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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Energy conservation and community security are the two main contempo-

rary concerns. Seriousness of both the issues has captured attention of the modern

engineering and scientific communities. These challenges are being responded en-

thusiastically by developing more energy efficient systems, alternate energy sources

and novel high performance, tailored and light weight complex composite materials

and alloy systems for specific applications in security and safety, energy, aerospace,

biomedical, electronics and automotive sectors. However, economics of the devel-

opment process and the underlying complexity of evolved systems restrict the use

of expensive and time consuming physical testing to limited number of cases only.

Recent advancements in computing power has made numerical simulation the third

pillar of science after theory and experimentation, the other two pillars. A complete

survey of the contemporary challenges in computational mechanics and composite

materials can be found in [1].

Due to application specific properties and high strength to weight ratio (spe-

cially in polymer matrix composites), composite materials (metal, ceramic or polymer

matrix composites) are becoming increasingly popular in industrial applications.

Composite sections are increasingly being used to construct major proportion of pri-

mary structural members in civil, mechanical, aerospace and automobile industries.
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Composite plane ”A380” from Airbus Industries and ”Dreamliner 787” from Boeing

Co. are added new success stories for composite materials, as shown in Fig. 1.1.

Amongst the various possibilities, the use of plate like composites structural

elements is quite extensive others. Today, composite thin plates are being used in a va-

riety of applications such as manufacturing car and aeroplane body parts, retrofitting

plates for civil structures, body armors, heat resisting tiles for spaceships, etc.

Figure 1.1. Composite planes from Airbus and Boeing (Source:
http://www.carbonfiber.gr.jp)

1.2 Thin Plates

Technically, a plate is called thin if the characteristic wavelength of a deforma-

tion pattern is much longer than the plate thickness [2]. On the other hand a plate is

viewed as a thick plate if this wave length is comparable to the plate thickness. Plates

of intermediate thickness are called moderately thick plates. As a rule of thumb, if the

ratio of thickness and the smaller span length of a plate is less than 1/20, it is treated

as a thin plate. Problems associated with small deflections in isotropic, homogeneous
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and elastic thin plates are solved via classical plate theory (CPT) of bending, which

is based on Kirchhoff hypothesis.

In the case of thin elastic plates, if (u,v) are in-plane deformations along

(x = x1, x2) axes, respectively and w is transverse deflection (in x3 direction), then

the displacement field in CPT is given in accordance with Kirchhoff’s hypotheses as

following [3].

u (x, x3, t) = u0 (x, t)− x3
∂w0

∂x1

(1.1a)

v (x, x3, t) = v0 (x, t)− x3
∂w0

∂x2

(1.1b)

w (x, x3, t) = w0 (x, t) (1.1c)

where, u0 (x, t), v0 (x, t) and w0 (x, t) are the reference plane (or mid plane) displace-

ments in their respective coordinate directions.

CPT plays a pivotal role in developing theories for thin heterogeneous plates.

However, in case of composite plates the response (displacement) field is described

using equivalent single layer (ESL) theory or layer-wise (LW) theory [3]. The ESL

theory converts a three-dimensional problem into a two-dimensional problem by mak-

ing suitable assumption about the displacement variation through the thickness. CPT

is not directly applicable to modeling of composite thin plates but it has its counter-

part called ”classical laminated plate theory (CLPT)” in the realm of ESL theories for

thin composite plates problems. Particularly, in the case of thin composite composite

plates, ESL theory offers considerably accurate global behavior by a relatively simple

approach.
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ESL plate theories fail to capture an accurate assessment of displacement/stress

field in the localized region of ply interface in laminated plates due to assumed conti-

nuity of displacements through the thickness. On the other hand, LW theories assume

C0 continuity of displacement field through laminate thickness. Thus, although the

displacement is continuous across the ply in a laminate through the thickness, but pos-

sible discontinuity in the displacement derivative with respect to thickness allows the

possibility of discontinuous transverse stresses at the interface of dissimilar laminae.

With this advantage over ESL theories, LW theories are more suitable for describing

various secondary or lamina level phenomenon such as delamination, matrix crack-

ing, adhesive joint failure, resultant laminate strength after progressive ply failure,

zig-zag behavior of in-plane displacements through the thickness, etc. However, LW

plate theories give satisfactory results only for moderately thick or thick laminates

as their direct application to thin plates yields spurious transverse stiffness which in

turn violates Kirchhoff hypothesis of zero transverse deformation [3]. However, LW

theories with selective or reduced integration for transverse shear terms model thin

plate behavior with reasonable accuracy. An excellent review of capabilities of ESL

and LW plate theories has been presented in [4].

1.3 Asymptotic Analysis

For almost all the composite materials, microstructure is periodic in nature,

which results in the local response fields that are also periodic on microscopic scale.

Therefore, for every composites, including the ones with randomly oriented reinforce-

ment (composites with chopped fiber or whiskers as reinforcement), a microstructural

repeating unit, called as ”representative volume element (RVE)” can be deduced

to represent the microscopic morphology of the composite system. But since RVE
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dimensions are much smaller than the macroscopic dimensions, the entire coupled

”macroscopic - microscopic” problem becomes intractable even by numerical meth-

ods. The solution to this intractability exists in the form of two-scale asymptotic

analysis method which, essentially, separates the local analysis within the periodicity

cell from the global or macroscopic analysis [5], [6]. The general assumed form of the

solution in two scale asymptotic analysis is given as following.

uζ
i (x, t) = u0

i (x, t) +
∞∑

η=1

ηζuζ
i (x,y, t) (1.2)

The higher order terms e.g., uη
1, u

η
2 etc., in the above asymptotic series, are

determined from the solutions of the local problems of various order of ζ. ζ is called

as scaling factor, which is generally the ratio of macroscopic scale to microscopic scale

associated with RVE.

The asymptotic analysis approach has been successfully applied by various au-

thors in dealing with the elastic analysis of plates by [[7] - [11]]. In case of plates, the

oscillatory nature of response fields depend upon three characteristic spatial scale:

macroscopic scale, x := {x, x3}, where x = {x1, x2}, associated with the overall di-

mensions of the microstructure and two microscopic scales associated with the rescaled

unit cell denoted by y = {y1, y2}, where y = x/ζ, and z = x3/ε, associated with in-

plane heteroginity and thickness, respectively. Two scaling constants, 0 < ζ, ε � 1,

respectively define the ratio between the characteristic planar dimension and thick-

ness of the RVE with respect to the deformation wavelength at the macroscopic scale.

Both of these scaling parameters the final plate constitutive equations. Caillarie [7]

presented homogenization analysis of elastic and periodic thin heterogeneous plates

with constant thickness for three different cases. In first case, homogenization (ζ → 0)

of the plate problem succeeds the transformation of three dimensional problem to a
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two dimensional problem (ε → 0). In the second case, ζ and ε are of same order

whereas in third case, first (ε → 0), and then (ζ → 0). Kohn et al [8] carried out

asymptotic analysis of bending of thin plate with varying thickness. In a series of

three articles, [[9] - [11]] presented the approach to compute the effective moduli for

thin heterogeneous plates with various geometric symmetries and thickness. In the

second part of the series [10], author dealt with thin plates with geometrical symme-

tries where the three dimensional unit cell of thin plate is also symmetric. The last

article of the series, [9], showed that in case of thin periodic plate where shape of the

RVE is also a plate, the solution of the local unit cell problem can be approximated

by one of the established plate theories depending upon the case. All these results

presented in this series, along with many others, are provided in the form of a mono-

graph by [12].

1.4 Continuum Damage Mechanics

Physically, a gradual loss stiffness and strength is resulted due to time depen-

dent irreversible change in material’s microstructure. Modeling of gradual evolution

of this irreversible rearrangement of the microstructural geometry, of the possible in-

elastic deformation of multiply connected solids and of the resulting change in overall

response are the challenges which are dealt under damage mechanics [18].

Damage in composite materials occurs in the form of different multiple-cracking

modes, e.g. matrix cracking, matrix fiber interface cracking, delamination, fiber

breaking etc. Lammerant et al [13] and Garg [14] modeled delamination in com-

posite materials based on fracture mechanics approach coupled with a strain based

criteria to initiate the damage. Godoy [15] used perturbation analysis to model dam-

age in plates and shells. Voyiadjis [16] applied micromehanical damage mechanics to
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study anisotropic damage in fiber reinforced metal matrix composites. They used a

fourth order damage effect tensor for damage progression which is based on a second

order damage tensor. Recently, Tay et al [17] proposed a method called ”element fail-

ure method” based various strength of materials failure criterion to describe damage

and progressive failure in composite materials.

Practically speaking, in composite materials, there is no isolated single crack

that dominates the development of damage [19]. Due to complex crack pattern involv-

ing multiple damage modes, the formulation of damage problem based on individual

crack mode becomes difficult to track. The alternative approach to study such a prob-

lem suggests to smear the effect of multiple crack mode into a locally homogeneous

field and then take the smeared field quantities to characterize the damage state [19],

[20], [21]. The approach is defined as continuum damage mechanics (CDM).

The theory of continuum damage was first introduced by Kachanov [20], [21],

[22] using the concept of effective stress. The concept of effective stress compares the

current damaged state of the materials against a fictitious undamaged state of the

same material. The associated damage variable, based on effective stress concept,

represents average material degradation accounting for various types of damages ac-

cruing at microscale level.

The loss of stiffness and hence structural integrity can be modeled using de-

terministic damage parameter(s). The associated damage parameter is an internal

variable of the material system and it can be represented by a scalar, vector or ten-

sor, complexity of microstructure and failure modes. Since damage parameter is an

internal variable, therefore essentially the rate of the effective stiffness (and hence,

stress) does not measure the damage evolution itself but it is a measurement of the

effect of microcracking on the macro response [20], [21].
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This approach of damage modeling has been applied by [23] for composite

laminate where damage parameter is in vector form with five components, each rep-

resenting a different lamina damage mode. A similar approach has been employed

by Laedevze [24], Corigliano [25] and Collombert et al [26] to study the laminated

composite structures.

1.5 Transformation Field Analysis

The presence of damage introduces eigenstrains in the composite system. In

contrast to homogeneous materials, complex eigenstrain fields may be generated in

the heterogeneous material system by one or more of these sources even under uniform

overall stress, strain or temperature change [27], [28]. The influence of these transfor-

mation field on overall behavior and structural integrity of composite materials may

well exceed that of mechanical loads.

In fact, these transformation fields may be considered as additional strains and

stresses applied to the elastic composite aggregate, in superposition with overall stress

or strain [27], [28]. In order to describe local transformation fields, the RVE is sub-

divided into sub-volumes or local volumes, each of which contains individual phases

or portion of individual phases. If finite element analysis is used for the evaluation

of local fields, then each element contains a portion of a constituent phase. Under

the assumption that each sub-volume has uniform eigenstrain, the RVE volume aver-

age of local transformation fields can be calculated as the summation of sub-volume

eigenstrain and the corresponding transformation influence function [29].

8



1.6 Proposed Methodology

Successful implementation of composite plates in critical real world appli-

cations demands a sound theoretical framework which can be used to predict the

material response and failure under general loading conditions.

Consider a thin plate composed of a heterogeneous composite material system.

Assumption of thin plates implies that the in-plane stresses are much greater than

the other stress components. Assume that plate microstructure is periodic in two

orthogonal directions, perpendicular to plate thickness.

In order to derive these periodic response fields, a set of boundary value prob-

lems (BVP) are developed for the plate unit cell by assuming that the kinematic

response field can be represented by an asymptotic series with respect to scaling pa-

rameter(s). However, in order to make solution for the unit cell more tractable, the

small unit cell along with the boundary conditions is rescaled with the help of scaling

parameters.

The presence of damage causes in-elastic strains in the system. Transforma-

tion field analysis (TFA) is used to separate the total strain into elastic and in-elastic

components. As a consequence of this separation, local problems are also separated

into elastic influence function (EIF) problems and damage influence function (DIF)

problems. A unique solution for these rescaled boundary value problems exists un-

der the assumption that the applied forces, tractions and body force are sufficiently

smooth and the domain boundaries are regular. The EIF and DIF problems are

solved using finite element analysis. A static partitioning strategy has been adopted

to create a reduced order model for unit cell problems. The phase average of the

influence functions over the unit cell and various partitions with local stiffness tensor

yields various coefficient tensors, which help in defining the constitutive behavior of
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the macroscopic plate problem. This macroscopic thin plate problem is solved using

a commercially available finite element code, namely, Abaqus. In this manuscript

a rate-dependent model is used to characterize the evolution of damage within the

microstructure. A Perzyna-type viscoplastic regularization [30], [31] of classical rate

independent models [32] is used to alleviate the mesh dependence of the solution.
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CHAPTER II

PROBLEM FORMULATION

2.1 Assumptions

The work presented in this chapter consists of formulation of the microscopic

boundary value problems (BVP) associated with the asymptotic analysis of failure

of thin plates. Before proceeding any further, it is imperative to list down all the

assumptions of the formulation as follows.

1. The macrostructure involved in the problem is a thin plate. The constitu-

tive relations for thin plates are discussed in Sec. 1.2.

2. The thin plate has periodic microstructure along the in-plane plate dimen-

sions, i.e. the plate microstructure is composed of the periodic arrangement

of a microscopic structural unit, termed as representative volume element

(RVE).

3. The ratio of the planar dimension and thickness of RVE with respect to

the deformation wavelength at macroscopic scale is defined by two scaling

parameters ζ and ε such that 0 < ζ, ε � 1. In the present problem, it

is further assumed that the thickness and planar dimension of RVE are of

same order, i.e ε = O(ζ). Therefore, in the proposed asymptotic analysis

hereunder, when ε→ 0, ζ → 0, which means that the asymptotic expansion

of the response fields for macroscopic problem can be expressed with the

help of only one of the two scaling parameters.
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4. The microscopic constituents of the microstructure are perfectly bonded

together through interfaces.

5. The response fields are oscillatory in nature due to the presence of het-

erogeneities (as explained previous chapter). The heterogeneity in the

microconstituents properties leads to an oscillatory response, characterized

by the presence of three length scales: macroscopic scale, x := {x, x3},

where x = {x1, x2}, associated with the overall dimensions of the mi-

crostructure and two microscopic scales associated with the rescaled unit

cell denoted by y = {y1, y2}, where y = x/ζ, and z = x3/ε, associated with

in-plane heteroginity and thickness, respectively. This oscillatory response

can be represented using a two-scale decomposition of the coordinate vec-

tor:

f ζε (x) = f (x,y(x)) (2.1)

where, f denotes macroscopic response fields.

6. All the response fields are assumed to be periodic in microscopic planar

directions, i.e. if f (x, y, z) is any response field, ŷ is the period of mi-

crostructure and k is a diagonal matrix with constant integer components

then,

f (x, y, z) = f (x, y + kŷ, z) (2.2)

12



7. Due to involvement of multiple spatial scales, the partial derivative of a

response is given by the following chain rule formula:

f ζε
,i = δiα

(
f,xα +

1

ζ
f,yα

)
+ δi3

1

ε
f,z (2.3)

in which, a comma followed by an index denotes derivative with respect

to the components of the position vector; a comma followed by a subscript

variable xα or yi denotes a partial derivative with respect to the components

of the macroscopic and microscopic position vectors, respectively; and δij

is the Kronecker delta.

8. The term u(i,xj) for any response field is defined as following

u(i,xj) =
∂ui

∂xj

+
∂uj

∂xi

(2.4)

9. The response fields superscripted by scaling parameter (ζ or ε ) indicate

that the macroscopic response field depends upon microstructural inhomo-

geneities.

10. Lζ
ijkl, the tensor of elastic moduli, obeys the conditions of symmetry

Lζ
ijkl = Lζ

jikl = Lζ
ijlk = Lζ

klij (2.5)

and positivity

∃C0 > 0; Lζ
ijklξijξkl ≥ C0ξijξkl ∀ξij = ξji (2.6)

11. Throughout the manuscript, the greek subscripits have values of 1 and 2,

whereas roman subscripits have values of 1, 2 and 3.

13



2.2 Definition of Problem

The problem definition starts with the fixing the domain of the thin plate macrostruc-

ture on macroscopic scale and that of the associated RVE on microscopic scale.

Domain of Heterogeneous Body

The domain of the heterogeneous body is defined as follows (Refer to Fig. 2.1):

B :=
{
x |x = (x, x3), x = {x1, x2} ∈ Ω, cζ− (x) ≤ x3 ≤ cζ+ (x)

}
(2.7)

in which, Ω ∈ R2 is the reference surface parameterized by the Cartesian coordinate

vector, x; x3-axis denotes thickness direction; x = {x1, x2, x3}; cζ± define the top (+)

and bottom (−) boundaries of the body. Superscript ζ indicates dependence of the

corresponding field on the planar heterogeneity.

Domain of RVE

The RVE, Y , is defined in terms of the microscopic coordinates:

Y :=
{
y |y = (y, z), y = {y1, y2} ∈ Y, c− (y) ≤ z ≤ c+ (y)

}
(2.8)

in which Y ∈ R2 is the reference surface in the RVE.

The boundaries of the RVE are defined as:

ΓY± =
{
y | y ∈ Y, z = c±(y)

}
(2.9a)

ΓYper =
{
y | y ∈ ∂Y, c−(y) < z < c+(y)

}
(2.9b)

14



The boundary functions, c± are scaled with respect to the corresponding functions in

the original single scale coordinate system: cζ± (x) = εc± (y).

  

Representative volume   Periodic heterogeneous body: B  Macrostructure 
element: Y

0 (Boundary)

x1

x3

x2 + (Top surface)

 (Bottom surface)z

y2

 

y1

 (Reference
      plane)

Figure 2.1. Macro- and microscopic structures.

2.3 Boundary Value Problem for Thin Composite Plates Failure Analysis

The following set of equations describes the boundary value problem associated

with the failure of the heterogeneous body, where x ∈ B and t ∈ [0, t0].

Equilibrium Equation

σζ
ij,j (x, t) + bζi (x, t) = ρζ (x) üζ

i (x, t) (2.10)

Constitutive Equations

σζ
ij (x, t) = Lζ

ijkl (x)
[
εζkl (x, t)− µζ

kl (x, t)
]

(2.11)

µζ
ij (x, t) = ωζ (x, t) εζij (x, t) (2.12)
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Kinematic Equations

εζij (x, t) =
1

2
uζ

(i,xj)
(x, t) ≡ 1

2

(
∂uζ

i

∂xj

+
∂uζ

j

∂xi

)
(2.13)

ωζ (x, t) = ωζ
(
σζ

ij, ε
ζ
ij, s

ζ
)

(2.14)

where, uζ
i denotes the components of the displacement vector; σζ

ij the Cauchy stress;

εζij and µζ
ij the total strain and inelastic strain tensors, respectively; ωζ ∈ [0, 1] is

the scalar damage variable, with ωζ = 0 corresponding to the state of no damage,

and ωζ = 1 denoting a complete loss of load carrying capacity; bζi the body force;

ρζ (x, t) the density, and; t the temporal coordinate. Superposed single and double

dot correspond to temporal derivatives of order one and two, respectively.

Boundary Conditions

The boundary of the structure is defined by Γ = Γ± ∪ Γ0, as illustrated in

Fig. 2.1.

Γ± =
{
x |x ∈ Ω, x3 = cζ±(x)

}
(2.15)

Γ0 =
{
x |x ∈ ∂Ω, cζ−(x) < x3 < cζ+(x)

}
(2.16)

The plate is assumed to be clamped along its side edge which leads to ho-

mogeneous displacement conditions on Γ0, whereas traction boundary conditions are

assumed on Γ±:

uζ
i (x, t) = 0 ; x ∈ Γ0; t ∈ [0, to] (2.17)

σζ
ij (x, t)nj = τ̄±i (x, t) ; x ∈ Γ±; t ∈ [0, to] (2.18)
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Initial Conditions

The initial conditions are assumed to be a function of the macroscopic coordinates

only. The initial conditions are given as following:

uζ
i (x, t) = ûi (x) ; u̇ζ

i (x, t) = v̂i (x) ; x ∈ B; t = 0 (2.19)

2.4 Homogenization of Thin Plates

Mathematical homogenization is a powerful analytical tool for the solution

of problems in the mechanics of continuous media which are described by partial

differential equation with rapidly oscillating coefficients. Homogenization with respect

to local variables is employed to get the equation that describes the global behavior

of the medium in terms of the slowly varying global variables / coefficients [6]. In the

case of dynamic problem, time is an added variable both in local and global problems.

Essentially, mathematical homogenization bridges the local solution with the global

solution.

In the present approach, we start with the asymptotic expansion of the macro-

scopic displacements in the form suggested in [7] and [8]. Ref. [7] presents a detailed

mathematical treatment of this type of displacement form for thin plates. Further,

the concept of eigendeformation, suggested in [29] is employed in order to account for

the inelastic fields appearing in the macroscopic system.

The asymptotic form for the generalized displacement fields for thin plates is

given by the following equation.

uζ
i (x, t) = δi3w(x, t) + ζu1

i (x,y, t) + ζ2u2
i (x,y, t) + ... (2.20)
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where, w is out of plane displacement and u1, u2, ... demote higher order components

of the total displacement. Using the kinematic relations given above as Eq. 2.13,

the corresponding elastic strain fields can be given as:

εζij(x, t) =
∞∑

η=0

ζηεηij(x,y, t) (2.21)

where,

ε0αβ(x,y, t) =u1

(α,yβ)
; ε0α3(x,y, t) =

1

2
w,xα + u1

(3,yα); ε033(x,y, t) = u1
3,z

εηαβ(x,y, t) =uη
(α,xβ) + uη+1

(α,yβ); εη3α(x,y, t) =
1

2
uη

3,xα
+ uη+1

(3,yα); ε133(x,y, t) = uη+1
3,z

η = 1, 2, . . .

Due to asymptotic nature of strain fields, the associated stress field is also expressed

in the asymptotic form, as given below.

σζ
ij(x, t) =

∞∑
η=0

ζηση
ij(x,y, t) (2.23)

where,

ση
ij(x,y, t) = Lijkl (y) [εηkl(x,y, t)− µη

kl(x,y, t)] (2.24)

µη
kl = ω(x,y, t)εηij(x,y, t) (2.25)

Finally, we need to rescale the load from macroscopic scale to microscopic

scale. The scaling of the load has to be chosen in such a way that the flexural

displacement of thin plates remain bounded as ζ → 0 during the homogenization

process. The following set of equations represent the load rescaling used in this
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research, as suggested in [12].

bζα (x, t) = ζbα (x,y, t) ; bζ3 (x, t) = ζ2b3 (x,y, t) (2.26a)

τ̄±α (x, t) = ζ2p̄±α (x, t) ; τ̄±3 (x, t) = ζ3q̄±(x, t) (2.26b)

ρζ (x) = ρ (y) (2.26c)

The expressions for the corresponding stress and strain variables are plugged

into Eq. 2.10. Next, the terms with the same power of ζ as coefficients are collected

on both sides and equated. This yields individual equilibrium equations corresponding

to various powers of ζ.

O(ζ−1) : σ0
ij,yj

= 0 (2.27a)

O(1) : σ0
iα,xα

+ σ1
ij,yj

= 0 (2.27b)

O(ζ) : σ1
iα,xα

+ σ2
ij,yj

+ δiαbα = δiαρü
1
α (2.27c)

O(ζ2) : σ2
iα,xα

+ σ3
ij,yj

+ δi3b3 = δiαρü
2
α + δ3iρẅ (2.27d)

O(ζη) : ση
iα,xα

+ ση+1
ij,yj

= δiαρü
η
α + δ3iρü

η−2
3 , η = 3, 4, . . . (2.27e)

Now, after substituting displacement and stress decompositions (Eqs. 2.4 and 2.23)

into Eqs. 2.17 and 2.18, and using Eq. 2.26b, the boundary conditions of various orders

are obtained as below.

O(1) : σ0
ij(x,y, t)nj = 0, x ∈ Γ±; w(x, t) = 0, x ∈ Γ0 (2.28a)

O(ζ) : σ1
ij(x,y, t)nj = 0, x ∈ Γ±; u1

i (x,y, t) = 0, x ∈ Γ0 (2.28b)
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O(ζ2) : σ2
ij(x,y, t)nj = δiατ̄

±
α (x), x ∈ Γ±; u2

i (x,y, t) = 0, x ∈ Γ0(2.28c)

O(ζ3) : σ3
ij(x,y, t)nj = δi3τ̄

±
3 (x), x ∈ Γ±; u3

i (x,y, t) = 0, x ∈ Γ0(2.28d)

O(ζη) : ση
ij(x,y, t)nj = 0, x ∈ Γ±; uη

i (x,y, t) = 0, x ∈ Γ0(2.28e)

η = 4, 5, . . .

2.5 First Order Microscale Problem

In order to develop microscopic problems of various order, the equilibrium

equations presented in Sec. 2.4 are considered one by one, along with the corre-

sponding boundary conditions. The first order microscopic problem is developed by

considering O(ζ−1) (Eq. 2.27a) equilibrium equation and O(1) (Eq. 2.28a) boundary

condition. Substituting kinematic relations (Eq. 2.13) yields the final expression for

the first order microscopic problem (RVE1), as described below.

The First Order RVE problem (RVE1)

Given : material properties, Lijkl(y), macroscopic strains, w,xα , and the inelastic

strain field, µ0
kl

Find : For a fixed x̄ ∈ Ω and t̄ ∈ [0, t0], the microscopic deformations, u1
i (x̄,y, t̄) ∈

Ȳ → R which satisfy

Equilibrium : Equilibrium condition is given below:

•
{
Lijkl (y)u1

(k,yl)
(x̄,y, t̄) + Lijα3 (y)w,xα(x̄, t̄)− Lijkl (y)µ0

kl(x̄,y, t̄)
}

,yj

= 0

Boundary Conditions: The boundary conditions are such that:

• u1
(i,yj)

periodic on y ∈ ΓY0

•
{
Lijklu

1
(k,yl)

+ Lijα3w,xα − Lijklµ
0
kl

}
nj = 0 on y ∈ ΓY±
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The microscopic problem RVE1 can be solved with the help of the concept of

transformation field analysis (Sec. 1.5) and eigendeformation for a given macroscopic

state of the system. As the above displacement expression is valid for arbitrary

damage state, therefore for a frozen system, i.e. at fixed time and fixed macroscopic

state, the problem RVE1 can be separated into two linear systems. First, It is

considered that the resulting system is damage free, i.e. µ0
kl = 0 → u1µ

i = 0, So that

only driving force left in the system is w,xα . The corresponding displacement field is

given by u1w
i (x, y, t). At this state, the microscopic problem RVE1 can be trivially

satisfied by the following displacement field.

u1
i = u1w

i (x,y, t) = ui(x, t)− ẑδiαw,xα(x, t) (2.29)

where, ẑ = z − 〈z〉, and; 〈·〉 := 1/ |Y|
∫
Y ·dY denotes volume averaging on the RVE.

Next, consider that microscopic deformations vanish at arbitrary damage state

and the only driving force left in the system is µ0
kl. The displacement field in this

case is denoted by u1µ
i . The resulting system of partial differential equations (PDE)

can be solved using Green’s function. The Green’s function represents the solution

of the PDE, when the original force function is replaced by Dirac’s delta function

[33]. Following the terminology proposed in [27] and [28], the resulting problem with

dirac delta function is referred to as ”First order damage influence function problem

(DIF1)” (as given below) and the corresponding solution is termed as ”First order

damage influence function, Θ̃ikl”.

The First Order Damage Influence Function problem (DIF1).

Given : Material properties, Lijmn (y) and d is Dirac delta function.

Find : Θ̃ikl (y, ŷ) : Ȳ × Ȳ → R such that:
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Equilibrium : Equilibrium condition as given below:

•
{
Lijmn (y)

(
Θ̃(m,yn)kl (y, ŷ) + Imnkld (y − ŷ)

)}
,yj

= 0; y, ŷ ∈ Y

Boundary conditions: The boundary conditions are such that:

• Θ̃ikβ periodic on y ∈ ΓY0

• Lijmn (y)
(
Θ̃(m,yn)kl (y, ŷ) + Imnkld (y − ŷ)

)
nj = 0 on y ∈ ΓY±

The displacement field in this case, u1µ
i is obtained using the first order damage

influence function , Θ̃ikl, as follows.

u1
i = u1µ

i (x,y, t) =

∫
Y

Θ̃ikl(y, ŷ)µo
kl(x, ŷ, t)dŷ (2.30)

The final expression for the overall displacement field, u1
i , is given by joining

the above two displacement fields, u1w
i and u1µ

i as follows.

u1
i (x,y, t) = u1w

i (x,y, t) + u1µ
i (x,y, t) (2.31a)

u1
i (x,y, t) = ui(x, t)− ẑδiαw,xα(x, t) +

∫
Y

Θ̃ikl(y, ŷ)µo
kl(x, ŷ, t)dŷ (2.31b)

The overall eigenstrain, µ0
ij in this case is given as follows.

µ0
ij(x,y, t) = ω(x,y, t)

∫
Y

Θ̃(i,yj)kl(y, ŷ)µ0
kl(x, ŷ, t)dŷ (2.32)

The above is a homogeneous integral equation. For an arbitrary damage state,

ω, it can only be satisfied trivially [34], that is µ0
ij = 0 and the first order displacement

expression is given by Eq. ( 2.29).
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2.6 Second Order Microscopic Problem

The O (ζ) equilibrium equation along with the O (1) constitutive and kinematic

equations, and initial and boundary conditions form the second order microscale prob-

lem (RVE2) as summarized below.

The Second Order RVE problem (RVE2).

Given : Material properties, Lijkl (y), macroscopic strains, w,xαxβ
and ui,xα , and in-

elastic strain tensor, µkl

Find : For a fixed x̄ ∈ Ω and t̄ ∈ [0, t0], the microscopic displacements u2
i (x̄,y, t̄) ∈

Ȳ → R which satisfy

Equilibrium : Equilibrium condition as given below:

•
{
Lijkl (y)u2

(k,yl)
(x̄,y, t̄) + Lijα3 (y)u3,xα(x̄, t̄) + Lijαβ (y)

×
(
u(α,xβ)(x̄, t)− ẑw,xαxβ

(x̄, t)
)
− Lijkl (y)µkl(x̄,y, t̄)

}
,yj

= 0

Boundary Condition : The boundary conditions are such that:

• u2
(i,yj)

periodic on y ∈ ΓY0

•
{
Lijkl (y)u2

(k,yl)
(x̄,y, t̄) + Lijα3 (y)u3,xα(x̄, t̄) + Lijαβ (y)

×
(
u(α,xβ)(x̄, t)− ẑw,xαxβ

(x̄, t)
)
− Lijkl (y)µkl(x̄,y, t̄)

}
nj = 0

on y ∈ ΓY±

The second order microscale problem is evaluated analogous to the first or-

der problem using the eigendeformation concept. The forcing terms in RVE2 are

the macroscopic generalized strains, ui,xα and w,xα as well as the inelastic strains,

µij(x, ŷ, t). The microscopic displacement field is evaluated by considering the fol-

lowing decomposition:

u2
i = u2w

i + u2u
i (2.33)
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in which, u2w
i and u2u

i correspond to the displacement components due to the forcing

terms associated with the macroscopic displacements w and ui, respectively. First,

consider the case when w = 0. Employing the eigendeformation concept, the micro-

scopic displacement field is expressed in terms of the influence functions:

u2u
i (x,y, t) = Θiαβ (y)u(α,xβ)(x, t)− ẑδiαu3,xα(x, t)+

∫
Y

Θ̃ikl(y, ŷ)µ̄kl(x, ŷ, t)dŷ (2.34)

where, µ̄kl(x, ŷ, t) denotes the components of the inelastic strain field due to in-plane

deformations, and; Θikβ is the first order elastic influence function. Θikβ is the solu-

tion to the first order elastic influence function problem outlined below as EIF2.

The First Order Elastic Influence Function problem (EIF2).

Given : Material properties Lijkl (y).

Find : Θiαβ (y) : Ȳ → R such that:

Equilibrium : Equilibrium condition as given below:

•
{
LijmnΘ(m,yn)αβ (y) + Lijαβ (y)

}
,yj

= 0

Boundary Condition : The Boundary conditions are such that:

• Θiαβ periodic on y ∈ ΓY0

• Lijmn (y)
(
Θ(m,yn)αβ (y) + Imnαβ (y)

)
nj = 0 on y ∈ ΓY±

Considering the case when ui = 0 with nonzero w, the microscopic displace-

ment field is expressed in terms of the second order influence functions as

u2w
i (x,y, t) = Ξiαβ (y)w,xαxβ

(x, t) +

∫
Y

Ξ̃ikl(y, ŷ)µ̂kl(x, ŷ, t)dŷ (2.35)

where, µ̂ij denotes the components of the inelastic strain field due to the bending

deformation; Ξiαβ and Ξ̃ikl the second order elastic and damage influence functions,
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respectively. Ξiαβ and Ξ̃ikl are solutions to elastic and damage influence function

problems (EIF2) and (DIF2), respectively, as summarized below. Under general

loading conditions (nonzero ui and w with arbitrary damage state, ω), microscopic

displacement field, u2
i is given by Eq. 2.33 with the right hand side terms provided

by Eqs. 2.34 and 2.35.

The Second Order Elastic Influence Function problem (EIF2).

Given : Material properties Lijkl (y).

Find : Ξiαβ (y) : Ȳ → R such that:

Equilibrium : Equilibrium condition as given below:

•
{
LijmnΞ(m,yn)αβ (y)− ẑLijαβ (y)

}
,yj

= 0

Boundary Condition : The boundary conditions are such that:

• Ξiαβ periodic on y ∈ ΓY0

• Lijmn (y)
(
Ξ(m,yn)αβ (y)− ẑImnαβ (y)

)
nj = 0 on y ∈ ΓY±

The Second Order Damage Influence Function problem (DIF2).

Given : Material properties, Lijmn (y) and d is Dirac delta function.

Find : Ξ̃ikl (y, ŷ) : Ȳ × Ȳ → R such that:

Equilibrium : Equilibrium condition as given below:

•
{
Lijmn (y)

(
Ξ̃(m,yn)kl (y, ŷ)− ẑImnkld (y − ŷ)

)}
,yj

= 0; y, ŷ ∈ Y

Boundary Condition : The boundary conditions are such that:

• Ξ̃ikβ periodic on y ∈ ΓY0

• Lijmn (y)
(
Ξ̃(m,yn)kl (y, ŷ)− ẑImnkld (y − ŷ)

)
nj = 0 on y ∈ ΓY±
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2.7 Development of Macroscopic Constitutive Relations

Solution of microscopic elastic and in-elastic influence function problem (EIF 1,

EIF 2, DIF 1 and DIF 2) completes the computation for u1 (x,y, t) and u2 (x,y, t).

Then, using kinematic Eq. 2.22a, stress field σ1
ij is given as following.

σ1
ij (x,y, t) = Lijklε

1
kl (x,y, t) (2.36)

σ1
(ij) (x,y, t) = Lijαβε

1
(αβ) (x,y, t) + 2Lij3βε

1
(3β) (x,y, t)

+Lij33ε
1
(33) (x,y, t)

(2.37)

where,

ε1αβ (x,y, t) = u1
(α,xβ) (x,y, t) + u2

(α,yβ) (x,y, t) (2.38a)

ε13β (x,y, t) =
1

2
u1

3,xβ
(x,y, t) + u2

(3,yβ) (x,y, t) (2.38b)

ε1(33) (x,y, t) = u2
(3,y3) (x,y, t) (2.38c)

and,

u1
(α,xβ) (x,y, t) = u(α,xβ) (x, t)− ẑw,xαxβ

(x, t) (2.39a)

u1
3,xi

(x, t) = u3,xi
(x, t) (2.39b)

u2
(i,yj)λδ (x,y, t) = Θ(i,yj)λδ (x,y, t)uλ,xδ

(x, t) Ξ(i,yj)λδ (x,y, t)w,xλxδ
(x, t)(2.39c)
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After plugging the above mentioned strain expression in Eq. 2.23 and rear-

ranging, stress field σ1
ij, is given as following.

σ1
ij (x,y, t) = Lijkl (y)Aklαβ (y)uα,xβ

(x, t)− Lijkl (y)Eklαβ (y)ω,xαxβ
(x, t)

+Lijkl (y)

∫
Y
Ãklmn (y, ŷ) µ̄mn (x, ŷ, t) dŷ

+Lijkl (y)

∫
Y
Ẽklmn (y, ŷ) µ̂mn (x, ŷ, t) dŷ

(2.40)

where,

Aijαβ (y) = Iijαβ + Θ(i,yj)αβ (y) (2.41)

Eijαβ (y) = Iijαβ − ẑΞ(i,yj)αβ (y) (2.42)

Ãijkl (y, ŷ) = Θ̃(i,yj)kl (y, ŷ)− d (ŷ − y) Iijkl (2.43)

Ẽijkl (y, ŷ) = Ξ̃(i,yj)kl (y, ŷ)− d (ŷ − y) Iijkl (2.44)

It can be shown that for the given displacement field and stress field (Eq.

2.40), the transverse shear stress component vanishes [12], i.e.

〈σ1
3j (x,y, t)〉 = 0 (2.45)

Next, total force resultant Nαβ(x, t) and total moment resultant Mαβ (x, t)

are defined as follows.

Nαβ(x, t) = < σ1
αβ > (2.46)

Mαβ(x, t) = < ẑσ1
αβ > (2.47)
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Qα(x, t) = 〈σ2
3α〉 (2.48)

eαβ(x, t) = uα,xβ
(x, t) (2.49)

καβ(x, t) = −w,xαxβ
(x, t) (2.50)

In order to develop unit cell equilibrium equation for in-plane force resultant,

the O(ζ) equilibrium equation is integrated over the unit cell and both sides of the

equation are divided by the volume of the unit cell.

1

Y

∫
Y
[σ1

iα,xα
(x,y, t) + σ2

ij,yj
(x,y, t) + δiαbα (x,y, t)]dV =

1

Y

∫
Y
[δiαρü

1
α (x,y, t)]dV

(2.51)

Using the Gauss divergence theorem on the second term on left hand side and

definition of in-plane force resultant Nαβ, the following relationship is obtained.

Nαβ,xβ
(x, t)+

1

Y

∫
Y

σ2
ijnj (x,y, t) dY + 〈bα〉(x, t) = 〈ρ〉üα(x, t)−〈ρẑ〉ẅ,xα(x, t) (2.52)

Using O(ζ)2 unit cell boundary condition, the above Eq. 2.7 can be rewritten

as follows.

Nαβ,xβ
(x, t) + qα (x, t) = 〈ρ〉 üα (x, t)− 〈ρẑ〉 ẅ,xα (x, t) (2.53)

where, qα(x, t) denotes the traction acting at the top and bottom surfaces of the plate

as well as the body forces as given below.

qα (x, t) = 〈bα〉 (x, t) + 〈G+〉Y τ̄
+
α (x, t) + 〈G−〉Y τ̄

−
α (x, t) (2.54)
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and 〈·〉Y =
∫

Y
·dy, and G± (y)is the metric tensor which accounts for the arbitrary

shape of the RVE boundaries, defined below.

G± (y) =
√

(1 + c2±,y1
+ c2±,y2

) (2.55)

Next, again Eq. 2.7 is pre-multiplied with ẑ and averaged over the unit cell.

1

Y

∫
Y
ẑ[σ1

iα,xα
(x,y, t) + σ2

ij,yj
(x,y, t) + δiαbα (x,y, t)]dV =

1

Y

∫
Y
ẑ[δiαρü

1
α (x,y, t)]dV

(2.56)

Now, consider the second term on left hand side in the above equation.

∫
Y
ẑσ2

ij,yj
(x,y, t) dV =

∫
Y
[ẑσ2

ij (x,y, t)],yj
dV −

∫
Y
ẑ,yj

σ2
ij (x,y, t) dV

=

∫
Y

ẑσ2
ij (x,y, t)njdY −

∫
Y
ẑ,yj

σ2
ij (x,y, t) dV

(2.57)

Proceeding further as in previous case, the equilibrium equation for moment

resultant is received as follows.

Mαβ,xβ
(x, t)−Qα (x, t) + pα (x, t) = 〈ρẑ〉 üα (x, t)−

〈
ρẑ2
〉
ẅ,xα (x, t) (2.58)

where,

pα (x, t) = 〈ẑbα〉 (x, t) +
〈(
c+ − 〈z〉

)
G+

〉
Y
τ̄+
α (x, t) +

〈(
c− − 〈z〉

)
G−
〉

Y
τ̄−α (x, t)

(2.59)

Averaging the O (ζ2) momentum balance equation (Eq. 2.27d) over the RVE,

and using O (ζ3) boundary condition yields:

Qα,xα (x, t) +m (x, t) = 〈ρ〉 ẅ (x, t) (2.60)
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in which,

m (x, t) = 〈b3〉 (x, t) + 〈G+〉Y τ̄
+
3 (x, t) + 〈G−〉Y τ̄

−
3 (x, t) (2.61)

Following the definition of Nαβ, after some rearrangement, the constitutive

equation for Nαβ can be written in the following form.

Nαβ (x, t) =AYαβµηeµη (x, t) + EYαβµηκµη (x, t) +∫
Y
TYαβkl (ŷ) µ̄kl (x, ŷ, t) dŷ +

∫
Y
HY

αβkl (ŷ) µ̂kl (x, ŷ, t) dŷ
(2.62)

where,

AYijαβ = 〈Lijkl (y)Aklαβ (y)〉 (2.63)

EYijαβ = 〈Lijkl (y)Eklαβ (y)〉 (2.64)

TYαβkl =
〈
Lαβmn (y) Ãmnkl (y, ŷ)

〉
(2.65)

HY
αβkl =

〈
Lαβmn (y) Ẽmnkl (y, ŷ)

〉
(2.66)

Similarly, moment resultant Mαβ(x, t) can abe written as following.

Mαβ (x, t) = FYαβµηeµη (x, t) +DYαβµηκµη (x, t)

+

∫
Y
GYαβkl (ŷ) µ̄kl (x, ŷ, t) dŷ +

∫
Y
CYαβkl (ŷ) µ̂kl (x, ŷ, t) dŷ

(2.67)
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where,

FYαβµη = 〈ẑLαβγξ (y)Aγξµη (y)〉 (2.68)

DYαβµη = 〈ẑLαβγξ (y)Eγξµη (y)〉 (2.69)

GYαβkl (ŷ) =
〈
ẑLαβij (y) Ãijkl (y, ŷ)

〉
(2.70)

CYαβkl (ŷ) =
〈
ẑLαβij (y) Ẽijkl (y, ŷ)

〉
(2.71)

2.8 Boundary Conditions

To complete the formulation of the macroscopic problem, it remains to define

the boundary conditions along Γ0, which are assumed to be of the following form:

uζ
i (x, t) = rζ (x, t) ; on Γr

0 (2.72)

σζ
ij (x, t)nj = τ ζ

i (x, t) ; on Γτ
0 (2.73)

where, boundary partitions satisfy: Γ0 = Γr
0∪Γτ

0, Γr
0∩Γτ

0 = ∅. Along the displacement

boundaries, Γr
0, the displacement data of the following form is admitted

rζ (x, t) = δi3W (x, t) + ζδiα [rα (x, t)− ẑθα (x, t)] (2.74)

Matching the displacement terms of zeroth and first orders along the boundary

gives

O(1) : w (x, t) = W (x, t) (2.75)

O(ζ) : uα − ẑw,xα = rα (x, t)− ẑθα (x, t) (2.76)
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Averaging Eq. 2.76 over the RVE boundary gives the remaining displacement

and rotation boundary conditions

uα = rα; w,xα = θα; on Γr
0 (2.77)

Along the traction boundaries, Γτ
0, the traction data is assumed to satisfy the

following scaling relations with respect to ζ

τ ζ
i = ζδiατα (x, t) + ζ2δi3τ3 (x, t) (2.78)

The traction boundaries are satisfied approximately in the integral form. The

equivalence relation between the average and exact boundary conditions may be

shown based on the Saint Venant principle [2]. The moment, force and shear re-

sultant boundary conditions are given as:

Nαβnβ = τα; Mαβnβ = 〈ẑ〉 τα; Qαnα = τ3 (2.79)

Boundary data is taken to satisfy the free-edge condition [3].
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CHAPTER III

FORMULATION OF REDUCED ORDER THIN PLATE PROBLEM

3.1 Reduced Order Model of Damage Variable and Inelastic Strains

In order to reduce the computational cost of direct homogenization, the con-

stitutive relations developed in Sec. 2.7 are homogenized over reduced order model.

This type of decomposition of the RVE is also consistent with TFA implementation

for eigenstrains (See Sec. 1.5). This is introduced using separation of variables for

damage induced total inelastic strain and damage variable as following [29].

ωph (x,y, t) =
∑

γ

N
(γ)
ph (y)ω

(γ)
ph (x, t) (3.1)

µij (x,y, t) =
∑

γ

N
(γ)
ph (y)µ

(γ)
ij (x, t) (3.2)

The phase shape function, N
(γ)
ph (y) are assumed to be C−1 continuous in RVE

in order to match the continuity of the displacement derivatives. In addition, the

assumed shape function N
(γ)
ph (y) needs to satisfy the partition of unity property, i.e.

∑
γ

N
(γ)
ph (y) = 1 (3.3)

The weighted average of the various fields are defined as follows.

ω
(γ)
ph (x, t) =

∫
V

ψ
(γ)
ph (y)ωph (x,y, t) dy (3.4)

µ
(γ)
ph (x, t) =

∫
V

ψ
(γ)
ph (y)µph (x,y, t) dy (3.5)
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where, the phase weight function ψ
(γ)
ph satisfy positivity and normality conditions, as

shown below.

ψ
(γ)
ph (y) ≥ 0 (3.6)∫

V

ψ
(γ)
ph (y)dy = 1 (3.7)

Therefore, for arbitrary state of damage, the phase shape function and weight

functions are orthonormal to each other, i.e.

∫
V

ψ
(γ)
ph (y)N

(η)
ph (y)dy = δγη (3.8)

where, δγη is the Kronecker delta.

Consider a two scale heterogeneous material composed of nph constituent

phases. The RVE microstructure is further subdivided into n subdomains denoted

by V η, η = 1, 2, 3, ...., n. The RVE is partitioned in such a way that each subdomain

belongs to a single phase, i.e. if M denotes the matrix and F denotes the fiber, then

V(η)

⋂
V(M) ≡ V (η) or V(η)

⋂
V(F ) ≡ V (η), V ≡

⋃n
η=1 V

(η) and V (η)
⋃
V (υ) ≡ 0 for

η 6= υ. The assumed shape and weight functions (N
(γ)
ph and ψ

(γ)
ph , respectively) are

selected to be piecewise constant in V with nonzero values within their corresponding

partitions, V (γ), only

N
(γ)
ph (y) =

 1, ify ∈ V (η)

0, elsewhere
(3.9)

ψ
(γ)
ph (y) =

1

V (η)
N

(γ)
ph (y) (3.10)
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where, |V (η)| is the volume of partition V (η). This definition of the subdomains divided

RVE volume V into noncontiguous subdomains.

The phase averages of damage variable and eigenstrains, due to in-plane de-

formation µ̄ij and bending deformation µ̂ij, for reduced order homogenization are

introduced as follows.
µ̄ij

µ̂ij

ω

 (x,y, t) =
n∑

I=1


N̄ (I)(y)µ̄

(I)
ij (x, t)

N̂ (I)(y)µ̂
(I)
ij (x, t)

ϑ(I)(y)ω(I)(x, t)

 (3.11)

where, N̄ (I), N̂ (I) and ϑ(I) are shape functions, and; µ̄
(I)
ij , µ̂

(I)
ij and ω(I)(x, t) are the

weight averaged planar deformation, bending induced inelastic strain and damage

fields, respectively:


µ̄

(I)
ij

µ̂
(I)
ij

ω(I)

 (x, t) =

∫
Y


ψ̄(I)(y)µ̄ij(x,y, t)

ψ̂(I)(y)µ̂ij(x,y, t)

η(I)(y)ω(x,y, t)

 dy (3.12)

where, ψ̄(I), ψ̂(I) and η(I) are microscopically nonlocal weight functions. The shape

functions are taken to satisfy partition of unity property, while the weight are positive,

normalized and orthonormal with respect to shape functions as described previously.

This discretization of macroscopic and microscopic inelastic strains results in reduc-

tion in number of kinematic equations for the system which in turn further improves

the computation efficiency of the model. However, this discretization is not a required

condition for solution.
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Now, consider in-elastic strain developed due to in-plane deformation.

µ̄ij (x,y, t) = ω (x,y, t) ε1ij (x,y, t) (3.13)

Expanding this with the help of Eqs. 2.22a and 2.6, one gets

µ̄ij (x,y, t) = ω (x,y, t) [δiαδjβeαβ (x, t) +
1

2
{δi3δjα + δiαδj3}u3,xα (x, t)

+Θ(i,yj)αβ(y, t)eαβ(x, t) +

∫
Y

Θ̃(i,yj)kl(y, ŷ)µ̄ (x, ŷ, t) dŷ]− (ẑδiαu3,xα (x, t)),yj

(3.14)

Consider the fact that u3 is independent of microscopic scale and define the

following:

Define:

Aijαβ = Iijαβ + Θ(i,yj)αβ(y, t)

Plugging the Aijαβ and µ̄ (x, ŷ, t) from Eq. 3.11 in the last expression yields the

following.

µ̄ij (x,y, t) = ω (x,y, t) [Aijαβeαβ(x, t)

+
∑

J

∫
Y

Θ̃(i,yj)kl(y, ŷ)N̄
(J)(ŷ)µ̄(J) (x, t) dŷ]

(3.15)

or,

µ̄ij (x,y, t) =ω (x,y, t) [Aijαβeαβ(x, t)

+
∑

J

P
(J)
ijkl(y)µ̄(J) (x, t)]

(3.16)
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where,

Pijkl(y) =

∫
Y

Θ̃(i,yj)kl(y, ŷ)N̄
(J)(ŷ)dŷ

Now, the both sides of the last equation are multiplied by ψ̄(I)(y) and the

reduced order expression for damage variable is plugged in the last equation, then

the resulting equation is integrated over the unit cell, which yields the following

expressions.

∫
Y
µ̄ij (x,y, t) ψ̄(I)(y)dy =

∫
Y
ω (x, t)ϑ(I)(y)ψ̄(I)(y)Aijαβeαβ(x, t)dy

+
∑

J

∫
Y
ω (x, t)ϑ(I)(y)ψ̄(I)(y)P

(J)
ijkl(y)µ̄(J) (x, t) dy

(3.17)

or,

µ̄
(I)
ij (x, t) = ω(I)(x, t)

(
A

(I)
ijµηeµη(x, t) +

∑
J

P
(IJ)
ijkl µ̄

(J)
kl (x, t)

)
(3.18)

Similar treatment for in-elastic strains due to bending yields the following

expression for µ̂
(I)
ij (x, t).

µ̂
(I)
ij (x, t) = ω(I)(x, t)

(
E

(I)
ijµηκµη(x, t) +

∑
J

Q
(IJ)
ijkl µ̂

(J)
kl (x, t)

)
(3.19)

where,

P
(I)
ijkl (y) =

∫
Y
N̄ (I) (y) Θ̃(i,yj)kl (y) dy (3.20)
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Q
(I)
ijkl (y) =

∫
Y
N̂ (I) (y) Ξ̃(i,yj)kl (y) dy (3.21)

A
(I)
ijµη =

∫
Y
ψ̄(I)(y)ϑ(I)(y)Aijµη (y) dy (3.22)

E
(I)
ijµη =

∫
Y
ψ̂(I)(y)ϑ(I)(y)Eijµη (y) dyQ

(IJ)
αβµη =

∫
Y
ψ̂(I)(y)ϑ(I)(y)Q

(J)
αβµη (y) dy(3.23)

The damage induced inelastic strain tensors µ̄ij and µ̂ij account for the cou-

pling between the microscopic and macroscopic problems, where µ̄ij describes inelastic

strain due to in-plane deformation and µ̂ij is inelastic strain due to bending.

3.2 Reduced Order Model of Constitutive Equations

Next step involves the development of reduced order form of thin plate consti-

tutive Eqs. 2.7 and 2.67. First consider Eq. 2.7.

Nαβ (x, t) =AYαβµηeµη (x, t) + EYαβµηκµη (x, t) +∫
Y
TYαβkl (ŷ) µ̄kl (x, ŷ, t) dŷ +

∫
Y
HY

αβkl (ŷ) µ̂kl (x, ŷ, t) dŷ

where, expressions for TYijkl and HY
ijkl are given in Eq. 2.63.

Consider the third term of the right side of the above equation and plug in the

expressions for TYijkl from Eq. 2.63, where ˜Aijkl is given by Eq. 2.43.

∫
Y
TYαβkl (ŷ) µ̄(x, ŷ, t)dŷ =

∫
Y

〈
Lijmn (y) {Θ̃(i,yj)kl (y, ŷ)− d (ŷ − y) Iijkl}

〉
µ̄kl(x, ŷ, t)dŷ

(3.24)

Substituting the reduced order expression for µ̄(x, ŷ, t) in the above equation yields

the following.
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∫
Y
TYαβkl (ŷ) µ̄(x, ŷ, t)dŷ =

∑
I

∫
Y
{
〈
Lijmn (y) {Θ̃(i,yj)kl (y, ŷ)− d (ŷ − y) Iijkl}

〉
N (I)(ŷ)µ̄

(I)
kl (x, t)}dŷ

(3.25)

or,

∫
Y
TYαβkl (ŷ) µ̄(x, ŷ, t)dŷ =

∑
I

T
(I)
αβklµ̄

(I)
kl (x, t) (3.26)

where,

T
(I)
αβkl =

〈
Lαβij(y)

[
P

(I)
ijkl(y)− IijklN̄

(I)(y)
]〉

(3.27)

where, P
(I)
ijkl(y) is given by Eq. 3.20.

Similar treatment is given to the fourth right hand side term of the Eq. 2.7, which

yields in-plane force resultant in terms of phase average fields as shown below.

Nαβ (x, t) = AYαβµηeµη (x, t) + EYαβµηκµη (x, t) +
n∑

I=1

(
T

(I)
αβklµ̄

(I)
kl (x, t) +H

(I)
αβklµ̂

(I)
kl (x, t)

)
(3.28)

where,

H
(I)
αβkl =

〈
Lαβij(y)

[
Q

(I)
ijkl(y)− IijklN̂

(I)(y)
]〉

(3.29)

where, Q
(I)
ijkl(y) is given by Eq. 3.21.

The reduced order expression for the moment resultant constitutive equation

(Eq 2.67) is also derived following similar steps as described above for Eq. 3.28. The
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expression for moment resultant in terms of phase average fields is given as follows.

Mαβ (x, t) = FYαβµηeµη (x, t)+DYαβµηκµη (x, t)+
n∑

I=1

(
G

(I)
αβklµ̄

(I)
kl (x, t) + C

(I)
αβklµ̂

(I)
kl (x, t)

)
(3.30)

where,

G
(I)
αβkl =

〈
ẑLαβij(y)

[
P

(I)
ijkl(y)− IijklN̄

(I)(y)
]〉

(3.31)

C
(I)
αβkl =

〈
ẑLαβij(y)

[
Q

(I)
ijkl(y)− IijklN̂

(I)(y)
]〉

(3.32)

3.3 Rate dependent damage evolution model

The inelastic processes within the microstructure is idealized using the damage

variables, ω(I). In this manuscript a rate-dependent model is used to characterize the

evolution of damage within the microstructure. A Perzyna-type viscoplastic regular-

ization of classical rate independent models [32] is employed to alleviate the mesh size

senstivity problem.

A potential damage function, f , is defined:

f
(
υ(I), r(I)

)
= φ

(
υ(I)
)
− φ

(
r(I)
)

6 0 (3.33)

in which, υ(I) (x, t) and r(I) (x, t) are phase damage equivalent strain and damage

hardening variable, respectively, and; φ is a monotonically increasing damage evolu-

tion function. The evolution equations for υ(I) and r(I) are given as

ω̇(I) = λ̇
∂φ

∂υ(I)
(3.34)

ṙ(I) = λ̇ (3.35)
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where the evolution is based on a power law expression of the form:

λ̇ =
1

q(I)

〈
f
(
υ(I), r(I)

)〉p(I)

+
(3.36)

〈·〉+ = [‖·|+(·)]/2 denotes MacCauley brackets; p(I) and q(I) define the rate-dependent

response of damage evolution.

The phase damage equivalent strain is defined as

υ(I) =

√
1

2
(F(I)ε̂(I))

T
L̂(I) (F(I)ε̂(I)) (3.37)

in which, ±̂ε(η)
is the average principal strain tensor in Y(I); L̂(I) is the tensor of elastic

moduli rotated onto the principal strain directions, and; F(I) (x, t) is the weighting

matrix. The weighting matrix accounts for the anisotropic damage accumulation in

tensile and compressive directions:

F(η) =


h

(I)
1 0 0

0 h
(I)
2 0

0 0 h
(I)
3

 (3.38)

h
(I)
ξ =

1

2
+

1

π

(
c
(I)
1

(
ε̂
(I)
ξ − c

(I)
2

))
(3.39)

where, material parameters, c
(I)
1 and c

(I)
2 , control damage accumulation in tensile and

compressive loading. A power law based damage evolution function is considered:

φ(I) = a(I)
〈
υ(I) − υ

(I)
0

〉b(I)

M
; φ(I) ≤ 1 (3.40)
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in which, a(I) and b(I) are material parameters. The analytical form of φ(r(I)) is

obtained by replacing υ(I) by r(I) in Eq. 3.33.
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CHAPTER IV

RESULTS AND MODEL VERIFICATION

4.1 Numerical Implementation

The proposed multiscale model is implemented and incorporated into a com-

mercial finite element analysis program (Abaqus). The implementation of proposed

methodology in Abaqus is a two stage process as illustrated in Fig. 4.1. The first

stage consists of the evaluation of first and second order RVE problems, summarized

in chapter 2, and computation of coefficient tensors. The preprocessing stage is im-

plemented via in-house code. The two linear elastic RVE problems are eveluated

using the finite element method. The model order, n, is taken to be a user defined

input variable which leads to a static partitioning strategy in which coefficient tensors

remain constant throughout the macroscale analysis [35].

Classical rate independent damage models are well known to exhibit spurious

mesh sensitivity in h-version when loading extends to the softening regime. This

phenomenon is characterized by the localization of strains to within the size of a fi-

nite element. Multiscale failure models based on damage mechanics may show mesh

sensitivity in all associated scales. The proposed multiscale model is microscopically

nonlocal through the integral type nonlocal formulation presented in Sec. 3.2. In

the macroscopic scales, mesh sensitivity is alleviated by considering the viscous reg-

ularization of the damage model [30], [31]. The commercial finite element software

(Abaqus) is employed to evaluate the macroscopic boundary value problem. A user-

defined generalized shell section behavior subroutine (UGENS) is implemented and
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incorporated into Abaqus to update force and moments resultants. The UGENS

subroutine consists of computation of force ( N ) and moment ( M) resultant at cur-

rent time step given the generalized macroscale strain tensors (e, κ) and the damage

state variable, ω(I) at the previous time step and the generalized strain increments.

Numerical details of the update procedure to evaluate the constitutive response in

UGENS is lengthy yet straight forward. A formulation of constitutive update based

on reduced order damage models are provided in [29]. The Abaqus general purpose

elements, S4R, are employed in thin plate simulations.

Figure 4.1. Flow Chart for Implementation of the Proposed Methodology in the
Commercial Finite Element Code (Abaqus)

The capabilities of the proposed multiscale plate model is assessed by consid-

ering three test cases [35]: (a) 3-point bending; (b) uniaxial tension, and; (c) impact

of rigid projectile on a woven composite plate. The model simulations are compared

to direct 3-D (reference) finite element models in which the microstructure is resolved

throughout the macro-structure.
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4.2 Three Point Plate Bending Test

Consider a three-point bending of a simply supported composite plate as shown

in Fig. 4.2. The dimensions of the rectangular plate are W/L = 3/40 and t/L = 1/80,

in which t, W and L are the thickness, width and length of the plate, respectively.

The small scaling parameter ζ can be calculated as the ratio between the thickness

(or in-plane periodicity dimension) and the span length between the supports (ε =

ζ = 1/40). A static vertical load is applied at the center of the plate quasi-statically

until failure.

The microstructure consists of a matrix material reinforced with stiff unidi-

rectional fibers oriented in the global z-direction as illustrated in Fig 4.2. The fiber

fraction is 19% by volume. The stiffness contrast between the matrix and reinforce-

ment phases is chosen to be EM/EF = 0.3, where, EM and EF are the Young’s

Moduli of matrix and fiber, respectively. Poisson’s ratio of both the materials are

assumed to be identical (νF = νM). Damage evolution parameters are chosen to

assure a linear dependence between the damage equivalent strain and evolution law

(i.e., in Eq. 3.40, b(I) = 1). Damage is allowed to accumulate in tension only and no

significant damage accumulation occurs under compressive loads. The fiber phase is

assumed to be damage-free for the considered load amplitudes, and damage is allowed

to accumulate in the matrix phase only.

A suite of multiscale model simulations are conducted to verify the proposed

approach. three-, five-, thirteen- and twenty five- partition models are compared with

3-D reference simulations. The microstructural partitions for the 4 multiscale models

are illustrated in Fig. 4.3. Simulations are conducted at 3-different load rates. An
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simple supports

quasi-static loading

unidirectional fiber 
  reinforced matrix
           RVE

Figure 4.2. Macro- and microscopic configurations of the 3-point bending plate
problem.

order of magnitude difference in the load rates are applied between the slow, inter-

mediate and fast simulations. Fig. 4.4 illustrates the normalized force-displacement

curves at the midspan of the plate. A reasonably good agreement is observed between

the proposed multiscale models and reference simulations. The modeling error for the

proposed models are tabulated in Table 1 for each multiscale model at each strain

rate. It can be observed that while higher partition schemes tend to achieve better

accuracy compared to lower partitions, a clear diminishing of error with increasing

number of partitions does not occur. This is due to the non-optimal selection of the

domains of each partition, which significantly affects the quality of the model.

Displacement profiles at failure illustrated in Fig. 4.5 also indicate similar

trends observed above. The maximum error is observed in the 3-partition model

simulations. Maximum normalized error occurs at the midspan of the plate (=6.5-

9%). Damage contours at each partition of the 5-partition model is compared to
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(a) (b) (c) (d)

Figure 4.3. Microstructural partitioning for (a) 3-partition, (b) 5-partition, (c) 13-
partition, and (d) 25-partition models. Each partition is identified using separate shades.
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Figure 4.4. Normalized force-displacement curves in 3-point bending simulations.
Multiscale simulation predictions compared to those of 3-D reference simulations.

Table 4.1. Errors in terms of failure displacement, failure force and L2 norm in
the force-displacement space.

2*Model % error in failure % error in failure 2% L2 error
displacement force

Slow Int. Fast Slow Int. Fast Slow Int. Fast
n = 3 2.8189 2.0079 5.4234 0.6942 2.8026 3.9114 0.0295 0.0878 0.1520
n = 5 2.1551 0.69527 0.32336 3.082 0.47734 0.0471 0.0642 0.0488 0.0457
n = 13 5.0153 2.8458 4.8786 5.7351 2.9361 2.4879 0.1095 0.0740 0.0622
n = 25 0.1385 1.2027 0.9786 2.7725 1.0971 0.9417 0.0921 0.0660 0.0540
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the three-dimensional reference simulations in Fig. 4.6. The maximum damage is

accumulated at the lowermost layer subjected to tensile loads. Upper layers are

subjected to neutral and compressive loads leading to minimal damage accumulation.

The 3-D reference analysis plots indicate that failure starts at the bottom of the plate,

which is subjected to higher tensile stresses.
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Figure 4.5. Comparison of displacements along the length of the plate, between
the proposed multiscale models and 3-D reference problem.

4.3 Uniaxial Tension Test

The nonlocal characteristics of the proposed multiscale model using a uniaxi-

ally loaded thin rectangular plate are being reported hereinunder. The dimensions of

the plate are W/L = 1/5 and t/L = 1/30. Two notches with half the thickness of the

plate is placed at opposite edges of the plate, 450 apart. Prescribed displacements

are applied along the in-plane dimension parallel to the long edge. The microstruc-

tural configuration and material properties are identical to the 3-point bending case

discussed in the Sec. 4.2.
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(Ave. Crit.: 75%)
SDV1

+2.119e-11
+7.273e-02
+1.455e-01
+2.182e-01
+2.909e-01
+3.636e-01
+4.364e-01
+5.091e-01
+5.818e-01
+6.545e-01
+7.273e-01
+8.000e-01
+9.900e-01

Figure 4.6. Damage profile for (a) 3-D reference simulation and, (b) 5-partition
model. Damage variables plotted correspond to damage in each matrix partition in the
5-partition model.

A series of numerical simulations are conducted on three different finite element

meshes with h/L ratios of 1/60, 1/120 and 1/240 as shown in Fig. 4.7. Two cases of

microstructural orientation is considered: fibers are placed parallel and perpendicular

to the stretch direction. Simulations are conducted using a 5-partition model (n = 5).

Fig. 4.8 illustrates the damage fields ahead of the notches for the intermediate and

fine meshes when the fibers are placed perpendicular to the loading direction. The

contours correspond to the damage state at 75% of the failure displacement. The

damage accumulation is observed to be along the direction of the elastic fibers. Fig.

4.9 illustrates the normalized force-displacement curves for coarse, intermediate and

fine meshes. The softening regime of the curves for both microstructural orientations

shows nearly identical response for all three meshes, clearly indicating the mesh inde-

pendent characteristic of the proposed multiscale model. In the case of fibers parallel

to the loading direction 166% and 140% increase have been observed in the failure

49



(a) (b) (c)

Figure 4.7. Finite element discretization of the macroscopic plates: (a) Coarse
mesh (h/L = 1/60), (b) intermediate mesh (h/L = 1/120), and (c) fine mesh (h/L = 1/240).

Damage

Figure 4.8. Damage contour plots for (a) fine mesh and, (b) intermediate mesh.
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Figure 4.9. Force-displacement curves (normalized) simulated using coarse, in-
termediate and fine meshes for cases where fibers are placed parallel and perpendicular to
the loading direction.

load and displacements, respectively.

4.4 High Velocity Impact Response of Woven Composite Plate

The capabilities of the proposed multiscale model is further verified by predict-

ing the impact response of a composite plate. A 5-layer E-glass/polyester plain weave

laminated composite system was experimentally investigated by Garcia-Castillo [36].

The microstructure of the composite laminated plate is illustrated in Fig. 4.10.

The composite specimens are 140 mm by 200 mm rectangular plates with 3.19 mm

thickness. The specimens were subjected to impact by steel projectiles with velocities

ranging between 140-525 m/s. The proposed multiscale model is employed to predict

the impact response of plates observed in the experiments. A 19-partition model is

used here. The plate consists of 5- plain weave plies with 0.276 mm thickness. A
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34.5 µm thick ply-interphase layer is assumed to exist between each ply. The weave

tows are in 0- and 90- directions. The fiber volume fractions are 9% in 0-direction

and 22% in the 90- direction with a total of 31%. The matrix, fiber tows in 0- and 90-

directions and interphase in each layer is represented by a single partition totaling 19

for 5 plies.

Figure 4.10. Microstructure of the 5-ply woven laminate system.

Failure in each partition is modeled using the rate-dependent damage model

described in Sec. 3.3. Material properties of fiber tows in 0- and 90- directions are

taken to be identical. The ply-interphase and matrix properties are also assumed to

be identical. The static response of the composite system when subjected to uniaxial

tension are used to calibrate a(I) and b(I) parameters for matrix and reinforcement

by minimizing the discrepancy between the reported experimental failure stress and

strain (3.6 % and 367 MPa). The SIMEX calibration model was used to conduct the

calibration. SIMEX is a generic optimization framework for multiscale model calibra-

tion. The details of the SIMEX architecture are presented in [37]. The stress-strain

curves based on uniaxial tension as well as damage evolution in each microconstituent
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are shown in Fig. 4.11 for loading in two orthogonal directions. The damage evolu-

tion parameter a(I) and b(I) were determined as 0.08 and 1.5 for fiber, and 0.92 and

2.5 for matrix materials, respectively.

The fibers in 0- and 90-, as well as the matrix and interphase materials are

assumed to have identical failure characteristics. A linear rate dependence is adopted

for all microconstituents (i.e., p(I) = 1). Damage is assumed to accumulate on the

onset of loading (υ
(I)
0 = 0). Ply-interphase failure between all plies are observed in

numerical simulations as indicated in Fig. 4.11, which is in agreement with the

experimentally observed response [36]. In Fig. 11a and 11b illustrates the fail-

ure modes modeled in the simulations: Failure of the interphase between laminates,

cracking within the matrix and and transverse directions. The effects of the fiber - ma-

trix interface cracking is implicitly taken into account through the microconstituents

cracking only. The failure of the interphase and the longitudinal fiber cracking (at 5%

strain) precedes the matrix cracking (at 7% strain). The damage in the transverse

fiber cracking remains low throughout the uniaxial loading. The exit velocities of the

projectile when the composite specimen is subjected to impact velocities above the

ballistic limit are predicted using the multiscale model. The experimentally provided

ballistic limit value of 211 m/s is employed to calibrate the rate dependent material

parameter of the microconstituent failure models (q(I) = 1.8e − 5). Fig. 4.12 shows

the exit velocity of the projectile as a function of the impact velocity. The simulated

response shows a nonlinear relationship in impact velocities close to the ballistic limit

followed by a linearizing trend - similar to the experimental observations. The dis-

crepancy between the experimental observations and the simulated exit velocities are

attributed to the limited data used in the calibration of the microconstituent material

parameters.
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Figure 4.11. Simulations conducted under uniaxial tension: (a) Stress-strain
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According to [38], during the high velocity ballistic penetration of fiber rein-

forced polymer matrix composite targets, the main energy absorption mechanisms

can be categorized as following.

• Cone formation and its growth at the back face of the target

• Failure of in-plane primary fibers

• Deformation of in-plane secondary fibers

• Delamination and matrix cracking

• Punching shear failure

• Friction between target and projectile during penetration

Within the deformation cone, fibers directly below the projectile are called as

primary fibers and remaining fibers in the deformation cone are termed as secondary

fibers. Primary fibers absorb energy by fiber breakage whereas energy in secondary

fibers in absorbed by deformation.

According to [38], [39], In case of thin woven laminates, for impacts with

projectile having speed below ballistic limit, the energy is mainly absorbed by delam-

ination and matrix cracking/crushing, whereas when projectile hits the target with

speed above ballistic limit, fiber failure and momentum transfer between the detached

laminate piece (plug) and projectile are main energy absorption mechanisms. When a

projectile with velocity slightly more than ballistic limit penetrates the target, break-

age of primary fibers takes place and causes perforation [39]. Sudden breakage of

primary fibers may create an impulsive action on projectile. In case of projectile with

velocity considerably higher than ballistic limit, the projectile is in contact with the

laminate for too little time for laminate to respond [39]. This might be the reason

for initial non-linearity in experimental impact velocity - exit velocity curve, which

is followed by a linear trend at velocities considerably higher than the ballistic limit.
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However, since the proposed formulation does not differentiate between various en-

ergy absorbing mechanisms at different stages, the entire simulated impact velocity -

exit velocity curve is linear.

Fig. 4.13 provides interphase damage regions for impact velocities of 211, 300,

400 and 500 m/s. The size of the interphase damage region is observed to have only

a slight variation with respect to the impact velocity, which is in agreement with the

experimental response.

Impact velocity: 211m/s

Impact velocity: 400m/s Impact velocity: 500m/s

(Ave. Crit.: 75%)
SDV133

+2.769e-05
+8.336e-02
+1.667e-01
+2.500e-01
+3.334e-01
+4.167e-01
+5.000e-01
+5.833e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00

(Ave. Crit.: 75%)
SDV133

+3.464e-05
+8.337e-02
+1.667e-01
+2.500e-01
+3.334e-01
+4.167e-01
+5.000e-01
+5.833e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00

(Ave. Crit.: 75%)
SDV133

+4.678e-05
+8.338e-02
+1.667e-01
+2.500e-01
+3.334e-01
+4.167e-01
+5.000e-01
+5.834e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00

(Ave. Crit.: 75%)
SDV133

+4.148e-05
+8.337e-02
+1.667e-01
+2.500e-01
+3.334e-01
+4.167e-01
+5.000e-01
+5.834e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00

Impact velocity: 300m/s

Figure 4.13. Interphase damage variation around the impact zone at impact ve-
locities (a) 211 m/s, (b) 300m/s, (c) 400 m/s (d) 500 m/s.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The proposed methodology successfully presents a multiscale framework for

static and dynamic in-elastic analysis of thin heterogeneous plates. Reduced order

homogenization makes it more computationally efficient in comparison with classical

homogenization techniques. With the availability of sufficient experimental test re-

sults for model parameter determination, the successful association of the proposed

methodology with the commercial finite element package, Abaqus, makes it directly

useful for industrial sector. The inelastic portion of total strain has been dealt with

the help of transformation field analysis which makes the entire non-linear problem

easier to manage during formulation.

The problem of mesh dependence of macroscopic finite element solution has

been successfully reduced with the help of viscous regularization, as shown in results

of uniaxial tension tests (Fig. 4.9). Results of three point bend test (Fig. 4.4 and

4.5) agree well with the reference three dimensional solution at various loading rates.

This exhibits the capabilities of the proposed methodology in successfully dealing

with rate dependent problems. Successful simulation of ballistic limit (Fig. 4.12)

and damage area (Fig. 4.13) in high velocity ballistic impact problem with respect

to available experimental results presented in [36], presents another possible area of

application of the proposed methodology.

The methodology presented in this manuscript deals only with small deforma-

tion thin plate problems. The extension of the proposed framework to accommodate

large deformations for thin plates needs to be investigated within the framework of
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eigendeformation and reduced order homogenization. Another area of improvement

could be the extension of proposed framework to include the deformation modes of

moderately thick and thick plates. The work presented here implements static parti-

tioning strategy for unit cell segmentation. Although, this partitioning strategy works

excellent here, other partitioning strategies, including dynamic strategies, proposed

in [35] needs to be investigated.
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