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The objective of this dissertation is to understand the circumstances under which non-

experimental methods yield unbiased estimates of the effect of magnet school attendance on 

student achievement.  This dissertation has two main analyses.  In the first analysis, non-

experimental estimates (via multiple regression with observed covariates, analysis of covariance 

with student fixed effects, and propensity score matching) of the effect of attending one 

academically selective magnet school on 5th and 6th grade math and reading achievement are 

compared to experimental estimates found using lottery status as an instrumental variable (IV) 

for magnet school attendance. This analysis finds that multiple regression and propensity score 

matching yield estimates with sizeable positive bias that would likely lead a policymaker 

conclude the magnet school is more effective than it really is; in some cases, this bias represents 

over half a school year’s worth of learning.  Student fixed-effects modeling performs the best of 

the non-experimental methods and in reading yields estimates of the magnet effect on 5th and 6th 

grade achievement that are not meaningfully different from the experimental IV estimates. The 

second analysis tests how well the experimental and non-experimental methods perform under 



 
 

various forms and rates of sample attrition. To investigate this issue I create a variety of samples 

with different forms and rates of artificial attrition among lottery winners, lottery losers, and non-

participants and then run the experimental and non-experimental estimators on these simulated 

samples. The second analysis finds that the experimental IV estimates are less biased than the 

non-experimental estimates in almost all scenarios.  The one exception is the student fixed-

effects estimator, which performed as well or better than the experimental IV estimator as 

attrition rates exceeded 40%.  Collectively, the findings raise caution against using multiple 

regression and propensity score matching to evaluate the causal impact of school choice 

programs, even under situations where attrition in the experimental sample is severe.  Student 

fixed-effects modeling shows promise, particularly in reading, but only under high rates of 

sample attrition can one expect it to perform better than an analysis using randomly assigned 

comparison groups. 
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CHAPTER I 

 
 
 

INTRODUCTION 
 

 
 
Overview of the Research  
 

This dissertation investigates non-experimental methods for estimating the causal effect 

of magnet school attendance on student achievement.  The overriding objective is to understand 

the circumstances under which non-experimental methods yield unbiased estimates of the 

magnet school effect and therefore can serve as adequate substitutes for experiments.  An 

empirical investigation of these issues is possible because I have estimates from a random 

assignment evaluation of magnet schools that can be used to judge the performance of the non-

experimental methods.  This research builds off of a three year investigation of magnet schools 

by Dale Ballou and Ellen Goldring, which utilized administrative records on magnet school 

admissions lotteries to create randomized control groups (lottery winners and lottery losers).   

Following the approach taken by Wilde and Hollisert (2007) in their investigation of non-

experimental methods for evaluating class size reduction, I frame this research in the context of 

the decisions researchers must make when evaluating programs. The first decision is on the 

methods to use in the evaluation.  For those interested in causal effects, an experimental design is 

the gold-standard, nevertheless resource limitations or other practical concerns may lead to the 

selection of a non-experimental method. The ability of these non-experimental methods to yield 

unbiased estimates of the causal effect of the program is contingent upon a number of 

assumptions.   
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Even if the researcher is able to conduct an experiment, they may still need to decide 

whether or not to use non-experimental methods to address threats to the experiment’s random 

assignment. In school choice evaluations that utilize admissions lotteries for random-assignment, 

the most prevalent threat is selective attrition.  Selective attrition is a problem because lottery 

losers (i.e., the control group) often leave the district or enroll in a private school, which typically 

means their future test scores are unavailable to the researcher.  If the control group attrition is 

not completely random, the experimental estimates will be biased and the researcher will need to 

decide on the appropriate course of action.   Faced with this situation, one option is to simply 

ignore the threat of attrition bias and proceed with the analysis of the experimental sample.  

Another option is to abandon the experimental sample altogether and construct a different 

comparison group using a non-experimental method.   

Presently there is little empirical evidence to guide these important decisions.  This 

dissertation aims to fill this gap by comparatively evaluating the performance of non-

experimental and experimental estimators of the effect of an academically selective middle 

school on students’ math and reading achievement.  It is guided by two questions that are framed 

in the context of research decisions:  

(1) If a random-assignment study was not possible, would using a non-experimental method 

lead to a biased estimate of the magnet school effect?   

(2) How do the experimental and non-experimental methods perform under different forms 

and rates of selective attrition and are there circumstances where non-experimental 

estimators are less biased than the experimental estimator? 
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To answer the first question, estimates of the magnet school effect from three common non-

experimental methods (multiple regression with observed covariates, analysis of covariance with 

student fixed effects, and propensity score matching) are compared to the estimates from the 

random-assignment evaluation. The bias in the non-experimental estimates is then estimated as 

the difference between the non-experimental estimate and the experimental estimate. 

 The second question is answered through a simulated data exercise.  In this exercise I 

start with a complete sample that has no attrition.  I then create a variety of subsamples that have 

different forms and rates of artificial attrition among lottery winners, lottery losers, and non-

participants.  The experimental and non-experimental estimators are then run on these simulated 

samples.  By comparing the experimental and non-experimental estimates from the simulated 

samples to the experimental estimate from the complete sample (i.e. the unbiased experimental 

estimate), I am able to determine the scenarios where non-experimental methods perform better 

than the experimental method. 

Research Motivation 

This dissertation contributes to the literature on direct empirical comparisons of 

experimental and non-experimental estimators.  To date, these comparisons are almost 

exclusively found in the field of labor economics, where researchers have compared 

experimental and non-experimental findings from welfare-to-work, job training, and 

employment services interventions.   I was only able to locate two empirical comparisons in the 

field of education (Rouse, 1997; Wilde & Hollister, 2002).   

The paucity of evaluations of non-experimental estimators in the field of education is 

disparaging in light of the rise in demand among education researchers for better empirical 

understanding of the utility of non-experimental estimators.  This rise in demand is partly due to 
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two recent pieces of federal legislation: the No Child Left Behind Act of 2001 (NCLB) and the 

Education Sciences Reform Act of 2002 (ESRA).  NCLB raised demand by mandating that 

schools and districts adopt interventions that have demonstrated positive effects on student 

outcomes via experimental or rigorous non-experimental research.  NCLB requires education 

interventions to be supported by research that: 

…is evaluated using experimental or quasiexperimental designs in which individuals, entities 

programs, or activities are assigned to different conditions and with appropriate controls to 

evaluate the effects of the condition of interest, with a preference for random-assignment 

experiments, or other designs to the extent that those designs contain within-condition or 

across-condition controls. (Title IX, General Provisions, Part A Section 9101) 

NCLB’s mandate raised demand from education leaders for more rigorous evidence on 

education interventions.  In turn, this raised demand from the research community for better 

understanding of the best practices for designing and conducting experimental research and the 

conditions under which non-experimental methods may produce unbiased estimates of causal 

effects and thus serve as adequate substitutes for experiments (Schneider, Carnoy, Kilpatrick, 

Schmidt, & Shavelson, 2007).   

ESRA also contributed to the demand for comparative evaluations of experimental and 

non-experimental quantitative methods by creating new standards for federal research that 

prioritized experimental and quasi-experimental designs.   The law states that for an education 

evaluation to be considered “scientifically valid”, it must be one that “employs experimental 

designs using random assignment, when feasible, and other research methodologies that allow 

for the strongest possible causal inferences when random assignment is not feasible“ (Title I 

Education Sciences Reform Act, Section 102). 
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ESRA converted the U.S. Department of Education’s Office of Educational Research and 

Improvement into the Institute of Education Sciences (IES).  This new federal agency was 

charged with implementing the new research standards and turning education into “an evidence-

based field by providing decision makers with the best available research to inform their 

practice” (IES, 2009). 

Together, ESRA and NCLB led to greater interest from the education research 

community in the empirical strategies for overcoming the common problems researchers 

encounter when trying to execute an experiment in the dynamic context of public education.  

They also sparked interest in rigorous non-experimental methods that have potential to answer 

causal questions when experiments are infeasible or when they break down due to non-random 

processes, such as participant non-compliance or selective attrition. 

While experiments present the best opportunity for estimating an unbiased treatment 

effect, there are many reasons why researchers do not use them.  For one, random assignment is 

often impossible because of the nature of the program under investigation.  This is the case for 

interventions that target rare populations (such as special education students) for whom it is 

difficult to recruit a sample large enough to satisfy the statistical power requirements for an 

experimental design. In many situations experiments researchers cannot recruit participants who 

are willing to be randomly assigned to treatment conditions.  Experiments can also be 

prohibitively expensive because they typically require the deployment of large research teams for 

multiple years.  In some situations experiments cannot be used because they pose ethical 

concerns, particularly if they involve subjecting a participant to an intervention whose effects are 

unknown, or denying an intervention that is expected to benefit all participants, 
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For these reasons and others, researchers often elect to utilize a non-experimental method 

that is cheaper, less time consuming, and/or poses less ethical concerns.  Three of the most 

common non-experimental methods are: using multiple regression to control for observed 

covariates (MR); propensity score matching (PSM); and analysis of covariance with student 

fixed effects (FE). 

The ability of each of these methods to estimate an unbiased estimate of a treatment 

effect is contingent upon a number of assumptions.  A main contribution of this paper is that it 

discusses the assumptions behind these three non-experimental estimators and then empirically 

tests how well these assumptions hold in the magnet school evaluation.  This is done by 

comparing the non-experimental estimates of the magnet school effect on student achievement to 

the estimates from the random-assignment evaluation where lottery outcomes are used as an 

instrumental variable (IV) for magnet school attendance.  The results illuminate some of the 

strengths and weaknesses of the non-experimental methods as they relate to accurately 

estimating a school choice program effect. 

This dissertation contributes directly to our understanding of the methods used to 

evaluate magnet schools as well as other school choice programs.   Magnet schools have been 

staples of urban public school systems since the late 1960s.  However, they gained new 

prominence in recent years because of increased public support and legislative action for 

expanding public school choice programs.  This is evidenced by the fact that the number of 

magnet schools in operation has more than doubled from 1989 to 2006, increasing from 1,165 to 

2,736 (NCES, 2006).  A trend that will likely continue given the federal support for magnet 

schools; the president’s 2008 budget included approximately $100 million for the Magnet 

Schools Assistance Program (MSAP), which provides funds to assist school districts in opening 
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new magnet schools.  During the 2006-2007 school year, MSAP helped 52 school districts open 

218 new magnet schools.   

The proliferation of magnet schools continues despite inconclusive evidence that they are 

more effective than their traditional public school counterparts.  The poor empirical basis for 

magnet schools is partly due to the methodological challenge of isolating the effect of the magnet 

school on student achievement from the other effects on student achievement that are 

independent of the school.  Of particular concern is that students whose families seek out magnet 

schools are different from those who remain in their traditional public schools.  For example, 

they may have more motivation to improve their child’s education or more resources to transport 

their child to and from the school every day.  It is plausible that these differences will cause the 

magnet students to perform better than their non-magnet counterparts regardless of the actual 

school they attend. This dissertation speaks directly to the merits of different methods that can be 

used to overcome this concern.  

Paper Organization 

The rest of this dissertation is organized as follows: Chapter II presents the logic of 

causal inference and the problem of selection bias, which are central to the conceptual 

foundation for evaluating the experimental and non-experimental estimators. Chapter III reviews 

the research on empirical evaluations of non-experimental estimators, most of which is found in 

the field of labor economics.  Chapter IV presents the methods and results of the randomized 

lottery evaluation of the magnet schools that are the basis for evaluating the non-experimental 

estimators.  Chapter V discusses the assumptions and specifications of the non-experimental 

estimators, presents their respective estimates of the magnet school effect, and comparatively 

evaluates their accuracy in relation to the experimental estimates.   Finally, chapter VI 
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comparatively evaluates the experimental and non-experimental estimators under different 

assumptions on sample attrition via a simulated data exercise.  
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CHAPTER II           

                                                                          

CAUSAL INFERENCE AND THE PROBLEM OF SELECTION BIAS 
 
 

This section reviews the logic of causal inference using the framework pioneered by 

Rubin (1974, 1977, 1978, 1980) and commonly referred to as Rubin’s Causal Model (RCM; 

Holland, 1986).  This framework defines causal effects in terms of potential outcomes and 

counterfactual conditions rather than in terms of parameters of a regression model (Imbens & 

Angrist, 1994).  In this chapter, and the rest of the dissertation, I use the standard notation 

developed by Rubin (1974, 1977) to discuss the assumptions of the experimental and non-

experimental estimators.   

To begin, consider a treatment D, where D = 1 if a participant receives treatment and      

D = 0 if a participant does not.  The objective of evaluation research is to determine the causal 

effect of D on a designated outcome Y. 

Three conditions must hold to allow a causal inference of the effect of D on Y. The first is 

temporal order, where it must be established that D occurred prior to the observed effect on Y.  

The second condition is association, where it must be established that a change in D associates 

with a positive or negative change in Y.  The third condition is that it must be possible to render 

all rival explanations for the effect implausible.  

Modern statistical theory relies on the notion of counterfactuals to satisfy the third 

condition (Roy, 1951; Quandt, 1972; Holland, 1986; Rubin, 1974; Heckman, Ichimura, Smith, 

and Todd 1998).  A counterfactual is defined as the condition that would have been observed had 

the treatment not occurred.  Each person i is conceived to have two possible outcomes, Yi0 and 

Yi1.  Yi1 indicates the outcome when person i receives treatment (D=1) and Yi0 indicates the 
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outcome when treatment is not received (D=0.)  Finding the difference between Yi1 and Yi0 at the 

same point in time for the same individual allows the researcher to rule out alternative causes and 

identify the causal effect of the treatment as: 01 ii YY −=δ .   

The Fundamental Problem of Causal Inference 

It is evident that δ cannot be identified because one cannot observe both Yi1 and Yi0 at the 

same point in time for the same individual. If D = 1, we observe Yi1, but not Yi0.  Conversely, if   

D = 0, we observe Yi0, but not Yi1.  Holland (1986) refers to this as the fundamental problem of 

causal inference.  Others refer to it as the evaluation problem (Heckman et al., 1998) or the 

problem of unobservability (Deheija & Wahba, 2002).  In essence, it is a problem of missing 

data because the researcher is always missing observations on either Yi1 or Yi0. 

The Average Treatment Effect 

The fundamental problem of causal inference makes it impossible to observe δ.  Holland 

(1986) posits that one statistical solution to this problem is to estimate the average treatment 

effect (ATE) of Y on a population.  The ATE is found as the average difference between the 

outcomes for individuals that receive treatment and the outcomes for individuals that do not 

receive treatment: )()( 01 YEYEATE −=δ . 

The ATE is estimated using different observational units observed under different 

treatment conditions. For the ATE to be an unbiased estimate of δ, the expected outcomes of Y0 

and Y1 must be independent of treatment assignment.  Holland (1986) and others refer to this as 

the independence assumption, formally defined as:  D ╨ E(Y0, Y1). 
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Heterogeneous Treatment Effect   

The ATE is estimated over a population, which presents two concerns.  First, it may be 

one is less interested in how a program impacts the entire population and more interested in how 

a program impacts a particular population subgroup. If the causal effect varies within the 

population then the estimate of the ATE will be a poor estimate of the treatment effect for any 

particular individual or subgroup within the population. 

The second concern is a practical one; estimating the ATE requires one to have access to 

either the entire population of interest or a random sample of the entire population of interest.  If 

this requirement cannot be met, the researcher will only be able to make causal inferences to the 

sample that is accessible.  These inferences may not be of particular value to the research 

objectives. This is a particular concern in evaluations of programs that are optional, where 

individuals must voluntarily select into treatment.  Individuals who seek out treatment may differ 

from the population of which they came in ways that influence their response to treatment and 

therefore it is impossible to yield a consistent estimate of the ATE using a self-selected sample.  

The Average Effect of Treatment on the Treated 

In many situations, researchers are interested in learning how a program impacts those 

who actually receive treatment rather than learning the average effect of a treatment for a 

population. For illustration, consider a hypothetical case of an evaluation of a remedial math 

tutoring program.  In this case, researchers will be primarily interested in how the program 

impacts low performing students (for whom the program is designed) and less interested in the 

effects of the program on those students performing at or above grade-level (who do not require 

remedial tutoring).  The effect these researchers are interested in is termed the average effect of 

treatment on the treated (ATT) and can be expressed formally as: 
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 )1|()1|( 01 =−== DYEDYEATTδ      (2.1) 

 
 

From a practical perspective, estimating the ATT has some notable advantages to 

estimating the ATE.  For one, it eliminates concern over heterogeneous treatment effects because 

the causal effect only generalizes to those who seek out treatment.  However, if the treatment 

effect is constant for the population, the ATT will equal the ATE.   The ATT may also be more 

practical and cost-effective parameter to estimate because it does not require random sampling or 

access to an entire population.   

The fundamental problem of causal inference is still present in the estimation of the ATT.  

This is revealed by the fact that we can estimate )1|( 1 =DYE , but not )1|( 0 =DYE .  That is, we 

cannot observe what would have happened to individuals in the treatment group had they not 

received treatment.  To estimate the ATT, the researcher must find a substitute counterfactual for

)1|( 0 =DYE . One option is to use the average outcome of non-participants, E(Y0|D=0), but this 

will be biased if the unobserved potential outcomes of treatment recipients differ from the 

observed outcomes of non-recipients.   To illustrate, consider the case of a researcher who wants 

to know how a job training program impacts the wages of those who voluntarily enroll in the 

program.  It would be wrong to assume the wages of those who did not enroll in the program are 

equivalent to the wages of those who did enroll in the program had they not received treatment. 

Those who enroll in the program are likely to have more motivation to improve their 

employment situation, which will likely positively impact their wages whether they participate in 

the training program or not. 
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The Role of Randomization 

The random assignment of participants to treatment and control groups allows us to 

assume )1|( 0 =DYE = E(Y0|D=0), by establishing the independence of treatment assignment to 

potential outcomes.  Assuming the randomization is valid and the sample is sufficiently large, the 

average expected value of Y0 will be equivalent for treatment participants and control group 

members.  This allows us to estimate the ATT as: E(Y|D=1) – E(Y|D=0). 

Selection Bias  

Selection bias arises when the independence assumption fails and there are unobserved 

differences between treatment participants and non-participants that associate with the expected 

values of Y0:  0)0|()1|( 00 ≠=−= DYEDYE   

In absence of randomization, or when randomization breaks down due to non-compliance 

with treatment assignment, sample attrition, or other non-random events, researchers must use 

other methods to capture a causal inference.  Holland (1986) states that the emphasis of all these 

methods is “…on the ways that pre-exposure variables can be used to replace the independence 

assumption with less stringent conditional independence assumptions” (p. 949). 

The conditional independence assumption requires that conditional on variables X, 

treatment status is independent of the expected outcome: D ╨ E(Y0, Y1|X).  This paper is 

fundamentally about determining the extent to which three standard non-experimental methods 

(MR, FE, PSM) are able to establish conditional independence and produce estimates of the 

magnet school effect that are free of selection bias.
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CHAPTER III 

 
 
 

REVIEW OF THE LITERATURE ON COMPARATIVE EVALUATIONS OF NON-
EXPERIMENTAL ESTIMATORS 

 
 
 
 

This chapter summarizes the relevant literature on the empirical comparisons of non-

experimental methods. These comparisons take two forms: between-study comparisons and 

within-study comparisons (Glazerman, Levy, & Myers, 2003).  Within-study comparisons 

replicate the findings from an experiment using one or more non-experimental method.   

Between-study comparisons use meta-analytic techniques to compare findings of experimental 

research from non-experimental research on a given program. 

Between-Study Comparisons  

Between-study comparisons gather the results of all experimental and non-experimental 

studies on a given topic and compare the mean effect sizes from the experimental designs to the 

mean effect sizes of the non-experimental designs using meta-analysis. This method helps 

discern if there are systematic differences between the research findings on a given program (or 

intervention) based on the research methods that were used. 

The results of these comparisons are expectantly mixed.  While most between-study 

comparison found that the experimental effects were larger, on average, than the non-

experimental effects, they all revealed substantial variation in the differences between 

experimental and non-experimental effects.  This is an expected result because the meta-analyses 
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evaluated studies of different programs and the performance of non-experimental methods will 

vary depending on the characteristics of the program and its participants. 

Heinsman (1993) conducted a meta-analysis on 99 studies within four seemingly 

unrelated areas: scholastic aptitude test coaching, ability grouping of children within classrooms, 

adolescent drug use prevention, and presurgical psychological interventions to improve surgery 

outcomes.  The author found that the mean effect size of the randomized experiments (0.42) was 

significantly larger than that from non-randomized experiments (0.03).   

Shadish and Ragsdale (1996) conducted a meta-analysis of marital and family therapy 

studies aimed at understanding the difference in effect sizes between randomized and non-

randomized comparison groups.  They found that the mean effect size of the 64 randomized 

experiments in their sample was larger than the mean effect size of the 36 non-experimental 

designs.  The randomized designs yielded a mean effect size of 0.60, whereas the non-

randomized designs only showed an effect of 0.08 – a difference of 0.52.  When the authors 

accounted various covariates, including pretest effect size differences, the difference in effect 

sizes dropped to 0.27. 

In their comprehensive review of 302 meta-analyses on studies of psychological 

treatments, Lipsey and Wilson (1993) found 74 meta-analyses that compared treatment effects of 

randomized designs to non-randomized designs.  They found the mean effect size for 

nonrandomized designs (0.41) to be slightly smaller than that of randomized designs (0.46).  The 

authors concluded that there is not a systematically strong bias in either direction that stems from 

the experimental or non-experimental designs.  However, when the authors graphed the 

distribution of the differences in effect sizes between experimental and non-experimental designs 

for the 74 meta-analyses, it showed wide variation, with differences distributed normally around 
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zero.  The majority of the differences were between -.40 and +.40.  In some of the meta-analyses 

on certain psychological interventions, the bias in non-experimental estimators was substantially 

negative or substantially positive.  The differences between experimental and non-experimental 

effect sizes ranged from negative 1 to positive 1.6.   

The findings of Lipsey and Wilson (1993) underscore an important point: the bias in a 

non-experimental estimator will depend on the intervention itself and the likelihood that a 

selection effect would be present if random assignment were impossible.  Many of the 

psychological interventions studied in the design may have had little bias simply because the 

intervention did not incentivize people to self-select into treatment for reasons that were 

unobserved.   

The between-study design has limitations for evaluating the bias in non-experimental 

estimators.  For one, it relies on the presence of a large enough body of evidence on a given issue 

to be able to conduct a meta-analysis.  For most education programs policies, there are not 

enough studies to achieve the power necessary to test for significant differences between 

experimental and non-experimental estimators.   

A second limitation is that between-study designs compare experimental and non-

experimental studies conducted at different sites and different time periods.  Moreover, the 

interventions that are grouped together within a meta-analysis are often very different.  

Consequently, the results of the between-study design still leave some uncertainty as to which 

methods work best because the differences in findings between experimental and non-

experimental designs may be due to other factors, such as differences in the study samples or 

features of the intervention 

. 
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Within-Study Comparisons 

The within-study comparative approach enables the researcher to determine if they can 

eliminate selection bias through various statistical techniques. Within-study comparisons aim to 

estimate the selection bias in non-experimental estimators.  The estimation of selection bias is 

done in one of two ways: (1) estimate the selection bias as the difference between the impact 

estimate of the experimental method and the impact estimates of the non-experimental methods; 

(2) compare the average outcomes of the experimental control groups with the average outcomes 

of the non-experimental comparison groups.  These two approaches will yield almost identical 

findings if the same treatment group is used in the experimental and non-experimental methods 

(Glazerman et al, 2003). 

The most popular program for conducting within-study evaluations has been the National 

Supported Work Demonstration (NSW) that was conducted during the mid-1970s in 10 sites 

across the U.S by the Manpower Demonstration Research Corporation (MDRC).  The NSW was 

a temporary employment program designed to provide work experience and counseling to 

disadvantaged workers.  NSW randomly assigned applicants to either participate in the NSW 

program or serve as a control group and receive no support. By tracking the behavior of the 

treatment and control group participants in the labor market over time, the study was able to 

determine the experimental impact of the NSW training program.  Comparing the earnings of the 

treatment participants to the control group, they found that males and females in the treatment 

group earned 9% and 8.5% more respectively than they would have without the program.  

However, these estimates may be biased due to sample attrition.   

A number of economists have used the experimental NSW data to test non-experimental 

methods by replacing the experimental control group with comparison groups drawn from two 
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national surveys: the Current Population Survey (CPS) and the Panel Study of Income Dynamics 

(PSID).  The common assumption of these studies is that if the non-experimental statistical 

models are specified correctly, they should produce the same impact estimate of NSW on annual 

earnings as the experiment.   

LaLonde (1986) was the first to use the NSW data to test whether the experimental 

estimates could be replicated with non-experimental estimators.  He used different samples from 

both the CPS and the PSID as comparison groups and specified a variety of models that included 

controls for age, schooling, race and individual fixed-effects. The author’s main conclusion was 

that non-experimental estimators are poor substitutes for experimental estimators.  While some 

combinations of comparison groups and models came close to the experimental estimate of the 

impact of the NSW training program on annual earnings in 1978, others were off by more than 

10%.  The results for the females tend to be positive and larger than the experimental estimate, 

while the results for the males tend to be negative and smaller than the experimental estimate. 

His findings demonstrated that the specification of the comparison group as well as the 

econometric model can greatly influence the accuracy of the non-experimental method.   

Heckman and Hotz (1989) reanalyzed LaLonde’s NSW data and argued that specification 

tests can be used to separate the good  non-experimental estimators from the bad. Their 

specification tests involved running the  non-experimental models with the same sample, but 

with data from participants before they enrolled in NSW.  These tests assume that if the 

selection-correction procedures of the non-experimental estimators are accurate, there should be 

no difference in earnings of future treatment participants and comparison group members prior to 
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treatment.1  Using this approach, the authors find that linear control models and fixed-effects 

models are biased, while a random growth estimators perform well and yield the same 

conclusion as the experiment.  

Dehejia and Wahba (1999) also use NSW data to estimate the impact of NSW on 

earnings using propensity score matching.  The authors use a subset of LaLonde’s sample of 

adult men for whom data on two years of pre-program earnings are available.  They use PSM to 

balance program and comparison groups on pre-program earnings and a number of other 

covariates.  They find that PSM, relative to the estimators LaLonde evaluates, come closer to the 

experimental estimate.   

Smith and Todd (2005) reanalyzed the data by Dehejia and Wahba (1999) to assess the 

sensitivity of their findings and reconcile how they were able to produce non-experimental 

estimators that performed better than LaLonde (1986).  The authors found that the primary 

reason that Dehejia and Whaba’s PSM estimators performed better than LaLonde’s non-

experimental estimators is that they used a different sample for their comparison group. Dehejia 

and Whaba included variables in their estimation of the propensity score that caused high earners 

to be dropped from their final samples.  Smith and Todd show that the exclusion of the high 

earners is the primary reason why Dehejia and Whaba’s estimators perform better than LaLonde.  

They show that the traditional regression and difference-in-differences estimators that LaLonde 

employed also perform well when Dehejia and Whaba’s sample is used.  Moreover, they find 

that the matching estimators exhibit substantial bias because of differences in how earnings are 

recorded in the NSW and how it is recorded in the CPS and PSID surveys.   They also find that 

                                                 
1 I present the results of the Heckman and Hotz (1989) specification tests for the magnet school study in the 
appendix, where I use 2nd, 3rd, and 4th grade data on the students used in the non-experimental methods as 5th and 6th 
graders.  
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matching estimators produce bias when treatment participants are matched to nonparticipants 

from different local labor markets.    

 Friedlander and Robins (1995) assessed non-experimental methods using experimental 

data from an evaluation of a mandatory welfare-to-work program.  The welfare-to-work 

evaluation took place at multiple welfare offices within four states.  To construct non-

experimental comparison groups they used the experimental control from one site as the non-

experimental comparison group for a different site.  They used OLS regression and propensity 

score matching to estimate the non-experimental program impact.  The authors found that the 

program impacts varied depending on the comparison groups that were used.  Their non-

experimental estimates were closer to the experimental estimates when the authors used 

comparison groups from the same state rather than comparison groups from different states.  

Contrary to Heckman and Hotz (1989) the authors did not find that specification tests could rule 

out bad estimators, other than “wildly inaccurate outlier estimates” (p. 935).  

 Heckman et al. (1998) present the most comprehensive evaluation of non-experimental 

estimators. The authors use data from four National Job Training Partnership Act (JTPA) 

randomized field trial study sites.  To create non-experimental comparison groups, they used 

survey data on non-JTPA participants who met the JTPA criteria and were from the same 

neighborhoods as the JTPA sites.  This eliminates the problems created by selecting samples 

from different geographic areas.  To estimate the bias in non-experimental methods, the authors 

compared the outcomes of the experimental control groups with those of the non-experimental 

comparison groups.   

The authors employed an extensive series of tests to a variety of propensity score 

methods and econometric models.  They used variants of propensity score matching, including 
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kernel matching and local regression matching in conjunction with matched difference-in-

difference estimators.  They were able to decompose the selection bias into three fundamentally 

different components: (1) bias due to experimental control groups with no observationally 

similar counterparts in the comparison group; (2) bias due to differential representation of 

observationally similar people in the two groups, and (3) bias due to unobserved differences 

between observationally similar people. 

Of the econometric methods they tested, their combination of propensity score matching 

with a difference-in-difference estimation performs the best at eliminating bias. The main finding 

from this evaluation is that it is observable characteristics rather than unobservable 

characteristics that are the main source of bias.  Most of the selection bias was due to comparing 

the wrong people –i.e. using a comparison group with no observationally similar counterparts to 

the experimental group –and comparing the right people in the wrong proportion –i.e. differential 

representation of observationally similar people in the two groups.  They find that bias due to 

selection on unobservables is less important than other components, although it still represents a 

substantial fraction of the impact estimates.  They also conclude that using propensity score 

matching to balance observable characteristics of the comparison groups improves the 

performance of the estimators.  A key point of their analysis is that the correct estimation of a 

treatment impact using non-experimental data requires both a strong data set and the right 

methods.  The high quality of their data explains why their estimators performed better than 

those of LaLonde (1986).  

Bloom, Michalopoulos, Hill, & Lei (2002) conducted their comparative analysis using 

experimental data from the National Evaluation of Welfare-to-Work Strategies (NEWWS).  Like 

Friedlander and Robins (1995), they drew on experimental control group members from other 
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sites to establish the non-experimental comparison groups.   Like Heckman et al. (1998), they 

estimated the selection bias by comparing the outcomes of the experimental control groups to 

their non-experimental comparison groups after statistical adjustments.  For each experimental 

group, they created an in-state comparison group, an out-of-state comparison group, and a 

comparison group drawn from multiple states.  They estimated the bias of the non-experimental 

estimators for a short run time frame comprised of the first two years after randomization and a 

medium run time frame comprised of the third through fifth years after randomization.   

The authors tested variations of propensity score matching, OLS regression, fixed-effects 

models, and random-growth models.  They drew upon a rich data set of participant background 

characteristic, employment information, and quarterly earnings data.  They found that biases for 

non-experimental methods are positive for some applications and negative for others.  The bias 

in the non-experimental estimates was consistently larger in the medium run comparisons than in 

the short run.  In some cases, the medium-run bias was three to five times larger than in the short 

run.  Of the three comparison groups (in-state, out-of-state, multi-state), the in-state comparison 

group produced the smallest mean bias.  The authors did not find that one statistical adjustment 

method was able to consistently reduce bias.  They found that using a simple difference of means 

performed as well as OLS, PSM, and fixed-effects models.  The random-growth model tended to 

increase the bias regardless of the comparison group used or the time frame of the analysis.   

 Glazerman et al. (2003) synthesized the results of 12 within-study comparisons of non-

experimental impact estimates of welfare, job training, and employment services programs on 

annual earnings.  The authors found that eight of the 12 studies in the analysis demonstrated that 

the non-experimental estimates tended to understate the impacts, while four tended to overstate 

the impacts.  While some of the bias estimates were close to zero, some were very large – over- 
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or under-estimating annual earnings impacts by as much as 100%.  For the entire sample of 

studies, the un-weighted average of the absolute value of the bias associated with using non-

experimental methods was about $1,500, or about 15% of participants’ annual earnings.  Their 

analysis did not find that matching methods, such as PSM, performed uniformly better than 

traditional regression modeling.  Of the matching methods, they found that one-to-one matching 

had less bias than other matching methods.   

Wilde & Hollister (2002) present one of few studies to evaluate non-experimental 

methods in an education setting.  They apply propensity score matching to estimate the effect of 

class size reduction on achievement test scores using experimental data for Kindergarteners from 

schools in Tennessee’s Project STAR.  For each of their 11 schools with 100 or more 

kindergartner, they construct comparison groups using out-school units; that is, they combine 

treatment children from a given school with control children from all other schools.  They 

conclude that propensity score matching estimates of the treatment effect differ substantially 

from the experimental estimate.   Of the 11 schools, they find that in four cases, the non-

experimental estimate would lead to the wrong decision about whether to invest in class size 

reduction.    

Rouse (1997) evaluated the Milwaukee private school vouchers program.  She compared 

the lottery participants that were randomly selected for a voucher to those who were not selected 

to establish an experimental estimate. She also used a random sample of students from the 

Milwaukee public schools and used student fixed-effects to conduct a non-experimental 

comparison group.  She found the results of her analysis using the random control group to the 

non-experimental comparison group to be similar.  Her experimental impact estimate of 

vouchers on math was between 2 and 3 percentage points.  Similarly, she found that private 
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school voucher students experienced greater math gains scores than the non-experimental 

comparison group of about 1.6 to 1.9 percentage points a year.  In reading, she found both the 

experimental and non-experimental methods failed to find an impact estimate that was 

statistically different from zero.   
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CHAPTER IV 

 
 
 
THE RANDOM ASSIGNMENT EVALUATION OF THE IMPACT OF MAGNET SCHOOL 

ATTENDANCE ON STUDENT ACHIEVEMENT 
 
 
 
 

This chapter presents the findings from the random assignment evaluation of an 

academically selective magnet school in an urban district of a mid-sized Southern city.  The data 

and analysis presented in this chapter stem from a three year project led by Dale Ballou and 

Ellen Goldring, whose original findings were reported in Ballou, Goldring, and Liu (2006) and 

Ballou (2007).  This approach uses the results of the magnet schools’ admissions lotteries to 

create randomized control groups (lottery winners and lottery losers).  Students’ lottery status is 

then used as an instrumental variable (IV) for magnet school enrollment in order to estimate the 

impact of the magnet schools on student achievement.  The “experimental IV” findings presented 

herein serve as the basis for the comparative evaluation of the performance of the non-

experimental estimators.   

Magnet Schools in the U.S. 

Magnet schools originated in urban school districts during the late 1960s in response to 

“white flight” –i.e. the rapidly increasing withdrawal of non-minority families to the suburbs –

and school desegregation efforts.  Magnet schools provided an alternative to involuntary racial 

integration policies, which were on the rise since a federal court ordered the Charlotte-

Mecklenburg school district in North Carolina to use forced busing to desegregate schools in 

1969.  Urban districts hoped they could concurrently retain white families and create racially 
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balanced schools by creating selective magnet schools with specialized curricula and innovative 

programs that attracted students from across the district. 

The federal Emergency School Aid Act (ESAA) of 1972 fueled magnet school growth by 

targeting funds towards voluntary racial integration programs (U.S. Department of Education, 

2001).  President Nixon advocated for the law as a means to support districts “…that wish to 

undertake voluntary efforts to eliminate, reduce or prevent de facto racial isolation” (Nixon, 

1970).   

ESAA was terminated in 1981, by which time there were over 1,019 magnet schools in 

operation (Rossell, 2005).2  In 1984 the federal Magnet School Assistance Program (MSAP) 

picked up where ESAA left off by providing funds to districts under court-ordered desegregation 

to create new magnet schools (Steele & Eaton, 1996).   

Over time, the policy objectives of magnet schools shifted away from school 

desegregation and towards the expansion of public school choice.  This shift is partly due to the 

fact that forced desegregation orders, which made the magnet school alternative attractive to 

families who did not want their children bused across town, were lifted by federal courts.  School 

districts such as Kansas City, Charlotte-Mecklenburg, and Boston were no longer obligated to 

continue cross-town busing and many more families were free to attend their neighborhood 

school.  At the same time, the growing public demand for more choice in public schooling – 

evidenced by the rise in inter-district transfer policies and public charter schools – compelled 

districts to create magnet schools in order to diversify the set of public school options in the 

district and retain their student population. 

According to the National Center on Education Statistics (Hoffman, 2006), 2.1 million 

students attended 2,736 public magnet schools in 31 states during the 2005-2006 school year.   
                                                 
2 ESAA was eliminated under the Omnibus Budget Reconciliation Act of 1981.   
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Fifty-nine percent of these magnet schools were elementary, 16% were middle, 21% were high 

school, and the remaining 4% had other grade configurations.   

Today’s magnet school universe is diverse, but most schools share the following features: 

(1) they have a curriculum and/or instructional program that is catered to a certain student 

subgroup, academic interest, or content-area; (2) they are schools of choice open to all students 

in the district – unless they require students to meet specific admissions criteria; (3) they aim to 

draw students from across the entire district enrollment zone and not just from certain assigned 

neighborhood zones; (4) they attempt to maintain a racially and economically diverse student 

population. 

Review of the Literature on Magnet School Impacts on Student Achievement 

The results of three decades of research do not provide a definitive answer as to whether 

or not magnet schools are more effective than their traditional public school counterparts.3 In 

part, this ambiguity is due to variation in the rigor of methods that have been used to evaluate 

magnet schools. The impact of magnet schools on student achievement is particularly 

challenging to estimate because families self-select into the magnet schools for reasons that are 

unobserved.  If the factors that lead families to select magnet schools have an independent effect 

on student achievement, then comparing magnet school students to non-magnet school students 

may lead to biased estimates of the magnet effect.  This “selection bias” is of particular threat to 

the validity of the many studies that compared the achievement of students in magnet schools to 

students in non-magnet schools without controlling for differences in prior achievement or other 

characteristics (see for example, Blank, 1989; Musuneci & Szcypkowski, 1993; Poppell & 

Hague, 2001).   

                                                 
3 See Ballou (2009) for a comprehensive review of the literature on magnet school outcomes. 
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The standard practice for addressing selection bias is to exploit the fact that 

oversubscribed magnet schools typically use random lotteries to determine who gets admitted.  

The random assignment via the admissions lottery creates a natural experiment, which allows 

researchers to evaluate the impact of the magnet school by comparing the achievement of lottery 

winners to lottery losers.  Selection bias is resolved in because any differences between these two 

groups arrive solely by chance and the characteristics of the two groups will be probabilistically 

the same as long as the samples are sufficiently large. 

Crain, Heebner, & Yiu-Pong (1992) used the admissions lottery design in an evaluation 

of 59 of New York City’s career magnet schools.  They analyzed ninth grade outcomes of a 

single cohort of 9th graders that included 3,272 average readers and 968 below-average readers.  

The researchers estimated an “Intent-to-Treat” (ITT) effect by comparing the ninth grade 

outcomes of those who won the lottery to those who lost the lottery, naïve of which school they 

actually ended up attending.  Among average readers, the authors found statistically significant 

differences in reading scores and credits earned toward graduation.  Among below-average 

readers, there were no significant differences in reading gains or credits earned, but lottery 

winners had higher pass rates on the Regent’s math test.  A second evaluation (Crain, Allen, & 

Thaler, 1999) followed the 9th grade cohort for an additional four years.  They found no 

statistically significant difference between the reading and math results of lottery winners and 

lottery losers that were administered in the spring of the students’ second and third years in high 

school.  

Kemple & Snipes (2000) reported the findings of an investigation into career academies 

at nine sites that served over 1,700 students.  The students were followed from 8th or 9th grade 

through the end of their scheduled 12th grade year.  The researchers conducted an ITT analysis 
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by comparing high school outcomes of those who won the lottery to those who lost the lottery.   

The students were divided into the three groups based on their risk of dropping out of high 

school.  They found that the career academies substantially improved outcomes among students 

at high risk of dropping out, but had little effect in the aggregate for those with low or moderate 

drop out risk.  Of those with high dropout risk, they found statistically significant positive effects 

of the academies on dropout rates, attendance, academic course-taking, and the likelihood of 

earning enough credits to graduate on time.  

Kemple and Scott-Clayton (2004) followed-up on the sample used in Kemple and Snipes 

(2000) to evaluate their post-high school and labor market experiences four years following their 

scheduled graduation from high school.  Their follow-up sample included more than 1,400 

subjects.  Among males, they found academy lottery winners had average earnings that were 

18% higher than lottery losers.  This difference was not found for females.  Lottery winners did 

not have statistically different levels of educational attainment (high school graduation, 

enrollment in college) in the follow-up analysis, despite differences noted in the original study in 

course-taking and credits earned toward high school graduation.    

Betts et al. (2006) also exploited admissions lotteries to assign students to treatment and 

control groups.  They examined four years of data from a single cohort (2000-2001) that spanned 

all grade levels.  The researchers ran separate analyses for elementary, middle, and high school 

magnets in each year following the lottery (2001-2002, 2002-2003, 2004-2004).  They did not 

find a statistically significant effect of magnet schools on reading when they controlled for prior 

test scores.  However, they did find a positive and statistically significant effect of the high 

school magnet program in math in the second and third year.   
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The latest reported experimental findings come from Ballou’s 2007 study of a magnet 

school program in an urban school district in the South.  Unlike the previous randomized studies, 

which conducted ITT analyses, Ballou used lottery status as an instrumental variable for magnet 

school attendance.  The author found positive effects in the district’s academically selective 

magnet and in a composite of four non-selective magnets.  The author estimated the 

academically selective magnet to have a 3.5 scale score point effect in fifth grade math, but a 1.6 

point loss in the sixth grade.   The analysis in this chapter replicates the findings from the Ballou 

study, although it focuses exclusively on the academically selective magnet school. 

The Study Setting 

This research focuses on students in an urban school district in a mid-sized Southern city.  

The school district serves approximately 70,000 students in Kindergarten through 12th grade.  

During the 2005-2006 school year, 46% of students were black, 40% were white, and 10.5% 

were Hispanic.  Sixty-four percent qualified for free or reduced price lunch (FRL) and 10% had 

limited English proficiency (LEP). 

At the time of the study, the district operated 13 magnet schools, 3 of which had 

academic admissions criteria that included performing above average on standardized 

achievement tests.  Students who apply and meet the criteria for the academically selective 

magnets were selected at random via an admissions lottery.  The other ten magnet schools were 

theme based.  Most applicants to the thematic magnet schools were selected by lottery, but there 

were three other ways to be admitted to a thematic magnet school: (1) live within the enrollment 

zone of the magnet school; (2) get admitted under a sibling preference rule; (3) be admitted as a 

“walk-in” if the school was not over-subscribed.   These alternative routes to admission do not 
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apply to the academically selective magnet schools, where admission is restricted to only those 

students meeting the academic criteria. 

The Academically Selective Magnet School 

Five of the 13 magnet schools in the district are middle schools (serving grades 5-8).  Of 

the five magnet middle schools, four are theme-based and one is academically selective.  This 

analysis focuses exclusively on the effect of the one academically selective magnet middle 

school relative to all other non-selective middle schools in the district, including the non-

selective magnets.   

To attend the selective magnet middle school, students must apply during the fall of their 

fourth grade year and have their application selected through a lottery that is held in the winter of 

their fourth grade year.  To qualify for the lottery, a student must have a minimum grade average 

of 85 for the spring semester of 3rd grade, no failing grades in the first grading period of the 4th 

grade year, and achieved a composite 3rd grade score on a standardized test that falls in or above 

the seventh stanine.4 

Data 

 The sample used in this analysis is limited to 5th and 6th grade students.  I restrict the 

sample to only those students who were enrolled in the school district in 4th grade. This follows 

the approach used by Cullen, Jacob, & Levitt (2006) in their study of magnet high school 

programs in Chicago.  It is a necessary restriction because I do not have 4th grade achievement 

data on students who applied from outside the district and therefore cannot control for their prior 

achievement in the estimation of the magnet school effect.  Excluding non-district students does 

                                                 
4 Stanine is a method of scaling test scores on a nine-point standard scale with a mean of five and a standard 
deviation of two.  Students who are at above the seventh stanine are at or above the 77th percentile of the scale score 
distribution. 
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not threaten the equivalence of the randomly assigned comparison groups because the lottery 

ensures they are equally represented among lottery winners and lottery losers.  Moreover, it helps 

reduce the problem of selective attrition because these students are presumably less likely to stay 

in the district if they lose the lottery.   

While I have data to track the students’ performance from grades 5 through 8, I restrict 

the analysis to 5th and 6th grade students because the district operates another academically 

selective magnet school that begins in 7th grade and serves grades 7-12.  Including the latter 

grades (7th & 8th) confounds a straightforward comparison of the “selective magnet school” 

treatment condition to the “non-selective district school” control condition because many 

students who lose the admissions lottery (and thus serve as our experimental control group) end 

up attending the other academically selective magnet in 7th grade.  

The outcome data are student-level mathematics and reading scale scores from the state 

standardized test, which is administered to third through eighth grade students in the district.  

These data can be linked to five cohorts of students, with the first cohort enrolling in 5th grade in 

the fall of 1999 and the last cohort enrolling in 5th grade in the fall of 2003.  Admissions lottery 

data are available from 1999-2000 to 2003-2004, but the students’ standardized test scores can 

be tracked through 2004-2005 if they remained in the district.  In addition to test score data, the 

analysis uses data on students’ ethnicity, gender, FRL status, LEP status, and special education 

status.   

Table 1 presents the admissions lottery activity for the sample.  There were 2,282 

students who enrolled in the district as 4th graders and participated in the selective magnet 

admissions lottery during the five years of the study. 1,087 students (47.6% of all lottery 

participants) won admission to the magnet school either outright or through their position on a 



33 
 

wait list.  Of the 1,087 lottery winners, 747 (68.7%) enrolled in the magnet school as 5th graders 

in the following fall.  Of the 340 lottery winners who did not enroll, 202 remained in the district 

and attended a non-selective public school in 5th grade and 138 left the district before enrolling in 

5th grade. 

Table 1. 
 
Lottery Participation and Magnet School Enrollment 
 

School 
Year 

Lottery 
Participants 

# Lottery 
Winners 

%  Lottery 
Winners 

Lottery 
Losers 

%  Lottery 
Losers 

Fall 
Enrollees 

1999-2000 386 202 52.3 184 47.7 126 

2000-2001 441 232 52.6 209 47.4 146 

2001-2002 514 218 42.4 296 57.6 154 

2002-2003 424 216 50.7 208 49.3 168 

2003-2004 517 219 42.4 298 57.6 153 

Totals 2,282 1,087 47.6 1,195 52.4 747 

Note.  Lottery winners include both outright winners (i.e. those who won admission on day of 
lottery, and delayed winners (i.e. those who won admission after a period on a waiting list).  
Sample is limited to students who were enrolled in the district in 4th grade. 

 

Estimating the Experimental Effect of Selective Magnet School Enrollment 

To estimate the causal effect of the magnet school on academic outcomes, we must 

compare the magnet students to a group of non-magnet students who are exactly similar in all 

ways that would affect their potential achievement independently of the school they attend. 

Families who send their children to magnet schools have taken voluntary action to seek out, 

apply to, and enroll in the magnet schools.  This self-selection poses a problem for evaluating the 

causal effect of the magnet school because the reasons that lead some students to enroll in the 
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magnet school, and others not to, are expected to be correlated with students’ future academic 

performance.   

Indeed, there is research to support the claim that the typical magnet school family is 

different from the typical non-magnet school family.  Magnet school parents tend to be more 

involved in their children’s education than typical public school parents (Martinez, Godwin, & 

Kemerer, 1996; Smrekar and Goldring, 1999).  In addition, evidence suggests magnet school 

parents are more likely to come from higher income groups than other parents in the district 

(Hausman and Goldring, 2000). 

Parental involvement and household income are a few of the many dimensions on which 

magnet school students may differ from public school students in ways that affect their future 

achievement.  If these dimensions were observed and accurately measured, one could account for 

them in the estimation of the causal effect via multiple regression or matching procedures.  

However, the fundamental problem for estimating the selective magnet effect is that most of 

these differences are unobserved.   

To illustrate the consequences of this selection on unobservables, consider the estimation 

of the magnet school effect in model 5.1, where Y is the achievement of student i and D equals 1 

for students in the selective magnet school and 0 for those in other non-selective schools in the 

district.   X represents a vector of observed characteristics of the student, including socio-

economic status, demographics, and prior achievement. 

 

   Yi = β0 + βi Xi + δi Di+ ui      (5.1) 
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Under a plausible scenario where (a) parents of selective magnet school attendees are 

more motivated to improve their children’s educational opportunities, (b) higher parental 

motivation leads to better student achievement, and (c) parental motivation is an unobserved 

trait, the estimate of δi will be biased because the outcomes of the magnet school students would 

differ from their non-magnet counterparts in absence of treatment.  Even after controlling for X, 

the correlation of Di  to ui that results from unobserved differences in parental motivation would 

upwardly bias the estimate of the magnet effect.   

 The bias resulting from selection on unobservables can be dealt with experimentally if 

admission to the magnet school is based on a lottery. Most school districts require that magnet 

schools with more qualified applicants than vacancies hold a lottery to randomly determine 

which students are offered admission.  Researchers with access to the admissions lottery data can 

exploit the random assignment of students via the lotteries to achieve an experimental design 

where self-selection is not a problem because all lottery participants seek entry to the magnet 

school. Randomization guarantees that unobserved dimensions, such as parental motivation, are 

probabilistically the same for lottery winners and lottery losers if the sample is sufficiently large. 

Tests on the Random Assignment Process 

In this study, the admissions lottery process is centrally managed by the district and there 

is little reason to suspect that the outcomes of the lottery are anything but random.  Nevertheless, 

I look for evidence of non-randomness within the results of the lottery outcomes by comparing 

various characteristics of lottery winners and lottery losers.5  This test is done by conducting a t- 

test of the difference in means of seven variables: race (Black=1), FRL status, LEP status, gender 

(female =1), special education status, and students’ 4th grade math and reading scale scores. 

                                                 
5 Note that lottery winners are defined as those students who won the lottery outright on the day of the lottery or 
won because of their place on a wait list.    
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 Table 2 presents the results of the t-tests and reveals that none of the differences in means 

of the lottery winners and lottery losers were statistically significant at a p-value below .05.   

This suggests the admissions lottery was indeed random and students’ lottery assignment can be 

used to yield an unbiased estimate of the magnet effect. 

 
Table 2. 
 
Test of the Randomization Process by Comparison of Lottery Winners to Lottery Losers 
 

  Lottery 
Winners 

Lottery 
Losers 

Difference 

  
% Black 19.1 22.0 2.83 
% Free/reduced-price lunch 13.0 14.8 1.81 
%ESL 9.01 7.60 1.41 
%Female 52.7 53.6 0.84 
% Special Education 13.0 11.0 1.94 
4th Grade Math Scale Score 668 666 2.04 

4th Grade Reading Scale 
Score 

685 684 -.79 

Observations 1,087 1,195  
* p<.05; ** p < .01; ***p < .001 
Note. Sample restricted to 5th grade students who were enrolled in the district in 4th grade. 
Similar results were found for the 6th grade sample.  

 

Non-Compliance with Lottery Assignment 

The experimental design created by the admissions lottery is threatened by participants’ 

non-compliance with lottery assignment.   Non-compliance with lottery assignment is expected 

because lottery winners are not forced to enroll in the magnet school.  Upon winning the lottery, 

families still have to exercise their option to enroll in the magnet school.  Many lottery winners 

decide not to exercise their option to attend the magnet school and instead enroll in private 

schools, transfer to public schools in other surrounding districts, or enroll in other middle schools 

within the district.  Those lottery winners who do not attend the selective magnet and rather 
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enroll in a different middle school in the district are considered non-compliers because we 

observe their status in the control condition (i.e., another district school). Lottery winners who 

leave the district for private schools are designated as attritors because their treatment status is 

unobserved – we do not know if they would have complied or not-complied with lottery 

assignment had they remained in the district.  Non-compliance is not a concern for lottery losers 

because there is no way for lottery losers to enroll in the magnet school. 

Table 3 reveals the extent of the lottery non-compliance in the five-year sample.  Of 

1,087 students who won admission to the selective magnet over the five lotteries, 177 (16%) did 

not enroll in the selective magnet as 5th grade students and instead enrolled in another district 

middle school.  191 (18%) of lottery winners did not enroll in the selective magnet as 6th graders 

and instead enrolled in another district school.6 

If the non-compliance were random and unrelated to students’ potential achievement, it 

could be ignored in our estimation of the ATT.    However, this is an untenable assumption in 

this study.  We expect students who won the lottery and chose not to attend the magnet school to 

be systematically different from those who complied with lottery assignment in ways that affect 

their future achievement.  For example, the families of the 177 non-compliers may simply have 

less motivation to improve their children’s academic performance than the families of compliers, 

hence their decision not to attend a perceivably better public school.  This lower family 

motivation may lead these students to have lower future achievement regardless of the school 

they attend; in which case non-compliance would lead to an over-estimation of the magnet 

school’s effectiveness if it were not addressed. 

 

                                                 
6 Note that a total of 340 lottery winners did not enroll in the magnet as 5th grade students.  177 of these students are 
non-compliers (those who remained in the district but enrolled in a different school); the remaining 163 students are 
attritors (students who left the district before 5th grade). 
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Table 3. 
 
Non-Compliance of Lottery Winners 
 

Lottery 
Year 

Lottery 
Winners  

5th Grade 
Fall 

Magnet 
Enrollees 

5th Grade 
Non-

Compliers 

5th Grade 
Non-

Compliance 
Rate 

6th Grade 
Enrollees 

6th Grade 
Non-

Compliers 

6th Grade 
Non-

Compliance 
Rate 

 

1999 202 126 34 16.8% 121 47 23.3%  

2000 232 146 51 22.0% 135 46 19.8%  

2001 218 154 37 17.0% 147 40 18.3%  

2002 216 168 25 11.6% 160 25 11.6%  

2003 219 153 30 13.7% 152 33 15.1%  

Totals 1,087 747 177 16.3% 715 191 17.6%  

Note.  Lottery winners include both outright winners (i.e., those who won admission on day of 
lottery, and delayed winners (i.e., those who won admission after a period on a waiting list). 
Non-compliers are defined as those who won the lottery, but enrolled in a different school in the 
district.  Those lottery winners who won the lottery, but enrolled in a private school are 
considered attritors because their observed “treatment” status had they remained in the district is 
unknown. 
 

Another plausible scenario is that many of the families of the 177 students were unable or 

unwilling to provide transportation for their children to the selective magnet school.  Parents 

must provide their own transportation to the district’s magnet schools or their children must 

utilize the city’s busing services.  Inability to provide transportation may be an indicator of other 

home life circumstances that affect academic achievement, such as the amount of slack in 

parental time and resources available to support student learning outside of school.  Refusal to 

provide transportation when the time and resources are available may be an indicator of parent’s 

value of education.  Under both scenarios, the lottery winners who do not enroll in the magnet 

for transportation reasons will be different from the lottery winners that do enroll in the magnet 

in ways that may independently impact their achievement regardless of their school choice.   
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To find suggestive evidence of the presence of selection bias stemming from non-

compliance, I conduct a test with the observed data.  In table 4, I look to see if the 4th grade 

reading and math performance and demographic characteristics of non-compliers are on average 

different than compliers. 7   The rationale for this test is that the presence of statistically 

significant differences in observed data may suggest there are statistically significant differences 

in unobserved data that will bias the estimate of the magnet effect.   

 

Table 4. 
 
Comparison of Characteristics of 5th grade Compliers and Non-Compliers 
 
 

  Compliers Non-Compliers Difference T-Statistic 
     
4th Grade Math Scale Score 667.9 663.7 4.2 1.80 

4th Grade Reading Scale Score 684.7 678.8 5.9 2.57** 

Black 20.9% 22.7% 1.8% 0.55 

FRL 12.1% 19.9% 7.8% 2.69** 

Female 53.7% 47.3% 6.6% 1.57 

ESL 10.3% 5.1% 5.2% 2.13* 

Disabled 13.8% 10.2% 3.6% 1.25 

Observations 747 177 
  

* p<.05; ** p < .01; ***p < .001 

Note. Sample restricted to 5th grade students who were enrolled in the district in 4th grade. Non-
compliers are only those students who remained in the district, but did not enroll in the 
selective magnet school.  Lottery winners who left the district before or during 5th or 6th grade 
are considered attritors. Findings similar to those in table 3 were found for the 6th grade sample 
of lottery winners. 

 

Table 4 reveals a few important differences between compliers and non-compliers.  The 

4th grade math and reading scores of non-compliers are lower than those of compliers, although 

                                                 
7 These samples exclude those with missing test scores. 
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only the difference in reading is statistically significant (p = .031).  The proportion of free and 

reduced price lunch students in the non-complier sample was larger and statistically different 

than the proportion of FRL students in the complier sample (p =.023).  These statistically 

significant differences in observed characteristics suggest there may also be differences in 

unobserved characteristics between compliers and non-compliers.   

This non-random compliance signals that the estimation of the ATT by comparing 

magnet attendees to non-magnet attendees will be biased because the randomization created by 

the admissions lottery is not preserved in the groups of magnet attendees and non-magnet 

attendees. 

Intent to Treat Effects 

One methodological solution to non-compliance is to conduct an ITT analysis and 

estimate the average causal effect of being offered admission to the selective magnet school by 

comparing the academic performance of those who won the lottery to the academic performance 

of those who lost the lottery.   

The ITT may be of interest to policymakers since it provides a realistic measure of the 

impact of an intervention that is implemented in the real world, where all participants will not 

take up and complete a treatment as intended.  The limitation of the ITT estimate in the context 

of the magnet school evaluation, however, is that it does not inform policymakers of the causal 

effect of actually attending the magnet school.  By focusing on lottery assignment, the ITT 

captures the causal effect of being offered a spot in the selective magnet school.  It does not 

capture the effect of actually attending the selective magnet school.    

 



41 
 

Instrumental Variables Regression  

In the presence of non-random non-compliance, it is possible to estimate an unbiased 

ATT if certain assumptions hold.  This is done by a two-stage least squares (2SLS) regression of 

student achievement on magnet school enrollment (D), using the lottery assignment (Z) as an 

instrumental variable for D.   Using Z as an instrumental variable (IV) is a standard technique for 

addressing the non-compliance problem (see, for example, Angrist, Imbens, and Rubin, 1996; 

Hoxby, 2000; Heckman, LaLonde, and Smith, 1999).   The IV estimator will be a consistent 

(asympotically unbiased) estimate of the ATT as long as the admissions lottery is random. 

Imbens and Angrist (1994) characterize an effect estimated by IV regression as a local 

average treatment effect (LATE) because inferences are restricted to the subsample of 

participants whose treatment status (or probability of treatment) is affected by the IV.  In many 

cases this subsample is not of interest to the researcher and the data do not allow for inferences to 

a meaningful sample without strong assumptions on the effect of the IV on treatment status.   

However, in this evaluation the LATE is the desired parameter; the admissions lottery is the sole 

intended path to enrollment in the academically selective magnet and the IV estimate yields 

inferences for those who enroll in the magnet because of the outcome of the admissions lottery. 

To estimate the effect of the academically selective magnet school on student 

achievement, I specify the following 2SLS IV estimator: 

 

   1st Stage: 

igtgttgigticigtxigt ZCXD υηγλθπππ +++++++= 10   

 2nd Stage: 

igtgttgicigtxigtgigt CXDY εηγλββδβ +++++++= ˆ
0   

(5.2)
 



42 
 

 

The first-stage predicts enrollment in the selective magnet school using lottery status and 

all other observed covariates expected to influence achievement.  D is equal to one if student i in 

grade g (5th or 6th) was enrolled in the selective magnet in year t. X is a vector of student 

characteristics that includes special program participation (LEP, FRL, special education), student 

attributes (female =1, Black =1), and student fourth grade test scale scores in reading and math.   

C indicates the year the student participated in the lottery and is included to account for effects 

that are constant for all students in a cohort, but vary across cohorts. Z is the instrument and 

equals one if the student won the admissions lottery either outright or after spending time on a 

wait list.  In addition, the model includes grade fixed effects (λg) , year fixed effects (γt) , as well 

as an interaction of grade and year (ηgt) that captures changes in the test across years and grades.  

Standard errors in the model are adjusted for the clustering of students’ observations over time. 

The second-stage equation regresses the math (or reading) score of student i in grade g 

and year t on the predicted values of magnet attendance along with all other regressors, again 

using least squares.  Note the effects of the covariates X are held constant for across years and 

grades, while the effect of the magnet school is allowed to vary by grade.  The key point of the 

2SLS regression is that the randomization created by the lottery assignment is preserved through 

our restriction of the inference of δ to those who complied with lottery assignment.    

Sample Attrition 

The IV estimator addresses the problem of non-compliance, but it does provide a solution 

to selection bias introduced by attrition from the randomized samples of lottery winners and 

lottery losers.  Selective attrition will lead to bias in the IV estimate of the causal effect.   This 

threat arises primarily because it is not possible to track lottery participants who enrolled outside 
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of the district (or in a private school) in 5th or 6th grade.  A substantial number of lottery winners 

and lottery losers left the district after the 4th grade lottery, but prior the beginning of the 5th 

grade year.   This is likely because the transition from 4th to5th grade is a normal transition year 

in the district; most students are moving from a K-4 elementary school to a 5-8 middle school 

and it is a natural time for parent’s to shop for new schools inside and outside of the district. 

Table 5 reports the attrition rates of lottery winners and lottery losers during the study 

years.    Fifteen percent of lottery winners were missing over the five years of the study.  The 

attrition rate among lottery losers was 38% higher, with 25% of lottery losers missing outcomes.   

 Manski (1995) asserts that sample attrition makes it is impossible to yield an unbiased 

point estimate of the causal effect without making strong assumptions on the nature of the 

attrition.  One strong assumption is that the sample attrition yields outcomes that are missing 

completely at random (MCAR).  Outcomes are said to be MCAR when the probability that an 

outcome is missing (S =1) is unrelated to the value of the potential outcome (Y) or any other 

variables in the model (X): Pr(S|Y,X) = Pr(S).  If the MCAR assumption holds, the missing 

observations can be thought of as a random subsample of the observed data and the point 

estimate via the IV estimator would not be biased, even in the presence of differential attrition 

rates (Little & Rubin, 2002).    

A less restrictive assumption is that the attrition results in outcomes that are missing at 

random (MAR).  Data are said to be MAR when the probability that an outcome is missing is 

unrelated to Y after controlling for X:  Pr(S|Y,X) = Pr(S|X).  Under an MAR assumption, we 

assume the regressors in the IV model adequately control for the non-random differences 

between the lottery winners and lottery losers that results from the sample attrition.  If the MAR 

assumption holds, the IV point estimate of the magnet effect will still be unbiased.  
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Table 5. 
 
Attrition Rates among Lottery Winners and Losers 
 

Lottery Winners   Lottery Losers 

  
5th 

Grade 
6th 

Grade Total   
5th 

Grade 
6th 

Grade Total 

1999-2000 20.8% 
 20.8%  20.7%  20.7% 

2000-2001 15.1% 16.8% 15.9%  26.8% 22.5% 24.8% 

2001-2002 12.4% 20.3% 16.4%  15.9% 37.0% 24.6% 

2002-2003 10.6% 13.8% 12.2%  31.0% 21.2% 25.8% 

2003-2004 16.4% 14.4% 15.4%  20.8% 33.3% 25.9% 

2004-2005 
 14.4% 14.4%   27.6% 27.6% 

Total Attritors 163 172 335 
 

268 331 599 

Total Non-Attitors 924 906 1830 
 

927 848 1775 

Total Observations 1,087 1,078 2,164 
 

1,195 1,179 2,370 

Total Attrition Rate 15.0% 15.9% 15.4% 
 

22.2% 28.1% 25.2% 

 
Note. Sample restricted to 5th and 6th grade students who were enrolled in the district in 4th 
grade.  

 
 

While more tenable than MCAR, a MAR assumption is still a strong assumption in this 

particular study because it assumes the sample attrition does not stem from unobserved factors 

that relate to future achievement.   The different rates of attrition suggest that lottery losers are 

leaving the district for reasons that do not apply to lottery winners.  One plausible scenario is that 

families are more likely to leave the district in pursuit of better educational options if they are 

denied entry to the selective magnet school. Those families that leave the district may have more 

motivation to improve their child’s education or more resources to find other schooling options.  

Parental motivation and resources are two unobserved factors that will likely have independent 

positive effects on future achievement.  If this is the case, then those who left the district would 
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not be representative of the full sample of lottery losers and the experimental comparison of 

lottery losers to lottery winners would be biased.  This situation would be defined as one where 

the data are missing not at random (MNAR). 

There is no way to empirically test if the data are MAR or MNAR, but it is possible to 

garner evidence on the nature of the missing outcomes by examining the observed data.  To do 

this, I conduct a test that investigates whether the sample attrition introduces additional 

differences between lottery losers and lottery winners that were not present in the initial 

randomized comparison groups.  If the sample attrition introduces additional differences in 

observed characteristics, we have reason to suspect it may also introduce unobserved differences 

that the randomized lottery assignment effectively balanced between lottery winners and lottery 

losers. 

This test takes the form of the following regression model:8 
 
 

ittitcititititit eCSZSZX ++++++= γβββββ 3210      (5.3) 

 
 
 

Where the dependent variable X is one of the seven student characteristics that are used in 

the IV model (female, Black, FRL status, LEP status, special education status, 4th grade math and 

reading scores).  The extent to which attrition introduces differences between lottery losers and 

lottery winners in X is found by the coefficient of the interaction of lottery status and missing 

status (β3). 

 Table 6 presents the results of these models.  None of the seven models revealed a 

statistically significant interaction of lottery status and missing status.  This indicates that the 

                                                 
8 In cases where the dependent variable is continuous (math and reading scale scores) least squares regression is 
used.  In cases where the dependent variable is dichotomous (female, Black, FRL status, LEP status, special 
education status ) logistic regression is used.   
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sample attrition did not introduce additional differences in observed characteristics between 

lottery winners and lottery losers. This is a positive sign that selective attrition is not a concern. 

Nevertheless, it is possible the selective attrition still introduced unobserved differences between 

lottery winners and losers that may result in biased estimates.   

 
Table 6. 
 
Evidence of Selective Attrition: Predicting student covariates based on lottery status and 
attrition status 
 

 
4th Grade 
Math 

4th Grade 
Reading Black FRL ESL Female 

Special 
Education 

        
Lottery Winner (Z) .959 .1026 -.026 -.0241 .012 -.004 .023 

 (1.275) (1.314) (.019) (.0161) (.012) (.023) (.015) 

Missing (S) .424 2.44 -.106*** -.068** -.022 .021 .023 

 (1.902) (1.960) (.028) (.024) (.019) (.034) (.022) 

Winner*Missing  
(Z*S) 

4.285 4.676 -.037 .026 .004 -.009 -.032 

 (3.011) (3.102) (.044) (.038) (.030) (.055) (.035) 

Observations: 2282        

Note. Sample is limited to 5th grade students who were enrolled in the district in 4th grade. All 
models are estimated with Huber-White robust standard errors to account for the correlation of 
the errors of lottery losers who attend the same non-selective magnet school 

 

Bounds on Estimates of the Magnet Effect under Worst-Case Assumptions on Selective Attrition  

Manski (1995) underscores that any analysis that includes missing outcome data rests on 

untestable assumptions.  While it may be possible to assume these data are MCAR or MAR, 

these are strong assumptions that are likely to be violated given our hypothesis on the nature of 

attrition in the sample.  Accordingly, Manski (1995) argues for developing bounds on the 

treatment effect under weak assumptions rather than the point estimation of the treatment effect 

under strong assumptions (e.g. MCAR, MAR).  The weak assumptions implied by Manski are to 
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assume the “worst-case” scenario on selective attrition and impute the missing outcomes of 

attritors with either the largest or smallest values possible given the scale of the outcome 

variable.  This produces the respective largest and smallest possible estimates of the treatment 

effects that are consistent with the observable data.  Manksi’s worst-case bounds on local 

average treatment effects (those restricted to compliers) are derived as follows: 

 

UB
upper yXZSPXZDYEXZSP ),1|1(),1,1|(),1|0( ==+=====δ    

  - LByXZSPXZDYEXZSP ),0|1(),0,0|(),0|0( ==+====  

 

LB
lower yXZSPXZDYEXZSP ),1|1(),1,1|(),1|0( ==+=====δ  

- UByXZSPXZDYEXZSP ),0|1(),0,0|(),0|0( ==+====     (5.4) 

 

Where yUB is the upper bound (maximum value) of the distribution of Y, and yLB is the 

lower bound (minimum value) of the distribution of Y.  

 In the magnet school evaluation, the application of Manski’s worst-case bounds would 

estimate the magnet impact under the two worst-case scenarios: (1) the lottery losers with 

missing data would have had the highest possible math (or reading) scores had they been 

observed and the lottery winners with missing data would have had the lowest possible math (or 

reading) scores  had they been observed; (2) the lottery losers with missing data would have had 

the lowest possible math (or reading) scores  had they been observed and all the lottery winners 

with missing data would have had the highest possible math (or reading) scores had they been 

observed.   
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 Manski’s procedure is designed for situations where Y is a binary outcome and its utility 

is limited when the outcome has a continuous distribution.  This is because it produces bounds 

that are so wide as to be uninformative.  For example, when this procedure is applied to the 

magnet school evaluation data it produces an upper bound magnet impact estimate of 24.7 scale 

score points for 5th grade math and a lower bound estimate of -20.3 scale score points.  The range 

covered within these bounds represents over two grade level differences in math performance 

and thus provides no useful information on whether magnet students perform better, worse, or 

the same on average as the non-magnet students.  This is because the 22% of the 5th grade 

sample of lottery losers who are missing outcomes are imputed with the maximal math score and 

the 15.0% of the sample of lottery winner outcomes who are missing are imputed with the 

minimal math score, and vice versa.   

 Lee (2008) adapted Manski’s procedure for cases where outcomes are continuous.  

Rather than imputing the missing data with maximal and minimal values of Y, Lee’s procedure 

balances the proportion of missing outcomes between treatment and control groups by trimming  

maximal or minimal outcomes of the group that has fewer missing outcomes such that the 

proportion of missing outcomes are balanced for the treatment and control groups. 

Lee’s procedure also yields an upper and lower bound for the treatment effect.  The 

exposition of these bounds when estimating a local average treatment effect is as follows: 

 

),0,0,0|(),,0,1,1|( 1 XSZDYEyYXSZDYE p
LB ===−≤==== −δ  

),0,0|(),,0,1,1|( XSZYEyYXSZDYE p
UB ==−≥====δ     

(5.5) 
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Where y is the conditional distribution of Y when Z =1 and S =0.9   p is the proportion of 

the distribution that must be trimmed, which is found as the difference in the proportion of 

missing outcomes between the treatment and control groups over the proportion of non-missing 

treatment observations: 

)1|0(

)0|0()1|0(

==
==−===

ZSP

ZSPZSP
p

    
(5.6) 

 

 Lee’s procedure rests on two assumptions.  The first is that individual’s “potential” for 

attrition given their future treatment assignment is independent of their actual treatment 

assignment.   Lee (2008) explains this assumption by denoting S0 and S1as “potential” sample 

selection indicators for the treatment and control groups.  S0 is the future attrition status of 

individual i if assigned to the control group and S1 is the future attrition status of individual i if 

assigned to the treatment group.  For example, if a student intends to attrit if assigned to the 

control group, but will remain if assigned to the treatment group, the corresponding values would 

be S0 = 1, S1 = 0.  Random assignment of individuals to treatment and control conditions ensures 

this assumption holds.   Formally, the independence assumption can be expressed as follows: 

  

0)0|()1|( 11 ==−= ZSEZSE  

0)0|()1|( 00 ==−= ZSEZSE      (5.7) 

 

For each individual, we observe only S1 or S0.  However, random assignment allows us to 

assume the average values of S1 and S0 are equivalent for the two comparison groups. 

                                                 
9 This assumes the treatment group (i.e. lottery winners) has fewer missing outcomes than the control group (i.e. 
lottery losers), which is the case in all years of our sample.  
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In the magnet school study, this requires us to assume those who will leave the district 

upon losing the lottery (where S0 =1) do not disproportionately end up in the sample of lottery 

losers for non-random reasons.  The random assignment created by the admissions lottery allows 

us to assume this is not the case.  While lottery status is clearly associated with increased odds of 

attrition, we do not expect the two comparison groups to differ in their average propensity 

towards attrition prior to the actual lottery assignment. 

The second assumption required of Lee’s trimming method is monotonicity, which 

requires the effect of Z on S0 and S1 to be unidirectional.  This allows the study sample to be 

comprised of those who will always have observed outcomes regardless of treatment status (S0 = 

0, S1 =0), those who will always have missing outcomes regardless of treatment status (S0 = 1, S1 

=1), and those who will be observed because of the treatment status (S0=1, S1 =0).  The 

monotonicity assumption does not allow the simultaneous presence of individuals for whom 

selection into treatment causes them to leave the sample (S0=0, S1=1) and individuals for whom 

selection into treatment causes them to stay (S0=1, S1=0).   

 In the magnet study, the monotonicity assumption requires us to assume that winning the 

lottery does not cause some to leave the sample while causing others to stay.  Conversely, it 

requires us to assume that losing the lottery does not cause some to leave the sample and others 

to stay.  These are reasonable assumptions; while we expect individuals who do not win 

admission to the lottery will have incentive to leave the district in search of better schooling 

options, we have no reason to believe that losing the lottery will create additional incentive to 

stay in the district.  Similarly, while we expect that individuals who win the lottery have 

incentive to stay in the district because their desired schooling option is available, we do not 

expect winning the lottery to create incentive for students to leave the district. 
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I use Lee’s trimming procedure to estimate upper and lower bounds for the estimate of 

the magnet effect that are robust to the concern of selective attrition. The trimming is done 

separately for each year and grade combination to account for different imbalances in 

proportions of missing treatment and control outcomes across years and grades.  Following Lee 

(2008) and Cullen et al. (2006) I first run a regression of math and reading scores on the student 

covariates and then apply the trimming procedure to the conditional distribution of the predicted 

values of the outcomes. I trim the maximal or minimal predicted scores from the distributions in 

each grade and year, such that the proportion of missing outcomes is balanced between the 

samples of lottery winners and lottery losers in each year and grade.   

Tables 7 and 8 show the proportion of missing outcomes in the comparison groups for 5th 

and 6th grade respectively and the number and proportion (p) of outcomes that were trimmed in 

each year.  Note that in all years the proportion of missing outcomes was greater in the sample of 

lottery losers, which necessitated only trimming observations from the sample of lottery winners. 

The bounds on the magnet effect are estimated by running the original 2SLS IV model 

(model 5.2) on the two trimmed samples.   The lower bound sample is created by trimming the 

right tail of the lottery winners’ test score distributions.  The upper bound sample is found by 

trimming the left tail of the lottery winners’ test score distributions.  The results of this procedure 

yield bounds on the magnet effect that are based on the weakest possible assumptions that are 

still consistent with the observed data and inform the range within which one can have 

reasonable confidence an unbiased estimate of the magnet effect lies. 
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Table 7. 
 
Lee Trimming Calculations for 5th Grade Sample: Identifying the number of 5th grade lottery 
winners to remove from sample 
 
 

  Lottery Winners   Lottery Losers 
  

  
# 

Missing All 
% 

Missing 
# 

Trimmed 
p 

trimmed 
# 

Missing All 
% 

Missing 
# 

Trimmed 
P 

Trimmed 

2000 42 202 20.8% 0 .00 
 

38 184 20.7% 0 .00 

2001 35 232 15.1% 27 .12 
 

56 209 26.8% 0 .00 

2002 27 218 12.4% 8 .04 
 

47 296 15.9% 0 .00 

2003 23 216 10.6% 44 .20 
 

65 208 31.0% 0 .00 

2004 36 219 16.4% 10 .04 
 

62 298 20.8% 0 .00 

Totals 163 1,087 15.0% 88 .07 
 

268 1,195 22.3% 0 .00 

 
 
 
Table 8. 
 
 Lee Trimming Calculations for 6th Grade Sample: Identifying the number of 6th grade lottery 
winners to remove from sample 
 
 

  Lottery Winners   Lottery Losers 
  

  
# 

Missing All 
% 

Missing 
# 

Trimmed 
p 

trimmed   
# 

Missing All 
% 

Missing 
# 

Trimmed 
p 

trimmed 

2001 34 202 16.8% 11 .06 
 

40 178 22.5% 0 .00 

2002 46 227 20.3% 38 .17 
 

77 208 37.0% 0 .00 

2003 30 217 13.8% 18 .08 
 

64 292 21.2% 0 .00 

2004 31 216 14.4% 41 .19 
 

69 207 33.3% 0 .00 

2005 31 216 14.4% 29 .13 
 

81 294 27.6% 0 .00 

Totals 172 1,078 15.9% 130 .12 331 1,179 28.1% 0 .00 

 
 
 



53 
 

Results 

 Table 9 presents the experimental IV estimates of the effect of enrollment in the selective 

magnet on 5th and 6th grade math and reading achievement.10  In addition to the point estimates it 

presents the upper and lower bound estimates from Lee’s trimming procedure.   

Similar to Ballou’s original findings, I find a positive effect of magnet school attendance 

on 5th grade math and 5th grade reading achievement.  In math, the 5th grade estimate of magnet 

attendance is 5 scale score points and statistically significant (p. =.001).   The 5th grade estimate 

in reading is 3.8 (p=.006).  In 6th grade, we estimate small positive effects in both math and 

reading, but they are not statistically different from zero. 11   This implies that the selective 

magnet school leads to a boost in academic performance in the students’ first year, but the 

positive effect is not sustained in 6th grade.12    

Note the explanatory power of the IV model; the model explained 74% of the variance in 

5th and 6th grade math achievement and 80% of the variance in 5th and 6th grade reading 

achievement after adjusting for the number of regressors in the model. 

                                                 
10 Tests of the validity of the instrument are presented in the appendix.  
11 ITT estimates are similar to the 2SLS estimates and are presented in the appendix.   
12 To explore the possibility that the magnet effect is heterogeneous within the sample, I run the IV estimator on 
subgroups of the full population.   These results are presented in the appendix.  Black and economically 
disadvantaged students appear to benefit more from the selective magnet than their non-Black and non-FRL 
counterparts.  In addition, the effect is largest for students who fell within the bottom quartile of the distribution of 
lottery participants’ 4th grade math and reading scores.  This suggests that the lowest performing students that gain 
entry to the magnet via the lottery benefit more than those who had higher 4th grade achievement levels.    
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Table 9. 
 
Impact of Selective Magnet Program on Student Achievement using Experimental Sample and Two-Stage Least Squares Estimation 
with Lottery Assignment as Instrument for Magnet Attendance 
 

  Math   Reading 
Point Estimate Lower Bound Upper Bound Point Estimate Lower Bound Upper Bound 

Selective Magnet 5th Grade  4.985*** 4.712*** 5.356*** 3.760** 3.618** 3.923** 

 

(1.520) (1.482) (1.535) (1.361) (1.392) (1.375) 

Selective Magnet 6th Grade 0.685 0.420 1.254 1.015 1.030 1.134 

 

(1.605) (1.623) (1.618) (1.438) (1.469) (1.458) 

4th Grade Reading Test 0.169*** 0.166*** 0.164*** 0.494*** 0.489*** 0.501*** 

 

(0.017) (0.018) (0.017) (0.015) (0.016) (0.016) 

4th Grade Math Test 0.424*** 0.415*** 0.443*** .093*** 0.094*** 0.090*** 

 

(0.017) (0.018) (0.019) (0.016) (0.016) (0.016) 
Black -7.341*** -7.635*** -7.508*** -7.591*** -8.113*** -7.718*** 

 

(1.127) (1.183) (1.118) (1.009) (1.058) (1.002) 
Free and Reduced-Price Lunch -7.072*** -7.279*** -6.915*** -6.389*** -6.134*** -6.181*** 

 

(1.294) (1.381) (1.287) (1.158) (1.240) (1.153) 
ESL 5.725*** 6.055*** 5.481*** 1.626 1.684 1.769 

 

(1.582) (1.618) (1.639) (1.416) (1.463) (1.428) 
Female -3.275*** -3.187*** -3.528*** -0.372 -0.072 -0.504 

 

(0.877) (0.908) (0.885) (0.785) (0.808) (0.792) 
Special Education 6.125*** 6.728*** 5.742*** 3.539** 3.573*** 4.268*** 

 

(1.386) (1.411) (1.444) (1.239) (1.252) (1.278) 
Constant 284.716*** 290.395*** 273.523*** 270.6*** 273.163*** 267.943*** 

 

(13.657) (15.578) (15.517) (13.370) (13.782) (13.881) 
Lottery Year (Cohort Effects) Yes Yes Yes   Yes Yes Yes 
Grade Effects Yes Yes Yes Yes Yes Yes 
Year Effects Yes Yes Yes Yes Yes Yes 
Grade*Year (Test Effects) Yes Yes Yes   Yes Yes Yes 
R-Squared 0.735 0.730 0.739 0.798 0.795 0.801 
Observations 3,605 3,387 3,387   3,605 3,387 3,387 
*p<0.05, ** p<0.01, *** p<0.001 

Note. The sample is limited to 5th and 6th grade students who participated in the magnet school lottery and were enrolled in the district in 4th grade.  
The model is estimated with Huber-White robust standard errors to account for the correlation of errors across years within a single student (i.e. a 
student’s 5th and 6th grade observations) and the correlation of the errors of lottery losers who attend the same non-selective magnet school.
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The “worst-case” estimates of the magnet effect using Lee’s trimming procedure to 

address selective attrition reveal that selective attrition does not appear to be a major threaten to 

bias the experimental IV point estimates.  In all cases, the bounded IV estimates fall within seven 

percent of the IV point estimate.  This suggests the IV point estimates do not suffer from attrition 

bias and therefore can serve as unbiased experimental estimates to use in the comparative 

evaluation of non-experimental estimators. 

To assess the practical importance of the positive 5th grade estimates, I transformed them 

into standardized effect sizes.  The average math scale score among 5th grade lottery participants 

was 686, with a standard deviation of 30.1.  Accordingly, an estimated effect of five scale score 

points translates to a Cohen’s d effect size of 0.17.  In reading, the average scale score among 

lottery participates in the sample was 697, with a standard deviation of 28.8, which translates to a 

Cohen’s d effect size of 0.13.   

These effect sizes are considered small by conventional standards, but the story changes 

when one considers the average gains of lottery participants from 4th to 5th grade. Following the 

approach recommended by Kane (2004) and Hill, Bloom, Black, & Lipsey (2008), I assess the 

practical importance of the 5th grade effects by benchmarking them to the normal expectations of 

growth during one school year in absence of treatment.  I ascertain this normal growth 

expectation by looking at the 4th to 5th grade gains of lottery losers (17 scale score points in math 

and 12 scale score points in reading).  These annual gains can be translated into annual effect 

sizes by dividing them by the pooled standard deviations of the lottery loser’s 4th and 5th grade 

scale scores.  Table 10 reports these average annual gains next to the average 4th to 5th grade 

gains of a national norm sample published by Hill et al. (2008). 
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Table 10 reveals that when the estimated effects of the magnet school on 5th grade 

achievement are compared to the average annual 4th to 5th grade gain of lottery losers, as well as 

to national norms, the effect of magnet school attendance is practically large.  In both math and 

reading, the 5th grade estimates of the magnet school effects represent around a 30% increase in 

the mean 4th to 5th gain in scale scores for lottery losers.  They would represent similarly large 

effects for the national normative sample.    

 
Table 10. 
 
5th Grade Estimates of the Magnet Effect on Student Achievement as Percent of Average 4th to 5th 
grade gain and as approximate weeks of instruction 

 
 

 Math  Reading 

 
Lottery 
Losers 

National 
Norms  

Lottery 
Losers 

National 
Norms 

Grade 4-5 Mean Annual Gain as Effect Size 0.58 0.56  0.40 0.40 

5th Grade Magnet Estimate as % of Mean Annual Gain 29.3% 30.4%  32.5% 32.5% 

Magnet Effect translated into weeks of instruction 10.3 10.6  11.4 11.4 
      
 
Note. National norms used from MDRC technical report released in 2007 by Carolyn J. Hill; 
Annual gain for reading is calculated from seven nationally normed tests: CAT5, SAT9, 
TerraNova-CTBS, MAT8, TerraNova-CAT, SAT10, and Gates-MacGinitie. Annual gain fo 
math is calculated from six nationally normed tests: CAT5, SAT9, TerraNova-CTBS, MAT8, 
Terra Nova-CAT, and SAT10; average weeks of instruction is found by multiplying the figures 
in row two by 35 (number of weeks in typical school year). 
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CHAPTER V 

 
 

COMPARATIVE ANALYSIS OF NON-EXPERIMENTAL ESTIMATORS OF THE 
MAGNET SCHOOL IMPACT 

 

The objective of this chapter is to investigate the accuracy of the non-experimental 

estimators of the selective magnet school’s effect on student math and reading achievement. The 

non-experimental methods investigated herein include: multiple regression with observed 

covariates, analysis of covariance with student fixed effects, and propensity score matching.  The 

accuracy of these estimators is evaluated by comparing their respective estimates of the magnet 

school’s effect to the experimental IV estimates presented in the previous chapter.  

This analysis seeks to illustrate the consequences of a typical situation where a researcher 

wants to determine the causal effect of a program, but is unable to leverage experimental data to 

do so. Therefore, the researcher is compelled to use a non-experimental method on observations 

of program participants and non-participants.  If the researcher expects self-selection into the 

program causes participants to differ from non-participants in unobserved ways that associate 

with their potential outcomes, he is left with a high degree of uncertainty as to the accuracy of 

the non-experimental estimates. If his non-experimental findings are incorrect, they may lead to 

incorrect policy decisions and program actions by key decision-makers.   

To model this situation in the context of the magnet school evaluation, the non-

experimental estimators are run under the assumption the information from the randomized 

admissions lottery does not exist.   I assume I do not know which students participated in the 

admissions lottery for the selective magnet school and therefore I do not know which students 
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won or lost the lottery.  I only know which students enrolled in the selective magnet school in 5th 

and 6th grade.13   

With the exception of the data on lottery participation, all other data that were available 

for the experimental analyses are available for the non-experimental analyses, including student 

demographics and 4th grade achievement in math and reading.  The non-experimental estimators 

use data from the same years as the experimental estimator (2000-2005) and estimate effects of 

the selective magnet for the same grades (5th and 6th).   Table 11 presents the number of student 

observations in each year for the selective magnet school students and the students enrolled in 

non-selective schools in the district.  These are the observations that the non-experimental 

estimators may utilize in the construction of their respective comparison groups.   

It is important to note that the same 1,462 observations of the magnet students that were 

used in the experimental evaluation are used as the treatment group for each non-experimental 

estimator.  Therefore, any bias in the non-experimental estimates stems from differences in their 

non-experimental comparison group and the experimental comparison group.  As with the 

experimental evaluation, this analysis is restricted to students who were enrolled in the district in 

4th grade. 

 

 

 

 

 

 

                                                 
13 It is important to note that while the non-experimental estimators do not have indicators of lottery status at their 
disposal, the observations of the lottery losers, as well as the lottery winners who did not enroll in the magnet, are 
still present in the data and may be used in the comparison groups of the non-experimental estimators.   
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Table 11. 
 
Student Observations Available to Non-Experimental Estimators 
 
 

 5th Grade Students  6th Grade Students 

 Non-Selective 
Schools 

Selective 
Magnet  

 Non-Selective 
Schools 

Selective 
Magnet 

2000 3,548 126    

2001 4,289 146  3,315 121 

2002 4,359 154  3,944 135 

2003 4,288 168  4,115 147 

2004 4,609 153  4,027 160 

2005    4,095 152 

Total 21,094 747  19,496 715 

Note. Sample limited to 5th and 6th grade students who were enrolled in the district in 4th 
grade. 

 

Pre-Specification of Non-Experimental Estimators 

I made a priori specifications of the non-experimental estimators and did not revise the 

specifications based on how their results compared to the experimental results.  This approach is 

critical to the validity of this analysis because in a real world situation a researcher would not 

have the luxury of comparing the performance of the non-experimental estimators to 

experimental estimates and revising their analysis accordingly.  This analysis would be 

uninformative to the accuracy of the non-experimental estimators if we were to test various 

specifications until we found the one that performed best (Bloom et al., 2002).   

It is equally important to note that my specification of the non-experimental efforts is not 

aimed at demonstrating their weaknesses for estimating causal effects.  One might be inclined to 

do so if their agenda was to advocate for experimental designs and discourage observational 
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studies.  As previously discussed, there is high demand from the education research community 

for empirical evidence on the merits of non-experimental methods versus experimental methods.  

I seek to demonstrate the accuracy of non-experimental methods that are appropriately specified 

given the nature of the data.  Therefore, the bias (or lack thereof) in the non-experimental 

estimators can be fairly attributed to the required assumptions of the estimators and not incorrect 

specifications.   

The Fundamental Evaluation Problem 

It is helpful to frame our discussion of the various estimators using Rubin’s Causal 

Model, where each student is assumed to have two possible outcomes, Y1 and Y0.  Y1 is 

observed if the student attends the magnet school (D=1) and Y0 is observed if the student does 

not (D=0). The fundamental evaluation problem arises because we cannot jointly observe Y1 and 

Y0 for a given student, and consequently we cannot directly observe the magnet school’s effect 

on each student as δ = Y1 – Y0. 

Given the magnet effect cannot be observed for individual students, we are compelled to 

estimate the average effect of the magnet school on a population of students.   In this study we 

are interested in the average effect of the magnet school on the performance of those students 

who attend it.  This parameter is known as the effect of treatment on the treated (ATT), defined 

as: )1|()1|( 01 =−== DYEDYEATT  

 The fundamental problem of causal inference is still present in the estimation of the 

ATT.   We are able to observe the achievement of magnet students when they are enrolled in the 

magnet school: E (Y1|D=1), but we do not know the achievement of these students had they not 

attended the magnet school: E(Y0|D=1). 
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 To overcome this problem, we must employ a method that uses data on non-magnet 

students to estimate the achievement of the magnet students had they not attended the magnet 

school.  These methods rest on the assumption that student’s selection into the magnet school is 

independent of a student’s future achievement.  

Our “gold standard” method for satisfying this assumption is to use the experimental 

conditions created by the admissions lottery, where lottery participants are randomly assigned as 

lottery winners (Z=1) or lottery losers (Z=0).  The lottery randomization ensures that lottery 

assignment is independent of future outcomes: E(Y0|Z=1) = E(Y0|Z=0),  but it does not ensure 

magnet enrollment is independent of Y because not all lottery winners enroll in the magnet 

school .  Therefore, we use Z as an instrument for D and estimate the ATT for the subset of 

students who complied with their lottery assignment, known as the local average treatment effect 

(LATE).  This randomization allowed us to assume E(Y0|D=1|Z=1)  =  E(Y0|D=0|Z=0), and 

subsequently estimate an unbiased LATE as:  E(Y1|D=1,Z=1,X) – E(Y0|D=0,Z=0,X), where X is 

a vector of pre-existing observed covariates included to improve the precision of the LATE 

estimate, although they are theoretically unnecessary because they are independent of Z in large 

samples. 

Our non-experimental methods do not have the advantage of random assignment to allow 

for the independence of D and Y, consequently they have to impose additional assumptions to 

allow for an unbiased estimation of the ATT.  If these assumptions fail, the non-experimental 

estimates will suffer from selection bias, defined as: 

),0|(),1|()( 00 XDYEXDYEATTB =−==
     

(6.1) 

 
What follows is a discussion of the assumptions that must hold for each non-experimental 

estimator to produce unbiased estimates of the ATT as well as our formal specification for each 
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estimator.  A summary of the key concepts underlying each non-experimental estimator is 

presented in table 12.  After I run the non-experimental estimators, I am able to empirically test 

if these assumptions hold by comparing their estimates of the magnet effect to those of the 

experimental IV estimator. 
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Table 12. 
 
Summary of Key Concepts of Non-Experimental Methods 

Non-
Experimental 

Method 

Summary of Estimation Strategy Inference of 
Causal Effect 

Description of 
Comparison Group 

Strengths Limitations 

 
Multiple 
Regression with 
Observed 
Covariates  

Linear regression of achievement on indicator of magnet 
school attendance, while controlling for student 
demographics and 4th grade achievement as well as 
cohort effects, grade effects, year effects, and test effects 
(grade by year).   

Average 
Treatment 
Effect (ATE) for 
5th and 6th grade 
students in the 
district 
 
 

All 5 th and 6th grade students 
in non-selective schools in the 
district who were enrolled in 
the district in 4th grade 

Most efficient estimator of the magnet 
effect (least variance) if unbiased; 
Strong statistical power via large 
sample properties 

Estimates will be biased if 
selection to magnet is based on 
unobserved differences between 
magnet students and non-
magnet students in district 

Analysis of 
Covariance with 
Student Fixed 
Effects 

Linear regression of achievement on indicator of magnet 
school attendance that includes individual student 
indicators (student fixed effects) as well as cohort 
effects, grade effects, year effects, and test effects (grade 
by year).  The magnet effect is found as the average 
difference between each student’s achievement when 
enrolled in the magnet school and achievement when 
enrolled in a non-selective school in the district. 

Average effect 
of Treatment on 
the Treated  
(ATT)  

The 4th, 5th, and/or 6th grade 
observations of magnet 
students when they were 
enrolled in a non-selective 
school in the district.   

Will resolve selection bias if selection 
bias stems from unobserved student 
factors that do not vary over time.   

Estimates will be biased if 
selection to magnet is based on 
unobserved factors that vary 
within a student over time.  
Standard errors can be large 
because estimates are based on 
variation within individuals 
rather than across the sample. 

Propensity Score 
Matching with 1 to 
1 Nearest Neighbor 
Matching with 
Heckman 
Difference-in-
Difference 
Estimator (PSM 
NN) 

Each 5th grade student’s propensity for enrolling in the 
magnet is predicted based on student characteristics and 
4th grade achievement (models run separately for each 
year).  Then each magnet student is matched to one non-
magnet student in the district with the closest propensity 
score.  Effect is estimated as the difference in 4th to 5th 
and 5th to 6th grade gains of magnet students to the 
matched comparison group. 

Average effect 
of Treatment on 
the Treated 
(ATT) 

Comparison group with same 
number of 5th and 6th grade 
observations as the magnet 
school sample in each year; 
student characteristics and 
prior achievement of 
comparison group are 
balanced with the sample of 
magnet school students 

Will resolve selection bias if selection 
to the magnet school is due to 
observed characteristics that can be 
balanced in the comparison group 

Will not resolve selection bias 
if it stems from unobserved 
differences between magnet 
students and non-magnet 
students; One to one matching 
is inefficient in that it uses only 
one observation in the 
comparison group to estimate 
the potential outcome of a 
treatment participant. 

Propensity Score 
Matching with 
Local Regression 
Matching with 
Heckman 
Difference-in-
Difference 
Estimator (PSM 
LRM) 

Each 5th grade student’s propensity for enrolling in the 
magnet is predicted based on student characteristics and 
4th grade achievement (models run separately for each 
year).  Then each magnet student is matched to a support 
group of non-magnet students whose combined 
observation weight sums to one. The weight is 
determined via a kernel density estimation.  Effect is 
estimated as the difference in 4th to 5th and 5th to 6th 
grade gains of magnet students to the matched 
comparison group. 

Average effect 
of Treatment on 
the Treated  
(ATT) 

Comparison group  with the 
same number of weighted 5th 
and 6th grade observations in 
each year, where student 
characteristics and prior 
achievement of comparison 
group are balanced with the 
sample of magnet school 
students 

Will resolve selection bias if selection 
to the magnet school is due to 
observed characteristics that can be 
balanced in the comparison group; 
more efficient than one to one 
estimate because it allows a weighted 
composite of multiple observations of 
comparison group members to 
estimate the potential outcome of a 
treatment participant. 

Will not resolve selection bias 
if it stems from unobserved 
differences between magnet 
students and non-magnet 
students.   
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Multiple Regression with Observed Covariates 

The first non-experimental method I evaluate is multiple regression with observed 

covariates (MR).  The MR estimator is specified as follows:  

 

   igtgttgicigtxigtgigt CXDY εηγλββδβ +++++++= 0    
(6.1)

 

 

Where Y is the standardized test scale score in math or reading for student i in grade g 

(5th or 6th) in year t (2000-2005).  D is equal to one when student i is enrolled in the selective 

magnet in grade g and year t and 0 otherwise.  The effect of the selective magnet school on 

achievement, δg, is allowed to vary for 5th and 6th grade.  X a vector of explanatory variables 

indicating student participation in special programs (FRL, ESL, special education), 4th grade 

achievement in reading and math, race (Black =1), and gender (female =1).   We impose constant 

effects of X over grades and time.  C is an indicator of student i’s cohort.  λg are grade fixed-

effects, γt are year fixed-effects, and ηgt is a year by grade interaction to control for changes in 

the test scale from one year to the next and across grades.  εigt is the error term, which we 

decompose as: εigt = αi + uit . Where αi are unobserved factors of students that are time-invariant 

and uit are unobserved factors that vary within an individual over time. 
 
 

The known advantage of least squares multiple regression is that it is the most efficient 

estimator if certain assumptions hold (linearity, error homoskedasticity, and zero-conditional 

mean) and the independent variables are exogenous.  For MR to produce an unbiased estimate of 

the magnet effect, we must assume there are no unobserved factors that explain enrollment in the 

magnet school after accounting for X (in addition to the other regressors).  Formally, this 
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assumption is: E(εigt|Digt,Xigt) =0.  This assumption can be decomposed into two assumptions that 

correspond with the two components of the error term: 

(1) E(αi|Digt,Xigt) =0 states that enrollment in the magnet school is independent of 

unobserved student factors that associate with future achievement and are time-

invariant 

(2) E(uit|Digt,Xigt) =0 states that enrollment in the magnet school is independent of 

unobserved student factors that associate with future achievement and are time-

variant.  

 

I suspect E(αi|Digt,Xigt) =0  is untenable in the MR model and the estimates of magnet 

effect will be upwardly biased due to selection on time-invariant unobservables.  The magnet 

school sample is composed of students who voluntarily sought admission to the magnet.  In 

contrast, the MR comparison group is mainly composed of individuals who did not seek 

admission to it. Intuitively, this points to fixed differences between the magnet students and the 

MR comparison group on unobserved dimensions that will affect future achievement. For 

example, students who seek out the selective magnet may be more likely to have parents who 

place attach a high value on education, as evidenced by their pursuit of better educational 

options.  Parents’ value of education is an unobserved factor that likely does not change over 

time and has an independent positive effect on student achievement.  If this is the case, the MR 

estimate will be upwardly biased because we are ascribing the effect of the differences in 

parental value of education between the magnet and non-magnet students to the magnet school 

“treatment”. 
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E(uit|Digt,Xigt) =0 is a weaker assumption, but there are still plausible circumstances under 

which it will not hold in the magnet school sample. For example, it may be that students who 

seek out the magnet school were more likely to have experienced negative “shocks” to their 4th 

grade achievement.  These abnormal dips in 4th grade achievement may stem from a variety of 

idiosyncratic factors, such as a particularly bad experience with a teacher or changes in home life 

circumstances. The key commonality is that these events do not lead to permanent changes in 

students’ learning trajectories.  Families of 4th graders who experience these shocks may be more 

likely to seek out the magnet school as a remedy to the sudden performance dip.  If this is the 

case, the estimate of the magnet effect via MR would be upwardly biased, because we would 

expect students who experienced a 4th grade “shock” to regress to their mean performance 

trajectory in future years. 

Bias due to negative (or positive) shocks may be negligent because 5th grade is a normal 

transition year in the district; most students are moving from K-4 elementary schools to 5-8 

middle schools. Therefore, we can expect the decision to seek out the selective magnet for most 

families does not stem directly from something that happened in 4th grade, rather it is part of the 

normal decision-making process that families go through as their children transition from 

elementary to middle school and they seek out the best available schooling options. 

The MR model is run on 42,052 observations of 5th and 6th grade students who were 

enrolled in the district in 4th grade.  The non-magnet comparison group is comprised of all 5th 

and 6th grade students in the district who are enrolled in non-selective middle schools.14  Note the 

                                                 
14 This MR estimator could be improved by restricting the sample to those students who met the magnet school 
admission criteria, but I do not have the 3rd grade test scores or student report card grades that were the basis for 
admission for roughly 30% of the students in the sample.  As an alternative to this approach, I ran models that 
restricted the sample to only those non-magnet students who had 4th grade scores above the lowest 4th grade score in 
the magnet school.  This restriction only eliminated 12% of the non-magnet students and did not substantively alter 
the MR estimates of the magnet effect.  
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observations are from the same years as those used in the experimental analysis and the sample 

of magnet students is the same as that used to estimate the experimental IV effects.   

Analysis of Covariance with Student Fixed Effects 

The second non-experimental estimator I evaluate is the analysis of covariance with 

student fixed-effects.  This estimator is also referred to as the “within” student estimator (Baltagi, 

1995) as it includes a separate intercept term for each student in the sample.  

The student fixed-effects model takes the following form: 

 

 itgttgigtgiigt uDY +++++= ηγλδα
       

(6.2) 

 

Where αi are the student fixed-effects that capture all factors that are time-invariant for an 

individual.  αi captures the observed characteristics that are fixed over time, which explains the 

absence of the vector of time-invariant student characteristics, X, and the cohort indicators, C, 

found in the MR model.  The advantage of the fixed-effects estimator is that αi also captures the 

unobserved factors that are time-invariant for an individual and associate with magnet 

enrollment.  This offers a solution to the problem of self-selection if the unobserved factors that 

determine selection into the magnet school are time-invariant and therefore controlled by αi. 

It is possible to include αi in the estimator because magnet status, D, is time-variant and 

thus not subsumed by αi.  That is because there are observations of students from when they were 

enrolled in the magnet school and when they were not enrolled in the magnet school.15 

Specifically, we have observations of 747 students who went from “non-magnet” status in 4th 

                                                 
15 The FE method has been used in a number of magnet and charter school evaluations (see for example, Rouse, 
1998; Bifulco & Ladd, 2006; Sass, 2006; Hanushek et al. 2006). 
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grade to enrolling in the selective magnet school in 5th grade.  In addition, there are 31 students 

who enrolled in the magnet school in 5th grade, but then transferred back to a non-selective 

school in the district in 6th grade.  This “within-student” variation in magnet school enrollment 

allows us to difference out each student’s fixed achievement from the effect on achievement that 

is due to their enrollment in the magnet school. 

It is useful to compare the assumptions of the student fixed-effects estimator to those of 

the MR estimator.  Recall MR requires two assumptions: (1) selection into the magnet does not 

stem from unobserved time-invariant factors: E(αi|D,X) =0; (2) selection into the magnet does 

not stem from unobserved time-variant factors: E(uit|D,X) =0.  Including student fixed-effects, 

αi,  only requires the second assumption to hold in order to yield a unbiased estimate of the 

causal effect of magnet school enrollment. 

Therefore, the student fixed-effects estimator is able to ignore bias stemming from 

unobserved differences between magnet school students and non-magnet school students that 

remain constant over time.  This eliminates our previously discussed concern over differences in 

parental motivation or value of education if these factors do not change over time.  However, 

bias due to unobserved factors that vary within an individual over time remains a concern.   

The student fixed-effect estimator uses observations of 64,265 students in grades 4 

through 6. The number of observations in this model is substantially greater than the number of 

observations in the MR model because students’ 4th grade achievement scores enter as outcomes, 

whereas they were used as covariates in the OLS estimator.  The important point is that the same 

information on student achievement is used in both regression models. 
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Propensity-Score Matching  

The third non-experimental estimator uses propensity score matching (PSM) to establish 

a comparison group for the magnet school students.  PSM has gained popularity in recent years 

as a non-experimental method for program evaluation (See, for example, Diaz & Handa, 2006; 

Dehejia & Wahba, 2002; Smith & Todd, 2005; Agodini & Dynarski, 2004). The technique, 

which was first proposed by Rosenbaum and Rubin (1983), improves upon conventional 

matching methods because subjects can be matched on one “propensity score”, which represents 

the probability of selection into treatment given a set of variables, rather than on multiple 

variables.  

The objective of PSM is to establish a comparison observation for each treatment 

observation that has the same predicted probability for selection into treatment. The outcomes of 

the treatment group are then compared to the matched comparison group to estimate the ATT. 

To yield an unbiased estimate of the ATT, PSM requires the conditional independence 

assumption to hold: ),0|(),1|( 00 XDYEXDYE === .  Put differently, it requires that the 

factors that predict selection into treatment and affect future outcomes are observed.  

Note this is the same assumption required of the OLS estimator.  However, in the PSM 

estimator, we restrict the causal inference to a comparison sample with the same observed 

propensity for selection into the magnet school as the actual sample of magnet school students.  

This property is the main advantage of the PSM estimator over the OLS estimator.  While both 

require conditional independence, PSM only requires conditional independence within a sample 

that includes a comparison group that has the same predicted probability of selection into the 

magnet school.  By balancing the observed covariates that predict selection into the magnet 

school, PSM assumes we are also able to balance the unobserved factors that predict selection 
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into the magnet school.   In contrast, MR uses a sample of 5th and 6th grade students that likely 

includes some students who have no likelihood of enrolling in the magnet school.  Therefore, 

conditional independence is a stronger assumption in MR. 

Nevertheless, if PSM is unable to balance unobserved differences between magnet and 

non-magnet students, the assumption of conditional independence will be violated and the PSM 

estimate of the ATT will be biased.16   

An additional required assumption of PSM is that the probability of treatment is not 

identified by any single conditioning variable x: 1)|1Pr(0 <=< xD .  In the magnet evaluation, 

this requires that at each level of x, it is possible to observe both magnet attendees and non-

magnet attendees. If the probability of magnet attendance is equal to one at certain levels of x, it 

will not be possible to observe a control group.  This problem would arise if, for example, there 

were no ESL students in the non-magnet sample, in which case Pr(D=1|x) =1 and it would not be 

possible to find a non-magnet student to match with an ESL magnet student. 

If the above condition is met, matching can performed on a single index, the “propensity 

score”, which represents the probability of treatment given a vector of conditioning variables X: 

P(X) = Pr(D=1|X).  This is the benefit of PSM versus other matching techniques. 

Selection of the PSM conditioning variables. The first step in our specification of the 

PSM estimator is the selection of conditioning variables (X).  PSM only requires one to match 

the treatment and comparison groups on characteristics that affect probability of treatment.  

Therefore, the conditioning variables used to estimate the propensity score were identified as 

those that were statistically significant (p < 10) predictors of enrollment in the magnet.  Table 13 

                                                 
16 Pearl (2009) argues that PSM may actually exacerbate selection bias in situations where treatment assignment is 
ignorable in the comparison of unadjusted means of a treatment group and comparison group.   The process of 
balancing the observed covariates within each stratum of the treatment and comparison groups leads to the 
unobserved factors that were originally balanced in the raw samples to be shifted out of balance.   
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reports the seven variables that were statistically significant predictors of magnet enrollment in 

any of the six years of data (2000-2005).17 The averages of these seven variables for the magnet 

school students are presented alongside the averages for the non-magnet students in the district to 

exhibit the baseline differences between the magnet schools students and the full sample of non-

magnet students in the district that are available as potential matches. 

 

Table 13. 
 
Differences in Conditioning Variables between Magnet and Non-Magnet 5th Grade Students 
 
 

  Magnet Non-Magnet Difference 

4th Grade Math 668 619 49.0***  

4th Grade Reading 685 631 53.4***  

FRL 0.121 0.541 -0.420*** 

ESL .103 .136 .033** 

Black 0.210 0.510 -0.30***  

Female 0.542 0.491 0.051** 

Disabled .137 .167 .030* 

Observations 747 21,094   

*p<0.05, ** p<0.01, *** p<0.001 
Note. The sample reported here is limited to 5th grade students.  Similar differences are 
found with the 6th grade sample. 
 
 

Specification of the propensity score model.  In this study, propensity scores )(ˆ , jiXP
 
are 

calculated for each 5th grade magnet and non-magnet student in the district using a logistic 

regression model where the dependent variable D is equal to 1 if the student attends the selective 

magnet school and 0 otherwise.   The propensity score for a given student is therefore equal to 

                                                 
17 These are the same seven student-level variables included in the estimation of the IV and OLS models.   



72 
 

the predicted log of the odds of attending the selective magnet school to attending a non-

selective magnet school. 

 The logistic regression model for generating the propensity score is shown in model 6.3.  

My notation in the PSM exposition departs slightly from the notation above by designating 

magnet students as i and non-magnet students as j. In the logistic regression X consists of seven 

conditioning variables: (1)  the 4th grade math test score for each magnet student i or non-magnet 

student j,(2) student’s 4th grade reading score, (3) an indicator if the student is black, (4)  and 

indicator if the student is female, (5) an indicator if the student participates in the free/reduced 

lunch program, (6) an indicator if the student receives ESL support, and (7) and an indicator if 

the student receives special education services.   

jijiji eX
p

p
XP ,,10, 1

ln)(ˆ ++=








−
= ββ

    
(6.3) 

Model 6.3 is run separately for each 5th grade cohort using a cross-section of data from 

their 4th grade school year.  This allows us to match each 5th grade magnet student to a 5th grade 

non-magnet student who was in the same grade in the same year, which in turn allows us to 

balance cohort effects, grade effects, year effects, and test effects (grade by year interactions) 

when we pool the six years of data to estimate the magnet school effect. 

 
PSM Method #1: One to One Nearest Neighbor Matching.  After the propensity score 

calculation, I use two distinct methods for matching magnet school students to non-magnet 

school students and estimating the magnet effect.  The first method is referred to as one-to-one 

nearest neighbor matching.  One-to-one nearest neighbor matching involves matching each 

treatment subject to the comparison group subject with the closest propensity score, such that 

)(ˆ)(ˆ
ji XPXP − is minimized.  We allow for “replacement”, which means a comparison group 
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member may serve as a nearest neighbor match for more than one magnet school student if it 

allows )(ˆ)(ˆ ji XPXP −  to be minimized. 

The one-to-one nearest neighbor matching is done under two different restrictions on the 

samples of non-magnet students that are available for support.  Under the first restriction, magnet 

students are allowed to match to any non-magnet student in the district such that )(ˆ)(ˆ
ji XPXP −  

is minimized. I term this inter-school matching because I allow magnet students to be matched to 

non-magnet students outside of their 4th grade school. 

Under the second restriction, we restrict matching to within students’ 4th grade schools.  

Each 5th grade magnet student is matched to a 5th grade non-magnet student who attended the 

same 4th grade school.   I refer to this sample restriction as intra-school matching.  The first 

restriction (inter-school matching) increases the likelihood the seven conditioning variables will 

balance between treatment and comparison groups because the support available for a given 

magnet student is larger.  However, it ignores the information signaled by a student’s 4th grade 

school, which may help balance the unobserved characteristics between magnet and non-magnet 

students.  We use both restrictions to see which produces the least amount of bias in the estimate 

of the magnet effect. 

After the inter- and intra-school nearest-neighbor matching procedures are done for the 

5th grade students, we estimate the magnet school impact on achievement using a variation of the 

difference-in-differences method proposed by Heckman et al. (1998). The estimate of the magnet 

effect on 5th grade achievement is found as the average difference between the change in 

achievement (mathematics or reading) from 4th to 5th grade for the magnet students and the 

change in achievement from 4th to 5th grade for the matched comparison group.  Likewise, the 

estimate of the magnet effect in 6th grade is found as the average difference between the change 
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in achievement from 4th to 6th grade for the magnet students and the change in achievement from 

4th to 6th grade for the matched comparison group. 

 The equation for this estimator is shown below, where g indicates either 5th or 6th grade: 
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PSM Method #2: Local Regression Matching. The second PSM method uses local 

regression matching (LRM) to match magnet students to comparison group students.  A number 

of researchers have posited that LRM is a more efficient matching method than nearest-neighbor 

because it enables each treatment participant to be matched to multiple observations in the 

control group, whereas nearest-neighbor restricts matching to one-to-one (see for example, 

Heckman, Ichimura, and Todd 1997, 1998; Black and Smith, 2004.)  The one-to-one restriction 

may lead to incomplete or inexact matching if there are no subjects in the support group with 

propensity scores close to those of the treatment subjects.  This may cause treatment 

observations to be excluded for lack of a good match or cause observations to be matched 

poorly. 

The same logistic regression for estimating )(ˆ , jiXP  is used for LRM matching.  Under 

LRM, each magnet student is matched to all non-magnet students with propensity scores that fall 

within a designated window of their own score, this is referred to as a common-support group.  

The outcomes of the magnet student are then compared to a weighted average of the common-

support group, where the weights of each common-support group member are set based on the 

proximity of their propensity score from the propensity score of the magnet student.  The amount 
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each member contributes to the mean of the common-support group is based on their propensity 

score –the closer )(ˆ
jXP  is to )(ˆ

iXP  the greater the weight the non-magnet student contributes.  

The weight W for each non-magnet student j is calculated using a kernel function, where G is a 

kernel function and θ is a bandwidth parameter (i.e. the window).  This is shown in model 6.5: 

 

   

∑ 






 −








 −

=

n

ik

n

ij

ij
PP

G

PP
G

W

θ

θ

    

      (6.5) 

 

As with the nearest neighbor procedure, I create two comparison groups with the LRM.  

The first allows for inter-school matching and the second is restricted to intra-school matching.    

After the weighted mean is calculated for each magnet student’s common support group, 

the 5th grade magnet effect is calculated as the average difference between the change in the 

achievement scores from 4th grade to 5th grade for the magnet students i and the change in the 

weighted achievement scores from 4th to 5th grade for the common-support groups.  Likewise, 

the 6th grade effect is calculated as the difference in the change in achievement from 4th to 6th 

grade for magnet students and the change in 4th to 6th grade achievement for the common-support 

groups.  The equation for this estimator is presented below: 
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The LRM inter-school sample includes 36,872 non-magnet attendees compared to the 

1460 magnet students.  The LRM intra-school sample includes 19,390 non-magnet attendees 

because the sample is limited to only those students within the same 4th grade schools as the 

magnet school students.   

 
Balancing tests of PSM samples.  Rosenbaum and Rubin (1985) decompose the bias that 

may arise in matching estimators into three components: (1) bias due to incomplete matching, 

which results when some treatment subjects are discarded because adequate matches do not exist 

in the comparison group; (2) bias due to inexact matching, which results when the characteristics 

of the treatment group differ from those of the matched comparison group, and (3) bias due to 

selection on unobservables.   

 The first two components of this bias are under the control of the researcher via their 

specification of the PSM estimator, while the third bias – selection on unobservables – is 

unknown to the researcher and thus a required assumption of the PSM estimator.  In this 

analyses, we are only interested in the bias that arises because of selection on unobservables.   

Therefore, it is important to test how well our matching procedures have controlled for the other 

two types of bias.  If our methods are unable to account for the first two types of bias, it indicates 

a misspecification of the PSM method and signals to the researcher that PSM estimates will be 

biased.  A careful researcher would then decide to either re-specify the PSM model or utilize a 

different analytic approach.  Our interest is in understanding how well the estimators perform 

when they are used appropriately.  Therefore, it is critical to test to determine that the bias we 

find in the PSM estimates of the magnet effect are only due to selection on unobservables and 

not due to the inappropriate use of PSM.    
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The first two components of bias both stem from the inability of the PSM method to find 

suitable matches for the treatment subjects.  In this study I make the a priori decision not to 

exclude magnet school students from the analyses if I cannot find suitable matches because my 

objective is to use the same treatment group for all estimators and only vary the comparison 

group.  Therefore we are concerned only with the second form of bias that results from poor 

matching.  To measure this bias we conduct a series of post-matching balancing tests.  The 

common goal of the balancing tests is to determine if the propensity score serves to balance the 

distribution of the covariates in the treatment and comparison groups.  Formally, it seeks to 

confirm that: pr(X|D=1, P(X)) = pr(X|D=0,P(X)).  If this condition is satisfied, we can assume 

any bias we estimate via our comparison with the experimental estimates is due to selection on 

unobservables and not due to misspecification of the PSM estimator. 

 For each of the four matched samples (Nearest Neighbor Inter-School, Neighbor Intra-

School, LRM Inter-School, LRM Intra-School), we conduct two balancing tests that are common 

in the PSM literature: (1) test for equality of means after matching (Rosenbaum and Rubin, 

1985), and (2) test of joint equality of means in the matched sample (Smith and Todd, 2005). The 

Test for Equality of Means after Matching was proposed by Rosenbaum and Rubin (1985) and 

tests for the equality of each covariate across the comparison groups.  If statistically significant 

mean differences are found, it signals that the samples are unbalanced and requires the re-

specification of the PSM estimators.  The Test of Joint Equality of Means in the Matched Sample 

was proposed by Smith and Todd (2005) and conducts a test of the null hypothesis that the 

vector of means among the seven covariates are equal for the magnet and matched comparison 

sample.   This is a test of the joint balance of the conditioning variables that takes the form of an 

F-test, or Hotelling test. 
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The two tests were run on the separate matched samples of 5th and 6th grade.  The results 

are presented in tables 14 and 15.   Both the intra- and inter-school Nearest Neighbor (NN) 

matching methods satisfy the two balancing tests.   However, neither LRM method was able to 

achieve balance when all seven conditioning variables are used in the model.  Note the 

significant differences in mean 4th grade math and reading scores.   Consequently, the propensity 

score logistic regression model for the LRM estimators is re-specified to match on fewer 

conditioning variables.  I prioritize balancing 4th grade math and reading scores in the LRM 

model and find I am only able to achieve balance in the LRM matched samples when I base the 

propensity score exclusively on 4th grade math and reading performance.18   

 

Table 14. 
 
Balancing Tests of PSM Methods: Differences between Magnet School Mean and Matched 
Comparison Group Mean for 5th Grade Sample 
 

  NN Intra NN Inter  LRM Intra  LRM Inter 

ESL -0.003 -0.004  -0.010  -0.000 

Black -0.018 -0.017  0.024  0.038** 

Female 0.005 -0.005  -0.003  -0.005 

Free or Reduced Price Lunch -0.017 -0.012  0.0491***  0.062*** 

4th Grade Reading Score -1.64 -0.496  -6.886***  -6.65*** 

4th Grade Math Score -1.82 0.110  -7.400***  -5.875*** 

Disabled -0.026 -0.021  -0.025*  -0.019 

Hotelling Test F- Statistic 1.565 
 

1.5477  4.83***  3.841*** 

Weighted Observations 1494 
 

1494  1494  1494 

Unweighted Observations 1394 
 

1396  20,158  10,999 

    *p<0.05, ** p<0.01, *** p<0.001 

 

                                                 
18 I ran the results with the imbalanced samples matched on all seven conditioning variables as well as the samples 
that achieve balance with 4th grade math and reading scores. The results are almost exactly the same, falling within 
three-tenths of a scale score in all cases. 
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Table 15. 
 
Balancing Tests of PSM Methods: Differences between Magnet School Mean and Matched 
Comparison Group Mean for 6th Grade Sample 
 

  NN Intra   NN Inter 
 

LRM Intra 
 LRM 

Inter 

ESL 0.008 
 

0.011  0.005  0.012 

Black 0.02 
 

-0.001  -0.05  -0.047 

Female -0.015 
 

-0.008  0.01  0.01 

Free or Reduced Price Lunch -0.017 
 

-0.014  -0.102  -0.095 

4th Grade Reading Score 1.95 
 

0  7  12 

4th Grade Math Score 1.81 
 

-1  5  10 

Disabled 0.012 
 

0.014  0.016  0.038 

Hotelling Test F- Statistic 1.5923 
 

0.7790  5.913***  5.53*** 

Weighted Observations 1426 
 

1426  1426  1426 

Unweighted Observations 1290 
 

1288  18,174  9851 

  *p<0.05, ** p<0.01, *** p<0.001 

 

Estimates of Bias in Non-Experimental Estimators 

Tables 16 and 17 present the non-experimental estimate alongside the experimental IV 

estimate.  With the non-experimental estimates of the magnet impact in hand, the next step is to 

estimate the amount of bias that results from each non-experimental estimator k. Bias in the non-

experimental estimators can be defined as the difference between the true causal effectδ and the 

non-experimental estimate of the causal effect kδ̂ .  This bias cannot be directly observed because 

δ  is unknown.  However, the bias can be estimated when one has access to estimates from an 

experimental estimator z, if the experimental estimates of the treatment effect are themselves 

unbiased estimates of δ : δδ =)ˆ( zE .   

Using the experimental IV estimates zδ̂ , I estimate the bias in the non-experimental 

estimates as the difference in the non-experimental estimates and the experimental IV estimate: 
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zkkb δδδ ˆˆ)(ˆ −= .   These estimates will be unbiased conditional on the assumption that the 

experimental IV estimates are not biased due to selective attrition. Table 18 presents the bias in 

the non-experimental estimates in three metrics.  The first metric presents the bias in test scale 

scores.  The second form presents a standardized measure of the bias by translating it into an 

effect size – found by dividing )(ˆ kb δ  by the pooled standard deviation of the annual test score 

gain among lottery participants.  The final form presents the approximate number of weeks of 

instruction that the bias estimates represent. This is done by dividing the average annual scale 

score gain among lottery losers by the conventional number of instructional weeks in a school 

year (35).  The bias estimate is then divided by the measure of learning per week to find the total 

number of weeks of learning that the bias represents.  This is a relevant indicator for education 

decision makers who want to consider the practical importance of a program. It helps ascertain 

the extent to which the non-experimental methods may lead an education decision-maker to 

incorrectly change policy based on a biased estimate.  

Table 18 reveals that most of the non-experimental estimates have substantial bias.  Bias 

is largest in the MR estimates.  The magnitude of the MR estimates relative to the experimental 

estimate suggests that MR has failed to adequately control for selection on unobservables.   The 

bias in the MR estimates represents close to a full academic year’s worth of learning in reading 

and over half a year’s worth of learning in math.   

Propensity score matching techniques performed better than MR, suggesting that creating 

a comparison group with balanced covariates reduces the threat of selection bias better than 

using the full sample of students via MR.  Nevertheless, the PSM estimates still have practically 

important levels of positive bias.  The fact that all estimates are large and positive suggests the 

PSM is unable to effectively address the form of selection bias that exists between magnet and 
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non-magnet students by balancing observable characteristics.  The similarity of the estimates 

corroborates the claims of many researchers that the choice of matching method makes little 

difference in the impact estimates (Bloom, 2002).  In general, restricting matching to within 

student’s 4th grade school produced less biased estimates than allowing matching across 4th grade 

schools, although neither intra- or inter-school matching performed well enough to substitute for 

the experimental IV estimator.  Notice from the standardized effect sizes that the bias in the MR 

and PSM estimates is smaller in math than in reading. 

The student fixed-effect estimator performed the best of all estimators, which indicates 

that some of the bias in the MR and PSM estimators are due to time-invariant unobserved 

factors.  This is most evident in reading, where both the 5th and 6th grade estimates were not 

meaningfully different from the experimental IV estimates.  This allows for the conclusion that 

the fixed-effects estimator could serve as an unbiased substitute for an experimental design, if 

the outcome of interest was only reading achievement.  The fixed effects math estimates had less 

bias than the other non-experimental estimators (with the exception of the 6th grade PSM NN 

Intra-School).  Nevertheless, the magnitude of the bias in the 5th grade fixed-effect estimate 

equates to over a month of instruction and the 6th grade bias equates to over two months.   
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Table 16. 
 
Results: Non-Experimental Estimates of Magnet Impact on Math Outcomes 
 

Experimental IV 
Estimates 

Multiple 
Regression 

Student Fixed 
Effects 

PSM NN  
Intra-School 

PSM NN  
Inter-School 

PSM LRM 
Intra-School 

PSM LRM 
Inter-School 

5th Grade Magnet  4.985*** 13.181*** 7.497*** 8.582*** 10.925*** 9.841*** 11.0717*** 
(1.520) (0.951) (1.006) (1.491) (1.516) (1.507) (1.528) 

6th Grade Magnet 0.685 12.791*** 6.850*** 6.199*** 6.857*** 5.527*** 7.137*** 
(1.605) (1.142)   (1.024) (2.342) (2.312) (1.597) (3.365) 

4th Grade Reading .169*** 0.226*** 
(.017) (0.007) 

4th Grade Math  .424*** 0.568*** 
(.017) (0.007) 

Black -7.341*** -3.869*** 
(1.127) (0.329) 

FRL -7.071*** -4.410*** 0.507 
(1.294) (0.315) (0.371) 

ESL 5.725*** 2.040*** 0.559 
(1.581) (0.509)   (1.953) 

Female -3.275*** -1.017*** 
(.877) (0.295) 

Disabled -6.125*** -6.246*** -3.754*** 
(1.386) (0.507) (0.912) 

Constant 284.7*** 56.22*** 592.31*** 
(13.6) (6.113) (11.046) 

Cohort Effects Yes Yes Yes Yes Yes Yes Yes 
Grade Effects Yes Yes Yes Yes Yes Yes Yes 
Year Effects Yes Yes Yes Yes Yes Yes Yes 
Test Effects Yes Yes Yes Yes Yes Yes Yes 
Observations 3,616 42,052 64,265 2,916 2,916 

*p<0.05, ** p<0.01, *** p<0.001 
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Table 17. 
 
Results: Non-Experimental Estimates of Magnet Impact on Reading Outcomes 
 
 

Experimental IV 
Estimates 

Multiple 
Regression  

Student Fixed 
Effects 

PSM NN  
Intra-School 

PSM NN  
Inter-School 

PSM LRM 
Intra-School 

PSM LRM 
Inter-School 

5th Grade Magnet  3.760** 13.118*** 3.726*** 9.501*** 8.984*** 10.333*** 10.785*** 
(1.361) (0.850) (0.982) (1.340) (1.336) (1.355) (1.368) 

6th Grade Magnet 1.015 10.762*** 1.562 8.240** 8.393*** 7.278*** 7.883*** 
(1.438) (0.953) (1.000) (3.333) (3.332) (3.546) (2.376) 

4th Grade Reading .494*** 0.596*** 
(.015) (0.007) 

4th Grade Math  .093*** 0.172*** 
(.016) (0.006) 

Black -7.591*** -4.381*** 
(1.009) (0.316) 

FRL -6.389*** -5.443*** 0.222 
(1.158) (0.298) (0.362) 

ESL 1.626 -1.221* 2.291 
(1.416) (0.492) (1.911) 

Female -.372 1.361*** 
(.785) (0.281) 

Disabled 3.539** -3.515*** 2.302* 
(1.239) (0.479) (0.894) 

Constant 270.6*** 63.027*** 604.4*** 
(13.36) (5.713) (10.76) 

Cohort Effects Yes Yes Yes Yes Yes Yes Yes 
Grade Effects Yes Yes Yes Yes Yes Yes Yes 
Year Effects Yes Yes Yes Yes Yes Yes Yes 
Test Effects Yes Yes Yes Yes Yes Yes Yes 
Observations 3,616 42,251 64,265 2,916 2,916 

*p<0.05, ** p<0.01, *** p<0.001 



 
 

Table 18. 
 
Estimates of Bias in the Non-Experimental Estimates of the Effect of Magnet school Attendance on 
Math and Reading Achievement 
 

  
Multiple 

Regression 

Student 
Fixed 
Effects 

PSM NN 
Intra-
School 

PSM NN 
Inter-
School 

PSM LRM 
Intra-

School 

PSM LRM 
Inter-
School 

Math 
   5th Grade 
   Scale Scores 8.20 2.51 3.60 5.94 4.86 6.09 

   Effect Size 0.28 0.08 0.12 0.20 0.16 0.20 

   Instructional Weeks 16.9 5.2 7.4 12.3 10.0 12.6 

   6th Grade 
   Scale Scores 12.11 6.17 5.51 6.17 4.84 6.45 
   Effect Size 0.45 0.23 0.20 0.23 0.18 0.24 

   Instructional Weeks 18.4 9.4 8.4 9.4 7.3 9.8 

Reading 

    5th Grade 
   Scale Scores 9.36 -0.03 5.74 5.22 6.57 7.03 

   Effect Size 0.35 0.00 0.22 0.20 0.25 0.26 

   Instructional Weeks 27.5 -0.1 16.8 15.3 19.3 20.6 

   6th Grade 
   Scale Scores 9.75 0.55 7.23 7.38 6.26 6.87 

   Effect Size 0.37 0.02 0.28 0.28 0.24 0.26 

   Instructional Weeks 31.2 1.8 23.1 23.6 20.0 22.0 

 
 

The fixed-effect estimator performed better in reading than in math.  A possible explanation for 

this discrepancy is that unobserved factors that affect reading achievement are time-invariant, such as 

parental literacy, exposure to reading material outside of school, and students’ general enjoyment of 

reading and writing.   These factors would be absorbed by the student fixed-effect and differenced-out 

of the magnet impact estimate.  The unobserved factors affecting math achievement may be time-

invariant, such as time spent on homework, parent involvement, and overall student motivation.  The 
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fixed-effect would fail to capture these factors and the differences between the magnet and non-magnet 

students in these dimensions would be attributed to magnet school attendance.   

With the exception of the fixed-effect estimator in reading, all the non-experimental estimators 

predicted a positive effect of magnet school attendance in 6th grade, whereas the experimental IV 

estimate showed an effect that was not statistically different from zero.  In some cases the 6th grade 

estimates were larger than the 5th grade estimates. This is an important finding, as a decision-maker 

may incorrectly conclude that the magnet school has a consistently positive effect on students.  The 

experimental data show that most of the 5th grade magnet effect is given back in 6th grade. 

Discussion 

This study has important implications for researchers interested in the causal effect of magnet 

schools on student achievement.  The only estimator that performs well enough to substitute for an 

experimental design is the student fixed-effects estimator of the magnet effect in reading.  All the PSM 

and MR estimates overstate the causal effect of magnet schools in both reading and math.  The bias in 

these estimates is not trivial, representing months of instruction.  Collectively, these findings caution 

against making policy decisions based on non-experimental evidence.  With the exception of the fixed-

effects estimator in reading, all estimators may lead a decision-maker to incorrectly conclude the 

magnet school effect is noteworthy and be compelled to expand the program.   

The generalization of these findings beyond this sample should be done with caution.  Magnet 

school policies and practices vary substantially across districts, as do the general contexts and 

dynamics of public schooling.  These differences will influence the effectiveness of the magnet schools 

relative to the rest of the schools in the district.    

One important consideration is the gap in the average student performance of the magnet 

school and the average student performance in the non-magnet schools in the district.  In this study the 
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comparison group’s “treatment” is a composite of the non-selective schools in the district.  In districts 

with relatively homogenous schools, one might not find a significant magnet school advantage because 

the peers and academic programs found in the non-magnet schools may be very similar to those found 

in the magnet school. This is not the case with the district I studied. In 2004, the average 5th grade math 

scale score in the selective magnet school was 692, making it the highest performing middle school in 

the district.  In contrast, the “average” school in the district (i.e. the school at the median of the 

district’s distribution in average 5th grade school scores) had an average score of 623.  The 69 scale 

score points that separates these two schools equates to over three grade levels of learning. In other 

words, the students in the selective magnet school are learning at more than three grades levels from 

the students in the average school in the district.  Such a profound difference between the magnet 

schools and the non-magnet schools is probably not found in most districts.   

It is particularly important to note that these findings may not generalize to other types of 

schools of choice, namely charter schools. The nature of self-selection into charter schools is probably 

very different than magnet schools.  Unlike charter schools, magnet schools have been normal 

educational options within urban public school systems for decades.  Most parents are aware of the 

magnet schools in their district and recognize them as viable educational options if their students 

qualify for admission.  Consequently, when a parent submits a magnet school application it does not 

signal they are particularly different from the other parents in the district.   In contrast, charter schools 

are still a novel educational option in most cities.  Many families do not understand them, are unaware 

of their presence, or view them with skepticism because they are misinformed and assume they charge 

tuition or have special admissions requirements.  Therefore the parents who submit an application to a 

charter school are likely to be very different from the average family in the district, potentially more so 

than the parents of magnet school students.  This may suggest a greater threat of selection bias for 
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charter school studies that use non-experimental methods, although the direction and magnitude of this 

bias is not immediately clear.  
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CHAPTER VI 

 

EVALUATING THE EFFECTS OF ATTRITION ON THE EXPERIMENTAL AND NON-
EXPERIMENTAL ESTIMATORS OF THE MAGNET IMPACT 

 

Selective Attrition and School Choice Research 

Sample attrition poses a methodological challenge to school choice program evaluations that 

use admissions lotteries to create random comparison groups. Attrition is a problem because 

participants who do not win entry to their school of choice often seek other alternatives to their 

residentially-zoned district school.  Researchers often do not have the resources or agreements to 

gather data on these students.   If this attrition is non-random and systematically related to the 

outcomes (i.e. “selective”), the integrity of the experimental design is jeopardized and bias may result.  

A number of recent school choice evaluations have had to deal with high levels of attrition (see for 

example, Abdulkadiroglu, Che, & Yasuda, 2009; Buckley & Schneider, 2008).  Kemple & Scott-

Clayton’s (2004) investigation of career academies found roughly 40% of the sample left during the 

study years.  

School choice researchers’ decisions on how to deal with attrition have important consequences 

for their research conclusions. The conflicting findings on Milwaukee’s voucher program are a good 

example of this; three research teams reached three different conclusions primarily because of their 

different methods for dealing with attrition.  Witte, Sterr & Thorn (1996) determined the attrition 

among voucher lottery losers was so severe as to render them useless as an “experimental” control 

group and instead created a non-experimental comparison group by drawing a random sample of 

Milwaukee public school students.  Using the non-experimental comparison group, Witte and 

colleagues did not find a positive effect of private school vouchers on math or reading achievement.  
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Green, Peterson, and Du (1997) argued Witte’s approach did not adequately control for selection bias 

and conducted a random-assignment evaluation by comparing the achievement of voucher students to 

students who applied but did not get into a private school.  They found statistically positive effects of 

the voucher program in both reading and math for students in their 3rd and 4th year in the program.  

Witte challenged these findings on the grounds that 52% of the unsuccessful applicants left the district.  

He argued this attrition leads to an unfair comparison group for voucher students because the 

unsuccessful applicants who remained in the district were from less educated, lower income families 

than the full sample of voucher participants. A subsequent analysis by Rouse (1998) revealed the test 

scores of unsuccessful applicants who left the district were actually lower on average than those who 

remained. Using lottery status as an instrument for private school enrollment as well as a student fixed-

effect model, Rouse found a positive effect of the voucher program in math, but not in reading.  

The Milwaukee voucher research calls attention to the need for more empirical guidance on 

how to deal with attrition from school choice evaluations.  There is a broad consensus among 

researchers that lottery-based experiments are the gold-standard for estimating causal effects of school 

choice programs.  Nevertheless, it is unclear how robust these experimental estimators are to the 

effects of selective attrition and when (if ever) the experimental comparison should be abandoned in 

favor of a non-experimental comparison.   

The purpose of this chapter is to provide some empirical guidance on this topic by evaluating 

the bias in the experimental and non-experimental estimators of the magnet effect under various rates 

and forms of selective and random attrition.  Using simulated data, I examine the performance of the 

estimators under 30 unique samples that have different rates and forms of attrition among the samples 

of lottery winners, lottery losers, and lottery non-participants.  For parsimony, I focus exclusively on 

the effect of the magnet school on 5th grade math achievement. 



90 
 

 

Sample Set-Up 

 The sample used in this exercise consists of all 5th grade students who were enrolled in the 

district in 4th grade.  The real missing outcomes in the 5th grade dataset were simulated to create a 

dataset that has zero attrition, thus allowing us to assume the experimental IV estimator is unbiased 

when run on the full sample because there is no threat of attrition bias. 19  Inducing artificial attrition 

into this sample, where 80% of the observations are real, allows for more realistic inferences than one 

using a completely artificial sample. 

The sample consists of three subgroups that are important to the simulation: (1) lottery winners, 

(2) lottery losers, (3) lottery non-participants.  I examine how the estimators perform under different 

forms and rates of attrition among these three groups.  The first two groups are important because they 

represent the experimental comparison groups, and attrition within these groups represents a threat to 

the random assignment.20  The last group is important because attrition among students who did not 

participate in the lottery may bias the non-experimental estimates.   

Specifying the Form of Simulated Attrition in the Three Subgroups   

The performance of the estimators is evaluated under six characterizations (“scenarios”) of the 

form of attrition in the sample.  I specify different forms of attrition within the three subgroups (lottery 

winners, lottery losers, non-participants) to fit with plausible scenarios that school choice researchers 

                                                 
19 To create a full sample of 5th grade students who were enrolled in the district in 4th grade, I had to make some 
assumptions on the actual attrition in the sample.  First, I assume 85% of lottery winners with missing 5th grade outcomes 
actually would have attended the selective magnet school, while the other 15% would have enrolled in another district 
school.  This is the approximate proportion that was observed among non-attritors in the sample.  Second, that the actual 
attritors’ 5th grade outcomes would fall at the same percentile within their cohort’s distribution of math scores as was 
observed in 4th grade.  For example, if a student had a 4th grade math score that fell at the 65th percentile of the 4th grade 
math scores in the district in 2001, that student’s missing 5th grade outcome would be equivalent to the 65th percentile of the 
observed 5th grade math scores in 2002.  By extension, this assumes attritors made average growth from 4th to 5th grade, 
thus allowing them to maintain their normative status in the distribution of Y.   
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may encounter.   In some scenarios, a subgroup’s attrition results in outcomes that are missing 

completely at random (MCAR), outcomes that are missing not at random (MNAR) where high 

achieving students are more likely to leave, or outcomes that are MNAR where low-achieving students 

are more likely to leave.  

 
Table 19. 
 
Coding of the Characterizations of Subgroup’s Missing Outcomes  

 
 
R: 

 
Missing Completely at Random (MCAR) 

 
H: 

 
Missing Not at Random (MNAR) where high achieving students 
are more likely to leave 

 
L: 

 
Missing not at Random (MNAR) where low achieving students 
are more likely to leave 
 

 

Table 20 presents the six scenarios.  It is followed by a brief discussion of the rationale for each 

specification on the nature of attrition in each subgroup.   

 
Table 20. 
 

Six Scenarios on Nature of Attrition in Three Subgroups  
 

 Lottery Winners Lottery Losers Non-Participants 

Scenario R-H-R MCAR 
MNAR 

(High Achievers Leave) 
MCAR 

Scenario H-H-R 
MNAR 

(High Achievers Leave) 
MNAR 

(High Achievers Leave) 
MCAR 

Scenario R-H-H MCAR 
MNAR 

(High Achievers Leave) 
MNAR 

(High Achievers Leave) 

Scenario H-H-H 
MNAR 

(High Achievers Leave) 
MNAR 

(High Achievers Leave) 
MNAR 

(High Achievers Leave) 

Scenario R-H-L MCAR 
MNAR 

(High Achievers Leave) 
MNAR 

(Low Achievers Leave) 

Scenario H-H-L 
MNAR 

(High Achievers Leave) 
MNAR 

(High Achievers Leave) 
MNAR 

(Low Achievers Leaver) 
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Simulated attrition of lottery winners. The attrition of lottery winners is specified in one of two 

forms: (1) MCAR; or (2) MNAR with high achievers more likely to leave.  The attrition of lottery 

winners may be MCAR if students left for idiosyncratic reasons such as residential moves, parent job 

transfers/changes, disciplinary problems, etc.  This specification assumes the potential outcomes of the 

lottery winners who left the sample are expected to be the same on average as those who remained.   

The attrition of lottery winners may also be MNAR with high achievers more likely to leave for 

reasons that are unobserved and associated with future performance.  This would be the case if the 

lottery winners who left the sample had greater motivation to seek out better schooling options, even 

after winning entry to the district’s highest performing school.  If this motivation has a positive 

association with student achievement, then the estimates of the magnet effect will be downwardly 

biased because the best students will have left the sample.  

Simulated attrition of lottery losers. All six characterizations assume the attrition of lottery 

losers results in outcomes that are MNAR, where the students that are most likely to leave are those 

who would have had higher future performance than what the observed covariates would have 

predicted.  I maintain this sole assumption for the lottery losers because of substantial anecdotal 

evidence that lottery losers were leaving the district in pursuit of better education in private schools.  

We expect those who left were more likely to be high achievers because their parents had more 

resources and/or more motivation to improve their schooling than those lottery losers who stayed.  

Given that parental motivation is unobserved in the data, we assume that this attrition is missing not at 

random (MNAR) rather than missing at random (MAR). 
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Simulated attrition of non-participants. I specify the missing outcomes of non-participants in 

three forms.  First, I specify the missing outcomes as MCAR, which would be the case if families left 

the district for idiosyncratic reasons such as residential moves, parent job transfers, etc.   

Second, I specify the missing outcomes as MNAR with high-achievers more likely to leave.  

This would be the case if families were satisfied with the district’s elementary schools, but 

uncomfortable sending their child to one of the district’s middle schools.   Parents with the resources 

and motivation may decide to exercise another schooling option such as an inter-district transfer or a 

private school.  If there is a positive association between parental resources and motivation and student 

achievement, this would downwardly bias non-experimental estimates that use non-participants in their 

comparison group. 

Third, I specify the missing outcomes as MNAR with low-achievers more likely to leave.   This 

would be the case if mobility was a signal of an unstable home life and an unstable home life 

associated with poor future school performance.   

Specifying the Attrition Rates among Three Subgroups 

For each of the six characterizations on the form of attrition, I specify five different attrition 

rates (zero, low, moderate, high, severe).  Table 21 shows the induced attrition rates for each subgroup 

under these five specifications.  The first specification is that the attrition rate is zero for all subgroups, 

meaning the estimators are run on the complete sample.  The experimental IV estimator generated 

from this sample represents the unbiased estimate of the causal effect of magnet school attendance 

because it suffers from zero attrition bias as well as zero selection bias (as a result of using randomly 

assigned comparison groups).  The non-experimental estimators are also free of attrition bias, however 

they may still suffer from selection bias because they use non-experimental comparison groups. 

Specifications 2-5 induce increasing amounts of attrition into the sample.  In order to maintain a 
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pattern of attrition in the simulated data that was similar to that observed in the actual data, I impose 

attrition in the lottery loser sample that is 50 % greater than the attrition rates of lottery winners and 

non-participants. 21  

 

Table 21. 
 
Simulated Attrition Rates among Three Subgroups 

 
 

 Lottery Winners Lottery Non-Participants Lottery Losers 

Zero Attrition  0% 0% 0% 

Low Attrition 10% 10% 15% 

Moderate Attrition 20% 20% 30% 

High Attrition 30% 30% 45% 

Severe Attrition 40% 40% 65% 

 

Inducing Attrition in the Samples 

With six different characterizations on the form of attrition in the sample and five different 

assumptions on the attrition rates, I have 30 unique characterizations of sample attrition.  Attrition is 

induced into the complete sample to create 30 unique samples, one for each attrition characterization.   

To artificially induce attrition that matches the MCAR specification, I randomly flag student 

outcomes and drop them from the sample in accordance with the specified attrition rate of each 

subsample. For example, under characterization 2 (low-attrition) I randomly drop 10% of the outcomes 

of lottery winners and 10% of the outcomes of non-participants.   

                                                 
21 Lottery losers had a 46% higher attrition rate than lottery winners.  This difference was statistically significant.  Whereas 
the attrition rates of lottery winners and lottery non-participants were not statistically different. For simplicity, I round the 
different attrition rate of lottery losers to lottery winners and non-participants up to 50%.   
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To artificially induce attrition that is MNAR, I drop outcomes based on the values of their 

residuals from a least squares regression of 5th grade math scores on the observed covariates, using the 

complete sample.    Using the residuals allows us to ensure the attrition we simulate is MNAR because 

we base attrition on the unobserved factors that explain Y.   This regression takes the following form: 

 

 itticitxit CXY εγβββ ++++= 0         (7.1)
 

 

Where Y is the math score for student i in year t.  X is a vector of explanatory variables 

indicating student participation in special programs (FRL, ESL, special education), 4th grade 

achievement in reading and math, race (Black =1), and gender (female =1).   We impose constant 

effects of X over time.  C is an indicator of student i’s cohort. γt are year fixed-effects.  εit is the error 

term. 

I drop the outcomes of the three subgroups (lottery winners, lottery losers, non-participants) 

based on whether or not their predicted residuals iε̂  falls above or below the median of the residuals 

for the complete sample.  Students with positive values of iε̂  are those who performed better than 

predicted based on the regressors in model 7.1.  Students with negative values of iε̂ are those who 

performed worse than predicted.  In simulations where the attrition is characterized as MNAR where 

those who left were more likely to be high achievers, I disproportionately drop outcomes for those 

whose value of iε̂  falls above the median.  For example, in characterization 2 (low attrition), I drop a 

total of 15% of the outcomes of lottery losers.  To characterize these outcomes as MNAR with high 

achievers more likely to leave, two-thirds of these outcomes (10% of the full sample of lottery losers) 
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are for students with values of iε̂ above the median and one-third of the outcomes are for those with 

values of iε̂ below the median. 

Table 22 presents the distribution of the simulated missing outcomes above and below the 

median of the distribution of iε̂  for each of the 30 characterizations of sample attrition.  Note that in 

situations where the attrition is MCAR, half of the missing outcomes will have values of iε̂  that are 

above the median and half will be below the median.   

The random selection of outcomes within each subgroup is done 1,000 times for each of the 30 

attrition simulation samples.  Each estimator is then run on 1,000 samples and the average of the 1,000 

estimates is used as the final estimate of the magnet effect. 

Estimate of the Causal Effect of Magnet School Enrollment under the Complete Sample 

In this analysis, the experimental IV estimate run on the complete sample is the unbiased 

estimate of δ .  I refer to this estimate as czδ̂ , where c stands for “complete sample” and  z indicates the 

experimental IV estimator.   

c
zδ̂  equals 3.57 with standard error of 1.28 (p=0.005).  This serves as our unbiased estimate of 

the causal effect of magnet enrollment on 5th grade math achievement.  We can use this baseline to 

estimate to estimate the bias that results under the 30 characterizations of sample attrition.   



 
 

Table 22. 
 
Distribution of missing outcomes above and below the 50th percentile of residuals for the 30 simulated attrition samples 
 
 

Attrition 
Rate Subgroup 

Scenario R-H-R   Scenario H-H-R   Scenario R-H-H   Scenario H-H-H   Scenario R-H-L   Scenario H-H-L   

Total 
Attrition 

Above 
Median 

Below 
Median   

Above 
Median 

Below 
Median   

Above 
Median 

Below 
Median   

Above 
Median 

Below 
Median   

Above 
Median 

Below 
Median   

Above 
Median 

Below 
Median   

 Lottery Winners 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Zero Lottery Losers 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 Non-Participants 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Low 

Lottery Winners 5% 5% 6.7% 3.3% 5% 5% 6.7% 3.3% 5% 5% 6.7% 3.3% 10% 

Lottery Losers 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 15% 

Non-Participants 5% 5%   5% 5%   6.7% 3.3%   6.7% 3.3%   3.3% 6.7%   3.3% 6.7%   10% 

Moderate 

Lottery Winners 10% 10% 13.3% 6.6% 10% 10% 13.3% 6.7% 10% 10% 15% 5% 20% 

Lottery Losers 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 30% 

Non-Participants 10% 10%   10% 10%   15% 5%   13.3% 6.7%   6.7% 13.3%   6.7% 13.3%   20% 

High 

Lottery Winners 15% 15% 20% 10% 15% 15% 20% 10% 15% 15% 20% 10% 30% 

Lottery Losers 30% 15% 30% 15% 30% 15% 30% 15% 30% 15% 30% 15% 45% 

Non-Participants 15% 15%   15% 15%   20% 10%   20% 10%   10% 20%   10% 20%   30% 

Severe 

Lottery Winners 20% 20% 26.6% 13.3% 20% 20% 26.6% 13.3% 20% 20% 26.6% 13.3% 40% 

Lottery Losers 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 60% 

Non-Participants 20% 20% 20% 20% 26.6% 13.3% 26.6% 13.3% 13.3% 26.6% 13.3% 26.6% 40% 
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Estimating the Bias in the Estimators under the 30 Simulated Attrition Samples 

Using c
zδ̂ , I estimate the bias from each non-experimental estimator k  for each of the 30 

simulated samples s, as: s
k

c
z

s
kb δδδ ˆˆ)(ˆ −= .  The non-experimental estimators investigated herein 

are those presented in the previous chapter, with the same specifications.22 Likewise, I estimate 

the bias in the experimental estimator z when run on s as: s
z

c
z

s
zb δδδ ˆˆ)(ˆ −= .  To comparatively 

evaluate the performance of the non-experimental estimators against the experimental estimator 

for each sample s, I find the difference in absolute values of the two bias estimates:

|)(ˆ||)(ˆ|ˆ s
z

s
k

s
k bb δδσ −= .  If 0ˆ <s

kσ it indicates that non-experimental estimator k yields estimates 

with less bias than the experimental estimator when attrition is of the form and rate s.  

Conversely, if 0ˆ >s
kσ it indicates the experimental estimator remains the least biased estimate 

under s.  

Results 

The bias estimates from the simulations are presented below in six graphs (figures 1-6) 

corresponding to the six attrition scenarios.23  In each graph the amount of bias is presented in a 

standardized effect size measure.  This measure is the difference between the unbiased 

experimental IV estimate from the complete sample (c
zδ̂ ) and the experimental IV or non-

experimental estimate from the sample suffering from attrition ( s
zδ̂ or )ˆ s

kδ  divided by the 

standard deviation of gains in math test scores for the complete sample of 5th grade students: 

                                                 
22 The PSM estimators evaluated in this chapter allow “inter-school” matching – meaning the potential matches for a 
given student are not restricted to a student’s 4th grade school. 
23 The actual estimates of the magnet effect for each estimator under the 30 attrition characterizations are presented 
in the appendix. 
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( )
Yz

s
k

c
zs

k s
bES

∆

−= δδδ
ˆˆ

)(ˆ . This allows us to evaluate the magnitude of the bias in relation to annual 

achievement gains. 

The experimental IV estimator is clearly most sensitive to sample attrition; whereas the 

other methods produce relatively stable estimates (with similar amounts of bias) under all 

attrition rates, the bias in the experimental IV estimates trends upward as the attrition rates 

increase.  Nevertheless, the experimental IV estimates are less biased than the non-experimental 

estimates for all samples with low or moderate attrition rates and most scenarios with high 

attrition rates.  

The MR estimates are the most biased in every one of the 30 characterizations of 

attrition.  There never reaches a point where the MR estimates are less biased than the 

experimental IV estimates.  Even when the lottery loser sample suffers 60% non-random 

attrition, where high-achieving lottery losers are more likely to attrit, MR yields estimates with 

bias that is 0.20 greater than the the experimental IV estimate.  This is evidence that multiple 

regression with observed covariates using non-participants is not a defensible substitute for an 

analysis that uses the experimental comparison groups, regardless of the severity of attrition. 

The student fixed-effects estimator was found to be most robust to the effects of selective 

attrition and to perform relatively well in samples with moderate, high, and severe attrition rates.  

In fact, when attrition rates reached high levels (45% among lottery losers, 30% among lottery 

winners and non-participants) the fixed-effects estimator performed better than the experimental 

IV estimator in the two scenarios where the attrition form of non-participants was specified as 

non-random with low-achievers more likely to leave.  When attrition rates reach the severe level 

(60% among lottery losers, 40% among lottery winners and non-participants), the fixed-effect 

estimates were least biased of all estimates.  This finding lends affirmation to the approach used 
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by Celia Rouse in her investigation of the Milwaukee voucher program, where Rouse used the 

fixed-effects estimator to address the fact that 52% of lottery losers attrited.  

The propensity score matching estimators are robust to the effects of attrition, as 

evidenced by similarity of PSM estimates from samples with different attrition rates. This is to 

be expected given PSM methods adapt to sample attrition by either re-weighting the comparison 

group (the case with LRM) or seeking the best one-to-one matches among those who are left (the 

case with NN).  Nevertheless, the PSM estimates have substantial bias due to the fact they cannot 

control for selection on unobservables and, like the MR estimator, must rely on observed 

covariates to control for self-selection into the magnet school.  This analysis suggests the PSM 

estimators should be ruled out as a method for evaluating magnet school programs.  Only when 

attrition reaches the severe level do the PSM estimators perform as well as the experimental IV.  

However, when attrition is severe both the PSM and experimental IV estimators produce 

estimates with bias greater than a standardized effect of 0.20, suggesting neither should be used 

to estimate a treatment effect.   
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Figure 1.Bias in Experimental and Non-Experimental Estimators under Scenario R-H-R 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Bias in Experimental and Non-Experimental Estimators under Scenario H-H-R 
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Figure 3. Bias in Experimental and Non-Experimental Estimators under Scenario R-H-H 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Bias in Experimental and Non-Experimental Estimators under Scenario H-H-H 
 
 

0.000
0.037

0.107
0.128

0.267

0.367 0.382 0.391 0.400
0.416

0.129
0.151 0.156 0.166 0.174

0.287 0.297
0.330 0.345

0.291

0.275 0.288 0.293 0.307

0.263

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

Zero Low Moderate   High Severe

Scenario R-H-H: Lottery Winners - MCAR; Lottery Losers -
MNAR (high achievers leave); Non-Participants - MNAR (high 

achievers leave)

IV OLS FE PSM NN PSM LRM



103 
 

0.000 -0.007

0.058

0.132

0.267

0.367 0.364
0.335 0.317

0.294

0.129 0.118
0.091 0.075

0.100

0.287 0.293
0.273 0.261

0.237

0.275 0.269
0.231 0.244 0.234

-0.100

0.000

0.100

0.200

0.300

0.400

0.500

Zero Low Moderate   High Severe

Scenario H-H-L: Lottery Winners - MNAR(high achievers leave); 
Lottery Losers - MNAR (high achievers leave); Non-Participants -

MNAR(low achievers leave) 

IV OLS FE PSM NN PSM LRM

 
 
Figure 5. Bias in Experimental and Non-Experimental Estimators under Scenario R-H-L 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Bias in Experimental and Non-Experimental Estimators under Scenario H-H-L 
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APPENDIX 

 
Table A-1.   
 
First Stage Results of Experimental IV 2SLS Regressions 
 
 

  
Magnet 
Enrollment 

Magnet Lottery Winner 5th Grade 0.805*** 
(0.010) 

Magnet Lottery Winner 6th Grade 0.001 
(0.009) 

4th Grade Reading 0.001*** 
(0.000) 

4th Grade Math 0.000 
(0.000) 

Black 0.024* 
(0.012) 

Free and Reduced-Price Lunch -0.084*** 
(0.014) 

ESL 0.067*** 
(0.017) 

Female 0.022 
(0.010) 

Constant -0.459 
(0.918) 

Lottery Year Yes 
Cohort Yes 
Grade Yes 
Observations 3616 
R-Squared 0.759 
*p<0.05, ** p<0.01, *** p<0.001 

 
Note. The F-statistic from the first-stage is 3135.88; this allows me to reject the 
null hypothesis that the independent variables in the first stage equation weakly 
identify the instrument.  Stock and Yogo (2005) indicate that the critical first-
stage F-statistic value for indicating a weak instrument is 16.38.  
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Table A-2.   
 
Intent to Treat Experimental Estimates of Magnet Effect 
 
 

  Math   Reading 

Magnet Lottery Winner 5th Grade 4.016*** 3.027*** 

(1.227) (1.097) 

Magnet Lottery Winner 6th Grade -.528 -.790 

(1.259) (1.127) 

4th Grade Reading 0.179*** 0.499*** 

(0.017) (0.015) 

4th Grade Math 0.430*** 0.096*** 

(0.018) (0.016) 

Black -7.702*** -7.843*** 

(1.129) (1.008) 

Free and Reduced-Price Lunch -7.407*** -6.695*** 

(1.292) (1.154) 

ESL 5.668*** 1.64 

(1.585) (1.415) 

Female -3.326*** -0.369 

(0.879) (0.785) 

5th Grade 3.338 28.449*** 

(6.646) (5.933) 

Constant 281*** 270 

(14.9) (13.4) 

Cohort Effects Yes Yes 

Grade Effects Yes Yes 

Year Effects Yes Yes 

Test Effects Yes Yes 

Observations 3613   3613 

R-Squared 0.738   0.797 

*p<0.05, ** p<0.01, *** p<0.001 
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Table A-3. 
 
 
Tests of Validity of Instruments 
 
 

Test Test Statistic Description of Test(s) 
   
Weak Identification Tests   
Cragg-Donald Wald F Statistic 3135*** Test of correlation of endogenous 

regressors with excluded instruments; 
Ho: equation is weakly identified 

   
Underidentification Tests   
Anderson canon. corr. N*CCEV LM statistic 2297*** Test of relevance of excluded 

instruments; Ho: the model is 
underidentified 

Cragg-Donald N*CDEV Wald statistic 6305*** 

   
Weak-Instrument/Robust Inference Tests   
Anderson-Rubin Wald test 5.81** Tests of joint significance of 

endogenous regressors in main 
equation; Ho: B1=0 and 
overidentifying restrictions are valid 

Anderson-Rubin Wald test 11.7** 
Stock-Wright LM S statistic 11.6** 
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Table A-4. 
   
Reduced Form Math IV Estimates by student characteristic 
 

Black Non-Black FRL  Non-FRL  
Bottom Quartile 4th 
Grade Math 

Inter Quartiles 4th 
Grade Math 

Top Quartile 4th 
Grade Math 

Selective Magnet5th Grade 
 

10.191* 
 

3.510** 
 

10.508 *  4.180***  5.648** 
 

5.461*** 
 

2.954 

  
(2.662) 

 
(1.780) 

 
(4.164)  (1.635  (2.6925) 

 
(2.067) 

 
(3.322) 

Selective Magnet 6th Grade 
 

4.148 
 

-.387 
 

8.433  -.321  .5708 
 

.101 
 

-1.373 

  
(2.721) 

 
(1.918) 

 
5.301  (1.689  2.932 

 
2.157 

 
3.534 

4th Grade Reading Test 
 

0.124* 
 

.183** 
 

0.112  .17646***  0.139** 
 

0.209*** 
 

0.135** 

  
(0.031) 

 
(.020) 

 
(0.072)  (.0186  (0.052) 

 
(0.037) 

 
(0.049) 

4th Grade Math Test 
 

0.425*** 
 

.419*** 
 

0.440***  .4220***  0.560*** 
 

0.457*** 
 

0.309*** 

  
(0.031) 

 
(.020) 

 
(0.073)  (.0190  (0.117) 

 
(0.105) 

 
(0.079) 

Black 
 

-- 
 

-- 
 

-4.002  -8.100***  -5.031* 
 

-6.830*** 
 

-11.314** 

  
-- 

 
-- 

 
(3.753)  (1.296  2.705 

 
(2.539) 

 
(4.150) 

Free and Reduced-Price Lunch 
 

-4.736** 
 

-9.149*** 
 

--    -5.492 
 

-7.674*** 
 

-6.080 

  
(1.606) 

 
(1.814) 

 
--    (3.122) 

 
(2.934) 

 
(4.699) 

ESL 
 

-2.166 
 

7.405*** 
 

-1.766  7.550***  -0.284 
 

6.866 
 

8.220* 

  
(3.347) 

 
(1.805) 

 
(5.369)  (1.808  (5.263) 

 
(3.723) 

 
(3.853) 

Female 
 

-1.253 
 

-4.052*** 
 

-3.945  -3.287***  -0.357 
 

-5.915 
 

-1.339 

  
(2.737) 

 
(1.043) 

 
(3.555)  (.9614  (2.506) 

 
(1.920) 

 
(2.650) 

Disabled 
 

4.566 
 

6.141*** 
 

-1.463  6.497***  .854*** 
 

5.531 
 

11.932*** 

  
(4.082) 

 
(1.514) 

 
5.222  (1.4514  2.878 

 
(2.019) 

 
2.633 

Constant 
 

327.3*** 
 

274.5*** 
 

331.2***  275.376***  192.0*** 
 

260.8 
 

405.646*** 

  
(43.1) 

 
(16.1) 

 
(54.2)  (15.008  (44.9) 

 
(70.4) 

 
(58.023) 

Lottery Year (Cohort Effects)  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Grade Effects  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Year Effects  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Grade*Year (Test Effects)  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

R-Squared 
 

0.828 
 

0.700 
 

0.788  0.729  0.794 
 

0.727 
 

0.610 

Observations 
 

830 
 

2775 
 

544  3,061  957 
 

1766 
 

882 

*p<0.05, ** p<0.01, *** p<0.001 
Note.  The specification of the IV model for reduced form estimates shown above is identical to the specification used to generate the estimates for the full sample model. The 
sample is limited to 5th and 6th grade students who participated in the selective magnet lottery and were enrolled in the district in 4th grade. All models are estimated with Huber 
White robust standard errors to account for the correlation of errors across years within a single student as well as the correlation of the errors of lottery losers who attend the same 
non-selective magnet school 
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Table A-5.  
  
Reduced Form Reading IV Estimates by student characteristic 
 

Black Non-Black FRL  Non-FRL  
Bottom Quartile 4th 
Grade Math 

Inter Quartiles 4th 
Grade Math 

Top Quartile 4th 
Grade Math 

Selective Magnet5th Grade 
 

8.388*** 
 

2.659* 
 

5.936  3.455**  5.535** 
 

2.148 
 

4.090 

  
(2.560 

 
(1.5903 

 
(3.868  (1.455  (2.586 

 
(1.709) 

 
(3.242) 

Selective Magnet 6th Grade 
 

4.191 
 

.1022 
 

4.083  .7024  .8703 
 

1.037 
 

-1.016 

  
(2.631 

 
(1.694 

 
(4.954  (1.504  (2.824 

 
(1.797) 

 
(3.327) 

4th Grade Reading Test 
 

.478*** 
 

.496*** 
 

.441***  .499***  .654*** 
 

.657*** 
 

.262*** 

  
(.0302 

 
(.018 

 
(.0403  (.016)  (.062) 

 
(.054) 

 
(.053) 

4th Grade Math Test 
 

.0684 
 

.099*** 
 

.102***  .093***  .109*** 
 

.075*** 
 

.098 

  
(.0321 

 
(.018 

 
(.041)  (.016)  (.030) 

 
(.021) 

 
(.033) 

Black 
     

-9.602**  -7.341***  -2.246 
 

-7.442*** 
 

-13.189*** 

      
(2.124)  (1.155)  (1.497) 

 
(1.372) 

 
(2.940) 

Free and Reduced-Price Lunch 
 

-6.376 
 

-6.294*** 
 

    -5.333*** 
 

-4.283*** 
 

-10.862*** 

  
(1.543 

 
(1.602) 

 
    (1.709) 

 
(1.577) 

 
(3.321) 

ESL 
 

1.842 
 

1.645 
 

-1.341  2.213  3.626* 
 

1.871 
 

1.344 

  
(3.221 

 
(1.595) 

 
(3.012)  (1.610)  (2.239) 

 
(1.918) 

 
(3.599) 

Female 
 

-.44060 
 

-.196 
 

.751  -.534  -1.683 
 

-1.324 
 

2.177 

  
(1.461 

 
(.9217) 

 
(2.004  (.856)  (1.378) 

 
(1.024) 

 
(1.887) 

Disabled 
 

3.755 
 

3.538** 
 

-1.647  3.894***  -.896 
 

2.248 
 

7.888 

  
(3.929 

 
(1.337) 

 
(4.859  (1.291)  (2.863) 

 
(1.708) 

 
(2.367) 

Constant 
 

288.0314 
 

274.782 
 

294.620  276.360***  152.358*** 
 

182.136*** 
 

439.961*** 

  
(23.15444 

 
(14.249) 

 
(30.474  (13.363)  (39.344) 

 
(37.484) 

 
(41.323) 

Lottery Year (Cohort Effects)  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Grade Effects  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Year Effects  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

Grade*Year (Test Effects)  
Yes 

 
Yes 

 
Yes  Yes  Yes 

 
Yes 

 
Yes 

R-Squared 
 

0.843 
 

0.778 
 

0.812  0.792  0.8111 
 

0.803 
 

0.746 

Observations 
 

830 
 

2775 
 

544  3,061  936 
 

1831 
 

838 

*p<0.05, ** p<0.01, *** p<0.001 

Note. The specification of the IV model for reduced form estimates shown above is identical to the specification used to generate the estimates for the full sample. The 
sample is limited to 5th and 6th grade students who participated in the selective magnet lottery and were enrolled in the district in 4th grade.  All models are estimated 
with Huber White robust standard errors to account for the correlation of errors across years within a single student as well as the correlation of the errors of lottery 
losers who attend the same non-selective magnet school 



 
 

Table A-6.   
 
Heckman & Hotz (2002) Specification Test:  Running Non-Experimental Models using 
Pre-Intervention Data (2nd, 3rd, and 4th grade scores) 
 
 

 
Math  Reading 

 
3rd Grade 4th Grade  3rd Grade 4th Grade 

Multiple Regression 19.876*** 8.598***  16.898*** 9.689*** 

 
(1.437) (1.441)  (1.451) (1.456) 

Student Fixed Effects .0307 -9.468***  7.895*** 3.723* 

 
(1.734) (1.734)  (1.545) (1.545) 

PSM NN 15.353 -4.053  15.369*** -.0991 

 
(2.955) (2.617)  (2.615) (2.184) 

PSM LRM 15.226 -4.301  15.147*** 
 
-1.628 

 
(2.953) (2.576)  (2.599) (2.161) 

*p<0.05, ** p<0.01, *** p<0.001 
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Table A-7. 

Estimates of the Magnet effect Under 30 Characterizations of Attrition 

 
  Zero Low  Moderate    High Severe 
Scenario R-H-R 
IV 3.57*** 4.58*** 6.478*** 7.05*** 10.81*** 
MR 13.55*** 13.95*** 14.19*** 14.44*** 14.86*** 
FE 7.07*** 7.66*** 7.80*** 8.08*** 8.30*** 
PSM NN 11.36*** 11.65*** 12.53*** 12.94*** 11.46*** 
PSM LRM 11.03*** 11.41*** 11.52*** 11.92*** 10.73*** 

Scenario H-H-R 
IV 3.57*** 3.37*** 5.15*** 7.16*** 10.83*** 
MR 13.55*** 13.43*** 13.65*** 13.76*** 13.98*** 
FE 7.07*** 7.04*** 7.31*** 7.49*** 7.54*** 
PSM NN 11.36*** 11.56*** 11.72*** 12.93*** 12.43*** 
PSM LRM 11.03*** 11.19*** 11.25*** 11.70*** 10.70*** 

Scenario R-H-H 
IV 3.57*** 4.30*** 4.47*** 6.30*** 12.95*** 
MR 13.55*** 14.22*** 14.81*** 15.99*** 16.66*** 
FE 7.07*** 7.48*** 7.67*** 8.39*** 9.13*** 
PSM NN 11.36*** 12.07*** 13.10*** 14.66*** 13.93*** 
PSM LRM 11.03*** 11.59*** 12.12*** 13.14*** 13.06*** 

Scenario H-H-H 
IV 3.57*** 3.37*** 4.70*** 6.83*** 10.83*** 
MR 13.55*** 13.86*** 14.52*** 15.52*** 15.79*** 
FE 7.07*** 7.20*** 6.99*** 7.37*** 8.39*** 
PSM NN 11.36*** 11.93*** 12.35*** 13.92*** 11.56*** 
PSM LRM 11.03*** 11.37*** 11.56*** 12.49*** 12.93*** 

Scenario R-H-L 
IV 3.57*** 5.54*** 6.48*** 10.06*** 12.95*** 
MR 13.55*** 13.82*** 13.12*** 12.87*** 12.37*** 
FE 7.07*** 7.05*** 6.74*** 6.62*** 7.03*** 
PSM NN 11.36*** 11.37*** 11.73*** 11.89*** 9.68*** 
PSM LRM 11.03*** 11.08*** 10.92*** 10.96*** 9.99***  

Scenario H-H-L 
IV 3.57*** 4.66*** 4.70*** 6.83*** 10.83*** 
MR 13.55*** 13.46*** 12.66*** 12.17*** 11.55*** 
FE 7.07*** 6.76*** 6.05*** 5.59*** 6.29*** 
PSM NN 11.36*** 11.52*** 10.99*** 10.65*** 10.01*** 
PSM LRM 11.03*** 10.87*** 9.84*** 10.19*** 9.92*** 
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