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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

Non-premixed combustion is of great importance due to the wide practical applica-

tions such as diesel engines, gas turbines, and industrial furnaces. New areas of application 

continue to emerge, e.g. in direct-injection spark-ignition (DISI) engines, fuel and air enter 

the piston chamber without premixing. Both experimental and modeling research needs 

have only grown larger in recent years. In turbulent combustion modeling, the laminar 

flamelet model plays an important role (Peters 1984). The underlying concept is that the 

reaction zones of a flame are thin and the flow turbulence does not alter its structure from 

the corresponding laminar flames subjected to the same scalar dissipation. As a result, the 

turbulent flame can be modeled as an ensemble of laminar non-premixed flamelets. 

Pre-calculated libraries of quantities such as species composition, temperature and reaction 

rates as functions of mixture fraction and stoichiometric scalar dissipation rate using de-

tailed chemical reaction mechanisms and molecular diffusion formulation are used in the 

description of the chemistry-turbulence interactions. Choosing mixture fraction and scalar 

dissipation as the independent variables is somewhat convenient but often times, not suf-

ficient. The flamelets inside a turbulent flame are inevitably curved due to the influence of 

the turbulent eddies with various sizes. Strong variations of the scalar dissipation across the 
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flamelet, which are likely caused by the coupled effects of local flame curvature and 

molecular preferential diffusion, exist in turbulent flames (Bilger 2000). Therefore, studies 

on the interaction between flame curvature and chemical reaction are needed in addition to 

the flow and chemistry interaction. 

On the other hand, local curvature coupled with preferential diffusion may also lead to 

local extinction and re-ignition that are also important in both turbulent combustion mod-

eling and fire safety. Although evidences of the effects of curvature on flame extinction 

have been reported (Takagi et al. 1996b; Finke and Grünefeld 2000), the previous ex-

perimental work suffers from the fact that the curvature across the flame under investiga-

tion was not constant, which makes the data interpretation ambiguous. An opposed tubular 

burner can overcome this difficulty by producing a flame with uniform curvature. A recent 

study (Hu et al. 2006a; Wang et al. 2006a) showed that the flame surface of the 

non-premixed tubular flame started to develop cellular structures at the highly-stretched, 

near-extinction conditions for fuels with non-unity Lewis number (Lewis number is de-

fined as the ratio of the overall thermal diffusivity and the molecular diffusivity of the 

mixture), which can be attributed to the combined effects of curvature and Lewis number. 

This kind of flame instability is closely related to the extinction and re-ignition in turbulent 

flames and is worth further investigation. 

It is well recognized that many important combustion phenomena are kinetically 

controlled. Reduction of engine development costs, improved predictions of the envi-

ronmental impact of combustion processes, as well as the improved assessment of any 
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industrial process making use of chemical kinetics, are only possible with accurate 

chemical kinetics modeling. One step toward gaining a better understanding of these issues 

is to improve the accuracy of detailed chemical mechanisms. There is constant interest in 

the development of detailed chemical reaction mechanisms. Simultaneous parameter op-

timization targeting experimental data (Smith et al. 2000) is often the standard procedure of 

obtaining a detailed chemical mechanism when the rate constant for each individual reac-

tion is not readily available from the literature. The need for a wide variety of experimental 

data is important. Previously, no experiments on opposed tubular, non-premixed flames 

have been conducted. This omission is part of the motivation that triggered the research 

carried out herein. Detailed, accurate measurement of major species concentration and 

temperature of the non-premixed tubular flames with good spatial resolution would pro-

vide a valuable set of data in optimizing the reaction mechanisms. 

The objectives of this research are: 1) to conduct Raman scattering and laser-induced 

fluorescence measurements of temperature and major species concentrations for opposed 

tubular flames using hydrogen, methane and propane fuels, 2) to compare the measured 

flame structure to simulation results with detailed chemistry and complex molecular 

transport models, and 3) to investigate the extinction and instability characteristics of 

non-premixed tubular flames with different Lewis numbers generated by various fuels and 

diluents. The role of curvature in laminar, non-premixed flames is the main focus 

throughout the study. This work can be beneficial to the understanding of curvature effects 

in turbulent modeling, contribute to the overall research in detailed chemical reaction 
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mechanisms, and improve our knowledge on extinction and stability of non-premixed 

flames. 

 

Background 

In turbulent flame modeling, the laminar flamelet model has been popular among 

many researchers due to its simplicity. The first systematic description was provided by 

(Peters 1984), where the scalar dissipation was introduced as an independent variable to 

include the coupled effects of non-equilibrium and turbulence in non-premixed flames, 

which are not treated in the classical conserved scalar approach. The turbulent flame is 

modeled as an ensemble of laminar non-premixed flamelets, which are represented by 

pre-calculated libraries of quantities such as species composition, temperature and reaction 

rates as functions of mixture fraction and stoichiometric scalar dissipation rate using de-

tailed chemical reaction mechanisms and molecular diffusion formulation. A probabilistic 

description of the occurrence of such structures is assumed in the model. Many contribu-

tions have been made during the course of its maturity, which include the effects of radia-

tive heat transfer (Marracino and Lentini 1997; Coelho et al. 2003), differential diffusion 

(Pitsch and Peters 1998), extinction and reignition (Pitsch et al. 2003) and scalar dissipa-

tion rate fluctuation (Wang and Chen 2005). The flamelet approach has been applied to 

turbulent jet diffusion flames (Haworth et al. 1988; Sanders and Lamers 1994; Pitsch 2000; 

Coelho and Peters 2001), modeling of NO (Heyl and Bockhorn 2001) and soot (Pitsch et al. 

2000) formation, as well as more practical combustion devices like a gas turbine 
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(Riesmeier et al. 2004) and DI diesel engines (Hasse and Peters 2005; Kim et al. 2006). 

Flamelet libraries are often times pre-calculated using laminar opposed-jet flame as 

the model flame, e.g. (Sanders et al. 2000), where the use of mixture fraction and 

stoichiometric scalar dissipation rate as the independent variable may be somewhat justi-

fied because of the planar nature of the flame surface. However, in practical turbulent 

flames, the flame surfaces are almost exclusively curved due to the influence of the tur-

bulent eddies with various sizes, which questions the use of a planar flame model. Strong 

variations of the scalar dissipation across the flamelet, which are likely caused by the 

coupled effects of local flame curvature and molecular preferential diffusion, exist in 

turbulent flames (Bilger 2000). Most recently, the influence of curvature on autoignition 

was studied in a corrugated counter flow mixing field using n-heptane versus air 

(Kortschik et al. 2005). LIF images indicated that elevated concentrations of formaldehyde 

concave toward the air side were in favor of autoignition, which is also confirmed by the 

numerical calculations. Based on the experimental findings, the authors derived an explicit 

flamelet formulation to account for molecular transport normal to the direction of the 

mixture fraction gradient, which is identified as the curvature effects.  

Despite the evidence that curvature effects in turbulent combustion should not be 

neglected (Hilbert et al. 2004), studies of such effects on other aspects of a non-premixed 

flame, e.g. the interaction between flame curvature and chemical reaction, flame structure, 

flame extinction and instability, remain very limited. Contributions in this area are needed 

to aid the overall combustion research. 
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Flame Structure 

How the real elementary chemistry affects the flame structure has been the main focus 

of laminar flame research for three decades (Williams 2000). Extensive experimental, 

theoretical and numerical studies have been devoted to this area. Since the inception of the 

Burke-Schumann flame sheet model (Glassman 1996), considerable theoretical work has 

been done toward better understanding the structure and extinction of the diffusion flames. 

In (Liñán 1974)’s benchmark study on the model problem of opposed-jet combustion using 

large activation energy asymptotics, the characteristic S curve was demonstrated for 

maximum temperature plotted in terms of Damköhler number (ratio of the characteristic 

flow time to the chemical time). From the curve, four regimes were identified, namely 

nearly frozen ignition regime, partial burning regime, premixed flame regime and 

near-equilibrium diffusion controlled regime. The large activation energy asymptotic 

analysis was expanded to study the diffusion flame structure with general Lewis numbers 

(Law and Chung 1982), where effective freestream concentrations were defined. Accord-

ing to the analysis, the system effectively experiences a reduction (increase) in the 

freestream concentration of the corresponding reactant and therefore lower (higher) flame 

temperature if eL  > 1 ( eL  < 1). In a later effort (Cuenot and Poinsot 1996), asymptotic 

solutions for the temperature, mass fractions and velocity profiles as functions of the pas-

sive scalar and scalar dissipation rate were derived for both the infinitely fast chemistry and 

finite rate chemistry cases considering variable Lewis numbers. The Lewis effects were 
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essentially incorporated in the definition of the passive scalar.  

In terms of experimental study, measurement of the velocity, temperature and species 

concentrations presents more detailed information of the flames, and therefore helps to 

identify the key features. Another important aspect of structural study of flames is to fa-

cilitate the development of detailed chemical reaction mechanisms, the benefit of which is 

twofold. On one hand, it serves as a member of the targeting experimental data for opti-

mizing the mechanisms (Smith et al. 2000); on the other hand, it can also be used to test the 

validity of an existing mechanism (Trees et al. 1995).  

Before the emergence of laser based techniques, thermocouples were widely used to 

measure temperature in flames, and the sampling probe method has been the main tech-

nique for species concentration measurement in flames. They are still very useful for 

flames with heavy hydrocarbon molecules or in large systems like engines, furnaces, etc. 

(Fristrom and Westenberg 1965) 

In an early structural study of non-premixed flames (Tsuji and Yamaoka 1969), major 

species concentrations were measured for propane/methane-air flames using a sampling 

probe with gas chromatography in the forward stagnation region of a porous cylinder. A 

substantial amount of oxygen leakage was diagnosed on the fuel side of the flame for 

various fuel injection rates and stagnation velocity gradients. Temperature and velocity 

profiles were also obtained with a thermocouple and the particle tracking technique. Using 

a one-dimensional assumption, they correlated the measured scalar profiles to heat-release 

rate and reaction rate of individual species (Tsuji and Yamaoka 1971). A small valley on 



 

8 

the fuel side of the heat-release-rate profile was attributed to fuel pyrolysis effects. The 

observation of such a phenomenon is only possible with structural studies. The experi-

mental data were used later on in a collaborative effort to test the validity of the similarity 

simplification of the problem as well as the different theoretical solution techniques 

(Dixon-Lewis et al. 1984). Generally good agreement had been reached between the ex-

perimental data and the simulation results. 

Structural studies of laminar two-dimensional methane/air non-premixed flames on a 

Wolfhard-Parker slot burner (Figure 1) were conducted using sampling probe (major spe-

cies), laser absorption (OH and CO), laser-induced fluorescence (O and CH), multiphoton 

ionization (H and CH3) and thermocouple (T) techniques (Norton et al. 1993), where at-

tention was drawn on radical species as well as major stable species. Comparison with the 

numerical simulation of an axisymmetric coflow flame (Smooke et al. 1990) was carried 

out in the mixture fraction frame with matching scalar dissipation rate, where care in de-

fining the mixture fraction and scalar dissipation rate has been taken to legitimize such a 

cross comparison. Good agreement was found for the major radical species OH, H and O, 

while for the hydrocarbon radicals CH and CH3 some disagreement was observed. 

Despite the ability to monitor relatively large amount of species at one time, the 

sampling probe technique generally possesses large uncertainties (>10%), and disturbs the 

flow and combustion process. As a result, the usage of this technique in the study of flame 

structure sees only very limited application. On the other hand, due to its non-intrusive 

nature and high accuracy, more and more studies using laser based diagnostic techniques 
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see more and more applications in flame studies. 

In a recent study  (Smooke et al. 1990), two-dimensional images of major species 

and temperature of a laminar, axisymmetric, methane-air diffusion flame in an unconfined 

coflow burner were obtained using the spontaneous Raman spectroscopy technique. 

Comparison between the experimental data and numerical calculation using a C2 mecha-

nism demonstrated qualitatively good agreement. The importance of the bleaching effects 

of the H radical by hydrocarbon species was very well revealed, and the OH and CO2 

concentration were therefore found to peak only after the disappearance of methane.  

In the one-dimensional, non-premixed flame category, laminar opposed-jet planar 

flames subject to flame stretch due to aerodynamic straining are widely used to study flame 

chemistry due to its relative ease in configuration. They are also used to provide the basic 

elements in the flamelet library. A schematic of the burner is shown in Figure 2, where fuel 

and oxidizer from the opposing nozzles meet and formed a stagnation plane. Laser-based 

measurements of the flame have been reported previously, and these studies generally 

compare their experimental findings with numerical simulations using detailed reaction 

mechanisms and transport data. Studies on hydrogen/nitrogen-air opposed-jet flame were 

conducted previously (Trees et al. 1995; Brown et al. 1997), where UV Raman scattering 

was used in the measurement. Measurements of the major species concentration (H2, O2, 

H2O and N2) were made at two conditions, one close to and the other far from extinction. 

The experimental data effectively validated the numerical model and the 
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Figure 1 Schematic diagram of the Wolfhard-Parker slot burner 
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Figure 2 Schematic of the opposed-jet burner 
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detailed chemical kinetics mechanism employed through the good agreement achieved 

between them. The hydrogen opposed-jet flame was also examined by (Wehrmeyer et al. 

1996) with a focus on the differential diffusion effects. Various fuel dilutions and various 

strain rates were studied to demonstrate this effect.  

Similar effort using visible Raman scattering was carried out on methane (Sung et al. 

1995) flames in the opposed-jet burner. After validation of the numerical model and reac-

tion mechanisms, the authors then used the computational tool to examine the structural 

response of diffusion flames to strain rate variations. According to their findings, diffusion 

flame thickness scales inversely with the square root of strain rate, while deviation from 

this scaling was found at the near-extinction conditions. A secondary heat-release peak on 

the oxidizer side was found in methane-air flames and the key reaction responsible for it 

was identified. Special focus was put on the endothermic heat absorption on the oxidizer 

side. It was found that the small dent on the heat-release profile (Tsuji and Yamaoka 1971) 

can be suppressed by increasing the stoichiometric mixture fraction of the system, and the 

mechanism leading to this was also discussed.  

The opposed-jet configurations eliminate the effects of flame curvature, thereby re-

ducing the effects of nonunity Lewis number. Such studies were focused mainly on the 

Damköhler number effects. To study the curvature effects, the toroidal vortices formed 

outside a hydrogen-air jet diffusion flame surface were investigated numerically with de-

tailed chemistry and transport data (Katta et al. 1994; Katta and Roquemore 1995). Non-

unity Lewis number was found to be responsible for the increased (decreased) flame 
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temperature in the bulging (squeezing) section of the flame. The flame curvature was ar-

gued to be partially responsible for the effect on flame temperature when coupled with the 

preferential diffusion effects. The vortex-induced stretching/compressing effect was fur-

ther investigated in another study (Katta and Roquemore 1995). By introducing the vor-

tices from either the fuel or the air side, hydrogen-air diffusion flames with opposite 

stretching effects were formed. The flame temperature was found to increase when flame 

was compressed by the air-side vortex or stretched by the fuel-side vortex. It was pointed 

out that curvature coupled with preferential diffusion was accountable for this phenome-

non. 

Although studies on the jet diffusion flame offers insights into the effects of 

non-uniform flow field and flame curvature, which in turn amplify the effects of nonunity 

Lewis number, it is difficult to isolate each of them. Detailed structural measurement from 

the experimental point of view has also been shown to be difficult due to the intrinsic os-

cillation induced by buoyancy. Although the important features of the non-premixed 

flames related to flame stretch can be very well investigated using the opposed-jet burner, 

it inevitably lacks the capability of studying curvature-related flame phenomena. Opposed 

tubular flames can overcome all the above difficulties without losing the simplicity of the 

flow. A schematic of the burner is shown in Figure 3. The important features of the opposed 

tubular burner can be summarized as: 1) Curvature is de-coupled from flame stretch in the 

sense that their directions are orthogonal to each other. 2) Curvature throughout the flame 

front is uniform because the diameter of the flame tube is constant at a given condition. 3) 
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The flow field is simple and all quantities can be described as functions of radial location 

only, which is preferred by both experimentalists and modelers. 4) Both concave and 

convex curvature can be easily established under well-controlled conditions. Such flames 

deserve more attention and are the main focus of this study. 

 

Extinction 

Flame extinction is important for both turbulent combustion (Williams 2000) and fire 

safety (Williams 1981). Based on the mechanism, extinction of non-premixed flame can be 

roughly categorized into four different types (Williams 2000). Due to increase of the ve-

locity gradient at the vicinity of the flame surface, the residence time of the reactants is 

decreased and extinction in this manner can be called extinction by strain. In non-premixed 

combustion, excessive dilution of one of the reactants can increase the chemical reaction 

time and ultimately lead to extinction, which can be called extinction by dilution. In some 

cases, where the flame surface is pushed very close to a non-adiabatic wall, heat loss starts 

to prevail and flame temperature decreases. As a consequence, the chemical reaction time 

decreases and eventually leads to extinction, which can be called extinction by convective 

heat transfer. Under certain conditions, e.g. opposed-jet flame at low strain rate and with 

the absence of buoyancy, the flame thickness becomes large, and radiative heat loss from 

the large high temperature zone starts to dominate. Similar to that of the convective heat 

losses, the decrease in flame temperature reduces the chemical reaction time and produces 

extinction by radiation. The review here is focused on the first two types of extinction.  
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Figure 3 Schematic of the opposed tubular burner 
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The counterflow diffusion flame in the forward stagnation region of a porous cylinder 

immersed in a uniform air stream was one of the earliest studies on the extinction of 

non-premixed flames (Tsuji and Yamaoka 1966). The existence of a critical stagnation 

velocity gradient (i.e. strain rate), beyond which the flame can never be established, was 

reported. It was argued that the chemical limitation on the combustion rate in the flame 

zone was responsible for flame extinction at the critical stagnation velocity gradient. A 

more comprehensive study (Ishizuka and Tsuji 1981) using the same type of burner was 

carried out later on, where the blow-off limit in terms of either the critical fuel or the 

critical oxygen concentration was reported. It was concluded that the controlling factor for 

the non-premixed flame under limiting conditions is the limit flame temperature. A striped 

pattern, which is commonly described as cellular instability, was observed for flames es-

tablished by hydrogen-nitrogen against air, where the flame resided in the oxidizer side of 

the stagnation point. The authors attributed this phenomenon to the preferential diffusion 

of H2 relative to O2 and claimed that it closely resembled a similar discovery in premixed 

flames. A detailed review of the extinction study on flames generated by this type of burner 

was given by Tsuji (Tsuji 1982). A study focused on the effect of air preheating and dilution 

of one of the reactants on the critical strain rate using the Tsuji-type burner was reported 

recently (Riechelmann et al. 2002). The critical strain rates of methane-air flame with ei-

ther fuel or air diluted with various inert diluents were presented for air preheated to 

temperature as high as 1500 K. They found flame extinction always occurs at a finite strain 

rate even though the air temperature was raised well above the auto-ignition temperature. 
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There are many extinction measurements of non-premixed flames utilizing op-

posed-jet burners. Two opposing jets with fine screens installed at the exits were employed 

to study the extinction of diffusion flames burning nitrogen diluted methane and propane 

against diluted air (Puri and Seshadri 1986). Data were made available for the extinction 

limits in both the limiting fuel concentration and limiting oxidizer concentration cases. A 

set of experiments (Chen and Sohrab 1991) were performed to determine the critical 

minimum values of the fuel (oxidizer) concentrations at extinction for different values of 

the oxidizer (fuel) concentrations and various jet velocities in the opposed-jet burner using 

methane or butane mixed in nitrogen burning against oxygen/nitrogen. A comprehensive 

study (Pellett et al. 1998) on the strain-induced extinction of H2/N2-air flames using op-

posed-jet burners with both convergent and straight-tube nozzles of various sizes was 

performed. Extinction strain rate was measured for different fuel dilution ratios and 

compared with numerical simulations. Experiments in both microgravity (Maruta et al. 

1998) and normal gravity (Bundy et al. 2003) conditions have also shown that the extinc-

tion strain rate of the counterflow non-premixed diffusion flames are double-valued, i.e. 

two kinds of extinction exist at a given fuel concentration. Radiative heat loss was re-

sponsible for the flame extinction at low strain rate. The study on the extinction of coun-

terflowing non-premixed flame in a high pressure environment (Law 1988b; Sato 1991) 

revealed the pressure dependence of the extinction stretch rate for various fuels burning 

against air. The extinction stretch rate of methane was found to be constant at pressures 

below 2 MPa, beyond which its value decreases with pressure. The experimental results 
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were then used to extract the pressure exponent characterizing the dependence of the 

so-called apparent flame strength on pressure.  

The theoretical study on the extinction of the diffusion flames was first carried out 

using large activation energy asymptotics (Liñán 1974). The tangent at the upper branch of 

the characteristic S-curve represents the extinction condition. The critical Damköhler 

number was expressed explicitly as a function of the initial conditions and the activation 

energy. Additional theoretical work (Krishnamurthy et al. 1976) removed some of the re-

strictive approximations in Liñán’s original work, which include the requirement on dif-

fusion-flame regime by introducing a corresponding correction in the calculation proce-

dure, the assumption of constant density by using ideal-gas law with constant pressure, and 

the assumption of constant transport coefficients by introducing temperature dependant 

values. An extinction criterion was derived and summarized (Williams 1981). The large 

activation energy asymptotic analysis was further extended to diffusion flame extinction 

with radiative heat loss (Sohrab et al. 1982) and general Lewis numbers (Chung and Law 

1983; Kim and Williams 1997). In all these studies, the extinction criterion are all of the 

same form as that of (Liñán 1974) with the only difference being the appropriate correction 

coefficients. A quantitative comparison of the extinction limit between the theoretical 

prediction and experiment was put forth by (Chen and Sohrab 1991). Despite the as-

sumption of a one-step overall irreversible reaction, reasonable agreement was achieved. 

The calculated extinction limits of either fuel or oxidizer with non-unity Lewis numbers 

suggested that the molecular diffusivity of the deficient component had substantial effects 
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when the stretch rates were very small. 

Numerical investigation of the extinction of diffusion flames with detailed chemistry 

started in the 1980’s. An extinction prediction on the Tsuji type burner using complex 

chemistry and detailed formulation of the transport fluxes was performed through the 

collaborated efforts of five research groups (Dixon-Lewis et al. 1984). Extinction strain 

rate was predicted and compared well with the measured values of (Tsuji and Yamaoka 

1969; Tsuji 1982), where thermal quenching effects were minimal. The use of extinction 

scalar dissipation rate defined at the stoichiometric mixture fraction to characterize the 

general flame quenching situations in turbulent combustion was enforced by their calcu-

lation. An opposed-jet methanol-air diffusion flame was studied using different reaction 

mechanisms (Seshadri et al. 1989). The key reactions responsible for extinction were 

identified through comparisons of the reaction rates at near-extinction conditions; the rate 

coefficients of which were found to greatly affect the calculated extinction stretch rate. The 

influence of boundary conditions on the prediction of the extinction of the meth-

ane-air-nitrogen opposed-jet diffusion flames was studied numerically (Chelliah et al. 

1990). Comparing with experimental results, the authors demonstrated that the perform-

ance of most counterflow burners was more closely described by imposing the plug-flow 

boundary condition rather than the potential-flow condition. The importance of the tem-

perature of the oxidizer stream on extinction of strained hydrogen-air diffusion flames was 

numerically investigated with detailed chemistry (Darabiha and Candel 1992). They 

showed the existence of a critical initial temperature of the oxidizer stream beyond which 
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flame extinction does not occur. The validity of the fast chemistry assumption in the as-

ymptotics analysis at near-extinction conditions was confirmed by the calculation. 

Despite the extent in experimental and numerical studies on the opposed-jet, 

non-premixed flames, efforts using opposed tubular burner are yet to be made. Such 

investigations are needed to understand how curvature affects flame extinction. 

 

Instability 

Flames at near extinction conditions often exhibit instability, which leads to cellular 

structure and/or oscillation. Cellular instability of non-premixed flames have been reported 

by several researchers using various types of burners. One of the earliest studies was re-

ported by (Dongworth and Melvin 1976), where a Wolfhard-Parker burner was used. 

Flames produced by hydrogen/nitrogen-air exhibited cellular structure at a certain fuel 

dilution ratio. The authors postulated that inter-lancing of non-premixed stream and pre-

mixed stream of fuel and oxidizer through inter-stream diffusion at the flame base pro-

duced non-uniform distribution of fuel at the flame base, and were therefore responsible 

for the occurrence of cellularity, although the factors determining the size of the cells was 

not clearly identified. Cellular instability and flame extinction using a slot-jet burner were 

systematically studied by (Chen et al. 1992), where hydrogen, methane and propane di-

luted with a variety of inert diluents were used. Based on the experimental result, they 

proposed that a near-extinction condition and sufficiently low Lewis number of the defi-
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cient reactant stream ( eL  ≤ 0.8) were the two requirements for flame to exhibit cellular 

instability. The Lewis number (diffusive-thermal) effect in a manner similar to that of 

premixed flames was argued to be the driving force instead of the effects of preferential 

diffusion. The diffusive-thermal instability of non-premixed flames was further investi-

gated in a counterflow slot jet burner at low Lewis number (Kaiser et al. 2000). Tube-like 

flames generated by the balance between flame weakening due to strain and intensification 

due to curvature was reported for the H2/N2-air flames. Flame tubes of various states were 

observed under various flow configurations. 

Theoretical work on the diffusional-thermal instability of diffusion flames was first 

done by (Kim et al. 1996), where activation-energy asymptotics was applied to the model 

of a one-dimensional convective diffusion flame. Attention was focused on striped patterns 

formed in near-extinction flames with Lewis numbers less than unity, under which condi-

tions the reactants with high diffusivity diffuse into the strong segments of the reaction 

sheet, and the regions in between become deficient in reactant and are subject to local 

quenching that leads to the striped patterns. According to the analysis, the cell or stripe 

sizes are of the same order with the size of the convective-diffusive zone. An explicit 

equation on calculating the characteristic size was postulated, and the estimated values 

correspond well with the early experiments (Dongworth and Melvin 1976; Ishizuka and 

Tsuji 1981; Chen et al. 1992). 

The above theory on the diffusional-thermal instability was expanded and generalized 

by a series of subsequent studies (Kim 1997; Kim and Lee 1999). The analysis demon-
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strated that besides the possibility of cellular instability for Lewis numbers less than unity, 

pulsating instability is possible for Lewis numbers much greater than unity (Kim 1997). An 

effective Lewis number was introduced to facilitate the study of the effects of unequal 

Lewis numbers for fuel and oxidizer, the threshold of which was obtained for both large 

and small Lewis number cases (Kim and Lee 1999). A traveling instability was also pro-

posed to occur in a small range of Lewis numbers, and oscillating instability were found to 

be accessible only for flames burning heavy hydrocarbon fuels or diluted by extremely 

light inert gases. The nonlinear dynamics of striped diffusion flames is investigated nu-

merically in (Lee and Kim 2000; 2002), where the extension of the flammability limit 

beyond the static extinction condition of a one-dimensional flame was discovered in the 

former and transition Damköhler numbers between different striped patterns were calcu-

lated in the later. 

 

Curvature Effects 

While research on extinction of the non-premixed flames subject to the effects of 

flame stretch and non-unity Lewis number abounds, experimental studies on the effects of 

curvature are less numerous. This is mainly because of the difficulties in establishing a 

simple geometry that will allow detailed investigations. However, the importance of the 

curvature effects is not to be neglected. In turbulent combustion, the strained flamelet may 

have concave or convex curvature and may be affected by preferential diffusion when the 

Lewis number is substantially different from unity (Takagi et al. 1996b). Despite the dif-
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ficulties, efforts, including studies on the tip-opening of Burke-Schumann flames and 

perturbed opposed-jet flames, have been made to investigate the curvature effects on 

mainly flame extinction.  

Experiments on the tip-opening (flame extinction at the tip) of Burke-Schumann 

diffusion flames were conducted by Ishizuka et al. (Ishizuka 1982; Ishizuka and Sakai 

1986), where flames generated by H2/C3H8 diluted with He, N2, Ar, CO2 and H2/CH4 di-

luted with N2 burning against air were investigated separately. Both studies concluded that 

while preferential diffusion was the dominant factor of causing the tip-opening, strong 

flame curvature also made some contribution. Cellular structures similar to that of 

(Dongworth and Melvin 1976) were observed at the flame base for fuel dilution ratio 

within certain ranges. Subsequent numerical investigation of this flame, taking into ac-

count detailed chemical kinetics and multicomponent diffusion confirmed the role of 

preferential diffusion on the tip-opening phenomenon (Takagi and Xu 1996). The effect of 

curvature was argued to have minor effects of the overall flame temperature distribution in 

this flame (Takagi et al. 1996a). A combined theoretical and experimental study (Im et al. 

1990) on the tip-opening phenomenon was conducted later. According to asymptotic 

analysis of the flame structure in the tip region, they discovered that increasing the extent 

of flame curvature (reducing the radii of curvature) enhanced the burning intensity for 

unity Lewis number flames through the Damköhler number influence (longer residence 

time). As a result, tip opening can only be achieved by using a fuel mixture of Lewis 

number less than unity when the Lewis number effect overrides the flame intensifying 
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effect due to the tip curvature. Their experiments on diffusion flames using 

H2/N2/CO2-O2/N2 ( eL  < 1) as reactants supported their arguments of the sub-unity Lewis 

number case, but explanation of the near-unity Lewis number case using experiments with 

C2H2/N2-O2/N2 ( eL  ≈ 1) mixture was questionable. 

Experiments on the transient interaction between a vortex and a strained diffusion 

flame were first conducted by (Rolon et al. 1995). using a nozzle-type opposed-jet flame 

perturbed by a cylindrical tube installed along the axis of one of the nozzles. They dis-

covered local extinction in the perturbed flame and suggested that the unsteady extinction 

strain rate was greater than the steady state extinction strain rate due to flame stretch alone. 

Similar experiments using hydrogen/nitrogen-air was carried out by Takagi et al., where 

the flame was perturbed by a steadily impinging micro jet (Takagi et al. 1996b). The ex-

periments found out that when the micro jet issues fuel from the fuel side (concave cur-

vature), the flame is easily quenched along the axis of symmetry locally, but the flame 

strained from the air side (convex curvature) hardly extinguishes. Their laser Rayleigh 

scattering measurement detected higher flame temperature in the later case. Together with 

numerical simulation, they argued that these phenomenon were the result of flame curva-

ture in relation to preferential diffusion, where hydrogen fuel is more diluted by nitrogen in 

the first case and more concentrated in the second case than the original fuel concentration 

without impinging jet. The same experimental setup was used later to study the transient 

local extinction and re-ignition behavior with a transient impinging micro jet (Yoshida and 

Takagi 1998). The flame can survive under very high local stretch when micro jet impinges 
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from the air side where the steady flame cannot exist. Re-ignition was observed and the 

flame temperature was discovered to be significantly higher than that of the original flame. 

All these behaviors were attributed to the combined effects of preferential diffusion and 

flame curvature. 

Two types of transient flame extinction patterns, namely point quenching and annular 

quenching were reported in a OH LIF and numerical study of interaction of the transient 

vortex and opposed-jet flame of hydrogen/nitrogen-air (Katta et al. 1998). The point 

quenching pattern was discovered when the vortex was traveling fast toward the flame 

surface, and annular quenching when the vortex was traveling slow. The combined effects 

of preferential diffusion and flame curvature were argued to be the reason of the annular 

quenching, although this was contrary to other researchers discovery that convex curvature 

would increase the flame intensity for hydrogen-air flame. Similar annular quenching was 

observed by separate experiments using simultaneous PLIF/PIV to investigate vortex in-

duced extinction in H2-air counterflow diffusion flames (Thevenin et al. 2000; Meyer et al. 

2004), where OH PLIF images of high temporal resolution were obtained. From the PIV 

data, velocity gradient normal to the flame surface across the centerline and the annulus 

was compared. The result indicated that the local strain rate may not be the controlling 

parameter in the initiation of the annular extinction. An assessment of the radii of curvature 

at the two locations by the authors demonstrated that curvature induced fuel-rich condition 

was responsible for the onset of the annular extinction. However, this argument was again 

contradictory to other studies (e.g. Takagi et al.). 
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A curved diffusion flame established in the wake of a bluff-body in an opposed jet 

burner was studied in a attempt to separate the influence of flame stretch and curvature 

(Finke and Grünefeld 2000). Despite the non-uniform curvature at the flame front, the 

authors inferred the radius of curvature from the OH LIF images of the flames, and flame 

extinction limits of H2/N2-O2/N2, D2/N2-O2/N2 or H2/He-O2/He mixture as a function of the 

radius of curvature and fuel-oxidizer concentration were presented. For H2/N2-O2/N2 flame, 

two kinds of extinction phenomena were observed, global extinction when flame was 

concave toward the oxidizer stream and local annular extinction when convex. In both 

cases, the limiting O2 concentration was found decreasing with increasing radius of cur-

vature. While for the convex flame case this was reasonable since the curvature was ex-

pected to weaken the flame through preferential diffusion, the authors argued that the strain 

rate increase in the concave flame case over-compensated the flame strengthening due to 

curvature. Additional experiments using either D2 as the fuel or He as the diluent exhibited 

smaller separation of limiting O2 concentration between convex and concave curved 

flames, which supporting the argument that preferential diffusion combined with curvature 

was the dominating factor concerning the extinction behavior. Study by (Santoro and 

Gomez 2002) using methanol found that extinction required vortices of larger circulation if 

generated from the oxidizer side comparing to the fuel side. This was attributed to the 

stretching of the vortex approaching the stagnation plane. 

A recent study (Lee et al. 2000) using direct numerical simulations of opposed-jet 

H2-air diffusion flame-vortex interactions supported the observations by Takagi et al. that 
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is, when the reaction zone is convex towards the air stream, the flame weakens and ex-

tinguishes locally in some cases; when the opposite curvature is produced, a region of 

increased reactivity is observed. It was further shown that depending on the direction of the 

curvature, the flame may either extinguish locally at a scalar dissipation rate smaller than 

or intensify to produce higher temperature at a scalar dissipation rate larger than that of the 

corresponding steady, one-dimensional flat diffusion flame, i.e. the common use of a single 

extinction scalar dissipation rate in turbulent diffusion flame simulations are questionable. 

In summary, curvature has only minor effects on the tip-opening of the 

Burke-Schumann flame, where the effects of preferential diffusion dominants. In the 

flame/vortex interaction, curvature plays a more important role, but studies were qualita-

tive in nature and focused more on the extinction phenomena due to the non-uniform 

curvature along the flame surface and the transient nature of the problem under investiga-

tion in some cases. On the contrary, opposed tubular flames have the advantages to allow 

more detailed quantitative study of non-premixed flame subject to the influences of both 

uniform stretch and uniform curvature, and therefore deserve more attention. 

 

Tubular Flame 

Due to its relative simplicity, the tubular premixed flame was first introduced more 

than three decades ago. In (Ishizuka 1984) work, the tubular flame was established in a 

swirl type burner with a rotating flow field, in which fuel/air mixture was ejected tangen-

tially from an inlet slit into the combustion chamber. Combustion products were ejected 
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from the two ends of the burner, and therefore the tubular-shaped flame was stretched 

along the axis of rotation. Tubular premixed flames of lean hydrogen/air and methane/air 

with uniform flame fronts were successfully established, while much difficulty was met 

when trying to produce a lean propane/air flame with uniform flame front due to the Lewis 

number effect. This effect was further elaborated in a subsequent study (Ishizuka 1989), 

where rich mixtures of methane/air and propane/air were investigated. It was discovered 

that these two mixtures behaved oppositely in terms of the uniformity of the flame front. In 

addition, different types of flame regions formed in the swirl type burner were mapped 

based on the injection velocity and equivalence ratio. Structural measurement of lean 

methane/air flame on the swirl type burner was conducted using thermocouple and sam-

pling probe with gas chromatography (Sakai and Ishizuka 1991). It was shown that the 

combustion field was separated by the luminous flame zone into two regions: an outer 

unburned gas region and an inner burned gas region. The flame structure at large diameters 

was very similar to that of planar premixed flame. However, as the extinction limit was 

approached, the effects of curvature and incomplete reaction were responsible for flame 

extinction. A review of the tubular premixed flames was put forth by (Ishizuka 1993), 

where the effects of Lewis number and various patterns of instability were summarized. A 

new concept to describe the turbulent combustion as an ensemble of tubular flamelets was 

discussed. The effects of rotation on the stability and structure of the tubular flame was 

investigated experimentally using OH laser-induced fluorescence technique (Yamamoto et 

al. 1994). According to the experiment, radial OH concentration took different shapes 
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when the intensity of rotation was varied and the lean concentration limit was decreased 

with increasing rotation intensity. The enhanced stability by rotation was attributed to a 

mechanism like the excess enthalpy flame. 

A tubular premixed flame formed by mixtures ejected from the radially, inwardly 

converging nozzle was first investigated by (Kobayashi and Kitano 1989). Extinction 

limits of methane/air and propane/air mixtures with a wide range of equivalence ratios 

were measured and compared with the counterflow flame results. The extinction diameter 

was also measured at various equivalence ratios for both fuel types. The difference in the 

extinction limits was explained by the authors in terms of the Lewis number effects on the 

flame temperature and preferential diffusion effects on the reactant concentration. Flame 

curvature was shown to enlarge the former two effects. The flow fields of the stretched 

cylindrical premixed flame and the counterflow twin flame were measured with 

stoichiometric methane/air mixtures using LDV technique (Kobayashi and Kitano 1991), 

where quantitative comparison for the two types of flames was made. The combined ef-

fects of flame stretch and curvature were shown to be responsible for the lower velocity 

gradient of the cylindrical flame at extinction than that of the twin flames. 

Non-intrusive laser diagnostics in the premixed tubular flames were not conducted 

until recently (Mosbacher et al. 2002), when lean hydrogen/air flames (Φ=0.175) at various 

stretch rates were studied. Temperature and major species concentration profiles with high 

resolution were obtained using the laser-induced Raman scattering technique in a unique, 

optical accessible tubular burner. The measured results were compared to the numerical 
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prediction with detailed reaction mechanisms and transport formulation. Good agreement 

was found at lower stretch rates, while the discrepancy at high stretch rates was attributed 

to the effects of turbulence. Measurement of tubular hydrocarbon premixed flames using 

the laser-induced Raman scattering technique was conducted later by (Hu et al. 2006b). 

With careful arrangement of the injection flow, the burner was able to operate at higher 

flow rate without the contamination of the turbulence. The hydrogen flame experiments 

with Φ=0.175 were repeated and a condition closer to extinction limit (Φ=0.152) was 

measured as well. Comparison between experimental data and numerical prediction 

demonstrated good agreement, which validated the performance of the tubular burner as 

well as the numerical model. Temperature and major species concentration distributions of 

methane/air and propane/air premixed flame were measured subsequently and compared 

with numerical simulation using detailed chemical reaction mechanism. The effects of 

curvature were discussed based on the peak flame temperature comparison of tubular 

flames and opposed-jet planar flames. 

Theoretical study on tubular premixed flames started with activation energy asymp-

totics (Mikolaitis 1984a; 1984b), where it was concluded that the flame curvature can only 

amplify the effects of stretch on flame speed and cannot affect the flame speed in a 

non-stretched situation. The effects of Lewis number on the tubular flame extinction was 

also studied using activation energy asymptotics (Takeno et al. 1986). The flame tem-

perature at extinction was found to decrease with increasing Lewis number and was greater 
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than the adiabatic flame temperature when eL  < 1. The extinction behavior of the tubular 

flame was different from that of the planar flame due to the effects of curvature, which 

provides the increased cooling. The influence of variable density (Nishioka and Takeno 

1988) and heat loss (Kitano et al. 1989) was studied with special interest on the extinction 

behavior. Activation energy asymptotics was also used in (Libby et al. 1989) to analyze the 

structure and extinction characteristics of a premixed flame in a right circular cylinder 

enclosing a stretching vortex line. It was shown that the circulation motion did not influ-

ence the flame structure, but the stretch of the vortex affected the structure and extinction 

of the flame. An analytic solution of the flow field of the tubular flames was obtained in a 

recent study (Wang et al. 2006b) to show that the stretch rate of the tubular premixed flame 

was better represented by πV/R, where V is the exit velocity and R is the radius of the 

nozzle. This study provided a viable way to draw comparisons between tubular flames and 

flames of other geometry, where the flames are characterized by a single parameter. 

Numerical simulation of the tubular premixed flames with the use of complex 

chemistry and detailed transport formulation was conducted as a collaborating effort to test 

the model and the detailed mechanisms (Dixon-Lewis et al. 1990). The computed extinc-

tion limit for the stoichiometric methane-air flame was more sensitive to the details of the 

reaction kinetic scheme than the flame diameter. The numerical calculation was used to 

predict the extinction limit of methane/air and propane/air flame (Smooke and Giovangigli 

1990) and compared with the experimental data of (Kobayashi and Kitano 1989). Excellent 

agreement was obtained between the calculated and measured results, although significant 
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difference was found when the tubular flame results were compared with the correspond-

ing twin counterflow flames. The effects of varying circumferential velocity was investi-

gated for a tubular methane-air mixture formed in a stretched vortex flow (Yamamoto et al. 

1996). With increased circumferential velocity, the concentration of the lighter (heavier) 

species in the center increased (decreased), which resulted in changes in reaction rates and 

flame temperature. The authors attributed this phenomenon to the pressure gradient due to 

the pressure drop near the center induced by the rotation, which yielded the mass transport 

by the pressure diffusion. The effects of curvature on a tubular methane/air premixed flame 

was studied with detailed chemistry under weakly stretched conditions near lean extinction 

limit (Ju et al. 1998). Extinction under this condition was induced by radiation heat loss. It 

was found that flame curvature can extend this extinction limit.  

Early tubular non-premixed flames were investigated by Tsuji et al. in a series of 

studies on flames generated by in the forward stagnation region of a porous cylindrical 

burner opposed to a uniform oxidizer stream (Tsuji and Yamaoka 1967; 1969; 1971; Tsuji 

1982). Tubular partially-premixed flames were also studied by the same group (Yamaoka 

and Tsuji 1977; Tsuji and Yamaoka 1982). Despite the great achievement on the under-

standing of the counterflow diffusion flames from these researches, the curvature effects 

were generally neglected due in part to the large tube diameters used. In order for curvature 

to dominant or at least have the same order of effects as others, the radius of curvature of 

the opposed tubular flame needs to be small. An opposed tubular burner has to be used. 

Time Scale Analysis 
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A time scale analysis can provide practical guidance in experimental considerations 

and is carried out in this section. Damköhler number defined as the ratio of the character-

istic flow time over chemical reaction time (Williams 1985) is often used in the discussion 

of the flow/reaction interaction. Damköhler numbers of the first and second kind are 

chflID ττ= ,    chdfIID ττ=           (1.1) 

where flτ , dfτ  and chτ  are characteristic flow, diffusion and chemical times, respectively. 

In opposed tubular flames, flow time, flτ  can be estimated as ( ) ( )OF VVRR +− /12 . While 

the overall diffusion time can be given as ( ) ατ 2
12 RRdf −= , diffusion time due to radius 

of curvature is better evaluated by ατ 2
, fcvdf R=  where subscript f  denotes flame loca-

tion. The chemical time can be obtained from the premixed flame analogy, i.e. the prop-

erties of a stoichiometric mixture of the fuel and oxidizer at the same pressure and initial 

temperature, through this relation 2
Lch Sατ =  where the laminar burning velocity LS  can 

be very well determined via simulation means. The effects of buoyancy can be represented 

by the characteristic buoyancy time defined as byby Ud=τ  where ( )[ ] 2121ρρΔ= gdU by . 

Because 1≈Δ ρρ  for flames, the expression for the characteristic buoyancy time re-

duces to ( ) 21gdby =τ . The Froude number, which represents the relative intensity of the 

forced and buoyancy induced flow, can be calculated as ( )2flbyFr ττ= . Large Froude 

number indicates the flame is momentum-controlled, in other words, the buoyancy effect is 

unimportant. For optically thin radiation, the characteristic radiation time can be estimated 

by ( )[ ] ( )[ ]{ }4441 ∞−−= TTaP fPrd σγγτ  where ∞T  is the ambient temperature. 

For the near extinction flames studied in Chapter IV, two sets of time scales evaluated 
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using the above expressions are shown in Table 1, one for the 15% H2/N2-air flame and one 

for the 26% CH4/N2-air flame. For the hydrogen flame, the k = 60 s-1 case is selected where 

048.0=LS  m/s calculated from PREMIX program of the Chemkin package, 1200≈fT  

K, 21.0=OV  m/s and 19.0=FV  m/s. For the methane flame, the k = 166 s-1 case is se-

lected where 094.0=LS  m/s, 1770≈fT  K, 58.0=OV  m/s and 52.0=FV  m/s. In 

both cases, 4100.1 −×≈α  m2/s, 8.0=Pa  m-1, 015.02 =R  m, 003.01 =R  m, 35.1≈γ , 

300≈∞T  K, 1=P  atm and 0065.0=fR  m. 

 

Table 1 Time scales for k = 60 s-1, 15% H2/N2-air and k = 166 s-1, 26% CH4/N2-air 
opposed tubular flames (time scales given in seconds) 

Time Scale H2/N2-air CH4/N2-air 

Chemical time ( chτ ) 0.043 0.011 

Flow time ( flτ ) 0.030 0.011 

Diffusion time ( cvdf ,τ ) 0.423 0.423 

Buoyancy time ( byτ ) 0.055 0.055 

Radiation time ( rdτ ) 1.043 0.22 

ID  0.698 1 

IID  9.84 38.5 

Fr  3.36 25 

Several observations can be made on the basis of these estimates: 

1. The flame and flow interaction is important for these flames because chτ  is on 

the same order of flτ . 
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2. The buoyant convection is important for flames at low stretch rate conditions 

where Fr  is close to unity and negligible for flames with high stretch rates 

where 1>>Fr . 

3. Curvature has only secondary effect on these flames because ckcvdf ττ >, . To have 

a dominant curvature effects, the curvature induced diffusion time needs to be 

reduced, which means tubular flames with small radius of curvature is preferred.  

4. Radiation effects are negligible for flames with moderate or high stretch rates 

because ckrd ττ >> . 

The main focus of this study is the effects of curvature on flames. From the above 

observations, the following should be considered: 

1. The chemical time needs to be increased to promote the effects of curvature on 

tubular flames. This can be done by increasing the fuel dilution ratio and/or di-

luting the oxidizer stream. 

2. The flow time can not be increased to much higher than that of the hydrogen case 

in Table 1, because otherwise the buoyancy effect will complicate the flow con-

dition. The flow velocities at the nozzle boundaries are recommended to be 

greater than 0.20 m/s. 

3. The radius of curvature is restricted by the size of the inner nozzle, and the cur-

vature induced diffusion time cannot be reduced by much. An alternative way to 

study the curvature effects is to conduct a cross-comparison by keeping the flow 

time constant and change the diffusion time by changing the radius of curvature. 
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Organization 

In pursuit of the research goals, Chapter II gives a brief background theory of the 

spontaneous Raman scattering technique together with the visible Raman scattering system 

utilized in this study, which includes a frequency-doubled Nd:YAG laser, a light delivering 

and collection system, a spectrometer and a data acquisition system. The calibration pro-

cedure for the Raman spectroscopy is described subsequently. A discussion of the uncer-

tainty evaluation is also given. 

Chapter III shows the experimental and simulation results of tubular non-premixed 

flames of nitrogen diluted hydrogen versus air. Temperature and major species concentra-

tion profiles of non-premixed tubular concave flames (15% H2/N2 vs. air) with stretch rates 

ranging from k = 30 to 242 s-1 are measured using Raman spectroscopy and compared with 

numerical simulation. Flame extinction and flame instability at the near extinction condi-

tions are investigated in a first attempt. The effects of curvature on non-premixed flames 

are discussed. 

In Chapter IV, structural measurements of hydrocarbon flames are conducted using 

the laser-induced Raman scattering method. Temperature and major species concentrations 

are recorded for flames produced by 30% CH4/N2 and 15% C3H8/N2 burning against air. 

Numerical simulations of these flames with detailed chemistry produce good agreement 

between the measured and simulated results. The effects of curvature are further revealed 

by comparing the numerical results of the tubular flames with those of the opposed-jet 
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planar flames. 

In Chapter V, extinction of the opposed tubular flames generated by burning in-

ert-gases-diluted H2, CH4 or C3H8 with air is investigated for both concave and convex 

curved cases. Data are made available in terms of the initial mixture strength at various 

stretch rates. N2, He, Ar or CO2 diluent is used. The onset conditions of the cellular insta-

bility are recorded. The effects of curvature on both flame extinction and cellularity are 

further discussed. Finally, the conclusions and future work are summarized in Chapter VI. 
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CHAPTER II 

 

EXPERIMENTAL SYSTEMS AND CALIBRATION 

 

Raman Scattering System 

 

Background Theory 

Raman scattering is widely applied in combustion diagnostics (Eckbreth 1996). La-

sers generating visible and ultraviolet light are typically employed. Raman scattering is the 

inelastic scattering of light from molecules and is instantaneous in nature. If a molecule 

gains energy from the incident light, the resulting lower frequency shift is termed Stokes 

Raman scattering; the opposite is termed anti-Stokes Raman scattering. An elastic scat-

tering process, i.e. no energy exchange between the molecule and light, is termed Rayleigh 

scattering. Depending on the nature of the energy exchange between the light and the 

molecules, Raman scattering can also be termed rotational or vibrational. Pure rotational 

Raman scattering ( 0=Δv ) is not widely used for combustion diagnostics due to its small 

frequency shifts, which makes interpretation difficult. In vibrational Raman scattering 

( 1±=Δv ), each shift component is associated with three rotational branches: Q( 0=ΔJ ), 

O( 2−=ΔJ ) and S( 2+=ΔJ ), which are normally not resolved. As a result, vibrational 

Raman scattering is often termed vibrational-rotational Raman scattering. The frequency 

shift of vibrational Raman depends on the vibrational frequency of the molecule and 
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therefore is species specific, contrary to the Rayleigh scattering. This feature renders 

Raman scattering well suited for combustion diagnostics. 

The three light scattering processes are shown in Figure 4, where the thickness of the 

arrows represents the relative intensity of each process. Raman scattering is much weaker 

than Rayleigh scattering. In most cases, Stokes Raman scattering is the stronger one among 

the two Raman scattering processes, because molecules generally reside in the ground 

vibrational state. For this reason, most Raman scattering applications use the Stokes shift, 

and so does this work. 

Raman scattering signal is linearly proportional to the species number density. The 

intensity of the measured Stokes Raman signal can be expressed in terms of the counts on 

the CCD camera, iξ , and is given by: 

( ) ( )iliii hTQGfLEn νησξ Ω=       (2.1) 

where η  accounts for the light loss on each surface of the optics, ( )Tf  is the bandwidth 

factor. The number density, in , of each individual species under investigation can be de-

termined from the above relations. The temperature is then determined by evoking the 

ideal gas law for low speed flames, ( )nkPT =  where P  is assumed to be the atmos-

pheric pressure, ∑=
i

inn  is the total number density from Raman measurement and k  

is the Boltzmann constant. Due to the uncertainties in determining some of the coefficients 

in Eq. 2.1, a calibration procedure, which will be described later, is generally employed to 

simplify the data interpretation. Because the Raman scattering is generally very weak, in 

practical combustion situations, only species with high enough concentrations can be 
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Figure 4 Rayleigh and Raman scattering process 
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measured. The omitted number densities of the minor species in evaluating the total 

number density will only generate a small deviation from the actual value and therefore the 

ideal gas law can still be used. 

 

Experimental Setup 

A detailed schematic diagram of the visible Raman system used in the study is shown 

in Figure 5. The laser source used in the system is the frequency doubled Nd:YAG laser at 

a repetition rate of 10 Hz. Either a Continuum Powerlite 9010 (~1000 mJ/pulse max.) or 

Surelite III-10 (~400 mJ/pulse max.) is used with the difference being the pulse energy. 

The laser beam passes through a rotatable zero order waveplate followed by a thin film 

plate polarizer mounted at its Brewster angle to enable continuous adjustment of the beam 

energy. The attenuated beam then goes through a pulse stretcher similar to that depicted by 

(Kojima and Nguyen 2002). The laser light is split into three sets of beams that are trapped 

in three optical ring cavities. Each beam experiences a different time delay. A laser pulse of 

approximately 150 ns long is produced. This allows a pulsed laser with much higher power 

to be used where laser-induced breakdown is avoided.  

A very small portion of the laser beam is sampled by a beam sampler to monitor the 

pulse to pulse energy fluctuation. Relative energy measurement of every single laser pulse 

is recorded by the computer to be used in the data reduction process. The laser light is then 

focused by a 300 mm focal-length lens. The beam diameter is measured to be ~150 μm at 

the focal point. The scattered Raman light is collected at 90º using a f/2 achromat (3” 
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Figure 5 Schematic of the visible Raman scattering system 
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diameter) focused by a second achromat (f/7.5) onto the entrance slit of the spectrometer. 

The light is then dispersed by a 600 groove/mm grating and focused to a liquid-nitrogen 

cooled, back-illuminated CCD camera (1024 × 1024 pixels, Princeton Instrument) by a 

0.65 m focusing mirror. The spatially resolved line imaging Raman signal is recorded by 

the camera. The sample volume (4.27 mm or 4.06 mm) is divided to 13 (or 26) sections, 

which gives a spatial resolution of 330 (or 156) μm. The ability of the system to resolve 

this spatial resolution is confirmed by back-illuminating a 6 lines/mm Ronchi grating 

placed in the sample zone. The laser beam passes 4.5 mm away from the axis of burner 

symmetry. The location of each data point in the radial direction is calculated based on the 

separation distance and its position along the laser beam from the point of symmetry.  

The CCD camera is gated by a ferroelectric liquid crystal shutter (60 μs) and a me-

chanical shutter (6.0 ms) to reduce the background flame emission. The Rayleigh scattered 

light is blocked by an OG-550 filter. The flame illumination in the infrared region is 

blocked by an infrared filter (750 nm cutoff). 900 single-pulse Raman signals are inte-

grated on the CCD chip to produce one Raman spectrum. The tubular burner is translated 3 

or 4 times along the laser beam direction by a translation stage equipped with computer 

motion control units to cover the entire flame. 

 

Calibration and Uncertainties 

To obtain absolute species concentrations without evaluating all the coefficients in Eq. 

2.1, the visible Raman system is calibrated using flames with known species concentration. 
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A multi-element Hencken burner is used for this purpose. The Hencken burner consists of 

12.5 mm diameter multi-element matrix of tiny fuel jets inserted into honeycomb oxidizer 

matrix. A 4.3 mm wide N2 co-flow annulus shields the flame from the environment to 

avoid interferences. Well-controlled flows of fuel and oxidizer emerge from the burner 

surface to form a matrix of tiny jet diffusion flames. At a long enough distance downstream 

(15 mm typical), the chemical reaction reaches equilibrium, the condition of which can be 

determined from adiabatic equilibrium calculations. The EQUIL package in the commer-

cial software Chemkin is used for such calculations.  

Common combustion products of hydrogen/hydrocarbon-air flames within the de-

tection limit of the Raman scattering technique include H2, H2O, N2, O2, CO2, CO, CH4 and 

C3H8. Their Raman frequency shifts and the emission wavelength excited by the 532 nm 

Nd:YAG laser are listed in Table 2.  

Table 2 Raman frequency shifts and corresponding emission wavelengths of 
major species for 532 nm laser 

Species Frequency Shift. (cm-1) Wavelength (nm) 
C3H8 860 557.51 
CO2 (2ν2) 1285 571.04 
CO2 (ν1) 1388 574.42 
O2 1556 580.01 
C2H2 1973 594.39 
CO 2145 600.53 
N2 2330.7 607.30 
C3H8 2900 629.00 
CH4 2915 629.64 
H2O 3657 660.50 
H2 4160.2 683.21 
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Calibration factors, which are functions of temperature and species, are obtained 

through the calibration procedure and defined as: 

i

il
iT

nE
C

ξ
=,       (2.2) 

where in  is a function of both temperature and species. The Raman signals in the entire 

sample volume instead of a single channel are used in obtaining iξ  in order to minimized 

the uncertainty. The output mole fraction iX  from the EQUIL program at the given 

equivalence ratio together with the ideal gas law are used to calculate in .  

Various calibration flames are utilized in the calibration process. H2-air flames 

( 0.3~27.0=φ ) are used to evaluate 
2,OTC , 

2,NTC , OHTC
2,  and 

2,HTC . H2-air-CO2 flames 

( 0.1~34.0=φ ) are used to find 
2,COTC . H2-air-CO ( 7.2~36.0=φ ) flames are employed 

to find COTC , . The calibration factors are typically plotted against temperature for each 

individual species. Through a second or third order polynomial curve fit, calibration 

functions, ( )TCi , are obtained. Due to small changes in the experimental conditions, the 

calibration factor curves are slightly different for each set of experiments. As a result, the 

calibration process is conducted every time before the actual experiment. A typical set of 

temperature dependent-calibration factors are shown in Figures 6-11. 

Flame spectra obtained with laser wavelength at 532 nm have shown that CO2 signal 

and O2 signal partially overlap with each other at some conditions (e.g. Figure 12). To 

account for this interference, two temperature-dependent interference factors are defined: 

( )TK COO 22−
, which represents the ratio of the O2 signal in the CO2 channel to the total CO2 



 

46 

 

 

Temperature (K)

C
al

i.
Fa

ct
or

(x
10

17
#/

cc
-m

J/
co

un
t)

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

N2 calibration factor

C = 9.9207 - 6.2468 x 10-4 T - 2.2241 x 10-7 T2

 

 

 

 

 

Figure 6 Temperature-dependent calibration factor of N2 
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Figure 7 Temperature-dependent calibration factor of O2 
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Figure 8 Temperature-dependent calibration factor of H2O 
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Figure 9 Temperature-dependent calibration factor of H2 
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Figure 10 Temperature-dependent calibration factor of CO2 
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Figure 11 Temperature-dependent calibration factor of CO 
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Figure 12 Raman spectra of H2-CO2-air flame at φ  = 0.34 showing the overlap 

between O2 and CO2 

H2-CO2-AIR flame 
Φ = 0.34, T = 1214 K 

O2 

N2 

CO2



 

53 

 

 

 

Temperature (K)

In
te

rfe
re

nc
e

Fa
ct

or

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

Interference factor - O2 on CO2

K = 9.6014 x 10-3 + 3.0708 x 10-7 T - 1.6688 x 10-8 T2 + 1.6288 x 10-11 T3

 

 

 

 

 

Figure 13 Temperature-dependent interference factor of O2 on CO2 
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Figure 14 Temperature-dependent interference factor of CO2 on O2 
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signal, and ( )TK OCO 22−
, which represents the ratio of the CO2 signal in the O2 channel to 

the total O2 signal. Figures 13-14 show the interference factors as functions of temperature. 

In evaluating ( )TK OCO 22−
 (Figure 14), a linear fit is used for temperature below 1570 K 

and second order polynomial fit for temperature above 1570 K.  

The calibration factors for CH4 and C3H8 are obtained at room temperature under 

undiluted and diluted conditions (N2 is the diluent) due to the difficulty in producing flows 

with elevated temperature. The temperature dependence of the calibration factors is 

therefore neglected. This simplification is justified by the good agreement between ex-

perimental data and the numerical prediction demonstrated later. 

During the experimental data reduction, the number density of the ith species is given 

by: 

( ) liii ETCn ξ=      (2.3) 

for H2, H2O, N2, CO, CH4 and C3H8. For O2 and CO2, the following expressions are used: 

( ) ( )( ) lOCOOCOCOCO ETKTCn
222222

ξξ ×−= −      (2.4) 

( ) ( )( ) lCOOCOOOO ETKTCn
222222

ξξ ×−= −      (2.5) 

Due to the temperature dependence of the calibration factor, an iterative procedure is 

employed. Starting with a guessed initial temperature, the number densities of each major 

species are evaluated using Eq. 2.3-2.5. The temperature is then re-evaluated according the 

ideal gas law and the iteration continues till the temperature difference between two con-

secutive iterations meets the converging criteria.  

The uncertainty of the polynomial fit of the calibration factors is checked by com-
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paring the calculated values and the Raman-reduced data. The validity of the data reduc-

tion procedure can also be confirmed by such a practice. In Figure 15, the profiles of H2, 

H2O, N2 and O2 concentrations and temperature from both the EQUIL calculation and 

Raman data reduction are plotted as functions of the equivalence ratio. A ± 3% uncertainty 

is displayed as error bars on the experimental data of the calibration flame. It is shown that 

the uncertainty estimate of ± 3% accurately captures the experimental uncertainty. The 

uncertainties of the mass flow meters used in the calibration and experiment are ± 1% of 

full scale. The accuracy of the temperature measurement is estimated to be less than ± 4% 

for hydrocarbon flames based on the RMS value of the measured temperature in the 

product zone.  

Since the Raman scattered light is recorded along a line by the camera during the 

tubular burner experiments and later segmented to sections representing different location 

points in space, the solid angle regarding to the collection optics changes from point to 

point. More importantly, sections at different spatial locations are sometimes partially 

obscured by the burner nozzle to different extents. Such an effect is often termed the 

shadowing effect. A mathematical estimate of the shadowing effects can not give a satis-

factory result and therefore an experimental approach is adopted. During the experiment, 

the N2 signal at room temperature condition is recorded for every section along the Raman 

line and compared with the overall N2 calibration signal to determine the shadowing factor 

for each section. The shadowing factor is used in data reduction to interpret the correct 

Raman signal for each species. A similar effort using the O2 signal shows that there is no 
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Figure 15 Comparison between calculated and Raman-reduced temperature and 
major species concentration of H2-air calibration flames showing the uncertainties 
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wavelength dependence of the shadowing effect. The N2 signal is used to account for the 

shadowing effects throughout this work. 

 

The opposed tubular burner 

 

Burner Configuration 

The tubular burner used in a previous study (Mosbacher et al. 2002) is modified by 

installing a secondary porous nozzle (inner nozzle, 20 mm high, 6.4 mm in dia.) along the 

center axis that issues one of the reactants outwardly in the radial direction (Figure 16). The 

other reactant flows inwardly from the outer contoured nozzle (20mm high, 30 mm in 

diameter). The inward and outward flowing reactants form a stagnation surface and react. 

The combustion products exit the tubular burner in the axial direction. By changing the exit 

velocities of the reactants, we can control the flame location, i.e. the curvature that the 

flame is experiencing. Flows from both the outer nozzle and inner nozzle are accompanied 

by N2 co-flows to keep the burner cool and maintain a constant inlet temperature. The 

burner has three optical ports perpendicular to each other along the periphery to allow 

flame imaging and laser-based non-intrusive diagnostics. 

 

Governing Equations 

A one-dimensional governing equation has been previously derived for the steady 

opposed tubular flame (Dixon-Lewis et al. 1990; Wang et al. 2006b), where temperature,
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Figure 16  Schematic of the opposed tubular burner 
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species mass fraction, density and the transport coefficients (viscosity, thermal conductiv-

ity and diffusion coefficients) are assumed to be functions of radial coordinates alone. The 

other assumptions evoked include small Mach number and negligible body force. The 

complete set of equations is listed below: 

The continuity equation 

( ) ( ) 0=
∂

∂
+

∂
∂

r
Vr

z
Ur ρρ      (2.6) 

is satisfied exactly if a stream function )(),( rzfrz =ψ  is defined so that 

dr
dfzUr

r
−==

∂
∂

− ρψ  and fVr
z

==
∂
∂ ρψ      (2.7) 

where the axial velocity, U is linearly proportional to z and the radial velocity V is a 

function of r only. The momentum equations in the z and r directions are given, respec-

tively, as 

)( 2FJr
dr
dFr

dr
d

dr
dFf ρμ +−⎟

⎠
⎞

⎜
⎝
⎛=      (2.8) 

0=
dr
dJ            (2.9) 

where )/()/( rdrdfF ρ−=  and the constant pressure eigenvalue J  is equal to 

zpz ∂∂ /)/1( . The energy and species conservation equations are: 
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where the diffusion velocities are given by the multicomponent formulation: 
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The boundary conditions are: 

111 VRf ρ= , 0=F , 1TT = , 1ii YY =  at 1Rr =  

222 VRf ρ= , 0=F , 2TT = , 2ii YY =  at 2Rr =  

A similarity solution for the above governing equations is sought by using a modified 

OPPDIF program with detailed chemical reaction mechanisms and complex transport 

formulations (Mosbacher et al. 2002), where the ideal gas law is evoked. Simulation re-

sults from the program are used to compare with the experimental data throughout this 

work. 
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CHAPTER III 

 

NON-PREMIXED TUBULAR FLAMES: HYDROGEN 

 

Introduction 

Premixed, non-premixed, and partially-premixed laminar flames are all subject to the 

influence of stretch (Seshadri et al. 1985; Law 1988a). Most of the quantitative work has 

focused on stretched planar flames produced by opposed-jet burners, where the stretch is 

generated by aerodynamic straining only. Theoretical (Libby et al. 1989), numerical 

(Smooke and Giovangigli 1990; Nishioka et al. 1991; Ju et al. 1998) as well as experi-

mental (Kobayashi and Kitano 1989; Ishizuka 1993; Ogawa et al. 1998) investigations on 

tubular flames with constant curvature have been conducted, but were limited to premixed 

flames. Studies of curvature effects on non-premixed laminar flames were carried out on 

vortex flames formed by perturbing the flat opposed-jet flame with either a syringe tube 

(Takagi et al. 1996b; Katta et al. 1998; Yoshida and Takagi 1998; Lee et al. 2000; Yoshida 

and Takagi 2003) or a bluff body (Finke and Grünefeld 2000) and on the flame tip of the 

Burke-Schumann flame (Ishizuka 1982; Im et al. 1990; Greenberg and Grodek 2003). 

These flames all suffered from a non-constant curvature, which makes the effects of cur-

vature hard to identify.  

To circumvent these difficulties, an optically-accessible tubular burner with an added 

nozzle at the center axis as a second, radially-outwardly flowing reactant source is intro-
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duced. Non-premixed and partially-premixed flames that feature a controllable curvature 

can be generated. The detailed flame structure of constant-curved, N2-diluted H2 versus air 

non-premixed tubular flames is studied for the first time using the non-intrusive visible 

Raman spectroscopy technique. Flame temperature and major species mole fractions are 

recorded with high spatial resolution. An Oppdif code has been modified to model tubular 

flames (Mosbacher et al. 2002). Numerical simulation with complex chemistry and de-

tailed transport is carried out to compare with the measurement. This comparison validates 

the numerical model. We then use the numerical model to show that the flame temperature 

is greatly affected by curvature. 

Comparison between opposed tubular and opposed-jet flames shows that the concave 

curvature causes the flame temperature to decrease when eL  < 1. This is confirmed by our 

recent numerical studies of the tubular non-premixed flames with a different burner con-

figuration (Wang et al. 2006b). Observation of tubular flame images with different fuel 

types over a range of Lewis numbers supports the discovery that concave curvature in the 

fuel promotes reaction when eL  > 1 and retards reaction when eL  < 1. The opposite will 

occur for convex curvature in the fuel. The extinction measurements confirm these effects 

of curvature on the flame temperature and structure. 

 

Stretch Rate  

Mathematically, the tubular flame can be formulated into a set of ordinary differential 

equations (Dixon-Lewis et al. 1990), i.e. the velocity, temperature and species concentra-
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tion are all functions of the radial coordinate only. The flame experiences a finite positive 

stretch in the axial direction. It has been shown by (Seshadri and Williams 1978) that the 

local stretch rate for the opposed-jet burner is a linear function of the distance from the exit 

nozzle on either side of the stagnation plane. This stretch rate peaks at the stagnation plane, 

where the fuel-stream side value can be calculated from: 
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+=      (3.1) 

where L  is the separation distance of the two jets. Subscripts o  and f  denote oxidizer 

and fuel stream, respectively.  

Based on a similar argument, the fuel-stream side stretch rate at the stagnation surface 

of the non-premixed tubular flame takes the following form (Wang et al. 2006b): 
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This formula applies to fuel issued from the inner nozzle as well as from the outer 

nozzle. Comparisons of opposed-jet planar and opposed tubular non-premixed flames are 

carried out subsequently based on the stretch rates defined by the above equations. 

Given the geometry of this burner, it is necessary to clarify that for fuel issued from 

the inner nozzle cases, the flame surface is concave toward the fuel stream. On the other 

hand, for fuel issued from the outer nozzle cases, the flame surface is convex to the fuel 

stream. To simplify the discussion, the convex and concave flames are used throughout this 

paper referring to curvature of the flame front towards the fuel stream. 
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Results and Discussion 

The Raman scattering system described in Chapter II is employed to performed de-

tailed structure study. A set of representative Raman spectra at different radial locations is 

shown in Figure 17 for 15% H2/N2-air flame at k = 91 s-1. Strong laser scattering from the 

inner nozzle is observed on the upstream side of the beam, so only data on the shadowing 

side of the inner nozzle are used. 

In the first set of experiments, 15% H2 diluted by 85% N2 against air flames at various 

stretch rates are investigated. The exit velocities of the inner and outer nozzle are matched 

such that the calculated cold flow stagnation surface is located at Rs = 6.5 mm. The peak 

flame temperature location is very close to the stagnation surface for all the stretch rates 

studied, and therefore the tubular flames produced are experiencing a constant curvature. 

The near extinction behavior of CH4 and C3H8 diluted in N2 vs. air flames are also studied. 

Comparison of the experimental data and numerical simulations reveals the effects of 

curvature. 

 

The Opposed Tubular Flame 

The tubular burner (Mosbacher et al. 2002) is modified by installing a secondary 

porous nozzle (inner nozzle, 20 mm high, 6.4 mm in dia.) along the center axis that issues 

one of the reactants outwardly in the radial direction. The other reactant flows inwardly 

from the outer contoured nozzle (20mm high, 30 mm in diameter). The inward and out-

ward flowing reactants form a stagnation surface and react. The combustion products exit 



 

66 

the tubular burner in the axial direction. By changing the exit velocities of the reactants, we 

can control the flame location, i.e. the curvature that the flame is experiencing. Flows from 

both the outer nozzle and inner nozzle are accompanied by N2 co-flows to keep the burner 

cool and maintain a constant inlet temperature. The burner has three optical ports perpen-

dicular to each other along the periphery to allow flame imaging and laser-based 

non-intrusive diagnostics. 

At low stretch rates, non-premixed concave flames are produced with 15% H2/N2 fuel 

issued from the inner nozzle. An image of this concave flame at stretch rate k = 105 s-1 

taken by an IR sensitive ICCD camera is shown in Figure 18. The inset on the top left 

corner shows the OH* chemiluminescence image. The bright flame front is the emission 

from electronically excited OH radicals. The flame is very symmetric from left to right and 

circular when viewed from the top. Although the flame appears to be slightly curved in the 

axial direction, this curvature is insignificant compared to the curvature in the radial di-

rection and can be neglected. The one-dimensional simplification in (Dixon-Lewis et al. 

1990) is applicable to this flame.  

However, when the 15% H2/N2 fuel is issued from the outer nozzle, no circular con-

vex flames can be formed. The flame surface has several wrinkles around the perimeter for 

all stretch rates. Because the laser beam passes through these wrinkled flame fronts, Ra-

man-derived flame temperature data show multiple temperature peaks. At the highly 

wrinkled flame front, the curvature is smaller than 6.5 mm. Cellular structures are observed 

when viewing from the side window in the radial direction. The 3-D nature of the convex 
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flame also makes the one-dimensional laser diagnostic less meaningful. As a result, Raman 

measurement results are only presented for the symmetrical concave flame in the following 

discussion. 

 

Hydrogen Tubular Flame Structure 

Non-premixed tubular concave flames (15% H2/N2 vs. air) with stretch rates ranging 

from k = 30 to 242 s-1 are measured using Raman spectroscopy. A comparison of various 

chemical kinetic mechanisms with the experimental data at stretch rate k = 75 s-1 is shown 

in Figure 19. The mechanisms used are from Mueller et al. (Mueller et al. 1999), Peters et 

al. (Peters and Rogg 1993) and GRIMech3.0 (Smith et al. 2000). In the calculations, the 

diffusive velocities are evaluated using either the multi-component or mixing averaged 

formulation. Thermal diffusion is included in all calculations. The mechanisms from Yetter 

et al. (Yetter et al. 1991), Li et al. (Li et al. 2003) and Mueller et al. give almost identical 

results and therefore only calculation from Mueller mechanism is shown. The Peters 

mechanism gives the highest temperature prediction, while the GRIMech3.0 with mix-

ing-averaged diffusion predicts a narrower reaction zone. The Mueller and GRIMech3.0 

mechanisms with multi-component diffusion give almost identical predictions and the 

lowest peak temperatures. The Peters mechanism using multi-component formulation 

predicts extinction at this experimental condition. All mechanisms generally agree well 

with the experimental data (shown as closed circles). The subsequent numerical calcula-

tions are all performed using the Mueller mechanism. 
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Figure 17 Representative Raman spectra of a k = 91 s-1, 15% H2/N2 vs. air 
non-premixed tubular flame at four radial locations as measured from the sym-
metry axis. 
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Figure 18 Image of non-premixed tubular flame at k = 105 s-1 showing symmetric 
flame structure. The inset shows the OH* chemiluminescence image of the same 
flame. 
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Figures 20-23 show the measured and calculated temperature and major species mole 

fraction profiles for k from 60 s-1 to 104 s-1 in radial and mixture fraction coordinates. The 

mixture fraction Z  is defined as (Williams 1985) 
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ooffoo
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22,

+

−+
=      (3.3) 

where iν  is the stoichiometric coefficient of ith species. The stoichiometric mixture frac-

tion Zst is 0.70, obtained by setting the local mole fraction of fuel and oxidizer to zero at the 

stoichiometric location. 

It is seen that the computed profiles agree well with the experimental measurements. 

The measured flame surface locations, determined by the maximum temperature location, 

are close to r = 6.8 mm, which indicates that these flames have the same curvature. The 

broadening of the reaction zone at higher stretch rates is due to the flame fluctuation. An 

improvement on the burner is needed to further stabilize the flame. At stretch rates lower 

than 60 s-1, the measured temperature is lower than prediction due to the heat loss to the 

inner nozzle.  

Figure 24 shows the variations of the calculated maximum flame temperature and flame 

thickness of the tubular and opposed-jet flat flames with stretch rate. The flame thickness is 

defined as the FWHM (Full Width at Half Maximum) of the temperature profile. The dots 

shown in the figure are experimental temperature data with an estimated uncertainty of 3%. 

The corresponding adiabatic flame temperature adT  = 1180 K is shown as the horizontal 

line in the figure. While both flame temperatures decrease with increasing stretch rate, a 
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temperature difference of ~100 K is observed between the two flames showing the effects 

of curvature. For tubular flames with Lewis number less than one, the preferential diffusion 

coupled with concave curvature causes the flame temperature to decrease. As a result, the 

tubular flames extinguish at a much lower stretch rate than the opposed-jet flames. 

 

Tubular Flame Extinction 

Extinction experiments are conducted on the concave tubular flames using three types 

of fuel: H2, CH4 and C3H8. Different N2 dilution ratios for these fuels are used to avoid 

extinction. To achieve extinction, the air flow is gradually increased and the fuel flow rate 

is kept constant. For 15% H2/N2, as the stretch rates are increased above 105 s-1, cellular 

structures are observed at the flame front. The flame automatically changes its orientation 

of curvature from concave to convex to avoid extinction. Figure 25-(1) shows the image of 

the tubular flame at stretch rate k = 210 s-1, where the cellular structure is identified as the 

bright and dark regions. Several cells (the number depends on the stretch rate) with 

openings around the perimeter are observed when viewing the flame in the axial direction. 

Figure 25-(2) shows the flame emission image taken from the top of the burner, where 

three flame wings are clearly seen with the fourth one blocked from view by the inner 

nozzle. One can infer that the convex flame with Lewis number less than one has a higher 

temperature and thus higher extinction stretch rate. In other words, convex curvature 

promotes combustion and retards extinction when the Lewis number is less than one. As a 
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Figure 19 Comparison of Raman-derived data and calculations using different 
mechanisms of a 15% H2/N2 vs. air flame at k = 75 s-1. 
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Figure 20 Measured and calculated temperature and major species profiles for a 
15% H2/N2 vs. air non-premixed flame at k = 60 s-1 in both radial and mixture 
fraction coordinates 



 

74 

 

Radial Distance from the Axis of Symmetry

Te
m

pe
ra

tu
re

,K

M
ol

e
Fr

ac
tio

n

5 6 7 8 9 100

200

400

600

800

1000

1200

0

0.1

0.2

0.3T
O2
N2
H2O
H2
Numerical

 

 
Mixture Fraction

Te
m

pe
ra

tu
re

,K

M
ol

e
Fr

ac
tio

n

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

0

0.1

0.2

0.3T
O2
N2
H2O
H2
Numerical

 

 

Figure 21 Measured and calculated temperature and major species profiles for a 
15% H2/N2 vs. air non-premixed flame at k = 75 s-1 in both radial and mixture 
fraction coordinates 
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Figure 22 Measured and calculated temperature and major species profiles for a 
15% H2/N2 vs. air non-premixed flame at k = 91 s-1 in both radial and mixture 
fraction coordinates 
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Figure 23 Measured and calculated temperature and major species profiles for a 
15% H2/N2 vs. air non-premixed flame at k = 104 s-1 in both radial and mixture 
fraction coordinates 
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Figure 24 Comparison of the maximum flame temperature and flame thickness for 
15% H2/N2 vs. air tubular and opposed-jet flames. 
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Figure 25 Images of non-premixed tubular flames (1) side view (2) top view of 
15% H2/N2 vs. air flame at k = 210 s-1; (3) side view (4) top view of 26% CH4/N2 vs. 
air flame at k = 166 s-1; (5) side view (6) top view of 15% C3H8/N2 vs. air flame at k 
= 161 s-1. Top view images are partially blocked by the inner nozzle. 
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result, the 1-D tubular flame code developed previously (Dixon-Lewis et al. 1990; Mos-

bacher et al. 2002) is unable to give an accurate prediction of the extinction limit. Ex-

perimentally, 9.8% H2/N2 vs. air flame is extinguished at k = 240 s-1 and Rs = 5.3 mm. The 

calculated extinction fuel dilution ratio at this stretch rate is 15%, much higher than 9.8%. 

This, again, demonstrates that the convex curvature helps to stabilize the flame and 

therefore extends the extinction limit for hydrogen fuel ( eL  < 1). 

However, this observation does not apply to the near-extinction methane flames. The 

flame is fairly circular throughout the combustible region until extinction is reached. 

Figure 25-(3) shows an image of a non-premixed tubular flame of 26% CH4/N2 against air 

at k = 166 s-1 with the extinction stretch rate being ~205 s-1. The Lewis number of the fuel 

stream is close to one, and yet no preferential curvature is observed. The flame is still 

circular as seen from the top view image in Figure 25-(4). The 1-D code is capable of 

predicting the structure of this flame. Two sets of extinction measurements with different 

curvatures (Rs) are conducted. The measured and predicted extinction stretch rates show 

very good agreement (Table 3). 

Non-premixed C3H8/N2 vs. air tubular flame also shows the preferential curvature 

property. Different from the hydrogen flame, the propane flame prefers concave curvature. 

Cellular structures are seen for all stretch rates throughout the combustible range. When 

viewed along the axial direction, the flame front appears to be wrinkled. Figure 25-(5) 

shows the image for a 15% C3H8/N2 vs. air flame at k = 161s-1 and sR = 6.3 mm. Figure 

25-(6) shows the wrinkled flame front as viewed from the axial direction. The measured 
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extinction stretch rate is much higher than the calculated value due to the preferential 

curvature effects. One can conclude that the concave curvature promotes combustion and 

retards extinction for propane fuel ( eL  > 1).  

 

Table 3 Measured and calculated extinction limits 

k, s-1 
Fuel Xfuel 

Rs
a, 

mm Exp. Comp. 
0.261 5.13 218 205 
0.258 5.18 214 203 
0.222 6.42 133 139 

CH4 

0.220 6.45 132 132 
a: Radius of the stagnation surface 

 

Conclusion 

Non-premixed tubular flames are established using a uniquely-designed opposed 

tubular burner for the first time. Concave flames using 15% H2 diluted with N2 against air 

are studied with laser-induced Raman scattering at stretch rates ranging from 30 to 242 s-1. 

Due to the heat loss to the inner nozzle at low stretch rates and the appearance of cellular 

structures at high stretch rates, only data for moderate stretch rates are presented. The 

experimental data and numerical predictions agree very well. The numerical model is 

validated by such a comparison. The peak flame temperature of the non-premixed concave 

tubular flame is ~100 K lower than its opposed-jet counterpart due to the effects of concave 

curvature. This indicates that the curvature concave towards the fuel hinders combustion 
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when eL  < 1.  

This conclusion is further proved by the flame behavior at near-extinction conditions. 

Cellular structures are observed for H2/N2 vs. air near-extinction tubular flames at large 

stretch rates. Near-extinction behavior of non-premixed nitrogen diluted methane and 

propane against air flames are compared with their hydrogen counterpart. Flames with 

unity Lewis number (CH4) doesn’t show the preferential curvature property. The 1-D tu-

bular code is applicable to this flame, which gives an accurate prediction of the extinction 

limit. Flames with Lewis number larger than one (C3H8/N2) prefer concave curvature, 

while flames with Lewis number less than one (H2/N2) prefer convex curvature. The fact 

that the hydrogen flames change their direction of curvature from concave to convex 

automatically confirms that convex curvature promotes combustion and therefore in-

creases the flame temperature when eL  < 1. The fact that the propane flames decrease 

their radii of curvature automatically confirms that concave curvature promotes combus-

tion and therefore increases the flame temperature when eL > 1. As a result, the extinction 

of these flames ( eL  < 1 or eL  > 1) is retarded to a much higher stretch rate. The 1-D tu-

bular code cannot be applied to these flames due to the existence of the cellular structures 

near extinction. A more sophisticated 3-D code needs to be developed to study these 

flames. 
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CHAPTER IV 

 

NON-PREMIXED TUBULAR FLAMES: HYDROCARBON 

 

Introduction 

The effects of stretch on premixed, non-premixed and partially-premixed laminar 

flames are well understood, based on many years of study (Seshadri et al. 1985; Law 

1988a). However, studies on curvature effects are limited and the effects of curvature on 

flames are not fully understood. Tubular flames allow the investigation of curvature effects 

in addition to the flame stretch (Ishizuka 1993). There have been many works on premixed 

tubular flames, either experimental (Ishizuka 1993; Kobayashi and Kitano 1989; Ogawa et 

al. 1998; Mosbacher et al. 2002), numerical (Kitano et al. 1989; Dixon-Lewis et al. 1991; 

Nishioka et al. 1991) or theoretical (Libby et al. 1989; Wang et al. 2006b). However, re-

ports on non-premixed tubular flames are extremely rare, primarily because of the diffi-

culties in establishing such a flame (Hu et al. 2007a; Wang et al. 2007). By installing a 

nozzle along the symmetrical axis of the tubular burner as a second, radially-outwardly 

flowing reactant source, non-premixed and partially-premixed tubular flames subject to 

well-controlled aerodynamic straining and flame curvature can be created (Hu et al. 2007a) 

As reviewed in detail earlier (Wang et al. 2007), studies of curvature effects on 

non-premixed laminar flames have been carried out on the flat opposed-jet flame perturbed 

by a vortex from a pulsed syringe tube (Katta et al. 1998; Lee et al. 2000), by a micro-jet 



 

83 

that is steady (Takagi et al. 1996b) or unsteady (Yoshida and Takagi 1998), by suction 

(Yoshida and Takagi 2003), and by a small bluff body (Finke and Grünefeld 2000). In 

addition, the curved flame tip of the Burke-Schumann flame has been investigated (Ishi-

zuka 1982; Im et al. 1990; Takagi et al. 1996a). These flames all suffered from a 

non-constant curvature and were unsteady in some cases, which make the effects of cur-

vature difficult to identify and structural study infeasible. An opposed tubular burner can 

circumvent these difficulties. The important features of the opposed tubular burner are: 1) 

Curvature and flame stretch can be varied independently because their directions are or-

thogonal to each other. 2) Curvature throughout the flame front is uniform because the 

diameter of the flame tube is constant at a given condition. 3) The flow field is simple and 

all quantities can be described as functions of radial location only (Dixon-Lewis et al. 1991; 

Wang et al. 2006b), which is preferred by both experimentalists and modelers. 4) Both 

concave and convex curvature can be easily established under well-controlled conditions. 

Due to these advantages, the opposed tubular burner deserves more attention as a useful 

tool for fundamental research in combustion science. This study is focused on the struc-

tural measurements of the opposed tubular non-premixed flames generated by hydrocarbon 

fuels as well as understanding the effects of curvature on flames. 

Structural studies on hydrogen opposed tubular flames, where the fuel stream Lewis 

number (Lewis number, Le, is defined as the ratio between the mixture thermal diffusivity 

and the mass diffusivity of the reactant species) is less than one, have been reported pre-

viously (Hu 2007; Hu 2006a). Profiles of temperature and major species concentrations 
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were measured using laser-induced Raman spectroscopy. It was shown that the effects of 

curvature coupled with the Lewis number effects are affecting flame properties. It is 

natural to extend the work to opposed tubular non-premixed flames produced by hydro-

carbon fuels (CH4 or C3H8). Together with the previous studies, both the unity and 

non-unity Lewis number cases are completely covered. Numerical simulations with de-

tailed chemistry carried out in this study are compared with the experimental data. In ad-

dition, cross-comparisons between the simulation results of the tubular curved flames and 

those of the opposed-jet planar flames help to reveal the effects of curvature on flame 

properties (mainly flame temperature). 

 

Experimental Setup 

Visible Raman spectroscopy is used to measure the temperature and concentrations of 

major species. The previous experimental system(Hu et al. 2006c) is used for this work 

with some minor upgrades. A detailed schematic diagram is shown in Figure 5. The laser 

beam (Continuum Powerlite 9010, frequency-doubled, pulsed Nd:YAG laser, ~355 

mJ/pulse @10 Hz) passes through a rotatable zero order waveplate followed by a thin film 

plate polarizer mounted at its Brewster angle to enable continuous adjustment of the beam 

energy. The attenuated beam then goes through a pulse stretcher similar to that depicted by 

(Kojima and Nguyen 2002). The laser beam is split into 3 sets of beams that are trapped in 

3 optical ring cavities. Each beam experiences a different time delay. A laser pulse of ap-

proximately 150 ns long is subsequently produced. This allows a pulsed laser with much 
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higher power to be used where laser-induced breakdown is avoided.  

A small fraction of the laser beam is reflected by a plane window mounted at a small 

angle to monitor the laser pulse to pulse energy variation. A pyroelectric joulemeter (Co-

herent Molectron J50) with a ND filter and a quartz diffuser mounted in the front is utilized 

to detect this light. The pulse energy is used later on in the data reduction process. The main 

laser beam is focused by a 300 mm focal-length lens down to 150 μm in diameter at the 

focal point. The scattered Raman light is collected at 90º using a f/2 achromat (75 mm 

diameter) focused by a second achromat (f/7.5) onto the entrance slit of the spectrometer 

(Osborne et al. 2000). The light is then dispersed by a 600 groove/mm grating and focused 

to a liquid-nitrogen cooled, back-illuminated CCD camera (1024 × 1024 pixels) by a 0.65 

m focusing mirror. The magnification ratio of the whole system is 3.08, which is deter-

mined by a 6 lines/mm Ronchi grating. The spatially resolved line imaging Raman signal is 

recorded by the camera. The sample volume (4.06 mm) is divided to 26 sections, which 

gives a spatial resolution of 156 μm. The ability of the system to resolve this spatial 

resolution is confirmed by back illuminating the 6 lines/mm Ronchi grating placed in the 

sample zone. The laser beam passes 4.7 mm away from the burner’s axis of symmetry. The 

location of each data point in the radial direction is calculated based on the separation 

distance and its position along the laser beam from the point of symmetry.  

The CCD camera is gated by a heated ferroelectric liquid crystal shutter (40 μs) and a 

mechanical shutter (4.0 ms) to reduce the background flame emission. The Rayleigh 

scattered light is blocked by an OG-550 filter (3 mm thickness). The flame illumination in 
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the infrared region is blocked by an infrared filter (750 nm cutoff, 3 mm thickness). 600 

single-pulse Raman signals are integrated on the CCD chip to produce one Raman image. 

The tubular burner is translated several times along the laser beam direction to cover the 

entire flame. A set of representative Raman spectra at different radial locations is shown in 

Figure 26.  

Hydrocarbon fuels are known to produce interferences mainly from C2 LIF (Barlow et 

al. 2002). As shown in Figure 26-(b), (f) and (g), C2 LIF interferes with N2 signal, and this 

makes the data interpolation in the fuel rich regions difficult. All the flames studied here 

are blue indicating that no visible soot is present. In addition to the C2 LIF, strong inter-

ference that comes from the scattering of the reflected laser light by the window of the 

burner exit port off the wall of the inner nozzle is observed at some locations, which is 

shown as a broadband feature in the spectra, e.g. Figure 26-(b). As a result, most of the data 

in the small radius regions are discarded with only two exceptions, which are shown later. 

The laser beam passes the flame front twice, so the two sets of identical Raman data are 

available for each experimental condition. In the results shown hereafter, the two data sets 

are shown in the same plot. This demonstrates the reliable performance of both the tubular 

burner and the measurement system. 

Calibration flames of hydrogen-air, hydrogen-air-CO2 and hydrogen-air-CO are 

produced using a Hencken burner (12.5 mm diameter multi-element matrix surrounded by 

a 4.3 mm wide N2 co-flow annulus). Equilibrium conditions are assumed in the flame  
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Figure 26 Raman spectra of the opposed tubular flame at different radial locations. 
(a) - (e) k=122 s-1, Rs = 6.5 mm, 30% CH4/N2-air flame; (f) and (g) k=100 s-1, Rs = 
6.5 mm, 15% C3H8/N2-air flame.  (a) r = 5.2 mm, T = 563 K; (b) r = 7.0 mm, T = 
1717 K; (c) r = 7.6 mm, T = 1731 K; (d) r = 8.6 mm, T = 844 K; (e) r = 10.5 mm, T = 
300 K; (f) r = 5.2 mm; (g) r = 6.7 mm. (Note the different y scale in (b), (f), (g)) 
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where the laser beam passes 18 mm downstream and the adiabatic flame temperature is 

used to correlate the calibration factors for each individual species. The uncertainties of the 

mass flow meters used in the calibration are ± 1% of full scale. The accuracy of the tem-

perature measurement is estimated to be less than ± 5% by comparing the Raman derived 

temperature with the calculated adiabatic flame temperature of the calibration flames. 

An opposed tubular burner with outer nozzle diameter of 30 mm and inner nozzle 

diameter of 6.4 mm is employed, where the heights of both nozzles are 20 mm (Figure 16). 

A detailed description of the opposed tubular burner can be found elsewhere (Mosbacher et 

al. 2002; Hu et al. 2007), but a short description is given here. The inner nozzle is porous 

metal (20 mm high, 6.4 mm dia.) and injects a reactant radially outward. The other reactant 

is injected radially inward from the outward contoured nozzles (20 mm high, 30 mm dia.). 

The two flows meet at a stagnation surface. As seen in Figure 16, two optical ports at 180° 

allow the laser beam to pass very near the inner porous cylinder.  A third optical port at 90° 

to the laser beam enables the Raman scattered light to be collected.  

The tubular flame conditions are determined by the flame stretch, k and the radius of 

curvature of the stagnation surface, Rs. In the flames studied here, the flame resides very 

close to the stagnation surface. The stretch rate, k, at the stagnation surface can be calcu-

lated using equation (3.2). Since air is the oxidizer and there is little preferential diffusion 

effect in the oxidizer side (Leo≈1), we will use the stretch rate in the fuel side as the stretch 

rate for the opposed tubular flame. The curvature (flame radius) of the opposed tubular 

flame is very close to the curvature at the stagnation surface which is (Wang et al. 2006b; 
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Hu et al. 2006a):  

5.0
21211221122 )]////()//(1[ VVRRRRRRRRs ρρ−−−=  (4.1) 

where the subscripts 1 and 2 refer to the inner and outer nozzles respectively. 

 

Results and discussions 

Two sets of experiments with different fuel type (CH4 and C3H8) are conducted. Three 

parameters are used to describe each experimental case, which are 1) the stretch rate, k; 2) 

the fuel dilution ratio; 3) the radius of the stagnation surface, Rs. In the first set of ex-

periments, flames that use 30% CH4 diluted by 70% N2 burning against air at various 

stretch rates are investigated. In the second set of experiments, flames that use 15% C3H8 

diluted by 85% N2 burning against air at various stretch rates are studied. For both cases, 

the exit velocities of the inner and outer nozzle are matched such that the calculated cold 

flow stagnation surface is located at Rs = 6.5 mm to produce a constant flame curvature. 

Concentrations of major species (CO2, H2O, N2, O2, CH4 and C3H8) are derived from the 

Raman spectra. The temperature distribution is obtained by invoking the ideal gas law 

assuming constant pressure. The flames studied in this work are all concave towards the 

fuel stream, i.e. the fuel is issued from the burner’s inner nozzle. Numerical simulations of 

the opposed tubular non-premixed flames are conducted using a modified Oppdif code 

(Mosbacher et al. 2002), where plug flow boundary conditions are assumed. Various re-

action mechanisms are used which are detailed in the discussion below. All the calculation 

results shown hereafter have no heat transfer at the burner boundary. The experimental data 
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are shifted about 1.6 mm in the radial direction towards smaller values to match with the 

calculations. This difference in radial location is due to the difference in the boundary 

conditions between the experiments and simulations. 

 

Methane Flames 

Figure 27-31 show the Raman-derived profiles of temperature and major species concen-

trations for the non-premixed opposed tubular flames (30% CH4/N2 vs. air) with stretch 

rates ranging from k = 41 to 122 s-1. The numerical simulated profiles are shown as solid 

lines in the figures. GRI 3.0 (Smith et al. 2000) mechanisms are used in the numerical 

simulations except in Figure 28 where simulated temperature profiles using the Kee (Kee 

et al. 1985), C1 (Peters and Rogg 1993), C2 (Peters and Rogg 1993) and GRI 3.0 mecha-

nisms are shown. The Kee and C1 mechanisms model hydrocarbons with one carbon atom 

only; the C2 and GRI 3.0 mechanisms include up to two carbon atoms. Multicomponent 

formulation for transport properties is adopted. It is seen that the computed profiles agree 

well with the experimental measurements and the results are found to be independent of the 

specific chemical mechanisms as might be expected for non-premixed flames. The dif-

ference among the predicted temperature profiles is minimal.  

As shown in Figure 27 and Figure 28, the flame thicknesses (FWHM) at rela-

tively-high stretch rates (k > 100 s-1) are small compared to other flames shown later. The 

regions where C2 LIF interferes with the Raman signal are also small. As a result, tem-

perature and species concentration data can be made available with reduced degree of 
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accuracy for locations where the radii are small as shown in Figure 27 and Figure 28 (see 

the increased scattering in the measurements for r < 7 mm). The regions where interfer-

ences become severe are marked as shadows and data are not shown due to the great un-

certainty encountered in the attempt to reduce the data. As the stretch rate decreases, the 

flame becomes thicker as shown in Figure 29-31. Severe interferences are observed at 

small radial locations, and therefore the data are discarded.  

 

Propane Flames 

The Raman-derived profiles of temperature and major species concentrations for the 

non-premixed opposed tubular flames (15% C3H8/N2 vs. air) with stretch rates ranging 

from k = 33 to 100 s-1 are shown in Figure 32-36. The numerical simulated profiles are 

shown as solid lines in the figures. The San Diego mechanism, which models up to three 

carbon atoms, is used in the simulations (http://maeweb.ucsd.edu/~combustion/cermech/). 

Mixing-average formulation is utilized for the C3H8 flames to reduce the computational 

cost. The experimental spectra of the propane flames suffer from C2 LIF interferences more 

severely than the ones of the methane flames due to the higher concentrations of C2 species 

in the fuel rich streams. A set of representative spectra are shown in Figure 26-(f) and (g). 

As a result, only data on the oxidizer stream side of the flame surface are made available, 

and the data at smaller radial locations on the fuel stream side are discarded. The computed 

profiles agree well with the experimental measurements. The difference between the 

measured and predicted temperature profiles is minimal.  
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Figure 37 shows the variations of the calculated maximum flame temperature of the tu-

bular curved and opposed-jet planar flames as functions of stretch rate. The maximum 

flame temperatures decrease with increasing stretch rate as a result of increased degree of 

combustion incompleteness until the flame extinguishes (denoted by a vertical line). 

However, curvature shows different effects on the maximum temperatures of the hydrogen, 

methane and propane flames. For H2 flame with low fuel Lewis number (Lef <1), the op-

posed jet planar flame temperature is higher than that of the concave opposed tubular flame, 

and lower than that of the convex one. These results with H2/N2 fuels are consistent with 

previous studies in perturbed opposed jet flames and in the flame tip of the 

Burke-Schumann flame (Katta et al. 1998; Lee et al. 2000; Takagi et al. 1996b; Yoshida 

and Takagi 1998; Yoshida and Takagi 2003; Finke and Grünefeld 2000; Ishizuka 1982; Im 

et al. 1990; Takagi et al. 1996a). For example in numerical analysis of an opposed jet flame 

perturbed by suction, Yoshida and Takagi (2003) found that the flame temperature of 15% 

H2/N2 vs. air was lowest for the flame concave towards the fuel and highest for the flame 

convex towards the fuel. However, for C3H8 flame (Lef >1), the opposite stands as the 

flame temperature is higher for the flame concave toward the fuel as shown in Figure 37. 

None of the previous studies of curvature in diffusion flames investigated fuels such as 

C3H8 with Lef >1. The effects of Lewis number coupled with curvature are believed to be 

responsible for such a difference as suggested by earlier studies. The Lewis number of the 

oxidizer stream is close to unity and not varied in these experiments. The non-unity Lewis 
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Figure 27 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 30% CH4/N2-air non-premixed tubular flame at 
k=122 s-1, Rs =6.5 mm 
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Figure 28 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 30% CH4/N2-air non-premixed tubular flame at 
k=102 s-1, Rs = 6.5 mm 
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Figure 29 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 30% CH4/N2-air non-premixed tubular flame at 
k=81 s-1, Rs = 6.5 mm
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Figure 30 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 30% CH4/N2-air non-premixed tubular flame at 
k=61 s-1, Rs = 6.5 mm 
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Figure 31 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 30% CH4/N2-air non-premixed tubular flame at 
k=41 s-1, Rs = 6.5 mm 
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Figure 32 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 15% C3H8/N2-air non-premixed tubular flame 
at k=100 s-1, Rs =6.5 mm 
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Figure 33 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 15% C3H8/N2-air non-premixed tubular flame 
at k=84 s-1, Rs =6.5 mm 
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Figure 34 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 15% C3H8/N2-air non-premixed tubular flame 
at k=67 s-1, Rs =6.5 mm. 
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Figure 35 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 15% C3H8/N2-air non-premixed tubular flame 
at k=50 s-1, Rs =6.5 mm. 
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Figure 36 Measured and calculated temperature and major species mole fraction 
profiles as functions of radius for a 15% C3H8/N2-air non-premixed tubular flame 
at k=33 s-1, Rs =6.5 mm. 
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Figure 37 Calculated maximum flame temperature as functions of stretch rate of 
the opposed jet planar and tubular flames using 15% H2/N2, 30% CH4/N2 and 15% 
C3H8/N2 showing the different effects of curvature (Note H2 uses the lower x-axis 
and CH4/C3H8 use the upper x-axis.) 
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number of the fuel mixture controls the diffusion of the fuel to the flame surface. When 

Lewis number of the fuel stream is greater than one (C3H8/N2), curvature concave toward 

the fuel stream promotes combustion and flames exhibit higher peak temperature. Given 

the Lewis number of H2/N2 is much less than one, curvature concave toward the fuel 

stream retards combustion and flames exhibit lower peak temperature, while curvature 

convex toward the fuel stream promotes combustion and flames exhibit higher peak 

temperature. As shown in Figure 37, the effects of curvature on curved methane flames are 

ambiguous, because the Lewis number of CH4/N2 mixture is close to one. Although the 

peak flame temperature of concave methane flame is lower than that of the planar flame, 

which suggests that the methane flames act like flames with Lewis number less than one, 

the peak flame temperature of the convex methane flame is almost the same as that of the 

planar ones, which indicates the effects of curvature is not important. Interestingly, simu-

lation shows that both curved flames demonstrated smaller extinction stretch rates than 

their planar counterpart. It is surprising to see from the numerical results of Figure 37 that 

the temperature difference between the propane flame curves is so small considering the 

Lewis number of the C3H8/N2 mixture is much larger than one. 

 

Conclusion 

Non-premixed tubular hydrocarbon flames are established using a uniquely-designed 

opposed tubular burner. Laser-induced Raman spectroscopy is applied to both methane and 

propane flames. Temperature and major species concentrations (CO2, H2O, N2, O2, CH4 
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and C3H8) are reported with good resolution. Due to the interferences from the C2 LIF and 

the scattering of the inner wall, only data on the oxidizer side are made available in most 

cases. Numerical simulations of the measured flames using various reaction mechanisms 

are conducted. Shown in the methane flame simulation, the specific reaction mechanism 

has little effect on the simulation results of temperature and major species concentrations. 

The experimental data and numerical predictions agree well. Comparison of the peak flame 

temperatures from the simulation results of the opposed jet planar and those of the opposed 

tubular flames shows that flame curvature concave toward the fuel stream strengthens the 

flame when the Lewis number of the fuel mixture is greater than unity; vice versa when the 

fuel Lewis number is less than one.  The results with are consistent with earlier studies. 
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CHAPTER V 

 

EXTINCTION AND NEAR-EXTINCTION INSTABILITY OF NON-PREMIXED 
TUBULAR FLAMES 

 

Introduction 

Flame extinction is important for both turbulent combustion and fire safety (Williams 

1981). Four types of extinction, namely extinction by stretch rate, extinction by dilution, 

extinction by convective heat transfer, and extinction by radiation (Williams 2000), are of 

interest to researchers with the first two attracting the most attention. First investigated by 

Spalding in the forward stagnation region of a porous sphere in a uniform air stream 

(Spalding 1953; Spalding 1954), extinction of counterflow diffusion flames has been 

examined with flames formed under various geometries including porous spheres (Spal-

ding 1953; Spalding 1954; Simmons and Wolfhard 1957), opposed jet burners (Potter and 

Butler 1959; Potter et al. 1962; Pandya and Weinberg 1963; Puri and Seshadri 1986; Chen 

and Sohrab 1991; Pellett et al. 1998) and Tsuji burners where the flame is formed in the 

forward stagnation region of a porous cylinder immersed in a uniform air stream (Tsuji and 

Yamaoka 1967; Ishizuka and Tsuji 1981; Tsuji 1982; Riechelmann et al. 2002). Typically, 

extinction limits are measured at the limiting fuel and oxidizer concentrations using 

various diluents at the varying injection velocities (or stretch rates). Numerical investiga-

tion of the extinction of diffusion flames with detailed chemistry started in the 1980’s. 

Extinction prediction on the Tsuji type burner using complex chemistry and detailed for-
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mulation of the transport fluxes was performed as a collaborated effort by five research 

groups (Dixon-Lewis et al. 1984) and the results compared well with the measured values 

(Tsuji and Yamaoka 1969; Tsuji 1982). Similar numerical efforts on the opposed-jet burner 

can be found elsewhere (Seshadri et al. 1989; Chelliah et al. 1990; Darabiha and Candel 

1992). 

While research on extinction of the non-premixed flames subject to the effects of 

flame stretch and non-unity Lewis number abounds, experimental studies on the effects of 

curvature are less numerous. This is mainly because of the difficulties in establishing a 

simple geometry that will allow detailed investigations. Despite these difficulties, studies 

have been made to investigate the curvature effects on flame extinction (i.e., tip-opening) 

of Burke-Schumann flames (Ishizuka 1982; Ishizuka and Sakai 1986; Im et al. 1990; Ta-

kagi and Xu 1996; Takagi et al. 1996a) and perturbed opposed-jet flames (Rolon et al. 1995; 

Takagi et al. 1996b; Yoshida and Takagi 1998; Finke and Grünefeld 2000; Katta et al. 

2003). In an enclosed axisymmetric diffusion flame where the flame curvature is concave 

to the fuel, Ishizuka finds the tip-opening can occur for H2 fuel diluted with Ar, CO2, or N2 

gas but not He gas and suggests that the Lewis number of the fuel is a controlling parameter 

(Ishizuka 1982). In detailed transport and complex chemistry calculations of usual and 

inverse H2/N2 axisymmetric jet diffusion flames, Takagi et. al. found that concave curva-

ture towards the H2/N2 fuel decreases the flame temperature below the adiabatic flame 

temperature (vice-versa for convex curvature) and the effect is magnified as the flame 

curvature increases (Takagi et al. 1996a). Katta et al. numerically studied the interaction of 
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a small vortex with a H2/N2-air planar opposed jet flame and found that micro-vortex from 

the fuel side (concave curvature) more easily extinguished the flame than a vortex form the 

air side (Katta et al. 2003). Both the results from Burke-Schumann flames and perturbed 

opposed jet flames are consistent in that concave flame curvature towards H2/N2 fuel 

weakens the flame and leads to extinction. 

Despite the rich discoveries in the previous experimental and numerical studies, the 

effects of curvature on extinction deserve more attention. By installing a nozzle along the 

center axis of the tubular burner as a second, radially-outwardly flowing reactant source, 

non-premixed and partially-premixed flames subject to well-controlled aerodynamic 

straining and flame curvature can be created (Hu 2007). This burner possesses the advan-

tages over the above-mentioned methods in that it allows a more detailed quantitative study 

of the non-premixed flame subject to the influences of both uniform stretch and uniform 

curvature. It offers the capability of investigating the effects of curvature on the flame 

extinction, which constitutes the first objective of this study. 

Flames near extinction conditions often exhibit instability, which leads to cellular 

structure and/or oscillation. Cellular instability of non-premixed flames has been reported 

by several researchers using various types of burners. One of the earliest studies was re-

ported by Dongworth and Melvin (Dongworth and Melvin 1976), where a Wolf-

hard-Parker burner was used. Flames produced by hydrogen/nitrogen-air exhibited cellular 

structure at a certain fuel dilution ratio. The authors postulated that inter-lancing of the 

non-premixed stream and the premixed stream of fuel and oxidizer through inter-stream 
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diffusion at the flame base produced a non-uniform distribution of fuel at the flame base, 

and was therefore responsible for the occurrence of cellularity, although the factors de-

termining the size of the cells was not clearly identified. Ishizuka and Tsuji observed a 

striped pattern for hydrogen-nitrogen/air flames established in the Tsuji-type burner, where 

the flame resided in the fuel side of the stagnation point (Ishizuka and Tsuji 1981). The 

authors attributed this phenomenon to the preferential diffusion of H2 relative to N2 in the 

fuel mixture and claimed that it closely resembled a similar discovery in premixed flames. 

Cellular instability and flame extinction using a slot-jet burner were systematically studied 

by Chen et al., where hydrogen, methane and propane diluted with a variety of inert 

diluents were used (Chen et al. 1992). Based on the experimental results, they proposed 

that near-extinction and sufficiently low Lewis number of the “deficient” (i.e., more 

completely consumed) reactant (Le ≤ 0.8) were the two requirements for flame to exhibit 

cellular instability. The Lewis number (diffusive-thermal) effect in a manner similar to that 

of premixed flames was argued to be the driving force instead of the effects of preferential 

diffusion. The diffusive-thermal instability of non-premixed flames was further investi-

gated in a counterflow slot jet burner at low Lewis number (Kaiser et al. 2000). A tube-like 

flame generated by the balance between flame weakening due to strain and intensification 

due to curvature was reported for the H2/N2-air flames. Flame tubes of various states were 

observed under various flow configurations. In a recent study (Jacono et al. 2003), cell 

formation in non-premixed, axisymmetric jet flames near extinction was investigated in 

detail, where much attention was draw upon the influence of initial mixture strength φ to 
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the selection criteria of cellular patterns. Most recently, scaling of cell size as functions of 

jet velocity and initial mixture strength was studied in detail using an axisymmetric jet 

burner and slot burner (Jacono 2007). On the other hand, theoretical study on the diffu-

sional-thermal instability of diffusion flames using activation-energy asymptotics was first 

started by Kim, Williams and Ronney (Kim et al. 1996). Additional contributions can be 

found from several other researchers (Cheatham and Matalon 2000; Papas et al. 2003; 

Metzener and Matalon 2006) and a good review was given by Matalon (Matalon 2007). 

Cellular structure in opposed tubular flames has been reported in previous studies (Hu 

et al. 2007) for flames produced by reactants with non-unity Lewis numbers. It was shown 

that the flame instability originated from the effects of curvature and Lewis number. 

However, a systematic investigation on the near-extinction behavior of non-premixed tu-

bular flames was not conducted. The second objective of this study is to characterize the 

cellularity of the opposed tubular flames burning N2, He, Ar or CO2 diluted H2, CH4 or 

C3H8 against air. The initial mixture strength (calculated as the fuel-to-oxygen molar ratio 

normalized by the stoichiometric molar ratio) and stretch rate at the stagnation surface are 

used as parameters to describe the cellular instability. 

 

Experimental Method 

An opposed tubular burner with outer nozzle diameter of 30 mm and inner nozzle 

diameter of 6.4 mm is employed, where the heights of both nozzles are 20 mm (Figure 16). 

A detailed description of the burner can be found elsewhere (Mosbacher et al. 2002; Hu et 
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al. 2007). Fuel mixtures are formed by diluting H2, CH4 or C3H8 with N2, He, Ar or CO2. 

The fuel-diluent combinations attempted in this study are summarized in Table 4. The fuel 

+ diluent mixture is sent through the inner nozzle flowing outward, and oxidizer, which is 

always air, is sent through the outer nozzle flowing inward. The only exception is a H2 + N2 

case, where the fuel and oxidizer flows are switched in order to generate flames with op-

posite curvature as shown in Table 4. 

A mirror with a slot-cutout is mounted underneath the tubular burner at 45 degrees to 

the axis of symmetry, which provides a view of the flame in the axial direction. An infrared 

sensitive ICCD video camera (Xybion ISG-250) mounted horizontally toward the mirror 

records the axially-integrated chemiluminescence emission from the flames to monitor the 

extinction and cellular structure. A typical picture of the flame is shown in Figure 38, 

where the upper part of the circle is missing due to the presence of the inner nozzle. The gas 

flows are controlled by mass flow controllers (Teledyne Hastings HFC-202/203) through a 

computer. During the experiment, a non-premixed tubular flame is ignited at a fuel con-

centration that is slightly higher than its corresponding extinction value, and then the fuel 

concentration is decreased in steps of 0.1-0.2% of the full scale of the flow controllers until 

extinction is reached. There are only a few cases where the flame is started at a lower 

diluent level and then the flow rate of the diluent is gradually increased until extinction is 

reached. All gas flows are supplied at room temperature 297 K. 

The radius of curvature at the stagnation surface of the cold flow, Rs, given by Wang et 

al. (Wang et al. 2006b; Wang et al. 2007), is a function of the inlet radii, density, and 
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Table 4 Summary of experimental conditions and relevant parameters. 

Fuel Di Rs
a XF

b, % Kc, s-1 φ d LeF
e α f CVg CLh 

CH4 N2 5.0 14.9 - 26.3 24.4 - 218 1.42 - 2.51 1.02 - 1.03 0.64 - 0.34 CA N 
  6.5 15.3 - 49.5* 16.7 - 172 1.46 - 4.71 1.02 - 1.05 0.62 - 0.16 CA N 
  8.0 15.6 - 21.0 18.2 - 89.2 1.49 - 2.00 1.02 0.61 - 0.44 CA N 
CH4 He 5.0 15.8 - 37.2 107 - 270 1.50 - 3.55 1.72 - 1.09 0.14 - 0.08 CA N 
  6.5 20.8 - 34.0 47.1 - 193 1.98 - 3.24 1.54 - 1.16 0.11 - 0.09 CA N 
CH4 Ar 5.0 10.1 - 18.6 35.2 - 163 0.96 - 1.78 0.96 1.35 - 0.69 CA N 
  6.5 10.2 - 19.5 24.6 - 150 0.97 - 1.86 0.96 1.34 - 0.66 CA N 
CH4 CO2 5.0 25.1 - 32.0 21.4 - 113 2.39 - 3.04 0.82 - 0.86 0.54 - 0.40 CA N 
  6.5 24.2 - 33.7 22.4 - 88.0 2.30 - 3.21 0.81 - 0.87 0.56 - 0.37 CA N 
  8.0 24.0 - 38.3 28.1 - 129 2.29 - 3.65 0.81 - 0.90 0.57 - 0.32 CA N 
C3H8 N2 5.0 6.16 - 14.3 22.9 - 180 1.47 - 3.40 1.76 - 1.51 0.69 - 0.31 CA N 
  6.5 6.90 - 15.7 25.0 - 196 1.64 - 3.74 1.74 - 1.47 0.62 - 0.29 CA N 
  8.0 7.33 - 17.9* 20.0 - 142 1.75 - 4.27 1.72 - 1.41 0.58 - 0.25 CA N 
H2 N2 5.0 10.7 - 16.9* 25.2 - 172 0.25 - 0.40 0.37 - 0.42 3.46 - 2.03  CA Y 
  6.5 9.08 - 16.9* 19.4 - 214 0.22 - 0.40 0.35 - 0.42 4.12 - 2.03  CA Y 
  8.0 8.56 - 10.3 30.4 - 90.9 0.20 - 0.25 0.35 - 0.37 4.38 - 3.57  CA Y 
H2 N2 5.0 6.43 - 7.99 35.6 - 96.0 0.15 - 0.19 0.33 - 0.34 5.97 - 4.73  CX Y 
  6.5 7.35 - 8.61 26.4 - 106 0.18 - 0.21 0.34 - 0.35 5.17 - 4.36  CX Y 
H2 He 5.0 10.3 - 13.1 154 - 465 0.25 - 0.31 1.10 - 1.09 0.54 - 0.42  CA N 
  6.5 10.5 - 13.1 71.0 - 380 0.25 - 0.31 1.10 - 1.09 0.52 - 0.42  CA N 
  8.0 11.2 - 12.5 56.6 - 227 0.27 - 0.30 1.10 0.49 - 0.44  CA N 
H2 Ar 5.0 8.93 - 10.6 34.6 - 205 0.21 - 0.25 0.35 - 0.37 5.95 - 4.92  CA Y 
  6.5 7.29 - 9.19 23.9 - 216 0.17 - 0.22 0.33 - 0.35 7.41 - 5.77  CA Y 
H2 CO2 5.0 14.6 - 15.8 41.8 - 138 0.35 - 0.38 0.29 3.79 - 3.44 CA Y 
  6.5 12.1 - 20.6* 25.9 - 131 0.29 - 0.49 0.26 - 0.34 4.67 - 2.50 CA Y 
a Radius of the stagnation surface based on the cold flow condition; unit: mm 
b Mole concentration of fuel at nozzle outlet 
c Stretch rate at the fuel side of the stagnation surface 
d Mole-based initial mixture strength, fuel-to-oxygen molar ratio normalized by the stoichiometric molar 
ratio 
e Lewis number of the fuel stream 
f Mass-based initial mixture strength, oxygen-to-fuel mass ratio normalized by the stoichiometric mass ratio 
g Direction of curvature, CA: concave; CX: convex 
h Cellularity, Y: yes; N: no 
* Effects of heat losses at low stretch rates. 
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Figure 38 Axial integrated image of the concave H2-N2/air opposed tubular flame 
at φ = 0.448, k=53 s-1, Rs≈6.5 mm (the fuel mixture originates from the inner 
porous nozzle; the upper part of the image is blocked by the inner nozzle feed 
line). 
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velocity of the two opposing streams. As a result, the radius of curvature of the flame can 

be controlled by varying the velocity ratio of the two nozzles at given nozzle radii and the 

flow density ratio. In this study, Rs is used to describe the degree of curvature of each in-

dividual flame. Three Rs’s are realized for different fuel/diluent mixtures as summarized in 

Table 4.  

The influence of the flow rate of N2 co-flow is evaluated and can be neglected. The 

mass flow controllers have an 1% full scale accuracy. For each extinction and instability 

onset data point presented hereafter, the experiments are repeated at least three times and 

the mean values are used. The uncertainties are estimated based on the standard deviation 

of the measured data and the accuracy of the mass flow controllers, i.e. the maximum of the 

above two values are used and shown as error bars on the subsequent figures. The differ-

ence between measurements is generally within ±3% of the average, although in some 

cases, somewhat larger variations can be observed. 

 

Experimental Results and Discussion 

Extinction data for different fuel-diluent combinations subject to various degrees of 

curvature are first presented and discussion is focused on extinction by stretch rate, which 

is represented by the upper branches of the extinction curves shown hereafter. This is 

followed by the experimental results for the onset of cellular structures. The stagnation 

stretch rate on the fuel side of the cold flow field is used as the characteristic stretch rate, 

and its expression can be found elsewhere (Wang et al. 2006b; Wang et al. 1007). In the 
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subsequent discussions, the term, concave or convex flame curvature is always with re-

spect to the fuel stream. 

 

Extinction 

Figure 39 shows the extinction stretch rate versus the initial mixture strength for N2 diluted 

CH4 and C3H8 concave opposed tubular flames subject to various degrees of curvature. The 

upper branches of the curves show the effects of stretch rate on the flame, i.e. the fuel 

concentration needed to sustain the flame is higher as the flame is stretched more, while the 

lower branches show the extinction behavior due to heat losses to the inner nozzle as the 

reactant inlet velocities have dropped very low and flames become very thick. Numerical 

simulation of the flame structure shows that temperature gradient at the inner wall 

boundary only exists when the stretch rate is less than ~30 s-1, which roughly corresponds 

to the turning point in Figure 39. The upper branches have similar slopes within each fuel 

group. The extinction curves of both the CH4-N2 and C3H8-N2 mixtures subject to different 

degrees of curvature lie close to each other respectively, although the Lewis number for the 

CH4-N2 is less than that of the C3H8-N2 mixture (Table 4). The mass based initial mixture 

strength α, which is calculated as oxygen-to-fuel mass ratio normalized by the 

stoichiometric mass ratio (Liñán 1974), for both mixtures are less than 1 and fall within a 

similar range. This suggests that the non-premixed flame is oxidizer deficient and flame 

resides on the oxidizer side of the stagnation surface. The effects of curvature are such that 

the flames are more resistant to extinction as they are curved more (smaller radii of cur-
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vature) as shown in Figure 39. This has two implications: 1) the concave curvature 

strengthens the non-premixed flame, which leads to higher extinction stretch rates; 2) the 

critical Lewis number where the opposite curvature effects occur (i.e. concave curvature 

weakens the flame), Lecr, is less than 1. 

Figure 40 shows the extinction stretch rate as function of the initial mixture strength for He, 

Ar or CO2 diluted CH4 flames subject to various degrees of curvature. Although the Lewis 

number goes from above one to less than one (Table 4), the extinction stretch rates for 

smaller Rs are always higher than that for larger Rs at a given initial mixture strength, i.e. 

extinction curves with smaller Rs are always to the left of the ones with higher Rs values. 

Similar phenomena can also be observed in Figure 39. This again confirms that the con-

cave curvature strengthens these non-premixed flames. The α  value of both the CH4-He 

and CH4-CO2 mixtures are less than unity, which means the flame is on the oxidizer side of 

the stagnation surface. Although the α  value of the CH4-Ar mixture goes from above one 

to below it, the Lewis numbers in both streams of this flame are close to unity. As a result 

the extinction curves lie close to each other. 

It can be seen in Figure 40 that the gap between the helium-diluted extinction curves 

subject to different radii of curvature is wider than that of the argon or carbon dioxide di-

luted ones. In addition, Figure 39 shows that at Lewis numbers close to that of the CH4-He 

mixture, the extinction curves of the C3H8-N2 mixture lies close to each other. One possible 

explanation is based on the mass-based initial mixture strength and the effects of curvature. 

The α  value for CH4-He mixture is very small comparing to the others, which indicates 
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that this flame is extremely oxidizer deficient. This means the opposed tubular flame 

would reside deep in the oxidizer stream and difference between the flame radii are mag-

nified. This will lead to the widened gap between the two curves shown in Figure 40. 

Greater difficulties are encountered when trying to ignite this flame due to the increased 

flame instabilities, which could also contribute to this observation. Indeed, the measured 

results show greater variations as the initial mixture strength is increased. 

The measured extinction stretch rates versus the initial mixture strength for N2 diluted 

H2 opposed tubular flames for both concave and convex curved cases are shown in Figure 

41. Concave H2-N2/air flames with smaller radii are prone to extinction, i.e. flames ex-

tinguish at higher fuel concentrations; convex H2-N2/air flames with smaller radii are more 

resistant to extinction, i.e. flames can exist under lower fuel concentrations. It is also 

shown in Figure 41 that the convex opposed tubular flames are more resistant to extinction 

than the concave ones. The α  value of the H2-N2 mixture is greater than unity, so the 

flame resides on the fuel side. Based on the above observations, given that the Lewis 

number of the H2-N2 mixture falls in the range of 0.33 - 0.42 (Table 4), which is much less 

than unity, two conclusions can be drawn: 1) concave (convex) curvature retards (promotes) 

combustion, and therefore leads to early (late) extinction; 2) Lecr is greater than 0.4. 

For hydrogen flames using helium as diluent, the fuel Lewis number is greater than 

unity and the flame resides in the oxidizer stream. Based on the argument above, flames 

with smaller radii of curvature will be more resistant to extinction. This is confirmed by the 

data shown in Figure 42, where the flames are always concave. Also shown in Figure 42 is 
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the extinction data for H2-Ar/air flames. The H2-Ar mixture has a fuel Lewis number much 

less than one, so again, the flames with bigger radii of curvature demonstrate higher ex-

tinction stretch rate at a given initial mixture strength. 

 

Cellular Instability 

Cellular structures in the opposed tubular non-premixed flames have been reported 

previously (Hu et al. 2007). However, no effort was made to quantify the onset conditions 

of the cellularity in the previous study. Following the same experimental procedure, these 

onset conditions are carefully recorded in this study. Extinction behavior is different for 

flames that demonstrate cellular instability. In most cases, local extinction at one angular 

location starts to develop and a stripped pattern is formed when the onset condition for 

cellularity is reached. As the initial mixture strength is decreased further, local extinction 

occurs at more than one angular location and flames with cell numbers vary from 1 to 4 are 

observed as shown in Figure 43. In Figure 43 (a) - (d), the top part of the flame viewed in 

the axial direction is partially blocked by the inner nozzle, so not all cellular structures are 

readily seen. The stripped patterns that shown in Figure 43 (e) and (f) are taken with the 

CCD video camera looking in the radial direction. The strips are steady at the given   

experimental conditions. 

Only the onset conditions of cellularity are recorded, while no data was made avail-

able to relate the cell numbers to the flow conditions as great uncertainty has been ex-

perienced in the attempt to do so. The flame with only one cell is not stable and the flame 
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cell is always rotating. Both clockwise and counter-clockwise rotations are observed, 

which indicates the direction of rotation is random. Flames with 1, 3 and 4 cells show the 

preferred curvature property discovered previously (Hu et al. 2007), but not the flames 

with 2 cells. 

Shown in Figure 44 are the onset boundaries of cellular structures and the regions where 

cellularity exists in the H2-N2/air opposed tubular flames with both concave and convex 

curvature. For ease of discussion, the initial mixture strength is plotted as functions of the 

stretch rate. Consistent with previous findings (Chen et al. 1992; Jacono et al. 2003), cel-

lularity is only observed in flames close to extinction and with sufficiently low fuel stream 

Lewis numbers. At stretch rates not lying in the regions of extinction due to heat loss, re-

gions of cellularity are becoming narrower as the stretch rates are raised higher. The cel-

lularity region becomes wider as the radius of curvature is increased for the concave cases, 

which indicates that the concave curvature is suppressing cellularity. As discussed earlier, 

the concave curvature retards combustion process, and the flame exhibits lower flame 

temperature. Flames with smaller radii of curvature extinguish earlier if the initial mixture 

strength is decreased gradually, so the region that favors cellularity becomes smaller. The 

H2-Ar/air and H2-CO2/air flame data shown in Figure 45 confirm this postulate by showing 

similar trends. This can also be verified by studying flames with opposite curvature. 

However, there are not enough data available for the convex cases due to experimental 

difficulties. More efforts are needed in the future. 
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Figure 39 The extinction stretch rate of the opposed tubular flame as function of 
the initial mixture strength for various radii of the stagnation surface. Fuel: 
CH4/C3H8; diluent: N2; oxidizer: air. Note: CH4 uses lower X-axis, C3H8 uses upper 
one 
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Figure 40 The extinction stretch rate of the opposed tubular flame as function of 
the initial mixture strength for two different radii of the stagnation surface and two 
different diluents. Fuel: CH4; diluent: He/Ar/CO2; oxidizer: air 
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Figure 41 The extinction stretch rate of the opposed tubular flame as function of 
the initial mixture strength for various radii of the stagnation surface and different 
directions of curvature. Fuel: H2; diluent: N2; oxidizer: air 
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Figure 42 The extinction stretch rate of the opposed concave tubular flame as 
function of the initial mixture strength for various radii of the stagnation surface 
and two different diluents. Fuel: H2; diluent: He/Ar; oxidizer: air 
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(a) 1R-cell      (b) 2S-cell    (c) 3S-cell     

     

(d) 4S-cell     (e) 2S-cell    (f) 4S-cell      

     

 

 

 

 

Figure 43 Images of the cellular structure of the diluted-H2/air opposed tubular 
concave flame. (a) - (d): H2-N2 viewed in the axial direction; (e) and (f): H2-CO2 
viewed in the radial direction. (a) φ = 0.271, K≈73 s-1, Rs≈5.0 mm; (b) φ = 
0.281, K≈30 s-1, Rs≈8.0 mm; (c) φ = 0.217, K≈45 s-1, Rs≈8.0 mm; (d) φ = 
0.236, K≈45 s-1, Rs≈8.0 mm; (e) φ = 0.410, K≈64 s-1, Rs≈5.0 mm; (f) φ = 
0.398, K≈42 s-1, Rs≈6.5 mm. “R” represents rotating cells and “S” stationary 
ones. 
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Figure 44 The onset initial mixture strength of cellular structures and the regions 
where cellularity exists for opposed tubular flames plotted as functions of stretch 
rate with both concave and convex curvature. Fuel: H2; diluent: N2; oxidizer: air 
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Figure 45 The onset initial mixture strength of cellular structures and the regions 
where cellularity exists for opposed concave tubular flames plotted as functions of 
stretch rate subject to different effects of curvature. Fuel: H2; diluent: Ar/CO2; oxi-
dizer: air 
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Conclusion 

A novel opposed tubular burner is used to study the curvature effects on extinction 

and cellularity of non-premixed flames. The extinction limits of opposed tubular flames 

burning various fuel (H2, CH4 or C3H8)/inert gases (N2, He, Ar or CO2) mixture with air are 

measured in terms of the initial mixture strength versus the stretch rate. The effects of 

curvature are studied by varying the radii of the flame curvature. From the data, it is dis-

covered that the curvature effects are always coupled with the effects of the Lewis number. 

There exists a critical Lewis number Lecr, which is less than unity such that when Le < (>) 

Lecr, the concave curvature retards (promotes) combustion and weakens (strengthens) the 

non-premixed flame; vise versa for the convex curvature. The value of Lecr is between 0.4 

and 1. 

Cellular structures with 1 to 4 cells are observed in this study for flames with suffi-

ciently-low fuel Lewis number. Quantitative onset conditions for cellularity in 

non-premixed tubular flames are measured. Regions of the observed cellular instability are 

mapped out in the initial mixture strength - stretch rate diagram. The effects of the concave 

curvature are to suppress the cellular instability as shown by comparing the maps of cel-

lularity with different radii of curvature. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE EFFORTS 

 

Summary and Conclusions 

Non-premixed tubular flames are established using a uniquely-designed opposed 

tubular burner for the first time. Tubular hydrogen/, methane/ or propane/nitrogen-air 

non-premixed flames which are concave towards the fuel stream are established. A la-

ser-induced Raman experimental system is developed and improved for diagnostics pur-

poses. Visible laser-induced Raman spectroscopy is applied to all three kinds of flames to 

obtain temperature and major species concentration profiles. The flames studied include 

15% H2 diluted with N2 against air with stretch rates ranging from 30 to 242 s-1, 30% CH4 

diluted with N2 against air with stretch rates ranging from 41 to 120 s-1, and 15% C3H8 

diluted with N2 against air with stretch rates ranging from 33 to 100 s-1. Due to the heat loss 

to the inner nozzle at low stretch rates and the flow unsteadiness introduced by turbulence 

at high stretch rates, only data for moderate stretch rates are presented. Temperature and 

species concentrations (H2O, N2, O2, and H2 for hydrogen flames; CO2, H2O, N2, O2, and 

CH4 for methane flames; CO2, H2O, N2, O2, and C3H8 for propane flames) of these flames 

are obtained with good spatial resolution. In some of the methane and propane flames, only 

data on the oxidizer side are made available due to the interferences from the C2 LIF and 

the scattering of the inner wall. This non-intrusive Raman system is also successfully ap-
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plied to other types of flames by the author, such as tubular premixed (Hu et al. 2006b) and 

partially-premixed opposed-jet flames (Katta et al. 2007). 

Numerical simulations of the non-premixed tubular flames corresponding to the ex-

perimental conditions are carried out using a modified Chemkin code written with FOR-

TRAN. Detailed chemical reaction mechanisms are utilized for each individual fuel, which 

are Mueller (Mueller et al. 1999), Peters (Peters and Rogg 1993), and GRI 3.0 (Smith et al. 

2000) mechanisms for hydrogen flames, Kee (Kee et al. 1985), C1 (Peters and Rogg 1993), 

C2 (Peters and Rogg 1993) and GRI 3.0 mechanisms for methane flames, and San Diego 

mechanism for propane flames. Complex molecular models of using either the 

multi-component or mixture-average formulation are incorporated in the simulation code 

together with detailed thermodynamic databases. 

The experimental data and simulation results of each flame are compared with each 

other. The agreement is generally very good. The numerical models and the reaction 

mechanisms are validated by such a comparison. The peak flame temperature comparison 

between curved and planar flames (Figure 37) reveals the effects of curvature on 

non-premixed flames. Given the unity Lewis number of the air stream, the non-unity Lewis 

number of the fuel mixture controls the diffusion of the fuel to the flame surface. When 

Lewis number of the fuel stream is greater than one (C3H8/N2), curvature concave toward 

the fuel stream promotes combustion (higher peak temperature) and convex curvature 

retards combustion (lower peak temperature); when the Lewis number of the fuel stream is 

much less than one (H2/N2), curvature concave toward the fuel stream retards combustion 
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(lower peak temperature) and convex curvature promotes combustion (higher peak tem-

perature). The effects of curvature on curved methane flames are ambiguous, because the 

Lewis number of CH4/N2 mixture is close to one. Although the peak flame temperature of 

concave methane flame is lower than that of the planar flame, which indicates that the 

methane flames act like flames with Lewis number less than one, the peak flame tem-

perature of the convex methane flame is almost the same as that of the planar ones, which 

indicates the effects of curvature is not important. 

To further elaborate the above conclusion about flame curvature, extinction and cel-

lular instability of the non-premixed tubular flames are studied. The extinction limits of 

opposed tubular flames burning various fuel (H2, CH4 or C3H8)/inert gases (N2, He, Ar or 

CO2) mixture against air are measured in terms of the initial mixture strength versus the 

stretch rate. The effects of curvature are studied by varying the radii of the flame curvature. 

From the data, it is discovered that the curvature effects are always coupled with the effects 

of the Lewis number. There exists a critical Lewis number Lecr, which is less than unity 

such that when Le < (>) Lecr, the concave curvature retards (promotes) combustion and 

weakens (strengthens) the non-premixed flame; vice versa for the convex curvature. The 

value of Lecr is between 0.4 and 1.  

Cellular structures with 1 to 4 cells are observed in non-premixed tubular flames with 

sufficiently-low fuel Lewis number. Quantitative onset conditions for cellularity in 

non-premixed tubular flames are measured. Regions of the observed cellular instability are 

mapped out in the initial mixture strength - stretch rate diagram. The effects of the concave 
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curvature are to suppress the cellular instability as shown by comparing the maps of flames 

with different radii of curvature. 

 

The Effects of Curvature 

To discuss the physical process on how curvature affects the non-premixed flames, 

one needs to start with the effects of stretch and preferential diffusion. The term preferen-

tial diffusion encompasses two meanings: the effects of Lewis number, that is, the changes 

in flame characteristics caused by difference in thermal diffusivity and molecular diffu-

sivity, and the effects of differential diffusion, that is, the changes in flame characteristics 

caused by difference in the diffusivity of different molecules of the mixture. Considering a 

stretched planar flame, i.e. that of the opposed jet flame, as an example, if the Lewis 

numbers of both the fuel and oxidizer streams are equal to one and the diffusivities of 

different molecules of interest are equal, changes in the aerodynamic stretch do not affect 

the flame properties as long as the reactions are complete. However, continuous increase in 

stretch rate causes the residence time to decrease to a point where the rate of reaction can 

not keep up with the rate of the supply of the fresh reactants and the depletion of the re-

action produces. Therefore, complete reaction does not hold and the flame temperature 

decreases as a result of this. Further decrease in stretch causes the flame to extinguish 

eventually. In the case of non-unity Lewis number and unequal molecular diffusivity, 

taking the H2/N2-air flame as an example where the Lewis number of fuel mixture is less 

than one and the hydrogen molecules diffuse faster than the nitrogen molecules, as the 
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flame stretch the effects of Lewis number is to increase the flame temperature is increased 

because the increase in hydrogen mass diffusion outpaces the increase in heat loss ( D<α ); 

as the flame stretch is increased the effects of differential diffusion is also to increase the 

flame temperature because the higher concentration gradient of hydrogen than that of ni-

trogen provides a driving force to diffuse hydrogen at a higher rate to the flame zone, which 

in turn generates a locally under-diluted region. However, as the stretch rate is increased to 

a point where reaction incompleteness starts to take effects, the flame temperature de-

creases according to the process described in the unity Lewis number and equal mass dif-

fusivity case. The question now is how curvature plays a role in affecting the flame 

properties. 

Considering again a H2/N2-air flame, if the flame front is curved, the part that is 

concave toward the fuel stream has a focusing/defocusing effect on both the molecular 

diffusion and heat transfer. On one hand, the fuel is diffusing into a larger area, and 

therefore it’s defocusing. The local hydrogen concentration is lower than that of the cor-

responding planar flame, or in other words, the flame front is over-diluted, so the flame 

temperature drops. On the other hand, the heat transfer is toward a smaller area, and 

therefore it’s focusing. Due to the smaller heat capacity in the focused region, the tem-

perature gradient is less than that of the corresponding planar flame, so the heat loss is 

reduced, which caused the temperature to increase. However, because the Lewis number is 

less than one, the defocusing of the reactant dominates. The overall effect of curvature in 

the concave case is to decrease the flame temperature. Similar argument shows that flame 
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temperature increases in the convex case. The extinction behavior of non-premixed curved 

flames can be explained by the temperature considerations based on the Lewis number, the 

different mass diffusivities, and the direction of curvature. 

In the case of near-extinction curved flames, the flame has a tendency to sustain itself 

by deforming the flame front to generate high temperature regions. Taking H2/N2 concave 

tubular flame as an example, the near extinction flame breaks itself to form locally con-

vex-curved flame stripes with higher temperature than that of the corresponding concave 

flames (See for example Figure 43-D). As a result, one observes the cellular instability in 

the curved flames reported in Chapter V. 

 

Future Work 

A new improved tubular burner has been designed and manufactured, which is de-

tailed in Appendix A. With the improved burner, flames that are previously unstable and 

hard to generate using the old burner will be easily established, and thereby expand the 

operating range of the tubular burner. The new burner is compact, requires less gas flow 

and has Brewster-angle windows, which makes it more ideal for optical diagnostics. Fur-

ther more, the flow field generated with this new burner will be more uniform and much 

easier to manipulate. 

In combustion simulations, the concentrations of radicals and intermediate products 

are difficult to predict and yet their importance can not be underestimated. In most cases, it 

is the radicals who control the characteristics of the flame. In a recent study (Kortschik et al. 
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2005), laser-induced fluorescence (LIF) images in a corrugated counter flow mixing field 

using n-heptane versus air revealed that elevated concentrations of formaldehyde (CH2O) 

concave toward the air side were in favor of autoignition, which is also confirmed by the 

numerical calculations. Another study (Nandula 2003) shown that the turbulent flamelet 

model over-predicted the hydroxyl concentrations in the shear layer upstream of a turbu-

lent, lean, premixed combustor. In these regions, the curvature effects, which are not 

captured by flamelet model, might be important. A proposal for applying the OH LIF 

measurement to the opposed tubular flame is detailed in Appendix B along with a brief 

review of the LIF process and calibration procedure. The simultaneous measurement of 

temperature and major species concentrations using Raman spectroscopy and OH radical 

distribution using LIF technique will help to gain a better understanding of the curvature 

effects on flame structure. In addition to the experiments, numerical study can also be 

carried out, and the experimental data can be used to validate the numerical models. 

The study of the extinction and cellular instability of the opposed-tubular flames in 

this work has revealed some very interesting phenomena. However, there are still many 

aspects in this area that deserve further investigation. Flame extinction and cellularity data 

with varying oxygen concentration can be obtained without any technical difficulties to 

study the effects of oxidizer Lewis number and curvature. With more carefully selected 

fuel and diluent combinations, experiments can be carried out to determine the critical 

Lewis number where the opposite curvature effects start to act on a curved flame. The 

effects of curvature on cellular instability can be further studied by taking more meas-
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urements in both convex and concave flame cases. Numerical simulation of the cellular 

instability poses a great challenge, due to the intrinsic 2-D or even 3-D nature of the cel-

lular structure. Some effort in this regards can be carried out to assist experiments and 

eventually obtain full understanding of the effects of curvature on flame extinction and 

cellular instability. 

Partially premixed flames closely resemble the condition inside a direct-inject strati-

fied charge (DISI) engine. Some interesting behavior of this types of flames at 

near-extinction conditions has been discovered (Katta et al. 2007). The effects of curva-

ture on partially-premixed tubular flames have yet to be defined and deserve some atten-

tion. 
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APPENDIX 

 

A. Design of a New Tubular Burner 

 

Design Criteria 

In the opposed tubular burner, one of the reactants is introduced radially inward 

through the outer nozzle and the other reactant is issued radially outward through the inner 

nozzle (Figure 3). By installing a porous nozzle assembly, an existing tubular burner 

(Mosbacher et al. 2002) was modified to generate non-premixed tubular flame presented in 

Chapter IV. However, some limitations of this burner, including non-uniform flow, fixed 

outer nozzle size and height, etc., made the proposed investigation of the tubular flames 

difficult to implement. To overcome the shortcomings of the previous burner, a new op-

posed tubular burner was designed, fabricated and tested. Similar to the previous one, the 

new burner has three optical ports around the peripheral of the burner to allow optical 

access, two of which are aligned along a straight line perpendicular to the third (Figure 46). 

In order to maintain a simple flow field, certain design criteria have to be met and these are 

discussed below. 

The gas flow velocities at the exits of both the outer and inner nozzles need to be 

uniform in order for the one-dimensional simplification described in a later section to be 

valid (Dixon-Lewis et al. 1990). The boundary condition under this situation is termed 

plug-flow boundary condition. In the design of wind tunnel contraction section, research-
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ers have found that the area contraction ratio (CR) needs to be greater than 10 to produce a 

uniform flow (Tsien 1943; Morel 1975). This criterion was followed in the design of the 

tubular burner here. Simulations (2-D) using the commercial software Fluent have shown 

that as long as this criterion is satisfied, the velocity distribution at the nozzle exit is not 

very sensitive to the shape of the nozzle surface. As a result, a 3rd order polynomial was 

conveniently chosen to describe the surface contour. 

On the other hand, the diameter-height ratio of the nozzle has been found to be im-

portant in determining the shape of the velocity distribution at the nozzle exit. Large ratios 

favor uniform flow. However, if this ratio is too large, the scattered light from the sample 

volume, which originates from the burner center, will be partially blocked by the nozzle. 

As a result, the diameter-height ratio was chosen to be 3 for optimal performance. 

The desired exit velocity from the experimental points of view falls between 0.2 - 5 

m/s with the maximum corresponds to the typical extinction velocity. The flow rate ca-

pacity of the flow meters commercially available is 0.1 - 500 SLPM. Due to practical 

considerations, the desired flow rate should be in the range of 30 - 300 SLPM. As a result, 

the area of the nozzle exit should be less than 0.001 m2. Given the diameter-height ratio of 

3, the outer nozzle radius 2R  needs to satisfy 5.152 <R  mm. 

The Reynolds number for the tubular burner configuration can be defined as 

υhVD=Re , where hD  equals 2H  in this case and υ  is approximately 0.16 cm2/s for 

air at 300 K, 1 atm. From a previous study, the maximum allowable Reynolds number for 

the tubular burner configuration before the appearance of flow turbulence is ~4000 (Hu et 
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al. 2006b). Given the diameter-height ratio of 3, one can infer that the nozzle radius R 

needs to meet this requirement: 2.1996 max2 =< VR  mm. 

For premixed tubular flame, the measured extinction stretch rates, extk , for 

stoichiometric methane-air and propane-air flames are close to 2400 s-1 (Kobayashi and 

Kitano 1993). This can be deemed as the maximum stretch rate the tubular burner needs to 

produce. Given the definition of stretch rate for tubular burner, 2RVk π= , one could 

establish a relationship for the nozzle radius, 5.62400max2 => VR π  mm. 

Based on the above analysis, 122 =R  mm was chosen in the design process. This 

value can be changed, because the newly designed burner has exchangeable nozzles, which 

will be discussed later. The outer radius of the contoured nozzle is 76 mm with a height of 

72 mm. The area contraction ratio, 57, is well above the minimum requirement. The design 

parameters and their corresponding criteria are summarized in Table 5. 

Table 5 Tubular burner design parameters and their corresponding criteria 

Parameter Value Criteria 
CR 57 >10 
Diameter-height ratio 3 Velocity uniformity and optical accessibility 

2R  
12 mm 5.155.6 2 << R  

1R  
3.2, 4.8 mm Prominent curvature effects and reactant delivery 

The inner nozzle is made of sintered metal porous tubes, which ensure flow uni-

formity. Three sections are welded together. Main reactant flow is through the middle 

section and inert gas co-flows are through the two end sections. The co-flows are necessary 

to avoid preheating of the reactant delivery tube to the middle section, as well as shield the  
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Figure 46 Assembly drawing of the opposed tubular burner 
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flame from surrounding environment to minimize disturbance. Laser welding is used to 

minimize the gap between each section. The curvature effects on flames are more promi-

nent when the radius of curvature is smaller. This necessitates tubes with diameters as 

small as possible to be employed. On the other hand, to maintain a substantial amount of 

gas flow through the middle section of the inner nozzle, the diameter of the delivery tubes 

cannot be too small. This puts a lower limit on the size of the sintered metal tubes, which is 

around 3 mm. In this study, tubes with 2.31 =R  mm are used in most cases. 

The outer nozzle of the burner is also accompanied with inert gas co-flows for the 

same reason mentioned above. In non-premixed flames, the flame thickness could vary 

substantially depending on the flow field, types of reactants and flame temperature, the 

later of which is in turn affected by the reactant dilution ratio. In order to avoid temperature 

and species gradient at both the outer and inner boundaries, one needs to use an outer 

nozzle with an appropriate diameter for each characteristic flame. In order to meet this 

requirement, the outer nozzle of the tubular burner is designed to be exchangeable. Two 

porous metal rings are installed to maintain a favorable pressure drop across the gas inlets 

and the chamber (Figure 46). This ensures the gas flow into the burner chamber is uniform. 

Similar measure is adopted for the outer coflow nozzles. 

Windows for the two laser ports are mounted at their Brewster angle (Figure 46) to 

maximize the throughput of the vertically polarized laser light and at the same time 

minimize reflection inside the burner chamber. As a result, the stray light picked by the 

camera is minimized, which improves the accuracy of the measurement. 
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Flow Field Simulation 

To assess the performance of the tubular burner, the CFD software Fluent is utilized to 

simulate the non-reacting flow fields for both the non-premixed and premixed configura-

tions. In the simulation, the effects of optical ports on the flow field are believed to be 

minimal. This simplifies the problem to a 2-D axisymmetric one. The mesh used in the 

calculation is shown in Figure 47. The pressure outlet is set to be far away from the actual 

location in order to avoid any outlet effects (Poinsot and Veynante 2001). The black line 

and curves in the figure designate the actual walls of the burner. The burner is divided into 

160 grid points along the symmetry plane and 180 grid points along the axis of symmetry. 

The grid density is increased at the vicinity around the nozzle exits to improve the accuracy 

of the simulation. The segregated, steady solver is used and the momentum equation is 

differentiated using a first order upwind scheme. In the subsequent simulations, the burner 

outer and inner radii are chosen to be 12 and 3 mm, respectively. 

The velocity distributions at various radial locations of the opposed tubular burner 

with 12 =V  m/s, 21 =V  m/s and no coflow as an example are shown in Figure 48. Al-

though velocity is not quite uniform at the exit of the outer nozzle (r = 12 mm), it demon-

strates very good uniformity at reduced radial locations. In addition, a central region with 

flat velocity distribution for all radii is observed from the simulation as shown in Figure 48. 

In laser-induced Raman scattering and LIF measurements, the laser beam is passing 

through the symmetry plane (axial location z = 0 mm). The existence of such a uniform 
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central region validates the measurement as well as the 1-D assumption described in the 

next section for the numerical simulation of non-premixed flames with detailed chemistry 

and transport formulation. 

Results from the 2-D flow field simulations is further compared to the analytical so-

lution using the 1-D assumption (Wang et al. 2006b) in Figure 49, where the stretch rate 

profile is described by the following expressions (assuming equal density in the two noz-

zles): 

for 2RrRs <<  

( )[ ]222cos 2
222 QRrQQRVk −+−= π      (A.1) 

for sRrR <<1  

( ) ( ) ( )[ ]21121122
2

222 222cos RVRVQRVRVRrQQRVk −+−= π      (A.2) 

where Q  is given by: 

( ) ( )[ ]21122112 RRRRVVRRQ −−= π      (A.3) 

and sR  is calculated by: 

( ) ( )[ ] 21
211221121 VVRRRRRRRs −−−=      (A.4) 

The comparison demonstrates approximately 10% difference in maximum stretch 

rates between the theoretical and simulation profiles. From the simulation, an effective 

nozzle radius equal to 15 mm is directly obtained from the interception point between the 

stretch rate curve and the radial location axis. The effective exit velocity is calculated to be 

1.25 m/s based on the change in areas. The theoretical stretch rate profile based on the 

effective values is shown as dashed line in Figure 49. Very good agreement has been found 
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between the simulation and theory on the maximum stretch rate. The better agreement of 

the stretch rate curves on the inner nozzle side is not surprising as the plug flow description 

is believed to be exact here. This effective radius will be used in future data reductions. The 

influence of coflow is also studied by varying their exit velocities. The result shown in 

Figure 49 demonstrates a negligible influence from the coflow. 

Comparison of the theoretical and 2-D simulated flow fields for the premixed burner 

configuration is also carried out and shown in Figure 50. The inner nozzle is removed and 

gas is introduced from the outer nozzle only. The stretch rate in this case is given by: 

( )[ ]2
222 cos RrRVk ππ−=      (A.5) 

Strong influence from the coflow is observed and a matching coflow velocity pro-

vides the best agreement between the theoretical and simulated results. It is therefore 

recommended in both premixed and non-premixed cases that one should operate the burner 

with coflow velocity matching its corresponding nozzle velocity. 
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Figure 47 Mesh for the 2-D flow field simulation 
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Figure 48 Velocity distributions at various radial locations of the opposed tubular 

burner for 12 =V  m/s, 21 =V  m/s and no coflow 
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Figure 49 Comparison of the stretch rate profiles of the opposed tubular burner 

between theoretical and calculated results for 12 =V  m/s, 21 =V  m/s and vari-

ous coflow velocities. Vrc represents the velocity ratio between the coflow and its 
accompanying nozzle. 
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Figure 50 Comparison of the stretch rate profiles of the tubular burner between 

theoretical and calculated results for 12 =V  m/s and various coflow velocities. Vr 

represents the ratio between the coflow and the nozzle velocities. 
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B. OH LIF System 

 

Background Theory 

Fluorescence is the spontaneous emission of light from an excited atom or molecule. 

In laser-induced fluorescence (LIF), an atom or molecule reaches the excited state through 

photon absorption. This technique is typically utilized for the detection of chemically re-

active intermediates and radicals (Eckbreth 1996). It is possible to get two- and 

three-dimensional images since fluorescence takes place in all directions (i.e. the fluo-

rescence signal is isotropic). The signal-to-noise ratio of the fluorescence signal is very 

high, providing a good sensitivity to the process. It is also possible to distinguish between 

many species, since the lasing wavelength can be tuned to a particular excitation of a given 

species, which is not shared by other species. All these advantages make LIF ideal for 

detection of intermediate species at low concentration levels, e.g. ppm or even sub-ppm 

level. 

Unfortunately, molecules at the excited states are subject to other losses, such as col-

lisional quenching, photoionization and/or predissociation. To obtain quantitatively accu-

rate concentration, all the losses need to be accounted accurately. While photoionization 

and predissociation can be avoided by picking an appropriate laser wavelength that cor-

responds to a non-dissociating excited state, collisional quenching is much more difficult 

to estimate due to its dependence on the temperature and all species present. In this study, 

the temperature and major species concentration are well determined by Raman scattering. 
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As a result, the quenching corrections can be calculated based on the Raman data. 

If a two-level model is employed with photoionization and predissociation neglected, 

assuming the spontaneous emission is much slower than the collisional quenching the 

following expression is obtained for the power of the fluorescence signal, F , at low laser 

excitation irradiances (Eckbreth 1996): 

21

21
12

0
14 Q

A
IBLAN

c
hF νπ
ν Ω

=    (B.1) 

The fluorescence is linearly proportional to the input laser irradiance in the so-called 

linear regime. The collisional quenching rate constant can be calculated from: 

∑=
i

iQ nkQ
i21    (B.2) 

The quenching rate coefficient, 
iQK , can be evaluated by  

( )[ ] 218 πμσ kTK
ii QQ =    (B.3) 

where μ  is the reduced mass of the colliding species. 

To calculate the absolute number density of OH radicals directly, all the coefficients 

involved in Eq. B.1-3 need to be accurately determined, which is proven to be not feasible. 

An alternative approach is to use a calibration flame, similar to the Raman scattering 

method. Details is covered in the later sections. 

 

Experimental Setup 

The OH LIF technique is used to measure the OH concentration. A schematic of the 

OH LIF system is shown in Figure 51. A Nd:YAG pumped dye laser is used as the laser 
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source. The dye laser beam is frequency-doubled by a UV tracker (UVT) to produce laser 

beam in the UV range that accesses one of the excitation band of OH radical. For this work, 

the O12(8) transition in the ( )0,122 Π←Σ+ XA  band of OH ( nm9.287=λ ) is picked to 

minimize the absorption of the laser beam propagating through the flame (Carter and 

Barlow 1994). The laser light is attenuated by a neutral density filter to ensure the LIF 

process is within the linear regime. The same focusing lens (300 mm focal length) as that 

used in Raman system is used to focus the beam into the tubular burner. For the OH fluo-

rescence detection, light from the sample volume is collected at 90 degrees by an ICCD 

camera. Two filters: a Scott bandpass UG-5 (passes nm400250 << λ ) and longpass 

WG305 filters (passes nm305>λ ) are placed in front of the camera to reject the scattered 

radiation and transmit fluorescence from the dominant (1,1), (1,0) and (0,0) bands. The 

whole system is gated by a DG535 gate/delay generator. 

 

Calibration 

To obtain absolute species concentrations without evaluating all the coefficients in Eq. 

B.1, the OH LIF system is calibrated using flames with known species concentrations. The 

Hencken burner is employed to replace the tubular burner in the test section. A single 

near-stoichiometric CH4-air flame is produced by the burner and used in calibration. 

The OH calibration factor, which is assumed to be independent of temperature, is 

obtained through the calibration procedure and defined as:
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Figure 51 Schematic of the OH LIF system 
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calOHlcalOH ENC ,
0
,1 ξ=    (B.4) 

where OHξ  is the camera counts for OH signal, which is proportional to the fluorescence 

signal power F . Subscript cal  denotes the calibration flame. The ground state popula-

tion, 0
1N , is evaluated from Boltzmann statistics and depends on the OH number density 

and temperature. Since the tubular flame is very small and the (1,0) excitation is selected, 

radiation trapping of the signal is negligible (Eckbreth 1996).  

The absolute OH concentration from the experimental data can be evaluated from: 

lOHQOHOH EfCCn 0
1ξ=    (B.5) 

where 0
1f  is the ground-state population fraction calculated from the Raman-reduced 

temperature and calQ QQC ,2121=  is the correlation factor accounting for variation of the 

local collisional quenching from that at the calibration condition. The quenching correla-

tion factor can be evaluated using Eq. B.2 and B.3, where the quenching cross section is 

calculated by ( ) ( ) ( )[ ]ccccAQ hhChhCP ,22exp1
2

10 αγσ
α

−+−+=  (Paul 1994), where 

TTCh calc 2= , and ( )xa,γ  is the incomplete gamma function. The coefficients defined in 

Eq. B.6 are listed in Table 6. 

Table 6 Quenching coefficient of OH +Σ2A ( 0=′v ) (Paul 1994) 

Molecule PA C0 (Å) C1 C2 α 
H 1.038 13.763 1.347 1.399 4.00 
O 1.000 13.959 1.452 2.067 5.20 
H2 0.330 12.848 1.360 3.079 3.50 
O2 0.537 14.892 1.327 3.866 3.95 
CO 0.846 14.536 1.664 6.206 4.60 
CO2 0.770 15.418 1.391 8.205 3.22 
H2O 1.120 15.955 2.251 4.302 3.12 
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CH4 0.826 16.561 1.109 3.591 3.050 
N2 0     
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