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CHAPTER I 

 

INTRODUCTION 

 

 For more than 70 years, essential fatty acid deficiency has been known to cause 

skin disease. In a pioneering paper published in 1929, Burr and Burr described that when 

rats were fed with a fat-free diet, “an abnormal, scaly condition of the skin is observed 

between the 70th and 90th day of life” (Burr and Burr, 1929). The typical lesions also 

include dryness, redness, weeping, and other manifestation of inflammation. One year 

later, both investigators showed that linoleic acid (LA, 18:2ω6) alone could reverse the 

symptoms resulting from the fat-free diet (Burr and Burr, 1930).  They named LA as an 

essential fatty acid (EFA). Although the underlying molecular and cellular mechanism in 

EFA deficiency skin is not well understood, evidence is accumulating to show that the 

rate of epidermal cell proliferation, transepidermal water loss in skin barrier, and some 

intracellular  metabolic activities are dramatically increased (Basnayake and Sinclair, 

1954; Lowe and DeQuoy, 1978; Robillard and Christon, 1993; Smit et al., 2004).  

 The effects of EFA deficiency on skin abnormalities that were observed in rats 

were also reported in humans. Babies fed with artificial milk formula deficient in EFAs 

developed skin lesions similar to those seen in rats (Hansen, A. E. et al., 1958). Some 

human skin disorders, such as psoriasis, ichthyosis and eczema, also show a somewhat 

similar phenotype. These diseases have a specific genetic or inflammatory origin. 

Whether EFA could influence their pathogenesis is still unclear. If the EFA abnormality 

 1



is causal, as that in EFA deficient rat skin, measures to correct it should lead to clinical 

improvement in the skin condition.   

Skin EFAs might play roles in the maintenance of the epidermal water barrier and 

the regulation of epidermal proliferation and differentiation. Some evidence suggests that 

LA is an important component of the epidermal water barrier (Wertz and Downing, 1983; 

Hansen, H. S. and Jensen, 1985; Melton et al., 1987). Except for this structural role, most 

functions of EFAs might be fulfilled by their pharmacologically active metabolites. The 

metabolism of EFAs in the epidermis is highly active. They are good substrates for 

epidermal enzymes such as cyclooxygenase (COX), lipoxygenase (LOX) and P450 

enzymes. Conversion by these enzymes generates specific molecules in cell signaling 

which are important for normal skin function.  

 

Essential fatty acids and their metabolites in skin 

While warm-blooded animals can synthesize saturated and monounsaturated fatty 

acids from acetyl co-enzyme A (and thus from non-lipid endogenous sources), they are 

unable to synthesize de novo either ω6 or ω3 polyunsaturated fatty acids (PUFAs). These 

fatty acids must be supplied in the diet and are termed essential fatty acids (EFAs).  

LA is the first identified EFA (Burr and Burr, 1930). It undergoes further chain 

elongation and desaturation to form arachidonic acid (AA, 20:4ω6) and other ω6 series of 

PUFAs. Another fundamental EFA is α-linolenic acid (ALA, 18:3ω3) which is the 

precursor of other ω3 series of fatty acids such as eicosapentaenoic acid (EPA, 20:5ω3) 

and docosahexaenoic acid (DHA, 22:6ω3) (Figure 1).  Although AA, EPA and DHA can 
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Figure 1. ω-6 and ω-3 series essential fatty acids. 
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be endogenously synthesized from LA and ALA, nutritional studies suggest they are also 

somewhat “essential” and their inclusion in the diet is also required (McCowen and 

Bistrian, 2005).  

Since the original studies by Burr and Burr, it has been well established that ω6 

series of fatty acids are important for normal skin function and their deficiency will cause 

skin disease. For the ω3 fatty acids, there is no evidence to suggest they are related to 

skin abnormalities (Ziboh and Chapkin, 1987). Here I will only discuss the ω6 series of 

EFAs and their metabolites in skin. 

As the most abundant PUFA in skin, LA is not only identified in the phospholipid 

of the cellular membrane, it is also a major component of the epidermal water barrier. 

This barrier is constituted by lipid bilayers or lamellae and resides in the lower part of the 

stratum corneum (the uppermost layer of the epidermis). The lipids in the epidermal 

water barrier contain large amounts of sphingolipids, including acylglucosylceramide and 

acylceramide, and up to 70% of which contains esterified LA (Wertz and Downing, 1983; 

Bowser et al., 1985). The principal pathway of LA metabolism in normal epidermis 

appears to be transfer from phospholipids to acylglucosylceramide and acylceramide 

(Wertz and Downing, 1990). 

The significance of LA-containing sphingolipids in skin permeability was also 

suggested in a recent Acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) knockout 

study (Stone et al., 2004). DGAT2 is the major enzyme in triglyceride synthesis. DGAT2 

knockout mice show impaired permeability barrier function in the skin and die soon after 

birth. Analysis of the skin lipid revealed that not only the triglyceride content, but also 

the LA-containing acylceramide was reduced (Stone et al., 2004).  
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Whether the reversal of the major cutaneous symptoms of EFA deficiency by LA 

is through the structural function of LA itself in the epidermal water barrier is still 

questionable. At least the metabolism of the linoleyl moiety of the barrier sphingolipids 

by a LOX-like reaction is required before the barrier function is exhibited (Nugteren et 

al., 1985). Although the lipoxygenation is not a major route in the metabolism of normal 

epidermal LA (Wertz and Downing, 1990), the biological function of such a reaction 

cannot be neglected. As mentioned later, a LOX reaction forms hydroperoxy fatty acids, 

which are reduced to hydroxy fatty acids. Human epidermis mainly metabolizes LA to 

form 13-hydroxyoctadecadienoic acid (13-HODE). Reversal of the EFA-deficiency by 

dietary LA resulted in tissue elevation of 13-HODE and 13-HODE-substituted 

diacylglycerol (Cho Y, 1995). The latter has a selective inhibitory effect on epidermal 

membrane protein kinase C (PKC) (Cho Y, 1996). This signaling was thought to be 

associated with attenuation of the EFA-deficient-induced hyperproliferation.  

Except for LA, feeding studies with different fatty acids suggest AA 

supplementation can also decrease the trans-epidermal water loss in EFA-deficient rats 

(Hansen, H. S. and Jensen, 1985). AA is the second most abundant PUFA in skin. The 

AA biosynthesis in most tissues includes the conversion of LA to γ-linolenic acid (GLA, 

18:3ω6) by Δ6-desaturase, chain elongation of GLA to dihomo-γ-linolenic acid (DGLA, 

20:3ω6) by elongase, and formation of AA from DGLA by Δ5-desaturase (Figure 1). The 

elongase activity is present in the epidermis while both desaturases are absent (Chapkin 

and Ziboh, 1984). Thus skin cannot convert LA to AA. AA in the epidermis is “essential” 

and must come from either dietary sources or other tissues such as the liver.  
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Although both LA and AA can reverse the phenotype caused by EFA-deficiency, 

their mechanism might be different since the abnormal epidermal permeability barrier 

function in EFA deficient rats can be corrected by topical administration of LA without 

prior systemic reversal of the deficiency state (i.e., without skin AA formation) (Elias et 

al., 1980). The functional role of AA depends largely on its transformation to biologically 

potent oxidative metabolites by COX, LOX and P450 enzymes. These hormone-like 

metabolites (eicosanoids) include leukotrienes, lipoxins, prostaglandins, thromboxanes, 

hydroxy fatty acids and other oxygenated 20-carbon fatty acid derivatives. They are 

potent short-lived modulators in inflammatory responses, vasodilation/constriction and 

chemotactic processes in the immune system. Their function in skin physiology has also 

been widely studied (Ziboh et al., 2002).  

AA is well known to be metabolized in epithelial cells via the COX pathway to 

produce prostaglandins (PGs), which have been shown to have proinflammatory 

properties (Vane et al., 1998). Several studies also suggest prostaglandin function in skin. 

For example, intradermal injections of prostaglandin D2 (PGD2) and E2 (PGE2) into 

human skin cause erythema (Flower et al., 1976). In the EFA deficient mice both PGE2 

and PGF2α levels in skin were much reduced (Lowe and DeQuoy, 1978). However, the 

COX pathway might not play a direct role in the epidermal permeability barrier since the 

rapid recovery of barrier function by LA occurs even with the inhibition of prostaglandin 

biosynthesis (Elias et al., 1980).  

In addition to the COX pathway, in skin it is particularly the LOX pathway that is 

of interest, and LOX products have been well investigated for their epidermal 

pathophysiological roles. Among them, leukotrienes (LTs) and 12-hydroxyeicosatetra-
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enoic acid (12-HETE) are mainly proinflammatory in the skin whereas 15-HETE has 

anti-inflammatory capacities. These effects will be discussed later. 12R-HETE should 

receive most attention because it is predominantly a product of skin/epidermal tissue and 

its concentration is unusually elevated in psoriatic lesions (Woollard, 1986). 

 

Mammalian lipoxygenases: nomenclature and classification 

As mentioned earlier, the LOX pathway is more important than the COX pathway 

in epidermal barrier function. LOX enzymes are a family of non-heme iron containing 

dioxygenases that catalyze the addition of molecular oxygen to polyunsaturated fatty 

acids with a cis,cis-1,4-pentadiene system to form specific unsaturated fatty acid 

hydroperoxide derivatives (Brash, 1999; Kuhn and Thiele, 1999) (Figure 2). They are 

found widely in plants, fungi, animals (Brash, 1999), and, very rarely, in bacteria (Porta 

and Rocha-Sosa, 2001).  

 

Figure 2. Reaction catalyzed by lipoxygenases. 
 

Identification of LOX activity in mammalian cells was first described in 1974 

(Hamberg and Samuelsson, 1974). Since the full sequence of human 5-LOX was 

published in 1988 (Dixon et al., 1988; Matsumoto et al., 1988), more than twenty 

mammalian LOX cDNAs have been cloned from various species (Figure 3). Their main 

reaction products are 5-, 8-, 12-, or 15-hydroperoxyeicosatetraenoic acids (HPETEs). 
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Figure 3. Mammalian lipoxygenase phylogenetic tree. Representative mammalian 
lipoxygenases were compiled into the phylogenetic tree using MegAlign (DNASTAR, 
Inc). Three branches of subfamilies were shown.  

Usually these mammalian LOX enzymes are named by the position of oxygen insertion 

into their most common substrate, arachidonic acid. Using this nomenclature, mammalian 

LOX enzymes are classified as 5-, 8-, 12-, and 15-LOX, respectively (Yamamoto, 1992; 

Funk, C. D., 1996). Some LOX enzymes within a species form the same product and they 

are currently distinguished by the nomenclature related to their original source of 

isolation, for example, platelet-type 12-LOX versus leukocyte-type 12-LOX. When 

necessary, the stereoconfiguration (R or S) of the HPETE products are also specified. 
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Except for the recently identified 12R-LOX (Boeglin et al., 1998), all mammalian LOX 

enzymes generate primary reaction products with S-chirality.  

Classifying the mammalian LOX enzymes into 5-, 8-, 12-, and 15-LOX based on 

the positional specificity of oxygenation is straightforward. But the situation is 

complicated by the fact that enzymes forming the same products are not necessarily 

similar proteins. For example there are three different mouse 12-LOX isoforms, 

epidermal-type 12-LOX, platelet-type 12-LOX, and leukocyte-type 12-LOX. The 

disparity among these 12-LOX isoforms (about 59% amino acid identity) is even greater 

than that between certain 12- and 15-LOX isoforms (e.g., leukocyte-type 12-LOX and 

reticulocyte 15-LOX, about 73% identity) (Kuhn and Thiele, 1999). On the other hand, a 

different product formation is not necessarily associated with a substantial difference in 

the LOX amino acid sequence. For example, human 15-LOX-1 has high amino acid 

sequence identity with its mouse ortholog, mouse leukocyte-type 12S-LOX (about 73%). 

Human 15-LOX-2 also has high amino acid sequence identity with its mouse ortholog, 

mouse 8S-LOX (about 78%). However, these two human 15-LOX proteins which by 

name have the same products, only share about 35% amino acid sequence identity. In 

these cases, the classification based on the selectivity of oxygenation is somewhat 

misleading. With the growing list of cloned mammalian LOX enzymes, they are currently 

classified based on the sequence identity. In the phylogenetic tree of mammalian LOX 

enzymes (Figure 3), three branches of LOX genes can be recognized: the 12- and/or 15-

LOX enzymes, the epidermis-type LOX enzymes, and the 5-LOX. Most enzymes in each 

subfamily can be detected in skin and are related to the skin physiology. 
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1. 5-LOX 

5-LOX is mainly expressed in leukocytes, macrophages, mast cells and 

lymphocytes, and plays an essential role in the biosynthesis of leukotrienes (LTs). It 

possesses dual enzymatic activities: the oxygenase activity which converts arachidonic 

acid to 5S-HPETE and the leukotriene A4 (LTA4) synthase activity which dehydrates 5S-

HPETE to form the epoxide LTA4 (Samuelsson et al., 1987b). 5-LOX enzymatic activity 

in vitro can be modulated by calcium, ATP, phosphatidylcholine and lipid 

hydroperoxides. Nevertheless in vivo activation of cellular 5-LOX in response to external 

stimuli is rather incompletely understood. After cell activation and in response to a Ca2+ 

flux, 5-LOX translocates to the nuclear envelope, where arachidonic acid, released by 

phospholipase A2 (PLA2), is presented to 5-LOX by 5-LOX activating protein (FLAP). 

LTA4 is subsequently transformed into either LTBB4 by cytosolic LTA4 hydrolase or to 

LTC4 by LTC4 synthase, which is an integral perinuclear membrane protein that 

conjugates glutathione (GSH) to LTA4. LTC4 and its metabolites LTD4 and LTE4 are 

collectively termed cysteinyl-leukotrienes (CysLTs).  

 

2. 12- and/or 15-LOX enzymes 

This subfamily can be classified into three groups. Three mouse 12S-LOX 

enzymes (platelet-type, leukocyte-type, and epidermis-type) are representative. The 

sequence identities between the groups are about 50-60%. The LOX enzymes within each 

group exhibit about 70-90% sequence identity. All of these LOX enzymes display less 

than 40% identity to 5-LOX.  
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Mouse platelet-type 12S-LOX and its human ortholog, human 12S-LOX, are 

expressed in platelets and epidermis. They primarily use free arachidonic acid as a 

substrate and produce predominantly 12S-HPETE, which is further reduced by 

peroxidases to 12S-HETE. Immunohistochemical analysis suggests mouse platelet-type 

12S-LOX expression in skin is localized to the stratum granulosum (Johnson, E. N. et al., 

1999), while the human enzyme is limited to the basal layer (Hussain et al., 1994). The 

biological function of mouse platelet-type 12S-LOX in maintaining the epidermal water 

barrier is indicated by the platelet-type 12S-LOX deficient mice which exhibited an 

increase in basal transepidermal water loss while little alteration in basal mitotic activity 

(Johnson, E.N. et al., 1998).  

Mouse epidermis-type 12S-LOX is the only member in this group so far. Its 

human ortholog is a pseudogene. The mRNA transcribed from this pseudogene contains a 

premature stop codon. So there is no active epidermis-type 12S-LOX protein in human. 

Unlike platelet-type 12S-LOX, mouse epidermis-type 12S-LOX exhibits very low 

reactivity towards free arachidonic or linoleic acid, but metabolizes the corresponding 

fatty acid methyl esters (Siebert et al., 2001). In situ hybridization revealed highly 

specific expression of this enzyme in differentiated keratinocytes of the epidermis (Funk, 

C. D. et al., 1996). Epidermis-type 12S-LOX expression also can be detected during early 

embryogenesis using RT-PCR, indicating a potential role for this LOX in early 

development (McDonnell et al., 2001). 

Mouse, rat, pig, and bovine leukocyte-type 12S-LOX show very high sequence 

identity (70-85%) with human and rabbit reticulocyte 15S-LOX (now called 15-LOX-1). 

Although their primary products have different positional specificity, they are still 
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grouped together and called 12/15-LOX enzymes. LOX enzymes in this group show 

broader but substantially different tissue distribution from species to species. Mouse 

leukocyte-type 12S-LOX is mainly expressed in macrophages, pineal gland, pituitary and 

kidney. In the rat the leukocyte-type 12S-LOX is most abundant in pineal gland, followed 

by lung, spleen, aorta, adrenal gland, spinal cord, and pancreas. Human 15-LOX-1 can be 

detected in reticulocyte, eosinophil and tracheal epithelium. The reactions catalyzed by 

the LOX enzymes in this group also show the lowest specificity in all mammalian LOX 

enzymes. They oxygenate not only all major naturally occurring polyenoic free fatty 

acids, such as arachidonic acid, linoleic acid, linolenic acid, or eicosapentaenoic acid 

(EPA), but also complex substrates such as phospholipids and cholesterol esters of 

biomembranes and low density lipoproteins (LDL) (Kuhn et al., 1994a). Both the 

leukocyte-type 12S-LOX and the reticulocyte 15S-LOX from various species exhibit a 

dual positional specificity with arachidonic acid. The ratio of 12S-H(P)ETE to 15S-

H(P)ETE products varies depending on the specific LOX enzyme.  

 

3. Epidermis-type LOX enzymes 

This subfamily includes human 15-LOX-2, mouse 8S-LOX, human and mouse 

12R-LOX, and human and mouse epidermis-type LOX-3 (eLOX3). Although the 

reactions catalyzed show various positional and stereo specificities, they are grouped 

together because of their high sequence identity (at least 50% identity) and similar tissue 

distribution (skin). The mouse epidermis-type LOX genes are clustered at the central 

region of chromosome 11, suggesting possible formation by gene duplication. The same 
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genomic organization of epidermis-type LOX enzymes is also observed at human 

chromosome 17p13.1.  

Human 15-LOX-2 is mainly expressed in skin, prostate, lung, and cornea. It 

converts arachidonic acid exclusively to 15S-HPETE, and linoleic acid is also a good 

substrate (Brash et al., 1997; Kilty et al., 1999). This catalytic activity is different from 

human 15-LOX-1, which oxygenates arachidonic acid to form mainly 15S-HPETE, but 

also partly 12S-HPETE, and for which linoleic acid is an excellent substrate. The 

expression of human 15-LOX-2 in epidermis was restricted to the basal cell layer 

(Shappell, S.B. et al., 2001b). This is consistent with the finding that skin 15S-HETE is 

formed predominantly by the proliferating keratinocytes (Henneicke-von Zepelin et al., 

1991). The detection of high 15S-HETE compared to low 12S-HETE in the same layer of 

epidermis also suggests that 15-LOX-2, not 15-LOX-1, is the main enzyme forming 15S-

HETE in skin.  

Mouse 8S-LOX shares 78% amino acid identity with human 15-LOX-2. It is 

thought to be the mouse ortholog of the human 15-LOX-2 although encoding a LOX with 

different positional specificity. However, the expression of mouse 8S-LOX in skin is 

mainly in the differentiated epidermal layer, the stratum granulosum (Jisaka et al., 1997), 

indicating different biological functions between human 15-LOX-2 and its mouse 

ortholog 8S-LOX.  

12-HETE has been shown as one of the main eicosanoids formed by the 

epidermis and with the discovery of large quantities of 12-HETE in human psoriatic 

lesions (Hammarstrom et al., 1979). In normal skin and psoriasis lesions, 12-HETE is 

predominantly of the “R” stereoconfiguration, 12R-HETE (Woollard, 1986). For many 
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years, 12R-HETE was considered to be the product of a cytochrome P450 (Holtzman et 

al., 1989). The discovery of 12R-LOX in human skin suggests this enzyme accounts for 

the selective formation of 12R-HETE (Boeglin et al., 1998). The mechanism of H-

abstraction supports this conclusion (Boeglin et al., 1998). The location of 12R-HETE 

formation in skin, which is mainly in the upper epidermal layers (Henneicke-von Zepelin 

et al., 1991), indicating the location of 12R-LOX expression in skin.  

Human and mouse 12R-LOX have different substrate selectivity. Human 12R-

LOX forms 12R-HPETE from arachidonic acid and exhibits a slightly acidic pH-

optimum (Schneider et al., 2001a). The mouse ortholog does not use free acid as 

substrate. In vitro experiments showed that arachidonic acid methyl ester is the only 

substrate. Also in mouse, no 12R-HETE has been described as an endogenous product. 

Mouse 12R-LOX may use a yet unknown natural substrate and has different functions 

compared to human 12R-LOX. 

Epidermis-type LOX-3 (eLOX3, gene symbol ALOXE3) was described first in the 

mouse (Kinzig et al., 1999), and in humans in 2001 (Krieg et al., 2001). eLOX3 has a 

limited scope of tissue expression, being mainly confined to keratinized epithelia such as 

skin. From PCR evidence it seems to be co-expressed in tissues that express the 12R-

LOX (Heidt et al., 2000; Krieg et al., 2001). The amino acid sequence of human and 

mouse eLOX3 also shows the closest similarity to 12R-LOX (54% identity) and 15-LOX-

2 (51%). The sequence of eLOX3 contains the characteristic well conserved amino acid 

residues found in all LOX enzymes including the putative iron-binding ligands and 

additional structure-determining residues (Krieg et al., 2001). These features clearly 

indicate that eLOX3 belongs to the LOX gene family. The question of the oxygenase 
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activity of eLOX3, nonetheless, has remained elusive. No enzymatic activity has been 

detected by using linoleic or arachidonic acids, the prototypical C18 and C20 LOX 

substrates, or with the esters methyl arachidonate or cholesteryl arachidonate (Krieg et al., 

2001).  

 

Mechanism of mammalian LOX catalysis 

LOX enzymes contain a non-heme iron in the catalytic center which cycles 

between ferrous form (Fe2+) and ferric form (Fe3+) during the reaction (Figure 4). The 

isolated enzyme contains predominantly, if not exclusively, Fe2+, but the catalytically 

active form of the enzyme has Fe3+. The activating oxidation of the iron takes place in a 

reaction with lipid-hydroperoxide. The dioxygenase cycle is initiated by a stereospecific 

elimination of hydrogen from the methylene group between two double bonds on the 

substrate to form a pentadienyl radical and a proton. This step is considered to be rate 

limiting in LOX catalysis. The remaining electron reduces the iron to the Fe2+ state. 

Insertion of molecular oxygen in the carbon 1 or 5 position of the pentadienyl radical 

generates a peroxyl radical, which is reduced to the hydroperoxide by accepting a proton 

and the simultaneous oxidation of iron to the ferric state.  The hydroperoxide product 

contains a Z,E conjugated diene which has a characteristic maximum UV absorbance at 

235 nm. Oxidation of arachidonic acid by the ferric enzyme is shown in Figure 4. The 

hydroperoxide products are unstable and easily reduced to the corresponding hydroxy 

derivatives by cytosolic glutathione peroxidases or converted into various other types of 

eicosanoids including leukotrienes, lipoxins and hepoxilins. 
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Figure 4. Mechanism of LOX activation and catalysis. Fe3+: LOX with oxidized 
iron, Fe2+: LOX with reduced iron, LH: arachidonate, L•: lipid alkyl radical, LOO•: 
lipid peroxyl radical, LOOH: lipid hydroperoxide. Activation of the enzyme requires 
trace hydroperoxide. 

 

LOX has a reducing agent-dependent pseudoperoxidase activity which was first 

identified in soybean LOX and then confirmed in mammalian LOX (Riendeau et al., 

1991). In the activation step of LOX, the ferrous form LOX reacts with a fatty acid 

hydroperoxide to form the ferric LOX. Reducing agents such as N-hydroxyureas, 

hydroxybenzofurans, hydroxamic acids, hydroxylamines, and catechols, are capable of 

reducing the ferric form LOX to ferrous and thus inhibit the dioxygenase cycle. As a 

result, the fatty acid hydroperoxide only undergoes a one-electron reduction, rather than 

the two-electron reduction typical of peroxidase reactions. The primary one-electron 
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reduction product (an alkoxyl radical) decomposes to a mixture of end products (Kemal 

et al., 1987; Riendeau et al., 1991).   

Although the LOX reaction requires hydroperoxides for the activation, under 

certain circumstances, LOX enzymes are sensitive to inactivation by fatty acid 

hydroperoxides. But the mechanism of this suicidal inactivation reaction remains poorly 

defined (Hartel et al., 1982; De Carolis et al., 1996).  

 

The structure of mammalian LOX 

Mammalian LOX proteins have a single polypeptide chain with a molecular mass 

of 75-81 kDa (about 662-711 amino acids) which is a little smaller than plant LOX 

enzymes (94-104 kDa). The primary structures of mammalian LOX enzymes are closely 

related, exhibiting 40-90% amino acid identity and containing well-conserved amino acid 

residues that are critical for the catalytic activity. Most of the mammalian LOX genes are 

split into 14 exons and 13 introns that are organized in the same exon/intron format with 

boundaries in the highly conserved positions (Funk, C. D., 1996). 12R-LOX and eLOX3 

genes make exceptions in that they have an additional intronic sequence that divides exon 

4. As a result, they have 15 exons.  

The first and so far still the only crystal structure of a mammalian LOX (rabbit 

reticulocyte-type 15-LOX) was published in 1997 (Gillmor et al., 1997). The enzyme is a 

two-domain protein which is similar to the published plant LOX enzymes (Boyington et 

al., 1993; Skrzypczak-Jankun et al., 1997). The N-terminal domain contains eight-

stranded anti-parallel β-barrel, which is similar to the β-barrel domain in mammalian 

lipases. The C-terminal domain mainly consists of 18 helices and contains the catalytic 
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non-heme iron, which is ligated by four histidines (H361, H366, H541, H545) and the C-

terminal isoleucine. Sequence alignment of the mammalian LOX enzymes suggests that 

except for one histidine (H545 in rabbit reticulocyte-type 15-LOX) which appears as Asn 

or Ser in some LOX enzymes, the other iron ligands are completely conserved. These 

ligands coordinate the iron atom with an excellent octahedral geometry.  

X-ray crystallographic studies show a U-shaped active site cavity lined with side 

chains from F353, M419, I418, and I593 of the reticulocyte 15S-LOX (Gillmor et al., 

1997; Borngraber et al., 1999). The positional specificity of LOX is determined by the 

overall size and shape of this arachidonic acid binding pocket. This pocket is predicted to 

be a little bigger (6%) in leukocyte-type 12S-LOX than that of the reticulocyte 15S-LOX 

(Gillmor et al., 1997; Borngraber et al., 1999). Mutation of the pocket amino acids in 

human 15-LOX-1 to residues with smaller side chains increases the pocket volume, and 

converts the enzyme to an efficient 12-LOX (Sloane et al., 1995). The opposite type of 

mutation can convert porcine leukocyte 12S-LOX to a 15-LOX (Suzuki et al., 1994).    

 

Receptors for mammalian LOX-derived products 

The best recognized function of mammalian LOX is to produce ligands for 

cellular receptors. Currently, several receptors for 5-LOX-derived eicosanoids have been 

cloned.  

LTB4 is a potent chemotactic compound and granulocyte activating factor. Two 

cell surface receptors for LTB4 (BLT1 and BLT2) have been isolated (Yokomizo et al., 

1997; Kamohara et al., 2000; Yokomizo et al., 2000). They are G-protein-coupled 

receptors (GPCR) and share about 45% amino acid identity. BLT1 is mainly expressed in 
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leukocytes and shows high affinity for LTB4, whereas BLT2 is expressed ubiquitously 

with the high expression in spleen, ovary, liver and leukocytes and shows low affinity for 

LTB4. The differences in tissue distribution and pharmacological characteristics of two 

LTB4 receptors suggest that they have different functions.  

The CysLTs (LTC4, D4 and E4) are inflammatory mediators. They were 

previously referred to as Slow Reacting Substance of Anaphylaxis (SRS-A). The action 

of CysLTs is through cell surface receptors. Pharmacological and binding studies in 

different tissues suggest there are two CysLT receptors, CysLT1 which is sensitive to the 

classical CysLT1 antagonists and CysLT2 which is resistant to these antagonists. The 

recent molecular cloning, expression and characterization of two CysLT receptors 

(CysLT1 and CysLT2) confirmed much of the earlier pharmacological characterization of 

the two receptors (Lynch et al., 1999; Heise et al., 2000). However, a third CysLT 

receptor subtype may exist based on some inconsistent pharmacological effects (Back et 

al., 2000).  

Lipoxins (LX) are eicosanoids containing trihydroxy and conjugated tetraene 

system. There are two forms of LXs that are positional isomers, LXA4 and LXB4. They 

are generated during the transcellular metabolism of arachidonic acid via the sequential 

actions of the 15- and 5- or 5- and 12-LOX enzymatic pathways (Serhan et al., 1984; 

Samuelsson et al., 1987a). Of the non-prostanoid eicosanoid receptors, the LXA4 receptor 

(ALX) was the first recognized at the molecular level. It is also a GPCR (Fiore et al., 

1994). The putative receptor activated by LXB4 has not been cloned. 

For the other LOX products, the existence of cellular receptors has not been 

confirmed. Several reports suggested the presence of specific 12S-HETE and/or 15S-
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HETE binding sites in some cell types (Gross et al., 1988; Vonakis and Vanderhoek, 

1992; Herbertsson and Hammarstrom, 1997). The function of these binding sites was 

indicated by the observation that psoriatic epidermal cells showed a fourfold decrease in 

the number of 12-HETE binding sites as compared with normal healthy individuals 

(Arenberger et al., 1992). A reported 12-HETE binding site is cytosolic (Herbertsson and 

Hammarstrom, 1997). Nonetheless, there is evidence that cell surface HETE receptors 

might exist: The neuroprotective effect of 12S-HETE in rat exhibits a pertussis toxin-

sensitive mechanism, implying the existence of a G-protein-coupled 12S-HETE receptor 

(Hampson and Grimaldi, 2002).  

Some LOX products were studied for their activation of nuclear receptors. 

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor 

superfamily and are expressed in a variety of tissues including skin and cells of the 

immune system. There are three types of PPARs: PPARα, PPARγ, and PPARβ/δ. They 

act as ligand-dependent transcription factors which heterodimerize with retinoid X 

receptors (RXR) to allow binding to and activation of PPAR responsive genes. Through 

this mechanism, PPAR ligands can control a wide range of physiological processes. A 

variety of LOX products were shown to bind and activate PPARs. For example, the 

mouse 8-LOX product, 8S-HETE, is a high affinity ligand for the PPARα whereas 8R-

HETE was much less potent (Yu, K. et al., 1995; Forman et al., 1997; Kliewer et al., 

1997). The 5-LOX product, LTB4, was also shown to be an activating ligand for the 

same receptor (Devchand et al., 1996). The 15-LOX-2 product, 15S-HETE, was reported 

as a ligand for PPARγ (Shappell, S.B. et al., 2001a). However, the concentrations of 

these ligands needed for PPAR activation are in the micromolar range. Considering that 
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nanomolar concentrations of LTs and prostaglandins are sufficient for the activation of 

eicosanoid GPCRs, the physiological significance of these PPAR effects is questionable.  

 

Biological functions of mammalian LOX enzymes 

 

Inflammation  

Among all the mammalian LOX enzymes, the biological function of 5-LOX is the 

best understood. The 5-LOX pathway leading to leukotriene formation has long been 

recognized as a proinflammatory cascade. LTB4 is a potent chemoattractant for 

neutrophils, eosinophils, and monocytes and has other potent proinflammatory properties 

(Ford-Hutchinson et al., 1980). The cysteinyl LTs, LTC4, LTD4, and LTE4, are potent 

bronchoconstrictors that enhance vascular permeability and stimulate mucus secretion 

from the airways. They are active at nanomolar concentrations, being approximately 

1000-fold more potent than histamine in eliciting airway constriction in vitro (Dahlen et 

al., 1980; Lee et al., 1984). The LT mediated effects cause increased activation, 

recruitment, migration and adhesion of immune cells. The use of mice deficient in 5-

LOX, FLAP, LTA4 hydrolase, LTC4 synthase or LT receptors has enabled a detailed 

examination of the LTs in murine models, firmly establishing their roles in inflammation 

(Goulet et al., 1994; Byrum et al., 1997; Byrum et al., 1999; Kanaoka et al., 2001; 

Maekawa et al., 2002; Beller et al., 2004). 

Leukotriene synthesis inhibitors (5-LOX inhibitors) such as zileuton (Zyflo) have 

been shown to possess therapeutic potential for the treatment of asthma, allergic disorders 

and other inflammatory diseases (Riccioni et al., 2004). CysLT receptor antagonists such 
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as zafirlukast (Accolate) and montelukast (Singulair) are also widely used in long-term 

maintenance of asthma control (Riccioni et al., 2004).  

In addition to the 5-LOX products, there is the occasional reference linking the 

12-LOX product, 12S-HETE, to inflammation. For example, this metabolite has direct 

chemotactic effect showing the most potent stimulatory effect on smooth muscle cell 

migration among the mono-HETEs (Nakao et al., 1982). 

 

Atherosclerosis  

Atherosclerosis is now considered as an inflammatory disease (Lusis, 2000), 

which is caused by excessive and prolonged inflammatory responses. The ability to form 

inflammatory lipid mediators by LOX enzymes indicates an important function for these 

enzymes in the development and progression of atherosclerosis. This was first proposed 

following the observations of specific LOX products (HETEs and HODEs) in the early 

phase of atherosclerosis (Nakao et al., 1982), along with protein and mRNA expression 

(Yla-Herttuala et al., 1990; Hugou et al., 1995).  

12/15-LOX (human 15-LOX-1 and mouse leukocyte-type 12-LOX) was 

suggested to be involved in atherogenesis because of its ability to oxidize LDL (Belkner 

et al., 1993). The oxidative modification of LDL has been considered to be an important 

factor in atherogenesis (Holvoet and Collen, 1994), but the mechanisms responsible for 

oxidation in vivo remain unknown. Previous studies have suggested that 12/15-LOX may 

be one of the factors involved since 13S-HPODE, the product of 12/15-LOX from 

linoleic acid, was found to be the predominant oxidized fatty acid on human monocyte-

oxidized LDL (Folcik et al., 1995).Treatment of human aortic endothelial cells with 12S-
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HETE, the stereospecific product of the same enzyme from arachidonic acid, directly 

induced monocyte binding to the endothelial cells, which is a key early step in the 

development of atherosclerosis. No such effect was observed with the stereoisomer 12R-

HETE (Patricia et al., 1999; Reilly et al., 2004). Higher levels of 15-LOX-1 enzymatic 

activity were also shown in the atherosclerotic lesions of rabbit and human aorta than 

corresponding normal arteries (Simon et al., 1989). Transfer of the human 15-LOX-1 

gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein 

adducts characteristic of oxidized LDL (Yla-Herttuala et al., 1995), implicating 15-LOX-

1 in the oxidative modification of LDL. However, the involvement of 15-LOX-1 in 

atherogenesis was demonstrated to be present only in early stage but not in later lesions, 

where oxidized lipids lost their stereospecificity and non-enzymatic lipid peroxidation 

occurred (Kuhn et al., 1994b).  

Animal models also implicate a key role of the 12/15-LOX in the pathogenesis of 

atherosclerosis. Overexpression of human 15-LOX-1 in the vascular endothelium could 

accelerate early atherosclerosis in LDL receptor-deficient mice (Harats et al., 2000). 

Furthermore, treatment the rabbit with a specific 15-LOX-1 inhibitor, PD 146176, can 

significantly reduce the progression of diet-induced atherosclerosis (Sendobry et al., 

1997). Convincing evidence of 12/15-LOX in the pathogenesis of atherosclerosis came 

from the recent knock-out experiments showing that disruption of mouse leukocyte-type 

12-LOX gene attenuates atherosclerosis in both apo E deficient mice and LDL receptor 

deficient mice (Cyrus et al., 1999; George et al., 2001), and this was attributed to reduced 

LDL oxidation and lipid peroxidation (Zhao and Funk, 2004). Paradoxically, however, a 

remaining enigma is that overexpression of human 15-LOX-1 in rabbits is resulted in 
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reduced atherosclerosis (Shen et al., 1996). A possible explanation for this 

antiatherogenic effect of 15-LOX-1 is that the role of this enzyme may not be restricted 

to oxidative LDL modification.  Its expression may impact both lipid uptake and 

intracellular lipid turnover (Belkner et al., 2005).  

 5-LOX and its LT products may also contribute to atherosclerosis. LT production 

in atherosclerotic lesions was found to be increased when compared with normal tissue 

(De Caterina et al., 1988). The direct evidence comes from the recent finding in animal 

model, which shows that 5-LOX is a major gene involved in the development of 

atherosclerotic lesions in mice (Mehrabian et al., 2002). Specific LTB4 receptor 

antagonist can significantly inhibited atherosclerotic lesion development in 

atherosclerosis-susceptible apoE deficient and LDL-receptor knockout mice (Aiello et al., 

2002). LTB4 receptor BLT1 deficient mice had a significant reduction in atherosclerosis 

comparing to the wild-type mice, suggesting LTB4 contributes in a causal manner to 

mouse lesion formation (Heller et al., 2005). In human beings, no such direct evidence 

suggests that 5-LOX can influence atherosclerosis. However, higher 5-LOX expression 

was detected within the arterial wall during atherogenesis (Spanbroek et al., 2003). By 

studying the relationship between 5-LOX promoter genotypes and carotid-artery intima–

media thickness (which is a marker of the atherosclerotic burden), it has been found that 

variation in the 5-LOX could alter eicosanoid-mediated inflammatory circuits in the 

artery wall and promote atherogenesis (Dwyer et al., 2004). 
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Cancer 

LOX enzymes and the signaling pathways involved in LOX activation are also 

important for carcinogenesis and tumor progression. The LOX enzymes with blood cell 

origin, such as 5-LOX, 12-LOX and 15-LOX-1, appear to have a pro-carcinogenic effect. 

Although 5-LOX mainly plays roles in inflammation, several precedents indicate its role 

in various types of cancers. A convincing example is in human pancreatic cancer tissues, 

where marked expression of 5-LOX or the receptor for its downstream metabolite, LTB4, 

was observed, but little or no expression can be seen in normal pancreatic tissues or 

cultured cells (Hennig et al., 2002). The up-regulation of 5-LOX can be detected in all 

grades of human early pancreatic intraepithelial neoplasias and early lesions of pancreatic 

cancer in animal models (Hennig et al., 2005), indicating that 5-LOX plays a key role in 

the development of pancreatic cancer. Similar to 5-LOX, platelet-type 12S-LOX 

expression in prostate cancer was elevated (Gao et al., 1995). Its product, 12S-HETE, can 

block the induction of apoptosis by activating the transcription of bcl-2 (Tang, D.G. et al., 

1996). 12S-LOX and 12S-HETE were also found to stimulate angiogenesis, a process 

required for tumor growth and progression (Nie and Honn, 2004). Another LOX which 

has a pro-carcinogenic effect is the leukocyte-type 12S-LOX. Its expression was up-

regulated in a transgenic mouse model of prostate carcinoma (Shappell, S. B. et al., 2003). 

Over-expression of leukocyte-type 12S-LOX in tumor cells significantly extends cell 

survival and delays apoptosis (Pidgeon et al., 2003). The human homolog of mouse 

leukocyte-type 12S-LOX, 15-LOX-1, was also up-regulated in prostate tumors and is 

implicated in tumorigenesis (Kelavkar et al., 2002). 
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15-LOX-2, which nominally has the same product as 15-LOX-1, elicits different 

effect in tumor development.  Down-regulation of 15-LOX-2 expression has been found 

in prostate adenocarcinoma (Shappell, S.B. et al., 1999), suggesting a possible anti-

tumorigenic effect of this enzyme.  In addition to 15-LOX-2, recent evidence suggests 

that other LOX enzymes with epithelium origin also play an anti-carcinogenic role. For 

example, mouse epidermis-type 12S-LOX was found to be down-regulated during mouse 

skin carcinogenesis (Muller et al., 2002). Mouse 8S-LOX is a homolog of human 15-

LOX-2.  In normal mouse skin, the level of 8S-LOX expression as well as its product, 8S-

HETE, is nearly undetectable. Skin-targeted 8S-LOX transgenic mice significantly 

reduce the papilloma development in mouse skin carcinogenesis (Kim et al., 2005). 

Recently, Krieg and colleagues found that inducible expression of human 15-LOX-2 and 

mouse 8-LOX inhibits the growth of premalignant mouse keratinocytes (Schweiger et al., 

2005).

 

Potential roles of mammalian LOX enzymes in skin 

Skin displays a highly active metabolism of essential fatty acids (EFAs). The 

relationship between EFA deficiency and the scaly skin phenotype has been described 

above. However, so far no good evidence is available to determine how EFA metabolism 

affects skin physiology and causes a scaly skin phenotype. Although COX enzymes and 

their prostaglandin products have been detected in skin and somewhat associated with 

keratinocyte differentiation (Leong et al., 1996) and development of skin cancer 

(Buckman et al., 1998), generally NSAID inhibitors do not influence EFA-related 

symptoms, and the LOX pathways are considered the more important for skin physiology. 
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High levels of LOX products have been detected in normal skin. Unusual production of 

these metabolites in skin diseases suggests the importance of LOX enzymes. 

Psoriasis is a common and chronic skin disorder. Psoriatic skin is characterized by 

keratinocyte hyperproliferation, inflammation and impaired differentiation. The lesions 

are infiltrated, scaly and erythematous. Psoriasis is usually considered as an inflammatory 

skin disease. LOX enzymes may play an important role in the pathogenesis of psoriasis 

because of the presence of their products in the lesional skin. For example, release of 

LTB4 in biologically active concentrations from psoriatic epidermis has been reported 

(Brain et al., 1984). Single topical applications of LTB4 to normal human skin result in 

the formation of intraepidermal microabscesses (Camp et al., 1984), which is one of the 

earliest and characteristic morphologic events in psoriasis.  In psoriatic patients a 

significant increase in cysteinyl leukotrienes has also been found when comparing to the 

healthy human volunteers (Fauler et al., 1992).  However, selective leukotriene 

biosynthesis inhibitors have no therapeutic utility in psoriasis (Ford-Hutchinson, 1993), 

indicating that 5-LOX is not important for the treatment of this disease.  

In psoriatic skin one of the most prominent eicosanoids is 12-HETE. It is present 

in much higher concentration in chronic psoriatic plaques compared with normal skin, 

and consists predominantly of 12R-HETE (Woollard, 1986). Thus the enzyme producing 

this stereospecific eicosanoid, 12R-LOX, has gained more interest.  

The genetic evidence of an involvement of LOX enzymes in skin 

pathophysiology was provided by the hallmark study of Fischer and colleagues in 2002: 

“Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-

bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1” 
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(Jobard et al., 2002). NCIE is a major subtype of autosomal recessive congenital 

ichthyosis characterized by a generalized ichthyosiform (scaly skin) phenotype (Webster 

et al., 1978; Akiyama et al., 2003). The scaling of the skin is caused by a failure of the 

keratinocytes to correctly differentiate when forming the permeability barrier of human 

skin in conjunction with an accelerated mitotic rate in the epidermis (Fartasch, 1997; 

Elias et al., 2002; Kalinin et al., 2002; Madison, 2003). The authors found that one or 

other of these two LOX genes was mutated in this group of patients, and they speculated 

that the two enzymes operate in the same metabolic pathway. Many of the studies to be 

described in this thesis are new developments stemming from these seminal observations.  

 

Specific Aims 

Although eLOX3 is clearly a member of the LOX gene family, it does not have 

the LOX activity predicted from proteomic analysis. Prompted by the genetic findings we 

examined eLOX3 for the ability to metabolize the products of other LOX enzymes. Our 

specific aims include: 

1. To characterize the catalytic activity of eLOX3 and the further metabolism of its 

products. 

2. To determine the functional relationship between 12R-LOX and eLOX3 and the effect 

of naturally occurring mutations. 

3. To investigate differences in human and mouse eLOX3 catalytic activity. 

4. To determine the targets and biological activities of the 12R-LOX and eLOX3 derived 

products.  
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CHAPTER II 
 
 
 

IDENTIFICATION OF THE CATALYTIC ACTIVITY OF A NOVEL HUMAN 
EPIDERMAL LIPOXYGENASE, eLOX3 

 
 
 

Introduction 

 LOX enzymes are found widely in plants, fungi and animals (Brash, 1999). They 

consist of a family of non-heme iron-containing enzymes which oxygenate 

polyunsaturated fatty acids such as arachidonic acid and linoleic acid to their specific 

hydroperoxide derivatives. A typical LOX catalysis includes a Fe2+/Fe3+ redox cycle. The 

Fe3+ enzyme is the active form that performs the stereospecific hydrogen abstraction from 

the bis-allylic methylene of the fatty acid substrate. The redox cycle is completed by the 

oxygenation of the fatty acid radical and then reduction of the formed peroxyl radical to 

the fatty acid hydroperoxide. In a cellular environment the hydroperoxide products are 

unstable and readily reduced to the corresponding hydroxy derivatives (eg.  HETE) by 

cytosolic glutathione peroxidases or converted into other bioactive lipid mediators 

including leukotrienes, lipoxins (Samuelsson et al., 1987a) and hepoxilins (Pace-Asciak, 

C.R. and Asotra, 1989).  

Although LOX enzymes are catalytically active with free fatty acid substrates, 

some will also oxygenate esterified substrates such as the phospholipid or cholesterol 

esters. In certain cases the hydroperoxide products can be further metabolized by the 

same enzyme to form di-hydroperoxides or epoxides. The well-known example for the 

latter is the mammalian 5-LOX, which contains both oxygenase and LTA4 synthase 
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activities, and performs two consecutive hydrogen abstractions to form the epoxide, 

LTA4. 

 There are five active lipoxygenases found in human beings: 5-LOX, 12S-LOX, 

12R-LOX, 15-LOX-1, and 15-LOX-2. A sixth gene family member, epidermis-type 

lipoxygenase-3 (eLOX3, gene symbol ALOXE3) was described first in the mouse and in 

2001, in human (Kinzig et al., 1999; Krieg et al., 2001). The amino acid sequence of 

human eLOX3 shows the closest similarity to 12R-LOX (54% identity) and 15-LOX-2 

(51%). It contains the characteristic well-conserved amino acid residues found in all LOX 

enzymes, including the putative iron-binding ligands and additional structure-determining 

residues. These features clearly indicate that eLOX3 belongs to the LOX gene family. 

The question of the catalytic activity of eLOX3 has, nonetheless, remained elusive. No 

enzymatic activity has been detected using linoleic or arachidonic acids, the prototypical 

C18 and C20 LOX substrates, nor with methyl arachidonate or cholesteryl arachidonate 

(Kinzig et al., 1999). However, the hydroperoxide products of other LOX enzymes have 

never been tested.  

Studies in humans and mice indicate that eLOX3 has a limited scope of tissue 

expression, being mainly confined to keratinized epithelia such as skin (Krieg et al., 

2001). Although no catalytic activity has been detected, eLOX3 function in skin 

pathophysiology was strongly suggested by a recent genetic study reporting that eLOX3 

or 12R-LOX are mutated in six families affected by non-bullous congenital ichthyosiform 

erythroderma (NCIE), which is a major subtype of autosomal recessive congenital 

ichthyosis characterized by a generalized ichthyosiform (scaly skin) phenotype (Jobard et 

al., 2002). The authors speculated that the two enzymes operate in the same metabolic 
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pathway. This hypothesis is consistent with the expression pattern of eLOX3. From PCR 

evidence it appears to be co-expressed only in tissues that express the 12R-LOX (Krieg et 

al., 2001).   

Prompted by the genetic findings, in this study we tested the eLOX3 catalytic 

activity for the ability to metabolize the products of other LOX enzymes. 

 

Experimental Procedures 

 

Expression and purification of human eLOX3 

The cDNA for human eLOX3 was cloned by PCR with cDNA prepared from 

human keratinocytes. To prepare the eLOX3 protein with an N-terminal (His)6 tag, the 

eLOX3 cDNA was subcloned into the pET3a expression vector (Novagen, Madison, WI) 

with the 5' sequence encoded as ATG CAT CAC CAT CAC CAT CAC GCA-, with the 

last codon representing the start of the wild type enzyme. The human eLOX3 was 

expressed in E. coli BL21 (DE3) cells (Novagen, Madison, WI) and the (His)6 tagged 

protein was purified on Ni-NTA agarose (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. Fractions of 0.5 ml were collected off the affinity column 

and assayed by using SDS/PAGE. Fractions containing eLOX3 were pooled and dialyzed 

against a buffer of 50 mM Tris (pH 7.5) containing 300 mM NaCl to remove the 

imidazole.  
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Preparation of hydroperoxides 

HPETEs with specific positional and stereo configurations were prepared from 

arachidonate methyl ester by the following route: (i) autoxidation of 500 mg arachidonate 

methyl ester (Nu Chek Prep, Elysian, MN) in the presence of 70 mg α-tocopherol (Sigma 

Chemical Company, St. Louis, MO) at 37 °C for 3 days replenishing oxygen every 24 

hours (Peers and Coxon, 1983); (ii) dissolving the autoxidation product in 5 ml 5% ethyl 

acetate in hexane and incubation at -30 °C overnight to allow the α-tocopherol phase to 

separate from the hexane phase (upper phase, clear, containing HPETE methyl esters); 

(iii) isolation and purification of HPETE methyl esters by using an Econosil Silica 10u 

column (2.25 × 25 cm) and eluted at flow rate of 7 ml/min with the program: 0-5 min, 5% 

ethyl acetate in hexane; 5-125 min, linear gradient from 5%  to 15% ethyl acetate in 

hexane; the HPETE methyl esters come out between 50 min and 75 min in following 

sequence: 15-, 12-, 11-, 8-, 9-, and 5-HPETE-Me; (iv) resolution of R- and S-HPETE 

methyl esters using a Chiralpak AD-RH column, eluted with a solvent of methanol/water 

88:12 by volume, and a flow rate of 1 ml/min; the R enantiomer eluted earlier than the S 

enantiomer; (v) preparation of the free acids by treatment with 0.5 M KOH in 

water/methanol/ dichloromethane (1:1:0.1) at room temperature for 30 min, followed by 

acidification to pH 6.0 and extraction into dichloromethane; (vi) final purification of the 

free acids by SP-HPLC (Alltech Econosil Silica column, solvent system of 

hexane/isopropanol/acetic acid 100:1:0.1 by volume, flow rate of 2 ml/min). 

[18O]15S-HPETE was prepared from arachidonic acid using soybean 

lipoxygenase (Sigma type V) under an atmosphere of 18O2 (Isotec Inc., Miamisburg, OH).  

 

 32



eLOX3 activity assay

Incubation with the purified enzyme was typically conducted in 500 μl incubation 

buffer (50 mM Tris, 150 mM NaCl, pH 7.5) using 0.01 – 0.1 μM enzyme concentration 

in a 1 cm path length microcuvette. 5-10 μg HPETE was added and incubated at room 

temperature for 10 min. eLOX3 activity was monitored by repetitive scanning in the 

range 350 - 200 nm, or by monitoring disappearance of the signal at 235 nm in the time-

drive mode. To measure the rate of eLOX3 reaction over the substrate concentration 

range of 5 – 250 μM, reactions were conducted in a 2 mm path length microcuvette (0.5 

ml); the decrease of absorbance at 235 nm was followed, and the rate was calculated from 

the initial linear part of the curve. 

 

HPLC analysis 

Products of the eLOX3 reactions with HPETE substrates were analyzed initially 

by RP-HPLC using a Waters Symmetry C18 5-μm column (0.46 × 25 cm) eluted at a 

flow rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by volume), and UV 

detection at 205, 220, 235, and 270 nm using an Agilent 1100 series diode array detector. 

The main products were recovered from the reversed-phase solvent by the addition of 

water and extraction with dichloromethane. Further purification was carried out by SP-

HPLC using an Alltech Econosil Silica column (0.46 × 25 cm), a solvent system of 

hexane/isopropanol/acetic acid (100:2:0.1 by volume), and a flow rate of 1 ml/min.  
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Derivatization

Methyl esters of the products were prepared using ethereal 

diazomethane/methanol (5:1); pentafluorobenzyl esters were prepared using the method 

of Greeley (Greeley, 1974). Catalytic hydrogenations were performed in 100 µl of 

ethanol using about 1 mg of palladium on alumina and bubbling with hydrogen for 2 min 

at room temperature. Reactions were terminated by the addition of water and extraction 

with ethyl acetate. Trimethylsilyl ester and trimethylsilyl ether derivatives were prepared 

by treatment overnight with bis(trimethylsilyl)trifluoracetamide (10 µl) and pyridine (5 µl) 

at room temperature. Subsequently, the reagents were evaporated under a stream of 

nitrogen and the samples were dissolved in hexane for GC-MS. 

 

GC-MS analysis 

Analysis of the methyl ester trimethylsilyl ether derivatives of the products was 

carried out in the positive ion electron impact mode (70 eV) using a Hewlett-Packard 

5989A mass spectrometer coupled to a Hewlett-Packard 5890 gas chromatograph 

equipped with a RTX-1701 fused silica capillary column (17 m × 0.25 mm, internal 

diameter). Samples were injected at 150°C, and after 1 min the temperature was 

programmed to 300°C at 12 or 20°C/min. For analysis of 18O content of 15-HETE and its 

epoxyalcohol product, samples were analyzed as the pentafluorobenzyl (PFB) ester 

trimethylsilyl ether derivatives in the negative ion-chemical ionization mode. Rapid 

repetitive scanning was carried out over the mass ranges covering the [M-PFB] ions of 

the unlabeled and 18O-labeled species (m/z 388-399 for the HETE derivative, and m/z 
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405-415 for the epoxyalcohol). Spectra collected during elution of the GC peak (typically 

about 20 spectra) were averaged for calculation of the isotopic compositions.  

 

NMR

1H NMR and 2D (H,H-COSY) NMR spectra were recorded on a Bruker DRX 400 

MHz spectrometer. The ppm values are reported relative to residual non-deuterated 

solvent (δ = 7.24 ppm for C6H6; δ = 1.92 ppm for CD3CN). 

 

CD spectroscopy 

The methyl ester of the product from 12R-HPETE (25 μg) was dissolved in 50 μl 

of dry acetonitrile and reacted with 1 μl of benzoyl chloride in the presence of 1 μl DBU 

and a few grains of dimethylaminopyridine at room temperature overnight. After 

evaporation of the solvent, 500 μl of water were added and the product was extracted 

with 1 ml of dichloromethane. The methyl ester, benzoate was isolated by RP-HPLC 

using a Waters Symmetry C18 5-μm column (0.46 x 25 cm) eluted with a solvent of 

methanol/water/acetic acid (95:5:0.01 by volume) at a flow rate of 1 ml/min and UV 

detection at 235 nm. The product eluting at 6.7 min was collected and extracted from the 

HPLC solvent using dichloromethane. Its structure was confirmed by 1H-NMR (400 

MHz, in CD3CN).  

The methyl ester, benzoate derivative was dissolved in acetonitrile to a final OD 

of 1 AU at 226 nm. CD spectra were recorded on a JASCO J-700 spectropolarimeter. 

Hydroxyl chirality of the main product from 12R-HPETE was assigned from the Cotton 

effects on the benzoate ester derivative (Schneider et al., 1997; Schneider et al., 2001b). 
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The benzoate derivative was selected because its longitudinal transition moment is 

sufficiently close to that of the adjacent double bond in the fatty acid carbon chain to 

allow for an efficient coupling of the double bond and benzoate chromophores (Humpf et 

al., 1995). Due to the relatively low λmax of both chromophores only the first Cotton 

effect at around 227 nm is observed, which, however, is sufficient to determine the 

absolute configuration of the molecule (Gonnella et al., 1982; Humpf et al., 1995).  

 

 36



Results 

 

Lack of lipoxygenase activity of eLOX3

To investigate the catalytic activity of eLOX3 toward the oxygenation of fatty 

acid substrates, the mouse and human eLOX3 were both expressed in HeLa cells and in a 

bacterial system using E. coli. For the incubations, HeLa cell homogenates were used 

directly while the enzyme from bacterial expression was used after affinity purification. 

In the incubations labeled and unlabeled fatty acids and derivatives were tested, and the 

product formation was analyzed using RP-HPLC. The following substrates were tested 

and found not be oxygenated by the mouse or human eLOX3: linoleic, arachidonic, and 

eicosapentaenoic acids, the methyl esters of arachidonic acid and linoleic acid, 

arachidonyl phosphatidylcholine, anandamide, and the cholesteryl ester of arachidonic 

acid. Because the activity of the related human 12R-LOX was found to have a narrow pH 

optimum at slightly acidic pH (Schneider et al., 2001a), radiolabeled linoleic and 

arachidonic acids (50 μM) were used at pH values of 6, 7, and 8 of the incubation buffer, 

but again, no oxygenated products could be detected. These results confirm and extend 

the findings of Krieg, Fürstenberger and colleagues who previously reported the absence 

of detectable oxygenation of various polyunsaturated fatty acid substrates using the 

mouse eLOX3 expressed in HEK 293 cells (Kinzig et al., 1999). 

 

The reaction of eLOX3 with HPETEs

To test whether human eLOX3 can react with the hydroperoxy fatty acid products 

of other lipoxygenases, individual HPETE or HPODE isomers (50-75 μM) were 
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incubated in a microcuvette at room temperature with human eLOX3 (1-4 μg/ml protein, 

≈12-50 nM) and the UV spectrum was monitored at different reaction times. Figure 5 

shows the incubation of 12R-HPETE with human eLOX3. The characteristic absorbance 

of the 12R-HPETE substrate decreased during the incubation. This decreased absorbance 

at 235 nm was accompanied by a lesser rise in the UV absorbance at 285 nm. The 

reaction rate was dependent on the amount of enzyme used. Controls lacking enzyme 

showed no effect. Heat-pretreatment (60°C, 10 min) of the enzyme impaired the activity. 

When the enzyme was placed in boiling water for 10 min before the incubation, almost 

no change in the absorbance at 235 nm was detected (Figure 6). These experiments 

demonstrate that eLOX3 can react with the typical LOX-derived HPETEs and that this 

activity is thermally-inactivated. 

Figure 5. Overlay of UV spectra of eLOX3 reaction with 12R-HPETE. Human 
eLOX3 (0.05 µM) was incubated with 12R-HPETE (40 µM) in a 500 µl cuvette at 
room temperature. The sample was scanned from 350 nm to 200 nm before addition of 
enzyme (t = 0 min), and then immediately after mixing (about 15 sec), and at reaction 
times of 1, 2, 3, 4 and 5 min. The arrows indicate the decreasing absorbance at 235 nm 
and the increase at 285 nm during the reaction. 
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Figure 6. Thermal inactivation of eLOX3 activity. 12R-HPETE (30 μm) was used 
as substrate with 0.025 μM of eLOX3 enzyme in the spectrophotometric assay. The 
enzyme was either untreated (control), or pretreated at 37°C, 60°C, or 100°C for 10 
min. Activity was determined by the initial rate of the UV absorbance decrease at 235 
nm. 
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Since human eLOX3 has tissue expression limited to skin, the natural HPETEs 

which were formed by skin LOX enzymes (12R-HPETE, 12S-HPETE and 15S-HPETE) 

were tested in kinetic studies (Figure 7). At the same enzyme and substrate concentration, 

different HPETEs showed different rates of reaction, with 12R-HPETE being the best 

substrate tested (Figure 7). Initial rates for 12R-HPETE metabolism corresponded to 

approximately five turnovers/sec. 12S-HPETE, 15S-HPETE were converted at 5- to 7-

fold lower rates, with reaction continuing for over an hour. The kinetic parameters for the 

conversion of HPETE substrates are summarized in Table 1. Other fatty acid 

hydroperoxides including the other nine hydroperoxides of arachidonic acid (5R-, 5S-, 

8R-, 8S-, 9R-, 9S-, 11R-, 11S, and 15R-HPETE) and four hydroperoxides of linoleic acid 

(9R-, 9S-, 13R-, and 13S-HPODE) were also tested as substrates. All of them can react 

 39



Figure 7. Reaction of human eLOX3 with 12R-, 12S-, and 15S-HPETE. Rates 
were measured by continuous recording of the decrease in absorbance at 235 nm. 
Reactions were carried out in a 0.2 cm path length microcuvette to allow measurement 
of the higher substrate concentrations.  

 
Table 1. Kinetic parameters Vmax (maximum rate) and Km (Michaelis constant) 
for the conversion of HPETE substrates by eLOX3. Values given are the mean of 
three determinations ± S.D. 
 

substrate Vmax (mAU/min) Km (μM) 

12R-HPETE 29.7 ± 1.3 45.9 ± 5.5 

12S-HPETE 7.9 ± 0.4 27.8 ± 4.4 

15S-HPETE 4.3 ± 0.5 31.6 ± 13.0 
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with human eLOX3, with rates similar to or lower than 12S- and 15S-HPETE (data not 

shown).  

The reaction of 12R-HPETE with eLOX3 was monitored at pH 7.5 or pH 6. 

Reactions proceeded similarly, with slightly more ketodiene chromophore appearing at 

pH 7.5, and, significantly, with similar rates at the two pH values. The lower pH value 

was tested because this corresponds to the pH optimum of human 12R-LOX in the 

conversion of arachidonic acid to the 12R hydroperoxide (Schneider et al., 2001a). This 

may have physiological significance, given the evidence for an acidic environment in 

epidermis where 12R-LOX and eLOX3 are expressed (Rippke et al., 2002).  

 

RP-HPLC analysis of eLOX3 reaction products 

The products of eLOX3 reactions were extracted and analyzed by RP-HPLC 

(Figure 8). A typical chromatogram from 12R-HPETE incubations (Figure 8, panel A) is 

dominated by a main product with retention time of ≈10 min that displayed only end 

absorbance in the UV (205 nm signal). A second product that eluted near 18 min had the 

UV spectrum of a conjugated dienone with λmax at 285 nm in the reversed-phase column 

solvent. Treatment of this product with NaBH4 yielded a product that co-

chromatographed on RP-HPLC with a 12-HETE standard, which, in accord with the UV 

spectrum and the mobility on RP-HPLC, points to this product being 12-ketoeicosa-5Z, 

8Z,10E,14Z-tetraenoic acid (12-KETE). GC-MS analysis (electron impact mode) of the 

hydrogenated methyl ester derivative (Figure 9) gave a mass spectrum with structurally 

significant ions at m/z  341 [M+1]+, 309 [M-OCH3]+, 141 (C12 – C20, [COC7H14CH3]+), 

227 (C1 – C12, [CH3CO2C10H20CO]+), 184 (C1 – C10, [CH3CO2C8H16CH]• +), 156 (C11 

 41



Figure 8. RP-HPLC analysis of the products in eLOX3 reactions. (A) 12R-HPETE 
+ eLOX3. (B) 12S-HPETE + eLOX3. (C) 15S-HPETE + eLOX3. The products were 
analyzed by RP-HPLC using a Waters Symmetry C18 5μm column (0.46 x 25 cm) 
eluted at a flow rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by 
volume), and UV detection at 205 nm. In panels A and B, the 12R-HPETE or 12S-
HPETE substrate (retention time 18 min) was completely converted and does not 
appear on the chromatograms. 

– C20, [CH3COC7H14CH3]+), 242 (C1 – C13, [CH3CO2C10H20COCH3]+), and 98 (C14 – 

C20, [CHC5H10CH3] • +). The spectrum is completely consistent with a structure of 

methyl 12-KETE; the ions at m/z 141 and 227 indicate α-cleavage of the 12-keto group 

and the last four fragments are derived from β-cleavage. The mass spectrum showed the 

predicted shifts in major ion fragments compared to the reported spectrum of methyl 15-

KETE (Hamberg and Samuelsson, 1967). 

 The RP-HPLC chromatogram from incubation of 12S-HPETE with eLOX3 

(Figure 8, panel B) was more complex, with a series of peaks at retention times of 7 – 9 

min, the major product at 12 min, the second major product at 10.5 min, and a peak of  
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12-KETE (identified as above) near 17 min. The very small peaks at 7 - 8 min retention 

time had the UV spectra of conjugated trienes, whereas the peaks at 9 - 12 min, including 

the two major products, showed only end absorbance in the UV. 

The chromatogram from the 15S-HPETE incubation (Figure 8, panel C) showed a 

main product at ≈10 min with additional earlier peaks at 7.5 - 9 min, all displaying only 

end absorbance in the UV. A minor peak at ≈15 min was identified as 15-ketoeicosa-

5Z,8Z,11Z,13E-tetraenoic acid (15-KETE) by comparison to an authentic standard and by 

its conversion to 15-HETE upon treatment with NaBH4. Some unreacted 15S-HPETE is 

also seen as the last eluting peak on the chromatogram. The corresponding HETE was not 

a product in any of the eLOX3 reactions analyzed. 

 

Identification of the main product from 12R-HPETE

To prepare sufficient product for NMR analysis, 1.5 mg 12R-HPETE was 

incubated in 25 ml incubation buffer with 0.1 μM eLOX3. After collection of the main 

product from RP-HPLC, it was re-purified using SP-HPLC, where it also 

chromatographed as a single peak.  

GC-MS analysis of the purified main product from 12R-HPETE was associated 

with issues of stability on GC, including the appearance of multiple GC peaks with very 

similar mass spectra. We attribute this to isomerization of the sample. (From the 

proposed configuration of this product as shown in Figure 12A, it is very possible that 

this isomerization occurs on the 9,10trans double bond and/or the 11,12trans epoxide 

moieties.) GC-MS of the methyl ester trimethylsilyl (TMS) ether derivative on a 

ThermoFinnigan Trace DSQ instrument equipped with a Restek Corporation (Bellefonte, 
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PA) Rtx-1 15 meter non-polar GC column (injection port temperature 260°C, initial 

column temperature 150°C, after 1 min temperature programmed at 10°C/min) showed 

three GC peaks with very similar mass spectra eluting at 11-12 minutes, with 

approximate peak areas of 1:1:4, respectively, in order of elution. Their retention times 

measured as C-values in comparison to fatty acid methyl esters, were 22.2, 22.8 and 23.0, 

as determined on a separate isothermal run at 200°C. Use of a lower injection port 

temperature (200°C) and isothermal GC conditions (200°C) reduced the prominence of 

the two earlier-eluting peaks. (On a different GC-MS system, HP5989A, with even more 

evidence of thermal instability, the early-eluting peak was the most prominent.) We 

conclude that the last eluting peak is most likely the non-isomerized product. The 

electron impact mass spectrum of this major GC peak is shown in Figure 10. The other 

two peaks showed the identical major diagnostic ions and almost indistinguishable mass 

spectra with the exception of a rearrangement ion at m/z 171. The ion at m/z 171 is 

retained at 171 in the ethyl ester TMS ether derivative, it is shifted to m/z 180 in the d9-

TMS derivative; it is formed by rearrangement, is not structurally diagnostic, and may 

have a formula of [C6H10-OTMS]+. In the earliest eluting GC peak, m/z 171 was the base 

peak of the mass spectrum. In the second peak, eluting just before the main peak, m/z 171 

has less than 30% relative abundance, while in the main peak, as shown in Figure 10, it is 

of medium prominence. 

GC-MS analysis (electron impact mode) of the main peak gave a mass spectrum 

of the methyl ester trimethylsilyl ether derivative with structurally significant ions (with 

assignment and relative abundance in brackets) at m/z 422 (M+, 0.1%), 407 (M-15, 3%), 

281 {C8-C20, [HCOSi(CH3)3 C2H2C2H2OC8H15]+, 74%}, and 243 {C1-C8, [CH3CO2 
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C6H10CHOSi(CH3)3]+, 14%}, the two together indicating a C-8 hydroxyl and a base peak 

at m/z 73 (100%) (Figure 10). After hydrogenation, the high-mass ions shifted by 6 mass 

units (m/z 413, M-15, 10% abundance; and m/z 397, M-31, 0.5%), whereas the two α-

cleavage ions around C-8 appeared at m/z 285 (281 + 4) (100%), and 245 (243 + 2) (98%) 

(Figure 11). When considered together with the (lack of) UV spectral characteristics, the 

structure based on the GC-MS data is compatible with a C20 fatty acid methyl ester 

containing a C-8 hydroxyl, an epoxide moiety, and three double bonds. The spectrum of 

the nonhydrogenated product showed the same major cleavage ions as an uncharacterized 

isomer of 8-hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid (hepoxilin A3) (Pace-Asciak, 

C.R. et al., 1983).    

GC-MS of the hydrogenated product, as the methyl ester TMS ether derivative, 

gave a second GC peak which eluted shortly after the epoxyalcohol on the non-polar GC 

column. Its mass spectrum showed diagnostic ions at m/z 502 (M+, <0.1% relative 

abundance), m/z 487 (M-15, <0.5%), and major α-cleavage ions at m/z 389 (C1-C12, 

22%), 359 (C8-C20, 22%), 245 (C1-C8, 70%), and 215 (C12-C20, 60%), with the base 

peak at m/z 73. The spectrum clearly indicates a structure of an 8,12-

dihydroxyeicosanaote as the methyl ester TMS ether derivative, as expected from 

opening of the epoxide during hydrogenation (Anton et al., 1998). 

1H-NMR (400 MHz, in deuterated benzene), Figure 12B and Table 2, defined the 

complete covalent structure of the product as a single diastereomer of 8-hydroxy-

11R,12R-epoxyeicosa-5,9E,14-trienoic acid (Figure 12A). All proton signals were 

assigned by H,H-COSY analysis (Figure 12C). The coupling constant between the 

epoxide protons H11 and H12 (J ≈ 2 Hz) indicates the trans configuration of the 11,12-
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Figure 10. EI mass spectrum of the methyl ester TMS ether derivative of the 
main eLOX3 product formed from 12R-HPETE. 
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Figure 11. EI mass spectrum of the hydrogenated methyl ester TMS ether 
derivative of the main eLOX3 product formed from 12R-HPETE. 
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Figure 12. NMR analysis of the main product of eLOX3 reacted with 12R-
HPETE. The proton spectrum is shown in the middle with an expanded view of the 
geminal hydroxyl and epoxide protons (H8, H11, and H12) above and the chemical 
structure at the top; below is shown the H,H-COSY analysis with the main couplings 
indicated.  
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Table 2. 1H-NMR (400 MHz, in deuterated benzene) of the main product from the 
reaction of eLOX3 with 12R-HPETE (8R-hydroxy-11R,12R-epoxyeicosa-
5Z,9E,14Z-trienoic acid).  
 

Chemical shift 
(ppm) 

Multiplicity Proton(s) 
[carbon no.] 

Coupling 
constants (Hz) 

0.97 t H20 J19,20 = 7.0 

1.3-1.4 m H17, H18, H19  

1.58 m H3  

1.96 q H4 J = 7.2 

2.05 q H16 J = 6.9 

2.11 t H2 J2,3 = 7.3 

2.19-2.36 m H7, H13  

2.82 dt H12 J11,12 = 2  

J12,13 = 5.2 

3.12 dd H11 J10,11 = 7.6 

J11,12 = 2 

3.97 m H8  

5.32-5.64 m H5, H6, H10, H14, H15  

5.86 dd H9 J9,10 = 15.6  

J8,9 = 5.5 
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epoxide, i.e. 11R,12R-epoxy, assuming, as expected, that the original 12R configuration 

is retained. The 9,10 double bond is trans (J9,10 = 15.6 Hz); the 5,6 and 14,15 double 

bonds do not participate in the transformation from 12R-HPETE and should retain the 

original cis configurations. 

Based on published NMR data it is difficult to make an assignment of the 8-

hydroxyl configuration due to chemical shifts or coupling constants (Corey and Su, 1984; 

Lumin et al., 1992). Therefore the stereo-configuration of the 8-hydroxyl was determined 

by CD spectroscopy (Schneider et al., 1997; Schneider et al., 2001b). This method 

requires the presence of two suitable chromophores at the asymmetric carbon, one being 

provided by the 9,10 double bond and the other introduced at C-8 by derivatization to the 

benzoate ester. The through-space coupling of the two chromophores gives rise to Cotton 

effects in the CD spectrum that allows assignment of the absolute configuration 

(Schneider et al., 1997). To record the CD spectra, the methyl ester benzonate derivative 

of the main product from 12R-HPETE (25 μg) was prepared. Its structure was confirmed 

by 1H-NMR (400 MHz, in CD3CN) gave in ppm (relative to residual CH3CN at δ = 1.92 

ppm): 7.80 (d, J = 7.1 Hz, 2H, Ar), 7.41 (dd, J = 6.2 Hz, 1H, Ar), 7.28 (dd, J = 7.4/7.9 Hz, 

2H, Ar), 5.81 (dd, J = 15.5/6.4 Hz, 1H, H9), 5.35 – 5.14 (m, 6H, H5, H6, H8, H10, H14, 

H15), 3.86 (s, 3H, -OCH3), 2.95 (dd, J = 7.8/1.9 Hz, 1H, H11), 2.63 (dt, J = 5.4/2.0, 1H, 

H12). The existence of the conformer in which the hydrogen at C-8 is eclipsed with the 

C9-C10 double bond was evident from the large coupling constant of 6.4 Hz between H8 

and H9.The CD spectrum showed a negative Cotton effect at 227 nm (Δε -12.5) 

indicating negative chirality between the two chromophores and therefore the absolute 

configuration can be assigned as 8R (Figure 13). Thus, the product of the eLOX3 reaction 
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Figure 13. Chiral analysis of the hydroxyl configuration in the 12R-HPETE-
derived epoxyalcohol. CD and UV spectra of the benzoate derivative of the methyl 
ester of 8-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoate were recorded in 
acetonitrile. As determined from the 1H NMR coupling constant, the preferred 
conformer of the benzoate derivative has H8 and H9 in the anti position as shown in 
the Newman projection. The CD spectrum showed a negative first Cotton effect at 227 
nm and, therefore, the chirality between the two chromophores as shown in the 
Newman projection is negative. This allowed designation of the C-8 configuration as 
8R. 
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with 12R-HPETE was identified as 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-

trienoic acid (Figure 12A). 

An EI mass spectrum is published for the methyl ester TMS ether derivative of 

“hepoxilin A3” isolated from incubations with rat lung (Pace-Asciak, C.R. et al., 1983). 

This product formed from 12S-HPETE may be a mixture of diastereomers. On GC-MS 

analysis the reported product eluted from the GC with a C-value of 23.1 on a non-polar 

SE-30 packed column. The published mass spectrum shows structurally significant ions 

at m/z 311 (C1 through C12, ~5-10% abundance), m/z 281 (C8-C20, base peak) and m/z 

243 (C1-C8, ~25% abundance), with no other prominent ions above m/z 150 and no 

higher mass ions discernable (Pace-Asciak, C.R. et al., 1983). Our spectrum of the same 

derivative of the main eLOX3 product from 12R-HPETE has the same major fragment 

ions but significant differences in ion abundances. In particular, although our spectra do 

exhibit an ion at m/z 311, (which, as expected, does shift to m/z 325 in the ethyl ester 

derivative), it is only of 1-2% abundance in the spectrum of each of the three isomeric 

GC peaks. Also, in the published spectrum the m/z 243 ion stands out much more 

prominently. It is difficult to account for the differences in character of our spectra and 

this one published in 1983 (Pace-Asciak, C.R. et al., 1983). The instrumentation 

conditions of the 1983 report (on a packed SE-30 GC column, with a separator and 

different transfer line and mass spectrometer instrumentation) differ from ours, and 

possibly a different hepoxilin A3 diastereomer was being analyzed. 
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Identification of the two main products from 12S-HPETE

The most prominent of the mixture of products from 12S-HPETE analyzed on 

RP-HPLC (Figure 8, panel B, ≈12 min retention time) gave a single peak when further 

purified on SP-HPLC (data not shown). GC-MS analysis of the methyl ester 

trimethylsilyl ether derivative gave a mass spectrum (m/z  407 [M-CH3]+, 311 

[CH3CO2C8H12CHOSi(CH3)3C2H2O]+, 282 [CH3CO2C8H12CHOSi(CH3)3 CH]+, and 269 

[CH3CO2C8H12CHOSi(CH3)3]+) that was very similar to a published spectrum of the 

same derivative of hepoxilin B3 (10-hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid) 

(Pace-Asciak, C.R. et al., 1983). 1H-NMR (400 MHz, in deuterated benzene), assigned 

from the H,H-COSY analysis, defined the covalent structure and provided key details of 

the stereochemistry (Table 3). For the proton signals from the 10-hydroxy-11,12-epoxy 

moiety, it was clear that our product from the reaction of 12S-HPETE with eLOX3 has a 

similar visual appearance and similar coupling constants to the 10R diastereomer 

(Vasiljeva et al., 1993; Bernart and Gerwick, 1994). The coupling constant between H11 

and H12 (≈2.2 Hz) indicates the 11,12-trans epoxide configuration, i.e. 11S,12S-epoxy in 

this case. Assuming that the double bonds not involved in the reaction retain their 

original cis configuration, we assign the structure as 10R-hydroxy, 11S,12S-epoxyeicosa-

5Z,8Z,14Z-trienoic acid (Figure 14). 

GC-MS analysis of the second most prominent product (10.5 min retention time 

on RP-HPLC, Figure 8) as the hydrogenated methyl ester trimethylsilyl ether derivative 

gave a mass spectrum with structurally significant ions at m/z 413 [M-CH3]+, 285 (C8 – 

C20, [HCOSi(CH3)3C2H4C2H2OC8H17]+), 245 (C1 – C8, [CH3CO2C6H12CHOSi(CH3)3]+), 

and 315 (C1 – C12, [CH3CO2C6H12CHOSi(CH3)3C2H4C2H2O]+), which is consistent with 
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the reported mass spectrum of hydrogenated hepoxilin A3 (Pace-Asciak, C.R. et al., 

1983). Although we did not obtain further structural data on this second most prominent 

product from 12S-HPETE, we can make some likely deductions. Based on its 

chromatographic properties, it is a diastereomer (not the enantiomer) of the major 12R-

HPETE-derived epoxyalcohol – the two separate on RP-HPLC. If it is assumed that the 

12S-HPETE product is a trans 11S,12S epoxide, then this would make the predicted 

structure 8R-hydroxy-11S,12S-epoxyeicosa-5Z,9E,14Z-trienoic acid (Figure 14).  

 

Identification of the main product from 15S-HPETE

By using the same lines of evidence from GC-MS and NMR, and comparison to 

published data (Corey and Mehrotra, 1983; Chang et al., 1996), the main product from 

the reaction of 15S-HPETE with eLOX3 was identified as an analog of the main 12S-

HPETE product, i.e. 13R-hydroxy-14S,15S-epoxyeicosa-5Z,8Z,11Z-trienoic acid. The 

mass spectrum of the methyl ester trimethylsilyl ether derivative showed characteristic 

ions at m/z 407 [M-CH3]+, 309[CH3CO2C11H22CHOSi(CH3)3]+ and 351 

[CH3CO2C11H22CHOSi(CH3)3C2H2O]+ (indicating the C-13 hydroxyl). After 

hydrogenation, the main structurally significant ions shifted to m/z 413 [M-CH3]+, 315 

[CH3CO2C11H16CHOSi(CH3)3]+ and 215 [HCOSi(CH3)3C2H2OC5H11]+. Both spectra are 

essentially identical to the published spectra (Narumiya et al., 1981). The NMR data are 

summarized in Table 4. We also compared this product with the products from the 

hematin-catalyzed transformation of 15S-HPETE, which we have previously 

characterized by oxidative ozonolysis, GC-MS, and 1H-NMR (Chang et al., 1996). This 
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Table 3. 1H-NMR (400 MHz, in deuterated benzene) of the main product from 
the reaction of eLOX3 with 12S-HPETE (10R-hydroxy, 11S,12S-epoxyeicosa-
5Z,8Z,14Z-trienoic acid).1
 

Chemical shift 

(ppm) 

Multiplicity Proton(s) 

[carbon no.] 

Coupling 

constants (Hz) 

0.96 t H20 J19,20 = 7.0 

1.30-1.36 m H17, H18, H19  

1.47-1.67 m H3a, H3b  

1.92-2.04 m H2a, H16  

2.08-2.17 m H2b, H4  

2.20-2.28 m H13a  

2.33-2.43 m H13b  

2.64-2.71 m H7a  

2.88 dd H11 J10,11 = 5.2 

J11,12 = 2.2 

 
(Continued in next page.) 
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Table 3. continued. 

Chemical shift 

(ppm) 

Multiplicity Proton(s) 

[carbon no.] 

Coupling 

constants (Hz) 

2.96 q H7b J = 7.9 

3.01 dt H12 J11,12 = 2.2 

J12,13 = 5.4 

4.42 dd H10 J9,10 = 8.0 

J10,11 = 5.2 

5.29 m H5  

5.43 m H6  

5.47-5.60 m H8, H9, H14, H15  

 

1FOOTNOTE: Upon transfer of this product into the non-polar NMR solvent 
(benzene) the free carboxylate lactonized to the hydroxy group at C-10. Lactonization 
was apparent from loss of the signal of the 10-OH proton, and from splitting of the 
pairs of protons for H2, H3 and H7 into two separate signals with different chemical 
shifts. 
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Figure 14. Structures of the epoxyalcohol products. The products shown are from 
12R-HPETE: 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid; from 12S-
HPETE: 10R-hydroxy, 11S,12S-epoxyeicosa-5Z,8Z,14Z-trienoic acid (product 1) and 
8R-hydroxy-11S,12S-epoxyeicosa-5Z,9E,14Z-trienoic acid (product 2); and from 15S-
HPETE: 13R-hydroxy-14S,15S-epoxyeicosa-5Z,8Z,11Z-trienoic acid. 
 

confirmed that the main product from the eLOX3 reaction with 15S-HPETE is 13R-

hydroxy-14S,15S-epoxyeicosa-5Z,8Z,11Z-trienoic acid (Figure 14). 

 

Reaction of eLOX3 with 18O-labeled hydroperoxy substrate 

[18O]15S-HPETE, with the two oxygens of the hydroperoxide labeled with 18O, 

was reacted with eLOX3 and the epoxyalcohol product was collected from HPLC and 

analyzed for 18O content by negative ion chemical ionization GC-MS. A corresponding 

GC-MS analysis of 15-HETE derived from the starting material indicated it comprised 
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92.4% 18O and 7.6% unlabeled molecules; as nearly all the molecules contain either 2 16O 

or 2 18O, the 18O-labeled 15-HPETE, with two heavy oxygens, is calculated to have a 

92% content of two atoms of 18O. GC-MS analysis of the epoxyalcohol demonstrated that 

91.6% of the product molecules contained 2 atoms of 18O; (2% contained one 18O, and 

6.4% of the molecules were unlabeled). These results indicate that there was essentially 

complete retention of the original hydroperoxide oxygens in the epoxyalcohol product. 

eLOX3, therefore, is a hydroperoxide isomerase. Although, other 18O-labeled 

hydroperoxide substrates were not available, we were able to show using an oxygen 

electrode that exogenous molecular oxygen made no significant contribution to the 

eLOX3-catalyzed transformations of the hydroperoxide substrates. 

 

The effect of NDGA on eLOX3 reaction 

In the conventional Fe2+/Fe3+ redox cycle of normal LOX catalysis, the Fe3+ 

enzyme is the active form. Thus a reducing agent such as nordihydroguaiaretic acid 

(NDGA) is frequently used as a non-specific inhibitor for typical lipoxygenases. 

Reducing agent also can be used as a co-substrate to support the pseudoperoxidase 

activity of the LOX enzymes that permits cycling of the active site iron with concomitant 

metabolism of HPETE (Kemal et al., 1987; Riendeau et al., 1991). The characteristics of 

eLOX3 in reacting with HPETE substrates resemble the pseudoperoxidase activity of  the 

LOX enzymes. To investigate the mechanism of eLOX3 reaction, we tested the effect of 

NDGA. Submicromolar concentrations of NDGA caused a dose-dependent increase in 

reaction rates of eLOX3 with HPETE substrates. The addition of NDGA increased the 

 59



Figure 15. Effect of NDGA on eLOX3 rate of reaction. The dose-dependent effects of 
NDGA are shown for the reaction of 12R-HPETE with eLOX3. Rates were determined 
by following the decrease in absorbance at 235 nm. 
 

rate of eLOX3 reaction with 12R-HPETE by 3-4 fold (Figure 15), and with 15S-HPETE 

by up to 6-fold. 
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 Table 4. 1H-NMR (400 MHz, in deuterated benzene) of the methyl ester of the 
main product from the reaction of eLOX3 with 15S-HPETE (13R-hydroxy-
14S,15S-epoxyeicosa-5Z,8Z,11Z-trienoic acid methyl ester). 
 

Chemical shift 

(ppm) 

Multiplicity Proton(s)  

[carbon no.] 

Coupling 

constants (Hz) 

0.93 t H20 J19,20 = 6.9 

1.21-1.52 m H16, H17, H18, H19  

1.67 p H3 J = 7.4 

1.92 d 13-OH J13,13-OH = 5.2 

2.06 q H4 J = 7.4 

2.18 t H2 J2,3 = 7.3 

2.80 dd H14 J13,14 = 5.1 

J14,15 = 2.0 

2.83-2.99 m H7, H10, H15  

3.44 s -OCH3  

4.37 ddd H13 J12,13 = 7.8 

J13,14 = 5.0 

J13,13-OH = 5.2 

5.34-5.64 m H5, H6, H8, H9, H11, H12  
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Discussion 

Fatty acid epoxyalcohols are produced from unsaturated fatty acid hydroperoxides, 

which are the products of the LOX enzymes in plant and animal tissues. Epoxyalcohols 

are readily formed via non-enzymatic transformations. For example, it has been reported 

that heat-insensitive heme catalysis of 12S-HPETE produce 8- and 10-hydroxy-11,12-

epoxyeicosatrienoic acids, while 11- and 13-hydroxy-14,15-epoxyeicosatrienoic acids, 

can be formed from 15R- and 15S-HPETE by hematin reaction. In general these reactions 

lack stereo-control and they do not lead to the synthesis of the distinct diastereomers that 

are likely to be involved in cell signaling or other biological functions.  

The enzymatic formation of epoxyalcohols in plant tissues is catalyzed by 

hydroperoxide isomerases. These enzymes are hydroperoxide-metabolizing enzymes 

which have formal similarities to cytochrome P450. So far, an enzyme with epoxyalcohol 

synthase activity in mammalian tissues has not been characterized, but there are reports 

about the detection of this activity in rat and human skin and appearance of the products 

in human psoriatic lesions (Nugteren et al., 1985; Anton et al., 1998; Anton and Vila, 

2000). It also has been reported that human platelet-type 12-LOX catalyzes the 

transformation of AA into epoxyalcohols (Anton et al., 1995). However, this 

epoxyalcohol synthase activity of 12-LOX is still questionable since no any products 

other than 12-HETE was formed when recombinant 12-LOX was incubated with 12S-

HPETE.  

In this study we showed a novel epidermal LOX, human eLOX3, is a functional 

and specific epoxyalcohol synthase. Although eLOX3 is clearly a member of the LOX 

gene family it does not have the LOX activity predicted from proteomic analysis. Our 
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hypothesis on its catalytic activity came from the genetic finding that mutations in the 

coding sequence of either eLOX3 or its co-localized protein 12R-LOX can cause an 

inherited skin disease, NCIE, which suggested that both enzymes might participate in the 

same metabolic pathway. Here we provide biochemical evidence that eLOX3 exhibits 

potent enzymatic activity toward the transformation of the 12R-LOX derived product, 

12R-HPETE, into a specific epoxyalcohol product, 8R-hydroxy-11R,12R-epoxyeicosa-

5Z,9E,14Z-trienoic acid. We also have shown that the LOX-products 12S-HPETE and 

15S-HPETE are converted to specific epoxyalcohol products of related structure, albeit 

with lower catalytic efficiency.  

The term “hepoxilin” is generally used to refer to groups of 12-HPETE-derived 

epoxyalcohol fatty acids that have been detected in skin and other tissues (Pace-Asciak, 

C.R. et al., 1995). Hepoxilin A3 is used for any stereoisomer with an 8-hydroxy-11,12-

epoxy structure, while hepoxilin B3 refers to the isomers with a 10-hydroxy-11,12-

epoxyeicosatrienoic acid structure. Thus the recombinant human eLOX3 forms one 

particular stereoisomer of hepoxilin A3 from 12R-HPETE, and mainly one isomer of 

hepoxilin B3 from the substrate 12S-HPETE. It remains to be elucidated the extent to 

which the eLOX3 activity is responsible for the formation of hepoxilin isomers that have 

been detected in human skin or whether additional activities or non-enzymatic reactions 

have to be considered.  

In terms of mechanism, the facets of eLOX3 reactivity that make it stand out are 

the complete absence of typical lipoxygenase (oxygenase) activity under any of the 

variety of conditions that have been explored, and also the unusual autocatalytic nature of 

the reaction with HPETE substrates. Equivalent hydroperoxide rearrangements by other 
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LOX enzymes are limited to single turnovers, unless promoted by a reducing cofactor 

(Garssen et al., 1976; Riendeau et al., 1991). In the conventional Fe2+/Fe3+ redox cycle of 

normal LOX catalysis (Figure 4), the Fe3+ enzyme is the active form that performs the 

hydrogen abstraction from the bis-allylic methylene of the fatty acid substrate. 

Oxygenation of the fatty acid radical and reduction of the peroxyl radical to the fatty acid 

hydroperoxide completes the cycle. So NDGA and other reducing agents can reduce 

Fe3+-enzyme to Fe2+-enzyme and inhibit the LOX catalyzed reaction. By contrast, in the 

reaction of eLOX3 with HPETE substrates, I found that NDGA speed up the catalysis by 

6 fold. It can be assumed that the Fe2+ enzyme is the active species, and reducing agent 

converts the pool of enzyme molecules from predominantly ferric (Fe3+) to the active 

ferrous (Fe2+) state.  

Based on this, we propose a mechanism for epoxyalcohol formation by eLOX3 as 

depicted in Figure 16. The Fe2+ enzyme initiates a homolytic cleavage of the 

hydroperoxide O-O bond (Figure 16, step 1), the resulting alkoxyl radical cyclizes to an 

epoxyallylic carbon radical (step 2) while the other oxygen of the original hydroperoxide 

is retained in a Fe3+-OH complex. The cycle is completed by an oxygen rebound type of 

reaction that forms the epoxyalcohol product (step 3) while the iron is restored to the 

active Fe2+ form. The corresponding ketoeicosatetraenoic acid is formed as a by-product 

in some of the catalytic cycles (step 4).  

Since the reaction mechanism in Figure 16 could be proposed “on paper” for any 

LOX, why is such a self-sufficient catalytic cycling observed only with eLOX3? We 

speculate that the redox state of eLOX3 may make the ferric enzyme incapable of 

performing a hydrogen abstraction from a typical lipoxygenase substrate, and thus the 
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Figure 16. Proposed mechanism for eLOX3 catalysis. 
 

protein is incapable of oxygenating a polyunsaturated fatty acid. This shift in balance of 

redox potential may, in turn, favor the reduction reaction that constitutes the basis of the 

catalytic activity we describe with HPETE substrates.  
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CHAPTER III 
 
 
 

IDENTIFICATION OF A NOVEL LIPOXYGENASE PATHWAY IN SKIN AND 
ITS MUTATION IN ICHTHYOSIS 

 
 
 

Introduction 

The formation of a bioactive eicosanoid usually occurs through the actions of a 

cascade of interrelated enzymes. Data reported in Chapter II provide evidence for the 

identification of a novel catalytic activity of eLOX3 in the conversion of HPETE 

substrates to specific epoxyalcohols (hepoxilins or hepoxilin-type products).  eLOX3 

preferentially transforms the 12R-LOX derived product, 12R-HPETE, into a specific 

epoxyalcohol product, 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid. This 

provides biochemical support that the two epidermal enzymes work together. 

The concept that 12R-LOX and eLOX3 function in the same metabolic pathway 

was proposed first in a recent genetic study which showed that mutations in one or the 

other enzyme are associated with the development of an inherited skin disease, non-

bullous congenital ichthyosiform erythroderma (NCIE) (Jobard et al., 2002). NCIE 

represents the first example in which mutations in the coding region of a LOX gene have 

been associated with a disease. This suggests that the products of both enzymes might 

serve as novel lipid mediators in normal skin physiology. Thus, identification of the 

biologically active product and its further metabolism are required to help elucidate this 

normal function. Herein I described the further enzymatic transformation of the 

epoxyalcohol product of eLOX3. 
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Although the genetic study links mutations in the coding sequence of eLOX3 or 

12R-LOX genes to the inherited skin disease NCIE, the functional impact of these 

mutations on enzyme activities has not been defined. To explore whether the mutations 

reported in NCIE patients may be associated with alteration of 12R-LOX and eLOX3 

functionality, in the current study we have mutated the corresponding amino acids in 

12R-LOX and eLOX3. After overexpressing the wild-type and mutant proteins in E. coli 

and COS7 cells, we have characterized the essential catalytic properties.  

 

Experimental Procedures 

 

Materials  

[1-14C]arachidonic acid was purchased from PerkinElmer Life Sciences. [1-

14C]15S-HPETE was prepared by reaction of [1-14C]arachidonic acid with soybean 

lipoxygenase type V (Sigma, St. Louis, MO). 12R-HPETE was prepared by arachidonic 

acid autoxidation as described previously in Chapter II. [1-14C]12R-HPETE was prepared 

by reaction of [1-14C]arachidonic acid with human 12R-LOX (Boeglin et al., 1998). 8R-

hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid (8R,11R,12R-epoxyalcohol) was 

prepared by the reaction of 12R-HPETE with human eLOX3 in pH 6.0 Tris buffer 

(Chapter II). 

 

Cell culture 

The human epidermal keratinocytes isolated from human newborn foreskins were 

purchased from Vanderbilt Skin Disease Research Center and passaged three or four 
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times. Proliferating cultures were fed every other day with complete Epi-life medium 

(0.06 mM Ca2+; Cascade).  

The COS-7 (ATCC CRL-1651) cells were routinely cultured in Dulbecco's 

modified Eagle's medium containing 10% fetal bovine serum (BioWhittaker, 

Walkersville, MD) at 37 °C, 5% CO2. They were typically split 1:6 every 3 days. 

 

Cellular hydrolysis of 8R,11R,12R-epoxyalcohol 

For incubations of the 8R,11R,12R-epoxyalcohol with COS7 cells and 

keratinocytes, a 100 mm plate (90% confluent) each was homogenized in incubation 

buffer. 4 μg of the epoxyalcohol were added to 200 μl of cellular lysate and incubated at 

37°C for 45 min. The products were extracted and analyzed by RP-HPLC and diode array 

detection using a Waters Symmetry C18 5-μm column (0.46 x 25 cm) eluted at a flow 

rate of 1 ml/min with methanol/water/acetic acid (80/20/0.01, by volume). Heat-

inactivated lysates were prepared by boiling for 10 min (COS7 cells) or 45 min 

(keratinocytes). 

 

Acid-catalyzed hydrolysis of 8R,11R,12R-epoxyalcohol 

The non-enzymatic hydrolysis of epoxyalcohol was done by treating the 

epoxyalcohol with 1% acetic acid at room temperature for 30 min. This will hydrolyze 

the epoxide and yield a series of diastereomeric isomers of trihydroxy-eicosatrienoic 

acids (triols). The mixture was analyzed by RP-HPLC using a Waters Symmetry C18 5-

μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with methanol/water/acetic 

acid (80/20/0.01, by volume) and monitoring at UV 205 nm. The diastereomers eluted 
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between 5 – 6 min were collected and further separated by SP-HPLC using a Beckman 

Ultrasphere Silica column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with 

hexane/IPA/ acetic acid (90/10/0.1, by volume). Further purification was done by chiral-

HPLC using Chiralpak AD column (0.46 x 25 cm) eluted at a flow rate of 0.5 ml/min 

with hexane/methanol/ethanol/acetic acid (95/5/10/0.1, by volume). The position of the 

hydroxy groups along the carbon chain was determined by GC-MS after hydrogenation 

(Pd/Al) and derivatization to the methyl esters TMS ethers as described previously in 

Chapter II.  

 

LC-ESI-MS analysis 

A Thermo Finnigan LC Quantum system was used. Samples were introduced via 

a Waters Symmetry C18 3-μm column (0.2 x 10 cm) eluted with a water/acetonitrile 

gradient containing 10 mM ammonium acetate at a flow rate of 0.2 ml/min. The heated 

capillary ion lens was operated at 220°C. Nitrogen was used as a nebulization and 

desolvation gas. The electrospray potential was held at 4 kV. Mass spectra were acquired 

over the mass range m/z 200 to 750 at 2 sec/scan. 

 

GC-MS analysis 

Analysis of the methyl ester trimethylsilyl ether derivatives of the products was 

carried out in the positive-ion electron impact mode (70 eV) using a Hewlett–Packard 

5989A mass spectrometer coupled to a Hewlett–Packard 5890 gas chromatograph 

equipped with an RTX-1701 fused silica capillary column (17 m x 0.25 mm internal 
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diameter). Samples were injected at 150°C, and after 1 min the temperature was 

programmed to 300°C at 10 or 20°C/min. 

 

NMR analysis 

1H NMR spectra were recorded in CDCl3 using a Bruker Avance DRX 400 MHz 

instrument. Chemical shifts are reported relative to CHCl3 (δ = 7.24 ppm). 

 

Expression and purification of human soluble epoxide hydrolase (sEH) 

The cDNA for human sEH was cloned by PCR with cDNA prepared from human 

keratinocytes. To prepare the sEH protein with an N-terminal (His)6 tag, the sEH cDNA 

was subcloned into the pET3a expression vector (Novagen, Madison, WI) with the 5' 

sequence encoded as ATG CAT CAC CAT CAC CAT CAC ACG-, with the last codon 

representing the start of the wild type enzyme. The human sEH was expressed in E. coli 

BL21 (DE3) cells (Novagen, Madison, WI) and the (His)6 tagged protein was purified on 

Ni-NTA agarose (Qiagen, Valencia, CA) according to the manufacturer’s instructions. 

Fractions of 0.5 ml were collected off the affinity column and assayed by using 

SDS/PAGE. Fractions containing eLOX3 were pooled and dialyzed against a buffer of 50 

mM Tris (pH 7.5) containing 300 mM NaCl to remove the imidazole. The activity of 

human sEH was determined by the reaction with 14,15-EET.  

 
Plasmids and Site-Directed Mutagenesis 

The cDNAs for human 12R-LOX and eLOX3 were subcloned into the pcDNA3.1 

expression vector (Invitrogen, Carlsbad, CA). Site-directed mutagenesis was carried out 
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using the Quickchange site-directed mutagenesis kit (Stratagene, La Jolla, CA) following 

the manufacturer's instructions. Site-directed mutants were selected by sequencing.  

 

Transfection and Harvesting of COS7 Cells 

Subconfluent COS7 cells in 100 mm dishes were transfected with 7 μg of wild-

type and mutant human 12R-LOX and eLOX3 plasmids or vector control using FuGENE 

6 (Roche Molecular Biochemicals). Forty-eight hours after transfection, cells were 

harvested and washed with phosphate-buffered saline, and sonicated for 5 s in incubation 

buffer (100 mM KH2PO4, 200 mM NaCl, pH 6.5). Cell lysates were assayed for protein 

content using Bio-Rad protein assay dye reagent (Bio-Rad, Hercules, CA).  

 

Western Blot Analysis 

Aliquots of cell lysates from each sample (20 μg total protein) were boiled in 

sample buffer and separated on 10% SDS-PAGE followed by transferring to a 

nitrocellulose membrane. The primary antibody used in 12R-LOX detection was rabbit 

antiserum raised against the human 12R-LOX. To analyze eLOX3 expression, the 

membranes were probed using a primary rabbit antiserum raised against human 15-LOX-

2, which will also detect human eLOX3 with sufficient sensitivity to allow evaluation of 

its expression level in the current experiments. The blots were developed with alkaline 

phosphatase-conjugated donkey anti-rabbit IgG antibodies.  
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12R-LOX and eLOX3 Activity Assays 

Aliquots of cell lysates from each sample (normalized to a similar amount of 

wild-type and mutant enzymes) were used in the incubations. The total incubation 

volume was 200 μl. For 12R-LOX activity assays, the cell lysates were incubated with 25 

μM [1-14C]arachidonic acid at 37 °C for 45 min. For eLOX3 activity assay, the cell 

lysates were incubated with 25 μM [1-14C]15S-HPETE or [1-14C]12R-HPETE at 37 °C 

for 45 min. After the incubation, protein was removed by precipitation with 500 μl of 

methanol and 250 μl of methylene chloride and subsequent centrifugation. After 

evaporation of the organic solvents, the products were recovered by extraction using a 

100-mg Oasis HLB cartridge (Waters) essentially as described by Powell (Powell, 1982). 

Product analysis was performed by RP-HPLC using a Waters Symmetry C18 5-μm 

column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with methanol/water/acetic acid 

(90/10/0.01, by volume) for incubation with 12R-LOX or methanol/water/acetic acid 

(80/20/0.01, by volume) for eLOX3. Peaks were monitored using an Agilent 1100 diode 

array detector. To detect radiolabeled products, a Packard A100 Flo-One Radiomatic 

liquid scintillation detector was connected to the Agilent 1100 diode array detector. The 

incubations with 15S-HPETE and 12R-HPETE were repeated twice with identical results.  
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Results 

 

Incubation of eLOX3 product with cell lysates 

To test the further metabolism of eLOX3 product in the cellular environment, we 

incubated the eLOX3 product 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid 

(8R,11R,12R-epoxyalcohol) with homogenates of human keratinocytes. After extraction, 

the products were analyzed by RP-HPLC (Figure 17A). The keratinocyte lysate 

converted the epoxyalcohol substrate to a major product eluting at about 5.5 min on RP-

HPLC. This product is significantly more polar than the epoxyalcohol, which elutes at 

about 9.5 min using the same RP-HPLC solvent. This suggests that, in contrast to the 

reaction of purified eLOX3 with 12R-HPETE in Tris buffer (in which the epoxyalcohol 

product is stable for analysis as described in Chapter II), in the cell lysate the 

epoxyalcohol product is further converted to more polar product. This metabolism is due 

to an inherent enzymatic activity in keratinocytes as it was markedly inhibited by prior 

boiling of the keratinocyte homogenate: heat inactivation almost completely eliminated 

the formation of the polar product as judged by the appearance of the peak detected at 

205 nm on RP-HPLC (Figure 17B). The small amount of the 5.5 min peak formed is 

likely due to incomplete inactivation of the enzymatic activity or due to non-enzymatic 

conversion.  Analysis of incubations of the 8R,11R,12R-epoxyalcohol with COS7 cell 

lysates or 12R-HPETE with COS7 cell lysate expressing wild-type human eLOX3 

demonstrated the same transformation (Page 87, Figure 25A). The polar peaks we 

detected in these incubations co-chromatographed on RP-HPLC with the product that 

was formed in the keratinocytes. 
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Figure 17. RP-HPLC analysis of the incubation of the 8R-hydroxy-11R,12R-
epoxyeicosa-5Z,9E,14Z-trienoic acid (8R,11R,12R-epoxyalcohol) with 
homogenates of human keratinocytes.  (A) The untreated keratinocyte lysate 
converted the 8R,11R,12R-epoxyalcohol mainly to one isomer of 8,11,12-
trihydroxyeicosa-5Z,9E,14Z-trienoic acid (triol, retention time 5.5 min). (B) Heat-
inactivation of the keratinocyte lysate greatly abolished the formation of the triol 
product. The products were analyzed by RP-HPLC with a Waters Symmetry C18 5 
μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with methanol/water/ 
acetic acid (80:20:0.01 by volume). The chromatograms were recorded at UV 205 nm 
using a diode array detector. 
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Identification of the polar peak from cellular incubation with the eLOX3 product

Analysis using LC-ESI-MS in the negative ion mode gave a [M-H]- ion at m/z 

353 for the peak at 5.5 min (Figure 17A), corresponding to a molecular weight of 354. 

This is 18 mass units higher than 8R,11R,12R-epoxyalcohol (MW = 336), and is 

compatible with its identity as a trihydroxy hydrolysis product.  

The 5.5 min peak was purified by RP-HPLC, converted to the methyl ester 

trimethylsilyl ether derivative, and analyzed by GC-MS analysis in the electron impact 

mode. It chromatographed as a single sharp peak on GC (Figure 18A) and gave a mass 

spectrum (Figure 18B, with m/z 570 [M-CH3]+, 213 [C12-C20]+, 243 [C1-C8]+, 371 [C1-

C11]+, 281 [C1-C11]+-90, 383 [C1-C12]+-90, and 444 [C8-C20]+) consistent with the 

structure of the parent molecule as 8,11,12-trihydroxyeicosa-5,9,14-trienoic acid. The 

mass spectrum is very similar to that reported for 8,11,12-trihydroxyeicosatrieneoic acid 

hydrolysis products derived from 12S-HPETE in platelets and rabbit aorta (Jones et al., 

1978; Pfister, S. L. et al., 2003). Furthermore, this structural identification was supported 

by 1D and 2D NMR analyses (diagnostic signals only: δ 5.82, broad s, 2H, H9, H10; δ 

5.6-5.35, m, 4H, H5, H6, H14, H15; δ 4.21, m, 1H, H8; δ 4.16, m, 1H, H11; δ 3.71, 

broad s, 1H, H12).  

We noted that hydrolysis of the authentic 8R,11R,12R-epoxyalcohol in both 

keratinocytes and COS7 cells gives a single 8,11,12-triol as judged by the sharp peak on 

RP-HPLC and GC-MS. By contrast, acid-catalyzed hydrolysis of the 8R,11R,12R-

epoxyalcohol gave a mixture of products with the two main peaks running as a broad 

partially resolved peak at ~6 min retention time on the RP-HPLC chromatogram (Figure 

19A). In SP-HPLC, these peaks were separated into 4 peaks eluted between 10 min and 
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Figure 18. GC-MS analysis of the trihydroxy hydrolysis product in the 
incubation of 12R-HPETE with COS7 cell lysate expressing wild-type human 
eLOX3.  (A) Total ion chromatogram of the methyl ester TMS ether derivative. (B) 
EI-mass spectrum of the peak at 9.58 min retention time. 
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Figure 19. Purification of the triols from the acid-catalyzed hydrolysis of 
8R,11R,12R-epoxyalcohol.  (A) RP-HPLC. (B) SP-HPLC. (C) Chiral-HPLC. (D) SP-
HPLC. The HPLC conditions were described in the Experimental Procedures. *, 
solvent artifact. **, unknown compounds with m/z =335. The peaks 1, 2, 3, 4 were 
identified in Figure 20. The cellular hydrolysis product co-eluted with peak 4 under all 
of these HPLC conditions. 
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15 min, and assigned 1-4, respectively (Figure 19B). A better purification of these 4 

peaks was achieved by running a chiral-HPLC first and then SP-HPLC (Figure 19C and 

D). GC-MS analysis suggests all of these 4 peaks are triols (two 8,9,12-triols and two 

8,11,12-triols). A tentative setero-configuration assignment of these triols was made 

based on the observations by M. Hamburg (Hamberg, 1991) and L.J. Morris (Morris, 

1963). M. Hamburg’s results suggested that in the hydrolysis of epoxyalcohol containing 

a 1-hydroxy-2,3-enonoic-4,5-epoxy structure, the solvent attack only occurs on carbon 2 

and 4 of this structure. As a result, the stereo-configurations on carbon 1 and 5 are always 

retained. Thus all of these four triols which are formed from acid hydrolysis of 

8R,11R,12R-epoxyalcohol remain the 8R and 12R configuration. As expected, threo 

trihydroxy fatty acid was less polar than the corresponding erythro compound (Morris, 

1963). So threo compound elutes earlier than erythro compound in SP-HPLC. This was 

used here to assign the stereo-configuration of the third hydroxy group. The assignment 

of the stereo-configurations of all four non-enzymatic hydrolysis products was shown in 

Figure 20. The cellular hydrolysis product from 8R,11R,12R-epoxyalcohol co-

chromatographed on SP-HPLC with triol 4 in Figure 20, which is 8R,11S,12R-

trihydroxy-5Z,9E,14Z-trienoic acid (8R,11S,12R-triol). 

 

Molecular cloning of human soluble epoxide hydrolase and its reaction with 
epoxyalcohol 
 

The stereo-specific hydrolysis of 8R,11R,12R-epoxyalcohol in keratinocyte and 

COS7 cell lysates indicates human soluble epoxide hydrolase (sEH) might be the possible 

enzyme in this transformation. To test this hypothesis, we cloned human sEH gene from 

keratinocyte cDNA and expressed it in E. coli with His6-tag. The epoxide hydrolase 
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Figure 20. Stereo-configuration of the triol products from acid-catalyzed 
hydrolysis of the 8R,11R,12R-epoxyalcohol. (1) 8R,9R,12R-trihydroxy-5Z,10E,14Z-
trienoic acid. (2) 8R,9S,12R-trihydroxy-5Z,10E,14Z-trienoic acid. (3) 8R,11R,12R-
trihydroxy-5Z,9E,14Z-trienoic acid. (4) 8R,11S,12R-trihydroxy-5Z,9E,14Z-trienoic acid. 
The cellular hydrolysis product is the same as 4. 

activity of purified sEH was determined and confirmed by the reaction of sEH with 

14,15-EET (Zeldin et al., 1995).  

The active sEH was incubated with 8R,11R,12R-epoxyalcohol. The products was 

extracted and analyzed in RP-HPLC (Figure 21A). The epoxyalcohol peak decreased and 

the major product peak eluted at about 5.5 min on RP-HPLC. This RP-HPLC spectrum is 

very similar to that of cellular hydrolysis product (Figure 21B). This suggests that 

8R,11R,12R-epoxyalcohol is a suitable substrate for human sEH. The same 

stereoconfiguration of formed triols from either sEH hydrolysis or cellular hydrolysis 

indicates sEH is the candidate enzyme catalyzed this hydrolysis reaction in keratinocytes 

and COS7 cells.  
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Figure 21. Human soluble epoxide hydrolase is the possible enzyme in 
8R,11R,12R-epoxyalcohol hydrolysis in keratinocytes. RP-HPLC analysis of 
8R,11R,12R-epoxyalcohol incubations with recombinant human sEH (A) or 
keratinocyte cell lysate (B).  
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Site-directed mutagenesis and expression of 12R-LOX and eLOX3 mutants

In NCIE patients, two point mutations in 12R-LOX (L426P and H578Q) and a 

frameshift mutation were reported, and two point mutations (R396S and V500F) and a 

truncation (change arginine 234 to a premature stop codon) were found in eLOX3 

(Jobard et al., 2002). The frameshift mutation and the truncation would be anticipated to 

eliminate the catalytic activities. To explore whether the other naturally occurring 

mutations in 12R-LOX and eLOX3 may be associated with alterations of enzyme 

activities, we constructed all of these point mutations (12R-LOX L426P, 12R-LOX 

H578Q, eLOX3 R396S, and eLOX3 V500F) by site-directed mutagenesis. All mutations 

were confirmed by sequencing of the cDNAs. 

When we expressed the His6-tagged mutants in E. coli, in contrast to the wild-

type enzymes, none of the four mutant proteins were recovered at the nickel affinity 

column step (data not shown), suggesting to us that these mutated proteins are unstable 

and fail to accumulate in the bacteria. In COS7 cells, both the wild-type and mutant 

enzymes were expressed, as observed by western blotting (Figure 22). No eLOX3 or 

12R-LOX could be detected in COS7 cells transfected with pcDNA3.1 vector alone. 

Because of slight expression variability in the wild-type and mutant enzymes (Figure 22), 

in the activity assays we used aliquots of cell lysates containing similar amount of 

eLOX3 or 12R-LOX proteins as determined by the western blotting. 

 

Activities of wild-type and mutant 12R-LOX 

The wild-type human 12R-LOX expressed in COS7 cells metabolized [1-

14C]arachidonic acid to a single product, 12R-HPETE, which was detected as its hydroxy 
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Figure 22. Expression of eLOX3 and 12R-LOX mutants in COS7 cells. COS7 cells 
expressing the different 12R-LOX (A) or eLOX3 (B) wild-type and mutants were 
grown and lysis supernatants were prepared. About 20 μg of total lysis proteins were 
applied to SDS-PAGE. The Western blot was developed either using a polyclonal anti-
human 12R-LOX antibody (A) or a polyclonal antibody raised against human 15-
LOX-2 that also detects human eLOX3 with sufficient sensitivity (B). As reference 
proteins, about 50 ng of purified His6-tagged human eLOX3 and 12R-LOX were used. 
The transfection of pcDNA3.1 vector was used as control. The results shown are 
representative of three independent experiments. 
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derivative 12R-HETE as a peak at about 6.5 min on RP-HPLC (Figure 23, panel A); 

additional more polar peaks in the chromatogram are attributed to breakdown of the 12R-

HPETE during the course of the 45 min incubation. RP-HPLC analysis of incubations 

with the L426P and H578Q 12R-LOX mutants, by contrast, revealed complete 

elimination of the catalytic activity (Figure 23, panels B and C), giving a similar profile 

to the vector control (panel D). 

 

Activities of wild-type and mutant eLOX3: experiments with 15S-HPETE substrate 

eLOX3 lacks conventional lipoxygenase activity, and instead functions as a 

hydroperoxide isomerase (Yu, Z. et al., 2003). In our first series of experiments we tested 

its activity using [1-14C]15S-HPETE as substrate as this is more readily available than [1-

14C]12R-HPETE. RP-HPLC analysis of the products formed from [1-14C]15S-HPETE by 

wild-type eLOX3 expressed in COS7 cells showed a main product peak at about 10 min 

(Figure 24, panel A). In Chapter II we identified this product, prepared using purified 

recombinant human eLOX3 protein, as the epoxyalcohol 13R-hydroxy-14S,15S-

epoxyeicosa-5Z,8Z,11Z-trienoic acid. As with the purified human eLOX3, eLOX3 

expressed in COS7 cells also produced a minor product, 15-KETE, which eluted at about 

15 min in RP-HPLC. When using 15S-HPETE as substrate, the only difference between 

incubation with cell lysates and the wild-type purified protein is that cell lysates reduced 

all the remaining 15S-HPETE to 15S-HETE. Upon incubation of 15S-HPETE with the 

R396S and V500F eLOX3 mutants, most of the substrate was reduced to 15S-HETE 

(Figure 24, panels B and C) and the profiles were indistinguishable from the vector 

control (panel D). A small peak of radioactivity was present at the retention time 
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Figure 23. RP-HPLC analysis of the reaction of 12R-LOX wild-type or mutants 
with [1-14C]arachidonic acid. COS7 cells transfected with (A) 12R-LOX wild-type, 
(B) 12R L426P (C) 12R H578Q and (D) pcDNA3.1 vector were grown and harvested.  
Aliquots of the COS7 lysis supernatants were incubated with [1-14C]arachidonic acid 
in pH 6.0 Tris buffer. The products were analyzed by RP-HPLC with a Waters 
Symmetry C18 5 μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with 
methanol/water/acetic acid (90:10:0.01 by volume). The results shown are 
representative of three independent experiments.  
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Figure 24. RP-HPLC analysis of the reaction of eLOX3 wild-type or mutants 
with [1-14C]15S-HPETE. COS7 cells transfected with (A) eLOX3 wild-type, (B) 
eLOX3 R396S, (C) eLOX3 V500F and (D) pcDNA3.1 vector were grown and 
harvested. Aliquots of the COS7 lysis supernatants were incubated with [1-14C]15S-
HPETE. The products were analyzed by RP-HPLC with a Waters Symmetry C18 5 
μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with methanol/water/ 
acetic acid (80:20:0.01 by volume). The results shown are representative of three 
independent experiments. 
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of the epoxyalcohol product (7% or less of wild-type peak of epoxyalcohol), but it was of 

similar prominence in the vector only control. The same was true for a peak of 15-KETE 

(panels B, C and D). It is well known that epoxyalcohols and keto derivatives can be 

formed through non-enzymatic transformations of HPETEs (Gardner, 1989), and most 

likely this accounts for the small peaks seen with the vector control and mutant eLOX3. 

We conclude that the mutant eLOX3 enzymes had no detectable activity in these analyses. 

 

Activities of wild-type eLOX3: experiments with 12R-HPETE substrate 

As we reported previously, eLOX3 uses 12R-HPETE as the preferred substrate 

and converts it to one of the isomers of hepoxilin A3, 8R-hydroxy-11R,12R-epoxyeicosa-

5Z,9E,14Z-trienoic acid. When we incubated [1-14C]12R-HPETE with wild-type eLOX3 

expressed in the COS7 cells, the substrate was consumed. As described earlier in this 

study, incubation of [1-14C]12R-HPETE with cell lysate expressing wild-type eLOX3 

protein formed one major product eluting at about 5.5 min on RP-HPLC, which is the 

hydrolysis metabolite of epoxyalcohol (Figure 25, panel A). Cell lysates expressing only 

the vector control converted [1-14C]12R-HPETE to a mixture of products (Figure 25, 

panel D). One peak is 12R-HETE, the reduced metabolite of 12R-HPETE. The prominent 

early peak at 4 min on RP-HPLC was tentatively identified, based on its retention time 

and characteristic conjugated dienone chromophore (λmax at 282 nm in RP-HPLC 

column solvent) as the C12 trienal acid, 12-oxo-dodeca-5Z,8Z,10E-trienoic acid. This type 

of aldehyde is formed by a hydroperoxide cleavage reaction that can be promoted by 

heme and other non-enzymatic catalysts (Dix and Marnett, 1985; Gardner, 1989). 
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Figure 25. RP-HPLC analysis of the reaction of eLOX3 wild-type or mutants 
with [1-14C]12R-HPETE. COS7 cells transfected with (A) eLOX3 wild-type, (B) 
eLOX3 R396S, (C) eLOX3 V500F, and (B) pcDNA3.1 vector were grown and 
harvested. Aliquots of the COS7 lysis supernatants were incubated with [1-14C]12R-
HPETE. The products were analyzed by RP-HPLC with a Waters Symmetry C18 5 
μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with methanol/water/ 
acetic acid (80:20:0.01 by volume). The results shown are representative of three 
independent experiments. 
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Interaction with LOX can also give rise to this cleavage product (Garssen et al., 1971; 

Glasgow et al., 1986), but there is no LOX activity in vector-transformed COS7 cells. In 

the incubations of [1-14C]12R-HPETE with both eLOX3 R396S and V500F mutations 

expressed in COS7 cells (Figure 25, panels B and C), the RP-HPLC results were very 

similar to the vector control (Figure 25, panel D). Neither epoxyalcohol nor a specific 

trihydroxy peak was detected. Both the vector control and the mutants showed a small 

broad peak at the retention time of the trihydroxy metabolite (~6 min). This may be 

composed of a mixture of products formed non-enzymatically from 12R-HPETE.  

 

Discussion 

Our results show that the 8R,11R,12R-epoxyalcohol (isomer of hepoxilin A3) 

from the reaction of eLOX3 with 12R-HPETE is easily hydrolyzed to a single 8R,11S, 

12R-triol (trioxilin A3 isomer) in both keratinocytes and COS7 cells. In buffer alone, the 

8R,11R,12R-epoxyalcohol is stable under the conditions of incubation (Tris, pH 6, 45 min 

incubation at 37 ºC) and also during extraction and HPLC. In COS7 cells or human 

keratinocytes it is converted to a single product as determined by RP-HPLC and GC-MS. 

In contrast, acid-catalyzed transformation gives a mixture of trihydroxy isomers. There is 

prior evidence that 8,11,12-trihydroxyeicosa-5,9,14-trienoic acids are formed in 

incubations of human epidermal fragments in the presence of arachidonic acid (Anton et 

al., 1995; Anton and Vila, 2000); three isomers of 8,11,12-triols as well as isomers of 

8,9,12-triols and 10,11,12-triols were identified by GC-MS (Anton et al., 1995; Anton 

and Vila, 2000). These were almost certainly derived from 12-HPETE, although the 

contributions of 12R-HPETE and 12S-HPETE are unknown. Our observations on the 
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appearance of a single isomer of 8,11,12-triol formed from the 12R-LOX/eLOX3-derived 

8R,11R,12R-epoxyalcohol point to the involvement of a specific enzyme, likely an 

epoxide hydrolase, in formation of this trihydroxy derivative. This enzymatic hydrolysis 

is also supported by the thermal instability of the activity in COS7 cells and keratinocytes. 

Boiling the cell lysate for 10 min prior to incubation with the epoxyalcohol largely 

eliminated the transformation. Candidate enzymes involved in the hydrolysis include 

cytosolic and microsomal epoxide hydrolases (Armstrong and Cassidy, 2000) or the 

hepoxilin epoxide hydrolase activity partially characterized by Pace-Asciak and Lee 

(Pace-Asciak, C. R. and Lee, 1989). We also tentatively assigned the stereochemistry of 

the triol hydrolysis product as the structure 8R,11S,12R-trihydroxyeicosa-5Z,9E,14Z-

trienoic acid formed by SN2 hydrolysis of the epoxide at C-11. Based on the specific 

catalytic activity of human epoxide hydrolases (Ota and Hammock, 1980; Armstrong, 

1999), the soluble epoxide hydrolase which can use cis-disubstituted epoxides as 

substrates is the possible enzyme involved in this hydrolysis. Our result using the 

recombinant enzyme also strongly supported this hypothesis. In human keratinocytes, this 

hydrolase activity may be the downstream enzyme in the pathway consisting of 12R-

LOX and eLOX3 to form an active mediator in the regulation of keratinocyte 

differentiation. Figure 26 summarizes all the transformations of arachidonic acid 

discussed in this study. 

NCIE is an autosomal recessive form of ichthyosis with an incidence of about 1 in 

100,000-200,000. The best characterized mutations inactivate the transglutaminase 1 

gene, with resultant defects in formation of the skin permeability barrier (Huber et al., 

1995). So far, NCIE with mutations in LOX genes has been reported in a small number of 
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Figure 26. Transformations of arachidonic acid and 12R-HPETE observed in this 
study. 

consanguineous families in the Mediterranean by Jobard et al. (Jobard et al., 2002) and in 

additional patients from an independent study in Germany (Eckl et al., 2005). In the 

present study, we show that the point mutations identified by Jobard et al. in the coding 

region of human eLOX3 and 12R-LOX completely eliminate the enzyme activities. 

These data are consistent with the concept that this loss of function of eLOX3 or 12R-

LOX is fundamental to the pathogenesis of the LOX-dependent form of NCIE. The 

findings further imply that eLOX3 and 12R-LOX activities normally are involved in the 

biochemistry underlying the process of development of an intact epidermis. This 

possibility is reinforced by the recent suggestion that a novel gene, ichthyin, may encode 
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Figure 27. Location of point mutations identified in 12R-LOX or eLOX3 genes of 
NCIE patients.  Positions equivalent to the mutated residues in eLOX3 or 12R-LOX 
are shown on the crystal structure of rabbit reticulocyte 15-LOX. Red: iron. Yellow: 
inhibitor co-crystallized in the 15-LOX active site. Green, mutated residues. 

for a putative receptor for the epoxyalcohol pathway product (Lefevre et al., 2004). 

Taken together, the genetic and biochemical insights provide new evidence of the 

involvement of LOX enzymes in the formation of the skin permeability barrier. It 

remains to be established that one can detect these specific product(s) and their 

physiological activities in normal keratinocytes. The products should ameliorate the 

symptoms of the forms of NCIE involving LOX mutations, and presumably be 

ineffective in the patients lacking the putative signaling receptor. 
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Based on the alignment of eLOX3 and 12R-LOX with rabbit 15-LOX, (the only 

mammalian LOX for which the 3-D structure is available), one of the mutations in 12R-

LOX, His578, is a ligand to the iron in the lipoxygenase active site. As expected, its 

mutation eliminates catalytic activity.  The locations of other point mutations (Arg396 

and Val500 in eLOX3 and Leu426 in 12R-LOX) are far away from the iron ligands and 

the substrate binding pocket, having no obvious connection to the active site (Figure 27). 

Mutations of these residues also rendered the enzymes completely inactive. Although 

these three mutations may not interfere with substrate binding or catalysis directly, they 

may disrupt the correct folding of the catalytic domain of the proteins. This is suggested 

by our observation that the mutated proteins failed to accumulate when expressed in E. 

coli. 
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CHAPTER IV 
 
 
 

COMPARISON OF THE CATALYTIC ACTIVITY OF MOUSE AND HUMAN 
EPIDERMAL LIPOXYGENASE 3 

 
 
 

Introduction 

One remarkable aspect of mammalian LOX enzymes is that although their 

homologs in various species share high amino acid sequence identity, some of them show 

differences in expression pattern, catalytic activity and biological function across species. 

For example, mouse has three isoforms of 12-LOX that form 12S-HPETE: platelet-type, 

leukocyte-type and epidermis-type. In human, only platelet-type 12-LOX expressed. The 

homolog of mouse leukocyte-type 12-LOX in human (15-LOX-1) mainly forms 15S-

HPETE as well as 12S-HPETE. The counterpart of mouse epidermal-type 12-LOX gene 

in human is a pseudo-gene. The mRNA transcribed from this gene contains a premature 

stop codon in sequence.  

A pertinent example here is human and mouse 12R-LOX. They share about 85% 

amino acid sequence identity but have different substrate selectivity. Human 12R-LOX 

forms 12R-HPETE from arachidonic acid and exhibit a slightly acidic pH-optimum 

(Schneider et al., 2001a). The mouse ortholog does not use free acid as substrate. In vitro 

experiment showed that only arachidonic acid methyl ester is its substrate. Also in mouse, 

no 12R-HETE has been described as an endogenous product. Mouse 12R-LOX may use a 

yet unknown natural substrate and has different functions compared to human 12R-LOX.  

In Chapter II we showed that human eLOX3 exhibits hydroperoxide isomerase 

activity and it preferentially transforms the human 12R-LOX-derived product, 12R-
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HPETE, into a specific epoxyalcohol product. In this study we will investigate the 

catalytic activity of its mouse homolog. Mouse eLOX3 is expressed in the stratified 

epithelia of skin, tongue, and forestomach, but has no detectable oxygenase activity 

(Kinzig et al., 1999). If it has similar activity as human eLOX3, the situation that the 

coupling of human 12R-LOX and eLOX3 as described in Chapter II and III may not exist 

in mouse since mouse 12R-LOX does not supply a fatty acid hydroperoxide substrate for 

eLOX3. Does mouse eLOX3 also exhibit hydroperoxide isomerase activity? If so, which 

hydroperoxide is the preferred substrate for mouse eLOX3? Is there a specific LOX 

functionally linked to mouse eLOX3 in mouse skin? The present work in this study is 

aimed to answer these questions. 

 

Experimental Procedures 

 

Expression and purification of mouse eLOX3 

The cDNA for mouse eLOX3 was cloned by PCR using cDNA prepared from 

mouse keratinocytes. To prepare the eLOX3 protein with an N-terminal 6×His tag, the 

eLOX3 cDNA was subcloned into the pCW expression vector (a generous gift from Dr. 

Michael R. Waterman, Vanderbilt University, Nashville, TN) with the 5' sequence 

encoded as ATG CAT CAC CAT CAC CAT CAC GCA-, with the last codon 

representing the start of the wild type enzyme. The mouse eLOX3 was expressed in E. 

coli BL21 (DE3) cells (Novagen) and the His6-tagged protein was purified on Ni-NTA 

agarose (Qiagen, Valencia, CA) according to the manufacturer’s instructions. Fractions 

of 0.5 ml were collected off the affinity column and assayed using SDS-PAGE. Fractions 
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containing mouse eLOX3 were pooled and dialyzed against a buffer of 50 mM Tris (pH 

7.5) containing 150 mM NaCl to remove the imidazole. 

 

Preparation of hydroperoxides 

HPETEs with specific positional and stereo configurations were prepared from 

the autoxidation of arachidonate methyl ester as described previously in Chapter II. 13S-

HPODE was synthesized from linoleic acid using soybean lipoxygenase (Sigma, Type V) 

and purified by preparative SP-HPLC (Alltech Econosil silica, 1.0 × 25 cm, hexane/ 

isopropanol/acetic acid 100:1.5:0.1 by volume at 4 ml/min). 9S-HPODE was synthesized 

using a lipoxygenase preparation from tomato fruit (Matthew et al., 1977) and purified 

using the same SP-HPLC conditions as above. The hydroperoxides were stored as a 

5 mg/ml stock solution in acetonitrile or methanol under argon at -80 °C. 

 

eLOX3 activity assay 

Incubation with the purified human or mouse eLOX3 were typically conducted in 

500 μl incubation buffer (50 mM Tris, 150 mM NaCl, pH 6.0) using 0.01 – 0.1 μM 

enzyme concentration in a 1 cm path length microcuvette. Each HPETE at the 

concentration of 30 μM was added and incubated at room temperature for 10 min. The 

HPETE concentration used here is around the Km of human eLOX3 reaction with 12R-

HPETE as described previously in Chapter II. eLOX3 activity was measured by 

monitoring the disappearance of the UV absorbance at 235 nm in the time-drive mode 

and the reaction rate was calculated from the initial linear part of the curve. 

 

 95



HPLC analysis 

Products of the eLOX3 reactions with HPETE substrates were analyzed initially 

by RP-HPLC using a Waters Symmetry C18 5μm column (0.46 × 25 cm) eluted at a flow 

rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by volume), and UV 

detection at 205, 220, 235, and 270 nm using an Agilent 1100 series diode array detector. 

The main products were recovered from the reversed-phase solvent by addition of water 

and extraction with dichloromethane. Further purification was carried out by SP-HPLC 

using an Alltech Econosil Silica column (0.46 × 25 cm), a solvent system of 

hexane/isopropanol/acetic acid (100:2:0.1 by volume), and a flow rate of 1 ml/min.  

The conjugated trienes from mouse eLOX3 and 8S-HPETE reaction were 

recovered using the same RP-HPLC conditions as above. Purified peaks were treated by 

triphenyl phosphine (TPP) to reduce the hydroperoxide to hydroxide, and then analyzed 

by RP-HPLC using a Waters Symmetry C18 5μm column (0.46 × 25 cm) eluted at a flow 

rate of 1 ml/min with methanol/water/acetic acid (75:25:0.01 by volume), and UV 

detection at 270 nm. 

 

Derivatization 

Methyl esters of the products were prepared using ethereal diazomethane/ 

methanol (5:1). Catalytic hydrogenations were performed in 100 µl of ethanol using 

about 1 mg of palladium on alumina and bubbling with hydrogen for 2 min at room 

temperature. Reactions were terminated by the addition of water and extraction with ethyl 

acetate. Trimethylsilyl ester and trimethylsilyl ether derivatives were prepared by 

treatment overnight with bis(trimethylsilyl)trifluoracetamide (10 µl) and pyridine (5 µl) 
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at room temperature. Subsequently, the reagents were evaporated under a stream of 

nitrogen and the samples were dissolved in hexane for GC-MS. 

 

GC-MS analysis

Analysis of the methyl ester trimethylsilyl ether derivatives of the products was 

carried out in the positive ion electron impact mode (70 eV) using a Hewlett-Packard 

5989A mass spectrometer coupled to a Hewlett-Packard 5890 gas chromatograph 

equipped with a RTX-1701 fused silica capillary column (17 m × 0.25 mm, internal 

diameter). Samples were injected at 150°C, and after 1 min the temperature was 

programmed to 300°C at 12 or 20°C/min.  

 

NMR 

1H NMR and 2D (H,H-COSY) NMR spectra were recorded on a Bruker DRX 

400 MHz spectrometer. The ppm values are reported relative to residual non-deuterated 

solvent (δ = 7.24 ppm for C6H6). 
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Results 

 

Reaction of human and mouse eLOX3 with natural HPETEs and HPODEs 

To compare the substrate selectivity of human and mouse eLOX3, purified human 

and mouse enzymes (about 0.01–0.1 μM) were incubated with different natural HPETEs 

or HPODEs (30 μM, which is around the Km of human eLOX3 reaction with 12R-

HPETE) at room temperature in 500 μl incubation buffer (50 mM Tris, 150 mM NaCl, 

pH 7.5) in a 1-cm path length microcuvette. The reaction rates were measured by 

monitoring disappearance of the signal at 235 nm in the time-drive mode and calculated 

from the initial linear part of the curve. The relative activities (rates of 12R-HPETE were 

set as 100) are shown in Figure 28. As described previously in Chapter II, 12R-HPETE is 

the best substrate for human eLOX3. For mouse eLOX3, 8S-HPETE is the best substrate.  

 

RP-HPLC analysis of mouse eLOX3 reaction with 8S-HPETE 

The product of mouse eLOX3 reaction with 8S-HPETE was extracted and 

analyzed by RP-HPLC using a Waters Symmetry C18 5-μm column (0.46 × 25 cm) 

eluted at a flow rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by volume) 

(Figure 29). The main product with retention time of 12 min displayed maximum UV 

absorbance at 205 nm. A minor product that eluted near 20 min had the UV spectrum of a 

conjugated dienone with λmax at 285 nm in the reversed-phase column solvent. Treatment 

of this product with NaBH4 yielded a product that cochromatographed on RP-HPLC with 

an 8-HETE standard, which, in accord with the UV spectrum and the mobility on RP-

HPLC, points to the original product being 8-ketoeicosa-5Z,9E,11Z,14Z-tetraenoic acid 
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Figure 28.  Substrate selectivity of human and mouse eLOX3.  Purified human and 
mouse eLOX3 (about 0.01–0.1 μM) were incubated with different natural HPETEs 
(30 μM) at room temperature in 500 μl incubation buffer (50 mM Tris, 150 mM NaCl, 
pH 7.5) in a 1-cm path length microcuvette. Rates were measured by monitoring 
disappearance of the signal at 235 nm in the time-drive mode and calculated from the 
initial linear part of the curve. (A) Human eLOX3 reactions. (B) Mouse eLOX3 
reactions. Rates for 12R-HPETE were set as 100% and all the other reactions were 
compared with 12R-HPETE reaction. 

A 
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(8-KETE). There are several minor products eluted between 5 and 10 min. Two 

prominent   peaks T1 and T2 (Figure 29) had the UV spectrum of a conjugated triene 

with λmax at 270 nm in the same reversed-phase column solvent.  

 

Identification of the main product from 8S-HPETE and mouse eLOX3 reaction

 

  

To prepare sufficient product for NMR analysis, 1.0 mg of 8S-HPETE was 

incubated in 25 ml of incubation buffer with 0.1 μM mouse eLOX3. The main product 

was purified from RP-HPLC and then treated with ethereal CH2N2. The methyl ester 

derivative was further purified in SP-HPLC. GC-MS analysis (electron impact mode) 

Figure 29. RP-HPLC analysis of the products in mouse eLOX3 reaction with 8S-
HPETE.  The products were analyzed by RP-HPLC using a Waters Symmetry C18 5-
μm column (0.46 x 25 cm) eluted at a flow rate of 1 ml/min with 
methanol/water/acetic acid (80:20:0.01 by volume), and UV detection at 205 nm. 
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gave a mass spectrum of the methyl ester trimethylsilyl ether derivative with structurally 

significant ions (with relative abundance in parentheses) at m/z  407 [M-CH3]+ (<1%),  

391 (M-31, <1%), 281 (C8 – C20, [C2H2OCHOSi(CH3)3 C10H17]+, 2.5%) and 239 (C10 – 

C20, [CHOSi(CH3)3 C10H17]+, 52%), indicating a C-10 hydroxyl, and a base peak at m/z 

142 (100%) (Figure 30A). After hydrogenation, the M-15 ion peak shifted by 6 mass 

units (m/z 413) and the α-cleavage ions around C-10 appeared at 243 (239 + 4) and 287 

(Fig. 30B). The predicted molecular weight of 422 is compatible with a C20 fatty acid 

methyl ester containing a C-10 hydroxyl, an epoxide moiety, and three double bonds. 1H-

NMR (400 MHz, in deuterated benzene) and all proton signals assigned by H,H-COSY 

analysis defined the complete covalent structure of the product as a single diastereomer 

of 10-hydroxy-8,9-epoxyeicosa-5,11,14-trienoic acid (Figure 31).. The coupling constant 

between the epoxide protons H8 and H9 (J=2.16 Hz) indicates the trans configuration of 

the 8,9-epoxide, i.e. 8S,9S-epoxy, assuming, as expected, that the original 8S 

configuration is retained. The coupling constant between H9 and H10 (J=4.9 Hz) 

indicates threo diasteromer of 10-hydroxy-8S,9S-epoxy, i.e., 10R-hydroxy-8S,9S-epoxy. 

All the three double bonds do not participate in the transformation from 8S-HPETE and 

should retain the original cis configurations. Overall, the structure of the main product 

from mouse eLOX3 reaction with 8S-HPETE is 10R-hydroxy-8S,9S-epoxyeicosa-

5Z,11Z,14Z-trienoic acid (Figure 31A). 

 

Production of trienes from mouse elox3 reaction with 8S-HPETE  

The mixture of products from 8S-HPETE analyzed on RP-HPLC using a Waters 

Symmetry C18 5-μm column (0.46 × 25 cm) eluted at a flow rate of 1 ml/min with 
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Figure 30. GC-MS analysis of the main product of mouse eLOX3 reacted with 
8S-HPETE. (A)  EI-mass spectrum of the methyl ester TMS ether derivative. (B) EI-
mass spectrum of the hydrogenated methyl ester TMS ether derivative. 
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Figure 31. NMR analysis of the main product of mouse eLOX3 reacted with 8S-
HPETE. The proton spectrum is shown in the middle with an expanded view of the 
geminal hydroxyl and epoxide protons (H8, H9, and H10) above and the chemical 
structure at the top; below is shown the H,H-COSY analysis with the main couplings 
indicated. 
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methanol/water/acetic acid (80:20:0.01 by volume) gave multiple peaks between 5 to 10 

min. To identify their structures, we purified the two prominent peaks T1 and T2 (Figure 

29) in the same RP-HPLC system. Based on the maximum UV absorbance at 270 nm and 

UV spectra, T1 and T2 are the mixtures of conjugated trienes. The purified peaks were 

treated respectively by TPP and then analyzed on RP-HPLC with methanol/water/acetic 

acid (75:25:0.01 by volume). Both T1 and T2 were separated into two peaks (I and II on 

Figure 32 panel A, and III and IV on Figure 32 panel B, respectively). GC-MS analysis 

(electron impact mode) gave very similar mass spectrum of the methyl ester 

trimethylsilyl ether derivatives from these 4 products with structurally significant ions at 

m/z 404 (M-90), 173 (C15 – C20), 353 (C8 – C20), 263 (353-90), and hydrogenated 

products at m/z 487 (M-15), 431 (C1 – C15), 359 (C8 – C20), 341 (431-90), 269 (359-

90), 245 (C1 – C8) and 173 (C15 – C20), indicating the four parent molecules are all 8, 

15-dihydroxy-5,9,11,13-tetraenoic acids.  There are two possible pathways to form these 

conjugated trienes from 8S-HPETE (Figure 33). One pathway is from further 

oxygenation of 8S-HPETE at carbon 15, which will form 8S,15R/S-dihydroperoxy-

5Z,9E,11Z,13E-tetraenoic acids. Via this route, the formed conjugated triene has trans-

cis-trans conformation. After TPP treatment, they will be reduced to dihydroxy fatty acid 

products and thus change the retention time in RP-HPLC (peak II and IV on Figure 32). 

The other pathway is through a LTA4-like epoxide intermediate followed by its hydration 

to give 8S,15R/S-dihydroxy-5Z,9E,11E,13E-tetraenoic acids (trans-trans-trans 

conformation for the conjugated triene). TPP treatment does not affect their retention 

time in RP-HPLC (Peak I and III in Figure 32), indicating that the products were formed 

as hydroxy derivatives, not hydroperoxides.  
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Figure 32. Production of conjugated trienes from the mouse eLOX3 reaction with 
8S-HPETE. (A) Peak T1 and (B) peak T2 in Figure 29 were purified and treated 
respectively by TPP and then analyzed on RP-HPLC with methanol/water/acetic acid 
(75:25:0.01 by volume). The UV spectra of each separated peaks (I to IV) were shown 
in inset. The conjugated trienes which have trans-trans-trans double bond 
conformation were shown in solid line (⎯⎯) and which have trans-cis-trans double 
bond conformation were shown in dashed line (……).The oxidized TPP was marked 
as *. 
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Figure 33. Possible pathways to form conjugated trienes from 8S-HPETE. 
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Reaction of mouse eLOX3 with 8R-HPETE  

Unlike human eLOX3 reaction, in which 12R-HPETE is the best substrate among 

all the natural and non-natural HPETEs and HPODEs, mouse eLOX3 prefer to react with 

the non-natural HPETE, 8R-HPETE. The reaction rate of 8R-HPETE with mouse eLOX3 

is about twice the reaction rate of 8S-HPETE with mouse eLOX3 in the same pH6.0 

reaction buffer (Figure 34A). The product of 8R-HPETE reaction with mouse eLOX3 

was analyzed in RP-HPLC using a Waters Symmetry C18 5-μm column (0.46 x 25 cm) 

eluted at a flow rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by volume) 

(Figure 34B). The main product in this reaction was eluted at 19.5 min. This product is 8-

KETE, as identified by the UV spectrum, the mobility on RP-HPLC and the treatment 

with NaBH4. In this reaction complex minor products were also formed. Based on the UV 

spectra and the retention time in RP-HPLC, the products eluted between 9 and 13 min are 

epoxyalcohols and eluted between 6 and 8 min are conjugated trienes.   
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Figure 34. Reaction of mouse eLOX3 with 8R-HPETE. (A) Compare the rate of 
mouse eLOX3 with 8S-HPETE and 8R-HPETE.  The incubation condition and 
measurement are the same as those used in Figure 28. (B) RP-HPLC analysis of the 
products in mouse eLOX3 reaction with 8R-HPETE.  The products were analyzed by 
RP-HPLC using a Waters Symmetry C18 5-μm column (0.46 x 25 cm) eluted at a 
flow rate of 1 ml/min with methanol/water/acetic acid (80:20:0.01 by volume), and 
UV detection at 205 nm. 
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Discussion 

Results shown here suggest that substrate specificity of mouse eLOX3 is different 

from the human enzyme. Among all the naturally occurring hydroperoxy fatty acids, 8S-

HPETE is the preferred substrates for mouse eLOX3. 8S-HPETE is not a natural product 

in humans, but it can be abundant in differentiating mouse epidermis and is formed by 

mouse 8-LOX (Furstenberger et al., 1991; Lehmann et al., 1992). Thus our results 

provide biochemical evidence for the coupling of mouse 8-LOX and mouse eLOX3, just 

like that described in Chapter II for human 12R-LOX and human eLOX3.  

No human LOX enzymes have 8-LOX activity. The homolog of mouse 8-LOX in 

human is 15-LOX-2. They share about 78% amino acid identity. However, the expression 

of mouse 8-LOX in skin is mainly in the differentiated epidermal layer, the stratum 

granulosum (Jisaka et al., 1997), which is similar to 12R-LOX expression in human skin 

(Keeney DS, unpublished data), while the expression of human 15-LOX-2 in skin was 

restricted to basal keratinocytes (Shappell, S.B. et al., 2001b). This indicates that the 

biological function of mouse 8-LOX might be more similar to human 12R-LOX, rather 

than its human homolog 15-LOX-2.  

Interestingly, the possibility that mouse 8-LOX may take over the functions of 

human 12R-LOX which is suggested by their expression is also indicated in skin diseases. 

In humans, the metabolism of arachidonic acid in psoriasis and other proliferative 

dermatoses is characterized by the accumulation of 12R-HETE (Hammarstrom et al., 

1975; Woollard, 1986). The enzyme to form 12R-HETE, 12R-LOX, shows  almost 

undetectable activity in normal human skin (Boeglin et al., 1998). However, its mRNA 

expression in the psoriatic lesions is up-regulated (Keeney DS, unpublished data). Similar 
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to human 12R-LOX, in a dermatitis/psoriasis model mouse 8-LOX expression is much 

higher than that in normal control (Schneider et al., 2004). 

Our results also show that for the hydroperoxy fatty acids with the same 

positional configuration, both human and mouse eLOX3 prefer “R” rather than “S” 

stereoconfiguration. As a result, mouse eLOX3 reacts with 8R-HPETE at a much faster 

rate than 8S-HPETE. 8R-LOX enzymes have been identified in coral and starfish, and the 

product 8R-HETE, not 8S-HETE, was reported to induce starfish oocyte maturation 

(Meijer et al., 1986). However, 8R-HPETE is not a natural metabolite in mouse. No 

mouse enzyme can form this unusual eicosanoid. Thus this substrate selectivity for 

mouse eLOX3 may not relate to any biological function. Further more, the reaction of 

mouse eLOX3 with 8R-HPETE produce mostly 8-KETE. Very little epoxyalcohol 

production also suggests the reaction of mouse eLOX3 and 8R-HPETE is different with 

human eLOX3, which function is indicated by the genetic findings in NCIE patients. 
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CHAPTER V 
 
 
 

PRODUCTION OF PPARα SPECIFIC LIGANDS FROM 
12R-LOX/eLOX3/sEH PATHWAY 

 
 
 

Introduction 

In chapter II and III, I identified a novel eicosanoid formation pathway in human 

skin. This pathway includes two LOX enzymes, 12R-LOX and eLOX3, and a possible 

soluble epoxide hydrolase (sEH). 12R-LOX can oxygenate arachidonic acid to form 12R-

HPETE, which is used by eLOX3 as a preferred substrate to synthesize a 8R,11R,12R-

epoxyalcohol. The epoxyalcohol is readily hydrolyzed by sEH to form a specific triol, 

8R,11S,12R-triol.  

The biological importance of one or some of these metabolites was indicated by 

the genetic evidence that either 12R-LOX or eLOX3 is mutated in a rare type of 

ichthyosis, NCIE (Jobard et al., 2002; Yu, Z. et al., 2005). This suggests that the products 

of both enzymes might serve as novel lipid mediators in the physiology of normal skin. 

Since NCIE patients are deficient in the formation of a normal epithelial water barrier, a 

reasonable hypothesis is that these metabolites might serve as an inducer of late-stage 

keratinocyte differentiation.   

Of the six LOX enzymes in the human genome, 15-LOX-2, 12R-LOX and 

eLOX3 form a subgroup with preferential expression in epithelial tissues (Krieg et al., 

2001). Their genes are located as a gene cluster on human chromosome 17p13.1, and the 

proteins share about 50% amino acid identity. A common physiological role of these 

epithelial LOX enzymes was suggested in the regulation or modulation of normal 
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proliferation and differentiation of epithelial cells and keratinocytes (Krieg et al., 2001). 

12R-LOX is expressed almost exclusively in skin. Synthesis of its product, 12R-HETE, is 

upregulated in psoriasis while it is almost undetectable in normal human skin 

(Hammarstrom et al., 1975; Woollard, 1986). 15-LOX-2 appears to modulate the 

differentiation of prostate epithelial cells and act as a negative regulator of the cell cycle 

(Tang, S. et al., 2002); its expression tends to be lost in prostate cancer (Shappell, S.B. et 

al., 1999; Shappell, S.B. et al., 2001c). Changes in LOX expression in these tissues imply 

an important role for these enzymes in the regulation of cellular proliferation and 

differentiation.  

Research on peroxisome proliferator-activated receptors (PPARs) has revealed 

that PPARs are important regulators of epidermal differentiation (Kuenzli and Saurat, 

2003). PPARs are ligand-activated transcription factors that are members of the nuclear 

hormone receptor superfamily. There are three distinct PPAR isoforms: PPARα, PPARγ, 

and PPARβ/δ. They bind to sequence-specific DNA response elements as a heterodimer 

with the retinoic acid receptor (RXR). Research on PPARs has revealed that all three 

isoforms have been identified in human keratinocytes. Whereas PPARδ is the 

predominant subtype expressed, PPARα and PPARγ are present at lower levels but are 

upregulated during keratinocyte differentiation (Hanley et al., 1998; Muga et al., 2000). 

PPARβ/δ is not implicated in differentiation but is activated in inflammation and wound 

repair (Tan et al., 2001; Tan et al., 2003). Although the identity of definitive high-affinity 

natural ligands for PPARs is lacking, there is evidence that fatty acid/eicosanoid products 

are strong activators (Yu, K. et al., 1995; Devchand et al., 1996; Kliewer et al., 1997; 

Cowart et al., 2002). 
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In this study we investigated the potential activities of these LOX-derived 

epoxyalcohols and triols on PPAR receptors. Since as a class of molecules, 

epoxyalcohols of the type generated by eLOX3 have not been tested as endogenous 

ligands of PPARs, we tested their trans-activation effect on all three receptor subtypes.  

 

Experimental Procedures 

 

Materials 

12R-HPETE and 8S-HPETE were prepared by arachidonic acid autoxidation as 

described previously in Chapter II. [1-14C]12R-HPETE was prepared by the reaction of 

[1-14C]arachidonic acid with human 12R-LOX (Boeglin et al., 1998). eLOX3 product 8R-

hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid (8R,11R,12R-epoxyalcohol) was 

prepared by the reaction of 12R-HPETE with human eLOX3 in Tris buffer (pH 6.0). 8S-

HETE was prepared by the reduction of 8S-HPETE using triphenyl phosphine (TPP). The 

synthetic PPAR ligands GW7647 (PPARα ligand), GW7845 (PPARγ ligand) and 

GW1516 (PPARδ ligand) were obtained from Glaxo Wellcome.  

 

Cell culture 

The PC-3 (ATCC CRL-1435) cells were routinely cultured in Ham's F12K 

medium containing 10% fetal bovine serum (BioWhittaker, Walkersville, MD) at 37 °C, 

5% CO2. They were typically split 1:6 every 3 days. 

 

 

 113



Plasmids 

PPRE-tk-luc (PPAR reporter plasmid expressing firefly luciferase), pRL-SV40 

(control plasmid expressing Renilla luciferase), and the expression plasmids containing 

full-length PPARα, PPARγ and PPARδ were kindly provided by Dr. Raymond N. 

DuBois (Vanderbilt University, Nashville, TN).  

 

Quantitation of authentic 8R,11R,12R-epoxyalcohol 

Since 8R,11R,12R-epoxyalcohol has very little UV absorbance and no 

commercially available standard, it is difficult to quantify. The method used here is to 

compare its relative peak height to 13S-hydroxyoctadeca-9Z,11E,15Z-trienoic acid (13S-

OH C18.3ω3)  in RP-HPLC. The quantity of 13S-OH C18.3ω3 can be easily determined 

by UV (the molar extinction coefficient is 23,000 at 235 nm). In RP-HPLC (Waters 

Symmetry C18 column, MeOH/H2O/HAc=85/15/0.01, flow rate=1 ml/min), it elutes very 

close to the 8R,11R,12R-epoxyalcohol, and therefore it is used here as an internal 

standard. The quantity of 14C-8R,11R,12R-epoxyalcohol was determined by radioactivity 

using liquid scintillation counting. The quantity of 8R,11R,12R-epoxyalcohol was 

calculated by co-injecting 8R,11R,12R-epoxyalcohol and13S-OH C18.3ω3 in the RP-

HPLC and UV detection at 205 nm:  

Quantity of 
epoxyalcohol (ng) 

Quantity of 13S-OH 
C18.3ω3 (ng) 

Height of 
epoxyalcohol (cm) 

Height of 13S-OH 
C18.3ω3 (cm) 

××= n 
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In this equation, n is the proportion of the mass extinction coefficients of 13S-OH 

C18.3ω3 and 8R,11R,12R-epoxyalcohol at 205 nm. It was obtained by co-injecting of 

14C-8R,11R,12R-epoxyalcohol and13S-OH C18.3ω3 in HPLC:  

Quantity of 14C-
epoxyalcohol (ng) 

Quantity of 13S-OH 
C18.3ω3 (ng) 

Height of 13S-OH 
C18.3ω3 (cm) 

Height of 14C-
epoxyalcohol (cm) ×

×
= n 

 

Preparation of the hydrolysis products from the 8R,11R,12R-epoxyalcohol 

The triol products from 8R,11R,12R-epoxyalcohol was prepared by treating the 

epoxyalcohol with 1% acetic acid at room temperature for 30 min. This will hydrolyze 

the epoxide and yield a series of diastereomeric isomers of trihydroxy-eicosatrienoic 

acids. The product was recovered by extraction using a 100-mg Oasis HLB cartridge 

(Waters) essentially as described by Powell (Powell, 1982).  The purification of each triol 

diastereomer was done by using SP-HPLC and chiral-HPLC as described previously in 

Chapter III. 

 

Screening for PPAR Activators using a dual-luciferase assay 

PC-3 cells (1.0 × 105 cells/well using 24-well plates) were transfected by using 

FUGENE 6 (Roche Molecular Biochemicals) at a lipid/DNA ratio of 3:1. Cells were 

exposed to a mix containing 150 ng/ml PPRE-tk-luc, 150 ng/ml one of the three PPAR 

plasmids (PPARα, PPARγ, or PPARδ), and 1.0 ng/ml pRL-SV40 in Ham's F12K 

medium. The transfection mix was replaced after 4-5 h with 10% charcoal-stripped FBS 

containing media supplemented with either 0.1% vehicle (DMSO or ethanol) or the 
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indicated compound. After 24 h, cells were harvested in 100 μl/well 1× luciferase lysis 

buffer (Promega) for 20 min at room temperature using an orbital shaker. Relative light 

units from firefly luciferase activity were determined using a luminometer (MGM 

Instruments, Hamden, CT) and normalized to the relative light units from Renilla 

luciferase which served as internal control for transfection efficiency (Promega). The 

effects of various compounds on activation of PPARs were presented as “fold-activation” 

relative to the vehicle (DMSO) control values. 

 116



Results 

 

8R,11R,12R-epoxyalcohol mediated activation of PPARα 

To test the possibility that the eLOX3-generated epoxyalcohol 8R-hydroxy-

11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid (8R,11R,12R-epoxyalcohol) could serve as 

an activating ligand for PPARs, a PPAR transactivation assay was used.  In this assay, 

PC-3 cells were transiently co-transfected with PPRE-tk-luc plasmid (PPAR reporter 

plasmid expressing firefly luciferase), pRL-SV40 plasmid (control plasmid expressing 

Renilla luciferase)and one of the three full length PPAR (PPARα, PPARγ, or PPARδ) 

plasmids. Cells then were treated with vehicle (DMSO), synthetic ligand for each 

receptor, or different concentrations of 8R,11R,12R-epoxyalcohol (0.1, 1.0, 5.0 and 

10 µM). PPAR transactivation was determined for each experimental condition using a 

dual-luciferase assay. The effects of various compounds on activation of PPARs were 

presented as “fold-activation” relative to the vehicle (DMSO) control values. 

In the PPARα transactivation assay (Figure 35), we can see that the synthetic 

ligand GW7647 (1.0 μM) produces about a 5-fold activation relative to the vehicle 

control. It is known that 8S-HETE can activate PPARα (Yu, K. et al., 1995). We also 

tested 0.1, 1.0 and 10 μM 8S-HETE on PPARα activation, which showed a dose-

dependent activation, and the maximum value is about 3.5 fold (at 10 μM concentration). 

The 8R,11R,12R-epoxyalcohol does not show activation on PPARα at low concentrations 

(0.1 and 1.0 μM). However at high concentration (5 and 10 μM), 2.2- and 2.6-fold 

activation was observed, respectively. The lower activity of 8R,11R,12R-epoxyalcohol 
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Figure 35. Activation of PPARα by the 8R,11R,12R-epoxyalcohol. PPRE-tk-
luciferase, pRL-SV40 (control plasmid expressing Renilla luciferase) and PPARα 
plasmids were co-transfected into PC-3 cells. The transfection mix was replaced after 
4-5 h with 10% charcoal-stripped fetal bovine serum-containing medium 
supplemented with either 0.1% vehicle or the indicated compound. After 24 h, cells 
were harvested in 1× luciferase lysis buffer. Relative light units from firefly luciferase 
activity were determined using a luminometer and normalized to the relative light 
units from Renilla luciferase using the dual luciferase kit (Promega). GW7647 (1 μM) 
and 8S-HETE were used as positive controls.  
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may be due to its instability in the cells comparing to the synthetic ligand and even 8S-

HETE.  

In a parallel experiment we used a chimeric receptor that contains the ligand-

binding domain of PPARα fused with the DNA-binding domain of the yeast GAL4 

transcription factor. We transiently co-transfected this chimeric receptor with pRL-SV40 

and UAS-tk-luc (a firefly luciferase reporter gene containing GAL4 response elements) in 

PC-3 cells. A similar experiment was used previously to test 8S-HETE activation of 

PPARα. However, in our experiments, neither 8S-HETE (positive control) nor the 
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Figure 36. Effects of the 8R,11R,12R-epoxyalcohol on PPARγ (A) and PPARδ (B). 
PPRE-tk-luciferase, pRL-SV40 and PPARγ (A) or PPARδ (B) plasmids were co-
transfected into PC-3 cells. The dual luciferase assay was done using the method 
similar in Figure 35. Positive control used here: GW7845 (PPARγ), GW1516 
(PPARδ), 100 nM each.  
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epoxyalcohol activated the chimeric PPARα receptor in PC-3 cells, although the 

synthetic ligand GW7647 was active (data not shown). 

We also tested 8R,11R,12R-epoxyalcohol in PPARγ and PPARδ transactivation 

assays (Figure 36). The synthetic ligand GW7845 (100 nM) activated PPARγ about 12-

fold activation relative to the vehicle control. Similarly the synthetic ligand GW1516 

(100 nM) activated PPARδ about 6-7 fold. However, at any concentration tested (0.1-10 

μM), the epoxyalcohol failed to show any activity on PPARγ and PPARδ. This suggests 

that eLOX3 produced epoxyalcohol is a PPARα-specific ligand.  
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Figure 37. Activation of PPARα by the acid-catalyzed hydrolysis product from 
the 8R,11R,12R-epoxyalcohol. Co-transfection of PPRE-tk-luciferase, pRL-SV40 
and PPARα plasmids and dual-luciferase assay were done using the method described 
in Figure 35. 8S-HETE (10 μM) was used as positive control.  
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Transactivation of PPARα by hydrolysis metabolites of the 8R,11R,12R-
epoxyalcohol  
 

8R,11R,12R-epoxyalcohol is instable in the cell. It can be hydrolyzed to form 

triols either enzymatically by soluble epoxide hydrolase (see Chapter III) or non-

enzymatically. To investigate whether the 8R,11R,12R-epoxyalcohol transactivation on 

PPARα was the result of itself or its metabolites, I tested the effect of 8R,11R,12R-

epoxyalcohol hydrolysis in the PPARα transactivation assay. 8R,11R,12R-epoxyalcohol 

was hydrolyzed in acidic condition. The hydrolyzed product was extracted and used in 

the PPARα transactivation assay (Figure 37).  A dose-dependent activation of PPARα 

was detected. At 10 μM, the transactivation by the triols is comparable to the reported 

PPARα ligand 8S-HETE. 
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Figure 38. Activation of PPARα by different triol diastereomers. Co-transfection 
of PPRE-tk-luciferase, pRL-SV40 and PPARα plasmids and dual-luciferase assay 
were done using the method described in Figure 35. 8S-HETE (10 μM) was used as 
positive control. The triols were purified from acid-catalyzed hydrolysis of 
8R,11R,12R-epoxyalcohol and their stereo configuration were assigned in Figure 20. 
 

 

In Chapter III, I showed that the acid-catalyzed hydrolysis of 8R,11R,12R-

epoxyalcohol produces four different triols. We also tentatively assigned the 

stereoconfiguration of each triol. Here I tested each triol on PPARα activation (Figure 

38). We can see that each of the four triols activated PPARα. Triol 1 and triol 4 showed 

higher activity. During the purification of the triols, we produced very little of triol 1 

sufficient for only one data point in this experiment, so its activity will need to be 

confirmed. The triol 4 (8R,11S,12R-trihydroxy-5Z,9E,14Z-trienoic acid) is the enzymatic 

product by soluble epoxide hydrolase, and its moderate activation effect on PPARα is 

reproducible.  
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Discussion 

As a large class of fatty acid derivatives, the epoxyalcohols and related 

metabolites have not been tested previously as PPAR ligands (they are not commercially 

available). Here we characterized the ability of eLOX3-produced 8R,11R,12R-

epoxyalcohol and its hydrolyzed product to transactivate PPARα, while no activity was 

found on PPARγ and PPARδ, suggesting that they are specific agonists for the PPARα 

receptor. This is the first reported biological activity of this type of epoxyalcohol or triol 

eicosanoids on nuclear receptors and suggests that fatty acid oxygenase metabolism by 

LOX enzymes might represent a novel pathway for the generation of ligands for nuclear 

receptors. 

In our experiments, we used the full length wild type PPAR receptors and natural 

PPAR-response elements to test the transactivation by epoxyalcohol and triols. In some 

previous studies (Gupta et al., 2000; Shappell, S.B. et al., 2001a), chimeric PPARs in 

which PPAR ligand binding domains were fused to a heterologous DNA-binding domain 

(GAL4) were also used in similar assays. The use of GAL4 DNA-binding domain and its 

response element UAS can greatly reduce background when compared to assays 

involving transient transfection of wild type PPARs. However, the fusion receptor may 

lead to differences resulting from altered DNA binding and/or heterodimerization with 

RXR. In our experiments, we noticed that both the well established PPARα ligand 8S-

HETE (Yu, K. et al., 1995) and epoxyalcohol can not activate PPARα-GAL4 in PC-3 

cells, while the synthetic ligand can. Using wild-type full length PPARα, the activations 

by not only the synthetic ligand, but also 8S-HETE and epoxyalcohol were observed. 
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This suggests that the binding of eicosanoids to PPARα may require other sequences 

which do not exist in our PPARα-GAL4 construct.  

Since both the epoxyalcohol and the triol can activate PPARα, we still do not 

know whether the effect of the epoxyalcohol is direct or whether it acts through its triol 

metabolite. But the fact that low concentrations of epoxyalcohol have no effect might 

indicate that the triol is the direct ligand for PPARα. This hypothesis needs to be further 

tested by using radiolabeled ligand in a direct binding assay.  

Although we showed that eLOX3-produced epoxyalcohol and its hydrolyzed 

metabolite can activate PPARα, whether signaling through this nuclear receptor is the 

mechanism of eLOX3 action in skin still needs to be assessed. Recently a novel gene, 

ichthyin, was found mutated in the same type of ichthyosis as 12R-LOX and eLOX3 

mutations (Lefevre et al., 2004). This gene encodes a membrane protein with seven to 

nine transmembrane domains. It will be interesting to investigate whether ichthyin serves 

as a cell surface receptor for the products from the novel eicosanoid pathway identified in 

this study.  

The finding that the eLOX3-produced epoxyalcohol activates nuclear receptor 

may have important function in other tissues. Although skin is where eLOX3 is most 

strongly expressed as judged by RT-PCR, selected other organs give positive signals 

(Krieg et al., 2001). A recent report has implicated eLOX3 expression in facilitating the 

early stages of a classic model system, the PPARγ-induced differentiation of 

preadipocytes (Madsen et al., 2003).  
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CHAPTER VI 

 

SUMMARY 

 

The enzymatic reactions of arachidonic acid and related polyunsaturated fatty 

acids by COX, LOX and P450 enzymes form specific molecules in cell signaling. Their 

roles in inflammation have been well studied and this knowledge has led to new 

therapeutic advances. For example, the COX and 5-LOX enzymes are the targets of 

important classes of anti-inflammatory and asthma medications (Carter et al., 1991; 

Mitchell et al., 1993). 

The skin displays a highly active metabolism of arachidonic acid. A complex 

mixture of eicosanoids is reported in human skin, and these include HETEs of both the R 

and S stereoconfigurations (Hammarstrom et al., 1975; Woollard, 1986). Usually they are 

the products of LOX reactions. Among the LOX family, 15-LOX-2, 12R-LOX and 

eLOX3 form a subgroup with preferential expression in epithelial cells. The three 

epithelial LOX enzymes are located as a gene cluster on human chromosome 17p13.1, 

and the proteins share about 50% amino acid identity (Krieg et al., 2001). A common 

physiological role of these epithelial LOX enzymes was suggested in the regulation or 

modulation of normal proliferation and differentiation of epithelial cells and 

keratinocytes (Brash, 1999; Muga et al., 2000; Funk, C.D., 2001). For example, 12R-

LOX is upregulated in psoriasis while it is almost undetectable in normal human skin 

(Boeglin et al., 1998; Schneider et al., 2001a). So far 15-LOX-2 has received most 

attention among the three epithelial LOX enzymes. It appears to modulate the 
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differentiation of prostate epithelial cells (Shappell, S.B. et al., 2001a), its expression is 

lost in prostate neoplasia and adenocarcinoma (Shappell, S.B. et al., 1999), and it acts as 

a negative regulator of the cell cycle in normal prostate epithelial cells (Tang, S. et al., 

2002).  

Human eLOX3 was discovered in 2001 (Krieg et al., 2001). As a member of the 

epithelial LOX subfamily, it contains the characteristic well-conserved amino acid 

residues found in all LOX enzymes, including the putative iron-binding ligands and 

additional structure-determining residues. The question of the catalytic activity of eLOX3 

has, nonetheless, remained elusive. No conventional LOX activity has been detected. 

However, an important role of eLOX3 in skin pathophysiology was strongly indicated by 

a genetic study which linked mutations in the coding sequence of the human eLOX3 gene 

to the development of an inherited skin disease, non-bullous congenital ichthyosiform 

erythroderma (NCIE) (Jobard et al., 2002). NCIE represents the first example where 

improper LOX expression has been shown to have direct pathophysiological 

consequences. The disease is characterized by hyperkeratosis and epidermal dysfunction 

leading to a white flaky skin with transepidermal water loss. A second group of families 

with NCIE showed somatic mutations in the gene of a related epithelial LOX, 12R-LOX 

(Jobard et al., 2002).  

The finding that mutations in either 12R-LOX or eLOX3 resulted in the same 

disease phenotype led the authors to speculate that both enzymes might participate in the 

same metabolic pathway, and that this pathway would have a crucial role in the normal 

functioning of human skin (Jobard et al., 2002). From a biochemical point of view, at 

first glance this hypothesis seemed surprising. eLOX3 and 12R-LOX are both LOX 
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enzymes theoretically catalyzing the same type of reaction on polyunsaturated fatty acid 

substrates. Furthermore, recombinant eLOX3 has been shown to be lacking any 

demonstrable catalytic activity at all (Kinzig et al., 1999).  

Here we provided biochemical evidence that demonstrates a specific catalytic 

activity for eLOX3 and potentially provides a functional link with 12R-LOX. eLOX3 

exhibits potent enzymatic activity toward the transformation of the 12R-LOX derived 

product, 12R-HPETE, into a previously undescribed epoxyalcohol product, 8R-hydroxy-

11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid (8R,11R,12R-epoxyalcohol) plus a minor 

product 12-keto-arachidonic acid (12-KETE). We also have shown that the LOX-

products 12S-HPETE and 15S-HPETE are converted by eLOX3 to specific epoxyalcohol 

products of related structure, albeit with lower catalytic efficiency. The very fact of 

enzymatic conversion and especially the preference of eLOX3 for 12R-HPETE support 

the hypothesis suggested by Jobard and colleagues on the existence of a specific pathway 

involving the two LOX enzymes (Jobard et al., 2002). An additional supportive finding is 

that eLOX3 and 12R-LOX have similar tissue expression patterns in humans (Krieg et al., 

2001), making the conversion of 12R-HPETE into the specific epoxyalcohol a reaction 

likely to occur in vivo. The platelet-type 12-LOX and the two 15-LOX enzymes (15-

LOX-1 and 15-LOX-2) are also expressed in human skin potentially providing 12S-

HPETE and 15S-HPETE as alternative substrates.  

The transformation of fatty acid hydroperoxides to epoxyalcohol derivatives is a 

facile non-enzymatic reaction, the chemistry of which has been studied extensively 

(Gardner, 1989). Free heme or transition metals will initiate the reaction. The non-

enzymatic products are a mixture of isomers with different positional and stereo 
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specificity. However, our results suggest that catalysis by eLOX3 has the heat-

inactivation characteristics of an enzyme, and its products show stereospecificity. Thus 

this reaction requires the protein nature of eLOX3, not only the iron center.  

Due to this unexpected catalytic activity of the novel epidermal LOX, eLOX3, it 

is of mechanistic interest to compare the reaction mechanism of eLOX3 with other 

typical LOX enzymes. The facets of eLOX3 reactivity that make it stand out are the 

complete absence of oxygenase activity under any of the variety of conditions that have 

been explored, and also the unusual autocatalytic nature of the reaction with HPETE 

substrates. Equivalent hydroperoxide rearrangements by other LOX enzymes are limited 

to single turnovers, unless promoted by a reducing cofactor (Garssen et al., 1976; 

Riendeau et al., 1991). In the conventional Fe2+/Fe3+ redox cycle of normal LOX 

catalysis (Figure 4), the Fe3+ enzyme is the active form that performs the hydrogen 

abstraction from the bis-allylic methylene of the fatty acid substrate. Oxygenation of the 

fatty acid radical and reduction of the peroxyl radical to the fatty acid hydroperoxide 

completes the cycle. In the discussion of Chapter 2, we proposed a novel mechanism for 

the reaction of eLOX3 with HPETE substrates. It can be assumed that the Fe2+ enzyme is 

the active species (Figure 16). The Fe2+ enzyme initiates a homolytic cleavage of the 

hydroperoxide O-O bond, the resulting alkoxyl radical cyclizes to an epoxyallylic carbon 

radical while the other oxygen of the original hydroperoxide is retained in a Fe3+-OH 

complex. The cycle is completed by an oxygen rebound type of reaction that forms the 

epoxyalcohol product while the iron is restored to the active Fe2+ form. The 

corresponding ketoeicosatetraenoic acid (KETE) is formed as a by-product in some of the 

catalytic cycles. A notable consequence of this unusual catalytic cycle is that the reducing 
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agent nordihydroguaiaretic acid (NDGA), a typical LOX inhibitor that reduce the 

catalytic iron to ferrous, actually promotes eLOX3 reactivity, as shown in our study. 

Since this reaction mechanism could be proposed “on paper” for any LOX, why is 

such a self-sufficient catalytic cycling observed only with eLOX3? We speculate that the 

redox state of eLOX3 may make the ferric enzyme incapable of performing a hydrogen 

abstraction from a typical lipoxygenase substrate, and thus the protein is incapable of 

oxygenating a polyunsaturated fatty acid. This shift in balance of redox potential may, in 

turn, favor the reduction reaction that constitutes the basis of the catalytic activity we 

describe with HPETE substrates. 

After identifying the novel catalytic activity of eLOX3, it was important to test 

whether the mutations reported in NCIE patients may be associated with alteration of 

eLOX3 as well as 12R-LOX functionality. NCIE is an autosomal recessive form of 

ichthyosis with an incidence of about 1 in 100,000-200,000. The best characterized 

mutations inactivate the transglutaminase 1 gene, with resultant defects in formation of 

the skin permeability barrier (Huber et al., 1995; Akiyama et al., 2003). So far, NCIE 

with mutations in lipoxygenase genes has been reported in a small number of 

consanguineous families in the Mediterranean (Jobard et al., 2002) and more recently in 

Central Europe, Turkey, and the Indian subcontinent (Eckl et al., 2005). In Jobard study, 

two point mutations (L426P and H578Q) and a frameshift mutation were reported in 

12R-LOX and two point mutations (R396S and V500F) and a truncation (change arginine 

234 to a premature stop codon) were found in eLOX3 (Jobard et al., 2002).  The 

frameshift mutation and the truncation will definitely eliminate the catalytic activities. 

Based on the alignment of eLOX3 and 12R-LOX with rabbit 15-LOX, the only 
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mammalian LOX for which the 3-D structure is available, one of the mutations in 12R-

LOX, His578, is a ligand to the iron in the LOX active site. As expected, its mutation 

eliminates catalytic activity.  The locations of other point mutations (Arg396 and Val500 

in eLOX3 and Leu426 in 12R-LOX) are far away from the iron ligands and the substrate 

binding pocket, having no obvious connection to the active site. In the present study, we 

showed that all these point mutations completely eliminated the enzyme activities. 

Although these three mutations may not interfere with substrate binding or catalysis 

directly, they may disrupt the correct folding of the catalytic domain of the proteins. This 

is suggested by our observation that the mutated proteins failed to accumulate when 

expressed in E. coli. These data are consistent with the concept that loss of function of 

eLOX3 or 12R-LOX is fundamental to the pathogenesis of the LOX-dependent form of 

NCIE. The findings further imply that eLOX3 and 12R-LOX activities are involved in the 

biochemistry underlying the process of development of normal intact epidermis.  

Our results also show that the 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-

trienoic acid (8R,11R,12R-epoxyalcohol) formed from the reaction of eLOX3 with 12R-

HPETE is easily hydrolyzed to a single 8R,11S,12R-triol derivative in both human 

keratinocytes and COS7 cells. The human soluble epoxide hydrolase (sEH) is the 

candidate enzyme involved in this transformation, as our results show that the 

recombinant sEH can catalyze the same hydrolysis reaction in vitro. In human 

keratinocytes, sEH may be the downstream enzyme in the pathway consisting of 12R-

LOX and eLOX3 to form an active mediator in the regulation of keratinocyte 

differentiation, or to eliminate the active metabolite.  
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The term “hepoxilin” is used to refer to groups of 12-HPETE-derived 

epoxyalcohol fatty acids that have been detected in skin and other tissues (Pace-Asciak, 

C.R. et al., 1995). Hepoxilin A3 is used for any stereoisomer with an 8-hydroxy-11,12-

epoxy structure, while hepoxilin B3 refers to the isomers with a 10-hydroxy-11,12-

epoxyeicosatrienoic acid structure. Their hydrolysis products are named “trioxilin A3” 

and “trioxilin B3”, respectively. So far, an enzyme with hepoxilin synthase activity in 

human skin has not been cloned, but there are reports about the detection of this activity 

in rat and human skin and appearance of the hepoxilin and trioxilin products in human 

psoriatic lesions (Nugteren et al., 1985; Anton et al., 1998; Anton and Vila, 2000). In the 

novel eicosanoid formation pathway identified in our study, human eLOX3 converts 12R-

HPETE to one particular stereoisomer of hepoxilin A3, which is further hydrolyzed by 

human sEH to produce only one stereospecific trioxilin A3. From 12S-HPETE, mainly 

one isomer of hepoxilin B3 is formed. It remains to be elucidated whether this novel 

pathway can account for the formation of the hepoxilin and trioxilin isomers described in 

human skin, whether additional activities or non-enzymatic reactions have to be 

considered.  

The biological activity of these stereospecific hepoxilin or trioxilin-like products 

from this pathway remains to be assessed. Structurally related compounds have been 

reported as signaling molecules. For example, the bioactive principal of one of the 

endothelial-derived relaxing factors is a closely related trihydroxy derivative of 

arachidonic acid (Pfister, S.L. et al., 1998; Campbell et al., 2003). Another example is 

that hepoxilins have been shown to increase intracellular calcium levels (Reynaud et al., 

1999). In our study, we provide evidence of a new activity that these products are specific 
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ligands for the nuclear receptor PPARα. PPARα has been identified in human 

keratinocytes (Hanley et al., 1998; Komuves et al., 2000). It is present at low levels but is 

upregulated during keratinocyte differentiation (Hanley et al., 1998; Muga et al., 2000). 

Other eicosanoids were also reported as PPARα-specific ligands (Yu, K. et al., 1995; 

Devchand et al., 1996; Cowart et al., 2002). The activation of PPAR through 

epoxyalcohols has not been tested previously, since these compounds are not 

commercially available. Our results provide the first example of such activation by 

epoxyalcohol or its metabolites. However, whether signaling through PPARα is the 

mechanism of eLOX3 action in skin still needs to be assessed. Recently a novel gene, 

ichthyin, was found mutated in a similar type of ichthyosis as associated with 12R-LOX 

and eLOX3 mutations (Lefevre et al., 2004). This gene encodes a putative membrane 

protein with seven to nine transmembrane domains. It will be of great interest to 

investigate whether ichthyin serves as a cell surface receptor for the products from the 

novel eicosanoid pathway identified in this study.  

The eLOX3-derived 12-ketoeicosatrienoic acid (12-KETE) was identified as a by-

product in our in vitro experiments with pure enzymes. However it was not detected by 

HPLC analysis if the reaction was performed in cell lysates. This may be due to reduction 

of the keto product to the HETE or its adduction to cellular GSH. Whether such a GSH 

adduct from 12-KETE has distinct biological activity is not known. It has been reported 

that adduction of GSH to arachidonic acid derived metabolites can be used for activation 

of various eicosanoids in cells. The best recognized example of activation is the 

conjugation of GSH to the 5-LOX product LTA4 by LTC4 synthase (Samuelsson et al., 

1987a). LTC4 and the downstream cysteinyl leukotrienes are potent mediators of asthma 
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and bronchoconstriction (Drazen et al., 1999). Another well studied reaction is the 

Michael addition of GSH to the electrophilic eicosanoid 5-oxo-eicosatetraenoic acid 

leading to formation of 5-oxo-7-glutathionyl-8,11,14-eicosatrienoic acid (Murphy and 

Zarini, 2002). This adduct has distinct physiologic activity and has been found to cause a 

potent chemotactic response in human eosinophils and neutrophils (Bowers et al., 2000).  

The genetic study suggests that mutations in eLOX3 and 12R-LOX genes can 

cause ichthyosis. Thus a useful tool to study ichthyosis pathogenesis is to construct 

knock-out mouse models. However, for LOX enzymes, the structural homologs between 

mouse and human do not share functional homology.  For example, the mouse 12R-LOX, 

in contrast to human 12R-LOX, has feeble catalytic activity and is incapable of 

metabolizing free arachidonic acid, although it will oxygenate arachidonate methyl ester 

(Krieg et al., 1999). Thus gene targeting technique may not be helpful in studying the 

biological function of 12R-LOX. Here we showed that mouse eLOX3 has a different 

spectrum of substrate specificity compared to human eLOX3. While human eLOX3 

recognized 12R-HPETE as its best substrate, mouse eLOX3 prefers 8S-HPETE. This 

suggests that eLOX3 might couple with the mouse 8-LOX. In other words, mouse and 

human eLOX3 have substrate specificities tailored to the species-specific complement of 

LOX enzymes in epidermis. Interestingly, similar to the up-regulation of 12R-LOX in 

human psoriasis (Hammarstrom et al., 1975; Woollard, 1986), in a dermatitis/psoriasis 

model mouse 8-LOX expression is much higher than that in normal control animals 

(Schneider et al., 2004). Thus the LOX enzymes involved in epidermal differentiation in 

the mouse are likely not equivalent to humans, although their physiological roles may be. 

Mouse 8-LOX may take over the functions of human 12R-LOX.  
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Figure 39. A novel lipoxygenase pathway in skin. 
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In conclusion, these studies have delineated a novel eicosanoid formation 

pathway including 12R-LOX, eLOX3 and soluble epoxide hydrolase (Figure 39). This 

pathway produces hepoxilin-like and trioxilin-like molecules which serve as signaling 

molecules in cell differentiation and proliferation. Our results may explain why mutations 

in either 12R-LOX or eLOX3 genes are detrimental to the homeostasis of human skin. 

While this work has answered many of the questions that initiated this project, it has 

generated many as well. It remains to be determined whether the epoxyalcohols or triols 

are active metabolites from this pathway, whether other enzymes are also involved in this 

pathway, how this pathway participates in epidermal differentiation, and whether such 
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effects contribute to the pathogenesis of ichthyosis. There are excellent prospects for 

future therapeutic interventions based on understanding the role of this newly identified 

pathway. Its products may possibly be effective as a topical treatment of ichthyosis and 

other skin disorders of cornification. The questions on the downstream signaling, such as 

whether the PPARα is the only target for the products from this novel pathway, and what 

other nuclear receptors or cell surface receptors are involved, also remain to be 

determined. Finally, the relationship between ichthyin and this novel eicosanoid 

formation pathway, and the roles of their mutations in ichthyosis are also interesting areas 

to be studied. Our work provides the basis from which such investigations can be 

undertaken. 
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