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CHAPTER 1 
 

INTRODUCTION AND OVERVIEW 
 

    Clinical prediction models are developed to support patient and provider decision-

making,1, 2 assist in resource allocation,3 and adjust quality metrics for acuity4-6 across an array 

of clinical specialties and settings.4, 6-11 Opportunities to deploy prediction models in support of 

patient-level decision-making are arising as the adoption of advanced electronic health records 

(EHRs) accelerates.4, 12-17 At the same time, our understanding of the challenges of 

incorporating predictive analytics into clinical care is rapidly evolving, requiring new methods 

and evidence-based recommendations.  

One challenge central to the long-term, prospective application of prediction models is 

the continuously evolving nature of clinical environments and the resulting tendency of model 

performance to deteriorate over time.10, 11, 18-23 Patient mix may change gradually or quickly as 

populations age, new facilities bring new populations to a health system, or models are 

transported across clinical settings.24-27 Predictor-outcome associations may shift along with 

practice patterns or the healthcare process model, such as changes in clinical guidelines, 

provider experience, coding practices, measurement accuracy, EHR interfaces, data entry 

workflows, and data definitions.10, 11, 27, 28 Such changes impact model performance, particularly 

in terms of calibration, in ways that vary in magnitude and form depending on the model’s 

underlying learning algorithm.18, 19, 29  

Models underlying population health management, quality assessment, and clinical 

decision support applications require a high degree of accuracy and developers must be 

responsive to any degradation in performance. As a result, updating strategies to sustain 

performance are becoming critical components of model implementations. A range of updating 

methods are available to correct performance drift, from simple recalibration to full model 

revision (i.e., refitting) and even model extension with the incorporation of new predictors.10, 11, 26, 

27, 30 These updating methods vary in complexity, data requirements, and analytical resource 

demands.10, 11, 26, 27, 30 While a lack of model updating can harm the performance and utility of 

predictions, common default model maintenance strategies, such as regularly scheduled model 

refitting,27, 31, 32 may be inefficient or even detrimental.10, 11, 22 Such predefined updating plans 

also fail to account for variations in the response of different learning algorithms to changes in 

clinical environments, which may impact the timing, extent, and form of shifts in model 

accuracy.18, 19, 29  
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Despite literature documenting performance drift18-20, 23, 29 and the availability of multiple 

updating methods,10, 26, 30, 33 guidance is needed to better inform the appropriate timing and 

methods for model updating in practice. Recommendations on the design of model maintenance 

protocols are limited and provide little insight into how differences between learning algorithms 

may impact updating requirements. Best practices must balance the amount of available 

evidence in new patient data, the desire to avoid overfitting, and the reliability of the predictions 

on which users depend. Additionally, as the volume and complexity of prediction models 

implemented in production EHR and ancillary clinical systems expands, automated surveillance 

procedures that can be deployed on a collection of active models are needed. 

 

Specific Aims 
 

The central objective of this dissertation is to develop a suite of methods supporting 

data-driven model updating strategies and active model surveillance systems in order to 

consistently retain model calibration over time for both regression and machine learning models. 

While performance drift may affect models predicting categorical, continuous, or time-to-event 

outcomes, in this work we focus on dichotomous categorical outcome models. With this in mind, 

we will pursue the following specific aims. 

 

Aim 1. To describe dynamic calibration curves that provide on-going insight into 
model performance. In order to understand whether and to what extent performance drift may 

be impacting the utility of a prediction tool, it is critical to efficiently maintain an up-to-date 

representation of model performance as it changes over time. By continuously updating as data 

accumulates, our method for dynamic calibration curves is designed to visualize evolving forms 

of calibration and support calculation of detailed performance metrics reflecting current model 

accuracy. We hypothesized that dynamic calibration curves will quickly shift curves in response 

to changes in model performance, capturing the new form of calibration across the range of 

predictions without requiring users to fully refit the curve on a new batch of recent data.   

 
Aim 2. To design a calibration drift detection algorithm that alerts users to 

deteriorating model performance. In order to support timely response to performance drift, we 

leverage the dynamic calibration curves developed in Aim 1 to construct a calibration drift 

detection system. Using an adaptive windowing monitor,34 we designed a system that both 

provides a data-driven approach to initiate model updating as performance declines and inform 
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the updating process with insight into defining an updating dataset. We hypothesized that our 

calibration drift detection system would 1) detect multiple forms and speeds of performance drift, 

and 2) report a window of observations with similar performance characteristics to that occurring 

at the time of drift detection. 

 

Aim 3. To develop a model-agnostic testing procedure to select between 
competing updating methods. In order to correct performance drift and maintain 

generalizability of updated models, we define a nonparametric testing procedure that selects 

between available updating methods while controlling for sample size and overfitting. The 

objective of our testing procedure is to recommend simple updates that provide comparable or 

superior performance to more sophisticated updating methods. We seek to address limitations 

of other tests33 by developing a procedure that is customizable and widely applicable to models 

for categorical outcomes regardless of the underlying learning algorithm. We hypothesize that 

applying the recommendations of our testing procedure, as opposed to a predefined model 

refitting strategy, will minimize model adjustments, improving prospective model performance, 

and lead to more stable performance over time. 

 

This work promotes a shift away from inefficient and potentially sub-optimal “one-size fits 

all” updating strategies.18, 19, 29, 33 The methods developed here can be used to tailor model 

updates to address the requirements of specific use cases and prediction models. Together 

they lay the ground work for the design of automated, EHR-embedded prediction model 

surveillance procedures that promote the long-term performance and utility of prediction models 

underlying a variety of informatics applications for decision support and population 

management. 

 

Dissertation Roadmap 
 

In this dissertation, we begin in Chapter 2 with background on performance drift and the 

state of the art of both model updating and drift detection, highlighting key advantages and 

limitations in the existing literature. Chapter 3 describes the concept of a data-driven model 

surveillance and updating system, with an emphasis on how such a system fits into the existing 

prediction model lifecycle.  

 Chapter 4 presents a method for constructing dynamic calibration curves to maintain a 

current understanding of model calibration at any given time. We use incremental gradient 
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descent with an adaptive learning rate to continuously learn up-to-date calibration curves 

without having to repeatedly refit curves on a sliding window of recent observations. This 

approach to model validation is designed for use with streaming data, making it well-suited for 

clinical environments continuously managing new patients and care encounters. These dynamic 

curves not only allow the estimations of stringent calibration metrics on the fly, but also provide 

a visualization of the evolving nature of model calibration.  

Leveraging these dynamic calibration curves, we then propose and evaluate a 

calibration drift detection system in Chapter 5. This data-driven method seeks to alert users to 

any deterioration in model performance in order to support a timely response and restoration of 

acceptable levels of accuracy. Our detector, built on the adaptive windowing method,34 is 

applicable to dichotomous outcome models regardless of the underlying learning algorithm, 

making the approach relevant for systems managing suites of diverse prediction models. To 

further support model managers, we designed the calibration drift detection system to provide 

actionable alerts by including information on a window of recent data that may be appropriate 

for updating, if required. 

Chapter 6, based on a study published in the Journal of the American Medical 

Informatics Association,35 develops a nonparametric testing procedure that recommends 

updating methods while minimizing overfitting and accounting for uncertainty associated with 

the updating sample size. The testing procedure permits customization to meet use case 

requirements and is widely applicable to both parametric and nonparametric models. We 

illustrate the properties of our procedure on both simulated scenarios of population shifts that 

impact clinical use cases and two models developed and applied over time to Department of 

Veterans Affairs inpatient admissions. 

In Chapter 7, we explore the implications of using a data-driven strategy to guide 

selection of updating methods and the impact of underlying model learning algorithms. Based 

on a paper accepted for publication in the 2019 Proceedings of the AMIA Annual Symposium,36 

this chapter compares three scheduled updating strategies—retention of the original model, 

predefined model refitting, and test-based updating with the recommendations of our 

nonparametric testing procedure. These strategies are applied across multiple years of data on 

hospitals admissions in national populations for which calibration drift and variability in drift by 

learning algorithm has been previously documented.18, 19 We assess differences in 

discrimination and calibration over time under each updating strategy, as well as whether and 

how the learning algorithm underlying the model impacts updating requirements and accuracy. 
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Finally, in Chapter 8, we bring these methods together to discuss how they can be 

integrated into the data-driven model surveillance and updating system described in Chapter 3. 

We consider the advantages and limitations of these methods, the contributions of this work, 

and remaining methodological gaps warranting future research.  
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CHAPTER 2 
 

BACKGROUND 
 

   With the increasingly widespread incorporation of advanced predictive analytics into 

electronic health records and healthcare applications,4, 12, 14, 15 our understanding of the 

challenges presented by their use in clinical care is rapidly evolving. We focus on one such 

challenge, that of deteriorating model accuracy as patient populations and the processes of 

clinical care shift over time.10, 11, 20-23 In order to support patient safety, user confidence, and 

clinical utility, strategies to restore and sustain model accuracy are becoming critical 

components of predictive analytics implementations. Here we review how and why performance 

of prediction models changes over time; current methods for and approaches to model 

updating; existing data-driven updating techniques; and opportunities for improvement. 

 

 The Concern of Performance Drift 
 

Performance of prediction models is commonly measured along two dimensions – 

discrimination (i.e., the ability to separate populations with and without the outcome or to 

correctly rank-order observations by risk) and calibration (i.e., the agreement between individual 

predicted and true probabilities).37 While discrimination focuses on whether a model typically 

assigns higher predicted probabilities to observations with the outcome than observations 

without the outcome, it does not consider whether those predicted probabilities are well-aligned 

with observed outcome rates (i.e., calibrated). Although both facets of model performance are 

important to consider when evaluating a new model, they may not be equally important in all 

contexts.23, 37-40 For use cases aiming is to stratify individuals by risk category, discrimination 

may suffice; for use cases presenting personalized predicted probabilities in support of decision-

making, calibration becomes critical.4, 7, 11, 22, 23, 38, 41 Erroneous patient-level risk estimates 
produced by miscalibrated models may lead to over-confidence, inappropriately alter 
treatment choices, or misappropriate resources.4, 23, 40, 42 For example, patients may be 

dissuaded from pursing potentially effective treatments when presented with elevated estimates 

of complication risk or may elect to undergo difficult treatments when presented with inflated 

estimates of negative disease prognosis.23, 42 Even in the case of risk stratification, however, 

model calibration can significantly impact our understanding for those patients near clinically 
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meaningful cut-points, emphasizing the importance of aligning predicted probabilities with true 

risk across the range of patient risk.39 

Focusing on different dimensions of model performance impacts our understanding of 

the stability of performance as models are deployed over extended timeframes. In temporal 

validation studies, stable discrimination of clinical prediction models has been documented up to 

20 years after model development.18-20, 23, 29, 43-47 Calibration, on the other hand, has been 

observed to be quite susceptible to deterioration. A review of temporal calibration studies 

revealed calibration of clinical prediction models deteriorates over time, typically in the direction 

of overprediction and in many cases within the five years after model development.18-20, 23, 43, 48-52 

Figures 1 and 2 illustrates this pattern of stable discrimination alongside drifting calibration for 

models predicting hospital-acquired acute kidney injury and 30-day mortality after hospital 

admission in national cohorts of admissions to Department of Veterans Affairs facilities.18, 19 

Such performance drift has implications for the reliability of predictions, user trust in predictive 

applications, and model utility. For example, Minne et al documented the consequences of 

calibration drift on quality assessments, finding assessments of mortality rates among intensive 

care units to be overly optimistic as a result of uncorrected calibration drift.20  

 

Figure 1.  Annual performance by learning algorithm of a model for hospital-acquired acute 

kidney injury. Adapted from data in Davis et al.19  
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Figure 2.  Annual performance by learning algorithm of a model for 30-day mortality after 

hospital admission. Adapted from data in Davis et al.18  

 

 
 

Performance drifts over time as a result of models being deployed in non-
stationary clinical environments where differences arise over time between the population on 

which a model was developed and the population on which that model is applied. This may 

include shifts in outcome rates, patient case mixes, and predictor-outcome associations.10, 11, 23, 

25 Data shifts that impact model performance are complex and can stem from the patient, 

provider, care process, or administrative domains (see Table 1).10, 11, 27, 28 They may evolve 

gradually, for example when patient populations experience demographic shifts or new practice  

 

Table 1.  Example ways in which populations, clinical practice, and clinical data may change 

over time to impact prediction model performance. 

 

Populations Clinical Practice Information 

• Demographics 
composition10, 23, 24 

• Risk factors 
distributions18, 23, 24 

• Outcome incidence23, 53 

• Care access/utilization24-

26 

• Treatment patterns/ 
preferences22, 26, 53 

• Clinical guidelines54 

• Workflows/processes55 

• Provider experience10, 56 

• Scientific insights10 

• Clinical information 
system design57, 58 

• Coding practices59, 60 

• Data definitions10, 26, 55 

• Measurement patterns 
and accuracy10, 55, 61 
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patterns emerge among care providers. They may also occur suddenly, as may be the case 

when new facilities join a health system or models are transported across clinical settings.24-27 

Predictor-outcome associations may change in expected ways under new clinical guidelines or 

unexpected ways as information systems and workflows evolve.10, 11, 24, 27, 28  

Anticipating when and in what form performance drift may arise as a result of data shifts 

is challenging. Limited research has directly studied the link between performance drift and 

temporal changes in patient populations or clinical environments. However, the available 

evidence suggests patient case mix, outcome rates, and predictor-outcome associations do not 

shift in isolation, and complex, simultaneous shifts may be typical.18, 19, 23, 62, 63 Studies also 

reveal prediction models based on common regression and machine learning algorithms are all 

susceptible to calibration drift. The form, degree, and speed of that calibration drift, 
however, varies by learning algorithms and data shift circumstances.18-20, 29 All models 

methods are susceptible to changes in the underlying event rate, while shifting case mix and 

predictor-outcome associations may have a greater impact on regression than machine learning 

approaches.18, 19 These findings highlight the need to tailor the response to performance 
drift around model features and the environment in which models are applied. 

 

State of Model Updating 
 

A Spectrum of Updating Methods 
 

For predicted probabilities to be meaningful and potentially useful in clinical care, 

predictions must be highly accurate and reliable.4, 41, 64 Thus systems for responding to 

performance drift and returning performance to acceptable levels are required. Inadequate 

performance of clinical prediction models commonly prompts researchers to develop entirely 

new models.11, 22, 53 As a result, many models are published for the same outcome,10, 53, 65 

creating numerous competing models and complicating broad implementation. This approach 

also neglects information from previous modeling efforts and often utilizes smaller datasets than 

the original model.10, 11, 22 Alternatively, a variety of model updating methods, varying in 
comprehensiveness, are available, many of which retain and extend knowledge from 
previous modeling efforts.10, 11, 24, 26, 27, 30  

Table 2 described a series of increasingly detailed updating methods that are widely 

applicable to dichotomous outcome models developed with a variety of learning algorithms. 

These methods vary in their ability to address different aspects of calibration drift, as well as  
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Table 2.  Overview of common, widely applicable model updating techniques ordered by 

complexity/degree of model transformation. 

 

 Method Description Issues addressed 

0 Retention of 
original 
model 

The original model is unchanged. None 

1 Intercept 
correction 

Predictions from the original model are 
adjusted based on a logistic model with only an 
intercept. 

Systematic 
over/underprediction 

2 Linear 
logistic 
recalibration 

Predictions from the original model are 
adjusted based on a logistic model defining a 
linear relationship between predictions and 
outcomes. 

Over/underfitting and 
systematic 
over/underprediction 

3 Flexible 
logistic 
recalibration 

Predictions from the original model are 
adjusted based on a logistic model allowing 
nonlinear (e.g., spline, polynomial) 
relationships between predictions and 
outcomes. 

Complex miscalibration 
varying in form and 
magnitude across range 
of prediction 

4 Partial 
association 
adjustment 

A combination of logistic recalibration and re-
estimation of select predictor coefficients 
(parameter models only) 

Complex miscalibration 
with special attention to 
known changes in 
variable relationships or 
definitions 

4 Model 
refitting/ re-
estimation 

The model is re-estimated on new data with no 
changes to variable definitions or model form. 
Hyperparameters may be retuned. 

Complex miscalibration, 
including that due to 
predictor-outcome 
association changes 

5 Model 
revision / 
extension 

The model is built on new data with possible 
changes to predictor set and/or model 
parameterization. 

Complex miscalibration 
including that due to 
predictor-outcome 
association changes or 
omitted variables 

 

their complexity and data requirements. Recalibration techniques (i.e., methods 1-4 in Table 2) 

retain information in existing models and improve generalizability, making these approaches 

preferable to model rebuilding and model revision when recalibration is sufficient to improve 

performance to acceptable levels.11, 24, 26, 30 Common recalibration methods include intercept 
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correction and linear logistic recalibration.10, 11, 26, 30 These methods are based on mean and 

weak calibration metrics, which are limited in the forms of miscalibration they can detect.39 Such 

approaches may thus not be able to correct for complex miscalibration that varies in direction 

and/or magnitude across the range of predicted probabilities. Flexible logistic recalibration can 

provide more nuanced correction for models in which calibration varies in magnitude and form 

across the range of predicted risk.66 Although able to correct for more complex forms of 

miscalibration, flexible logistic recalibration has yet to be widely implemented. For those cases 

in which local knowledge indicates specific predictor definitions have changed or the literature 

highlights new predictors warranting inclusion, partial association adjustment combining both 

recalibration and estimation of select additional coefficients may be appropriate.24, 26 Rebuilding 

the original or an extended model with new data may be required in response to substantial 

data shifts, significant care process changes, or critical new biological or system insights.24  

 
Limitations of Current Updating Strategies  
 

Despite recommendations emphasizing a consideration of recalibration prior to refitting a 

model,11, 24, 26, 30 current updating protocols often call for regularly scheduled model refitting on 

an annual or biannual basis.27, 31, 32 This baseline approach requires users make critical 

assumptions regarding the form and pace of performance drift. While a lack of model 
updating can harm the performance and utility of predictions, common prescribed 
updating strategy may be inefficient or even detrimental.10, 11, 22, 35 

By defaulting to refitting models at each update point, this strategy presumes data shifts 

warrant abrupt forgetting and retraining of all previously learned associations. As noted above, 

not only does this approach neglect information gleaned from previous modeling efforts, but can 

also lead to overfit models that lack generalizability, especially when updating datasets are 

smaller than development cohorts.10, 11, 22, 33 Such predefined updating plans also fail to account 

for variations in the response of models trained with different learning algorithms to changes in 

clinical environments, which may impact the extent and form of changes in model accuracy18, 19, 

29 Recalibration may be more appropriate than refitting for models in clinical use when 

equivalent or improved performance can be achieved by the former. At the other extreme, 

refitting a model may not sufficiently correct performance if care processes have been modified, 

variable definitions or measurement accuracy have changed, or new predictors are available.24 

For these reasons, the selection of updating methods likely requires more guidance and 

flexibility than current typical updating strategies provide. 
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Prescheduled updating protocols, paying little or no attention to model performance 

between scheduled maintenance periods, may not be sufficient to ensure stable model 

accuracy. Performance drift occurs at variable speeds due to both the rate of change in 

populations and clinical practice, as well as how quickly different models respond to such 

changes.18, 19 During periods of rapid performance drift, waiting for scheduled updating points 

may allow for unacceptably long durations of reduced accuracy in the interim. On the other 

hand, during periods of relatively stable performance, scheduled updates may result in 

unnecessary refitting of well-performing models, possibly reducing model generalizability and 

reliability. Implementing methods to detect performance drift would support triggered, data-

driven model updating that responds to performance drift as it occurs, improving model stability 

with efficient model updating. 

 

Alternative Strategies and Their Limitations 
 

Thus far, our discussion has focused on updating as a means to restore the performance 

of static prediction models. Online learning algorithms, which continuously update models as 

new observations become available,28, 67, 68 stand as an alternative to periodic updating of static 

models with either predefined or data-driven strategies. By incorporating changes in the 

environment as they occur, online models may provide more stable performance over time 

compared to static models.27, 28, 62, 67, 68 While online models have been applied to health 

outcomes, such continuously updated models have yet to be incorporated into clinical tools.27, 28, 

63  

The shift to an online paradigm is not straightforward for clinical use cases. Documenting 

the performance characteristics of continuously changing online models will require the 

development of new validation techniques.28, 67 Methodological innovation will also be required 

to enable online versions of additional learning algorithms, particularly for increasingly popular 

deep learning models. As was the case with the introduction of machine learning, the 

incorporation of new modeling techniques into clinical applications is accompanied by a need for 

user education to ensure acceptance and understanding. A fundamental change in the structure 

of clinical prediction models from a static to a dynamic online context will require similar 

investment.67 From a policy perspective, the regulatory framework governing the implementation 

of online models in clinical settings is in early development and continues to evolve.69 As a 

result of these larger challenges to the implementation of continuously updated prediction 
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models, we focus further discussion and methods development within the current, static 

modeling context.  

 

Data-Driven Updating 
 

The variety of possible causes of and responses to performance drift warrant flexible 

and customizable model updating strategies. Data-driven methods guiding when and how to 

respond to deteriorations in model performance may promote long-term model utility while also 

addressing the requirements of specific use cases and prediction models. 

 

Techniques Informing the Method of Updates 
 

Given the variety of available model updating methods, there is a need for guidance 

regarding the selection of the most appropriate method in a given performance drift scenario. 

Vergouwe et al33 recently described a closed testing procedure to select between updating 

methods with the aim of balancing the amount of available evidence in new observations and 

the desire to avoid overfitting. Using a series of likelihood ratio tests and assuming model 

refitting is the gold standard updating approach, the closed testing procedure selects the 

simplest updating method providing a fit similar to model refitting. Figure 3 illustrates this closed 

testing process.  

 

Figure 3.  Vergouwe et al’s closed testing procedure to select among updating methods. 

 

 

Not 
significant

Not 
significant

Not 
significant

Test 1: refit vs original 
model

Significant

Test 2: refit vs 
intercept correction

Test 3: refit vs linear 
logistic recalibration

Select original model

Select intercept 
correction

Select linear logistic 
recalibration

Select model refitting

Significant
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This testing procedure is limited in a number of ways. First, the approach assumes the 

user is interested in updating a model built using logistic regression. However, clinical prediction 

models are increasingly being developed with nonparametric and semiparametric machine 

learning and regression techniques.4, 12-16 As our prior work revealed, all modeling methods are 

susceptible to performance drift, and the form of drift varies across modeling methods due to 

differences in their robustness to changes in clinical environments.18, 19 The closed testing 

procedure also exhibits too strong a preference for model refitting, recommending this method 

even when refitting does not provide performance advantages over recalibration.70 We observed 

this testing procedure’s preference for refitting in our own work as well (see Chapters 6 and 7). 

These results appear to stem from a lack of explicit correction for overfitting and the assumption 

that a refit model is always the leading choice. In case of small updating samples, a refit model 

may be overfit and falsely appear to outperform other updating methods. Taken together, 
these limitations suggest a need for a more general method to select between updating 
techniques that can be widely applied regardless of a model’s learning algorithm and 
without presuming simpler updates will never outperform refitting.  
 

Techniques Informing the Timing of Updates 
 

The literature on concept drift (i.e., changes in distributions of predictors and outcomes) 

has long recognized the need to detect and respond to deteriorations in the performance of 

prediction models. A variety of data-driven concept drift detection algorithms have been 

developed to track performance and trigger model updating.34, 68, 71-73 This research has typically 

focused on classification problems and thus drift detection studies have concentrated on 

identifying increasing rates of misclassification.68, 72-74 For example, spam filters use prediction 

models to learn patterns distinguishing message types and are judged by their ability to 

accurately label new messages rather than their ability to predict the probability of whether each 

message is spam. These models experience drift as spam generators regularly change their 

approach to avoid detection. Drift detection algorithms aim to identify increases in the frequency 

of spam emails entering inboxes or legitimate messages being sent to junk folders. This 

translates into identifying changes in model discrimination. For clinical prediction models, 

however, we are more interested in identifying calibration drift than discrimination drift. 

Calibration is both more susceptible to drift18, 19, 23, 29 and more critical to clinical decision-making 

applications.20, 39-42, 46  
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While several major methods, including the drift detection method (DDM)75 and early drift 

detection method (EDDM),72 are designed to track Bernoulli distributed error metrics and may 

not be easily extended to the calibration setting, other methods may be more amenable to 

tracking calibration metrics. Statistical process control charts (SPC),76 and extensions such as 

cumulative sum (CUSUM)68 and exponentially weighted moving average (EWMA) charts,73 may 

be applicable to calibration drift detection. SPC methods have been implemented for a variety of 

healthcare applications—including tracking outcome rates,77, 78 device safety,77, 79, 80 quality 

improvement,77, 81-84 and model performance.29, 85 Prior work evaluating performance drift with 

SPC methods has focused on retrospective forensic evaluations of model deterioration.22,65 Our 

searches did not revealed studies using these methods to trigger model updating in response to 

calibration drift. One variation of SPC, variable life adjusted years (VLAD) charts,86 does track 

calibration using differences in observed and expected outcomes; however, this crude measure 

of calibration may not be sensitive enough to capture the diversity of calibration drift patterns. 

Other SPC methods may be able to detect changes in calibration, but do not necessarily 

provide guidance on what recent data may be relevant for subsequent model updating. Adaptive 

windowing (Adwin)34 may be the most relevant drift detection method for identifying calibration 

drift. Although originally described using classification error, the Adwin algorithm does not 

presume users are interested in tracking a Bernoulli distributed metric34 and may thus be 

extensible to calibration metrics. Adwin also inherently provides a window of recent data that 

may be suitable for updating in response to any detected drift.34 We discuss the Adwin method 

in more detail in Chapter 5. 

While existing drift detection algorithms were not designed with calibration in 
mind or may be limited in their direct applicability to surveilling clinical prediction 
models, these methods do offer insight into how we might design a calibration drift detection 

system for clinical use cases. We briefly discuss some of these insights here and will revisit 

them in subsequent methods development chapters. 

 

Predict-diagnose-update scheme 

 

Most drift detection approaches are variations on the predict-diagnose-update 

scheme.68, 72, 73 As new observations arrive, the active model makes a prediction. Once the 

outcome is observed, the detector evaluates the stability of the process and alerts the user to 

any significant change in performance. When the detector identifies a change, the model is 
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updated in response. This framework is equally well-suited for surveilling models for changes in 

misclassification or calibration. 

 

Patterns of drift 

 

Studies of drift detection methods have explored multiple dimensions of data shift and 

resulting performance drift. Model performance may change abruptly, incrementally, or 

seasonally. The magnitude of change may be small or large.68 Each drift detection method is 

better suited to detect certain forms of drift than others.68, 87 For example, EDDM is more 

successful at identifying gradual changes than DDM,72 and EWMA charts can detect smaller 

changes than traditional SPC charts.73 With their focus on classification rather than probability, 

many drift detectors seek to simply recognize increases in error rates.68 On the other hand, as 

we design a calibration-focused drift detector, we need to carefully consider the ways in which 

calibration may change. In our prior work exploring calibration over time, we noted some models 

experienced changes in the proportion of observations in calibrated regions of the probability 

scale, while other models had a relatively consistent proportion of observations in calibrated 

areas but experienced changes in the magnitude of over/underprediction among miscalibrated 

observations.18, 19 The ability of our calibration drift detection system to address various speeds, 

magnitudes, and forms of calibration drift will be a key consideration.  

 

Data longevity 

 

The influence of each observation over time—both in terms of information content and 

storage requirements—varies across drift detection methods. Methods may be equally weight 

(e.g., DDM), abruptly forgot (e.g., sliding window), or gradually downweight (e.g., EWMA) older 

observations as newer observations accumulate.68 This choice can influence how quickly 

changes are identified under different forms of drift.68 In addition, many drift detection algorithms 

are designed to be used with streaming data, where observations arrive sequentially and storing 

all observations in memory is impractical or impossible.68, 72, 73 Thus, algorithms commonly track 

and evaluate summary measures of performance rather than metrics that require all 

observations be available for distributional comparisons.68 Some methods (e.g., DDM and 

EDDM) that avoid storing all observations in memory will store chunks of data during warning 

periods when drift is suspected.68 This approach may be especially useful for informing the 

construction of updates sets when drift is detected.68  
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False alarms and speed of detection 

 

The drift detection literature also highlights the importance of balancing false alarms, 

missed detections, and detection delays. The error tolerance parameter of each method informs 

the relative risk of false alarms and time from the start of performance drift to detection of the 

drift. However, even with careful parameter setting, methods may be more or less susceptible to 

false alarms under different speeds and magnitudes of performance drift.68, 74, 87 New detection 

methods have often been developed in response to specific scenarios in which existing 

methods struggled. For example, EDDM was designed to detect gradual drift in response to 

limitations of DDM’s performance in such cases.72 A calibration drift detector should be 

designed to correctly trigger under common forms of miscalibration. 

 

Methodological Gaps and Opportunities for Improvement 
 

As the volume, complexity, and variability of prediction models implemented in health 

systems grows, data-driven updating policies could support model developers and managers as 

they endeavor to provide stable and accurate model performance. Data-driven updating 

strategies tailored to detect and respond to performance drift will become key components of 

automated surveillance systems underlying a variety of informatics applications. As highlighted 

in this chapter, current data-driven methods do not fully address the requirements of clinical use 

cases. New methods are needed to inform when and how to update clinical prediction models in 

order to respond to performance drift in a timely manner and promote prospective performance 

of updated models. These data-driven methods should be applicable to models regardless of 

the underlying learning algorithm and should be customizable to those aspects of model 

performance most relevant to each use case. We seek to develop these essential methods and 

evaluate their properties in a variety of settings.  
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CHAPTER 3 
 

A FRAMEWORK FOR DATA-DRIVEN MODEL UPDATING 
 

With increasing recognition of the need to maintain clinical prediction models over time, 

updating strategies to sustain performance are becoming critical components of the clinical 

modeling process. Figure 4 illustrates how common, prescribed model updating protocols 

integrate with the model development and implementation process. Plans calling for scheduled 

model refitting of deployed models create a straightforward cycle within the modeling process. 

However, as described in the previous chapter, such updating strategies neglect information 

learned from prior modeling efforts, are often more subject to overfitting than original models,10, 

11, 22 may not temporally align scheduled updating points with the speed of performance drift, 

and ignore the varying susceptibility of learning algorithms to changes in clinical 

environments.18, 19, 29  

 

Figure 4.  The clinical prediction modeling process with a predefined updating strategy. 

 

 
 

In response to these limitations, we offer the revised clinical prediction modeling process 

in Figure 5. Using a data-driven updating strategy, incoming data on new patients and clinical 

encounters guide the updating process for deployed prediction models as performance 

deteriorates. A data-driven updating approach not only tailors the timing of updating, but also 

the means by which models are updated. Rather than assuming refitting a model on a new 

batch of recent data is always the best approach, a data-driven system considers model refitting 

as well as updating methods that integrate existing model insights with information in recent 

data. Under both the original and revised modeling processes, updated models will require  
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Figure 5.  The clinical prediction modeling process with a data-driven updating strategy. 

 

 
 

validation to ensure clinically acceptable performance is restored prior to continued model 

deployment. 

A data-driven updating approach to model maintenance requires a suite of new methods 

that learn from evolving patient data streams. Through the series of studies described in this 

dissertation, we seek to develop the methods required to enable this data-driven model 

updating cycle. We address four key questions that any data-driven updating system must 

consider: 

 

1. How is model performance evolving over time? 

2. When has performance drifted significantly such that updating may be 

warranted? 

3. What window of recent data should be used to update the model once drift is 

detected? 

4. What is the best updating method to apply in order to improve performance while 

maintaining generalizability of the model for future patients? 

 

We propose methods to address each question. First, dynamic calibration curves assess 

model performance in real-time, providing visualizations of changing model performance and 

supporting calculation of up-to-date stringent calibration metrics. Second, our calibration drift 

detection system alerts users to significant changes in model calibration and indicates a window 

of recent data they may be appropriate for model updating in response to this performance drift. 
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Finally, our nonparametric testing procedure evaluates competing updating methods to 

recommend model adjustments that improve performance while promoting model 

generalizability and applicability to subsequent patients. By using the accumulation of observed 

data to answer each question rather than making assumptions regarding the timing and form of 

performance drift, our data-driven methods may support more consistent, reliable, and efficient 

clinical prediction. 

In Figure 6, we integrate these methods into a conceptual model for a data-driven active 

model surveillance and maintenance system. Such a system is built on the predict-diagnose-

update scheme central in the drift detection literature.68, 72, 73 When data on a new observation, 

or patient in our case, arrives, a prediction is generated using the current, active version of the 

prediction model. The error of this prediction is then estimated from the current dynamic 

calibration curve, which is subsequently updated once the observation’s outcome becomes 

available. The prediction error is submitted to the calibration drift detection system which 

monitors the distribution of prediction error over time, triggering an alert when a change in the  

 

Figure 6.  Conceptual model of a data-driven active model surveillance and maintenance 

system. 
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error distribution is observed. In addition to alerting the user to performance drift, the detector 

notes the set of recent data that appears to have a consistent prediction error distribution and 

may be a good candidate for use in subsequent updating. When performance drift is signaled, 

the testing procedure is initiated and compares available updating methods using data from the 

suggested window to train each updating method. The test-recommended updating method is 

applied and this revised model becomes the new active model to be applied as new patients 

continue to arrive. 

While the data-driven methods we develop here can be used in conjunction, as 

illustrated in Figure 6, we can also conceive of independent use cases for each method. For 

example, dynamic calibration curves may be implemented for visualization or metric monitoring 

in a dashboard without integrated testing and alerting. While the calibration drift detection 

system we describe in Chapter 5 is tightly linked to dynamic calibration curves, implementing 

the system with an alternative calibration metric removes this dependency. Similarly, our testing 

procedure to recommend updating methods could be implemented as needed or on a schedule 

rather than in response to a detected drift in performance.  

Each of our data-driven methods is designed with three key features in mind. The 

methods should be practical in that they accomplish their stated goals without undue 

computation or analytic resource burdens. The methods should be generalizable to any 

categorical prediction model, regardless of the underlying learning algorithm. The methods 

should be customizable to meet the unique needs of diverse clinical use cases. We will return 

to these requirements in the final chapter to evaluate the strengths and limitations of the 

methods as developed through the course of this dissertation. 
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CHAPTER 4 

 
DYNAMIC CALIBRATION CURVES FOR CONTINUOUS 

MODEL EVALUATION 
 

In this chapter, we propose a method for constructing dynamic calibration curves to 

provide on-going, up-to-date insight into model performance as it evolves over time. We bring 

together methods for graphical model validation39 and continuous learning from streaming 

data68 to provide continuous model assessment while minimizing both computational demands 

and assumptions regarding the time horizon of performance drift. These dynamic calibration 

curves not only allow the estimation of stringent calibration metrics in real-time without batching 

observations, but also provide visualizations of the evolving nature of model calibration over 

time. 

 

Static Calibration Curves 
 

Calibration curves are a graphical representation of model performance across the 

range of predicted probability. For categorical outcome models, calibration curves are 

developed by regressing observed outcomes on some function of the predicted probabilities.88-90 

Under the Cox recalibration framework, such curves were initially parameterized with linear 

associations between outcomes and predictions; however, calibration curves have since been 

extended to support nonlinear, flexible associations that better highlight variability of model 

performance in different regions of risk.39 Nonlinear curves may parameterize the logistic 

calibration model with loess smoothers, splines, or polynomials.39, 89-91 

Figure 7 provides an illustrative calibration curve. In a plot of the proportion of 

observations experiencing the outcome of interest against the predicted probability of that 

outcome, the 45° line represents perfect calibration, or perfect agreement between observed 

and predicted event rates. In the case of a calibrated model, the calibration curve would align 

with this ideal. In the common case of imperfect calibration, the calibration curve indicates how 

accurately a given prediction might reflect the true outcome rate among a group of similar 

observations. In regions where the curve falls above the ideal calibration line, model-based 

predictions are too low, underpredicting the probability of the outcome. Conversely, in regions 

where the curve falls below the ideal calibration line, the model overpredicts the probability of 

the outcome. 
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Figure 7.  Illustrative calibration curve highlighting regions of calibration, overprediction, and 

underprediction. 

 

 
 

While visualizing performance with calibration curves can provide important insight, 

graphical comparisons of multiple calibration curves, as may be generated by repeated 

temporal model validations, is difficult.89, 90 Not only can it be challenging to overlay multiple 

curves, but graphical representations may not reveal key aspects of performance. Predicted 

probabilities are not uniformly distributed between 0 and 1, thus we need to consider the 

intersection of calibration curves and data distributions. Models that appear calibrated over only 

a small region may perform quite well in practice if most observations fall within this region. 

Similarly, highly miscalibrated regions may receive too much weight in a purely visual 

assessment if the region is only relevant to a few observations.89 As a result, metrics have been 

developed to summarize these curves in variety of ways, including: 

 

• Maximum absolute difference (Emax)92 – the maximum absolute difference between 

predicted probabilities and calibration curve fitted observed probabilities  

• Estimated calibration index (ECI)90 – mean squared difference between predicted 

probabilities and calibration curve fitted observed probabilities 

• Integrated calibration index (ICI)89 – mean absolute difference between predicted 

probabilities and calibration curve fitted observed probabilities 
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Both graphical representations and summary metrics stemming from calibration curves 

provide detailed, stringent assessments of model calibration39 and are critical to clinical 

applications utilizing patient-level predictions.39 Stringent calibration evaluations based on 

nonlinear calibration curves ensure models have a net benefit greater than or equal to treat-all 

or treat-none strategies, thus ensuring predictions are nonharmful to clinical decision-making.39 

These detailed assessments of performance are also critical to the model updating process as 

common, weaker calibration metrics (e.g., observed-to-expected outcome ratios and Cox 

recalibration intercepts/slopes) may conceal critical differences in performance across models 

and over time.39 For example, in our previous studies exploring the interaction between learning 

algorithms and performance drift, we found learning algorithms to be variably susceptible to drift 

in ways that only become apparent in curve-based evaluations.18, 19 Thus making calibration 

curves simple and readily available to model users, model managers, and model surveillance 

tools is crucial to establishing and maintaining useful clinical prediction applications. 

Unfortunately, providing up-to-date calibration curves in a streaming data environment, 

such as that of clinical information systems, can become challenging. In order to provide a 

visualization and assessment of the current performance of a prediction model, we would need 

a means of fitting logistic calibration curves on-demand using a batch of recent observations. 

Defining an appropriate window of recent data requires users to both consider the sample size 

needed for building the logistic curve and anticipate the speed of performance drift. Ideally, each 

calibration curve would be constructed using a window of data during which model performance 

is stable. Given the complexity of clinical environments and the variable sensitivity of models to 

data non-stationarity, defining such a window is not straightforward and there may not be an 

appropriate rule of thumb to be applied across models and time. Even if one could define an 

appropriate window size, fitting a calibration curve upon arrival of each new observation could 

become burdensome for high volume, high velocity data streams.  

 

Dynamic Calibration Curves 
 

In order for on-going assessment of prediction models using calibration curves and 

stringent calibration metrics to be feasible, methods to avoid assumptions about the speed of 

performance drift and repetitive model building are necessary. We propose applying online 

learning methods to continuously maintain calibration curves, providing up-to-date 

representations of current model performance characteristics.  
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Traditional offline modeling builds a model on a batch of data and applies that model to 

new data.68 Such models are static unless proactively updated with a new batch of 

observations.68 In contrast, online models continuously update in response to the arrival of new 

data.93, 94 As each new observation or small batch of observations becomes available, the 

current model integrates the new information into a revised version of the model. Online 

approaches are well-suited to high volume data streams because they achieve this continuous 

learning while avoiding the need to both retain all observations in memory and fully retrain on 

the expanded batch of data.68, 93 Adaptive learning methods extend the online learning 

framework to allow models to react and evolve in response to changes in the data 

environment.68  

Such methods are highly applicable to the challenges of maintaining up-to-date 

calibration curves. New patients and patient encounters constitute continuous data streams 

entering clinical information systems and being processed by the prediction models within these 

systems. As a results of shifting patient populations, care practices, and clinical environments 

these data streams are non-stationary. Given this setting, adaptive online learning methods are 

a promising approach to maintaining updated, evolving calibration curves.  

 

Online Gradient Descent 
 

Gradient descent can be applied to develop models of many varieties, including logistic 

regression models such as those underlying calibration curves. Gradient descent estimates 

model parameters by incrementally adjusting parameters toward those values that minimize 

error.95 In repeated iterations, estimates for each observation are constructed using current 

parameter values and the gradient of a loss function is evaluated with these estimates. 

Parameter are then adjusted based on the gradient value proportional to some learning rate. By 

repeating this process multiple times, parameter estimates step toward optimal values that 

minimize loss.95  

In its basic form, batch gradient descent, observations are processed together at each 

step.95 Alternatively, stochastic gradient descent processes one randomly selected observation 

at a time without retraining on the entire dataset.95, 96 Relaxing the random ordering requirement, 

stochastic incremental gradient descent applies the streaming online learning context by 

updating parameters estimates with each newly arriving observation.13 By processing 

observations in temporal order, as model performance changes over time, the loss function will 
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reflect this change and respond by stepping parameters toward newly optimal values. 96, 97 In 

this way, incremental gradient descent serves as an adaptive online learning algorithm. 

The learning rate, a hyperparameter defining how much weight is given to the current 

observation, influences how quickly incremental gradient descent adapts in non-stationary 

environments.96, 97 Small learning rates minimize the influence of new observations and provide 

more weight to prior data, which can slow adaptation toward newly optimal parameter values. 

Conversely, large learning rates can allow large changes in parameter values at each iteration, 

leading to noisy models.96, 97 

In the case of adaptive learning for non-stationary models with anticipated performance 

drift, a constant learning rate may not be appropriate. We would prefer to learn more quickly 

during periods of change and more slowly during periods of stability.96 The adaptive moment 

estimation algorithm (Adam) optimizes the model by scaling each parameter’s learning rate (or 

step size) by the exponentially weighted moving averages of the gradient and squared 

gradient.98 This adaptive learning approach makes Adam well-suited for use with non-stationary 

data streams.98 Adam is also fast, computationally efficient, and widely implemented in machine 

learning applications.99 It is thus this variation of gradient descent that we utilize to construct 

dynamic calibration curves. 

 

Curve Specification 
 

Applying the Adam optimization algorithm to streaming patient data, we employ and 

update a dynamic calibration curve for each new observation as follows: 

 

1. For ) > 0, calculate the predicted probability (*#) of the outcome of interest using the 

active prediction model. 

2. Provide relevant calibration assessments for *# as required based on the logistic 

calibration curve defined with coefficients +#,-. This may include visualization of the 

current calibration curve with performance at *# highlighted or an observation-level 

prediction error. For example, we may calculate the absolute difference between 

predicted and observed probabilities, where the observed probability (*̂#) is defined 

as the fitted value of the current calibration curve such that *̂# = &(*#)+#,- where 

&(*#) is a user-specified nonlinear expansion of the *#. 
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3. Once the outcome (2#) is observed, conduct one iteration of Adam with *# and 2# as 

inputs to update the coefficients of the logistic calibration curve from +#,- to +#. 

 

This approach requires parameterization of the nonlinear association between predictions and 

outcomes (i.e, &(*#)) and initial parameter values (i.e., +3).  

 

Curve parameterization 

 

The logistic regression defining a nonlinear flexible calibration curve may take multiple 

forms.39, 89-91 As examples, Figure 8 illustrates calibration curves fit with 5-knot restricted cubic 

splines, 5-degree polynomials, and a 5-degree fractional polynomials. We elected to define a 

default parameterization for dynamic calibration curves with fractional polynomials. This 

parameterization avoids the concern that the knots of splines may require repositioning over  

 

Figure 8.  Illustrative examples of nonlinear parameterizations of calibration curves fit to multiple 

forms of miscalibration, with emphasis on selected fractional polynomial parameterization. 
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time and better captures complex nonlinear associations than traditional polynomials (see 

Figure 8).100 To select the form of fractional polynomials for our default parameterization we 

implemented a closed testing procedure that compares possible combinations of fractional 

polynomials of degree 0, ±0.5, ±1, ±2, and 3.100, 101 By definition, fractional polynomials of 

degree 0 indicate transformation of a variable 4 into ln(4). Any repetition of a degree indicates 

the appropriate transformation of variable 4 should be multiplied by ln(4).100 For example, if the 

fractional polynomial assigned to a variable 4 is * ={0,2,2}, the form becomes ln(4) + 49 +

ln(4)49.  

 We evaluated fractional polynomial combinations with up to 5-degrees for several 

illustrative forms of miscalibration. Although the same parameterization was not selected across 

all cases, we observed * = {0.5, 0.5, 0.5, 0.5, 0.5} generally performed well despite not 

matching the original parameterization of the defined curves. Figure 8 displays each form of 

miscalibration considered and the fit of a curve using this parametrization. Users may implement 

other parametrizations if desired, including alternative fractional polynomials combinations, 

traditional polynomials, or splines. 

 

Curve initialization 

 
Adam requires initial values for each curve parameter. Randomly generated values may 

suffice for some use cases; however, for dynamic calibration curves, we can provide more 

informative starting points. All prediction models will have been validated prior to implementation 

and before any subsequent ongoing assessment with dynamic calibration curves begins. We 

recommend leveraging information from such validation datasets to initialize the coefficients of 

logistic dynamic calibration curves. This can be achieved by fitting a calibration curve defined 

with the preferred parameterization on the validation data using general linear modeling 

methods. The coefficients from this model would then serve as +:. 

 

Illustrative Examples 
 

To illustrate the evolution of dynamic calibration curves as model performance drifts over 

time, we simulated a population in which the true probability of a binary outcomes was known 

and predicted probabilities followed known forms of miscalibration. To reflect the notion that 

most patients are low risk with a skew for relatively rare high risk patients, we generated the true 

probabilities from a skewed Beta(1.25, 5) distribution. For each observation, the outcome was 
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generated by comparing true probabilities to random values generated from a uniform [0,1] 

distribution. If the random value was less than or equal to the assigned probability, then 

observation was assigned ; = 1, otherwise the observation was assigned ; = 0. Predicted 

probabilities were constructed by transforming the true probabilities to create overprediction 

(Cox intercept = -0.6), overfitting (Cox slope = 0.5), miscalibration that fluctuated over the range 

of probability, or miscalibration resulting from a subset of low risk observations being 

systematically overpredicted. The defined calibration curves resulting from these 

transformations are displayed in Figure 9. 

 

Figure 9.  Simulated forms of miscalibration. 

 

 
 

From this population, we simulated 1,000 timeseries transitioning from a calibrated 

context to each form of miscalibration. Each series included 5,000 observations generated from 

a calibrated context and a subsequent 5,000 observations generated from the miscalibrated 

context. We recorded fitted values from the dynamic calibration curves after each observation in 

the timeseries. In addition to visualizing the progression of curves over the timeseries, we 

calculated the proportion of the true calibration curve represented by the dynamic calibration 

curve after each observation was processed. For each of 5,000 observations in a randomly 

sampled evaluation set, we estimated the fitted value of the dynamic calibration curve at each 

timepoint in each timeseries. Across the 1,000 simulations for each scenario, we determined 

whether the 95% sampling intervals of these fitted values included the true fitted value of the 

true defined calibration curve at the relevant timepoint. This approached allowed us to 
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determine the proportion of the current true calibration curve represented by the current 

dynamic calibration curve, weighted by the distribution of predicted probabilities. This focuses 

our attention on the areas of the calibration curve most relevant to the data and the probably 

ranges we may reasonably expect data to be available for learning the calibration form.  

In Figures 10-13, we plot the evolution of dynamic calibration curves using varying Adam 

step sizes. During the pre-drift period, curves did not diverge far from initial values for smaller 

step sizes, but exhibited more variability around the true association when step size increased  

 

Figure 10.  Dynamic calibration curves for timeseries abruptly transitioning from a calibrated 

context to an overpredicted context after 5,000 observations by Adam step size. 

 

 
 

Figure 11.  Dynamic calibration curves for timeseries abruptly transitioning from a calibrated 

context to an overfit context after 5,000 observations by Adam step size. 
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Figure 12.  Dynamic calibration curves for timeseries abruptly transitioning from a calibrated 

context to a context with calibration fluctuating around the ideal line after 5,000 observations by 

Adam step size. 

 

 
 

Figure 13.  Dynamic calibration curves for timeseries abruptly transitioning from a calibrated 

context to a context in which a subgroup of low risk observations were assigned high predictions 

after 5,000 observations by Adam step size. 

 

 
 

to 0.1. After drift onset, however, the curves quickly shifted in response to changes in 

calibration. For the default step sizes of 0.001, the sampling interval of the dynamic curves 

represented at least 95% of the true calibration curve within approximately 600 observations for 

the transition to an overpredicted setting context and within 150 observations for the transition to 

an overfitted setting context (see Figure 14). For overprediction, the curves illustrated the new 
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post-drift calibration setting except for the highest range of probability (see Figure 10). The post-

drift curves for the overfit setting did not visually align with the true calibration curve (see Figure 

11), they did highlight a change in performance and the sampling interval of the curve indicated 

the dynamic curves represented the true calibration relationship in data-dense regions (see 

Figure 14). 

For more complex forms of post-drift miscalibration, the Adam step size impacted the 

performance of the dynamic calibration curves. Using the default step size of 0.001, the true 

calibration curve for the miscalibrated subgroup scenario was not well represented by the 

dynamic calibration curves (see Figure 13 and 14). However, increasing the step size to 0.01 

resulted in the sampling interval of the dynamic curves representing at least 95% of the true 

calibration curve within approximately 1,000 observations. The dynamic calibration curves were 

least responsive for the transition to miscalibration that fluctuated across the range of 

probability, particularly when step sizes were small. As a visualization tool, these curves did not  

 

Figure 14.  Proportion of the true calibration curve represented by the dynamic calibration curve, 

weighted by the distribution of predicted probabilities for multiple lengths of the stable pre-drift 

period (step size=0.001). 
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Figure 15.  Impact of the length of the stable pre-drift period on the evolution of dynamic 

calibration curves for a transition to overprediction (Adam step size = 0.001). 

 

 
 

appear to progress toward the post-drift true calibration curve (see Figure 12) until step size 

increased to 0.1. Nevertheless, even at small step sizes, the proportion of the true curve 

represented by the dynamic curves remained above 80% after drift onset and slowly increased 

to 95% over the 5,000 post-drift observations (see Figure 14). This seeming discrepancy is due 

to the fluctuating calibration curve not deviating far from the ideal calibration line in high density, 

low probability regions. 

For all post-drift calibration scenarios, abbreviated or extended periods of stability prior 

to drift onset did not delay the response of the dynamic calibration curves. As an example, the 

progression of the dynamic calibration curves after an abrupt change to an overpredicted 

context following 1,000, 5,000 or 10,000 calibrated observations are shown in Figure 15.  

 

Discussion 
 

Utilizing continuous learning, we are able to maintain an ongoing assessment of model 

calibration. Rather than repeatedly refitting calibration curves with batches of recent data, 

dynamic calibration curves incorporate information from new observations into previously 

learned associations within the logistic calibration model. Using the Adam method for adaptive 

learning, the calibration curves shift in response to changes in model performance among new 

observations.  
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This approach to continuous calibration assessment has several advantages over static 

calibration curves for applications applying prediction models in non-stationary environments. 

Our method avoids the need to define appropriate batches of recent data for constructing 

calibration curves and, therefore, does not requires users to anticipate the pace of performance 

drift. Dynamic calibration curves also reduce computational requirements when calibration 

curves are desired for each new observation, especially in the case of high volume and high 

velocity data streams. Our method is generalizable to the variety of prediction models based on 

diverse learning algorithms and can support customizable curve parameterizations. 

The implementation of dynamic calibration curves presented here has limitations that 

warrant further consideration and research. The dynamic curves shifted to highlight changes in 

performance, but did not necessarily capture the defined forms of miscalibration. This was 

particularly true for complex miscalibration and regions of the probability range with sparse data. 

The step size parameter of the Adam algorithm was influential in how well the dynamic curves 

represented complex miscalibration. Further investigation could provide guidance on tuning this 

parameter. In addition, alternative continuous learning approaches, such as dynamic logistic 

regression,62 should also be considered and may improve the accuracy of post-drift curves. 

 

Conclusion 
 

We described a method to continuously monitor model calibration on streaming data 

using dynamic calibration curves updated as data accumulates . As opposed to periodic model 

validations, this method can reveal performance drift as it occurs. With additional tuning, 

dynamic calibration curves could be used to efficiently calculate observation-level stringent 

calibration metrics in real-time or visualize evolving calibration patterns. While providing insight 

into calibration over time, dynamic calibration curves do not indicate significant change in 

performance or alert users to performance drift. In the following chapter, however, we explore 

how methods for dynamic calibration curves can support methods aimed at identifying 

significant drift. 
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CHAPTER 5 
 

A DRIFT DETECTION APPROACH TO TRIGGER MODEL UPDATING 
 

Scheduled model updating is a common scheme in model maintenance protocols.27, 31, 32 

This approach, although simplifying planning, requires users to prespecify an anticipated rate of 

model deterioration. In practice, the frequency of scheduled updates may not align well with 

patterns and timing of changes in clinical populations or environments. For example, in a case 

study presented in Chapter 7, annually refitting a model for 30-day mortality model did not result 

in performance gains beyond that achieved by less frequent updating. Furthermore, the learning 

algorithm underlying prediction models influences the magnitude and speed of performance 

drift, even among models applied to the same population.18, 19 Scheduled updating protocols 

may thus be inefficient during periods of relative model stability or allow for interim periods of 

uncorrected performance drift during phases of more rapid population shifts.  

As an alternative to scheduled updating points, we present a data-driven approach to 

initiate model updating. Building on drift detection methods from the classification modeling 

literature68 and leveraging the dynamic calibration curves we developed in Chapter 4, we 

propose and evaluate a calibration drift detection system that seeks to identify deterioration in 

performance and alert users when a model may require attention. Our detector is intentionally 

designed to be applicable regardless of the underlying learning algorithm, making the approach 

relevant for systems managing suites of diverse prediction models. To further support model 

managers, we designed the calibration drift detection system to provide actionable alerts that 

also return information on a window of recent data that may be appropriate for updating, if 

required.  

 

Designing a Calibration Drift Detection System 
 

Overview 
 

Concept drift detection is an established area of research providing methods to identify 

changes in the performance of prospectively applied prediction models.68 Common drift 

detection algorithms are model-independent68 and can be incorporated into a model 

surveillance system regardless of the learning algorithm underlying the models being tracked. 

However, much drift detection research has focused on identifying changes in misclassification 
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rates. This focus on discrimination rather than calibration does not provide a sufficiently 

nuanced assessment of model performance for many clinical use cases.20, 39-42, 46 Statistical 

process control charts, which are more flexible in the error metrics they can track, have been 

applied retrospectively to evaluate calibration drift29, 85 rather than prospectively to assess 

calibration drift in real-time. See Chapter 2 for more background on the state of concept drift 

detection and limitations of existing algorithms.  

We sought to develop a new calibration-focused drift detector by building on prior 

research in the concept drift detection space. Our calibration drift detection system is an online 

performance tracking method that alerts users in real-time when performance drift is identified 

and provides guidance on what set of recent data might be appropriate for responding to that 

drift. We implement the adaptive window approach34 to monitor mean predictive error using a 

detailed, up-to-date assessment of performance based on dynamic calibration curves. When a 

significant change in predictive error is observed, the detector alerts users to the presence of 

drift and returns a window of recent observations that appear to have been generated after the 

change point.  

For an overview of the flow of data in our calibration drift detection approach, please 

refer to Figure 16, which represents a portion of our overall conceptual model. A prediction 

using the current, active prediction model is generated as new patient data becomes available. 

The error of this prediction is estimated from the dynamic calibration curve updated as of the 

previous observation. This dynamic calibration curve is further updated once the current 

observation’s outcome becomes available in order to prepare for the arrival of subsequent 

patient observations. The current error value is submitted to the adaptive windowing monitor 

which checks for a change in performance (as described below), triggering an alert when 

appropriate. In addition to alerting the user to drift, the detector returns a window of recent data 

with an internally consistent error distribution, which may be a good candidate for use in any 

subsequent updating process. Although our detector is designed to motivate and support model 

updating, for the purposes of this chapter, we focus on detecting calibration drift and leave the 

response to an alert to later discussion. 

 
The Adaptive Window Method 
 

We leveraged the adaptive windowing (Adwin)34 approach to drift detection (see Figure 

17 for details). Adwin aims to maintain a window (W) of recent data which appears to be 

generated from a stable generating process. As new observations arrive, they are added to the  
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Figure 16.  Calibration drift detection schematic. 

 

 
 

head of the current window. Sliding divisions of W into a pair of subwindows (i.e., W1 containing 

newer data and W0 containing older data) allow for a sequence of comparison between a 

growing set of older data and a shrinking set of newer data. If a significant difference between a 

pair of subwindows is discovered, Adwin shrinks the current window by dropping the older data 

(W0). This continues until no subwindow differences remain. In this way, the current window only 

retains data that appears to be from a single, current generating process. Anytime the window 

shrinks, the process has identified drift and the window of remaining data may be from a stable 

population and thus appropriate for updating the model, as needed, to restore performance. 

Adaptive windowing has several advantages that are well-suited for our calibration drift 

detection system. First, the algorithm is designed with streaming data in mind. Observations are 

processed individually, avoiding the need to make assumptions regarding appropriate batch 

sizes as required by methods such as common statistical process control charts. As new 

observations arrive, the algorithm immediately checks for drift and integrates the observation 

into the current window, storing sufficient statistics about W rather than the entire stream of 

data.34 This approach allows adaptive windowing to process new observations quickly and 

conserve memory in high data volume settings. Extensions to the original adaptive windowing 

algorithm also support parallel processing, minimize computational requirements, and account 

for delays between prediction generation and outcome observation.34, 102 Second, although 
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originally designed and described in a misclassification context, adaptive windowing only 

requires that the error metric be bounded.34 Several model accuracy and calibration metrics 

could thus be tracked by an adaptive window implementation. Additionally, adaptive windowing 

evaluates the current state of the input data process based on the received observations rather 

than requiring users to prespecify an expected in-control (i.e., stable) distribution of the data.34 

 

Figure 17.  Details of the adaptive windowing method defined in Bifet and Gavaldà (2007).34 

 

Adwin algorithm: 

       Initialize window < 

       For each ) > 0 

              Do <	 ← <	 ∪ {4#} (i.e., add new observations to head of <) 

                     Repeat Drop elements from the tail of < 

                            Until CD̂EF − D̂EHC ≤ JK$# holds 

                                   for every split of < into < =	<3 ∙ <- 

 

Using a normal approximation, JK$# = 	M
9

N
∙ OE

9 ∙ ln
9

PQ
	+	

9

RN
ln

9

PQ
 where  

       S is the harmonic mean of "3 and "- (i.e., the size of subwindows <3 and <-) 

       " = 	"3 + "- and (T = P

UV	(W)
  

 

Requirements: 

• 4# is a bounded error metric scaled to the [0,1] interval 

• 4# are independent for each ) 

 

Parameters: 

• (	 ∈ 		 (0,1) 

 

Implications: 

• Drift detected when < shrinks 

• Whether drift is detected or not, once processing finishes for each ), retained < 

will be composed of data from a stable generating process 



 39 

Specification of a Calibration Drift Detection System  
 

For our drift detection system, we utilize adaptive windowing to detect changes in a 

stringent measure of calibration based on flexible, nonlinear calibration curves. We selected a 

curve-based metric to align our detector with the clinical decision-making context. Calibration 

metrics based on flexible calibration curves ensure models have a net benefit greater than or 

equal to treat-all or treat-none strategies, thus ensuring predictions are nonharmful to clinical 

decision-making.39 The fitted value of a calibration curve at a given predicted probability 

provides an estimate of the observed probability of the outcome among patients with similar 

predicted risk.89 For each observation, we thus define the predictive error (i.e., 4# in the adaptive 

window definition presented in Figure 17) as the absolute difference between the predicted 

probability (*#) and the fitted value of the calibration curve (*̂#) (see Figure 18).89 Leveraging the 

dynamic calibration curves developed in the previous chapter, we base *̂# on an up-to-date 

calibration curve without rebuilding the curve for each new observation. The data evaluated by 

the adaptive window-based calibration drift detection system are thus defined as follows for the 

observation at time ): 

 

4# = |*̂# − *#| 

 

where *#	is generated from the active prediction model and *̂# is estimated using the most 

recent coefficients of the dynamic calibration curve (+#,-) and the user-defined nonlinear 

expansion of the predicted probability (&(*#)). 

 

*̂# = 	&(*#)+#,- 

 

This metric is bounded on the [0,1] interval as required by the adaptive windowing algorithm and 

is interpretable as the absolute distance between the calibration curve and the perfect 

calibration line. In addition to evaluating 4# with the adaptive windowing approach, once 4# has 

been calculated and the outcome at time ) recorded, we update the dynamic calibration curve 

prior to the arrival of an observation at time ) + 1. See Figure 16 above for the overview of this 

process.  
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Figure 18.  Illustrative example of curve-based predictive error. Red text highlights parameter 

values for calculating curve-based predictive error. The red dotted line illustrates the metric’s 

(4#) interpretation as the magnitude of deviation of the curve from the ideal at the current 

prediction (*#). 

 

 
 

Parameterization of the Adaptive Windowing Method 
 

In addition to defining the calibration metric considered by the adaptive windowing 

algorithm, we must specify an error tolerance for detecting changes in performance. We are 

interested in a detector that balances the probability of false positives (i.e., detecting drift during 

periods of stable model performance) and the probability of false negatives (i.e., not detecting 

drift during periods of performance deterioration). The ( parameter in the adaptive windowing 

algorithm provides control over these probabilities. While statistical theory, detailed in the 

original adaptive windowing study, provides for theoretical bounds on the false positive and 

false negative rates based on (, Bifet and Gavaldà acknowledged false positive rates were 

substantially lower than theory would suggest.34 For the evaluations of our calibration drift 

detection system, we established ( = 0.05, which sets the upper bounds of the false positive 

rate at the common Type I error threshold of 5%. For sensitivity, we repeated our evaluations 

with ( = 0.075 and ( = 0.1. See Appendix A for detailed results. In addition, we conducted 

!"

!#" $"
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simulations of stable model performance over extended timeseries to provide some guidance on 

reasonable ranges of ( in a variety of contexts (see Appendix B).  

 
Evaluating the Adaptive Windowing Calibration Drift Detection System 

 

We conducted simulation studies to evaluate the performance properties of our 

calibration drift detection system along several important dimension, including: 

 

1. False positives – How frequently is performance drift detected incorrectly? 

2. False negatives – How frequently does performance drift go undetected? 

3. Time to detection – How long is the delay between the start of performance drift 

and detection? 

4. Post-detection window composition – After detection, does the retained window 

include data relevant for updating?  

 

Simulated Performance Drift Patterns 
 

We simulated timeseries in which observations were initially generated by a calibrated 

model and over time observations shifted to being generated by one of 10 miscalibrated 

models. These timeseries were sampled from populations in which the true probability of a 

binary outcome was known and predicted probabilities followed known forms of miscalibration. 

To reflect the notion that many risk modeling applications have predictions that are clustered 

asymmetrically in low risk regions, and that risk models operating with clustered high risk 

observations would present similar challenges, we generated the true probabilities from a 

skewed Beta(1.25, 5) distribution, which enriched for low probability predictions. For each 

observation, the outcome was generated by comparing true probabilities to random values 

generated from a uniform [0,1] distribution. If the random value was less than or equal to the 

assigned probability, the observation was assigned ; = 1, otherwise the observation was 

assigned ; = 0. Predicted probabilities were constructed by transforming the true probabilities 

to create multiple calibration patterns, including over/underprediction, over/underfitting, 

combined overfitting and overprediction, miscalibration that fluctuated over the range of 

probability, and miscalibration resulting from a subgroup of low risk observations being 

substantially overpredicted. The predefined calibration curves resulting from these  
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Figure 19.  Simulated patterns of miscalibration. 

 

 
 

Figure 20.  Temporal transition patterns for simulated timeseries. 

 

 
 

transformations are displayed in Figure 19. See Appendix C for equations defining each 

transformation. An extreme case of random predictions was defined as well. Each time series 

included 5,000 ordered observations. The speed at which observations transitioned from 

calibrated to miscalibrated took four forms (see Figure 20) – an abrupt transition, a rapid 

transition over a short period, a gradual transition over an extended period, and a 
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recurrent/seasonal transition in which observations transitioned back and forth between two 

calibration settings. With the exception of the recurrent/seasonal case, the first 1,000 

observations in each series were generated from the population of calibrated predictions and 

temporal transitions began immediately following this stable period. The rapid pattern 

transitioned to miscalibrated predictions over 1,000 observations; the gradual pattern 

transitioned over 4,000 observations, only completing the transition at the end of the series. In 

the case of recurrent/seasonal temporal transitions, timeseries moved from calibrated to 

miscalibrated predictions and back to calibrated predictions every 1,000 observations.  

In addition to defining the point of drift onset at t=1,000, we sought to determine a 

change point at which the pre- and post-drift populations were significantly different along each 

temporal transition to each form of miscalibration. For incrementally increasing mixing rates, we 

compared the mean predictive error between 1,000 randomly selected calibrated predictions 

and 1,000 observations randomly drawn from a mixture of calibrated and miscalibrated 

predictions. We identified the minimum mixing rate at which a significant difference (p<0.05) 

was recorded between the fully calibrated population and partially miscalibrated population. This 

process identified a significant mixing rate for each of the ten forms of miscalibration (see Table 

3). We defined change points for each temporal transition pattern as the observation at which 

this mixing rate occurred.  

 

Table 3.  Mixing rates defining change points for transitions to each form of miscalibration. 

 

Form of miscalibration Mixing rate 

Overpredicted (small) 0.425 

Overpredicted (large) 0.275 

Overfit (small) 0.5 

Overfit (large) 0.275 

Underfit 0.1 

Overpredicted & overfit (small) 0.775 

Overpredicted & overfit (large) 0.425 

Fluctuating 0.8 

Subgroup 0.15 

Random 0.25 
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For each combination of temporal transition pattern and calibration change, we applied 

the calibration drift detection system to 1,000 timeseries as defined above. Initial values for each 

timeseries’ dynamic calibration curve were estimated from a general linear model fit to a random 

sample of 500 calibrated predictions. Applying our calibration drift detection system to each 

timeseries, we documented whether and when drift was detected. This allowed us to examine 

the questions above with the following metrics: 

 

• False positives – percent of iterations with a detection occurring prior to the start 

of the drift at observation ) = 1,000 

• False negatives – percent of iterations in which the detector failed to identify the 

drift prior to the end of the series 

• Time to detection – number of post-drift observations prior to drift being detected 

• Lag to detection – number of observations between the change point and drift 

detection 

• Post-detection window composition  

o Relevancy of returned window – percent of detections including any pre-

drift observations (i.e., ) < 1,000) in the returned data window 

o Contamination of returned window – percent of data in returned windows 

occurring prior to drift onset 

We further recorded the smoothed mean error over time for each timeseries using the 

exponentially weighted moving average approach.73 This allowed us to examine how our error 

metric evolved over time in each setting and how this related to the point at which drift was 

detected. 

 
False Positives 
 

The rate of false positive detections during the stable pre-drift period are presented in 

Table 4. False positives were rare, with the rates well below the 5% threshold our ( might 

suggest. As ( increased to 0.1, the frequency of false positives increased but generally 

remained below 1% (see Appendix A). These findings are consistent with prior studies.34 We 

note false positives were not relevant to the recurrent/seasonal transitions as this temporal 

pattern did not include an initial period of stability. 
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Table 4.  Frequency of false positive (FP) and false negative (FN) detections by temporal 

transition speed and post-drift calibration setting. 

 

Post-drift  
calibration setting 

Abrupt  Rapid  Gradual  
Recurrent/ 
seasonal 

% FP % FN  % FP % FN  % FP % FN  % FP % FN 

Overpredicted (small) 0.2 0.8  0.1 0.6  0.3 2.5  - 30.6 

Overpredicted (large) 0.2 0  0.3 0  0.1 0  - 7.7 

Overfit (small) 0.3 0.6  0.4 1.1  0.2 1.7  - 14.6 

Overfit (large) 0.4 0  0.2 0  0.3 0  - 3.1 

Underfit 0.8 0  0.3 0  0.1 0  - 0 

Overpredicted & overfit (small) 0.2 16.2  0.3 14.4  0.4 21.6  - 59.5 

Overpredicted & overfit (large) 0.3 0.8  0.4 0.7  0.1 0.7  - 15.5 

Fluctuating 0.1 39.3  0.3 37.9  0.3 51.6  - 57.2 

Subgroup 0.2 0  0.3 0  0.2 0  - 2.5 

Random 0 0  0 0.1  0 0  - 4.0 
 

False Negatives 
 

For most drift scenarios, false negatives, missed opportunities to detect calibration drift, 

were infrequent, with rates under 3% (see Table 4). For all temporal transition patterns, false 

negatives were common among timeseries transitioning to the models with miscalibration that 

fluctuated around the ideal line and with combined modest overprediction and overfitting. These 

forms of miscalibration did not deviate far from calibration in the more densely populated low 

risk range. As a result, the magnitudes of change in calibration over time were small (see 

Figures 23 and 24). False negatives were most common under the recurrent/seasonal transition 

pattern. Drifts toward a relatively small magnitude of miscalibration were most susceptible to 

false negatives under this transitional pattern. False negative rate declined as ( increased (see 

Appendix A). 
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Time to Detection 
 

Figures 21-25 display the distribution of detection points against the temporal error 

pattern and change point for each combination of temporal transition and post-drift 

miscalibration. Detection of calibration drift was fastest, in terms of the number of observations 

processed between drift onset and detection, for the abrupt transition to the more overfit setting 

(median time to detection=231). Time to detection was longest for the recurrent/seasonal 

transition to the models with miscalibration that fluctuated around the ideal line (median time to 

detection=3,246) and with combined modest overprediction and overfitting (median time to 

detection=3,297). Drifts toward these two forms of miscalibration consistently delayed detection, 

with more than 1,500 post-drift observations typically required for detections under all temporal 

transition patterns.  

The delay between drift onset and drift detection varied by speed of temporal transition 

and degree of miscalibration in the post-drift setting (see Figure 26). Time to detection 

increased as the speed of transition slowed from abrupt to rapid to gradual. As highlighted in 

Figures 26 by the two variations of overfit models, the delay in and variability of time to detection 

increased as the magnitude of miscalibration decreased and the speed of transition slowed. For 

rapid transitions occurring over 1,000 observations, drift was detected during the transition 

period for those post-drift settings with the largest magnitudes of miscalibration, but not detected 

until the transition was complete in the case of modest overprediction, modest overfitting, and 

fluctuating miscalibration. Recurrent/seasonal transitions lead in the most variability in detection 

timing. In most cases, recurrent/seasonal drift required multiple cycles before detection. 

However, drift involving the more substantially overfit, the underfit, and the random models was 

typically detected before the first cycle of the recurrent/seasonal pattern was completed (i.e, 

median detection time <1,000 observations). 

Lags in detection, in terms of the number of observations processed between the 

change point and drift detection, were shortest for the gradual change toward fluctuating 

miscalibration (median lag to detection=223) and abrupt change to the more overfit model 

(median lag to detection=231). Rapid changes toward fluctuating and combined modest 

overprediction and overfitting resulted in the longest lag in detection (median lag to 

detection=2,954). Within each post-drift calibration setting, lags were generally more consistent 

than time to detection across temporal transition speeds (see Figure 27). This is highlighted by 

transitions to the more overfit model in which the median lags ranged from 231 to 282 for abrupt  
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Figure 21.  Error distribution and detection characteristics for timeseries transitioning between 

the calibrated model and models with varying magnitudes of overprediction.  
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Figure 22.  Error distribution and detection characteristics for timeseries transitioning between 

the calibrated model and models with varying magnitudes of overfitting.  
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Figure 23.  Error distribution and detection characteristics for timeseries transitioning between 

the calibrated model and models with varying magnitudes of combined overprediction and 

overfitting.  
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Figure 24.  Error distribution and detection characteristics for timeseries transitioning between 

the calibrated model and a model with (left) miscalibration that fluctuated around the ideal line or 

(right) a subgroup of low risk observations was substantially overpredicted. 
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Figure 25.  Error distribution and detection characteristics for timeseries transitioning between 

the calibrated model and (left) an underpredicted model or (right) a model with random 

predictions.  
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Figure 26.  Time to detection as number of observations from drift onset to detection by speed 

and form of change. 
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Figure 27.  Lag to detection as number of observations from change point to detection by speed 

and form of change. 
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through gradual transitions. Corresponding median times to detection ranged from 231 to 1,969. 

In contrast to this pattern, transitions to fluctuating miscalibration and combined modest 

overprediction and overfitting exhibited longer lags to detection for faster transitions. In several 

cases, gradual transitions were detected prior to the identified change point. This was most 

common for the gradual transition towards fluctuating miscalibration and may reflect an 

accumulation of performance change over the extended period of transition. 

 

Post-Detection Window Composition 
 

The size of the data window returned by the calibration drift detector and the origins of 

the observations in the window are reported in Table 5. Window size increased as the speed of 

transition slowed and as the corresponding time to detection increased. Abrupt transitions 

resulted in pre-drift observations more frequently being included in the returned data window. In 

most cases, less than 20% of iterations for each post-drift calibration setting returned windows 

containing pre-drift observations. The major exception being an abrupt change to a model in 

which a subgroup of low risk observations was substantially overpredicted. In this case, pre-drift 

data was returned almost 50% of the time. For rapid and gradual temporal transitions, less than 

10%, and often less than 5%, of detections included pre-drift observations in the returned 

window. For rapid and gradual temporal transitions, typically less than 2% of the observations in 

returned windows occurred prior to drift onset (see Figure 28). For abrupt transitions, typically 

less than 5% of the observations in returned windows occurred prior to drift onset. We note that 

there is no pre-drift period in the recurrent/seasonal case, and thus no possibility of the returned 

data window containing pre-drift observations. 

 

Discussion 
 

 To support timely, data-driven identification of performance drift in clinical prediction 

models, we developed a calibration drift detection system built on the adaptive windowing drift 

detection framework. This system, illustrated in Figure 16 above, integrates dynamically 

updated calibration curves into the adaptive windowing algorithm to support evaluating drift 

using a stringent metric of calibration (i.e., the absolute difference between predicted 

probabilities and fitted values from an up-to-date calibration curve). Our calibration drift 

detection system is designed to not only inform users when performance drift is identified, but 

also provide guidance on what data might be appropriate for responding to that drift. This  
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Table 5.  Properties of retained data windows after drift detection.  
 

Post-drift  
calibration setting 

Transition  
pattern 

Size 
(median & IQR) 

% including  
pre-drift obs 

Overpredicted (small) Abrupt 559 (423, 790) 9 
Rapid 546 (423, 776) 2.4 
Gradual 716 (512, 976) 3.9 
Recurrent/Seasonal 661 (408, 1146) - 

Overpredicted (large) Abrupt 394 (310, 497) 21.9 
Rapid 419 (341, 538) 3.2 
Gradual 575 (457, 831) 4.5 
Recurrent/Seasonal 418 (341, 764) - 

Overfit (small) Abrupt 388 (268, 560) 6.8 
Rapid 421 (284, 623) 4.6 
Gradual 552 (370, 882) 4 
Recurrent/Seasonal 403 (269, 745) - 

Overfit (large) Abrupt 171 (137, 222) 15.6 
Rapid 231 (184, 286) 2.5 
Gradual 436 (290, 652) 4.3 
Recurrent/Seasonal 223 (181, 278) - 

Underfit Abrupt 229 (204, 262) 25.3 
Rapid 263 (229, 323) 3.1 
Gradual 453 (340, 653) 4.9 
Recurrent/Seasonal 243 (216, 271) - 

Overpredicted & overfit (small) Abrupt 975 (699, 1429) 6.7 
Rapid 930 (637, 1315) 4.5 
Gradual 972 (695, 1332) 4.4 
Recurrent/Seasonal 1025 (620, 1497) - 

Overpredicted & overfit (large) Abrupt 382 (264, 527) 24.3 
Rapid 414 (301, 565) 3.3 
Gradual 591 (439, 875) 5.1 
Recurrent/Seasonal 494 (346, 1066) - 

Fluctuating Abrupt 782 (493, 1183) 8.4 
Rapid 823 (502, 1282) 7.6 
Gradual 981 (549, 1459) 10.4 
Recurrent/Seasonal 876 (514, 1412) - 

Subgroup Abrupt 350 (235, 475) 49.9 
Rapid 400 (307, 517) 3.4 
Gradual 640 (502, 855) 3.8 
Recurrent/Seasonal 510 (360, 1085) - 

Random Abrupt 234 (189, 305) 13.5 
Rapid 277 (216, 385) 3.1 
Gradual 492 (339, 733) 5.4 
Recurrent/Seasonal 271 (218, 390) - 
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Figure 28.  Proportion and 95% confidence interval of observations in the retained window 

generated prior to drift onset. Note, not relevant for recurrent/seasonal transitions in which there 

is no pre-drift period. 
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system is generalizable across prediction models based on diverse learning algorithms and can 

be customized with alternative bounded performance metrics. 

Evaluating our calibration drift detection system across multiple simulated magnitudes, 

complexities, and speeds of calibration drift, we found the method accurately detected 

performance drift, minimizing both false positives and false negatives. This translates to 

avoiding alert fatigue due to false alarms during periods of stable model performance and 

avoiding missed opportunities to address model performance by neglecting to notice drifting 

performance. After drift onset, time to drift detection was associated with the speed and 

magnitude of calibration drift. Abrupt transitions were detected with the shortest delay. Gradual 

transitions required the most post-drift observations before drift could be detected. This 

observation is to be expected, as slower transitions from a calibrated to miscalibrated model 

evolve performance characteristics more slowly and require more observations before change 

can be distinguished from noise. Our evaluation of the lag between identified change points 

along each temporal transition and detection points provides a more fair comparison of any 

delay in detection across differing speeds of drift. Lags to detection for each form of post-drift 

miscalibration were generally consistent between abrupt, rapid, and gradual transitions. 

Recurrent/seasonal transitions lead to the most variable times and lags to detection, and in 

most cases required multiple cycles of drift prior to detection.  

The delay from drift onset to detection and the lag from the change point to detection 

were also strongly related to the magnitude of post-drift miscalibration. Smaller changes in 

calibration required more data to be detected than did larger changes in calibration, even when 

the form of eventual miscalibration was similar. This finding is highlighted by the two variations 

of overprediction, as well as the two variations of overfitting. The distribution of predicted 

probabilities in the data and the variability of miscalibration across the range of probability were 

also critical to drift detection. For example, even in the case of substantial miscalibration in low 

density, high probability ranges, the detector was more likely to fail to detect or delay detection if 

miscalibration was more subtle in the more densely populated low probability range (e.g., the 

modestly overpredicted and overfit post-drift scenario). This may indicate a need for additional 

tuning of the step size in the Adam implementation of the underlying dynamic calibration curves 

from which error was estimated. 

When drift is detected, our calibration drift detection system reports the detection and 

returns a window of recent observations that appears to be internally consistent based on the 

adaptive windowing assessment. If we are to use these returned windows to support model 

updating in response to the identified drift, then these windows should ideally only include data 
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from the post-drift period. In our evaluations, settings with short temporal transitions most 

commonly included pre-drift data in the returned window. However, even in such cases the 

majority of simulated timeseries did not include pre-drift data in the returned window, and 

among those returned windows capturing pre-drift data, most observations were generated after 

drift onset. For the rapid and gradual transitions, drift was typically detected before the data had 

completely transitioned to the post-drift model. In such cases, returned data windows 

represented a transitional state rather than data from a new, stably miscalibrated setting. While 

updating with such data may improve model performance, it may also require subsequent or 

even periodic updating as performance continues to evolve. This may actually be most 

representative of how model updating would actually take place in ever-evolving clinical 

environments where model performance may never reach extended periods of stability. We are 

unable to comment on whether the returned windows are large enough to support model 

updating, as this would be dependent on the complexity of the model, the learning algorithm, 

and the degree of updating required to return the model to acceptable performance. 

Our calibration drift detection system as presented here has several limitations. First, the 

adaptive windowing algorithm relies on a two-sided test. If we are only interested in detecting 

deteriorating model performance, we may be able to implement a more powerful test by 

adjusting the method to support one-sided analyses. Additionally, our system monitors model 

calibration or other user-preferred performance metrics. One could argue that we should instead 

be evaluating data streams for changes in predictor distributions and associations. Tracking 

these additional features may allow us to better recognize structural changes that could render 

a model unreliable (e.g. changes in data capture/coding) and require a tailored updating 

response such as model reparameterization or extension. However, while monitoring additional 

features of the data stream may be useful, it would not be sufficient in many cases. Unless 

changes in data stream features affect the accuracy of model predictions, such changes alone 

may not warrant model updating. Using our calibration drift detection system in combination with 

on-going model assessments, such as visualizations and summaries of dynamic calibration 

curves, model managers would have insights into any abrupt changes in performance that may 

signal structural issues in the input data stream and warrant further investigation. Further, 

maintaining open communication with clinical users can provide insight into critical clinical 

practice changes that may require substantive model adjustment that could be undertaken 

regardless of a drift detector’s status.  

Limitations of the current evaluations warrant continued investigation of the performance 

characteristics of our calibration drift detection system. With the exception of the 
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recurrent/seasonal transition pattern, drift was preceded by a period of stable model 

performance. Findings may differ for timeseries with no initial stability or extended initial periods 

of stability. We only present results for timeseries moving away from calibration over time. 

Models are unlikely to be truly calibrated, even initially, and transitions between different forms 

of miscalibration may be easier or more difficult to detect. Additional insights may also come 

from exploring the performance of our calibration drift detection system in real clinical datasets 

where the timing and form of performance drift is uncertain. 

 

Conclusion 
 

Building on the dynamic calibration curves described in the previous chapter, we 

developed and evaluated a calibration drift detection system to provide data-driven guidance on 

when clinical prediction models may require updating. This system, generalizable irrespective of 

the learning algorithm on which categorical prediction models are built, supports alignment of 

model updating with the timing of performance drift. By updating models as performance 

deteriorates rather than on pre-determined schedules, model managers can avoid interim 

periods of insufficient model accuracy between scheduled updates and focus analytic resources 

on those models most in need of attention. Our calibration drift detection system also provides 

insight into a candidate updating set by returning a window of recent observations occurring 

after the point at which performance drift was identified. This system can be used to initiate 

predefined model updating strategies or in conjunction with data-driven methods to select 

updating methods. We explore methods for the latter approach in the following chapter. 
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CHAPTER 6 
 

A NONPARAMETRIC TESTING PROCEDURE TO GUIDE 
UPDATING METHODS AND CORRECT PERFORMANCE DRIFT 

 

 In this chapter, we describe a new nonparametric testing procedure to recommend 

updating methods that minimizes overfitting, accounts for uncertainty associated with updating 

sample sizes, and is widely applicable to both parametric and nonparametric prediction models. 

We illustrate the properties of this testing procedure on both simulated scenarios of population 

shifts that impact clinical use cases and two case studies leveraging Department of Veterans 

Affairs inpatient admission data. Please note, large portions of this chapter were previously 

published in the Journal of the American Medical Informatics Association.35  

 

A New Testing Procedure 
 
Overview 
 

We sought to develop a testing procedure that recommends the simplest updating 

method that maximizes model performance in terms of accuracy, discrimination, or calibration. 

This procedure was designed to meet the following goals: 

 

• prefer simple updating methods without compromising performance; 

• work with any binary or categorical prediction model, regardless of the underlying 

learning algorithm; 

• support customization to meet use case-specific requirements. 

 

We pursued these objectives while also prioritizing a generalizable and extensible 

testing structure that avoids unnecessary assumptions regarding test inputs. The procedure 

calls for users to provide an existing categorical prediction model, a set of new observations to 

be used for updating, a set of updating methods order by complexity (or preference), and a 

scoring rule by which to compare updating methods. Observations in the updating set may 

comprise observations from a new clinical setting in which the model will be applied or 

observations accruing since the model was trained. Given these inputs, our procedure identifies 
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the simplest (or most preferable) updating method that improves performance to comparable or 

superior levels than might be achieved with more sophisticated (or less preferable) updating 

methods. 

     Figure 29 provides an overview of the testing procedure’s two-stage bootstrapping 

approach. We selected bootstrapping as the resampling method for both stages to maintain the 

sample size of the updating set for all assessments. The first bootstrapping stage minimizes the 

influence of overfitting on the procedure’s recommendations by providing an out-of-bag set of 

updated predictions. The second bootstrapping stage utilizes these predictions to evaluate each 

updating method on samples of equal size to the updating set, incorporating uncertainty 

associated with the updating sample size into decision-making.  

 

Figure 29.  Simplified overview of our nonparametric testing procedure.  

 

 
 

Detailed Methodology 
 

Given an update set (_) of size "$ and a current model (`3), users define a set of 

updating methods as -̀, `9, … ,`N, where methods are sorted by increasing statistical 

complexity or decreasing user preference. By default, the testing procedure includes retention of 

the original model as `3, defining this approach the most preferable option. User-specified 

updating approaches may include commonly applicable methods (e.g., recalibration), as well as 

model-specific methods (e.g., reweighting the leaf nodes of each tree in a random forest model). 

See Chapter 2 for descriptions of several updating techniques. 

To supplement the basic outline in Figure 29, the processes and flow of data through 

each of step of the testing procedure are illustrated in more detail in Figure 30. We begin by 

developing a pooled set of holdout predictions (b) via the first bootstrapping stage. For each of  
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Figure 30.  Detailed illustration of our nonparametric testing procedure. 

 

 
 

c- iterations, we randomly sample with replacement "$ observations from _, defining this 

sample as d. We construct a holdout set (ℎ) with those observations from _	not included in d. 

Predicted probabilities from `3 are estimated for all observations in both d and ℎ. Based on d, 

we calculate the adjustments required for updating methods -̀ through `N. We apply these 

adjustments to ℎ, resulting in a set of predicted probabilities based on the current model and 

each updating method for all observation in ℎ. Holdout set predictions are pooled across 

bootstrap iterations to construct b. Here we set c- to be 100; however, fewer iterations may be 
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permissible as long as b is large enough to capture variability in predictions and each 

observation is included in b with similar probability. 

The performance of each updating method is evaluated on b via the second 

bootstrapping stage. For each of c9 iterations, we randomly sample with replacement "$ 

observations from b and measure the performance of each updating method in this sample with 

the user-defined scoring rule (f). A variety of accuracy, discrimination, or calibration metrics 

may be applicable here, with selection dependent on those aspects of performance most 

relevant for a given use case. To enable stable quantile estimates of the scoring rule for each 

updating method, we set c9 to be 1,000. This process results in a set of fg,h where i =

	1, 2, … , c9 indexes the iteration and k = 0,1, … ,S indexes the updating method. 

Finally, we define l̀ as the updating method for which the median f is closest, in terms 

of absolute value, to the scoring rule’s ideal value. No other method will have significantly better 

performance than l̀ as their accuracy cannot be significantly closer to the scoring rule’s ideal 

value; however, other methods may exhibit similar performance with a score that is not 

significantly different than that of l̀. Since our procedure aims to recommend the simplest (or 

most preferable) updating method that does not compromise performance, we need only 

consider whether any simpler (or more preferable) methods perform comparably to l̀. If l̀ is 

the current model (`3), then no comparisons are needed and the procedure recommends 

retaining the current model. Otherwise, starting with k = 0, we estimate the percentile-based 

100(1 − m)% confidence interval for the paired difference in f between `h and l̀. When this 

interval contains 0, indicating no significant difference, the procedure recommends `h. When 

this interval does not contain 0, we increment k and repeat until a recommendation is made or 

k = o, in which case l̀ is recommended.  

We do not correct for multiple comparisons in this final step of the procedure because 

we do not seek to control the familywise error rate of rejecting one or more null hypotheses of 

no difference between models. Rather, we seek to identify significant differences with a 

standard correction for uncertainty that does not depend on the number of comparisons being 

made. Operationally, users can control the stringency of this correction uniformly through setting 

m in the 100(1 − m)% confidence interval. We are also not comparing all methods to l̀ 

simultaneously. Instead, we are filtering options and defining pairwise comparisons based on 

predefined preferences. For similar reasons, we encourage using the 100(1 − m)% confidence 

interval framework over a hypothesis testing framework. However, the latter approach is equally 

easy to execute. Rather than forming an interval from the p
9
 and 1 − p

9
 quantiles of the 
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distribution of differences, the user would estimate q, the quantile represented by 0. A “p-value” 

equal to 2 ∗ min	(q, 1 − q) is compared to m where being less than m is equivalent to 0 being 

excluded from the interval. 

 

Default Parameterization 
 

To investigate the properties and performance of our testing procedure, we defined 

default values for the customizable aspects of the testing procedure. These values are widely 

generalizable and may serve as a baseline implementation of the testing procedure for users 

not wishing to pursue customization. We specified the set of updating methods as intercept 

correction ( -̀), linear logistic recalibration (`9), flexible logistic recalibration (`R), and model 

refitting (`u). Intercept correction and linear logistic recalibration are common approaches 

correcting systematic over/under prediction and overfitting, respectively.26, 30 Flexible logistic 

recalibration extends the linear logistic recalibration approach to allow nonlinearity in the 

association between outcomes and baseline predictions, potentially correcting more complex 

forms of miscalibration.66 Each of these updating methods may be applied to any categorical 

prediction model. See Chapter 2 for further detail on these updating techniques. We specified f 

as the Brier score. This quadratic scoring rule measures model accuracy by incorporating both 

discrimination and calibration.37, 103 As the Brier score tends towards 0 with increasing accuracy, 

l̀ is the updating method with the minimum median Brier score. We investigated the sensitivity 

of the testing procedure to the choice of scoring rule in a sensitivity analysis in which we 

replaced the Brier score with a logarithmic scoring rule.  

 

Simulation Study 
 

We conducted a simulation study to characterize the performance of our testing 

procedure under population shifts that may impact model performance in clinical settings.18, 19, 

104, 105 Such shifts involve changes in outcome prevalence, distributions of risk factors (i.e., case 

mix), and predictor-outcome associations. In the presence of each form of population shift, we 

updated a logistic regression model with recommendations both from our testing procedure and 

from a baseline testing procedure proposed by Vergouwe and colleagues.33 Using sequential 

likelihood ratio tests, Vergouwe et al’s closed testing procedure selects the simplest updating 

method providing a fit similar to model refitting. See Chapter 2 for additional detail. We 
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documented updating recommendations and compared performance under these 

recommendations with alternative updating methods.  

 

Methods 
 

A single model development population was generated and used to train the logistic 

models considered for updating by the testing procedures. This population included 100,000 

observations with 32 covariates generated from multivariate normal, gamma, binary, Poisson, 

and multinomial distributions, reflecting a variety of predictor types that may be observed in 

clinical datasets. Details of predictor distributions are provided in Appendix D. These covariates 

and several interactions among them served as predictors for two reference logistic regression 

models, one with 10 degrees of freedom (%&) and another with 40. The logistic regression 

models were defined by the following equation: 

 
v(; = 1|w) = [1 + x4*{−(y3 + y-4- + y949 + yR4R + yu4u + yz4z + y{4{ + y|4| + y}4}

+ y~4~ + y-34-3 + y--4-- + y-94-9 + y-R4-R + y-u4-u + y-z4-z + y-{4-{

+ y-|4-| + y-}4-} + y-~4-~ + y93493 + y9-49- + y99499 + y9R49R + y9u49u

+ y9z49z + y9{49{ + y9|49| + y9}49} + y9~49~ + yR34R3 + yR-4R-� + yR94R-K

+ yRR4R9� + yRu4R9K + yRz4-49R + yR{4z499 + yR|4--4-9 + yR}4-94-R

+ yR~4{49{ + yu34R49}ÄÅÇ
,- 

 
where  

4R-� = dummy variable for 2nd level of wR- 

4R-K = dummy variable for 3rd level of wR- 

4R9� = dummy variable for 2nd level of wR9 

4R9K = dummy variable for 3rd level of wR9 

 

For the model with %& =10, coefficients for select variables were set to 0, reducing the model 

form to 

 
 v(; = 1|w) = [1 + x4*{−(y3 + y9w9 + yRwR + yzwz + y{w{ + y}w} + y-{w-{ + y99w99 +

																																																				y9uw9u + y9~w9~ + yR{wz ∗ w99)}]
,- 
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Using coefficients defined as noted in Appendix D and intercepts adjusted to establish a 

population event rate of 25%, we calculated probabilities for each observation in the model 

development population under both the %& =	10 and %& =	40 models. A binary outcome under 

both models was defined by comparing these probabilities to random values generated from a 

uniform [0,1] distribution. If the random value was less than or equal to the assigned probability, 

the observation was assigned ; = 1, otherwise the observation was assigned ; = 0. 

We constructed updating and evaluation populations under five population shift 

scenarios. Our simulated scenarios illustrate situations in which the testing procedure is applied 

to a fully shifted population rather than a gradually shifting population where observations are a 

mixture of the pre- and post-shift patterns. This may reflect updating after transporting a model 

to a new clinical setting or after a long delay. Shifted populations differed from the model 

development population in the following ways: 

 

1. No population shift – predictors and outcomes generated in the same way was the 

development population. 

2. More prevalent outcome – predictors generated in the same way was the 

development population; outcomes generated with an adjusted intercept. 

3. More homogenous case mix – predictors generated from less variable distributions; 

outcomes generated in the same way was the development population. 

4. More heterogenous case mix – predictors generated from more variable 

distributions; outcomes generated in the same way was the development population. 

5. Shift in predictor-outcome associations – predictors generated in the same way was 

the development population; outcomes generated from models with adjusted 

coefficients. 

 

For each population shift scenario, we simulated 200,000 observations with adjusted 

parameters, assigning half to the updating population and half to the evaluation population. 

Under the scenario of no population shift, these data were simulated with the same settings as 

the development population. To simulate event rate shift, we adjusted the intercept of the 

logistic models to increase the outcome prevalence from 25% to 30%. Observations for the 

more homogenous and heterogenous case mix scenarios were generated by decreasing and 

increasing the variability of predictor distributions, respectively. For the predictor-outcome 

association shift scenario, we adjusted half the logistic models’ coefficients by 20%, with some 
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increasing and others decreasing in strength of association. See Appendix D for additional 

details on adjustments. 

We explored the impact of population shifts on updating recommendations under varying 

training ("#= 1000, 5000, and 10000) and updating ("$= 1000, 5000, and 10000) sample sizes. 

We expect larger "# may lead to more robust, generalizable models that are more amenable to 

recalibration rather than requiring refitting under some scenarios. As larger "$ provide more 

information to support updating, we expect them to lead to more complex updating 

recommendations than smaller "$ under all population shift scenarios. We trained either the 

simple (%& = 10) or complex (%& = 40) logistic regression model on "# observations sampled 

from the development population. We sampled "$ observations from both the updating and 

evaluation populations of each population shift scenario. To determine the recommended 

updating method, we applied our testing procedure to the updating sample. To document the 

impact of updating recommendations, we assessed the performance of each available updating 

method on the evaluation sample. This process was repeated 1,000 times for each combination 

of model complexity, "#, and "$. 

 

Results 
 

The updating recommendations of our testing procedure by population shift scenario, 

training sample size, and updating sample size for the %&	= 10 and %&	= 40 models are detailed 

in Tables 6 and 7, respectively.  

When no population shifts occurred, our test generally recommended retaining the 

original model. As the updating samples increasingly outweighed training samples (i.e.,	"# ≪

	"$), model refitting became the primary recommendation. A similar pattern emerged when the 

event rate increased. In this case, intercept correction was recommended; however, a shift 

toward model refitting was apparent as the updating sample dominated the training sample. 

With small updating samples, test recommendations were split between not updating and 

intercept correction. Under both population shifts, the recommended updates provided superior 

or similar calibration to that achieved with more complex updating (see Figures 31-34). 

Recommendations for more complex updating when training samples were very small 

compared to updating samples (i.e.,	"# ≪ 	"$) improved performance compared to the original 

model.  
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Table 6.  Percent of iterations for which each updating methods was recommended by our 

nonparametric testing procedure under each simulated scenario, training sample size ("#), and 

updating sample size ("$) when %&	= 10. 

 
    ÑÖ	= 1000 ÑÖ	= 5000 ÑÖ	= 10000 

Scenario 
Updating 
method 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

No population 
shift 
  

No update 99.8 60.8 14.9 100 99.3 93.1 100 99.7 98.5 
Intercept 
correction 0 5.9 4.5 0 0.7 4.5 0 0.3 0 
Linear 
recalibration 0.1 4.6 2.2 0 0 0 0 0 0 
Flexible 
recalibration 0 0.1 0.1 0 0 0 0 0 0 
Model refitting 0.1 28.6 78.3 0 0 2.4 0 0 1.5 

Increased 
event rate 
  

No update 52.9 0.7 0 53.3 0 0 63.4 0 0 
Intercept 
correction 46.1 52.1 15.4 46.7 99.7 95 36.6 99.7 99.7 
Linear 
recalibration 0.9 6.3 3.2 0 0 0.1 0 0.3 0.1 
Flexible 
recalibration 0 0.2 0.6 0 0 0 0 0 0 
Model refitting 0.1 40.7 80.8 0 0.3 4.9 0 0 0.2 

Less variable 
case mix 
  

No update 99.2 74.9 31.2 100 99.2 99.5 100 99.6 99.9 
Intercept 
correction 0 9.2 10.2 0 0.8 0.4 0 0.4 0.1 
Linear 
recalibration 0.8 3.8 7.1 0 0 0.1 0 0 0 
Flexible 
recalibration 0 0.2 0.4 0 0 0 0 0 0 
Model refitting 0 11.9 51.1 0 0 0 0 0 0 

More variable 
case mix 
  

No update 98.5 32.1 5.7 100 97.8 80.1 100 99.8 96.5 
Intercept 
correction 1 4 2.1 0 0.5 2.8 0 0.2 2.9 
Linear 
recalibration 0 3 1.9 0 0.5 0.4 0 0 0 
Flexible 
recalibration 0 0.1 0 0 0 0 0 0 0 
Model refitting 0.5 60.8 90.3 0 1.2 16.7 0 0 0.6 

Association 
changes 
  

No update 0 0 0 0 0 0 0 0 0 
Intercept 
correction 0.1 0 0 0 0 0 0 0 0 
Linear 
recalibration 0 0 0 0 0 0 0 0 0 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 99.9 100 100 100 100 100 100 100 100 
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Table 7.  Percent of iterations for which each updating methods was recommended by our 

nonparametric testing procedure under each simulated scenario, training sample size ("#), and 

updating sample size ("$) when %&	= 40. 

 
    ÑÖ	= 1000 ÑÖ	= 5000 ÑÖ	= 10000 

Scenario 
Updating 
method 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

No population 
shift 
  

Not updating 94 7.7 0 100 99.7 87 100 100 100 
Intercept 
correction 1.2 1.3 0 0 0.2 0 0 0 0 
Linear 
recalibration 4.8 7.1 0 0 0.1 0 0 0 0 
Flexible 
recalibration 0 0.1 0 0 0 0 0 0 0 
Model refitting 0 83.8 100 0 0 13 0 0 0 

Increased 
event rate 
  

Not updating 43.6 0.1 0 43.4 0 0 48.1 0 0 
Intercept 
correction 48 5.2 0 56.6 99.2 81.7 51.9 100 100 
Linear 
recalibration 8.4 4.4 0 0 0.8 5.2 0 0 0 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 0 90.3 100 0 0 13.1 0 0 0 

Less variable 
case mix 
  

Not updating 79.9 22.5 1 100 88.5 68.4 100 96.3 89.4 
Intercept 
correction 14.1 14.6 0.5 0 10.3 21.1 0 3.6 7 
Linear 
recalibration 6 20.7 1.6 0 1.2 5.2 0 0.1 3.6 
Flexible 
recalibration 0 0.1 0 0 0 0 0 0 0 
Model refitting 0 42.1 96.9 0 0 5.3 0 0 0 

More variable 
case mix 
  

Not updating 59 0 0 95.5 60.1 15.8 96.4 74.7 74.9 
Intercept 
correction 30.4 0 0 4.5 28.4 13.3 3.6 24.7 18 
Linear 
recalibration 8.2 0.2 0 0 1.7 7.8 0 0.4 3.5 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 2.4 99.8 100 0 9.8 63.1 0 0.2 3.6 

Association 
changes 
  

Not updating 0 0 0 0 0 0 0 0 0 
Intercept 
correction 0 0 0 3.6 0 0 2.4 0 0 
Linear 
recalibration 0 0 0 0 0 0 1.1 0 0 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 100 100 100 96.4 100 100 96.5 100 100 
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Figure 31.  Brier scores in evaluation sets after predefined and test-recommended updates for 

simulated scenarios of no population change.  
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Figure 32.  Estimated calibration index in evaluation sets after predefined and test-

recommended updates for simulated scenarios of no population change.  
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Figure 33.  Brier scores in evaluation sets after predefined and test-recommended updates for 

simulated event rate change. 
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Figure 34.  Estimated calibration index in evaluation sets after predefined and test-

recommended updates for simulated event rate change. 
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Figure 35.  Brier scores in evaluation sets after predefined and test-recommended updates for 

simulated predictor-outcome association changes. 
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Figure 36.  Estimated calibration index in evaluation sets after predefined and test-

recommended updates for simulated predictor-outcome association changes. 

 

 
 

 

 

 

 



 76 

Figure 37.  Brier scores in evaluation sets after predefined and test-recommended updates for 

simulated decrease in case mix variability. 
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Figure 38.  Estimated calibration index in evaluation sets after predefined and test-

recommended updates for simulated decrease in case mix variability. 
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Figure 39.  Brier scores in evaluation sets after predefined and test-recommended updates for 

simulated increase in case mix variability. 
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Figure 40.  Estimated calibration index in evaluation sets after predefined and test-

recommended updates for simulated increase in case mix variability. 
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In response to changes in predictor-outcome associations, our test recommended model 

refitting, regardless of the relative sizes of the training and updating samples. Refitting under 

predictor-outcome association shift improved accuracy compared to simpler updates, even 

when updating samples were smaller than training samples (see Figure 35-36).  

Case mix shifts resulted in the most variable recommendations. When variability in case 

mix decreased between the training and updating populations, recommendations varied across 

the spectrum of updating methods. However, the overall trend was toward retaining the original 

model, particularly when updating samples included similar or smaller volumes of data than 

training samples. When "#>1000, no significant improvement in performance was observed with 

updating, supporting the recommendation to retain the original model (see Figure 37-38). 

With increasing variability in case mix, for the %&	= 10 model, refitting was recommended 

for updating samples of similar or larger size as training samples; however, not updating was 

the dominant recommendation for smaller update samples. Recommendations for the %&	= 40 

model were primarily split between not updating and intercept correction, although refitting the 

model was recommended as updating samples grew larger than training samples. Calibration 

under the procedure’s recommendations was generally less variable, but not significantly 

different, than that of the original model. More complex updates than those recommended did 

not provide additional improvement in performance (see Figure 39-40). For the smallest training 

samples, however, refitting with larger updating samples, as recommended, improved 

discrimination but not calibration compared to recalibration methods.  

 

Comparison to baseline testing procedure 

 

Updating recommendations based on Vergouwe et al’s closed testing procedure, 

extended to include a consideration of flexible logistic recalibration, are presented in Tables 8 

and 9. Overall, recalibration recommendations were more variable and model refitting was 

recommended more often using Vergouwe’s testing procedure compared to our testing 

procedure. 

When no population shifts occurred between the development and updating populations, 

Vergouwe’s procedure recommended refitting the model in the majority of cases, particularly for 

the %& = 40 model. As with our testing procedure, the recommendation to refit a complex model 

when updating data outweighed the training data by 10 to 1 resulted in improved calibration 

compared to the original model. However, despite no differences in the training and updating 

populations, Vergouwe’s testing procedure recommended refitting the model with an update  
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Table 8.  Percent of iterations for which each updating methods was recommended by 

Vergouwe et al’s closed testing procedure under each simulated scenario, training sample size 

("#), and updating sample size ("$) when %&	= 10. 

 
    ÑÖ	= 1000 ÑÖ	= 5000 ÑÖ	= 10000 

Scenario 
Updating 
method 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

No population 
shift 
  

No update 45.4 0.7 0.2 87.6 37.7 16.7 95.3 65.3 40.2 
Intercept 
correction 5.1 0.8 0.1 3.3 7.1 3.4 1.2 7.1 10.4 
Linear 
recalibration 7.4 1.4 0.1 0.9 6.7 3 0 3.8 2.2 
Flexible 
recalibration 2.2 0.3 0.1 0.6 0.5 2.6 0 1.4 2.5 
Model refitting 39.9 96.8 99.5 7.6 48 74.3 3.5 22.4 44.7 

Increased 
event rate 
  

No update 2.5 0 0 5.9 0 0 10.6 0 0 
Intercept 
correction 44.8 1.6 0.3 85 37.8 22.8 84.6 71 41.8 
Linear 
recalibration 3.8 0.8 0 2.3 5.1 4.8 1.2 4.5 5.4 
Flexible 
recalibration 3.1 0.3 0 0.5 2.8 0.6 0 2 1.7 
Model refitting 45.8 97.3 99.7 6.3 54.3 71.8 3.6 22.5 51.1 

Less variable 
case mix 
  

No update 47 2.7 0.2 89.5 56.3 19.4 88.3 76 58.8 
Intercept 
correction 6.7 2.5 0.1 1.6 7.7 9.9 1.1 4.7 5.6 
Linear 
recalibration 11.3 3.6 1.2 1.2 7 11.1 2.4 1.7 4.1 
Flexible 
recalibration 0.8 0.4 0 1.4 1.4 4.7 1.2 1.5 3.7 
Model refitting 34.2 90.8 98.5 6.3 27.6 54.9 7 16.1 27.8 

More variable 
case mix 
  

No update 30.8 0.1 0 81.6 28.3 4.8 93.1 54.5 18.3 
Intercept 
correction 2.3 0.1 0 2.6 4.2 2.5 1.2 3.6 5.5 
Linear 
recalibration 3.7 0.6 0 4.1 2.2 0.4 0 2.5 4.5 
Flexible 
recalibration 0.3 0.1 0 0.2 0.7 2.3 0 1.3 2.4 
Model refitting 62.9 99.1 100 11.5 64.6 90 5.7 38.1 69.3 

Association 
changes 
  

No update 0 0 0 0 0 0 0 0 0 
Intercept 
correction 0 0 0 0 0 0 0 0 0 
Linear 
recalibration 0 0 0 0 0 0 0 0 0 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 100 100 100 100 100 100 100 100 100 
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Table 9.  Percent of iterations for which each updating methods was recommended by 

Vergouwe et al’s closed testing procedure under each simulated scenario, training sample size 

("#), and updating sample size ("$) when %&	= 40. 

 
    ÑÖ	= 1000 ÑÖ	= 5000 ÑÖ	= 10000 

Scenario 
Updating 
method 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

ÑÜ= 
1000 

ÑÜ= 
5000 

ÑÜ= 
10000 

No population 
shift 
  

No update 3.5 0 0 70.6 3.9 0 78.9 26.7 0 
Intercept 
correction 1.2 0 0 3.5 0.6 0 2.4 1.4 0 
Linear 
recalibration 1.2 0 0 0 0.6 0 0 2.3 0 
Flexible 
recalibration 1.2 0 0 1.2 0.3 0 0 1.3 0 
Model refitting 92.9 100 100 24.7 94.6 100 18.7 68.3 100 

Increased 
event rate 
  

No update 0 0 0 4.7 0 0 9.5 0 0 
Intercept 
correction 3.5 0 0 60.8 2.3 0 80.9 24.5 7.2 
Linear 
recalibration 1.1 0 0 2.3 1 0 1.2 2.2 0 
Flexible 
recalibration 0 0 0 2.3 0.7 0 1.2 1.2 0 
Model refitting 95.4 100 100 29.9 96 100 7.2 72.1 92.8 

Less variable 
case mix 
  

No update 10.4 0 0 72.6 8.9 0 87.1 37.1 0 
Intercept 
correction 1.2 0 0 3.5 6.5 0 2.4 9.6 0 
Linear 
recalibration 10.6 0 0 2.4 5.9 2.7 1.1 5.3 3.6 
Flexible 
recalibration 1.1 0 0 1.2 0.7 0 0 1.2 0 
Model refitting 76.7 100 100 20.3 78 97.3 9.4 46.8 96.4 

More variable 
case mix 
  

No update 0 0 0 24.4 0 0 58.5 2.9 0 
Intercept 
correction 0 0 0 12.9 0.1 0 8.3 1.3 0 
Linear 
recalibration 0 0 0 3.5 0 0 4.7 0.9 0 
Flexible 
recalibration 0 0 0 2.4 0 0 1.2 0.1 0 
Model refitting 100 100 100 56.8 99.9 100 27.3 94.8 100 

Association 
changes 
  

No update 0 0 0 0 0 0 0 0 0 
Intercept 
correction 0 0 0 0 0 0 0 0 0 
Linear 
recalibration 0 0 0 0 0 0 0 0 0 
Flexible 
recalibration 0 0 0 0 0 0 0 0 0 
Model refitting 100 100 100 100 100 100 100 100 100 
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sample of just 1,000 observations in 18.7% of iterations when 10,000 observations had been 

used to train the %& = 40 model. In such cases, no improvement in performance as a result of 

this more complex updating was observed (see Figures 31-32). 

When the outcome prevalence was increased in the updating population, intercept 

correction was frequently recommended in those cases where "$ ≤ "#. An exception to this 

pattern emerged for the %&	= 40 model, for which refitting was recommended when updating 

sample sizes were equal to or larger than the training sample. When "#	and "$ were both set to 

10,000 with the %&	= 10 model, the test was split between intercept correction and refitting. 

These recommendations did not improve performance beyond that which would have been 

achieved by always selecting intercept correction (see Figures 33-34). 

 As observed with our testing procedure, case mix shifts resulted in the most variable 

recommendations. For both the %&	= 10 and %&	= 40 models, refitting was the main 

recommendation when "#	= 1000 and updating samples were larger. For the scenario involving 

a more heterogenous case mix in the updating population, similar patterns were observed, 

particularly for the %&	= 10 model. With the %&	= 40 model, refitting was exclusively 

recommended when "$ ≥ "#. Discrimination and calibration were not significantly improved by 

these updating recommendations compared to the original model or less complexly updated 

models, with the exception of models trained on samples of "#= 1000 (see Figures 37-40). 

Vergouwe et al’s testing procedure exclusively recommended refitting the model when 

predictor-outcome associations had shifted between the training and updating populations, 

regardless of the relative sizes of the training and updating samples. Refitting the model after 

predictor-outcome association shifts improved accuracy compared to simpler updating methods, 

even in cases when "$ < 	"# (see Figure 35-36). 

 

Case Studies 
 

Methods 
 

As illustrative examples on clinical data, we applied our procedure to two logistic 

regression models, one for 30-day all-cause mortality after hospital admission and another for 

hospital-acquired acute kidney injury (AKI). Each model was developed and updated with data 

on a national set of inpatient admissions to Department of Veterans Affairs facilities.18, 19 

Predictors, which were selected based on existing models from the literature, included 

demographics, vital signs, medications, laboratory values, diagnoses, admission characteristics,  
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Table 10.  Case study populations. 

 

  Acute kidney 
injury dataset 

30-day mortality 
dataset 

Number of admissions 1,841,951 1,893,284 
Study period 2003 - 2012 2006-2013 

Outcome rate (%) 6.8 4.9 

Age in years (mean and SD) 66.1 (13.0) 63.4 (14.0) 

% Female 3.9 5.0 

Race   

% White 75.3 72.1 

% Black 19.3 19.7 

% American Indian/Alaskan 0.9 1.2 

% Asian/Pacific Islander 1.1 1.5 

% Unreported 3.4 5.5 

BMI at admission (mean and SD) 27.7 (7.5) 28.5 (7.2) 
 

and healthcare utilization.7, 8, 106-108 Both cohorts consisted of inpatient admissions to VA facilities 

that lasted at least 48 hours and for which the patient was at least 18 years of age. Admissions 

were excluded if the patient received hospice care or was admitted to a facility with fewer than 

100 admissions per year or did not report key data to the central data warehouse. Outcome-

specific data definitions and additional exclusion criteria were previously reported.18, 19 The 

datasets and study population characteristics are summarized in Table 10. 

Logistic regression models for both AKI and mortality experienced documented 

performance drift across several years.18, 19 Drift of the AKI model accelerated four years after 

model development due to a complex mix of event rate, case mix, and predictor-outcome 

association changes.19 Performance of the mortality model drifted more consistently over seven 

years as a result of steady event rate and case mix shifts.18 We applied our testing procedure to 

assess the need for updating at multiple timepoints after development of each model. This study 

was approved by the Institutional Review Board and the Research and Development committee 

of the Tennessee Valley Healthcare System VA.  

An illustration of the updating and evaluation framework for these case studies is 

provided in Figure 41. The mortality model was trained on admissions from 2006 (n=235,548)  
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Figure 41.  Updating and evaluation scheme for case studies evaluating the nonparametric 

testing procedure. 

 

 
 

and the AKI model on admissions from 2003 (n=170,675). We updated both models one, three, 

and five years after development, defining updating points at the end of 2007, 2009, and 2011 

for the mortality model and at the end of 2004, 2006, and 2008 for the AKI model. Calibration of 

the mortality model steadily declined across this period,18 whereas performance drift of the AKI 

model accelerated four years after development.19 The 2003 AKI and 2006 mortality models 

were considered for updating at each time point without consideration of any prior updating 

recommendations. We applied the testing procedure with multiple definitions of the updating 

cohort, constructing updating sets with admissions in the prior 1, 3, 6, and 12 months. For 

simplicity, we refer to the 12-month updating set as a large update set, the 1-month updating set 

as a small update set, and the 3- and 6-month updating sets as moderate update set. 

We documented performance of the original and updated models on a prospective 

evaluation set of admissions in the 3-months after each updating point, reflecting the notion that 

an updated model would ideally perform well immediately after updating. Calibration curves109 

were constructed for the original model and each updating method to characterize the 95% 

confidence interval of performance across the range of probabilities. Common discrimination 

and calibration metrics were also calculated. 

For baseline comparison with the most applicable method in the literature, we also 

applied Vergouwe and colleagues’ closed testing procedure.33 As in the simulation study, we 

extended this testing procedure to incorporate flexible logistic recalibration.66 We explored 

differences in updating recommendations and the impact of these recommendations on 

subsequent prospective performance.  

 

 

 

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
Time since model development

12m update set 6m update set 3m update set 1m update set 3m evaluation set
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Results 
 

The updating recommendations of our nonparametric testing procedure and Vergouwe 

et al’s closed testing procedure are documented in Tables 11 and 12. Performance metrics for  

each updating method in the three months after updating are displayed in Figures 42 and 43, 

and corresponding calibration curves are presented in Figures 44-47. For clarity, we limited the 

detailed results in the main text to performance based on large and small update sets for the 

one and five year updating points. Full results are available in Appendix E. 

For the AKI model, intercept correction was the most complex updating method 

recommended by our testing procedure. This change was recommended at all time points with 

large update sets, at most updating points with moderate update sets, and after 5 years with a 

small update set. One year out from model development, recalibration with intercept correction 

did not significantly improve calibration among inpatient admissions in the three months after 

updating (see upper left panel of Figure 44). Five years after model development, intercept 

correction with the large update cohort, as recommended, improved calibration over the original 

model and provided similar calibration to that of the refitted model. With small update sets, the 

calibration curves reflect poorer calibration after refitting compared to both the original and 

 

Table 11.  Updating recommendations of our nonparametric testing procedure by time since 

model development and size of updating set. 

 
Time from 
development to 
updating 

Large (12m) 
update set 

Moderate (6m) 
update set 

Moderate (3m) 
update set 

Small (1m) 
update set 

Acute kidney injury 
   

1 year Intercept 
correction 

Intercept 
correction No update No update 

3 years Intercept 
correction 

Intercept 
correction 

Intercept 
correction No update 

5 years Intercept 
correction 

Intercept 
correction 

Intercept 
correction 

Intercept 
correction 

30-day mortality     

1 year Flexible logistic 
recalibration 

Flexible logistic 
recalibration 

Flexible logistic 
recalibration No update 

3 years Flexible logistic 
recalibration 

Flexible logistic 
recalibration 

Intercept 
correction No update 

5 years Flexible logistic 
recalibration 

Flexible logistic 
recalibration 

Flexible logistic 
recalibration 

Intercept 
correction 
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Table 12.  Updating recommendations of Vergouwe et al’s closed testing procedure by time 

since model development and size of updating set. 

 
Time from  
development to 
updating 

Large (12m) 
update set 

Moderate (6m) 
update set 

Moderate (3m) 
update set 

Small (1m) 
update set 

Acute kidney injury 
   

1 year Refit Refit Refit Refit 

3 years Refit Refit Refit No update 

5 years Refit Refit Refit Refit 

30-day mortality     

1 year Refit Refit Refit No update 

3 years Refit Refit Refit Intercept 
correction 

5 years Refit Refit Refit Refit 

 

intercept-corrected models (see also Figure 42). At the five-year update point, intercept 

correction with the small update cohort, as recommended, improved upon the calibration of the 

original and refitted models. In each case, more complex recalibration than recommended did 

not provide additional performance improvements (see Figure 42). 

For the 30-day mortality model, large and moderate update sets prompted our 

nonparametric testing procedure to recommend flexible logistic recalibration both soon after 

model development and as time passed. The calibration curves associated with flexible logistic 

recalibration highlight well-calibrated predictions over a wide range of probabilities, while the 

curves for the original and refitted models highlight uncertainty and overprediction as predicted  

probabilities increase (see Figure 46). Simpler recalibration approaches did not provide as much 

improvement in performance as the recommended flexible logistic recalibration (see Figures 43 

and 47). With small update sets and more time since model development, our testing procedure 

recommended intercept correction. Although calibration was somewhat improved with this 

update compared to the original and refitted models, the calibration curves reflect uncertainty in 

performance after updating which could have been further improved upon by more complex 

recalibration in this case (see Figures 43 and 47). 
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Figure 42.  Performance of the acute kidney injury (AKI) model in the three months after 

updating with each updating method using large (12-month) and small (1-month) update sets. 

 

 
* Recommended update per our nonparametric testing procedure 

 

Figure 43.  Performance of the 30-day mortality model in the three months after updating with 

each updating method using large (12-month) and small (1-month) update sets. 

 

 
* Recommended update per our nonparametric testing procedure 

 

 



 89 

Figure 44.  Calibration curves in the three months after updating based on large (12-month) and 

small (1-month) update sets for the original acute kidney injury (AKI) model, the refit model, and 

the update recommended by our nonparametric testing procedure (if different; e.g., no update to 

original model recommended for bottom left panel). 
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Figure 45.  Calibration curves in the three months after updating based on large (12-month) and 

small (1-month) update sets for the acute kidney injury (AKI) model with varying degrees of 

recalibration. 
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Figure 46.  Calibration curves in the three months after updating based on large (12-month) and 

small (1-month) update sets for the original 30-day mortality model, the refit model, and the 

update recommended by our nonparametric testing procedure (if different; e.g., no update to 

original model recommended for bottom left panel). 
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Figure 47.  Calibration curves in the three months after updating based on large (12-month) and 

small (1-month) update sets for the 30-day mortality model with varying degrees of recalibration. 

 

 
 

 In contrast, Vergouwe et al’s closed testing procedure recommended refitting the AKI 

model in all but one case (see Table 12). Refitting did not significantly improve upon 

recalibration and in some cases resulted in diminished performance compared to simpler 

approaches (see Figure 42). The detrimental effect of refitting the AKI model with a 1-month 

update set is highlighted by the calibration curves in Figure 46, where the refit curve falls farther 

from the 45° calibration line than those of the original and intercept-corrected models. 
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Vergouwe et al’s closed testing procedure recommended refitting the 30-day mortality 

model with large and moderate update sets at all timepoints. With small update sets, this test 

recommended an increasing degree of updating over time, suggesting no update, intercept 

correction, and refitting after one, three, and five years, respectively. Refitting the model five 

years after development using one month of admissions resulted in inferior performance 

compared to recalibration and did not improve upon the original model (see Figure 43). With 

larger update sets, refitting, as recommended, did not significantly improve upon simpler 

recalibration approaches (see Figure 43). 

 

Sensitivity Analysis 
 

 One of the strengths of our nonparametric testing procedure is its customizable nature. 

Some users may prefer to focus on calibration metrics, utility metrics, or alternate accuracy 

metrics. To illustrate this customization and assess how the choice of accuracy metric impacts 

test recommendations, we ran both the simulation and case study analyses using a logarithmic 

scoring rule (LSR) rather than the quadratic Brier score. This change required adjusting the 

metric recorded in the second bootstrapping stage and defining l̀ as the updating method that 

maximized rather than minimized the median àfâg,h.  

 

Table 13.  Updating recommendations across all simulation iterations using the Brier score and 

logarithmic scoring rule. 

 

  Brier score decision 

  
No Update Intercept 

correction 
Linear 

recalibration 
Flexible 

recalibration 
Model 
refitting 

LS
R

 d
ec

is
io

n 

No update 43,462 391 354 0 295 
Intercept 
correction 1,101 13,024 73 0 148 

Linear 
recalibration 246 197 432 1 1,104 

Flexible 
recalibration 0 3 3 4 27 

Model 
refitting 459 596 361 23 27,696 
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Figure 48.  Calibration curves for case study scenarios in which the testing procedures 

evaluating the Brier score and logarithmic scoring rule provided differing recommendations. 

 

 
 

In both the simulation and case studies, we observed strong agreement between the test 

recommendations based on the Brier and logarithmic scores. Across all simulation scenarios 

and parameter combinations, the two scores lead to the same recommendation 94.0% of the 

time (see Table 13). Within population shift scenarios, agreement ranged from 92.0% when the 

outcome prevalence was changed to 96.1% when no population shift occurred.  

For the AKI model, using a 3-month update set at three years after development the 

Brier score-based test recommended intercept correction and the LSR-based test 

recommended retaining the original model. Using a 12-month update set after five years, the 

LSR-based test recommended model refitting, a more complex change than intercept correction 

as recommended by the Brier score-based test. Five years after the mortality model was 

developed, using one month of admissions in the updating process lead the LSR-based test to 

recommend retaining the original model, whereas the Brier score-based test recommended 

intercept correction. Figure  48 illustrates the differences in calibration curves for the three 

months after updating with these recommendations. The differing recommendations resulted in 

similar performance. For example, in the center panel of Figure 48, the calibration curves were 

almost mirrored across the ideal calibration line, with the Brier score-based update having a 

slight tendency toward overprediction and the LSR-based update having a slight tendency 

toward underprediction. However, both updated models were calibrated across the range of 

predictions. At other updating points and updating sample sizes, recommendations for updating 

the mortality and AKI models were unchanged. 
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Discussion 
 

We described and evaluated a new nonparametric testing procedure to recommend 

prediction model updating methods that minimizes overfitting, accounts for uncertainty 

associated with updating sample size, incorporates a preference for simple updating, and is 

applicable regardless of the learning algorithm generating predicted probabilities. This testing 

procedure supports clinical prediction models underlying informatics applications for decision 

support, population management, and quality benchmarking, both when transporting such 

models to a new setting or applying them over time in evolving clinical environments. 

As is desirable based on statistical theory, the testing procedure displayed a preference 

for more complex updates as the updating sample size increased or as the training and 

updating populations became increasingly disparate (see Table 14 for general patterns of 

recommendations). Our findings reflect the concept that when more information is available to 

support updating (i.e., update sets are large), more complex updating may be appropriate. For 

example, when our simulated update set was 10 times larger than the training set, our testing 

procedure most often recommended refitting the model, even in scenarios for which there were 

no differences between training and updating populations. This pattern is reassuring as we 

intuitively would want to refit a model when substantially more information is available for 

learning associations, even if we do not expect associations to have changed. For models 

trained on small datasets, updating recommendations varied when update sets were equally 

small, highlighting uncertainty in both the original and adjusted models. Generally, in those 

situations in which the updating and training sets provided the same volume of data, no 

population shift resulted in recommendations to retain the original model, case mix shift resulted  

 

Table 14.  Patterns of our nonparametric testing procedure’s updating recommendations. 

 

Situation Most common recommendation 
Changes in outcome prevalence, similar 
volumes of training and updating data 

Intercept correction 

Changes in case mix, similar volumes of 
training and updating data 

No updating or recalibration 

Changes in predictor-outcome associations, 
regardless of sample sizes 

Refit the model 

Updating set substantially larger than 
training set 

Refit the model 
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in recommendations to retain the original model or conduct modest recalibration, and outcome 

rate shifts resulted in recommendations of intercept correction. Reassuringly, when predictor-

outcome associations shifted between training and updating populations, our testing procedure 

predominantly recommended refitting regardless of the training or updating sample sizes. 

The case study results similarly highlighted recommendations for more complex 

updating as population shift increased and updating sample sizes grew. With large updating 

samples, our testing procedure recommended updating at each timepoint considered and 

suggested more complex recalibration compared to recommendations based on smaller 

updating samples. As calibration of the original models deteriorated over time, our testing 

procedure responded by recommending recalibration even when updating samples were 

limited. By recommending recalibration to varying degrees rather than refitting the models, the 

testing procedure allowed us to avoid refitting in cases where this more data-intensive updating 

approach would have provided no benefit to or even harmed prospective performance. 

Our testing procedure’s recommendations were frequently different from those provided 

by Vergouwe and colleagues’ closed testing procedure. Vergouwe et al’s testing procedure 

commonly recommended model refitting, even for simulations involving no population shifts and 

update sets substantially smaller than training sets. These refitted models resulted in either 

similar or inferior performance to that achieved through recalibration. This highlights the 

importance of controlling for overfitting and avoiding the assumption that model refitting is the 

ideal updating methods against which other methods should compete. 

We have described our testing procedure as filtering based on any statistically significant 

difference in performance between updating methods. However, the procedure can be adjusted 

to filter based on clinically significant differences in performance between updating methods. 

This would be achieved by adjusting the final step of the procedure to consider a user-specified 

minimum difference in S between l̀ and simpler updating methods. Although we have used 0 

to find any difference in accuracy, small differences in the scoring metric may not be associated 

with clinically meaningful differences in performance and may result in users questioning the 

value of updating. Methods for defining clinically meaningful differences in performance as 

measured by various scoring rules remain an open area of research. 

While our analyses focus on logistic regression models, the testing procedure is 

applicable to any categorical model, as the method makes no assumptions regarding the 

learning approach and relies only on observed and predicted values. In addition to applications 

involving other dichotomous outcome models, extension to multiclass models is straightforward 

by providing an appropriate scoring rule (e.g., the multiclass definition of the Brier score). 
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Although the updating methods implemented in these analyses are generalizable to models 

regardless of underlying learning algorithms, users may tailor the set of updating methods to be 

considered based on use case-specific needs and preferences. The only requirement for 

defining a custom set of updating methods is that users provide an order of 

complexity/preference among the included methods, which may require careful consideration for 

cases lacking a natural ordering. Some users may also prefer to optimize a different scoring 

metric than that implemented in these analyses. Such an adjustment is easily made by 

replacing the Brier score in the second bootstrapping stage. In sensitivity analyses using the 

logarithmic scoring rule, we observed strong agreement with the test recommendations based 

on the Brier score. 

Our testing procedure supports periodic updating of static models. Alternatively, online 

learning algorithms continuously update as new observations become available, incorporating 

changes in the environment as they occur.28, 67, 68 Such models have been applied to health 

outcomes, but have yet to be incorporated into clinical tools.27, 28, 63 The shift to an online 

paradigm is not straightforward for clinical use cases, as new validation methods are required 28, 

67 and the regulatory framework for implementing dynamic models is evolving.69  

There are several key limitations of our testing procedure and the evaluations presented 

here. The case study highlights a conservative nature to our testing procedure, which may be a 

limitation for certain use cases. When only a small sample was available to update the 30-day 

mortality model, our testing procedure recommended not updating one year after model 

development and only minimal recalibration after five years. Calibration assessment based on 

admissions in the three months following these update points indicated that flexible 

recalibration, as recommended with larger update sets, could have provided additional 

improvement in calibration. While we view the decision to recommend less complex updating as 

a benefit given the relatively small size of the updating set in this example, the requirements of 

some use cases may view any improvement in calibration to be desirable and the test’s 

recommendation as a missed opportunity. As a second limitation, the first bootstrapping stage 

may be computationally expensive, particularly for complex models. Although advancements in 

computational resources continue to reduce computation times, a refinement to the number of 

iterations in the first bootstrap stage may be warranted. Finally, updating per the test’s 

recommendation, or any of the considered methods, may not result in sufficient improvement in 

model performance to warrant continued clinical application of the model. Users should evaluate 

performance of updated model to determine if clinically acceptable performance is achieved or 

whether model extension or alternative models may be required. 
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Conclusions 
 

As clinical prediction models continue to be developed and deployed in complex, ever-

changing environments, maintenance of these models will become increasingly crucial to their 

utility. Models underlying population health management, quality assessment, and clinical 

decision support applications require a high degree of accuracy and developers must be 

responsive to any degradation in performance. We described a new testing procedure to 

support data-driven updating of categorical prediction models, with the intent to increase the 

long-term sustainability of those models in a continuously evolving clinical environment. Our 

procedure encourages small corrections when only a small amount of new data is available, and 

graduates to recommending full model retraining when the new dataset is large enough to 

support it. The procedure is applicable to models developed with either biostatistical or machine 

learning approaches, and is customizable to user needs and preferences.  
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CHAPTER 7 
 

COMPARISON OF SCHEDULED PREDICTION MODEL 
PERFORMANCE UPDATING PROTOCOLS 

 

 In this chapter, we extend our investigation of the nonparametric testing procedure and 

highlight a key strength of the method by applying the testing procedure to four common 

learning algorithms – ordinary logistic regression, L1-regularized logistic regression (i.e., lasso), 

random forest, and neural network. Guidance on the design of model updating policies is 

limited, and there is limited exploration of the impact of different policies on future model 

performance and across different model types. We address this knowledge gap by exploring 

whether the long-term performance of clinical prediction models is improved through a data-

driven approach to scheduled model maintenance. We compare three annual updating 

strategies—retention of the original model, predefined model refitting, and application of 

recommendations of the nonparametric testing procedure. We assess differences in 

discrimination and calibration over time under each updating strategy, as well as whether and 

how the learning algorithm underlying the model impacts updating requirements and accuracy. 

Please note, large portions of this chapter will be published in the 2019 Proceedings of the 

American Medical Informatics Association Annual Symposium.36  

 

Methods 
 

Study Population and Initial Models  
 

Here we expand on the case studies described in Chapter 6 by exploring performance 

drift and model updating for learning algorithms beyond ordinary logistic regression and across 

sequential updating points. See pages 83-84 for a brief overview of the datasets. This study was 

approved by the Institutional Review Board and the Research and Development committee of 

the Tennessee Valley Healthcare System VA. 

We developed models for hospital-acquired AKI and 30-day mortality after hospital 

admission among patients admitted to Department of Veterans Affairs facilities using four 

common learning algorithms—logistic regression (LR), L1-regularized logistic regression (L1), 

random forests (RF), and neural networks (NN). For each outcome, models were developed 

using a common set of predictors and a single year of admissions data (2003 for AKI and 2006 
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for mortality). Information on admissions in subsequent years (2004-2012 for AKI and 2007-

2013 for mortality) were collected for both updating and validation. Previous work revealed both 

the AKI and mortality models experiences performance drift across these study periods, with the 

timing and extent of drift varying by learning algorithm (see Figures 1 and 2).18, 19 The LR and L1 

models were most susceptible to calibration drift, with consistent deterioration over time of the 

mortality model and deterioration of the AKI model that accelerated four years into the validation 

period.18, 19 Similar patterns of performance drift were observed for the corresponding RF 

models, although to a lesser degree than the LR and L1 models.18, 19 For the mortality model, 

the NN model did not experience significant changes in calibration over time.18 Complex 

combinations of decreasing event rates, evolving patient case mixes, and changing predictor-

outcome associations were associated with these performance patterns.18, 19 

 

Scheduled Updating Strategies 
 

Following a common model maintenance timeline in practice,27, 31, 32 updating was 

undertaken for all models on an annual basis for each year following model development. 

Updating was based on admissions accrued over the prior 12 months and applied to admissions 

in the following 12 months. For the AKI model, this resulted in updating points at the end of 

2004 through 2011, with admissions in 2012 serving as the validation data for the 2011 updates. 

For the mortality model, updates occurred at the end of 2007 through 2012, with 2013 

admissions serving as the validation set for the final update. 

Across these scheduled updating points, we implemented three competing strategies to 

update the LR, L1, RF, and NN models over time. An illustrative overview of these updating 

strategies is presented in Figure 49, highlighting the data underlying each model and the data 

on which each model was applied. As a baseline, we retained the original models developed on 

the first year of admissions and applied these models to all subsequent admissions. The second 

updating strategy called for annually refitting each model using all admissions that accrued over 

the prior 12 months. Hyperparameters for the L1, RF, and NN models were tuned annually 

using 5-fold cross-validation. Admissions in each year were assigned predicted probabilities 

based on the prior year’s models. The third strategy selected an updating approach for each 

model based on our nonparametric testing procedure.35 The testing procedure was 

implemented using the Brier score to selected between the retention of the current model, 

intercept correction, linear logistic recalibration, flexible logistic recalibration, or model refitting. 

For these analyses, we did not consider any additional model-specific updating approaches. 
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Updating sequences were retained over multiple years as needed, allowing updates to build on 

any prior adjustments to the model (see Figure 49). For example, a model based initially on 

Year 0 admissions was applied to Year 1 admissions. At the end of Year 1, the testing 

procedure recommended either continued use of the existing model, adjustment of the existing 

model through recalibration, or replacement of the model with a newly refit model. This updated 

version of the model was used to generate predictions for Year 2. Following Year 2, the testing 

procedure considered whether any additional updates to the model as adjusted after Year 1 

were warranted, not whether to adjust the original Year 0 model. If additional updating was 

recommended by the test, those changes were applied in addition to the existing Year 1 

adjustments. At any point, if the test recommended refitting the model, then all previous models 

and sequences of adjustments were replaced by a new model moving forward. 

 

Figure 49.  Overview of updating strategies applied over multiple updating points. Icons indicate 

the active model applied to observations in each time period and are color-coded to correspond 

with the data on which the model was built/updated. In this example, the test-based strategy 

recommended recalibration at the end of Year 2 and Year 3, as well as model refitting at the 

end of Year 4. 
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Evaluation of Scheduled Updates 
 

We assessed the influence of each updating strategy on the long-term performance of 

the LR, L1, RF, and NN models. Under each updating strategy, models were assessed for both 

discrimination (area under the receiver operating curve, AUC110) and calibration (calibration 

curves, observed to expected outcome ratio, Cox intercept and slope, and estimated calibration 

index).37, 39, 109 We evaluated overall and monthly performance of the models under each 

strategy across the entire validation and updating period. We further compared the updating 

requirements of the different learning algorithms based on the extent and timing of test-

recommended model adjustments. 

 
Results 

 

Test-Based Updating Recommendations 
 

Test-based updating recommendations for all models are noted in Tables 15 and 16. In 

each case, some adjustment of the original model was recommended after one year. The 

degree of recommended updating at this first updating point varied from intercept correction to 

model refitting. Following this initial update, the sequence of updating recommendations varied 

by outcome and learning algorithm, both in terms of timing and method.  

For the AKI models, each model experienced periods during which annual updating was 

recommended and other periods during which no additional updates were recommended for a 

number of years. After initial recalibration at the end of 2004, the testing procedure advised 

periodic intercept correction for both the NN and RF models, although the timing of these 

additional corrections did not align. More substantial adjustments were undertaken with the LR 

and L1 models, with multiple instances of recalibration and each model being refit once during 

the study period.  

After initial updates, the testing procedure generally recommended less frequent updating of the 

models for 30-day mortality. The NN model was an exception to this pattern, with annual model 

refitting being recommended. For the L1 model, the recalibration adjustments incorporated after 

the first year were maintained until the fifth year after model development, at which point the 

testing procedure recommended an additional intercept correction. The RF model was further 

updated only in the third year after model development. Continued updating across the study  
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Table 15.  Annual updating recommendations for the acute kidney injury models by learning 

algorithm. 

 
Update set LR L1 NN RF 

2004 
admissions 

Intercept 
correction 

Intercept 
correction 

Linear logistic 
recalibration 

Flexible logistic 
recalibration 

2005 
admissions No change Linear logistic 

recalibration No change No change 

2006 
admissions 

Linear logistic 
recalibration No change No change Intercept 

correction 

2007 
admissions 

Flexible logistic 
recalibration 

Intercept 
correction 

Intercept 
correction 

Intercept 
correction 

2008 
admissions No change Refit No change No change 

2009 
admissions No change Linear logistic 

recalibration 
Intercept 
correction No change 

2010 
admissions 

Intercept 
correction No change No change No change 

2011 
admissions Refit No change No change Intercept 

correction 
 

 

Table 16.  Annual updating recommendations for the 30-day mortality models by learning 

algorithm. 

 

Update set LR L1 NN RF 

2007 
admissions 

Flexible logistic 
recalibration 

Flexible logistic 
recalibration Refit Linear logistic 

recalibration 

2008 
admissions No change No change Refit No change 

2009 
admissions 

Intercept 
correction No change Refit Linear logistic 

recalibration 

2010 
admissions No change No change Refit No change 

2011 
admissions 

Intercept 
correction 

Intercept 
correction Refit No change 

2012 
admissions No change No change Refit No change 
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period was recommended for the LR model, with the testing procedure recommending some 

degree of recalibration every other year. 

 
Model Performance Over Time 

 

Performance of the four model variations under each updating strategy over the entire 

validation and updating period is reported in Tables 17 and 18 for AKI (2004-2012) and mortality 

(2007-2013), respectively. Discrimination was not significantly different across updating 

strategies (p<0.05), with the exception of the mortality NN model for which refitting (and the test-

based strategy) increased the AUC from 0.77 to 0.80.  

For each learning algorithm, annually refitting improved calibration compared to retaining 

the original model across the entire study period (p<0.05). Further improvement in calibration 

was achieved using test-recommended updates (p<0.05)—the exception being the NN mortality 

model for the test-based strategy reduced to refitting. Differences in calibration across updating 

strategies were highlighted by the calibration curves and most apparent when focusing on the 

lower risk portion of the curves where over 95% of observations occurred (see Figures 50 and 

51). In calibration plots, perfect calibration is represented by the bisecting 45° line at which 

predicted probabilities equal observed proportions. For both outcomes, the refitting and test-

based strategies corrected overprediction of the original models in the lower risk, shifting the 

calibration curves upward toward the bisector. Calibration curves for the mortality LR model 

under the test-based updating strategy captured more of the ideal calibration line than either the 

refit or original models. None of the updating strategies resulted in calibration across a large 

range of probabilities for the mortality RF model, and the calibration curves of all three 

strategies follow similar patterns. However, both the refitting and test-based updating strategies 

moved the calibration curves for this model closer to the bisector for the risk range where most 

observations fell. In the densely populated risk range, although the magnitude of miscalibration 

of the mortality L1 model was similar between the refitting and test-based updating strategies, 

the refitting approach erred toward underprediction, while the test-based strategy erred toward 

overprediction. Calibration curves for the AKI models under the test-based strategy captured 

more of the bisector than did corresponding curves under the refitting strategy. However, 

differences between these strategies were small in magnitude. 
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Table 17.  Overall performance of acute kidney injury models by learning algorithm and annual updating strategy. 

 

Model Updating Strategy AUC O:E Cox Intercept Cox Slope ECI 

LR No updating 0.764  

[0.763, 0.766] 

0.846  

[0.841, 0.850] 

-0.313  

[-0.327, -0.299] 

0.943  

[0.937, 0.950] 

0.036  

[0.034, 0.039] 
 

Refitting 0.770  

[0.768, 0.771] 

0.973  

[0.968, 0.978] 

-0.085  

[-0.100, -0.070] 

0.976  

[0.969, 0.982] 

0.004  

[0.003, 0.004] 
 

Test-based 0.766  

[0.765, 0.768] 

0.957  

[0.952, 0.962] 

-0.104  

[-0.121, -0.089] 

0.976  

[0.969, 0.982] 

0.004  

[0.003, 0.005] 

L1 No updating 0.759  

[0.758, 0.761] 

0.831  

[0.826, 0.835] 

-0.175  

[-0.191, -0.159] 

1.020  

[1.012, 1.027] 

0.028 

[0.027, 0.030] 
 

Refitting 0.765  

[0.763, 0.766] 

0.978  

[0.973, 0.983] 

0.077  

[0.051, 0.100] 

1.046  

[1.034, 1.056] 

0.003  

[0.002, 0.003] 
 

Test-based 0.762  

[0.761, 0.764] 

0.972  

[0.967, 0.977] 

-0.052  

[-0.079, -0.03] 

0.991  

[0.979, 1.001] 

0.002  

[0.002, 0.002] 

RF No updating 0.737  

[0.736, 0.739] 

0.967  

[0.962, 0.972] 

-0.371  

[-0.390, -0.351] 

0.851  

[0.843, 0.859] 

0.008  

[0.007, 0.009] 
 

Refitting 0.739  

[0.737, 0.740] 

1.063  

[1.057, 1.069] 

-0.337  

[-0.359, -0.316] 

0.825  

[0.817, 0.834] 

0.004  

[0.003, 0.004] 
 

Test-based 0.738  

[0.736, 0.739] 

0.971  

[0.966, 0.976] 

-0.117  

[-0.138, -0.097] 

0.963  

[0.955, 0.972] 

0.002  

[0.002, 0.002] 

NN No updating 0.722  

[0.72, 0.723] 

0.917  

[0.912, 0.922] 

-0.212  

[-0.230, -0.196] 

0.950  

[0.942, 0.956] 

0.010  

[0.009, 0.012] 
 

Refitting 0.726  

[0.724, 0.728] 

0.991  

[0.985, 0.996] 

-0.124  

[-0.143, -0.107] 

0.951  

[0.943, 0.958] 

0.002  

[0.002, 0.003] 
 

Test-based 0.722  

[0.721, 0.724] 

0.977  

[0.971, 0.982] 

-0.033  

[-0.052, -0.015] 

0.997  

[0.989, 1.004] 

0.001  

[0.001, 0.002] 
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Table 18.  Overall performance of 30-day mortality models by learning algorithm and annual updating strategy. 

 

Model Updating Strategy AUC O:E Cox Intercept Cox Slope ECI 

LR No updating 0.849  

[0.847, 0.850] 

0.876  

[0.871, 0.882] 

-0.227  

[-0.242, -0.214] 

0.970  

[0.964, 0.976] 

0.029  

[0.027, 0.032] 
 

Refitting 0.850  

[0.849, 0.851] 

0.981  

[0.975, 0.987] 

-0.052  

[-0.068, -0.038] 

0.987  

[0.982, 0.993] 

0.011  

[0.010, 0.012] 
 

Test-based 0.849  

[0.847, 0.850] 

0.953  

[0.947, 0.959] 

-0.073  

[-0.089, -0.059] 

0.994  

[0.987, 1.000] 

0.004  

[0.003, 0.005] 

L1 No updating 0.846  

[0.845, 0.847] 

0.815  

[0.810, 0.821] 

-0.221  

[-0.237, -0.207] 

1.014  

[1.008, 1.021] 

0.038  

[0.036, 0.041] 
 

Refitting 0.846  

[0.845, 0.848] 

0.936  

[0.930, 0.942] 

0.005  

[-0.011, 0.020] 

1.038  

[1.032, 1.044] 

0.010  

[0.009, 0.012] 
 

Test-based 0.846  

[0.845, 0.847] 

0.937  

[0.932, 0.942] 

-0.081  

[-0.097, -0.066] 

0.999  

[0.993, 1.005] 

0.005  

[0.005, 0.006] 

RF No updating 0.837  

[0.835, 0.838] 

0.842  

[0.837, 0.848] 

-0.031  

[-0.059, -0.006] 

1.080  

[1.068, 1.091] 

0.033  

[0.031, 0.035] 
 

Refitting 0.837  

[0.836, 0.838] 

0.950  

[0.943, 0.956] 

0.127  

[0.096, 0.153] 

1.082  

[1.070, 1.094] 

0.026  

[0.024, 0.028] 
 

Test-based 0.837  

[0.836, 0.838] 

0.939  

[0.933, 0.945] 

-0.035  

[-0.061, -0.010] 

1.017  

[1.006, 1.028] 

0.019  

[0.017, 0.021] 

NN No updating 0.770  

[0.768, 0.772] 

0.914  

[0.908, 0.920] 

-0.187  

[-0.205, -0.171] 

0.965  

[0.959, 0.971] 

0.018  

[0.017, 0.020] 
 

Refitting 0.800  

[0.798, 0.802] 

0.991 

 [0.984, 0.997] 

-0.104  

[-0.122, -0.087] 

0.961  

[0.955, 0.967] 

0.004  

[0.003, 0.004] 
 

Test-based 0.800  

[0.798, 0.802] 

0.991  

[0.984, 0.997] 

-0.104  

[-0.122, -0.087] 

0.961  

[0.955, 0.967] 

0.004  

[0.003, 0.004] 
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Figure 50.  Overall calibration of acute kidney injury models by learning algorithm and updating 

strategy. Left panels display calibration curves across the range of predictions produced by 

each model; right panels zoom in on calibration curves for predicted probabilities below 25%, 

which includes over 95% of all observations. 
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Figure 51.  Overall calibration of 30-day mortality models by learning algorithm and updating 

strategy. Left panels display calibration curves across the range of predictions produced by 

each model; right panels zoom in on calibration curves for predicted probabilities below 30%, 

which includes over 95% of all observations. 
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Figures 52 and 53 display monthly calibration by learning algorithm and updating 

strategy using the estimated calibration index (ECI). This stringent measure of calibration 

decreases toward 0 as calibration improves.39, 90 Without updating, ECIs increased over time, 

with the magnitude of the overall increase and monthly fluctuations varying by both learning 

algorithm. Both refitting and test-based updates improved calibration compared to the original 

model in the years following initial model development. For both outcomes, the RF model was 

an exception to this pattern. In some months, calibration under the refitting strategy was similar 

or inferior to that of the original RF model. This was particularly true for the mortality models 

(see Figure 53). The mortality RF model trained on 2008 admissions performed poorly relative 

to the other updating strategies when applied to 2009 admissions; the AKI mortality model 

trained on data from 2007 performed poorly on 2008 admissions. Although calibration of the 

original mortality NN model was stable over time compared to the other mortality models, 

annually refitting the mortality NN model improved calibration and reduced month-to-month 

variability in performance. For the mortality models, monthly ECIs under the test-based updating 

 

Figure 52.  Estimated calibration index (0 under perfect calibration) of acute kidney injury 

models over time by learning algorithm and updating strategy. Dotted vertical lines highlight 

points at which the testing procedure recommended recalibration. 
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Figure 53.  Estimated calibration index (0 under perfect calibration) of 30-day mortality models 

over time by learning algorithm and updating strategy. Dotted vertical lines highlight points at 

which the testing procedure recommended recalibration. 
 

 
 

strategy were generally lower and less variable compared to ECIs under the refitting strategy. 

For the AKI models, monthly ECIs under the test-based updating strategy were similar to those 

observed for the refitting strategy, with the exception of the RF model. For those points at which 

the testing procedure recommended updating the AKI L1 model, ECIs over the prior 12 months 

(i.e., performance among those admissions serving as the update set guiding the test 

recommendations) appeared to increase in either magnitude (e.g., 2005 and 2007) or variability 

(e.g., 2009). A similar pattern was generally not apparent prior to those points at which the 

testing procedure recommended updating other models. Nevertheless, calibration improved 

immediately after these updates. 

 
Discussion 

 
We evaluated the impact of three competing updating strategies on performance of 

models for hospital-acquired AKI and 30-day mortality after hospital admission over several 
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years following initial model development. In addition to common strategies of retaining the 

original model or routinely refitting, we included a new data-driven strategy based on our 

nonparametric testing procedure for selecting among competing updating methods. This testing 

procedure is applicable regardless of the learning algorithm underlying the model, allowing our 

study to compare updating requirements of parallel LR, L1, RF, and NN models.  

Updating requirements varied across learning algorithms, both in terms of the timing and 

extent of updates. One year after model development, the nonparametric testing procedure 

recommended updating of all four models for both outcomes. These initial adjustments lead to 

immediate improvements in calibration in the months following the update. Subsequent updating 

recommendations were varied, with each updating method being recommended at least once 

and different methods being recommended for different learning algorithms even at the same 

timepoint. Interestingly, the most significant and frequent updating was recommended for the 

mortality NN model, which exhibited the least performance drift over time. The testing procedure 

recommended refitting each year due to quite small improvements in the Brier score (~0.0001) 

compared to other updating approaches. As the Brier score takes into consideration both 

discrimination and calibration, the improvement in both dimensions of performance that resulted 

from refitting the NN model may have driven this recommendation. Refitting of the other 

mortality models impacted calibration, but did not significantly improve discrimination.  

Some form of updating was warranted for all models. Retaining the original model over 

the course of the study period resulted inferior calibration compared to either routine refitting or 

test-based updating. Calibration measures of the original mortality NN model did not exhibit 

significant trends indicative of performance drift over the course of the study.18 Nevertheless, 

refitting this model each year, either as planned or as recommended by the testing procedure, 

still improved overall calibration, reduced month-to-month variability in calibration, and improved 

discrimination. For the other models, test-based updating improved upon the simple refitting 

strategy. Refitting corrected performance drift in the mortality LR and L1 models. Test-based 

updating recommendations, however, resulted in lower overall ECIs (i.e., better calibration) and 

less month-to-month variability in performance compared to refitting. This was generally 

observed for the AKI LR and L1 models as well. However, in some cases, calibration of the AKI 

L1 was less stable on a month-to-month basis under the test-based strategy compared to the 

refitting approach (e.g., 2007 admissions). Refitting the RF models improved overall calibration 

compared to the original model for both outcomes, but resulted in inferior calibration than the 

original model over shorter periods and did not correct performance drift in the mortality case. 

On the other hand, the test-based strategy avoided performance drift of the mortality RF model 
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and exhibited fewer periods of instability observed under the refitting strategy for both 

outcomes.  

In some cases, differences in calibration metrics between updating strategies were small 

and may not be clinically meaningful in practice. Whether these improvements are clinically 

meaningful, in addition to being statistically significant, is an important consideration and an 

open question for model comparison and impact assessment work. Although small in 

magnitude, the improvements in calibration under the test-based strategy compared to the 

refitting strategy highlight how recalibration may be sufficient, or even superior, to the standard 

practice of undertaking more substantial change by refitting. In addition, impact from 

recalibration is most likely to occur when patients are scored near user-defined cut-points that 

are clinically relevant, and assessment of clinically meaningful risk category reclassification 

anchors around what proportion of patients are near the cut-points (and change classification 

after calibration degradation). Future work could explore the impact of differing updating 

strategies on reclassification metrics.  

These findings underscore this dissertation’s central theme – the need for data-driven 

maintenance plans for clinical prediction models. A “one-size fits all” updating strategy will not 

suffice for all models. We cannot assume a new model built on recent data will be more 

generalizable to and perform better in the next cohort of patients than an existing model, even 

when large datasets, such as those in this study, are used for updating. For example, although 

calibration improved over the entire study period by regularly refitting the mortality RF model, 

the model built on 2008 admissions did not improve upon, and may have actually performed 

worse, than the original mortality RF model when applied in 2009. Similarly, we should not 

assume refitting is superior to simpler updating through recalibration. The intermittent 

recalibrations recommended by our testing procedure lead to better performance across the 

study period than routine refitting, both overall and on a month-to-month basis. Tailoring 

updating methods through data-driven updating strategies may, therefore, extend the accuracy 

and subsequent utility of prediction models beyond what might be achieved through simpler 

maintenance plans. We note, however, that these results may be sensitive to the volume of data 

available for updating, and further investigation regarding the impact of sample size is 

warranted.  

Our results also highlight differences in the frequency with which models require 

updating. Despite being applied to the same data and therefore exposed to the same shifts in 

patient populations and clinical environments, the LR, L1, RF, and NN models required updating 

at different timepoints. With the exception of the mortality NN model, updating on an annual 
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basis was not indicated and annual refits did not provide additional benefits over less frequent 

updates. Thus, we may experience inefficiencies under model maintenance plans requiring 

updates on a pre-planned regular basis. On the other hand, prescheduled updating plans may 

neglect to update models in a timely manner, allowing periods of performance drift to go 

unnoticed and uncorrected. The cost of interim periods of reduced model accuracy may be 

difficult to assess as the prediction errors may impact patient outcomes, user confidence, and 

clinical efficiency. As health systems seek to implement clinical prediction more broadly and 

begin managing many prediction models, additional data-driven methods to determine when 

models require attention may be necessary and would complement maintenance strategies 

implementing test-based updating methods. We addressed this methodological gap with the 

calibration drift detection system described in Chapter 5. 

There are several limitations of the analyses presented here. We evaluated the three 

updating strategies in two clinical use case leveraging VA data. Exploring how these updating 

strategies perform on models subject to additional patterns of shift in the clinical environment 

would provide more generalizable understanding. In this study, we limited the nonparametric 

testing procedure to consider five updating methods – retention of the existing model, intercept 

correction, linear logistic recalibration, flexible logistic recalibration, and model refitting. These 

updating methods are common and applicable across models; however, additional updating 

methods, some of which may be specific to certain learning algorithms, could easily be 

incorporated into the testing procedure.35 The availability of additional updating methods may 

impact when and how the test-based strategy adjusts models over time. Further, we did not 

explore the impact of sample size. Both the AKI and mortality datasets included on average 

over 180,000 and 235,000 admissions per year, respectively. The volume of data available for 

constructing updates could have important impacts on both the refitting and test-based updating 

strategies. For small samples, overfitting becomes more of a concern for the refitting strategy, 

while overly conservative updates may be a concern for the test-based strategy. We also 

acknowledge that the test-based updating strategy may be computationally intensive. 

Leveraging advances in computational resources and refining the number of bootstrap iterations 

considered in the first bootstrapping stage may reduce any computational burden. Tailoring the 

number of bootstrap iterations may also allow users to match statistical significance to clinically 

relevant magnitudes of change. Finally, all three of the updating strategies considered here may 

be inappropriate in the presence of significant changes in clinical practice or record systems that 

may render existing prediction models invalid. Any updating strategy must be flexible, both in 

terms of timing and approach, in response to such situations. 
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Conclusion 
 

We illustrated the use of a new data-driven updating strategy for clinical prediction 

models based on a variety of underlying learning algorithms, comparing this strategy to two 

baseline approaches in which models are either never updated or regularly refit on recent 

observations. The test-based updating strategy conservatively adjusted models by 

recommending intermittent recalibration rather than repeated model refitting in most cases. 

Despite making limited adjustments to the models, the test-based updating strategy lead to 

more highly calibrated predictions than either of the baseline strategies. The test-based 

approach also highlighted differences in the updating requirements of common biostatistical and 

machine learning models, both in terms of the extent and timing of updates. Data-driven 

updating strategies, such as the test-based approach presented here, can both support 

implementations of new models transported across clinical settings and serve as a key 

component of automated model surveillance systems, such as that described in Chapter 3. 
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CHAPTER 8 
 

CONTRIBUTIONS AND CONCLUSIONS 
 

Highly accurate predictions are critical to the success and safety of population health 

management, quality assessment, and clinical decision support tools employing prediction 

models.4, 41, 64 Erroneous patient-level risk estimates produced by miscalibrated models may 

lead to over-confidence, inappropriately alter treatment choices, or misappropriate resources.4, 

23, 40, 42 As electronic health record-enabled risk prediction models are increasingly employed in 

healthcare applications, there is growing awareness of the need to address the tendency of 

model performance to deteriorate over time.18-20, 23, 33, 43, 48-52 Common predefined updating 

strategies fail to account for variations in the response of models to changes in clinical 

environments which may impact the timing, extent, and form of drift in accuracy.18-20, 29 Our work 

provides additional evidence that simple “one-size fits all” updating strategies do not effectively 

maintain consistent model performance and responds to these concerns by developing a 

framework and set of algorithms to maintain performance of risk models over time. 

 

Innovation 
 

As an alternative to prescriptive updating strategies, we proposed an active, data-driven 

model surveillance and updating system that may be embedded within electronic health record 

systems to promote the long-term reliability and utility of clinical prediction tools (see Figure 54). 

This system would accumulate evidence from the stream of data on new clinical encounters, 

allowing the system to identify and respond to performance drift as it occurs. We developed a 

suite of methods forming the necessary components of such a data-driven updating approach, 

ensuring the methods were applicable to categorical models based on both regression and 

machine learning techniques. Key features of these methods are noted in Table 19. We first 

developed the notation of dynamic calibration curves to maintain an evolving understanding of 

recent model performance. Leveraging these dynamic calibration curves, we built a calibration 

drift detection system to trigger model updating as performance declines and inform the 

updating process with insight into selecting updating datasets. Finally, we defined a 

nonparametric testing procedure to evaluate available updating methods and recommend 

simple updating method that improves subsequent model performance. Each method was  
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Figure 54.  Conceptual model of a data-driven, active model surveillance and maintenance 

system. 

 

 

 

designed to be widely applicable to categorical outcome models regardless of the underlying 

learning algorithm and customizable to meet the needs of diverse clinical use cases. 

 

Dynamic Calibration Curves to Assess On-Going Performance 
 

Calibration curves, based on regression of predicted probabilities on observed 

outcomes, provide insight into model performance across the range of prediction.88, 90 Not only 

do these curves support visualization of the varying alignment between predicted and observed 

probabilities in different ranges of risk, they also support calculation of detailed calibration 

metrics. 37, 39, 89, 90 Decision analyses reveal that calibration metrics based on nonlinear 

calibration curves ensure predictions are nonharmful to clinical decision-making compared to 

treat-all or treat-none strategies.39 Such calibration metrics are particularly susceptible to drift 

over time in response to the non-stationary nature of clinical environments.18, 19 
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Table 19.  Overview of new data-driven methods for updating clinical prediction models.  

 Features  
Method Practicality Generalizability Customizability Limitations 

Dynamic 
calibration 
curves 

• Simple implementation 
• Computationally efficient 
• Processes data as a 

stream 
• Supports both 

visualization and 
stringent calibration 
metrics 

• Applicable regardless of 
underlying learning 
algorithm generating 
predicted probabilities  

• Permits user-specified 
parameterization 
logistic curve  

• Distribution of predicted 
probabilities may impact 
ability to visualize true form 
of calibration  

• Requires careful definition of 
curve parameterization and 
algorithm step size  

Calibration 
drift detection 
system 

• Simple implementation 
• Computationally efficient 
• Balances false alarms 

and delays in detection  
• Informs both timing of 

updates and definition of 
updating set 

• Applicable regardless of 
underlying learning 
algorithm generating 
predicted probabilities  

• Detects performance 
change under multiple 
speeds of temporal 
transition 

• Supports user-
specified error metrics 
with bounded range  

• Alerts in response to 
statistically significant 
changes in calibration not 
clinically relevant changes 

• Difficulty recognizing 
recurrent/seasonal 
performance change 

• Does not evaluate whether 
recommended updating set 
may be sufficient for 
effective updating 

Updating 
Testing 
Procedure 

• Improves prospective 
model performance  

• Promotes simple 
updates when feasible 

• Makes conservative 
recommendations when 
updating samples are 
limited  

• Applicable regardless of 
underlying learning 
algorithm generating 
predicted probabilities  

• Avoids establishing a 
“gold standard” updating 
method assumed best 
in all cases 

• Allows optimization of 
user-preferred scoring 
rule 

• Extends to consider 
additional updating 
methods of interest 

• Multi-stage process adds 
complexity to 
implementation 

• May be computationally 
expensive when 
bootstrapping refitting of 
complex models 

• Does not guarantee 
recommended update 
achieves clinically 
acceptable performance 
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Surveillance of detailed model performance measures over time requires up-to-date 

calibration curves reflecting recent model performance. In order for on-going assessment with 

calibration curves to be feasible, we identified the need for an alternative to static curves which 

require assumptions about the speed of performance drift and repetitive curve construction. The  

dynamic calibration curve approach, described in Chapter 4, responds to this need by providing 

a computationally efficient method to progressively evolve logistic regression-based calibration 

curves to reflect recent model performance. Our method implements incremental gradient 

descent with an adaptive learning rate to immediately incorporate information on each new 

observation’s predictive accuracy as data becomes available. The process by which predicted 

probabilities are generated is transparent to the dynamic calibration curve implementation, 

making this method generalizable to categorical prediction models regardless of the underlying 

learning algorithm. Dynamic calibration curves are easily customizable in terms of the form and 

degree of flexibility in the nonlinear relationship between predictions and outcomes. While we 

parameterized our curves with fractional polynomials, the incremental gradient descent 

approach easily supports alternative parameterizations, including splines, traditional 

polynomials, and other fractional polynomial combinations. 

In our simulation studies, we found dynamic calibration curves responded quickly to 

changes in model performance, shifting curves to represent current rather than past model 

performance. Following an abrupt change from calibrated to overpredicted or overfit predictions, 

dynamic calibration curves shifted to capture the new form of calibration within approximately 

600 and 150 observations, respectively. This swift evolution of the curves toward the new true 

form of calibration was observed after both brief and extended periods of initial performance 

stability. Dynamic calibration curves were best able to represent the changing relationship 

between predictions and outcomes in data-dense ranges of predicted probabilities. This may be 

sufficient when using calibration curves to calculate detailed metrics of predictive accuracy. 

However, this observation underscores the importance of incorporating data density and the 

range of predictions into visualizations based on dynamic calibration curves. We also note that 

performance drift toward more complex forms of miscalibration highlighted a need to refine the 

step size hyperparameter provided to the adaptive learning rate algorithm. Nevertheless, our 

method for dynamic calibration curves offers an on-going understanding of up-to-date model 

performance to support continuous model assessment within model surveillance tools. 
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A Calibration Drift Detection System to Trigger Updating 
 

Common model maintenance protocols lay out a predefined schedule for updating.27, 31, 

32 This approach ensures all active models receive attention and are updated regularly. In 

practice, however, the frequency of scheduled updates may not align with the timing and speed 

of performance drift. Temporal misalignment between performance drift and updating schedules 

may leads to unanticipated intervals of inadequate model performance during periods of rapid 

population shifts, as well as inefficient prioritization of analytic resources during periods of 

relative model stability. We observed the latter in the case studies presented in Chapter 7. Our 

analyses indicated different models required updating at different frequencies and annually 

refitting each model provided no additional benefit over the testing procedure-recommended, 

less frequent updates.  

We proposed triggered model updating as a data-driven alternative to scheduled 

updating protocols. Updating models on a timeline driven by the accumulation of evidence of 

performance drift in recent data may allow more timely correction of performance drift and, in 

turn, more stable performance characteristics. Monitoring calibration with continuous 

assessments, such as our dynamic calibration curves, is critical to understanding how accuracy 

may be deteriorating over time. However, data-driven model surveillance also requires a 

process to distinguish performance drift from natural performance variability. We constructed a 

calibration drift detection system to provide data-driven guidance on when clinical prediction 

models may require updating. Our system utilizes an adaptive windowing approach34 to warn 

users if recent observations provide sufficient evidence of change in the distribution of a model’s 

predictive error. This method not only alerts users to performance drift, but also specifies a 

candidate sample of recent data for developing updates in response. While our implementation 

monitors a detailed error metric by leveraging on-going insight into model performance from 

dynamic calibration curves, our calibration drift detection system can be tailored to monitor 

distributions of alternative error measures. As the adaptive windowing monitor only requires as 

input the value of each new observation’s error, the system can be used to detect drift 

regardless of a model’s underlying learning algorithm. Our drift detection approach can be used 

to initiate predefined model updating strategies or in conjunction with data-driven methods 

selecting updating methods. 

We evaluated our calibration drift detection system’s ability to identify change in 

performance and recommend updating samples under multiple magnitudes, complexities, and 

speeds of performance drift. The system generally avoided false alarms, minimizing both the 
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risk of alert fatigue in the presence of stable model performance and missed opportunities for 

model improvement in the presence of deteriorating model performance. Seasonal performance 

drift was most difficult for the system to identify, with frequent false negatives in the case of 

small, recurrent/seasonal performance changes. However, we note that seasonal patterns can 

often be accounted for during model development and we anticipate longer term performance 

trends to be the dominant drivers of performance drift. Our system alerted quickly, in most 

cases within a few hundred observations, to statistically significant changes in the distribution of 

prediction errors. After the onset of performance drift, alerts were returned with samples of 

recent data representing the model’s new calibration context. Contamination of the returned 

sample with outdated observations occurring prior to the start of performance drift was less than 

3-5%. This is reassuring that our system provides insight into a window of recent data that is 

informative of the new environment and, therefore, useful for updating the model to better reflect 

current patterns of association and risk. However, a balance must be struck between the speed 

at which performance change is identified and the accumulation of relevant post-drift 

observations to support the updating process. Whether recommended updating samples are 

large enough to fully support model updating will be highly dependent on the complexity of the 

model and the degree of updating necessary to return the model to acceptable performance. 

 

A Testing Procedure to Recommend Updating Methods 
 

Whenever users decide to update a particular clinical prediction model – either in 

response to an alert from our calibration drift detection system, a scheduled updating plan, or 

the transportation of a model between clinical settings – refitting the model on new data should 

not be presumed to be the best approach. Model refitting neglects information from previous 

modeling efforts and often reduces generalizability as a result of overfitting on relatively small 

updating samples.10, 11, 22 Recalibration techniques, on the other hand, build upon information 

already incorporated into existing models and improve generalizability, making these 

approaches preferable when recalibration is sufficient to improve performance.11, 24, 26, 30 Despite 

recommendations emphasizing a consideration of recalibration prior to refitting,11, 24, 26, 30 current 

updating protocols often simply call for model refitting.27, 31, 32  

In order to provide guidance in selecting between competing updating methods, we 

developed a nonparametric testing procedure to provide data-driven recommendations. Using a 

two-stage bootstrapping approach, our testing procedure minimizes the influence of overfitting 

and accounts for uncertainty associated with updating sample sizes. The decision stage of the 



 121 

testing procedure incorporates a preference for simpler updates when more sophisticated 

techniques do not afford significant additional performance improvement. Our testing procedure 

is widely applicable to clinical prediction models developed with both parametric and 

nonparametric techniques; although computational demands of the first bootstrapping stage 

may be high for the most complex models. Users can easily customize the testing procedure to 

use case requirements by adjusting the performance metric on which recommendations are 

optimized and by incorporating additional updating methods of interest. 

In a combination of simulation and case studies, we found our nonparametric testing 

procedure responded to both the degree of performance drift and the volume of updating data, 

resulting in improved prospective model performance. Recommended updating methods 

increased in complexity as training and updating populations became increasingly disparate. 

The testing procedure recommended simple updating methods when applied to small updating 

samples, and graduated to recommending full model refitting as the volume of updating data 

increased. For example, in simulations involving no differences between training and updating 

populations, our testing procedure recommended retention of the original model when updating 

samples were smaller or similar in size to training samples, but recommended refitting when 

updating samples grew to be 10 times larger training samples. In case studies of models for 30-

day mortality and acute kidney injury, test recommendations also reflected differences in 

performance drift across learning algorithms. Despite being applied to the same data, models 

developed with different learning algorithms varied in terms of the frequency, timing, and extent 

of recommended updating. Applying the test-recommended updating methods resulted in 

immediate improvements in calibration in the months following update. Compared to both the 

original models and annually refitted models, updating with our testing procedure lead to better 

and more stable calibration over multiple years. 

 

A Suite of Data-Driven Updating Methods for Model Surveillance 
 

The methods we developed in this dissertation can be used to tailor the model updating 

process to the unique performance drift patterns and accuracy requirements of specific clinical 

prediction tools. Each of the three new methods have independent use cases. Dashboards 

monitoring active clinical prediction models may rely on dynamic calibration curves to provide an 

understanding of current model performance and how that performance has changed over time. 

Our calibration drift detection system may be implemented to alert model managers to those 

prediction models experiencing significant changes in performance and encourage timely 
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intervention, even if local policy dictates updating methods. Without being triggered by a drift 

detection approach, our testing procedure may be employed to select between available 

updating methods when initially transporting a model across clinical setting or on a scheduled 

updating timeline. 

In addition to their independent utility, these new data-driven methods promise to be 

most powerful when used in concert as illustrated in our conceptual model (see Figure 54). We 

anticipate a fully data-driven strategy, responding to performance drift as it occurs and using 

updating methods supported by information in recent observations, will outperform the current 

“one size fits all” state of the art approach. Future work will evaluate whether integrating our 

methods into such a data-driven updating strategy improves the stability and reliability of model 

performance over time. This will lay the ground work for automated, EHR-embedded model 

surveillance systems promoting the long-term performance and utility of prediction models 

underly a variety of informatics applications for decision support and population management. 

 

Limitations 

 

The work presented in this dissertation is limited in several dimensions that require 

further investigation in order to promote model reliability more broadly in practice. 

 

Statistically Significant Drift May Not Align with Clinically Significant Drift 
 

The data-driven methods we developed evaluate calibration and model updating from a 

statistical perspective rather than that of clinical utility. However, statistically significant changes 

in calibration may not translate directly to clinically important changes in model performance. 

For example, in the analyses presented in Chapters 7, while test-based updating statistically 

significantly improved performance over a refitting strategy, in some cases the differences in 

calibration metrics between updating strategies were small and may not be clinically meaningful 

in practice. Although stringent calibration may ensure predictions are nonharmful to clinical 

decision-making,39 the magnitude of acceptable miscalibration and performance variability likely 

varies by use case. Understanding whether, when, and how performance drift affects the clinical 

utility of predictions for decision-making is key to establishing the value of model surveillance 

and updating strategies. 

While defining and measuring clinically acceptable performance remains an open area 

of research,111-114 the methods we developed in this dissertation are well-positioned to 
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incorporate new insights from this domain as they develop. For example, performance drift is 

most likely to impact clinical utility when the accuracy of predictions in clinically-relevant 

decision risk regions and near classification cut-points deteriorates. As methods for defining 

clinically-relevant decision boundaries develop, one could imagine tailoring our calibration drift 

detection system to place more import on performance changes in these regions. Given 

clinically-relevant decision thresholds and classification cut-points, our nonparametric testing 

procedure could be implemented with a weighted scoring rule to emphasize accuracy in critical 

regions or with reclassification metrics to emphasize differences in risk categorization between 

updating methods. Future work could explore how updating plans and stability of model 

performance are influenced by incorporating clinical significance into our data-driven model 

surveillance and updating methods. 

 

Data-Driven Methods May Not Correct All Performance Drift 
 

Updating clinical prediction models with the guidance of data-driven methods, such as 

those presented here, may not sufficiently improve performance to fully correct for calibration 

drift or return model performance to clinically acceptable levels. This may be particularly true if 

care processes have been modified, variable definitions or measurement accuracy have 

changed, or scientific insights have generated new influential predictors.24 Users should 

evaluate performance after model updating to determine if clinically acceptable performance is 

restored or whether models require either further modification or their use discontinued. Local 

knowledge of data managers and clinical users may provide critical perspective on these 

decisions by identifying unanticipated changes in variable definitions or evolving clinical 

understanding. Their insight may direct further updating of clinical prediction models with partial 

association adjustment, which combines both recalibration and estimation of select additional 

coefficients, or model extension.24, 26 Thus, although data-driven model surveillance and 

updating systems can support predictive modeling teams in prioritizing their workload and 

resources, the human element remains critical to realizing and sustaining the benefits of clinical 

prediction tools.  

  

Alternative Modeling Contexts Warrant Consideration 
 

We have focused on updating methods for restoring the performance of static 

dichotomous categorical prediction models; however, other modeling frameworks will require 
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similar maintenance guidance and corresponding methods development. Our methods for 

continuous model assessment and calibration drift detection are easily extensible to models for 

multinomial outcomes, as calibration curves and several metrics have established multiclass 

definitions.33, 70, 103 The spectrum of updating methods – from recalibration to refitting to 

extension – is applicable to multiclass models, extending the relevance of our testing procedure 

to this modeling context. Assessing calibration and temporal performance of survival models for 

time-to-event outcomes, on the other hand, is more challenging115 and warrants focused 

research effort. Similarly, as deep learning models become increasingly common and move 

toward implementation in clinical settings, additional work will be necessary to better understand 

the updating requirements and challenges of such models. 

Online learning algorithms, which continuously update models as new observations 

become available,28, 67, 68 should be considered as an alternative to periodic updating of static 

models with either predefined or data-driven strategies. Although online models have been 

applied to health outcomes, the shift to an online paradigm is not straightforward for clinical use 

cases. As noted in Chapter 2, we focused our work on the established static prediction model 

paradigm as implementing continuously updated online models will require new validation 

methods28, 67 and are subject to an evolving regulatory framework.69 We note, however, that the 

data-driven model surveillance framework we proposed can support clinical systems that 

implement both static and online prediction models. For example, our calibration drift detection 

system could be used to monitor the performance of online models to provide reassurance that 

the continuous updating process is successfully maintaining model performance and to highlight 

any deterioration that may indicate a breakdown in the flow of data to the model.  

 

Feedback Loops Will Require Additional Methods 
 

Current updating approaches and the new methods we presented through the course of 

this dissertation presume the data we observe for model evaluation and updating is without 

undue bias. However, if we find success achieving the goals of interventions based on clinical 

prediction tools, we may actually introduce bias that will require renewed consideration of model 

development and updating methods. This stems from the feedback loop that would be created 

by changes in provider or patient choices that arise from the use of predictions in the decision-

making process.116 If the treatment course of a patient is altered by the risk prediction in a 

clinical decision support tool and that choice impacts the patient’s eventual outcome (ideally for 

the better), then the observed outcome will be biased by the availability of the prediction. 
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Without accounting for this feedback, the biased data available for monitoring and correcting 

model performance could lead us to falsely determine predictor-outcome associations have 

shifted and the model requires significant adjustment.116 We thus need new methods to ensure 

models remain up-to-date while avoiding updating away the useful information that created the 

successful intervention. Such feedback loops pose new and interesting challenges that require 

more guidance on model development methods that incorporate interventions and motivate 

additional methods development for model evaluation and updating.116 We foresee flexibility in 

our concept of an active, data-driven model surveillance system that will support the 

incorporation of new evaluation and updating methods as this area of research develops. 

  

Clinical Implications 

 

With increasingly widespread integration of advanced predictive analytics into electronic 

health records and healthcare applications,4, 12, 14, 15 the challenges of maintaining clinical 

prediction tools over time will require increasing attention from healthcare administrators and 

health information managers. Reliable, accurate clinical prediction models can support complex 

decision-making, inform targeted interventions, and promote safety. Insufficient calibration of 

prediction models, on the other hand, can lead to misleading information with implications for 

sub-optimal care, misappropriate of resources, and risks to patient safety.4, 23, 40, 42 For example, 

patients presented with inflated estimates of negative disease prognosis may choose to 

undergo difficult treatments that may not align with their values and may not have been their 

choice given more accurate risk estimates.42 Similarly, quality assurance systems may 

misidentify underperforming units when risk predictions inadequately correct for patient risk 

profiles.20 Unfortunately, we cannot rely on the initial performance characteristics of a newly 

developed clinical prediction model to be sustained over time without intervention. Clinical 

environments are everchanging, evolving in terms of patient populations, clinical practice, 

workflows, information systems, and scientific understanding.10, 11, 24, 27, 28 As a result, the 

accuracy of prediction models deteriorates over time18-20, 23, 43, 48-52 and effective strategies for 

model maintenance are becoming critical components of predictive analytics implementations.4, 

10, 11, 21, 117 

Our work responds to a need for informed model updating strategies to sustain the 

accuracy and utility of applications relying on clinical predictions. Model updating can restore 

model performance with significant consequences for clinical uses. For example, one study 

found recalibration to update an outdated clinical prediction model revealed quality assessments 
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of intensive care units were overly optimistic using the outdated model, highlighting higher 

mortality rates than expected in 35% rather than 15% of units.20 Our data-driven methods for 

performance monitoring and model updating are broadly applicable and customizable to the 

wide variety of clinical prediction models implemented in population health management, quality 

assessment, and clinical decision support tools. Our evaluations, based on both simulated data 

and large cohorts of national inpatient admissions data, showed our data-driven methods were 

able to identify changes in model performance as it occurred and to recommend updating 

methods that lead to more stable and more accurate performance than scheduled, non-data-

driven updating strategies. We envisioned a data-driven active model surveillance system that 

integrates these methods within production clinical information systems to deliver more 

consistently accurate and reliable predictions. By promoting stable, accurate model 

performance, this work reinforces safety, user confidence, and clinical utility of clinical prediction 

tools. 

 

Informatics Implications 

 

The methods developed here enable and encourage the translation of informatics 

advancements in predictive analytics into clinical decision tools. We presented a conceptual 

model for an active, data-driven model surveillance system that not only illustrates the use case 

integrating our new methods, but also provides a framework for predictive model management 

more broadly. Our data-driven methods were developed with special attention to generalizability 

and customizability, recognizing and supporting the variable needs of diverse clinical informatics 

applications. 

Throughout this dissertation, our work embraces and furthers the movement toward 

more consistent attention to model calibration, both in general and specifically to detailed, 

stringent calibration measures. Although current recommendations emphasize the importance 

of calibration for clinical use cases employing predictions in decision-making,4, 22, 23, 38-42, 118 

calibration remains underreported in validation studies65, 119-121 and stringent measures of 

calibration have yet to become commonplace.37, 41 Our method for dynamic calibration curves 

and our use of a detailed calibration curve-based metric in our drift detection system advance 

efforts to promote detailed calibration measures. In addition, our dynamic calibration curves 

create new opportunities to monitor calibration in data streams rather than cross-sectional 

batches of observations. This allows us to begin thinking differently about how model validations 

can leverage the immediate availability of data within electronic health record systems.  
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This work recognizes and supports diverse approaches to the development of clinical 

prediction models. Each of our data-driven methods are applicable regardless of the learning 

algorithms used to train prediction models. We consider this feature to be critical to any 

guidance on model surveillance and updating strategies. Comparative studies indicate different 

learning algorithms achieve superior performance for different outcomes and clinical settings.106, 

122-128 Newer modeling methods, such as deep learning and online learning, continue to evolve 

and are increasingly applied to clinical outcomes.27, 28, 63, 129, 130 Clinical predictive analytics 

systems must thus be flexibility designed to implement and manage models based on a diverse 

set of regression and machine learning methods. Our data-driven methods for model monitoring 

and updating, which rely solely observed outcomes and predicted probabilities, are designed 

with this essential generalizability in mind. This ensures our methods and vision for a data-

driven model surveillance system are relevant for information systems managing a suite of 

prediction tools and are well-positioned to support the evolving landscape of clinical prediction. 

Enterprise-wide clinical predictive analytics systems must ensure model accuracy is 

sustained over time and be agile in handling the rapid innovation of predictive analytic methods. 

The data-driven, generalizable, and customizable nature of the methods developed through the 

course of this dissertation empower clinical predictive analytics systems to adhere to these 

requirements. A data-driven model surveillance and updating system cannot correct all forms of 

performance drift or ensure clinically acceptable model performance. However, such a system 

can support predictive modeling teams in prioritizing their workloads and analytic resources. 

This, in turn, empowers broad implementation of electronic health record-embedded clinical 

prediction applications and the translation of advances in predictive analytic methods into 

practical clinical informatics tools. 

 

Conclusions 

 

Clinical prediction models have long provided insight to support clinical decision-making 

by synthesizing information across complex, interacting risk factors. Advances in prediction 

methods and the embedding of models within electronic health records are creating new 

opportunities to deliver personalized predictions in a variety of informatics applications – from 

point-of-care clinical decision support to population management to quality assessment. As 

interest grows in translating the potential of clinical prediction into practice, strategies to sustain 

performance over time are becoming critical components of model implementations. Common, 

predefined model updating strategies fail to account for variations in the timing, extent, and form 
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of change in the accuracy of prediction models over time. We developed a suite of methods 

supporting data-driven model updating strategies. We first defined the notation of dynamic 

calibration curves to maintain an evolving assessment of model performance. Leveraging these 

dynamic calibration curves, we constructed a calibration drift detection system to trigger model 

updating as performance declines and inform the updating process with insight into defining 

updating datasets. Finally, we developed a nonparametric testing procedure to select between 

available updating methods, including recalibration and model refitting. Acknowledging the 

varied and developing scope of clinical predictive analytics, each method is designed to be both 

generalizable and customizable. This work lays the ground work for electronic health record-

embedded, data-driven model surveillance systems that enable a shift away from insufficient 

“one-size fits all” updating methods and strategies. Individually and in concert, these methods 

tailor the model updating process to the unique requirements of specific prediction models and 

clinical use cases. This work promotes the long-term utility of prediction models underlying a 

variety of clinical informatics applications, and prepares data-driven model updating strategies 

to incorporate future methodological advancements in predictive analytics. 
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APPENDIX A 

 

CALIBRATION DRIFT DETECTION SYSTEM SIMULATION 

RESULTS BY ! VALUES 

 

Accuracy of detection reported as percent of iterations. False positives (FP) are 

detections occurring during the initial stable 1000 observations. False negatives (FN) are the 

failure to detect a changed by the end of the series. Note, recurrent/seasonal transitions do not 

have a stable run-in period and thus no false positives by definition. 

 

Table 20.  Frequency of false positive and false negative detections by transition speed, post-

drift calibration setting and ". 

 
Post-drift 
calibration 
setting Transition pattern 

! =	0.05   ! =	0.075   ! =	0.1 

% FP % FN   % FP % FN   % FP % FN 
Overpredicted 
(small) 

Abrupt 0.2 0.8  0.6 0.4  0.6 0.5 
Rapid 0.1 0.6  0.5 0.3  0.5 0.5 
Gradual 0.3 2.5  0.2 1.8  0.8 1.5 
Recurrent/Seasonal - 30.6  - 23.3  - 21.3 

Overpredicted 
(large) 

Abrupt 0.2 0  0.4 0  0.2 0 
Rapid 0.3 0  0.8 0  0.4 0 
Gradual 0.1 0  0.4 0  0.5 0 
Recurrent/Seasonal - 7.7  - 6  - 5.6 

Overfit (small) Abrupt 0.3 0.6  0.4 0.3  0.6 0.4 
Rapid 0.4 1.1  0.8 0.4  0.7 0.7 
Gradual 0.2 1.7  0.3 1.4  0.5 1.8 
Recurrent/Seasonal - 14.6  - 12  - 11.9 

Overfit (large) Abrupt 0.4 0  0.8 0  1.3 0 
Rapid 0.2 0  0.3 0  0.8 0 
Gradual 0.3 0  0.5 0.1  0.7 0 
Recurrent/Seasonal - 3.1  - 3  - 2.1 

Underfit Abrupt 0.8 0  0.7 0  1 0 
Rapid 0.3 0  0.7 0  0.9 0 
Gradual 0.1 0  0.4 0  0.5 0 
Recurrent/Seasonal - 0  - 0  - 0.1 

Overpredicted & 
overfit (small) 

Abrupt 0.2 16.2  0.4 13.2  1.4 12.2 
Rapid 0.3 14.4  0.5 10.5  0.6 10.4 
Gradual 0.4 21.6  0.2 17.9  1.1 17.7 
Recurrent/Seasonal - 59.5  0 54.8  0 49.5 
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Table 20 continued. 

Post-drift 
calibration 
setting Transition pattern 

! =	0.05   ! =	0.075   ! =	0.1 

% FP % FN   % FP % FN   % FP % FN 
Overpredicted & 
overfit (large) 

Abrupt 0.3 0.8  0.6 0.5  1.3 0.5 
Rapid 0.4 0.7  0.3 0.4  0.4 0.1 
Gradual 0.1 0.7  0.5 0.2  1 0.4 
Recurrent/Seasonal - 15.5  - 11.8  - 9.9 

Fluctuating Abrupt 0.1 39.3  0.7 34.7  0.4 31 
Rapid 0.3 37.9  0.5 34.8  0.9 30.7 
Gradual 0.3 51.6  0.4 45.4  0.8 40.6 
Recurrent/Seasonal - 57.2  0 56.2  0 50.7 

Subgroup Abrupt 0.2 0  0.4 0  0.5 0 
Rapid 0.3 0  0.5 0  0.4 0 
Gradual 0.2 0  0.5 0  0.4 0 
Recurrent/Seasonal - 2.5  0 0.3  0 1.2 

Random Abrupt 0 0  0.4 0.2  0.6 0.1 
Rapid 0 0.1  0.5 0  0.4 0.1 
Gradual 0 0  0.2 0.1  1.1 0 
Recurrent/Seasonal - 4  - 3.3  - 1.7 
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Figure 55.  Time to detection by speed of transition, form of change, and ". 
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Figure 56.  Lag to detection by speed of transition, form of change, and ". 
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Table 21.  Properties of retained data windows after drift detection by ".  

Window size reported as median and inter-quartile range. Window compositions reported as 

percent of detections for which pre-drift observations where included in the returned data 

window (% PD). 

 

Post-drift calibration 
setting Transition pattern 

! =	0.075   ! =	0.1 

Size 
% 
PD  Size 

% 
PD 

Overpredicted (small) Abrupt 522 (394, 719) 9  505 (380, 719) 13 
Rapid 539 (430, 763) 4.1  521 (398, 744) 3.3 
Gradual 709 (489, 986) 6.8  692 (489, 988) 6.7 
Recurrent/Seasonal 555 (402, 1070) -  538 (387, 1089) - 

Overpredicted (large) Abrupt 368 (289, 464) 26.2  362 (280, 469) 27.2 
Rapid 396 (322, 516) 4.6  399 (315, 525) 4.9 
Gradual 592 (448, 849) 5  581 (436, 837) 5.6 
Recurrent/Seasonal 398 (317, 582) -  379 (300, 529) - 

Overfit (small) Abrupt 371 (259, 551) 8  346 (249, 524) 8.8 
Rapid 394 (270, 576) 3.8  384 (268, 555) 5.7 
Gradual 549 (364, 888) 5.4  548 (369, 856) 7.6 
Recurrent/Seasonal 385 (266, 687) -  342 (249, 538) - 

Overfit (large) Abrupt 163 (130, 210) 16.5  159 (127, 198) 15.8 
Rapid 227 (176, 302) 4.7  220 (170, 293) 5.5 
Gradual 430 (284, 644) 5.2  418 (273, 651) 5.2 
Recurrent/Seasonal 211 (172, 268) -  204 (165, 253) - 

Underfit Abrupt 220 (195, 258) 29.6  214 (190, 253) 29.9 
Rapid 254 (221, 321) 4.5  247 (217, 322) 4.8 
Gradual 448 (333, 656) 5.3  461 (332, 707) 6.4 
Recurrent/Seasonal 236 (211, 266) -  225 (202, 259) - 

Overpredicted & overfit 
(small) 

Abrupt 925 (644, 1308) 7.2  909 (603, 1317) 7.2 
Rapid 892 (618, 1236) 3.8  838 (587, 1138) 6.1 
Gradual 912 (648, 1296) 6.7  902 (592, 1264) 7.6 
Recurrent/Seasonal 1056 (566, 1462) -  945 (555, 1398) - 

Overpredicted & overfit 
(large) 

Abrupt 358 (258, 491) 24.8  339 (240, 481) 28 
Rapid 394 (283, 529) 4  399 (276, 537) 3.7 
Gradual 596 (426, 844) 5.2  563 (398, 813) 6.7 
Recurrent/Seasonal 461 (311, 1047) -  430 (296, 883) - 

Fluctuating Abrupt 686 (442, 1083) 12.8  714 (432, 1085) 13 
Rapid 806 (488, 1228) 7.3  766 (451, 1117) 9.5 
Gradual 941 (551, 1390) 10.3  907 (528, 1374) 11.9 
Recurrent/Seasonal 749 (436, 1261) -  753 (412, 1166) - 

 



 134 

Table 21 continued. 

Post-drift calibration 
setting Transition pattern 

! =	0.075   ! =	0.1 

Size 
% 
PD  Size 

% 
PD 

Subgroup Abrupt 320 (220, 473) 53.6  290 (210, 444) 56.4 
Rapid 392 (294, 505) 3.5  383 (289, 502) 4.1 
Gradual 604 (472, 834) 4.6  588 (456, 821) 5.2 
Recurrent/Seasonal 454 (337, 935) -  421 (314, 735) - 

Random Abrupt 229 (182, 295) 13.2  224 (173, 282) 15.8 
Rapid 264 (202, 371) 4.3  262 (203, 358) 4.6 
Gradual 467 (306, 722) 4.8  451 (303, 693) 5 
Recurrent/Seasonal 262 (210, 368) -  263 (204, 363) - 
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Figure 57.  Proportion and 95% confidence interval of observations in the retained window 

generated prior to drift onset by ". Note, not relevant for recurrent/seasonal transitions in which 

there is no pre-drift period. 
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APPENDIX B 

 

SPECIFYING THE ADAPTIVE WINDOW ERROR TOLERANCE IN OUR 

CALIBRATION DRIFT DETECTION SYSTEM 

 

In order to provide some insight into the influence of " during periods of stable model 

performance, we generated non-transitioning timeseries for the calibrated model and each of 

the 10 miscalibrated models considered. Stable timeseries were generated from each model 

with % = {5000, 50000, 100000, 250000} observations. Over 1,000 iterations of each series 

length, we documented the proportion of iterations falsely detecting a change as " increased 

from 0.01 to 0.2. The table below documents false alarm rates for each scenario. The minimum 

" value for which the false alarm rate exceeded 0.05 is highlighted in bold. 

 

Table 22.  Proportion of iterations falsely detecting a change in stable timeseries by ". 

 
Post-drift 
calibration 
setting 

Series 
length 

! = 
0.05 

! = 
0.1 

! = 
0.15 

! = 
0.2 

! = 
0.21 

! = 
0.22 

! = 
0.23 

! = 
0.24 

! = 
0.25 

Calibrated 5000 0 0 0 0.001 0.002 0.009 0.021 0.497 0.494 
50000 0 0 0 0.01 0.019 0.023 0.072 0.991 0.993 

100000 0 0 0 0.004 0.011 0.021 0.074 1 0.999 
250000 0 0 0 0.004 0.011 0.021 0.074 1 1 

Overpredict
ed (small) 

5000 0 0 0 0 0.003 0.008 0.043 0.927 0.93 
50000 0 0 0 0.003 0.004 0.009 0.052 1 1 

100000 0 0 0 0.001 0.002 0.008 0.057 1 1 
250000 0 0 0 0.001 0.002 0.008 0.057 1 1 

Overpredict
ed (large) 

5000 0 0 0 0 0.001 0.002 0.077 0.914 0.903 
50000 0 0 0 0.001 0.002 0.005 0.092 1 1 

100000 0 0 0 0 0 0.003 0.079 1 1 
250000 0 0 0 0 0 0.003 0.079 1 1 

Overfit 
(small) 

5000 0 0 0 0.001 0.003 0.008 0.068 0.997 0.998 
50000 0 0 0 0 0 0.005 0.076 1 1 

100000 0 0 0 0.002 0.004 0.011 0.082 1 1 
250000 0 0 0 0.002 0.004 0.011 0.082 1 1 

Overfit 
(large) 

5000 0 0 0 0.002 0.004 0.018 0.167 1 0.999 
50000 0 0 0 0.001 0.004 0.019 0.172 1 1 

100000 0 0 0 0.001 0.002 0.021 0.186 1 1 
250000 0 0 0 0.001 0.002 0.021 0.186 1 1 

Underfit 5000 0 0 0 0 0 0.007 0.089 0.807 0.809 
50000 0 0 0 0.001 0.004 0.016 0.135 0.994 0.995 

100000 0 0 0 0.001 0.001 0.012 0.113 0.991 0.998 
250000 0 0 0 0.001 0.002 0.018 0.125 0.996 0.997 
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Table 22 continued. 
Post-drift 
calibration 
setting 

Series 
length 

! = 
0.05 

! = 
0.1 

! = 
0.15 

! = 
0.2 

! = 
0.21 

! = 
0.22 

! = 
0.23 

! = 
0.24 

! = 
0.25 

Overpredict
ed & overfit 
(small) 

5000 0 0 0 0.001 0.002 0.008 0.058 0.62 0.641 
50000 0 0 0 0.001 0.004 0.014 0.101 0.999 0.999 

100000 0 0 0 0.002 0.007 0.024 0.101 1 1 
250000 0 0 0 0.002 0.005 0.022 0.104 1 1 

Overpredict
ed & overfit 
(large) 

5000 0 0 0 0.003 0.008 0.053 0.184 0.797 0.78 
50000 0 0 0 0.003 0.01 0.056 0.212 1 1 

100000 0 0 0 0.002 0.013 0.059 0.193 1 1 
250000 0 0 0 0.003 0.012 0.053 0.192 1 1 

Fluctuating 5000 0 0 0 0.001 0.002 0.009 0.067 0.526 0.538 
50000 0 0 0.001 0.001 0.006 0.033 0.18 0.988 0.987 

100000 0 0 0 0.001 0.005 0.029 0.158 0.995 0.994 
250000 0 0 0 0.001 0.004 0.029 0.14 0.999 1 

Subgroup 5000 0 0 0 0.009 0.016 0.03 0.058 0.168 0.157 
50000 0 0 0 0.04 0.093 0.188 0.314 0.875 0.899 

100000 0 0 0 0.045 0.092 0.192 0.353 0.984 0.981 
250000 0 0 0 0.042 0.106 0.206 0.369 1 1 

Random 5000 0 0 0 0.015 0.034 0.077 0.225 0.821 0.841 
50000 0 0 0 0.028 0.053 0.129 0.324 1 1 

100000 0 0 0 0.025 0.055 0.124 0.3 1 1 
250000 0 0 0 0.025 0.055 0.124 0.3 1 1 
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Appendix C 

 

SIMULATION STUDY DESIGN DETAILS FOR THE 

CALIBRATION DRIFT DETECTION SYSTEM 

 

This appendix provides additional detail on the design of the simulation study described 

in Chapter 5. We simulated predictions with prespecified forms of miscalibration. The calibration 

curves associated with each form of miscalibrations are displayed in the figure below. 

Miscalibrated probabilities were constructed by transforming randomly generated true 

probabilities using the following equations: 

 

 
 

1. Overprediction – Systematic overprediction was created by varying the intercept of the Cox 

recalibration equation.  

 

logit(,-./0) = 	2 + 	4 ∗ logit(,6.07) 

 

A small degree systematic overprediction was created by setting 4 = 1 and 2 = - 0.4.  

A larger degree systematic overprediction was created by setting 4 = 1 and 2 = - 0.6. 

2. Overfitting – Two levels of overfitting were created by varying the slope of Cox recalibration 

equation. A relatively small degree of overfitting was created by setting 2 = 0 and 4= 0.75. A 

larger degree of overfitting was created by setting 2 = 0 and 4= 0.5. 
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3. Combined overprediction and overfitting – Combined overprediction and overfitting was 

constructed using combinations of the intercept and slope values above. A moderate degree 

of combined overprediction and overfitting was defined with 2 = -0.4 and 4= 0.75. A larger 

degree of combined overprediction and overfitting was defined with 2 = -0.6 and 4= 0.5. 

4. Underfitting – Underfitting was created by setting the coefficients of Cox recalibration 

equation to 4 = 3 and 2 = 0.  

5. Fluctuating – Miscalibration was designed to fluctuate over the range of probability. This was 

achieved with the following equation: 

 

logit(,-./0) = 	0.5 ∗ sin	(2 ∗ logit(,6.07)) +	 logit(,6.07) 

 

6. Subgroup – Miscalibration was created by assigning substantially overpredicted probabilities 

to a subgroup of low risk observations. We randomly sampled 30% of observations with 

,-./0 < 0.2 and predicted probabilities were assigned to be ,-./0 + 0.7. 

7. Random – Predicted probabilities were defined by randomizing the set of true probabilities. 
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APPENDIX D 

 

SIMULATION STUDY DESIGN DETAILS FOR THE 

NONPARAMETRIC TESTING PROCEDURE 

 

This appendix provides additional detail on the design of the simulation study described 

in Chapter 6.  

 

Predictor generation 

 

Default case mix. The following predictor generation model was used to simulate the 

development population and the updating/evaluation populations for the no population shift, 

event rate shift, and predictor-outcome association shift scenarios.  

 

[AB, AD, …ABF]H	~	JBF(K, L) where all MN = 0 and L is the symmetric covariance matrix defined as 

follows: 

 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 
X1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X2 

 
4 0.25 0 0 0 0 -1 0 0 0 0 0 0.5 0 

X3 
  

9 0 0.5 0 0 0 0 0 0 0 0 0 -0.25 
X4    16 0 0 0 0 0 0 0 0 0 0 0 
X5     1 0 0 2.5 0 0 0 0 0 0 -0.5 
X6      4 0 0.5 0 0 0 0.25 0 1 0 
X7       9 0 0 0 0 0 0 0 0 
X8        16 0 0 0 0 0 0 0 
X9         1 0 1 -0.5 0 0 0 
X10          4 0 0 0 0 0 
X11           9 -0.25 0 0 0 
X12            1 0 0 0 
X13             4 0 0 
X14              1 0.25 
X15               4 
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ABO~PQRRQ(2, 2) 

ABS~PQRRQ(5, 1) 

ABU~PQRRQ(2, 0.5) 

ABV~PQRRQ(0.5, 1) 

ADW~PQRRQ(1, 2) 

 

ADB~XYZ%[\]]^(0.1) 

ADD~XYZ%[\]]^(0.2) 

AD_~XYZ%[\]]^(0.3) 

ADa~XYZ%[\]]^(0.4) 

ADF~XYZ%[\]]^(0.5) 

 

ADO~c[^dd[%(1) 

ADS~c[^dd[%(2) 

ADU~c[^dd[%(4) 

ADV~c[^dd[%(6) 

A_W~c[^dd[%(8) 

A_B~g\]h^%[R^Q](0.25, 0.25, 0.5) 

 

 

A_D~g\]h^%[R^Q](0.33, 0.33, 0.34) 

 

 

More homogenous case mix. The default predictor generation model used for the development 

population was adjusted as follows to simulate the updating/evaluation populations for the more 

homogenous/less variable case mix scenario. 

 

Variances of the multivariate normal predictors AB, AD, … , ABF were adjusted to the values 

specified in the table below. Correlations among these predictors were not adjusted. 

 

Table 23.  Variance of multivariate normal predictors under case mix shift scenarios. 

 

Variable 

More 
Homogenous 

Case Mix 

More 
Heterogenous 

Case Mix 
AB 0.5625 1.5625 
AD 2.25 6.25 
A_ 5.0625 14.0625 
Aa 9 25 
AF 0.5625 1.5625 
AO 2.25 6.25 
AS 5.0625 14.0625 
AU 16 25 
AV 0.5625 1.5625 
ABW 2.25 6.25 
ABB 9 14.0625 
ABD 0.5625 1.5625 
AB_ 2.25 6.25 
ABa 1 1.5625 
ABF 9 6.25 
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Distributions of the following predictors were also adjusted to decrease variance in the 

population. 

 

ABS~PQRRQ(5, 0.25) 

ABU~PQRRQ(2, 0.1) 

ABV~PQRRQ(0.5, 0.5) 

 

ADa~XYZ%[\]]^(0.2) 

ADF~XYZ%[\]]^(0.1) 

ADO~c[^dd[%(0.5) 

ADS~c[^dd[%(1) 

ADU~c[^dd[%(2) 

 

 

 

 

More heterogenous case mix. The default predictor generation model used for the training 

population was adjusted as follows to simulate the updating/evaluation populations for the more 

heterogenous/more variable case mix scenario. 

 

Variances of the multivariate normal predictors AB, AD, … , ABF were adjusted to the values 

specified in Table 23. Correlations among these variables were also decreased. The adjusted 

covariance matrix was defined as follows: 

 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 

X1 1.5625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
X2  6.25 0.2 0 0 0 0 -0.8 0 0 0 0 0 0.4 0 
X3   14.0625 0 0.4 0 0 0 0 0 0 0 0 0 -0.2 
X4    25 0 0 0 0 0 0 0 0 0 0 0 
X5     1.5625 0 0 2 0 0 0 0 0 0 -0.4 
X6      6.25 0 0.4 0 0 0 0.2 0 0.8 0 
X7       14.0625 0 0 0 0 0 0 0 0 
X8        25 0 0 0 0 0 0 0 
X9         1.5625 0 0.8 -0.4 0 0 0 
X10          6.25 0 0 0 0 0 
X11           14.0625 -0.2 0 0 0 
X12            1.5625 0 0 0 
X13             6.25 0 0 
X14              1.5625 0.2 
X15               6.25 
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Distributions of the following predictors were also adjusted to increase variance in the 

population. 

 

ABS~PQRRQ(5, 3) 

ABU~PQRRQ(2, 1) 

ABV~PQRRQ(0.5, 2) 

 

ADB~XYZ%[\]]^(0.5) 

ADD~XYZ%[\]]^(0.4) 

ADO~c[^dd[%(3) 

ADS~c[^dd[%(4) 

 

 

ADU~c[^dd[%(5) 
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Outcome generation 

 

Two logistic regression models were defined by the following equation: 

 

(i = 1|A) = k1 + Yl,m−o4W + 4BlB + 4DlD + 4_l_ + 4ala + 4FlF + 4OlO + 4SlS + 4UlU + 4VlV

+ 4BWlBW + 4BBlBB + 4BDlBD + 4B_lB_ + 4BalBa + 4BFlBF + 4BOlBO + 4BSlBS + 4BUlBU
+ 4BVlBV + 4DWlDW + 4DBlDB + 4DDlDD + 4D_lD_ + 4DalDa + 4DFlDF + 4DOlDO + 4DSlDS
+ 4DUlDU + 4DVlDV + 4_Wl_W + 4_Bl_Bp + 4_Dl_Bq + 4__l_Dp + 4_al_Dq + 4_FlBlD_

+ 4_OlFlDD + 4_SlBBlBD + 4_UlBDlB_ + 4_VlOlDO + 4aWl_lDU)}]sB 
 

l_Bp = dummy variable for 2nd level of A_B 

l_Bq = dummy variable for 3rd level of A_B 

 

l_Dp = dummy variable for 2nd level of A_D 

l_Dq = dummy variable for 3rd level of A_D 

 

For the model with tu =10, coefficients for select variables were set to 0 (i.e., odds ratios set to 

1), reducing the model form to c(i = 1|A) = [1 + Yl,{−(4W + 4DAD + 4_A_ + 4FAF + 4OAO +

4UAU + 4BOABO + 4DDADD + 4DaADa + 4DVADV + 4_OAF ∗ ADD)}]sB 

 

Using the coefficient values defined below, each observation in the training, updating, and 

evaluation populations were assigned a probability using both the tu =10 and tu =40 models.  

A binary outcome under both models was defined by comparing these probabilities to random 

values generated from a uniform [0,1] distribution. If the random value was less than or equal to 

the assigned probability, the observation was assigned i = 1, otherwise the observation was 

assigned i = 0. 

 

Default coefficients. For the training population and the updating/evaluation populations under 

no population shift and case mix shift scenarios, model effects were defined as noted in Table 

24. Intercepts were set to establish a population event rate of 25%. 

 

Change in outcome prevalence adjustments. For the updating/evaluation populations under the 

event rate shift scenario, intercepts were set to establish a population event rate of 30%. 
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Predictor-outcome association shift adjustments. For the updating/evaluation populations under 

the association shift scenario, half of the odds ratios for predictors in each model multiplied by 

120%. Revised model effects are noted in Table 24.  

 

Table 24.  Odds ratios for model effects under each predictor-outcome association scheme. 
 

 Default associations  Adjusted associations 
Variable Model with df=10 Model with df=40  Model with df=10 Model with df=40 

X1 1 1.25  1 1.5 
X2 1.1 1.1  1.1 1.1 
X3 1.25 0.95  1.25 1.14 
X4 1 1  1 1 
X5 1.5 0.5  1.8 0.6 
X6 0.9 0.9  0.9 0.9 
X7 1 1.05  1 1.26 
X8 0.75 0.75  0.9 0.75 
X9 1 0.9  1 1.08 
X10 1 1.25  1 1.25 
X11 1 1.05  1 1.26 
X12 1 1.1  1 1.1 
X13 1 0.5  1 0.6 
X14 1 1.05  1 1.05 
X15 1 1  1 1.2 
X16 0.5 0.5  0.6 0.5 
X17 1 1  1 1.2 
X18 1 1.05  1 1.05 
X19 1 1.1  1 1.32 
X20 1 0.95  1 0.95 
X21 1 2  1 2.4 
X22 1.1 1.1  1.32 1.1 
X23 1 0.75  1 0.9 
X24 0.9 0.9  0.9 0.9 
X25 1 1.5  1 1.8 
X26 1 1.1  1 1.1 
X27 1 1.01  1 1.212 
X28 1 0.95  1 0.95 
X29 2 1  2.4 1.2 
X30 1 1.75  1 1.75 
X31b 1 1.1  1 1.32 
X31c 1 1.75  1 1.75 
X32b 1 0.95  1 1.14 
X32c 1 1.25  1 1.25 

X1 X23 1 1  1 1.2 
X5 X22 1.1 0.95  1.1 0.95 
X11 X12 1 0.99  1 1.188 
X12 X13 1 1.01  1 1.01 
X6 X26 1 0.99  1 1.188 
X3 X28 1 1.025  1 1.025 
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APPENDIX E 

 

DETAILED RESULTS OF THE CASE STUDIES FOR OUR 

NONPARAMETRIC TESTING PROCEDURE  

 

Figure 58.  Calibration curves in the three months after updating for the original acute kidney 

injury model, the refit model, and the recommended update (if different). 
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Figure 59.  Calibration curves in the three months after updating the acute kidney injury model 

with three levels of recalibration. 

 

 
  



 

 

148 

Figure 60.  Calibration curves in the three months after updating for the original 30-day mortality 

model, the refit model, and the recommended update (if different). 
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Figure 61.  Calibration curves in the three months after updating the 30-day mortality model with 

three levels of recalibration. 
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