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CHAPTER I 

 

INTRODUCTION 

 

Approximately 10-20% of the 6.2 million annual bone fractures result in fracture 

healing failure (non-union), causing significant morbidity and mortality (Einhorn, 1995; 

Marsh, 1998).  In long-bones, fracture healing proceeds through the formation of a 

cartilaginous template that is then replaced by bone that undergoes remodeling  (Einhorn, 

1998). Fracture healing is a postnatal repair process that recapitulates aspects of the 

embryonic development of the skeleton. It proceeds via callus formation and an 

endochondral ossification sequence, where cartilage forms, matures, undergoes 

hypertrophy, and is eventually replaced by the new bone that bridges the fracture gap. 

The newly formed cartilage stabilizes the fracture and provides a template for new bone 

formation. (Hall and Miyake, 1992; Roark and Greer, 1994; Hall and Miyake, 1995; 

Ganan et al., 1996; Chen and Zhao, 1998; Macias et al., 1999; Hall and Miyake, 2000; 

Capdevila and Izpisua Belmonte, 2001; Mariani and Martin, 2003).   

A critically important function of bone healing is that the healing tissue provides 

sufficient mechanical stabilization such that a return to functionality is possible. Because 

fracture healing is a phenomenon that modulates the mechanical stability of a broken 

bone, there is an important clinical need to monitor the mechanical properties of a healing 

callus so that a clinician may detect and intervene in the event of non-union. Also, many 

fracture healing rodent models within the context of experimenting novel treatments for 

enhancing the fracture repair process have been developed (Holzer et al., 1999; 
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Huddleston et al., 2000; Zhao et al., 2005; Granero-Molto et al., 2007; Zachos et al., 

2007; Granero-Molto et al., 2008; Gutierrez et al., 2008).  To determine the efficacy of 

these treatments, there is an important need to monitor and characterize the load-bearing 

mechanical properties within the context of the experimental fracture callus system. 

However, the lack of sensitive methods to monitor and relate the fracture mechanical 

properties with tissue type renders those studies inadequate to fully evaluate the fracture 

healing patho-physiology.  Therefore, the goal of this research was to develop a finite 

element modeling (FEM) approach, combining micro-computed tomography and 

biomechanical testing to use in evaluating mechanical properties as a biomarker in the 

assessment of fracture healing progression. This approach relies on the use of an 

elastographic inverse FEM framework that uses traditional forward FEM techniques 

iteratively to make estimations of the callus tissue elastic modulus. 
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CHAPTER II 

 

A FINITE ELEMENT INVERSE ANALYSIS TO ASSESS FUNCTIONAL 
IMPROVEMENT DURING THE FRACTURE HEALING PROCESS 

 
 

Abstract 

Assessment of the restoration of load-bearing function is the central goal in the 

study of fracture healing process.  During the fracture healing, two critical aspects affect 

its analysis: (1) material properties of the callus components, and (2) the spatio-temporal 

architecture of the callus with respect to cartilage and new bone formation. In this study, 

an inverse problem methodology is used which takes into account both features and 

yields material property estimates that can analyze the healing changes. Six stabilized 

fractured mouse tibias are obtained at two time points during the most active phase of the 

healing process, respectively 10 days (n=3), and 14 days (n=3) after fracture. Under the 

same displacement conditions, the inverse procedure estimations of the callus material 

properties are generated and compared to other fracture healing metrics.  The FEA 

estimated property is the only metric shown to be statistically significant (p=0.0194) in 

detecting the changes in the stiffness that occur during the healing time points.  In 

addition, simulation studies regarding sensitivity to initial guess and noise are presented; 

as well as the influence of callus architecture on the FEA estimated material property 

metric. The finite element model inverse analysis developed can be used to determine the 

effects of genetics or therapeutic manipulations on fracture healing in rodents. 
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Introduction 

Bone fracture healing is a complex biological process, and assessment of fracture 

healing has relied on histological, imaging, and biomechanical testing (BMT) 

(Gerstenfeld et al., 2005). Histological methods allow the visualization of tissue-specific 

molecules over histological sections by in-situ hybridization, immunohistochemistry, or 

specific staining. However, comparisons between sections are difficult and true 

quantitative assessment is unrealistic. Furthermore, histological methods are limited to 

post-mortem analysis and cannot provide functional information. Various imaging 

modalities have been used to assess the fracture healing, such as micro-computed 

tomography (μCT), magnetic resonance, and positron emission tomography (Cattermole 

et al., 1996; Grigoryan et al., 2003; Ciprian et al., 2004; Lynch et al., 2004; Severns et al., 

2004; Schmidhammer et al., 2006; Hsu et al., 2007; Saran and Hamdy, 2008). μCT 

imaging is mostly used due to advantages in 3D reconstructions. However, imaging 

provides no information about tissue types and mechanical properties. BMT remains the 

gold standard for the functional assessment of fracture healing. Standard BMT analyses 

use force versus displacement data and analytic calculations based on beam theory to 

generate mechanical property information. Beam theory calculations rely on the 

assumption of a homogeneous cross section, but because of the irregular geometry of the 

callus, these calculations are strongly biased by geometrical factors (van Lenthe et al., 

2008).  

 Some studies have explored coupling μCT imaging with finite element analysis 

(FEA) to predict the mechanical behavior based on geometrical information.  In 

particular, studies have evaluated μCT attenuation to stiffness value transformations to 
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provide material properties and found empirical power law relationships between 

modulus and bone mineral content assessed by μCT attenuation/density (Bourne and van 

der Meulen, 2004; Shefelbine et al., 2005). Shefelbine and colleagues have also reported 

a weak correlation between predicted and experimental torsional rigidity with a very poor 

predictive value in calluses studied at early healing stages when mineralization is low 

(Bourne and van der Meulen, 2004; Shefelbine et al., 2005). It is quite apparent that the 

direct relationship between μCT attenuation/density and mechanical parameters is unclear 

and is to some degree unsatisfactory; and when factoring in the potential for variability of 

this relationship across experimental systems, it is unlikely that the correlation will 

improve. 

In our studies, rather than using a CT-to-stiffness empirical relationship, we 

have used an elastographic approach to directly generate values for mechanical 

parameters. Our approach combines an inverse finite element model of the subject’s 

cartilage/bone geometry (μCT/histological imaging data), data acquired from BMT, and 

numerical optimization techniques to characterize the callus mechanical properties. This 

approach does not require calibration in each system but rather is an active reconstruction 

parameter that can be measured experimentally. The concept of an ‘inverse’ FE analysis 

method to determine the mechanical parameters to monitor the progression of fibrogenic 

diseases has been demonstrated. These techniques are more widely referred to as 

elastography (Ophir et al., 1991; Greenleaf et al., 2003; Washington and Miga, 2004; 

Miga et al., 2005; Barnes et al., 2007; Samani and Plewes, 2007; Ou et al., 2008).  Within 

this work, the approach is used to evaluate mechanical properties as a biomarker in the 

assessment of fracture healing progression. Quantifying the change in mechanical 



6 

properties during the fracture healing process may provide information that: (1) allows to 

determine when healing has failed to progress, (2) suggests the need for intervention in 

non-union/slow healing fractures, and (3) evaluates the effectiveness of treatments that 

aim to enhance the healing process through the formation of more mechanically 

competent tissue. 

 

Methods 

 

Generation of the Computational Model 

An inverse FEA procedure was developed to determine the stiffness of the callus 

based on μCT imaging and BMT data. As summarized in Figure 1, the procedure begins 

with the establishment of an assumed Hookean linear elastic tissue model framework for 

the bone/callus system. The process continues with the development of a bone/callus 

computer model of the subject generated from μCT image volumes. A volumetric 

tetrahedral grid is then generated to represent a FE mesh system.  

The boundary conditions for the model were chosen to reflect the BMT protocol, 

in which the top boundary is prescribed a fixed upward normal displacement with no 

lateral displacement (Dirichlet boundary conditions).  The bottom surface was also fixed 

in both the normal and lateral direction.  The remaining boundary conditions for the sides 

of the model were stress free. The displacement criteria selected for each sample was 

based on the individual force/displacement curve obtained from BMT. A series of four 

displacements were taken along the curve at 25%, 50%, 75%, and 100% of the linear 
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Figure 1: General framework of the inverse material property reconstruction method. 
The stiffness is iteratively reconstructed by comparing model calculated forces to 
biomechanical testing forces. 
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elastic limit to reproduce the linear portion of the curve. As pointed out in Figure 2, the 

linear elastic limit was defined as the point at which the curve exhibited plastic 

deformation (slope ≤ 0 in our case). Solutions to the elastic system are then generated as 

reported previously (Barnes et al., 2007).  As shown by Barnes and colleagues, the 

unused Galerkin equations associated with the implementation of the Dirichlet boundary 

conditions are utilized post model-execution to estimate the local boundary stress (Barnes 

et al., 2007).  This stress is then averaged over the tensile boundary surface and 

multiplied by the surface area to generate a model-calculated average force (Fcalc) applied 

to the bone surface for the given displacement.  The model is solved at each displacement 

value to generate four model-calculated average forces which are compared to the 

corresponding forces measured from the force/displacement curve in a least squares sense 

and properties of the callus determined through an iterative optimization process. A 

further discussion of the inverse problem framework is discussed in Appendix B. 

 

Experimental model 

 

Mouse Stabilized Tibia Fracture Model 

Female FVB-NJ mice (Jackson Laboratories) 8-12 weeks old were anesthetized 

using isofluorane to provide deep anesthesia.  Pin stabilized mid-diaphyseal tibia 

fractures were generated by insertion of a 0.25 mm stainless steel pin (Fine-Science-

Tools) through the tibial tuberosity followed by fracture creation using a three-point 

bending device with a standardized force (Einhorn, 1995).  Immediately following tibia 

fracture, 0.5 mg/kg of bupremorphine was administered for pain control.  On post- 
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Figure 2: BMT force versus displacement data of each tibia fracture callus tested at day 
10 and day 14 post fracture during tensile testing. Note the wide sample variation within 
each group, demonstrating confounding geometrical effects. Asterisk denotes linear 
elastic limit. 
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fracture days 10 and 14, mice were euthanized, fractured tibias were dissected and 

wrapped in phosphate buffered saline soaked gauze and stored at -80 °C until further 

analysis. Animal studies were approved by the Institutional Animal Care and Use 

Committee at Vanderbilt University Medical Center and the University of North Carolina 

at Chapel Hill. 

 

Callus μCT IImaging and μCT/Histological Thresholding Analyses 

μCT scans were performed using a Scanco μCT 40 scanner (Scanco Medical) and 

were obtained at 55 kVp, 145 μA, 300 ms integration time using 12 μm voxel resolution 

along 5.2 mm length centered at the fracture line (Reynolds et al., 2007). μCT 

reconstructions were used for subsequent FEA and volume measurements.  To determine 

material type (newly mineralized bone, highly mineralized bone and cartilage) and 

quantify callus volumes from μCT scans, a parametric thresholding study was performed 

by serial μCT scanning and histological analysis as more extensively reported within 

Appendix B. 

 

BMT Analyses 

Fractured tibia ends were embedded into a polymethylmethacrylate cast using 

custom designed testing fixtures, leaving the fracture callus exposed. Specimens were 

kept fully hydrated with PBS during the entire testing procedure.  The fixtures were 

loaded into an Enduratec Electroforce 3100 mechanical tester (Bose, Enduratec Systems 

Group) and tested in tension at a fixed displacement rate of 0.25 mm/min using a 22 N 

transducer (Honeywell Sensotec) for force data (Colnot et al., 2003).  Displacement and 
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force were recorded until failure and used for subsequent FEA and to determine 

biomechanical metrics of fracture healing. Additional descriptions can be found in 

Appendix B.   

 

Generation of Subject Specific FE Models 

Subject specific FE models were generated for 6 tibias (three each at 10 and 14 

days post-fracture).  After using the imaging protocol above, μCT image sets were semi-

automatically segmented and boundary descriptions (as described by 3D points and 3D 

triangular patches) were generated through the use of a marching cubes algorithm in a 

commercially available image analysis software (Analyze, AnalyzeDirect) for both the 

entire bone/callus and just the cortical bone.  Boundary descriptions of each were then 

used to create a heterogeneous FE tetrahedral mesh consisting of two properties (i.e. 

cortical bone and other material) using custom-built mesh generation methods (Sullivan 

et al., 1997).  Once the 3D mesh is created, an image-to-grid approach is utilized which 

determines the voxel intensities within each tetrahedral element from the imaging domain 

and assigns properties based on thresholding.  

Values of Poisson’s ratio were assumed for all tissue types (0.3 for bone and 0.45 

for callus) based on the literature (Shefelbine et al., 2005) and values associated with the 

near-incompressible nature of soft tissue.  In addition, the cartilage and low-mineralized 

bone were lumped into a single isotropic property. The value of the void space elastic 

modulus was assumed as 0.1 Pa (many orders of magnitude below callus value). 

Reported values of the cortical bone modulus range from ~4 GPa to ~21 GPa  (Choi et 

al., 1990; Jamsa et al., 1998; Schriefer et al., 2005). Because of this large variability, we 
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tested the inverse FEA modulus estimations to explore the impact of different cortical 

bone modulus values using respectively 5, 10 and 15 GPa. As reported in Appendix A, 

we found that the estimated callus elastic modulus did not change with the assumed 

cortical bone modulus (maximum of ~4.5% difference, not statistically significant). 

Thereafter, the 5 GPa value has been used in all the studies performed.  

 

Simulation Studies 

 A cylinder mesh with three layers was created to simulate a simplified appearance 

of a bone fracture callus, as seen in Figure 3. The simplified geometry allows analytic 

comparisons to FEA results.  Simulations were then performed on the cylinder mesh to 

test the accuracy and sensitivity of the inverse FEA procedure upon initial guess, with 

material properties approximating that of bone and callus (5 GPa and 1 MPa, 

respectively) and radius and total height of 1 mm and 6 mm, respectively.  To gauge 

accuracy of the simulations, the forward elastic model was used to calculate boundary 

normal surface forces for a step displacement corresponding to 0.5% strain and compared 

to an analytic calculation of the surface normal force (derivation in Appendix C).  The 

dependence of the elastographic framework on initial guess was also tested by executing 

simulations with five random initial callus modulus guesses. 

In a separate simulation study, two meshes created from μCT imaging of a 

representative post-fracture day 10 and 14 tibia were used as realistic geometries for 

further simulation analyses.  To examine the effect of mineralization compositional 

differences in the callus on the reconstructed lumped stiffness parameter, meshes at the 

two time points (representing two different phases of mineralization) were used to 
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Figure 3: Cylinder mesh representing a simplified appearance of a bone fracture callus 
used for simulation studies. The proximal and distal layers represent the bone ends (red), 
while the intermediate layer represents callus (blue).  Each geometrically identical layer 
is assumed to be a homogeneous material of dimension similar to that of a bone fracture 
callus.   
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reconstruct the combined callus stiffness.  The callus material in the mesh was subdivided 

through thresholding into new bone and soft tissue portions and assigned separate 

Young’s modulus values of 10 MPa and 0.1 MPa, respectively (values were arbitrarily 

selected to fit to actual experimental results, but are based on magnitude differences of 

100 fold that have been previously suggested (Shefelbine et al., 2005)). The effect of 

transducer noise on the stiffness reconstruction method was also examined through the 

addition of Gaussian noise.   

 

Ex Vivo Studies 

 Day 10 and 14 post-fracture tibias were subjected to the material property 

reconstruction analysis, whereby force versus displacement curves obtained from the 

mechanical tester were used in conjunction with the meshes generated from μCT scans to 

determine callus material properties. In addition, the following metrics were analyzed: (1) 

ultimate load, (2) toughness, (3) apparent stiffness, (3) normalized apparent stiffness, (4) 

total bone volume, and (5) total callus volume. More information about these metrics is 

reported in Appendix B. 

 

Statistics 

Data are expressed as mean ± SD. Statistical analyses were performed by 

comparing the analysis metrics from the independent 10 and 14 day fracture callus 

groups using unpaired Student’s t-test, The Graph-pad Prism Software and the Power and 

Sample Size package software were used. Statistical significance was set at p<0.05; 

statistical power was set at 0.9  
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Results 

 

Simulation 1: Validation of the FEA Model 

To validate the FEA model, the simulation cylinder mesh was compared against 

an analytic calculation.  The model was prescribed a fixed displacement of 0.5% strain 

and the average normal surface force was calculated from the forward FEA model as 

described in the Methods.  The average surface normal forces were calculated as 45.0347 

mN and 47.1050 mN for the model and analytic calculations, respectively, representing a 

4.40 percent error in the model versus the analytic calculation, which is reasonable given 

the level of discretization and the type of element used (tetrahedrons tend to be slightly 

less accurate, but are able to more fully capture the geometry of the callus).  

 

Simulation 2: Sensitivity of Material Property Reconstruction on Initial Guess 

To determine the sensitivity of the material property reconstruction method, the 

forward FEA model was run as described in the Methods to generate model calculated 

average surface normal forces at 4 strain increments (0.5, 1.0, 1.5, and 2.0 percent strain).  

These results were then used as the “experimental force transducer” input along with 

multiple random initial guesses for the callus material property.  The material property 

reconstruction was executed with varying initial guesses to determine the accuracy of the 

model to converge on the known material property given a random initial material 

property guess.  As shown in Figure 4, the solution to the material property 

reconstruction converged to the correct value of 1 MPa (within 1.74 % maximum error) 

for all initial guesses tested. 
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Figure 4: Convergence plot of cylinder mesh simulation with varying initial guess. The 
modulus (Ecallus) converged to the optimal solution (1000 kPa) for all initial guesses 
tested with Ebone fixed at 5 GPa. 
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Simulation 3: Lumped Parameter Reconstruction and Sensitivity of Force Transducer 
Error 
 

Representative callus meshes from 10 and 14 days post-fracture were used in 

simulations in which the callus was subdivided into new bone and soft tissue with 

modulus values as described in the Methods.  The forward model was used to determine 

boundary normal surface forces for displacements of 0.1, 0.2, 0.3, and 0.4 mm, which 

were then used as the transducer force inputs to the inverse FEA with one lumped 

parameter corresponding to the total bulk callus modulus of elasticity.  As shown in 

Table I, the estimated callus moduli were 1930.15 and 3538.27 kPa for the 10 and 14 day 

post-fracture callus meshes, respectively.  These data demonstrate that changes to the 

new bone volume fraction (new bone/callus volume) between days 10 and 14 post-

fracture result in an estimated bulk modulus of ~ 2 fold.  This simulation provides some 

understanding of how a lumped parametric model is affected by the new bone volume 

fraction. The effects of transducer noise was simulated by generating noisy data sets 

through the addition of random Gaussian noise of 0, 1, 2, 4 and 8 standard deviations of 

the force transducer’s listed accuracy [± 0.15 % of full scale (22 N)] to each force data 

point on the loading curve of the previous simulation.  The noisy data sets were used to 

define the effects of force transducer noise on the estimated material property accuracy.  

As shown in Table I, the maximum error in the modulus estimation procedure was 

observed as 3.89% for the addition of 8 standard deviations of transducer noise (an 

unreasonable case and within the margin of error for the model). For the realistic scenario 

of 1 standard deviation of noise, the error in estimation was 9.83 kPa and 12.97 kPa, 

corresponding to 0.51% and 0.37% error for the 10 and 14 day calluses, respectively. 

This suggests that transducer noise plays little part in the overall error of the method. 
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Table I: Simulation results of estimated callus modulus and effects of simulated 
transducer noise through the addition of 0, 1, 2, 4, and 8 standard deviations of noise. 
 

Standard 
deviation 
of noise 

Emodel,10d 
(kPa) 

%  error in 
E10d 

Emodel,14d 
(kPa) 

%  error in 
E14d 

 
0 
 

1930.1503 0 3538.2654 0 

 
1 
 

1920.3176 0.5094 3525.2906 0.3667 

 
2 
 

1918.8212 0.5870 3543.0592 0.1355 

 
4 
 

1948.7781 0.9651 3553.1002 0.4193 

 
8 
 

1855.0554 3.8906 3470.9360 1.9029 
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Material Property Estimation in Mouse Tibia Fracture Callus 

Representative μCT reconstructions, corresponding meshes, and cross-sections of 

the meshes for both 10-day and 14-day groups are shown in Figure 5. μCT volume 

quantifications reported in Table II, showed a trend over an increase of callus volume and 

mineralization in 14 versus 10 days post-fracture. Model generated material property 

estimations are also compared to other biomechanical fracture healing analysis metrics 

(apparent stiffness, normalized apparent stiffness, and callus volume). The inverse FEA 

was the only test to be statistically significant in estimating a modulus that was ~4 fold 

increased in the 14 days post-fracture calluses compared to day 10 post-fracture (Table 

II). With 3 mice in each group the inverse FEA had the statistical power to detect a 

difference (power=0.9, alpha=0.05) between groups. These data indicate that the inverse 

FEA approach is sensitive to detect architectural changes that occur within the callus 

during the mineralization process. Although the unprocessed BMT data generated a trend 

of increasing stiffness for the 14 day over the 10 day post-fracture specimens, this 

parameter as well as all the others measured did not reach statistical significance. A large 

data variation was observed between samples, as clearly shown in Figure 2 that depicts 

the unprocessed BMT data for each sample.  This large sample variation persisted 

following normalization of the apparent stiffness by maximal cross-sectional callus area 

and length (representing a conversion from apparent stiffness to elastic modulus), 

indicating the inadequacy of volumetric normalization. 
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Figure 5: (A,B) Representative μCT 3-D reconstructions for mouse tibia fracture, (C,D) 
corresponding tetrahedral FE meshes, (E,F) cut-away images of the tetrahedral FE 
meshes showing internal elements and material types. Element colors represent material 
type of bone (red), callus (green), and void (blue). (A,C,E) 10 day post-fracture, (B,D,F) 
14 day post-fracture. 
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Table II: Comparison of BMT and CT fracture healing analysis metrics with estimated 
callus elastic modulus for 10 and 14 days post-fracture samples. Numbers are expressed 
as mean +/- SD and P values are reported using unpaired Student’s t-test. * denotes 
statistically significant difference. 
 
 10 d (n=3) 14 d (n=3) P Value 

Ultimate Load (N) 1.560 ± 0.1370 1.643 ± 0.4888 0.7902 

Toughness 
(N*mm) 

0.4059 ± 0.08796 0.1957 ± 0.1567 0.1127 

 
Apparent 
Stiffness (N/mm) 
 

4.744 ± 2.345 13.95 ± 6.241 0.0751 

 
Normalized 
Apparent 
Stiffness (kPa) 
 

3885 ± 1800 8330 ± 4941 0.2170 

Total Bone 
Volume (new 
bone + cortical 
bone) (mm^3) 

4.051 ± 0.1183 5.894 ± 1.355 0.0788 

Total Callus 
Volume (soft 
tissue + new bone) 
(mm^3) 

4.391 ± 1.051 8.772 ± 3.772 0.1257 

 
Eestimated 

(kPa) 
 

797.1 ± 414.3 2908 ± 872.8 0.0194 * 
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Discussion 

 In this study we have developed an inverse FEA procedure to determine the 

elastic modulus in mouse tibia fracture callus based on CT/histological threshold data 

and data acquired from tensile BMT analyses.  The FEA showed: 1) less than 5% error 

compared to the analytic calculations; 2) a sensitivity of material property estimation 

within 1.74% maximal error for measurement error as large as 8 SD; 3) appropriate 

sensitivity in estimating the modulus changes expected during two distinct time points of 

the fracture healing process. 

The healing length of the stabilized mouse tibia fracture model is ~28 days 

(Hiltunen et al., 1993).  We have performed our studies at post-fracture days 10 and 14. 

As assessed by histological analyses in this time window the callus is in its most active 

healing phase and has not yet reached the remodeling phase (Hiltunen et al., 1993).  It is 

reasonable to assume that the mechanical properties of the callus should become 

progressively better and more functionally stable over time. As a result, metrics focused 

at assessing healing should improve between these time points.  BMT has been 

considered the gold-standard technique to assess the mechanical properties of the callus 

and therefore the healing progression. However, in our studies we found that BMT was 

not sensitive enough to detect significant differences in any of thee metrics between the 

time points studied. It is likely that the mechanical improvement has been masked by 

confounding geometrical factors that determined a wide data variation, even after 

maximal cross-sectional area and callus length normalizations. These BMT data, left 

alone, would have led to the paradoxical conclusion that a rapid healing progression 

would not be reflected by an improvement in mechanical stability. This lack of BMT 
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sensitivity clearly highlights the need for alternative methods to detect material property 

changes during the healing process. Due to the large variance of the apparent stiffness 

measurements, it is possible that the inability of this method to detect a difference may be 

due to the small sample size. We estimated that 6 mice for each group would have been 

needed to get a statistical power of 0.9. On the other hand, using equal power analysis, 

only 3 mice for each group were needed to detect a difference between groups using the 

inverse FEA model. This indicates that because of the small variance, our model is 

powerful in detecting subtle differences in material properties therefore reducing the 

usage of mice, experimental time and expenses.  

Through simulation studies, the inverse FEA approach developed in this work is 

shown to accurately calculate surface normal forces and to converge on a preset modulus 

value using random initial guess in the presence of transducer noise.  Through ex vivo 

specimen analysis, the approach was able to detect a difference in the callus material 

modulus of ~4 fold from post-fracture day 10 to day 14.  Taken together with the 

simulation analysis of callus meshes with both new bone and cartilaginous tissue material 

components, these data suggest that between 10 and 14 days post-fracture, there is a 

significant change in material composition (new bone volume fraction) that results in 

stiffness increase. In future studies, the inverse FEA approach will allow for establishing 

the temporal pattern of material property changes throughout the entire course of the 

healing process in normal and genetically/therapeutically manipulated fracture calluses.  

In our model we have only incorporated the linear component of the 

force/displacement curves, but fracture healing can also be characterized by both 

geometrical and material nonlinearities.  We recognize that our model, in lacking the 
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nonlinear component, has some limitations. However, as depicted in Figure 2 the linear 

component accounts for 75 ± 24.2% of the curve(s) indicating that a significant amount 

of the callus follows a linear modality in force/displacement testing. We acknowledge 

that this analysis only begins to address the question of constitutive modeling, but, it is 

important in that it demonstrates that first order approximations of subject specific 

models offer discriminatory power regarding fracture healing state analysis. The 

discriminatory power produced by the model created within this work can allow for more 

accurate functional mechanical analysis of fracture calluses that: (1) establish normative 

data regarding the longitudinal change in normal fracture callus properties, (2) aid in the 

analysis of therapeutic treatment options for improvement/acceleration of fracture 

healing, and (3) assist in earlier and more effective clinical determination of fracture non-

union. 
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CHAPTER III 

 

FUTURE WORK 

 

The current work has shown significant relevance and improved analysis of the 

inverse FEA method for differential analysis between mechanical properties of fracture 

calluses from two time points of normal fracture healing in normal mice. However, 

analysis of normal fractures in normal mice helps only to characterize the progression of 

mechanical properties during unimpeded fracture healing. The goal of fracture healing 

studies remains: (1) diagnosis of pathological fracture healing failure and evaluation of 

pathological fracture non-unions; and (2) evaluation of experimental therapeutic methods 

that aim to enhance the normal and/or pathological fracture healing process. Therefore 

the goal of future work is to test/validate the analysis method against experimental 

pathological and therapeutic models. Pathological and/or therapeutic fracture healing 

models prove challenging for regular BMT analysis due to vast differences in callus 

geometry and architecture, making current beam-theory based mechanical analysis 

especially prone to significant error. However with the incorporation of both BMT and 

μCT data in the current analysis, we hypothesize that the inverse FEA method will 

generate more accurate and sensitive mechanical assessment of treatment efficacy or 

pathological diagnosis. 

The FEA modeling procedure described within this work showed reconstructed 

values that were consistent among the widely distributed force/displacement curves. It is 

interesting to note that the modeling analysis was the only metric to show statistical 
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significance among other commonly used healing assessment metrics. This suggests that 

model-based inverse analysis produces a more consistent metric. However, the procedure 

still has shortcomings at this early stage. These shortcomings are mainly related to certain 

assumptions used to define the model, and include: (1) the choice of tetrahedral elements 

versus hexahedral elements, which tend to more accurately reflect mechanics modeling, 

(2) the high strain conditions within the fracture gap likely need the full-nonlinear strain 

tensor description instead of small strain theory, and (3) the assumptions of Hookean 

elasticity. It is the goal of future studies to address these shortcomings with more refined 

FEA. 
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APPENDIX 

Appendix A: Supplemental Table I: Comparison of estimated callus elastic modulus for 
10 and 14 days post fracture samples with differing values for cortical bone elastic 
modulus. Numbers are expressed as mean +/- SD and P values are reported using 
unpaired Student’s t-test. * denotes statistically significant difference between 10 and 14 
day groups. 
 
 10 d (n=3) 14 d (n=3) P Value 
 
Eestimated (kPa) w/ 
Ecortical = 5 GPa 
 

797.1094 ± 414.295 2908.294 ± 872.809 0.0194 * 

 
Eestimated (kPa) w/ 
Ecortical = 10 GPa 
 

762.4152 ± 404.8187 2813.223 ± 825.9909 0.0181 * 

 
Eestimated (kPa) w/ 
Ecortical = 15 GPa 
 

769.7466 ± 385.6674 2788.968 ± 786.6818 0.0162 * 
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Appendix B: Additional descriptions of methods 

 

Inverse Problem Framework 

To determine the callus modulus, the model calculated average force (Fcalc) is 

generated from an initial callus Young’s modulus guess (E).  A custom-built Levenberg-

Marquardt non-linear optimization algorithm is used to iteratively optimize the modulus 

value such that Fcalc approaches the experimental material tester generated force (Fexptl).  

In this approach, each strain level is treated as an independent data point with respect to 

determining the modulus.  This allows the formation of an objective function from the 

elastic portion of the force-displacement data, i.e. 

 



N

1i

2

itlexpcalc FF)E(G  

where N is the number of data points along the elastic region of the force-displacement 

curve.  In this case, we are solving for a single property which represents the elastic 

modulus (E) of the ‘lumped’ callus region.  To optimize this for the callus modulus, we 

take the derivative of our objective function, G(E) and set equal to zero. 
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or simplified as, 

    0FFJ tlexpcalc
T  . 

From this, a standard Levenberg-Marquardt framework can be used to solve this root 

problem, 
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        tlexpcalc
TT FFJEIJJ   

where ∆E is the change in material property for the iterative method, i.e. 

EEE i1i  , 

and α is a regularization term to improve the conditioning of the iterative procedure and 

is defined as,  

      2/12T SSE*JJtrace*  (Joachimowicz et al., 1991) 

where λ is an empirical factor, and SSE is the sum squared error between measured and 

calculated force.  It should be noted that the Jacobian was determined by a finite 

difference calculation which was initiated by a 2.5% perturbation from the initial guess of 

the callus property.  As schematically presented in Figure 1, the process is repeated until 

the relative error between iterations converges below a set tolerance or until no 

improvement in objective function is noted and a unique solution is found.    

 
 
Material Type Description Based on μCT/Histological Thresholding Analysis 

To determine material type from μCT scans, a parametric thresholding study was 

performed by serial μCT scanning and histological analysis.   Fractured tibia calluses 

were dissected, fixation pins removed, and μCT scanned at 6 μm voxel resolution.  Bones 

were then fixed for 48 h at 4 °C in 4% paraformaldehyde solution, and decalcified for 10 

days in an EDTA decalcification solution (10 mM Tris-HCl, 10% EDTA, 7.5% 

polyvinylpirrolidone pH 7.5).  Bones were dehydrated in a graded ethanol series, 

embedded in paraffin, and sectioned at 6 μm thickness along ~5.2 mm length centered at 

the fracture line.  This resulted in 864 histological sections per bone, which were placed 3 

sections per slide and divided into 4 serial groups for staining, resulting in ~72 slides per 
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group (72 slides x 3 sections/slide x 4 groups).  In-situ hybridizations for Collagen 

1 and Collagen 10 and Trichrome Blue and Safranin O/Fast Green histological staining 

were performed to identify tissue type. Trichrome Blue and Safranin O/Fast Green 

staining were obtained using standard histological procedures as previously described 

(Jingushi et al., 1992). Collagen 1 in situ hybridization was used to label new bone, 

Collagen 10 in situ hybridization to label hypertrophic chondrocytes; Safranin O/Fast 

Green staining to label areas of cartilaginous tissue as bright red and areas of bone as 

green; Trichrome Blue staining to label newly mineralized bone as blue and highly 

mineralized bone as red. In situ hybridization analysis was performed as previously 

reported (Spagnoli et al., 2007). Plasmid with insertion of mouse Collagen (I)-alpha-1-

chain (Col1a1) by G. Karsenty (Columbia University). Probe for mouse Collagen 

(X)alpha1chain (Col10a1) was generated as previously described (Spagnoli et al., 2007). 

Each histological marker was quantified by a custom built image analysis code written in 

MATLAB (Mathworks Inc., Natick, MA) that was used to select tissue type (cartilage 

tissue, new bone, and cortical bone) based on color intensity.  Groups were quantified by 

summation of voxels and multiplied by voxel volume to yield volume of tissue.  The μCT 

image stack was then thresholded based on radiodensity into the 3 groups that visually 

and quantitatively matched histological staining determination of tissue type.  The soft 

tissue and new bone regions were lumped together and defined as callus material and the 

cortical bone regions were taken to be cortical bone material. 
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Description of analysis metrics 

BMT metrics:  

Ultimate load is defined as the peak force recorded during the BMT procedure.  

Toughness is defined as the area under the Force vs. displacement curve from the 

origin to the point of ultimate load. Apparent stiffness is defined as the slope of a 

best fit line to the linear portion of the force versus displacement curve during the 

loading phase.  Normalized apparent stiffness is defined as apparent stiffness with 

the force and displacement values normalized by dividing by the largest cross-

sectional area of the callus and its overall length, respectively. 

Imaging metrics:  

Total bone volume was determined by summing the voxels corresponding to 

mineralized tissue (new bone and cortical bone), then multiplying by the voxel 

resolution.  Total callus volume was determined by summing the voxels 

corresponding to callus tissue (soft tissue and new bone), then multiplying by the 

voxel resolution. 
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Appendix C: Derivation of simulation force: The analytic derivation of the surface 
normal force for a three part cylinder (represented in Figure 3) is shown. 
 

We start with Hooke’s law, where stress, strain, and Young’s modulus are represented by 

σ, ε, and E, respectively. 

E         (1) 

Then we substitute the definitions for stress and strain, where P, A, δ, and L represent 

respectively force, cross-sectional area, displacement, and length. 

P
E

A L


        (2) 

Solving (2) for displacement yields: 

PL

EA
         (3) 

We then take note that the total displacement is equal to the sum of the displacements in 

each section of the cylinder. 

1 2 3             (4) 

We also take note that the total force is equal throughout the total cylinder. 

1 2 3P P P P         (5) 

Substitute (3) into (4). 

3 31 1 2 2

1 1 2 2 3 3

P LPL P L

E A E A E A
         (6) 

Because each portion of the cylinder is of equal length and cross-sectional area (L = L1 = 

L2 = L3 and A = A1 = A2 = A3) and from (5), (6) can be written as, 

1 2 3

1 1 1PL

A E E E


 
   

 
     (7) 
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Since E1 = E3 (both cylinder sections represent bone), the force can be written as:  

1 2

2 12

E EA
P

L E E

  
   

      (8) 
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