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The univariate bootstrap is a relatively recently developed version of the bootstrap (Lee
& Rodgers, 1998). Currently, research on the univariate bootstrap has largely focused on
individual, bivariate correlations. DeFries-Fulker (DF) analysis is a regression model used to
estimate parameters in behavioral genetic models (DeFries & Fulker, 1985). It is appealing for its
simplicity; however, it violates certain regression assumptions such as homogeneity of variance
and independence of errors that make calculation of standard errors and confidence intervals
problematic. Methods have been developed to account for these issues (Kohler & Rodgers,
2001), however the univariate bootstrap represents a unique means of doing so that is presaged
by suggestions from previous DF research (e.g., Cherny, Cardon, Fulker, & DeFries, 1992). DF
analysis also presents an ideal area for application of univariate bootstrapping in that DF analysis
primarily relies on a bivariate (intraclass) correlation, however it provides a convenient stepping

off point for potential future applications of univariate bootstrapping to more complex models.
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Introduction

The purpose of this project is to evaluate the application of several bootstrap resampling
approaches, including the standard and the univariate bootstrap, to DeFries-Fulker behavioral
genetic models (DF models). The goal is to provide a relatively simple way to get accurate
confidence intervals for DF model parameter estimates, particularly in DF models applied to
non-normal data. Current options for DF model confidence interval (CI) creation are limited to
CI’s formed using a sandwich estimator, which may not be implemented in most software
systems, or the standard regression CI’s, which are guaranteed to be inaccurate. In contrast, the
standard bootstrap is widely available and the univariate bootstrap is relatively simple to
implement. Currently there are few applications of the univariate bootstrap in the literature,
despite some advantages over the standard bootstrap. Thus, this project may provide a stepping
off point for the application of univariate bootstrapping to broader multiple regression and more

advanced models.

Bootstrapping

Bootstrapping in general is a resampling procedure for obtaining accurate confidence
intervals for model parameters (e.g., Efron & Tibshirani, 1986). The bootstrap procedure can
also be used to create a sampling distribution to support standard hypothesis testing. The basic
bootstrap takes a data set and samples observations of that data set with replacement to create
another resampled data set. In the taxonomy of Rodgers (1999), bootstrapping is sampling with
replacement to form a full data set. A model is then fit to the new resampled data set and the
model parameters are recorded. This process is repeated thousands of times, each time with a

new resampled data set. Other versions of the bootstrap exist, but each is based on the core idea



of resampling with replacement from some given set of observations or distributions to create
new resample data sets to refit the model being tested. If the original data being bootstrapped are
representative of the population, bootstrapping provides a way to approximate the results
researchers would get if they replicated their study thousands of times in the population. This
approach allows the researcher to create a confidence interval around the observed parameter
estimates. For a given sample there are 2n-1 choose n possible bootstrap samples (where n is the
number of unique observations), from which to calculate the parameter estimate of interest. For

example, for ten observations there are 92,378 unique samples.
Permutation

The permutation resampling procedure is similar to bootstrapping in that it takes an
original sample and creates thousands of new data sets, estimates parameters in each one, and
creates a distribution of parameter estimates. In a permutation resampling procedure (also known
as a randomization test; see Edgington, 1987) the researcher permutes the data thousands of
different ways (potentially all possible ways if the number of possible permutations is low
enough) by resampling observations without replacement from individual variables of the data
set. In essence each variable is shuffled like a deck of cards, randomizing the relationship
between all the variables (hence a randomization test). In the taxonomy of Rodgers (1999) the
permutation (randomization) test is resampling without replacement to form a full sample. This
resampling framework allows researchers to create intervals around the null hypothesis of no
relationship to use for null hypothesis significance testing. For a given sample there are n!*~1
possible combinations (where k is the number of variables). For example, for ten observations

with two variables there are 3,628,800 unique samples.



Univariate bootstrapping

The univariate bootstrap resamples with replacement, like the traditional bootstrap, but
from each variable independently as in permutation analysis (Lee & Rodgers, 1998). This
procedure gives a distribution of parameter estimates under the null hypothesis, as in the
permutation analysis. Alternatively, the univariate bootstrap data set can have a correlation
imposed on it using a diagonalization technique (Beasley et al., 2007). The correlation imposed
can either be a hypothesis imposed (HI) or observed imposed (Ol) null hypothesis about the
correlation. When a correlation is imposed the resulting bootstrap provides a distribution of
parameter estimates that would occur if the imposed correlation were the population correlation
(Rodgers & Beasley, 2012). When the observed correlations are imposed on the data set this will

result in a confidence interval around the observed parameter estimates, as in standard
. . . . . . nk +n—1 .
bootstrapping. The number of unique samples in a univariate bootstrap is ( ) unique
n

samples. For example, for ten observations and two variables there are 42.6 trillion possible

unique data sets.

The diagonalization technique used in past research on the univariate bootstrap was first
developed by Kaiser and Dickman (1962). In the original Kaiser-Dickman method the data to be
diagonalized are standardized (and are assumed to be uncorrelated in the population), and then
matrix multiplied by a square-root type decomposition of the desired correlation matrix; the
Cholesky decomposition has performed best in univariate bootstrapping applications. For the
univariate bootstrap the Kaiser-Dickman procedure needs to be slightly altered. Because the goal
is a sampling frame with a given correlation structure, the sampling frame needs to be

standardized, not the raw data. If the raw data were standardized it would involve dividing the



data by the sample standard deviation, however the sampling frame standard deviation of that
variable is based on many repetitions of that variable (n“, where k is the number of variables
and n is the number of observations). This means that the sampling frame estimate of the

kD 3 (x—%)?

_\2
variance is equal to = e instead of the original sample estimate of the variance, LAy

n—1

If the correct variance is used in the standardization, the normal Kaiser-Dickman procedure can
then be followed and will result in a sampling frame with the correct correlation structure. If the
original sample estimate of the variance is used, the correlation structure will not match the
desired correlation structure. The discrepancy between the two variances should go to 0 as n gets
large, because both equations will, in the limit, be equivalent to the sum of squares over n. For

small n cases, the difference can be quite important.

Although the typical bootstrap is conceptually simple, in practice some bias is present in
where the interval in centered; the estimate needs to be corrected for this bias, because the
interval may not be wide enough. Bias corrected and accelerated intervals (BCa) were created to
help manage bias and width issues in standard bootstrapping (Efron, 1982). In contrast, the
univariate bootstrap has generally low bias, both in its null and HI and OI forms, although the Ol
form performs somewhat better than the HI form with regards to alpha control (Beasley et al.,
2007). In addition, a bootstrap can (with low probability) return a data set that has a single
constant resampled value for one of the variables (because the samples are with replacement the
same observation could be selected every time). In the typical bootstrap that will happen with
probability n/(n+n-1 choose n). For ten unique observations that occurs about .01% of the time.
In the univariate bootstrap it occurs with probability (n+n-1 choose n)*k/(n”k + n — 1 choose n).
For ten observations that occurs approximately .0000004% of the time. Although these

probabilities are low, when sampling from a data set with ten bivariate observations, for 10,000



bootstrap samples there is a 66.13% chance of at least one invalid sample in the typical bootstrap

procedure; with the univariate bootstrap there is only a .004% chance of an invalid sample.

The univariate bootstrap has some significant limitations (at least as currently
implemented). The univariate bootstrap eliminates heteroscedasticity in regression residuals
entirely, similar to residual bootstrapping (Stine, 1989). Heteroscedasticity occurs when the
variance of the residuals changes across levels of the independent variable. Some authors have
suggested that failure to use a bootstrapping method that replicates heteroscedasticity can result
in an unrepresentative bootstrap parameter distribution and potential bias (e.g., Stine 1989; Wu
1986). The univariate bootstrap creates a grid of points that is uniformly variable across the
whole length of every axis, and as a result there is no heteroscedasticity in the base univariate
sampling frame. Diagonalization reintroduces linear relationships, but it does not reintroduce
heteroscedasticity. In addition to heteroscedasticity, if higher order relationships are of
substantive importance the univariate bootstrap is inadequate. Finally, the univariate bootstrap
has not been adequately extended beyond bivariate correlations (but see Rodgers & Beasley,
2012, for an introductory effort at using the univariate bootstrap for regression). Although these

are all weaknesses that need to be addressed, they are not the focus of the present study.
DF Analysis

DeFries-Fulker (DF) analysis is a regression method to estimate biometrical parameters
from behavioral genetic/kinship data (DeFries & Fulker, 1985). The typical goal in any biometric
analysis is to partition the total variance of a given outcome into the proportion that is genetic
variance (h?), the proportion that is shared environmental variance (c?), and the proportion that is

nonshared environmental variance (e?). The DF model does this using a regression formula that



is easy to use and that can allow for the easy inclusion of additional explanatory variables (e.g.,

to further partition environmental variance into known and unknown environmental factors).

In their original formulation DeFries and Fulker (1985) intended their model to be used in
cases where one member of a kinship pair had a selected condition (e.g., a reading disability, or
schizophrenia). This member of the kinship pair would be the focal member, or proband. The
proband’s score on the outcome variable would be the IV in the regression model. Using the
score of the other kin pair member (K), and the known average genetic relatedness of kin (R; 1
for monozygotic twins, .5 for full siblings and dizygotic twins, etc.) DeFries and Fulker’s
regression model can partition the overall phenotypic variance into a genetic component, a
shared environment component, and a non-shared environment and error component (the error
component and the non-shared environmental component are combined in the residual term in
most DF models). Table 1 shows an example of the kind of data that might be used for a DF
model. This data set has four MZ twin pairs (R = 1) and two full sibling or dizygotic twin pair (R
=.5). The higher scores correspond to the proband and form variable K for the regression

analysis.

Table 1: Example of kinship data.

Ki K2 R
9 20 1
8 18 1
21 16 1
7 19 1
19 17 5
7 21 5

The original formulation of the DF model follows:

K1 = BO + BlKZ + BzR + B3K2R +e



In their formulation K, is the proband outcome score, K is the co-kin outcome score, and R is
the proportion of (segregating) genes shared on average. The coefficients can be directly
interpreted in behavioral genetic terms (see Rodgers & McGue, 1994): B, is the proportion of
variance caused by shared environmental effects (genetic effects have been controlled for by the
other regression terms, and non-shared environmental effects lead to differences, not similarities,
and go into the residual term). B; is a direct estimate of the proportion of variability associated
with genetic processes. Rodgers and Kohler (2005), also pointed out that the model contains a
second (hidden) estimate of these two biometrical parameters, because E(By) = (1 — ¢?) K
and E(B,) = —h?  K; note that the two estimates of h? and of ¢? are not in general equal to one
another. Although the original DF model is simple to implement, it has two notable
shortcomings. First, when kinship pairs are not selected such that one member is clearly the
proband and the other is not, the decision about which member provides the 1V and which
provides the DV is arbitrary. Second, the ability to estimate h? and c¢? in more than one way

causes some ambiguity about which estimate to use.

In order to address the first shortcoming of the DF model, i.e., arbitrariness in unselected
settings of which score is the 1V, double entry of data was introduced. Double entry of the data
allows each member of a kinship pair to take a turn as both the IV and the DV, resolving this
issue (e.g., Kohler & Rodgers, 2001; Rodgers & McGue, 1994). Double entry also results in the
Kinship correlations being equivalent to the intraclass correlation coefficient. Table 2 shows the

data from Table 1 in double entered form.



Table 2: Example of double entered kinship data.

Ki K2 R

9 20 1

Finally, the DF model has been simplified to provide an equivalent, but easier to
interpret, model (Rodgers & Kohler, 2005). The simplified model, which will be used in this
project, resolves the ambiguity of which estimate to use for h? and ¢? by providing a single

estimate of each. The model follows.
(K1 — Ki) = b1 (K, — Kpy) + b(R + (K, — Kpp)) + e

In the simplified DF model, Kn is the mean of Ky and Kz (it is identical in double entry settings),
b, estimates the proportion of variation attributable to shared environment factors (when model
assumptions are met), b, estimates the proportion of variation due to shared genetic factors (i.e.,
heritability), and e is the residual of the model; the proportion of variation due to non-shared
environment can be estimated from the identity h? + ¢® + €2 = 1.0. The model has no intercept
because both sides of the equation are mean centered using Km, which ensures that the true

intercept of the model is 0.

The DF model is conceptually similar to an ANCOVA model. The outcome/predictor
variable, K can (and arguably should) be a quantitative variable. R is theoretically quantitative as
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a ratio scale variable. In using kinship pairs, we assume an outcome variable has been measured
for both members of a kinship pair. The level of genetic relatedness needs to be known (although
in large samples some ambiguity can potentially be supported; cf NLSYlinks), and there need to
be at least two kinship groups (e.g., monozygotic twins and dizygotic twins; full siblings and half

siblings) to identify estimation of both c2 and h2.

It makes statistical and logical sense to double enter the data (Kohler & Rodgers, 2001,
Rodgers & McGue, 1994). Without double entry the decision about which member of the kin
pair is the predictor and which is the predicted is entirely arbitrary. Furthermore, without double
entry the centering of the variables and fitting of a no-intercept model is a questionable practice
when using unselected samples given that the “proband” group will in general have a different
mean from the co-kin group (although because there is not a true “proband” in unselected cases
this difference would be due to random chance). However, double entry artificially doubles the
sample size, meaning standard errors that are produced by typical regression output are too small
(Kohler & Rodgers, 2001). A sandwich estimator approach has been proposed to correct this
deflation; however some have suggested that the sandwich estimator may not be entirely
appropriate in this case (Mike Hunter, personal communication) because the sandwich estimator
is for model misspecification, not incorrect sample sizes. Other authors have suggested a
permutation technique for estimating the standard errors although they did not actually utilize
that method (Cherny et al., 1992). Interestingly, both the Kohler and Rodgers (2001) paper and
the Cherny et al. (1992) paper foreshadow the current study. Kohler and Rodgers (2001) used
bootstrapping as a test for their estimator, and Cherny et al.’s (1992) suggestion of permutation is

immediately relevant to univariate bootstrapping.



In addition to the issue of double entry, heteroscedasticity across the groups may also be
a concern (Kohler & Rodgers, 2001). If there is a genetic effect it implies that more genetically
related individuals will be more similar to each other (presuming that the equal environments
assumption holds). Although the effects of genetics and the environment will be equal across
groups, our ability to accurately predict an individual’s score based on their co-kin score will
increase as their genetic relatedness increases. This increase in predictive ability will decrease
the residual term for genetically more higly related groups, particularly as genetic effects
increase. This increase has the effect of guaranteeing heteroscedasticity in the model, an obvious
violation of regression assumptions involved in hypothesis testing. Resampling procedures can
help us account for such violations, although results from bootstrapping techniques can vary

depending on how heteroscedasticity is managed (e.g., Stine, 1989; Wu 1986).

At a minimum, a well conducted DF analysis has violated two of the fundamental
assumptions of regression. The errors will not be independent because of double entry, and the
errors will be heteroskedastic (assuming that any genetic heritability is present). Furthermore,
double entry results in a doubling of the n term in any equations used, which will result in overly
narrow confidence intervals. Determining what methods (if any) are appropriate for correcting

for these regression violations is the purpose of this project.

Current application

The DF model is a perfect case for the application of the univariate bootstrap, despite
heteroscedasticity. There are only two variables of interest, which is a case where the univariate
bootstrap is known to work well (e.g., Beasley et al., 2007; Beasley & Rodgers, 2012; Lee &
Rodgers, 1998). The calculation of standard errors in DF analysis is not straightforward, which is

a case where bootstrapping methods generally are advised. Lastly, it is nearly impossible to
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conceive of a case with non-selected twins where the DF analysis would contain a nonlinear
effect (because items are double entered it is unlikely to make sense to say that someone’s score
would be a quadratic or other nonlinear function of their co-kin’s score). Nonlinear effects are
currently difficult to model using univariate bootstrapping, so their nearly guaranteed absence is
a good safeguard. Heteroscedasticity would typically be an issue for the univariate bootstrap,
however DF analysis is a special case where the logical resampling framework obviates the

issue.

The procedure to be used in this study is to calculate sample correlations for each of the
kinship groups (e.g., monozygotic twins, siblings and half siblings). A sampling frame using all
possible pairs of the observed outcomes is created for each group, with the observed correlation
for each group imposed on their sampling frame. Because diagonalization is imposed for a
different sampling frame for each group, the natural heteroscedasticity is retained. This occurs
because each kinship group (e.g., all identical twins as a group) is diagonalized separately from
the other kinship groups. For each group, the number of pairs of data, equal to the number of
original pairs in the group, are then randomly selected with replacement from each sampling
frame. The DF analysis is conducted on this sample. Unlike traditional DF analysis, double entry
IS unnecessary in this case because the repeated sampling of the bootstrap gives each co-kin an
equal probability of being the predictor or the predicted. The standard errors are then formed
using bootstrap confidence intervals. These intervals will typically be wider than those normally
achieved using single-entry DF analysis because of the reduced sample sizes used in the
bootstrap analysis, but narrower than those from double-entry settings. This method should also
provide all of the typical advantages of bootstrapping (e.g., minimal distributional assumptions)

that are not specific to the DF case.
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Methods

A study was designed with 96 potential conditions. These were formed by crossing four
factors: distribution, sample size, MZ:DZ balance and effect sizes. The distributions selected
were normal, y? and yZ,. The rationale behind these three distributions is that they provided a “best
case” scenario (the normal distribution) a moderately skewed case (xZ,) and a “worst case” highly
skewed distribution (y?). There were 2 sample sizes, 48 and 498 twin pairs, split between MZ and
DZ twins. Forty eight twin pairs was chosen as being what might be expected from a
convenience sample of twins, while 498 was chosen as what might be expected from a larger,
more focused, twin study. A balanced and unbalanced twin design was used, with the unbalanced
twin design having an exactly 2:1 DZ:MZ ratio. The 2:1 ratio was chosen as being approximately
equal to the ratio of MZ to DZ twins in the general population. Finally, 0, 0.3 and 0.69 were used
as the effect sizes for a? and c2, representing no effect, a medium effect and a large effect. There
were 8 allowable a? and c? effect size combinations (0, 0; 0, 0.3; 0, 0.69; 0.3, 0; 0.3, 0.3; 0.3,
0.69; 0.69, 0; 0.69, 0.3; note that 0.69, 0.69 cannot occur, because that combination is larger
than 1). Unfortunately in the small sample size and high correlation conditions (0.69, 0.3 and 0.3,
0.69) the simulations using a x# distribution had many invalid cases where the correlation for
MZ twins was equal to one. The univariate bootstrap uses a Cholesky decomposition which
requires the use of positive definite matrices and the MZ twin matrices were not positive definite
in cases where their correlation was one. Alternative matrix decompositions could be used in this
case, however such alternatives (i.e., the spectral decomposition) have been found to have
unacceptably high Type I error rates. Rather than use a worse version of the univariate bootstrap

these four conditions were dropped. The y? with MZ correlations of .99 and large samples sizes were
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not problematic and were retained. No other conditions caused additional problems. As a result,

only 92 conditions out of the potential 96 are represented in the current study.

Code for the univariate bootstrap was written in R. To test that it was performing as
expected, full univariate sampling frames were created using the software and checked against
what would be expected (i.e., variable means, variances and correlations were as expected), and
a brief simulation study examining the univariate bootstrap CI properties was conducted. To
examine the CI properties 10,000 simulations were run. For each simulation, 100 bivariate
normal observations were selected with a population correlation of .3, and 1,000 bootstrap
samples were taken and a CI created. The proportion of CI’s that contained the true population
value of .3 was not statistically significantly different from the nominal rate of .95. From these

tests it was concluded that the software was behaving as expected.

Six R scripts were run simultaneously (in different windows) on a personal laptop so that
multiple conditions could run simultaneously. Each R script used a random number generator
seeded with a unigue number. The simulations took approximately four days to run. For each
condition all of the confidence interval methods under consideration were conducted 1,000

times; for bootstrap methods 1,000 bootstrap resamples were used.

There were multiple plausible ways to conduct the bootstrap analyses. For the standard
bootstrap it was possible to bootstrap prior to double entry, or after double entry. For cases after
double entry it seemed worthwhile to examine the effects of taking a bootstrap sample equal to
the double entered sample size (twice the number of twin pairs) versus taking a sample equal to
the original number of twin pairs. For univariate bootstrapping all the possibilities for the
standard bootstrap existed. Additionally there was the possibility of using the entire sample (both

MZ and DZ twins) as the source for each group and then diagonalizing afterwards (i.e., sampling
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within groups, and sampling ignoring group membership). The thought was that, because we are
already assuming the same mean and variance for MZ and DZ twins on the focal variable, and
the correlation is imposed after resampling, it should make little difference if observations were
actually from an MZ or DZ twin. These considerations resulted in three standard bootstrapping
schemes and six univariate bootstrapping schemes. For all bootstrapping schemes, both a
standard 95% CI was created as well as a BCa 95% CI using a jackknife estimate for the

acceleration parameter (DiCiccio & Efron, 1996).

Ultimately there were 21 different confidence interval methods tested. The standard
regression Cl, the standard regression CI but with the interval width multiplied by the square root
of two (to account for the doubling of the sample size due to double entry), the Kohler-Rodgers
sandwich CI, six standard bootstrap CI’s (half were standard intervals, half BCa intervals), and

12 univariate bootstrap CI’s (half were standard intervals, half BCa intervals).

Results

The results are organized into sections as follows. First Type | error rates of the various
methods are presented and tested for deviations from the nominal Type | error rates. After
considering the general Type | error rate the proportions of Type | errors that occur due to the
confidence interval being too high or being too low are considered. Next the power of each
method is presented and compared with other methods. Finally, a follow up simulation that helps
illuminate some of the main results, and further confirms the reliability of the programming, is

presented.

First, Type | errors will be addressed. A binomial distribution with p = .95 produces

cutoffs of .936 and .963 as the lower and upper bounds of a 95% CI. If a confidence interval

14



method is used we would expect on average 95% of simulations using that method to capture the
true population value at least 93.6% of the time and no more than 96.3% of the time. Given that
we might allow for conservatism but not liberalism in a confidence interval | also evaluated the
confidence interval methods using a cutoff of 93.8%, which is equivalent to a 1-tailed cutoff.
After dropping the 4 conditions with frequent invalid solutions there were 92 conditions overall,
each with 2 parameters. This resulted in 184 tests for each confidence interval. Table 3
summarizes how often each confidence interval either properly captured the true population

value or was not overly liberal (i.e., either proper or conservative).

Based on table 3, it appears that no confidence interval method was ideal in controlling
for Type | errors; however, if conservatism is allowed there were several promising methods. In
particular, every method that double entered prior to bootstrapping and then used bootstrap
resamples half the size of the double entered data set had adequate or conservative coverage in at
least 89% of cases. The univariate versions of that method had adequate or conservative
coverage for all cases. Table 4 shows marginal Type | error rates across conditions (i.e., the
average type | error rate for each interval across parameter type, parameter value, MZ sample
size, and population distribution separately). A version of this table that shows the results of all
crossings of all conditions (i.e., the 92 simulated conditions and both regression parameters) can
be found in Appendix A. Most confidence interval methods were overly liberal, and
significantly so. Only bootstrapping methods where double entry occurred before bootstrapping
and the bootstrap sample size was half the size of the double entered data set performed well by

this metric across all conditions.
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Table 3: Proportion of confidence intervals with expected Type | error rates or non-liberal Type |
error rates.

Proportion  Proportion

with with non-

expected liberal Type |

Type | error*

error*
Robust ClI 0.42 0.38
Typical CI 0.02 0.08
Typical CI Corrected by v2 0.65 0.88
Standard DEA Bootstrap standard CI 0.47 0.41
Standard DEA Bootstrap BCa ClI 0.45 0.39
Univariate DEA WGS Bootstrap standard CI 0.18 0.13
Univariate DEA WGS Bootstrap BCa Cl 0.16 0.10
Univariate DEA UGS Bootstrap standard CI 0.24 0.16
Univariate DEA UGS Bootstrap BCa Cl 0.24 0.13
Standard DEB .5 Bootstrap standard CI 0.33 0.97
Standard DEB .5 Bootstrap BCa ClI 0.29 0.85
Standard DEB 1 Bootstrap standard Cl 0.08 0.11
Standard DEB 1 Bootstrap BCa Cl 0.03 0.11
Univariate DEB .5 WGS Bootstrap standard ClI 0.31 1.00
Univariate DEB .5 WGS Bootstrap BCa ClI 0.39 1.00
Univariate DEB 1 WGS Bootstrap standard ClI 0.09 0.10
Univariate DEB 1 WGS Bootstrap BCa ClI 0.08 0.11
Univariate DEB .5 UGS Bootstrap standard CI 0.31 0.98
Univariate DEB .5 UGS Bootstrap BCa ClI 0.31 1.00
Univariate DEB 1 UGS Bootstrap standard CI 0.10 0.11
Univariate DEB 1 UGS Bootstrap BCa ClI 0.06 0.11

Note: DEA: Double entry after bootstrapping; DEB: Double entry before bootstrapping; .5:
bootstrap resample size was half the (double entered) sample size; 1: bootstrap resample size was
equal to the size of the (double entered) sample size; WGS: within group sampling was used for
the univariate bootstrap; UGS: ungrouped sampling, or sampling without regard to class
membership was used for the univariate bootstrap.

*Test for proper cases was two-tailed, test for non-liberal was one tailed. This resulted in some
intervals faring poorer in the non-liberal Type I error case than in the expected Type | error test.
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Table 4: Table of Type I error rates (in %) marginalized across different simulation settings.

Population Beta

Weights

MZ:DZ Twin Pair Sample
Size

Parameter

Population

0

0.3

0.69

16:32 24:24

166:
332

249:
249

a2

c2

xi

2
X10

normal

Robust
Cl*

7.63

8.09

8.23

9.72

10.87

5.84

5.74

7.88

8.01

7.49

8.14

8.14

Typical
CI*

16.25

15.01 11.33

12.70 1539 13.91 16.37 13.19 16.04 15.10 14.40

14.40

Typical CI
Corrected

by v2

4.94

4.64

3.03

3.40

4.89

4.07

5.09

3.85

4.90

4.53

4.30

4.30

Standard
DEA
Bootstrap
standard
coverage
Cl*

6.45

6.52

6.93

7.38

7.91

5.76

5.49

6.58

6.61

6.46

6.65

6.65

Standard
DEA
Bootstrap
coverage
BCa CI*

7.03

6.97

7.29

8.39

8.88

5.78

5.49

7.14

7.00

7.00

7.10

7.10

Univariate
DEA WGS
Bootstrap
standard
coverage
Cl*

6.87

8.79

10.11

8.37

8.96

8.28

7.85

8.50

8.20

8.00

8.51

8.51

Univariate
DEA WGS
Bootstrap
coverage
BCa CI*

7.22

8.55

9.63

8.42

9.06

8.11

7.63

8.53

8.04

8.13

8.35

8.35

Univariate
DEA UGS
Bootstrap
standard
coverage
Cl*

6.70

8.29

9.49

7.67

8.26

8.28

7.61

8.12

7.79

7.71

8.06

8.06

Univariate
DEA UGS
Bootstrap
coverage
BCa CI*

7.00

8.10

9.35

8.21

8.16

8.16

7.38

8.26

7.68

7.85

8.02

8.02

Standard
DEB .5

Bootstrap
standard

4.14

2.95

1.50

3.00

3.72

2.79

2.81

2.85

3.28

3.24

2.99

2.99
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coverage
Cl

Standard
DEB 5
Bootstrap
coverage
BCa Cl

4.82

3.43

1.88

393 480 294 287 347 373 381 352

3.52

Standard
DEB 1
Bootstrap
standard
coverage
Cl*

1541 12.02

8.26

13.24 14,68 11.16 1098 1215 12.75 1299 1221

12.21

Standard
DEB 1
Bootstrap
coverage
BCa CI*

16.05 12.33

8.53

1406 1541 1130 11.05 1255 13.20 13.47 12.62

12.62

Univariate
DEB .5
WGS
Bootstrap
standard
coverage
Cl

3.82

2.83

1.72

285 345 277 277 284 306 3.09 289

2.89

Univariate
DEB .5
WGS
Bootstrap
coverage
BCa ClI

4.15

3.15

1.81

328 409 279 279 316 327 338 315

3.15

Univariate
DEB 1
WGS
Bootstrap
standard
coverage
Cl*

14.58 11.83

8.83

1293 13.89 11.11 11.03 11.98 1239 12.60 12.01

12.01

Univariate
DEB 1
WGS
Bootstrap
coverage
BCa CI*

1472 11.86

8.65

1293 1411 1107 1096 12.00 1242 12.67 12.01

12.01

Univariate
DEB .5
UGS
Bootstrap
standard

3.68

2.73

1.48

266 319 261 278 263 298 294 274

2.74
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coverage
Cl

Univariate

DEB .5

UGS

Bootstrap

coverage

BCa ClI 3.65 267 137

263 308 257 270 258 290 289 268

2.68

Univariate

DEB 1

UGS

Bootstrap

standard

coverage

Cl* 1429 11.63 8.31

1247 1334 11.09 10.79 1155 1221 1232 11.69

11.69

Univariate

DEB 1

UGS

Bootstrap

standard

coverage

Cl* 13.81 10.97 7.50

1146 12,08 10.93 10.62 1091 1159 11.76 11.03

11.08

*Significantly greater Type | error rate than expected at p < .05 across all conditions. Note: The
highest admissible Type | error rate varies slightly across conditions, however in any given cell
the highest admissible rate possible is 5.17%. All numbers are percentages.

Next | examined the probability of missing to the left or right. | was primarily concerned

with too many misses to the left or right. | used a 1-tailed test for left and right misses (and

treated missing left and right as separate events with separate tests). With 1,000 simulations and

an expected miss rate of .025 for both left and right, it gave a cutoff of 33, that is, simulations in

which there were more than 33 misses left or more than 33; misses right were considered

statistically significantly different from expected. Surprisingly, there did not appear to be much

of a pattern, except that confidence intervals that performed poorly tended to have a high miss

rate both right and left. Table 5 shows this.
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Table 5: Number of simulations out of 184 (with proportion in parentheses) that had
significantly many misses

Miss Miss
Low High
Robust ClI 89 (.48) 107 (.58)
Typical CI 170 (\92) 169 (.92)
Typical CI Corrected by v2 20 (.11) 11 (.06)
Standard DEA Bootstrap standard Cl 97 (53) 73 (.40)
Standard DEA Bootstrap BCa Cl 103 (.56) 97 (.53)
Univariate DEA WGS Bootstrap standard Cl 118 (.64) 121 (.66)
Univariate DEA WGS Bootstrap BCa ClI 137 (.74) 133 (.72)
Univariate DEA UGS Bootstrap standard CI 127 (.69) 127 (.69)
Univariate DEA UGS Bootstrap BCa Cl 117 (64) 125 (.68)
Standard DEB .5 Bootstrap standard CI 9 (.05) 6 (.03)
Standard DEB .5 Bootstrap BCa ClI 24 (.13) 9 (.05)
Standard DEB 1 Bootstrap standard ClI 161 (.88) 159 (.86)
Standard DEB 1 Bootstrap BCa ClI 161 (.88) 161 (.88)
Univariate DEB .5 WGS Bootstrap standard CI 6 (.03) 3(.02)
Univariate DEB .5 WGS Bootstrap BCa ClI 3(.02) 3(.02)
Univariate DEB 1 WGS Bootstrap standard Cl 158 (.86) 155 (.84)
Univariate DEB 1 WGS Bootstrap BCa CI 161 (.88) 158 (.86)
Univariate DEB .5 UGS Bootstrap standard ClI 3(.02) 3(.02)
Univariate DEB .5 UGS Bootstrap BCa ClI 3(.02) 3(.02)
Univariate DEB 1 UGS Bootstrap standard ClI 155 (.84) 152 (.83)
Univariate DEB 1 UGS Bootstrap BCa ClI 149 (.81) 149 (.81)

Note: using this method we would expect each CI method to have approximately nine (0.05)
cases in which the method was found to have too many misses due to chance [i.e., the expected
value of each cell under perfect conditions is nine (0.05)].

The next consideration was power. The number of times 0 was outside the lower bounds
of the confidence interval was calculated for each condition for each confidence interval method
for which the null hypothesis was incorrect and should be rejected (i.e., excluding conditions
where the population value was 0). The following table shows the power of all confidence
interval methods marginalized across the simulation conditions as a proportion of times that zero
was outside the confidence intervals. An additional table in Appendix A shows the same

calculations for power in each simulation and for each CI method. Lower numbers indicate lower
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power. Overall, the highest power was found in the bootstrapping methods that used bootstrap
samples equal in size to the sample being bootstrapped and the typical regression confidence
interval. The bootstrap intervals that performed well in terms of their Type | error rate (i.e., those
that double entered and took bootstrap sample sizes half the size of the double entered sample)
and the square root of two corrected typical CI perform poorer in terms of power. This is exactly
in line with the Type I error rate results given the typical tradeoffs between power and Type |

errors.

Table 6: Power to detect population deviation from zero for each method marginalized across
simulation conditions.

Population  MZ:DZ Twin Pair Sample  Parameter Population
Beta Size
Weight

0.3 0.69 16: 24:  166: 249: a2 c2 )(12 Xlzo normal
32 24 332 249

Robust CI 048 086 043 041 081 0.79 0.61 0.65 0.61 0.63 0.63
Typical Cl 056 0.87 042 046 090 089 0.63 0.73 0.69 0.68 0.68
Typical CI Corrected

by V2 041 0.77 024 028 081 081 049 0.62 0.58 054 054

Standard DEA
Bootstrap standard CI 046 084 0.39 039 081 079 0.61 061 0.59 0.62 0.62

Standard DEA
Bootstrap BCa CI 047 084 041 040 081 0.79 0.62 0.61 0.60 0.62 0.62

Univariate DEA WGS
Bootstrap standardCI 049 085 041 041 083 0.82 0.63 0.63 0.61 0.64 0.64

Univariate DEA WGS
Bootstrap BCa ClI 049 086 042 041 083 082 063 0.63 0.61 0.64 0.64

Univariate DEA UGS
Bootstrap standardCI 049 085 041 040 0.83 0.82 0.62 0.63 0.61 0.64 0.64

Univariate DEA UGS
Bootstrap BCa ClI 048 085 041 039 083 081 063 062 0.61 0.63 0.63

Standard DEB .5
Bootstrap standardCI 0.37 0.76 025 023 0.77 0.76 048 056 0.54 051 051

Standard DEB .5
Bootstrap BCa CI 037 0.77 026 0.25 0.77 0.76 0.49 0.56 0.55 052 0.2

Standard DEB 1
Bootstrap standard CI 054 0.87 045 043 0.88 0.87 0.64 0.71 0.68 0.67 0.67

Standard DEB 1
Bootstrap BCa CI 055 087 0.46 044 088 086 0.64 0.71 0.68 0.67 0.67

Univariate DEB .5
WGS Bootstrap
standard CI 037 076 025 023 078 0.76 0.48 056 054 051 051
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Univariate DEB .5
WGS Bootstrap BCa
Cl 037 077 026 024 078 0.76 049 057 0.55 052 052

Univariate DEB 1
WGS Bootstrap
standard CI 054 087 045 043 0.88 0.87 0.63 0.71 0.68 0.67 0.67

Univariate DEB 1
WGS Bootstrap BCa
Cl 054 087 046 043 0.88 0.87 0.64 0.71 0.68 0.67 0.67

Univariate DEB .5
UGS Bootstrap
standard ClI 036 075 024 022 077 075 047 055 054 0.50 0.50

Univariate DEB .5
UGS Bootstrap BCa
Cl 036 075 024 022 077 076 047 056 0.54 051 051

Univariate DEB 1
UGS Bootstrap
standard CI 053 086 044 041 088 086 0.63 0.70 0.67 0.66 0.66

Univariate DEB 1
UGS Bootstrap
standard CI 053 0.87 044 041 088 087 0.63 0.70 0.67 0.66 0.66

Average 046 083 037 036 083 081 058 0.63 0.61 061 0.61

Note: Cls with acceptable marginalized Type | error rates (table 4) are presented in bold
typeface in this table, and also presented in Table 7 below for ease of comparison.

Table 7: Selected entries from table 6

Population MZ:DZ Twin Pair Sample  Parameter Population

Beta Size

Weight
Typical Cl Corrected
by V2 041 077 024 028 081 081 049 0.62 0.58 054 054
Standard DEB .5 037 076 025 023 0.77 076 048 056 0.54 051 051
Bootstrap standard ClI
Standard DEB .5 037 077 026 025 0.77 076 049 056 0.55 052 052

Bootstrap BCa CI

Univariate DEB .5 037 076 025 023 0.78 0.76 0.48 056 0.54 051 051
WGS Bootstrap
standard CI

Univariate DEB .5 037 077 026 024 078 076 049 057 0.55 052 052
WGS Bootstrap BCa
Cl

Univariate DEB .5 036 075 024 022 077 075 047 055 0.54 050 0.50
UGS Bootstrap
standard CI

Univariate DEB .5 036 075 024 022 077 076 047 056 0.54 051 051
UGS Bootstrap BCa
Cl
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Table 8: Type I error rates for various confidence interval methods using bivariate normal data
with a correlation of .3.

Confidence Interval Method Type | error rate
Standard Confidence interval 4.5%
Univariate Bootstrap NDE k=1 4.4%

Standard Bootstrap NDE k=1 5.5%
Univariate Bootstrap NDE k=2* 18.5%

Standard Bootstrap NDE k=2* 19.2%
Univariate Bootstrap DE k=1* 17.8%

Standard Bootstrap DE k=1* 19.2%
Univariate Bootstrap DE k=.5 5.1%

Standard Bootstrap DE k=.5 5.7%

* Significantly greater Type | error rate than expected p < .05. Note: (N)DE: (Not) Double
Entered; k: Bootstrap resample size is that multiple of input data size (e.g., if not double entered,
and k =1, bootstrap resample size is n, if double entered 2n).

The fact that the bootstraps that double entered and then took bootstrap samples half the
size of double entered data set did much better than all the other methods was quite surprising. In
order to make sure that this was not due to a coding error, | tried one small simulation to confirm
the behavior outside of DF models. For this simulation 100 bivariate normal observations with
standard deviations of 1, means of 5, and correlations of .3 were generated. The cor.test function
in the R stats package (R Core Team, 2015) was used to obtain the standard confidence intervals.
A univariate bootstrap and typical bootstrap confidence interval were constructed, followed by a
univariate and typical bootstrap that used bootstrap resamples twice the size of the original

sample. Then the data were double entered and univariate bootstraps, typical bootstraps using
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both the full double entered data sample size and a sample size equal to half that were used to
obtain four more confidence intervals. This simulation was repeated 1,000 times. The results
match the results above and provide some insight into the process underlying the results. When
the bootstrap sample size is greater than the actual effective sample size it reduces the variability
of the bootstrap resamples’ parameter estimates around the sample parameter estimate,
producing confidence intervals that are too narrow and that have an alpha level far higher than
the nominal rate. Table 7 shows the actual alpha rate for the various confidence interval methods.

The highest alpha rate expected with 1,000 simulations is 6.2%.

Discussion

Overall it would appear that, if more weight is given to avoiding Type | errors than Type
Il errors/power, bootstrapping or a correction using the square root of two should be the
preferred method of users of DF analysis. In particular, when bootstrapping, data should be
double entered and then a bootstrap sampling scheme that takes samples half the size of the
double entered data should be used. This method had slightly lower power and slightly wider
confidence intervals, however it captured the true population value at a far higher rate than other
methods across all conditions. The square root of two correction might actually be preferable,
however, as it had slightly higher power in general, while still maintaining a favorable Type I
error rate. Neither the univariate bootstrap nor the standard bootstrap appeared to radically
outperform the other in this study. However previous work by Beasley et al. (2007) would
suggest that the univariate bootstrap might be preferred because of the potential for superior
performance in other settings, particularly when the data have multiple variables with skewed

distributions.
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The final simulation illuminates why the most effective bootstrap method was double
entry followed by a bootstrap half the size of the double entered sample size (an m <n
bootstrap). When the sample size is inflated, either by using a bootstrap resample that is larger
than the original sample size, or using a sample that is double entered, the bootstrap appears to
lack the necessary variability; as a result, overly narrow confidence intervals are obtained, which
then have Type | error rates that are substantially lower than expected. In DF models it appears
that, although heteroscedasticity and non-independence of errors exists, the primary driver of CI
inaccuracy is the doubling of the sample size with double entry. Although the Type | error rate
was substantially better in the m < n bootstraps, the power was lower. Researchers may be
tempted to use the other methods for the sake of improved power, but that cannot be
recommended here, with the exception of the square-root-of-two correction. Although power
could be increased to virtually one with increasing sample size, nothing can be done to reduce
Type | error rates if the method itself is flawed. This study shows that several methods are
flawed with regards to Type | error rates and only correcting for the sample size can resolve this.
If scientists want credible results they must use methods that provide the advertised Type I error

rate.

Overall the univariate bootstrap lived up to expectations, generally performing identically
to the standard bootstrap. Given that this represents our first full-scale application of the
univariate bootstrap beyond bivariate correlations this finding is encouraging for future research
regarding the application of the univariate bootstrap to more advanced applications. With regards
to DF models specifically, researchers can reasonably use a square root of two correction, or a

sample size corrected bootstrap.
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Appendix A
This appendix includes tables that would be unwieldly in the text. There are two tables presented. The first
(Tables 9-13) show the proportion of confidence intervals (out of 1,000) that correctly included the population
parameter value. Proportions less than .936 or greater than .963 are statistically different from the nominal .95
rate at p < .05. Proportions less than .938 would be considered significantly liberal if doing a 1-tailed test for
liberalism at p < .05 (i.e., if allowing for conservatism but not liberalism in confidence intervals).

The second set of tables (Tables 14-18) show the proportion of confidence intervals (out of 1,000) that excluded
zero at the low end (i.e., the entire CI was positive) when the population value was greater than O for that
parameter.

Table 9: Proportion of Confidence Intervals that captured the true population value. Part A.

Univariate

Univariate DEB 1 Univariate

DEB .5 UGS DEB 1

UGS Bootstrap UGS Standard Standard Population

Bootstrap standard  Bootstrap Adjusted Adjusted Parameter

BCa ClI Cl BCa ClI by root2 byroot2 Value MZns  Distribution parameter
0.949 0.828 0.833 0.948 0.948 0 24 Xz a2
0.952 0.831 0.826 0.957 0.957 0 24 Xz c2
0.959 0.844 0.857 0.948 0.948 0 24 Xz a2
0.966 0.848 0.863 0.955 0.955 0.3 24 Xz c2
0.983 0.881 0.905 0.954 0.954 0 24 Xz a2
0.982 0.893 0.912 0.961 0.961 0.69 24 Xz c2
0.958 0.847 0.847 0.946 0.946 0.3 24 Xz a2
0.949 0.849 0.846 0.939 0.939 0 24 Xz c2
0.974 0.867 0.884 0.953 0.953 0.3 24 Xz a2
0.979 0.85 0.87 0.944 0.944 0.3 24 Xz c2
0.969 0.87 0.885 0.956 0.956 0.69 24 Xz a2
0.967 0.847 0.868 0.935 0.935 0 24 Xz c2
0.962 0.854 0.862 0.965 0.965 0 249 Xz a2
0.957 0.857 0.861 0.96 0.96 0 249 Xz c2
0.969 0.839 0.846 0.952 0.952 0 249 Xz a2
0.964 0.847 0.846 0.943 0.943 0.3 249 Xz c2
0.987 0.936 0.936 0.96 0.96 0 249 Xz a2
0.988 0.926 0.931 0.965 0.965 0.69 249 Xz c2
0.941 0.839 0.839 0.926 0.926 0.3 249 Xz a2
0.941 0.824 0.826 0.927 0.927 0 249 Xz c2
0.981 0.906 0.902 0.951 0.951 0.3 249 Xz a2
0.969 0.892 0.89 0.938 0.938 0.3 249 x? c2
0.996 0.96 0.965 0.989 0.989 0.3 249 Xz a2
0.997 0.956 0.958 0.954 0.954 0.69 249 x? c2

0.97 0.901 0.898 0.952 0.952 0.69 249 Xz a2

0.968 0.871 0.875 0.93 0.93 0 249 x? c2
0.989 0.933 0.931 0.958 0.958 0.69 249 Xz a2
0.989 0.932 0.935 0.915 0.915 0.3 249 x? c2
0.955 0.853 0.848 0.951 0.951 0 16 Xz a2
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0.958
0.971

0.96
0.989
0.985

0.96
0.955
0.976
0.972
0.981
0.976
0.953
0.944
0.968
0.957
0.992
0.993
0.952
0.947
0.976

0.97
0.997
0.996
0.987
0.974
0.993

0.99
0.949
0.952
0.959
0.966
0.983
0.982
0.958
0.949
0.974
0.979
0.996
0.994
0.969
0.967
0.976
0.975
0.962
0.957
0.969

0.837
0.857
0.825
0.911
0.909
0.823
0.832
0.888
0.873
0.876
0.861

0.84

0.84
0.857

0.86
0.918

0.93
0.835
0.822

0.89
0.885
0.966
0.958
0.896
0.881
0.924
0.924
0.828
0.831
0.844
0.848
0.881
0.893
0.847
0.849
0.867

0.85
0.953
0.947

0.87
0.847
0.895
0.888
0.854
0.857
0.839

0.831
0.868
0.846

0.93

0.93
0.839
0.841
0.889
0.881
0.896
0.868
0.835
0.841
0.861
0.865
0.921
0.932

0.84
0.822
0.887
0.887
0.969
0.956
0.901
0.879

0.93
0.925
0.833
0.826
0.857
0.863
0.905
0.912
0.847
0.846
0.884

0.87
0.967
0.963
0.885
0.868
0.911
0.908
0.862
0.861
0.846

0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96
0.975
0.954
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963
0.948
0.957
0.948
0.955
0.954
0.961
0.946
0.939
0.953
0.944
0.992

0.97
0.956
0.935
0.961
0.908
0.965

0.96
0.952

0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96
0.975
0.954
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963
0.948
0.957
0.948
0.955
0.954
0.961
0.946
0.939
0.953
0.944
0.992

0.97
0.956
0.935
0.961
0.908
0.965

0.96
0.952

29

0.3

0.69
0.3

0.3
0.3
0.69

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
249
249
249

2
X10

2
X10

2
X10

2
X10

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.964
0.987
0.988
0.941
0.941
0.981
0.969
0.996
0.997

0.97
0.968
0.989
0.989
0.955
0.958
0.971

0.96
0.989
0.985

0.96
0.955
0.976
0.972
0.997
0.995
0.981
0.976
0.988
0.985
0.953
0.944
0.968
0.957
0.992
0.993
0.952
0.947
0.976

0.97
0.997
0.996
0.987
0.974
0.993

0.99
0.949

0.847
0.936
0.926
0.839
0.824
0.906
0.892

0.96
0.956
0.901
0.871
0.933
0.932
0.853
0.837
0.857
0.825
0.911
0.909
0.823
0.832
0.888
0.873
0.965
0.955
0.876
0.861
0.916
0.903

0.84

0.84
0.857

0.86
0.918

0.93
0.835
0.822

0.89
0.885
0.966
0.958
0.896
0.881
0.924
0.924
0.828

0.846
0.936
0.931
0.839
0.826
0.902

0.89
0.965
0.958
0.898
0.875
0.931
0.935
0.848
0.831
0.868
0.846

0.93

0.93
0.839
0.841
0.889
0.881
0.971

0.96
0.896
0.868
0.927

0.92
0.835
0.841
0.861
0.865
0.921
0.932

0.84
0.822
0.887
0.887
0.969
0.956
0.901
0.879

0.93
0.925
0.833

0.943

0.96
0.965
0.926
0.927
0.951
0.938
0.989
0.954
0.952

0.93
0.958
0.915
0.951
0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96

0.99
0.975
0.954
0.994
0.969
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963
0.948

0.943

0.96
0.965
0.926
0.927
0.951
0.938
0.989
0.954
0.952

0.93
0.958
0.915
0.951
0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96

0.99
0.975
0.954
0.994
0.969
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963
0.948
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0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69
0.69

0.3
0

249 X%
249 x%
249 X%
249 x%
249 X%
249 x%
249 X%
249 x%
249 X%
249 x%
249 X%
249 x%
249 X%
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
16 X fo
166 X%
166 X%
166 X%
166 X%
166 X%
166 X%
166 X%
166 X%
166 X%
166 x%
166 X%
166 x%
166 X%
166 x%
166 X%
166 X%
24 normal

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.952
0.959
0.966
0.983
0.982
0.958
0.949
0.974
0.979
0.996
0.994
0.969
0.967
0.976
0.975
0.962
0.957
0.969
0.964
0.987
0.988
0.941
0.941
0.981
0.969
0.996
0.997

0.97
0.968
0.989
0.989
0.955
0.958
0.971

0.96
0.989
0.985

0.96
0.955
0.976
0.972
0.997
0.995
0.981
0.976
0.988

0.831
0.844
0.848
0.881
0.893
0.847
0.849
0.867

0.85
0.953
0.947

0.87
0.847
0.895
0.888
0.854
0.857
0.839
0.847
0.936
0.926
0.839
0.824
0.906
0.892

0.96
0.956
0.901
0.871
0.933
0.932
0.853
0.837
0.857
0.825
0.911
0.909
0.823
0.832
0.888
0.873
0.965
0.955
0.876
0.861
0.916

0.826
0.857
0.863
0.905
0.912
0.847
0.846
0.884

0.87
0.967
0.963
0.885
0.868
0.911
0.908
0.862
0.861
0.846
0.846
0.936
0.931
0.839
0.826
0.902

0.89
0.965
0.958
0.898
0.875
0.931
0.935
0.848
0.831
0.868
0.846

0.93

0.93
0.839
0.841
0.889
0.881
0.971

0.96
0.896
0.868
0.927

0.957
0.948
0.955
0.954
0.961
0.946
0.939
0.953
0.944
0.992

0.97
0.956
0.935
0.961
0.908
0.965

0.96
0.952
0.943

0.96
0.965
0.926
0.927
0.951
0.938
0.989
0.954
0.952

0.93
0.958
0.915
0.951
0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96

0.99
0.975
0.954
0.994

0.957
0.948
0.955
0.954
0.961
0.946
0.939
0.953
0.944
0.992

0.97
0.956
0.935
0.961
0.908
0.965

0.96
0.952
0.943

0.96
0.965
0.926
0.927
0.951
0.938
0.989
0.954
0.952

0.93
0.958
0.915
0.951
0.956
0.957
0.948
0.978
0.975
0.958
0.952
0.968

0.96

0.99
0.975
0.954
0.994
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0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.985
0.953
0.944
0.968
0.957
0.992
0.993
0.952
0.947
0.976

0.97
0.997
0.996
0.987
0.974
0.993

0.99

0.903
0.84
0.84

0.857
0.86

0.918
0.93

0.835

0.822
0.89

0.885

0.966

0.958

0.896

0.881

0.924

0.924

0.92
0.835
0.841
0.861
0.865
0.921
0.932

0.84
0.822
0.887
0.887
0.969
0.956
0.901
0.879

0.93
0.925

0.969
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963

0.969
0.955
0.947
0.937

0.94
0.962
0.962

0.94

0.94
0.954
0.945
0.999
0.991
0.966
0.951
0.997
0.963
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0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

16
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2



Table 10: Proportion of Confidence Intervals that captured the true population value. Part B.

Univariate Univariate Univariate

DEB .5 Univariate DEB 1 Univariate DEB .5

WGS DEB .5 WGS DEB 1 UGS

Bootstrap WGS Bootstrap WGS Bootstrap  Population

standard  Bootstrap standard  Bootstrap  standard Parameter MZ

Cl BCaCl Cl BCaCl Cl Value ns Distribution parameter
0.955 0.941 0.825 0.818 0.959 0 24 Xz a2
0.955 0.939 0.825 0.818 0.953 0 24 x? c2
0.957 0.95 0.842 0.834 0.954 0 24 Xz a2
0.963 0.954 0.85 0.849 0.964 0.3 24 x? c2
0.971 0.968 0.869 0.863 0.982 0 24 Xz a2
0.971 0.967 0.881 0.881 0.977 0.69 24 x? c2
0.954 0.944 0.841 0.844 0.96 0.3 24 Xz a2
0.945 0.943 0.848 0.844 0.946 0 24 x? c2
0.974 0.958 0.851 0.846 0.975 0.3 24 Xz a2
0.975 0.97 0.853 0.849 0.971 0.3 24 x? c2
0.966 0.961 0.862 0.861 0.97 0.69 24 Xz a2
0.958 0.953 0.848 0.843 0.964 0 24 x? c2

0.96 0.96 0.85 0.86 0.962 0 249 Xz a2
0.963 0.959 0.856 0.86 0.961 0 249 x? c2
0.967 0.966 0.841 0.836 0.97 0 249 Xz a2
0.963 0.965 0.845 0.845 0.961 0.3 249 x? c2
0.984 0.984 0.925 0.928 0.987 0 249 Xz a2
0.989 0.99 0.92 0.926 0.989 0.69 249 x? c2
0.942 0.94 0.843 0.841 0.943 0.3 249 Xz a2
0.944 0.942 0.829 0.826 0.938 0 249 Xz c2
0.976 0.981 0.901 0.9 0.978 0.3 249 Xz a2
0.968 0.966 0.888 0.886 0.966 0.3 249 Xz c2
0.996 0.996 0.959 0.962 0.996 0.3 249 Xz a2
0.996 0.996 0.954 0.96 0.995 0.69 249 Xz c2
0.971 0.968 0.894 0.897 0.967 0.69 249 Xz a2
0.967 0.969 0.868 0.865 0.965 0 249 Xz c2
0.986 0.986 0.933 0.927 0.99 0.69 249 Xz a2
0.985 0.986 0.93 0.928 0.988 0.3 249 Xz c2
0.955 0.952 0.85 0.849 0.953 0 16 Xz a2
0.959 0.95 0.843 0.834 0.955 0 16 Xz c2
0.97 0.966 0.852 0.853 0.971 0 16 Xz a2

0.962 0.958 0.836 0.83 0.959 0.3 16 Xz c2
0.988 0.983 0.895 0.889 0.99 0 16 Xz a2
0.987 0.983 0.905 0.909 0.989 0.69 16 Xz c2
0.963 0.948 0.823 0.823 0.963 0.3 16 Xz a2
0.958 0.952 0.836 0.837 0.958 0 16 Xz c2
0.971 0.965 0.871 0.871 0.974 0.3 16 Xz a2
0.971 0.963 0.863 0.862 0.976 0.3 16 Xz c2
0.967 0.968 0.866 0.865 0.979 0.69 16 Xz a2
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0.963
0.953
0.948
0.961
0.958
0.988

0.99
0.948
0.942
0.975
0.972
0.995
0.995
0.983
0.973
0.988
0.988
0.955
0.955
0.957
0.963
0.971
0.971
0.954
0.945
0.974
0.975
0.991
0.988
0.966
0.958
0.972
0.973

0.96
0.963
0.967
0.963
0.984
0.989
0.942
0.944
0.976
0.968
0.996
0.996
0.971

0.963
0.948
0.945
0.962
0.959
0.989
0.992
0.948
0.947
0.971
0.972
0.996
0.996
0.981
0.974
0.987
0.986
0.941
0.939

0.95
0.954
0.968
0.967
0.944
0.943
0.958

0.97
0.994
0.993
0.961
0.953
0.971

0.97

0.96
0.959
0.966
0.965
0.984

0.99

0.94
0.942
0.981
0.966
0.996
0.996
0.968

0.849
0.834
0.838
0.856
0.854
0.919
0.926
0.844

0.82
0.887

0.89
0.965
0.955
0.895
0.882
0.929
0.928
0.825
0.825
0.842

0.85
0.869
0.881
0.841
0.848
0.851
0.853
0.945
0.938
0.862
0.848
0.886
0.883

0.85
0.856
0.841
0.845
0.925

0.92
0.843
0.829
0.901
0.888
0.959
0.954
0.894

0.855
0.831
0.841
0.863
0.86
0.926
0.923
0.846
0.816
0.881
0.886
0.968
0.96
0.896
0.878
0.929
0.925
0.818
0.818
0.834
0.849
0.863
0.881
0.844
0.844
0.846
0.849
0.952
0.942
0.861
0.843
0.891
0.885
0.86
0.86
0.836
0.845
0.928
0.926
0.841
0.826
0.9
0.886
0.962
0.96
0.897
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0.973
0.954
0.948
0.968
0.961

0.99
0.994

0.95
0.943
0.975
0.971
0.997
0.997
0.983
0.973
0.989

0.99
0.959
0.953
0.954
0.964
0.982
0.977

0.96
0.946
0.975
0.971
0.991

0.99

0.97
0.964
0.978
0.976
0.962
0.961

0.97
0.961
0.987
0.989
0.943
0.938
0.978
0.966
0.996
0.995
0.967

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
249
249
249
249
249
249
249
249
249
249
249
249
249

2
X10

2
X10

2
X10

2
X10

2
X10

2
X10

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.967
0.986
0.985
0.955
0.959

0.97
0.962
0.988
0.987
0.963
0.958
0.971
0.971
0.994

0.99
0.967
0.963
0.989

0.98
0.953
0.948
0.961
0.958
0.988

0.99
0.948
0.942
0.975
0.972
0.995
0.995
0.983
0.973
0.988
0.988
0.955
0.955
0.957
0.963
0.971
0.971
0.954
0.945
0.974
0.975
0.991

0.969
0.986
0.986
0.952

0.95
0.966
0.958
0.983
0.983
0.948
0.952
0.965
0.963
0.993
0.989
0.968
0.963
0.987
0.983
0.948
0.945
0.962
0.959
0.989
0.992
0.948
0.947
0.971
0.972
0.996
0.996
0.981
0.974
0.987
0.986
0.941
0.939

0.95
0.954
0.968
0.967
0.944
0.943
0.958

0.97
0.994

0.868
0.933

0.93

0.85
0.843
0.852
0.836
0.895
0.905
0.823
0.836
0.871
0.863
0.962
0.943
0.866
0.849
0.911
0.906
0.834
0.838
0.856
0.854
0.919
0.926
0.844

0.82
0.887

0.89
0.965
0.955
0.895
0.882
0.929
0.928
0.825
0.825
0.842

0.85
0.869
0.881
0.841
0.848
0.851
0.853
0.945

0.865
0.927
0.928
0.849
0.834
0.853

0.83
0.889
0.909
0.823
0.837
0.871
0.862
0.963
0.949
0.865
0.855
0.914
0.915
0.831
0.841
0.863

0.86
0.926
0.923
0.846
0.816
0.881
0.886
0.968

0.96
0.896
0.878
0.929
0.925
0.818
0.818
0.834
0.849
0.863
0.881
0.844
0.844
0.846
0.849
0.952
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0.965

0.99
0.988
0.953
0.955
0.971
0.959

0.99
0.989
0.963
0.958
0.974
0.976
0.996
0.993
0.979
0.973
0.984
0.982
0.954
0.948
0.968
0.961

0.99
0.994

0.95
0.943
0.975
0.971
0.997
0.997
0.983
0.973
0.989

0.99
0.959
0.953
0.954
0.964
0.982
0.977

0.96
0.946
0.975
0.971
0.991

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3

249
249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
24

Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

normal

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.988
0.966
0.958
0.972
0.973

0.96
0.963
0.967
0.963
0.984
0.989
0.942
0.944
0.976
0.968
0.996
0.996
0.971
0.967
0.986
0.985
0.955
0.959

0.97
0.962
0.988
0.987
0.963
0.958
0.971
0.971
0.994

0.99
0.967
0.963
0.989

0.98
0.953
0.948
0.961
0.958
0.988

0.99
0.948
0.942
0.975

0.993
0.961
0.953
0.971

0.97

0.96
0.959
0.966
0.965
0.984

0.99

0.94
0.942
0.981
0.966
0.996
0.996
0.968
0.969
0.986
0.986
0.952

0.95
0.966
0.958
0.983
0.983
0.948
0.952
0.965
0.963
0.993
0.989
0.968
0.963
0.987
0.983
0.948
0.945
0.962
0.959
0.989
0.992
0.948
0.947
0.971

0.938
0.862
0.848
0.886
0.883

0.85
0.856
0.841
0.845
0.925

0.92
0.843
0.829
0.901
0.888
0.959
0.954
0.894
0.868
0.933

0.93

0.85
0.843
0.852
0.836
0.895
0.905
0.823
0.836
0.871
0.863
0.962
0.943
0.866
0.849
0.911
0.906
0.834
0.838
0.856
0.854
0.919
0.926
0.844

0.82
0.887

0.942
0.861
0.843
0.891
0.885
0.86
0.86
0.836
0.845
0.928
0.926
0.841
0.826
0.9
0.886
0.962
0.96
0.897
0.865
0.927
0.928
0.849
0.834
0.853
0.83
0.889
0.909
0.823
0.837
0.871
0.862
0.963
0.949
0.865
0.855
0.914
0.915
0.831
0.841
0.863
0.86
0.926
0.923
0.846
0.816
0.881
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0.99

0.97
0.964
0.978
0.976
0.962
0.961

0.97
0.961
0.987
0.989
0.943
0.938
0.978
0.966
0.996
0.995
0.967
0.965

0.99
0.988
0.953
0.955
0.971
0.959

0.99
0.989
0.963
0.958
0.974
0.976
0.996
0.993
0.979
0.973
0.984
0.982
0.954
0.948
0.968
0.961

0.99
0.994

0.95
0.943
0.975

0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3

24
24
24
24
24
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2



0.972
0.995
0.995
0.983
0.973
0.988
0.988

0.972
0.996
0.996
0.981
0.974
0.987
0.986

0.89
0.965
0.955
0.895
0.882
0.929
0.928

0.886
0.968

0.96
0.896
0.878
0.929
0.925
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0.971
0.997
0.997
0.983
0.973
0.989

0.99

0.3
0.3
0.69
0.69

0.69
0.3

166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal

c2
a2
c2
a2
c2
a2
c2



Table 11: Proportion of Confidence Intervals that captured the true population value. Part C.
Univariate Standard Standard

DEA DEB .5 Standard DEB1 Standard

UGS Bootstrap DEB .5 Bootstrap DEB 1 Population

Bootstrap standard  Bootstrap standard  Bootstrap Parameter

BCa ClI Cl BCa ClI Cl BCaCl  Value MZns Distribution parameter
0.932 0.942 0.931 0.787 0.774 0 24 X2 a2
0.939 0.928 0.919 0.781 0.769 0 24 Xz c2
0.929 0.958 0.938 0.836 0.822 0 24 X2 a2
0.938 0.956 0.947 0.834 0.82 0.3 24 Xz c2
0.863 0.978 0.968 0.895 0.889 0 24 X2 a2
0.886 0.981 0.969 0.902 0.894 0.69 24 Xz c2
0.925 0.949 0.937 0.827 0.819 0.3 24 X2 a2
0.935 0.939 0.924 0.81 0.805 0 24 Xz c2
0.913 0.971 0.955 0.85 0.84 0.3 24 X2 a2
0.938 0.974 0.96 0.843 0.832 0.3 24 Xz c2
0.914 0.971 0.954 0.863 0.858 0.69 24 X2 a2
0.937 0.954 0.943 0.823 0.819 0 24 Xz c2
0.959 0.966 0.963 0.848 0.845 0 249 X2 a2
0.956 0.958 0.958 0.853 0.846 0 249 Xz c2
0.944 0.966 0.963 0.851 0.857 0 249 X2 a2
0.941 0.966 0.966 0.849 0.853 0.3 249 Xz c2
0.909 0.983 0.982 0.919 0.92 0 249 X2 a2
0.904 0.987 0.988 0.924 0.92 0.69 249 Xz c2
0.922 0.943 0.941 0.838 0.839 0.3 249 X2 a2
0.936 0.937 0.938 0.829 0.834 0 249 Xz c2
0.931 0.976 0.977 0.895 0.895 0.3 249 Xz a2

0.93 0.967 0.966 0.884 0.883 0.3 249 Xz c2
0.877 0.996 0.996 0.962 0.965 0.3 249 Xz a2
0.877 0.994 0.995 0.962 0.964 0.69 249 Xz c2
0.937 0.972 0.97 0.901 0.893 0.69 249 Xz a2
0.94 0.969 0.967 0.874 0.863 0 249 Xz c2

0.928 0.986 0.986 0.928 0.928 0.69 249 Xz a2
0.928 0.985 0.985 0.927 0.927 0.3 249 Xz c2
0.937 0.944 0.933 0.805 0.801 0 16 Xz a2
0.936 0.949 0.932 0.804 0.79 0 16 Xz c2
0.935 0.961 0.947 0.835 0.817 0 16 Xz a2
0.929 0.948 0.935 0.828 0.823 0.3 16 Xz c2
0.901 0.996 0.985 0.91 0.898 0 16 x? a2
0.906 0.991 0.985 0.912 0.907 0.69 16 Xz c2
0.928 0.954 0.94 0.814 0.806 0.3 16 x? a2
0.935 0.945 0.939 0.831 0.817 0 16 Xz c2
0.892 0.977 0.963 0.883 0.875 0.3 16 x? a2
0.912 0.971 0.963 0.854 0.846 0.3 16 Xz c2
0.905 0.977 0.968 0.88 0.869 0.69 16 x? a2
0.923 0.969 0.963 0.862 0.843 0 16 Xz c2
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0.946
0.942
0.93
0.93
0.9
0.903
0.934
0.925
0.912
0.92
0.881
0.884
0.916
0.932
0.915
0.925
0.932
0.939
0.929
0.938
0.863
0.886
0.925
0.935
0.913
0.938
0.889
0.893
0.914
0.937
0.923
0.926
0.959
0.956
0.944
0.941
0.909
0.904
0.922
0.936
0.931
0.93
0.877
0.877
0.937
0.94

0.945
0.941
0.964
0.959
0.993
0.992
0.953
0.947
0.973
0.972
0.997
0.996
0.981
0.975
0.985

0.98
0.942
0.928
0.958
0.956
0.978
0.981
0.949
0.939
0.971
0.974
0.991

0.99
0.971
0.954
0.977
0.973
0.966
0.958
0.966
0.966
0.983
0.987
0.943
0.937
0.976
0.967
0.996
0.994
0.972
0.969

0.945
0.941
0.961
0.964

0.99
0.989
0.951
0.944
0.969
0.971
0.996
0.995

0.98
0.969
0.984
0.981
0.931
0.919
0.938
0.947
0.968
0.969
0.937
0.924
0.955

0.96
0.992
0.991
0.954
0.943
0.972
0.971
0.963
0.958
0.963
0.966
0.982
0.988
0.941
0.938
0.977
0.966
0.996
0.995

0.97
0.967

0.823

0.84
0.867
0.859
0.911
0.923
0.853
0.832
0.885
0.888
0.969
0.961
0.892
0.875
0.919
0.917
0.787
0.781
0.836
0.834
0.895
0.902
0.827

0.81

0.85
0.843
0.958
0.956
0.863
0.823
0.894
0.887
0.848
0.853
0.851
0.849
0.919
0.924
0.838
0.829
0.895
0.884
0.962
0.962
0.901
0.874

0.826
0.836

0.86
0.855
0.916
0.922
0.852
0.826
0.877
0.886

0.97
0.965
0.893
0.875
0.919
0.914
0.774
0.769
0.822

0.82
0.889
0.894
0.819
0.805

0.84
0.832
0.958
0.956
0.858
0.819
0.891
0.893
0.845
0.846
0.857
0.853

0.92

0.92
0.839
0.834
0.895
0.883
0.965
0.964
0.893
0.863

39

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
249
249
249
249
249
249
249
249
249
249
249
249
249
249

2
X10

2
X10

2
X10

2
X10

2
X10

2
X10

a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2



0.928
0.928
0.937
0.936
0.935
0.929
0.901
0.906
0.928
0.935
0.892
0.912
0.886
0.882
0.905
0.923
0.932
0.935
0.946
0.942
0.93
0.93
0.9
0.903
0.934
0.925
0.912
0.92
0.881
0.884
0.916
0.932
0.915
0.925
0.932
0.939
0.929
0.938
0.863
0.886
0.925
0.935
0.913
0.938
0.889
0.893

0.986
0.985
0.944
0.949
0.961
0.948
0.996
0.991
0.954
0.945
0.977
0.971
0.998
0.996
0.977
0.969
0.987
0.985
0.945
0.941
0.964
0.959
0.993
0.992
0.953
0.947
0.973
0.972
0.997
0.996
0.981
0.975
0.985

0.98
0.942
0.928
0.958
0.956
0.978
0.981
0.949
0.939
0.971
0.974
0.991

0.99

0.986
0.985
0.933
0.932
0.947
0.935
0.985
0.985

0.94
0.939
0.963
0.963
0.995
0.994
0.968
0.963
0.984
0.982
0.945
0.941
0.961
0.964

0.99
0.989
0.951
0.944
0.969
0.971
0.996
0.995

0.98
0.969
0.984
0.981
0.931
0.919
0.938
0.947
0.968
0.969
0.937
0.924
0.955

0.96
0.992
0.991

0.928
0.927
0.805
0.804
0.835
0.828

0.91
0.912
0.814
0.831
0.883
0.854
0.964
0.954

0.88
0.862
0.928
0.915
0.823

0.84
0.867
0.859
0.911
0.923
0.853
0.832
0.885
0.888
0.969
0.961
0.892
0.875
0.919
0.917
0.787
0.781
0.836
0.834
0.895
0.902
0.827

0.81

0.85
0.843
0.958
0.956

0.928
0.927
0.801

0.79
0.817
0.823
0.898
0.907
0.806
0.817
0.875
0.846
0.969
0.955
0.869
0.843
0.923
0.921
0.826
0.836

0.86
0.855
0.916
0.922
0.852
0.826
0.877
0.886

0.97
0.965
0.893
0.875
0.919
0.914
0.774
0.769
0.822

0.82
0.889
0.894
0.819
0.805

0.84
0.832
0.958
0.956

40

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69

249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
24
24

)(%o
)(fo
)(%o
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
)(fo
Xfo
Xfo
Xfo
Xfo
Xfo
Xfo
Xfo
Xfo
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

normal

a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2



0.914
0.937
0.923
0.926
0.959
0.956
0.944
0.941
0.909
0.904
0.922
0.936
0.931
0.93
0.877
0.877
0.937
0.94
0.928
0.928
0.937
0.936
0.935
0.929
0.901
0.906
0.928
0.935
0.892
0.912
0.886
0.882
0.905
0.923
0.932
0.935
0.946
0.942
0.93
0.93
0.9
0.903
0.934
0.925
0.912
0.92

0.971
0.954
0.977
0.973
0.966
0.958
0.966
0.966
0.983
0.987
0.943
0.937
0.976
0.967
0.996
0.994
0.972
0.969
0.986
0.985
0.944
0.949
0.961
0.948
0.996
0.991
0.954
0.945
0.977
0.971
0.998
0.996
0.977
0.969
0.987
0.985
0.945
0.941
0.964
0.959
0.993
0.992
0.953
0.947
0.973
0.972

0.954
0.943
0.972
0.971
0.963
0.958
0.963
0.966
0.982
0.988
0.941
0.938
0.977
0.966
0.996
0.995

0.97
0.967
0.986
0.985
0.933
0.932
0.947
0.935
0.985
0.985

0.94
0.939
0.963
0.963
0.995
0.994
0.968
0.963
0.984
0.982
0.945
0.941
0.961
0.964

0.99
0.989
0.951
0.944
0.969
0.971

0.863
0.823
0.894
0.887
0.848
0.853
0.851
0.849
0.919
0.924
0.838
0.829
0.895
0.884
0.962
0.962
0.901
0.874
0.928
0.927
0.805
0.804
0.835
0.828

0.91
0.912
0.814
0.831
0.883
0.854
0.964
0.954

0.88
0.862
0.928
0.915
0.823

0.84
0.867
0.859
0.911
0.923
0.853
0.832
0.885
0.888

0.858
0.819
0.891
0.893
0.845
0.846
0.857
0.853

0.92

0.92
0.839
0.834
0.895
0.883
0.965
0.964
0.893
0.863
0.928
0.927
0.801

0.79
0.817
0.823
0.898
0.907
0.806
0.817
0.875
0.846
0.969
0.955
0.869
0.843
0.923
0.921
0.826
0.836

0.86
0.855
0.916
0.922
0.852
0.826
0.877
0.886

41

0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3

24
24
24
24
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2



0.881
0.884
0.916
0.932
0.915
0.925

0.997
0.996
0.981
0.975
0.985

0.98

0.996
0.995

0.98
0.969
0.984
0.981

0.969
0.961
0.892
0.875
0.919
0.917

0.97
0.965
0.893
0.875
0.919
0.914
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0.3
0.69
0.69

0.69
0.3

166
166
166
166
166
166

normal
normal
normal
normal
normal
normal

a2
c2
a2
c2
a2
c2



Table 12: Proportion of Confidence Intervals that captured the true population value. Part D.

Univariate Univariate
Standard DEA Univariate DEA
DEA Standard WGS DEA UGS
Bootstrap DEA Bootstrap WGS Bootstrap  Population
standard  Bootstrap standard  Bootstrap standard ~ Parameter
Cl BCa ClI Cl BCa ClI Cl Value MZns  Distribution parameter
0.932 0.918 0.938 0.923 0.941 0 24 Xz a2
0.921 0.904 0.941 0.933 0.941 0 24 X2 c2
0.934 0.922 0.935 0.919 0.936 0 24 Xz a2
0.941 0.928 0.941 0.935 0.944 0.3 24 X2 c2
0.902 0.895 0.87 0.866 0.893 0 24 Xz a2
0.911 0.895 0.871 0.876 0.897 0.69 24 X2 c2
0.921 0.909 0.931 0.917 0.929 0.3 24 Xz a2
0.919 0.913 0.935 0.925 0.933 0 24 X2 c2
0.92 0.905 0.901 0.9 0.906 0.3 24 Xz a2
0.923 0.917 0.915 0.918 0.915 0.3 24 x? c2
0.918 0.902 0.918 0.909 0.913 0.69 24 Xz a2
0.918 0.913 0.924 0.922 0.925 0 24 x? c2
0.961 0.96 0.963 0.962 0.959 0 249 Xz a2
0.954 0.953 0.96 0.955 0.959 0 249 x? c2
0.958 0.956 0.938 0.937 0.939 0 249 Xz a2
0.95 0.951 0.935 0.938 0.937 0.3 249 x? c2
0.937 0.933 0.903 0.908 0.915 0 249 Xz a2
0.94 0.939 0.905 0.907 0.904 0.69 249 x? c2
0.938 0.935 0.919 0.92 0.917 0.3 249 Xz a2
0.931 0.931 0.925 0.929 0.926 0 249 Xz c2
0.954 0.948 0.93 0.927 0.929 0.3 249 Xz a2
0.944 0.946 0.925 0.93 0.931 0.3 249 Xz c2
0.934 0.94 0.862 0.869 0.867 0.3 249 Xz a2
0.929 0.936 0.861 0.872 0.875 0.69 249 Xz c2
0.949 0.947 0.934 0.936 0.934 0.69 249 Xz a2
0.95 0.954 0.933 0.939 0.937 0 249 Xz c2
0.946 0.945 0.926 0.926 0.926 0.69 249 Xz a2
0.947 0.948 0.925 0.925 0.928 0.3 249 Xz c2
0.929 0.914 0.95 0.933 0.944 0 16 Xz a2
0.935 0.923 0.949 0.939 0.944 0 16 Xz c2
0.94 0.927 0.938 0.93 0.938 0 16 Xz a2
0.924 0.908 0.921 0.921 0.934 0.3 16 Xz c2
0.913 0.897 0.895 0.889 0.911 0 16 Xz a2
0.922 0.906 0.904 0.9 0.915 0.69 16 x? c2
0.927 0.913 0.934 0.92 0.936 0.3 16 Xz a2
0.927 0.913 0.938 0.928 0.935 0 16 x? c2
0.926 0.911 0.909 0.91 0.922 0.3 16 Xz a2
0.921 0.908 0.915 0.915 0.929 0.3 16 x? c2
0.925 0.913 0.906 0.909 0.912 0.69 16 Xz a2
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0.935
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0.876
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0.925
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0.918
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0.929
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0.87
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0.913
0.925
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0.934
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0.947
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0.935
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0.913
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0.927
0.927
0.926
0.921
0.918
0.911
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0.932
0.934
0.933
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0.951
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0.939
0.948
0.948
0.935
0.946
0.937
0.939

0.94

0.95
0.942
0.941
0.932
0.921
0.934
0.941
0.902
0.911
0.921
0.919

0.92
0.923
0.923

0.954
0.945
0.948
0.914
0.923
0.927
0.908
0.897
0.906
0.913
0.913
0.911
0.908
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0.916
0.913
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0.936
0.938
0.941
0.936
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0.931
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0.947
0.944
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0.943
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0.944
0.943
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0.943
0.944
0.918
0.904
0.922
0.928
0.895
0.895
0.909
0.913
0.905
0.917
0.923

0.933
0.926
0.925

0.95
0.949
0.938
0.921
0.895
0.904
0.934
0.938
0.909
0.915
0.855

0.86
0.906
0.924
0.908
0.912

0.95
0.948
0.929
0.931
0.903
0.905
0.933
0.932
0.908
0.917
0.861
0.872
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0.931
0.916
0.919
0.938
0.941
0.935
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0.931
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0.915
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0.926
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0.948
0.938
0.929
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0.903
0.931
0.93
0.905
0.92
0.869
0.88
0.915
0.93
0.918
0.927
0.923
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0.919
0.935
0.866
0.876
0.917
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0.9
0.918
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0.926
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0.944
0.944
0.938
0.934
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0.94
0.924
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0.939
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0.913
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0.914
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0.933
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0.94
0.936
0.947
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0.945
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0.914
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0.927
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0.913
0.913
0.911
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0.916
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0.947
0.944
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0.918
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0.897
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0.938
0.935
0.903
0.905
0.919
0.925

0.93
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0.862
0.861
0.934
0.933
0.926
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0.95
0.949
0.938
0.921
0.895
0.904
0.934
0.938
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0.855
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0.912
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0.948
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0.929
0.927
0.93
0.869
0.872
0.936
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0.933
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0.93
0.921
0.889
0.9
0.92
0.928
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0.915
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0.879
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0.926
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0.951
0.948
0.938
0.929
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0.903
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0.926
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0.946
0.937
0.939

0.94

0.95
0.942
0.941

0.943

0.94
0.944
0.943
0.952
0.943
0.944

0.917
0.861
0.872

0.92
0.931
0.916
0.919

0.92
0.869
0.88
0.915
0.93
0.918
0.927

0.92
0.866

0.87
0.919
0.934
0.916
0.922
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Table 13: Proportion of Confidence Intervals that captured the true population value. Part E.

Population
Robust Typical Parameter
Upper ClI  Upper ClI  Value MZns  Distribution parameter

0.906 0.832 0 24 x2 a2
0.894 0.837 0 24 x: c2
0.913 0.835 0 24 x2 a2
0.906 0.843 0.3 24 x: c2
0.901 0.862 0 24 x2 a2
0.893 0.881 0.69 24 x: c2
0.901 0.851 0.3 24 x2 a2
0.889 0.84 0 24 x: c2
0.9 0.839 0.3 24 x2 a2
0.894 0.825 0.3 24 x: c2
0.904 0.858 0.69 24 x2 a2
0.885 0.804 0 24 x: c2
0.961 0.857 0 249 x? a2
0.954 0.859 0 249 x: c2
0.951 0.805 0 249 x? a2
0.954 0.814 0.3 249 x: c2
0.937 0.856 0 249 x? a2
0.941 0.859 0.69 249 x: c2
0.937 0.819 0.3 249 x? a2
0.933 0.812 0 249 x: c2
0.945 0.848 0.3 249 x? a2
0.941 0.823 0.3 249 x: c2
0.926 0.922 0.3 249 x? a2
0.92 0.84 0.69 249 X2 c2
0.951 0.847 0.69 249 x? a2
0.952 0.787 0 249 X2 c2
0.94 0.873 0.69 249 x? a2
0.939 0.76 0.3 249 X2 c2
0.905 0.854 0 16 x? a2
0.916 0.849 0 16 X2 c2
0.899 0.845 0 16 x? a2
0.897 0.826 0.3 16 X2 c2
0.905 0.893 0 16 x? a2
0.923 0.886 0.69 16 X2 c2
0.896 0.83 0.3 16 x? a2
0.906 0.833 0 16 X2 c2
0.912 0.874 0.3 16 x? a2
0.901 0.848 0.3 16 X2 c2
0.906 0.897 0.69 16 x? a2
0.907 0.847 0 16 X2 c2
0.947 0.839 0 166 x? a2
0.94 0.842 0 166 x2 c2
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0.943
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0.847

0.97
0.883
0.839
0.842
0.824
0.812
0.862
0.866
0.818

0.8
0.845
0.831
0.987
0.922

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69
0.69

0.69
0.3

0.3

0.69
0.3

0.3
0.3
0.3
0.69

24
24
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
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a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2
a2
c2



0.942
0.951
0.942

0.94

0.879
0.826
0.964
0.857

0.69

0.69
0.3

166
166
166
166

normal
normal
normal
normal
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a2
c2
a2
c2



Table 14: Power to exclude zero at the lower end of the confidence interval. Part A.

Univariate Univariate
DEB .5 Univariate DEB 1 Univariate
UGS DEB .5 UGS DEB 1
Bootstrap UGS Bootstrap UGS Standard  Population
standard  Bootstrap standard  Bootstrap Adjusted Parameter MZ
Cl BCa ClI Cl BCa ClI byroot2 Value ns Distribution parameter
0.084 0.095 0.241 0.249 0.112 0.3 24 X7 c2
0.452 0.471 0.676 0.705 0.531 0.69 24 x? c2
0.054 0.061 0.192 0.189 0.065 0.3 24 X7 a2
0.067 0.06 0.184 0.178 0.086 0.3 24 x? a2
0.094 0.097 0.25 0.234 0.122 0.3 24 X7 c2
0.221 0.231 0.456 0.453 0.281 0.69 24 x? a2
0.555 0.562 0.747 0.754 0.59 0.3 249 X7 c2
1 1 1 1 1 0.69 249 x? c2
0.361 0.356 0.574 0.575 0.384 0.3 249 X7 a2
0.361 0.356 0.621 0.624 0.508 0.3 249 x? a2
0.549 0.557 0.79 0.796 0.7 0.3 249 X7 c2
1 1 1 1 1 0.3 249 x? a2
1 1 1 1 1 0.69 249 X7 c2
0.982 0.983 0.994 0.994 0.99 0.69 249 x? a2
1 1 1 1 1 0.69 249 X7 a2
0.733 0.74 0.903 0.911 0.918 0.3 249 x? c2
0.084 0.078 0.263 0.243 0.097 0.3 16 X7 c2
0.459 0.439 0.728 0.713 0.549 0.69 16 x? c2
0.071 0.084 0.199 0.204 0.081 0.3 16 X7 a2
0.052 0.061 0.175 0.192 0.062 0.3 16 x? a2
0.093 0.084 0.268 0.246 0.119 0.3 16 X7 c2
0.201 0.245 0.439 0.467 0.215 0.69 16 x? a2
0.588 0.581 0.796 0.794 0.63 0.3 166 X7 c2
1 1 1 1 1 0.69 166 x? c2
0.345 0.349 0.574 0.585 0.368 0.3 166 X7 a2
0.321 0.334 0.593 0.602 0.442 0.3 166 x? a2
0.619 0.623 0.837 0.838 0.739 0.3 166 X7 c2
1 1 1 1 0.999 03 166 X1 a2
1 1 1 1 1 0.69 166 X7 c2
0.97 0.97 0.996 0.997 0.988 0.69 166 x? a2
1 1 1 1 1 0.69 166 X7 a2
0.841 0.838 0.955 0.955 0.923 0.3 166 x? c2
0.084 0.095 0.241 0.249 0.112 0.3 24 Xio c2
0.452 0.471 0.676 0.705 0.531 0.69 24 Xio c2
0.054 0.061 0.192 0.189 0.065 0.3 24 Xio a2
0.067 0.06 0.184 0.178 0.086 0.3 24 Xio a2
0.094 0.097 0.25 0.234 0.122 0.3 24 Xio c2
0.072 0.046 0.325 0.266 0.114 0.3 24 Xio a2
0.725 0.747 0.869 0.889 0.871 0.69 24 Xio c2
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0.221
0.435
0.127
0.555

0.361
0.361
0.549

0.982

0.733
0.084
0.459
0.071
0.052
0.093
0.102
0.825
0.201
0.584
0.117
0.588

0.345
0.321
0.619

0.97

0.841
0.084
0.452
0.054
0.067
0.094
0.072
0.725
0.221
0.435
0.127
0.555

0.361

0.231
0.396
0.131
0.562

0.356
0.356
0.557

0.983

0.74
0.078
0.439
0.084
0.061
0.084
0.088
0.831
0.245
0.604
0.109
0.581

0.349
0.334
0.623

0.97

0.838
0.095
0.471
0.061

0.06
0.097
0.046
0.747
0.231
0.396
0.131
0.562

0.356

0.456
0.826
0.291
0.747

0.574
0.621
0.79

0.994

0.903
0.263
0.728
0.199
0.175
0.268
0.468
0.932
0.439
0.902
0.273
0.796

0.574
0.593
0.837

0.996

0.955
0.241
0.676
0.192
0.184

0.25
0.325
0.869
0.456
0.826
0.291
0.747

0.574

0.453
0.802
0.305
0.754

0.575
0.624
0.796

0.994

0.911
0.243
0.713
0.204
0.192
0.246
0.426
0.942
0.467
0.916
0.285
0.794

0.585
0.602
0.838

0.997

0.955
0.249
0.705
0.189
0.178
0.234
0.266
0.889
0.453
0.802
0.305
0.754

0.575

0.281
0.595
0.272

0.59

0.384
0.508
0.7

0.99

0.918
0.097
0.549
0.081
0.062
0.119
0.025
0.875
0.215
0.349
0.164

0.63

0.368
0.442
0.739
0.999

0.988

0.923
0.112
0.531
0.065
0.086
0.122
0.114
0.871
0.281
0.595
0.272

0.59

0.384
54

0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3

24
24
24
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
249
249
249

X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
)(120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
Xfo
)(120
Xfo
)(120
Xfo
)(120
Xfo
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

normal

a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2



0.361
0.549

0.982

0.733
0.084
0.459
0.071
0.052
0.093
0.102
0.825
0.201
0.584
0.117
0.588

0.345

0.321

0.619

0.97

0.841

0.356
0.557

0.983

0.74
0.078
0.439
0.084
0.061
0.084
0.088
0.831
0.245
0.604
0.109
0.581

0.349

0.334

0.623

0.97

0.838

0.621
0.79

0.994

0.903
0.263
0.728
0.199
0.175
0.268
0.468
0.932
0.439
0.902
0.273
0.796

0.574

0.593

0.837

0.996

0.955

0.624
0.796

0.994

0.911
0.243
0.713
0.204
0.192
0.246
0.426
0.942
0.467
0.916
0.285
0.794

0.585

0.602

0.838

0.997

0.955

0.508
0.7

0.99

0.918
0.097
0.549
0.081
0.062
0.119
0.025
0.875
0.215
0.349
0.164

0.63

0.368
0.442
0.739
0.999
0.988

0.923
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0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3

249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2



Table 15: Power to exclude zero at the lower end of the confidence interval. Part B.

Univariate Univariate
DEB .5 Univariate DEB 1 Univariate
Standard  WGS DEB .5 WGS DEB 1
DEB 1 Bootstrap WGS Bootstrap WGS Population
Bootstrap standard  Bootstrap standard  Bootstrap Parameter MZ
BCa ClI Cl BCa ClI Cl BCa ClI Value ns Distribution parameter
0.263 0.089 0.1 0.255 0.261 0.3 24 X7 c2
0.717 0.488 0.493 0.709 0.712 0.69 24 x? c2
0.222 0.057 0.064 0.191 0.202 0.3 24 X7 a2
0.203 0.071 0.082 0.185 0.194 0.3 24 x? a2
0.272 0.107 0.107 0.259 0.262 0.3 24 X7 c2
0.481 0.226 0.264 0.474 0.486 0.69 24 x? a2
0.744 0.554 0.558 0.762 0.758 0.3 249 X7 c2
1 1 1 1 1 0.69 249 x? c2
0.563 0.359 0.362 0.572 0.578 0.3 249 X7 a2
0.644 0.369 0.369 0.634 0.633 0.3 249 x? a2
0.793 0.558 0.555 0.798 0.793 0.3 249 X7 c2
1 1 1 1 1 0.3 249 x? a2
1 1 1 1 1 0.69 249 X7 c2
0.996 0.982 0.982 0.995 0.994 0.69 249 x? a2
1 1 1 1 1 0.69 249 X7 a2
0.906 0.758 0.754 0.911 0.914 0.3 249 x? c2
0.291 0.084 0.095 0.269 0.278 0.3 16 X7 c2
0.724 0.486 0.49 0.746 0.738 0.69 16 X c2
0.238 0.069 0.084 0.207 0.223 0.3 16 X7 a2
0.213 0.064 0.076 0.188 0.198 0.3 16 x? a2
0.283 0.096 0.103 0.288 0.285 0.3 16 X7 c2
0.486 0.23 0.264 0.462 0.48 0.69 16 x? a2
0.787 0.594 0.595 0.789 0.79 0.3 166 X7 c2
1 1 1 1 1 0.69 166 x? c2
0.563 0.356 0.353 0.581 0.585 0.3 166 X7 a2
0.628 0.343 0.346 0.613 0.616 0.3 166 x? a2
0.842 0.629 0.629 0.838 0.839 0.3 166 X7 c2
1 0.999 1 1 1 0.3 166 x? a2
1 1 1 1 1 0.69 166 X7 c2
0.997 0.978 0.981 0.997 0.997 0.69 166 x? a2
1 1 1 1 1 0.69 166 X7 a2
0.956 0.853 0.846 0.959 0.957 0.3 166 x? c2
0.263 0.089 0.1 0.255 0.261 0.3 24 Xio c2
0.717 0.488 0.493 0.709 0.712 0.69 24 Xio c2
0.222 0.057 0.064 0.191 0.202 0.3 24 Xio a2
0.203 0.071 0.082 0.185 0.194 03 24 Xio a2
0.272 0.107 0.107 0.259 0.262 0.3 24 Xio c2
0.376 0.078 0.076 0.38 0.37 0.3 24 Xio a2
0.887 0.759 0.75 0.895 0.9 0.69 24 Xio c2
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0.481
0.851
0.325
0.744

0.563
0.644
0.793

0.996

0.906
0.291
0.724
0.238
0.213
0.283
0.491
0.932
0.486
0.931
0.293
0.787

0.563
0.628
0.842

0.997

0.956
0.263
0.717
0.222
0.203
0.272
0.376
0.887
0.481
0.851
0.325
0.744

0.563

0.226
0.508
0.142
0.554

0.359
0.369
0.558

0.982

0.758
0.084
0.486
0.069
0.064
0.096
0.118
0.839

0.23

0.61
0.132
0.594

0.356
0.343
0.629
0.999

0.978

0.853
0.089
0.488
0.057
0.071
0.107
0.078
0.759
0.226
0.508
0.142
0.554

0.359

0.264
0.524
0.131
0.558

0.362
0.369
0.555

0.982

0.754
0.095

0.49
0.084
0.076
0.103
0.121
0.842
0.264
0.668
0.113
0.595

0.353
0.346
0.629

0.981

0.846
0.1
0.493
0.064
0.082
0.107
0.076
0.75
0.264
0.524
0.131
0.558

0.362

0.474
0.841
0.332
0.762

0.572
0.634
0.798

0.995

0.911
0.269
0.746
0.207
0.188
0.288
0.492
0.939
0.462
0.917
0.315
0.789

0.581
0.613
0.838

0.997

0.959
0.255
0.709
0.191
0.185
0.259

0.38
0.895
0.474
0.841
0.332
0.762

0.572

0.486
0.854
0.315
0.758

0.578
0.633
0.793

0.994

0.914
0.278
0.738
0.223
0.198
0.285
0.486
0.945

0.48

0.93
0.289

0.79

0.585
0.616
0.839

0.997

0.957
0.261
0.712
0.202
0.194
0.262
0.37
0.9
0.486
0.854
0.315
0.758

0.578
57

0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3

24
24
24
249
249
249
249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166
24
24
24
24
24
24
24
24
24
24
249
249
249

X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
)(120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
Xfo
)(120
Xfo
)(120
Xfo
)(120
Xfo
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

normal

a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2



0.644
0.793

0.996

0.906
0.291
0.724
0.238
0.213
0.283
0.491
0.932
0.486
0.931
0.293
0.787

0.563

0.628

0.842

0.997

0.956

0.369
0.558

0.982

0.758
0.084
0.486
0.069
0.064
0.096
0.118
0.839

0.23

0.61
0.132
0.594

0.356
0.343
0.629
0.999
0.978

0.853

0.369
0.555

0.982

0.754
0.095

0.49
0.084
0.076
0.103
0.121
0.842
0.264
0.668
0.113
0.595

0.353

0.346

0.629

0.981

0.846

0.634
0.798

0.995

0.911
0.269
0.746
0.207
0.188
0.288
0.492
0.939
0.462
0.917
0.315
0.789

0.581

0.613

0.838

0.997

0.959

0.633
0.793

0.994

0.914
0.278
0.738
0.223
0.198
0.285
0.486
0.945

0.48

0.93
0.289

0.79

0.585

0.616

0.839

0.997

0.957
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0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3
0.3
0.69
0.3
0.3
0.3
0.3
0.69
0.69
0.69
0.3

249
249
249
249
249
249
249
16
16
16
16
16
16
16
16
16
16
166
166
166
166
166
166
166
166
166
166

normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2
c2
c2
a2
a2
c2
a2
c2
a2
a2
c2



Table 16: Power to exclude zero at the lower end of the confidence interval. Part C.

Univariate
DEA Univariate Standard Standard
UGS DEA DEB .5 Standard DEB1
Bootstrap UGS Bootstrap DEB .5 Bootstrap  Population
standard  Bootstrap standard  Bootstrap standard  Parameter MZ
Cl BCaCl Cl BCaCl Cl Value ns Distribution parameter
0.126 0.118 0.094 0.114 0.261 0.3 24 x? c2
0.594 0.562 0.486 0.49 0.707 0.69 24 x? c2
0.084 0.09 0.07 0.075 0.204 0.3 24 x? a2
0.133 0.153 0.062 0.082 0.194 0.3 24 x? a2
0.15 0.13 0.111 0.124 0.264 0.3 24 x? c2
0.383 0.423 0.231 0.28 0.471 0.69 24 x? a2
0.605 0.606 0.537 0.528 0.746 0.3 249 x? c2
1 1 1 1 1 0.69 249 x? c2
0.399 0.392 0.339 0.341 0.57 0.3 249 x? a2
0.576 0.585 0.384 0.393 0.639 0.3 249 x? a2
0.706 0.69 0.572 0.567 0.792 0.3 249 x? c2
1 1 0.997 0.998 1 0.3 249 x? a2
1 1 1 1 1 0.69 249 x? c2
0.993 0.995 0.985 0.984 0.997 0.69 249 x? a2
1 1 1 1 1 0.69 249 x? a2
0.874 0.868 0.753 0.744 0.906 0.3 249 x? c2
0.121 0.131 0.087 0.096 0.278 0.3 16 x? c2
0.645 0.644 0.459 0.477 0.723 0.69 16 x? c2
0.104 0.1 0.074 0.095 0.22 0.3 16 x? a2
0.13 0.142 0.057 0.072 0.201 0.3 16 x? a2
0.176 0.177 0.092 0.104 0.28 0.3 16 x? c2
0.343 0.385 0.224 0.258 0.465 0.69 16 x? a2
0.65 0.656 0.578 0.562 0.791 0.3 166 x? c2
1 1 1 1 1 0.69 166 Xz c2
0.399 0.394 0.33 0.332 0.565 0.3 166 x? a2
0.539 0.539 0.344 0.359 0.617 0.3 166 x? a2
0.777 0.771 0.638 0.636 0.85 0.3 166 x? c2
1 1 0.998 0.999 0.999 0.3 166 x? a2
1 1 1 1 1 0.69 166 x? c2
0.995 0.995 0.974 0.973 0.996 0.69 166 x? a2
1 1 1 1 1 0.69 166 x? a2
0.934 0.931 0.857 0.861 0.956 0.3 166 x? c2
0.126 0.118 0.094 0.114 0.261 0.3 24 Xio c2
0.594 0.562 0.486 0.49 0.707 0.69 24 Xio c2
0.084 0.09 0.07 0.075 0.204 0.3 24 Xo a2
0.133 0.153 0.062 0.082 0.194 0.3 24 Xio a2
0.15 0.13 0.111 0.124 0.264 0.3 24 Xo c2
0.933 0.951 0.066 0.084 0.375 0.3 24 Xio a2
0.829 0.791 0.744 0.736 0.886 0.69 24 Xo c2
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0.383
0.977
0.213
0.605

0.399
0.576
0.706

0.993

0.874
0.121
0.645
0.104
0.13
0.176
0.92
0.899
0.343
0.982
0.22
0.65

0.399
0.539
0.777

0.995

0.934
0.126
0.594
0.084
0.133

0.15
0.933
0.829
0.383
0.977
0.213
0.605

0.399

0.423
0.986
0.169
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0.343
0.982
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0.791

0.565
0.617
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Table 17: Power to exclude zero at the lower end of the confidence interval. Part D.

Univariate Univariate
Standard DEA Univariate DEA
DEA Standard  WGS DEA UGS
Bootstrap DEA Bootstrap WGS Bootstrap  Population
standard  Bootstrap standard  Bootstrap standard = Parameter MZ
Cl BCa ClI Cl BCa ClI Cl Value ns Distribution parameter
0.12 0.128 0.134 0.136 0.126 0.3 24 x? c2
0.577 0.575 0.616 0.589 0.594 0.69 24 X7 c2
0.099 0.11 0.082 0.098 0.084 0.3 24 x? a2
0.135 0.153 0.143 0.158 0.133 0.3 24 X7 a2
0.153 0.158 0.151 0.143 0.15 0.3 24 x? c2
0.382 0.407 0.412 0.432 0.383 0.69 24 X7 a2
0.559 0.553 0.609 0.613 0.605 0.3 249 x? c2
1 1 1 1 1 0.69 249 X7 c2
0.356 0.361 0.403 0.407 0.399 0.3 249 x? a2
0.524 0.534 0.573 0.582 0.576 0.3 249 X7 a2
0.627 0.614 0.709 0.698 0.706 0.3 249 x? c2
1 1 1 1 1 0.3 249 X7 a2
1 1 1 1 1 0.69 249 x? c2
0.989 0.989 0.993 0.996 0.993 0.69 249 X7 a2
1 1 1 1 1 0.69 249 x? a2
0.831 0.832 0.874 0.879 0.874 0.3 249 X7 c2
0.12 0.14 0.121 0.143 0.121 0.3 16 x? c2
0.607 0.602 0.653 0.652 0.645 0.69 16 X7 c2
0.102 0.115 0.101 0.114 0.104 0.3 16 x? a2
0.138 0.159 0.142 0.152 0.13 0.3 16 X7 a2
0.162 0.17 0.178 0.183 0.176 0.3 16 x? c2
0.354 0.383 0.375 0.395 0.343 0.69 16 X7 a2
0.605 0.614 0.653 0.648 0.65 0.3 166 x? c2
1 1 1 1 1 0.69 166 X7 c2
0.353 0.356 0.395 0.387 0.399 0.3 166 x? a2
0.485 0.484 0.554 0.551 0.539 0.3 166 X7 a2
0.731 0.72 0.774 0.773 0.777 0.3 166 x? c2
1 1 1 1 1 0.3 166 X7 a2
1 1 1 1 1 0.69 166 x? c2
0.991 0.991 0.995 0.995 0.995 0.69 166 X7 a2
1 1 1 1 1 0.69 166 x? a2
0.909 0.909 0.936 0.94 0.934 0.3 166 x? c2
0.12 0.128 0.134 0.136 0.126 0.3 24 Xio c2
0.577 0.575 0.616 0.589 0.594 0.69 24 Xio c2
0.099 0.11 0.082 0.098 0.084 0.3 24 Xio a2
0.135 0.153 0.143 0.158 0.133 0.3 24 Xio a2
0.153 0.158 0.151 0.143 0.15 0.3 24 Xio c2
0.904 0.904 0.948 0.951 0.933 0.3 24 Xio a2
0.797 0.796 0.836 0.845 0.829 0.69 24 Xio c2
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0.484
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0.904
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0.524
0.627

0.989

0.831

0.12
0.607
0.102
0.138
0.162
0.891
0.858
0.354
0.974
0.177
0.605

0.353

0.485

0.731

0.991

0.909

0.534
0.614

0.989

0.832

0.14
0.602
0.115
0.159

0.17
0.886
0.859
0.383
0.975
0.195
0.614

0.356

0.484

0.72

0.991

0.909

0.573
0.709

0.993

0.874
0.121
0.653
0.101
0.142
0.178
0.937
0.903
0.375
0.989
0.208
0.653
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0.554

0.774

0.995

0.936
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0.996

0.879
0.143
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0.114
0.152
0.183
0.944
0.908
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0.991
0.204
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0.387

0.551

0.773

0.995

0.94

0.576
0.706

0.993

0.874
0.121
0.645
0.104
0.13
0.176
0.92
0.899
0.343
0.982
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0.65

0.399

0.539

0.777

0.995

0.934
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Table 18: Power to exclude zero at the lower end of the confidence interval. Part E.

Population
Robust Typical Parameter MZ
Upper CI  Upper ClI  Value ns Distribution parameter

0.177 0.254 0.3 24 X c2
0.671 0.742 0.69 24 x? c2
0.118 0.194 0.3 24 X a2
0.15 0.209 0.3 24 X a2
0.221 0.295 0.3 24 X c2
0.405 0.49 0.69 24 X a2
0.568 0.777 0.3 249 X c2
1 1 0.69 249 x? c2
0.36 0.601 0.3 249 X a2
0.516 0.73 0.3 249 X a2
0.655 0.853 0.3 249 X c2
1 1 0.3 249 x? a2

1 1 0.69 249 X c2
0.989 0.997 0.69 249 X a2
1 1 0.69 249 X a2
0.855 0.977 0.3 249 X c2
0.151 0.265 0.3 16 X c2
0.685 0.75 0.69 16 x? c2
0.146 0.201 0.3 16 X a2
0.175 0.181 0.3 16 x? a2
0.221 0.288 0.3 16 X c2
0.408 0.423 0.69 16 X a2
0.612 0.826 0.3 166 X c2
1 1 0.69 166 x? c2
0.357 0.598 0.3 166 X a2
0.496 0.68 03 166 X a2
0.741 0.882 0.3 166 X c2
1 1 03 166 x? a2

1 1 0.69 166 X c2
0.989 0.998 0.69 166 X a2
1 1 0.69 166 X a2
0.928 0.975 03 166 X c2
0.177 0.254 0.3 24 Xio c2
0.671 0.742 0.69 24 Xio c2
0.118 0.194 0.3 24 Xio a2
0.15 0.209 0.3 24 Xio a2
0.221 0.295 0.3 24 Xio c2
0.643 0.403 0.3 24 Xio a2
0.881 0.944 0.69 24 Xio c2
0.405 0.49 0.69 24 Xio a2
0.922 0.873 0.69 24 Xio a2
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