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CHAPTER I 

 

INTRODUCTION 

 

Complex central nervous system structures such as fiber bundles restrict and 

define the Brownian motion of the tissue water within. This results in characteristic 

displacement distribution patterns, which can be measured using diffusion tensor imaging 

(DTI). Appropriate analysis of the data then can be used to deduce the embedded 

structural information (1-3). The ability of DTI to probe diffusivity on microscopic scales 

and the structural information that can be inferred from the diffusivity make the method 

advantageous for studies of axonal integrity and connectivity. As the number of DTI 

related investigations has grown and it has become a valuable diagnostic tool (4,5), the 

need to validate DTI has grown also (6). Although the magnitudes of diffusion 

coefficients in a fixed brain decrease, it has recently been reported that the diffusion 

anisotropy is similar to that of a non-fixed brain (7). This finding simplifies a direct 

comparison of fiber directionality and distribution measured using DTI data with that of 

fixed, myelin stained brain sections. In an effort to validate the structural information 

from DTI on a microscopic level, we used a multi-step registration scheme to correlate 

fiber geometry information from DTI with high magnification light microscopy in non-

human primates. 
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CHAPTER II 

 

BACKGROUND 

 

Diffusion Tensor Imaging 

The anatomical structures and functional relationships of the central nervous 

system (CNS) have been extensively studied using methods such as histology, computer 

tomography, magnetic resonance imaging, electrophysiology, and other methods not 

listed here, yet the detailed workings of the CNS are still unknown. One of the biggest 

challenges in studying the human CNS is obtaining in vivo information, due to its 

structural complexity and the risk of invasive data acquisition. The field of neuroimaging 

has advanced tremendously over the years in response in areas such as nuclear medicine, 

computed tomography (CT), functional magnetic resonance imaging (fMRI), and DTI. 

The focus of this study is DTI, which is the only method available to date that provides 

microscopic characterization of tissue structure non-invasively. 

The intricate assembly of neurons, synapses, and fiber bundles within the CNS 

provides a unique environment to the tissue water within. The structures restrict and 

define the Brownian motion of tissue water, and the extent of its movement, characterized 

by its diffusivity, reflects this environment. DTI measures the characteristic displacement 

of tissue water, which can be analyzed to deduce tissue structural information (1-3). 

Background on DTI and other related topics are briefly reviewed in this section. 
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DTI history 

In the early 1950’s, the effect of molecular diffusion on the nuclear magnetic 

resonance (NMR) signal was first observed, most notably by Hahn during spin echo 

sequence development (8). The pulse sequence was later modified by Carr and Purcell (9) 

to further investigate the effects of diffusion on NMR signals. Stejskal and Tanner later 

developed a more stable sequence called the pulsed gradient spin echo (PGSE) sequence 

(10), which encoded diffusion using strong magnetic field gradient pulses. Various 

diffusion-encoding pulse sequences as well as different data analysis techniques and 

parameters such as diffusion coefficient mapping (11) and diffusion tensor mapping have 

been developed. In particular, the definition of the diffusion tensor was formalized in the 

early 1990s (12) and lead to the development of the field of DTI. The number of 

investigations related to DTI and clinical applications of DTI such as stroke (4,5) and 

schizophrenia (13) has grown rapidly since.  

 

Biological and Physical Basis of DTI 

The random movement of microscopic particles suspended in a fluid medium is 

caused by collisions of the particles with each other and the surrounding medium, and 

this movement is called Brownian motion (14). During their random walks, the molecules 

probe their microscopic environment. Measurement and analysis of the molecular 

movements of water can then be used to infer tissue microstructure in the region (15).  

In DTI, signal attenuation is dependent on the diffusion tensor D  (12) and b-

factor. The b-factor reflects the characteristics of gradient pulses used during image 
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acquisition, such as the gradient amplitude, pulse timing, and shape (15). The diffusion 

tensor D  has components 

 

 
xx xy xz

yz yy yz

zx zy zz

D D D
D D D D

D D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (1) 

 

The components represent the second moments of displacement relative to the x, y, and z 

axes e.g., 
2xy
x yD < ⋅ >

=
Δ

, where Δ  is the diffusion time and x y< ⋅ >  is the expectation 

value of the product x y⋅  taken over all observable molecules. Because the principal 

axes of tensors (which by hypothesis are the fiber axes) and the gradient x, y, and z axes 

often do not coincide, one must account for the coupling of non-diagonal elements of the 

b-matrix with those of D . The process of diagonalization is therefore used to calculate 

the eigenvectors, 1 2 3, ,e e er r r  and eigenvalues, 1 2 3, ,λ λ λ  of the tensor. 

 

Data Acquisition 

The most commonly used pulse sequence for diffusion magnetic resonance 

imaging (DMRI) is the PGSE sequence. The sequences shown in Figure 1.  
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Figure 1. PGSE pulse sequence. Diffusion gradients with amplitude G and duration δ 
are applied before and after the 180 degree refocusing pulse, separated by time Δ.  

 

The field gradient strength of the PGSE sequence is reduced to zero during the 

radio frequency (RF) pulses and echoes. This reduction of field gradient strength narrows 

the linewidth and does not decrease the width of the echoes. The PGSE sequence also 

provides the means to precisely control the length of time over which diffusion is 

measured (Δ) by applying a diffusion gradient pulse on both sides of the 180 degree 

refocusing pulse, as shown in Figure 1. The first pulse is used to encode the initial spin 

position, and the second pulse detects the incomplete refocusing of spins due to diffusion, 

if any exists.  

Strong diffusion weighing increases echo time (TE), during which a significant 

signal loss occurs due to 2T  relaxation. This in turn results in an undesirable decrease of 

signal to noise ratio (SNR). The inherently low SNR may result in subsequent 

overestimation of diffusion anisotropy and increased uncertainty in tensors (16). One of 

the approaches to addressing the issue is anisotropic smoothing proposed, by Ding et al 

(17). The algorithm smoothes flow-like structures within images while preserving 
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structures’ edge information. The smoothing algorithm is based on the partial differential 

equation proposed by Weickert (18): 

 

 డூ
డ௧
ൌ ሺܶݒ݅݀ ·  ሻ. (2)ܫ׏

 

In this relation I is image intensity, I∇  is the intensity gradient, t is the iteration time 

parameter, and T is the smoothing structural tensor (17) constructed from the intensity 

gradient tensor TI, 

 

 ூܶ ൌ ఘܭ כ  ሺܫ׏   ሻ,  (3)ܫ׏ ٔ

 

where Kρ  is the Gaussian kernel and ρ  is its standard deviation (SD). New 

eigenvalues are calculated such that: 

 

 
1

2

3

,
,

(1 ) ,I

C
A

a
a

a a e

λ
λ

λ
−

=
=

= + −

  (4) 

 

where AI is an anisotropy index of G, a is a regularization parameter, and C is a threshold 

parameter. 
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Data Analysis  

A few of the most commonly derived diffusion parameters from a tensor are 

trace ( ( )Tr D ), relative anisotropy (RA), and fractional anisotropy (FA) (16). These 

parameters are used to quantify the information measured by DTI. They are defined as:  

 

ሻܦሺݎܶ  ൌ ଵߣ  ൅ ߣଶ ൅  ଷ, (5)ߣ

 

ܣܴ  ൌ  ටሺఒభିఒഥሻమାሺఒమିఒഥሻమାሺఒయିఒഥሻమ

ଷఒഥ
, (6) 

 

and 

 

ܣܨ  ൌ  ටଷൣሺఒభିఒഥሻమାሺఒమିఒഥሻమାሺఒయିఒഥሻమ൧
ଶሺఒభ

మା ఒమ
మାఒయ

మሻ
, (7) 

 

where the mean diffusivity λ  is defined as the average of eigenvalues such that 

 

ҧߣ  ൌ   ఒభ ା ఒమ ା ఒయ
ଷ

.  (8) 

 

( )Tr D  and λ  characterize the displacement of molecules averaged over all directions, 

while RA and FA characterize the degree of anisotropy. Note that the parameters use all 

three eigenvalues and therefore represent diffusion characteristics that are independent of 

reference frame orientation. 
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Diffusion tensors are inherently three-dimensional (3D) and a proper graphical 

representation is essential for their characterization. The diffusion ellipsoid (19) is one of 

the most widely used graphical representations. In this method eigenvalues are used to 

construct an ellipsoid such that  

 

 
2 2 2

1 2 3

' ' ' 1
(2 ) (2 ) (2 )

x y z
λ λ λ

+ + =
Δ Δ Δ

,
  (9) 

 

where x’, y’, and z’ refer to the principal frame of diffusion tensors. Eigenvectors are 

represented by the major axes of an ellipsoid and eigenvalues are represented by the 

length of the axes, as illustrated in Figure 2.  

 

 

Figure 2. Diffusion ellipsoids. When diffusion is isotropic, the ellipsoids become 
spherical, displaying equal diffusion displacement in all directions (left). When diffusion 
is strongly anisotropic, the ellipsoid becomes elongated in the fast diffusion direction. 

 

A parameterized surface representation is another commonly used visualization 

method. In this method, a tensor is rendered as a surface for which the distance between 

the origin and the surface in each direction is proportional to the water diffusivity in that 
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direction. This representation, illustrated in Figure 3, employs the equation given by 

Thorp (20), which is defined as 

 

 ( , ) ( ( , ) sin( ) cos( ), ( , ) sin( )sin( ), ( , ) cos( ))r D D Dθ φ θ φ θ φ θ φ θ φ θ φ θ= , (10) 

 

where θ is polar angle and φ  is azimuthal angle. The parameterized surface 

representation can also be used to visualize data acquired using high angular resolution 

diffusion imaging (HARDI) (21), where multiple diffusion weighting gradients are 

applied in an evenly distributed fashion on the unit sphere to encode complex diffusion. 

The parameterized surface representation is more suitable for us because the number of 

diffusion gradients we used ranges from 6-31. 

 

 

Figure 3. Parameterized surface representation of diffusion tensors. Diffusion 
surfaces show diffusivity as a function of direction. In this example, the tensors are 
oriented such that their principal direction is rotated about -45°  from horizontal, and 
slightly through-plane. The orientation of the tensors is effectively conveyed using color 
(red-R/L, green-A/P, blue-S/I). 

 

Visualization of diffusion data, whether using diffusion ellipsoids, a 

parameterized surface, or an FA map, often includes color coding. The color encoding of 
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orientation information (22,23) provides 3D directional information. The most common 

color coding scheme uses red for the right/left (R/L) direction, green for 

anterior/posterior (A/P) , and blue for superior/inferior (S/I). Examples of this color 

scheme are shown in Figure 3. 

 

Histology 

In this study, the microscopic structural and chemical composition of brain tissue 

provided by histology is considered the gold standard, and is compared to diffusion 

parameters of DMRI. Three main procedures – fixation, sectioning, and visualization – 

are involved in histology, and each of these procedures is briefly described next.  

 

Fixation 

Once a tissue sample is obtained through surgery, autopsy, or biopsy, it begins to 

undergo autolysis and degeneration of the tissue starts almost immediately. The purpose 

of fixation is to preserve the structural and chemical composition of tissues by stopping 

this degenerative process. Use of formaldehyde as a fixative was first proposed by Blum 

et al (24), and 4% solution of formaldehyde is the most commonly used fixative to this 

day. It has been shown that formaldehyde cross-links macromolecules such as proteins, 

glycoproteins, nucleic acids, and polysaccharides. This cross-linking process polymerizes 

protein and makes it gelatinous (25). However, the molecular process of formaldehyde 

fixation is still unknown, and under investigation. Formaldehyde has very low molecular 

weight (30 amu) and penetrates into tissues rapidly. However, the fixation process after 
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its initial penetration is gradual and an incubation period of at least 24 hours at room 

temperature is recommended (26).  

Tissue shrinkage is one of the biggest sources of concern in quantitative 

histology. Previous experiments showed that the shrinkage during fixation itself is 

minimal (27,28) and the most severe tissue distortions, such as shrinkage and tearing, 

occur due to aggressive sectioning, staining, and mounting procedures following fixation 

(28). 

 

Sectioning 

Tissues are sectioned in thin slices that range from a few to a few hundred 

micrometers for microscopic examination, using a microtome. In this study, a freezing 

microtome is used to cut frozen brain tissues manually for light microscopy analysis. 

 

Visualization 

 Sectioned tissues are stained to increase the contrast of desired structures, 

increasing the quality of visualization. In this study, our tissue sections were stained for 

myelin, which wraps around axons to provide insulation and facilitate the transmission of 

nerve impulses along the axons. The observation of stained myelin sheaths in histological 

sections provides valuable structural and directional information on fiber bundles. Many 

of the commonly used staining techniques for normal and degenerative myelin are listed 

in Bencroft et al (29), such as the Weigert-Pal method, Loyez method, and Luxol fast 

blue method. Gallyas’ silver staining (30) is a popular method for visualizing myelin that 

is use in this study. Once the desired contrast is achieved through staining, the tissue 
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sections are available for analysis using light microscopy at high spatial resolution. In this 

study, the myelin stained fibers were photographed at high spatial resolution for direct 

comparisons with DTI data. 

 

Image Registration 

In the field of medical imaging, the comparison of data between multiple 

subjects, comparison of data from different imaging modalities from the same subject, 

and combinations of both, are often required. Comparison of multiple datasets is 

facilitated by bringing them together in a common data space. For example, positron 

emission tomography (PET) and CT are sensitive to two very different physical 

properties of the sample. The information provided by PET and CT are valuable by 

themselves, but in some studies, viewing both data together can provide more valuable 

insight. However, image properties such as resolution, field of view, and contrast may 

differ between the datasets and simply lining them up side by side is often not sufficient 

for accurate comparison or overlay. One solution is to transform the PET image data to 

the CT image space in order to align corresponding structures more accurately. In this 

case the PET image being transformed to the CT image space would be referred to as a 

target image and the CT image would be referred to as a reference image. The process of 

applying one or more transformations to a target image to align it with a reference is 

called registration.  

Linear and nonlinear transformations are two major classes of transformation. 

Linear registration includes four simple operations - translation, rotation, scaling and 

shearing, the operations which preserve vector addition and scalar multiplication relations. 
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Rigid registration involves only rotation and translation operations. Affine registration 

includes all four operations of translation, rotation, scaling, and shearing. Note that rigid 

registration is just a special case of affine registration. Nonrigid registration involves 

operations which do not preserve vector addition and scalar multiplication, and have no 

simple matrix representation.  

The process of registration often involves many iterative loops of transformation. 

At the end of each loop, the resulting image is compared with a reference image to check 

the quality of alignment. This process is repeated until a maximum (or minimum) of a 

similarity measure using optimization algorithms, such as Powell’s method (31), is found. 

The two main similarity measures used during the process are featured-based and 

intensity-based registration.  

Feature-based registration uses image landmarks to assess the quality of image 

alignment. The landmarks can be manually chosen anatomical landmarks, external 

markers attached to a subject before imaging, or the entire surface of a structure. The 

transformations are then applied to the landmarks. Once the registration algorithm finds a 

transformation that minimizes the sum of the squared distances between each pair of 

corresponding landmarks, the whole image is transformed.  

The intensity-based method is similar to the feature-based registration method, 

but it does not use image landmarks. Instead, the iterative algorithm is applied to a 

chosen patch of a target image. The target image patch is compared to the corresponding 

patch of the reference using a similarity measure of the patch intensity values. 

Transformation parameters are updated until the similarity measure reaches its maximum 

(or minimum, depending on the characteristics of the measure). The whole image set is 
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then transformed accordingly. Unlike in the feature-based algorithm where the sum of the 

squared distances is used as the similarity measure, statistics measuring the similarity of 

the intensities are used in the intensity-based registration method. Correlation coefficient 

(CC) and mutual information (MI) are used most frequently (32). Mutual information 

was initially introduced in Information Theory (33) and is especially popular because 

unlike CC, MI does not assume a linear relationship between voxel intensities of the 

reference and target image, enabling intermodality image registration.  

 

Related Studies 

 

Registration of Histological Data 

 During registration between histological and MRI images, linear registration is 

first utilized to address 3D global tissue deformations of histological volumes. Such 

deformations are caused by histological processing procedures such as tissue fixation, 

embedding, as well as other mechanical effects. Examples of such tissue deformations 

include global volume shrinkage and shearing. These 3D global tissue deformations are 

most easily corrected when the 3D data are registered to another undistorted 3D data set 

of the same sample. Because construction of a spatially consistent and continuous 3D 

volume from histological data can be challenging due to large nonlinear tissue distortions, 

an undistorted 3D volume is often constructed from digital images taken during tissue 

sectioning. Serial photographs of the tissue block are called a blockface data set (34). It 

has been shown in previous studies that the acquisition of the intermediate blockface data 

aids the overall registration to produce more robust registration results (35,36). This is 

due to the fact that the blockface volume contains minimal distortions and can serves as a 
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reference point for the next, more complicated registration step between the magnetic 

resonance imaging (MRI) and histological data. The method was adapted as early as 1988 

to correlate histological sections with MR images to analyze nerve roots (37) and, more 

recently, Toga et al have extended the method to the processing of a whole human head 

and brain cryosectioning to create a spatially consistent brain atlas (35). Several studies 

have utilized this method to improve registration between histological and MRI data 

(36,38,39).  

One of the challenges in registering MRI to histological data is the tissue 

distortion that is introduced into histological sections during the tissue processing steps 

described in the previous section. These distortions are often local and require 

complicated and time consuming solutions. For this reason, many studies have either 

opted for a more qualitative data comparison without image registration (40,41) or 

utilized linear registration to correct only the global distortions (42,43). While these 

approaches may provide a more time efficient experimental design, they are insufficient 

for quantitative data analysis at high spatial resolution. These studies often require a 

combination of both linear and nonlinear registration.  

Nonlinear registration, which involves operations which do not preserve vector 

addition and scalar multiplication, is an appropriate method for correcting distortions that 

are more local. Before nonlinear registration is performed, linear registration is often used 

as a preliminary step to provide a good initialization to the nonlinear algorithm. In many 

cases, linear registration alone provides sufficient initialization, but for other cases, such 

as histological images that contain severe artifacts, it is necessary to preprocess the target 

image before applying the linear transformation. In order to obtain good registration 
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between MRI and histological data, one has to address major sources of deformation that 

are specific to histological data, such as tissue tearing and relative movement of different 

hemispheres or other smaller parts of the brain. Breen et al developed an interactive 

method for correcting spatial distortions in histology and utilized the method to register 

histology samples to corresponding MR images (44). During their distortion correction 

process, significant tearing was corrected using a thin plate spline (TPS) warping method. 

Pitiot et al developed a piecewise affine registration method and took a more automated 

approach in addressing the issue of movement of gyri and other smaller parts of the brain 

better (45). More recently, Dauguet et al was able to successfully reconstruct a 3D 

histological volume and register the volume to the corresponding MRI volume by 

incorporating a hemi-rigid transformation. This approach was taken to specifically 

address the problem of movement of different hemispheres of a brain observed in 

histological data (38). 

 

Validation of DMRI 

DMRI is a relatively new and developing field and there are a number of 

questions that still need to be answered about the information it provides. These questions 

include whether fiber bundles can be discriminated in the presence of intravoxel fiber 

crossing and partial volume averaging, as well as more fundamental questions such as 

how different structures contribute to apparent diffusion parameters. In recognition of the 

need for further investigation, many groups have studied DMRI using different 

approaches, such as simulation, phantom, as well as animal experiments. For simulation 

studies, Lu et al (46) developed a Bayesian tensor regularization method and validated 
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this with simulated data, Peled et al (47) proposed a two-tensor model and validated this 

method with a simulated data, and Chen et al (48) has developed a simulated curvature 

phantom to validate a streamline fiber tracking algorithm. For phantom studies, studies, 

Lin (49) and Perrin (50) used phantoms to validate their improved DMRI methods, while 

Watanabe (51) and Pullens (52) have focused more on developing gold standard 

phantoms for DMRI.  

Simulation & phantom studies offer advantages because experiments can be 

tightly controlled, and one can perform more accurate quantitative data analysis since the 

true values are known. For animal studies, however, the true values are often unknown 

and difficult to measure, and investigators have turned to other gold standard 

measurements for validation of DMRI data. Although animal studies are conducted in a 

less tightly controlled environment with many more variables to consider, they provide 

more realistic tests of DMRI. 

Lin et al (53) used manganese enhanced T1-weighted MR images as the gold 

standard in their effort to validate DTI tractography methods. The manganese-enhanced 

optic track was effectively visualized, providing a reference of the true fiber tract which 

was compared to DTI fibers, revealing good agreement. The acquisition of T1-weighted 

MR images is relatively easy, compared to that of histological data. However, T1-

weighted MR images are not suitable for validation studies at a high level of spatial 

resolution. For this reason other validation studies used histological data as their gold 

standard instead. 

D’Arceuil et al performed a comprehensive DMRI parameter optimization study 

in order to acquire high resolution DMRI images of ex vivo non-human primate brains 
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(54,55). In the study, the use of exogenous contrast agent (Gd-DTPA) as well as the effect 

of fixation on different diffusion parameters was investigated. The findings of this study 

helped to address many questions regarding ex vivo DMRI, demonstrating that ex vivo 

animal models can indeed be used to validate DMRI methods such as DTI, diffusion 

spectrum imaging (DSI), diffusion tractography, and q-space imaging (QSI).  

The study by Kaufman et al (6) is one of the earliest DTI validation studies that 

compared the coherence of myelin stained fibers with FA. The analysis of a region in the 

anterior cingulum bundle showed that DTI provides important information about white 

matter morphology on a microscopic scale. In the study by Schmahmann et al (56), the 

long association pathways observed by DSI were validated with histological observations 

of the fibers made using the autoradiographic technique (57,58). The study demonstrated 

that DSI can resolve crossing fibers with better precision than DTI and that imaging of 

the complex long association pathways is feasible. 

Another diffusion tractography validation study was done by Dauguet et al (59), 

where a quantitative validation of 3D DTI fiber tracts of a macaque was performed by 

comparing the data with the three dimensional histological fiber tract. The histological 

fiber tract was traced by injecting a neural tract tracer (WGA-HRP) in the motor and 

somatosensory region and the three dimensional histological fiber tract was reconstructed 

from the digital two dimensional (2D) micrographs of the histological sections. General 

agreement between the DTI and histological fiber tracts was noted. A quantitative 

validation of fiber orientation distribution (FOD) measurements was performed by 

Leergaard et al (60) using QSI of a rat brain. The study showed that accurate FOD 
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estimates can be obtained in regions with complex microarchitecture with an intrinsic 

orientation error of approximately five to six degrees. 

Some studies have also been carried out to validate DTI by comparing the data 

with histological data of a pathologic condition. In the study done by Schmierer et al (61), 

the feasibility of using diffusion parameters as a predictor for the degree of disability in 

multiple sclerosis was investigated by correlating mean diffusivity (MD) and FA with 

histological indices of myelin content. It was shown that FA and MD are affected by 

myelin content and axonal content. Other studies have found correlations between DMRI 

data and histology of cardiac (62-64) and skeletal muscle (65).  
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CHAPTER III 

 

ACCURACY OF IMAGE REGISTRATION BETWEEN MRI AND LIGHT 
MICROSCOPY IN THE EX-VIVO OWL MONKEY BRAIN 

 

Introduction 

Macroscopic anatomical structures and functional relationships of the central 

nervous system (CNS) have been extensively studied using non-invasive methods such as 

magnetic resonance imaging (MRI), computer tomography (CT), and positron emission 

tomography (PET). Recently, diffusion tensor imaging (DTI) has become another 

important tool in studying CNS structure and connectivity. On a microscopic scale, 

histological analysis provides information about the brain’s cytoarchitecture. Combining 

data across these modalities and distance scales provides new information: a better 

understanding of contrast mechanisms in the non-invasive images and the ability to infer 

microscopic tissue properties across the entire brain, in vivo.  

The goal of this study was to develop a registration procedure that can 

successfully align MRI data with histological data within the histological image space. 

This would allow a direct comparison between MRI data and gold-standard information 

about the microscopic structural and chemical composition of brain tissue provided by 

histology. The result would be better characterized tools for understanding the CNS. 

 

Histology 

Simply defined as the study of tissue, histology involves three main processes– 

fixation, sectioning, and visualization. Once a tissue sample is obtained through surgery, 
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autopsy, or biopsy, it begins to undergo autolysis and the degenerative process starts 

almost immediately. The purpose of fixation is to preserve the structural and chemical 

composition of tissues by stopping this degenerative process. Use of formaldehyde as a 

fixative was first proposed by Blum (24), and 4% solution of formaldehyde is the most 

commonly used choice of fixative to this day. Formaldehyde has very low molecular 

weight (30 amu) and penetrates into tissues rapidly. However, the fixation process after 

its initial penetration is gradual and an incubation period of at least 24 hours at room 

temperature is recommended (26).  

Tissue shrinkage is one of the biggest sources of concern during histology. 

Previous experiments have showed that the shrinkage during fixation itself is minimal 

(27,28), but the most severe forms of tissue distortions such as shrinkage, tearing, and 

folding, occur due to aggressive sectioning, staining, and mounting procedures following 

fixation (28). Tissues are sectioned in thin slices that range from a few to a few hundred 

micrometers for microscopic examination, using a microtome. In this study, a freezing 

microtome is used to cut frozen brain tissues manually for light microscopy analysis. 

 Sectioned tissues are stained to increase the contrast of desired structures, 

increasing the quality of visualization. In this study, tissue sections are stained for myelin, 

which wraps around axons to provide insulation and facilitate the transmission of nerve 

impulses along the axons. The observation of stained myelin sheaths in histological 

sections provides valuable structural and directional information on fiber bundles. Many 

of the commonly used staining techniques for normal and degenerative myelin are listed 

in Bencroft et al (29), such as the Weigert-Pal method, Loyez method, and Luxol fast 

blue method. Gallyas silver staining (30) is another popular method for staining myelin 
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that is used in this study. Once the desired contrast is achieved through staining, the tissue 

sections are available for analysis using light microscopy at high spatial resolution. 

 

Registration 

In the field of medical imaging, the comparison of data between histological and 

MRI data is often required. The information provided by MRI is valuable by itself, but 

investigating it in conjunction with histological data can provide insight into the sources 

of contrast in the MRI images. However, image properties such as resolution, field of 

view, and contrast will likely be very different between the datasets and simply 

overlaying the data is usually insufficient for accurate alignment and comparison. 

Reliable comparison of multiple datasets requires transforming them to a common data 

space--the process of applying one or more transformations to an image to align it with a 

reference image is called registration. Two major classes of registration are linear and 

nonlinear registration. 

Linear registration includes four simple operations - translation, rotation, scaling 

and shearing, which preserve vector addition and scalar multiplication relations. Rigid 

registration refers to a registration process that involves only rotation and translation 

operations while affine registration includes all four operations of translation, rotation, 

scaling, and shearing.  

During the registration between histological and MRI images, we used linear 

registration first to address three dimensional (3D) global tissue deformations of the 

histological volumes. Volume shrinkage and shearing are caused by tissue fixation and 

embedding, as well as other mechanical effects. It has been shown in previous studies 
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that photographs of the tissue block acquired during sectioning (‘blockface” images) can 

be used to produce more robust registration results (35). These images, assembled into a 

3D volume dataset, provide a relatively undistorted intermediate reference space between 

the MRI and the histological data. Several studies have utilized this method to improve 

registration between histological volume and MRI data (36,38,39). 

In addition to the global distortions described above, other tissue distortions are 

local and require complicated and often time consuming corrections. For this reason, 

many studies have either opted for a more qualitative data comparison without image 

registration (40,41) or utilized linear registration to correct for only the global distortions 

(42,43). While these approaches may be time efficient, they are insufficient for studies 

that require more quantitative data analysis. In that case, a combination of both linear and 

nonlinear registration is usually required. 

Nonlinear registration involves operations that do not preserve vector addition 

and scalar multiplication. For this reason, it is an appropriate method for correcting 

distortions that are more local. Before nonlinear registration is performed, linear 

registration is often used as a preliminary step to provide good initialization for the 

nonlinear algorithm. In many cases, linear registration provides sufficient initialization. 

However, in order to obtain good registration between MRI and histological data, one 

often has to address sources of deformations that are specific to histological data, such as 

tissue tearing and movement of separated tissue segments on the slide (e.g., different 

hemispheres or other smaller parts of the brain). Breen et al developed an interactive 

method for correcting spatial distortions in histology and used the method to register 

histology samples to corresponding MR images (44). During their distortion correction 
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procedure, significant tearing in the tissue section was corrected using a thin plate spline 

(TPS) warping method. Pitiot et al developed a piecewise affine registration method and 

took a more automated approach in addressing the issue of movement of gyri and other 

smaller parts of a brain (45). More recently, Dauguet et al were able to successfully 

reconstruct a 3D histological volume and register it to the corresponding MRI volume by 

incorporating a hemi-rigid transformation. This approach was taken specifically to 

address the problem of movement of different hemispheres of the brain observed in 

histological sections (38). 

  

Method 

 

Image Acquisition 

 

i. Magnetic Resonance Imaging 

All animal procedures were approved by the Vanderbilt Animal Care and Use 

Committee. A male owl monkey was given a lethal dose of barbiturate and perfused 

through the heart with buffered physiological saline. Fixation was performed by 

perfusing with 4% paraformaldehyde in phosphate buffer, then by 4% paraformaldehyde 

in phosphate buffer with 10% sucrose. The fixed brain was removed from the skull and 

kept in 30% sucrose for approximately 24 hours. The brain was then transferred into a 

phosphate buffered saline (PBS) medium and scanned on a Varian 9.4 Tesla, 21 cm bore 

magnet using a multi-slice, pulse gradient spin echo sequence (b = 0 and 1309 s/mm2 , 21 

diffusion weighting directions, TE = 31.2 ms, TR = 17.1 s, 128 x 128 x 132 image 
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volume matrix, 0.3 mm isotropic voxel resolution). After the image acquisition, one 

iteration of the anisotropic smoothing algorithm proposed by Ding et al (17) was 

performed to improve signal to noise ratio (SNR). Parameters used were 2SDρ =  and 

C = 3, where SD is the standard deviation of noise and C is a threshold parameter used to 

control the degree of smoothing. Non-diffusion weighted (T2-w) images were assembled 

into a 3D volume dataset, and the brain image was extracted from background for 

registration purposes (66). 

 

ii. Blockface 

Twenty four hours after the MR imaging, the brain was embedded in dry ice and 

sectioned on a microtome at 50 micron thickness in the coronal plane, where the position 

of the brain stayed constant during cutting and only the blade of the microtome moved. 

Using a Cannon EOS20D digital camera with 70-300 mm zoom lens, the tissue block 

was digitally photographed prior to cutting every third section, resulting in a through-

plane resolution of 150 microns. The initial in-plane resolution of the original blockface 

images was 16 μm isotropic. The original high resolution blockface images were 

downsampled to 256 x 256 with 0.15 mm isotropic voxel resolution for more efficient 

data processing. 

Because the position of the brain stayed constant during sectioning, the 3D 

blockface volume could be constructed by simply stacking the two dimensional (2D) 

images of each section. The reconstructed volume was then corrected for the section-to-

section intensity variation which was caused by the inconsistent light reflection from the 

frozen tissue block surface during photograph acquisition. This section-to-section 
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intensity variation was corrected by adjusting the intensity of cortical gray matter of each 

section to be within a similar intensity range of the gray scale blockface images. The final 

blockface volume dataset was acquired by manually segmenting the brain from its dry ice 

background. Although time consuming, the manual segmentation of the brain was 

necessary because the contrast between the brain and dry ice was low and automatic 

segmentation methods failed to segment the edges of the brain successfully. 

 

iii. Light micrograph 

Sectioning of the brain block was followed by histochemical processing, where 

tissue sections were stained for myelin using Gallyas’ silver method (30). Staining was 

performed on floating tissue sections, which were then mounted on glass slides manually 

for further investigation under a light microscope. A Nikon DXM1200F digital camera 

mounted on a Nikon E-800 microscope was used to take images of the stained sections at 

0.5x magnification. The brain was segmented from the background before further data 

analysis. An example of a blockface image and the corresponding light micrograph 

(before brain segmentation) is shown in Figure 4. 

 

 

Figure 4. Blockface and histological images. (a) An example of a blockface image 
before the brain is segmented from its dry ice background (b) An example of a light 
micrograph image before the brain is segmented from its background. The section is the 
same as shown in (a), and is stained for myelin using the Gallyas silverstaining method. 
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Image Registration 

A multi-step registration scheme was developed in order to transfer MRI image 

data to the histological image space. First, volume datasets of the DTI and blockface 

images were constructed. Dimensions of the T2-wimage volume matrix were 128 x 128 x 

132 with 0.3 mm isotropic voxel resolution. The original high resolution blockface and 

light micrograph volume dataset were down sampled to 256 x 256 x 222 with 0.15 mm 

isotropic voxel resolution for ease of data processing. The T2-w volume was then 

registered to the blockface volume using a combination of linear (i.e., rigid and 

anisotropic scaling) (32,67) and nonlinear registration with the Adaptive Bases Algorithm 

(ABA) (68). Next, a section of interest was chosen and the corresponding blockface and 

light micrograph images were registered in two dimensions using both linear and 

nonlinear registration with ABA. Figure 5 summarizes the steps of this procedure. A more 

detailed description of the multi-step registration scheme is presented below.  
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Figure 5. Multi-step registration workflow summary. Three major datasets – MRI, 
blockface, and light microscopy datasets – were acquired. The datasets were registered to 
each other using a combination of linear and nonlinear registration. For selected 
histological sections with tissue tearing or relative displacement of different parts of brain, 
2D rigid tear correction and/or 2D multiple ICP correction was performed as a 
preprocessing step. In some cases, an additional step using TPS was necessary after 
nonlinear registration of the blockface images.  

 

i. T2-w  Blockface 

Linear registration was performed using a mutual information (MI) based method 

similar to that of Maes (32). Partial volume (PV) interpolation was used for intensity 

interpolation of the transformed reference image (32). Powell’s multidimensional 

direction set method was used to maximize the MI registration criterion, using Brent’s 

optimization algorithm for line minimization (31). Powell’s criterion was set to 10-5, 

Brent’s to 10-3, and the maximum number of iterations was set to 600. The number of 

bins for joint histogram calculation was set to 64 x 64 and three resolution levels were 

used. Transformation in the MRI to blockface step was performed by optimizing first the 

in-plane parameters, then the through-plane parameters. 

In addition to the linear transformations, nonlinear registration was performed 

using ABA (68). Fifteen control point levels and two resolution levels were used to 
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determine the transformation scale and spatial resolution. Sixty four bins were used for 

joint histogram calculation and a Jacobian threshold of 0.05 was used as an optimization 

constraint. Optimization of a basis function was halted when the cost function's 

improvement was below 0.0005.  

  

ii. Blockface  Light micrograph 

 Due to the extensive artifacts in some micrographs (see Figure 6), additional 

preprocessing was necessary for the affected sections to ensure robust registration results. 

The preprocessing procedure was developed to address two major types of artifacts: 

tissue tearing and relative displacement of different pieces of tissue on the slide. 

 

 

Figure 6. Image artifacts introduced during histological processing. (a), (c) 
Undistorted blockface images. (b) Example of relative displacement of the hemispheres 
and the cerebellum. (d) Example of tissue tearing.  
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• Correction for severe tissue tearing artifacts 

Figure 6 (a) and (d) shows light micrographs of myelin stained tissue 

sections with severe tearing of tissue. In order to correct a large tearing artifact, 

the contour of the torn region was first selected by a user. Examples of the 

outlines are shown in Figure 7 (b) and (e). Because of the procedure used to 

manipulate the tissue sections, tissue tears were nearly horizontal (anatomical 

right-left direction) in the coronal sections. According to the location of the tear, 

the user can choose to fix the tear using one of three options: i) translate the image 

data below the tear upward to meet the top edge of the tear, 2) translate the image 

data above the tear downward to meet the lower edge of the tear, or3) translate 

image data both above and below the tear to meet the center line of the torn region. 

If the user chooses the third scheme, the center line is computed automatically 

based on the contour of the torn region and the distance between each pixel on the 

contour and the centerline is also calculated. Pixels in image columns passing 

through the tear are translated towards the center line, according to the calculated 

distances. Figure 7 (c) shows the image after translating the tissue up while Figure 

7 (f) shows the image after moving the tissues toward the center line. Generally, 

the option that minimized the mean pixel displacement was chosen.  
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Figure 7. Contour selection for 2D tear correction. (a), (d) Original light 
micrographs with severe tissue tearing artifacts. (b), (e) User selected contours of 
tissue tear edges. (c), (f) Result of tear correction method. 

 

• Correction for relative displacement of different pieces of tissue 

Each of the myelin stained sections was mounted on a glass slide 

manually. In some sections, different pieces of the tissue, such as left and right 

hemispheres, are not physically connected and so must be mounted and oriented 

on a slide separately. Figure 6 (b) shows an example of a stained section in which 

the two hemispheres and the cerebellum have all moved away from each other. 

This relative displacement of different parts of the tissue section is more obvious 

when compared to the corresponding undistorted blockface section, as shown in 

Figure 6 (a).  

Once the sections that need to be corrected for excessive relative 

displacements were identified, regions of interest (ROIs) containing the same 

piece of tissue in the blockface image and micrograph were selected manually. 
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The iterative closest point (ICP) algorithm (69) was then applied to the selected 

ROIs.  

The ICP algorithm is a technique that has been applied widely to surface-

based registration in medical images. It calculates the transformation and distance 

between two point sets extracted from two surfaces iteratively. Once the distance 

is found to converge to a user-selected threshold, the algorithm is terminated. In 

this study, we applied the ICP algorithm to multiple tissue components. For each 

pair of corresponding ROIs, suppose { }, 1,2,...i N= =iX x  is a point set in the 

micrograph and Y the point set in the blockface image. The algorithm then 

proceeds as follows (also refer to (70) for more information): 

 

1. ∀ ∈ix X , find the closest point yi in the surface (?)Y; 

2. Compute the rotation R and translation t through optimizing the 

mean square disparity function D: 

 ( ) 21/
N

i

D N= + −∑ i iRx t y ; [1] 

3. Apply the R and t to the point set X to obtain the new X′= RX+ t;    

4. Compute the new distance D′ between X′ and Y. If the absolute 

difference between D and D′ is less than 1e-5 (selected 

empirically), terminate the procedure. Otherwise, let X = X′, and 

repeat the procedure from step 1. 
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The ICP algorithm was applied to each pair of ROIs to generate the 

corresponding rigid body transformations. The transformations are applied to the 

different tissue pieces to deform the micrograph data to the (undistorted) 

blockface image space. 

 

Following the preprocessing steps described above, a combination of 2D linear 

and nonlinear registration was performed on each of the corresponding block and light 

micrograph sections, using the same registration parameters as used during T2-w  

blockface registration. Two different deformation fields were generated after performing 

both registration steps. The first deformation field described the transformation of the 3D 

T2-w image volume into the 3D blockface image volume space, and the second 

deformation field described the transformation of a 2D blockface image into the 2D light 

micrograph image space. Each of the deformation fields was applied to the original T2-w 

volume data to generate a registered T2-w image that could be aligned with the 

corresponding light micrograph data in the histological data space. 

 

Accuracy measurement 

 Alignment of structures after each registration step (T2-w  blockface, 

blockface  micrograph) was evaluated both qualitatively and quantitatively. Qualitative 

assessment was performed by superimposing the transformed target images (MRI data) 

onto reference images (light micrographs) for visual inspection. After the initial visual 

inspection, landmarks were manually selected throughout the MRI data volume. 

Corresponding landmarks in the blockface and light micrograph volumes were selected, 
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and the distance between corresponding landmarks in the registered target and reference 

volumes provided a measure of registration accuracy. 

 

Results 

 

T2-w  Blockface 

Construction of the blockface volume involved stacking the original 2D images 

without image registration because each of the blockface photographs was acquired from 

a stationary brain sample, cut with a moving blade. For this reason, the alignment of the 

T2-w and blockface volume datasets was good in many regions after only linear 

registration. The result of the 3D registration of the MRI (more specifically, T2-w) 

volume to blockface volume was qualitatively assessed by aligning the volumes in the 

original blockface volume data space, as shown in Figure 8. Column (a) of Figure 8 

shows orthogonal views of the T2-w volume (displayed in blue for better contrast with 

the blockface images).Column (b) shows the same T2-w data overlaid on the original 

blockface volume. Column (c) shows the T2-w volume after it was linearly registered to 

the blockface volume, overlaid on the original blockface volume. Notice the significant 

decrease of misalignment when compared to the superimposed images of column (b). 

Any remaining misalignment of structures after linear registration, such as in some 

cortical and cerebellar areas, was addressed through nonlinear registration using ABA. 

Column (d) shows the T2-w volume after both linear and nonlinear registration to the 

blockface volume, overlaid on the blockface volume. Good overall alignment of 

structures was observed after registration.  
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Figure 8. 3D registration of MRI (T2-w) to blockface volumes. (a) Orthogonal views 
of the original non-diffusion weighted (T2-w) image volume. (b) Original T2-w images 
superimposed on blockface images, (c) T2-w images after linear registration, and (d) T2-
w images after linear and nonlinear registration are overlaid on original blockface images, 
reproduced in (e). 

 

Blockface  Light micrograph 

Visual inspection of each of the myelin stained sections was performed in order 

to identify those with severe tissue tearing and/or relative displacement of separated 

pieces of the tissue. Once identified, those sections were preprocessed using tear 

correction and multiple ICP methods to prepare the sections better for the linear and 

nonlinear registration steps to follow. Comparison of results between affected sections 

that had not and those that had been preprocessed demonstrated that the preprocessing 

step provided more robust registration, as shown in Figure 9 and Figure 10.  



 

 36

 

 

Figure 9. Example of application of the tear correction method. (a) An original light 
micrograph, (b) the micrograph after closing the tear, (c) & (d) the corresponding 
blockface image deformed to match (a) and (b), respectively. (e) & (f) MR images 
registered to (a) & (b), respectively. Note the green region in (c) was locally stretched by 
the nonlinear registration algorithm in order to match the hole in (a), causing a distortion. 

 

 

Figure 10. Example of application of the multiple component ICP method. (a) The 
original light micrograph of mounted tissue, (b) the corrected micrograph using the ICP 
algorithm, (c) & (d) the deformed blockface images and (e ) & (f) MR images registered 
to (a) & (b), respectively. The green region shows the large distortion when the ICP 
algorithm was not applied to the light micrograph.   

 

Figure 9 demonstrates an example of tear correction performed on a myelin 

stained section and its effect on image registration. Figure 9 (a) shows a section with 

severe tissue tearing artifacts caused by a vertical tensile force along the anterior 

commissure as well as another tear between the corpus callosum and internal capsule. 

Figure 9 (b) shows the result of tear correction on the torn section. Figure 9 (c) and (e) 

show the result of overall registration (linear and nonlinear registration) of the blockface 

and MR images, respectively, when they were registered to the myelin stained section 
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that was not preprocessed. Figure 9 (d) and (f) show the result of the overall registration 

of the blockface and MR images, respectively, when they were registered to the myelin 

stained section that was preprocessed. The results shown in Figure 9 (d) and (f) 

demonstrate that the tear correction produces more accurate registration (compare to (b)). 

Figure 10 demonstrates an example of the multiple ICP algorithm applied to a 

myelin stained section and its effect on the image registration. Figure 10 (a) shows a 

myelin stained section where three pieces of brain tissue were displaced from their 

original locations during the mounting procedure. Figure 10 (c) and (e) show the 

blockface image and T2-w image, respectively, registered to the myelin stained section 

that was not preprocessed. It can be seen that the registration algorithm is not able to 

account for large displacements of structures and produces an incorrectly deformed result. 

Figure 10 (d) and (f), on the other hand, show the blockface image and T2-w image, 

respectively, when they were registered to the myelin stained section that was 

preprocessed using the multiple ICP algorithm. The improvement compared to the results 

shown in Figure 10 (c) and (e) is evident. Hence, the multiple ICP algorithm provides a 

better initialization for the overall registration process, leading to a more accurate result. 

It should be noted that although cerebellar sections that had moved during mounting were 

also preprocessed, the smaller size and complex structure of the cerebellum sometimes 

resulted in tearing and movement, as well as missing pieces of the tissue that rendered it 

almost impossible to register with its corresponding blockface sections, even after the 

preprocessing step. For this reason, and because it was not the focus of this study, the 

cerebellum was excluded from any further analysis. 
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An example of the 2D registration of a blockface section and the corresponding 

light micrograph is shown in Figure 11. The top row of Figure 11 allows for visual 

inspection of the registration over the whole section. Figure 11 (a) and (e) are the images 

of the original blockface and myelin stained section. Figure 11 (b), (c) and (d) show the 

original blockface section, the blockface section after linear registration, and after linear 

and nonlinear registration, respectively, superimposed on the myelin stained section. It 

can be seen that linear registration improves the alignment of the sections substantially, 

and some remaining tissue artifacts around the cortical area are corrected with further, 

nonlinear registration. The bottom row of Figure 11 shows the registration result in a 

more local region around the left external capsule, highlighted within the green box 

shown in Figure 11 (j). Figure 11 (f) shows the original blockface section with the outline 

of the myelin stained section’s white matter (WM) overlaid in red. Figure 11 (g), (h) and 

(i) provide a zoomed-in view of the change in the external capsule after each registration 

step. Notice how, in Figure 11 (i), the outlines of the external capsule of blockface and 

myelin stained sections are aligned well.   
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Figure 11. 2D registration of a blockface section to a corresponding myelin stained 
section. (a) Original blockface section. (b) Original blockface section, (c) blockface 
section after linear registration, and (d) blockface section after linear and nonlinear 
registration overlaid on the myelin stained section, respectively. (e) Original myelin 
stained section. (f) Original blockface section. The red line represents the white matter 
(WM) outline of the corresponding myelin stained section, also outlined in (j). (g) A 
region of interest (ROI), outlined in green in (j), is selected from the original blockface 
section. (h) ROI in the blockface section after linear registration. (i) ROI in the blockface 
section after linear and nonlinear registration. In (g-i), the WM outline (in red) of the 
corresponding myelin stained section is also overlaid for comparison. 

 

T2-w  Blockface  Light micrograph 

A total of 291 landmarks were selected over the whole brain volume within the 

original T2-w volume. Corresponding points were then identified manually in the 

blockface and light micrograph volumes. The corresponding points provided the ‘true’ 

locations of the landmarks within their respective image spaces. The landmarks selected 

in the T2-w dataset were then transferred into the blockface and micrograph image spaces 

to provide a measure of error for different stages of the overall registration process (i.e., 

T2-w  blockface linear, T2-w  blockface linear and nonlinear, blockface  light 

micrograph linear, blockface  light micrograph linear and nonlinear, and T2-w  light 
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micrograph linear and nonlinear). The measure of registration error for each stage was the 

distance between the corresponding points transformed to the same image space. In 

Figure 12, the distribution of the landmarks used is visualized within the surface rendered 

image of the original MRI volume. Each of the landmarks is color coded according to the 

corresponding error measurement, which is summarized in Table 1. 

.   

 

Figure 12. Distribution of landmarks used for registration accuracy measurements. 
Chosen landmarks are visualized within the surface rendered image of the original MRI 
volume. Each of the landmarks is colorcoded according to the registration error between 
landmarks in (a) original MRI image space and original blockface image space, (b) 
registered (linear & nonlinear) MRI image space and original blockface image space, (c) 
original blockface image space and original light micrograph space, (d) registered (linear 
& nonlinear) blockface image space and original light micrograph space, (e) registered 
(linear & nonlinear) MRI image space and original light micrograph space. The size of 
the voxels is 0.3 mm3. 
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Table 1. Registration accuracy as measured by the distance between corresponding 
landmarks chosen from T2-w, blockface, and light micrograph volume data. 

 T2-w  blockface 
T2-w (in Blockface 

image space)  

light micrograph 

T2-w  light 
micrograph 

Initial error 
(mm) 3.84 ±  1.39 1.87 ±  1.07 4.55 ±  1.80 

After linear 
registration 

(mm) 
0.326 ±  0.18* 

(t-stat: 44.02, p < 0.01) 
1.08 ±  1.16* 

(t-stat: 11.62, p < 0.01) n/a 

After linear 
and nonlinear 
registration 

(mm) 

0.261 ±  0.18* 
(t-stat: 8.46, p < 0.01) 

0.319 ±  0.28* 
(t-stat: 11.25, p < 0.01) 

0.324 ±  0.78* 

(t-stat: 30.40, p < 
0.01) 

* Statistically significant (p < 0.05) reduction in error relative to the previous step. 

 

The original T2-w volume was resized from 128 x 128 x 132 to 256 x 256 x 222 

through interpolation only for the purpose of calculating the initial error between the MR 

volume and blockface and light micrograph volumes before registration. Note that the 

initial error measurements include rotation as well, resulting in large error measurements. 

The measured initial error between MR and blockface volumes was 3.84 ±  1.39 mm. 

Error between the blockface data and the T2-w data that was linearly registered was 

0.326 ±  0.18 mm, which is slightly over the size of the original MR voxel (0.3 mm). 

This confirmed the previous visual observation that the T2-w  blockface registration 

was good, even after performing only a linear transformation. Error between the 

blockface and T2-w data that was linearly and nonlinearly registered to the blockface was 

0.261 ±  0.18 mm, which shows improvement over simple linear registration (0.326 ±  
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0.18 mm). It should also be noted that the error after both linear and nonlinear 

registration is less than the size of the MR voxel. 

The large initial error (1.87 ±  1.07 mm, ~ 6 MR voxels) between the light 

micrograph points and the T2-w data in the blockface space is due to large tissue 

distortions that were introduced during histological processing and mounting. Even after 

linear registration, the error is relatively high at 1.08 ±  1.16 mm. Combination of the 

preprocessing step, linear and nonlinear registration improves the error between the 

micrograph points and the T2-w data registered to the micrograph to 0.319 ±  0.28 mm. 

Finally, the overall registration accuracy measurement between T2-w data and light 

micrograph data was measured using the landmarks selected in the original T2-w data 

space and light micrograph space. The initial error was 4.55 ±  1.80 mm and the overall 

error was 0.324 ±  0.78 mm. Note that the large initial error measurement results from 

including rotation error between the two data sets. The change in error after each of the 

registration steps was statistically significant (p < 0.05). 

 

Discussion 

In this study, a registration workflow that transfers MR data into histological 

image space was developed and its accuracy was measured. The acquisition of blockface 

data was essential because it provided an undistorted three dimensional image of the 

brain before sectioning and served as an intermediate step in registering MR data to 

distorted light micrographs. The post processing of the image data proved to be very time 

consuming, however, due to the lack of an automated means to segment the brain from 
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the surrounding dry ice. Other studies have encountered similar problems (38) and 

reported progress using new dyes for dry ice.  

One of the biggest challenges for the study was the severe tissue distortion that 

was introduced into light micrographs during histological processing and mounting. This 

distortion was difficult to control because the whole process – sectioning, staining, and 

mounting - was performed manually. There are several possible solutions to this problem, 

for example the use of an automated cryomicrotome stage and acetate tape transfer 

system that would allow one to preserve the histological structures. Other studies have 

used this method successfully and also reported improved registration results due to 

decreased tissue distortions (71,72). The use of acetate film tape, however, leaves a 

residue on sectioned tissues and may not be ideal for studies that require staining of 

floating sections. Another possible solution is to use a celloidin medium that would stay 

with the sectioned tissues throughout the staining and mounting procedure (73,74). 

Despite these limitations, we were able to successfully register MRI data to the 

distorted light micrographs by preprocessing to correct severe local distortions then 

applying linear and nonlinear registration steps. The use of robust nonlinear registration 

(using ABA), in particular, was critical because it provided spatially adaptive and 

topologically consistent deformation fields (68). The procedure has allowed us to register 

light micrograph sections with mean error less than the size of an MR voxel.  

The result of our study suggests that through the use of a carefully designed 

registration scheme, it is possible to register MR to histological data, even in the presence 

of severe tissue distortions, such as tearing and displacement of different pieces of tissue. 
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This procedure can be useful for those who would like to study and compare histological 

microstructures with other imaging methods such as MRI.  

 

Conclusion 

Despite the rapid growth of different neuroimaging modalities, histological 

analysis of CNS still provides the gold standard for information about the brain’s 

cytoarchitecture. Quantitative comparison of neuroimaging and histological data is 

facilitated by effective tools for cross-modality registration. In this study, a multi-step 

registration procedure is presented that enables an effective overlay of MRI and 

histological data in the histological image space. A blockface volume was reconstructed 

to provide an intermediate step for the overall registration process, which allowed for a 

more robust registration result. Two major types of tissue distortions– tissue tearing and 

movement of separated pieces of tissue- were corrected using a preprocessing procedure 

that implemented 2D tearing correction and the 2D multiple ICP algorithm. The accuracy 

of the overall (linear and nonlinear) registration workflow was assessed by measuring the 

discrepancy between the position of landmarks chosen in the MR image space, then 

transformed to the micrograph space, and the position of the corresponding points chosen 

in the micrograph space. In this study, it was shown that the registration procedure 

provides an effective means to quantitatively compare MRI and histological data with the 

average error comparable to the size of the original MR voxel (0.3mm). 
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CHAPTER IV 

 

VALIDATION OF DIFFUSION MRI IN THE CENTRAL NERVOUS  
SYSTEM USING LIGHT MICROSCOPY 

 

Introduction 

Diffusion tensor imaging (DTI) is rapidly becoming a mainstay of neuroimaging 

studies. It has been used to characterize white matter lesions in individuals (75-79) and to 

quantify group differences on a voxel-by-voxel basis across the entire brain (80-82). DTI 

is also commonly used to reconstruct fiber pathways in the white matter (83-86). These 

applications are based on the assumptions that diffusion anisotropy reflects white matter 

microstructure and that the principal eigenvector of the tensor approximates the 

orientation of fibers in a voxel. These measurements are at times complicated by factors 

such as partial volume averaging of non-parallel fibers (87) and image noise and artifacts 

(88,89), which limit the accuracy of diffusion tensor estimates. When DTI fiber tracking 

produces erroneous pathways, the failure is usually ascribed to these causes, and more 

robust tracking algorithms continue to be developed.  

A number of studies have attempted to validate DTI and quantify the limitations 

to its accuracy under various experimental conditions. Numerical simulations of the 

effects of noise (88,89) and partial volume averaging (87) are in general agreement with 

theoretical calculations (90,91) and similarly, numerical tests of fiber tracking algorithms 

have quantified pathway errors for a range of conditions (84,92). Several studies have 

also shown good agreement between diffusion MRI (dMRI) orientation estimates and 

ground truth in phantom studies (49,50,93). These simulation and phantom studies have 
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provided important insights into the performance of DTI through analysis of specific and 

well characterized factors and their effects on DTI accuracy. More recently, several 

experimental studies involving comparisons of ex vivo diffusion data and corresponding 

tissue structure have been conducted. These provide a more comprehensive 

understanding of dMRI by comparing diffusion anisotropy with white matter properties 

such as fiber orientation distribution and fiber spread (6,60). Diffusion fiber tractography 

results have also been compared to known fiber pathways traced in ex vivo brain using an 

injected neural tract tracer, and showed good agreement (94).  

The definition of a gold standard for fiber properties on a microscopic scale is an 

important component of a DTI validation experiment. While high resolution micrographs 

of stained tissue sections provide such a gold standard, manual data analysis is very labor 

intensive. In this study, DTI data and high resolution histological micrographs were 

acquired from an ex vivo owl monkey brain. The high resolution micrographs were 

analyzed using a Fourier domain filtering method to measure fiber properties efficiently. 

The measurements from each dataset were then quantitatively compared for validation 

purposes. 

 

Methods 

 

Image Acquisition 

All animal procedures were approved by the Vanderbilt Animal Care and Use 

Committee. A male owl monkey was given a lethal dose of barbiturate and perfused 

through the heart with buffered physiological saline. Fixation was performed by 
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perfusing again with 4% paraformaldehyde in phosphate buffer, then by 4% 

paraformaldehyde in phosphate buffer with 10% sucrose. The fixed brain was removed 

from the skull and kept in 30% sucrose for approximately 24 hours. The brain was then 

transferred into a phosphate buffered saline (PBS) medium and scanned on a Varian 9.4 

Tesla, 21 cm bore magnet using a multi-slice, pulse gradient spin echo sequence (b = 0 

and 1309 s/mm2, 21 diffusion weighting directions, TE = 31.2 ms, TR = 17.1 s, 128 x 128 

x 132 image volume matrix, 0.3 mm isotropic voxel resolution, total scan time = 13 hrs). 

After image acquisition, one iteration of the anisotropic smoothing algorithm proposed by 

Ding et al (17) was performed to improve signal to noise ratio (SNR). Parameters used 

were 2SDρ =  and C = 3, where SD is the standard deviation of noise and C is a 

threshold parameter used to control the degree of smoothing. Non-diffusion weighted 

(T2-w) images were also obtained and assembled into a three dimensional (3D) volume 

dataset for registration purposes. 

Twenty four hours after imaging, the brain was embedded in dry ice and 

sectioned on a microtome at 50 micron thickness in the coronal plane. Using a Cannon 

EOS20D digital camera with 70-300 mm zoom lens, the tissue block was digitally 

photographed prior to cutting every third section, resulting in a through-plane resolution 

of 150 microns. The initial in-plane resolution of the blockface images was 16 μm 

isotropic. The tissue sections were then stained for myelin using Gallyas’ silver method 

(30) and mounted on glass slides for light microscopy image acquisition. A Nikon 

DXM1200F digital camera mounted on a Nikon E-800 microscope was used to take 

images of the stained sections at 0.5x, 1x, 2x, 4x, 10x, and 20x magnification, as shown 

in Figure 13.  
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Figure 13. Iterative scheme for localizing a high resolution (20x) micrograph in a 
low resolution (0.5x) micrograph. At each step, the location of the field of view (FOV) 
of the higher magnification micrograph within the lower magnification image was 
obtained using 2D registration. (a) Scaled FOV of the 1x image is superimposed on the 
corresponding 0.5x image, (b) 2x FOV in 1x, (c) 4x FOV in 2x, (d) 10x FOV in 4x, and 
(e) 20x FOV in 10x. 
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Image Registration 

In order to transfer the tensors in the original magnetic resonance (MR) image 

space to the high resolution light microscopy image space, a multi-step registration 

scheme was used. Figure 14 summarizes the steps of this procedure. First, the volume 

datasets of the DTI and blockface images were constructed. Dimensions of the DTI 

dataset were 128 x 128 x 132 with 0.3 mm isotropic voxel resolution, and those of the 

blockface volume dataset were downsampled to 256 x 256 x 222 with 0.15 x 0.15 x 0.15 

mm voxel resolution. The T2-w dataset was then registered to the blockface dataset using 

a combination of linear (i.e., rigid and anisotropic scaling) (67) and nonlinear registration 

with the Adaptive Bases Algorithm (ABA) (68). Next, a section of interest was chosen 

and the corresponding blockface and low magnification (0.5x) micrograph were 

registered in 2D, again using both linear and nonlinear registration with ABA. 
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Figure 14. Registration scheme summary. Three major datasets – DTI, blockface, and 
light microscopy datasets – were obtained. Light microscopy data were obtained under 
multiple magnifications, ranging from the lowest of x0.5 to the highest of x20 
magnification. Locations of the higher magnification images within lower magnification 
images were found using 2D registration (translations only), and the three major datasets 
were tied together using a combination of linear and nonlinear registration.  

 

For both sets of registrations (T2-w  blockface, blockface  micrograph), 

linear registration was performed using a mutual information (MI) based method similar 

to that of Maes et al (32). Partial volume (PV) interpolation was used for intensity 

interpolation of the transformed reference image (32). Powell’s multidimensional 

direction set method was used to maximize the statistical dependence, using Brent’s one-

dimensional optimization algorithm for line minimization (31). Powell’s criterion was set 

to 10-5, Brent’s to 10-3, and the maximum number of iterations was set to 600. The 

number of bins for joint histogram calculation was set to 64 x 64 and 3 resolution levels 
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were used. Transformation in the MRI to blockface step was performed by optimizing 

first the in-plane parameters, then the through-plane parameters. A set of in-plane 

transformations (two dimensional translations only) using MI as a similarity measure was 

performed in order to find the field of view of the high resolution micrographs within 

lower magnification micrographs of the same section, an example of which is shown in 

Figure 13. 

In addition to the linear transformations, nonlinear registration was performed 

using ABA for both steps (T2-w  blockface, blockface  micrograph). Fifteen control 

point levels and two resolution levels were used to determine the transformation scale 

and spatial resolution. Sixty four bins were used for joint histogram calculation and a 

Jacobian threshold of 0.05 was used as an optimization constraint. Optimization of a 

basis function was halted when the cost function's improvement was below 0.0005. 

 

Fiber Property Measurements 

 

i. Diffusion Imaging 

Diffusion tensors were calculated using the method of Basser et al (12). For each 

position in the target (micrograph) image space, the corresponding tensor in the DTI 

dataset was calculated using PV interpolation of the original diffusion weighted images. 

In order to preserve the orientation of the tensors relative to the tissue after registration, 

the tensors were rotated using the preservation of principal direction (PPD) reorientation 

strategy proposed by Alexander et al (95). 
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Fiber information in the light micrographs is inherently two dimensional, i.e., the 

orientation, coherence, and density of through-plane fibers cannot be measured using the 

simple Fourier domain filtering method. In order to ensure that micrograph measurements 

of fiber properties reflect all fibers in that volume of tissue, only those voxels containing 

mostly in-plane fibers are selected for detailed data analysis. This was done by selecting 

voxels in which diffusion was predominantly in-plane. In-plane diffusion was determined 

by the following criteria: either the first two eigenvectors (corresponding to the largest 

two eigenvalues of the tensor) were nearly in the plane of the micrograph or, if the second 

and third eigenvalues were nearly equal and much less than the first, and the principal 

eigenvector was nearly in the plane of the micrograph. (In all cases, ‘nearly’ implied a 

maximum deviation of 25°). The rationale for considering the second eigenvector is that 

crossing fibers should lie in the plane of the first two eigenvectors (at least in the simplest 

model). On the other hand, if all fibers are nearly parallel and diffusion has axial 

symmetry around the principal eigenvector, then the orientation of the second eigenvector 

is arbitrary (in the plane of symmetry), so the second eigenvector should be ignored in 

this case. Out of the initial dataset, 102 voxels with mostly in-plane fibers were selected 

for further data analysis.   

The registered tensors were diagonalized in the plane of the micrograph. The 

principal in-plane eigenvector provided the DTI estimate of fiber orientation, projected 

onto the plane. In order to quantify the effect of fiber spread on diffusion anisotropy, the 

two dimensional fractional anisotropy (2D FA, i.e., the FA calculated using the two in-

plane eigenvalues) was found for voxels with predominantly in-plane diffusion. 
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ii. Light Microscopy 

The angular distribution of myelinated fibers was measured using Fourier 

domain (k-space) filtering (96) of high resolution micrographs (10x). This method is 

based on the fact that the 2D Fourier transform of a line in image space is non-zero on a 

line through the origin in k-space (at an orientation orthogonal to the image space line). 

In our implementation, the spatial frequency spectrum of a 300μm by 300μm patch of 

high resolution micrograph was filtered using 36 functions that pass spatial frequency 

components in a narrow range of angles. Each function was symmetric around the origin, 

forming opposing ‘fan blades,’ 10 degrees in width and weighted as follows: 
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 (11) 

 

where β is the slope of the weighting function, rf  is the normalized radial frequency, p 

is the order of the high pass filter, q is the order of the low pass filter, Hf  is the upper 

cutoff frequency, Lf  is the lower cutoff frequency, θ is the angle of the Fourier 

transform sample, θ0 is the central angle of the desired fan blade, B is the angular 

bandwidth, and α is a weighting factor. For our design, β = 0.7, p = 6, q = 4, Hf  = 0.5, 

Lf  = 0.02, and α = 0.5. An example of the composite directional filter with θ = 137.5˚ 

and B  = 10˚ is illustrated in Figure 15. 
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Figure 15. Composite directional filter in the Fourier domain. Each filter was 
designed using a combination of a fan filter, a Butterworth bandpass filter, a ramp-shaped 
lowpass filter, and a raised cosine window. θ = 137.5˚ and B = 10˚ 

 

Each filter passed spatial frequencies near the center of the blade, attenuating 

them more as they approach the blade edges at the center angle +/- five degrees. The 36 

filter functions differed only by rotation - the center-to-center separation of neighboring 

blades was five degrees (blades overlapped to provide more uniform sensitivity as a 

function of orientation). 

The Fourier domain filters produced 36 filtered images containing fiber 

component information at corresponding orientations. Polar plots (‘rose’ plots) were used 

to visualize fiber orientation histograms which effectively display the dominant 

orientation and coherence of stained in-plane fibers. In the rose plot, the amplitude of the 

histogram at a particular orientation corresponds to the fraction of fibers at that angle. 

The peaks of the distribution (the petals) indicate the orientations of fiber bundles while 

the widths correspond to the degree of fiber coherence.  

A simple measure of fiber density could be taken from the fiber to non-fiber area 

ratio, calculated by thresholding light micrograph images. However, this method would 

not be able to discriminate between linear structures (fibers) and features with other 
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shapes (e.g., vessels and micrograph artifacts). Similarly, a simple intensity threshold 

would not account for crossing fibers in the density measurement. Ideally, the density 

measurement reflects the volume fraction of fibers in the 3D volume of the tissue section, 

and therefore should count the area of both fibers at a crossing point. In order to address 

these concerns, a different measure of fiber density using the Fourier domain filtering 

method was utilized. A summed image for a patch of micrograph was created by 

thresholding and summing the 36 filtered fiber images described above. Note that this 

involves adding the binary filtered images, so regions of intersecting fibers are counted 

multiple times. Since crossing regions are counted multiple times, the density measured 

in this way can be greater than one. This results from the fact that all fibers in the tissue 

volume are projected onto the 2D plane of the micrograph and contribute to filtered area 

measurements in the image. The performance of the fiber spread and density 

measurement using Fourier domain filtering was tested using simulated fiber micrographs, 

an example of which is shown in Figure 16. A total of 100 simulated patches with varying 

degree of angular distribution width, fiber density, and peak orientation were analyzed 

using the Fourier domain filtering method. For each of the patches, the true fiber angle 

standard deviation and the measured fiber angle standard deviation data were compared. 

In addition, the true fiber density and measured fiber density were obtained and compared. 
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Figure 16. Actual and simulated micrograph patches. (a) A high resolution micrograph 
of fibers in the corpus callosum, imaged at x20 magnification. Measured fiber orientation 
is 153 degrees to the horizontal axis. (b) Simulated high resolution micrograph of fibers. 
Fiber orientation was chosen from random numbers with a normal distribution (μ = 153˚, 
σ = 24˚).  

 

Results 

 

Tensor Transformation 

The location of the high resolution micrograph within a low resolution (0.5x) 

micrograph was used to place tensors at the appropriate positions in the high resolution 

micrographs. Overall alignment of the tensors with the myelin stained fibers was very 

good. The agreement within fiber bundles with strong directionality, such as in corpus 

callosum, was excellent, as shown in Figure 17 (a) and (b). Note that each tensor is 

rendered as a surface for which the distance between the origin and the surface in each 

direction is proportional to the water diffusivity in that direction: 

 

 ( , ) ( ( , ) sin( ) cos( ), ( , ) sin( )sin( ), ( , ) cos( ))r D D Dθ φ θ φ θ φ θ φ θ φ θ φ θ=
r

 (12) 

 

where θ is the polar angle and φ  is the azimuthal angle.  
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Figure 17 (c) shows a region with complex fiber structure and the 

corresponding tensors. It can be seen from Figure 17 (c) that diffusion tensors are more 

isotropic and provide less orientation information where fibers cross. This also implies 

that tensors are limited by MRI spatial resolution and are unable to reflect the fine details 

of fiber pathways less than one voxel in diameter. 

 

 

Figure 17. Tensors overlaid on light microscopy images. The registered tensors are 
overlaid on the corresponding high magnification micrographs. Relative locations of the 
high magnification (20x) micrographs (b) and (c) are outlined in the lower magnification 
(0.5x) micrograph (a). All diffusion surfaces are scaled by (in-plane) fractional anisotropy. 
The surfaces therefore tend to be small and spherical where anisotropy is low. Fiber 
orientation of myelin stained fibers on the left in (b) is visualized using a rose plot (d). 

 

Fiber Property Measurements 

The performance of the Fourier domain filtering method, used to measure the 

angular distribution of myelinated fibers, was tested using Monte Carlo simulation. The 

relationship between the measured fiber spread (i.e., standard deviation) of the simulated 
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micrograph and the true fiber spread is shown in Figure 18 (a). The measured angular 

spread is very nearly equal to the true value (y = 0.987 * x + 0.009, R2 = 0.998, where y is 

the measured value and x is the true value). The relationship between the measured and 

true fiber density, shown in Figure 18 (b), is also nearly linear (y = 1.002x - 0.022, R2 = 

0.988). These comparisons strongly suggest that the Fourier domain filtering method is a 

reliable tool for measuring fiber properties of high resolution micrographs. The filtering 

method on real data is demonstrated in Figure 19, where tensor diffusion surfaces and 

rose plots are overlaid on high resolution micrographs for visual comparison. Figure 19 

(a) and (b) are from a region with more coherent fibers while (c) and (d) are from a 

region with crossing groups of fibers. It can be seen that the Fourier domain filtering 

method is able to identify the orientations of crossing fiber groups effectively.  
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Figure 18. Performance of Fourier domain filtering method on simulated data. (a) 
Fiber angle standard deviation of simulated micrographs, calculated by the Fourier 
domain filtering method, is plotted against the true angle standard deviation. (b) Fiber 
density of simulated micrographs is plotted against the true fiber density. Both 
demonstrate a high correlation between the true and measured data.  

 

 

Figure 19. Examples of Fourier domain filtering method on micrographs. (a) A 
highly anisotropic diffusion surface is overlaid on the corresponding region of a high 
resolution micrograph. (b) The angular distribution of fibers in the same micrograph 
patch (shown in reversed contrast to make fibers bright) is visualized using a rose plot. 
(c) An isotropic diffusion surface is overlaid on the corresponding micrograph patch. (d) 
The angular distribution of crossing fibers in the same micrograph patch as in (c) is 
visualized using a rose plot. 
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For each in-plane tensor overlaid on the high resolution micrographs, a 

corresponding region of interest, a ‘patch’ with in-plane dimensions of the DTI pixels, 

was identified in the micrographs. Rose plots were used to visualize fiber orientation 

histograms that reveal the dominant orientation and coherence of stained fibers within 

each region. These were compared to the tensor registered with that region. An example 

of the analysis in the corpus callosum is shown in Figure 17 (d). The in-plane principal 

eigenvector of the tensor in Figure 17 (d) is at 157 degrees to the horizontal axis, and the 

dominant fiber orientation in the micrograph is at 153 +/- 12 degrees. Figure 20 shows a 

histogram of the measured angle differences between the true fiber orientation (from high 

resolution micrographs) and the fiber orientation from diffusion imaging of all the 

patches. The peak of the histogram indicates that on average, tensors differ from their 

true fiber orientation by less than 10 degrees (about the limit of accuracy of the Fourier 

filtering algorithm). As the tensors become isotropic, ambiguity in the fiber orientation 

measured by the first eigenvector increases and the measured angle differences may 

increase.   
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Figure 20. Histogram of the measured angle differences. The differences between the 
true fiber orientation measured in high resolution light micrographs and the fiber 
orientation estimated from diffusion imaging are plotted (in units of degrees).   

 

Multivariate regression analysis was performed, with 2D FA as the dependent 

variable and fiber spread and density measurements as the independent variables, as 

shown in Table 2 (the overall F-statistic was 23.9, p < 0.05). Increases in fiber spread, 

measured as the standard deviation of fiber angles within the high resolution micrograph, 

are associated with decreases in FA (p < 0.001) and increases in fiber density are 

associated with increases in FA (p < 0.05). This relationship is described by the following 

model: FA = 0.997 - 1.032 * spread + 0.267 * density.  Note that this relationship should 

be expected to hold only within the range of the conditions tested in this experiment (i.e., 

fiber spread from 0.30 to 0.90 radians and density from 0.44 to 2.53). Nevertheless, 

within this range the model shows that FA has a stronger dependence on spread than on 

density (e.g., doubling spread produces a larger change in FA than does doubling fiber 

density). In Figure 21, several micrographs with similar density or spread are shown to 

illustrate the relationship between FA and fiber spread and density. Figure 21 (a) shows 

micrographs with similar degree of fiber spread (0.36 to 0.44 radian) but varying fiber 

density and their corresponding rose plots. Figure 21 (b) shows light micrographs of 
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similar fiber density (1.50 to 1.69) but varying degree of fiber spread and their 

corresponding rose plots.  

 

Table 2. Regression of FA (dependent variable) versus fiber spread and fiber density 
(independent variables) 

Variable β t-statistics p-value 

Constant 0.997 14.333 6.87 x e-26 

Fiber Spread -1.032 -5.898 5.13 x e-8 

Fiber Density 0.267 2.163 0.0330 

F-statistic: 23.9 (p = 0.0306) 

 



 

 63

 

Figure 21. Example light micrographs demonstrating the relationship between FA, 
fiber spread, and fiber density (a) Micrographs with similar fiber spread (0.36 to 0.44 
radian) but varying density are shown. As the fibers become denser, FA increases. (b) 
Micrographs with similar fiber density (1.50 to 1.69) but varying fiber spread are shown 
with the corresponding rose plots. As the fibers become more coherent, FA increases. 

 

Discussion 

Analysis of high resolution micrographs was performed using a Fourier domain 

filtering method which provided an effective means to automatically extract fiber 

property measurements. We have shown in this study that the agreement was good 

between tensors derived from DTI and myelin stained fibers analyzed via light 
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microscopy, and the degree of diffusion anisotropy was highly correlated with rose plot 

width. 

Due to the high diffusion gradients and small voxel sizes required for high spatial 

resolution DTI, the data suffer from inherently low SNR. Possible solutions to this 

problem include increasing the number of signal averages and using an effective noise-

reduction, post-processing procedure. In order to improve upon our SNR, we acquired 

DTI images for a long time ( > 13 hrs) and used the anisotropic smoothing algorithm 

proposed by Ding et al (17). A single iteration of the algorithm was performed in order to 

avoid any excess smoothing and the consequent corruption of tensor orientation 

information. 

Because the brain tissue block was sectioned, stained, and mounted manually, 

various mounting artifacts, such as tissue tearing, folding, and shearing, were inevitable. 

The use of nonlinear registration, especially the utilization of ABA, was essential in 

correcting for these mounting artifacts. The algorithm permitted spatially adaptive 

deformation field modeling and therefore was effective for most tissue sections. The 

algorithm imposes a constraint that prevented topologically incorrect registration. After 

registration, the fiber orientation measurements from DTI and light microscopy show a 

good correlation, as seen in Figure 20 

It should be noted that the fiber spread and density information from high 

resolution micrographs is limited to two dimensions. In consideration of this limitation 

we only selected voxels with mostly in-plane principal eigenvectors for data analysis, and 

it was shown in Table 2 and Figure 21 that there exists good correlation between the FA 

and two dimensional fiber properties measured from histological data. However, 
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structures in the brain cannot generally be treated as two dimensional, and advancing our 

methods to obtain through-plane information from tissue sections would improve our 

ability to probe and compare information between DTI and histological data. In addition 

to being dimensionally limited, our histological data lack information on other cellular 

properties that probably affect FA, such as axon thickness, degree of myelination, and 

diffusivity in the various water compartments. Measurement of other such fiber 

properties would allow a more comprehensive understanding of DTI.  

  

Conclusion 

Since the initial realization of the ability of NMR to observe molecular diffusion 

(8), the field has grown extensively and has become a valuable tool, with applications in 

a wide range of diseases. Because DTI is the only imaging method to date that can probe 

white matter microstructure in vivo, the accuracy of the information provided by the 

method is all the more important. However, DTI is still developing and faces a number of 

unsolved problems, such as resolving crossing fibers and determining how different 

structures interact to produce observed DTI parameters. Having a methodology to 

directly compare fiber directionality and distribution measured from DTI and histological 

data will help to answer these questions. In this study, we developed such a methodology 

and demonstrated that an excellent correlation exists between the principal fiber 

directional measurements from DTI and myelin-stained histological sections. It was also 

shown that, although limited in spatial and angular resolution, DTI is able to identify 

regions with complex fiber structure with considerable accuracy.  
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CHAPTER V 

 

CONCLUSION 

 

Since the initial realization of the ability of NMR to observe molecular diffusion 

(8), the field of DTI has grown extensively and DTI has become a valuable tool, with 

applications in a wide range of diseases. Because DTI is the only imaging method to date 

that can probe white matter microstructure in vivo, the accuracy of the information 

provided by the method is all the more important. However, DTI is still developing and 

faces a number of unsolved problems, such as resolving crossing fibers and determining 

how different structures interact to produce observed DTI parameters. Having a 

methodology to directly compare fiber directionality and distribution measured from DTI 

and histological data will help to answer these questions. In this study, we developed such 

a methodology and compared fiber properties measured by DTI and histology. 

The development of a methodology to directly compare DTI and histological 

data was important for this study, because despite the rapid growth of neuroimaging 

methods, histological analysis of the CNS still provides the gold standard for information 

about the brain’s cytoarchitecture. A multi-step registration workflow of DTI data was 

developed that provided an accurate overlay of DTI and histological data in the 

histological image space. A blockface volume was reconstructed to provide an 

intermediate step for the overall registration process, and the use of this spatially 

consistent volume allowed for a more robust registration result. Two major tissue 

distortions – tissue tearing and movement of different parts of the brain, introduced 

during histological processing, were corrected using a preprocessing procedure that 
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utilized a 2D tearing correction method and the 2D multiple component ICP algorithm. 

The accuracy of the overall (linear and nonlinear) registration workflow was assessed by 

measuring the differences between the position of the registered landmarks chosen in the 

MR image space and the position of the same landmarks chosen in the histological image 

space. The presented registration workflow provided an effective means to quantitatively 

compare DTI and histological data with an average error less than 0.3 mm, which is the 

size of the original MR voxel. 

Using the developed procedures, diffusion tensors were positioned in the 

reference (micrograph) image space and rotated using the PPD method (95) in order to 

preserve the orientation of the tensors relative to surrounding anatomy. For each of the 

corresponding voxels, the angular distribution of myelinated fibers was then measured 

using Fourier domain (k-space) filtering (96) of high resolution (10x) micrographs, which 

provided us with a measure of fiber coherence and fiber density. The performance of the 

Fourier domain filtering method was tested using Monte Carlo simulation and it was 

shown that it is a reliable tool for measuring fiber properties in high resolution 

micrographs. In order to ensure that micrograph measurements of fiber properties reflect 

all fibers in that volume of tissue, only those voxels containing mostly in-plane fibers 

were selected for detailed data analysis. 

The overall alignment of the tensors with the myelin stained fibers was very 

good. The agreement within fiber bundles with strong directionality, such as in the corpus 

callosum, was excellent, and on average, tensors differed from their true fiber orientation 

by less than 10 degrees (about the limit of accuracy of the Fourier filtering algorithm). 

Multivariate regression analysis was performed, with 2D FA as the dependent variable 
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and fiber spread and density measurements as the independent variables. It was 

demonstrated that an excellent correlation exists between the fiber property 

measurements from DTI and myelin-stained histological sections. It was also shown that, 

although limited in spatial and angular resolution, DTI is able to identify regions with 

complex fiber structure with considerable accuracy. 
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APPENDIX A 

 

LIST OF PROGRAMS USED 

 

 The purpose of this appendix is to provide more detailed description of the 

programs and their functions that were written for data construction, processing, and 

analysis related to this dissertation project. A flowchart has been created for easier 

visualization in Figure 22. 
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Figure 22. Flow chart of list of programs used. The names of the functions (in blue) 
that were used to construct, process, and analyze data sets are laid out as a flowchart, 
categorized according to the related data sets.  
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