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CHAPTER I 

 

INTRODUCTION 

 

Discovery of the LKB1 Tumor Suppressor 

LKB1 was first identified as a tumor suppressor in 1998 when it was found that 

mutations in LKB1 were associated with the rare inherited disease Peutz-Jeghers 

syndrome (PJS). This syndrome was first described by Johannes Peutz (Peutz, 1921) and 

again in 1949 by Harold Jeghers et al (Jeghers et al., 1949), who documented families in 

which several children were affected by widespread polyposis throughout the 

gastrointestinal tract, including large and small intestines and the nasopharynx; affected 

individuals also showed characteristic mucocutaneous pigmentations on the face, lips and 

mouth, as well as on the hands and in the rectal mucosa. The polyps are best 

characterized as benign hamartomous lesions, representing disorganized polyclonal 

proliferation of the multiple cell types normally present in the gastrointestinal mucosa. 

This syndrome exhibits an autosomal dominant pattern of inheritance and is associated 

with increased risk of malignant cancers within the GI tract, pancreas, breast, and lung 

(Hearle, 2006). Analysis of copy number changes within PJS hamartomas revealed 

frequent deletion of portions of chromosome 19, and these specifically affected the 

chromosome inherited from the parent unaffected by PJS (Hemminki et al., 1998). 

Further linkage analysis showed that the affected region of the chromosome – 19p13 – 

included the gene STK11/LKB1, which was affected by frame shift mutations, nonsense 

mutations, truncations, and point mutations across multiple PJS families (Hemminki et 
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al., 1998). This established LKB1 as a novel tumor suppressor, which was subsequently 

found to be inactivated by somatic mutations in approximately 30% of lung cancer 

(Sanchez-Cespedes et al., 2002) and approximately 20% of cervical cancer (Wingo et al., 

2009), and in multiple other cancer types at lower prevalence. At the time of these 

original discoveries, LKB1 had been identified as a serine-threonine kinase, but little was 

known about its biological functions.  

A breakthrough in the understanding of LKB1 function came in 2003 and 2004, 

when three independent groups found that LKB1, in a complex with the pseudo-kinase 

STRADA and the adaptor protein MO25, acts as an upstream regulator of the adenylate 

monophosphate-activated protein kinase (AMPK) (Hawley et al., 2003; Shaw et al., 

2004a; 2004b; Woods et al., 2003). AMPK is a key regulator of cellular as well as 

organismal metabolism. Thus, the identification of LKB1 as the key kinase upstream of 

AMPK disclosed a novel link between metabolic dysregulation and cancer. A large body 

of literature over the past ten years focuses on the importance of LKB1 and AMPK in 

cancer, and much has been learned about the specific pathways and phenotypes regulated 

by these important genes. 

 

Structure, Function, and Regulation of LKB1 

LKB1 is a serine-threonine kinase that has been evolutionarily conserved 

throughout animal species, with significant homology to Xenopus embryologic gene 

XEEK1 and the polarity-regulating gene Par-4 in C. Elegans (Shackelford and Shaw, 

2009). In contrast to many kinases, especially the tyrosine kinases, which require 

autophosphorylation to become active, LKB1 appears to require the formation of a 
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heterotrimeric complex with a scaffolding protein, MO25, and STRAD-alpha, a pseudo-

kinase, in order to achieve catalytic kinase activity (Zeqiraj et al., 2009). The crystal 

structure of this complex was published in 2009 (Zeqiraj et al., 2009), revealing that the 

heterotrimer adopts a globular conformation with interactions between each of the three 

proteins (Fig. 1.1a). A catalytic cleft in LKB1 binds ATP and allows docking of 

substrates for phosphorylation.  

In Peutz-Jeghers syndrome, hamartoma formation occurs with haplo-insufficiency 

of LKB1 and the remaining wild-type allele is infrequently disrupted. However, in human 

tumors somatic loss of both LKB1 alleles appears to be required, and western blot 

analysis of cell lines with LKB1 loss typically reveals either no protein expression or 

expression of mutated LKB1 protein exclusively. Disruption of LKB1 can take place by a 

variety of mechanisms. Loss of LKB1 expression can occur due to homozygous deletion 

(Gill et al., 2011; Matsumoto et al., 2007) or methylation (Esteller et al., 2000). 

Mutations affecting LKB1 can result in a loss of expression with splice site, nonsense, or 

frame shift mutations (Fig. 1.1b). Intragenic deletions affecting one or more exons have 

also been demonstrated (Matsumoto et al., 2007). Somatic missense mutations occur in 

lung cancer and are found throughout the entire protein. Because of the existence and 

prevalence of multiple mechanisms of tumor suppressor inactivation, I will refer to these 

collectively throughout this work as instances of ‘LKB1 loss,’ or ‘LKB1-deficient 

tumors,’ with the presumption – supported by our later findings – that these alterations 

yield similar tumor phenotypes.  
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Figure 1.1 Structure of LKB1 and disrupting mutations observed in cancer. 
A, Crystal structure of LKB1 in trimeric complex with MO25 and STRAD-alpha 
(Zeqiraj et al, 2009). Amino acids altered in cancer are marked, with blue coloration 
for sites altered in a single case, and magenta marking recurrently altered sites 
affecting the catalytic cleft. B, Types of mutations affecting LKB1 in NSCLC, by 
mutation class and prevalence. C, Schematic of LKB1 representing protein domains, 
phosphorylation sites, and locations of all sites mutated in more than one case of lung 
cancer or Peutz-Jeghers syndrome (modified from Alessi et al, 2006). Numbers in 
parentheses indicate number of mutations affecting site. CRD: C-terminal regulatory 
domain; NRD: N-terminal regulatory domain. Asterisk indicates known sites known to 
disrupt catalytic activity. Delta indicates a cluster of mutations in a region that disrupts 
protein stability and/or STRAD/MO25 complex formation (Zeqiraj et al, 2009). 
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In my analysis of published LKB1 sequencing studies of human tumors, roughly 

30% of discovered mutations were frameshift, 30% nonsense, 30% missense, and 10% 

affected splice sites or were not fully described (Fig. 1.1b). However, intragenic 

deletions, and epigenetic silencing were not directly assessed in these studies. 

Chromosomal loss is also assessed by copy number profiling, but in contrast to discrete 

alterations observed in DNA sequence, this is a continuous numeric variable, and should 

not be used to conclusively determine homozygous deletion without additional evidence. 

Thus, I will refrain from giving an estimate of the frequency of deletions based on 

genomic data. Gill et al examined loss of the LKB1 locus using chromogenic in situ 

hybridization and concluded that single copy loss of LKB1 was present in more than half 

of lung adenocarcinomas, and homozygous deletion affected 28% of samples (Gill et al., 

2011). 

Missesnse mutations affecting the catalytic cleft are quite common, with aspartate 

194, which binds a catalytic magnesium ion, being the single most common site of 

mutation, representing the site of 15% of LKB1 missense mutations (Zeqiraj et al., 2009) 

(Fig. 1.1a,c). Such catalytic mutations result in decreased kinase activity and attenuated 

phosphorylation of downstream targets such as AMPK, but with preservation of the 

heterotrimeric complex. Other recurrent sites of mutation affect the stability of the 

LKB1-STRADA-MO25 complex, as shown by the resultant loss of downstream AMPK 

activity and an inability of mutated LKB1 to immunoprecipitate STRAD-alpha and 

MO25 (Zeqiraj et al., 2009).  
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 LKB1 is also regulated by phosphorylation at a number of amino acid residues, 

which is known to affect nuclear/cytoplasmic localization, but could also affect 

specificity of substrate binding, heterotrimer stability, or kinase activity (Fig. 1.1c). The 

tumor suppressive effects of LKB1 and its ability to activate AMPK appear to be 

dependent on cytoplasmic localization. Phosphorylation of serine 307 by protein kinase C 

(PKC) has been found to induce nuclear localization and function (Xie et al., 2009). 

Similarly threonine 428 in the carboxyl terminal tail of LKB1 is phosphorylated by 

multiple kinases, including ERK1/2, RSK, PKC, and PKA, representing a point at which 

a number of signaling pathways can impact the function of LKB1 (Alessi et al., 2006; 

Sapkota, 2001; Xie et al., 2008). Oncogenic BRAF has also been shown to induce 

phosphorylation of LKB1 at this site due to elevated ERK1/2 activity, and this results in 

attenuation of LKB1 activity and decrease in the activation of AMPK in response to 

energy stress (Bin Zheng et al., 2009; Esteve-Puig et al., 2009). Interestingly, the 

carboxyl terminus of LKB1 has a number of positively charged amino acids that are 

affected by somatic mutations, suggesting that these mutations could result in 

electrostatic effects similar to phosphorylation of threonine 428. 

Other potential modes of regulation have also been demonstrated. Transcriptional 

regulation of the LKB1 gene itself affects its expression and could affect its level of 

functional activation; this has been shown to be dependent in part on the transcription 

factors SP1 and FOXO3 (Lützner et al., 2012a; 2012b). Activity of LKB1 can be 

regulated by altering its interactions with binding partners STRAD-alpha and MO25-

apha. The expression MO25-alpha is regulated in part by mir-451, which has been shown 

to inhibit MO25-alpha expression and thus downregulate LKB1 activity in glioma to 
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allow adaptation to metabolic stress (Godlewski et al., 2010). Experimentally induced 

mutations in STRAD-alpha and MO25 can also result in loss of complex formation and 

LKB1 activity (Zeqiraj et al., 2009). Homozygous deletion of STRAD-alpha results in a 

rare genetic disorder – polyhydramnios, megalencephaly and symptomatic epilepsy – 

resulting from loss of LKB1 activity in neurons and the developing brain (Orlova et al., 

2010; Puffenberger et al., 2007). Although this would appear to be a potential additional 

mechanism for loss of LKB1 activity, somatic loss of STRADA or MO25 has not been 

reported in cancer. Mutations in downstream AMPK family members can be observed in 

exome sequencing data from the Cancer Genome Atlas (TCGA), but there is no evidence 

that they are functionally significant and our analysis does not show them to induce a 

similar phenotype as LKB1 loss (data not shown). The multiple levels at which LKB1 

can be regulated reflect the importance of this gene in a variety of pathways, but also 

show the complexity that can arise in understanding its effects. Many of these intricacies 

are still poorly understood.  

 

LKB1 Regulation of AMPK 

LKB1 exerts its actions within the cell by phosphorylating a family of 

downstream kinases in the AMPK family, resulting in activation (Fig. 1.2). One of the 

most studied targets of LKB1 is AMPK, which was known as an important regulator of 

cellular metabolism and glucose homeostasis prior to its connection with LKB1 (Hardie 

and Alessi, 2013). The finding that LKB1 was the main upstream activator of this protein 

established a new link between cancer and metabolism. AMPK is activated by increases 

in AMP and ADP concentrations within the cell in response to energy stress, such as  



!8!

 
 
starvation. The mechanism by which AMP levels regulate AMPK activation has been 

elucidated (Hardie and Alessi, 2013; Xiao et al., 2007; 2011). This involves four adenine 

nucleotide binding sites within the gamma subunit of the protein, which bind ATP, ADP, 

or AMP. Nucleotide occupancy for two of the sites varies according to changes in the 

intracellular concentrations of these species. Within a stressed cell, exchange of ATP for 

ADP or especially AMP causes conformational changes of the AMPK protein structure 

that both increase phosphorylation and decrease dephosphorylation of threonine 172 

within the activation loop of the protein (Hardie and Alessi, 2013; Xiao et al., 2007; 

2011). This activation induces downstream phosphorylation of the targets mentioned 

Figure 1.2 Schematic of LKB1 interactions with AMPK family members and 
their downstream effects. 
LKB1 induces the activation of 14 kinases in the AMPK protein kinase family. Only 
the activation of AMPK itself is affected by nutrient deprivation. AMPK inhibits 
mTOR and also regulates metabolic effects both acutely and through longer term 
transcriptional mechanisms. LKB1’s effects on organismal development, cell polarity 
and motility are thought to be regulated  by downstream kinases other than AMPK. 
(modified from Shackelford et al, 2009) 
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above, leading to a concerted effort to restore the energy balance to homeostasis by 

attenuating energy-consuming anabolic pathways, increasing catabolism, and slowing 

cell growth. 

AMPK phosphorylates a number of substrates, including metabolic enzymes, 

such as acetyl-CoA carboxylase (ACC) and 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR), as well as transcriptional regulators of metabolism such as peroxisome 

proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A), carbohydrate-

responsive element-binding protein (ChREBP), and sterol regulatory element-binding 

proteins (SREBP) (Alessi et al., 2006; Hardie and Alessi, 2013; Shackelford and Shaw, 

2009). These alterations have been shown to affect energy balance in response to stress; 

lacking this adaptive response can leave cells susceptible to death in such conditions. The 

LKB1 mutant lung cancer cell line, A549, undergoes approximately 80% cell death after 

24 hours of glucose deprivation, which is almost eliminated when LKB1 is restored. This 

effect was mediated in part by reactive oxygen species (ROS), and cell death could be 

decreased either by knocking down the AMPK targets ACC1 or ACC2, or by ROS 

scavengers. Inhibition of mTOR did not affect this phenotype, showing that the metabolic 

and growth signaling effects of LKB1 are distinct and have different cellular 

consequences. In cancer, loss of AMPK phosphorylation and activity is a defining 

characteristic of LKB1-deficient tumors, and this results in activation of the oncogenic 

mTOR pathway (Gwinn et al., 2008; Shaw and Cantley, 2006a), but also confers greater 

susceptibility to metabolic stress, for instance by the mitochondrial inhibitor phenformin 

(Jeon et al., 2012; Shackelford et al., 2013). Interactions between LKB1, AMPK, mTOR 

and other pathways are complex and are summarized briefly in Fig. 1.3. 
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LKB1 and the mTOR Pathway 

The mechanistic target of rapamycin, or mTOR, pathway is an important 

regulator of cellular and organismal growth and homeostasis. mTOR is a serine and 

threonine kinase in the PI3-kinase family, and its effects are carried out as part of two 

distinct large multi-protein complexes, TORC1 and TORC2 (Laplante and Sabatini, 

2012). Both of these complexes share the mTOR kinase subunit, and associated proteins 

DEPTOR, Tti1, and Tle2. In TORC1 complexes, these associate with regulatory-

Figure 1.3 Schematic of LKB1 and AMPK interactions with mTOR pathway. 
LKB1 exerts its inhibitory effects on the mTOR pathway by phosphorylating AMPK. 
This phosphorylation is promoted by conformational changes in AMPK when AMP 
levels are increased. AMPK phosphorylates raptor directly and also activates the TSC2 
tumor suppressor which further inhibits mTOR activation. Akt phosphorylation has 
opposite effects, inhibiting TSC2 and phosphorylating mTOR complex member 
PRAS40 to induce activation of the pathway (modified from Shackelford et al, 2009). 

Low  
glucose 
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associated protein of mTOR (raptor) and proline rich Akt substrate 40 (PRAS40), 

whereas in TORC2 the shared complexes associate with rapamycin insensitive 

companion of mTOR (rictor), mSin1/2 and proto1/2. These two complexes carry out very 

different roles within the cell, with each phosphorylating different substrates to induce 

distinct downstream effects and each being regulated by different upstream mechanisms. 

TORC1 is known to be regulated by upstream signals including growth factors, cellular 

energy state, amino acid availability, hypoxia, and stress. Downstream effects include 

induction of protein synthesis by activating ribosomal S6 kinase and inhibition of 4E-

BP1, activation of lipid synthesis, increase in energy metabolism by induction of HIF1a 

and increases in mitochondrial biogenesis through PPARGC1A (Cunningham et al., 

2007), and inhibition of autophagy. TORC2, on the other hand, phosphorylates protein 

kinase C, Rho and Rac proteins to regulate cytoskeletal organization and motility, and 

activates the Akt and SGK1 kinases, which induce cellular survival mechanisms and can 

attenuate metabolic transcription by inhibiting FOXO transcription factors.  

Activation of TORC1 is regulated by direct phosphorylation of mTOR or 

PRAS40 and also by a variety of processes that converge on the tuberous sclerosis 

complex TSC1 and TSC2. These proteins are tumor suppressors that inhibit mTOR 

activation by decreasing the activation of a small RAS-like protein, Rheb, through their 

GTPase activating activity. Thus, activators of TSC1/2 lead to TORC1 inhibition, while 

inhibitory effects lead to TORC1 activation. In addition to directly inhibitory 

phosphorylation of the mTOR complex, AMPK also directly activates TSC2 by 

phosphorylation, which further attenuates the mTOR pathway. In contrast, TSC2 is 

inhibited by AKT, ERK, and RSK kinases, causing the opposite effects.  
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Feedback effects are also important in the regulation of these pathways. AKT is a 

key activator of the TORC1 pathway, both by the inhibitory phosphorylation of TSC2 

and by direct phosphorylation of the TORC1 component PRAS40 (Shaw and Cantley, 

2006a). Correspondingly, activation of TORC1 is constrained by feedback inhibition of 

the PI3K/AKT pathway, which is thought to primarily involve inhibitory phosphorylation 

of the insulin receptor substrates IRS1 and IRS2, which transduce signals from upstream 

growth factor receptors to induce activation of PI3K signaling, resulting in AKT 

phosphorylation. On the other hand, activation of TSC2 has opposite effects on TORC1 

and TORC2; TORC1 is inhibited, whereas TORC2 is stimulated by TSC2 (Yang et al, 

2006; Huang and Manning, 2009). This leads to activation of AKT, resulting in feedback 

inhibition of TSC2 and restoration of balanced TORC1 activity. Thus, in TSC2 deficient 

tumors and cells, this feedback mechanism is largely abrogated, and TORC1 is 

constitutively active, while TORC2 is attenuated (Huang and Manning, 2009; Yang et al., 

2006), as is downstream AKT signaling (Gan et al, 2010). Because mTOR and AKT are 

both oncogenic pathways whose activities are linked by multiple feedback mechanisms it 

can be difficult to predict how they will interact in the context of a given cancer, or they 

might respond to perturbations, such as targeted inhibition of a pathway. Understanding 

these interactions will be important for the rational selection of targeted agents for 

particular patients, and for determining which combined treatments may be particular 

beneficial.  
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Regulation of Other Processes by LKB1 

AMPK-alpha belongs to the AMPK family of protein kinases, which includes 

AMPK-alpha and -beta subunits as well as 12 other related kinases: NUAK1, BRSK, 

SIK1, MARK1, SNRK, and their paralogs (Shackelford and Shaw, 2009). This family of 

kinases exhibits significant homology in the activation loop region, and it was 

subsequently shown that all 14 proteins are phosphorylated by LKB1. Of note, because 

the gamma subunit of AMPK is thought to be responsible for sensing metabolic stress, 

the activation of other LKB1 targets does not seem to be dependent on cellular nutrient 

state. AMPK-family kinases perform a variety of regulatory roles within the cell, 

including interaction with various transcription factors and chromatin remodeling 

proteins (Marignani, 2001; Walkinshaw et al., 2013), regulation of the cytoskeleton, and 

interactions with signaling pathways such as TGF-beta (Katajisto et al., 2008; 

Londesborough et al., 2008; Vaahtomeri et al., 2008). Through these interactions, in 

addition to its metabolic effects, LKB1 serves as a ‘master regulator’ of a number of 

phenotypes, including embryonic development (Lo et al., 2012; Ossipova et al., 2003), 

cellular polarity and motility (Alessi et al., 2006; Shackelford and Shaw, 2009). LKB1 

has been shown to regulate cell morphology and epithelial integrity through AMPK, 

SIK1 and likely other kinases (Amin et al., 2009; Eneling et al., 2012; Lee et al., 2007; 

Mirouse et al., 2007; Partanen et al., 2007; 2012). Effects on polarity and epithelial 

organization that are mediated through AMPK are affected by energy stress (Lee et al., 

2007; Mirouse et al., 2007). LKB1-induced effects on polarity can be pronounced; 

restoration of LKB1 activity has been shown to induce polarization within hours to 

previously depolarized cells even in single cell suspension (Baas et al., 2004). This was 
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also associated with the formation of brush border-like membrane protrusions in this 

colon cancer line, which was subsequently found to involve Mst4 and Ezrin (Klooster et 

al., 2009). Furthermore, the activity of oncogenic pathways such as c-Myc (Partanen et 

al., 2007), and the epithelial-mesenchymal transition (Roy et al., 2010) are altered by 

these effects as well. 

 

Somatic LKB1 Loss in Human Tumors 

As mentioned previously, germline mutations in LKB1 give rise to Peutz-Jeghers 

syndrome, which is characterized by mucocutaneous pigmentation changes and the 

development of hamartomous polyps throughout the gastrointestinal tract. Hamartomas 

are polyclonal proliferations of both epidermal and mesenchymal cells that are generally 

considered benign, although in some cases adenocarcinomas have developed within these 

growths. Moreover, the lifetime risk of cancer among individuals affected by Peutz-

Jeghers syndrome has been shown to be approximately 20-fold greater than that of the 

general population. Carcinomas arise most commonly in the gastrointestinal tract, but 

may also arise in the lung, breast, pancreas, uterus, ovary, cervix, and testes (Boardman et 

al., 1998; Giardiello et al., 1987; 2000; Spigelman et al., 1989). 

After LKB1 was identified as the causative tumor suppressor responsible for this 

syndrome, efforts have been made to estimate the prevalence of somatic loss of LKB1 

across many different tumor types. Many of these studies have been somewhat small, and 

a variety of methods have been used to ascertain LKB1 loss, including manual 

sequencing of each exon for mutations and determination of intragenic deletions 

(Matsumoto et al., 2007), single strand conformation polymorphism, determination of 
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loss of heterozygosity, and examination of LKB1 protein expression by 

immunohistochemistry or western blot. Recently, high throughput sequencing of LKB1 

and other genes has been achieved across large numbers of tumors and cell lines using, 

for instance, exon capture and next generation sequencing.  

Non-small cell lung cancer has been shown to have the highest prevalence of 

LKB1 loss among human cancers. Ji et al found alterations of LKB1, including both 

mutations and deletions, in 27 of 80 lung adenocarcinomas (34%), as well as in 19% of 

squamous cell and 9% of other lung tumors (Ji et al., 2007). Koivunen et al determined 

that somatic mutations in LKB1 affected 25 of 143 lung adenocarcinomas (17%) in an 

American population, but only 5% of tumors in an Asian cohort (Koivunen et al., 2008). 

Matsumoto et al reported a characterization of LKB1 mutations in another Asian cohort 

with a prevalence of 7%, and also documented LKB1 mutations and deletions in 20 of 51 

(39%) of NSCLC cell lines (Matsumoto et al., 2007). Because of its high prevalence in 

NSCLC, much of the research, and particularly the clinical associations with LKB1, have 

focused on this tumor type. Although it was reported in Matsumoto et al that LKB1 

mutations were significantly more likely to occur in poorly differentiated tumors, 

Koivunen et al showed that there was no significant association between LKB1 mutation 

and tumor stage, or patient outcome. The lower prevalence of LKB1 mutations among 

Asian cohorts was statistically significant in Koivuven et al, and this low prevalence has 

been observed in multiple studies (Gao et al., 2010; Okuda et al., 2010; Sun et al., 2010; 

Suzuki, 2012), suggesting that either environmental factors or genetic differences can 

affect the genetic makeup of these tumors. LKB1 loss is strongly associated with 

smoking history, with most tumors exhibiting LKB1 loss occurring in patients with 
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greater than ten pack-years of cigarette exposure, and LKB1 mutations occurring 

infrequently among never smokers (Koivunen et al., 2008; Matsumoto et al., 2007). 

Finally, LKB1 mutations in lung cancer tend to co-occur with KRAS mutations at a rate 

greater than would be expected by chance; on the other hand, LKB1 and EGFR are rarely 

mutated in the same tumors, suggesting either redundancy, or more likely antagonism 

between their effects. 

LKB1 loss in other tumor types has been studied in less detail but is significantly 

less prevalent than in lung cancer. LKB1 mutations were identified in 15 of 74 (20%) of 

cervical cancer and these mutations conferred significantly worse prognosis (Wingo et 

al., 2009). In breast cancer two large studies have identified only rare LKB1 mutations, 

occurring in one of 687 and two of 951 patients (Cancer Genome Atlas Network, 2012; 

Loi et al., 2013). LKB1 mutations have been observed in cell lines derived a wide variety 

of primary tumor types, including lung, cervix, melanoma, colon, small cell lung cancer, 

head and neck squamous cell carcinoma, prostate cancer, cholangiocarcinoma, 

hepatocellular carcinoma, ovarian cancer, thyroid cancer, renal cell carcinoma, uterine 

cancer, pancreatic cancer, certain leukemias, and breast cancer. Limited reports of 

primary tumors for most of these sites show low prevalence of LKB1 mutations, which 

for simplicity sake we will estimate to be less than 5% for most cases. More definitive 

characterization of LKB1 loss in these settings will depend on larger and more systematic 

efforts, especially those currently underway through The Cancer Genome Atlas (TCGA). 

Of the tumor types that have been characterized thus far by the TCGA, it appears that 

LKB1 mutations are found in less than 2% of colon, breast, AML, clear cell renal, 

colorectal, melanoma, glioblastoma, head and neck, ovarian, thyroid, and uterine cancer. 
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However, as we will demonstrate, reliance solely on sequence mutations probably 

underestimates the actual prevalence of LKB1 loss by a factor of two or more because a 

number of additional mechanisms can lead to functionally equivalent loss of the tumor 

suppressor activity. 

 

Mouse Models of LKB1 Loss  

The interactions between LKB1, AMPK and mTOR provide a mechanistic link 

between the tumor suppressor and both metabolic and oncogenic phenotypes that may be 

important in the biology of LKB1-deficient tumors. However, as described above, LKB1 

is an important regulator of many additional downstream mediators and has been shown 

to influence diverse phenotypes. Therefore mouse models of LKB1 loss have been 

developed to gain better understand the effects of LKB1 loss on tumorigenesis and other 

processes in vivo.  

Global deletion of LKB1 results in midgestational death, resulting in embryos that 

show significant neural tube defects, vascular and placental abnormalities, and 

mesenchymal cell death (Ylikorkala, 2001). Mice with heterozygous deletion of LKB1, 

however, are viable and develop gastrointestinal polyposis that is consistent with the 

hamartomous polyposis seen in human Peutz Jehgers syndrome. Study of the polyps that 

occur in this model has demonstrated increased activity of mTOR, hypoxia inducible 

factor 1a (Shackelford et al., 2009), and cyclooxygenase 2 (Rossi et al., 2002). Treating 

mice with oral rapamycin substantially reduced the polyp burden in these mice, and this 

could be a therapeutic strategy for patients with Peutz Jeghers syndrome (Robinson et al., 

2009; Shackelford et al., 2009; Wei et al., 2003). Increased COX2 staining has also been 
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observed in human Peutz Jeghers polyps, and both genetic and pharmacologic inhibition 

of COX2 decreased polyp proliferation in the mouse model (Udd et al., 2004). 

Interestingly, tissue specific knockout of LKB1 using a smooth muscle promoter resulted 

in LKB1 loss only in mesenchymal cells, leaving LKB1 function intact in the gut 

epithelium, which was nevertheless sufficient to produce hamartomous polyps. The 

LKB1 deficient mesenchymal cells produced less TGF-beta, resulting in decreased TGF-

beta signaling within the epithelium and enhanced epithelial proliferation, suggesting a 

stromal paracrine effect on the neighboring epithelial component of these polyclonal 

tumors, rather than direct effects of LKB1 loss (Katajisto et al., 2008). This observation 

also suggests that the effects of LKB1 loss on the biology of human tumors may differ 

substantially from the phenotypes observed in PJS polyps. 

The murine model for PJS polyposis also results in spontaneous formation of 

hepatocellular carcinomas in mice over one year old (Nakau et al., 2002), as well as 

development of uterine cancers (Contreras et al., 2008). The hepatocellular carcinomas 

were shown to exhibit loss of both LKB1 alleles (Nakau et al., 2002). However, other 

tumor types were not observed. To provide models for the phenotypes associated with 

LKB1 loss in human tumors, LKB1 has been combined with loss of other tumor 

suppressors or activation of oncogenes in a variety of experimental settings.  

Phosphatase and tensin homolog (PTEN) is another tumor suppressor that results 

in a gastrointestinal polyposis disease called Cowden’s syndrome; it acts as a 

phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase, which attenuates this secondary 

messenger of oncogenic phosphatidyl inositol 3 kinase (PIK3CA) signaling. When a 

heterozygous hypomorphic LKB1 allele is combined with PTEN heterozygous loss, 
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accelerated polyposis results with greater polyp burden (Huang et al., 2008), as well as 

the development of follicular B-cell lymphomas (García-Martínez et al., 2011). Both of 

these effects could be reversed by targeting the mTOR pathway. Similarly, when 

heterozygous LKB1 loss is studied in mice heterozygous for the tumor suppressor p53 – 

analogous to the human Li-Fraumeni syndrome – gastrointestinal polyp development is 

accelerated, and the formation of aggressive neoplasia is also accelerated and more 

diverse tumor types are observed compared to the p53 heterozygous background (Wei et 

al., 2005). 

To give more control over the context of these genetic lesions, and to achieve 

complete loss of LKB1 rather than heterozygous loss, genetically engineered murine 

models have been developed in which conditional LKB1 loss is achieved using a cre-

recombinase loxP system. LoxP sites are situated around LKB1 exons three through six, 

and allow deletion of this region when cre-recombinase is expressed (Bardeesy et al., 

2002). This allows LKB1 loss or alteration of other targeted genes to be restricted to 

particular organ systems using tissue specific promoters or locally introduced viruses. 

Restricted LKB1 loss targeted to the pancreas (Hezel et al., 2008), prostate (Pearson et 

al., 2008), breast (McCarthy et al., 2009), and endometrium (Contreras et al., 2008) 

resulted in invasive carcinomas in breast and endometrial tissue, and lower grade 

noninvasive neoplasias in the prostate and pancreas. Disordered cellular polarity was 

observed in the prostate and pancreatic lesions, and the prostatic intraepithelial neoplasia 

exhibited increased WNT, AKT, and mTOR signaling (Pearson et al., 2008).  

Targeted deletion of LKB1 in hematopoietic stem cells resulted in hematopoietic 

failure, but did not lead to leukemic transformation (Gan et al., 2010a; Gurumurthy et al., 
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2010; Nakada et al., 2010). Upon losing LKB1 these cells were initially induced to 

proliferate and expand, but were subsequently depleted. Although mTOR activation was 

demonstrated and alterations in metabolism were also observed, the failure of 

hematopoiesis could not be reversed by pharmacologic activation of AMPK or by mTOR 

inhibition; AMPK knockout did not produce the same phenotype. Rather the effect was 

shown to be due to failure of normal chromosomal segregation, which resulted in 

aneuploidy (Nakada et al., 2010).  

 

Murine Model of LKB1/KRAS Mutant Lung Cancer 

Conditional deletion of LKB1 in the lung has been achieved using the murine 

system described in the previous section (Bardeesy et al., 2002), with lung targeting 

achieved using inhaled adenovirus or lentivirus that expresses Cre recombinase. This 

system had previously been engineered to allow specific knock-in of the oncogenic 

mutant G12D KRAS allele, which resulted in the development of many KRAS-driven 

lesions. These were largely minimally invasive and could best be classified as adenomas. 

When LKB1 was deleted in a similar manner, no lung tumors developed. However, 

KRAS and LKB1 are often simultaneously altered in human tumors, with roughly 50% of 

KRAS mutant tumors exhibiting LKB1 loss in our analyses; when the mice were crossed 

such that Cre-recombinase could induce alterations of both of these genes 

simultaneously, aggressive carcinomas developed with a high propensity for metastasis. 

They exhibited histological diversity, with some tumors having adenocarcinoma 

differentiation, while others showed squamous cell morphology or mixed adenosquamous 

phenotype (Ji et al., 2007). This was in contrast to the tumors that resulted when KRAS 
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was combined with either p53 or p16 loss, which demonstrated similar aggressiveness, 

multiplicity, and metastasis, but gave rise exclusively to adenocarcinomas (Ji et al., 

2007). 

This model for LKB1/KRAS mutant tumors has been studied in more detail to 

gain insight into the behavior of LKB1 deficient lung tumors, which could lead to novel 

treatment approaches. Gene expression analysis of resulting KRAS-driven tumors 

allowed characterization of gene expression seen in KRAS/LKB1 tumors to be compared 

to those associated with KRAS/p53, KRAS/p16, or KRAS alone. The initial publication 

focused on the role of NEDD9 as an LKB1-regulated gene that induced invasion and 

metastasis in these tumors (Feng et al., 2012; Ji et al., 2007). Subsequent work expanded 

on these findings, characterizing both gene expression and protein expression in more 

detail, and comparing the phenotypes of KRAS/LKB1 metastases to those of primary 

lesions. This work identified activation of TGF-beta and SRC pathways as being 

important for the development of metastasis (Carretero et al., 2010). 

Because LKB1 plays important roles in regulating tumor metabolism, the 

resulting changes in metabolic processes, and especially the altered response to metabolic 

stress, may provide novel targeted strategies that could be used to treat LKB1 deficient 

tumors. LKB1 and AMPK play important roles in governing glucose homeostasis, and 

have been shown to be at least partially responsible for the therapeutic effects of 

metformin (Shaw, 2005). Furthermore, retrospective analysis of clinical trials in diabetes 

has shown that metformin reduces cancer incidence and mortality (Evans et al., 2005; 

Landman et al., 2010; Libby et al., 2009; Margel et al., 2013) and improves outcome after 

chemotherapy treatment (Jiralerspong et al., 2009; Tan et al., 2011). The murine model 
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demonstrated that tumors lacking LKB1 could not activate a protective AMPK response 

after phenformin inhibition, and this resulted in decreased tumor size, decreased Ki67 

staining, and increased necrosis and apoptosis compared to KRAS alone or KRAS/p53 

tumors. Defective autophagy was implicated in mediating this effect, and restoration of 

LKB1 in cell lines reversed the sensitivity (Shackelford et al., 2013). Therefore, this safe, 

cheap, and ubiquitous drug has potential as a metabolic inhibitor that could be used as a 

targeted therapy for LKB1 deficient tumors. 

The KRAS/LKB1 mouse model has also been used to probe the susceptibility of 

these tumors to potential therapeutic approaches. There are currently no targeted agents 

that have been conclusively shown to be effective in either KRAS or LKB1 mutant 

tumors, and mutated KRAS is associated with resistance to EGFR-targeted agents; in 

fact, mutated KRAS and mutated EGFR are essentially mutually exclusive. However, 

mutant KRAS activates the RAF/MEK/ERK pathway, and MEK inhibition is therefore a 

potentially attractive targeted agent in these tumors. To determine whether LKB1 loss 

influenced the susceptibility of tumors to such treatment a ‘mouse clinical trial’ was 

conducted comparing response to docetaxel plus the MEK inhibitor selumetinib in 

murine tumors with mutant KRAS alone, KRAS/p53-/- and KRAS/LKB1-/- genotypes. 

This study showed that KRAS/LKB1-/- tumors had a decreased response to MEK 

inhibition, with less reduction in growth and lacking the induction of apoptosis that was 

seen in the other two genotypes (Chen et al., 2012).  

Although these models provide an excellent means to study the function of LKB1 

loss in tumors in an in vivo setting, they have not been compared directly to human 

tumors and it is unknown how well they reflect human disease phenotypes. An alternative 
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pre-clinical model system relies on the use of cell lines derived from cancers in human 

patients. These may better represent the heterogeneity of human tumors and likely better 

represent the complex evolutionary background that gives rise to human cancer, and have 

been shown to have similar genetic alterations as primary human lung tumors (Gazdar et 

al, 2010). However, they have been cultured over extended periods in permissive 

conditions with no similarity to the tissues in which they arose, and without the influence 

of cells in the microenviroment such as immune cells, fibroblasts, and vasculature. 

 

Gene Expression Analysis 

Many different phenotypes must be altered in the evolution of a tumor. These 

have been listed broadly in the classic review ‘The Hallmarks of Cancer’ and include 

generation of growth signals, loss of response to anti-growth signals, evasion of 

apoptosis, and tissue invasion and metastasis (Hanahan and Weinberg, 2000; 2011). 

These phenotypes are complex and result from the combined effects of many signaling 

pathways that can be distinct but can also interact and overlap. Although the concerted 

actions of proteins are the final executors of these phenotypes, the activity of a given 

protein is dependent on the level of its corresponding mRNA expression, and on 

modulators of its translation, activation, and degradation. Many signaling pathways 

within the cell ultimately affect the activation of transcription factors and other 

modulators of gene expression such as micro-RNAs. Thus, the study of gene expression 

patterns associated with a particular phenotype may identify genes that represent key 

downstream effectors of the phenotype, or may allow the inference of transcriptional 

programs that have been activated.  
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For the complex network of pathways and phenotypes that are affected by LKB1, 

predicting which potential effects will actually be observed in human tumors is 

challenging. The use of gene expression analysis may be particularly helpful in 

elucidating dysregulated pathways that can form the basis for further investigation. 

Indeed, this is a key rationale for the characterization of gene expression in the 

LKB1/KRAS murine model (Carretero et al., 2010; Ji et al., 2007). In our work, we make 

use of several gene expression datasets from human resected lung tumors in which LKB1 

mutations have been determined by sequencing to determine LKB1 associated gene 

expression patterns and make inferences about the underlying biology and phenotypes of 

these tumors. Some introduction of gene expression analysis is therefore needed. 

Proteins carry out most enzymatic, structural, and signaling functions within a 

cell. Translation of a protein is dependent on the quantity of its corresponding mRNA and 

on factors that influence its rate of translation. After a protein is translated, its activity is 

regulated by a large number of posttranslational factors. The expression of a protein is 

affected by its half-life but also by modifications such as ubiquitination that can 

specifically target it for degradation. Conformational changes, cellular localization, 

formation of complexes with other protein partners, proteolytic cleavage and maturation, 

and a variety of post-translational modifications such as phosphorylation, lipidation, 

oxidation, and acetylation all affect what a given protein does within a cell. Thus, in 

many cases, the expression of a given gene and the functional activation of its protein 

product may be only weakly correlated. On the other hand, the expression of a particular 

gene, or especially of a co-expressed set of genes, may be a quite accurate reflection of 

the activity of particular transcription factors or transcriptional programs within a cell. 
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The difficulty is in identifying which sets of genes are associated with which upstream 

phenotypes or transcription factors. 

To elucidate these relationships it is useful to study the gene expression patterns 

of large collections of tumors. One of the first such studies to utilize this approach used 

DNA microarray applied to acute myeloid leukemias to demonstrate two distinct 

‘classes’ of gene expression patterns within this disease (Golub, 1999). In lung cancer 

three early studies demonstrated that particular sets of genes were co-regulated – showing 

correlated increases or decreases in expression from patient to patient – that could define 

patient subsets with differential prognosis (Beer et al., 2002; Bhattacharjee et al., 2001; 

Garber et al., 2001). Some sets were linked with putative phenotypes, for instance a set of 

co-regulated genes were identified that were associated with neuroendocrine 

differentiation (Bhattacharjee et al., 2001). A larger study then characterized the gene 

expression patterns of 442 lung adenocarcinomas to determine gene sets that influenced a 

patient’s prognosis (Shedden et al., 2008). An algorithm was used to define 100 ‘clusters’ 

of genes with similar expression patterns, and each of these was then investigated as a 

single variable to determine its association with outcome. This served as a data reduction 

approach for the purposes of the study, but by parsing the resulting lists of genes it was 

clear that many clusters could be linked to particular phenotypes. By studying the genes 

comprising these clusters, one could identify epithelial to mesenchymal (EMT) 

associated, vasculature, interferon stimulated, and lymphocyte associated genes, as well 

as genes associated with proliferation and cell cycle progression, which had strong 

associations with prognosis. 
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To go further in understanding the underlying processes driving different gene 

sets, more sophisticated analyses are required. My work has taken advantage of a great 

many publicly available resources studying gene expression patterns in collections of 

tumors and tools for interpreting these findings. Some of the most useful sources of 

information are sets of tumors in which gene expression is characterized alongside 

additional molecular characterization such as copy number alterations, somatic 

mutations, or protein expression. Such studies can employ Sanger sequencing to 

determine mutations in a defined number of genes and array-based technology to 

examine gene expression and copy number (Chitale et al., 2009; Ding et al., 2008; Hayes 

et al., 2006; Selamat et al., 2012; Wilkerson et al., 2012). Recently, the TCGA has 

published large scale, systematic, molecular characterizations of many tumor types 

including lung squamous cell carcinoma (Cancer Genome Atlas Research Network et al., 

2012) and adenocarcinoma (Cancer Genome Atlas Network, 2013). These employ exome 

capture next-generation DNA sequencing of more than 10000 genes, RNA sequencing 

for determination of gene expression, along with analysis of microRNA expression, copy 

number changes, and proteomic analysis of expression and phosphorylation of important 

proteins. These resources can allow particular gene expression changes to be linked to 

functional molecular alterations within a cancer – for instance the mutation of a known 

oncogene, or the amplification of a key transcription factor. 

Another important aspect of interpreting gene expression patterns is in comparing 

results obtained through a given analysis with gene expression changes seen in other 

experiments. If two studies examine similar phenotypes, then that phenotype may be 

associated with the expression of a set of genes that would show up in both studies. 
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Examining the amount of overlap between the two studies determines whether this is the 

case. Some overlap by chance is expected; if the number of overlapping genes 

significantly exceeds what is expected by chance then the two studies may share a 

common effect. As an example, a set of 200 genes could be found to be upregulated in 

tumors expressing mutated KRAS, and a different set of, say, 100 genes might be 

downregulated after treatment of a cell line with a MEK inhibitor. If only three genes 

would be expected to overlap by chance, but instead 30 are observed then this could 

indicate that the two studies are similar in some way.  

Sources of data abound with which to compare a gene set of interest. One useful 

collection of many diverse genesets has been compiled in the Molecular Signatures 

database (Liberzon et al., 2011). A user-friendly tool enables statistical comparisons with 

these gene lists and reports a ranked list of the most significant overlaps. Another source 

is the Connectivity Map, which characterizes gene expression changes in MCF7, PC3, 

and HL60 cell lines after four hours of treatment with one of over 1000 small molecules 

(Lamb et al., 2006). Additionally, directed searches to find studies addressing phenotypes 

of interest can be made using either the GEO or Array Express databases. These studies 

can then be analyzed and one can query personalized, user-defined gene sets. 

Statistics based on the Mann-Whitney test can determine the significance of the 

overlap, or ‘Gene Set Enrichment Analysis’ can be employed for the significance of 

overlap with a ranked list (Subramanian et al., 2005). It should be noted that many 

nonspecific effects could lead to significant overlap between studies. For instance, if two 

inhibitors both decrease proliferation, then they will likely both affect the expression of 

cell-cycle genes, which could cause a statistically significant overlap in gene expression 
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changes. Even with a very significant P-value, one could not conclude from this that the 

inhibitors shared a common mechanism of action. Thus, results should be interpreted 

cautiously and should most often be construed as hypothesis generating. When possible, 

interesting relationships derived from gene expression analysis should be confirmed by 

appropriate experiments.  
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CHAPTER II 

 

GENE EXPRESSION SIGNATURE OF LKB1 LOSS 

 

Introduction 

As we elaborated in the general introduction, LKB1 exerts complex roles within 

the cell. Its interactions with AMPK-alpha, through which it regulates metabolism and 

the mTOR pathway, are most familiar. However, LKB1 affects a variety of additional 

functions, including development, cell polarity and motility, chromatin and 

transcriptional regulation, and cell growth, by phosphorylation of 12 other members of 

the AMPK family (Alessi et al., 2006; Lizcano et al., 2004; Shackelford and Shaw, 

2009), and these perform a variety of functions. Thus, LKB1 also affects development, 

cell polarity and motility, chromatin and transcriptional regulation, and cell growth 

through its effects on these downstream kinases. LKB1 is one of the most frequently 

altered genes in lung adenocarcinomas – our work shows that approximately 30-35% of 

these tumors exhibit loss. Thus, identifying targeted treatments to which LKB1 deficient 

tumors are susceptible would be valuable to patients suffering from this disease. 

Understanding the complex interactions between LKB1 and the various downstream 

pathways that it influences may help identify such targeted strategies and could determine 

feedback and resistance mechanisms that may differ between LKB1 wild-type and 

mutant tumors.  

To study these processes, and the biology of LKB1 deficient tumors in general, 

genetically engineered murine models of LKB1/KRAS mutant lung cancer have been 
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developed. The resulting tumors are aggressive, metastasize readily, and exhibit diverse 

histological differentiation similar to that observed in human non-small cell lung cancer 

(Carretero et al., 2010; Ji et al., 2007). This model implicates upregulation of TGF-beta 

and SRC pathways in the biology of these tumors and particularly in the progression to 

metastasis (Carretero et al., 2010). In vivo testing of treatment regimens demonstrates 

that these murine tumors exhibit sensitivity to metabolic stress induced by phenformin 

(Shackelford et al., 2013), but are resistant to MEK inhibition (Chen et al., 2012). 

Although mouse models may provide a powerful tool to study tumor biology, the validity 

of the LKB1/KRAS lung tumor model in predicting human disease phenotypes has not 

been evaluated. 

In this study we perform a comprehensive analysis of the gene expression changes 

associated with LKB1 loss in human tumors. We show that LKB1 loss is associated with 

a consistent pattern of gene expression across resected human NSCLC tumors and cell 

lines. Importantly, this pattern is not recapitulated in the murine model. A predictive 

signature derived from this pattern accurately classifies mutational and non-mutational 

loss of LKB1 in multiple validation sets. We give evidence that intragenic deletion of one 

or more exons, which is observed in NSCLC cell lines, is also a common mechanism for 

loss of LKB1. The LKB1 signature is also significantly associated with LKB1 loss in 

tumors and cell lines representing non-lung primaries. Finally we show our initial work in 

developing a clinical assay for determining this signature in patient samples. 
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Methods and Materials 

 

Analysis of Publicly Available Gene Expression Data 

 Publicly available datasets were downloaded from the Gene Expression Omnibus 

(Barrett et al., 2012; Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2009) or 

from individual websites, as listed in Appendix A. Processed and normalized gene 

expression data generated from RNA sequencing of tumors characterized by TCGA were 

downloaded from the TCGA Genome Data Analysis Center (GDAC) website, as were 

data from RPPA analysis, copy number changes, and somatic mutations. For many tumor 

types, including lung adenocarcinoma, tumor characterization by TCGA is ongoing. All 

data used in this thesis were from the data update of September 15, 2013. For RNA 

sequencing expression data, the log2 RSEM normalized files were used. Processed data 

uploaded to GEO by their original contributors were downloaded as ‘series matrix.txt’ 

files. In cases where data were presented as linear expression values, log2 transformed 

values were used. For analyses in which gene expression data from several studies were 

pooled, probeset expression values were standardized within each dataset by subtracting 

the mean value and dividing by the standard deviation. To collapse gene lists such that 

each gene was represented only once in our analyses, standardized scores from multiple 

probesets representing the same gene were averaged to give a single value. 

 

Determining Exon-Imbalance Score 

 Exon-level RNAseq data for TCGA-characterized lung adenocarcinomas were 

downloaded from https://confluence.broadinstitute.org/display/GDAC/Home. The reads 
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per kilobase per million (RPKM) expression data for the ten exons in LKB1 were 

extracted manually for each of 446 lung adenocarcinomas. For each patient, the measured 

expression of each exon was divided by the total expression for all ten LKB1 exons to 

give the fraction of reads corresponding to that exon. We then looked at the distribution 

of these fractions across all 446 tumors and calculated an exon loss score by subtracting 

the mean exon expression fraction from the observed exon expression fraction for each 

tumor and dividing by the standard deviation for all 446 tumors. Thus, if a patient had a 

score of negative two for the third LKB1 exon, this indicates that the fraction of reads 

corresponding to exon 3 is two standard deviations below the average fraction observed 

across all tumors. Finally, because exon loss could affect any exon in the gene we used 

the minimum score across all ten exons as a single exon-loss score for each tumor. 

 

Analysis of Gene Expression Associated with LKB1 Mutations 

 For clinical and cell line datasets in which LKB1 status was known, a Student’s t-

test was used to determine statistically significant in gene expression between LKB1 

mutant and wild-type tumors. For cell line data, LKB1 mutation status was annotated 

using the Catalog of Somatic Mutations in Cancer (COSMIC) database (Forbes et al., 

2001; 2010), the Cancer Cell Line Encyclopedia (CCLE) resource (Barretina et al., 

2012), and individual publications. For data from the Directors Challenge Lung 

consortium (Shedden et al., 2008), LKB1 mutation status was unknown, and associations 

with LKB1 expression were determined using P-values derived from linear regression 

modeling, fitting the expression of each probeset to the expression of each of the two 

probesets corresponding to LKB1: 204292_x_at and 41657_at. These analyses were 
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performed using the R Bioconductor software platform, with the lm () function in the 

limma package. 

 

Development of LKB1-Deficient Gene Signature 

 We used a training and testing approach to develop and test a gene signature 

capable of classifying LKB1-deficient tumors. There was no use of testing set samples at 

any point during the training process. We generated three gene lists using statistical 

comparisons from two training sets: the Wash U (Ding et al., 2008) set with comparisons 

to documented LKB1 mutations and the Michigan samples from the Director’s Challenge 

Consortium (Shedden et al., 2008) with comparisons to LKB1 expression. The LKB1 

classifier was taken as the intersection of these three lists. 

ListA in Wash U: 
All probesets ‘x’ such that raw P-value < 0.01 for Student’s t-test comparing 
LKB1 mut (n=7) vs LKB1 WT (n=34), resulting in 601 selected probesets. 
 

ListB in Mich:  
All probesets ‘x’ such that raw P-value < 0.01 for linear regression model of 178 
tumors, resulting in 3679 probesets: 

  expr (204292_x_at)  ~ a * expr (x)  +  b 
 
ListC in Mich:  

All probesets ‘x’ such that raw P-value < 0.01 for linear regression model of 178 
tumors, resulting in 3467 probesets:  

  expr (41657_at)  ~ a * expr (x)  +  b 
 
Classifier  =   (ListA) ∩ (ListB) ∩ (ListC) 

 Lists B and C show a high degree of overlap, sharing more than half their genes, 

as they are derived from the same source and represent association with the two distinct 

LKB1 probesets. The intersection of the three lists results in a classifier of 167 probesets, 

a significantly larger intersection than expected by chance (P-value = 6.8e-38 by 
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hypergeometric test). Standardized values were then averaged across probesets 

representing the same gene to give a final set of 129 standardized gene expression values. 

Using different P-value cutoffs gave similar classification results of unknown lung cancer 

samples (classification concordance greater than 90%). 

 

Linear Regression Analysis to Classify Clinical Samples 

 To provide a scheme of patient classification that was not dependent on 

hierarchical clustering analysis, a linear regression model was used to determine the 

association between LKB1 loss and each of the four transcriptional nodes observed. 

Using the expression data from the Michigan training cohort, the cluster scores identified 

in the previous section were used as four variables in a linear regression model to 

determine the best fit for LKB1 mRNA expression, as measured by the 41657_at 

probeset: 

expr (41657_at)  ~ a * expr (LKB1_loss) + b * expr (Mito)+ 
c * expr (NRF2)+ d * expr (Down) 

 

The 16-gene LKB1-loss score was found to have the strongest association with LKB1 

loss and inclusion of additional variables in the classification model did not substantially 

affect its accuracy, with concordance in sample classification greater than 90% and 

equivalent performance in detecting LKB1 mutations (22 of 26 using LKB1-loss score 

alone versus 23 of 26 for a combined model). Thus, the 16 gene LKB1-loss score was 

used to classify the LKB1 loss status of samples in the remainder of this study. A cutoff 

of 0.2 was used to delineate LKB1 loss from LKB1 wild-type, resulting in the 
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classification of approximately 30-35% of lung adenocarcinomas as having loss of 

LKB1, similar to the fraction observed by hierarchical clustering.  

 

Determining Association with LKB1 Loss 

 Our LKB1 classification score was used to predict LKB1-loss status for unknown 

samples from eight collections of resected lung adenocarcinomas (total n=851). The 

accuracy of predicting LKB1 mutations was assessed in resected LUAD using both the 

TCGA dataset (Cancer Genome Atlas Network, 2013) and the pooled MSKCC2 (Chitale 

et al., 2009), UNC (Wilkerson et al., 2012), and USC (Selamat et al., 2012) datasets, 

while predictions of LKB1 mutations in cell lines were assessed in the pooled Sanger and 

CCLE datasets. In tumors with known mutation status, three groups of tumors were 

considered: tumors with identified mutations in LKB1; tumors without observed 

mutations but predicted by the gene expression signature to have loss of LKB1; and 

tumors without mutations predicted to be LKB1 wild-type. Expression of LKB1 mRNA 

and of pAMPK-T172 was compared between these groups using a Student’s t-test. 

 LKB1 mutation data was also available for the MSKCC1 (Chitale et al., 2009) 

dataset and these samples represented another potential test set. However, for unknown 

reasons univariate analysis comparing reported LKB1 mutant and wild-type tumors in 

this dataset yielded fewer significant gene associations than would be expected by 

chance. In this dataset only five probesets out of 22000 passed a P-value cutoff of 0.001; 

in contrast for the Wash U (Ding et al., 2008) and MSKCC2 (Chitale et al., 2009) 

cohorts, 118 probesets and 162 probesets passed this cutoff, respectively. Furthermore, 

the top ranked genes associated with LKB1 mutations in this dataset showed no 
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significant overlap with the consistent pattern of gene expression observed in each of the 

other clinical and cell line datasets (Fig. 2.1a). Based on these findings we considered this 

dataset an outlier and excluded these data from our validation. 

 

Results 

LKB1 Loss Results in Consistent Gene Expression Changes in Human Tumors 

 The effects of signaling pathways are mediated in part by activation of 

transcription factors affecting the expression of downstream genes. Inferences drawn 

from the analysis of the dysregulated genes may disclose novel links between pathways 

and phenotypes that would otherwise be difficult to predict. However, a variety of genes 

are functionally mutated in cancer, and not all of these will necessarily produce distinct 

patterns of gene expression. We first became interested in the effects of LKB1 loss on 

gene expression changes when we observed that many LKB1 mutant cell lines were 

grouped together after we looked at similarities in their overall gene expression using 

unsupervised hierarchical clustering. This effect appeared unlikely to be due to chance, 

and after more careful inspection, was being driven primarily by a number of genes that 

were over-expressed by the cell lines with LKB1 mutations. Indeed, we confirmed the 

association in a second cell line dataset as well as the limited clinical datasets available at 

the time. This project grew from that initial observation, as we wanted to further 

characterize these genes to determine what molecular phenotypes might cause their 

dysregulation and especially to determine targetable pathways that could be tested for 

benefit in the clinic. 
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To determine whether LKB1 loss was more broadly associated with a consistent 

pattern of gene expression changes, we first identified all lung cancer datasets in which 

LKB1 mutation status was known, which included six set of resected lung 

adenocarcinomas referred to as MSKCC1 (Chitale et al., 2009), MSKCC2 (Chitale et al., 

2009), Wash U (Ding et al., 2008), UNC (Wilkerson et al., 2012), USC (Selamat et al., 

2012), and TCGA (Cancer Genome Atlas Network, 2013) as well as two large collections 

of NSCLC cell lines – GDSC (Garnett et al., 2012) and CCLE (Barretina et al., 2012) and 

data from two studies using the LKB1/KRAS murine model (Carretero et al., 2010; Ji et 

al., 2007). Differential gene expression between LKB1 mutant and LKB1 wild-type 

samples was assessed by a Student’s t-test, and genes were then ranked by statistical 

significance for each dataset. Additionally, a lung adenocarcinoma dataset in which 

LKB1 status was unknown – samples from the University of Michigan characterized in 

the Director’s Challenge lung cohort (Shedden et al., 2008) – was included, and 

associations with LKB1 were made based linear regression to look for correlations with 

the mRNA expression of the LKB1. These LKB1-associated gene lists were then 

compared pairwise across all datasets, and the statistical significance of gene overlap 

shown visually (Fig. 2.1a). This reveals a consistent pattern of gene expression associated 

with LKB1 loss across human datasets (median P-value = 4.0e-22 for 45 pair-wise 

comparisons). Murine LKB1 loss also resulted in a consistent gene expression signature 

across the two studies, but without significant overlap with the human studies, suggesting 

important differences in tumor biology between mouse models and human tumors.  
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Figure 2.1. LKB1 loss produces a characteristic pattern of gene expression. A, The 
significance of gene overlap is shown for pairwise comparisons of the top 200 genes over-
expressed in tumors with LKB1 loss in 15 studies of lung adenocarcinomas. Asterisks indicate 
comparisons between cell lines expressing vector control and those expressing wild-type 
LKB1. P-values from a hypergeometric test are color coded according to the legend. B,C, 
Unsupervised hierarchical clustering resected lung adenocarcinomas from the Michigan cohort 
of the Director’s Challenge study (B, n=178) or the TCGA (C, n=446) using a 129 gene 
signature of LKB1 loss. Tumors are shown on the horizontal axis, with loss of LKB1 
highlighted in red; genes are shown on the vertical axis, with four clusters of gene expression 
highlighted in red; names given to these clusters correspond with pathways implicated by our 
statistical analyses.  
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In addition to this visual depiction of the P-values for these associations, we also 

performed Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) between 

the LKB1-associated genes in the TCGA and those derived from each of the other 14 

studies (Fig. 2.2). We used this analysis tool to rank 11933 genes in the TCGA according 

to their statistical association to LKB1 mutations. Then for each other study, the top 200 

LKB1-associated genes were plotted as ‘hits’ along this ranked distribution. An 

‘enrichment score’ is calculated based on this distribution, with higher values indicating a 

greater degree of similarity. In Fig. 2.2, we present the enrichment plots, along with the 

enrichment scores, the number of overlapping genes when comparing the two sets of 200 

genes, and the P-value for this overlap, which corresponds to the color-coded P-value 

shown in Fig. 2.1a. This gives more detailed evidence for the similarities seen in these 

datasets. 

 We next wanted to determine whether the genes associated with LKB1 loss could 

be used to generate a consistent signature that could classify tumors that had lost LKB1, 

and also to determine the correlation patterns of these genes, which could reflect 

underlying phenotypes within the tumors. Although our initial observation of LKB1-

associated gene expression was made in cell lines we decided to focus our subsequent 

analysis on resected lung cancer, where a large number of datasets were available, 

comprising over 1000 lung adenocarcinomas in total. As mentioned previously we 

identified six collections of resected lung adenocarcinomas in which LKB1 had 

undergone sequencing for somatic mutations (9-12). To preserve some of these datasets 

for validation purposes we used LKB1 associations from two studies as a training cohort. 

We used the Wash U (Ding et al., 2008) dataset of 41 tumors that contained 7 LKB1  
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Figure 2.2. Gene Set Enrichment Analyses of LKB1 associated 
genes. Gene set enrichment analysis from five resected human lung 
adenocarcinoma datasets (A), four studies of cell lines, including 
the LKB1 add-back experiments performed in this work (B), and 
four comparisons from two mouse studies (C) shown. Analysis was 
performed using the top 200 genes associated with LKB1 in each 
of the listed studies, compared to ranked associations with LKB1 
mutations from the TCGA (x-axis). The distribution of the 200 
genes is shown as black hash marks along the x-axis. The 
enrichment score is plotted on the y-axis, and the maximum 
enrichment score is given for each plot. Also shown are the number 
of overlapping genes with the top 200 genes in the TCGA study, 
and the p-value for the significance of this overlap, calculated using 
the hypergeometic test. The number of overlapping genes expected 
by chance is four. 
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mutations to identify differentially expressed genes using a Student’s t-test, and the 

Michigan set of 178 lung adenocarcinomas with unknown LKB1 mutation status, from 

which differentially expressed genes were identified by performing linear regression with 

the mRNA expression of LKB1. The overlapping genes from these two approaches 

defined a set of 129 genes associated with LKB1 loss. Unsupervised clustering of these 

genes identified a subset of 30-35% of lung adenocarcinomas that express an LKB1-

deficient signature (Fig. 2.1b). We identified four transcriptional nodes of genes that 

showed high correlation in expression, which have been marked in this figure and named 

by key pathways implicated in our subsequent statistical analysis: 'mito/mTOR', 'NRF2', 

'FOX/CREB' and 'Down-regulated'. We can see that these are observed across two 

independent sets of lung adenocarcinomas – the 178 tumors in the Michigan training set 

(Shedden et al., 2008) and the 446 tumors characterized by the TCGA (Cancer Genome 

Atlas Network, 2013). Thus, they represent consistent and reproducible genesets that may 

be driven by common underlying transcription factors or phenotypes. The 

characterization of these genes and interpretation of the potential phenotypes associated 

with them is developed in the following chapter of this work. 

 

A 16-Gene LKB1-loss Classifier Accurately Predicts Mutational and Non-

mutational Loss of LKB1 in Resected Human Lung Adenocarcinomas 

 Using unsupervised hierarchical clustering resulted in two visually distinct groups 

of tumors, which we found to be strongly associated with LKB1 loss (Fig. 2.1b). 

However, because each transcriptional node represents an independent phenotype, not 

every tumor with LKB1 loss will exhibit high expression of each node, and conversely, 
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activation of some these nodes can occur without LKB1 loss. Because of this, a simplistic 

clustering approach that attempts to convert the expression of multiple phenotypes into a 

single binary classification can be unreliable and inconsistent between datasets. For 

instance, in every dataset there is a subset of tumors that have activation of NRF2-driven 

genes without expression of the remainder of the LKB1-associated genes. In certain 

datasets, these samples will be clustered with the LKB1 wild-type group, while in other 

sets they will cluster with the LKB1-deficient group. A more accurate way to approach 

the data is to consider each of the observed transcriptional nodes to be an independent 

phenotype reflected by the expression of a set of genes. Thus, for each individual node 

one could make a binary classification, but when more than one node is considered this 

results in all possible combinations of the two phenotypes. We returned to the training set 

to determine which of the four transcriptional nodes had the strongest association with 

LKB1 loss, which revealed that 16 genes with high correlation of expression – labeled as 

the FOX/CREB cluster in Fig. 2.1b – had the strongest association to both LKB1 

mutations and LKB1 mRNA expression. These genes comprising this cluster are AVPI1, 

BAG1, CPS1, DUSP4, FGA, GLCE, HAL, IRS2, MUC5AC, PDE4D, PTP4A1, RFK, 

SIK1, TACC2, TFF1, and TESC.  

 The expression of these genes can be combined to give a single ‘LKB1-loss 

score’, as detailed in the methods section. Higher scores indicate a greater likelihood of 

LKB1 loss. Among resected lung adenocarcinomas, these scores are found to occur in a 

bimodal distribution, as shown in (Fig. 2.2a) for the TCGA lung adenocarcinomas. By 

solving for the parameters of the two underlying normal distributions, we can see that 

there is a high score population of tumors that have lost LKB1, with a mean score of 0.79 
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and a standard deviation of 0.43, and a low score population of tumors with WT LKB1, 

 

with a mean score of -0.42 and a standard deviation of 0.36. The proportion of tumors 

that belong to the LKB1 loss group is 0.34. From this calculation we can also derive the 

probability of LKB1 loss for any given score, which is plotted for the TCGA cohort of 

tumors. Throughout our work we have used an LKB1-loss score of 0.2 to delineate the 

classification of LKB1 loss from LKB1 WT, which corresponds to a probability of LKB1 

loss of 63%. Because a certain percentage of tumors fall into an area of overlap between 

the two normal distributions, there is an inherent rate of misclassification when 

converting from a continuous probability score to a binary classification. Our bimodal 

parameters also allow estimation of this misclassification rate, which we expect to be an 

Figure 2.3. LKB1 loss scores exhibit a bimodal distribution. A, Population density 
graph showing the distribution of LKB1 loss scores seen in TCGA lung 
adenocarcinomas (n=446). Solid curve in black indicates the actual distribution; 
dashed red curve shows the results of a bimodal curve fit to the experimental data. 
Parameters for this fit are listed. B, Plot of probability of LKB1 loss at different values 
of the LKB1 loss score, as calculated by the best fit parameters. A score cutoff of 0.2 
was used throughout the work to discriminate LKB1-loss from LKB1 wild-type; the 
classifications associated with scores is colored red for LKB1 loss or blue for LKB1 
wild-type. 
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overall misclassification rate of 6.5%, with 4.5% false positives among the tumors called 

LKB1 loss, and 7.3% false negatives among tumors called LKB1 WT (Fig.2.2b). 

 We next tested the accuracy of this 16-gene signature in predicting LKB1 

mutations in two clinical validation sets: a pooled analysis of previously published 

resected lung adenocarcinoma and lung adenocarcinomas characterized by the TCGA. 

LKB1 mutations were accurately predicted in each of these validation cohorts, detecting 

22 of 26 somatic LKB1 mutations in the pooled cohort and 65 of 67 mutations in the 

TCGA cohort (sensitivity 0.85 and 0.97; P-value = 2.8e-9 and 9.4e-32 by Fisher’s exact 

test; Fig. 2.4a; Fig. 2.5a,b). To ensure that our results were not influenced by our choice 

of training set, we also confirmed our findings using a second classifier derived from an 

independent training cohort (Fig. 2.6). We used the same approach described above but 

started with the MSKCC2 (Chitale et al., 2009) dataset with known LKB1 mutations and 

the Director’s Challenge cohort (Shedden et al., 2008) – excluding the University of 

Michigan samples – for association with LKB1 expression. The concordance between 

this alternate training set LKB1-loss score and the original LKB1-loss score was 94% 

among the TCGA lung adenocarcinomas, and this correctly predicted 64 of 67 LKB1 

mutations (sensitivity 0.96, P-value = 2.6e-35, by Fisher’s exact test). 

 Twenty three percent of tumors without known LKB1 mutations were classified 

as having LKB1 loss. These tumors could be considered misclassified tumors, which 

would result in a specificity of the test of 0.77 for predicting LKB1 mutations. However, 

some mutations may have been unrecognized, and there are multiple mechanisms by 

which tumor suppressors can be inactivated in addition to somatic mutation. Indeed, these 

LKB1 wild-type tumors demonstrate unequivocal evidence of LKB1 loss. They exhibit 
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Figure 2.4. LKB1-loss signature is predictive of mutations and non-mutational 
loss of LKB1. A, Sensitivity and specificity of the LKB1 classifier for prediction of 
LKB1 mutations across independent testing sets; p-value represents the result of the 
Fisher’s exact test. B, C, Expression of LKB1 mRNA is shown for tumors grouped by 
LKB1 mutation and classification status among a pooled analysis of resected lung 
adenocarcinomas (B), or among lung adenocarcinomas characterized by TCGA (C). 
D, RPPA values for expression of phospho-AMPK T172 are shown for lung 
adenocarcinomas characterized by TCGA and grouped by LKB1 mutation and 
classification status. For B-D, each dot represents one tumor, with red bars indicating 
the median expression. P-values are derived from the student’s t-test comparing 
indicated groups. 
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Figure 2.5. Receiver operating characteristics for LKB1-loss score in resected 
lung adenocarcinomas and NSCLC cell lines. Receiver operating curves to show the 
relationship of sensitivity and specificity of the LKB1 loss score for detecting LKB1 
mutations in the TCGA lung adenocarcinomas (A), pooled analysis of other resected 
lung adenocarcinomas (B), or NSCLC cell lines (C). AUC refers to area under the 
curve, and the P-value reflects the results of the Mann-Whitney U test. The red dot 
indicates the location of the cutoff score of 0.2 used in this work. 
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Figure 2.6. Comparison of LKB1 loss scores derived from two different training 
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training cohort. The concordance is the percentage of tumors that are given the same 
LKB1-loss classification score by each of the two classifiers. 
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low expression of LKB1 mRNA in both the pooled analysis (P-value = 9.2e-9 by 

Student’s t-test; Fig. 2.3b) and among the TCGA samples (P-value = 5.5e-28 by 

Student’s t-test; Fig. 2.3c). Moreover, loss of LKB1 kinase activity is attested by the 

significantly attenuated phosphorylation of AMPK at the threonine 172 position (P-value 

= 4.6e-8 by Student’s t-test; Fig. 2.3d). No difference is observed in LKB1 mRNA or 

AMPK phosphorylation between known LKB1 mutants and wild-type tumors predicted 

to have LKB1 loss. Furthermore, other genes and proteins differentially expressed by 

tumors with known LKB1 mutations are concordantly dysregulated among the tumors 

with predicted loss (Fig. 2.7). This shows that in addition to predicting somatic mutations 

in LKB1, this signature detects LKB1 loss by other mechanisms, doubling the number of 

tumors identified.  

To explore additional mechanisms of LKB1 loss we used the TCGA lung 

adenocarcinoma cohort to examine copy number changes affecting the LKB1 locus on 

chromosome 19, and also exon-level expression data of LKB1 from RNA sequencing. 

Although the actual copy number of LKB1 in any tumor is a discrete integer value, 

measured copy number data are reported as a single continuous variable for all tumors; 

thus, interpreting the significance of a particular value is not straightforward. More  

extreme values indicate a greater likelihood of copy number loss and are more associated 

with homozygous loss than heterozygous loss, but no single cutoff crisply discriminates 

two copies from one heterozygous copy number loss, and no value clearly distinguishes 

heterozygous from homozygous loss. Furthermore, some tumors may have single copy 

number loss affecting LKB1, but may have a second functional copy that renders their 
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tumor LKB1 wild-type, while other tumors may have a second event that inactivates the 

other copy of LKB1, giving an LKB1-deficient tumor. 

We also calculated exon loss scores for each tumor, as described in the methods 

section of this chapter, by measuring the observed distribution of exon expression for 

each individual tumor and comparing it to the distribution observed across all 446 tumors 

in the dataset. For both exon loss and chromosomal deletion, then, we are not able to 

accurately classify the presence or absence of these lesions in a single tumor, nor can we 

use these to determine the functional status of LKB1 within the tumor. However, when 

measured across groups of tumors these variables can give useful evidence for the 

relative prevalence of these alterations and their contribution to LKB1 loss in lung 

cancer. 

Figure 2.7. Comparison of protein and gene expression differences associated 
with known LKB1 mutations or associated with predicted LKB1 loss among 
LKB1 WT tumors. A, Differences in protein expression determined by TCGA RPPA 
are shown for proteins that have significant association with LKB1 mutations (with 
p<0.01). B, Differences in mRNA expression determined by TCGA RNAseq analysis 
are shown for genes that have significant association with LKB1 mutations (with 
p<1e-6). Dots represent individual proteins or genes. The x-axis shows the difference 
in average expression between LKB1 mutant tumors and LKB1-WT tumors with WT 
classification score. The y-axis shows the difference in average expression between 
LKB1-WT tumors with a LKB1-loss classification score compared to LKB1-WT 
tumors  with a WT classification score. 
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Both of these measures showed a strong statistical association with the LKB1 loss 

gene expression score. Using a stringent cutoff of the lowest 5% of scores to define 

chromosomal or exon loss, 70-75% of tumors with these lesions had positive LKB1-loss 

scores. This specificity of approximately 0.70 was observed as the cutoff threshold was 

increased, until an inflection point was reached, after which the specificity dropped 

rapidly. For LKB1 copy number loss, 10% of tumors had scores corresponding to loss of 

a single copy of LKB1; 68% of these were LKB1-loss signature positive (P-value = 6.3e-

7 by Fisher’s exact test). For exon loss, 17% of tumors had evidence of exon loss by this 

measure, of which 71% were LKB1-loss signature positive (P-value = 8.3e-13 by 

Fisher’s exact test). The tumors that met the cutoff threshold for copy number or exon 

loss, but were classified as LKB1 wild-type by signature score could potentially represent 

misclassified cases of LKB1 inactivation. If this were the case we would expect to see 

decreased phosphorylation of AMPK, as we see with known somatic mutations and with 

LKB1 loss detected by our gene signature. To test this, we compared the pAMPK levels 

for these tumors with those LKB1 wild-type tumors that did not meet the cutoff threshold 

for exon or chromosomal loss. There was no significant decrease in AMPK 

phosphorylation in either case, indicating that the signature accurately classified LKB1 

activity.  

We next examined the distribution of these lesions among tumors with LKB1 

loss. Evidence of single copy-number chromosomal loss was present in 22% of tumors 

with known somatic mutations in LKB1, and in 18% of LKB1-loss signature positive 

tumors without a detected mutation. However, the characteristic of having exon loss was 

significantly more common among tumors without detectable LKB1 mutations (44% vs. 
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23%, P-value = 0.011). The presence of either exon loss or copy number loss was found 

in 51% of the LKB1-loss signature positive wild-type tumors. This gives evidence for 

two additional mechanisms of LKB1 loss that are quite prevalent, but undetected by the 

TCGA exon sequencing efforts; furthermore, intragenic deletion of one or more exons 

has been reported to be a common in cell lines (Matsumoto et al., 2007).  

 

The LKB1-loss Classifier Accurately Predicts Mutational and Non-mutational Loss 

of LKB1 in NSCLC Cell Lines 

Our initial comparison of LKB1-associated gene expression showed that two 

collections of NSCLC cell lines showed similarities in gene dysregulation compared to 

datasets of resected lung adenocarcinomas. Having shown that our LKB1-loss signature 

predicts LKB1 loss in resected lung adenocarcinoma datasets, we next wanted to test its 

performance among NSCLC cell lines. We calculated LKB1-loss scores as described 

previously for all cell lines included in two large collections of gene expression data, one 

characterized by the Genomics of Drug Sensitivity in Cancer study (GDSC) (Garnett et 

al., 2012) and one characterized by the Cancer Cell Line Encyclopedia (CCLE) 

(Barretina et al., 2012). Determining the presence or absence of LKB1 in the cell lines is 

not straightforward, as multiple studies have characterized mutations and protein 

expression of LKB1 in lung cancer cell lines, and identical results are not found across 

studies. For instance, the CCLE performed targeted exome-capture of LKB1 followed by 

next generation sequencing of enriched target DNA and identified LKB1 mutations in 

only eight of 113 NSCLC cell lines studies. However, of the 105 cell lines reported to be 

LKB1 wild-type, 24 have been shown to have LKB1 loss by other studies, including two 
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well studied cell lines – A549 and H460 – that have nonsense mutations that were missed 

by the exon-capture approach but were detected by the CCLE using a different 

methodology (Oncomap). Therefore, any given study may have a low sensitivity, but 

high specificity, for detecting LKB1 loss. Furthermore, different groups have employed a 

variety of approaches for detecting LKB1 loss including examination of LKB1 protein 

expression by western blot (Spoerke et al., 2012), and determining chromosomal loss or 

intragenic deletions of one or more exons within the LKB1 gene (Matsumoto et al., 

2007). We identified nine sources in which the LKB1 status of some set of NSCLC cell 

lines had been investigated and considered any mutation or loss of LKB1 described 

therein to be an instance of LKB1 loss. For determining LKB1 wild-type status we 

considered a cell line to have LKB1 WT status if no mutations were reported in either the 

CCLE or GDSC database. This approach resulted in 39 NSCLC cell lines with reported 

LKB1 loss, and 46 LKB1 WT cell lines. Of these, our LKB1-loss signature correctly 

classified 36 of 39 cell lines with LKB1 loss, while four of 46 LKB1 wild-type cell lines 

were classified as having LKB1 loss (Sensitivity 0.93, Specificity 0.91, P-value=1.2e-16 

by Fisher’s exact test; Fig. 2.4a; 2.5). 

 

LKB1-loss Classifier is Associated with LKB1 Mutations in Cell Lines Derived from 

Non-lung Primary Cancers 

LKB1 loss has been identified in other tumor types, but these have not been 

studied as extensively as in non-small cell lung cancer. It has been reported that LKB1 is 

lost in approximately 20% of cervical cancers (Wingo et al., 2009), as well as in cervical 

cancer cell lines. A very low rate – less than 1% – of LKB1 mutations has been observed 
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in breast cancer, and sporadic, low prevalence loss of LKB1 have been reported in other 

tumor types, but in many cases these characterizations have been incomplete. Using 

individual publications compiled in the Sanger Institute’s catalog of mutations in cancer 

(COSMIC) database (Forbes et al., 2001; 2010), as well as the sequencing efforts of the 

GDSC (Garnett et al., 2012) and CCLE (Barretina et al., 2012) we identified 49 LKB1 

mutations in cell lines that were not derived from NSCLC. Applying the same datasets 

and LKB1 classification score used above for NSCLC cell lines, we found a significant 

association between these mutations and our LKB1-loss score. 32 of 49 LKB1 mutant 

cell lines expressed a positive LKB1-loss score, compared to 182 of 1054 LKB1 wild-

type or unknown cell lines (sensitivity 0.66, specificity 0.83, P-value = 6.7e-13 by 

Fisher’s exact test; Fig. 2.4a). The presence and functional significance of many of these 

LKB1 mutations have not been validated, and there are likely some instances of LKB1 

loss among cell lines found to be LKB1 WT or of unknown LKB1 status. However, we 

can conclude that LKB1 loss is significantly associated with similar gene expression 

changes in these, non-lung cell lines, although additional factors may affect the 

expression of the 16 genes in the signature, which may differ between NSCLC and non-

lung cancers.  

Although small sample sizes prevented a more thorough characterization of 

performance, the LKB1 classifier reached statistical significance for predicting mutations 

in the gastrointestinal tract, melanoma, cervical cancer, and central nervous system cell 

lines (Table 2.1). LKB1 mutations in some types of cell lines were not associated with 

signature expression. Seven LKB1 mutations have been identified in hematopoietic cell 

lines, and none of these displayed a positive LKB1-loss signature. The spectrum of 
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mutations seen in these hematopoietic cell lines also appeared to be different from that 

seen in NSCLC, with only one nonsense mutation, zero frame-shift mutations, and 

several missense mutations affecting C-terminal residues that have not been observed in  

 

NSCLC or Peutz-Jeghers syndrome (Alessi et al., 2006). It is not known whether these 

mutations have functional consequences. Interestingly, other C-terminal mutations have 

been tested for phenotypic effect and do not inhibit tumor growth or induce AMPK 

phosphorylation; however, there was a significant effect on restoring cell polarity. Only 

five hematopoietic cell lines out of 200 expressed a weakly positive LKB1-loss signature, 

Table 2.1. Association of LKB1 mutations with LKB1 loss score in cell lines 
excluding NSCLC. 

Histologya 
Number 
of cell 
lines 

LKB1 
mutations 

Correctly 
classified Sensitivity Specificity P-value 

Biliary tract 11 1 (0.09) 1 1 0.7 0.36 
Breast 64 3 (0.05) 2 0.67 0.82 0.1 

Cervical 12 5 (0.42) 4 0.80 0.71 0.24 
CNS 122 1 (0.01) 1 1 0.96 0.049 * 

GI tract 179 8 (0.04) 7 0.88 0.61 0.0083 ** 
Hematopoietic 228 8 (0.04) 0 0 0.97 1 
Hepatocellular 27 2 (0.07) 2 1 0.56 0.22 

Melanoma 73 5 (0.07) 5 1 0.63 0.0095 ** 
Ovarian 57 3 (0.05) 2 0.67 0.8 0.13 
Pancreas 45 2 (0.04) 2 1 0.51 0.49 
Prostate 8 1 (0.13) 1 1 0.71 0.38 
Renal 32 1 (0.03) 1 1 0.97 0.063 
SCLC 73 6 (0.08) 2 0.33 0.94 0.073 

Thyroid 16 1 (0.06) 1 1 0.8 0.25 
Uterus 31 2 (0.06) 1 0.50 0.9 0.25 
Total 1103a 49 (0.05) 32 0.66 0.83 6.7e-13 *** 

a No LKB1 mutations were observed in bladder (n=26), meosthelioma (n=10), sarcoma (n=76), or other 
(n=13). However, these are included in the total. 
 *p<0.05 
**p<0.01 
***p<0.001 
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so the specificity was correspondingly high in hematopoietic cells. In contrast, among all 

cell lines from the gastrointestinal tract, seven of eight LKB1 mutant cell lines were 

associated with a positive LKB1-loss signature, but the specificity was lower among 

these cell lines as well (sensitivity 0.87, specificity 0.61, P-value=0.008 by Fisher’s exact 

test). It may be possible to improve the accuracy of the LKB1-loss signature by 

modifying which genes are used for non-lung primaries. 

 

Association of LKB1-Loss Signature with Loss of LKB1 in Resected, Non-lung 

Primary Tumors 

Our results from the analysis of non-lung cell lines shows that LKB1 loss has 

similar effects on gene expression across multiple histological cancer types. This may 

represent consistent LKB1-induced alterations in pathway activation. We next wanted to 

test whether LKB1 loss in primary tumors of non-lung origin showed evidence of similar 

expression of the LKB1-loss gene expression signature. We downloaded all gene 

expression, protein expression, and mutation data currently available from the TCGA 

characterization of 23 primary tumor types in addition to lung adenocarcinomas. The 

mutation rate was lower across these tumor types than observed in lung 

adenocarcinomas; these data are summarized in Table 2.2. Considering all non-lung 

adenocarcinomas together, somatic mutations in LKB1 were observed in only 24 out of 

4187 tumors. Of these, 21 tumors also had gene expression data available from RNA 

sequencing. We used a higher expression cutoff for discriminating LKB1 loss from wild-

type classification, which was necessary because the low prevalence of LKB1 loss affects 

both the specificity of the test and the actual distribution of expression scores, which are 
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based on the distribution of expression across the dataset. At this higher score cutoff, ten 

of twenty tumors with LKB1 mutations expressed a positive LKB1 signature, compared 

to 8% of tumors without LKB1 mutations (sensitivity 0.55, specificity 0.92, P-value = 

7.2e-08 by Fisher’s exact test). Due to the limited sample sizes, the only tumor type to 

reach individual significance was lung squamous cell carcinoma, in which three of three 

mutations were correctly classified. Breast adenocarcinomas and stomach 

Table 2.2. Association of LKB1 mutations with LKB1 loss score in TCGA cancer 
cohorts other than lung adenocarcinoma. 

Histologya Tumors LKB1 
mutations 

Correctly 
classified Sensitivity Specificity P-value 

Breast 759 2 (0.003) 2 1 0.91 0.066 

Cervical 38 1 (0.026) 1 1 0.95 0.13 

Colon 185 2 (0.007) 0 0 0.9 1  
 

Glioblastoma 31 1 (0.006) 0 0 0.94 1 

Head and Neck 299 1 (0.003) 1 1 0.93 0.24 

Renal Clear Cell 405 1 (0.002) 0 0 0.97 1 

Renal Papillary 102 2 (0.018) 0 0 0.89 1 

Lung Squamous 178 3 (0.017) 3 1 0.96 0.015 * 

Pancreas 32 1 (0.018) 0 0 0.91 1 

Melanoma 307 5 (0.016) 2 0.4 0.95 0.029 * 

Stomach 210 2 (0.011) 2 1 0.9 0.083 

Total 3602 21 (0.05) 11 0.55 0.92 7.2e-08 *** 

a No LKB1 mutations were observed in bladder (n=26), renal chromophobe (n=66), low grade glioma 
(n=217), ovarian (n=59), prostate (n=82), rectal (n=68), or thyroid (n=391). However, these are 
included in the total. 
 *p<0.05 
**p<0.01 
***p<0.001 
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adenocarcinomas were close to attaining significance, each with two of two mutations 

correctly classified. Half of the LKB1 mutations did not express the LKB1-loss signature. 

Using the original score cutoff only increases the sensitivity to 0.62, while worsening the 

specificity to 0.75, although this was still statistically significant (P-value = 0.001). From 

this analysis we conclude that LKB1 loss produces similar gene expression changes in 

both NSCLC and in non-lung primaries, as was the case for cell lines. However, a 

significant number of LKB1 mutations do not induce these changes. 

We also take advantage of the fact that a significant number of LKB1 lesions 

reduce the mRNA expression of LKB1 to low levels that are obvious outliers compared 

to the overall distribution of LKB1 expression in a dataset. Using the TCGA RNAseq 

expression for all primary tumor types we used very low mRNA expression (two to nine 

standard deviations below the mean) as a surrogate for LKB1 loss. Similar results were 

observed using this approach to detect LKB1 loss, with a strong statistical association 

between LKB1 loss and signature expression, but with lower sensitivity than seen in lung 

adenocarcinomas (sensitivity 0.53, specificity 0.92, P-value = 2.9e-12 by Fisher’s exact 

test). Statistically significant associations were observed for breast, cervical, lung 

squamous, and melanoma. Differences in the prevalence of LKB1 loss, and the 

sensitivity for detecting this loss were observed across the multiple tumor types assessed. 

These results are presented in Table 2.3.  

 For tumor types other than lung adenocarcinomas, the only datasets with 

mutational analysis and gene expression analysis are the TCGA dataset. However, we can 

use outlier analysis of LKB1 mRNA expression to determine LKB1 loss in other gene 

expression datasets. We identified two additional large cervical cancer datasets, and one 
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dataset from squamous cell lung carcinoma. Plotting LKB1 expression compared to 

LKB1-loss signature score demonstrates a strong statistical association between these 

phenotypes in each of these datasets (Fig. 2.8). Based on the expression score and LKB1 

mRNA expression we can also estimate the prevalence of LKB1 loss in cervical cancer to 

be around 15-20%, and the prevalence in lung squamous cell carcinomas to be about 5-

10%, while the prevalence of LKB1 loss in breast cancer is approximately 1%. These are 

consistent with previously reported rates of LKB1 loss in these cancers (Cancer Genome 

Atlas Network, 2012; Cancer Genome Atlas Research Network et al., 2012; Wingo et al., 

2009). 

Table 2.3. Association of very low LKB1 expression with LKB1 loss score in 
TCGA cancer cohorts other than lung adenocarcinoma. 

Histologya Number 
of Tumors 

Low 
LKB1 

Correctly 
Classified Sensitivity Specificity P-value 

Bladder 163 3 (0.018) 3 1 0.98 4.9E-05 *** 

Breast 914 13 (0.014) 6 0.46 0.91 7.5e-4 *** 

Cervical 116 7 (0.06) 5 0.71 0.91 3.4e-4 *** 

Head and Neck 303 1 (0.003) 1 1 0.93 0.073 

Renal Clear Cell 480 3 (0.006) 0 0 0.95 1 

Lung Squamous 408 4 (0.01) 2 0.5 0.92 0.0364 * 

Melanoma 310 5 (0.016) 2 0.4 0.95 0.02875 * 

total 4984 36 (0.007) 19 0.53 0.91 2.9e-12 *** 

a No loss of LKB1 was observed in colon (217), glioblastoma (160), renal chromophobe (66), renal 
papillary (106), low grade glioma (271), ovarian (265), pancreas (40), pancreas (176), rectal (78), 
thyroid (482), or endometrial (104) cancer. However, these are included in the total. 
 *p<0.05 
**p<0.01 
***p<0.001 
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Development of an Assay for LKB1-Loss Score Suitable for Analysis of Clinical 

Samples Using the nanoString n-Counter Assay 

We have demonstrated that our signature accurately predicts LKB1 loss in lung 

adenocarcinoma and has significant associations with LKB1 loss in other primary tumor 

types. Because our signature detects LKB1 loss that occurs both through somatic point 

mutations and other mechanisms of loss, it is a more sensitive test for LKB1 loss than 

LKB1 sequencing alone. Currently there are no anti-cancer drugs known to preferentially 

benefit tumors with LKB1 loss. However, therapeutic strategies to exploit the metabolic 

differences have shown interesting results in preclinical in vivo studies (Shackelford et 

al., 2013). Moreover, strategies that target the mTOR pathway may be attractive 

approaches as well. Furthermore, our work implicates LKB1 in regulating the apoptotic 

P-value = 0.032 P-value = 1.6e-5 P-value = 1.0e-9 

Supplementary Figure 4. Decreased LKB1 mRNA in association with LKB1 loss 
signature in resected breast cancer, lung squamous, and cervical cancer. 
Expression of LKB1 mRNA is shown for tumors classified as LKB1 loss or LKB1 WT in a 
pooled cohort of lung squamous cell carcinomas (GSE4573; TCGA) (a), among the TCGA 
breast cancer specimens (TCGA) (b), or in a pooled cohort of cervical squamous cell 
carcinoma (GSE38964; GSE20167; TCGA) (c). d, Prediction of LKB1 mutations in breast, 
lung squamous, and endometrial tumors analyzed by TCGA. 

a b c 

  LKB1 
mutations (n) 

Sensitivity 
(%) p-value 

  

Breast 
Adenocarcinoma 2 100 0.0004 

Squamous cell 
Lung carcinoma 3 100 0.0005 

Endometrial 
adenocarcinoma 3 0 NS 

Figure 2.8. Decreased LKB1 mRNA is associated with LKB1-loss signature in 
resected breast cancer, lung squamous cell carcinoma, and cervical cancer. A, 
Expression of LKB1 mRNA is shown for tumors classified as LKB1 loss or LKB1 
WT in a pooled cohort of lung squamous cell carcinomas (GSE4573 and TCGA). B, 
Association between LKB1 loss score with low LKB1 expression in breast cancer 
(TCGA). C, Association between LKB1 loss score and low LKB1 expression in 
pooled analysis of three cohorts of cervical squamous cell carcinoma (GSE38964, 
GSE20167, TCGA). The y-axis represents the standard deviations from the mean 
LKB1 expression; p-values represent the results of a Student’s t-test. 

BA C
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response to MEK inhibition, and MEK inhibitors may also prove effective in treating 

LKB1-deficient tumors. Thus, accurately determining LKB1 loss in clinical specimens 

will be useful both in testing associations with patient outcome in clinical trials, and 

ultimately in stratifying patients for appropriate targeted therapies. 

We chose to develop an assay for our signature using a commercial testing 

platform, the nanoString nCounter analysis platform, which has been used successfully to 

develop a gene expression diagnostic test for breast cancer (Reis et al., 2011) (Prosigna, 

which is approved for use in Europe). After selecting a gene list, molecular probes are 

designed to specifically bind the mRNA of each gene of interest. Each probe is tagged 

with a unique ‘molecular barcode’ of different fluorescent colors, which serves as the 

method of detection. RNA is extracted from clinical samples, immobilized on a test slide, 

and the probes are hybridized to the sample mRNA. After washing probes that are not 

bound to the appropriate targets the color-coded tags are counted, from which we can 

determine the original mRNA expression for each target gene in the sample. 

We performed an initial test of this platform, using our 16-gene signature as well 

as additional genes for normalization, in a set of 24 lung adenocarcinoma cell lines and 

24 resected lung adenocarcinomas. After extracting mRNA and performing quality 

control measures on these samples, we obtained signature gene expression data from 

these cell lines using the nanoString nCounter® analysis system (nanoString, Seattle, 

WA). Gene expression was first normalized using the standard n-Counter positive and 

negative controls. Expression values were then log2 transformed, and adjusted based on 

the observed expression of nine control genes. This approach allows each patient or cell 

line to be analyzed as a single sample without having to compare the expression to a 
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range of samples or to a reference samples. The expression measured for the 16 genes 

was converted to a single numeric score using weighted averages based on the TCGA 

data. The resulting LKB1-loss scores successfully discriminated six of the seven LKB1 

mutant from the 15 LKB1 wild-type cell lines, with one misclassified LKB1 mutant cell 

line; two cell lines were of unknown LKB1 mutation status (P-value = 9.3e-5; Fig. 2.8a).  

The 24 resected lung adenocarcinoma samples were analyzed in the same manner 

as described for the cell lines. These samples had also been analyzed by RNA sequencing 
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Figure 2.9. Performance of nanoString platform to assess LKB1 loss signature in 
cell lines and clinical samples. A, Association between LKB1 mutations and LKB1-
loss score in 22 cell lines, using nanoString nCounter platform to measure gene 
expression for LKB1 loss signature genes. B, Association between LKB1 mutations 
and LKB1-loss score in 24 resected lung adenocarcinomas, using nanoString nCounter 
platform to measure gene expression for LKB1 loss signature genes. C, Correlation 
coefficients between gene expression measured by nanoString and those measured in 
the same samples by RNA sequencing for each gene included in the analysis. D, Plot 
of resulting LKB1-loss scores for the 24 resected lung adenocarcinomas, with scores 
resulting from nanoString plotted on the y-axis compared to scores from RNAseq on 
the x-axis. 
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(unpublished data); four LKB1 mutations had been detected through that analysis. Three 

of the four LKB1 mutations strongly expressed the LKB1-loss signature, while one did 

not, and two putatively wild-type tumors were classified as LKB1-deficient (P-value = 

0.015; Fig. 2.8b). We also compared the correlation of gene expression scores calculated 

using the nanoString data to the score derived from the RNA sequencing data, which was 

determined using the same approach that was applied to all datasets in this work. The two 

scores were significantly correlated, and the same classification of the four LKB1 

mutations was observed by both methods. However, two samples that had moderate 

expression of the LKB1-loss score by RNAseq and would have been classified as LKB1-

loss tumors had lower scores using the nanoString platform, This resulted in an overall 

concordance of 0.875 between the two methods. Further analysis of these samples is 

planned, which will include analysis of additional samples, better testing for LKB1 

mutations, and analysis of LKB1 protein loss by immunohistochemistry. This will allow 

us to make more firm conclusions about the performance of this test in clinical samples. 

 

Discussion 

Accurately determining loss of a tumor suppressor such as LKB1 can be 

challenging and may require multiple approaches. Sequencing such genes to determine 

the presence of somatic mutations can provide a specific test for such lesions, but this 

approach cannot detect other functional inactivation of a tumor suppressor, for instance 

through chromosomal deletion. Mutation testing could be coupled with 

immunohistochemistry to allow detection of loss of expression, but reproducibility of this 

assay may be a problem, and determining the appropriate cutoff of expression may be 
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difficult in the presence of background signal. Although no targeted agents are currently 

known to preferentially benefit LKB1-deficient tumors, classifying the functional status 

of this tumor suppressor will be important for clinically testing such drugs and ultimately 

for prescribing such agents to patients.  

We show that LKB1 loss in lung cancer is strongly associated with activation of a 

particular gene expression signature, and that this can be used to accurately predict LKB1 

loss in multiple validation sets. A gene expression pattern termed the ‘magnoid’ subtype 

of lung adenocarcinomas has been previously associated with LKB1 loss (Wilkerson et 

al, 2012). Although this subtype shows significant gene overlap with our signature, when 

used as a predictor of LKB1 loss it detected only 64% of LKB1 mutations in the TCGA 

cohort (unpublished data). In contrast, the sensitivity of LKB1-loss classifier in detecting 

LKB1 mutations observed in the TCGA lung adenocarcinoma cohort is 0.97 (65 of 67). 

Furthermore, we show that our test identifies an additional 74 tumors with LKB1 loss in 

which LKB1 mutations were not detected bringing the overall prevalence of LKB1 loss 

to 30-35% in this collection of tumors. These tumors showed the same degree of pAMPK 

attenuation as the tumors with known LKB1 mutations (P-value = 1.7e-7 vs. signature-

negative tumors), and had low LKB1 mRNA (P-value = 7.3e-28). Furthermore, many of 

these tumors had identifiable lesions in LKB1, with evidence of either chromosomal loss 

or loss of one or more exons, which accounted for half of the additional tumors found. 

Based on the bimodal distribution of the scores seen in the TCGA dataset we observe that 

this test has an inherent 6.5% misclassification rate because the two tumor populations do 

not show complete separation of expression scores. Thus, based on this and the 

performance in validation sets, we conclude that this test has greater than 0.90 sensitivity 
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and specificity for detecting LKB1 loss in resected lung adenocarcinomas and in NSCLC 

cell lines. We also show significant association between the activation of the LKB1-loss 

signature and instances of LKB1 loss in other tumor types (P-value = 7.2e-08), where it is 

less prevalent. This shows that the association between these genes and LKB1 loss is not 

specific to lung cancer. However, only about 50-60% of LKB1 mutations in non-lung 

primaries express the LKB1-loss signature. These rates varied by tumor type, so there 

may be tumor-specific differences in the phenotypes induced by LKB1 loss. More work 

focused on LKB1 loss in specific other tumor types will be required to give adequate 

explanation for these differences, but it is nevertheless important to show that the 

associations we observe are applicable outside of lung cancer. 

Our work may also have important implications for model systems used to study 

LKB1 loss in lung cancer. There are three main experimental systems used by cancer 

researchers: (1) Studies of human cancer, including large-scale molecular 

characterizations such as those carried out by the TGA as well as human experimentation 

in the form of clinical trials. (2) Studies of cell lines derived from human tumors and 

grown over extended periods of time in cell culture. (3) Studies of mouse models in 

which genetic or environmental factors can be manipulated in various ways that can give 

rise to cancer. However, it is unclear which model is most reliable for studying clinically 

relevant disease phenotypes. The initial genomic (Ji et al, 2007) and proteomic (Carretero 

et al, 2010) characterizations of the mouse model include limited data on the effects of 

LKB1 in human cell lines. Our work reanalyzes the gene expression data from these 

studies and compares them to LKB1-associated genes from seven studies of resected 

human lung adenocarcinomas and NSCLC cell lines. One of the most interesting findings 
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of our analysis is that, while LKB1 loss induces similar effects on gene expression in 

resected human tumors and NSCLC cell lines, these differ substantially from the LKB1-

associated genes induced in the murine model. This may suggest that key phenotypes 

driving the expression of these genes are not recapitulated in the mouse model. 
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CHAPTER III 

 

INTERPRETING THE BIOLOGICAL SIGNIFICANCE OF THE LKB1 

SIGNATURE 

 

Introduction 

Our signature is an accurate classifier of LKB1 loss, correctly predicting LKB1 

mutations in the largest and most extensively characterized test set from the TCGA, in 

which 65 of 67 LKB1 mutant tumors express our signature (sensitivity 0.96, P-value < 

1e-16). Our signature also outperforms mutational sequencing for determining LKB1 

loss, as it is associated not only with mutational loss but chromosomal and exon loss of 

LKB1, and most probably other potential mechanisms as well. Thus, this signature can be 

applied to accurately classify the LKB1 loss status of hundreds of lung cancer specimens 

in which functional loss of LKB1 is unknown or incompletely characterized by 

mutational profiling. Moreover, the existence of a pattern of gene expression strongly 

associated with LKB1 loss suggests that there may be underlying differences in pathway 

activation and/or transcription factor regulation in these cancers. In this chapter we use 

this classification as a powerful tool to characterize molecular and clinical associations 

with LKB1 that reveal important aspects of the phenotypes associated with LKB1 loss. 

Characterizing these dysregulated pathways is important, as they may lead to novel 

observations about the biology of these tumors and could identify drug targets that could 

benefit patients with LKB1-deficient lung cancer. Indeed this is a major impetus for the 

study of preclinical models, and has formed the basis of the several papers characterizing 
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the murine model of LKB1 loss in lung cancer (Carretero et al., 2010; Chen et al., 2012; 

Ji et al., 2007; Shackelford et al., 2013). However, because the murine model does not 

recapitulate the gene expression patterns seen in human tumors, it is likely that the study 

of these genes in the human tumors will be more germane to understanding the biology 

and treatment of LKB1-deficient lung cancer. 

 To characterize the tumor phenotypes associated with LKB1 loss we first apply 

statistical tests to a variety of types of molecular data to determine which proteins, genes, 

or mutations, show differential activation between LKB1-deficient and LKB1 wild-type 

tumors. Because somatic mutations in LKB1 account for only about half the prevalence 

of LKB1 loss, we use our LKB1-loss gene expression signature to separate tumors into 

these groups for the purpose of statistical comparison. Although no assay is 100% 

accurate, the predictive accuracy of our expression signature is superior to determinations 

based only on the presence of LKB1 mutations. Because the molecular characterization is 

more extensive in the TCGA collection of lung adenocarcinomas, we were able to use 

this dataset to determine associations with mutations, copy number alterations, 

microRNA expression, and protein expression and phosphorylation. Associations with 

mutations could then be tested in additional validation cohorts, in which either LKB1 

mutations were determined by sequencing, or LKB1-loss signature expression could be 

measured using gene expression profiling data. We also characterized the expression 

patterns of the dysregulated genes to identify potential underlying phenotypes that could 

drive their expression. We found that differentially expressed genes represented multiple 

distinct phenotypes, which could be seen as separate ‘clusters’ of genes whose expression 

was tightly correlated (Fig. 2.1b). 
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 Interpreting which phenotypic differences are responsible for causing altered gene 

expression can be challenging. Our work contributes significantly to understanding these 

phenotypes in LKB1-deficient lung cancer. We identify three distinct subsets of 

upregulated genes that we ascribe to phenotypes associated with LKB1 loss and link to 

the activity of multiple transcription factors. We also show that restoration of LKB1 

affects the expression of the CREB/FOXO subset of genes, demonstrating that this 

phenotype is directly responsive to LKB1 activity. Many other phenotypes are also 

represented within the gene signature that could not be covered in this thesis. To give a 

few additional examples: around 80% of adenocarcinomas expressing neuroendocrine 

markers exhibit loss of LKB1; evidence of WNT dysregulation is evident in LKB1-

deficient tumors; and tumors with LKB1 loss have low expression of a large number of 

immune markers, cytokines, and stromal genes. Future work to elucidate the causes and 

effects of these phenotypes, in addition to the ones we characterize in this paper, will be a 

rich source of hypotheses regarding the biology of LKB1 loss in lung cancer. 

 

Methods and Materials 

Characterization of Four Transcriptional Nodes Comprising the LKB1 Signature 

 Expression data for each gene was mean centered and normalized, and 

unsupervised hierarchical clustering was performed with Gene Cluster 3.0 (de Hoon et 

al., 2004) utilizing uncentered Pearson’s correlations and the centroid linkage method. 

Similar results were obtained for clustering of genes and tumors when using Spearman’s 

rank correlation as the similarity metric (data not shown). Resulting heat maps were 

visualized using Java TreeView application (Saldanha, 2004). Unsupervised clustering 
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revealed correlation patterns within the genes of the LKB1-deficient signature that were 

reproducible across multiple resected LUAD datasets. Four distinct sets of co-regulated 

genes were identified from resulting dendrograms as gene clusters with internal centroid 

correlation values greater than 0.5, including three transcriptional nodes showing 

increased expression among LKB1-deficient tumors and one with decreased expression. 

The genes comprising these transcriptional nodes are given in Appendix B. The same 

four nodes could be observed in classifiers independently derived from either the 

Michigan or non-Michigan patients of the Director’s Challenge consortium (Shedden et 

al., 2008), demonstrating the reproducibility of these clustering patterns across multiple 

datasets. A numeric score for each of these transcriptional nodes was calculated by taking 

the average of the standardized expression values for the genes comprising the node.  

 We hypothesize that the expression of these transcriptional nodes were driven by 

different underlying phenotypes. For subsequent analyses to characterize the biological 

pathways reflected by these nodes we required larger gene lists corresponding to each 

node. Thus, we further characterized gene expression correlations with these four gene 

clusters using a generalized linear model applied to gene expression data from the 

Director’s Challenge Consortium (Shedden et al., 2008) dataset. The lm () function in the 

limma package of R bioconductor platform was used to determine the best fitting 

parameters to relate the expression of each probeset to the scores of the four LKB1-

asociated gene clusters; interaction terms were not included in the model: 

 

expr (x)   ~  a * expr (LKB1_loss) + b * expr (Mito)+ 
c * expr (NRF2)+ d * expr (Down) 
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Gene lists for each of the four nodes were then constructed taking the top 200 most 

significantly upregulated genes for that node as determined by the corresponding P-value 

from this model. 

 

Determination of Clinical and Molecular Associations with LKB1 loss 

 Our LKB1 classification score was used to predict LKB1-loss status for unknown 

samples from ten collections of resected lung adenocarcinomas (total n=1297). Statistical 

associations were made based on these classifications. We used the TCGA dataset as a 

discovery cohort to determine associations with clinical phenotypes, mutations in other 

genes, copy number alterations, protein expression and phosphorylation, and microRNA 

expression. Many of these molecular phenotypes, in particular the microRNA, copy 

number, and proteomic data are unique to the characterization conducted by TCGA and 

cannot be replicated in other test sets. However, association between LKB1 loss and 

clinical phenotypes as well as associations with p53, EGFR, and KRAS mutations could 

be assessed using a pooled analysis of nine lung adenocarcinoma datasets (total n=851) in 

which gene expression had been analyzed and could be correlated with some or all of 

these phenotypes. We were also able to test associations with other mutations in a second 

recently published characterization of mutations in lung adenocarcinoma that employed 

exon capture enrichment (Imielinski et al., 2012). 

 All samples were classified as LKB1 wild-type or LKB1-deficient based on the 

expression of the LKB1-loss score. Statistical associations were made using the Fisher’s 

exact test for categorical data (smoking status, tumor stage, mutations in other genes) or 

the Student’s t-test for continuous variables (protein expression, copy number data, 
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microRNA expression). Kaplan-Meier analysis of overall survival and progression free 

survival was performed between these two groups for patients in the Director’s Challenge 

Consortium (Shedden et al., 2008), using the R statistical platform with the survival 

package. Statistical significance was determined using the log rank test. Additionally, a 

Cox proportional hazards model was used to determine the association of LKB1 loss with 

outcomes after accounting for initial tumor stage. 

 

Analyses to Identify Molecular Phenotypes Underlying the Activation of 

Transcriptional Clusters 

 We used several approaches to identify candidate pathways that could potentially 

drive the expression of the four transcriptional nodes observed in our analysis. Gene set 

enrichment analysis was performed using the molecular signatures database 

(http://www.broadinstitute.org/gsea/msigdb/) (Liberzon et al., 2011) to determine 

enrichment of transcription factor consensus sequences in the promoter regions of these 

gene lists. This tool was also used to compare our eight gene lists to previously 

characterized perturbation and cancer-derived signatures. 

 The connectivity map was used to determine significant similarities between our 

eight gene lists and gene perturbations induced in the cell lines MCF7, HL60, and PC3 by 

six hours of treatment with 1309 different small molecules. We uploaded our gene lists 

onto the connectivity map online analysis tool to rank compounds that were significantly 

associated with the gene expression phenotypes we observed. For significant hits we then 

downloaded ranked perturbation lists from the Connectivity Map (Lamb et al., 2006) 

website to generate our own enrichment P-values. 
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 Finally, we generated an association matrix using searches of GEO (Barrett et al., 

2012; Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2009) to obtain 

perturbations of interest to our study. Because the connectivity map did not employ a 

lung cancer derived cell line, we searched for all perturbations made to A549, a 

commonly studied lung adenocarcinoma cell line with a mutation in LKB1. We next 

performed targeted queries for perturbations related to the hypotheses suggested by our 

GSEA and connectivity map analyses; specifically we searched for perturbations 

involving pharmacologic or genetic modulations of the CREB and FOXO3 pathways, the 

NRF2 transcription factor, mitochondria, and protein translation. Also, for the 

connectivity map, associations highlighted in Tables 3.1, 3.2, and 3.3 were made using 

ranked perturbation lists from the Connectivity Map website to generate our own 

enrichment P-values. We eliminated redundant probesets to reduce our association matrix 

to a single probeset per gene, and then determined the top 200 over-expressed and under-

expressed genes associated with each perturbation (roughly the top and bottom 2% of 

changes). Numeric overlap was then determined with each of the eight cluster scores and 

statistical significance calculated using a hypergeometric distribution by the phyper () 

function in the Bioconductor limma package.  

 

Cell Culture and Gene Transduction 

 A549, H2122, and H460 cell lines were generously shared with us by John Minna 

and Luc Girard (University of Texas, Southwestern). They were tested to ensure that they 

were mycoplasma negative, and were cultured in RPMI1640 containing 5% FBS, without 

antibiotics. Empty pBABE viral plasmids, pBABE-LKB1 and pBABE-LKB1-K78I were 
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obtained from AddGene. Phoenix cells were transfected with viral plasmids and retroviral 

particles were harvested from media supernatant 48 hours after transfection. Viruses were 

added to target cells with polybrene, and selection with 1.0 ug/ml puromycin was begun 

48-72 hours after infection. Cells were selected under puromycin for one to two weeks 

before subsequent experiments, with experiments being completed within two months 

from the time of transfection.  

 

CRE-Luciferase Reporter 

 We designed a dual-luciferase reporter driven by a 3x CRE consensus binding 

sequence in the promoter region in addition to a TATA box, which was inserted into an 

FG12 lentiviral construct. Luciferase activity from this reporter was compared to a 

control reporter that was identical but with mutated CRE sites. Cells were stably 

transduced to express CRE wild-type or mutant reporters and ratios between the two were 

compared after subsequent perturbations. 

 

Immunoblots 

 Cell lysates were harvested while cells were in exponential growth phase in RIPA 

lysis buffer containing phosphatase and protease inhibitors. Lysates were homogenized 

and run on pre-cast SDS-PAGE gels (BioRad). Phospho-ACC (s79), ACC, and LKB1 

antibodies were obtained from Cell Signaling Technology (Danvers, MA). Resulting 

western blots were quantitated using ImageJ software to measure pixel density and area, 

with results compared to those of ACC as a loading control. 
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Analysis of Gene Expression After LKB1 Expression in H2122 and A549 Cells 

 For our own LKB1 perturbation analyses, mRNA was isolated from three 

biological replicates of A549 and H2122 after stable expression of pBABE, LKB1 or 

LKB1 K78I using a qiagen mRNA isolation kit, with trizol extraction reagent. RNA 

concentrations were measured, and the RNA integrity number and 28s:18s ratio were 

calculated for quality control purposes. Amplification of 130ng total RNA was performed 

using Ambion WT Expression kit, and in vitro transcription was carried out overnight. 

cRNA was subsequently cleaned using Ambion-WT bead cleanup kit. 10.5ug of cRNA 

was used for second cycle cDNA synthesis and resulting cDNA was cleaned using 

Ambion-WT bead cleanup kit. 5.5ug of purified cDNA products were used in 

fragmentation and labeling reactions. Samples were hybridized overnight to a HT Human 

Gene 1.1 ST PM16 array plate utilizing a GeneTitan instrument. They were then scanned 

on the Affymetrix Gene Titan AGCC v. 3.2.3 and then analyzed on Affymetrix 

Expression Console v. 1.1 using a RMA normalization algorithm producing log base 2 

results. 

 

Results 

Genes Associated with LKB1 Loss Correspond to Particular Tumor phenotypes and 

Transcription Factors 

 The study of differentially expressed genes can elucidate upstream pathways that 

drive their expression; such pathways may represent novel biological features of these 

tumors. Our first important observation is that these differentially expressed genes do not 

all represent the same phenotype. They cluster together in different groups that are 
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reproducibly observed across multiple datasets. This suggests that each group of genes is 

associated with a different phenotype and is independently regulated. These phenotypes 

show significant levels of overlap among tumors that have lost LKB1 but the fact that 

they are independent is important not only to the understanding of the biology of these 

tumors but also in our approach to the subsequent analysis of the gene expression 

patterns. The most instructive illustration of this point is a set of eight genes – AKR1C1, 

AKR1C2, CBR, G6PD, ME1, PGD, PIR, and SLC7A11 – that we have determined to be 

regulated by activation of the NRF2 pathway.  

 

Activation of the NRF2 Pathway is Common Among LKB1-Deficient Tumors 

 These eight genes – AKR1C1, AKR1C2, CBR, G6PD, ME1, PGD, PIR, and 

SLC7A11 – consistently form a cluster of correlated genes in unsupervised hierarchical 

analysis. They were selected among 129 genes associated with LKB1 based on their 

differential expression according to LKB1 status in two training cohorts. Indeed, their 

expression is significantly increased in LKB1-deficient tumors in each independent 

dataset that we have examined. However, not every LKB1-deficient tumor expresses this 

set of genes; conversely, there is also a small subset of LKB1 wild-type tumors that 

express these genes as well. We therefore suspected that these genes could be regulated 

independently of LKB1 status and endeavored to discover a more direct association. 

 We first focused only on tumors that had lost LKB1. We separated these tumors 

into groups with low or high expression of the NRF2 cluster and then determined the 

genes that were differentially expressed between these two groups. This expanded our list 

from the initial eight genes to a continuous ranking of association with all genes in the 
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dataset. Different statistical cutoffs applied to these rankings would then yield longer lists 

of genes associated with this phenotype. This is important, because statistical approaches 

used to study gene expression patterns can be limited in power when a list of genes is too 

short, but can be prone to yield spurious associations when gene lists are excessively 

long. Examination of the resulting gene lists revealed a large number of genes with 

metabolic functions, and in fact three of the original eight genes are enzymes in the 

pentose-phosphate pathway. Thus, our first hypothesis was that this set of genes 

represented a metabolic phenotype of unknown significance. 

 This idea was intriguing, given the prominent role of LKB1 in regulating 

metabolism. However, exactly what we were looking at was unclear at the time, and it 

was challenging to plan functional experiments to further explore this unknown 

phenotype. Thus, we performed additional statistical tests that ultimately firmly 

established the underlying mechanism behind the expression of these genes. Our first 

specific clue came by looking at predictions of transcription factor binding sites in the 

promoter regions of our genes. We used predictions from the TRANSFAC database 

(Matys, 2006) for 368 transcription factors and compared the likelihood of a hit within 

genes of the signature to the likelihood of control genes that did not have association with 

this phenotype. This revealed a highly significant (P-value less than 10e-10) association 

with the transcription factor NRF2, which induces the expression of proteins that detoxify 

reactive oxygen species (ROS) (Taguchi et al., 2011). This transcription factor is 

ubiquitinated by a binding partner, KEAP1 and is subsequently degraded. Elevated ROS 

levels disrupt this binding, leading to NRF2 activation. Somatic mutations in NRF2 or 

KEAP1 can also disrupt the interaction of these two proteins, leading to constitutive 
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NRF2 activation (Hayes and McMahon, 2009; Shibata et al., 2008; Singh et al., 2006). 

Mutation of both of these genes is prevalent in lung squamous cell carcinoma (Cancer 

Genome Atlas Research Network et al., 2012) but in lung adenocarcinoma only 

mutations in KEAP1 are common (Solis et al., 2010).  

 It is important to note that if this transcription factor analysis is applied to 

unselected genes associated with LKB1 loss then this association is ‘washed out’ by the 

inclusion of many additional genes that are unrelated to this phenotype. The association 

with NRF2 drops from being the second most significant hit, with a P-value of 4.3e-11 to 

the seventeenth hit with a P-value of 8.2e-5; it would be difficult to hone in on this 

phenotype based on this level of data. Thus, statistical analysis generated specific gene 

lists corresponding to different phenotypes, and was crucial to the successful unraveling 

of the complex interactions among multiple phenotypes and the observed differentially 

expressed genes. 

 After the success of this initial analysis we applied our approach in a more 

generalized way. We first visually examined hierarchical clustering of our 129 gene 

LKB1-loss signature to determine clusters of genes with strong expression correlation. 

The standardized expression of the genes comprising each cluster were averaged within 

each tumor to give a single numeric score for each cluster. A multivariable general linear 

model was then used to determine the two hundred genes most strongly associated with 

each of the four transcriptional nodes shown in Fig. 2.1b; these genes are listed in 

Appendix C. We generated hypotheses regarding the pathways or phenotypes that drive 

the expression of these clusters by mining public data sources, including predicted 

promoter transcription factor binding sites (Liberzon et al., 2011; Subramanian et al., 
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2005) and drug-induced perturbations characterized by the connectivity map project 

(Lamb et al., 2006).  

 For the NRF2 cluster, the connectivity map analysis revealed a highly significant 

interaction with genes induced by a potent activator of NRF2 – 15-deoxy-Δ12,14-

prostaglandin J2. Targeted searches of gene expression data from experiments deposited 

in the Gene Expression Omnibus (GEO) database also showed that expression of the 

NRF2 cluster could be attenuated by knocking down NRF2 using siRNA (Mitsuishi et 

al., 2012). Comparison with expression patterns from lung squamous cell carcinoma 

revealed nearly identical patterns of genes expressed by tumors with NRF2 or KEAP1 

mutations. These associations are presented in Table 3.1. Finally, with the availability of 

mutational data from the TCGA characterization of lung adenocarcinomas we show that 

KEAP1 mutations are present in 62% of tumors with high expression of the NRF2  

 

 

Tissue/Cell line p-value 
AP1Transcription Factor 

Predicted promoter elements (msiDB) 6.2e-12 

NRF2 Transcription Factor 
Predicted promoter elements (msiDB) 5.2e-11 

dmPGJ2 induction HL60 1.2e-19 
PC3 5.5e-22 

MCF7 1.0e-39 
KEAP1 -/- Mouse liver 8.8e-8 

KEAP1 mutant Lung SqCC 1.7e-62 
NRF2 mutant Lung SqCC 9.6e-69 

siNRF2 repressed A549 2.9e-24 

Supplementary Table 1. Gene set enrichment analysis for NRF2 associated gene cluster. 

Table 3.1 Results from Gene Set Enrichment Analysis of NRF2-associated gene 
cluster. 
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transcriptional cluster, but only 2% of tumors in which these genes are not expressed 

(Fig. 3.1a). This conclusively establishes this transcriptional node as being driven by a 

separate somatic mutation, which has a high degree of overlap with LKB1 mutations but 

represents a distinct phenotype. It also shows how our analytical approach can make 

statistical inferences from gene expression data to arrive at meaningful associations with 

tumor biology. 

 

 

NRF2 Association with LKB1 is Partially Explained by Deletion Events Affecting 

LKB1 and KEAP1 

 We propose that the increase in prevalence of NRF2 activation can be attributed 

to selective pressures that must have existed during the evolution of these tumors. 

Figure 3.1. Association of NRF2 activation cluster with KEAP1 mutations and 
large deletions of chromosome 19. A, Receiver operating curves to show the 
relationship of sensitivity and specificity of the NRF2 activation score in detecting 
KEAP1 mutations among the TCGA lung adenocarcinomas B, Fraction of tumors 
showing high NRF2 activation score in TCGA lung adenocarcinomas groups 
according to LKB1 status and the presence of reported 19p chromosomal arm 
deletions. We considered tumors with no evidence of KEAP1 deletion, no evidence of 
19p arm deletion, and tumors with low and high scores for 19p arm deletions. P-values 
show the significance determined by Fisher’s exact test. 
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However, both LKB1 and KEAP1 reside on chromosome 19p, with LKB1 located 

approximately 1MB from the telomere in cytogenetic band 19p13.3, and KEAP1 located 

10MB from the telomere in adjacent cytogenetic band 19p13.2. Thus, large deletions of 

19p could inactivate one copy of both LKB1 and KEAP1 and increase the likelihood of 

both genes being lost in the same tumor. Evidence for such lesions are observed in about 

15% to 25% of TCGA lung adenocarcinomas. Thus, we must consider this as an 

alternative explanation to explain this overlap. If the observed phenotype were only due 

to the proximity of these two genes on the same chromosome, then this would have 

different implications for understanding the biology of these tumors and the selective 

pressures to which they were subjected during their evolution. To address this issue, we 

examined the distribution of these three phenotypes: LKB1-loss, chromosome 19p arm 

deletions, and NRF2 activation across TCGA lung adenocarcinomas. Indeed, the 

presence of a broad deletion of chromosomal arm 19p significantly increased the 

likelihood that either an LKB1 wild-type or LKB1-deficient tumor would have activation 

of the NRF2 pathway. However, after controlling for the level of chromosome 19p arm 

deletion we found that LKB1 loss was always significantly associated with a several-fold 

increased likelihood of NRF2 activation. This was true even after excluding tumors with 

any evidence of KEAP1 copy number loss (Fig. 3.1b). Thus, although chromosomal 

deletion is a mechanism that likely predisposes tumors to go on to lose either or both of 

these tumor suppressors, the evidence supports the notion that LKB1-deficient tumors 

experience significant pressure to activate NRF2. 

 



!80!

Gene Set Enrichment Analysis of the Mitochondria/mTOR Cluster and the 

Downregulated Cluster 

  Analysis of the genes comprising the NRF2-driven cluster allowed us to 

concretely identify a distinct molecular pathway dysregulated in LKB1-deficient lung 

tumors, which is linked to somatic mutations in a different gene. This novel association 

between these two pathways informs us of the biology of LKB1-deficient tumors. We 

expect that similar analysis of genes comprising other clusters may give insight into other 

phenotypes relevant to LKB1-deficient lung cancer. The second cluster we consider is the 

‘mTOR/Mitochondria’ cluster. This cluster had high expression of oxidative 

phosphorylation and mitochondria-associated genes as well as genes involved in protein 

translation. Promoter analysis identifies several transcription factors that may contribute 

to the induction of these genes, including ELK1, MYC, NRF1, and splicing factor 1. 

Furthermore, inhibition of the mTOR pathway, either by sirolimus or by the PI3K/Akt 

inhibitor Ly-294002 caused significant downregulation of genes in this pathway, 

suggesting that these genes may be reflective of mTOR activation (Table 3.2). 

Downregulated genes of the signature represented contributions from multiple 

phenotypes, including TGF-beta (Fig. 3.2a) and NF-kB signaling as well as stroma-

related genes. We were unable to identify recurrent patterns of gene expression within the 

downregulated genes that were consistent among datasets. This may be due to the fact 

that fewer downregulated genes were identified in our training cohort and clusters with 

fewer genes may be more prone to random differences that could vary among datasets. 

Also, whereas the LKB1-deficient tumors share a common mutational influence on their 

behavior and evolution, LKB1-wild-type tumors may be more diverse and heterogeneous, 
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which would tend to make the gene expression patterns less coherent, and could 

potentially ‘wash out’ statistical associations with any of the underlying phenotypes. 

We observed that in the A549 cell line TGF-beta induced a significant subset of 

these downregulated genes, while simultaneously attenuating both the NRF2 and LKB1-

loss transcriptional components; conversely, c-SRC inhibition induced activation of the 

LKB1-loss transcriptional node, suggesting that TGF-beta and SRC signaling can 

antagonize the activity of transcription factors upstream of this node (Fig. 3.2b). 

 

Tissue/Cell line p-value 
Mitochondrial Localization  

(MitoCarta) 3.6e-22 

ELK1 Transcription Factor 
Predicted promoter elements (msigDB) 2.2e-13 

Splicing Factor 1 Transcription Factor 
Predicted promoter elements (msigDB) 1.1e-9 

NRF1 Transcription Factor 
Predicted promoter elements (msigDB) 3.9e-7 

MYC Transcription Factor 
Predicted promoter elements (msigDB) 4.2e-7 

LY-294002 Repression HL60 1.1e-8 
MCF7 2.2e-17 
PC3 3.0e-12 

Sirolimus Repression HL60 3.0e-12 
MCF7 1.2e-19 
PC3 1.2e-19 

PD0325901 Repression Multiple 1.9e-24 
PGC1A Induction C2C12 1.3e-10 

Supplementary Table 2. Gene set enrichment analysis for mTOR/Mitochondria-associated 
gene cluster. 

Table 3.2 Results from Gene Set Enrichment Analysis of Mitochondria/mTOR-
associated gene cluster. 
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Figure 3.2. TGF-beta mRNA expression is decreased in tumors with LKB1 loss, 
and TGF-beta can cause down-regulation of the CREB/FOXO3 transcriptional 
cluster. The distribution of TGF-beta mRNA expression is shown for resected lung 
adenocarcinomas that are predicted by the LKB1-loss classifier to exhibit LKB1 loss 
or wild-type LKB1 in A, the Director’s Challenge Consortium (n=449) or B, the 
TCGA cohort (n=446). The P-value represents the result of a student’s t-test 
comparing these groups. C, Induction of TGF-beta mRNA relative to pBABE vector 
control is shown for A549 and H2122 cell lines after stable expression of wild-type 
LKB1. The range is plotted and p-values represent the result of student’s t-test of the 
indicated comparisons. D, The significance of gene overlap is shown for comparisons 
of the FOX/CREB signature to the genes perturbed by TGF-beta or dasatinib treatment 
of the LKB1-mutant cell line A549 at the various time points or concentrations shown. 
P-values from a hypergeometric test are shown on the ordinate axis with positive 
values indicating an induction of FOX/CREB-associated genes and negative values 
indicating repression. 
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Supplementary Figure 6. TGF-beta and c-src pathways antagonize the expression of 
genes in the CREB cluster. 
The significance of gene overlap is shown for comparisons of the CREB signature to the 
genes perturbed by TGF-beta or dasatinib treatment of the LKB1-mutant cell line A549 at the 
various time points or concentrations shown. P-values from a hypergeometric test are shown 
on the ordinate axis with positive values indicating an induction of CREB-associated genes 
and negative values indicating repression. 
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Gene Set Enrichment Analysis of the LKB1-loss Cluster Identifies Association with 

FOXO3, FOXA2, and CREB Transcription Factors 

 In the previous chapter we showed that of the four transcriptional nodes we 

identified for further characterization, one node was most strongly associated with LKB1 

mutations and decreased LKB1 expression in multivariate analysis, while the other three 

nodes showed very little independent association with LKB1 loss. Therefore, the 16 

genes comprising this node were used throughout this work as the LKB1-loss classifier. 

The accuracy of this classifier and its ability to detect LKB1 loss by multiple mechanisms 

make this an attractive approach to classifying LKB1 status in clinical specimens and in 

in vitro studies. Because this is the node with the strongest association to LKB1 status, 

the inferences drawn from these genes may also have the most direct importance to the 

understanding the biology of LKB1 deficient tumors. 

 Promoter analysis of the top 200 genes associated with the 16-gene LKB1-loss 

signature implicated CREB, FOXO3, and FOXA2 (or HNF3-beta) transcription factors 

(Table 3.3). Analysis of perturbed genes from the connectivity map also revealed 

induction of this cluster by colforsin, an adenylate cyclase stimulator that activates 

CREB, and by the typical antipsychotics thioridazine, prochlorperazine, and 

trifluoperazine, which have been identified as stimulators of FOXO3 transcription factors 

that block AKT-induced nuclear export of FOXO3 (Kau et al., 2003). We then searched 

the GEO and Array Express data repositories and found corroborating evidence for 

CREB (Zhang et al., 2005) and FOXO3 activation within this cluster (Eijkelenboom et 

al., 2013; Gan et al., 2010b; Tenbaum et al., 2012). Moreover, HNF3-beta promoter 
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occupancy is significantly increased among these genes both in the LKB1 mutant A549  

lung cell line and in HEPG2 liver cell line and in human liver tissue (Rosenbloom et al., 

2012). These associations are presented in Table 3.3. In addition to FOXO3, HNF3, and 

CREB, other transcription factors showed significant enrichment, but further 

corroborating evidence was lacking. These factors may also be of functional significance 

in LKB1-deficient tumors, especially LEF1, since increased WNT signaling has been 

previously implicated in these tumors (Lin-Marq et al., 2005; Liu et al., 2012b; Ossipova 

et al., 2003). Our analysis shows that this gene cluster represents the effects of a specific 

set of transcription factors that are dysregulated downstream of LKB1. 

 

Table 3.3 Results from Gene Set Enrichment Analysis of CREB/FOXO-associated 
gene cluster. 

 Tissue/Cell Line p-value 
CREB Transcription Factor 

Predicted promoter elements (msigDB) 3.1E-04 

Colforsin induction 
MCF7 2.2E-17 
PC3 2.6E-28 

PC12 1.6E-05 

CREB regulated 
Islet Cells 2.0E-14 

MIN6 4.5E-09 
HEK293T 6.5E-06 

FOXO1/3/4 Transcription Factor 
Predicted promoter elements (msigDB) 9.5E-05 

Induction by CA-FOXO3 

DLD1 5.4E-11 
HuVEC 1.4E-05 
RCC4 4.2E-07 

UMRC2 3.3E-08 

Prochlorperazine induction 
HL60 1.6E-03 
MCF7 2.0E-06 
PC3 9.2E-03 

Thioridazine induction 
HL60 7.2E-05 
MCF7 1.5E-17 
PC3 7.2E-13 

Trifluoperazine induction 
HL60 6.0E-14 
MCF7 4.5E-10 
PC3 2.0E-06 

FOXA2 Transcription Factor (HNF3B) 
Predicted promoter element (msigDB) 2.0E-04 

Promoter occupancy  
(ChIP-Seq) 

A549 7.1E-09 
HEPG2 4.4E-05 

Human Liver 1.1E-04 
!
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Association Between LKB1 Loss and Prevalence of Other Mutations 

In addition to gene expression analysis, other types of molecular data, primarily 

characterized by TCGA, offer the opportunity to study functional alterations such as 

mutations or copy number changes in oncogenes or other tumor suppressors, and 

indicators of pathway activation such as phosphorylation. Co-occurrence or mutual 

exclusivity of mutations can reveal information about how particular pathways are 

activated or interact with each other within cancer cells. Mutual exclusivity – a 

statistically significant decrease in the co-occurrence of two somatic mutations, can occur 

because of functional redundancy, i.e. that both mutations could result in the same effects 

in the cell, or because of negative interactions between pathways downstream of the 

mutations, for instance if the activity of one mutation leads to attenuation of the other 

mutated gene due to feedback inhibitory effects. On the other hand, increased likelihood 

of two mutations occurring in the same tumor suggests that the effects are synergistic, 

perhaps by significantly amplifying oncogenic signaling through a single pathway, or by 

activating distinct pathways that have cooperative effects. There could be alternative 

explanations for co-occurrence of different mutations independent of the function of the 

genes. A single phenotype might increase the likelihood of the two genes undergoing 

mutations; for instance, this could result if a tumor had disrupted mismatch repair genes, 

or if a large chromosomal gain or loss led to increased chances of mutation in closely 

positioned genes. 

To determine the association of LKB1 loss with other mutations we used 403 lung 

adenocarcinomas characterized by the TCGA that had both RNAseq gene expression data 

and determination of somatic mutations by exon capture DNAseq. Mutations were found 
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in 16302 genes, with a total of 102425 somatic alterations observed. Because of the high 

levels of exposure to carcinogens in cigarette smoke, non-small cell lung cancer has one 

of the highest rates of DNA mutations in cancer, with a median of five to ten nucleotide 

changes per megabase of DNA (Lawrence et al., 2013). Thus, most of the observed 

alterations are ‘noise’ mutations that occur at random throughout the genome having no 

functional significance. There are sophisticated algorithms to rank the genes affected by 

mutation, taking into account effects such as gene length, the context of the specific 

nucleotides surrounding an observed mutation, and the pattern and rate of specific base 

changes seen in a given tumor, in order to determine which genes are most likely to have 

been mutated in a nonrandom way (Imielinski et al., 2012). Non-random mutations are 

more likely to have been selected during the evolution of a cancer because of their 

functional effects. For our analysis, we narrowed our search to the top 200 most 

frequently mutated genes without a priori elimination of probable random mutations. We 

then subjected these 200 genes to a statistical test – the Fisher’s exact test – to determine 

if their prevalence is significantly different between LKB1 mutant and LKB1-deficient 

tumors. Any genes included in the 200 that are affected only by chance mutations would 

be unlikely to segregate significantly with LKB1 status. Thus, the inclusion of such genes 

is unlikely to affect the results of our analysis, except to increase the likelihood of a false 

positive result, necessitating correction of raw P-values by multiple hypothesis testing. 

Using this approach we identified five genes with significantly different mutation 

rates in LKB1-deficient and wild-type lung adenocarcinomas. KRAS, KEAP1, and ATM 

each showed significantly higher mutation rates among LKB1-deficient tumors, while 

EGFR and p53 had a lower rate of mutation. These results are presented in Table 3.4.  
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Table 3.4. Association of LKB1 loss with other somatic mutations in lung 
adenocarcinoma. 

LKB1-loss classifier Fisher test 

Number of 
Samples 

(LKB1 loss / 
total) 

Fraction LKB1 
loss (%) 

Odds Ratio 
(95% C.I.) P-value FDR 

TCGA Lung Adenocarcinomas 

KRAS mutant 57 / 117 48.7 
2.5 (1.6, 4.0) 7.28E-05 1.46E-02 

KRAS wild-type 79 / 286 27.6 

EGFR mutant 2 / 58 3.4 0.056 (0.0066, 
0.22) 5.93E-09 1.19E-06 

EGFR wild-type 134 / 345 38.8 

KEAP1 mutant 50 / 71 70.4 
6.8 (3.7, 12.6) 3.15E-12 6.30E-10 

KEAP1 wild-type 86 / 332 25.9 

ATM mutant 22 / 36 61.1 
3.5 (1.6, 7.6) 6.49E-04 1.30E-01 

ATM wild-type 114 / 367 31.1 

Pooled analysis Lung Adenocarcinomas 

KRAS mutant 50 / 111 45 
2.3 (1.4, 3.7) 0.00035 

KRAS wild-type 85 / 322 26.4 

EGFR mutant 4 / 76 5.3 0.086 (0.02, 
0.24) 4.3E-10 

EGFR wild-type 116 / 293 39.6 

NRF2 active 118 / 198 59.6 
5.1 (3.6 7.3) 7.40E-22 

NRF2 low 146 / 653 22.4 

Imielinski Lung Adenocarcinomasa 

KEAP1 mutant 7 / 22 31.8 
3.3 (1.0, 9.8) 2.50E-02 

KEAP1 wild-type 20 / 161 12.4 

ATM mutant 8 / 20 40 
5.0 (1.6, 15 ) 3.00E-03 

ATM wild-type 19 / 163 11.7 

a Gene expression was not available for the Imielinski study, so these comparisons are made on the basis 
of somatic mutations in LKB1. 
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We then looked for additional datasets of somatic mutations to see if these 

observations could be made in independent tumor sets. We used our previously 

characterized pooled analysis of 851 lung adenocarcinomas to test associations with 

EGFR, KRAS, and p53, because a subset of these tumors had undergone selected 

mutational profiling. For these associations we used the LKB1-signature score to classify 

the LKB1 status of tumors and made statistical comparisons based on these 

classifications. This analysis confirmed that LKB1 has a significant association with 

EGFR and KRAS prevalence, but no association was seen with p53. For KEAP1 and 

ATM we made use of mutations profiled in 183 lung adenocarcinomas characterized by 

Imielinski et al (Imielinski et al., 2012). Because gene expression data were not available 

for this sample set we made comparisons with LKB1 mutations observed in the study. 

Although this is a smaller dataset and limited by the lack of gene expression data, KEAP1 

and ATM both showed significantly increased rate of loss among LKB1-mutant tumors, 

confirming our initial analysis. While LKB1 has been previously associated with 

differences in KRAS and EGFR mutation rate (Koivunen et al., 2008; Matsumoto et al., 

2007), the increased prevalence of KEAP1 and ATM mutations is novel and may give 

insight into the biology of these tumors. 

 

Clinical Phenotypes of LKB1-Deficient Lung Adenocarcinomas 

Loss of LKB1 in the murine model results in aggressive, metastatic tumors, and a 

LKB1-metastasis gene signature derived from this study predicts worse prognosis in 

patients with lung cancer (Carretero et al., 2010; Ji et al., 2007). However, a large study 

of LKB1 mutations in resected human tumors showed that LKB1 loss was not associated 
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with worse prognosis (Koivunen et al., 2008). We used both the TCGA dataset and our 

pooled analysis to determine associations between LKB1 loss and clinical variables. We 

see that there is no difference in the prevalence of LKB1 loss between tumors of different 

initial stage (Table 3.5), and that LKB1 loss does not affect prognosis (Fig. 3.3). Results 

shown in our Kaplan-Meier analysis were derived considering all stages of tumors. 

Separately we performed a Cox proportional hazards model to assess the association of 

LKB1 loss with inclusion of clinical stage as a covariate; this also reported no association 

(P-value = 0.37). We did observe a significant association with smoking history, with 

ever-smokers having a higher prevalence of LKB1 loss than lifelong never-smokers (P-

value = 0.03 for TCGA, 6.5e-09 for pooled analysis; Table 3.5). This association has also 

been previously reported (Koivunen et al., 2008). 

 

Figure 3.3. Association between patient outcome and LKB1 loss. 
Resected LUAD tumors from the Director’s Challenge Consortium (A, n=441), or 
from TCGA (B, n=373) were classified as LKB1-loss or LKB1 WT using the LKB1-
classifier score. Kaplan-Meier curves were used to plot cumulative events for these 
two groups for overall survival, P-values represent the results of the log-rank test; the 
number of evaluable tumors remaining are given at yearly intervals below each plot. 

A B 
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Protein, MicroRNA, and Copy Number Alterations Associated with LKB1 Status 

We also performed statistical comparisons to determine differences in expression 

of proteins, phosphorylated proteins, and micro-RNA and to characterize the differences 

in prevalence of copy-number alterations between LKB1-deficient and LKB1 wild-type 

lung adenocarcinomas. For proteomic data generated from reverse phase protein arrays 

and for microRNAseq expression data we used a Student’s t-test to calculate P-values for 

observed differences. For copy number alterations we used processed data from TCGA 

corresponding to 79 amplification or deletion regions that had been selected as 

LKB1-loss classifier Fisher test 

Number of 
Samples 

(LKB1 loss / 
total) 

Fraction LKB1 
loss (%) 

Odds Ratio 
(95% C.I.) P-value 

TCGA Lung Adenocarcinomas 

Stage I 71 / 217 32.7 NA NA 

Stage II 32 / 88 36.4 1.2 (0.67, 2.0) 0.59 

Stage III 22 / 64 34.4 1.1 (0.57, 2.0) 0.88 

Stage IV 9 / 20 45 1.7 (0.59 4.7) 0.32 

Never smoker 13 / 55 23.6 0.48 (0.22, 
0.97) 0.031 

Ever smoker 96 / 245 39.2 

Pooled Analysis Lung Adenocarcinomas 

Stage I 153 / 476 32.1 NA NA 

Stage II 51 / 148 34.5 1.1 (0.68 1.7 ) 0.62 

Stage III 31 / 118 26.3 0.73 (0.43, 1.2 ) 0.27 

Stage IV 2 / 10 20 0.52 (0.052, 
2.7) 0.51 

Never smoker 12 / 116 10.3 0.20 (0.010, 
0.38) 6.50E-09 

Ever smoker 200 / 553 36.2 

Table 3.5. Association of LKB1 loss with clinical variables in lung 
adenocarcinoma. 
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statistically significant recurrent lesions using GISTIC analysis. Continuous variable 

copy number data had been converted into discrete values to indicate low and high level 

amplifications, and the presence or absence of deletions for these peaks, and Fisher’s 

exact test was used to calculate P-values. Copy number associations are presented in 

Table 3.6; microRNA associations are presented in Table 3.7; proteomic associations are 

presented in Table 3.8. 

 

 

 

 

Chromosomal region Alteration 
Cancer 
genes in 
region 

P-value 

Increased prevalence in LKB1-deficient lung cancer 

19p13.2  Deletion STK11 1.2E-09 

19p13.3  Deletion KEAP1 1.4E-07 

3q29     Deletion TP63 2.0E-05 

10p15.1  Amplification AKR1C2 5.8E-05 

Decreased prevalence in LKB1-deficient lung cancer 

5p15.33  Amplification TERT 3.8E-08 

15q11.2  Deletion 1.4E-07 

10q26.3  Deletion 1.3E-06 

7p21.1   Amplification 5.4E-05 

17q12    Amplification ERBB2 0.00013 

7p11.2   Amplification EGFR 0.00024 

5p13.1   Amplification AMPK 0.0007 

7q31.2   Amplification MET 0.0011 

Table 3.6. Association of LKB1 loss with copy number alterations in lung 
adenocarcinoma. 
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P-value microRNA P-value 

Increased expression in  
LKB1-deficient cancer 

Decreased expression in  
LKB1-deficient cancer 

hsa-mir-582 1.4E-21 hsa-mir-146b 1.6E-16 

hsa-mir-148b 8.4E-14 hsa-mir-222 2.1E-15 

hsa-mir-141 2.1E-13 hsa-mir-221 2.5E-13 

hsa-mir-203 2.5E-13 hsa-mir-452 5.0E-11 

hsa-mir-192 1.8E-11 hsa-mir-205 6.3E-10 

hsa-mir-194-1 2.2E-11 hsa-mir-542 6.4E-10 

hsa-mir-194-2 4.1E-11 hsa-mir-146a 1.0E-08 

hsa-mir-375 7.8E-11 hsa-mir-500a 2.5E-08 

hsa-mir-200c 1.3E-09 hsa-mir-378 5.5E-08 

hsa-mir-338 2.9E-06 hsa-mir-342 3.4E-06 

hsa-mir-155 4.7E-06 

hsa-mir-103-1 7.6E-06 

hsa-mir-15a 2.1E-05 

hsa-mir-181b-1 3.4E-05 

hsa-mir-589 3.9E-05 

hsa-mir-181a-1 6.6E-05 

Table 3.7. Association of LKB1 loss with differences in microRNA expression in 
lung adenocarcinoma. 
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Wild-type LKB1 Decreases the Expression of the LKB1-associated Signature Genes 

To test the direct effects of LKB1 on the regulation of the observed gene 

expression patterns we stably expressed LKB1 or mutated LKB1 K78I in three NSCLC 

cell lines – H2122, A549 and H460 – lacking functional tumor suppressor. Expression of 

LKB1 was confirmed by western blot for both wild-type and K78I LKB1. However, only 

wild-type LKB1 significantly induced phosphorylation of acetyl-CoA-carboxylase, a 

well-recognized downstream target of AMPK (Fig. 3.4a). The CREB transcription factor  

Protein or 
phosphorylated protein P-value 

Protein or 
phosphorylated 

protein 
P-value 

Increased expression in  
LKB1-deficient cancer 

Decreased expression in  
LKB1-deficient cancer 

Claudin-7 2.5E-19 AMPK pT172 4.3E-14 

c-Kit 1.6E-17 PKC-alpha pS657 3.4E-10 

AMPK alpha 1.6E-07 Annexin I 2.0E-07 

TIGAR 1.3E-06 Axl 1.8E-06 

HER3 1.7E-06 PKC-alpha 2.1E-06 

IGFBP2 8.6E-06 KEAP1 3.2E-06 

Rab11 9.3E-06 STAT5-alpha 4.1E-06 

AR 1.2E-05 NF-kB-p65 pS536 8.3E-06 

CDK1 5.5E-05 P38 MAPK 2.6E-05 

Nrf2 1.7E-04 NF2 3.5E-05 

LCN2a 2.1E-04 Dvl3 4.2E-05 

Bim 2.4E-04 PDK1 pS241 1.2E-04 

CD31 5.6E-04 ERK2 2.1E-04 

TSC2 3.1E-04 

p70S6K 4.4E-04 

PI3K-p110-alpha 4.7E-04 

PI3K-p85 6.1E-04 

Syk 1.1E-03 

Table 3.8. Association of LKB1 loss with differences in protein expression and 
phosphorylation in lung adenocarcinoma. 
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was identified in our previous analysis as a putative driver of a significant fraction of the 

LKB1-loss associated genes and has been previously shown to be regulated by LKB1 

(Feng et al., 2012). To give further evidence that our in silico findings translate to actual 

biological changes we used a luciferase reporter driven by the CRE-consensus sequence 

to assess activation of this transcription factor. Attenuation of CREB activation was 

confirmed in A549, H2122, and H460 cell lines yielding a reduction in reporter activity 

Figure 3.4. Restoring wild-type LKB1 in cell lines harboring mutations slows 
growth and attenuates the expression of the LKB1-deficient gene signature. 
A, Immunoblots of whole-cell lysates from A549, H2122, and H460 stably expressing 
emtpy pBABE vector, LKB1 or K78I LKB1. Quantitation of western blot signal is 
shown relative to ACC using ImageJ software. A single replicate was performed. B, 
Activity of CRE-luciferase is shown for A549, H2122, and H460 cell line after stable 
expression of LKB1 or K78I LKB1. Reporter activations were determined relative to a 
control luciferase with mutated CRE sites, and are shown relative to the pBABE 
control. P-values show the significance of unpaired student’s t-tests. C-E, Changes in 
gene expression of A549, H2122, or HeLa cell lines after re-expressing wild-type or 
mutant LKB1 were compared to the gene lists for each of the four LKB1-associated 
clusters using a hypergeometric test. Log10 P-values are indicated on the y-axis, with 
positive values indicating induction of expression and negative values indicating 
repression. 
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of 30-40% (Fig. 3.4b; P-value less than 0.05 for each cell line). Microarray analysis of 

gene expression changes in A549 and H2122 shows that LKB1 significantly 

  

Figure 3.5. Expression of wild-type LKB1 in A549, H2122, or HeLa cell lines 
decreases the expression of the genes in the CREB transcriptional node. 
Microarray gene expression was measured in triplicate after stable expression of 
pBABE vector or LKB1-wild-type in A549, A, H2122, B. or HeLa, C, For each gene 
comprising the CREB transcriptional node the average change in gene expression (log 
base 2) is plotted comparing LKB1 wild-type to pBABE control. Error bars represent 
standard deviations; P- values represent the results of student’s t-test comparing these 
groups. NA indicates minimal basal expression.  
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Supplementary Figure 9. Expression of wild-type LKB1 in A549, H2122, or HeLa cell 
lines decreases the expression of the genes in the CREB transcriptional node. 
a-b, Microarray gene expression was measured in triplicate after stable expression of pBABE 
vector or LKB1-wild-type in A549, a, H2122, b. or HeLa, c, For each gene comprising the 
CREB transcriptional node the average change in gene expression (log base 2) is plotted 
comparing LKB1 wild-type to pBABE control. Error bars represent standard deviations; P-
values represent the results of student’s t-test comparing these groups. NA indicates minimal 
basal expression. 
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downregulates the over-expressed genes associated with LKB1 in each of these cell lines 

(Fig. 2.1a, and Fig. 2.2). We then used the genesets associated with each of the four 

transcriptional clusters do determine whether LKB1 affected the activation of these 

clusters to a similar degree or whether some clusters were more affected than others. This 

analysis revealed that restoration of LKB1 significantly (P-value < 1.0e-30 by 

hypergeometric test) downregulates the LKB1-loss gene cluster, while increasing the 

expression of a subset of the downregulated genes. MTOR/mitochondria and NRF2 

associated clusters were unaffected (Fig. 3.4c,d). Similarly, analysis of gene expression 

changes after restoring LKB1 in HeLa cells (data shared by Dr. Lin-Marq (Lin-Marq et 

al., 2005)) also showed attenuation only of the LKB1-loss cluster (Fig. 3.4e; P-value = 

5.0e-15 by hypergeometric test), demonstrating that LKB1 induces consistent effects 

across different cancer types. In addition to this statistical approach, we also show the 

effect of LKB1 on the expression of the individual genes in the 16-gene signature (Fig. 

3.5). 

 

Discussion 

In this chapter we have used statistical methods to give a detailed analysis of a 

variety of phenotypes associated with LKB1 loss in lung cancer. The main validation of 

the LKB1-loss classifier is the demonstration that it accurately predicts LKB1 mutations 

and non-mutational loss in independent validation sets. Here we show that this accuracy 

makes it a powerful tool for discovering novel associations with this tumor suppressor. 

Before going into some detail about the novel findings uncovered with this approach, it is 

useful to consider the associations that corroborate previously established observations in 
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LKB1-deficient lung cancer. Koivunen et al performed sequencing of LKB1, BRAF, 

KRAS, and EGFR in 310 non-small cell lung cancers and reported associations with 

mutations and clinical variables (Koivunen et al., 2008). This analysis showed that 

LKB1-mutant lung tumors had a higher prevalence of KRAS mutations and a very low 

prevalence of EGFR mutations. There was also a significant association with smoking 

status, adenocarcinoma histology, and Caucasian race compared to tumors from Asian 

patients. No difference in tumor stage or outcome was observed. The associations 

between LKB1 and EGFR (Ding et al., 2008; Matsumoto et al., 2007), KRAS (Mahoney 

et al., 2009; Matsumoto et al., 2007), and smoking (Matsumoto et al., 2007) have also 

been observed in other datasets. Thus, our analysis is able to recapitulate the previous 

molecular and clinical associations made by multiple studies, and to increase the 

statistical significance of these observations substantially by virtue of the increased 

sample size available to us. 

With regard to our statistical inferences from gene expression data, we identify 

the CREB transcription factor as being activated in LKB1-deficient lung cancer. This 

association is also well established in the literature both in cancer (Feng et al., 2012; Gu 

et al., 2012; Komiya et al., 2009; Shackelford and Shaw, 2009) and in the regulation of 

glucose homeostasis (He et al., 2009; Koo et al., 2005a; Screaton et al., 2004; Shaw, 

2005). LKB1 controls the activation of CREB through the phosphorylation of the CREB 

transcriptional coactivators CRTC1, CRTC2, and CRTC3, which is carried out by the 

salt-inducible kinases and AMPK, which are in turn directly activated by LKB1. 

Phosphorylation by these kinases results in sequestration of CRTC family members in the 

cytoplasm, leading to attenuation of CREB activity homeostasis (He et al., 2009; Koo et 
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al., 2005b; Screaton et al., 2004; Shaw, 2005)). CREB has been shown to have oncogenic 

roles in lung cancer (Aggarwal et al., 2008; Seo et al., 2008), and CRTC1 and CREB 

activity have been shown to be important for the growth and migration of LKB1-deficient 

lung cancers, at least in part due to their role in upregulating a key mediator, NEDD9 

(Feng et al., 2012; Ji et al., 2007). Thus, the connection we see between LKB1 loss and 

CREB activation is not a novel observation, but shows that our statistical approaches 

yield reliable conclusions in accord with previous findings.  

This ability to independently demonstrate previously established findings using 

our statistical methods lends credence to the many novel findings we observe. We see 

increased expression of two clusters of genes that have important roles in tumor 

metabolism – one related to oxidative phosphorylation and mitochondrial biogenesis, the 

other – the NRF2 pathway – related to detoxification of reactive oxygen species. 

Increased expression of mitochondrial genes in these tumors may represent compensation 

for defective mitochondrial function, which has been demonstrated in LKB1-deficient 

cells due to loss of AMPK-induced mitophagy (Egan et al., 2011; Shackelford et al., 

2013). Alternatively, there could be activation of transcription factors that govern 

mitochondrial biogenesis, either downstream of mTOR or other pathways. PPAR-gamma 

coactivator 1A (PGC-1A) is one such regulator that links mTOR to mitochondrial 

biogenesis (Cunningham et al., 2007; Fernandez-Marcos and Auwerx, 2011); it is also a 

target of CREB and one of the most highly over-expressed genes in LKB1-deficient 

tumors. Understanding how these pathways interact to regulate tumor metabolism in the 

absence of LKB1 may be important in the design of therapeutic strategies that 
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incorporate metabolic inhibitors such as metformin, which may show promise in the 

treatment of these tumors (Shackelford et al., 2013). 

Dysregulated production of potentially defective mitochondria could also be 

related to the activation of NRF2 that occurs preferentially among lung tumors lacking 

LKB1, since these mitochondria may produce increased reactive oxygen species 

(Shackelford et al., 2013). NRF2 is a key activator of the oxidative stress response and 

also plays a role in metabolic reprogramming of cancer cells (DeNicola et al., 2011; 

Mitsuishi et al., 2012). Although the ROS detoxification induced by constitutive NRF2 

activation is beneficial in some contexts (DeNicola et al., 2011; Homma et al., 2009; 

Ohta et al., 2008; Shibata et al., 2008; Singh et al., 2008), ROS can alter signal 

transduction within the cell by inactivating phosphatases – leading to PI3K, EGFR (Chen, 

2006; Hirota, 2001), Src, and TGF-beta activation (Murillo et al., 2007) – and can be 

important for tumorigenesis (De Raedt et al., 2011; Weinberg et al., 2010). LKB1-

deficient tumors have been shown to be susceptible to oxidative stress, as they are unable 

to make the appropriate adaptive responses in metabolism and biosynthesis (Jeon et al., 

2012). Furthermore, NRF2 activation has been shown to confer resistance to 

chemotherapy, and thus may be an important clinical phenotype (Homma et al., 2009; 

Singh et al., 2008; Solis et al., 2010). NRF2 is frequently activated by somatic mutations 

in KEAP1 in NSCLC (Singh et al., 2006; Solis et al., 2010), and our analysis of the 

TCGA lung adenocarcinomas shows that roughly two thirds of tumors with expression of 

the NRF2 transcriptional signature harbor KEAP1 mutations. We demonstrated that this 

increase in prevalence is still seen after controlling for different levels of chromosome 

19p deletion, suggesting that selective pressure exists for NRF2 as a secondary protective 
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mechanism either in response to increased levels of ROS production, for instance by 

defective mitochondria, or decreased ability to respond to normal levels of stress 

appropriately in the absence of LKB1. It is likely that both alternatives could play a role. 

Understanding the interactions between these metabolic effects, pathway activation, and 

drug sensitivity presents an interesting focus for future research.  

ATM is another tumor suppressor that is mutated at a higher rate among LKB1 

deficient cells. ATM is a serine and threonine kinase that is involved in the DNA damage 

recognition checkpoint. When it is activated, by DNA damage or other cellular stress, it 

phosphorylates a number of downstream targets, such as p53, BRCA1, CHK1 and CHK2, 

to inhibit cell cycle progression and either repair the DNA damage or send the cell into 

apoptosis (Shiloh, 2003). Interestingly, ATM is known to phosphorylate both LKB1 

(Sapkota et al., 2002) and AMPK, which can be induced by etoposide (Luo et al, 2013), 

reactive oxygen species (Alexander et al., 2010) a pharmacologic activator of AMPK 

(Sun et al., 2007), or through IGF-1 induced oncogenic signaling (Suzuki et al., 2004). 

Thus, ATM can be placed in the same AMPK regulating pathway as LKB1, and this may 

underlie the increased frequency of ATM loss among LKB1-deficient cancers. 

Furthermore, because AMPK activation can be induced by reactive oxygen species in the 

absence of LKB1, this may be another driving force behind the selection for NRF2 

activation in these tumors.  

The gene cluster with the strongest association to LKB1 loss also provided 

interesting insights into pathway activation in LKB1-deficient tumors. We identified 

three transcription factors that had strong associations with the genes in this cluster, 

CREB, FOXO3, and FOXA2 (HNF3). The association between LKB1 and CREB is well 
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established in the literature and was discussed above. FOXA2 is a forkhead box 

transcription factor also known as hepatic nuclear factor 3-beta. It plays roles in lung and 

gastrointestinal development (Snyder et al., 2013; Wan, 2004) FOXA2 affects the 

differentiation state of tumors (Gupta et al., 2012; Qi et al., 2010; Snyder et al., 2013), 

and has been reported to exert tumor suppressive effects (Basseres et al., 2012; Liu et al., 

2012a; Tang et al., 2010). AMPK activation has been shown to lead to downregulation of 

FOXA2 activation after phosphorylation by AKT (Yokoyama et al., 2011). Chromatin 

immunoprecipitation of FOXA2 in A549 cells or HEPG2 cells shows binding to several 

of the genes most strongly associated with LKB1-deficient lung cancer, including 

AVPI1, DUSP4, FGA, ID1, NR4A2, RFK, S100P, and TFF1. Some of these genes have 

also been shown to have CREB or FOXO3 binding sequences in their promoter, raising 

the possibility of cooperativity between the different transcription factors we identified. 

More research, and into the general effects of this in the context of LKB1-deficient lung 

cancer could be enlightening. 

The final transcription factor we found to be associated with the LKB1-loss gene 

cluster is FOXO3. FOXO3 has tumor suppressive roles in cancer, and is known to induce 

the expression of the pro-apoptotic factors BIM and PUMA. Its transcriptional activity is 

controlled by phosphorylation from ERK and AKT kinases, which cause it to maintain 

cytoplasmic localization and induce little gene expression (Calnan and Brunet, 2008; 

Zhang et al., 2011). It has been previously reported that restoring LKB1 in LKB1-mutant 

lung cancer cell lines led to activation of AKT and inhibition of FOXO3 and other 

apoptotic regulators (Zhong et al., 2008). Our gene expression analysis suggests that 

activation of this transcription factor may be a phenotype generally associated with LKB1 
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loss, with important implications for therapy. We go into more detail regarding the 

potential for AKT to play a role in this gene signature as well, and the consequences of 

FOXO3 activation in the following chapter. 

These phenotypes that are associated with LKB1 loss in humans are distinctly 

different from those observed in the murine model of LKB1/KRAS mutant lung cancer. 

In contrast to human tumors with LKB1 loss, murine tumors did not express genes 

characteristic of FOXO3, CREB or NRF2 activation. There are a number of potential 

effects that could explain the differences observed between the mouse and human data. 

For instance, the mouse model only examines the role of LKB1 loss in KRAS-mutant 

lung tumors, while comparisons of human tumors encompass heterogeneous genetic 

backgrounds. Furthermore, mouse tumor models of mutant KRAS in the absence of 

additional genetic alterations produce relatively benign lesions (Ji et al, 2007) that may be 

more similar to adenomas than adenocarcinomas and thus may be a poor representation 

of LKB1 wild-type lung cancer. For the Carretero study, all gene expression data from 

LKB1 wild-type tumors were derived from this KRAS mutant model. However, in the Ji 

study we could include a comparison of murine LKB1/KRAS tumors with p53/KRAS 

tumors, which both have similarly aggressive phenotypes (Fig. 2.1). To control for the 

greatest number of potential confounding variables, we also determined differentially 

expressed genes in the TCGA lung adenocarcinomas for comparison of LKB1/KRAS 

mutant tumors (n=29) to KRAS/p53 mutant tumors (n=41). This gene list was essentially 

unchanged from the overall analysis of LKB1-associated genes in the TCGA study (116 

overlapping genes among the top 200 from each study) but still showed only three 

overlapping genes when compared to the mouse study of the same genetic groups.  
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Another possibility is that key features of the biology of LKB1-deficient human 

tumors may not be recapitulated in the murine model. As mentioned above, these murine 

tumors do not express genes that we associate with several putatively activated 

transcription factors in LKB1-deficient tumors. Additionally, TGF-beta and related 

signaling pathways, which are either unchanged or downregulated in LKB1-deficient 

human tumors, show increased expression in the murine model (Carretero et al., 2010; Ji 

et al., 2007). TGF-beta has many effects on cell signaling, but we show that TGF-beta 

treatment of the A549 cell line significantly downregulates both the LKB1-loss and 

NRF2 cluster, and thus may antagonize the activation of the pathways that are 

characteristically activated in human tumors with LKB1 loss. Although we do not have 

an explanation of the clear differences between human tumors and the manipulated 

murine model it is possible that manipulating one or more of these pathways in the mouse 

model could result in tumors that more closely reflect the phenotype of LKB1 loss in 

human lung cancer. 

We argue that each of the four gene clusters represents a distinct phenotype that 

may be regulated independently of each other. To determine whether this regulation 

could be directly affected by LKB1 expression we used an in vitro cell line model that 

has been used in several other studies (Feng et al., 2012; Ji et al., 2007; Zhong et al., 

2008) of restoring LKB1 expression in NSCLC cell lines that harbor LKB1 mutations. 

Gene expression analysis of the perturbations induced by expressing LKB1 in A549 and 

H2122 cell lines showed that LKB1 significantly (p<1e-30) downregulated the gene 

cluster associated with the LKB1-loss signature and linked to FOXO3, FOXA2, and 

CREB transcription factors. This shows that LKB1 has direct effects on the activation of 
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these genes, potentially through regulation of the transcription factors we identified. For 

the CREB transcription factor we confirmed this attenuation using a luciferase assay for 

CREB activity. 

Thus, we have shown that a specific gene expression pattern is consistently 

associated with LKB1 loss in multiple datasets and can be used to predict loss of LKB1 

in clinical samples. We have demonstrated that many molecular phenotypes are 

associated with loss of this tumor suppressor. Some of these have been previously 

characterized but many are novel and give new insight into the biology of these tumors. 

Furthermore, we show that the subset of genes most strongly associated with LKB1 loss 

– including the 16 genes used to classify LKB1 mutational status – is directly regulated 

downstream of LKB1. We next wanted to determine the mechanism by which LKB1 

regulates these genes and transcription factors and to determine whether any of the 

implicated pathways represent potential targets for therapy in lung cancer. Because we 

have shown that restoring LKB1 expression in vitro produces changes in expression of 

the FOX/CREB transcriptional cluster, this isogenic LKB1-addback model is an ideal 

system for testing hypotheses regarding interactions of LKB1, FOXO3, and clinically 

relevant phenotypes such as drug sensitivity and apoptosis, which we explore in the 

following chapter. 
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CHAPTER IV 

 

LKB1 LOSS IS ASSOCIATED WITH SENSITIVITY TO MEK INHIBITION 

AND ALTERATIONS IN PI3K-AKT-FOXO3 SIGNALING 

 

Introduction 

 The goal of this work is improved treatment of patients with lung cancer by 

identification of novel aspects of tumor biology that could lead to new or better therapies. 

Tumors that are driven by mutated constitutively active oncogenes, so called ‘oncogene 

addicted’ tumors, are responsive to targeted pharmacologic inhibition of the oncogene. 

Both monoclonal antibodies and small molecule inhibitors have proved to be marvelously 

effective in several tumor types. For example, tyrosine kinase inhibitors (TKIs) have 

changed the natural history of chronic myelogenous leukemia (Druker et al., 2001), 

gastrointestinal stromal tumor (Demetri et al., 2002), and mutated oncogene-driven 

subsets of lung cancer (Lynch et al., 2004; Paez et al., 2004; Shaw et al., 2013) and 

melanoma (Chapman et al., 2011; Flaherty et al., 2012; 2010; Sosman et al., 2012); 

similarly, monoclonal antibody inhibitors of HER2/neu are dramatically effective in 

HER2 amplified breast cancer (Slamon et al., 2001) and gastric cancer. Research to 

improve on these treatments has focused on understanding innate and acquired resistance 

mechanisms and developing strategies to overcome resistance, discovery of new drugs 

targeting different epitopes on the oncogene or combining two inhibitors with different 

sites of action. On the other hand, reversing the tumorigenic effects of inactivated tumor 

suppressors genes such as LKB1 is considerably more challenging. Restoration of lost 
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tumor suppressor activity in patients has not proved feasible so far. Thus, we and others 

are focusing efforts on identifying potentially targetable downstream ‘driver’ pathways 

activated as a consequence of suppressor loss.  

 One such pathway in LKB1-deficient tumors is mTOR activation. There is a 

direct link from LKB1 loss, which results in inhibition of AMPK phosphorylation, thence 

to mTOR activation. Clinical trials have not yet assessed mTOR inhibitors in the subset 

of LKB1-deficient tumors, so it is so far unknown whether these approaches will have 

efficacy. Our analysis of gene expression patterns has revealed several upregulated 

transcription factors, in addition to the mTOR pathway, specifically CREB, NRF2, and 

FOXO3, that could influence drug sensitivity or lead to the identification of drug targets 

in LKB1 deficient lung cancers. The CREB transcription factor has oncogenic effects 

(Aggarwal et al., 2008; Feng et al., 2012; Seo et al., 2008), and is activated downstream 

of several pathways through which oncogenic signals can be induce, such as G-coupled 

protein receptors, the MEK/ERK pathway, and intracellular calcium signaling. NRF2 

activation has been shown to influence drug response, likely by suppressing the cytotoxic 

effects of free radicals induced by treatment.  

 Finally, the FOXO3 transcription factor has been shown to be an important 

determinant of the apoptotic response by induction of the expression of pro-apoptotic 

factors BIM, PUMA, and FAS ligand, as well as cell cycle inhibitors p21 and p27. The 

activity of FOXO3 is tightly regulated by post-translational modification including 

acetylation, phosphorylation, and ubiquitination (Calnan and Brunet, 2008; Fu and 

Tindall, 2008; Zhang et al., 2011). Phosphorylation of FOXO3 at threonine 32, serine 

253, and serine 315 is induced by AKT and SGK kinases, which results in inhibition of 
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FOXO3 activity by promoting its cytoplasmic sequestration by 14-3-3 proteins. 

Acetylation by CBP and p300 inhibits FOXO3 as well, also primarily by affecting 

localization (Calnan and Brunet, 2008). Inhibition of FOXO3 by ERK phosphorylation 

also occurs, and this has been shown to cause FOXO3 degradation in an MDM2 

dependent manner (Yang et al., 2008). Conversely, other amino acids of FOXO3 are 

phosphorylated by AMPK, and this has been shown to have an activating effect on the 

transcription factor (Greer et al., 2007). Thus, there are a number of pathways that 

interact to regulate the activity of this transcription factor, the dysregulation of which 

may result in the activation of downstream targets identified in our gene expression data. 

Identifying and understanding these dysregulated pathways, as well as the effects of 

FOXO3 itself, may inform our understanding of LKB1 influence on drug sensitivity for 

particular targeted agents.  

 In addition to identification of new targets in LKB1 deficient tumors, we have 

also used empiric drug sensitivity data to identify drugs with specific activity in LKB1 

tumors, utilizing our 16-gene signature to classify the LKB1 deficient cell lines.  

Extensive characterizations of in vitro drug response to a variety of targeted inhibitors 

were recently reported (Barretina et al., 2012; Garnett et al., 2012). In the Cancer Cell 

Line Encyclopedia (CCLE) study (Barretina et al., 2012) 505 cell lines were tested for 

sensitivity to 24 compounds, and in the Genomics of Drug Sensitivity in Cancer (GDSC) 

study (Garnett et al., 2012) 715 cell lines were tested with 138 drugs (note: some drugs 

were not tested in all cell lines). Because our signature is associated with LKB1 loss in 

cell lines of multiple histological types, we used the signature as a tool to look for 

statistical associations with drug sensitivity in these studies to identify candidate drugs 
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that may have more efficacy in LKB1-deficient tumors. It is also possible that the 

signature will serve as a measure of activity for specific transcription factors, such as 

FOXO3, that could be activated in other contexts, independent of LKB1 activity. In either 

case, we these associations could lead to the discovery of novel treatment options for 

patients with tumors that have lost LKB1. 

 

Methods and Materials 

Statistical Analysis of Drug Sensitivity Associations 

 Data for drug sensitivity across two large multi-histology collections of cell lines 

were obtained from the GDSC (Garnett et al., 2012) and CCLE (Barretina et al., 2012) 

studies. The same studies provided microarray analysis of gene expression for these cell 

lines. From these data LKB1 classifier scores were derived, as detailed in Chapter II. The 

gene expression scores for these collections were merged to give a single set of 1244 

independent cell lines. In cases where cell lines were included in both studies, the average 

LKB1 classifier score was used. 

 To identify inhibitors that may show differential sensitivity in tumors lacking 

LKB1, we performed univariate linear regression analysis to determine the association 

between the LKB1 classifier score and the IC50 values for 131 different compounds 

included in the GDSC study. To allow for training and testing analyses the CCLE study 

was split into two cell line groups. The set of cell lines from the CCLE that were also 

included in the GDSC study was used as a training set confirmation, while samples that 

were not included among GDSC cell lines were used as an independent validation set. 

Linear regression was used to determine associations between cluster scores and the IC50 
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values and maximum inhibitory effects seen for each of the 24 inhibitors included in the 

CCLE study. Distributions were also compared for groups of cell lines given a binary 

classification as high or low LKB1-loss score and Student’s t-tests were used to compare 

drug sensitivity between the two groups. 

 To demonstrate that the association between the LKB1-loss signature and MEK 

sensitivity was a novel observation not accounted for by previous findings, we used a 

multivariable general linear model relating maximum inhibition by the MEK inhibitor 

selumetinib to the LKB1-loss score and each of three previously published MEK 

sensitivity signatures (Dry et al., 2010; Garnett et al., 2012; Loboda et al., 2010), as well 

as additional variables representing mutations in KRAS, NRAS, HRAS, BRAF, and 

LKB1. The published gene signatures were used to calculate sensitivity scores for each 

cell line by averaging standardized expression for each of the published probesets. The 

correlations between the genes comprising these predictive gene signatures were 

examined visually in heat maps to ensure they were strongly correlated with one another, 

such that each signature could be justifiably represented as a single numeric value. 

Mutations were determined based on data from COSMIC and the CCLE. Linear 

regression modeling was performed using the R statistical platform with the Limma 

package. 

 

Proliferation and Drug Sensitivity Assays 

 In vitro proliferation assays were performed in 96-well plates after seeding 1000 

cells in each well. Quantitation of relative cell growth was made using the Alamar Blue 

(Invitrogen) colorimetric assay. Similarly, for drug sensitivity assays, 1000 cells per well 
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were added to 96-well plates. Inhibitors were added at the specified concentrations 24 

hours after seeding, and relative cell viability was quantified 72 hours after adding 

inhibitors using Alamar Blue. Trametinib, selumetinib, PD0325901, BEZ235, dasatinib, 

and paclitaxel were purchased from Chemitek.  

 

Immunoblots 

 Cell lysates were harvested while cells were in exponential growth phase in RIPA 

lysis buffer containing phosphatase and protease inhibitors. Lysates were homogenized 

and electrophoreses were performed on pre-cast SDS-PAGE gels (BioRad). Phospho-

ACC (s79), ACC, LKB1, pAKT, pFOXO1/3/4 (T32), pERK1/2 (T202/Y204), pMEK 

(S217/S221), ERK and AKT antibodies were obtained from Cell Signaling Technology 

(Danvers, MA). Resulting western blots were quantitated using ImageJ software to 

measure pixel density and area, with results compared to those of Akt as a loading 

control. 

 

Results 

LKB1-deficient Cell Lines Show Increased Susceptibility to MEK Inhibition 

To identify potential candidates for targeted therapy among patients with LKB1-

deficient tumors, we investigated drug sensitivity associations using data from the 

Genomics of Drug Sensitivity in Cancer (GDSC) study, which measured in vitro 

susceptibility of 715 cell lines to 138 diverse pharmacologic inhibitors (Garnett et al., 

2012). Cells with high expression of the LKB1-loss signature were significantly more 

sensitive to each of the four different MEK inhibitors included in the study – PD-
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0325901 (P-value=3.2e-6), selumetinib (AZD6244; P-value=0.0056), Cl-1040 (P-

value=0.0073), and RDEA119 (P-value=1.5e-5) (Fig. 4.1a). This novel association with 

MEK inhibition was confirmed using an independent testing set of cell lines from the 

Cancer Cell Line Encyclopedia (CCLE), a second large-scale analysis of in vitro drug 

susceptibility that included data on both selumetinib and PD-0325901 (Barretina et al., 

2012) (Fig. 4.1b,c). 

Mutations in the RAS/RAF pathway lead to activation of MEK and ERK, and 

thus, tumors and cell lines with such mutations are more sensitive to inhibitors of these 

pathways. We observed that the magnitude of the association of the LKB1-loss signature 

with selumetinib sensitivity was similar to the effect of mutational RAS/RAF activation 

(Fig. 4.1d). Because LKB1 loss has significant overlap with these mutations, we next 

wanted to determine whether LKB1 loss was an independent determinant of MEK 

sensitivity after controlling for these mutations. In addition, we used gene expression 

signatures of MEK sensitivity from three previously published studies to determine 

whether our signature is associated with a novel phenotype or is accounted for by these 

previous analyses. We used a multivariable general linear model to account for the 

following variables: mutations in KRAS, NRAS, HRAS, and BRAF, as well as 

previously reported gene signatures from Loboda et al, Garnett et al, and Dry et al 

(Barretina et al., 2012; Dry et al., 2010; Garnett et al., 2012; Loboda et al., 2010). 

Multivariate analysis demonstrated that our signature of LKB1 loss was independently 

associated with sensitivity in a model that included all of these variables (P-value 2.8e-8).  

To show that these effects are independent of mutational status, we present the 

distributions of drug sensitivity data for signature-positive and signature-negative cell 
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lines separated according to mutation status (Fig. 4.1e-g). Significant associations are 

observed for each mutational class; the statistical significance is higher in the multivariate 

analysis because the sample size is much larger, and potentially also because LKB1-loss 

score was used as a continuous variable rather than a binary classification. 

 

Figure 4.1. LKB1 loss score is associated with sensitivity to MEK inhibitors. 
A, Inhibitors tested in the GDSC study (n=138) are ranked according to their statistical 
association with the LKB1-loss signature. Seventeen inhibitors that have p-values less 
than 0.05 are shown in the expanded inset, which includes the four MEK inhibitors 
included in this study. P-values represent the results of linear regression analysis 
between the LKB1 loss signature expression and the IC50 values for a given drug. 
Log10 transformed p-values are depicted on the y-axis, with positive values indicating 
resistance and negative values indicating sensitive phenotypes. B-C, Maximum 
inhibitory effect of selumetinib is shown for cell lines with high expression of the 
LKB1 classifier compared to those with low expression in both (B) training and (C) 
testing cohorts from the CCLE dataset. D, Univariate linear regression coefficients 
associated with mutations in RAS/RAF family members or the LKB1 signature are 
shown corresponding to differences in maximum selumetinib inhibition in the CCLE 
study. Bars indicate standard error of these regression estimates. E-G Association 
between selumetinib and LKB1-loss signature is shown for cell lines with mutations in 
(E) BRAF, (F) KRAS and (G) wild-type for BRAF, KRAS, NRAS, and HRAS. Cell 
lines classified as LKB1-loss are marked as ‘classifier positive’ while those with a 
wild-type signature are marked as ‘classifier negative’. Distributions and medians are 
plotted; P-values represent the significance of the Student’s t-test. 
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Restoring LKB1 Expression in LKB1-mutant Cell Lines Induces Resistance to 

MEK Inhibitors 

Our statistical comparison used a gene expression signature that is strongly 

associated with LKB1 loss in lung cancer, and significantly associated with LKB1 loss in 

other types of tumors and cell lines, albeit to a lesser degree. LKB1 loss has not been 

thoroughly studied in non-lung cancer cell lines, so some of the signature-positive cell 

lines may have LKB1 loss that has not been described; however, it is likely that the 

signature is not as specifically associated with LKB1 loss in these non-lung cell lines, 

especially those that express these genes at a lower level close to the score cut-off for the 

binary classification. Thus, there are several ways that a falsely or misleadingly positive 

statistically significant association could be observed with the signature without being the 

phenotype being truly dependent on LKB1 loss. Furthermore, many factors influence 

sensitivity to any targeted agent, including activation of the pathway, ability to shift 

oncogenic signaling to a redundant pathway, or activation of other noninhibited pathways 

that could induce growth or activate resistance mechanisms to cell death. There could be 

a significant association between LKB1 loss and alteration of one or more such pathways 

that was not directly dependent on LKB1 signaling.  

To determine whether LKB1 loss directly affects in vitro sensitivity to MEK 

inhibition, we turned to our isogenic LKB1 add-back model previously described. We 

derived LKB1 add-back lines, along with vector only and kinase dead control lines for 

A549, H2122, and H460 and tested their sensitivity to several inhibitors. We found 

significant induction of resistance to the MEK inhibitors selumetinib, trametinib, and 

PD0329501, by wild-type LKB1 in A549 and H2122, but not H460 (Fig. 4.2a). On the 
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other hand, induction of resistance with LKB1 re-expression was not observed for 

dasatinib (multi-targeted kinase inhibitor, including c-Src), BEZ235 (dual PI3K and 

mTOR inhibitor), or paclitaxel (microtubule inhibitor), demonstrating that this is specific 

for inhibition of the MEK pathway, not a general drug resistance effect (Fig. 4.2b). These 

findings are consistent with the MEK-specific effect observed in our in silico analysis of 

drug sensitivity, and support a direct role of LKB1 in determining MEKi sensitivity.  

 

 

The Expression of the 16-gene Signature is Independent of MEK/ERK Signaling. 

To give insight into mechanisms that might explain the association of LKB1 loss 

with MEK sensitivity we examined the effects of MEK inhibition on the expression of 

genes comprising the LKB1-loss signature. If the expression of genes in our signature is 

downregulated by MEK inhibition, then the signature might be indicative of MEK 

pathway activation rather than an independent phenotype. To answer this question we 

identified two publicly available datasets in which changes in gene expression of a total  

Figure 4.2. Restoring LKB1 confers resistance to MEK inhibition . 
A-B, Cell viability is shown for A549, H2122, and H460 cell lines stably transduced 
with pBABE, LKB1, or LKB1 K78I and treated for 72 hours with the indicated 
inhibitors. Mean viability, determined by colorimetric Alamar Blue assay, is shown 
relative to DMSO treated controls with error bars representing standard deviation. P-
values represent the significance of unpaired student’s t-tests.  
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Figure 4.2. Restoring LKB1 confers resistance to MEK inhibition . 
A-B, Cell viability is shown for A549, H2122, and H460 cell lines stably transduced 
with pBABE, LKB1, or LKB1 K78I and treated for 72 hours with the indicated 
inhibitors. Mean viability, determined by colorimetric Alamar Blue assay, is shown 
relative to DMSO treated controls with error bars representing standard deviation. P-
values represent the significance of unpaired student’s t-tests. Full concentration 
curves were not performed for these inhibitors and IC50 values were not calculated. 
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of 34 cell lines were analyzed after treatment with MEK inhibitors in vitro or in vivo 

(Gysin et al., 2012; Pratilas et al., 2008). The overall expression of the 16-gene signature 

was not affected by MEK inhibition; the only significant interaction observed was the 

downregulation of DUSP4, a known component of the MAPK pathway. When the 200 

genes of the FOX/CREB cluster were studied, gene expression was induced for a subset 

of the cell lines, but in no cases was signature expression significantly attenuated. 
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Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 

a 

c 

b 

d 

e 

-30 
-25 
-20 
-15 
-10 

-5 
0 
5 

10 
15 

Pa
nc

-1
 

B
xP

C
-3

 
H

s7
66

T 
Pa

nc
-6

.0
3 

C
FP

A
C

-1
 

Pa
nc

-8
.1

3 
H

PA
F_

II
 

Pa
nc

-2
.1

3 
Pa

nc
-3

.2
7 

Pa
nc

-1
0.

05
 

M
IA

Pa
C

a-
2 

SU
86

.8
6 

SW
19

90
 

Pa
nc

-5
.0

4 
C

ap
an

-2
 

M
pa

nc
-9

6 
PL

45
 

Pa
nc

-2
.0

3 
L3

.6
pl

 
C

O
LO

35
7 

L3
.3

 
L3

.6
sl

 
H

16
50

 
B

T4
74

 
SK

M
EL

1 
SK

M
EL

28
 

A
43

1 
H

T2
9 

M
A

LM
E3

M
 

SK
B

R
3 

SK
M

EL
5 

C
O

LO
20

5 
M

D
A

46
8 

SK
M

EL
19

 

P-
V

al
ue

 (l
og

10
) 

Garnett MEK sensitivity 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Dry MEK functional activation 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Loboda RAS up 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Garnett MEK sensitivity 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

LKB1 loss 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

LKB1 loss expanded 

Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
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Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
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studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
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Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 
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Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 

a 

c 

b 

d 

e 

-30 
-25 
-20 
-15 
-10 
-5 
0 
5 

10 
15 

Pa
nc

-1
 

B
xP

C
-3

 
H

s7
66

T 
Pa

nc
-6

.0
3 

C
FP

A
C

-1
 

Pa
nc

-8
.1

3 
H

PA
F_

II
 

Pa
nc

-2
.1

3 
Pa

nc
-3

.2
7 

Pa
nc

-1
0.

05
 

M
IA

Pa
C

a-
2 

SU
86

.8
6 

SW
19

90
 

Pa
nc

-5
.0

4 
C

ap
an

-2
 

M
pa

nc
-9

6 
PL

45
 

Pa
nc

-2
.0

3 
L3

.6
pl

 
C

O
LO

35
7 

L3
.3

 
L3

.6
sl

 
H

16
50

 
B

T4
74

 
SK

M
EL

1 
SK

M
EL

28
 

A
43

1 
H

T2
9 

M
A

LM
E3

M
 

SK
B

R
3 

SK
M

EL
5 

C
O

LO
20

5 
M

D
A

46
8 

SK
M

EL
19

 

P-
V

al
ue

 (l
og

10
) 

Garnett MEK sensitivity 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Dry MEK functional activation 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Loboda RAS up 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

Garnett MEK sensitivity 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

LKB1 loss 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

P-
V

al
ue

 (l
og

10
) 

LKB1 loss expanded 

Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 
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Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 
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Supplementary Figure 11. Responsiveness to MEK inhibition for three previously published MEK 
signatures, in contrast to LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity are shown after treatment 
with MEK inhibitor. a, Analysis of 15 gene ‘MEK functional activation’ signature reported in Dry, et al, 2010. b, 
Analysis of 58 genes reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 90 
gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of LKB1 loss reported here. e, 
Analysis of top 200 genes associated with the 16 gene LKB1 loss signature. The y-axis represents the log-
transformed p-values for hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two colon, one lung) from two 
studies. Pancreatic cell lines were treated with 2mM CI-1040 for 24 hours, while other cell lines were treated 
with 50nM PD0325901 for eight hours. 
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Figure 4.3. Influence of MEK inhibition on gene expression for three previously 
published MEK signatures and the LKB1 loss signature. 
Changes in gene expression corresponding to different signatures of MEK sensitivity 
are shown after treatment with MEK inhibitor. a, Analysis of 15 gene ‘MEK 
functional activation’ signature reported in Dry, et al, 2010. b, Analysis of 58 genes 
reported to be correlated with MEK sensitivity in Garnett, et al, 2012. c, Analysis of 
90 gene signature reported in Loboda, et al, 2010. d, Analysis of 16 gene signature of 
LKB1 loss reported here. e, Analysis of top 200 genes associated with the 16 gene 
LKB1 loss signature. The y-axis represents the log- transformed p-values for 
hypergeometric test of overlap significance between each signature and the genes 
perturbed by MEK inhibition in 34 cell lines (22 pancreatic, six skin, three breast, two 
colon, one lung) from two studies. Pancreatic cell lines were treated with 2mM 
CI-1040 for 24 hours, while other cell lines were treated with 50nM PD0325901 for 
eight hours.  
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Conversely, each of the three previously published signatures of MEK sensitivity (Dry et 

al., 2010; Garnett et al., 2012; Loboda et al., 2010) that we analyzed showed significant 

downregulation after MEKi treatment, indicating that these signatures reflect the level of 

RAS/RAF/MAPK activation within a cell, whereas, the LKB1-loss signature is 

determined by an independent phenotype (Fig. 4.3).  

 

Restoring LKB1 to Cell Lines in Vitro Induces Phosphorylation of AKT and 

FOXO3. 

Because FOXO transcription factors were implicated by our analysis of the 

LKB1-associated gene signature and AKT/FOXO3 has been shown to directly affect 

MEK sensitivity (Catalanotti et al., 2013; Gopal et al., 2010; Meng et al., 2010), we 

examined the effects of LKB1 on activation of this pathway. In A549 and H2122, two 

cell lines in which LKB1 restoration induced resistance to selumetinib, we observed 

increased phosphorylation of AKT at serine 473 and increased phosphorylation of its 

downstream target FOXO3 at threonine 32 (Fig. 4.4), which causes FOXO3 nuclear 

export and downregulation of target genes (Calnan and Brunet, 2008). Activation of AKT 

and downregulation of FOXO3 are both consistent with our interpretation of the LKB1-

loss gene expression signature and with the finding of increased MEK sensitivity among 

these cell lines, and represents a mechanistic link between these phenotypes.  
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PI3K/AKT Signaling is Attenuated in Resected Human Tumors with LKB1 Loss 

To determine whether PI3K and AKT signaling was also affected by LKB1 loss 

in human tumors we analyzed proteomic RPPA data from TCGA-characterized lung 

adenocarcinomas. The LKB1-loss signature was used to distinguish tumors with LKB1 

loss from LKB1 wild-type tumors and expression levels for 174 proteins and 

phosphorylation sites were compared between these groups using the Student’s t-test. In 

tumors with LKB1 loss, both the p85 and p110 subunits of PI3K showed significant 

decrease in expression (P = 0.00061 and 0.00047 respectively), as well as decreased 

phosphorylation of PDK1 at serine 241 (P = 0.00012), and decreased total AKT (P = 

0.02) and phospho-S473 AKT (P = 0.018). Surprisingly, proteomic evidence did not 

Figure 4.4. Restoring LKB1 alters AKT and FOXO3 phosphorylation.  
Immunoblots of whole-cell lysates from A549, H2122, and H460 stably expressing 
pBABE vector, LKB1 or LKB1 K78I after overnight incubation in serum free 
medium. Blot density was quantitated using ImageJ software in reference to total 
AKT. Mean density is indicated below each band, relative to pBABE control. Standard 
deviations across replicates are given in parentheses. * P<0.05; **P<0.01 for Student’s 
T-test.  

A549 H2122 H460 A549 H2122 H460 
A549 H2122 H460 
A549 H2122 H460 
A549 H2122 H460 

A549 H2122 H460 

A549 H2122 H460 
1.0  4.2** 1.1 
(0.6)  (0.4)   (0.4) 

1.0  4.1* 1.5 
(0.9)  (1.0)   (1.3) 

1.0  1.9  1.1 
(0.5)  (0.5)  (0.3) 

1.0  0.6  0.5 
(0.2)  (0.2)  (0.6) 

1.0  1.2  1.1 
(0.1)  (0.1)  (0.1) 

1.0  13** 2.0 
(0.1)  (5.7)   (0.2) 

1.0  8.5* 0.7 
(0.7)  (2.3)   (0.2) 

1.0  1.5  1.3 
(1.0)  (0.8)  (0.5) 

1.0  1.3  0.7 
(0.2)  (0.2)  (0.7) 

1.0  0.7  1.5 
(0.3)  (0.5)  (0.6) 

1.0  1.2  1.6 
(0.2)  (0.5)   (0.2) 

1.0  1.4   3.3 
(0.7)  (1.2)   (1.9) 

1.0  1.5  1.3 
(0.2)  (0.3)  (0.4) 

1.0  0.8  1.1 
(0.1)  (0.2)  (0.5) 

1.0  0.8  0.8 
(0.2)  (0.1)  (0.3) 
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suggest significant mTOR activation, showing only modest increase in eIF4E expression 

and decrease in 4E-BP1 (P = 0.037, 0.032 respectively), with no significant differences in 

other components of mTOR signaling. We also did not see significant differences in most 

proteins associated with the MEK/ERK pathway, with a modest increase in 

phosphorylated MEK (P = 0.036) and a decrease in total ERK (P = 2.1e-04). We present 

a simplified model based on established pathway interactions, in which both PI3K/AKT 

and MEK/ERK pathways play important roles in regulating mTOR activity (Fig. 4.5). 

The downregulation of PI3K/AKT and LKB1/AMPK seen in LKB1-deficient tumors is 

shown on this schema using a color code to represent the statistical significance seen in 

our analysis of RPPA data.   

Attenuation of PI3K/AKT signaling would also be expected to have significant 

effects on apoptotic regulation (Fig. 4.6).  Loss of AKT-mediated repression of FOXO3 

could induce expression of pro-apoptotic factors such as BIM, which shows elevated 

protein levels in LKB1 deficient tumors (P-value = 0.0002, Fig. 4.6). We further 

stratified LKB1-deficient tumors by the level of phosphorylated AMPK that was 

detected, to determine if the level of activation of this pathway affected expression of 

BIM. We found that BIM protein expression was significantly higher in the tumors with 

the most complete attenuation of pAMPK (P-value = 0.01), whereas, both groups of 

LKB1-deficient tumors still expressed significantly higher levels than LKB1 wild-type 

tumors (P-value = 0.008 for high AMPK group and 7.7e-5 for low AMPK groups vs. 

LKB1-wild type). While downregulation of  AKT signaling can induce pro-apoptotic 

signaling, these effects can be counteracted on several levels by the MEK/ERK pathway, 

which phosphorylates FOXO3, BIM, and BAD to inhibit apoptosis (Fig. 4.6). The 
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implications of these models are that in the absence of LKB1, downregulation of 

PI3K/AKT signaling renders tumors more reliant on MEK/ERK signaling for 

proliferation and inhibition of apoptosis, and thus more susceptible to targeted inhibition 

of this pathway. 

Figure 4.5. Signaling through MEK/ERK and PI3K/AKT pathways regulates 
mTOR activation. 
A, Schema representing interactions of MEK/ERK, PI3K/AKT, and LKB1/AMPK 
signaling in the regulation of mTOR activity. For altered proteins or phosphorylated 
proteins that were mentioned in the text, we depict statistical differences in expression 
between LKB1 wild-type and LKB1-deficient lung adenocarcinomas using RPPA data 
characterized by the TCGA. The statistical significance of a Student’s t-test is 
represented for various proteins using colors that correspond to p-values indicated in 
the legend. Blue indicates decreased expression among LKB1-deficient lung 
adenocarcinomas. 
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Discussion 

In this chapter we have used our 16-gene LKB1 signature as a tool to investigate 

empiric associations with drug sensitivity. The top candidate identified in this analysis 

was inhibitors of the MEK pathway, which has recently shown efficacy in the treatment 

of BRAF mutant melanoma (Catalanotti et al., 2013; Flaherty et al., 2012) and promising 

results in a phase II clinical trial in KRAS mutant advanced stage NSCLC (Jänne et al., 

2013). Four MEK inhibitors were represented in the training set, and sensitivity to each 

was significantly associated with the LKB1-loss signature. Two of these compounds were 

also represented in a second set of cell lines, which allowed independent confirmation of 

our findings with strong statistical significance (P-value = 4.1e-7 in training; 4.8e-8 in 

BAD

FOXO3

BIM

Apoptosis

PI3K
p110

p85
AKTRAS ERK

P

P

< 0.001

< 0.05

< 0.001

< 0.0001

< 0.01
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Figure 4.6. Signaling through MEK/ERK and PI3K/AKT pathways regulates 
apoptosis. 
A, Schema representing interactions of MEK/ERK and PI3K/AKT signaling in the 
regulation of apoptosis. For altered proteins or phosphorylated proteins that were 
mentioned in the text, we depict statistical differences in expression between LKB1 
wild-type and LKB1-deficient lung adenocarcinomas using RPPA data characterized 
by the TCGA. The statistical significance of a Student’s t-test is represented for 
various proteins using colors that correspond to p-values indicated in the legend. Red 
indicates increased expression among LKB1-deficient lung adenocarcinomas, while 
blue indicates decreased expression. 
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testing set). An association between MEK inhibition and LKB1 mutations has been 

previously posited by a small study of ten cell lines (Mahoney et al., 2009). However, 

this study is limited in scope, and an apparent post-hoc grouping of cell lines may 

invalidate the reported statistical association. Thus, our study supports the previous 

observation, but greatly expands its scope and significance. 

Although this is an empiric observation, we have endeavored in the previous 

chapters to ascribe biological significance to the genes comprising each of the clusters we 

identified. This information has now proved useful in generating testable hypotheses to 

explain the association with MEK sensitivity. In particular, we know that our signature is 

predictive of LKB1 loss, and the expression of its constituent genes are directly affected 

by restoring LKB1 in cell lines; therefore, the pathways driving the expression of these 

genes must have been altered as well. Our analysis of these genes led us to implicate 

three transcription factors that are likely active in LKB1-deficient tumors. The FOXO3 

transcription factor was particularly interesting in the context of MEK sensitivity, since 

FOXO3 and AKT have been shown to be key determinants of response to MEK 

inhibition, with significant attenuation of apoptosis seen after expression of constitutively 

active AKT or after siRNA knockdown of FOXO3 or BIM (Meng et al., 2010). LKB1 

has previously been linked to AKT and FOXO3 activation. Zhong et al showed that 

depletion of LKB1 in an EGFR mutant cell line led to decreased AKT activation and 

increased apoptosis due to loss of AKT phosphorylation of several anti-apoptotic 

proteins, while expressing LKB1 in mutant cell lines induced AKT and FOXO3 

phosphorylation (Zhong et al., 2008).  
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Our work replicates this effect showing increased AKT and FOXO3 

phosphorylation after restoring LKB1 in cell lines. This, taken together with our gene 

expression and proteomic analysis, suggests that FOXO3 is generally upregulated among 

lung tumors with LKB1 loss. Furthermore, we show that restoring LKB1 induces 

resistance to MEK inhibition in a subset of cell lines, demonstrating that the association 

between MEK sensitivity and LKB1 suggested in our statistical approach can be 

conclusively confirmed experimentally. 

 Our analysis of proteomic data from resected human tumors further supports the 

hypothesis that AKT and BIM are dysregulated in LKB1-deficient tumors. Furthermore, 

the literature-based model that we present linking LKB1, mTOR, and AKT activity may 

provide mechanistic insight into the biology of these tumors. These pathways are 

intimately connected through a network of protein interactions coordinating the balance 

between mTOR and PI3K/AKT activation (Shaw and Cantley, 2006b; Vivanco and 

Sawyers, 2002). Activation of mTOR is induced by AKT phosphorylation of the mTOR 

complex itself and by inhibitory phosphorylation of the upstream TSC2 inhibitor (Huang 

and Manning, 2009). To limit this signal mTOR phosphorylates IRS1/2 substrates, 

resulting in their degradation and blocking PI3K activation by receptor tyrosine kinase 

signaling. A separate feedback component involves TSC2 induction of mTORC2 

activation in concert with its downregulation of mTORC1, resulting in AKT activation 

and restoration of pathway balance. Perturbations of this network result in shifts in the 

balance of pathway activation. For instance, pharmacologic inhibition of mTOR relieves 

feedback inhibition, resulting in activation of PI3K and AKT (Carracedo et al., 2008; 

Rodrik-Outmezguine et al., 2011). Conversely, loss of TSC2 causes strong mTOR 
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activation and results in abrogation of PI3K and AKT signaling (Manning, 2005; Shaw et 

al., 2004a), with resultant activation of FOXO3, similar to the effects seen here due to 

LKB1 loss. Thus, although LKB1 acts as a tumor suppressor, its loss leads to the 

downregulation of important oncogenic pathways; this feedback inhibition may explain 

why LKB1 and EGFR mutations rarely occur in the same tumors, since EGFR signals 

prominently through PI3K, mTORC2, and NF-kB (Tanaka et al., 2011). 

Interestingly, MEK sensitivity has been tested in the murine model of 

LKB1/KRAS mutant lung cancer, but showed the opposite association (Chen et al., 

2012). Thus, the differences in LKB1-associated gene expression between human and 

mouse tumors may also be reflected in clinically relevant phenotypes produced by these 

models. Whereas, our work implicates activation of the FOXO3 transcription factor as a 

potential mediator of this effect, the murine model showed activation of TGF-beta and 

SRC pathways in LKB1-deficient tumors, which are known to induce resistance to MEK 

inhibitors (Dry et al., 2010; Ferguson et al., 2012; Girotti et al., 2013; Huang et al., 2012). 

Indeed, the addition of dasatinib to a combination of BEZ235 and selumetinib induced 

tumor shrinkage in the LKB1-deficient murine tumors, suggesting that this phenotypic 

difference could explain the discrepancy in MEK sensitivity between human tumor cell 

lines and murine models (Carretero et al., 2010). Cell lines and genetically modified 

mouse models may be useful pre-clinical models for studying LKB1 loss and other 

scientific questions. In this case, however, opposite conclusions are drawn from the two 

different models. Testing the hypothesis in human clinical trial samples will be required 

to conclusively answer this question.  
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 Our work shows that LKB1 directly affects both FOXO3 and MEK sensitivity. In 

lung cancer our signature is strongly associated with LKB1 loss; however in other tumor 

types, this association may be less specific. We have linked this gene expression 

signature to FOXO3 activation, which likely represents the mechanism underlying MEK 

sensitivity. However, in other tumor types where LKB1 loss is less prevalent, the gene 

signature could be induced by activation of FOXO3 for other reasons. If this is the case 

then the signature might be effective at predicting response to MEK inhibition even in 

tumor types where LKB1 loss is rarely seen. Additional study would be required to 

determine if this is the case, and ultimately clinical trials would be needed to see whether 

expression of our signature is associated with improved response to MEK inhibition. 

Understanding the mechanisms of resistance associated with this class of inhibitors will 

be crucial for the rational design of targeted combination therapies, as well as selection of 

patients most likely to receive clinical benefit. Thus, analysis of LKB1 loss in clinical 

trials of MEK inhibition will be informative as to whether this phenotype is predictive of 

patient outcome and whether it could be used prospectively to guide treatment decisions. 

  



!125!

CHAPTER V 

 

CONCLUSION 

 

 Our work yields several novel insights into the biology and potential treatment of 

tumors with loss of LKB1. We present four major findings: First, LKB1 loss is associated 

with a characteristic pattern of gene expression changes that is observed in multiple types 

of human cancers and in both lung and non-lung carcinoma cell lines. Second, the 

differentially expressed genes associated with LKB1-deficient human tumors are 

substantially different from the pattern of genes observed in the mouse model of 

LKB1/KRAS mutant lung cancer. Third, we demonstrate a link between LKB1 loss and 

MEK sensitivity that may have important clinical implications. Fourth, we identify 

dysregulation of the PI3K/AKT/FOXO3 pathway as an important characteristic of LKB1-

deficient tumors, which provides a potential mechanistic link between our genomic and 

proteomic analyses and the observed MEK sensitivity phenotype. 

 All of the observations made to reach these conclusions stem from our first 

finding, that LKB1 loss in lung cancer has a very strong association with a particular 

gene expression signature. This is clearly evident when we compare the similarity in gene 

associations among eleven studies, which we presented visually in (Fig. 2.1a). The 

median P-value for these comparisons was 10e-22, a highly significant similarity. We 

took advantage of these consistent gene expression changes to identify a 16-gene 

signature predictive of LKB1 loss, which we then tested in multiple validation cohorts. 

Gene expression data from a total of 1297 lung adenocarcinomas were analyzed in this 
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work. LKB1 sequencing results were available for approximately half, with mutations 

reported in 93. Of these, 87 were correctly predicted by our LKB1-loss signature 

(sensitivity 94.5%, P-value = 2.9e-40 by Fisher’s exact test). The extensive testing of our 

gene expression signature places this work among the best-validated genomics studies. 

The excellent performance of our signature suggests that it could be a useful tool for 

classifying functional LKB1 status in patients, especially since we show that tumors with 

identified sequence mutations in LKB1 comprise only about half the total of LKB1 loss. 

We have included our preliminary results to show that a targeted gene expression 

detection assay using nanoString nCounter technology can adequately determine this 

signature in clinical specimens.  

 Our primary interest, however, has been to discover new insights into the biology 

of LKB1 deficient tumors and ultimately to improve therapy of these human cancers. 

LKB1 is known to regulate cellular metabolism and the mTOR pathway by its effects on 

AMPK, but many other interesting phenotypes are also affected by LKB1, some through 

AMPK, and others by AMPK-independent effects carried out by other kinases regulated 

by LKB1. Predicting how these complex pathways interact to influence clinically 

relevant phenotypes is difficult and appropriate model systems must be studied to make 

these connections. This was, of course, the main impetus for the development and 

characterization of the genetically engineered murine model of LKB1/KRAS mutant lung 

cancer, which has been used to directly test hypotheses related to LKB1 biology in an in 

vivo setting. Our studies, on the other hand, focus entirely on the effect of LKB1 loss in 

human tumors. The characterization of hundreds of lung tumors by the TCGA has 

provided a valuable resource for identifying such associations. Of the 403 tumors 
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currently with mutation data, 67 have somatic mutations in LKB1, which provides a large 

sample size that can provide great statistical power for making comparisons. 

Furthermore, these tumors are thoroughly characterized molecularly, including data on 

gene mutations, copy number changes, proteomic analysis, microRNA expression, 

mRNA expression, and methylation allowing an integrated approach to answering many 

questions regarding tumor biology. 

 Our work was begun several years prior to the availability of these data, however, 

so we initially employed a meta-analytic approach to combine several smaller studies. 

We saw that our LKB1 signature was predictive of both LKB1 mutations and low LKB1 

mRNA expression in these cell line and patient datasets, and consistently identified 

between 30 and 35% of resected lung adenocarcinomas. Thus, we could use these 

classifications to identify LKB1 wild-type and LKB1-deficient tumors in smaller datasets 

and combine them into a large pooled sample set that could be used to determine 

associations between LKB1 status and clinical variables or other mutations characterized 

by these studies. This allowed us to show significant associations with smoking status, 

EGFR, and KRAS mutations prior to the availability of the TCGA cohort. These 

associations fit with previously reported results in the literature and gave further 

assurance that our model was effective in classifying the LKB1 status of tumors. 

 Based on our initial analyses we could identify ranked lists of genes that were 

statistically associated with LKB1 loss in lung cancer. However, transforming these lists 

into useful hypotheses regarding the biology of these tumors was challenging. We first 

examined the genes individually, and searched the literature to determine whether any 

had been previously associated with LKB1 loss or other phenotypes that might be worth 
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pursuing. We also employed commercially and publicly available tools such as the 

Molecular Signatures Database and Ingenuity Pathway Analysis to look for significant 

features of the entire gene set that might give clues regarding the phenotypes driving the 

expression of the genes in our signature. We ultimately found it more informative to 

study their patterns of activation and expression in more detail. Here we saw that the 

expression patterns of these genes clustered consistently across multiple studies. Thus, 

we came to view these genes as being associated with several discrete phenotypes that 

could be investigated independently. This led us to employ a novel statistical approach in 

which general linear models were used to determine genes with significant associations 

with each observed phenotype, bringing us from one gene list to four. This approach was 

effective in allowing us to identify specific phenotypes underlying these transcriptional 

clusters. Analyzing the new gene lists with statistical comparison tools resulted in high 

confidence hits to transcription factors, drug perturbations, etc., which proved 

informative in understanding the biology of these tumors.  

 The effectiveness of this approach is highlighted by our identification of the 

NRF2 transcription factor as a driver of one cluster. The gene expression signature 

showed a strong statistical association with NRF2 and with and known perturbations of 

NRF2. This statistical association was subsequently confirmed in the TCGA dataset, in 

that the NRF2 activation signature was strongly associated with somatic mutations in 

KEAP1, low KEAP1 protein expression, and high NRF2 protein expression.  

 Thus, the NRF2 cluster is independently regulated phenotype that does not appear 

to be under direct control by LKB1; indeed, re-expression of LKB1 caused no change in 

the level of expression of the genes in the NRF2 cluster. On the other hand, we had 
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expected that restoration of LKB1 activity would be associated with downregulation of 

the mTOR pathway, but were surprised to find no change in expression of the genes we 

had putatively linked to mTOR activation. However, we did observe significant 

downregulation of LKB1-associated genes, primarily affecting the genes in the 

FOX/CREB cluster that was most strongly associated with LKB1. Thus, this cluster is 

directly regulated downstream of LKB1. The associations we made with this cluster were 

particularly informative in our understanding of LKB1-deficient cancers. We identified 

CREB and FOXA2 as transcription factors that are activated in these LKB1 deficient 

tumors. Although FOXA2 has been reported to have tumor suppressive properties (Liu et 

al., 2012a; Tang et al., 2010), the significance of its upregulation in LKB1-deficient 

tumors is unknown. CREB, and its CRTC activators, on the other hand, have been shown 

to have oncogenic effects in lung cancer generally (Aggarwal et al., 2008), as well as 

specifically in LKB1-deficient lung tumors (Feng et al., 2012). We also saw activation of 

the FOXO3 transcription factor, which has important effects in regulating apoptosis, and 

this proved to be of significant interest later in our work when we identified an 

association between LKB1 loss and sensitivity to MEK inhibitors. 

 In addition to our gene expression associations, we employed our LKB1-loss 

signature to perform a comprehensive analysis of mutations, microRNA, copy number 

alterations, and proteomic changes associated with LKB1 loss in the TCGA cohort. We 

have incorporated the proteomic data into a proposed model of an LKB1-regulated 

pathway network. However, the significance of many of the other associations remains 

unclear. These will be fruitful hypotheses-generating bases for further research. 
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 The mechanistic model we propose ties together several aspects of our work. 

Dysregulation of PI3K/AKT/FOXO3 pathway is shown in our in vitro work and is 

understood to directly affect MEK sensitivity in cancer. In fact, at least nine clinical trials 

are ongoing to determine the benefit of combining PI3K or AKT inhibitors with MEK 

inhibition (Britten, 2013). Dysregulation of these pathways is evident in the proteomic 

analysis of human tumors, and FOXO3 drives the expression of many upregulated genes 

in our LKB1-loss signature. AKT is a potent activator of the mTOR pathway, which then 

induces feedback inhibition of AKT by attenuating signal transduction through PI3K. 

Thus, this represents a likely mechanistic link between our findings and the loss of 

mTOR inhibition that occurs in the absence of LKB1. This is analogous to effects seen in 

cancers induced by TSC1 or TSC2 loss, in which mTOR activation leads to feedback 

inhibition of AKT signaling and activation of the FOXO3 pathway, which constrains 

tumor growth (Gan et al., 2010b; Manning, 2005). Although these effects have been well 

established in other tumor types, and have been shown previously to be associated with 

LKB1 loss in a small in vitro study (Zhong et al., 2008), our work draws on proteomic 

and genomic data to show that these effects are prominent and seen across human lung 

tumors with LKB1 loss. Furthermore, our in vitro work and analysis of drug sensitivity 

data show that this suppression of PI3K/AKT signaling is directly affected by LKB1 and 

can be exploited pharmacologically by targeting the MEK pathway.  

 The next important conclusion drawn from our work is that our model differs 

substantially from the model derived from the study of LKB1/KRAS mutant tumors in 

mice. Observations of proteomic and genomic changes in these mice led the authors to 

implicate increased c-Src and TGF-beta signaling as being particularly important in the 
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biology of these tumors, features that were not associated with LKB1 loss in human 

tumors. On the other hand, none of the specific pathways we identified in our work 

showed differential expression in the mouse data. We did not perform any 

experimentation with the mouse model ourselves, so we can only theorize as to why these 

tumors show such different phenotypes. It is possible that the activation of TGF-beta 

signaling may underpin some of the differences. Genes implicated with TGF-beta 

signaling were increased in LKB1-deficient mouse tumors, and increased secretion of 

TGF-beta was measured (Carretero et al., 2010; Ji et al., 2007). TGF-beta signaling has 

been shown to be downregulated in the context of LKB1 loss in other settings 

(Londesborough et al., 2008; Vaahtomeri et al., 2008), though not in cancer, and we show 

that TGF-beta is decreased in human tumors with LKB1 loss and increased after re-

expressing LKB1 (Fig. 3.2). Mesenchymal cells lacking LKB1 have been shown to 

secrete significantly less TGF-beta; this effect may contribute to the formation of polyps 

in Peutz-Jeghers syndrome (Katajisto et al., 2008). Furthermore, A549 cells treated with 

TGF-beta showed rapid attenuation of the NRF2 and FOX/CREB gene expression 

clusters, showing that these pathways can be antagonized by TGF-beta. Thus, while it is 

unclear why this pathway becomes activated in murine tumors, it is possible that blocking 

TGF-beta activation with further genetic modifications could allow formation of a mouse 

tumor model that more closely resembles human LKB1 loss. 

 Our results may have important ramifications on the use of mouse model systems 

in general. Preclinical models are invaluable to test hypotheses and generate new 

understanding of tumor biology that can ultimately lead to testing in clinical trials and 

improvement in patient care. Cell lines and mouse models are complementary and each 
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has certain experimental applications for which it is better suited. Both are indispensable 

for the study of cancer. Both have substantial advantages and drawbacks. Cell lines are 

relatively cheap and easy to manipulate, can be worked with rapidly, and several hundred 

cell lines are available for study, theoretically encompassing the heterogeneity found in 

human tumors. However, they have been grown for years in plastic dishes, bathed in 

nutrient and growth-factor-rich media in the absence of stromal cells such as fibroblasts, 

blood vessels, and immune cells. In contrast, mouse models take time to develop and 

characterize, and are expensive and cumbersome to maintain. It is difficult to do large-

scale studies with more than, say, several dozen mice. Furthermore, resulting tumors are 

much more genetically homogeneous than the human counterparts, lacking the many 

mutations and chromosomal alterations accumulated with time in human lung cancers as 

they evolve progressively over many years during exposure to the carcinogens in the 

350,000 cigarettes accumulated in a patient with 50 pack-years of smoking – the average 

exposure among tumors with LKB1 loss. (Tyler Jacks, AACR 2013 “Genomic 

characterization of mouse models of lung cancer“). However, they can provide a depth of 

knowledge about the cancers that arise, including tumorigenesis, histology, patterns of 

progression, pathway activation, gene and protein expression, propensity to metastasize, 

and response to therapeutics in ‘mouse clinical trials’. These tumors are also studied in 

the setting of living animals with fully functioning immune systems, stromal cells, and 

vasculature, which offers a significant advantage over in vitro studies. 

 For disease phenotypes such as the association with MEK inhibition identified in 

this study, the only way to adequately assess the accuracy of preclinical models is 

through analysis of clinical trials. However, our study shows that for LKB1-associated 
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gene expression, human-derived cell lines show patterns that resemble those from 

resected human lung adenocarcinomas, while the mouse model produces tumors that 

appear substantially different. This may have significant implications for the use of the 

LKB1/KRAS mouse model to predict human disease, although further correlation is 

necessary.  

 Study of these model systems can lead to improved understanding of the biology 

of LKB1 loss, and may ultimately alter the way these tumors are treated, the primary 

rationale for our study. We have identified one specific target in LKB1 deficient tumors, 

namely MEK. (This finding highlights the differences between mouse and cell line 

preclinical models, as LKB1 loss in the mouse model induced significant resistance to 

such inhibitors.) MEK can be inhibited by pharmaceutical compounds such as 

selumetinib and trametinib, which are FDA approved for the treatment of BRAF mutant 

melanoma and are currently undergoing testing in non-small cell lung cancer. The 

statistical strength of the association with MEK sensitivity is strong. We see concordant 

findings for all four MEK inhibitors included in two large characterizations of cell line 

drug sensitivity published last year in Nature (Barretina et al, 2012; Garnett et al, 2012). 

The P-value for the association in our training set is 4.8e-07, and for our testing set it is 

4.1e-08. Together almost 500 cell lines are included to draw these conclusions. We show 

that the association with the LKB1 signature is independent of mutations in the 

RAS/RAF pathway that are known to confer sensitivity to MEKi, and also to previously 

published gene signatures of MEK response. Loss of LKB1 is certainly not the only 

determinant of MEK sensitivity, but the magnitude of the effect is similar to what is seen 

for mutational activation of the pathway. Moreover, we demonstrate that restoration of 
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LKB1 in vitro can induce resistance to MEK inhibitors, but does not similarly affect 

sensitivity to paclitaxel or targeted inhibitors of other pathways. This is a significant 

piece of evidence supporting our claim that LKB1 status directly influences the response 

to MEK inhibition.  

 Thus, we have identified a novel association between sensitivity to targeted MEK 

inhibition and LKB1 loss in cell lines, which correlates well with in vivo drug sensitivity 

phenotype, and is reversed in vitro with restoration LKB1 activity. These results warrant 

further testing in the clinical trial setting. Indeed, we are actively pursuing this goal by 

developing a clinical assay using a custom-based assay for our signature using the 

commercial nanoString platform that will be capable of determining the LKB1 status of 

an unknown lung cancer given 100ng of RNA. We have been in contact with 

pharmaceutical companies and academic medical centers involved in testing MEK 

inhibitors to find potential sources of clinical trial material, as well as commercial 

interests that may wish to develop our test further in CLIA certified labs for testing in 

clinical settings.  
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Appendix A. Data Sources and Statistical Comparisons 
 

Name Tissue Source Comparison 

Fig. 2.1 

MSKCC lung adeno Chitale et al, 2009 t-test: LKB1 mut (16) vs LKB1 WT (75) 

UNC lung adeno GSE26939 t-test: LKB1 mut (n=6) vs LKB1 WT (n=75) 

Wash U lung adeno GSE12667 t-test: LKB1 mut (n=7) vs LKB1 WT (n=34) 

Michigan lung adeno Shedden et al, 2008 Linear regression with LKB1 probeset 41657_at (n=178) 

TCGA lung adeno 

https://confluence.broadinstitute.org/
display/GDAC/Home 

(LUAD RNAseqv2 Level3 RSEM 
 downloaded 2013/07/15) 

t-test: LKB1 mut (n=67) vs LKB1 WT (n=339) 

MSKCC2 lung adeno Chitale et al, 2009 t-test: LKB1 mut (n=12) vs LKB1 WT (n=90) 

USC lung adeno GSE32861 t-test: LKB1 mut (n=8) vs LKB1 WT (n=48) 

Sanger NSCLC cell 
lines 

www.broadinstitute.org/cgi-bin/
cancer/datasets.cgi 

(Sanger_Cell_Line_Project_Affyme
trix_QCed_Data_n798.gct) 

t-test: LKB1 mut (n=25) vs LKB1 WT (n=44) 

CCLE NSCLC cell 
lines 

www.broadinstitute.org/ccle/home 
(CCLE_Expression_2012-09-29.res) t-test: LKB1 mut (n=34) vs LKB1 WT (n=46) 

A549  NSCLC cell 
line GSE51266 avg diff: LKB1 WT (n=3) vs pBABE vector (n=3) 

H2122 NSCLC cell 
line GSE51266 avg diff: LKB1 WT (n=3) vs pBABE vector (n=2) 

Ji (A) Mouse lung 
adeno GSE6135 t-test: LKB1/KRAS primary adeno (n=5) vs KRAS 

primary adeno (n=5) 

Ji (B) Mouse lung 
adeno GSE6135 t-test: LKB1/KRAS primary adeno (n=5) vs KRAS/p53 

primary adeno (n=5) 

Carretero Mouse lung 
adeno GSE21581 t-test: LKB1/KRAS primary adeno (n=9) vs KRAS 

primary adeno (n=9) 

Carretero Mets Mouse lung 
adeno GSE21581 t-test: LKB1/KRAS metastases (n=17) vs LKB1/KRAS 

primary (n=9) 

Table 3.3 

CREB http://www.broadinstitute.org/gsea/
msigdb V$CREB_01 

Colforsin MCF7 www.broadinstitute.org/cmap/# avg diff: MCF7; 0.5uM (n=1) or 50uM (n=1) vs DMSO 

Colforsin PC3 www.broadinstitute.org/cmap/# avg diff: PC3; 0.5uM (n=2) vs DMSO 

Forskolin PC12 GSE2071 avg diff: PC12; 10uM forskolin (n=4) vs DMSO 

CREB regulated Human Islet 
cells natural.salk.edu/CREB/ Table S5: Islet 
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Appendix A. (cont.) 

Name Tissue Source Comparison 

Table 3.3 (cont) 

CREB regulated MIN6 natural.salk.edu/CREB/ Table S5: MIN6 

CREB regulated HEK293T natural.salk.edu/CREB/ Table S5: HEK293T 

FOXO1/3/4 www.broadinstitute.org/gsea/msigdb TTGTTT_V$FOXO4_01 

induction by 
CA-FOXO3 DLD1 E-MEXP-3262 With constitutively active, tamoxifen inducible FOXO3: 

avg diff: 24h tamoxifen induction  (n=3) vs control (n=3) 

induction by 
CA-FOXO3 HuVEC GSE16573 With constitutively active, tamoxifen inducible FOXO3: 

avg diff: 12h tamoxifen induction  (n=3) vs control (n=3) 

induction by 
CA-FOXO3 RCC4 GSE23926 With constitutively active, tamoxifen inducible FOXO3: 

avg diff: 12h tamoxifen induction  (n=1) vs control (n=1) 

induction by 
CA-FOXO3 UMRC2 GSE23926 With constitutively active, tamoxifen inducible FOXO3: 

avg diff: 12h tamoxifen induction  (n=1) vs control (n=1) 

Prochlorperazine 
induction HL60 www.broadinstitute.org/cmap/# avg diff: 10uM Prochlorperazine (n=4) vs DMSO 

Prochlorperazine 
induction MCF7 www.broadinstitute.org/cmap/# avg diff: 10uM Prochlorperazine (n=9) vs DMSO 

Prochlorperazine 
induction PC3 www.broadinstitute.org/cmap/# avg diff: 10uM Prochlorperazine (n=3) vs DMSO 

Thioridazine 
induction HL60 www.broadinstitute.org/cmap/# avg diff: 10uM Thioridazine (n=4) vs DMSO 

Thioridazine 
induction MCF7 www.broadinstitute.org/cmap/# avg diff: 10uM Thioridazine (n=11) vs DMSO 

Thioridazine 
induction PC3 www.broadinstitute.org/cmap/# avg diff: 10uM Thioridazine (n=5) vs DMSO 

Trifluoperazine 
induction HL60 www.broadinstitute.org/cmap/# avg diff: 10uM Trifluoperazine (n=4) vs DMSO 

Trifluoperazine 
induction MCF7 www.broadinstitute.org/cmap/# avg diff: 10uM Trifluoperazine (n=9) vs DMSO 

Trifluoperazine 
induction PC3 www.broadinstitute.org/cmap/# avg diff: 10uM Trifluoperazine (n=3) vs DMSO 

FOXA2/HNF3 www.broadinstitute.org/gsea/msigdb TGTTTGY_V$HNF3_Q6 

Promoter 
occupancy  A549 http://genome.ucsc.edu/ENCODE/ ‘broadPeak’ file used to determine ChIP-seq peaks  within 

1000 bp of gene start codon 

Promoter 
occupancy  HEPG2 http://genome.ucsc.edu/ENCODE/ ‘broadPeak’ file used to determine ChIP-seq peaks  within 

1000 bp of gene start codon 

Promoter 
occupancy  Human Liver GSE25836 

‘Bed’ file used to determine ChIP-seq peaks  within 1000 
bp of gene start codon 
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Appendix A. (cont.) 

Name Tissue Source Comparison or gene set 

Table 3.1 

AP1 http://www.broadinstitute.org/gsea/
msigdb TGANTCA_V$AP1_C 

NRF2 http://www.broadinstitute.org/gsea/
msigdb V$NRF2_Q4 

15dPGJ2 MCF7 www.broadinstitute.org/cmap/# avg diff: 10uM 15-delta prostaglandin J2 (n=5) vs DMSO 

15dPGJ2 HL60 www.broadinstitute.org/cmap/# avg diff: 10uM 15-delta prostaglandin J2 (n=3) vs DMSO 

15dPGJ2 PC3 www.broadinstitute.org/cmap/# avg diff: 10uM 15-delta prostaglandin J2 (n=2) vs DMSO 

keap1-/- mouse liver GSE11287 avg diff: KEAP1-/- liver (n=3) vs control 

KEAP1 mut LUSQ https://tcga-data.nci.nih.gov/tcga/ t-test: KEAP1 mut (n=22) vs KEAP1/NRF2 WT (n=171) 

NRF2 mut LUSQ https://tcga-data.nci.nih.gov/tcga/ t-test: NRF2 mut (n=24) vs KEAP1/NRF2 WT (n=171) 

siNRF2 A549 GSE28230 avg diff: A549; siNRF2 (n=3) vs control siRNA 

Table 3.2 

Mitochondrial 
localization 

http://www.broadinstitute.org/pubs/
MitoCarta/ MITOCARTA_LIST 

ELK1 http://www.broadinstitute.org/gsea/
msigdb SCGGAAGY_V$ELK1_02 

SF1 http://www.broadinstitute.org/gsea/
msigdb V$SF1_Q6 

NRF1 http://www.broadinstitute.org/gsea/
msigdb RCGCANGCGY_V$NRF1_Q6 

MYC http://www.broadinstitute.org/gsea/
msigdb CACGTG_V$MYC_Q2 

LY-294002 HL60 www.broadinstitute.org/cmap/# avg diff: 10uM LY-294002 (n=9) vs DMSO 

LY-294002 MCF7 www.broadinstitute.org/cmap/# avg diff: 10uM LY-294002 (n=18) vs DMSO 

LY-294002 PC3 www.broadinstitute.org/cmap/# avg diff: 10uM LY-294002 (n=6) vs DMSO 

Sirolimus HL60 www.broadinstitute.org/cmap/# avg diff: 100nM sirolimus (n=9) vs DMSO 

Sirolimus MCF7 www.broadinstitute.org/cmap/# avg diff: 100nM sirolimus (n=19) vs DMSO 

Sirolimus PC3 www.broadinstitute.org/cmap/# avg diff: 100nM sirolimus (n=6) vs DMSO 

PD0325901 multiple GSE10087 paired t-test: 12 cell lines treated 8hr with 50nM 
PD-0325901 (n=1 rep each) vs DMSO 
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Appendix A. (cont.) 

Name Tissue Source Comparison or gene set 

Fig. 3.2 

TGF-beta A549 GSE17708 avg diff: A549; 5ng/ml TGF-beta at various times (n=3 
reps each) vs control 

Dasatinib A549 E-TAMB-585 avg diff: variable concentrations Dasatinib (n=1 rep each) 
vs DMSO 

Fig. 3.4, 3.5 

LKB1-add-back HeLa PMID: 15731909 
avg diff: pLOX-LKB1-YFP vs pLOX-YFP or pLOX-
LKB1-YFP vs pLOX-LKB1-SL26-YFP (2 replicates 

each) 

Fig. 4.3 

MEKi 
perturbation multiple GSE10087 avg diff: PD0325901 50nM for 12 h vs control for 12 cell 

lines of various histology (1 replicate each) 

MEKi 
perturbation 

Pancreatic cell 
lines GSE45765 avg diff: CI-1040 2mM for 24h vs control for 22 

pancreatic adenocarcinoma cell lines (3 replicates each) 
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Gene Transcriptional  Gene Transcriptional  Gene Transcriptional  Gene Transcriptional  
Symbol Node Symbol Node Symbol Node Symbol Node 
AVPI1 FOX/CREB ACSL3 mito AKR1C1 NRF2 ANKRD25 Down 
BAG1 FOX/CREB ATP5B mito AKR1C2 NRF2 C1orf139 Down 
CPS1 FOX/CREB C1QBP mito CBR1 NRF2 COL8A2 Down 

DUSP4 FOX/CREB C20orf24 mito G6PD NRF2 DOC1 Down 
FGA FOX/CREB COX5A mito ME1 NRF2 EDNRA Down 

GLCE FOX/CREB CYC1 mito PGD NRF2 EVC Down 
HAL FOX/CREB DLAT mito PIR NRF2 FBLN1 Down 
IRS2 FOX/CREB DLD mito SLC7A11 NRF2 GAS7 Down 

MUC5AC FOX/CREB ECHS1 mito GSN Down 
PDE4D FOX/CREB FDX1 mito KIAA1641 Down 
PTP4A1 FOX/CREB FLJ22555 mito KIRREL Down 

RFK FOX/CREB GHITM mito MACF1 Down 
SIK1 FOX/CREB LOC92482 mito MFGE8 Down 

TACC2 FOX/CREB MDH2 mito NOTCH2 Down 
TFF1 FOX/CREB MRPL46 mito PCF11 Down 
TESC FOX/CREB MRPS11 mito PTK7 Down 

MRPS16 mito RGL1 Down 
MRPS33 mito RNF38 Down 

NDUFAB1 mito SLC34A2 Down 
NDUFS1 mito SLC9A6 Down 
NDUFV2 mito TIAM1 Down 
THEM2 mito TIMP3 Down 

TXNL4A mito TNC Down 
VDAC2 mito TXNIP Down 

ZFP36L1 Down 
ZNF161 Down 

Appendix B. Initial genes in four transcriptional clusters 
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Rank FOX/CREB P-value Mito P-value NRF2 P-value Down-
regulated P-value 

1 PDE4D 8.5E-33 MRPS16 1.8E-34 G6PD 4.2E-49 ZFPM2 3.9E-30 
2 IRS2 3.3E-29 TSR1 1.1E-31 AKR1C1 7.6E-47 LTBP2 5.2E-30 
3 TESC 1.1E-28 VDAC2 1.7E-31 AKR1C2 1.3E-42 SGCD 8.9E-30 
4 SIK1 1.3E-27 TFAM 2.4E-28 PGD 1.2E-39 PRKG1 1.3E-29 
5 DUSP4 2.4E-27 SSBP1 2.0E-27 ME1 1.4E-33 TIMP3 1.6E-28 
6 BAG1 1.6E-25 PFDN4 4.9E-26 TALDO1 9.3E-31 KANK2 1.9E-28 
7 RHOB 2.2E-21 MRTO4 9.7E-26 NQO1 2.1E-30 HSPG2 4.6E-28 
8 AVPI1 1.7E-20 SAC3D1 3.1E-25 PIR 1.0E-29 COX7A1 1.1E-27 
9 HAL 2.3E-19 CIAO1 4.0E-25 GCLM 2.4E-29 MACF1 1.6E-27 
10 CPS1 9.8E-19 NDUFS1 4.8E-25 AKR1C3 7.0E-29 MYLK 1.6E-26 
11 NR4A2 5.2E-17 ATP5G3 7.0E-25 SLC7A11 3.1E-28 TMEM204 7.7E-26 
12 TACC2 7.1E-17 NDUFB8 1.1E-24 OSGIN1 5.5E-26 ADARB1 1.2E-25 
13 CHMP1B 1.7E-16 C2orf47 2.2E-24 AKR1B10 2.2E-25 ECM2 1.3E-25 
14 FGA 2.4E-16 TIMM23 4.9E-24 CYP4F11 6.1E-24 AEBP1 2.3E-25 
15 C8orf4 1.5E-15 MRPL15 6.2E-24 CBR1 8.6E-23 DKK3 3.0E-25 
16 RFK 2.9E-15 DDX50 1.1E-23 GCLC 4.0E-22 COL8A2 3.2E-25 
17 ETS2 3.4E-15 KIAA1279 1.0E-22 CBR3 4.5E-22 FILIP1L 4.2E-25 
18 NR4A1 2.1E-14 BUD31 1.6E-22 UGDH 3.4E-21 TGFB1I1 8.8E-25 
19 MUC5AC 1.1E-13 COX5A 1.6E-22 GPX2 3.9E-20 LAMA2 1.1E-24 
20 MSLN 1.8E-13 TMEM189 1.9E-22 ALDH3A1 5.9E-20 LRP1 1.0E-23 
21 PPARGC1A 3.5E-13 DNAJC9 2.4E-22 PRDX1 6.5E-20 PKD2 2.0E-23 
22 CHL1 5.2E-13 PWP1 2.9E-22 FASLG 6.7E-20 SFXN3 2.1E-23 
23 EPAS1 8.9E-13 RAN 3.6E-22 KIAA0319 1.7E-19 CDH11 3.6E-23 
24 MUC5B 1.1E-12 PPIF 7.0E-22 CABYR 1.7E-18 COL10A1 3.8E-23 
25 GABARAPL1 1.4E-12 SSB 9.9E-22 TSPAN7 2.2E-18 FLNA 5.1E-23 
26 PER2 1.7E-12 MRPL13 1.4E-21 SQSTM1 3.9E-18 SPON1 6.0E-23 
27 SORBS2 1.7E-12 MDH2 1.8E-21 FTL 1.4E-17 ITGBL1 7.2E-23 
28 FAM46A 1.9E-12 GLRX3 2.1E-21 CES1 1.4E-17 ZEB1 1.2E-22 
29 PLA2G10 2.0E-12 MRPS11 2.7E-21 FTH1 1.8E-17 ZCCHC24 1.4E-22 
30 DUSP1 2.5E-12 CCDC86 2.7E-21 TRIM16 1.8E-16 AOC3 1.5E-22 
31 CYP2C18 2.8E-12 C1QBP 2.7E-21 HTATIP2 1.9E-16 MYL9 2.0E-22 
32 MTUS1 5.4E-12 EEF1E1 2.8E-21 MEGF9 3.7E-16 BACE1 2.0E-22 
33 PTP4A1 6.5E-12 C16orf61 3.3E-21 NR0B1 3.7E-16 LMOD1 2.8E-22 
34 TOB1 7.4E-12 ATP5B 3.6E-21 IDH1 4.7E-16 SEPT11 2.8E-22 
35 SLC16A4 8.9E-12 PSMA7 3.9E-21 TXNRD1 6.6E-16 DCN 3.2E-22 
36 NEDD9 9.4E-12 SNRPA1 4.0E-21 ABCC1 2.5E-15 RUNX1 7.0E-22 
37 CATSPERB 1.1E-11 CACYBP 4.1E-21 GSR 6.3E-14 PEA15 1.5E-21 
38 TSPAN8 1.3E-11 MRPL42 4.2E-21 UGT1A1 7.0E-14 EDNRA 2.3E-21 
39 PTPRM 1.3E-11 ZC3H15 6.1E-21 UGT1A1 2.0E-13 LOXL1 3.0E-21 
40 PLA2G4A 1.4E-11 TMEM93 1.2E-20 RIT1 3.2E-13 PRELP 3.2E-21 
41 AQP3 1.9E-11 POP7 1.9E-20 ABCB6 8.9E-13 GLT8D2 3.3E-21 
42 FURIN 2.4E-11 CHCHD3 3.2E-20 EPHX1 9.2E-13 MEOX2 4.8E-21 
43 GEM 3.8E-11 PSMD14 3.7E-20 TXN 9.6E-13 ELN 6.2E-21 
44 KIT 8.6E-11 ADRM1 6.5E-20 EGF 1.1E-12 EHD2 8.1E-21 
45 KCNQ1 9.2E-11 COX4NB 7.8E-20 CYP4F3 2.7E-12 ZFP36L1 8.7E-21 
46 TFCP2L1 9.9E-11 MTIF2 8.2E-20 SOD1 4.2E-12 MFAP4 1.1E-20 
47 CD55 1.0E-10 WDR12 1.0E-19 TSKU 4.4E-12 ITGB5 1.3E-20 
48 GABARAPL1 1.0E-10 DDX21 1.3E-19 DMPK 4.5E-12 ILK 1.4E-20 
49 FOS 1.1E-10 PA2G4 1.5E-19 HGD 6.1E-11 FBN1 1.4E-20 
50 MSMB 1.1E-10 GEMIN6 1.7E-19 TKT 1.0E-10 PHLDB1 1.9E-20 
51 SMAD2 1.2E-10 PSMD9 2.7E-19 ADH1C 1.4E-10 C18orf1 2.2E-20 
52 SPDEF 1.5E-10 SNRNP27 2.7E-19 P2RX5 1.6E-10 PDGFRB 3.3E-20 
53 NNMT 1.5E-10 SMNDC1 3.8E-19 MAP2 2.6E-10 PDZRN3 3.9E-20 
54 INSL4 1.6E-10 GHITM 4.1E-19 FTH1P5 3.1E-10 ERG 4.3E-20 
55 ATP1B1 2.1E-10 GRPEL1 4.4E-19 TFE3 3.1E-10 MYH10 5.0E-20 
56 RPL13A 2.2E-10 MRPL46 4.8E-19 SLC48A1 3.3E-10 CYR61 5.5E-20 
57 ALDH3A2 2.2E-10 NOP16 4.9E-19 GLA 9.5E-10 MFGE8 6.7E-20 
58 TFF1 2.4E-10 MRPL35 6.1E-19 PLAC1 1.1E-09 RECK 9.9E-20 
59 GLCE 2.4E-10 WAPAL 6.7E-19 C20orf24 1.5E-09 TNFSF12 1.1E-19 
60 PTPRB 2.5E-10 HCCS 6.7E-19 AKR1C4 2.3E-09 ZNF423 1.3E-19 
61 MAP2K3 2.8E-10 MRPS30 6.8E-19 MAFG 3.0E-09 LEPROT 1.4E-19 
62 ASAH1 3.7E-10 NUP37 7.1E-19 ABCC3 4.8E-09 DPYSL2 1.5E-19 
63 AHCYL2 3.7E-10 RFC2 7.3E-19 RAP1GAP 4.8E-09 ENG 1.5E-19 
64 GPRC5C 4.7E-10 SDHB 8.6E-19 IGHA1 6.2E-09 GSN 1.6E-19 
65 KIF13B 5.2E-10 CCDC59 9.8E-19 TMOD1 6.3E-09 HEG1 2.5E-19 
66 RHOBTB2 6.3E-10 ECD 1.4E-18 NMB 2.1E-08 TAGLN 2.7E-19 
67 MUC13 6.3E-10 CDK1 1.5E-18 TBC1D2 2.2E-08 VGLL3 2.8E-19 
68 ODC1 6.9E-10 EIF2S1 1.6E-18 HIGD1B 2.9E-08 ASPN 2.9E-19 
69 CD46 9.8E-10 RAB22A 1.7E-18 DNAI2 3.7E-08 SMAD7 3.1E-19 

Appendix C. Top 200 genes associated with each cluster 
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Rank FOX/CREB P-value Mito P-value NRF2 P-value Down-
regulated P-value 

70 TSC22D1 1.1E-09 EXOSC4 1.8E-18 SLC39A8 3.7E-08 ACTA2 3.2E-19 
71 ENTPD4 1.4E-09 NUP88 1.9E-18 CLN5 3.8E-08 TNS1 3.4E-19 
72 AGR2 1.5E-09 EIF5B 2.0E-18 SLN 4.4E-08 PTRF 3.4E-19 
73 FLRT3 1.6E-09 FASTKD2 2.4E-18 UCHL1 6.4E-08 DAB2 4.6E-19 
74 F3 1.8E-09 MRPL22 2.4E-18 SLC3A2 7.4E-08 STX12 4.6E-19 
75 ULK2 2.1E-09 MRPL19 2.5E-18 ABHD4 8.0E-08 PLSCR4 5.2E-19 
76 KLF2 3.3E-09 CYC1 2.6E-18 ASF1A 8.8E-08 RGS3 6.9E-19 
77 HGSNAT 3.4E-09 PDCD11 4.0E-18 ABHD2 1.0E-07 DIXDC1 7.9E-19 
78 SMPDL3B 4.2E-09 GOT2 4.4E-18 MYH14 1.0E-07 PARVA 1.0E-18 
79 ERG 4.4E-09 ASCC1 4.6E-18 LAMP1 1.1E-07 DCHS1 1.1E-18 
80 SIK2 6.1E-09 CCNJ 4.7E-18 CTSD 1.6E-07 SPARC 1.3E-18 
81 CRLF1 6.1E-09 COX5B 5.3E-18 STAB1 1.7E-07 KIAA0754 1.4E-18 
82 LPAR1 6.3E-09 FIP1L1 5.5E-18 BHMT2 1.8E-07 HEPH 1.6E-18 
83 MAST4 6.3E-09 NIP7 5.7E-18 TDP2 2.0E-07 CALD1 1.8E-18 
84 CARKD 8.3E-09 ZWINT 6.4E-18 LRP8 2.2E-07 PRRX1 1.9E-18 
85 ELN 8.7E-09 NUP93 7.6E-18 FECH 3.1E-07 SFRP4 2.0E-18 
86 NAAA 9.0E-09 MRPS34 7.7E-18 LTBP2 3.5E-07 RGL1 3.2E-18 
87 PDZD2 1.0E-08 AURKA 7.9E-18 CREG1 4.0E-07 SLC34A2 3.6E-18 
88 GALNT2 1.4E-08 UBE2N 8.0E-18 CYP4F2 5.2E-07 KLC1 3.6E-18 
89 POGZ 1.7E-08 IMP4 8.3E-18 MAOA 5.7E-07 HTRA1 3.8E-18 
90 AKAP12 1.7E-08 CSTF1 8.3E-18 ACSL1 5.9E-07 A2M 4.6E-18 
91 MECOM 2.2E-08 EIF4E2 9.2E-18 BLVRB 6.8E-07 NRP1 4.6E-18 
92 DNAJC12 2.6E-08 COPS3 1.1E-17 ATP7A 6.9E-07 CSGALNACT2 4.7E-18 
93 ABLIM1 2.6E-08 C12orf11 1.2E-17 SLC6A6 7.3E-07 NOTCH2 5.2E-18 
94 ATG12 3.2E-08 MTCH2 1.3E-17 NQO2 9.6E-07 SSPN 5.6E-18 
95 RND1 3.3E-08 EIF2S2 1.3E-17 CLDN8 9.7E-07 SNED1 7.0E-18 
96 MEIS3P1 3.3E-08 FAM64A 1.4E-17 CLDN15 1.0E-06 GAS7 7.1E-18 
97 BMP2 3.4E-08 MRPL17 1.5E-17 ABCA4 1.0E-06 TCF21 7.9E-18 
98 BARX1 3.4E-08 CCNB1 1.5E-17 DZIP3 1.1E-06 HLX 8.6E-18 
99 FBLN5 3.5E-08 C14orf156 1.5E-17 LRP4 1.2E-06 TGFBR2 1.0E-17 
100 RPL15 3.6E-08 KCTD5 1.8E-17 SEPX1 1.2E-06 APBB2 1.2E-17 
101 CREB3L1 3.7E-08 UBE2I 1.9E-17 ROD1 1.3E-06 LHFP 1.5E-17 
102 SNED1 3.7E-08 ZWILCH 2.3E-17 PHKB 1.3E-06 CNN1 1.6E-17 
103 ALG9 4.0E-08 PSMB5 2.9E-17 SULT1A1 1.5E-06 MYH11 1.7E-17 
104 ARSE 4.0E-08 MRPL12 3.5E-17 KYNU 1.5E-06 MEF2A 2.1E-17 
105 WIF1 4.4E-08 ETFA 3.7E-17 TNS1 1.5E-06 OMD 2.4E-17 
106 LIMCH1 4.5E-08 NDUFAB1 4.2E-17 SFN 1.6E-06 KIAA1462 3.0E-17 
107 EPHA5 4.7E-08 EIF4A1 4.3E-17 SULT1A2 1.6E-06 PMP22 3.0E-17 
108 SPRY1 5.3E-08 PPM1G 4.8E-17 AGA 1.7E-06 ATXN1 3.3E-17 
109 URB1 5.7E-08 LRRC42 5.0E-17 TMED1 1.8E-06 TBX3 3.6E-17 
110 SFTPB 5.9E-08 MRPS33 5.5E-17 KIAA0232 1.9E-06 CTGF 3.7E-17 
111 PER1 6.0E-08 FEN1 5.6E-17 AKR1B1 2.1E-06 FHOD1 4.8E-17 
112 HSPA12A 6.2E-08 DLAT 5.8E-17 MLPH 2.5E-06 PICALM 5.2E-17 
113 TRAK1 6.2E-08 PFDN2 5.8E-17 SLC46A3 2.5E-06 EPS15 7.3E-17 
114 KLF5 7.3E-08 ATP5J2 6.4E-17 GALNS 3.2E-06 TCF4 7.6E-17 
115 CEBPD 7.5E-08 GAR1 6.5E-17 SULT1A3 3.8E-06 FXYD6 7.9E-17 
116 ID1 7.8E-08 FAM149B1 7.3E-17 PACSIN2 4.9E-06 VIM 8.1E-17 
117 ACACB 8.1E-08 RSL24D1 7.3E-17 ADCY7 5.3E-06 GAS6 8.8E-17 
118 IGF1R 9.4E-08 GMFB 7.7E-17 CLCN4 5.3E-06 COLEC12 9.1E-17 
119 PDE3A 9.6E-08 VPS26A 8.5E-17 NOL3 6.2E-06 CTSO 9.1E-17 
120 BCAS1 1.0E-07 NOLC1 9.2E-17 CCND3 6.3E-06 GALNT10 1.4E-16 
121 PHF17 1.0E-07 MRPL11 1.0E-16 ACE2 7.3E-06 PALLD 1.4E-16 
122 PRKAB1 1.1E-07 SSSCA1 1.0E-16 FAH 7.5E-06 TGFB1 1.4E-16 
123 GRAMD1B 1.1E-07 HSPD1 1.1E-16 PPFIBP2 7.8E-06 IDS 1.5E-16 
124 BMP6 1.2E-07 ACP1 1.1E-16 ACOT13 8.3E-06 RIN2 1.5E-16 
125 SGPP1 1.2E-07 EBNA1BP2 1.2E-16 CEACAM6 1.3E-05 PDLIM2 1.7E-16 
126 BACE2 1.3E-07 IMMT 1.2E-16 SEMG2 1.3E-05 ARHGDIB 1.8E-16 
127 MCF2L 1.4E-07 UBE2G1 1.3E-16 RNF24 1.4E-05 CD93 1.8E-16 
128 C2orf67 1.5E-07 SNRPF 1.3E-16 PCOLCE2 1.5E-05 NEK1 1.9E-16 
129 FNDC3A 1.8E-07 MCM4 1.3E-16 ATP6V1A 1.5E-05 ACVR1 2.1E-16 
130 HYAL1 1.8E-07 METTL5 1.4E-16 MDFI 1.5E-05 SMPD1 2.1E-16 
131 ATP2C2 2.0E-07 KIF4A 1.5E-16 IL9R 1.9E-05 ANKH 2.4E-16 
132 SPINK1 2.0E-07 BOLA2 1.5E-16 GLB1 2.1E-05 UNC5B 2.4E-16 
133 CHP 2.0E-07 MRPL16 1.8E-16 PSG3 2.1E-05 ITSN1 2.5E-16 
134 C4BPA 2.1E-07 PGAM1 2.5E-16 NOS3 2.3E-05 SH3GLB1 2.9E-16 
135 HGD 2.1E-07 AURKB 2.5E-16 RTN4 2.5E-05 OLFML1 3.0E-16 
136 DAPK1 2.4E-07 PAICS 2.8E-16 DSTN 2.5E-05 EMP1 3.2E-16 
137 GOLPH3L 2.5E-07 ACTR1A 3.1E-16 SEL1L3 2.5E-05 MMP2 3.3E-16 
138 POU5F1P3 2.5E-07 ADSL 3.3E-16 ZBTB20 2.7E-05 CSRP1 3.5E-16 
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139 CDK2AP2 2.6E-07 NUP205 3.4E-16 HEXB 2.7E-05 LMCD1 4.0E-16 
140 ATP9B 2.6E-07 DNPEP 3.6E-16 CHODL 2.9E-05 MOXD1 5.0E-16 
141 TNFSF11 2.6E-07 NCAPG 4.2E-16 CEACAM1 3.6E-05 FAM134A 5.2E-16 
142 FAM63A 2.7E-07 CHUK 4.2E-16 C11orf49 3.6E-05 NOX4 5.3E-16 
143 OBSL1 2.7E-07 DBF4 4.3E-16 TBCD 3.7E-05 GPR124 6.2E-16 
144 C14orf147 2.8E-07 AGPS 4.5E-16 SLC38A6 3.9E-05 CNN2 7.8E-16 
145 SELENBP1 2.9E-07 PHB 4.7E-16 AHCYL1 4.0E-05 ARHGAP1 8.3E-16 
146 FAT1 3.2E-07 RANBP1 5.0E-16 ZDHHC7 4.4E-05 TAX1BP3 9.0E-16 
147 MOSC2 3.2E-07 PSMD12 5.1E-16 CLU 4.8E-05 MXRA7 1.1E-15 
148 FAM83E 3.2E-07 DTYMK 5.3E-16 SYBU 4.8E-05 BGN 1.1E-15 
149 CPE 3.3E-07 BUB3 5.5E-16 GPX3 4.9E-05 H2AFY 1.1E-15 
150 COBL 3.3E-07 NOL7 5.5E-16 SERF2 5.1E-05 FBLN1 1.2E-15 
151 NEDD4L 3.5E-07 FAM35A 6.2E-16 TCN2 5.5E-05 RIN3 1.3E-15 
152 FGL1 3.7E-07 CIAPIN1 6.2E-16 GSTP1 5.5E-05 TLR2 1.3E-15 
153 FGG 3.7E-07 ANXA7 6.3E-16 GULP1 6.2E-05 NAV3 1.4E-15 
154 TNS1 4.5E-07 DENR 6.3E-16 LYVE1 6.4E-05 PAFAH1B1 1.4E-15 
155 KCNK1 4.7E-07 MRPS17 6.8E-16 PTCH2 6.5E-05 SYNC 1.6E-15 
156 C19orf21 4.9E-07 PPP1CC 7.1E-16 ELP4 6.7E-05 CTSD 1.6E-15 
157 PDE8A 5.1E-07 TXNDC9 7.3E-16 ABCC5 6.9E-05 EPB41L2 1.6E-15 
158 ARNT2 5.2E-07 C12orf10 8.1E-16 MFAP1 7.6E-05 VCL 2.1E-15 
159 FOXO1 5.3E-07 SF3B3 8.1E-16 POU2F1 7.7E-05 FBXL5 2.3E-15 
160 FZD3 5.3E-07 DRAP1 8.8E-16 LMNA 7.8E-05 MAP1LC3B 2.5E-15 
161 CITED2 5.8E-07 NAE1 9.8E-16 CD63 8.1E-05 MICAL2 3.8E-15 
162 PGC 7.0E-07 CEBPZ 1.1E-15 TBXAS1 8.3E-05 WDFY3 4.5E-15 
163 FRAT1 7.0E-07 SERBP1 1.1E-15 MYO1D 8.8E-05 PLA2G15 4.6E-15 
164 CSGALNACT1 7.4E-07 RPP40 1.1E-15 S100P 8.8E-05 MEF2C 4.8E-15 
165 HYAL2 7.7E-07 SNRPD1 1.2E-15 SERINC5 9.5E-05 APLP2 5.0E-15 
166 MLPH 7.8E-07 ATIC 1.3E-15 NEIL3 1.0E-04 DOCK4 6.1E-15 
167 NEO1 8.0E-07 MDH1 1.3E-15 NAMPT 1.1E-04 ZEB2 6.4E-15 
168 ALPL 8.1E-07 TMEM185B 1.4E-15 GNA15 1.1E-04 VDR 6.6E-15 
169 UFC1 8.2E-07 COMMD4 1.5E-15 GAA 1.1E-04 EVC 6.7E-15 
170 GYG2 1.0E-06 TIMM17B 1.5E-15 NUPR1 1.1E-04 ABCA6 7.4E-15 
171 RPH3AL 1.0E-06 CEP55 1.5E-15 ZNF323 1.3E-04 COL6A2 7.6E-15 
172 EDNRB 1.1E-06 ZNF259 1.5E-15 UBL3 1.3E-04 SNX19 7.6E-15 
173 COL14A1 1.1E-06 MRPS7 1.6E-15 DAPK2 1.4E-04 TXNIP 9.1E-15 
174 GALNT4 1.1E-06 CPSF6 1.7E-15 DUSP22 1.4E-04 SORBS1 9.1E-15 
175 LIMD1 1.2E-06 BUB1B 1.7E-15 CD81 1.4E-04 FBLN5 9.5E-15 
176 ABCA8 1.2E-06 HSPE1 1.7E-15 SLC7A8 1.4E-04 ISLR 1.0E-14 
177 CHAT 1.2E-06 SMC3 1.7E-15 SNX19 1.4E-04 NBL1 1.0E-14 
178 FZD10 1.3E-06 RNASEH1 1.9E-15 SC4MOL 1.4E-04 PGCP 1.0E-14 
179 EFNA1 1.3E-06 MRPS22 2.1E-15 SLC22A18AS 1.5E-04 FAM178A 1.0E-14 
180 PBXIP1 1.4E-06 SPC25 2.2E-15 TTC9 1.5E-04 MMP23A 1.0E-14 
181 ERN2 1.4E-06 C20orf24 2.3E-15 BCL2L13 1.6E-04 MYO1B 1.1E-14 
182 ZFP36 1.4E-06 SLMO2 2.3E-15 ALDH1A1 1.6E-04 IGFBP4 1.1E-14 
183 JTB 1.5E-06 RARS 2.4E-15 ATP10D 1.7E-04 TNFSF12 1.1E-14 
184 ADARB1 1.5E-06 BRAP 2.4E-15 TRMT61A 1.7E-04 LOH3CR2A 1.2E-14 
185 RER1 1.5E-06 LRPPRC 2.5E-15 ATP6V0A1 1.7E-04 MSN 1.2E-14 
186 ORAI2 1.5E-06 MARCH5 2.6E-15 C17orf108 1.7E-04 COL8A1 1.2E-14 
187 RBPMS 1.6E-06 MSH2 2.7E-15 RNASE1 1.8E-04 MXRA8 1.3E-14 
188 EIF4B 1.7E-06 TCEB1 2.7E-15 VGLL1 1.8E-04 TNFSF13 1.4E-14 
189 PDE10A 1.7E-06 PAK1IP1 2.8E-15 ALCAM 1.8E-04 ACTG2 1.4E-14 
190 TRIM31 1.7E-06 MOBKL3 2.8E-15 HPSE 1.9E-04 SEC24B 1.5E-14 
191 ALDH2 1.8E-06 TUBA3C 2.8E-15 FMO2 1.9E-04 FN1 1.6E-14 
192 TNFRSF10B 1.9E-06 PSMB6 2.9E-15 ALDOA 1.9E-04 TBX2 1.7E-14 
193 FAM8A1 2.0E-06 AHSA1 2.9E-15 SH3BGRL 2.1E-04 TACC1 1.7E-14 
194 PDK4 2.0E-06 OGFOD1 3.1E-15 MYOT 2.1E-04 LYST 1.7E-14 
195 PARM1 2.0E-06 BUB1 3.1E-15 C5orf30 2.2E-04 CAPN2 1.7E-14 
196 CDH15 2.1E-06 CDC20 3.1E-15 PCYT2 2.2E-04 HNMT 1.9E-14 
197 RORC 2.1E-06 MRPS12 3.4E-15 TTC39A 2.3E-04 CHD9 1.9E-14 
198 ATP11A 2.4E-06 TOMM40 3.6E-15 ANXA4 2.3E-04 JAM3 1.9E-14 
199 SUCLG2 2.5E-06 NUDT21 3.7E-15 MPP2 2.3E-04 CAPN3 1.9E-14 
200 CYP2C9 2.5E-06 CDT1 3.9E-15 HHIPL2 2.4E-04 MCOLN1 2.2E-14 
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