systemic plasma and CNS tissue 

exposure, compounds 41p (VU0359595) and 71a (VU0364739) were administered (oral 
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gavage) to fasted rats (n=2) as suspensions in 10% tween 80/0.5% methylcellulose at a 

dose of 10 mg/kg and in a dosing volume of 10 mL/kg; blood and whole brain samples 

were collected at 1.5h post dose.  Blood was collected into chilled, EDTA-fortified tubes, 

centrifuged for 10 minutes at 3000 rpm (4°C) and stored at -80°C until LC/MS/MS 

analysis.  The brain samples were rinsed in PBS, snap frozen and stored at -80°C.  Prior 

to LC/MS/MS analysis, brain samples were thawed to room temperature and subjected to 

mechanical homogenation employing a Mini-Beadbeater™ and 1.0 mm Zirconia/Silica 

Beads (BioSpec Products).  All animal studies were approved by the Vanderbilt 

University Medical Center Institutional Animal Care and Use Committee. The animal 

care and use program is fully accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care, International. 

 

Plasma protein binding   

Protein binding of the PLD inhibitors, 41p (VU0359595) and 71a (VU0364739), 

was determined in rat plasma via equilibrium dialysis employing Single-Use RED Plates 

with inserts (ThermoFisher Scientific, Rochester, NY).  Briefly plasma (220 µL) was 

added to the 96 well plate containing test article (5 µL) and mixed thoroughly.  

Subsequently, 200 µL of the plasma-test article mixture was transferred to the cis 

chamber (red) of the RED plate, with an accompanying 350 µL of phosphate buffer (25 

mM, pH 7.4) in the trans chamber.  The RED plate was sealed and incubated 4 h at 37°C 

with shaking.  At completion, 50 µL aliquots from each chamber were diluted 1:1 (50 

µL) with either plasma (cis) or buffer (trans) and transferred to a new 96 well plate, at 

which time ice-cold acetonitrile (2 volumes) was added to extract the matrices.  The plate 
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was centrifuged (3000 rpm, 10 min) and supernatants transferred to a new 96 well plate.  

The sealed plate was stored at -20°C until LC/MS/MS analysis. 

 

Liquid chromatography/mass spectrometry analysis for pharmacokinetic 

experiments 

In vivo experiments 

PLD inhibitors, 41p (VU0359595) and 71a (VU0364739), were analyzed via 

electrospray ionization (ESI) on an AB Sciex API-4000 (Foster City, CA) triple-

quadrupole instrument that was coupled with Shimadzu LC-10AD pumps (Columbia, 

MD) and a Leap Technologies CTC PAL auto-sampler (Carrboro, NC).  Analytes were 

separated by gradient elution using a Fortis C18 2.1 x 50 mm, 3.5 µm column (Fortis 

Technologies Ltd, Cheshire, UK) thermostated at 40°C.  HPLC mobile phase A was 

0.1% NH4OH (pH unadjusted), mobile phase B was acetonitrile.  The gradient started at 

30% B after a 0.2 min hold and was linearly increased to 90% B over 0.8 min; held at 

90% B for 0.5 min and returned to 30% B in 0.1 min followed by a re-equilibration (0.9 

min). The total run time was 2.5 min and the HPLC flow rate was 0.5 mL/min.  The 

source temperature was set at 500°C and mass spectral analyses were performed using 

multiple reaction monitoring (MRM), with transitions for 41p (VU0359595)  (m/z 

497.5→202.3) and 71a (VU0364739) (m/z 447.4→198.1) utilizing a Turbo-Ionspray® 

source in positive ionization mode (5.0 kV spray voltage).  All data were analyzed using 

AB Sciex Analyst 1.4.2 software. 
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In vitro experiments   

The PLD inhibitors were analyzed similarly to that described above (In vivo) with 

the following exceptions:  LC/MS/MS analysis was performed employing a TSQ 

QuantumULTRA that was coupled to a ThermoSurveyor LC system (Thermoelectron Corp., 

San Jose, CA) and a Leap Technologies CTC PAL auto-sampler (Carrboro, NC).  

Chromatographic separation of analytes was achieved with an Acquity BEH C18 2.1 x 50 

mm, 1.7 µm column (Waters, Taunton, MA). 

 

Medicinal chemistry 

General synthetic methods 

All reactions were carried out employing standard chemical techniques.  Unless 

otherwise noted, reactions were run in anhydrous solvents.  Solvents for extraction, 

washing and chromatography were HPLC grade.  All reagents were purchased from 

Sigma-Aldrich and Biotage at the highest commercial quality and were used without 

purification.  Microwave-assisted reactions were conducted using a Biotage Initiator-60 

single mode microwave synthesizer.   

All NMR spectra were recorded on a 400 MHz Bruker AMX NMR.  1H chemical 

shifts are reported as δ values in ppm downfield from the solvent residual peak (MeOD = 

3.31, DMSO-d6 = 2.50, CDCl3 = 7.26).  Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling 

constant (Hz), and integration. 13C chemical shifts are reported as δ values in ppm 

downfield from the solvent residual peak (MeOD = 49.0, DMSO-d6 = 39.5, CDCl3 = 

77.16).  Low resolution mass spectra were obtained on an Agilent 1200 LCMS with 
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electrospray ionization equipped with a YMC Jsphere H-80 S-4 3.0 x 50 mm column 

running a gradient of 5-95% (over 4 minutes) acetonitrile in 0.1% trifluoroacetic acid in 

water.  High-resolution mass spectra were recorded on a Waters QTOF-API-US plus 

Acquity system with electrospray ionization. Analytical thin layer chromatography was 

performed on 250 µm silica gel 60 F254 plates.  Automated flash column 

chromatography was performed on a Teledyne ISCO combiflash Rf system.  Analytical 

HPLC was performed on an Agilent 1200 analytical LCMS equipped with a YMC 

Jsphere H-80 S-4 3.0 x 50 mm column running a gradient of 5-95% (at a flow rate of 1.25 

mL/min over 4 minutes) acetonitrile in 0.1% trifluoroacetic acid in water, and UV 

detection at 214 nm and 254 nm along with ELSD detection.   

Preparative purification of library compounds was performed on a custom Agilent 

1200 preparative LCMS with collection triggered by mass detection or alternatively 

compounds were purified on a Gilson 215 preparative LC system equipped with a 

Phenomenx Luna 5u C18 50 x 30 mm column by running a gradient of 20-60% 

acetonitrile in 0.1% trifluoroacetic acid in water at a flow rate of 50 mL/min over 

approximately 5 minutes.  All yields refer to analytically pure and fully characterized 

materials (1H NMR, 13C NMR, analytical LCMS and HRMS). 

For the purposes of compound tracking and organization all final library 

compounds were transferred to barcoded vials and diluted to 10 mM in DMSO.  Large 

preparations of compounds such as 41p (VU0359595) and 71a (VU0364739) were stored 

as powders (typically hydrochloride salts) at 0 oC and diluted at the time of use.  Each 

new compound was registered into a central computer database system, which assigned a 

unique VU identification number to each compound.  In the text, arbitrary number codes 
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for compounds (e.g. 41p) are specific for each chapter and are often used alongside the 

full VU registration code (e.g. VU0359595).  

 

Chemical experimentals        

N-(2-(4-(5-chloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidin-1-

yl)ethyl)-4-fluorobenzamide (21).  1-(1-(2-aminoethyl)piperidin-4-yl)-5-chloro-1H-

benzo[d]imidazol-2(3H)-one dihydrochloride (465 mg, 1.26 mmol), 4-fluorobenzoyl 

chloride (200 mg, 1.26 mmol) and N,N-diisopropylethylamine (0.770 mL, 4.41 mmol) 

were all dissolved in N,N-dimethylformamide (10 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

product was precipitated via the addition of water and then isolated via filtration.  The 

product was then washed 4 times with a solution of lithium chloride (3M) and dried 

under reduced pressure to afford a light tan solid (210 mg, 0.5 mmol, 40 %). 1H NMR 

(400.1 MHz, DMSO-d6) δ (ppm): 11.07 (s, 1H), 8.59 (br s, 1H), 7.97 - 7.91 (m, 2H), 7.34 

- 7.23 (m, 3H), 7.02 - 6.97 (m, 2H), 4.29 - 4.15 (m, 1H), 3.51 - 3.43 (m, 2H), 3.24-3.13 

(m, 2H), 2.74 - 2.64 (m, 2H), 2.47 - 2.31 (m, 4H), 1.70 (d, J = 7 Hz, 2H); 13C NMR 

(100.6 MHz, DMSO-d6) δ (ppm):  165.2, 162.6, 153.6, 130.9, 129.9, 129.8, 129.6, 128.0, 

124.9, 120.0, 115.3, 115.1, 109.8, 108.8, 56.3, 52.4 (2C), 49.5, 36.5, 27.8 (2C); HRMS 

(TOF, ESI) C21H23N4O2FCl [M+H]+ calculated 417.1494, found 417.1496; LC-MS: rt 

(min) = 2.006; LRMS (ESI) m/z = 417.1. 

VU0155056.  N-(2-(4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidin-

1-yl)ethyl)-2-naphthamide  hydrochloride (39a). N-(2-(4-(2-oxo-2,3-dihydro-1H-

benzo[d]imidazol-1-yl)piperidin-1-yl)ethyl)-2-naphthamide (908 mg, 2.19 mmol) was 
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stirred in methanol (10 mL) at room temperature and treated with hydrochloric acid (4M 

in dioxane, 2 mL).  After about 25 minutes the compound was dried under reduced 

pressure to afford a pink solid (908 mg, 1.86 mmol, 88 %). 1H NMR (400.1 MHz, 

DMSO-d6) δ (ppm): 10.99 (s, 1H), 9.18 (t, J = 6 Hz, 1H), 8.63 (s, 1H) 8.08 - 7.96 (m, 

4H), 7.68 - 7.56 (m, 3H), 7.03 - 6.96 (m, 3H), 4.66 - 4.55 (m, 1H), 4.12 (s, 1H), 3.86 - 

3.73 (m, 4H), 3.67 - 3.53 (m, 2H), 3.31 - 3.20 (m, 2H), 2.98 - 2.88 (m, 2H), 1.90 (d, J = 

12 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm):  166.6, 153.5, 134.3, 132.1, 

131.2, 128.9 (2C), 128.4, 127.9 (2C), 127.7, 127.6, 126.8, 124.2, 120.9, 120.5, 109.4, 

109.1, 55.5, 51.4 (2C), 46.5, 35.8, 25.4 (2C); HRMS (TOF, ESI) C25H27N4O2 [M+H]+ 

calculated 415.2134, found 415.2133; LC-MS: rt (min) = 2.074; LRMS (ESI) m/z = 

415.2. 

Ethyl 4-((4-bromo-2-nitrophenyl)amino)piperidine-1-carboxylate (44).  A 

mixture of ethyl-4-amino-1-piperidine (6.027 g, 35 mmol), 4-bromo-1-fluoro-2-

nitrobenzene (7.699 g, 35 mmol), sodium carbonate (3.709 g, 35 mmol) and potassium 

iodide (581 mg, 3.5 mmol) dissolved in cyclohexanol (30 mL) was subjected to 

microwave irradiation at 180 degrees celsius for 10 minutes in a biotage initiator single-

mode microwave synthesizer.  The crude reaction mixture was diluted with toluene, 

washed 4 times with water, dried with magnesium sulfate, filtered and concentrated under 

reduced pressure.  The crude compound was dissolved in dichloromethane, further 

purified by filtration and concentrated under reduced pressure to afford a bright orange 

solid (12.58 g, 33.8 mmol, 97 %). 1H NMR (400.1 MHz, CDCl3) δ (ppm): 8.31 (d, J = 2 

Hz, 1H), 8.05 (d, J = 7 Hz, 1H), 7.48 (dd, J = 2, 9 Hz, 1H), 6.78 (d, J = 9 Hz, 1H), 4.14 

(q, J = 7 Hz, 2H), 4.11 - 4.01 (m, 2H), 3.70 - 3.60 (m, 1H), 3.14 - 3.05 (m, 2H), 2.10 - 
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2.01 (m, 2H), 1.61 - 1.50 (m, 2H), 1.27(t, J = 7 Hz, 3H); 13C NMR (100.6 MHz, CDCl3) 

δ (ppm):  155.5, 143.2, 139.0, 132.5, 129.4, 115.7, 106.7, 61.7, 49.5, 42.2 (2C), 31.7 

(2C), 14.8; HRMS (TOF, ESI) C14H19N3O4Br [M+H]+ calculated 372.0559, found 

372.0559; LC-MS: rt (min) = 3.015; LRMS (ESI) m/z = 372.0. 

ethyl 4-(5-bromo-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidine-1-

carboxylate (46).  Ethyl 4-((4-bromo-2-nitrophenyl)amino)piperidine-1-carboxylate 

(12.36 g, 33.2 mmol) was dissolved in a solution of hydrochloric acid (150 mL, 1M in 

methanol) at 0 degrees Celsius.  Zinc dust (10.7 g, 166 mmol) was added and the reaction 

was monitored via TLC (1:1 ethyl acetate:hexanes).  After the reaction reached 

completion the methanol was removed under reduced pressure, water was added and the 

mixture was extracted into ethyl acetate 3 times dried, filtered and concentrated under 

reduced pressure.  This material was then dissolved in tetrahydrofuran (200 mL) at 0 

degrees Celsius.  Triphosgene (9.8 g, 33.2 mmol) was added and allowed to dissolve over 

15 minutes.  Finally, triethylamine (11.5 mL, 83 mmol) was added slowly over 15 

minutes.  The reaction completed after about 30 minutes and was then diluted with water 

and a solution of hydrochloric acid (1M).  The reaction mixture was extracted into 

dichloromethane and dried under reduced pressure.  The material was chromatographed 

on a 330 g flash column (UV monitored at 292 nM) running a gradient of 0-45% ethyl 

acetate in hexanes to afford a light pink solid (6.94 g, 18.8 mmol, 56 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 11.03 (s, 1H), 7.21 (d, J = 8 Hz, 1H), 7.14 - 7.09 (m, 2H), 

4.37-4.28 (m, 1H), 4.17 - 4.02 (m, 4H), 2.91 (br s, 2H), 2.23 - 2.10 (m, 2H), 1.68 (d, J = 

11 Hz, 2H), 1.20 (t, J = 7 Hz, 3H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 154.6, 

153.5, 129.9, 128.6, 122.9, 112.4, 111.4, 110.3, 60.8, 50.1, 43.0 (2C), 28.5 (2C), 14.6; 
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HRMS (TOF, ESI) C15H19N3O3Br [M+H]+ calculated 368.0610, found 368.0608; LC-

MS: rt (min) = 2.460; LRMS (ESI) m/z = 368.0. 

5-bromo-1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one (47).  ethyl 4-(5-

bromo-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidine-1-carboxylate (6.0 g, 

16.3 mmol) was dissolved in sodium hydroxide (30 mL, 2M) and subjected to microwave 

irradiation for 1.75 h at 130 degrees Celsius.  The reaction mixture was diluted with 

water and then adjusted to pH 1 with hydrochloric acid (14 M).  The reaction mixture 

was then carefully adjusted to pH 12 with solid sodium carbonate.  The resulting 

precipitate was then filtered and dried under reduced pressure to afford a tan solid (4.27 

g, 14.42 mmol, 88 %). 1H NMR (400.1 MHz, DMSO-d6) δ (ppm): 7.24 (d, J = 8 Hz, 1H), 

7.15 - 7.09 (m, 2H), 4.25 - 4.14 (m, 1H), 3.36 (br s, 2H), 3.03 (d, J = 12 Hz, 2H), 2.59 - 

2.51 (m, 2H), 2.19 - 2.06 (m, 2H), 1.56 (d, J = 10 Hz, 2H); 13C NMR (100.6 MHz, 

DMSO-d6) δ (ppm): 153.5, 129.9, 128.5, 122.7, 112.2, 111.3, 110.5, 50.6, 45.8 (2C), 30.0 

(2C); HRMS (TOF, ESI) C12H15N3OBr [M+H]+ calculated 296.0398, found 296.0388; 

LC-MS: rt (min) = 1.605; LRMS (ESI) m/z = 298.0. 

(S)-1-(1-(2-aminopropyl)piperidin-4-yl)-5-bromo-1H-benzo[d]imidazol-

2(3H)-one dihydrochloride (49).  (S)-tert-butyl (1-(4-(5-bromo-2-oxo-2,3-dihydro-1H-

benzo[d]imidazol-1-yl)piperidin-1-yl)propan-2-yl)carbamate (3.77 g, 8.33 mmol) was 

dissolved in dichloromethane (35 mL) and a minimal amount of methanol added 

dropwise.  Hydrochloric acid was added (4M in dioxane, 21 mL) and the reaction was 

stirred for approximately 16 hours at room temperature.  The reaction was concentrated 

under reduced pressure to afford a white solid (3.06 g, 7.18 mmol, 86 %). 1H NMR 

(400.1 MHz, DMSO-d6) δ (ppm): 11.05 (s, 1H), 8.62 (s, 3H), 7.58 (d, J = 8 Hz, 1H), 7.16 
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- 7.10 (m, 2H), 4.67 - 4.52 (m, 1H), 3.98 - 3.78 (m 2H), 3.69 - 3.56 (m, 1H), 3.38 - 3.13 

(m, 4H), 2.94 - 2.76 (m, 2H), 1.91 (d, J = 12 Hz, 2H), 1.35 (d, J = 6 Hz, 3H); 13C NMR 

(100.6 MHz, DMSO-d6) δ (ppm): 153.7, 130.5, 128.1, 123.1, 113.1, 112.1, 111.1, 59.6, 

53.1, 52.1, 46.7, 42.9, 25.7, 25.5, 17.7; HRMS (TOF, ESI) C15H22N4OBr [M+H]+ 

calculated 353.0977, found 353.0979; LC-MS: rt (min) = 1.480; LRMS (ESI) m/z = 

355.1. 

VU0359595.  trans-N-((S)-1-(4-(5-bromo-2-oxo-2,3-dihydro-1H 

benzo[d]imidazol-1-yl)piperidin-1-yl)propan-2-yl)-2 

phenylcyclopropanecarboxamide (41p).  (S)-1-(1-(2-aminopropyl)piperidin-4-yl)-5-

bromo-1H-benzo[d]imidazol-2(3H)-one dihydrochloride (2.95 g, 6.92 mmol), trans-2-

phenylcyclopropanecarbonyl chloride (1.25 g, 6.92 mmol) and N,N-

diisopropylethylamine (4.22 mL, 24.22 mmol) were all dissolved in N,N-

dimethylformamide (30 mL) at 0 degrees Celsius.  The reaction mixture was allowed to 

warm to room temperature and stirred for about 12 hours.  The reaction mixture was 

diluted with water and extracted into dichloromethane 5 times.  The dichloromethane 

layer was then washed 3 times with a solution of lithium chloride (3M) and dried under 

reduced pressure.  The reaction mixture was chromatographed on a 120 g flash column 

eluting in a gradient of 0-10 % methanol in dichloromethane to afford a white solid (2.69 

g, 5.4 mmol, 78 %). 1H NMR (400.1 MHz, DMSO-d6) δ (ppm): 11.02 (s, 1H), 7.94 (dd, J 

= 3, 8 Hz, 1H), 7.27 (t, J = 8 Hz, 2H), 7.19 - 7.05 (m, 6H), 4.15 - 4.04 (m, 1H), 4.01 - 

3.92 (m, 1H), 2.99 - 2.91 (m, 2H), 2.39 - 2.17 (m, 5H), 2.15 - 2.03 (m, 2H), 1.90 - 1.83 

(m, 1H), 1.67 - 1.56 (m, 2H), 1.39 - 1.31 (m, 1H), 1.22 - 1.14 (m, 1H), 1.07 (dd, J = 2, 7 

Hz, 3H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 170.1, 153.5, 141.3, 129.9, 128.6, 
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128.3 (2C), 125.9, 125.8, 125.7, 122.8, 112.2, 111.3, 110.1, 63.0, 52.7, 50.4 (2C), 42.4, 

28.6 (2C), 25.9, 23.7, 19.2, 15.1; HRMS (TOF, ESI) C25H30N4O2Br [M+H]+ calculated 

497.1552, found 497.1545; LC-MS: rt (min) = 2.092; LRMS (ESI) m/z = 497.1. 

1-benzyl-4-((3-fluorophenyl)amino)piperidine-4-carboxamide (67a).  To a 

solution of 1-benzylpiperidin-4-one (13.25 g, 70 mmol) in glacial acetic acid (70 mL) and 

water (12 mL) cooled to 0 degrees Celsius was added 3-fluoroaniline (8.55 g, 77 mmol) 

and potassium cyanide (4.55 g, 70 mmol).  The reaction was allowed to warm to room 

temperature and agitated for approximately 12 hours.  The reaction was then cooled to 0 

degrees Celsius and ammonium hydroxide (18 M) was added dropwise until the solution 

pH was 11 or greater.  The mixture was then extracted into dichloromethane and dried 

under reduced pressure to yield the crude product as a tan oil (20.5 g).  The crude product 

was then immediately cooled to 0 degrees Celsius and concentrated sulfuric acid (18 M, 

120 mL) was added dropwise. The reaction was allowed to warm to room temperature 

and agitated for approximately 12 hours. The reaction was then cooled to 0 degrees 

Celsius and ammonium hydroxide (18 M) was added dropwise until the solution pH was 

11 or greater. The mixture was then extracted into dichloromethane and dried under 

reduced pressure to afford a tan solid (15.78 g, 48.25 mmol, 68 %). 1H NMR (400.1 

MHz, CDCl3) δ (ppm): 7.51 - 7.37 (m, 7H), 6.67 - 6.47 (m, 4H), 4.27 (s, 1H), 3.64 (s, 

2H), 2.95 - 2.87 (m, 2H), 2.53 - 2.44 (m, 2H), 2.29 - 2.21 (m, 2H), 2.07 (d, J = 13 Hz, 

2H); 13C NMR (100.6 MHz, CDCl3) δ (ppm):  178.0, 162.6, 145.7, 138.3, 130.5, 129.1 

(2C), 128.4 (2C), 127.2, 111.8, 106.1, 103.1, 63.1, 58.5, 48.7 (2C), 34.8, 31.5; HRMS 

(TOF, ESI) C19H23N3OF [M+H]+ calculated 328.1825, found 328.1827; LC-MS: rt (min) 

= 1.855; LRMS (ESI) m/z = 328.2. 
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1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one (69a).  1-Benzyl-4-((3-

fluorophenyl)amino)piperidine-4-carboxamide (15.78 g, 48.25 mmol), trimethyl 

orthoformate (80 mL), and glacial acetic acid (40 mL) were combined and subjected to 

microwave irradiation at 150 degrees Celsius for 15 minutes.  The mixture was adjusted 

to pH 12 with ammonium hydroxide (18 M) and extracted into dichloromethane and 

dried under reduced pressure.  This material was then added to a suspension of sodium 

borohydride (4.56 g, 120.6 mmol) in methanol (150 mL) and stirred for about 3 hours.  

The reaction was quenched with water, extracted into dichloromethane, and dried under 

reduced pressure.  The material was then chromatographed on a 330 g flash column 

(Teledyne) as follows: (1) a gradient from 0-80 % ethyl acetated in hexanes over 10 

minutes was run, and on the same column (2) a gradient from 0-10 % methanol in 

dichloromethane was run.  The purity of the isolated intermediate compound was 

established via LCMS, rt (min) 1.723; LRMS (ESI) m/z = 340.1.  This intermediate (1.94 

g) was immediately dissolved in methanol (40 mL) and glacial acetic acid (10 mL), and 

treated with palladium on carbon (cat., 80 mg) under an atmosphere of hydrogen.  After 

about 36 hours the reaction mixture was filtered through celite, concentrated under 

reduced pressure, diluted with water, made alkaline with saturated sodium bicarbonate 

and extracted 8 times into dichloromethane to afford a white solid (1.37 g, 5.49 mmol, 11 

%). 1H NMR (400.1 MHz, DMSO-d6) δ (ppm): 8.67 (s, 1H), 7.20 (q, J = 8 Hz, 1H), 6.73 

(d, J = 8 Hz, 1H), 6.62 (d, J = 13 Hz, 1H), 6.52 - 6.46 (m, 1H), 4.57 (s, 2H), 3.20 - 3.09 

(m, 3H), 2.91 - 2.82 (m, 2H), 2.46 - 2.36 (m, 2H), 1.48 (d, J = 14 Hz, 2H); 13C NMR 

(100.6 MHz, DMSO-d6) δ (ppm):  176.0, 164.3, 145.0, 130.1, 109.3, 103.1, 100.2, 58.8, 
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58.6, 42.1 (2C), 28.9 (2C); HRMS (TOF, ESI) C13H17N3OF [M+H]+ calculated 250.1356, 

found 250.1351; LC-MS: rt (min) = 1.394; LRMS (ESI) m/z = 250.1. 

8-(2-aminoethyl)-1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70a). 1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one (1370 mg, 

5.49 mmol) and tert-butyl (2-oxoethyl)carbamate (961 mg, 6.03 mmol) were combined 

and dissolved in dichloromethane (25 mL) and methanol (10 mL) and stirred for about 30 

minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (3 g, 7.26 mmol) was added to the reaction and after 14 hours an 

additional amount of tert-butyl (2-oxoethyl)carbamate (200 mg, 1.25 mmol) was added to 

drive the reaction to completion.  After about 24 hours the reaction mixture was filtered 

through celite and concentrated under reduced pressure. The crude compound was 

chromatographed on an 80 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (1.64 g, 4.18 mmol, 76 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 8.69 (s, 1H), 7.22 (q, J = 8 Hz, 1H), 6.72 - 6.63 (m, 2H), 6.60 

- 6.49 (m, 2H), 4.58 (s, 2H), 2.83 - 2.75 (m, 2H), 2.74 - 2.65 (m, 2H), 2.61 - 2.48 (m, 

2H), 2.42 - 2.35 (m, 2H), 1.91 (s, 2H), 1.55 (d, J = 13 Hz, 2H), 1.39 (s, 9H); 13C NMR 

(100.6 MHz, DMSO-d6) δ (ppm):  175.8, 161.9, 155.6, 145.0, 130.4, 109.4, 103.2, 100.3, 

77.5, 58.7, 58.1, 57.4, 49.3 (2C), 37.6, 28.3 (3C), 28.1 (2C); HRMS (TOF, ESI) 

C20H30N4O3F [M+H]+ calculated 393.2302, found 393.2301; LC-MS: rt (min) = 1.966; 

LRMS (ESI) m/z = 393.2.  tert-butyl (2-(1-(3-fluorophenyl)-4-oxo-1,3,8-

triazaspiro[4.5]decan-8-yl)ethyl)carbamate (1.64 g, 4.18 mmol) was dissolved in 

dichloromethane (40 mL) and a minimal amount of methanol added dropwise.  

Hydrochloric acid was added (4M in dioxane, 20 mL) and the reaction was stirred for 
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approximately 36 hours at room temperature.  The reaction was concentrated under 

reduced pressure to afford a white solid (1.34 g, 3.66 mmol, 88 %).   1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 9.12 (s, 1H), 8.47 (s, 2H), 7.18 (q, J = 8 Hz, 1H), 7.07 - 7.02 

(m, 1H), 6.79 - 6.72 (m, 1H), 6.57 - 6.50 (m, 1H), 4.63 (s, 2H), 3.72 - 3.56 (m, 4H), 3.45 

- 3.38 (m, 4H), 3.10 - 3.00 (m, 2H), 1.90 (d, J = 15 Hz, 2H); 13C NMR (100.6 MHz, 

DMSO-d6) δ (ppm):  174.4, 162.3, 144.4, 130.3, 109.8, 103.8, 100.2, 69.0, 56.5, 53.3, 

49.1 (2C), 33.8, 25.6 (2C); HRMS (TOF, ESI) C15H22N4OF [M+H]+ calculated 293.1778, 

found 293.1776; LC-MS: rt (min) = 1.405; LRMS (ESI) m/z = 293.1. 

VU0364739. N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-

yl)ethyl)-2-naphthamide (71a).  8-(2-aminoethyl)-1-(3-fluorophenyl)-1,3,8-

triazaspiro[4.5]decan-4-one dihydrochloride 70a (1.23 g, 3.37 mmol), 2-naphthoyl 

chloride (641 mg, 3.37 mmol) and N,N-diisopropylethylamine (2.05 mL, 11.7 mmol) 

were all dissolved in N,N-dimethylformamide (20 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was chromatographed on an 80 g 

flash column eluting in 0-5 % methanol in dichloromethane to afford a white solid (1.25 

g, 2.80 mmol, 83 %). 1H NMR (400.1 MHz, DMSO-d6) δ (ppm): 8.69 (s, 1H), 8.60 (t, J = 

5 Hz, 1H), 8.45 (s, 1H), 8.04 - 7.92 (m, 4H), 7.64 - 7.56 (m, 2H), 7.11 (q, J = 8 Hz, 1H), 

6.68 - 6.63 (m, 1H), 6.58 - 6.52 (m, 1H), 6.49 - 6.43 (m, 1H), 4.58 (s, 2H), 3.48 (q, J = 6 

Hz, 2H), 2.91 - 2.83 (m, 2H), 2.80 - 2.72 (m, 2H), 2.64 - 2.53 (m, 4H), 1.58 (d, J = 14 Hz, 

2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 175.9, 166.2, 164.3, 161.9, 145.0, 
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134.1, 132.2, 130.3, 128.8, 127.8, 127.6, 127.5, 127.3, 126.7, 124.1, 109.3, 103.3, 100.3, 

58.7, 58.1, 56.9, 49.4 (2C), 37.3, 28.2 (2C); HRMS (TOF, ESI) C26H28N4O2F [M+H]+ 

calculated 447.2196, found 447.2195; LC-MS: rt (min) = 2.287; LRMS (ESI) m/z = 

447.2.  Analogs 22b-d were made following the same protocol starting from 21a and 

were purified via reversed-phase chromatography to greater than 95% purity (as 

trifluoroacetate salts) as analyzed by ELSD and UV at both 214 and 254 nM. 

N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide hydrochloride (71a-HCl).  N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-

triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide 71a (1.25 mg, 2.80 mmol) was stirred in 

methanol (30 mL) at room temperature and treated with hydrochloric acid (4M in 

dioxane, 4 mL).  After about 25 minutes the compound was dried under reduced pressure 

to afford a white solid (1.31 g, 2.72 mmol, 97 %). 1H NMR (400.1 MHz, DMSO-d6) δ 

(ppm): 10.99 (s, 1H), 9.14 (t, J = 5 Hz, 1H), 9.11 (s, 1H), 8.60 (s, 1H), 8.06 - 7.97 (m, 

4H), 7.65 - 7.57 (m, 2H), 7.21 (q, J = 8 Hz, 1H), 7.05 - 7.01 (m, 1H), 6.83 - 6.77 (m, 1H), 

6.58 - 6.52 (m, 1H), 4.64 (s, 2H), 3.85 - 3.75 (m, 2H), 3.74 - 3.64 (m, 4H), 3.41-3.36 (m, 

2H), 3.11 - 2.99 (m, 2H), 1.92 (d, J = 14 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ 

(ppm):  174.4, 166.6, 164.6, 162.2, 144.6, 134.3, 132.1, 131.2, 130.5, 128.9, 127.9, 127.8, 

127.6, 126.8, 124.2, 109.9, 104.0, 100.3, 59.0, 56.6, 55.7, 48.7 (2C), 34.4, 25.7 (2C); 

HRMS (TOF, ESI) C26H28N4O2F [M+H]+ calculated 447.2196, found 447.2186; LC-MS: 

rt (min) = 2.264; LRMS (ESI) m/z = 447.2. 

8-(2-aminoethyl)-1-(3-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70b). 1-(3-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 69b (127 

mg, 0.47 mmol) and tert-butyl (2-oxoethyl)carbamate (83.8 mg, 0.51 mmol) were 
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combined and dissolved in dichloromethane (1.5 mL) and methanol (0.05 mL) and stirred 

for about 30 minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (600 mg, 1.4 mmol) was added to the reaction and after 14 hours 

an additional amount of tert-butyl (2-oxoethyl)carbamate (41.9 mg, 0.25 mmol) was 

added to drive the reaction to completion.  After about 24 hours the reaction mixture was 

filtered through celite and concentrated under reduced pressure. The crude compound 

was chromatographed on a 12 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (72 mg, 0.18 mmol, 37 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.21 (t, J = 9 Hz, 1H), 6.95 - 6.90 (m, 2H), 6.86 - 6.78 (m, 1H), 

4.69 (s, 2H), 3.23 - 3.02 (m, 4H), 2.81 - 2.67 (m, 4H), 1.97 (s, 2H), 1.78 (d, J = 14 Hz,  

2H), 1.45 (s, 9H); 13C NMR (100.6 MHz, MeOD) δ (ppm):  178.2, 158.5, 145.8, 136.2, 

141.3, 119.5, 115.4, 114.2, 80.3, 60.4, 60.1, 58.4, 50.7 (2C), 38.1, 29.2 (2C). 28.7 (3C); 

HRMS (TOF, ESI) C20H30N4O3Cl [M+H]+ calculated 409.2006, found 409.1996; LC-

MS: rt (min) = 1.984; LRMS (ESI) m/z = 409.2.  tert-butyl (2-(1-(3-chlorophenyl)-4-oxo-

1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)carbamate (72 mg, 0.17 mmol) was dissolved in 

dichloromethane (5 mL) and a minimal amount of methanol added dropwise.  

Hydrochloric acid was added (4M in dioxane, 1.0 mL) and the reaction was stirred for 

approximately 16 hours at room temperature.  The reaction was concentrated under 

reduced pressure to afford a white solid (60 mg, 0.16 mmol, 93 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.25 (t, J = 8 Hz, 1H), 7.20 - 7.15 (m, 1H), 6.88 - 6.81 (m, 2H), 

4.74 (s, 2H), 3.96 - 3.86 (m, 2H), 3.73 - 3.65 (m, 2H), 3.51 (s, 4H), 3.20 - 3.10 (m, 2H), 

2.05 (d, J = 15 Hz, 2H); 13C NMR (100.6 MHz, MeOD) δ (ppm):  176.9, 145.2, 135.6, 

131.5, 119.9, 115.1, 114.4, 60.5, 58.4, 54.9, 51.2 (2C), 35.4, 27.8 (2C); HRMS (TOF, 
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ESI) C15H22N4OCl [M+H]+ calculated 309.1482, found 308.1480; LC-MS: rt (min) = 

1.413; LRMS (ESI) m/z = 309.1. 

N-(2-(1-(3-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide 2,2,2-trifluoroacetate (72a).  8-(2-aminoethyl)-1-(3-chlorophenyl)-1,3,8-

triazaspiro[4.5]decan-4-one dihydrochloride 70b (60 mg, 0.15 mmol), 2-naphthoyl 

chloride (30.0 mg, 0.15 mmol) and N,N-diisopropylethylamine (0.115 mL, 0.66 mmol) 

were all dissolved in N,N-dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 

chromatography to afford a white solid (43.4 mg, 0.075 mmol, 50 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 9.32 (s, 1H), 9.13 (s, 1H), 9.01 (t, J = 5 Hz, 1H), 8.50 (s, 1H), 

8.06 - 7.94 (m, 4H), 7.66 - 7.58 (m, 2H), 7.22 (t, J = 8 Hz, 1H), 6.98 - 6.94 (m, 1H), 6.86 

- 6.80 (m, 2H), 4.65 (s, 2H), 3.79 - 3.68 (m, 6H), 3.44 - 3.39 (m, 2H), 2.88 - 2.75 (m, 

2H), 1.97 (d, J = 15 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 174.3, 167.0, 

158.6, 144.2, 134.3, 134.2, 132.1, 131.2, 130.4, 128.9 (2C), 128.0, 127.8, 127.7 (2C), 

126.9, 124.1, 117.7, 113.2, 112.5, 59.0, 56.6, 55.3, 48.9 (2C), 34.6, 26.0 (2C); HRMS 

(TOF, ESI) C26H28N4O2Cl [M+H]+ calculated 463.1901, found 463.1894; LC-MS: rt 

(min) = 2.266; LRMS (ESI) m/z = 463.1.  Analogs 72b-d were made following the same 

protocol starting from 70b and were purified via reversed-phase chromatography to 

greater than 95% purity (as trifluoroacetate salts) as analyzed by ELSD and UV at both 

214 and 254 nM. 
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8-(2-aminoethyl)-1-(3,4-difluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70c).  1-(3,4-difluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one (100 

mg, 0.37 mmol) and tert-butyl (2-oxoethyl)carbamate (65.5 mg, 0.41 mmol) were 

combined and dissolved in dichloromethane (1.5 mL) and methanol (0.05 mL) and stirred 

for about 30 minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (600 mg, 1.4 mmol) was added to the reaction and after 14 hours 

an additional amount of tert-butyl (2-oxoethyl)carbamate (32.75 mg, 0.21 mmol) was 

added to drive the reaction to completion.  After about 24 hours the reaction mixture was 

filtered through celite and concentrated under reduced pressure. The crude compound 

was chromatographed on a 12 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (67 mg, 0.16 mmol, 44 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.15 (q, J = 10 Hz, 1H), 6.99 - 6.92 (m, 1H), 6.76 - 6.70 (m, 1H), 

4.67 (s, 2H), 3.30 - 3.25 (m, 2H) 3.24 - 3.13 (m, 2H), 2.87 - 2.76 (m, 2H), 2.72 - 2.60 (m, 

2H), 1.97 (s, 2H), 1.83 (d, J = 14 Hz, 2H), 1.45 (s, 9H); 13C NMR (100.6 MHz, MeOD) δ 

(ppm):  177.9, 158.4, 152.9, 150.4, 141.6, 118.4, 113.0, 106.1, 80.4, 60.8, 59.9, 58.2, 50.5 

(2C), 37.6, 29.0 (2C), 28.7 (3C); HRMS (TOF, ESI) C20H29N4O3F2 [M+H]+ calculated 

411.2208, found 411.2209; LC-MS: rt (min) = 1.942; LRMS (ESI) m/z = 411.2. tert-

butyl (2-(1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)carbamate 

(67 mg, 0.16 mmol) was dissolved in dichloromethane (5 mL) and a minimal amount of 

methanol added dropwise.  Hydrochloric acid was added (4M in dioxane, 1.0 mL) and 

the reaction was stirred for approximately 16 hours at room temperature.  The reaction 

was concentrated under reduced pressure to afford a white solid (58 mg, 0.15 mmol, 95 

%). 1H NMR (400.1 MHz, DMSO-d6) δ (ppm): 9.12 (s, 1H), 8.50 (br s, 2H), 7.18 (q, J = 
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10 Hz, 1H), 7.11 - 7.03 (m, 1H), 7.00 - 6.94 (m, 1H), 4.60 (s, 2H), 3.69 - 3.57 (m, 4H), 

3.45 - 3.38 (m, 4H), 3.02 - 2.91 (m, 2H), 1.90 (d, J = 15 Hz, 2H); 13C NMR (100.6 MHz, 

DMSO-d6) δ (ppm):  174.4, 151.2, 149.1, 139.9, 117.4, 110.2, 103.1, 59.2, 56.5, 53.2, 

49.0 (2C), 33.7, 25.6 (2C); HRMS (TOF, ESI) C15H21N4OF2 [M+H]+ calculated 

311.1683, found 311.1681; LC-MS: rt (min) = 1.334; LRMS (ESI) m/z = 311.1. 

N-(2-(1-(3,4-difluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide 2,2,2-trifluoroacetate (73a).  8-(2-aminoethyl)-1-(3,4-difluorophenyl)-

1,3,8-triazaspiro[4.5]decan-4-one dihydrochloride (46 mg, 0.12 mmol), 2-naphthoyl 

chloride (22.8 mg, 0.12 mmol) and N,N-diisopropylethylamine (0.091 mL, 0.52 mmol) 

were all dissolved in N,N-dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 

chromatography to afford a white solid (26 mg, 0.04 mmol, 37 %). 1H NMR (400.1 MHz, 

DMSO-d6) δ (ppm): 9.85 (s, 1H), 9.10 (s, 1H), 9.00 (t, J = 5 Hz, 1H), 8.49 (s, 1H), 8.06 - 

7.94 (m, 4H), 7.66 - 7.58 (m, 2H), 7.28 (q, J = 10 Hz, 1H), 7.04 - 6.96 (m, 1H), 6.75-6.69 

(m, 1H), 4.61 (s, 2H), 3.77 - 3.65 (m, 6H), 3.44 - 3.38 (m, 2H), 2.76 - 2.64 (m, 2H), 1.97 

(d, J = 14 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 174.4, 167.0, 158.5, 

148.7, 140.2, 134.3, 132.1, 131.2, 128.9, 128.0, 127.8, 127.7 (2C), 126.9, 124.1, 117.7, 

117.5, 110.6, 103.8, 103.6, 59.2, 56.6, 55.2, 49.0 (2C), 34.6, 26.0 (2C); HRMS (TOF, 

ESI) C26H27N4O2F2 [M+H]+ calculated 465.2102, found 465.2102; LC-MS: rt (min) = 

2.230; LRMS (ESI) m/z = 465.2. Analogs 73b-d were made following the same protocol 
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starting from 70c and were purified via reversed-phase chromatography to greater than 

95% purity (as trifluoroacetate salts) as analyzed by ELSD and UV at both 214 and 254 

nM. 

8-(2-aminoethyl)-1-(4-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70d). 1-(4-fluorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 69d (54.8 

mg, 0.22 mmol) and tert-butyl (2-oxoethyl)carbamate (38.2 mg, 0.24 mmol) were 

combined and dissolved in dichloromethane (1.5 mL) and methanol (0.05 mL) and stirred 

for about 30 minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (600 mg, 1.4 mmol) was added to the reaction and after 14 hours 

an additional amount of tert-butyl (2-oxoethyl)carbamate (19.1 mg, 0.12 mmol) was 

added to drive the reaction to completion.  After about 24 hours the reaction mixture was 

filtered through celite and concentrated under reduced pressure. The crude compound 

was chromatographed on a 12 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (41 mg, 0.10 mmol, 47 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.10 - 7.02 (m, 4H), 4.67 (s, 2H), 3.28 - 3.24 (m, 2H), 3.20 - 3.12 

(m, 2H) 2.86 - 2.80 (m, 2H), 2.44 - 2.37 (m, 2H), 1.95 (s, 2H), 1.88 (d, J = 14 Hz, 2H), 

1.44 (s, 9H); 13C NMR (100.6 MHz, MeOD) δ (ppm):  178.4, 160.7, 158.4, 140.8, 122.3, 

122.2, 116.7, 116.5, 80.4, 61.2, 60.1, 58.1, 50.6 (2C), 37.5, 29.5 (2C), 28.7 (3C); HRMS 

(TOF, ESI) C20H30N4O3F [M+H]+ calculated 393.2302, found 393.2300; LC-MS: rt (min) 

= 1.850; LRMS (ESI) m/z = 393.2. tert-butyl (2-(1-(4-fluorophenyl)-4-oxo-1,3,8-

triazaspiro[4.5]decan-8-yl)ethyl)carbamate (41 mg, 0.10 mmol) was dissolved in 

dichloromethane (5 mL) and a minimal amount of methanol added dropwise.  

Hydrochloric acid was added (4M in dioxane, 0.5 mL) and the reaction was stirred for 
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approximately 16 hours at room temperature.  The reaction was concentrated under 

reduced pressure to afford a white solid (34 mg, 0.093 mmol, 93 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.16 - 7.08 (m, 2H), 7.08 - 7.00 (m, 2H), 4.72 (s, 2H), 3.92 - 3.81 

(m, 2H), 3.72 - 3.63 (m, 2H), 3.50 (s, 4H), 2.93-2.81 (m, 2H), 2.05 (d, J = 15 Hz, 2H); 

13C NMR (100.6 MHz, MeOD) δ (ppm):  177.3, 160.3, 140.1, 120.5, 120.4, 116.9, 116.7, 

61.1, 58.6, 54.9, 51.3 (2C), 35.4, 28.5 (2C); HRMS (TOF, ESI) C15H22N4OF [M+H]+ 

calculated 293.1778, found 293.1769; LC-MS: rt (min) = 1.260; LRMS (ESI) m/z = 

293.2. 

N-(2-(1-(4-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide 2,2,2-trifluoroacetate (74a).  8-(2-aminoethyl)-1-(4-fluorophenyl)-1,3,8-

triazaspiro[4.5]decan-4-one dihydrochloride (34 mg, 0.09 mmol), 2-naphthoyl chloride 

(17.8 mg, 0.09 mmol) and N,N-diisopropylethylamine (0.067 mL, 0.385 mmol) were all 

dissolved in N,N-dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction mixture 

was allowed to warm to room temperature and stirred for about 12 hours.  The reaction 

mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 

chromatography to afford a white solid (25.8 mg, 0.04 mmol, 51 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 9.92 (s, 1H), 9.02 (s, 1H), 8.97 (t, J = 5 Hz, 1H), 8.48 (s, 1H), 

8.06 - 7.94 (m, 4H), 7.66 - 7.58 (m, 2H), 7.09 (t, J = 9 Hz, 2H), 7.03 - 6.97 (m, 2H), 4.61 

(s, 2H), 3.76 - 3.63 (m, 6H), 3.38 - 3.34 (m, 2H), 2.63 - 2.51 (m, 2H), 1.97 (d, J = 14 Hz, 

2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm):  174.7, 166.9, 157.6, 155.3, 139.3, 

134.3, 132.1, 131.2, 128.9 (2C), 128.0, 127.8, 127.7 (2C), 126.9, 124.1, 118.2, 118.1, 
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115.7, 115.5, 59.2, 56.7, 55.3, 50.0 (2C), 34.6, 26.5 (2C); HRMS (TOF, ESI) 

C26H28N4O2F [M+H]+ calculated 447.2196, found 447.2196; LC-MS: rt (min) = 2.140; 

LRMS (ESI) m/z = 447.2.  Analogs 74b-d were made following the same protocol 

starting from 70d and were purified via reversed-phase chromatography to greater than 

95% purity (as trifluoroacetate salts) as analyzed by ELSD and UV at both 214 and 254 

nM. 

8-(2-aminoethyl)-1-(4-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70e). 1-(4-chlorophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 69e (152 

mg, 0.57 mmol) and tert-butyl (2-oxoethyl)carbamate (100 mg, 0.63 mmol) were 

combined and dissolved in dichloromethane (1.5 mL) and methanol (0.05 mL) and stirred 

for about 30 minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (600 mg, 1.4 mmol) was added to the reaction and after 14 hours 

an additional amount of tert-butyl (2-oxoethyl)carbamate (76 mg, 0.32 mmol) was added 

to drive the reaction to completion.  After about 24 hours the reaction mixture was 

filtered through celite and concentrated under reduced pressure. The crude compound 

was chromatographed on a 12 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (108 mg, 0.26 mmol, 46 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.23 (d, J = 9 Hz, 2H), 6.96 (d, J = 9 Hz, 2H), 4.69 (s, 2H), 3.39 - 

3.32 (m, 2H), 3.26 - 3.17 (m, 2H), 2.90 - 2.83 (m, 2H), 2.78 - 2.67 (m, 2H), 1.97 (s, 2H), 

1.84 (d, J = 14 Hz, 2H), 1.45 (s, 9H); 13C NMR (100.6 MHz, MeOD) δ (ppm):  178.0, 

158.5, 143.1, 130.1 (2C), 125.4, 118.1 (2C), 80.5, 60.6, 59.6, 58.2, 50.6 (2C), 37.6, 28.8 

(2C), 28.7 (3C); HRMS (TOF, ESI) C20H30N4O3Cl [M+H]+ calculated 409.2006, found 

409.2006; LC-MS: rt (min) = 2.002; LRMS (ESI) m/z = 409.2.  tert-butyl (2-(1-(4-
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chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)carbamate (108 mg, 0.26 

mmol) was dissolved in dichloromethane (5 mL) and a minimal amount of methanol 

added dropwise.  Hydrochloric acid was added (4M in dioxane, 1.5 mL) and the reaction 

was stirred for approximately 16 hours at room temperature.  The reaction was 

concentrated under reduced pressure to afford a white solid (94 mg, 0.25 mmol, 95 %). 

1H NMR (400.1 MHz, MeOD) δ (ppm): 7.25 (d, J = 9 Hz, 2H), 7.06 (d, J = 9 Hz, 2H), 

4.73 (s, 2H), 3.95 - 3.85 (m, 2H), 3.72 - 3.64 (m, 2H), 3.51 (s, 4H), 3.19 - 3.08 (m, 2H), 

2.03 (d, J = 15 Hz, 2H); 13C NMR (100.6 MHz, MeOD) δ (ppm):  177.1, 142.5, 130.3 

(2C), 125.3, 117.5 (2C), 60.6, 58.4, 55.0, 51.3 (2C), 35.5, 27.8 (2C); HRMS (TOF, ESI) 

C15H22N4OCl [M+H]+ calculated 309.1482, found 309.1479; LC-MS: rt (min) = 1.420; 

LRMS (ESI) m/z = 309.1. 

N-(2-(1-(4-chlorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide 2,2,2-trifluoroacetate (75a).  8-(2-aminoethyl)-1-(4-chlorophenyl)-1,3,8-

triazaspiro[4.5]decan-4-one dihydrochloride 70e (94 mg, 0.24 mmol), 2-naphthoyl 

chloride (47.1 mg, 0.24 mmol) and N,N-diisopropylethylamine (0.182 mL, 1.05 mmol) 

were all dissolved in N,N-dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 

chromatography to afford a white solid (62.9 mg, 0.11 mmol, 45 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 10.24 (s, 1H), 9.10 (s, 1H), 9.01 (t, J = 5 Hz, 1H), 8.49 (s, 

1H), 8.06 - 7.94 (m, 4H), 7.65 - 7.57 (m,2 H), 7.23 (d, J = 9 Hz, 2H), 6.94 (d, J = 9 Hz, 
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2H), 4.63 (s, 2H), 3.78 - 3.65 (m, 6H), 3.40 - 3.33 (m, 2H), 2.85 - 2.72 (m, 2H), 1.96 (d, J 

= 14 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 174.5, 166.9, 158.9, 141.7, 

134.3, 132.1, 131.2, 128.9 (2C), 128.7 (2C), 128.0 (2C), 127.8, 127.7 (2C), 126.8, 124.1, 

122.1, 115.7, 59.0, 56.5, 55.2, 48.9 (2C), 34.6, 26.0 (2C); HRMS (TOF, ESI) HRMS 

(TOF, ESI) C26H28N4O2Cl [M+H]+ calculated 463.1901, found 463.1897; LC-MS: rt 

(min) = 2.249; LRMS (ESI) m/z = 463.2. Analogs 75b-d were made following the same 

protocol starting from 70e and were purified via reversed-phase chromatography to 

greater than 95% purity (as trifluoroacetate salts) as analyzed by ELSD and UV at both 

214 and 254 nM. 

8-(2-aminoethyl)-1-(4-bromophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 

dihydrochloride (70f). 1-(4-bromophenyl)-1,3,8-triazaspiro[4.5]decan-4-one 69f (177 

mg, 0.57 mmol) and tert-butyl (2-oxoethyl)carbamate (100 mg, 0.63 mmol) were 

combined and dissolved in dichloromethane (1.5 mL) and methanol (0.05 mL) and stirred 

for about 30 minutes at room temperature.  After about 30 minutes macroporous 

triacetoxyborohydride (600 mg, 1.4 mmol) was added to the reaction and after 14 hours 

an additional amount of tert-butyl (2-oxoethyl)carbamate (76 mg, 0.32 mmol) was added 

to drive the reaction to completion.  After about 24 hours the reaction mixture was 

filtered through celite and concentrated under reduced pressure. The crude compound 

was chromatographed on a 12 g flash column eluting in a gradient of 0-10 % methanol in 

dichloromethane to afford a white solid (163 mg, 0.36 mmol, 63 %). 1H NMR (400.1 

MHz, MeOD) δ (ppm): 7.35 (d, J = 9 Hz, 2H), 6.90 (d, J = 9 Hz, 2H), 4.68 (s, 2H), 3.29 - 

3.21 (m, 2H), 3.20 - 3.10 (m, 2H), 2.86 - 2.68 (m, 4H), 1.97 (s, 2H), 1.80 (d, J = 14 Hz , 

2H), 1.45 (s, 9H); 13C NMR (100.6 MHz, MeOD) δ (ppm): 176.2, 155.6, 143.4, 129.0 
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(2C), 117.6, 114.3 (2C), 77.5, 58.6, 58.2, 57.4, 49.3 (2C), 37.7, 28.3 (2C), 28.3 (3C); 

HRMS (TOF, ESI) C20H30N4O3Br [M+H]+ calculated 453.1501, found 453.1504; LC-

MS: rt (min) = 2.048; LRMS (ESI) m/z = 455.1.  tert-butyl (2-(1-(4-bromophenyl)-4-

oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)carbamate (163 mg, 0.35 mmol) was dissolved 

in dichloromethane (5 mL) and a minimal amount of methanol added dropwise.  

Hydrochloric acid was added (4M in dioxane, 1.5 mL) and the reaction was stirred for 

approximately 16 hours at room temperature.  The reaction was concentrated under 

reduced pressure to afford a white solid (140 mg, 0.33 mmol, 94 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 9.09 (s, 1H), 8.48 (br s, 2H), 7.29 (d, J = 9 Hz, 2H), 7.09 (d, J 

= 9  Hz, 2H), 4.61 (s, 2H), 3.71 - 3.58 (m, 4H), 3.47 - 3.38 (m, 4H), 3.09 - 2.97 (m, 2H), 

1.89 (d, J = 14 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm):  174.5, 141.8, 131.5 

(2C), 115.9 (2C), 109.1, 58.9, 56.4, 53.3, 49.2 (2C), 33.7, 25.5 (2C); HRMS (TOF, ESI) 

C15H22N4OBr [M+H]+ calculated 353.0977, found 353.0977; LC-MS: rt (min) = 1.467; 

LRMS (ESI) m/z = 353.1. 

N-(2-(1-(4-bromophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-

naphthamide 2,2,2-trifluoroacetate (76a). 8-(2-aminoethyl)-1-(4-bromophenyl)-1,3,8-

triazaspiro[4.5]decan-4-one dihydrochloride 70f (66 mg, 0.15 mmol), 2-naphthoyl 

chloride (29.5 mg, 0.15 mmol) and N,N-diisopropylethylamine (0.126 mL, 0.73 mmol) 

were all dissolved in N,N-dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 
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chromatography to afford a white solid (66.1 mg, 0.11 mmol, 71 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 10.23 (s, 1H), 9.10 (s, 1H), 9.00 (t, J = 5 Hz, 1H), 8.49 (s, 

1H), 8.06 - 7.93 (m, 4H), 7.65 - 7.58 (m, 2H), 7.34 (d, J = 9 Hz, 2H), 6.89 (d, J = 9 Hz, 

2H), 4.62 (s, 2H), 3.78 - 3.66 (m, 6H), 3.46 - 3.40 (m, 2H), 2.86 - 2.74 (m, 2H), 1.95 (d, J 

= 14 Hz, 2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 174.5, 166.9, 158.9, 142.1, 

134.3, 132.1, 131.6 (2C), 131.2, 128.9 (2C), 128.0 (2C), 127.8, 127.7 (2C), 126.8, 124.1, 

116.1, 109.6, 58.9, 56.5, 55.2, 48.9 (2C), 34.6, 25.9 (2C); HRMS (TOF, ESI) HRMS 

(TOF, ESI) C26H28N4O2Br [M+H]+ calculated 507.1396, found 507.1393; LC-MS: rt 

(min) = 2.279; LRMS (ESI) m/z = 507.1.  Analogs 76b-d were made following the same 

protocol starting from 70f and were purified via reversed-phase chromatography to 

greater than 95% purity (as trifluoroacetate salts) as analyzed by ELSD and UV at both 

214 and 254 nM. 

N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide 

2,2,2-trifluoroacetate (63a).  8-(2-aminoethyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-

one dihydrochloride (100 mg, 0.28 mmol), 2-naphthoyl chloride (60.2 mg, 0.31 mmol) 

and N,N-diisopropylethylamine (0.170 mL, 0.98 mmol) were all dissolved in N,N-

dimethylformamide (1 mL) at 0 degrees Celsius.  The reaction mixture was allowed to 

warm to room temperature and stirred for about 12 hours.  The reaction mixture was 

diluted with water and extracted into dichloromethane 5 times.  The dichloromethane 

layer was then washed 3 times with a solution of lithium chloride (3M) and dried under 

reduced pressure.  The reaction mixture was subjected to reversed-phase chromatography 

to afford a white solid (88 mg, 0.16 mmol, 58 %). 1H NMR (400.1 MHz, DMSO-d6) δ 

(ppm): 9.79 (s, 1H), 9.04 (s, 1H), 8.97 (m, 1H), 8.49 (s, 1H), 8.06 - 7.94 (m, 4H), 7.67 - 
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7.58 (m, 2H), 7.24 (t, J = 8 Hz, 2H), 6.94 (d, J = 8 Hz, 2H), 6.81 (t, J = 7 Hz, 1H), 4.64 

(s, 2H), 3.78 - 3.66 (m, 6H), 3.42 - 3.37 (m, 2H), 2.86 - 2.74 (m, 2H), 1.95 (d, J = 14 Hz, 

2H); 13C NMR (100.6 MHz, DMSO-d6) δ (ppm): 174.8, 167.0, 142.8, 134.3, 132.1, 

131.2, 129.1 (2C), 128.9 (2C), 128.0 (2C), 127.8, 127.7 (2C), 126.9, 124.1, 118.5, 114.7 

(2C), 58.9, 56.5, 55.3, 49.1 (2C), 34.7, 26.2 (2C); HRMS (TOF, ESI) C26H29N4O2 

[M+H]+ calculated 429.2291, found 429.2293; LC-MS: rt (min) = 2.148; LRMS (ESI) 

m/z = 429.2. 

  (S)-N-(1-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)propan-2-

yl)-2-naphthamide 2,2,2-trifluoroacetate (77).  (S)-8-(2-aminopropyl)-1-(3-fluorophenyl)-

1,3,8-triazaspiro[4.5]decan-4-one dihydrochloride (140 mg, 0.37 mmol), 2-naphthoyl 

chloride (76 mg, 0.40 mmol) and N,N-diisopropylethylamine (0.225 mL, 1.29 mmol) 

were all dissolved in N,N-dimethylformamide (5 mL) at 0 degrees Celsius.  The reaction 

mixture was allowed to warm to room temperature and stirred for about 12 hours.  The 

reaction mixture was diluted with water and extracted into dichloromethane 5 times.  The 

dichloromethane layer was then washed 3 times with a solution of lithium chloride (3M) 

and dried under reduced pressure.  The reaction mixture was subjected to reversed-phase 

chromatography to afford a white solid (19.3 mg, 0.03 mmol, 9 %). 1H NMR (400.1 

MHz, DMSO-d6) δ (ppm): 9.74 (s, 1H), 9.10 (s, 1H), 8.78 (d, J = 8 Hz, 1H), 8.50 (s, 1H), 

8.06 - 7.95 (m, 4H), 7.66 - 7.58 (m, 2H), 7.20 (q, J = 8 Hz, 1H), 6.76 - 6.69 (m, 2H), 6.60 

- 6.53 (m, 1H), 4.62 (s, 2H), 3.88 - 3.69 (m, 3H), 3.61 - 3.54 (m, 1H), 3.43 - 3.33 (m, 

3H), 2.93 - 2.71 (m, 2H), 2.01 - 1.82 (m, 2H), 1.31 (d, J = 7 Hz, 3H); 13C NMR (100.6 

MHz, DMSO-d6) δ (ppm): 174.4, 166.7, 162.1, 144.7, 134.3, 132.1, 131.4, 130.6, 130.5, 

128.9, 127.9 (2C), 127.8 (2C), 127.7, 126.9, 124.4, 109.8, 104.3, 100.9, 60.8, 59.0, 56.6, 
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49.8, 48.7, 41.3, 26.0, 25.8, 19.0; HRMS (TOF, ESI) C27H30N4O2F [M+H]+ calculated 

461.2353, found 461.2354; LC-MS: rt (min) = 0.445; LRMS (ESI) m/z = 461.2. 
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Chapter III 
 

 
DEVELOPMENT OF AZIDE AND DIAZIRINE-CONTAINING PLD 

PHOTOPROBES AND A STRATEGY TO VERIFY COVALENT LABELING OF 
THE ENZYME 

 
 

Introduction 
 

Photoaffinity labeling of proteins 

Overview 

 The concept of photoaffinity labeling was first described by Singh, Thornton and 

Westheimer in the 1960s (Singh et al., 1962).   Since this initial report, many groups have 

utilized various photoaffinity labeling techniques to characterize important biological 

phenomena.  Interactions such as protein-ligand, protein-protein, protein-nucleic acid and 

protein-cofactor have all been successfully targeted in recent years (Dubinsky et al., 

2012). 

 In theory, photoaffinity labeling is remarkably simple; however, in practice 

successful application of the technique to a specific situation can be quite challenging.  

First, a ligand containing a photoactivatable group must be prepared.  This ligand is 

incubated with its target macromolecule(s) forming a noncovalent ligand-target complex.  

After complex formation, UV irradiation causes a photolysis reaction to occur thereby 

generating a highly reactive intermediate that can covalently modify the target 

macromolecule.  The adducted macromolecule can then be analyzed via methods such as 

SDS-PAGE and/or various mass spectrometry techniques (Figure 1) (Robinette et al., 

2006).   
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Figure 1.  Idealized workflow for a photoaffinity labeling experiment.  In this case the molecular target 
(blue circle) is covalently labeled by a photoprobe (yellow square).   
 

 The information obtained from a successful photoaffinity labeling experiment can 

provide several useful pieces of information depending on the specific methods 

employed.  It is possible to use analogs of naturally occurring compounds, such as 

cholesterol, to identify previously unknown molecular targets of a naturally occurring 

compound (Hulce et al., 2013).  In much the same way, the molecular target(s) of natural 

products from various animal and plant sources can be investigated (Dubinsky et al., 

2012).  When photoaffinity labeling techniques are combined with modern mass 

spectrometry techniques one can potentially ascertain receptor-ligand stoichiometry, a 

map of a ligand binding pocket and even the precise amino acids involved in a protein-

ligand interaction (Robinette et al., 2006).       
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Commonly utilized photoactivatable functional groups 

 The most commonly used photoactivatable groups are: (1) benzophenones, (2) 

azides and (3) diazirines (Dubinsky et al., 2012) (Figure 2).  Benzophenones (1) form 

triplet carbonyls upon irradiation.  Benzophenones have a few advantages in that they are 

activated at relatively long wavelengths that do not damage biological molecules (e.g. 

proteins) and are quite stable in a variety of solvents.  However, one significant (and 

obvious) problem with benzophenones is that they are much larger than the other 

photoactivatable groups (Figure 2).  In the case of many allosteric ligands the known 

SAR may not allow for the incorporation of such a large functional group.  Arylazides 

form nitrenes and various other reactive intermediates upon irradiation.  Despite the small 

size of an azide (relative to a benzophenone) the wavelength required to activate an azide 

is relatively short and can damage proteins and other biomolecules.  Diazirines (3) 

possess a number of important advantages compared to (1) benzophenones and (2) 

azides; the photochemistry of diazirines is discussed below. 

 

Figure 2.  The three most commonly used photoactivatable groups: (1) benzophenones, (2) azides and (3) 
diazirines.  
 

Diazirine-based photoaffinity labeling 

 The binding pocket on a protein for a given small molecule almost always has 

size/steric limitations.  As discussed in chapter II, the extension of the ethylenediamine 

linker region by a single carbon atom in compounds such as VU0364739 completely 
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eliminated PLD inhibitory activity.  Therefore, a small photoactivatable group is often 

ideal.  Even then, some SAR development work is almost certainly necessary to ensure 

the photoactivatable group does not completely alter or destroy the activity of the 

photoprobe relative to the original ligand.  Of all commonly used photoactivatable groups 

diazirines (3) are the smallest (Figure 2).  Upon UV light exposure, diazirines react to 

form carbenes.  The resultant carbene possesses two non-bonding orbitals and there are 

two possible ways to divide the two electrons among these orbitals; the singlet carbene 

with two spin-paired electrons and the triplet carbene with electrons possessing parallel 

spin states (Dubinsky et al., 2012).         

 A key feature of a carbene is its ability to quickly form a covalent bond with the 

nearest target molecule through C-C, C-H, O-H and X-H insertion reactions.  The 

carbene is so reactive that any portion of it that is not covalently bound to a protein 

should be quenched with water; in theory, this decreases nonspecific labeling.  In 

addition to its relatively small size the diazirine group has several other advantages: 

stability at room temperature, relative stability in the presence of nucleophiles, 

photoactivation at longer wavelengths (350-365 nm) that do not damage biomolecules, 

and relatively high reactivity (Dubinsky et al., 2012).  Singlet aryldiazirines such as those 

formed from phenyldiazirine undergo photoisomerization and one of the undesired side 

reactions includes a linear diazo compound.  In order to avoid this outcome a commonly 

utilized carbene precursor is the trifluoromethylaryldiazirine moiety.  In recent years 

numerous improved methods for preparing trifluoromethylaryldiazirines have been 

reported and many photoaffinity projects have utilized trifluoromethylaryldiazirines 

(Dubinsky et al., 2012).    
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Azide-containing PLD photoaffinity probes 

Cellular and in vitro potency 

 In our initial photoaffinity labeling effort we utilized arylazide-containing 

compounds (Figure 3).  Compounds 4 and 5 displayed reasonable potency for both PLD1 

and PLD2 in the cellular enzyme activity assay, whereas the addition of a (S)-methyl 

group in compounds 6 and 7 resulted in almost a complete loss of activity with respect to 

PLD2.  Clearly, there is some amount of preference for the azide to be located in the meta 

position instead of the ortho position in terms of PLD2 inhibition.  With these first 

generation arylazide photoprobes we had compounds that appeared to display good PLD1 

potency and moderate PLD2 potency (Figure 3).  
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Figure 3.  First generation PLD photoaffinity probes containing arylazides.  Chemical synthesis performed 
by Bruce Melancon and enzyme activity assays performed by Sarah Scott. 
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 We noticed a general trend that the exact potency values from the cellular enzyme 

activity assay and the in vitro biochemical activity assay performed with purified proteins 

were not always exactly identical.  Typically, these values were relatively close and in 

nearly every case (hundreds of compounds) the potency of various compounds compared 

to each other in one assay matched the rank order of potency in the other assay.  

However, because I would be using the compounds to attempt to label recombinant, 

truncated forms of PLD1 (PLD1c.d311) and PLD2 (PLD2.d308) I checked their potency 

on both constructs.  HFMT.PLD1c.d311 has been routinely expressed and purified in the 

Brown laboratory for a number of years; however, I performed all steps from molecular 

biology to the recombinant expression and purification of HFMT.PLD2.d308.  

Compound 6 had an IC50 for PLD1c.d311 of about 6 µM and compound 4 had an IC50 for 

PLD2.d308 of about 2 µM.  As we expected based on previous experiments, removing 

the N-terminus of PLD1 or PLD2 causes a significant decrease in potency; however, we 

used these constructs because we are able to express and purify reasonable amounts of 

them to near homogeneity, this is not the case for the full length constructs.             

 

Verification of the photolysis reaction in a model system 

 Prior to attempting to covalently label proteins I wanted to verify that the 

photolysis of the azide (and presumably formation of a nitrene) was occurring.  A 1000 

watt mercury lamp connected to a monochromator was utilized for all photochemistry 

experiments (Porter laboratory).  This instrument was ideal for its power and ability to 

precisely select the wavelength of light to which a sample was exposed.  After first 

photolyzing a commercially available aryl azide (which worked as expected) I then setup 
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an analytical reaction in which compound 4 was activated by UV light at 310 nm in the 

presence of benzylamine 8 (Figure 4).  The likely products formed are shown below.    

 

Figure 4.  Photolysis reaction of compound 4 and subsequent insertion of a nitrene into compound 8. 
 

 An LC-MS analysis of a reaction mixture that was not exposed to UV light 

showed no product formation, as was expected.  An LC-MS analysis of a reaction 

mixture that was exposed to UV light gave clear evidence that a photolysis reaction, and 

subsequent nitrene insertion had occurred (Figure 5).  This reaction was performed on an 

analytical scale in the buffer in which the actual protein labeling experiment would 

eventually be performed.  Therefore, structural characterization of the products was not 

practical.  Based on the analytical LC-MS data and literature precedent it is likely that 
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compounds 9 and/or 10 were formed in the reaction (Figure 5).  A product appears 

displaying the correct m/z of 597 (M+1), and also shows the isotopic distribution 

characteristic of a bromine-containing compound.      

 

Figure 5.  LC-MS characterization of the photolysis reaction of compound 4 and subsequent insertion of a 
nitrene into compound 8. 
 

Verification of protein stability during UV irradiation 

In addition to demonstrating that nitrene formation was occurring I also wanted to 

examine if the UV light treatment was damaging the protein, and if so to what extent.  In 

these experiments a truncated PLD2 construct missing the first 308 amino acids, 

PLD2.d308, was irradiated under the same conditions that the actual labeling experiment 

would entail.  After being subjected to UV light for various amounts of time samples 

were immediately placed on ice and then assayed for enzyme activity (Figure 6).  While 

there was some loss of enzyme activity (presumably due to protein damage) that appears 
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to be time/dose dependent this loss was by no means complete or prohibitive of future 

photoaffinity labeling experiments.       

 

Figure 6.  PLD enzyme activity in response to UV irradiation at 310 nm. 
 

Development of a strategy to confirm covalent labeling of PLD 

Enzyme activity assay following dialysis of a known noncovalent inhibitor 

 There are a variety of ways to confirm covalent labeling of a protein with a 

photoprobe.  If the protein is small enough and/or probe large enough it may be possible 

to simply run an SDS-PAGE gel and observe a band shift.  In our case the molecular 

weight of the HFMT.PLD2.d308 protein, with affinity tags present, was about 110 kDa 

and the weight of the photoprobe is about 0.5 kDa (the MW of the protein without 

affinity tags attached is ~70 kDa).  As I expected, it was not possible to see a clear band 

shift on a SDS-PAGE gel (Figure 7).  Other methods such as incorporating radioactivity 

into the photolabel and then testing for radioactivity in a band on a gel have also been 

utilized.  I decided to try a few ways to look at irreversible inhibition using the in vitro 

biochemical reconstitution assay that has been discussed/referenced extensively in the 

previous chapters.   
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Figure 7.  SDS-PAGE gel comparing the mobility of untreated and treated HFMT.PLD2.d308, this is a 6% 
gel. 
 

 My general plan was to physically separate noncovalently bound 

inhibitor/photoprobe from the enzyme and then compare the enzyme activity in that 

sample to a sample where the compound/photoprobe had not been removed.  Initially, I 

tried to do this by attaching HFMT.PLD2.d308 to an affinity resin and subsequently 

washing the compound away, but this approach was unsuccesful.  Ultimately I was able 

to reduce this concept to practice via a dialysis approach (Figure 8).  

 

Figure 8.  Dialysis based strategy to determine if PLD has been covalently labeled by a photoprobe. A. No 
covalent bond is formed and the small molecule can diffuse out of the dialysis tubing B.  A covalent bond 
is formed the small molecule-protein conjugate is much too large to diffuse out of the dialysis tubing.     
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By using dialysis tubing with a molecular weight cutoff of 10 kDa a 110 kDa 

protein and 0.5 kDa small molecule were, in theory, easily separable.  I planned to then 

assay the enzyme activity present inside the dialysis tubing as a way to determine if the 

inhibitor/photoprobe was covalently bound to the enzyme.  If a binding event is not 

covalent then enzyme activity should be able to be recovered after dialysis (Figure 8, 

panel A), but if a binding event resulted in a covalent bond being formed then dialysis of 

that sample should yield lower enzyme activity compared to a dialyzed control sample 

(Figure 8, panel B).  

In order to determine if this idea would work I setup a pilot experiment using a 

well-characterized noncovalent PLD2 inhibitor VU0364739 (compound 71a from chapter 

II) and HFMT.PLD2.d308.  In this experiment HFMT.PLD2.d308 was incubated with 

either DMSO or 20 µM VU0364730 (total sample volume of 400 µl) overnight either in a 

tube at 4 oC or in dialysis tubing with a 10 kDa molecular weight cutoff that was dialyzed 

against 1 L of buffer (MW cutoff approximately 20 times the weight of VU0364739).  

After approximately 16 hours 2 µl from each sample were assayed in the in vitro PLD 

activity assay (after dilution into the assay tube, inhibitor concentration was nominally 

600 nM).  Results indicated that the compound completely diffused out of the dialysis 

tubing, as would be expected with a noncovalent enzyme inhibitor (Figure 9).     
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Figure 9.  VU0364739 binding to HFMT.PLD2.d308 is reversible and this reversibility can be measured 
via an enzyme activity assay following dialysis.   

 

Enzyme activity following dialysis of an azide-containing photoprobe 

 Given data that indicated my idea to verify covalent labeling via the approach 

described in Figures 8 and 9 could possibly work I attempted to label HFMT.PLD2.d308 

with arylazide compound 4.  In this experiment samples were prepared in essentially the 

same fashion as the experiment shown in Figure 9, except that some samples were 

treated with UV light at 310 nm.  As shown below, compound 4 appears to covalently 

label HFMT.PLD2.d308 (Figure 10).  The three samples on the left side of the graph 

were not dialyzed; even when not photoactivated compound 4 inhibits HFMT.PLD2.d308 

(as it should), and after photoactivation 4 appears to inhibit HFMT.PLD2.d308 more 

potently.  This can be explained by some portion of the protein being irreversibly 

inhibited, and the remaining portion being inhibited to the same degree as in the sample 

not exposed to UV light.  The three samples on the right side of the graph were all 

dialyzed; there is almost no difference in activity between the DMSO treated and sample 

and the sample treated with 4 (but not with UV light).  This appears to indicate that, 

absent a covalent bond being formed, compound 4 diffuses out of the dialysis tubing 
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containing the HFMT.PLD2.d308 enzyme.  Conversely, in the sample containing 

compound 4 that is exposed to UV light the enzyme activity is significantly lower than 

both a control sample treated with light and DMSO, and the sample treated with 

compound 4 (but not UV light). 

 

Figure 10.  Arylazide compound 4 covalently labels HFMT.PLD2.d308 in a UV light exposure-dependent 
manner.  Representative example from 3 independent experiments.   
 

 

Proteolysis and CID MS/MS analysis of arylazide-labeled, truncated PLD1 and 

PLD2 constructs 

Analysis of arylazide photoprobe fragments under CID conditions 

 In order to obtain some idea about which fragments of 4 would possibly appear 

under collision induced dissociation (CID) while 4 was attached to a peptide I attempted 

to covalently label the c-myc peptide (Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu) in a 

phosphate buffer.  Unfortunately, we did not ever observe a labeled c-myc peptide.  This 

is likely due to the fact that there is essentially no affinity between 4 and c-myc, and the 

highest practical concentrations of c-myc to even use are probably µM amounts (I used 
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10 µM) and the concentration of H2O in the buffer was ~55 M.  Not surprisingly, we 

observed the formation of hydroxylamine 11 upon UV treatment (Figure 11).  The mass 

spectrum of 11 clearly shows the characteristic ~1:1 distribution of the M+1 and M+3 

peaks for the bromine-containing 11 (Figure 11 panel B).     

 

Figure 11.  Compound 4 reacts with water to form a hydroxylamine after being activated by UV light. A. 
Mass spectrum of hydroxylamine 11.  B.  UV dependent formation of 11 in water.  Mass spectrometry 
performed by Kristie Rose.    

 
 

 With the help of Kristie Rose in the proteomics core facility we examined the 

MS2 fragments from both peaks of 11, m/z 474.1118 and m/z 476.1097, corresponding to 

compounds containing the different isotopes of bromine.  Three prominent fragments 

from the fragmentation of m/z peak at 474 are shown below (Figure 12).  Fragment 12 

does not contain a bromine atom, whereas both 13 and 14 do contain bromine atoms.  

This is made clear by examination of the MS2 spectrum from the m/z 476 fragment 
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(Figure 13).  Fragment 12 shows up at the same mass to charge ratio (179) whether it 

comes from the m/z 474 or m/z 476 peak of compound 11.  However, both fragment 13 

and fragment 14 show up at a m/z 2 units larger in the m/z 476 peak compared to the m/z 

474 peak, indicating they contain bromine atoms (Figures 12 and 13).   

 

Figure 12.  MS2 fragments formed from the m/z 474 peak corresponding to compound 11.  Mass 
spectrometry performed by Kristie Rose.  Assistance in determining fragment identification provided by 
Pavlina Ivanova and Thomas Mathews. 
 

 

Figure 13.  MS2 fragments formed from the m/z 476 peak corresponding to compound 11.  Mass 
spectrometry performed by Kristie Rose.  Assistance in determining fragment identification provided by 
Pavlina Ivanova and Thomas Mathews. 
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In-gel trypsin digestion 

 After having obtained independent evidence that the protein was being covalently 

labeled by compound 4 (Figure 10) and identifying some possible fragments of 4 I 

initially attempted to label both HFMT.PLD2.d308 and HFMT.PLD1c.d311 with 

compound 4.  Both control samples (DMSO) and samples for each protein incubated with 

10 µM or 100 µM 4 were all irradiated at 310 nm for 30 minutes.  Following this 

treatment 1 µg of each protein was run on a SDS-PAGE gel.  The protein was digested 

with trypsin in the gel, peptides were extracted and these samples were analyzed in the 

proteomics core facility.   

We obtained about 70% sequence coverage from the in-gel digests, which is 

reasonable for this approach, but in order to obtain more sequence coverage I performed 

some in-solution trypsin digests.  While the in-solution digests improved sequence 

coverage to greater than 90% we were not able to easily identify an adducted peptide 

despite utilizing a number of advanced data analysis techniques.  We also attempted a 

MALDI-TOF experiment knowing it would provide much lower (~30%) sequence 

coverage, but could possibly give us a labeled peptide.  We did not detect a labeled 

peptide from the MALDI-TOF experiment.  At this point I also became concerned that if 

the nitrene was reacting with a nitrogen or oxygen atom (which was impossible to know 

or rule out) the resulting N-N or N-O bond could break apart under before the adducted 

peptide even makes it to the linear ion trap.  That would be the worst-case scenario, 

because then the labeled peptide would be “unlabeled” before it ever entered the mass 

spectrometer.  For these reasons my colleagues in the Lindsley lab prepared a 
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trifluoromethylaryldiazirine compound and I began a series of experiments utilizing the 

trifluoromethylaryldiazirine compound.    

 

Trifluoromethylaryldiazirine-containing PLD photoaffinity probes 

Rationale for the use of a carbene 

As was discussed above carbenes are highly reactive, and in practice capable of 

labeling any part of a protein.  While this level of reactivity may also be present in a 

nitrene, as we would expect to form from 4, there is at least one key difference.  It is 

possible (and unknowable a priori) that a nitrene may form a relatively weak N-N or N-O 

bond and that this bond could break apart under electrospray ionization before the 

adducted peptide even makes it into the mass spectrometer.  With a carbene we would 

expect any number of possible adducts ranging from a C-C bond to a C-O or C-N bond; 

the bond energies of the carbon-containing bonds are substantially higher than the bond 

energies of the nitrogen-containing bonds.  For this reason I began working with the 

trifluoromethylaryldiazirine compound 15 (Figure 14).    

 

Figure 14.  Chemical structure of compound 15 (VU0487289).  Chemical synthesis performed by Jeremy 
(Wandong) Wen.   
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Truncated PLD1c in vitro potency and specificity 

 In a similar fashion as with the azide-containing compound 4 I examined the 

potency of 15 on both HFMT.PLD1c.d311 and HFMT.PLD2.d308.  Interestingly, 15 

displayed near-complete inhibition of the PLD1 construct at 25 µM; however, even at 

100 µM 15 did not inhibit the PLD2 construct at all (Figure 15).  I did not examine the 

potency of 15 in more detail, because I had planned to use a large molar excess of 15 

(compared to protein) in order to err on the side of too much nonspecific labeling as 

opposed to no labeling at all.  Due to this difference in potency, I chose to focus on 

photolabelling truncated, recombinant PLD1 protein.      

 

Figure 15.  In vitro enzyme activity assays of recombinant PLD1 and PLD2 constructs in response to 
compound 15 (VU0487289) treatment.  A. HFMT.PLD1c.d311 B.  HFMT.PLD2.d308. Portions of each of 
these experiments were repeated at least 5 times as part of other independent experiments. 
 

Confirmation of photolysis via LC-MS 

 Methods used to verify photolysis chemistry occurring were similar to those used 

with compound 4.  Briefly, a small amount of compound 15 at 10 mM in DMSO was 

added to MeOH.  This mixture was irradiated with UV light at 365 nm for about 10 

minutes.  An aliquot of this reaction mixture was then injected directly and analyzed via 
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LC-MS (Figure 16).  On a qualitative level, the chemistry is occurring as expected and 

the expected product 16 can be observed.  

Figure 16.  LC-MS characterization of the photolysis reaction of compound 15 and subsequent reaction of 
the carbene with methanol. 
 

Verification of protein stability during UV irradiation 

 In the previous experiments conducted with arylazide 4 the protein was irradiated 

at 310 nm.  The wavelength used to activate trifluoromethylaryldiazirine 15 was 365 nm 

and protein stability was verified at this different wavelength when samples were treated 

with light for 15 minutes.  UV light at 365 nm has no measurable effect on PLD stability, 

as measured by an in vitro activity assay (Figure 17).  Surprisingly, in two different 

samples each containing the protein and the photoprobe (at different concentrations) that 

were treated with UV light the activity present in the UV light treated samples was 

actually higher than in the samples containing the protein and the photoprobe (but not 

treated with UV light).  This is in contrast to what was observed with arylazide 4 (Figure 

10) where UV light appeared to effectively increase the potency of the compound.  This 

is not completely unreasonable, because the carbene formation and subsequent reactions 
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occur quite quickly so any compound 15 that does not covalently modify the enzyme is 

almost certainly quenched with water (~55 M) and it would seem the resulting alcohol is 

not a potent inhibitor.  This interesting observation would prove to hold true across many 

subsequent, independent experiments.       

 

Figure 17. In vitro enzyme activity assay of recombinant PLD1c.d311 in response to UV treatment at 365 
nm and various concentrations of 15 plus/minus UV light. 
 

Verification of covalent labeling via dialysis and enzyme activity assay   

 In a similar manner (Figure 8) as described for compound 4 I utilized dialysis 

coupled with an in vitro enzyme activity assay to test for covalent labeling of 

PLD1c.d311 by 15.  Some of these experiments were repeated up to 6 times (independent 

experiments on different days) and in some experiments there were as many as 3 separate 

samples of the identical condition each assayed in triplicate.  In the examples shown 

below all raw data points are shown to illustrate precision and reproducibility.   

 In the first example shown below I chose to include three separate samples (each 

analyzed in triplicate) of the protein incubated with 15 and treated with UV light (Figure 

18).  In this experiment, as in Figure 17, treating 15 with UV light actually causes an 

apparent loss in potency.  Also, independent of UV light treatment 15 appears to 
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covalently label HFMT.PLD1c.d311.  Notably, the 3 samples all treated with light 

containing 15 give essentially identical enzyme activity values.  This is not entirely 

unexpected, because the trifluoromethylaryldiazirine carbon will be somewhat 

electrophilic, and even if stable to the protein I did not take extreme caution to keep the 

samples in absolute darkness so some UV light from ambient sources may have caused 

some level of photolysis to occur.     

 
Figure 18.  Trifluoromethylaryldiazirine compound 15 covalently labels HFMT.PLD2.d308 in a UV light 
exposure-independent manner.  Samples to the right of the vertical line were dialyzed after UV irradiation.  
Representative example from 5 independent experiments.   

 
 

 After the initial experiment (Figure 18) and some repeats of that experiment I 

performed a rather large experiment containing a number of important controls.  All of 

the findings in the original experiment (Figure 18) were reproducible and the additional 

controls yielded the expected results (Figure 19).  As expected, the noncovalent inhibitor 

VU0359595 could be dialyzed away from the protein and UV light treatment had no 

effect on VU0359595.  Again, 15 irreversibly inhibited HFMT.PLD1c.d311 independent 

of UV irradiation.  I attempted to block labeling of the protein by using the noncovalent 

inhibitor, VU0359595, in the presence of 15, but was not successful.  In an ideal 

situation, I would have included a large molar excess of VU0359595, but given that 15 
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was at 100 µM this was simply not possible due to limitations such as solubility and the 

volume of DMSO I would have had to add to the sample.    

 
Figure 19.  Trifluoromethylaryldiazirine compound 15 covalently labels HFMT.PLD2.d308 in a UV light 
exposure-independent manner.  Additional controls are included compared to Figure 18.  Samples to the 
right of the vertical line were dialyzed after UV irradiation. 
 
 
Fragmentation of the diazirine-containing probe with CID and HCD to identify 

fragments 

CID fragments 

 In order to gain some understanding of what fragments we might encounter in a 

photoprobe labeled sample we fragmented 15 using both CID and higher-energy 

collisional dissociation (HCD).  In both cases 15 appears to undergo an intense neutral 

loss upon electrospray ionization (Figure 20).  The MS2 spectrum of the m/z 565 peak 

using either fragmentation approach simply yields an m/z of 537.  However, the MS2 

spectrum of the m/z 537 peak provided significant useful information.      
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Figure 20.  MS1 spectrum (zoomed) of 15.  Mass spectrometry performed by Kristie Rose in the 
proteomics core facility.   

 
 

 The MS2 spectrum resulting from the fragmentation of the m/z 537 peak was 

relatively straightforward to interpret and includes many fragments we expected to see 

based on the fragmentation of 11 (Figure 12) under CID conditions (Figure 21).  While 

knowing these fragments was useful, it actually turned out that using HCD conditions to 

fragment the peptides would prove to be more useful for our purposes so we also 

examined the fragmentation of the m/z 537 peak from compound 15 using HCD.    
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Figure 21.  MS2 spectrum of m/z 537 from 15 under CID conditions.  Mass spectrometry performed by 
Kristie Rose in the proteomics core facility.  Input on observed fragments provided by Thomas Mathews 
and Pavlina Ivanova.     
 

HCD fragments 

 One issue that can come up in these types of experiments is that if there is a 

highly labile bond on the adducted photoprobe it may break under CID and the amide 

bonds in the backbone of the peptide may not break.  This would make identifying the 

labeled amino acid/peptide extremely challenging if not impossible.  One approach to 

circumvent this issue is to use HCD in order to break apart the peptide even if the probe 

breaks apart as well.  The various m/z peaks observed for 15 in an HCD experiment are 

shown below (Figure 22).  
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Figure 22.  MS2 spectrum of m/z 537 from 15 under HCD conditions.  Blue boxes indicated fragments 
identical to those displayed in Figure 21.  Mass spectrometry performed by Kristie Rose in the proteomics 
core facility.  

 
 

In-solution proteolysis with trypsin to increase data quality and sequence coverage 

(compared to in-gel digests) 

 After initially attempting to label protein with the arylazide 4 and performing an 

in-gel digest I switched to using the trifluoromethylaryldiazirine 15 and performing an in-

solution trypsin digestion.  This was possible because I was able to purify 

HFMT.PLD1c.d311, and later PLD1c.d311 (affinity tags removed), to essentially a single 

band via coomassie stained SDS-PAGE.  Performing an in-solution trypsin digestion 

allowed us to sequence cover nearly the entire PLD1c.d311 protein (in multiple 

experiments) as compared to only about 60-70% sequence coverage using in-gel 

digestion methods.  Procedures for both methods of proteolysis with trypsin are described 

in more details below in the “materials and methods” section of this chapter. 
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Proteomic analysis of diazirine-labeled, truncated PLD1c 

HCD MS/MS analysis   

 While we did perform both CID and HCD experiments using both 4 and 15 we 

focused primarily on HCD experiments using 15.  Shown below is a base peak 

chromatogram from a 90-minute LC run of the proteolyzed PLD1c.d311 (no affinity tags 

present, and not treated with photoprobe) alone (Figure 23).   

        

Figure 23.  Base peak chromatogram of trypsin digested PLD1c.d311.  Mass spectrometry performed by 
Kristie Rose in the proteomics core facility.  
 

 In the introduction to this chapter I alluded to the idea that any carbene molecules 

that are not covalently bound to the target protein should immediately be quenched with 

water (~55 M); this should, in theory, decrease nonspecific labeling of the target protein.  

The expected product from the reaction of 15 with water is shown below. 
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Figure 24.  The carbene formed from the photoactivation of trifluoromethylaryldiazirine 15 reacts with 
water to form an alcohol. 

 
 

 Indeed, when comparing the base peak chromatogram from the proteolyzed 

PLD1c.d311 protein alone sample (Figure 23) to the base peak chromatogram from 

PLD1c.d311 plus a very large molar excess of 15 (treated with UV light) there are two 

new peaks at m/z 565 and m/z 555/557 (Figure 25).  As shown below, these new peaks 

correspond to unreacted 15, and 15 that has been quenched with water.  Note, the 

photolysis reaction is essentially going to completion as the intensity of the water 

quenched-peak for 15 is many orders of magnitude larger than the unreacted 15.  This is 

an excellent result, because combined with the earlier enzyme activity data these data 

indicated that the probe is likely either labeling one or a few sites on the protein or it is 

being completely being quenched with water.      
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Figure 25.  Base peak chromatogram of trypsin digested PLD1c.d311 plus a large molar excess of 15 
(treated with UV light).  Mass spectrometry performed by Kristie Rose in the proteomics core facility.  
 

 To further confirm the identity of 15 and 21 we examined the isotopic distribution 

in each of the sets of peaks corresponding to 15 and 21.  We would expect to see the 

isotopic distribution unique to bromine in both of these peaks if they are in fact the 

unreacted 15 and water quenched-product 21.  Indeed for the m/z 565 peak corresponding 

to the unreacted 15 we observed a roughly equal relative abundance of the M+1 and M+3 

peaks, characteristic of a bromine-containing species (Figure 26).  Similarly, for the m/z 

555 peak corresponding to the expected product 21 we observed a roughly equal relative 

abundance of M+1 and M+3 peaks, characteristic of a bromine-containing species 

(Figure 26).      
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Figure 26.  Zoomed view of m/z 565 peak from Figure 25.   Mass spectrometry performed by Kristie Rose 
in the proteomics core facility.  
 
 

 

Figure 27.  Zoomed view of m/z 555/557 peak from Figure 25.   Mass spectrometry performed by Kristie 
Rose in the proteomics core facility.  
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Data analysis 

 The data analysis for an experiment like the one shown above in Figures 23 and 

25 is extremely complicated.  There are literally dozens of reasons that the PLD1c.d311 

enzyme could be covalently labeled by 15 and it would not be possible to definitively 

identify an adducted peptide/amino acid.  Kristie Rose and her colleague Tina Tsui in the 

proteomics core facility performed a large amount of data analysis in an effort to find an 

adducted peptide/amino acid.  The general problem is that there are tens of thousands of 

spectra generated per experiment and in some of the MS2 spectra there is no y and b ion 

series present.   In this case, it is virtually impossible to reliably determine from which 

MS1 precursor a given ion/peptide came.       

 One of the reasons we decided to perform HCD experiments was that we were 

fairly confident (based on experiments with the free compound in solution, Figure 22) 

the photoprobe 15 (or an adduct) would break apart under HCD conditions.  The details 

of how 15 would fragment under HCD conditions allowed us to devise a data mining 

strategy that would take advantage of searching for unique MS2 product ions that could 

only have come from 15. 

 Tina Tsui analyzed the data by using MATLAB to extract a list of all peaks from 

the RAW files obtained from the experiment.  She then wrote a script to search through 

the entire peak list looking for fragments that must have come from 15.  Based on the 

experiment in Figure 22, we identified five m/z peaks as being reasonable to search for: 

264.9977, 308.0406, 336.0724, 375.9904, 454.0390.  Tina set the tolerance for 

identifying these peaks at ± 20 ppm and we decided to require at least 2 of these peaks be 

present to flag a spectrum as a candidate hit (in order to decrease false positives).  Kristie 
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then generated a list of all of the theoretical peptides that could be obtained from a trypsin 

digestion of PLD1c.d311, including missed cleavages, various oxidations, etc.  Both the 

no probe and probe treated sample data sets were then analyzed against this database of 

theoretical peptides.  MS2 spectra that contained at least 2 of the relevant peaks and 

originated from a precursor ion that matched the m/z of a theoretical peptide were flagged 

as possible hits.   

 As one would expect if this whole approach were valid, there were essentially no 

hits from the protein alone sample.  Note, Kristie has to manually examine the primary 

data/spectra for each potential hit, because the spectra quality is enormously variable.  

There actually are a handful of hits from the probe treated sample.  Some of them are 

false positives due to reasons such as incorrect charge states on the precursor ion, but 

some of them may actually be real adducts.  The issue so far has been that even when a 

MS2 spectrum appears to contain 2 or more ions from the candidate list and came from a 

MS1 precursor ion that matched the m/z of a theoretical peptide there were no y/b ions 

present and the intensity of the MS1 precursor ion is so low that without sequence 

information (which can’t even be obtained manually) we can’t be sure the data are 

believable.   

 Interestingly, all of these potential hits elute off of the column near the end of the 

LC gradient which actually makes sense, because we are labeling (what we think is) a 

hydrophobic peptide with a very hydrophobic compound (even by small molecule 

standards).  The photoprobe itself elutes well after most of the peptides do on the LC run 

(Figure 25).  For these reasons we modified the chromatography to include an extended 

isocratic hold at 99% ACN at the end of the run in an effort to ensure that we elute all of 
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the hydrophobic (potentially made even more so by the addition of 15) peptides off of the 

column.  It would be quite unfortunate if we haven’t detected an adduct, because the 

labeled peptide was never injected into the mass spectrometer (an astute comment made 

by Professor David Tabb).  At the time of this writing I had prepared new samples with 

PLD1c.d311 (no affinity tags present) and Kristie had run the samples using more 

aggressive chromatography aimed at eluting highly nonpolar compounds, but the data 

analysis is in process.  

 

Materials and methods 

HFMT.PLD2.d308 expression and purification 

 Amino acids 309-933 of human PLD2 were amplified and ligated into a pDEST 

derived vector containing an N-terminal 6x-His, Flag, MBP, TEV protease cut site 

sequence.  HFMT.PLD2.d308 in pDEST8 was used to create bacmid DNA and 

ultimately high titer baculovirus according to the manufacturers directions. 

HFMT.PLD2.d308 expression and enzyme activity in Sf21 cell lysates were verified via 

western blot and PLD in vitro enzyme activity assay respectively. 

 Monolayer cultures (150 mm plates) of Sf21 cells were infected with the 

appropriate amount of baculovirus (typically 150-200 ul, based on batch of P3 virus) and 

harvested 72 hours later.  Alternatively, suspension cultures of Sf21 cells were used, but 

expression was not as reliable in this system.  Cells were scraped, resuspended and 

collected via centrifugation at 500 x g for 5 minutes.  Cells were lysed via sonication in a 

lysis buffer (8.1 mM Na2HPO4, 1.5 mM KH2PO4 pH 7.5, 137 mM NaCl, 2.5 mM KCl, 

0.5 mM DTT and Roche complete (EDTA free) protease inhibitor cocktail).  Lysates 
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were clarified by ultracentrifugation at 100,000 x g for 60 min at 4 °C.  Clarified lysates 

were filtered through a 0.2 micron filter and loaded onto a 1 ml bed volume HiTrap 

nickel chelating column that had previously been equilibrated with the lysis buffer minus 

DTT and protease inhibitors.  The column was washed until the UV absorbance at 280 

nm returned to base line.  Non-specific proteins were eluted using a 32 mM imidazole 

step gradient.  HFMT.PLD2.d308 was eluted using a linear gradient from 32-400 mM 

imidazole over 10-20 column volumes.   

At this point, if the protein was to be used with the affinity tags present, then it 

was pooled, concentrated to about 0.5 ml and run over a 24 ml Sephadex 200 (GE) size 

exclusion column that had previously been equilibrated with the wash buffer from the 

nickel affinity column (8.1 mM Na2HPO4, 1.5 mM KH2PO4 pH 7.5, 137 mM NaCl, 2.5 

mM KCl).  Note, after the affinity column DTT was added to a final concentration at 1 

mM, and again DTT was added to the final purified protein after size exclusion 

chromatography at 1 mM.   

If the protein was to be used without the affinity tags present the protein was 

pooled, concentrated and incubated with TEV protease at 16 oC overnight (0.1 mg TEV 

per 1 mg of PLD enzyme).  The next day this material was incubated with amylose resin 

(NEB) in order to scavenge the free HFMT tag and uncleaved protein.  The resin was 

pelleted and supernatant was then filtered through a 0.2 micron filter and run over a 24 

ml Sephadex 200 (GE) size exclusion column that had previously been equilibrated with 

the wash buffer from the nickel affinity column (8.1 mM Na2HPO4, 1.5 mM KH2PO4 pH 

7.5, 137 mM NaCl, 2.5 mM KCl).  As described above, DTT was kept present at 1 mM 

to ensure protein stability.  Note, HFMT.PLD1c.d311 will lose activity in a matter of 
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hours if DTT is not present, but HFMT.PLD2.d308 appears to be much more stable, even 

in the absence of DTT.     

 

Modifications to PLD1c.d311 chromatography 

 HFMT.PLD1c.d311 used for proteomics purposes was purified in an essentially 

identical manner to that described above for HFMT.PLD2.d308.  Originally the protocol 

for removing the HFMT affinity tag called for rerunning that material over a nickel 

affinity column to remove the free HFMT tag and uncleaved protein; however, I found 

the amylose resin scavenging approach described above to be both much faster and more 

effective.  

 

Dialysis assay procedure 

 Various proteins (described above) were diluted to various concentrations 

(approximately 30-40 ng/ul) in a phosphate buffer (8.1 mM Na2HPO4, 1.5 mM KH2PO4 

pH 7.5, 137 mM NaCl, 2.5 mM KCl, 1 mM DTT).  Approximately 400 µl per sample 

was treated with relevant compounds and/or UV light.  For each sample, 50 µl was set 

aside and stored at 4 oC overnight while the remaining 350 µl was put into 10 kDa MW 

cutoff dialysis tubing and dialyzed against 1 L of phosphate buffer (8.1 mM Na2HPO4, 

1.5 mM KH2PO4 pH 7.5, 137 mM NaCl, 2.5 mM KCl, 1 mM DTT) at 4 oC overnight.  At 

the end of the dialysis procedure equivalent volumes from the dialyzed and nondialyzed 

samples were assayed in vitro for PLD enzyme activity (typically 10 µl).  
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Photolabeling procedure 

UV irradiation 

 Various proteins, typically at a concentration of about 2.5 µM, were incubated 

with azide or diazirine-containing photoprobes, typically at a concentration of 100 µM, 

for 15-20 minutes on ice and then 20 minutes at room temperature.  Samples were placed 

in a quartz cuvette and irradiated at either 310 or 365 nm (azide or diazirine activation 

respectively) for approximately 20 minutes.  The UV light source was a 1000 watt 

mercury lamp with an inline monochromator.  Samples were then kept on ice until 

proteolysis.      

 

In-gel trypsin digestion 

 Various proteins, typically 1 µg per lane, were run on NuPAGE gradient gels 

following the manufacturers protocols.  Gels were stained with coomassie R250 

according to well-established methods.  Special care was taken during the entire 

procedure to avoid contaminating samples with keratin from human skin and hair.  Bands 

of interest were excised from the gel via a methanol-rinsed blade and subsequently 

chopped into small cubes.   

Gel pieces were transferred to 1.5 ml tubes and destained.  To each tube was 

added ~100 µl of 100 µM ammonium bicarbonate/acetonitrile (1:1, vol/vol).  Tubes were 

agitated and washed 3 times for 10 minutes each.  Next, 200-500 µl of acetonitrile was 

added and then completely removed after 10 minutes.  Approximately 100 µl of 10 mM 

DTT was added and the tube was agitated for 1 hour, then 500 µl of acetonitrile was 

added and then completely removed after 10 minutes.  To alkylate cysteine residues ~100 
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µl 55 mM iodoacetamide (enough to cover gel material) was added and samples were 

agitated for 20 min at room temperature, in the dark.  Samples were washed with ~100 µl 

of 100 mM ammonium bicarbonate for a few minutes and them all liquid was removed.  

Next, ~100 µl of 100% acetonitrile, and samples were agitated for 5 minutes and all 

liquid was removed.  Gel pieces were dried in under vacuum for 10-15 minutes to remove 

all acetonitrile.   

Fresh trypsin (12.5 ng/µl) from a frozen stock (500 ng/µl stock, stored at -80 oC) 

was prepared by adding 10 µl of trypsin to 190 µl of 100 mM ammonium bicarbonate 

and 190 µl of water.  Gel pieces were covered in the trypsin solution and 

chilled/rehydrated on ice for 30 minutes.  Enough 100 mM ammonium bicarbonate was 

added to cover the gels pieces in liquid.  Samples were incubated/proteolyzed overnight 

at 37 oC. 

All subsequent extracts were saved and combined for analysis.  Supernatant was 

removed and saved.  To each tube was added 100 µl of water.  Samples were heated to 37 

oC for 5 minutes, vortexed for 5 minutes, centrifuged briefly at 2,000 x g and liquid 

transferred to a new tube.  Next, 100 µl of 5% formic acid/acetonitrile (1:1, vol/vol) was 

added to gel slices, they were heat to 37 oC for 5 minutes, vortexed for 5 minutes, 

centrifuged briefly at 2,000 x g and the liquid was transferred to a new tube (this was 

performed twice).  Samples were dried under vacuum for several hours.  After samples 

were dried they were resuspended in 10-60 µl of 0.1% formic acid.  Samples were then 

ready for analysis and handed off to Kristie Rose in the proteomics core facility. 

This protocol was adapted from: 

1. Vanderbilt Mass Spectrometry Research Center protocol # MSRC-R-031 
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2. In-gel digestion for mass spectromic characterization of proteins and proteomes. 

Shevchenko et al. Nature protocols. 2006. 

   
 
 
In-solution trypsin digestion 

 Various proteins, at about 2.5 - 5 µM, were first reduced with 200 µM DTT and 

then alkylated with 600 µM iodoacetamide (each added in the smallest volume practical, 

usually 1 µl).  Trypsin was used as described above in a 1:30 ratio w/w with the various 

enzymes.  Samples were then ready for analysis and handed off to Kristie Rose in the 

proteomics core facility.      

 

Proteomics methods and data analysis 

Proteolytically digested PLD1 was loaded onto a capillary reverse phase 

analytical column (360 µm O.D. x 100 µm I.D.) using an Eksigent NanoLC Ultra HPLC 

and autosampler.  The analytical column was packed with 20 cm of C18 reverse phase 

material (Jupiter, 3 µm beads, 300Å, Phenomenox), directly into a laser-pulled emitter 

tip.  Peptides were gradient-eluted at a flow rate of 500 nl/min, and the mobile phase 

solvents consisted of 0.1% formic acid, 99.9% water (solvent A) and 0.1% formic acid, 

99.9% acetonitrile (solvent B).  A 90-minute gradient was performed, consisting of the 

following:  0-10 min (sample loading via autosampler onto column), 2% B; 10-50 min, 2-

40% B; 55-66 min, 40-99% B; 60-75 min, 99% B; 75-80 min 99-2% B; 80-90 min 

(column equilibration), 2% B.  Eluting peptides were mass analyzed on a Q Exactive 

mass spectrometer (Thermo Scientific), equipped with a nanoelectrospray ionization 

source. The Q Exactive was operated in the data-dependent mode acquiring HCD 
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MS/MS scans (R = 17,500) after each MS1 scan (R = 70,000) on the 18 most abundant 

ions using an MS1 ion target of 3 × 106 ions and an MS2 target of 1 × 105 ions. The 

maximum ion time for MS/MS scans was set to 100 ms, the HCD-normalized collision 

energy was set to 27, and dynamic exclusion was set to 10 s.   
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Chapter IV 
 

 
SUMMARY AND FUTURE DIRECTIONS 

 
 

I was incredibly fortunate to have become involved in studying PLD enzymology 

and pharmacology when I did.  PLD enzyme activity in mammalian tissues was initially 

described in the 1970s (Saito and Kanfer, 1973), but human PLD1 (Hammond et al., 

1995) and PLD2 were not cloned until the late 1990s (Colley et al., 1997).  While a 

provocative paper published in 2005 showed PLD played a major role in Ras driven 

tumorigenesis in vivo (Buchanan et al., 2005) PLD1 and PLD2 knockout mice were not 

reported until 2010, while I was in graduate school (Dall'armi et al., 2010; Elvers et al., 

2010; Oliveira et al., 2010).  The first drug-like, small molecule PLD inhibitor was 

published in 2007, the same year I began graduate school (Monovich, 2007).  It is hard 

for me to imagine a better time to start working toward developing potent small 

molecule, drug-like, isoform-selective PLD inhibitors.           

Our interest in developing drug-like, small molecule PLD inhibitors stemmed, in 

part, from the fact that there were not any.  The most utilized class of chemical 

compounds to study PLD function over the past several decades has been primary 

alcohols (e.g., n-butanol).  Alcohols are often, incorrectly described in the literature as 

“PLD inhibitors.”  It is important to emphasize that alcohols are not PLD inhibitors, 

rather n-butanol (as well as some other primary alcohols) blocks PLD-catalyzed PtdOH 

production by competing with water as a nucleophile, thereby causing the formation of 

phosphatidylbutanol in a transphosphatidylation reaction.  It should come as no surprise 

that using a primary alcohol at a concentration described in percent amounts may not be a 
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completely “specific” approach.  To be fair, many studies utilized RNA interference 

techniques and/or dominant negative constructs; however, these types of studies do not 

allow us to learn much about the potential druggability of a target.   

The first drug-like PLD inhibitor to be identified was disclosed in 2007 by a 

group at Novartis that ran a high throughput screen to identify PLD2 inhibitors.  Their 

effort identified halopemide (1), a psychotropic agent originally reported by Janssen in 

the late 1970s and early 1980s for numerous neuroscience indications, as a PLD2 

inhibitor with an IC50 value of 1.5 µM (Figure 1) (Monovich, 2007).   

 

Figure 1. Structure of halopemide (1) and an optimized analog called FIPI (2) (Figure adapted with 
permission from Selvy et al. 2011). 

 

This short report was limited to a succinct description of the synthesis of fourteen 

halopemide analogs where alternative amide moieties were surveyed, resulting in the 

discovery of 2, later coined FIPI, with an IC50 of 200 nM and good rat pharmacokinetics.  

However, there was no mention of PLD1 inhibition in this initial paper, but it was 

subsequently found that halopemide (1) potently inhibits both PLD1 (cellular IC50 = 21 

nM, in vitro IC50 = 220 nM) and PLD2 (cellular IC50 = 300 nM, in vitro IC50 = 310 nM) 

as does 22 (PLD1 cellular IC50 = 1 nM, in vitro IC50 = 9.5 nM; PLD2 cellular IC50 = 44 

nM, in vitro IC50 = 17 nM) (Scott et al., 2009).  Thus, halopemide (1) and all the 

halopemide analogs presented in this initial report are more accurately described as dual 
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PLD1/2 inhibitors, and even show a slight preference for PLD1 inhibition.  Despite these 

issues, the halopemide (1) scaffold is an excellent starting point for a PLD inhibitor 

development campaign due to its potent PLD inhibition, favorable preclinical drug 

metabolism and pharmacokinetic profile, and most importantly, extensive history in 

multiple clinical trials (Loonen and Soudijn, 1985).       

Halopemide (1) was evaluated in five separate clinical trials with over 100 

schizophrenic, oligophrenic and autistic patients receiving the drug (Loonen and Soudijn, 

1985).  Efficacy was observed in the majority of patients, and importantly, no adverse 

side effects or toxicities were noted, despite achieving plasma exposures of 100 ng/mL to 

360 ng/mL from the 20 mg/kg and 60 mg/kg doses of 21, respectively (van Rooij et al., 

1979).  At these plasma concentrations, PLD1 was clearly inhibited, suggesting inhibition 

of PLD by this chemotype in humans is a safe and therapeutically viable approach.    

At the time when I was just beginning to work in the Lindsley lab members of the 

Brown and Lindsley labs collaborated to publish the first significant SAR campaign 

based on halopemide (1) (Scott et al., 2009).  This broad, first generation effort did yield 

the first PLD1-selective inhibitor, VU0155069 (3), in which the chiral (S)-methyl group 

significantly enhanced PLD1 preference to ~163-fold over PLD2 in a cell-based assay 

(Figure 2).  Subsequent iterations of lead optimization reinforced the initial observation 

that the chiral (S)-methyl group increased PLD1 inhibition.  While the piperidinyl 

benzimidazolone-containing analogs failed to display any preference for PLD2 inhibition, 

a triazaspirone congener uniformly increased PLD2 inhibition to provide the first PLD2 

(10-fold PLD2 preferring) selective inhibitor, VU0155072 (4) (Figure 2). 
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Figure 2. Initial SAR studies on halopemide (Figure adapted with permission from Selvy et al. 2011). 
        

In our initial libraries we coupled a large number of eastern amide caps to the 

benzimidazolone scaffold and determined that, in general, aromatic or heteroaromatic 

functional groups conferred the most potency.  However, these functional groups did not 

provide any gains in PLD1 selectivity.  We did discover that the incorporation of trans-

phenyl cyclopropane amide, as in compound 5, increased PLD1 specificity quite 

substantially (Figure 3).  Also, by exploring various halogenations about the 

benzimidazolone scaffold we identified the 5-Br congener as conferring excellent 



 

 181 

potency and selectivity.  Ultimately, it was the installation of the (S)-methyl group in the 

ethylenediamaine linker that facilitated a dramatic increase in PLD1 selectivity.  The key 

changes that enabled continuous improvements in both PLD1 potency and selectivity 

ultimately leading to VU0359595 are shown below, highlighted in red (Figure 3). 

 

Figure 3.  Key structural modifications (shown in red) that led to the development of 6 (VU0359595) 
(Figure adapted with permission from Selvy et al. 2012).   
 

 With a potent, and highly selective PLD1 inhibitor in hand (VU0359595) I 

spearheaded an effort to improve upon the PLD2 selectivity in 4.  From the initial SAR 

depicted above (Figure 2) we gleaned that we did not have much room for 

variability/optimization with respect to the eastern amide moiety in 4.  We decided to 

focus on functionalization of the 1,3,8-triazaspiro[4,5]decan-4-one scaffold by the 

incorporation of various halogens, as this proved successful in the benzimidazolone-

based PLD1 inhibitor 6 (VU0359595).  Only the unsubstituted 1-phenyl-1,3,8-

triazaspiro[4,5]decan-4-one was commercially available, so while known in the literature, 

the halogenated congeners had to be synthesized.  I prepared the requisite halogenated 

congeners and ultimately used them to prepare a targeted 4 x 6 matrix library of twenty 

four analogs based on the PLD2 preferring inhibitor 4 (Figure 2).  While we were not 

able to match the 1,700-fold selectivity for PLD1 present in 6 (VU0359595) we were 

able to prepare a centrally penetrant, potent (PLD2 IC50 = 20 nM), 75-fold selective 
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PLD2 inhibitor, 8 (VU0364739).  It was not until the identification of the 1,3,8-

triazaspiro[4,5]decan-4-one scaffold, as in 7, that we were able to make progress toward 

the 75-fold selective PLD2 inhibitor, 8 (VU0364739) (Figure 4).  

 

Figure 4. Key structural modifications (shown in blue) that led to the development of 8 (VU0364739) 
(Figure adapted with permission from Selvy et al. 2012). 
 

 Clearly, a further increase in PLD2 selectivity would be advantageous from a 

chemical probe standpoint, but it is unlikely that any massive improvements will be made 

within the 1,3,8-triazaspiro[4,5]decan-4-one scaffold.  Indeed, a recent paper from the 

Brown and Lindsley labs contained a compound very similar in structure to VU0364739 

that appears not to inhibit PLD1 at all (IC50 > 20 µM) but the compound’s potency with 

respect to PLD2 decreased noticeably compared to VU0364739 (IC50 of 355 nm versus 

IC50 of 20 nM for VU0364739) (O'Reilly et al., 2013).  In order to obtain significant 

improvements in PLD2 selectivity it may be necessary to optimize an entirely different 

chemotype.  In the absence of structural information, one possible way to do this would 

be to run a new high throughput screen for both PLD1 and PLD2.    

We evaluated VU0359595 and VU0364739 in a battery of in vitro and in vivo 

DMPK assays to determine if these isoform selective PLD inhibitors would be suitable 

candidates with which to dissect PLD function in vivo.  PLD1 inhibitor VU0359595 was 
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lipophilic (clogP = 4.5), yet possessed ~2% free fraction in rat and human plasma protein 

binding experiments (equilibrium dialysis) and was easily formulated into acceptable 

vehicles.  In rat iv PK experiments, VU0359595 was found to be a highly cleared 

compound (Cl = 60 mL/min/kg) with a moderate half-life (t1/2 = 0.75 hr) and high volume 

of distribution (Vdss = 4.7 L/kg) (Figure 5).  A similar profile was obtained for PLD2 

inhibitor VU0364739.  While less lipophilic (clogP = 3.2), VU0364739 also displayed 

~2% free fraction in rat and human plasma protein binding experiments (equilibrium 

dialysis) and was easily formulated into acceptable vehicles.  In rat iv PK experiments, 

VU0364739 was found to be a highly cleared compound (Cl = 61 mL/min/kg) with a 

moderate half-life (t1/2 = 1.5 hr) and high volume of distribution (Vdss = 8.1 L/kg).   

 

Figure 5.  Pharmacokinetic profile of VU0359595 and VU0364739 in rat. Pharmacokinetic analyses 
performed by Satyawan Jadhav, Ryan Morrison and J. Scott Daniels (Figure adapted with permission from 
Lavieri et al. 2010). 

 

Recent genetic and knock-out studies have suggested therapeutic potential for 

PLD inhibition in Alzheimer’s disease and stroke.  Additionally, there is some interest in 

targeting certain brain cancers with PLD inhibitors.  Therefore, centrally penetrant PLD 

inhibitors would be of great value for preclinical target validation.  To address this, both 

VU0359595 and VU0364739 were dosed at 10 mpk po in a standard 90 minute single 

point brain:plasma (PBL) study.  While levels of VU0359595 were below the level of 

quantitation in the brain, VU0364739 displayed a Brain/Plasma ratio of 0.73 thereby 
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representing the first centrally penetrant PLD inhibitor we have characterized (Figure 5).  

Unfortunately, the clearance values of both VU0359595 and VU0364739 are 

approximately equal to liver blood flow in a rat.  Notably, I did not perform a lead 

optimization campaign with the explicit goal of improving the compounds’ in vivo 

disposition; however, some amount of DMPK optimization would certainly allow us to 

make stronger arguments about the drug-likeness potential of these compounds.  

 In addition to the chemical synthesis and optimization of the compounds 

described in this dissertation I also endeavored to gain some understanding of how these 

compounds inhibit PLD.  Given that no human PLD enzyme has ever been crystallized I 

knew it was extremely unlikely we would be able to obtain a cocrystal with one of these 

inhibitors during my time in graduate school.  I actually attempted to gain some insight 

into how the compounds work via a wide range of biochemical approaches, many of 

which were not discussed herein.  I made a variety of constructs missing portions of the 

N-terminus of PLD1 and screened them for their sensitivity to VU0359595; none of these 

constructs were resistant to VU0359595.  I also individually mutated about 3-dozen 

amino acids in a portion of the enzyme we suspected to be involved in binding 

VU0359595; again no constructs displayed resistance to VU0359595.   

In order to directly answer the more general question about the mechanism of 

inhibition of the compounds I setup a Michaelis-Menten type assay in which the 

concentration of a short chain lipid substrate was increased (but kept monomeric, well 

below its CMC) while PLD enzyme concentration was held constant.  I had planned to 

then add various inhibitors to determine if they were competitive, uncompetitive 

inhibitors or mixed inhibitors.  Unfortunately, after optimizing various experimental 
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parameters I discovered that PLD2.d308 displays substrate inhibition kinetics (and not 

Michaelis-Menten kinetics) (Figure 6).  While it is possible to determine the mode of 

inhibition of an inhibitor in a system that displays substrate inhibition kinetics it would 

have been extraordinarily expensive to do so in our case, so much so that we decided not 

to pursue those experiments.     

 

Figure 6.  HFMT.PLD2.d308 displays substrate inhibition kinetics. 
 

 Finally, I turned my attention to photoaffinity labeling as means to potentially 

identify a region on PLD where the compound could be binding.  I utilized both azide 9 

and diazirine 10-containing photoprobes in an attempt to label PLD1c.d311 (Figure 7).  

While I was able to show acceptable potency for both photoprobes on recombinant 

PLD1c.d311 protein; show the photochemistry occurring in solution; and develop a 

method to show covalent labeling of the protein we were not, at the time of my writing, 

able to definitively identify a tryptic peptide labeled with either photoprobe.  There are 

many, many possible reasons for this and I will address a few of the most likely reasons 

and what we have done, and could do, in order to solve the relevant problems.  Nearly all 
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of the data analysis for the proteomics data was carried out by Kristie Rose and her 

colleagues in the proteomics core facility.   

 

Figure 7.  Chemical structures of azide 9 and diazirine 10-containing photoprobes. 
 

 It is possible that the photoprobe is breaking off of the labeled peptide before 

analysis in the mass spectrometer.  Even if this were true for the nitrogen-containing 

bond formed by compound 9, the carbon-containing bond formed by 10 should remedy 

this issue.  It may also simply be the case that we have not sequence covered the amino 

acid(s) labeled by the photoprobe; however, this seems unlikely because we have covered 

almost 100% of PLD1c.d311 (over multiple samples).  Finally, a more simple and 

concerning issue may have to do with the chromatography and not the MS/MS analysis 

itself.  The probe itself elutes off of the column used for the trypsin-digested protein 

sample toward the end of a long LC run.  This may be a serious issue because if the 

already quite hydrophobic probe is adducted to a large, hydrophobic peptide the labeled 

peptide may never even come off of the column.  In that case, the adducted peptide would 

never be injected into the mass spectrometer.  In an attempt to remedy this Kristie has 

modified the chromatography to much more aggressively elute nonpolar compounds, and 

those experiments are being performed at the time of this writing.   
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 I thought of an alternative approach to labeling and possibly identifying/isolating 

a compound labeled peptide based on an application of click chemistry.  Unfortunately, it 

appeared the incorporation of an alkyne into the diazirine-containing photoprobe, as in 

compound 11, caused essentially a complete loss of inhibitory activity (Figure 8).  Had 

this compound maintained some level of potency I would have used it to “click” (copper-

catalyzed 1-4 dipolar azide-alkyne cycloaddition) on any number of commercially 

available azide-containing compounds, which I would then be able to detect in various 

ways.  Initially, I planned to use an azide-biotin compound and simply do a western blot 

using a streptavidin-HRP conjugate to determine if the PLD protein had been covalently 

labeled with the alkyne-containing photoprobe.  Then, it may have been possible to pull 

out a labeled peptide containing the peptide-photoprobe-biotin conjugate and identify it 

via MS/MS.  Clearly, an area of future work could be to explore the tolerance for an 

alkyne on different regions of compounds like 11 in an effort to pursue this click 

chemistry approach.  This approach of using a clickable photoprobe has been used before 

and an excellent, recent example from the Cravatt lab was recently published in Nature 

Methods (Hulce et al., 2013).    

 

Figure 8.  Chemical structure of alkyne-containing photoprobe 11. 
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 In summary, the body of work described herein has resulted in the identification 

of key structure activity relationships that allowed for the chemical synthesis of drug-like, 

small molecule, isoform-selective PLD inhibitors.  These compounds have been and 

continue to be used as chemical probes with which to study the various signaling roles of 

PLD acting in concert with proteins such as mTOR and Akt.  Additionally, the SAR 

described herein allowed for the development of both azide and diazirine-containing 

photoactivatable probes.  Even though the biology of PLD has been studied for decades 

targeted pharmacological modulation of PLD has only recently become possible.      
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