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CHAPTER I 

 

INTRODUCTION 

 

This thesis describes the design, modeling, control and efficiency of a variable displacement 

vane pump based hydraulic actuation system, which is motivated by the need for enhanced efficiency 

and compactness in mobile hydraulic actuation systems. 

Hydraulic actuation systems are widely used in robotics and automation industry. Their 

popularity is due to the large amount of power that they are able to deliver through small hoses and 

flexible tubes. Figure 1-1 shows one of the simplest conventional hydraulic actuation systems that 

consist of some basic elements such as reservoir, filter, pump, accumulator, hydraulic cylinder and 

servo-control valve. The force that drives the hydraulic cylinder comes from the pressure in the 

chambers located at each side of the piston. For controlling the motion of the cylinder, the most 

common practice is to pump the hydraulic fluid into the circuit from the reservoir, and then to control 

the fluid flow going into one side of the hydraulic cylinder chambers using an assembly of a 

pressurized accumulator and a proportional servo-valve, meanwhile the fluid in the other cylinder 

chamber will return to the reservoir through the valve and the returning line and be ready to be 

pumped again. In hydraulic systems, valves are playing the role of pressure controlled resistor 

elements that are fundamental energy dissipative parts that cause pressure drop or energy dissipation. 

It is favorable to remove them from the system for the goal of achieving efficiency. 

Among the hydraulic actuation systems used in mobile machines, most of them incorporate 
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position-controlled hydraulic actuators that utilize an internal combustion (IC) engine (i.e., an 

essentially constant speed shaft) as the source of driving force of the hydraulic pump. Such systems 

have found considerably less use in human-scale and sub-human-scale applications (e.g., legged 

robots), in part because the inefficiency of valve throttling taxes the limited power supply in such 

systems, and since such systems are typically too small to accommodate fluid cooling, heat generated 

by fluid throttling is not easily managed. 

 

 

Fig. 1-1. Schematic of a basic hydraulic actuation circuit. 

 

Hydraulic actuators controlled directly by variable displacement pumps (VDP) provide an 

alternative to valve-controlled hydraulic actuation systems. Rather than controlling flow to a hydraulic 

actuator via dissipation (i.e. throttling valves), the VDP controls flow via variable displacement, as 

illustrated in Figure 1-2. Rather than a single pump and one valve per actuator, the VDP approach 

utilizes a single (smaller) pump for each axis. Unlike valve control, which is fundamentally dissipative, 

VDP control is theoretically isenergic (i.e., energetically conservative), and therefore provides the 

potential to achieve a significantly improved efficiency. 
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Fig. 1-2. Schematic of a VDP-controlled hydraulic actuator. 

 

Pump-based flow control for a hydraulic actuation system can either be provided by a 

fixed-displacement pump with a bi-directional variable-speed shaft input, or by a bi-directional 

variable-displacement pump with a (roughly) constant-speed shaft input. The former approach, often 

referred to as an electrohydrostatic actuator (EHA), typically utilizes a servo-controlled electric motor 

to drive the pump, which provides high-bandwidth bidirectional shaft input to drive a bi-directional, 

fixed displacement pump (e.g., a gear pump). Recent work related to this approach is described in 

Habibi, Fales, Perron et al. [1-7]. Habibi et al have proved that hydrostatic actuation systems are able 

to manipulate heavy loads with submicron precision and a large stroke through experiments based on 

a gear pump and a variable speed motor drive [1-3], who have also proposed a state estimation 

strategy referred to as the smooth variable structure filter (SVSF) and applied it to their EHA system.  

Based on the same system used by Habibi, Sampson et al [4] have demonstrated through experiments 

that due to the nonlinear friction present in the actuator, the utilization of a conventional proportional 

or PI controller is not sufficient to effectively deal with flow and force disturbances, however, a 

nonlinear proportional outer-loop controller does result in a substantial performance improvement in 
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regards to disturbance rejection for positional accuracy. To achieve high regulation rate or short 

settling time with robust stability, Wang, S. et al [5] proposed a variable structure filter and sliding 

mode control combined estimation and control strategy for the EHA introduced in [1-3]. Fales et al [6] 

designed an H-infinity two degrees-of-freedom controller for pump pressure control based on a 

variable-displacement swash-plate hydraulic pump and performed simulations. Perron et al. proposed 

a sliding-mode control of an EHA system in a position control application and performed simulations 

[7]. 

The primary drawback to the EHA approach proposed by the prior work is the need for an 

electric servomotor for each axis. Since these servomotors must be rated for the same (or slightly 

greater) output power as the hydraulic actuator that they supply, and since the continuous output 

power density of an electric motor is considerably less than the hydraulic actuator, the addition of the 

electric motor compromises significantly the power density of the hydraulic system. Alternatively, a 

relatively constant-speed unidirectional shaft input, such as that from an IC engine, can be utilized to 

drive a controllable bi-directional variable-displacement pump. Considerably less work is published 

on this topic. Grabbel and Ivantysynova describe the use of this approach via modulation of a 

swash-plate pumps for large-scale machines [8], and conclude that such an approach can provide a 

bandwidth that is “competitive” with valve-controlled systems. 

This thesis describes the design of a small-scale bi-directional variable-displacement vane 

pump (i.e., appropriate for human-scale machines) for the purpose of valve-less control of a hydraulic 

actuation system, which provides bi-directional controlled fluid flow that is capable of performing 

throttle-less hydraulic servo-actuation with high efficiency when a constant speed is assumed at the 
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pump input shaft. The fabricated design is experimentally characterized, and both of linear and 

nonlinear model-based controllers are designed for control of actuator motion tracking after the 

system dynamics modeling is performed. The controllers are implemented on a 

single-degree-of-freedom system, and motion tracking is demonstrated and results are compared, 

which indicate the performance of the controllers. The efficiency of the proposed system is 

characterized and measured through experiments to demonstrate its potential in energy conservation. 
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CHAPTER II 

 

DESIGN OF VARIABLE DISPLACEMENT VANE PUMP 

 

Descriptions 

The proposed variable displacement vane pump (VDVP) is a variation on a standard rotary 

vane pump. As a positive-displacement pump, either fixed or variable displacement, a rotary vane 

pump consists of vanes mounted to a rotor that rotates inside of a stator chamber. Figure 2-1 displays a 

schematic of the basic working mechanism of the proposed VDVP. There is a particular type of VDVP 

used in automotive applications such as power steering and automatic transmission which consists of a 

circular cam that pivots about a point fixed respect to the housing [9-11]. Karmel used to develop the 

dynamic model of this type of VDVP and analyzed its internal forces [12-13]. Unlike the VDVP 

studied by Karmel, however, the variable displacement of the proposed VDVP is achieved by the 

movement of a vertically movable stator that is being driven by a force applied in the vertical direction. 

With rotor spinning clock wise at all times, the stator is pushed down and comes into contact with the 

edge of the rotor, as it is shown in Figure 2-1(a). Both of the outside of the rotor and the inside of the 

stator are circular in shape, but the centers of these two are offset, which cause an eccentricity. All of 

the vanes can slide into and out of the rotor within their slots and seal on all edges, which create 

enclosed chambers between every two adjacent vanes that perform the pumping work by delivering 

liquid from the inlet port to the outlet. The intake side in Case 1 is the right side, with vane chamber 

volume keeping increasing when it travels from 0o to 180o with respect to rotor angle. After passing 

 6



180o, the vane chamber enters the discharge side, which is the left side in Case 1, with chamber 

volume keeping decreasing when it is sweeping through from 180o to 360o. In Case 2, intake and 

discharge ports are switched when the direction of flow reverses, with the variable stator being pushed 

all way up. Therefore, with the rotor spinning at a constant speed, the flow rate and the direction of 

hydraulic flow can be changed by varying the displacement of the stator. 

 

 

(a). Case 1: stator all way down.           (b). Case 2: stator all way up. 

Fig. 2-1. Basic mechanism of a variable displacement vane pump. 

 

The physical embodiment of the VDVP is shown in Figure 2-2, which has a DC motor 

mounted on its top. An exploded view of the embodiment of the VDVP showing all of its mechanical 

parts is displayed in Figure 2-3. In the design, the rotor includes four vanes and the stator consists of a 

graphite ring, which is displaced (as illustrated in Figure 2-1) between a pair of graphite end plates via 

a small electric servomotor and lead screw assembly, as shown in Figure. 2-4 and 2-5. Note that the 

pump shaft includes a standard pump shaft seal, and all other sealing surfaces utilize either o-ring 

seals (e.g., between the two halves of the pump body) or cup seals (e.g., on the lead screw shaft), as 
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they are shown in Figure 2-6. 

 

 

Fig. 2-2. The assembled view of the VDVP. 
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Fig. 2-3. The exploded view with all the mechanical parts of VDVP. 

 

 

Fig. 2-4. The VDVP with the front half of pump body removed. 
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Fig. 2-5. A section view of the VDVP. 

 

 

Fig. 2-6. The exploded view that shows the seals of VDVP. 

 

Note that opposing vane slots, shown in Figure 2-7, communicate via small holes, in which 
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push rods are located, in order to maintain contact between the vane tips and the graphite stator ring. 

Figure 2-8 shows a front view of the graphite rear end plate, showing the arrangement of the 

inlet/outlet ports. Each of the inlet/outlet ports spans 90o, which maximizes the intake and discharge 

regions, prevents flow between these two regions, and also precludes compression or expansion of the 

incompressible fluid while moving with the rotor.  Finally, Figure 2-9 shows a sectional view of the 

lead screw housing and lead screw. The lead screw nut is affixed to the stator, and thus moves up and 

down when the lead screw is rotationally driven by the DC servomotor. The total displacement of the 

stator ring is approximately ±0.7mm. Finally, it should be noted that, since nearly all human-scale 

applications that would benefit from the proposed approach are multi-axis machines, the VDVP was 

designed so that several pumps could be stacked together, as shown in Fig. 2-10, to provide compact 

multi-axis control from a single drive shaft. 

 

 

Fig. 2-7. Slots for push rods in VDVP. 
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Fig. 2-8. Graphite rear end plate.  

 

 

Fig. 2-9. Bearing assembly for lead screw.  
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Fig. 2-10. Stack of six variable displacement vane pumps for actuation of a six-axis machine.  

 

 

Flow Rate Calculation and Sizing 

In order to estimate the performance of the VDVP in the design, relationship between pump 

geometry and pump flow rate has to be developed. A schematic of the cross-section of the VDVP is 

shown in Figure 2-11 and Figure 2-12, with the center of the fixed rotor above and below the center of 

the movable stator respectively. 
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Fig. 2-11. Schematic of cross-section when . 0≥x

 

rRAs shown in Figures 2-11 and 2-12,  is the radius of the inner surface of the stator,  is 

the outer radius of rotor, θ  is the angle that the vane has swept through relative to the initial up-right 

position, )(θsr α is the distance between the rotor center and the stator inner surface,  is the angle 

between R R)(θsr xβ and ,  is the angle between  and the vertical center line, and  is the 

offset between centers  and . O′O

 

Fig. 2-12. Schematic of cross-section when . 0px
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The geometry shown on Figure 2-11 can be described by equations in (2-1). 
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If assume that  is the number of vanes of VDVP, then the cross-sectional area between 

two adjacent vanes can be described by Equation (2-3). 
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Similarly, the cross-sectional area between two adjacent vanes in Figure 2-12 can be 

described by Equation (2-4). 

N
rdrArea

N
s

2

2
2 )(

2
1)( πθθθ

θ
π

θ
−=′ ∫ − 

 (2-4)
 

)](180cos[2)( 222 αθθ +−−+= o
s xRxRr . where 

If the vanes are taken into account in the area calculation of the cross section, as shown in 

Figure 2-13, the entire cross-sectional area of vanes in a single vane chamber consists of two parts, 

 15



which are half of the area of the preceding vane and half of that of the following vane. These two parts 

of the area can be described by Equation (2-5). The entire area is thus expressed by Equation (2-6), 

which is to be subtracted from )( ′θArea)(θArea  or  when the cross-sectional area of vane 

chamber is calculated. 

2
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)(2_)(1_)(_ θθθ vaneAreavaneAreavaneArea +=  (2-6)  

where  is the width of the vane. W

 

 

Fig. 2-13. Schematic of cross-sectional area of vane. 

 

Assume that the depth of the stator (or rotor) is , the angular velocity of rotor is L ω , and 

the proposed pump incorporates four vanes. The maximum volume of the fluid that is delivered by 

one vane chamber from inlet to outlet port per revolution can be calculated by the difference between 
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maximum and minimum chamber cross-sectional areas timed by . When the rotor center is above 

the stator center, minimum chamber cross-section takes place when 

L

θ  of the preceding vane is 45o. 

When the rotor center is below the stator center, maximum chamber cross-section takes place when 

θ  of the preceding vane is 225o.  Thus the flow rate of the pump  can be described by Equation 

(2-7). 

Q

{ })]45(_)45([)]225(_)225([4 oooo vaneAreaAreavaneAreaAreaLQ −−−′= ω  (2-7)  

Therefore, depending on the dimension of the hydraulic actuator and the projected working 

bandwidth, design parameters such as R r, , ,  and LW x  can be decided accordingly using the 

equations in (2-1) through (2-7). For example, the goal of the first prototype is to drive a hydraulic 

cylinder of a 1.9 cm (0.75 in) bore and a 10 cm (4 in) stroke at approximately 5 Hz, so the design 

parameters of the VDVP are chosen according as listed in Table I to meet the demand of the 

application. 

 

Table I. Parameters used in the design of pump prototype. 

Parameter Description Value Unit
Inner radius of stator 17 mm R  

r Radius of rotor 16 mm  
W Width of vanes   3.3 mm  

Depth of stator 16 mm L  
x  mm Offset of stator ±1.0 
ω  Pump speed 1750 RPM
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Prototype Performance 

The assembled prototype of the VDVP is shown in Figure 2-14. The pump measures 8.5 cm 

(3.3 in) by 8.5 cm (3.3 in) by 10.4 cm (4 in), and weighs 1.25 kg (2.75 lb). The stator position (and 

thus the pump displacement) is controlled via a 22 mm diameter DC motor (Maxon model no. 

314706 ) with a 4.4:1 planetary gearhead and an integrated rotary encoder. The stator motion is 

controlled via a proportional-derivative (PD) controller between the rotary encoder and the motor 

current (i.e., technically the motor position is being controlled rather than the stator position, although 

the two are kinematically coupled via the lead screw transmission). 

 

 

Fig. 2-14. VDVP prototype (with a DC motor assembled). 

 

The stator step response for a command amplitude representing ±50% of the stator motion is 

shown in Figure 2-15. Figure 2-16 shows the measured bandwidth of the stator motion, also for a 

command amplitude of ±50%, demonstrating a -3dB bandwidth of approximately 7 Hz. Figure 2-17 
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shows the measured pump output flow rate (of water) as a function of stator displacement for a shaft 

input speed of 1750 RPM (which is the shaft speed used in the control experiments described 

subsequently). Finally, Figure 2-18 shows the measured pump characteristics, at maximum stator 

displacement (i.e., 0.7 mm), using a working fluid of water, for various input shaft speeds. Note that 

the maximum pressure is limited by vane leakage, which could presumably be increased by tighter 

tolerances in fabrication. 
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Fig. 2-15. Step response of VDVP stator corresponding to ±50% of the stator motion. 
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Fig. 2-16. Bandwidth of VDVP stator motion. 
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Fig. 2-17. Pump flow rate as a function of stator displacement at a shaft speed of 1750 RPM. 
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Fig. 2-18. Experimentally determined pump characteristics. 

 

 

Experimental Setup 

The proposed control approaches were implemented on a VDVP-controlled hydraulic actuator, 

as schematically illustrated in Figure 1-2. The experimental system consisted of the VDVP shown in 

Figure 2-14, which drives a double acting, double rod hydraulic cylinder (Bimba HL-044-DXDE) 

with a 1.9 cm (0.75 in) bore and a 10 cm (4 in) stroke, as shown in Figure 2-19, using water as the 

working fluid. The hydraulic cylinder rod was rigidly attached to a 10 kg mass, which was mounted 

on a linear slide. Since the proposed controllers requires measurement of the model states, a linear 

potentiometer (Midori LP-100F) was used to measure the load displacement (from which velocity and 

acceleration were derived), and a set of pressure sensors (FESTO SDE-16-10V/20mA) were used to 

measure the cylinder pressures. The controller was implemented at a sampling rate of 1 kHz on a 

Pentium 4 processor with the real-time interface provided by Matlab/Simulink (The MathWorks, Inc.). 
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Note that the VDVP is intended to be driven by an IC engine, although for purposes of the 

experimental setup, it was driven by a DC motor, controlled to drive the pump at a constant shaft 

angular velocity. 

 

 

Fig. 2-19. Hydraulic circuit consists of VDVP and hydraulic cylinder. 
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CHAPTER III 

 

PRELIMINARY CONTROL OF VDVP BASED HYDRAULIC ACTUATION 
SYSTEM 

 

Linear Model of the VDVP Based Hydraulic Actuation System 

In order to control the hydraulic actuation system displayed in Figure 2-19, the dynamics of 

this system must be known. Under ideal conditions, the VDVP in this system can be viewed as a flow 

source that pumps fluid from one side of the cylinder into the other side. Equation (3-1) describes the 

relationship between the flow rate, the cylinder piston speed and the pump displacement. 

ykxAq p== &~ 
 

(3-1) 

q~ Awhere  is the flow rate of the VDVP,   is the cross-section area of the cylinder piston, is the 

speed of the cylinder piston, is the pump constant, and  is the pump displacement. Therefore, 

the open loop transfer function (TF) of the system under ideal conditions is described by equation 

(3-2). 
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A
k pK ′  is a constant that equals to .  where 

 

However, with the effects of the air bubbles existing in the circuit, the compliance of the 

flexible tubing, and the Coulomb friction between the cylinder rods and the seals, the condition of the 

experiment system is far from being ideal. Therefore, the TF described by (3-2) will not apply, and it 
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can only tell part of the truth of the system. The TF of the system is then chosen to be determined 

experimentally. The system’s open loop responses to Sinusoidal signals ranging from 0.1 Hz to 10 Hz 

are collected. And the frequency response is plotted and analyzed in the Bode diagrams in Figure 3-1. 

The dots in red color are data points obtained from experiments, the curve in blue colored solid line is 

the estimated TF of the system without time delay, and the curve in green colored dashed line is the 

estimated TF of the system that has time delay. 
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Fig. 3-1. Experimentally determine the system transfer function. 

 

Based on the information shown in both of the magnitude plot and the phase plot, the 

estimated TF of the system is a second order system with a phase lag (time delay), which can be 

described by equation (3-3). 
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PID and Smith Predictor Combined Controller Design 

A control scheme combined with a Smith Predictor (SP) and a PID controller is adopted to 

control this system, the former is known for being effective in controlling systems that have time 

delay [14].  Figure 3-2 shows a diagram of the controller with SP and PID.  is a standard 

PID controller,   is the plant,  is the nominal TF of the plant that is without the time 

delay, and  is the nominal TF with delay. 

)(0 sC

)(0̂ sP)(sP

)(ˆ sP

 

 

Fig. 3-2. Smith Predictor. 

 

 

Experimental Results 

The controller shown in Figure 3-2 is implemented in the experimental setup and tuned to do 

a series of position tracking. Figure 3-3 shows the tracking of a step signal. 
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Fig. 3-3. SP and PID: Step tracking. 

 

Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 show the tracking of Sinusoidal signals, 

which frequencies are 0.25 Hz, 0.5 Hz, 1.0 Hz and 2.0 Hz. 
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Fig. 3-4. SP and PID: Sinusoidal signal tracking, 0.25 Hz. 
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Fig. 3-5. SP and PID: Sinusoidal signal tracking, 0.5 Hz. 
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Fig. 3-6. SP and PID: Sinusoidal signal tracking, 1 Hz. 
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Fig. 3-7. SP and PID: Sinusoidal signal tracking, 2 Hz. 

 

Figure 3-8 shows a comparison of the tracking of a 1 Hz Sine wave using different controllers, 

the left one is using a PID controller only, and the right one is using a combination of SP and PID. The 

variance in respect to the reference signal is 1.8718 in the left system, while the value becomes 1.5373 

in the right one. In another word, the tracking performance is improved by 18% as far as variance is 

concerned when the combination of SP and PID is applied for the controller in the tracking of a 1 Hz 

Sinusoidal wave. 
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Fig. 3-8. Compare tracking performance between using PID controller only and using SP&PID 
controller. 

 

Experimental results show that the application of an SP and PID combination controller has a 

better performance than applying a PID controller only. Control performance is satisfactory when the 

frequency of the reference signal is below 2 Hz. The preliminary control is performed based on a 

simplified and linearized model that is experimentally determined, lacking of the information of two 

important states, the pressures in each side of the hydraulic cylinder, so this model is not precisely 

describing the dynamics of the system. Therefore, to achieve good control performance in higher 

bandwidth, a more accurate model and a more sophisticated controller have to be developed. 
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CHAPTER IV 

 

ADVANCED CONTROL OF VDVP BASED HYDRAULIC ACTUATION SYSTEM 

 

Nonlinear Model of the VDVP Based Hydraulic Actuation System 

The model for the VDVP-controlled hydraulic actuator is similar to the standard model used 

for other hydraulic actuators, but the flow rate of fluid entering the cylinder is a function of the pump 

displacement rather than valve spool displacement. Figure 4-1 shows a hydraulic power cylinder that 

is driven by the VDVP.  and  are pressures in chambers A and B. aP bP x  is the position of the 

piston.  is the area of surface on side A and B.  is the mass of the piston.  and  are the 

fluid flow rate in A and B.  is the external force applied on the piston, specifically Coulomb 

friction . 

aQ bQa m

f

cf

 

Fig. 4-1. Schematic of a hydraulic cylinder. 

 

Assume that the hydraulic cylinder shown in Figure 4-1 has an inertial and viscous load, its 

dynamics can be described by equation (4-1). 

xbxmfaPaP pcba &&& +=−−
 

(4-1) 
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Differentiation of (4-1) with respect to time gives (4-2). The Coulomb friction  in the 

system is neglected and is therefore r moved from the dynamic model.  

cf

xxbaPaP
m

x

bxmaPaP

pba

pba

&&&&&&&&&

&&&&&

][1
−−=

+=−

  (4-2) 

The hydraulic fluid in cylinder chambers can be considered as a mixture of liquid and a small 

amount of entrained, non-dissolved gas. Applying the continuity equation, the rate of change of the 

pressure in chamber A and B can be expressed as the following equations in (4-3). 
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 (4-3) 

 

in which  is the bulk modulus of the hydraulic fluid,  and  are volume of chambers A and 

B. 

kB aV bV

The flow rate of each chamber is described by equation (4-4), where  is the pump 

constant,  is the displacement of the variable stator, and is the leakage factor of the pump, 

which is set to zero to simplify the dynamic model. 
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Substituting (4-3) and (4-4) into (4-2) gives (4-5), 
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(4-5) 

 

axVV aa += 0where  

axVV bb −= 0        
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Equation (4-5) gives the system dynamic model relating the pump displacement  as the 

input to the load position 

y

x  as the output, where  is completely controlled by the displacement 

 of the variable stator. Equation (4-5) can be written in a general form as described by equation 

(4-6). 

x&&&

y

bufx +=&&&  (4-6)  
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Identification of Model Parameters 

In order to determine the unknown parameters in the dynamic model described by (4-6), 

which are ,  
and

 , 
experiments are performed and their results are treated in computer 

with using Matlab/System Identification Toolbox. Since the leakage factor 
 

is set to zero and is 

removed from the dynamic model described by (4-6), so it is not measured in the system identification 

process. In the experiments, the system are given a series of square wave inputs, and its outputs are 

recorded and processed in Matlab, which provides a function that basically utilizes the prediction error 

method (PEM) in system identification. A schematic diagram of the PEM is displayed in Figure 4-2, 

where ,  and  are input, output and disturbance of the system, 

kB pk pb

fL

),(ˆ θty)(tu )(ty )(0 tv  is the 
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predicted estimate of the output ,  is the estimated parameters, θ̂)(ty ),( θε t  is the prediction 

error, and  is the cost function to be minimized for optimal estimation of . ∑
=

=
N

t
N tV

1

2 ),()( θεθ θ̂

 

 

Fig. 4-2. Prediction error method. 

 

To explain the parameter estimation procedure, one group of the experiment data is displayed 

in Figure 4-3, showing the input and output of the system. A segment of data from 2 to 5 second from 

the experiment is used in the identification process, and ),(ˆ θty  based on the estimated parameters is 

plotted together with the original experimental result in Figure 4-3. Then another segment of data from 

experiment, the input command to system, from 6 to 8 second is used in the dynamic model (with 

estimated parameters plugged in) to generate the predicted system output, which is plotted together 

with that of the experimental result, shown in Figure 4-4, to validate the parameter estimation. After 

performing a few iterations of this process with updated parameters for each time, the optimal 

estimates for the unknown parameters are determined and applied to the dynamic model, as listed in 

Table II. Note that the random-frequency square wave input with used here is not the standard input 
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usually adopted in system identification for a nonlinear system. The ideal input would typically be a 

band-limited random signal that is rich in both of frequency and magnitude. The current input has 

been adopted because it can avoid the slide from hitting the boundary of motion in the experimental 

setup, which is a problem the experiment was running into when the more desirable band-limited 

random signal was used as system input. 
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Fig. 4-3. Experimental results in system identification. 
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Fig. 4-4. Parameter estimation with experimental results. 
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Fig. 4-5. Model validation based on the estimated parameters and experimental results. 
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Table II. Parameters used in the dynamic model. 

Parameter Description Value Unit

pb  Damping coefficient 400 N-m

pk  Pump constant 0.085 m2/s

kB  Bulk modulus 700 kPa

 

 

Sliding Mode Control Design 

The control canonical model given (4-6) is well suited to a sliding mode control approach, 

which is a major robust control  approach to dealing with model parameter inaccuracies. In order to 

ameliorate the Coulomb friction assumed to be present in the cylinder seals, an integral sliding surface 

is used, defined for the third-order dynamics as: 

∫+=
t
ed

dt
ds

0

3)( τλ
 

(4-7) 
 

 

where ,  is the desired position and dxxe −= dx λ  is the control gain. The corresponding sliding 

condition is: 

ss
dt
d η−≤2

2
1

 
(4-8) 

 
 

ηwhere  is a positive constant. 
 

Equation (4-7) can be expressed by equation (4-9), 
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Differentiation of (4-9) with respect to time gives (4-10). 
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Therefore a sliding mode control law is developed as described in [15]:  
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(4-11) 
 

The model parameters and control gains used in the sliding mode controller are listed in Table 

III. Note that the control gains were determined by tuning, such that both were as large as possible, 

without introducing (noticeable) noise into the control command.  

 

Table III. Parameters used in the controller. 

Parameter Description Value Unit 

a  Piston area 283.5 mm2

k Robustness gain 2×107 mm/sec3

λ Error dynamic gain 19.5 rad/sec  

fL  Leakage factor of pump 0 m3/Pa-sec 

0aV  Initial volume of  chamber a 5107.2 −× m3 

0bV  Initial volume of  chamber b 5102.4 −× m3 
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Experimental Results 

Experiments were conducted to demonstrate the tracking performance and to compare it with 

that of a previously applied PID and Smith Predictor (SP) combined controller that is based on a 

linearized model of the system. Figure 4-6 shows the tracking of a step signal when the proposed 

sliding mode controlled was implemented. 
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Fig. 4-6. Step tracking of the sliding mode controller. 

 

Figures 4-7 through 4-10 show the tracking of desired sinusoidal position trajectories at 

different frequencies, such as 0.5 Hz, 1 Hz, 1.5 Hz and 2.0 Hz, when the proposed sliding controller 

was applied. Figure 4-11 shows the tracking performance of the system corresponding to a 

band-limited pseudo- random signal. In all cases, the load effectively tracks the respective desired 

trajectory. 
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Fig. 4-7. Tracking performance of the sliding mode controller corresponding to a 0.5 Hz sinusoidal 
command. 
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Fig. 4-8. Tracking performance of the sliding mode controller corresponding to a 1.0 Hz sinusoidal 
command. 
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Fig. 4-9. Tracking performance of the sliding mode controller corresponding to a 1.5 Hz sinusoidal 
command. 
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Fig. 4-10. Tracking performance of the sliding mode controller corresponding to a 2.0 Hz sinusoidal 
command. 
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Fig. 4-11. Tracking performance of the sliding mode controller corresponding to a band-limited 
random command. 

 

Figure 4-12 and Figure 4-13 show a comparison of tracking performance of the proposed 

sliding mode controller approach to a PID and SP combined controller implemented in a prior work, 

which indicate that the proposed sliding mode controller provides a better tracking performance in 

both of magnitude and phase. In Figure 4-12, the standard deviation in respect to the reference 

command, a 1.0 Hz sinusoidal signal, is 1.2399 for the PID/SP controller, while the standard deviation 

in respect to the same reference signal is only 0.0020 for the sliding mode controller. In Figure 4-13, 

in respect to the same reference command given, the standard deviation for the PID/SP controller is 

6.1307, while the standard deviation comes down to 0.0013 when the sliding mode controller was 

applied. It is noted that the control performance was significantly improved by implementing the 

proposed sliding mode controller. 
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Fig. 4-12. Tracking performance comparison of the sliding mode controller and the PID/SP combined 
controller corresponding to a 1.0 Hz sinusoidal command. 
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Fig. 4-13. Tracking performance comparison of the sliding mode controller and the PID/SP combined 
controller corresponding to a 2.0 Hz sinusoidal command. 
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CHAPTER V 

 

EFFICIENCY OF VDVP BASED HYDRAULIC ACTUATION SYSTEM 

 

The input power of the proposed hydraulic actuation system based on VDVP can be 

calculated from the speed and torque output of the brushless motor (Aerotech BM500) that is 

connected to the VDVP’s input shaft, as described by equation (5-1). 

τω ⋅=inP  (5-1)  

ω τ is the output speed of motor in rad/s, where  is the output torque of motor in N-m, and the unit 

of  is Watt.  Therefore the energy consumption that is input to the system is: inP

∫= dtPE in  
(5-2) 

 

The output power of the system is measured when the hydraulic actuator is driving a mass of 

29.5 kg (65 lb) mounted on the slider and tracking a series of desired sinusoidal position trajectories at 

different frequencies, such as 0.5 Hz, 1.0 Hz, 1.5 Hz and 2.0 Hz. Assume that the trajectory tracked by 

the hydraulic actuator is )2sin( tfAx ⋅⋅= π , then the work that is done by the actuator can be 

described by equation (5-3).  

∫∫∫ ⋅=⋅=⋅= xdxmxdamdxFW &&
 

(5-3) 
 

Fwhere  is the driving force from the actuator,  is the mass of the weights,  is the 

acceleration of the mass, and 

m a

x  is the displacement of the mass. Note that since the proposed 

actuation system is a non-conservative system, the absolute values of  and x&& x  are used to calculate 

the total work done by the actuator. Therefore the efficiency of the system can be expressed by 
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equation (5-4). 

%100×=
E
Wη

 
(5-4) 

 

 Figure 5-1 shows the tracking of the sliding mode controller corresponding to a 1.0 Hz 

sinusoidal command when weights of 29.5kg were loaded on the slide during the experiment of 

efficiency estimation. 
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Fig. 5-1. Tracking performance of the sliding mode controller corresponding to a 1.0 Hz sinusoidal 

command when a 29.5kg mass is loaded. 

 

Figure 5-2 shows experimental results of the input shaft speed, torque and power at the pump 

shaft when the proposed sliding mode controller is tracking a 1.0 Hz Sinusoidal command. 
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Fig. 5-2. Experimental results of the speed, torque and power input at the pump shaft when the system 

is tracking a 1.0 Hz Sinusoidal command. 

 

Figure 5-3 shows the efficiencies of the system when it is tracking sinusoidal commands of 

different frequencies. It can be observed that the system arrives at its peak efficiency when the 

frequency of the desired sinusoidal position trajectory is around 1.0 Hz. 
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Fig. 5-3. Efficiency of system for tracking sinusoidal commands at different frequencies when sliding 
mode controller is implemented. 
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CHAPTER VI 

 

CONCLUSION AND DISCUSSION 

 

This thesis proposes a variable displacement pump (VDP) approach to decrease energy losses 

in a closed-loop controlled hydraulic actuation circuit. A vane-type VDP is proposed and described, 

which was specifically designed to offer a compact package for an IC engine driven multi-axis 

machine. The pump was fabricated and experimentally characterized, and integrated into a 

VDP-controlled hydraulic circuit. A PD/Smith Predictor based controller and a sliding mode controller 

were developed for the VDP-controlled circuit respectively, and subsequently were implemented on 

the experimental setup. Experimental results of the hydraulic cylinder motion tracking indicate the 

effectiveness of the proposed sliding mode control approach. The experiment based efficiency study 

shows promising potential of the proposed system in energy conservation. 
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