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CHAPTER I

INTRODUCTION

The past decade has seen significant advances in the capabilities of multi-robot systems.

Numerous mechanisms for coordination and cooperation of robots have evolved to enable

ever increasing levels of autonomy. An issue that is pivotal to the performance of such co-

operative multi-robot systems is task allocation. In particular, the problem of multi-robot

task allocation has received considerable attention and many innovative schemes have been

proposed for distributing tasks amongst a team of robots. Gerkey and Matarić (2003) pro-

vide a taxonomy for classifying Multi-Robot Task Allocation problems based on the num-

ber of tasks per robot (Single-Task (ST) or Multiple-Task (MT) robots), number of robots

required for a task (Single-Robot (SR) or Multiple-Robot (MR) Tasks), and the sched-

ule for allocation (Instantaneous (IA) or Time extended Allocation (TA)). Typically, the

multi-robot task allocation problem comprises of a set of indivisible tasks and the problem

involves assigning robots to tasks so as to optimize task performance (ST-SR problem).

As the community strives towards more autonomous multi-robot systems, the com-

plexity of the tasks involved has increased considerably. In many cases, the tasks are too

complex to be performed by a single robot alone, i.e. tasks must be allocated to a team of

robots. This problem is considerably harder than the ST-SR problem and is commonly re-

ferred to as the Single-Task Multiple-Robot (ST-MR) problem (Gerkey and Matarić, 2003).

The ST-SR problems have been studied and numerous high quality solutions have been

proposed (Parker, 1998; Gerkey and Matarić, 2000; Botelho and Alami, 1999; Werger and

Matarić, 2000). However, the single-task multi-robot (ST-MR) problem has potentially

significant applications and thus far has received relatively little attention. We believe that

with advances in multi-robot coordination and cooperation algorithms and improved sens-

ing capabilities, this somewhat neglected problem will assume greater significance.
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Gerkey and Matarić (2003) formulate the task allocation problem as an instance of

the Optimal Assignment Problem (OAP) and provide a taxonomy for multi-robot task al-

location problems. The same work draws attention to the following limitation of their

framework:

”Perhaps the most constraining aspect of our OAP framework is the as-
sumption that we are working with single-robot tasks. In seeking to relax this
assumption, we inevitably face a problem known in the multi-agent commu-
nity as coalition formation. In its most general form, the problem of coalition
formation is intractable. To optimally solve this problem for an arbitrary set
of tasks, one must search the combinatorial space of possible coalitions. This
search is unlikely to be practical for even moderately sized static coalition for-
mation problems, and the situation is worse for Multi Robot Task Allocation
(MRTA) domains, in which the coalition structures must be dynamic in order
to respond to changing task requirements. Some heuristics to the coalition for-
mation problem for multi-agent systems have been proposed (e.g. Sandholm
and Lesser 1997;Shehory and Krauss 1998), but they have not been demon-
strated in robotic domains.”

Thus dealing with multi-robot (MR) tasks still remains an open problem in the robotics

community and this problem is the central theme of this dissertation. The solution to this

problem lies in the formation of multi-robot teams or coalitions. The optimal solution to

the coalition formation problem is unfortunately NP-hard. Fortunately problems very close

to the coalition formation problem have been extensively studied, (e.g. Set Partitioning and

Set Covering problems) and many heuristics for approximate solutions have been devised

(Balas and Padberg, 1976; Chu and Beasley, 1996; Fisher and Kedia, 1990; Hoffman and

Padberg, 1993). Game theorists and economists have also studied the coalition formation

problem with regard to market based selfish agents. They have investigated various types

of equilibria that lead to the formation of stable coalitions amongst selfish agents. In fact,

coalition theory is now considered a field in its own right.

Distributed Artificial Intelligence (DAI) researchers have built upon the work in game

theory and theoretical computer science to produce practical solutions to the multi-agent

coalition formation problem. There has been considerable progress in the DAI literature in

2



the area of multi-agent coalition formation algorithms. Despite this progress and the numer-

ous coalition formation algorithms that have been proposed; to the best of our knowledge

none of these algorithms have been demonstrated in the multi-robot domain. The reason

for this is that multi-robot systems, unlike software agents, must address real world con-

straints. Thus there exists a divide between the multi-agent coalition formation literature

and its application to the multi-robot domain. Our work aims to bridge this divide.

There are two ways to approach the problem; the first is to view the problem at a high

level where the robots deliberately cooperate in an effort to increase the overall utility.

Distributed Problem Solving (DPS) is used to model these types of task environments and

solutions are usually a distributed implementation of an algorithm. The second manner in

which to view the problem is at the agent (robot) level, where robots are modeled as selfish

agents that attempt to increase their individual utilities. Thus in these task environments,

the distribution of payoffs to individual agents is important. The agents are required to

follow protocols for auctions or negotiations and the environment is modeled as an econ-

omy. These types of task environments are commonly called Multi-Agent System (MAS)

environments.

The problem becomes more complicated if tasks are dynamically introduced into the

system and the robots must reconfigure to execute the new tasks in real time. In this disser-

tation we adapt and extend the coalition formation techniques present in the DAI literature

to facilitate their use in the multi-robot domain. The aim is to develop coalition formation

techniques for the formation of multi-robot teams in different task environments.

Despite the similarities between multi-agent and multi-robot systems, the transition

from agents to robots is not straightforward. DAI researchers make numerous assumptions

while designing algorithms that do not hold when those algorithms are applied to robots.

Besides these assumptions, robots must handle real world sensory noise, full or partial robot

failures, and communication latency or loss of communications. All of these issues must be

addressed before a multi-agent algorithm may be considered viable for robotic applications.
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In this dissertation we address these issues and suggest modifications to current multi-

agent coalition formation algorithms. We then incorporate our modifications into a chosen

multi-agent coalition formation algorithm in order to facilitate its usage in the multi-robot

domain. The objective is to develop a generic framework that tailors multi-agent algorithms

to the multi-robot domain.

Another contribution of this work is the concept of Coalition Imbalance and its im-

plications with respect to both fault tolerance and task performance. An empirical study

of the impact of balance on the performance of multi-robot soccer and foraging teams is

conducted, and the results suggest that imbalance information may be utilized to improve

overall team performance.

Market based task allocation techniques have gained popularity over the past five years

due to their inherently distributed protocols. Most of these auction-based systems draw in-

spiration from the contract-net protocol (Smith, 1980). This dissertation introduces RACHNA

(Vig and Adams, 2006a), which is a novel, market based coalition formation system that

leverages sensor redundancy to enable a more tractable formulation of the coalition for-

mation problem. Current task allocation schemes tend to be somewhat task specific and

are tightly coupled with the task domain. RACHNA employs a more generic utility based

framework to accommodate different types of tasks and task environments. Preliminary ex-

periments yield promising results demonstrating the system’s superiority over simple task

allocation techniques.

The overall research objective of this dissertation was to design a autonomous task

allocation systems that were independent of the nature of the tasks. This was especially

true of the RACHNA system which was designed for the urban search and rescue domain,

a domain for which task definitions are still somewhat vague as the field is still in its infancy.

As such, due consideration was given to ensure that the proposed systems be as generic as

possible. This would allow for the system to function across a wide variety of tasks and

task environments.
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CHAPTER II

LITERATURE REVIEW

Research in Multi-Robot systems is a highly interdisciplinary field, sharing common ground

with research in fields such as Game Theory, Linear Programming, Psychology, Distributed

Artificial Intelligence, Physics, Mathematics, and Biology. The volume of the material is

so vast that it is impossible provide an overview of all of these areas in a few pages. The

purpose of this chapter is to acquaint the reader with the areas that are directly relevant to

this dissertation.

II.1 The Coalition Formation Problem

The Multi-Robot Coalition Problem is defined as follows:

Definition (Multi-Robot Coalition Formation (MRCF)): Given a collection of n robots

R and m tasks T . Each robot is equipped with certain sensor and actuator capabilities. A

coalition is defined as a collection of multiple robots that combine to form a team. Also

given is a characteristic function fc : C,T 7→ℜ that maps coalition-task pairs to numerical

values or efficiency ratings. The goal is to find the optimal partitioning of the set of robots

into teams such that the subsequent assignment of the teams to tasks results in maximization

of the overall performance or utility.

This above definition of MRCF is somewhat constrained. For example, most task allo-

cation problems are not static, they are dynamic decision problems that vary in time with

environmental changes and robot failures. Also a task may be performed in many different

ways, i.e. a task may have multiple possible decompositions and hence multiple potential

allocations. These questions are addressed with the RACHNA system described in Chapter

VI.
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II.2 Parallel problems

The MRCF is a very difficult problem that belongs to the complexity class of strongly NP-

hard1 problems. However, coalition formation shares a similar structure with a number of

commonly studied problems in theoretical computer science. This section identifies these

problems and examines them from a coalition formation perspective.

II.2.1 Winner Determination in Combinatorial Auctions

Combinatorial auctions are auctions in which bidders can place bids on combinations of

items, called ‘packages’ rather than individual items. Formally, the problem is defined as

follows (DeVries and Vohra, 2003):

Definition: Let N be a set of bidders and M the set of m distinct items. For every subset

S of M let b j(S) be the bid that agent j ∈ N has announced it is willing to pay for S. Let

b(S) = max j∈Nb j(S). Then the winner determination problem can be formulated as:

max ∑
S⊂M

b(S)xS (II.1)

s.t. ∀i ∈M ∑
S3i

xS ≤ 1 (II.2)

∀i ∈M, xS = 0,1 (II.3)

where xS is a binary variable whose value depends on whether or not b(S) is selected in

the final list of bids. The MRCF problem can be cast as a combinatorial auction with the

bidders being represented by the tasks, the items by the different robots, and the bids by

the utility that each task has to offer for a particular subset of the set of robots (items). Un-

fortunately, the problem is inapproximable (Sandholm, 2002), however some empirically

1The complexity class of decision problems that are still NP-hard even when all numbers in the input are
bounded by some polynomial in the length of the input.
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strong algorithms do exist. Leyton-Brown et al. (2000) present a heuristic based algorithm

to efficiently search the space of bids by utilizing a demand based ordering of the different

items. Sandholm (2002) provides an algorithm that allows auctions to scale up to signif-

icantly larger numbers of items and bids by leveraging the fact that the space of bids is

sparsely populated in practice. It remains to be seen if such algorithms can be sufficiently

decentralized to apply them beneficially to a multi-robot setting. A generalized version of

the winner determination problem in combinatorial auctions was utilized in the conception

of the RACHNA system described in Chapter VI.

II.2.2 Optimization: Linear Programming

The coalition formation problem can also be cast as a 0-1 integer programming problem.

Given a set of n agents and m candidate coalition-task pairs, the integer programming

problem is cast as follows (Schrijver, 1986):

Given matrices A and U where:

U j = The utility gained when the jth coalition-task pair is selected. (II.4)

ai j =





1 if agent i is a part of jth coalition-task pair.

0 otherwise.

Maximize
n

∑
j=1

U jx j (II.5)

Subject to: ∑
j=1

ai jx j = 1, i = 1, ...,n (II.6)

where x j ∈ {0,1} j = 1, ...,m. (II.7)

Dantzig (1972) introduced the simplex method for solving linear programming prob-

lems, which has since become the algorithm of choice for solving linear programs. Al-

though the worst case complexity is exponential in the size of the input (Klee and Minty,
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1972), the average case complexity for certain classes of problems is polynomial (Borg-

wardt, 1982), and the method is known to work very well in practice (Spielman and Teng,

2001). However variants of the simplex method appear to be heavily centralized. Con-

sequently, these matrix based approaches appear to have limited potential for distributed

applications and to the best of our knowledge, none have been successfully demonstrated

in robotic domains.

II.2.3 Job Shop Scheduling Problems

Job Shop Scheduling (JSS) problems are characterized by (Garrido et al., 2000):

• A Job Set J = { j1, j2, . . . , jn}.

• Machine set M = {m1,m2, . . . ,mm}.

• Operations O = {o1,o2, . . . ,on}, Oi = {oi1,oi2, . . . ,oimi}.

• Each operation has a processing time {τi1,τi2, . . . ,τimi} on a particular processor.

• On O define A, a binary relation representing a precedence between operations. If v

has to be performed before w then (v,w) ∈ A.

The objective of Job Shop Scheduling is to find an optimal schedule such that the net

processor time is minimized.

The MRCF problem can be cast as a relaxed instance of the JSS problem, with no

constraints between jobs (independent job assumption or A = φ ). In other words, the order

in which the jobs are performed is immaterial, all that matters is the mapping of operations

to machines.

The incorporation of precedence constraints gives rise to a more difficult problem by

introducing a scheduling component to the coalition formation problem (this problem be-

longs to the class of single-task multiple-robot extended-assignment problems). Coalition

formation in task environments involving precedence ordered tasks are explored in Chap-

ters III and IV of this dissertation.
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Some scheduling problems allow for preemption, i.e. a job can be interrupted during

execution, moved to a different machine, and then resumed. Since robots operate on real

world tasks, robotic tasks cannot easily be traded amongst different robots. Therefore,

the research community thus far has not given preemption much consideration for MRTA

problems. It is our contention that preemption might be useful, if not necessary in certain

dire circumstances such as a fire outbreak, chemical leakages etc. The RACHNA system

described in Chapter VI allows for task preemption for urgent tasks.

Many solutions to the Job Shop Scheduling problem have been proposed in the liter-

ature. Some solutions view the problem as a constraint satisfaction search (Sadeh et al.,

1995; Sadeh and Fox, 1996). More traditional approaches formulate the problem using in-

teger programming (Wagner, 1959), mixed integer programming (Dyer and Wolsey, 1990)

and dynamic programming (Srinivasan, 1971). It may be worthwhile to explore the possi-

bility of decentralizing these algorithms without making significant compromises on solu-

tion quality.

II.2.4 Set Partitioning and Set Covering

Perhaps the closest problems in theoretical computer science to the coalition formation

problem are the set partitioning and set covering problems. Determining which of the two

problems is more apt for a particular domain depends on whether the task environment

allows for overlapping coalitions. Overlapping coalitions are discussed further in Chapters

III and IV.

Balas and Padberg (1976) define the Set Partitioning problem as follows:

Definition (Set Partitioning Problem (SPP)): Given a finite set E, a family F of accept-

able subsets of E, and a utility function u : F → ℜ+, find a maximum-utility family X of

elements in F such that X is a partition of E.

The coalition formation problem can be cast as an instance of SPP, with E as the set

of robots, F as the set of all feasible coalition task pairs, and u as the utility estimate for
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each such pair. The SPP problem has been studied in depth and is provably NP-hard.

However numerous heuristic based SPP algorithms have been proposed in the literature

(Chu and Beasley, 1996; Fisher and Kedia, 1990; Balas and Padberg, 1976), although it

remains to be seen whether such heuristic algorithms are applicable to MRTA problems.

To this end, a potentially important question is whether and how these algorithms can

be parallelized. For environments that allow for overlapping coalitions, the set covering

problem more closely approximates coalition formation. Balas and Padberg (1976) define

the set covering problem as follows:

Definition (Set Covering Problem (SCP)): Given a finite set E, a family of acceptable

subsets F of E and a cost function c : F →ℜ+, find a maximum-utility family X of elements

in F such that X is a cover of E.

The MT-MR-TA problem can be cast as an instance of the SCP, with E as the set of ro-

bots, F as the set of all feasible (and possibly overlapping) coalition-task pairs, and u as the

utility estimate for each such pair. Like the SPP, the SCP problem is also NP hard (Korte

and Vygen, 2000), however the coalition space of the SCP is far less constrained. Re-

searchers have developed greedy approximation algorithms for the SCP that yield provably

good sub-optimal solutions (Chvatal, 1979; Bar-Yehuda and Even, 1981).

It is important to note that these heuristic algorithms perform well when the space of

feasible subsets is limited, and that they perform poorly in the most general case of the SCP,

with all subsets allowed. For purposes of multi-robot task allocation, this result suggests

that such algorithms would be best applied in environments in which the space of possible

coalitions is naturally limited, as is the case with heterogeneous robots. To the best of

our knowledge set covering or set partitioning algorithms have not been applied to MRTA

problems, and the fact that Shehory and Kraus (1998) successfully adapted and distributed

Chvatal’s approximation algorithm (Chvatal, 1979) suggests that SCP may be viable for

MRTA problems. Chapter III explores the applicability of Shehory and Kraus’ algorithm

to the MRCF problem.
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II.2.5 Dynamic Programming

The complexity of the coalition formation problem generally decreases when the algorithm

can observe individual coalition values instead of merely coalition structures. Sandholm

et al. (1999) provide a dynamic programming algorithm for the coalition formation problem

when individual coalitions can be evaluated. The algorithm runs in O(3a) time (significantly

less than exhaustive enumeration of all coalitions O(aa)). However, this algorithm requires

O(3a) time even when the space of coalitions is restricted. This condition may not be

feasible for task allocation, especially given that a coalition’s value can only be evaluated

when it is paired with a task.

The above list of problems is by no means exhaustive. Many other problems share a

similar problem structure to coalition formation. The objective of listing the above prob-

lems was to direct the readers attention to the large number of potentially untapped solu-

tions in theoretical computer science that may lead to fruitful algorithms for the coalition

formation problem.

II.3 Game Theory

Game Theory as related to coalition formation, has primarily focused on stability and profit

distribution, and not coalition formation algorithms. A thorough survey of coalition forma-

tion as studied in cooperative Game Theory is provided in Rappaport and Kahan (1984).

Work by Vohra (1995) and Rapoport (1970) describes which coalitions will form in n-

person games and how the players will distribute the benefits of cooperation among them-

selves. Wu (1977) presented a transfer scheme that converges to the core (Definitions of

terms in this section are provided in the Appendix) if the core is non-empty. An interesting

property of Wu’s model is that it implicitly allows passing from one coalition configuration

to another and does not necessarily concentrate on a specific coalitional configuration. The

transfer scheme leads to a point in the core but does not provide an algorithm to pass from

one coalitional configuration to another.
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However, in so far as allocation of tasks is concerned, the work by Vohra (1995) or

Rapoport (1970) does not consider the specific constraints of a multi-agent environment,

such as distribution, communication costs and limited computation time, etc. Also most

robotic environments tend to be cooperative and hence payoff stability may be ignored in

favor of better overall performance (utility).

The dynamic theory of bargaining sets was introduced by Stearns (1968). This work

presented methods (“transfer schemes”) for players in n-person games that enabled them,

starting with an arbitrary payoff, to reach a payoff allocation within the kernel (see Appen-

dix) or the bargaining set. The main deficiency of the dynamic theory of bargaining sets

is that its dynamics deal solely with situations where the coalition configuration is given

and payoffs are transferred. This theory is utilized to draw conclusions about the payoff

stability of the RACHNA system described in Chapter VI.

Traditionally, game theorists have studied coalition formation from a perspective that

is entirely focussed on predicting outcomes and payoff stability of competitive coalition

games. Therefore, despite being a well studied problem, the motivations for research in

coalition theory are not the same as they are in this dissertation, i.e. to design algorithms

for obtaining optimal coalition structures. Advances in game theory provide a good basis

for this research; however they do not address the most relevant issues, i.e. the explicit

protocols and strategies to be followed by the agents when forming coalitions.

II.4 Multi-Agent Systems

Largely due to inherent differences between the respective systems under study, the multi-

agent and multi-robot research communities have each developed their own methods for

perception, reasoning, and action in individual agents/robots. In particular, the multi-

robot community has historically studied both explicit and implicit coordination techniques

(Balch and Arkin, 1994; Parker, 1995). Implicit coordination techniques employ dynamics

of interaction among the robots and the environment in order to achieve the desired collec-
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tive performance, often in the form of designed emergent behavior. Explicit coordination

techniques, in comparison, deal with comparatively more sophisticated agents/robots, and

employ intentional communication and collaboration methods much like those employed

in multi-agent systems. Therefore at the level of explicit coordination among multiple in-

dividuals, the differences in techniques used by multi-agent and multi-robot systems are

in fact very few (Gerkey and Matarić, 2004a). Although robotics researchers employ so-

phisticated techniques while designing single robot control systems, they have tended to

use techniques that are already well known in the agent community when designing ex-

plicitly coordinated multi-robot systems (MRS). Having said that, there are irreconcilable

differences between the two domains that are important to understand. This section aims to

acquaint the reader with the concept of a software agent and the types of tasks that software

agents and robots are commonly required to execute in an effort to highlight the differences

in the two domains.

II.4.1 Software-Agents

A Software Agent is an artificial agent that operates in a software environment. Software

environments include operating systems, computer applications, databases, networks, and

virtual domains. Software agents differ from conventional software in that they are long-

lived, semi-autonomous, proactive, and adaptive.

Wooldridge and Jennings (1995) define a software agent as “an agent that interacts with

a software environment by issuing commands and interpreting the environment’s feed-

back”. Shoham (1997) defines a software agent as “a software entity, which functions

continuously in a particular environment, often inhabited by other agents and processes”.

Shoham’s definition is widely accepted in the research community.

A mobile agent is a software agent that can autonomously move between locations.

This definition implies that a mobile agent is also characterized by the basic agent model.

Green et al. (1997) point out that in addition to the basic model, any software agent defines
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a life-cycle model, a computational model, a security model, and a communication model.

A mobile agent is additionally characterized by a navigation model. All issues referring to

transporting an agent (with or without its state) between two computational entities resid-

ing in different locations are handled by the navigation model. The size of mobile agents

depends on what they do. White and Pagurek (1998) indicate that in swarm intelligence,

the agents are very small. On the other hand, configuration or diagnostic agents might get

quite big, because they need to encode complex algorithms or reasoning engines. Mobile

agents can extend their capabilities on-the-fly, on-site by downloading required code off

the network. They can carry only the minimum functionality, which can grow depending

on the local environment and needs. This capability is facilitated by code mobility. Many

researchers utilize these properties while designing software agent coalition formation al-

gorithms. These properties must be taken into account while translating these algorithms to

robotic domains. Chapter III of this dissertation investigates these issues in greater depth.

II.4.2 Software Agent Tasks

Typically, an agent is given a very small and well-defined task. Although the theory be-

hind agents has been around for some time, agents have become more prominent with the

growth of the Internet. Information gathering is the most popular task for these agents.

Many companies now sell software that enables one to configure an agent to search the

Internet for certain types of information. These agents are called information agents. An

information agent (Klusch and Shehory, 1996) is defined as an agent that has access to at

least one, and potentially many information sources, and is “able to collate and manipu-

late information obtained from these sources to answer queries posed by users and other

information agents.” Information agents can be further classified as:

1. Learning Agents: tailors to an individual’s preferences by learning from the user’s

past behavior (Boicu et al., 2004).

2. Shopping Agents: compares the best price for an item (Doorenbos et al., 1993).
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3. Information Retrieval Agents: helps the user to search for information in an intelli-

gent fashion (Sycara and Zeng, 1996).

4. Helper Agents: performs tasks autonomously without human interaction (Khoo et al.,

1998).

To date, agents have been successfully employed in multiple application endeavors like

Data Filtering (Jennings and Higuchi, 1992), Pattern Recognition (Vuurpijl and Schomaker,

1998), Event Notification (Tripathi et al., 2004), Planning and Optimization (Fox et al.,

2000), Rapid Response Implementation (Chen et al., 2001), and Discovery (Schramm et al.,

1998). While this set of applications appears quite diverse, it should be noted that soft-

ware agents, unlike robots, do not concern themselves with real world physical constraints.

They operate exclusively in software environments that are far more predictable and less

constrained.

II.4.3 Multi-Agent Cooperation

Distributed Artificial Intelligence (DAI) research is divided into two basic classes: Cooper-

ative Distributed Problem Solving (CDPS) and Multi-Agent Systems (MAS). Research in

CDPS considers how the efforts required for solving a particular problem can be distributed

among a number of modules or nodes. Research in MAS is concerned with coordinating

intelligent behavior among a collection of autonomous heterogeneous intelligent agents.

Global control and globally consistent knowledge may not exist in MAS. MAS agents are

assumed to be self-interested, attempt to achieve their own goals, and maximize their own

personal payoff. Agents in CDPS systems have a common goal and attempt to maximize

the system’s global payoff. MAS designers only control their own agents. These classes

are the two extreme poles in the DAI research spectrum.

Software agents are often required to form teams in order to perform tasks. DAI re-

searchers have focussed on constructing agents that are able to cooperate during task ex-

ecution, thus increasing either individual agent benefits or the systems benefits. Smith
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(1980) discusses the Contract Net Protocol (CNP) in which the agents may attempt to sat-

isfy a task by dividing it into sub-tasks and sub-contract each sub-task to another agent

via a bidding mechanism. CNP allocates tasks to single agents and a procedure for task

partitioning is necessary. Many CNP inspired MRTA systems have been proposed in the

literature as mentioned in Chapter II, Section II.5.3.

Gasser (1993) focuses on the social aspects of agent knowledge and action in multi-

agent systems. As in human societies, social mechanisms can dynamically emerge. This

approach is effective when agents are interacting in environments where there is no agreed

upon, well defined interaction mechanism, or in continuously evolving domains. This ap-

proach also bears a strong likeness to swarm based approaches to task allocation in that it

allows a system to converge to appropriate robot/task ratios based on local robot interac-

tions.

Environments with heterogeneous agents require that protocols must be agreed upon

and enforced by the designers. The need for protocols increases further in coalition forma-

tion. As was noted by Shapely and Shubik (1973), “in situations where every cooperative

demand by every coalition cannot be satisfied, some constraints must be placed on coali-

tional activity lest it be trapped in an endless loop of rejected suggestions for coalition

formation.” This conclusion gave rise to the concept of stability and various notions of

equilibrium.

Sandholm and Lesser (1995) developed a coalition formation model for bounded ratio-

nal agents and presented a general classification of coalition games. The value of a coalition

in their model depends on the computation time; however all configurations and possible

coalitions are considered when computing a stable solution.

Shehory and Kraus (1998) proposed algorithms for autonomous agents to form coali-

tions and distribute the joint payoffs to members in Non-Super-additive environments.

The suggested protocol guarantees that if the agents follow it, a certain stability (kernel-

stability) is met. The same paper presented an alternative protocol that offers a weaker
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Figure II.1: Coalition Structure Graph (Sandholm et. al. 1999).

form of stability with polynomial running time. However, in both cases no bound from the

optimal is guaranteed.

Sandholm et al. (1999) formally prove that finding the optimal coalition structure is an

NP-Complete problem. They view the coalition structure generation process as a search in

a coalition structure graph. A coalition structure graph for four agents is shown in Figure

II.1. The problem is formulated as a search through a subset of the coalition structures and

selection of the best coalition structure encountered.

Sandholm et al. (1999) go on to prove that in order to establish any sort of bound on

the quality of the generated coalition structure, it is necessary and sufficient that the search

algorithm must search the bottom two levels (or 2a−1 nodes) of the graph. The suggested

algorithm involves an initial search through these two levels and then is followed by a time

bounded breadth first search from the top of the coalition structure graph. Until recently

this was the only anytime algorithm that could establish a worst case bound. Dang and
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Jennings (2004) have designed an algorithm that improves on the algorithm provided by

Sandholm et al. (1999) and analyzes fewer coalitions while establishing small bounds from

the optimal.

An algorithm for task allocation via coalition formation in CDPS environments was

proposed by Shehory and Kraus (1995). This algorithm yields solutions by limiting the

size of the coalitions and uses a greedy heuristic to yield a coalition structure that is prov-

ably within a bound of the best possible solution given the limit on the number of agents.

This algorithm is especially relevant to this dissertation and further modifications to this

algorithm are described in Chapter III. Shehory and Kraus (1996b) extended this algorithm

to enable formation of overlapping coalitions for precedence-ordered task-execution.

Shehory and Kraus (1996a) discuss cooperative goal satisfaction using a physics ori-

ented model of multi-agent systems. The attractive feature of this model is that it requires

no communication between agents. This approach strictly applies to CDPS environments

and the applicability is limited to loosely coupled tasks.

Sycara (1995) presents a coalition formation algorithm for rational agents engaged in

decentralized information gathering. The proposed algorithm enables cooperation via for-

mation of kernel-oriented stable coalitions. During the coalition formation process each

agent rationally decides to coalesce with other information agents by calculating its own

utility on the set of discovered interdatabase dependencies. Based on such interrelational

knowledge, each agent can only pose directed, intensional queries on local data to commit-

ted members of the same coalition.

Of late, coalition formation has begun to receive a great deal of attention from the

DAI research community (Fass, 2004; Li and Soh, 2004; Sorbella et al., 2004; Abdallah

and Lesser, 2004). Despite this plethora of agent coalition formation algorithms, none

of these algorithms have been demonstrated to form coalitions in the multi-robot domain.

There are numerous reasons for this, some prominent ones being the added communication

costs in the multi-robot domain, the unreliability of both communication and robots in real
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world domains, and the non-transferability of resources between robots. This dissertation

investigates the reasons behind this divide between the agent and robotic domains and

offers solutions to some of the problems that arise while tailoring multi-agent coalition

formation algorithms to the multi-robot domain. Transferability of these algorithms are

further discussed in Chapter III.

II.5 Multi-Robot Systems

This section provides an overview of the relevant research in Multi-Robot Systems (MRS).

Section II.5.1 identifies some common MRS tasks that are utilized as test-beds for MRS

architectures. Section II.5.2 provides the various dimensions along which an MRS task or

system can be classified. Section II.5.3 discusses some well known task allocation systems

present in the literature. Section II.5.4 identifies some of the inherent differences between

multi-agent and multi-robot systems.

II.5.1 Multi-Robot Tasks

This section provides an overview of the various test-beds that are commonly used in the

multi-robot system literature to evaluate and validate the various coordination techniques.

Farenelli et al. (2004) provide a survey of the various MRS tasks that researchers employ

to validate their systems. The tasks mentioned include:

Foraging and Coverage: The Multi-Robot foraging task requires the robots to search the

environment for objects of interest and to retrieve these objects to a specified destination.

Foraging is a common MRS test-bed due to its application to real world tasks such as

toxic waste clean up, demining, and service robotics. Typical applications are provided

by Murphy et al. (2002) and Jung and Zelinsky (2000). Similarities between the forag-

ing and coverage task were pointed out by Choset (2001). Coverage requires the robots

to process all the points of free space in the environment. The central issue for coverage

is to find effective techniques for cooperatively scanning the environment. Applications
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include: demining, snow removal, lawn mowing etc.

Multi-Target Observation: Also known as cooperative observation of multiple moving tar-

gets (CMOMMT), multi-target observation is a recent test-bed, first introduced by Parker

(1999). The task involves the detection and tracking of a set of moving objects in the en-

vironment. The robots are required to maximize the time during which each moving target

is under observation by at least one robot. Werger and Matarić (2000) use the CMOMMT

test-bed to evaluate their Broadcast of Local Eligibility (BLE) task allocation system. The

system describes a task allocation scheme for robots based on Port Arbitrated Behaviors.

Multi-target observation has many connections with security and surveillance where targets

moving around in a bounded area must be monitored and observed.

Box Pushing and Object Transportation: The box pushing task requires robots to push

boxes from a starting location and orientation to a destination location and orientation.

Important applications include construction, stockage, and truck loading and unloading.

Boxes are generally assumed to be on a plane, although Simmons et al. (2000) focuses on

lifting and carrying objects, thus substantially increasing the task complexity. Both Gerkey

and Matarić (2002b) and Parker (1999) have studied the problem in depth and have con-

ducted experiments in the box-pushing domain to validate their coordination architectures

for tightly coupled tasks.

Exploration and Flocking: Exploration and flocking are regarded as two distinct tasks

but both require coordination between the MRS members as they move through the envi-

ronment. The goal during the flocking task is for the robotic agents is to move together,

similar to a flock or herd. If the relative positions the robots are to maintain is required to

be a certain shape, then the task is called a formation task. Cooperation among the robotic

agents is also used to localize each other and to fuse information acquired from the environ-
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ment. Map building of unknown environments is a common issue related to exploration.

A more complex version of this task, as presented in Fenwick et al. (2002), is cooperative

localization and mapping, in which the robots have to localize while moving and building

a map of the environment.

Soccer: Kitano et al. (1997) outline how robotic soccer has become a standard test-bed for

research in multi-agent and multi-robot cooperation. The uncertain dynamics and hostile

environment in which the robots operate makes multi-robot coordination a very challeng-

ing problem. The different environments for each robotic league presents several MRS

coordination issues. The middle-size league and the four-legged league require that all ro-

bot sensors be on-board. Therefore the robots are more autonomous and encounter high

uncertainty levels when reconstructing global environmental information. The small-size

league provides the robotic agents with an overhead camera view of the field, therefore

coordination approaches in this league are centralized.

The above list is by no means an exhaustive list of MRS application domains. With

new sensor technologies constantly being developed, new innovative MRS applications

continue to surface. A new task that has recently begun to receive attention is the pursuit

evasion task where robots are required to clear an area of mobile contaminants (Gerkey

et al., 2005).

II.5.2 Taxonomies of Multi-Robot Systems

The previous section provided a description of some common multi-robot tasks. As re-

searchers attempted to provide solutions for these different tasks, it was apparent that a

classification of these tasks was needed along various dimensions, such as communication

bandwidth requirements, platform capability requirement, robot to task ratio, etc. Various

taxonomies were proposed to classify tasks along these dimensions.
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Balch (2002) provides a taxonomy of multi-robot tasks with an eye towards incorpo-

rating reinforcement learning in the multi-robot task domain. This work classified tasks

on the basis of time for evaluation, action performed, resource limitations, movement and

platform capabilities. Dudek et al. (2002) provide a taxonomy for characterizing a robot

collective. The taxonomic axes included in this work were the Collective Size, Commu-

nication Range, Communication Topology, Communication Bandwidth, Collective Recon-

figurability, Processing Speed, and Collective Composition. Farenelli et al. (2004) further

proposed a taxonomy of multirobot systems while focussing on the level of coordination

in the system. The coordination dimensions in this taxonomy include the level of coop-

eration in the system, the level of awareness or knowledge of the robots about each other,

the mechanisms used for coordination (weak, strong), and the organization of the system

(distributed, centralized). This work also groups systems along dimensions of communi-

cation (direct, indirect), team size, architecture (deliberative, reactive), and composition

(heterogeneous, homogeneous).

However, the taxonomy that is most relevant to this dissertation is the one provided

by Gerkey and Matarić (2004b). This work provides a taxonomy of Multi-Robot Task

Allocation (MRTA) problems based on the following three axes:

• Single-task robots (ST) vs. multi-task robots (MT): ST means that each robot is

capable of executing at most one task at a time, while MT means that some robots

can execute multiple tasks simultaneously.

• Single-robot tasks (SR) vs. multi-robot tasks (MR): SR means that each task

requires exactly one robot to achieve it, while MR means that some tasks can require

multi-robots.

• Instantaneous assignment (IA) vs. time-extended assignment (TA): IA means

that the available information concerning the robots, the tasks, and the environment

permits only an instantaneous allocation of tasks to robots, with no planning for
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future allocations. TA means that more information is available, such as the set of

tasks that will need to be assigned.

An MRTA problem is denoted by a triple of two letter abbreviations drawn from the three

dimensions. For example a problem in which multi-robot tasks must be allocated once to

single-task robots is designated ST-MR-IA. Robotic researchers have primarily focussed

their attention on Single-Task Single-Robot (ST-SR) problems, consequently the ST-MR-

IA and ST-MR-TA problems have not previously received much attention in the literature.

The ST-MR-IA problem is also called the multi-robot coalition formation problem and is

the primary focus of this dissertation. Novel solutions for the multi-robot coalition forma-

tion problem are provided in Chapters III and VI of the dissertation.

II.5.3 Task Allocation

Task allocation is proving to be a challenging problem due to the unpredictable nature of

robot environments, sensor failure, robot failure, and dynamically changing task require-

ments. A number of elegant solutions to the task allocation problem have been proposed.

The ALLIANCE (Parker, 1998) architecture uses motivational behaviors to monitor task

progress and dynamically reallocate tasks. ALLIANCE employs a variant of the subsump-

tion architecture (Brooks, 1986) and makes use of ”behavior sets” to enable a robot to

perform versatile tasks. Recently Low et al. (2004) proposed a swarm based approach for

the cooperative observation of multiple moving targets (CMOMMT). This scheme mim-

ics ant-behavior to regulate the distribution of sensors in proportion to that of the mobile

targets. Dahl et al. (2003) present a task allocation scheme based on “Vacancy Chains,”

a social structure modeled on the creation and filling up of vacancies in an organization.

The Broadcast of Local Eligibility system (BLE) (Werger and Matarić, 2000) system uses

a Publish/Subscribe method to allocate tasks that are hierarchically distributed.

Market based task allocation systems have traditionally found favor with the software-

agent research community. The inspiration for these systems stems from the Contract Net
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protocol (Smith, 1980). Variations of the Contract Net protocol have found applications

in numerous software-agent negotiation scenarios (Sandholm, 1993; Collins et al., 1997;

Sandholm and Lesser, 1996; Sycara and Zeng, 1996). Stentz and Dias (1999) were the

first to utilize a market-based scheme to coordinate multiple robots for cooperative task

completion. This work introduced the methodology of applying market mechanisms to

intra-team robot coordination as opposed to competitive inter-agent interactions in domains

such as E-commerce. Laengle et al. (1998) implemented the KAMARA system that uses

a negotiation based task allocation scheme for controlling the different components of a

complex robot.

Caloud et al. (1990) developed the GOPHER architecture that utilizes a centralized auc-

tion protocol to allocate tasks with a high level of commitment. Gerkey and Matarić (2000)

developed MURDOCH; a completely distributed auction-based task allocation scheme that

utilized a Publish/Subscribe communication model. Tasks in MURDOCH are allocated via

a single round, first price auction in a greedy fashion. M+, another auction based task

allocation protocol was developed by Botelho and Alami (1999). The novelty of the M+

system lies in that it allows for dynamic task reallocation of subcomponents of complex

tasks. Dias (2004) designed the Traderbots architecture for multirobot control. Traderbots

agents called traders are responsible for trading tasks via auctions. When an auction is

announced agents compute bids based on their expected profit for the tasks, and the robots

that can perform the tasks for the lowest price are awarded contracts.

The common underlying factor in all of the above systems is the single robot-single task

assumption that assumes the indivisibility of tasks and that each task may be performed by

a single robot. As research in the field matures and multi-robot tasks become more and

more complex, this assumption is proving to be an oversimplification. Many task domains

require that a team of robots work on a task simultaneously, making the task allocation

problem far more difficult.

Thus, a relatively unexplored problem in multi-robot systems is the allocation of multi-
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robot teams to different tasks (the ST-MR problem) commonly known as the Multi-Robot

Coalition Formation (MRCF) problem. Recently researchers have offered a variety of mar-

ket based solutions to the (ST-MR) single-task multiple-robot task allocation problem (Zlot

and Stentz, 2005; Lin and Zheng, 2005; Schneider et al., 2005; Tang and Parker, 2005a).

However, none of these task allocation schemes utilize the inherent redundancy in robot

sensory capabilities. The RACHNA system described in Chapter VI leverages this re-

dundancy to enable a more tractable formulation of the MRCF. Thus, one of the primary

objectives of this dissertation is to develop generic task allocation schemes for allocating

complex multi-robot tasks.

II.5.4 Software Agent Tasks vs. Multi-Robot Tasks

The previous sections highlight how the tasks assigned to robotic agents can vary signif-

icantly from tasks in software domains. Robotic agents have to operate in the real world

and have to account for issues of interference between robots, obstacle avoidance, etc. Ro-

botic agents also often deal with more restricted resource constraints and are unable to

extend their capabilities on the fly. A software agent does not have to worry about losing

communication capabilities but MRS have to deal with more restricted and delayed com-

munication. Failures occur with higher frequency and in a wider variety in robotic systems.

Additionally, robotic capabilities do not vary dynamically whereas mobile software agents

often extend their capabilities by importing relevant code from another agent. Furthermore,

robotic systems have to be able to accommodate larger error bounds in performance since

they often deal with faulty sensors and interact with real world environments. Finally, ro-

botic systems often require more creative solutions to recover from faults. Thus, controlling

multiple robots can be a significantly different problem compared to controlling multiple

agents.
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II.6 Teamwork

It is well established in the Human Factors and Teaming theory that a team is more than a

collection of individuals and teamwork is more than the aggregate of their individual be-

haviors. The dynamics of the interactions between individual team members has significant

bearing on the overall performance of a team (Bass, 1980). Understanding effective team-

work performance entails understanding how groups of individuals function to produce

effective synchronized output, rather than just summed or aggregate responses (Steiner,

1972; Hackman, 1983; Nivea et al., 1978; Fleishman and Zaccaro, 1992).

Initial attempts at studying team processes focussed largely on military teams and team

processes that enabled them to function more effectively under extreme time pressure,

stress, and circumstances. Over the years, the focus has shifted to team failures, partic-

ularly those tied with high visibility (for example aircraft and military accidents) (Ilgen,

1999). Summarizing, research over the last 50 years has produced many theories, most of

which incorporate a general input-process-output approach, whereby certain variables are

fed into the system, followed by the execution of team processes, and finally the recording

the team performance results (Ilgen, 1999).

Besides developing team theories and models, researchers have struggled to identify

those critical skills that enable teams to coordinate and synchronize effectively to fulfill

their goals and ambitions. Early research focussed on orientation, resource distribution,

timing, motivation, and team morale (Nivea et al., 1978; Ruffell-Smith, 1979). Slowly

the focus shifted to self efficacy (Bandura, 1986), implicit and explicit coordination activ-

ities (Kleinman and Serfaty, 1989), and providing motivational reinforcement (Oser et al.,

1999). More recent work outlines the most vital components to team performance as mu-

tual performance monitoring (Hackman, 1983), collective orientation, adapting to novel

and unpredictable situations, and flexibility (Prince and Salas, 1993).

Due to the inherent differences between the objectives and operation of human and

robot teams, it is not trivial to map results from one domain to another. Besides having to be
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selective about which results to map, the results generally have to be formalized to a higher

degree before application to robotic teams. One successful example where researchers have

exploited the teamwork theories is the TEAMCORE project (Pynadath and Tambe, 2002)

which utilizes the Belief, Desire, Intention (BDI) framework (Cohen and Levesque, 1991)

to devise a theoretical foundation for multi-agent teaming.

Robotic domains offer the advantage of allowing numerous experiments to be con-

ducted under similar conditions. This allows for the acquisition of consistent, reliable data

that can be utilized for stronger validations of teamwork theories. Results from robotic

team experiments may also be mapped back to the human teams (with appropriate con-

siderations). Chapter V of this dissertation examines the impact of the balance parameter

on the performance of a multi-robot team. The results offer interesting insight into how

variance in individual contributions affects overall team performance.

Theories of team performance abound in the literature and our understanding of which

variables affect team performance has greatly improved over the years. However, at this

point the field needs deeper, better specified, and validated models of team performance to

more precisely target the key areas for improvement.
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CHAPTER III

HEURISTIC BASED COALITION FORMATION

In this Chapter a well-known multiple-agent coalition formation algorithm is investigated,

modified and extended to the multiple-robot domain. The algorithm by Shehory and Kraus

(1998) is designed for task allocation via coalition formation in Distributed Problem Solv-

ing (DPS) environments. This algorithm utilizes a heuristic to constrain the space of coali-

tions considered, thereby enabling a more tractable formulation of the coalition formation

problem. The suggested heuristic fits well within the multiple robot framework and is

designed for distributed environments (Vig and Adams, 2006b). A description of the al-

gorithm is provided followed by the modifications and extensions required to facilitate

application of the algorithm to the multiple-robot domain.

III.1 Shehory and Kraus’ Coalition Formation Algorithm

The algorithm by Shehory and Kraus (1998) is designed for task allocation via software

agent coalition formation in DPS environments. The heuristic utilized in this algorithm

constrains the space of coalition structures under consideration by limiting the maximum

possible size of a coalition within a coalition structure. It is often the case in multi-robot

domains that one can safely place a limit on the number of robots required for any partic-

ular task prior to allocation. The heuristic therefore fits well with the multi-robot domain.

This Section highlights some of the assumptions that the algorithm makes and provides a

detailed description of the algorithm.

III.1.1 Assumptions

Assume a set of n agents, A = A1,A2...,An. The agents communicate with each other

and are aware of all tasks to be performed. Each agent Ai has a p-dimensional vector of

real non-negative capabilities, BAi =< bAi
1 ,bAi

2 ...,bAi
p >, where each capability is a property
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that quantifies the ability to perform an action. An evaluation function is attached to each

capability type that transforms capability units into monetary units. It is assumed that

there is a set of m independent tasks, T S = t1, t2, ..., tm. Each task tl has a p-dimensional

capability requirement vector Btl =< btl
1 , ...,btl

p >. The utility gained from performing the

task (or taskvalue) depends on the capabilities required for execution. A coalition is a

group of agents that decide to cooperate to perform a common task and each coalition

performs a single task. A coalition C has a p-dimensional capability vector Bc representing

the sum of the capabilities that the coalition members contribute to this specific coalition.

A coalition C can perform a task tl only if tl’s capability requirement vector Btl satisfies

∀ 0≤ u≤ p, btl
u < bC

u .

III.1.2 Shehory and Kraus’ Algorithm

Shehory and Kraus’ algorithm consists of two primary stages:

1. Calculate the coalitional values for comparison.

2. Determine, via an iterative greedy process, the preferred coalitions and form them.

Stage one is more relevant to this work. During this stage the evaluation of coalitions is

distributed amongst the agents via extensive message passing. After this stage, each agent

has a list of coalitions for which it calculated coalition values. It also has all necessary

information regarding the capability member requirements for each coalition-task pair. In

order to calculate the coalition values, each agent proceeds to:

1. Determine the necessary capabilities for each task execution ti ∈ T , by comparing

the required capabilities to the coalition capabilities.

2. Calculate the best-expected task outcome of each coalition and choose the coalition

yielding the best outcome.

Distributed calculation of coalition values: Each agent will perform the following steps

in order to decide which coalitions to evaluate:
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1. Calculate all of the possible coalitions, up to size k in which you are a member and

form a personal list of coalitions.

2. For each coalition in the personal list, contact each member and ask for its task-

performing capabilities.

3. Inform the agent whom you have approached that you are committed to the calcula-

tion of the coalitional values of the coalitions in which you are both members.

4. Construct a personal list of agents that you have approached and avoid repeated ap-

proaches to the same agents.

5. In case you were approached by another agent and it had committed to the calculation

of the values of the common coalitions, erase all of your common coalitions from

your personal list of coalitions.

6. Repeat the contacting of other agents until you have none to approach.

At this stage, each agent has a list of coalitions for which it had committed to calculate

the values. It also has all of the necessary information about the capabilities of the members

of these coalitions. Now in order to calculate these values, each agent shall perform the

following steps:

1. Check which capabilities are necessary for the execution of each task ti ∈ T . Compare

them to the capabilities of the members of the coalition, thus determining the tasks

that can be performed by the coalition.

2. Calculate the expected outcome of the tasks that can be performed by the coalition.

For each task, perform the following: First, calculate the monetary values of the

tasks capability requirements and sum them. Then calculate the monetary values of

the capabilities of the coalitions which are not used for the fulfillment of the task

and sum them. Subtract the second sum from the first. This value is the expected

outcome of the task.
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3. Among all of the expected outcomes, choose the maximal one. This will be the

coalitional value, Vc.

The protocol ensures that no coalitions are lost, although it does not preclude some

redundancy in the coalition lists of each agent. For more details the reader is referred to

Shehory and Kraus (1998).

Choosing coalitions: The second stage of the algorithm involves the selection of the

preferred coalitions and the gradual achievement of the coalitional configuration. At the

end of the first stage of the algorithm each agent will have calculated a list of coalitions and

their values. Each agent will choose the best coalition from its list, i.e., the coalition Ci that

has the largest value wi. Next, each agent will announce the coalitional value it has chosen,

and the highest among these will be chosen by all agents. The members of the coalition

that was chosen will be deleted from the list of candidate members for new coalitions. In

addition, any possible coalitions from the coalition list of any agent that includes deleted

agents, will be deleted from its list. The calculation of coalitional values and selection of

the preferred coalitions will be repeated until all agents are deleted, or until there are no

more tasks to be allocated, or none of the possible coalitions is beneficial. The coalitional

values will be calculated repeatedly since they are affected by the coalitional configuration.

This is because each value is calculated subject to the tasks that should be performed. Any

change in the coalitional configuration means that a task was assigned to a coalition, so this

specific task no longer affects the coalitional values that may previously have been affected

by it. Therefore, the coalitional values that have been calculated with reference to a task

that has just been allocated must be re-calculated. All other values remain unchanged.

III.2 Issues in Multi-Robot Coalition Formation

Shehory and Kraus’ algorithm (Section III.1) yields results that are close to optimal, and

utilizes a heuristic that can be easily applied to multi-robot domains, especially where limits

can be imposed on the size of the multi-robot team. However, the presented algorithm
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cannot be directly applied to multi-robot coalition formation. This section identifies issues

that must be addressed when the algorithm is applied to the multi-robot domain.

III.2.1 Computation vs. Communication

The algorithm by Shehory and Kraus (1998) requires extensive communication and syn-

chronization during the computation of coalition values. While this may be inexpensive

for disembodied agents, it is often desirable to minimize communication in multi-robot do-

mains, even at the expense of extra computation. The modified algorithm presented in this

chapter requires that each agent assume responsibility for evaluating all coalitions in which

it is a member, thereby eliminating the need for communication. An added assumption is

that a robot has a priori knowledge of all robots and their capabilities (Shehory and Kraus,

1998). Robot capabilities do not typically change, therefore this is not a problem unless a

partial or total robot failure is encountered (Ulam and Arkin, 2004). It is necessary to an-

alyze how each robot’s computational load is affected. The total space of examined coali-

tions includes all coalitions of sizes less than or equal to the maximum allowed coalition

size (k). Suppose there are n identical robots with a perfect computational load distribution,

then the number of coalitions each robot must evaluate with communication is:

ηwith =
k

∑
w=0

(n
w)/n. (III.1)

It is unlikely that the load will be perfectly distributed, rather some agents will complete

their computations before others and remain idle until all computations are completed. The

worst case communicational load per agent is O(nk−1) during the calculation-distribution

stage. Alternatively, if each agent is responsible for only computing coalitions in which it

is a member, then the number of coalitions evaluated with no communication becomes:

ηwithout =
k−1

∑
w=0

(n−1
w ). (III.2)
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Equation (III.2) represents the number of coalitions of size ≤ k in which a particular

agent Ai is always a member. Equation (III.1) requires fewer computations than Equa-

tion (III.2) but this is not an order of magnitude difference. The agents’ computational

load is O(nk) per task in both cases. The communication load per robot is O(1) in the

calculation-distribution stage. The additional computation may be compensated for by

reduced communication time. Experiments described in Chapter IV, Section IV.1 demon-

strated a significant decrease in execution time when communication is removed from the

first stage of the algorithm.

A desirable side effect of this modification is additional fault tolerance (Ulam and

Arkin, 2004). If a robot RA fails during coalition list evaluation, information relevant to

coalitions containing RA is lost. Since coalitions involving RA cannot be formed post fail-

ure, this information is no longer necessary. Thus a robot failure does not require informa-

tion retrieval from the failed robot. However, the other robots must be aware of the failure

so that they can delete all coalitions containing the failed robot RA.

III.2.2 Task Format

Current multi-agent coalition formation algorithms assume that the agents have a capa-

bility vector, < bAi
1 , ...,bAi

r >. Multi-robot capabilities include sensors (e.g. laser range

finder or ultrasonic sonars) and actuators (e.g. wheels or gripper). Shehory and Kraus’

algorithm assumes that the individual agent resources are collectively available upon coali-

tion formation and that the formed coalition can freely redistribute resources among the

software agents. However, this is not possible in a multi-robot domain, as robots cannot

autonomously exchange capabilities.

Correct resource distribution is also an issue. The box-pushing task (Gerkey and Matarić,

2002a) is used to illustrate this point. Three robots, two pushers (with one bumper and one

camera each) and one watcher (with one laser range finder and one camera) cooperate to

complete the task. The total resource requirements are: two bumpers, three cameras, and
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Table III.1: Box-pushing task TAM.

Bumper1 Bumper2 Camera1 Camera2 Camera3 Laser1
Bumper1 X 0 1 0 0 0
Bumper2 0 X 0 1 0 0
Camera1 1 0 X 0 0 0
Camera2 0 1 0 X 0 0
Camera3 0 0 0 0 X 1
Laser1 0 0 0 0 1 X

one laser range finder. However, this information is incomplete, as it does not represent the

constraints related to sensor locations. Correct task execution requires that the laser range

finder and camera reside on a single robot while the bumper and laser range finder reside

on different robots. This implies that a multi-robot coalition that simply possesses the nec-

essary resources is not necessarily capable of performing a task, the capability locational

constraints have to be represented and met.

Initially, we proposed a matrix-based constraint representation for the multiple-robot

domain in order to resolve the problem. The task is represented via a capability matrix

called a Task Allocation Matrix (TAM). Each matrix entry corresponds to a capability pair

(for example [sonar, laser]). A 1 in an entry indicates that the capability pair must reside on

the same robot while a 0 indicates that the pair must reside on separate robots. Finally an

X indicates a do not care condition and the pair may or may not reside on the same robot.

Every coalition must be consistent with the TAM if it is to be evaluated as a candidate

coalition. The box-pushing TAM is provided in Table III.1. The entry (Laser1, Camera3)

is marked 1, indicating that a laser and a camera must reside on the same robot. Similarly

the (Bumper1, Laser1) entry is marked 0 indicating the two sensors must reside on different

robots.

Unfortunately utilizing the TAM matrix to verify the locational constraints on the indi-

vidual sensors and actuators in a coalition is computationally inefficient. The constraints

on sensor locations can alternatively be represented as a Constraint Satisfaction Problem
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Figure III.1: Box-pushing task constraint graph Vig and Adams (2005).

(CSP). The CSP variables are the required sensors and actuators for the task. The domain

values for each variable are the available robots possessing the required sensor and actuator

capabilities. Two types of constraints exist, the sensors and actuators must reside on the

same robot or on different robots. A constraint graph evolves with locational constraints

represented as arcs labeled s (same robot) or d (different robot).

Fig. III.1 provides the box-pushing task constraint graph. This task’s resource con-

straints between Bumper1 and Bumper2 (labeled B1 and B2) are implied by their locational

constraints. Since Bumper1 and Bumper2 must be assigned to different robots, there cannot

be a solution where a robot with one bumper is assigned to both Bumper1 and Bumper2.

The domain values for each variable in Fig. III.1 are the robots that possess the ca-

pability represented by the variable. A coalition can be verified to satisfy the constraints

by applying arc-consistency. If a sensor has an empty domain value set, then the current

assignment fails and the current coalition is deemed infeasible. A successful assignment

indicates the sub-task to which each robot was assigned.

Using arc-consistency, each candidate coalition is checked against the constraint graph

to verify if its coalition is feasible. A caveat is that arc-consistency does not detect every

possible inconsistency (an NP-complete problem). This limitation may be overcome by

solving the CSP for the best coalition selected. If no solution exists (i.e. false positive),

then the next best coalition is chosen. Solving the CSP also automatically assigns each

robot to the appropriate subtask.

Experiments measuring the additional overhead imposed by the CSP formulation are

presented in Chapter IV, Section IV.2. The experiments demonstrate that the effect of the

CSP formulation on the execution time was on the order of milliseconds even for hundreds
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of agents.

III.2.3 Coalition Imbalance

The Coalition imbalance or lopsidedness is defined as the degree of unevenness of re-

source contributions made by individual members to the coalition. This characteristic is

not considered in other coalition formation algorithms. A coalition in which one or more

agents have a predominant share of the capabilities may have the same utility as a coali-

tion with evenly distributed capabilities. Robots are unable to redistribute their resources,

therefore coalitions with one or more dominating members (resource contributors) tend to

be heavily dependent on those members for task execution. These dominating members

then become indispensable. Such coalitions should be avoided in order to improve fault

tolerance as over-reliance on dominating members can cause task execution to fail or con-

siderably degrade. If robot RA is not a dominating member (does not possess many sensors)

then it is more likely that another robot with similar capabilities can replace robot RA.

Rejecting lopsided coalitions in favor of balanced ones is not entirely straightforward.

When comparing coalitions of different sizes, a subtle trade-off between lopsidedness and

the coalition size can arise. The argument may be made both for fault tolerance and for

smaller coalition size. Coalitions with as few robots as possible may be desirable. Con-

versely, there may be a large number of robots thus placing the priority on fault tolerance

and balanced coalitions.

There are some desirable properties for a metric quantifying coalition imbalance. Con-

sider a coalition C with a resource distribution (r1,r2, ...,rn) (i.e. coalition member 1 con-

tributes net resources r1, member 2 contributes net resources r2, etc.). The chosen balance

function should be continuous in ri, also any change towards a more equable distribution of

r1,r2 . . .rn should increase the value of the metric. Considering these properties, we intro-

duced the Balance Coefficient (BC) to quantify the coalition imbalance level. For coalition
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C, the BC with respect to a particular task can be calculated as follows:

BC =
r1× r2× . . .rn

[ taskvalue
n ]n

. (III.3)

BC measures the deviation from the perfectly balanced coaltion where each member con-

tributes equally (taskvalue/n) to the task. Clearly, the BC is continuous in ri.

Result: The higher the BC, the more balanced the coalition.

Proof: Consider any coalition of size n with resource distribution (r1,r2, ...,rn) and assume

any task tl with taskvalue T . Further, consider an integer s < n such that:

ri = T/n+αi, f or i = 1 to s

ri = T/n−δi, f or i = 1 to n− s

where, αi ≥ 0, δi ≥ 0,∀i.

The BC for this coalition is:

γBC1 = (
T
n

+α 1)(
T
n

+α 2) · · ·(T
n

+αs)× (III.4)

(
T
n
−δ1)(

T
n
−δ2) · · ·(T

n
−δn−s).

where, γ = (T
n )n.

Adding a factor ε to one of the αs and an equal amount µ to all δ s (or vice versa) makes

the coalition more imbalanced (and should decrease the BC). Thus, the BC becomes:

γBC2 = (
T
n

+α1 + ε)(
T
n

+α2) · · ·(T
n

+αs)×

(
T
n
−δ1−µ1) · · ·(T

n
−δn−s−µn−s) (III.5)

where, µ1 + µ2 + µn−s = ε,ε > 0,µi > 0. (III.6)
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Factoring out the ε and the µ’s we obtain:

γBC2 = [(
T
n

+α1)(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δ1)(

T
n
−δ2) · · ·(T

n
−δn−s)]

+[ε(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δ 1−µ 1) · · ·(T

n
−δn−s−µn−s)]

−[µ1(
T
n

+α1) · · ·(T
n

+αs)

(
T
n
−δ2−µ2) · · ·(T

n
−δn−s−µn−s)]

−[µ2(
T
n

+α1) · · ·(T
n

+αs)

(
T
n
−δ1)(

T
n
−δ3−µ3) · · ·

(
T
n
−δ n−s−µ n−s)]

· · ·

−[µn−s(
T
n

+α1) · · ·(T
n

+αs)

(
T
n
−δ1)(

T
n
−δ3) · · ·(T

n
−δn−s−1)]. (III.7)

Substituting from Equation (III.4) into Equation (III.7):

γBC2 = γBC1

+ [ε(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δ1−µ1) · · ·(T

n
−δn−s−µn−s)]

− [
n−s

∑
i=1

µi(
T
n

+α1) · · ·(T
n

+αs)

(
T
n
−δ1) · · ·(T

n
−δi−1)

(
T
n
−δi+1−µi+1) · · ·(T

n
−δn−s−µn−s)]. (III.8)
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Substituting the ε from Equation (III.6) into Equation (III.8), we obtain:

γBC2 = γBC1

+ [
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n

+αs)×

(
T
n
−δ1) · · ·(T

n
−δn−s−µn−s)]

− [
n−s

∑
i=s+1

µi(
T
n

+α1) · · ·(T
n

+α s)

(
T
n
−δ1) · · ·(T

n
−δi−1)

(
T
n
−δi+1−µi+1) · · ·(T

n
−δn−s−µn−s)]. (III.9)

Separating the common factor results in:

γBC2 = γBC1

+
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δi+1−µi+1) · · ·(T

n
−δn−s−µn−s)

[(
T
n
−δ1−µ1) · · ·(T

n
−δi−µi)

−(
T
n

+α1)(
T
n
−δ1) · · ·(T

n
−δi−1)] (III.10)

now, (T
n −δy−µy) < (T

n −δy) ∀y.
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Therefore from Equation (III.10) we obtain:

γBC2 < γBC1

+
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δi+1−µi+1) · · ·(T

n
−δn−s−µn−s)

[(
T
n
−δ1−µ1) · · ·(T

n
−δi−µi)

−(
T
n

+α1)(
T
n
−δ1−µ1)

· · ·(T
n
−δi−1−µi−1)]. (III.11)

Separating the common factors a second time results in:

γBC2 < γBC1

+
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δ1−µ1) · · ·(T

n
−δn−s−µn−s)

[(
T
n
−δi−µi)− (

T
n

+α1)]. (III.12)

Canceling equal terms and factoring out the minus sign yields:

⇒ γBC2 < γBC1

−
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n

+αs)

(
T
n
−δ1−µ1) · · ·(T

n
−δn−s−µn−s)

(δi + µi +α1). (III.13)

⇒ γBC2 < γBC1−Ψ. (III.14)
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where, Ψ =
n

∑
i=1

µi(
T
n

+α2) · · ·(T
n
−αs)

(
T
n
−δ1−µ1) · · ·(T

n
−δn−s−µn−s)

(δi + µi +α1) > 0. (III.15)

Hence, BC2 < BC1.¦ (III.16)

The proof for the case when we increase one of the αs and multiple δ s is similar.

Result: The BC for a perfectly balanced coalition is always 1.

Proof: Consider any coalition with n members, each contributing equally to the utility of

the coalition (i.e. the resource distribution is r1,r2, . . . ,rn where r1 = r2 = r3 = . . . = rn =

taskvalue/n). From Equation (III.3), the BC is given by:

BC =
r1× r2 . . .× rn

(taskvalue/n)n

=
(taskvalue/n)n

(taskvalue/n)n = 1.

(III.17)

Therefore, a perfectly balanced coalition always has a BC = 1.¦

Corollary: The value of the BC can never exceed 1.

Proof: Since a perfectly balanced coalition has a BC of 1, and the BC increases with

the level of balance, then no coalition can have a BC in excess of a perfectly balanced

coalition.¦

The BC is useful for comparing the level of imbalance across coalitions of the same
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(a) Three ro-
bot coalition.

(b) Ten robot
coalition.

Figure III.2: Two perfectly balanced coalitions of different sizes.

size. However, the BC alone may not permit comparison of variable sized coalitions from a

fault tolerance perspective. For example, Fig. III.2 shows two perfectly balanced coalitions

performing the same box-pushing task. Fig. III.2(a) shows a coalition comprised of three

large, more capable robots and Fig. III.2(b) shows a coalition comprised of ten small, less

capable robots. The BC for both coalitions is 1, thus the BC alone cannot discrimate be-

tween two differently sized coalitions. Generally, larger coalitions imply that the average

individual contribution and the capability requirements from each member is lower. Thus

the comparison across coalitions of different sizes requires that the metric subsume ele-

ments of both balance and size. The Fault Tolerance Coefficient (FTC) is such a metric

and has the following form:

FTC = w1× (balance metric)+w2× (size f unction). (III.18)

where w1 +w2 = 1.0.

The size f unction may be a monotonically increasing or decreasing function of coalition

size (n) depending on whether the user favors smaller or larger coalitons. The weights may

be adjusted in accordance with the importance attached to both the balance and the coalition
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Figure III.3: Size function with λ values of 0.2, 0.5 and 1.0 as size increases.

size. The following size function is utilized in this dissertation:

f (n) = 1− e−λn, 0 < λ < 1. (III.19)

The function in Equation (III.19) is montonic and asymptotically approaches 1 (like the

BC, it never exceeds 1, see Fig. III.3). Another important property is that after a particular

point, increasing n does not result in a significant increase to the function value, i.e. the

function converges to 1. This is desirable from a coalition formation perspective since after

a certain point, increasing coalition size does not yield improved performance. The exact

size at which the function stabilizes can be altered by varying λ in Equation (III.19). The

balance metric in Equation (III.18) is any appropriate metric that satisfies the properties

mentioned earlier. The balance coefficient (Equation (III.3)) is the chosen balance metric

in the Chapters III and IV.

The question is how to incorporate the FTC into the algorithm in order to select better

coalitions. Initially the algorithm proceeds as in Section III.1, determining the best-valued
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coalition without considering lopsidedness. As a modification, a list of all coalitions is

maintained whose values are within a certain range (5%) of the best coalition value. The

modified algorithm then calculates the FTC for all these coalitions and chooses the one

with the highest FTC. This ensures that if there exists a coalition whose value is within a

bound of the highest coalition value and is more fault tolerant, then the algorithm favors

the coalition with higher FTC.

III.2.4 Further Optimizations

The algorithm complexity can be significantly reduced if the robots are classified according

to capability requirements. For example, if the number of identical robots exceeds the

maximum coalition size k, then the number of robots in that category can be assumed to

be equal to k. If there are 100 available robots, each with one camera and one laser range

finder, and the maximum coalition size is ten, then the coalition enumeration can assume

that there are 100 identical robots instead of treating each one as a unique robot. Since the

robots of a particular type are identical, coalitions with up to ten robots may be composed

of any of the 100 robots. Hence, the number of candidate coalitions drops from ≈ 10010 to

ten.

III.3 The Multi-Robot Coalition Formation Algorithm

The coalition formation algorithm is iterative and a task is allocated at each iteration.

Within each iteration, the algorithm proceeds in two stages:

1. All possible coalitions are distributively calculated and the initial coalition values are

computed.

2. Agents agree on the preferred coalitions and form them.

Stage 1-Preliminary coalition evaluation: Initially each agent Ai has a list of agents A

and a list of coalitions Clist in which Ai is a member. Ai performs the following steps for

each coalition C in Clist :
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1. Calculate the coalitional capabilities vector (Bc) by summing the capabilities of the

coalition members. Formally, BC = ∑Ai∈C BAi .

2. Form a list (Ec) of the expected outcomes of the tasks in set T S when coalition C

performs those tasks. For each task t j ∈ T S:

(a) Determine the necessary capabilities for task t j.

(b) Compare t j’s capability vector B j to the sum of the coalition capabilities Bc.

(c) If ∀ i, bt j
i ≤ bC

i then utilize the CSP formulation (Section III.2.2) to verify the

locational sensor constraints for the coalition members.

(d) If the constraints are met, then calculate t j’s expected net outcome (e j) with

respect to C by subtracting the cost of unutilized resources from the net task-

value. This is the expected net outcome (e j) of the coalition-task pair <C, t j >.

Place < e j, C, t j > into Ec.

(e) Choose the highest valued coalition-task pair from Ec and place it in a set HCT

of highest valued coalition-task pairs.

At the end of Stage 1, each agent has a list of coalition-task pairs and coalition values.

Stage 2-Final coalition formation: Each agent (Ai) iteratively performs the following:

1. Locate in HCT the coalition-task pair < Cmax, tmax > with the highest value emax.

2. Retain in HCT all coalition-task pairs with values within a bound (5%) of emax.

3. Calculate the FTC for all coalition-task pairs in HCT .

4. Broadcast the coalition-task pair with the highest FTC, < CFTC, tFTC > along with

the coalition value eFTC.

5. Choose the coalition, task pair < Chigh, thigh > with the highest value ehigh from all

broadcasted coalition pairs.
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6. If Ai is a member of coalition Chigh, join Chigh, return.

7. Delete from Clist coalitions containing members of Chigh.

8. Delete the chosen task thigh from T S.

The above steps are repeated until all the agents are deleted, until there are no more tasks

to allocate, or none of the possible coalitions is beneficial. The complexity of this algorithm

is unchanged from that of the multi-agent algorithm (Shehory and Kraus, 1998). The only

additional overhead is due to the application of arc-consistency for constraint checking.

Arc-consistency runs in O(q2k3) time per coalition where q is the maximum number of

capabilities required for a task and k is the maximum coalition size. Since both q and k do

not depend on the total number of robots or the number of tasks, the check requires O(1)

operations. Therefore, choosing the largest valued coalition is on the order of the number

of coalitions, i.e., O(nk−1) (Shehory and Kraus, 1998). Thus, the CSP formulation does

not alter the complexity of the algorithm. An empirical evaluation of the effect of the CSP

formulation on the running time of the algorithm is provided in Chapter IV, Section IV.2.

III.4 Overlapping Coalitions

Section III.3 provides our multi-robot coalition formation algorithm. The described algo-

rithm iteratively assigns each coalition to an independent task, that the coalition is respon-

sible for executing. This section examines the multi-robot coalition formation problem for

the special case of precedence ordered tasks or tasks that have a temporal partial ordering

between them. The domain introduces new complexities to the coalition formation prob-

lem due to the existence of interdependencies between the various tasks. An example where

precedence ordered tasks would be of practical interest is the blocks world. Consider the

task of arranging a set of blocks starting from an initial configuration into a final config-

uration as shown in Figure III.4. In this example, blocks A1 and B1 have to be arranged

into their final position before block D1 can be placed on top of them. Similarly D1 and D2
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Figure III.4: The Blocks world (Shehory and Krauss 1998)

must be arranged prior to the arrangement of D3. Thus the order of task execution must be

consistent with: tD2, tD1 ¹ tD3

Assume that Coalitions of robots have been assigned the tasks of arranging the different

blocks. Thus we might have a robot X that is a member of all three coalitions responsible

for the arrangement of D1,D2 and D3 in Figure III.5 since these tasks have to be executed

in order. In other words, we may have coalitions whose members overlap. However, closer

examination reveals that the twin tasks of arranging blocks D1 and D2 are independent of

each other, hence they may be executed in parallel or in any random order. Therefore,

it would be more efficient to assign disjoint coalitions to these tasks to allow for parallel

arrangement of D1 and D2. This idea can be generalized into a sequence of precedence

ordered tasks where some intermittent sub-sequences may consist of independent tasks.

Efficient solutions in this case would execute the tasks in such a subsequence in parallel by

assigning disjoint coalitions to as many tasks in the subsequence as possible. Subsequences
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Figure III.5: Independent Tasks (Shehory and Krauss 1998)

of tasks for which interdependencies do exist may be performed using overlapping coali-

tions.

III.4.1 Structure of Tasks

A high level planner like GraphPlan (Blum and Furst, 1997) may be used to develop the

overall partial ordering of the tasks. From this plan, a precedence order graph can be

constructed, with each node of the graph representing a task and edges representing depen-

dencies between tasks. Fig. III.6 provides a precedence graph for a set of tasks where tasks

t1 and t2 have no outstanding dependencies, whereas task t3 may be performed only after t1

and t2 are completed. Each task has a utility associated with the task. The utility of a task

ti will depend on:

1. The number of tasks dependent on the completion of ti.

2. The resource requirements for ti.
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Figure III.6: Precedence order graph for a set of tasks. Each task independently has iden-
tical utility (u) and the utilities are propagated backwards from the leaves with a discount
factor α .

Formally, the utility of each task is evaluated by calculating the resources it consumes

in addition to the utility of dependent tasks, propagated backwards from the leaf nodes and

weighed by a discount factor α(0 < α < 1). The utilities from two branches are summed

at the intersecting node. Thus, tasks that have a greater number of immediately dependent

tasks are assigned a higher utility. For example in the precedence graph in Fig. III.6,

assuming that all independent tasks have an identical task utility (u), then in the precedence

ordered graph task T1 will have a higher utility (u+3uα) than task T2(u+2uα +α2u) even

though there are three tasks dependent on both T2 and T1.

III.4.2 The Precedence Ordered Coalition Formation Algorithm

The idea is to find the largest subset of tasks consistent with the task ordering that can be

executed with the currently available set of robots. This is achieved by continuously up-

dating the set of executable tasks and free agents to perform those tasks, while utilizing the

coalition formation algorithm outlined in Section III.3. Formally the algorithm is described

as follows:
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Initialization: Each agent stores in memory the precedence order graph generated by a

high level planner. The agents extract all tasks that have no unfulfilled pre-requisite tasks.

Call this list of candidate tasks the candidate list, Tcand . Each agent also maintains a list, of

free agents Fa representing agents not currently engaged in performing a task.

1. Coalitions are formed from the agents in Fa for performing the tasks in Tcand using

the coalition formation algorithm from Section III.3. Agents that are assigned to a

task are removed from Fa. Similarly, allocated tasks are removed from Tcand .

2. Upon completion of a task t j by a coalition C, the lowest numbered member Ai of

coalition C broadcasts the coalition task pair < t j,C >.

3. Upon receipt of a task completion message < t j,C > each agent performs the fol-

lowing:

(a) Add to the list of free agents, Fa the members of the coalition C that completed

task t j.

(b) Check the precedence graph and include in Tcand any fresh tasks that no longer

have outstanding dependencies after the execution of t j.

The above steps are repeated until there are no more tasks remaining to be executed in

the precedence order graph.

As mentioned in Chapter I, despite the existence of a plethora of coalition formation

algorithms in the Distributed Artificial Intelligence literature, none of these algorithms have

previously been demonstrated in a multi-robot setting with real world tasks. This chapter

identifies reasons for this divide between the multi-agent and multi-robot domains and

provides solutions to the perceived difficulties while modifying and extending a well known

multi-agent coalition formation algorithm to the multi-robot domain.
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CHAPTER IV

ALGORITHMIC VALIDATION EXPERIMENTS

Chapter III introduced a popular heuristic-based algorithm for software agent coalition

formation and provided modifications and extensions for application to the multi-robot

domain. This chapter presents experiments testing the validity of the suggested multi-robot

coalition formation algorithm. Eight sets of experiments were conducted, with each of the

first three highlighting a suggested modification to Shehory and Kraus’ coalition formation

algorithm. Five additional experiments were conducted to validate the new algorithm with

a larger number of robots. The first two experiments demonstrate the impact of the FTC

on the resulting coalitions, both in simulation and with real world robots. The next three

experiments demonstrate the algorithm’s applicability to real world tasks in the multi-robot

domain.

IV.1 Communication Experiment

The first experiment measured the variation of time required to evaluate coalitions with

and without communication. The number of agents and maximum coalition size were both

fixed at five. Communication occurred via TCP/IP sockets over a wireless LAN (Figure

IV.1 provides the results). The time for coalition evaluation without communication is sig-

nificantly less than the time required for evaluation with communication. The time without

communication increases at a faster rate as the number of tasks increases. This result occurs

because the agent must evaluate a larger number of coalitions when it forgoes communica-

tion. Presumably, the two conditions will eventually meet and thereafter the time required

with communication will be less than that required without communication. For any prac-

tical Agent/Task ratio the time saved by minimizing communication outweighs the extra

computation incurred.
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Figure IV.1: Execution time with and without communication.

IV.2 CSP vs. NON-CSP Experiment

The second set of experiments measured the effect of the CSP formulation on the algorithm

execution time and demonstrates the algorithm’s scalability. Figure IV.2 measures the vari-

ation of coalition formation time with and without constraint checking in the constraint

satisfaction graph as the number of agents increases. Figure IV.3 shows the variation of

execution time as the number of tasks increases. The task complexity in these experiments

was similar to the box-pushing task. It can be seen from Figures IV.2 and IV.3 that the

CSP formulation does not add a great deal to the algorithm’s execution or running time.

This implies that the CSP formulation can be used to test the validity of a multiple-robot

coalition against a task without incurring much overhead.

In some cases, the CSP formulation actually saves time by disqualifying a large number

of coalitions from performing a particular task. These coalitions are then eliminated from

future consideration in any of the future iterations. Therefore the net evaluation time is
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Figure IV.2: Execution time vs. Number of Agents.

actually sometimes slightly reduced as shown in Figure IV.3.

For completeness, Figure IV.4 shows the three dimensional plots for the execution time

with and without the CSP formulation over the complete range of values for the number of

tasks and the number of agents. The surface plot shows that the CSP formulation does not

alter the complexity of the coalition formation algorithm.

IV.3 Fault Tolerance Coefficient Experiment

This experiment demonstrates the effect of utilizing the FTC to favor the creation of more

fault tolerant coalitions. The Player/Stage simulation environment (Gerkey et al., 2001)

was employed. The tasks required pushing a very large box by jointly exerting forces

on the box. The degree of task difficulty was adjusted by varying the box’s size and its

coefficient of friction with the floor. Adjusting the forces the robots could exert varied the

robots’ capabilities. (Note: boxes in the simulations did not actually move). The FTC used
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Figure IV.3: Execution time vs. Number of Tasks.

Figure IV.4: Execution time as a function of Number of Tasks and Number of Agents.
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for these experiments was:

FTC = w1×BC +w2× [ f (n)], w1 = w2 = 0.5 (IV.1)

where, f (n) = [1− exp(−λn)], with λ = 0.5. (IV.2)

Box-pushing required the robot to possess a laser range finder, be mobile, be able to exert a

certain force F , and be able to communicate with coalition members. Thirty nine simulated

robots were employed, as shown in Figure IV.5(a). The robots were numbered 1 to 39 from

bottom to top along the left side of the figure. Each robot had a specific force capability

type: small robots exerted five units of force (R1−R19), medium sized robots exerted 15

units of force (R20−R33) and large robots had 25 units of force (R34−R39). The robots used

the incremental SLAM algorithm (Gerkey et al., 2001) for localization and the vector field

histogram algorithm (Borenstein and Koren, 1991) for navigation and obstacle avoidance.

The maximum allowed coalition size (k) was fixed at 15.

Simulation snapshots are provided for a task requiring 55 units of force. Figure IV.5(a)

shows the resulting coalition without incorporating fault tolerance. The coalition is com-

prised of two large robots (R34,R35) and one small robot (R1). The BC and FTC values for

this coalition are 0.51 and 0.60 respectively.

Figure IV.5(b) shows the same task performed while incorporating the FTC with a

decreasing size function,− f (n), placing a low priority on fault tolerance and a high priority

on minimizing the number of robots. The resulting coalition is comprised of two medium

sized robots (R21,R22) and one large robot (R34). The resulting coalition is more balanced

and has a higher BC (0.91) and consequently a higher FTC (0.80) than the FTC value of

the coalition in Figure IV.5(a).

Figure IV.5(c) depicts the experiment conducted with the size function, f (n), that favors

the formation of larger coalitions. The resulting coalition consists of eleven small robots

(R1,R2, ...,R11). Thus, a perfectly balanced coalition is obtained (BC = 1). The advantage
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(a) (b) (c)

Figure IV.5: The coalition formed (a) Without the FTC. (b) With the FTC and a size
function = − f (n). (c) with FTC and a size function = f (n).

56



is that a larger number of small, less capable robots should have higher fault tolerance.

If one robot fails, it should be easier to replace as opposed to replacing a larger, more

capable robot. The coalition’s FTC for this coalition is the highest of all possible evaluated

coalitions (Figure IV.5(a)-IV.5(c)) at 0.996.

IV.4 Real Robot Experiments

The FTC simulation experiments were ported to real robots. The challenge was to find

suitable tasks that the robots could perform and whose difficulty could be varied, while

also quantifying the robots’ capabilities so that a robot’s utility for a particular task could

be assessed.

The experiments ported the algorithm to three Pioneer 3-DX robots. The experimental

tasks involved pushing a box through a distance of one meter in a straight line from its

current position. A rod was inserted through the box, preventing interference between the

robots. The maximum coalition size was restricted to two robots. The robots positioned

themselves so that the box’s net torque was approximately zero in order to ensure that the

box did not rotate beyond the acceptable limits. The FTC parameters were identical to

those defined for the experiments in Section IV.3, where the size function is as defined in

Equation (IV.2). Since the size is constant for these experiments, the FTC is equivalent to

the BC i.e. FTC = 0.5×BC + constant.

Velcro was attached to the rod to prevent slippage. The boxes contained weights that

permitted variation in task difficulty. The robots know their initial positions, the box posi-

tion, and navigate using odometry. The robots’ capabilities were changed based on varying

the robots’ speed. Every 0.05 m/s of speed increases the robots’ capability by ten units.

Each pound of weight in the box increased the task value by ten. The purpose was to verify

the task allocation and coalition formation rather than monitoring the quality of the task

execution. Figure IV.6 shows an experimental execution.

The experimental results are tabulated in Table IV.1. Size did not play a role in de-
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Figure IV.6: Two pioneer DX robots pushing a box after forming a coalition.

Table IV.1: Coalition formation results for real robot box pushing tasks.

Exp. Robot Capabilities Task Value Coalitions Formed
Robot1 Robot2 Robot3 Task1 Task2 With BC Without BC

Members BC Members BC
1 40 40 60 80 100 1,2 1 1,3 0.96
2 20 20 30 40 50 1,2 1 1,3 0.96
3 45 25 25 50 70 2,3 1 1,2 0.97
4 25 20 20 50 70 - - - -
5 15 20 10 50 60 - - - -
6 35 35 40 100 80 - - - -
7 10 15 15 20 30 2,3 1 2,3 1
8 20 25 25 70 50 2,3 1 2,3 1
9 30 30 30 50 60 1,2 1 1,2 1
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termining the coalitions that were formed since only three robots were employed. The

coalition formation was influenced primarily by the BC. Experiments 1 - 3 demonstrate

that different robotic coalitions form depending on whether or not the BC is utilized. For

example, in Experiment 1, robots 1 and 2 form a coalition to complete task 1 (without BC)

even though there is the potential for other coalitions ([2, 3] or [1, 3]) to perform the more

valuable task 2. This results occurs because the BC is higher for the task 1 coalition [1,2]

than for the potential task 2 coalitions [1, 3] or [2, 3].

Experiments 4 - 6 demonstrate situations where the three robots could form a coalition

but do not because the maximum coalition size is limited to two robots. This result demon-

strates that the algorithm does not perform an exhaustive search through the coalition space,

rather it only considers coalitions with fewer than k (here two) members.

The final experiments 7 - 9 are indicative of situations when the BC has no impact on the

resulting coalitions. The BC value is inconsequential because the highest valued coalition

also has BC = 1.

The real world robot experiments required minor algorithm adjustments to account for

wheel slippage and the mapping of capabilities to real numbers. However, the experiments

successfully establish that the algorithm performs satisfactorily with real robots.

IV.5 Coalition Formation Experiments

The Sections IV.3 and IV.4 experiments provided preliminary verification of the algorithm’s

applicability to real world tasks; however it was necessary to validate the algorithm with a

larger number of robots. Experiments were conducted with simulated and real world robots

that had heterogeneous sensory capabilities. Each robot possessed a subset of the following

capabilities: bumper, laser range finder, camera, mobile, communications, and ultrasonic

sonar. The FTC employed in these experiments was identical to that used in Section IV.3.

The following tasks were employed for the experiments:

• Box-Pushing: This task requires two robots form a coalition, navigate through the

59



environment from their initial locations to either side of a large box and simultane-

ously push the box through a straight distance of one meter. The task requires that

the two robots be equipped with laser range finders, be able to communicate with

each other, and be mobile. The robots navigate through the environment using the

vector field histogram algorithm (Borenstein and Koren, 1991) and orient themselves

perpendicular to the box using the laser range finders. The incremental SLAM al-

gorithm (Gerkey et al., 2001) provided laser corrected odomotery. A synchronizing

message ensured that the robots pushed the box simultaneously. This task requires

that the coalition members perform their actions in a synchronized fashion and hence

is a tightly-coupled task.

• Cleanup: This task involves two to five robots forming a coalition to clear a room

of small colored boxes by pushing them to the edge of the room. Each robot re-

quires a camera, a set of sonars, and must be mobile. A behavior based approach

was employed to perform the tasks. Behaviors include locating the colored boxes

and pushing them towards the wall. The robots use a sonar based obstacle avoid-

ance behavior and the cameras for object (box) tracking. This task does not require

synchronization between robots and therefore is a loosely-coupled tasks.

• Sentry-Duty: This task involves two to four robots forming a coalition to monitor

different areas of the environment for motion. The task requires that the robots be

equipped with laser range finders and be mobile. Again the vector field histogram

algorithm is used for navigation and the laser range finders are used to detect motion.

The incremental SLAM algorithm provided laser corrected odometery. The robots

do not communicate with each other, but the coalition members combine to monitor

a particular area for motion. Therefore, this task falls in between a tightly-coupled

and a loosely-coupled task.
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IV.5.1 Single Task Robot Validation

These experiments demonstrated that the coalition formation algorithm operates indepen-

dent of the nature of the tasks and the task methodology utilized to perform those tasks.

Separate experiments were performed with the box-pushing, sentry duty, and cleanup tasks.

The simulation and real world experiments for each type of task are tabulated in Table IV.2.

The maximum coalition size for all experiments was four. All real-world experiments, in-

volved a total of twelve heterogeneous Pioneer DX robots.

The box-pushing task required two robots form a coalition to push a large box through

a straight distance of one meter. The tightly coordinated task required synchronous mes-

sage passing between robots. The Experiment 1 simulation, in Table IV.2, was conducted

with four box-pushing tasks and ten simulated robots. All four box-pushing tasks were

successfully allocated and performed by four different coalitions, as shown in Figure IV.7.

The corresponding real world experiment was comprised of two box-pushing tasks, each

requiring two robots that were successfully allocated, Figure IV.8 provides an example run.

The cleanup task (see Figure IV.10.) involved forming a coalition to clear an area of

boxes. The implementation is behavior based with robots performing a random walk until a

colored object is identified via image processing. The robot then moved towards the object

(and consequently pushed it) until it’s sonar sensors indicated that the robot was close to a

Table IV.2: Results from simulated and real robots forming coalitions for a single task

Exp. Task Type Task Methodology Simulation Real Robots
NRobots NTasks NRobots NTasks

1 Box-pushing Synchronized 10 4 12 2
(Tightly coupled)

2 Foraging Behavior-Based 12 1 12 1
(Loosely coupled)

3 Sentry-Duty Semi-Synchronized 9 2 12 2
(Intermediate coupling)
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Figure IV.7: Simulated coalitions of two robots performing four box-pushing tasks.

Figure IV.8: Two coalitions of two robots performing two box-pushing tasks.
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wall, in which case the object was deposited, obstacle avoidance became active, the robot

turned, and resumed a random walk. The corresponding simulation task is the foraging task

that involved robots picking up objects of interest (pucks) and depositing them at a goal

location. Experiment 2, in Table IV.2, represents a simulation run requiring four robots to

form a coalition from twelve simulated robots. Figure IV.9 shows four robots performing

the foraging task. The corresponding real world cleanup task involved four robots forming

a coalition as shown in Figure IV.10.

Figure IV.9: A simulated four robot coalition performing a foraging task.

Figure IV.10: Robot coalition performing the real-world cleanup task.

The sentry-duty task involved a team navigating through the environment to fixed posi-

tions (normally an entrance or exit) and performing motion detection from these positions.

Figure IV.11 shows a simulation run in which two coalitions were formed comprised of

two robots each from a possible nine robots. This simulation is represented by Experiment
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Figure IV.11: Two coalitions (two robots each) performing a sentry-duty task.

3 in Table IV.2. During the real robot sentry-duty experiments, two tasks were successfully

allocated, each requiring two robots.

All tasks were successfully allocated and performed by the coalition formation algo-

rithm in both simulation and real robot experiments. These results demonstrate that the

algorithm operates independently of the nature of the tasks (loosely-coupled vs. tightly-

coupled), or the methodology utilized to perform the tasks (behavior-based vs. synchro-

nized).

IV.5.2 Multiple Task Robot Validation

These experiments demonstrated that the task allocation operates independently of task

diversity. Separate coalitions were formed for combinations of the Box-pushing (tightly-

coupled) task, the Cleanup task (loosely-coupled, behavior-based), and the Sentry-Duty

task (intermediate-coupling). Table IV.3 illustrates three simulation runs with different

combinations of each of the three tasks. The coalitions were chosen from 40 heteroge-

neous robots. Figure IV.12 shows a simulation that involved four distinct box-pushing

tasks, a foraging task, and two sentry-duty tasks (corresponding to Experiment 1 in table

IV.3). All experiments involved combinations of the box-pushing task requiring two ro-

bots, the cleanup task requiring four robots, and the sentry-duty task requiring two robots.

Experiment 2 represents a simulation with three box-pushing tasks, two foraging tasks, and

two sentry duty tasks. Experiment 3 represents a simulation with four box-pushing tasks,

two foraging tasks, and two sentry duty tasks. All three runs represent simulations where
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Table IV.3: Results from simulated robots forming coalitions for multiple tasks.

Experiment box-pushing foraging sentry-duty
Ntasks Nalloc Ntasks Nalloc Ntasks Nalloc

1 4 4 1 1 2 2
2 3 3 2 2 2 2
3 4 4 2 2 2 2

Table IV.4: Results from real world robots forming coalitions for multiple tasks.

Experiment box-pushing cleanup sentry-duty
Ntasks Nalloc Ntasks Nalloc Ntasks Nalloc

1 2 2 1 1 2 2
2 2 2 4 1 10 4
3 1 1 1 1 2 2

the algorithm successfully allocated all tasks.

The real world robot experiments employed thirteen robots. Eight robots were equipped

with laser range finders and five were equipped with cameras. All real robot tasks required

the same number of robots as defined for the simulation experiments. Figure IV.13 shows

an experiment with a cleanup task, 2 sentry duty tasks, and a box-pushing task (Experi-

ment 3 in Table IV.4). Table IV.4 illustrates experiments with different combinations of the

three tasks performed by the real robots. Experiment 1 represents a situation in which the

task requirements are met and all tasks are successfully allocated. Experiment 2 represents

a situation in which all tasks could not be successfully allocated because of insufficient

resources. Experiment 3 represents a situation where the resources exceed the resource

requirements. Both Tables IV.3 and IV.4 demonstrate that the algorithm is applicable to a

combination of task types (and task methodologies) when multiple tasks must be simulta-

neously allocated to coalitions.

Each case allocated the tasks to coalitions that successfully performed the task. Fig-

ure IV.14 indicates the message traffic rate for a robot participating in the task allocation

process. The peaks correspond to the broadcasting of coalition-task values, while the flat

regions correspond to periods spent evaluating the coalition lists. As more tasks are allo-
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Figure IV.12: Simulation of four two-robot box-pushing tasks, two two-robot sentry-duty
tasks, and a four robot foraging task.

cated, fewer robots remain, and the number of transmitted messages decreases with each

iteration. The sharpest spike or messaging burst required a bandwidth of approximately

2.34Kbps, which is very acceptable given the available bandwidth on modern networks.

This suggests that the algorithm’s messaging requirements should scale for an even larger

number of robots.

IV.5.3 Coalition Formation in Precedence Ordered Environments

Chapter III, Section III.4.2 presented an algorithm to extend the application of the multi-

robot coalition formation algorithm to domains where tasks had a partial ordering between

them. This section presents experiments, both in simulation and the real world, demon-

strating the successful application of the algorithm.
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Figure IV.13: The real robots performing a combination of box-pushing, sentry-duty and
cleanup tasks.

Figure IV.14: Messaging traffic as time progresses and the number of robots participating
decreases.
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Patrol: An additional task that is employed for these experiments is the Patrol task that

involves a pair of patrol robots navigating to and exploring a room. In order to accomplish

the task, the robots must be equipped with laser range finders, a map of the environment,

and sensors to detect contaminants. This task does not require communication between

robots and similar to the sentry duty task, requires intermediate coupling.

Simulation Experiment

The environment is a mapped indoor urban building with rooms and corridors. Boxes are

placed at specific locations in the building to block access to rooms or other corridors as

shown in the simulated environment in Figure IV.15. Thus there are two types of tasks

to be performed by the robots in this environment, namely box-pushing and patrol. Eight

robots were simulated for this experiment. The four pusher robots (robots R1−R4 in Figure

IV.15) were equipped with bumpers, laser range finders, and could communicate with each

other. The four patrol robots (robots R5−R8 in Figure IV.15) did not have bumpers but had

simulated sensors that could be used to detect contaminants. All robots had a map of the

environment. The utility for all independent box-pushing and patrol tasks was identical.

Thus, the overall utility of a task T in the precedence order graph depended largely on how

many tasks were dependent on T .

The precedence order graph for the given set of tasks depicted in Figure IV.15 is shown

in Figure IV.16. The Chapter III, Section III.4.2 algorithm was utilized to allocate and

perform tasks dynamically. The robots formed coalitions on the fly to perform tasks as

they became eligible for execution. (Note: Due to imperfections in the simulator the robots

did not push the boxes in a realistic manner. Due to this problem occasionally the boxes

had to be moved manually, however in the real world experiments the boxes were pushed

autonomously by the robots).

Figure IV.17 demonstrates the various box-pushing and patrol tasks being performed

by the different coalitions based upon the precedence order graph in Figure IV.16. Figure
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Figure IV.15: The urban indoor task environment.

Figure IV.16: The precedence order graph for the simulation environment.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i) (j)

Figure IV.17: Coalitions being formed on the fly to perform box-pushing and patrol tasks
as they are unblocked.

IV.17(a) shows Robots R1 and R2 performing task T1. Completion of task T1 unblocks

tasks T2,T3 and T4; however since only two box-pushing tasks can be performed at a time,

tasks T2 and T4 are allocated coalitions {R3, R4} and {R1, R2} as shown in Figure IV.17(b)

and IV.17(c). Once, T2 and T4 are executed, tasks T5,T6,T7,T8, and T10 become unblocked.

Figure IV.17(d) shows the robot coalitions navigating to perform tasks T3, T5, and T10. Task

T3 is being performed in Figure IV.17(e) by coalition {R1, R2}, thereby unblocking task

T12. Figure IV.17(f) shows robots navigating to perform T12 and Figure IV.17(g) shows

T12 being performed by a coalition {R5, R8} of patrol robots and T5 being performed by

a coalition of pushers {R3, R4}. Figure IV.17(h) shows tasks T6 and T10 being performed

by coalitions of box-pushers {R1, R2} and patrol robots {R6, R7} respectively. Tasks

T7,T8 and T11 are shown performed in Figure IV.17(i) by coalitions {R1, R2}, {R3, R4}
and {R6, R7} respectively. Finally, T13 and T14 are performed by coalitions {R6, R7} and

{R5, R8} in Figure IV.17(j).
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Figure IV.18: The urban indoor task environment (Real Robot Task).

Real Robot Experiments

Two real robot experiments were performed, in the first experiment a building corridor

was mapped and boxes were placed, as in the simulation environment as shown in Figure

IV.18. The environment had two rooms to be patrolled that were connected by a corridor

and two boxes blocking each room. The task precedence graph is provided in Figure IV.19.

Four robots, two patrol robots and two pusher robots were employed. The coalitions were

formed to perform each task as it became eligible for execution, as demonstrated in Figures

IV.20(a) - IV.20(f). Figure IV.20(a) shows the robots at their starting positions. Initially

two pusher robots coalesce to push a box and unblock a room (task T3 performed in Figure

IV.20(b)), which prompts the patrol robots to coalesce and explore the unblocked room

(task T4 performed in Figures IV.20(c) and IV.20(d)). The pushers meanwhile unblock a

second room (task T2 performed in Figure IV.20(e)) and the patrol robots then visit and

cover the second unblocked room (task T1 performed in Figure IV.20(f)). All robots had

a map of the environment and utilized a Monte-Carlo localization algorithm to determine

their individual positions in the environment.

The second experiment involved forming coalitions to perform three box-pushing tasks.

The objective was to manipulate the boxes so that they form a T-shape. Figures IV.21(a)-

IV.21(b) show the initial and desired final configuration of the boxes. The third task was
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Figure IV.19: Precedence order graph for the task environment.

(a) (b)

(c) (d)
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(e) (f)

Figure IV.20: (a) Robots at staring position. (b) Pushers coalesce to push a box. (c) Patroller
robots coalesce to explore first unblocked room. (d) Pushers push a block to unblock second
room. (e) Coalition of robots patrolling a room. (f) Patrollers visit second unblocked room.

dependent on the successful execution of the first two independent tasks as shown in Figure

IV.22. Figure IV.23(a) shows the robots at their starting positions. Figure IV.23(b) shows

the two tasks T1 and T2 being performed by two coalitions of pushers. Figures IV.23(c)

shows a coalition navigating to perform T3. Finally, T3 is being performed by the same

coalition that performed task T1 in Figure IV.23(d).

Robotic domains frequently involve temporal ordering between tasks, the above ex-

periments demonstrate that the algorithm can be applied to form overlapping coalitions to

perform these tasks on the fly, as they become eligible for execution.

(a) (b)

Figure IV.21: Initial (a) and final (b) configuration of boxes to form a T-shape (Real Robot
Task).
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Figure IV.22: Precedence order graph for the task environment.

(a) (b)

(c) (d)

Figure IV.23: (a) Robots at starting positions. (b) Robots coalesce to perform the two inde-
pendent box-pushing tasks. (c) Two robots then form a coalition to perform the dependent
box-pushing task. (d) Dependent task performed.
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IV.6 Discussion

The level of imbalance has important implications with regard to a coalition’s level of fault

tolerance. The effect of incorporating the FTC on the coalition formation was demon-

strated in Sections IV.3 and IV.4. Three different tasks were defined and tested both in

simulation and with real robots in order to validate the algorithm with a large number of

robots. The tasks required different levels of coupling and each task required a different

methodology for task execution. The results in Section IV.5.1 demonstrate that the algo-

rithm operates independent of the nature of the tasks or task methodology. The experiments

in Section IV.5.2 demonstrate that the algorithm is able to simultaneously allocate different

types of tasks. Finally, IV.5.3 shows that the algorithm may be extended to form overlap-

ping coalitions to perform precedence ordered tasks.

IV.7 Summary

Finding the optimal multi-robot coalition for a task is an intractable problem. This work

shows that, with certain modifications, coalition formation algorithms provided in the

multi-agent domain can be applied to the multi-robot domain. Initial experiments were

conducted in simulation, however the effect of distributing the algorithm over a number of

machines and its scalability could only be ascertained with real robot experiments. Real

world issues like obstacle avoidance, battery power, localization accuracy only presented

themselves in real world scenarios.

The coalition imbalance and its impact on the coalition’s fault tolerance was demon-

strated. Metrics for measuring balance and the fault tolerance of a coalition were evaluated.

The algorithm was then demonstrated to work in simulation and on a set of Pioneer-DX ro-

bots with a diverse set of tasks. Finally, the extended algorithm that forms coalitions for

precedence ordered task domains was demonstrated with a set of real world and simulated

tasks.
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CHAPTER V

BALANCE AND TEAM PERFORMANCE

Chapter III, Section III.2.3 introduced the notion of coalition imbalance and its implications

with regard to the formation of fault tolerant coalitions. This chapter provides a deeper ex-

ploration of the concept of coalition imbalance and identifies a relationship between the

imbalance level of a multi-robot team and team performance. Experiments were conducted

with simulated multi-robot soccer and foraging teams to demonstrate that teams lying at

the extremities of the performance spectrum tend to exhibit a higher level of balance. Lat-

ter sections of the chapter describe experiments that were conducted to demonstrate how

balance information may be utilized to improve overall team performance.

V.1 Introduction

As the scope and complexity of modern task demands exceed the capability of individu-

als to perform them, teams are emerging to shoulder the burgeoning requirements. Ac-

cordingly, researchers have striven to understand and enhance agent performance in team

settings. Teamwork with human teams is a well studied topic and the last half century

has produced many theories that encompass different teamwork perspectives (Paris et al.,

2000; Baker and Salas, 1992; Ilgen, 1999; Kleinman and Serfaty, 1989). Although team

theories began as descriptive efforts, many have evolved over time to provide more norma-

tive guidelines for improving teams. It is now well accepted that to understand effective

team performance or ‘teamwork’ one must understand how groups of individuals function

to produce effectual synchronized output, rather than just summed or aggregated responses

(Steiner, 1972; Hackman, 1983; Nivea et al., 1978; Fleishman and Zaccaro, 1992).

The same principles may also be extended to multi-robot teams, i.e. it is important

to understand teamwork and team formation from an individual’s perspective to generate

effective robot teams. This chapter analyzes one such aspect of multi-robot teams, namely
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the notion of balance. The notion of balance in a multi-agent team refers to the variance of

individual contributions by team members towards the completion of the joint team task.

A higher balance implies that the team members are contributing more evenly toward the

joint team task.

Although balance is a very recent concept in multi-robot coalition formation (Vig and

Adams, 2005), balance between teams has been previously studied in sports economics

(Fort and Maxcy, 2003) for the purpose of professional league formation. The motiva-

tion behind Fort and Maxcy’s work was to preserve the competitive edge of a professional

soccer or baseball league in order to retain spectator interest and maintain ticket sales.

However, the idea of maintaining balance within a team is to the best of our knowledge

a relatively unexplored domain. A question often asked of human sports teams is: do

teams that are cohesive and balanced perform better than teams that have a few outstand-

ing players and is otherwise highly imbalanced? Quantifying human player capabilities

(height, stamina, strength, skill, etc.) is highly subjective and there are inherent difficulties

associated with measuring individual contributions of human players. Therefore, conduct-

ing a thorough investigation of imbalance using human teams is impractical. Additionally

variables such as playing conditions, injuries, and motivations make it difficult to acquire

consistent, reliable data that is necessary in order to analyze the effects of imbalance.

Multiple robot teams in contrast provide an excellent platform for research in this area

because robot teams offer a domain where these variables can be controlled to a greater

degree. Robot soccer teams are generally comprised of players that are identical in their

physical attributes, something impossible to attain with human teams. Also, robot teams

can play each other repeatedly under identical conditions without the risk of injury or fa-

tigue, which facilitates the acquisition of reliable data for statistical analysis. One contri-

bution of this chapter is a technique for quantifying the importance of individual robots in

domains where importance is not directly measurable such as multi-robot soccer.

It should be mentioned that multi-robot teams must deal with a variety of real world
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constraints that make their analysis more complex. Robots often encounter partial and

complete robot failures, thus the procedure for multi-robot team formation must attempt to

take probability of failure into account and must favor fault tolerant teams. This chapter

discusses the implications of balance with regard to fault tolerance.

This chapter also investigates the impact of coalition imbalance on the performance

of multi-robot soccer and foraging teams in an effort to better understand the relationship

between coalition imbalance and performance. Experimental results indicate teams lying

at the extremities of the performance spectrum tend to be more balanced relative to teams

in the middle of the performance spectrum. In addition, this chapter investigates the pos-

sibility of improving team performance by utilizing balance information. Subsequently, it

was found that by improving the contributions of under-performing agents, the overall team

performance improved significantly, in most cases. Further experiments were conducted in

the multi-robot foraging environment in order to study the effect of imbalance in a loosely

coupled task domain.

The remainder of the chapter is organized as follows: Section V.2 investigates the re-

lationship between imbalance and performance of a multi-robot team and describes the

method used for balance quantification, Section V.3 outlines the experimental design, and

Section V.4 discusses the obtained results. Section V.5 provides a discussion and conclud-

ing remarks.

V.2 Imbalance and Performance

Balch (1998) devised the simple social entropy metric for the measurement of diversity.

Simple social entropy was designed by applying Shannon’s (Shannnon, 1949) information

entropy to the measurement of diversity in robot teams. Balch further analyzed the impact

of diversity on performance for both multi-robot soccer and multi-robot foraging and ob-

tained diverging results for both tasks. While homogeneous teams were found to yield the

best performance for multi-robot foraging, heterogeneous teams exhibited relatively better
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performance in the multi-robot soccer domain.

This section investigates balance as a common factor in high performance teams for

both the soccer and foraging domains. Thus far in this dissertation balance has been studied

from a purely fault tolerance perspective. This section investigates the correlation between

balance and the performance of a multi-robot team. The experiments supporting this work

were designed to utilize Balch’s experimental framework for both heterogeneous, tightly

coupled soccer tasks and homogeneous, loosely coupled foraging tasks.

V.2.1 Multi-Robot Soccer Environment

Balch’s multi-robot soccer experiments employed Q-learning (Sutton and Barto, 1998) in

order to teach the robots to play soccer. The learning approach incorporated a touch-based

reward function. According to this function, each robot was rewarded based on how re-

cently the robot touched the ball prior to an event (goal scored for or against the robot’s

team). Formally, the reward function is given by:

Rtouch(t) =





γ ttouch
d if the team scores at t-1.

−γ ttouch
d if the opponent scores at t-1.

0 otherwise.

Where ttouch is the time in milliseconds since the agent last touched the ball. γd is a para-

meter set to a value between 0 and 1 that indicates how quickly a potential reward should

decay after the ball is touched. Note that if γd = 1, all robots in a team receive equal

reinforcement (= 1 or -1) each time a goal is scored.

Utilizing this reward function, Balch ran experiments varying the values of γd and dis-

covered a positive correlation between γd and performance. Balch also demonstrated that

homogeneous soccer teams do not perform as well as heterogeneous soccer teams. How-

ever, Balch found that there was no correlation between γd and the level of heterogeneity.

Balch was able to conclude from these results that while a heterogeneous team will outper-

form a homogeneous team, the degree of heterogeneity, as measured using social entropy
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does not correlate with team performance.

This Chapter includes results from experiments using a similar experimental setup, only

instead of measuring the social entropy, balance was the quantity measured for each team

as γd varied across a range of values. However, measuring balance entails the acquisition of

knowledge regarding the individual contributions of all team members to the overall team

objective. The procedure followed to collect the required data is described in the remainder

of this Section.

Measuring Imbalance

Chapter I, Section III.2.3 discussed the role of balance in the formation of more fault toler-

ant coalitions, and introduced the FTC as a metric that subsumed elements of both balance

and coalition size. Since the size of a multi-robot team is constant, this Section concerns

itself only with balance and how to measure balance in a domain such as multi-robot soccer.

The balance coefficient metric works well when the taskvalue can be reduced to a scalar

value, however it does suffer from some limitations. Determining an exact taskvalue is not

possible for all task domains. Also, the balance coefficient does not account for negative

contributions that correspond to cases when a robot detracts from the overall task perfor-

mance. It is often possible to have negative contributions in multi-robot soccer. Since the

objective is to compare imbalance levels across different teams, the balance coefficient is

inappropriate for quantifying balance in this particular domain. Also, the robots have iden-

tical sensor and actuator capabilities and hence the differences in individual contributions

are directly related to the policies that each robot follows. Taking these issues into consid-

eration, a different technique for quantifying balance was devised. In order to measure the

individual contribution of a particular agent towards the overall team performance, the team

performance without the agent was measured. The drop (or potential gain) in performance

when a robot was excluded from participation in a task provided a reasonable estimate of

the relative contribution from that robot.
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Figure V.1: A sample five against five Javabots simulation (Balch and Ram, 1998). The
adaptive team (dark colored robots) played the control team (light colored robots).

Adapting this technique to the multi-robot soccer domain required the adaptive soccer

team to converge to a policy via Q-learning. Then the adaptive team played against a fixed

control team. Fig. V.1 provides a sample simulation of the full adaptive team playing the

fixed control team.

After the performance of the adaptive team was recorded, it was important to obtain an

estimate of individual player contributions to the overall performance. The individual con-

tribution was determined by removing each robot team member one at a time and recording

the resulting team performance. The relative contribution of a particular team member Ai

was obtained by subtracting the performance of the four member team (without Ai) Pf ull−Ai

from the performance of the full five member team Pf ull . Fig. V.2 shows a sample simula-

tion where four members of the adaptive team play the full five member control team.

The contribution of an individual agent Ai was normalized across the range of the

experiment by calculating the fractional change in performance when Ai was removed with

respect to the maximum performance exhibited by all teams when any agent was removed.

Hence the individual contribution C(i) of member Ai was evaluated as follows:

C(i) =
(Pf ull−Pf ull−Ai)

MAX(Pf ull,Pf ull−A1,Pf ull−A2 , ...,Pf ull−A5)
(V.1)
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Figure V.2: A sample four against five simulation. The four robot adaptive team (dark
colored robots) played the five robot control team (light colored robots).

Finally, imbalance is quantified as the standard deviation in the contributions for all five

members.

Imbalance =

√
∑(C(i)−C)2

5−1
(V.2)

where C is the mean contribution of all five team members.

V.2.2 Multi-Robot Foraging

Balch utilized three different reward functions to enable the robots to learn to forage using

Q-learning. The first was a Local reinforcement function that yielded a reward to a sin-

gle robot upon delivery of a puck by that robot. The second was a Global reinforcement

function that rewarded all robots whenever any robot delivered a puck. The final learning

strategy utilized Shaped reinforcement (Matarić, 1997) which leverages domain knowledge

in order to accelerate learning. This work utilizes the same reinforcement strategies in or-

der to measure imbalance. Teams converged to policies using all three learning strategies

and performance and balance levels were recorded over repeated trials while varying the

number of robots.
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Measuring Balance

Balch defined and formalized the notion of behavioral distance to measure the diversity

of a multi-robot foraging team. However, the measure that was utilized suffered from a

limitation in that it treated all different behaviors as being equally dissimilar. Since we

are considering the notion of balance we can avoid measuring the behavioral distance and

directly measure the individual contributions of the robots by recording the number of

pucks each robot manages to collect.

The balance coefficient (Equation (III.3)) was utilized to measure balance in this set of

experiments. The taskvalue was equal to the number of pucks collected by the entire team.

This was also utilized as the net performance measure of the team. The individual contri-

butions were the number of pucks collected by each robot. Thus the balance coefficient

was calculated as follows:

BC =
q1×q2× . . .qn

[∑n
i=1 qi
n ]n

. (V.3)

where qi represents the number of pucks collected by robot Ri.

Just as a variety of metrics exist for quantifying team diversity (Balch, 1998) and differ-

ent metrics are appropriate for different domains, the above method should not be assumed

to be a universal technique that is optimal for all possible scenarios. There may exist more

appropriate techniques for quantifying balance in different multi-agent (robot) domains

such as box-pushing, multi-target tracking, etc. However, no matter which technique is

employed, the underlying objective is the same, that is to measure the level of balance and

to quantify the disparity or lopsidedness of individual contributions towards the comple-

tion of a multi-agent task. Although balance appears similar to heterogeneity, it is in fact a

different concept. While heterogeneity is a more static concept that deals with the diversity

of individual agents within a team, balance is somewhat more dynamic and depends purely

on what the agents contribute or how well they perform during the execution of a particular

task.
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V.3 The Experimental Setup

This section explains the experimental design that led to the results reported in Section V.4.

The behavioral assemblage utilized for these experiments was similar to that outlined by

Balch (1998).

V.3.1 Soccer Environment

Each robot could choose from amongst the following three behaviors in a given state:

1. move to ball behavior (mtb) : The robot moves directly towards the ball. A colli-

sion with the ball will propel it away from the robot.

2. get behind ball behavior (gbb) : The robot moves to a position between the ball

and the defended goal while dodging the ball to avoid moving it in the wrong direc-

tion.

3. move to backfield behavior (mtbf) : The robot moves to the back third of the field

while simultaneously being attracted to the ball. The robot will kick the ball if it is

within range.

Each robot in a team could be in one of two states:

1. behind ball (bb) : Indicates that the robot was currently behind the ball.

2. not behind ball (nbb) : Indicates that the robot was in front of the ball.

As stated in Section V.2, the robots learnt to play soccer using a Q-learning approach

based on the touch-based reward function devised by Balch (1998). This function rewarded

each robot based on how recently the robot touched the ball prior to an event (goal scored

for or against the robot’s team).

The simulated robots learned to play soccer against a team with a fixed control pol-

icy. The same behavioral assemblage was utilized for both the fixed control team and the

adaptive team to ensure that the teams were evenly matched.
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Table V.1: Control Team Goalie Policy.

perceptual feature assemblage
mtb gbb mtbf

not behind ball 0 1 0
behind ball 0 0 1

Table V.2: Control Team Forward Policy.

perceptual feature assemblage
mtb gbb mtbf

not behind ball 0 1 0
behind ball 1 0 0

The fixed control team policy was designed to ensure at least one defensive robot

(goalie) guarded the fixed control team goal and four forward robots attacked the oppo-

nent’s goal. The strategy adopted by the goalie was to be positioned behind the ball if it

found itself ahead of the ball and to move to the backfield if it was behind the ball. The

policy for the fixed control team goalie is illustrated in Table V.1. The strategy for the team

forwards was altered to move behind the ball if they are not behind the ball and to move to

the ball if behind the ball. The policies for the fixed control team forwards is illustrated in

Table V.2.

The JavaBots (Balch and Ram, 1998) robot soccer simulation software (as seen in Fig.

V.1 and Fig. V.2) was utilized to perform all experiments. The soccer teams consisted

of five simulated robots. The behaviors and motor schemas were designed using the Clay

architecture (Balch, 1997). A game was terminated when one of the teams scored 20 goals.

The performance metric was simply the difference in the number goals scored by the adap-

tive team and the number of goals scored by the fixed control team shifted by 20 units,

as shown in Equation (V.4). This 20 unit shift ensured a positive range for performance

between 0 and 40. This was necessary because it allowed for easy calculation of fractional

standard deviation.

Pf = ScoreAdaptive−ScoreControl +20 (V.4)
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Figure V.3: A foraging simulation involving a team of four robots retrieving pucks to their
starting position.

The experimental objective was to observe the relationship between the discount factor

γd and performance. The experiments were conducted to note the change in performance

as γd varied from 0.1 to 1.0. Ten trials were run for each γd value and the results for each

trial were recorded. Each trial required a team to converge to a policy and then play 100

soccer games against the fixed control team. The average performance was recorded over

all 100 games.

Information from this experiment was then further utilized to obtain multi-robot teams

with performance measures within a certain range and a plot of performance vs. balance

was derived (see Section V.4). Finally, a set of experiments were conducted where poorly

performing team members were replaced with efficiently contributing members and the

resulting improvement was recorded.

V.3.2 Foraging Environment

The foraging simulations used the Player/Stage environment (Gerkey et al., 2001) and were

conducted to measure balance in a multi-robot foraging environment. Fig. V.3 shows the

simulated foraging environment. The following behaviors were utilized for these experi-

ments:

1. Wander: The robot navigates randomly in the environment while avoiding obstacles.
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2. Homing: The robot returns to its starting location and if it has a puck, deposits the

puck at the location.

3. Dispersion: The robot tries to move away from an intruder.

4. Resting: Stop moving and recharge battery if at home location.

The following conditions are utilized in order to define a state for an individual robot:

1. Near Intruder: True if the robot is too close to another robot.

2. Night Time: Periodically true for 20 seconds after every 3 minutes.

3. At Home: True if the robot is at it’s starting location.

4. Have Puck: True if the robot currently has a puck in its gripper.

Multiple simulations with varying numbers of robots were conducted with a random

distribution of pucks in each simulation. Simulations were stopped after fifteen minutes

and the number of pucks collected by each robot was recorded. For each set of robots the

balance was calculated as shown in Section V.4.2 and team performance was recorded and

analyzed.

V.4 Experiments

This section provides the results of the experiments outlined in Section V.3. Section V.4.1

outlines the results depicting the relationship between balance and performance in the two

domains of multi-robot foraging and multi-robot soccer. Section V.4.3 provides results

that indicate the utility of balance information for a particular soccer team and depicts the

correlation between imbalance and possible improvement in team performance.

V.4.1 Relationship between Balance and Performance: Multi-Robot Soccer

As mentioned in Section V.3, the adaptive team learned to play against the fixed control

team utilizing different values of the discount factor γd . Each team then played 100 soccer
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games against the fixed control team and the average performance was recorded. Table

V.3 shows the results from one such trial recording the number of wins for the adaptive

team (#Awins) and the control team (#Cwins), the average scores for both teams (AScore and

CScore), the average goal difference between the teams (GDiff), and the performance of the

adaptive team (Perf). Similar data exists for the simulation run where four members of the

adaptive team played against five members on the fixed control team.

Table V.3: Example results for a five on five simulation for varying values of γd .

γd #Awins #Cwins AScore CScore GDiff Perf
0.1 0 100 8.8 20 -11.2 8.8
0.2 0 100 13.4 20 -6.6 13.4
0.3 0 100 16.4 20 -3.6 16.4
0.4 100 0 20 8.5 11.5 31.5
0.5 100 0 20 9.6 10.4 30.4
0.6 100 0 20 8.4 11.6 31.6
0.7 58 42 18.9 17.4 1.5 21.5
0.8 100 0 20 9.7 11.3 31.3
0.9 100 0 20 7.3 12.7 32.7
1.0 100 0 20 7.1 12.9 32.9

Fig. V.4 shows the variation in performance of the adaptive team as γd varied from 0.1

to 1.0. Ten trials were completed for each value of γd . By and large the results agree with

those obtained by Balch (1998), i.e. the performance measure of a team increases with

an increase in γd . There is a clear positive correlation between γd and performance as the

Pearsons coefficient of correlation between γd and performance was found to be significant,

r(98) = .818, p < 0.01.

The results in Fig. V.4 provided important information regarding the relationship be-

tween team performance and the value of the discount factor γd . Utilizing this information

the range of the possible performance values was partitioned into bins, with each bin span-

ning five units on the performance scale. Each bin contained exactly ten teams in order to

ensure a fair comparison across the bins. The experiments were repeated with appropriate

γd values if there were fewer than ten teams in a bin, until ten teams were obtained. If
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Figure V.4: Performance vs. Discount factor with 95% confidence intervals.

there were more than ten teams in a bin, then the average imbalance level of all the teams

in the bin was calculated. Redundant teams with the highest deviation from the mean were

discarded. Once each bin contained exactly ten teams, all teams played 100 games against

the fixed control team and the results were recorded. Subsequently, each team’s balance

was recorded using the procedure outlined in Section V.3.

Fig. V.5 shows the scatter plot of Imbalance against Performance for all teams. Each

circle represents the average performance of the adaptive team against the control team

over a single trial comprised of 100 soccer games. The plot indicates a relatively high

level of balance for teams whose performance lies at the extreme ends of the performance

spectrum. The extremities of the performance spectrum represent teams with very high

and very low performance levels but these teams tend to be more balanced. Finally, the bar

graph depicting the average level of imbalance for teams lying in a particular performance

range was calculated, Fig. V.6 provides the results. Each bar spans an equal performance

range (5 units) and represents the average imbalance level of all ten teams lying within the
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Figure V.5: Scatter plot of Imbalance vs. Performance.

Figure V.6: Imbalance vs. Performance bar graph for adaptive team vs. control team with
95% confidence intervals.
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Table V.4: Students t-test (df = 18) for mean difference between imbalance of 5-10 teams
and other teams in different performance ranges (Control Team).

Performance Range 10-15 15-20 20-25 25-30 30-35 35-40
t-value (t) -4.12 -6.06 -11 -9.75 -4.6 -3.63

Probability (p) < .01 < .01 < .01 < .01 < .01 < .01

Table V.5: Students t-test (df = 18) for mean difference between imbalance of 35-40 teams
and other teams in different performance ranges (Control Team).

Performance Range 5-10 10-15 15-20 20-25 25-30 30-35
t-value (t) 3.63 2.96 2.08 7.46 6.51 1.3

Probability (p) < .01 .01 .05 < .01 < .01 .21

performance range.

Again, the bars in Fig. V.6 indicate a relatively high level of balance for teams whose

performance lies in the 5-10 range and teams in the 35-40 range. Table V.4 demonstrates

that the difference between the mean imbalance for the 0-5 teams and all the other team

ranges is statistically significant as found using the Students t-test. Table V.5 similarly

demonstrates that the difference between the imbalance of the 35-40 teams is also statisti-

cally lower than the other team ranges (except the 30-35 range teams).

The reason for the 0-5 teams’ poor performance is that the teams with the worst per-

formance levels are comprised of members that are equally ineffective at playing soccer.

The resulting team is balanced but each member makes a very minor contribution towards

task completion (playing soccer). As the performance improves, some members converge

to more effective policies and begin contributing to the task in greater measure. The team

has optimum performance when all the members contribute effectively. Thus the teams

with the best performance also tend to have a higher level of balance on average than the

intermediate teams.

After the experiments with the control team, it was necessary to study the reproducibil-

ity of the results against other teams. This was accomplished by repeating the experiments

with two other, non-behavior based soccer teams, namely the DTeam and Kechze soccer
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Figure V.7: Imbalance vs. Performance bar graph for adaptive team vs. DTeam with 95%
confidence intervals.

Table V.6: Students t-test (df = 18) for mean difference between imbalance of 0-5 teams
and other teams in different performance ranges for the DTeam experiment.

Performance Range 5-10 10-15 15-20 20-25 25-30 30-35 35-40
t-value (t) -2.73 -3.17 -1.90 -6.99 -6.13 -6.33 -.359

Probability (p) .01 .01 .07 < .01 < .01 < .01 .72

Table V.7: Students t-test (df = 18) for mean difference between imbalance of 35-40 teams
and other teams in different performance ranges for the DTeam experiment.

Performance Range 0-5 5-10 10-15 15-20 20-25 25-30 30-35
t-value (t) .359 2.62 2.96 2.08 7.46 6.51 6.97

Probability (p) .72 .02 .01 .05 < .01 < .01 < .01
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Figure V.8: Imbalance vs. Performance bar graph for adaptive team vs. Ketchze team with
95% confidence intervals.

teams that are part of the Javabots package. When selecting teams it was important to

choose teams with comparable performance, if a team chosen was far superior or inferior

to the learning teams then it would be difficult to span the entire performance range for the

learning teams. Fig V.7 and V.8 shows the variation of imbalance with performance of the

learned team when playing against the DTeam and Kechze soccer teams. In general the

Table V.8: Students t-test (df = 18) for mean difference between imbalance of 0-5 teams
and other teams in different performance ranges for the Kechze team experiment.

Performance Range 5-10 10-15 15-20 20-25 25-30 30-35 35-40
t-value (t) -3.56 -3.12 -3.58 -9.26 -7.26 -6.83 -.813

Probability (p) < .01 .01 < .01 < .01 < .01 < .01 .43

Table V.9: Students t-test (df=18) for mean difference between imbalance of 35-40 teams
and other teams in different performance ranges for the Kechze team experiment.

Performance Range 0-5 5-10 10-15 15-20 20-25 25-30 30-35
t-value (t) .813 6.78 6.43 7.4 12.4 10.1 8.45

Probability (p) .43 < .01 < .01 < .01 < .01 < .01 < .01
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results agree with the results obtained against the control team, i.e. teams at the extrem-

ities of the performance spectrum tend to be more balanced than teams in the middle of

the performance spectrum. Tables V.6 and V.7 show that when playing against the DTeam,

the performance of the 0-5 and 35-40 range adaptive teams was statistically different from

all other teams (except 15-20 range teams). Tables V.8 and V.9 show that when playing

against the Kechze team, the performance of the 0-5 and 35-40 range adaptive teams was

statistically different from all other teams.

V.4.2 Relationship between Balance and Performance: Foraging Experiments

As mentioned in Section V.3, three different reward functions were utilized to provide

reinforcement to an adaptive multi-robot foraging team. The number of robots was varied

and the mean performance and balance was recorded for each set of robots.

Figure V.9: Performance vs. Number of foraging robots with 95% confidence intervals.
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Figure V.10: Balance vs. Number of Robots with 95% confidence intervals.

Fig V.9 shows the variation in mean performance of the three learning strategies (Global,

Shaped, Local) as the number of robots increased. Ten trials were conducted for each set

of foraging robots. The Shaped and Local reinforcement strategies clearly outperform the

Global reward strategy. This is because the Shaped and Local reinforcement policy re-

warded the robots only when they accomplished a relevant task or subtask while the Global

reinforcement rewarded a robot based on the potentially unrelated actions of other robots.

Fig V.10 shows the variation in balance of all teams with the different learning strate-

gies. Again the Shaped and Local learning strategies result in teams that are more balanced

than the Globally reinforced teams, even as the number of robots increased to nine.

It would be tempting to conclude from the above results that balanced teams always do

better than imbalanced teams. Such an argument would be flawed because one can always

construct a perfectly balanced team where the robots perform equally poorly. However, the
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results do suggest that teams that perform well tend to have a higher degree of balance.

V.4.3 Utilizing Balance Information to Improve Performance

If information regarding balance (i.e. the relative contributions made by individual mem-

bers) is available, the question then becomes “can this information be utilized to improve

team performance?” Human Factors researchers have previously examined the impact of

individual differences in cognitive ability and personality characteristics on human team

performance (Mohammed and Angell, 2003). A recent study by Brou et al. (2005) showed

that a team’s weakest member had the most impact on the team’s performance as compared

to the impact of any of the other team members. This result suggested that the performance

of a multi-robot team could be most significantly improved if the performance of the weak-

est team member improved. If the weakest and strongest members of a multi-robot soccer

team could be identified, then substituting the weakest robot with a copy of the strongest

robot should result in a significant performance boost. Such a substitution may not nec-

essarily create a more balanced team; however it should push the team towards a higher

performance level.

In order to verify this hypothesis an additional analysis was performed based upon the

various soccer teams developed for the experiment in Section V.4, that had converged to

their respective policies. Once a team’s policy had stabilized, the agents that contributed

most effectively (Ag) and least effectively (Al) were identified. A new soccer team was cre-

ated by substituting the policy of Ag into the policy for Al . Intuitively, since a more efficient

agent is taking the place of a less efficient one, the performance of the new team should

be better than the original team. Figure V.11 provides the interpolated surface plot based

on the data points (dots in the figure) representing the net improvement for a team with a

given performance and imbalance level. The plot depicts how the improvement resulting

from substitution varies with the dimensions of imbalance and initial performance. Figure

V.11 shows the results obtained when the adaptive team played the Control team. Figures
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Figure V.11: Interpolated surface plot depicting the variation of the substitution induced
performance improvement of the adaptive soccer team with initial performance and imbal-
ance when the adaptive team played against the Control team.

V.12 and V.13 show similar plots for when the adaptive soccer team played the DTeam and

Kechze teams.

The plots demonstrate that moderately performing soccer teams with a high level of

imbalance exhibit a relatively higher level of improvement. Teams that are highly balanced

(i.e. imbalance closer to zero) show a very minor improvement and occasionally even

exhibit a drop in performance, especially at the higher end of the performance spectrum.

This is because an imbalanced team implies a greater disparity between the contributions of

the substituting agent, Ag and the substituted agent, Al . Hence, for an imbalanced team, the

potential for improvement due to the substitution is high. Conversely, for a balanced team,

the potential for improvement is low because the both Ag and Al are already providing a

relatively equal contribution and the substitution is unlikely to yield a significant difference

in performance.

A Pearsons coefficient of correlation was calculated between the imbalance and perfor-

mance improvement to validate this hypothesis and the results are provided in Table V.10.
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Figure V.12: Interpolated surface plot depicting the variation of the substitution induced
performance improvement of the adaptive soccer team with initial performance and imbal-
ance when the adaptive team played against the DTeam team.

Figure V.13: Interpolated surface plot depicting the variation of the substitution induced
performance improvement of the adaptive team with initial performance and imbalance
when the adaptive soccer team played against the Kechze team.
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All three teams exhibit a reasonably high degree of positive correlation between the two

quantities. This result suggests that imbalanced teams may indeed exhibit higher perfor-

mance improvement than balanced teams.

Table V.10: Pearsons Coefficient of Correlation between imbalance and improvement due
to substitution.

Team Pearsons Coefficient
Control r(68) = 0.616, p < 0.01
DTeam r(78) = 0.686, p < 0.01
Kechze r(78) =0.567, p < 0.01

V.5 Discussion

While the objective of Balch’s experiments was to determine the effect of the different

reward functions on team diversity, the endeavor of the above experiments was to ascer-

tain a property that is common to high performance teams across different domains. The

results indicate that balance holds promise for being such a property. The fact that bal-

ance information may be used to improve performance suggests the practical importance

of determining balance.

Balance in multi-robot coalitions and its implications with respect to team performance

is a relatively unexplored area of research. The results in this Chapter suggest a correlation

between the level of balance in a multi-robot team and team performance where teams at

the highest and lowest levels of the performance spectrum tend to be relatively balanced.

While the relation between diversity and performance seems to be different for the loosely-

coupled foraging and tightly-coupled soccer task, teams at the high end of the performance

spectrum in both domains tend to exhibit high balance. Thus balance appears to have a

more universal relationship with performance across different domains. Balancing a team

may also be a useful concept for optimizing team performance, especially for highly im-

balanced teams. Balance information enables us to determine which agents are performing

poorly and replacing them generally results in a substantial improvement in team perfor-
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mance. However, this improvement is relatively more significant for imbalanced teams.

Observing that balance information may be utilized to improve performance of a team

that has already learned to play soccer, the question then becomes, can this information

be obtained in real-time? Can balance be directly incorporated into the reward function to

ensure that the team members learn policies that result in balanced teams? This is an area

that has been earmarked for future research. Another issue to be addressed is the effect

of balancing in other domains, i.e. can the results of this Chapter be generalized to other

multi-robot domains.
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CHAPTER VI

MARKET-BASED COALITION FORMATION

Task allocation is an issue that every multi-robot system must address. Recent solutions to

the task allocation problem propose an auction based approach wherein robots bid for tasks

based on pre-defined cost functions for performing a task (Dias, 2004; Gerkey and Matarić,

2000). This Chapter presents RACHNA, a novel architecture for multi-robot task alloca-

tion based on a modified algorithm for the winner determination problem in multi-unit

combinatorial auctions. A more generic utility based framework is proposed to accommo-

date different types of tasks and task environments. Experiments yield promising results

demonstrating the system’s superiority over simple task allocation techniques.

VI.1 The RACHNA System

A common feature of the market based systems discussed in Chapter I is that all these

systems require the robots to bid on the tasks. The bidding process is central to determining

the auction outcome. Therefore when dealing with complex tasks, the bidder should have

a global view of the available resources. We propose a system, namely RACHNA1, in

which the bidding is reversed. The auction is performed by the tasks for the individual

robot services. This allows for the bidding to be performed with the global information

necessary for coalition formation.

As mentioned in Chapter I, there are some inherent differences between the multi-agent

and multi-robot domains. One of the most prominent of these differences is the level of

redundancy in multi-robot and software-agent capabilities. Whereas software-agents are

simply code fragments programmed by individuals, robots are manufactured on a large

scale. Therefore, robots are more likely to have greater redundancy in their sensor/actuator

capabilities. Indeed, almost any modern day robotics facility would have a number of ro-

1Robot Allocation through Coalitions using Heterogeneous Negotiating Agents
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bots with identical capabilities. To the best of our knowledge, RACHNA is the first system

to leverage this redundancy in order to enable a more tractable formulation of the coali-

tion formation problem. RACHNA achieves this through the formulation of the coalition

formation as a multi-unit combinatorial auction. 2

While the use of single good auctions allows the bidders to bid on only one good,

combinatorial auctions permit bidding on combinations of goods. This work focuses on a

particular type of combinatorial auction called multi-unit combinatorial auction.

Definition: The auctioneer has a set of items, M = 1, 2,..., m to sell. The auctioneer has

some number of each item available: U = {u1,u2, ...,um},ui ∈ Z+. The buyers submit a

set of bids, B = {B1,B2, ...,Bn}. A bid is a tuple B j = 〈(γ1
j , ...,γm

j ), p j〉, where γk
j ≥ 0 is the

number of units of item k that the bid requests, and p j is the price. The Binary Multi-Unit

Combinatorial Auction Winner Determination Problem (BMUCAWDP) is the prob-

lem of labeling the bids as winning or losing so as to maximize the auctioneers revenue

under the constraint that each unit of an item can be allocated to at most one bidder:

max ∑ p jx j s.t.
n

∑
j=1

γ i
jx j ≤ ui, i = 1,2, . . . ,m. (VI.1)

The Multi-Robot Coalition Formation (MRCF) problem can be cast as a combinatorial

auction with the bidders being represented by the tasks, the items as the different types of

robots and the price the utility that each task has to offer. Unfortunately, the BMUCAWDP

problem is inapproximable (Sandholm, 2002) however some empirically strong algorithms

do exist (Leyton-Brown et al., 2000; Sandholm, 2002). It remains to be seen if such algo-

rithms can be decentralized sufficiently to apply them beneficially to a multi-robot setting.

2There may be subtle unavoidable differences in robots with seemingly identical sensory capabilities due
to wear and tear, loose wiring, sensor accuracy etc. These are ignored for the time being.
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VI.1.1 The Architecture

We propose a system, namely RACHNA, in which the bidding is reversed. The auction

is performed by the tasks for the individual robot services. This allows for the bidding to

be performed with the global information necessary for coalition formation. There are two

types of software agents that are involved in the task allocation:

1. Service Agents: The Service Agents are the mediator agents through which the tasks

must bid for a service. RACHNA requires that each robot has a set of services or roles

that it is capable of performing. The roles are determined by the individual sensor

and behavioral capabilities resident on each robot. There is one service agent for each

service type that a robot can provide. A service agent may communicate with any

of the robots that provide the particular service to which the agent corresponds. For

example, the foraging service agent may communicate with all robots that currently

have sensor capabilities (i.e. camera and gripper) to perform the foraging service.

Service agents reside on any one of the robots that are capable of providing the ser-

vice. Thus, the global information concerning the task is acquired in a decentralized

manner through the use of service agents.

2. Task Agents: Task Agents place offers on behalf of the tasks so as to acquire the

necessary services. The task agents communicate only with the service agents during

negotiations. Once the task has been allocated, the task agent may communicate

directly with the robots that have been allocated to the task.

Figure VI.1 provides an overview of an example RACHNA architecture implementation

with four service agents (Foraging, Pusher, Watcher, Mapper), N robots (R1,R2, ...,RN)

and a Task Agent bidding on the services. Each service has certain sensor requirements

and only communicates with the relevant robots for purposes of allocation.

An economy is proposed where the tasks are represented by task-agents that are bid-

ding for the services of the individual robots. The economy has a set of robots R1,R2...,RN
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Figure VI.1: An example RACHNA Implementation.

where each robot is equipped with sensor capabilities that enable it to perform various

services such as pushing, watching, foraging, etc. The tasks are assumed to be decompos-

able into the sub-task behaviors (roles) that they require. For example, in the box-pushing

task as defined by Gerkey and Matarić (2002a), two pusher sub-task roles are required

and one watcher sub-task role is required. Each role is represented by a service agent that

is responsible for negotiating with the robots with the desired capability. The roles may

be implemented through the use of behavior sets (Parker, 1998). The bids are relatively

sparse compared to the overall space of coalitions and will yield a more tractable formula-

tion of the MRCF. Also, unlike other heuristic based algorithms for coalition formation, no

restriction is placed on the size of the desired coalitions.

VI.1.2 Utility vs. Cost

The notion of utility is a somewhat implicit albeit universal one. Most definitions of utility

incorporate some sort of balance between quality and cost (Gerkey and Matarić, 2003; Tang

and Parker, 2005b). However our view is that a predefined cost function may not be ideal

for all situations. For instance, there might be a task that is extremely urgent but is relatively
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inexpensive. In such scenarios, it may be more beneficial to allow the task utility to be input

by the user. Also while quantifying cost is relatively straightforward, quantifying quality

of task execution prior to coalition formation for a fresh task is still not an exact science.

Whatever measure of utility is used, for purposes of comparing coalitions, all that matters

is that a mapping exists from each coalition-task pair to a scalar value.

VI.1.3 Multiple Decompositions

There exist many scenarios with multiple decompositions for a particular task exists and

it may be advisable to consider many possible decompositions of each task whilst eval-

uating the potential coalitions. The ASyMTRe (Tang and Parker, 2005b) system is the

first autonomous task decomposition system. It may be possible to allow for multiple

decompositions by allowing a system such as ASyMTRe to provide different decompo-

sitions and introducing ‘dummy’ goods to incorporate these decompositions as described

by Leyton-Brown et al. (2000). One dummy good is introduced per task and all the task

agents representing the decompositions bid for that dummy good. Since only one of the

decompositions can acquire the dummy good eventually, the final allocation will include at

most one of the many task decompositions.

VI.1.4 Robot Failure

If a robot loses control of a sensor or actuator in RACHNA, the system allows for graceful

performance degradation. Since there is a mapping from sensor capabilities to behavioral

capabilities, if a sensor failure occurs a robot may still be capable of performing an alter-

native behavior. Consider a robot that is capable of performing the foraging and watcher

behaviors. If the robot’s gripper is damaged, it will be unable to execute the foraging be-

havior but it may still be able to perform the watcher behavior. The foraging service agent

system simply deletes the robot from the list of foragers and in future auctions this robot

will not receive offers relating to the foraging behavior. The robot will remiain in the list

of watchers because the relevant sensors for watching (camera) are still intact. Thus, the
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system allows for graceful degradation in performance. It should be noted that the system

makes no attempt at fault detection.

VI.1.5 The Allocation Environments

This work has incorporated three different types of tasks:

1. Urgent: These tasks are allowed to pre-empt an ongoing standard task. They gen-

erally have a higher average reward per robot and represent emergency tasks that

require immediate attention such as fire extinguishing, rescue tasks, etc.

2. Standard: These tasks are allocated only when there are sufficient free resources

and when the utility of these tasks is sufficient to merit allocation. These tasks may

be pre-empted by urgent tasks. Loosely coupled tasks like foraging or tasks that may

easily be resumed may fall into this category.

3. Non pre-emtible: These tasks are allocated similar to standard tasks but they can-

not be pre-empted. Tightly coupled tasks fall under this category because once a

tightly coupled task has been initiated, pre-emption would completely debilitate task

performance.

We consider two different types of allocations in our system:

1. Instantaneous Allocation: This scenario involves the introduction of a number of

tasks into the environment and the algorithm must allocate resources to the optimal

set of tasks.

2. Pre-emptive Allocation: This scenario involves introduction of a single urgent task

that requires immediate attention. The urgent task is allowed to tempt the robots into

working for itself by offering a higher reward.
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Instantaneous Assignment

Instantaneous assignement utilizes multiple round auctions with multiple tasks. The system

is responsible for allocating resources to the tasks such that the overall utility is maximized.

Recall that services correspond to goods, robots correspond to units of a particular good

(service), and task offers correspond to bids. RACHNA adapts the MRCF problem to a

distributed environment to allow the system to leverage the inherent redundancy of robots’

sensory capabilities, thereby formulating a more tractable formulation of the coalition for-

mation problem. The algorithm proceeds as follows, the auction begins with each task

agent sending request messages to the individual service agents. The service agents at-

tempt to obtain the minimum possible price for the requested services. This is achieved

by evaluating the minimum salaries that the robots are currently earning and adding a min-

imum increment for luring the robot to the new task. The service agents then send this

information to the task agents. The task agents determine if they have sufficient utility to

purchase the required services. If this is the case, then the services (robots) are temporarily

assigned to the task. This kind of offer-counteroffer proceeds in a round robin fashion with

the salaries of the robots increasing at every step until no service (robot) changes hands

during the round. At this point the final stable solution is reached. The formal algorithm is

provided in the next section.

VI.1.6 The Algorithm

Initially, each Service Agent SAi maintains a set of all possible robots. Robotsi that are

capable of performing that particular service. Additionally, SAi is aware of all possible

services a robot in Robotsi can perform and keeps track of which service it is currently

performing. All robot salaries are initialized to zero. In order to submit a successful bid,

a task agent must place an offer so as to increase the current salaries of the robots by a

minimum increment, εc. Each task agent has a fixed utility, Uc that is used for bidding

on the services. Whenever a task discovers that it can no longer place a successful bid, it
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relinquishes its robots and decreases their salary by an amount εc.

Preprocessing

• Initially all task agents submit bids to all relevant service agents.

• Each service agent SAi then evaluates the following heuristic:

scorei =
numbidsi.q(i)

avgunitsi
(VI.2)

where, numbidsi is the total number of task agents bidding for service provided by

SAi, qi is the number of robots capable of performing service SAi, avgunitsi is the

average number of total units requested by these task agents.

Once, scorei is evaluated for each service agent SAi, this score is broadcast to all the service

agents and the service agents order themselves according to this score.

Awarding of Services

Upon receipt of a bid b j from Task Agent TAk requesting m robots capable of performing

SAi’s service, SAi performs the following steps:

• If m > |Robotsi| ignore the bid (not enough robots).

• Evaluate Sm, the sum of the current m lowest salaries of robots in |Robotsi| that are

not already awarded to TAk by a higher ranked service agent (according to the last

received broadcast).

• If Sm +mεc ≤ b j

– Temporarily award the selected robots to the task.

– Send a message to the purchased robots to increment their salaries by εc and to

change their current task.
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• Else continue.

• Upon receipt of a ‘disown’ signal from a task agent TAk, a Service Agent SAi does

the following:

– Search Robotsi for any robots that are currently assigned to TAk.

– Decrement the salaries of the robots by εc and send a message to those robots.

Whenever a robot receives a message for a change in salary from a service agent, the

robot sends a message to all connected service agents informing them of its new payoff, its

new task, and the service it is currently required to provide.

Bidding by Task Agents

• Each task agent TAk receives periodic broadcasts from each service agent SAi in-

forming it of the current salaries and tasks of the robots performing SAi’s service.

• If TAk has already been awarded all the required services, continue.

• Compute the net utility, UReq, required to place an acceptable offer to each service

agent in order to purchase the required services (by increasing the salaries of the

currently lowest paid robots by εc).

• If UReq < UCurr

– Place the offers to the service agents.

• Else

– Send ‘disown’ message to all service agents that have robots currently assigned

to task TAk.

• Upon receipt of the terminate message from all service agents, the task has been

awarded the requested robots.
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Table VI.1: RACHNA message types.

No. Sender Receiver Type Content
1 SA All Broadcast Current Salaries, Tasks for all service robots
2 TA SA Unicast Bid for service
3 TA SA Unicast Disown
4 SA Robot Multicast Increment, Decrement
5 Robot SA Multicast Update Salary, task, service

If no message is broadcast by a service agent for a fixed period of time, Tmax, the auction

is deemed closed and the allocation process is stopped. The messaging protocol for the

algorithm is depicted in Table VI.1.

VI.1.7 Payoff Stability

Coalition formation in game theory focuses on stable payoffs for agents in competitive

scenarios. There are many stability criteria defined in cooperative game theory such as

the core, the kernel (see Appendix), and the bargaining set. This section proves that the

RACHNA system provides solutions that are stable by the criteria defined by the uncon-

strained bargaining set.

Definition 1: A coalitional game with transferable utility (a TU game) is a pair (N,v)

where N is a coalition and v is a function that associates a real number, v(S), with each

subset S of N.

Definition 2: A coalition structure for N is a partition of N. If (N,v) is a game and R is a

coalition structure for N, then the triple (N,v,R) is called a game with a coalition structure.

Let (N,v,R) be a game with a coalition structure. Then

X(N,v,S) = {x ∈ ℜN | x(S) ≤ v(S) f or every S ∈ ℜ} (VI.3)

denotes the set of feasible payoff vectors for (N,v,R).

Definition 3: Let (N,v,R) be a game with coalition structure, x ∈ X(N,v,R), and let k, l ∈
S ∈ R,k 6= l. An objection of k against l at x with respect to (N, v, R) is a pair (P, y)
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satisfying:

P ∈ Tkl and y ∈ℜP; (VI.4)

yi ≥ xi f or all i ∈ P and yk > xk; (VI.5)

y(P) ≤ v(P) (VI.6)

where Tkl(N) = Tkl = {S⊆ N \{l} ‖ k ∈ S}, or Tkl is the set of coalitions containing k and

not containing l.

Thus, an objection (P,y) of k against l is a potential threat by a coalition P, which con-

tains k but not l, to deviate from x. The purpose of presenting an objection is not to disrupt

R, but to demand a transfer of money from l to k, that is, to modify x within X(N,v,R). It is

assumed that the players agreed upon the formation of R and only the problem of choosing

a point x out of X(N,v,R) has been left open.

Definition: Let (N,v,R) be a game with coalition structure. A vector x ∈ X(N,v,R) is

stable if for each objection at x there exists a counter-objection. The unconstrained bar-

gaining set, PM(N,v,R), is the set of all stable members of X(N,v,R).

Result: The payoff configuration achieved via RACHNA must lie within the unconstrained

bargaining set.

Proof: Assume that the solution x ∈ (N,v,R) does not lie within the bargaining set, in that

case there must exist at least one objection (P,y),(k ∈ P, l /∈ P,k, l ∈ S ∈ R) by a coalition P,

where P /∈ R, that does not have a counter objection. Hence, there must exist a coalition

that contains a robot k but does not contain robot l, that has sufficient utility to pay a higher

salary to all it’s member robots than the current payoff x does. However, if such a coalition

possibility (or task) existed, it would have bid on the required robots and successfully pur-

chased them during the bidding process. Since the coalition P promises an equal or higher

salary to all robots, the service agents would have allocated the robots to P during bidding.

The fact that the coalition was not part of the final allocation is due to the fact that the
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coalition did not have the utility required to purchase the necessary service robots. Hence,

no such coalition P can exist and we arrive at a contradiction.¦
Coalition formation in competitive agent environments is traditionally composed of two

sub-problems, the first sub-problem is the formation of a coalition structure and the second

is the arrival at a stable payoff configuration. Since robotic environments are cooperative,

the payoff configuration is not pivotal for task allocation. However, it is still interesting to

note that the payoff configuration lies within the unconstrained bargaining set.

Time Extended Assignment

Time extended assignment involves the random introduction of urgent tasks randomly into

the environment and the tasks are allocated robot services according to a negotiation or bar-

gaining process between tasks. The negotiation proceeds as follows, the new task submits

a request to the required service agents for a certain number of services of that type. The

service agents take into account the current salaries of the robots and allow for a bargaining

process to ensue with tasks increasing robot salaries until either the new task can success-

fully purchase the resources or more resources are made available by other tasks releasing

them.

VI.2 Experiments

Preliminary experiments were conducted by simulating the RACHNA system on a single

computer. Experiment 1 recorded the variation in robot salaries with increasing compe-

tition. The second experiment recorded the sensitivity of the system to robot diversity.

The sensitivity of the solution quality to the salary increment parameter was recorded in

Experiment 3. A comparative analysis of the RACHNA system to simple task allocation

techniques was provided in Experiment 4. A set of real world tasks were simulated in the

Player/Stage environment to demonstrate task preemption in Experiment 5.
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Figure VI.2: Average salary across all robots vs. tasks (bids).

VI.2.1 Wage Increase

The first set of experiments simulates a set of 68 robots and ten services such that each

service had exactly ten possible robots capable of providing that particular service. A set

of 100 tasks was generated with each task requiring a random vector of resources. The

increment in salaries after each auction was recorded. Figure VI.2 shows the average, max-

imum, and minimum salary curves for all services. The results depict how with increasing

competition (more tasks), the salaries increase as robots obtain better offers when there is

a shortage of robots. Initially salaries are low (Number of tasks < 20), the salaries rise

at different rates depending on demand for a particular service (20 < Number of tasks <

40) and eventually if the demand for each service increases sufficiently, the salaries for all

service agents approach high values (Number of tasks = 100).
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Figure VI.3: Execution Time vs. Number of Services.

VI.2.2 Effect of Diversity

RACHNA leverages the redundancy in the sensory capabilities of the entire set of robots

to group robots and make the allocation problem more tractable. Note that RACHNA does

not assume anything regarding the diversity of the resulting teams, just the diversity of the

entire collection of robots. Figure VI.3 demonstrates that RACHNA’s performance deterio-

rates as the number of services is increased and the number of robots remains constant. The

higher the number of services, the lower the redundancy and hence, higher the execution

time of the algorithm.

VI.2.3 Impact of Salary Increment

The variation in the number of auction rounds required to reach a stable solution was

recorded as the minimum increment (εc) was varied from 0.2 to 2. Figure VI.4 shows

the resulting graph. It is clear from Figure VI.4 that a small value of εc leads to a relatively

larger number of auctions, thereby slowing down the allocation process. This is because
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Figure VI.4: Minimum Increment (εc) vs. Number of Auction Rounds.

the salaries increase very slowly and the tasks exhaust their utilities after many increments.

Figure VI.5 shows the variation in the final utility obtained as the value of epsilon is

varied. The figure demonstrates that the obtained utility steadily decreases as the minimum

increment increases. This is because the higher the minimum increment, the lower the level

of granularity in the search for better solutions.

Figures VI.4 and VI.5 suggest a tradeoff between running time (number of auctions)

and solution quality. Very small increments in payoff yield higher quality solutions but

are not efficient in terms of the number of auctions. Large increments in payoff arrive at a

solution quicker but with a lower utility value. Ideally an increment value should be chosen

so as to optimize this tradeoff.

VI.2.4 Utility Comparison

The solution quality produced by the RACHNA algorithm was compared to that obtained

by simple task allocation schemes. Figure VI.6 provides the comparison between the solu-
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Figure VI.5: Minimum Increment (εc) vs. Final Utility.

tion quality produced by the RACHNA system to those produced by the global greedy and

random alllocation algorithms. The allocation produced by an algorithm by Leyton-Brown

et al. (2000) that utilizes a variant of A* search is also provided. This algorithm yields

solutions that are either optimal or very close to optimal and therefore provides a reason-

able upper bound on solution quality. The graph demonstrates that RACHNA’s solution

quality is still sub-optimal, but in a distributed approach such as the one suggested, this

is inevitable. As is evident from the figure, RACHNA easily outperforms both the greedy

and random allocation algorithms. The reason is that unlike greedy or random search,

RACHNA refines the solution in each auction round to include better tasks (bids).

VI.2.5 Preemption Experiments

The player/stage environment was utilized for the set of experiments focused on task pre-

emption in order to formulate a set of real world tasks. The experiments involved a set of

five services and ten heterogeneous robots, as shown in Table VI.2. The sensor capabili-
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Figure VI.6: Comparison of greedy, random, and A* allocations to RACHNA.

Table VI.2: Services.

Services Capabilities Robots
LRF Camera Bumper Gripper Sonar

Foraging 0 1 0 1 1 R1,R2
Pushing 1 0 1 0 0 R3,R4,R6,R7

Object Tracking 0 1 0 0 1 R1,R2,R5,R8
Sentry-Duty 1 0 0 0 0 R3,R4,R6,R7,R9,R10

Table VI.3: Tasks.

Tasks Services Priority
Foraging Pushing Object-Tracking Sentry-Duty

1 2 0 0 1 Standard
2 0 2 0 1 Non-premptible
3 0 1 2 0 Standard
4 0 2 1 0 Urgent
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(a) Allocation of Tasks 1,2 and 3 prior to in-
troduction of Task 4.

(b) Allocation of Task 4 and pre-emption of
Task 3.

Figure VI.7: Pre-emption after allocation of standard Task 3 by urgent Task 4

Table VI.4: Salary increments for different robots.

ROBOT AUCTION ROUND
1 2 3 4 5 6 7 8

R1(F,OT ) 5, T1 10, T4 15, T1 15, T1 15, T1 15, T1 15, T1 15, T1
R2(F,OT ) 5, T1 5, T1 10, T4 15, T1 15, T1 15, T1 15, T1 15, T1
R3(P,SD) 5, T2 10, T4 10, T4 10, T4 15, T3 20, T2 20, T2 20, T2
R4(P,SD) 5, T2 5, T2 10, T3 15, T4 15, T4 15, T4 20, T2 20, T2
R5(OT ) 5, T3 5, T3 5, T3 10, T4 15, T3 15, T3 20, T4 20, T4
R6(P,SD) 5, T3 5, T3 10, T2 10, T2 15, T4 15, T4 15, T4 15, T4
R7(P,SD) - 5, T4 5, T4 10, T2 10, T2 10, T2 15, T3 15, T4
R8(OT ) 5, T2 5, T2 5, T3 10, T4 10, T4 15, T3 15, T3 10, -
R9(SD) 5, T1 5, T1 5, T1 5, T1 5, T1 5, T1 5, T1 5, T1
R10(SD) 5, T2 5, T2 5, T2 5, T1 5, T1 5, T1 5, T1 5, T1
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ties of each robot determines which services it can perform. For example Robots 1 and 2

have Camera, Gripper, and Sonar sensors and can perform Foraging and Object Tracking

tasks. The experiment involved four heterogeneous tasks as described in Table VI.3. For

example, Task 1 required two foraging robots and one sentry-duty robot. While Tasks 1

and 3 were Standard tasks (Section VI.1.5), Task 2 was Non-premptible, and Task 4 was

Urgent. Initially the first three tasks were introduced using the algorithm described in Sec-

tion VI.1.6. Figure VI.7(a) shows the simulation of the first three tasks. Subsequently, Task

4 was introduced into the environment and the bargaining process resulted in Task 3 being

preempted, as shown in Figure VI.7(b).

The salary increments and the associated task for each robot after each auction round is

shown in Table VI.4. An auction round involves bidding by all tasks at least once. Prior to

introduction of Task 4 in round 1, the robots are allocated to Tasks 1,2 and 3 for minimum

salaries. After round 2, Task 4 has temporarily acquired R1,R3 and R7 by offering a higher

salary to each. As the competition increases for the pusher and object tracker services, all

robots posessing these resources draw higher salaries with each successive auction round.

Auction round 8 involves Task 3 exhausting its utility and being forced to relinquish R7

and R8. The salaries of these robots are lowered by the minimum increment (here 5).

Eventually, Task 4 acquires robots R6 and R8 from Task 3 at the end of round 8.

Currently, the RACHNA system has been implemented in simulation, and pending im-

plementation with real world robots, the system cannot be completely validated. In partic-

ular, foreseeable issues could include communication load, message synchronization, and

sensor failure. However, the presented experiments do provide insight into the system’s

performance with real robots.

VI.3 Summary

This Chapter presented RACHNA, a market-based distributed task allocation scheme based

on the multi-unit combinatorial auction problem. RACHNA reverses the auction scheme
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found in other market based coordination schemes by allowing tasks to bid on robot ser-

vices rather than the other way around. RACHNA is a utility based system, allowing the

user to specify the priority of a task. As mentioned in Chapter I, care was taken while

designing the system to ensure that it would be able to accommodate different task types

and task environments. RACHNA also allows for multiple decompositions of tasks, the

payoff configuration resulting from RACHNA’s allocation scheme was proven to lie within

the unconstrained bargaining set.

Experiments were conducted to demonstrate the sensitivity of the system to parameters

of robot diversity and wage increments. The experiments further demonstrate that the sys-

tem produces solutions of sub-optimal quality and enables a far more tractable formulation

of the coalition formation problem by leveraging the redundancy in robot sensor capabili-

ties. Finally, the idea of preemption of a complex multi-robot task was investigated, and an

example of task preemption was demonstrated. Future work involves real world task exper-

iments with the RACHNA system to demonstrate dynamic pre-emption of tasks. Another

aspect that needs to be studied is the robustness to communication, and partial or complete

robot failure.
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CHAPTER VII

SUMMARY OF CONTRIBUTIONS AND FUTURE DIRECTIONS

This chapter consolidates the work presented in previous chapters and summarizes this

dissertation’s contributions to the field. This chapter also outlines potential avenues for

future research.

VII.1 Summary of Contributions

Contributions of this dissertation include:

1. While coalition formation is a well studied area in both distributed artificial intel-

ligence and theoretical computer science, none of the algorithms proposed in these

areas have been previously demonstrated in the multi-robot domain. This disserta-

tion idetifies the reasons behind this divide between the software agent and robotic

coalition formation algorithms. The issues involved in translating coalition formation

algorithms from the software agent setting to the multi-robot domain are identified

and solutions are provided.

2. A popular heuristic-based software agent coalition formation algorithm is modified,

extended, and validated with a large set of both simulated and real world robots and

tasks. To the best of our knowledge, this is the first instance of a multi-robot coalition

formation algorithm in the field. The algorithm was further extended and applied to

a set of precedence ordered tasks.

3. This dissertation introduces the notion of coalition imbalance and highlights its rel-

evance to the formation of fault tolerant coalitions. The notion of balance is further

explored to test for correlation between balance and performance of a multi-robot

team. Results suggest that both multi-robot soccer and foraging teams at the upper

extremities of the performance spectrum tend to exhibit a higher degree of balance
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than mediocre teams. This dissertation also demonstrates how balance information

may be further utilized to improve team performance in domains similar to multi-

robot soccer where individual contributions may be hard to perceive directly.

4. The dissertation presents RACHNA, a novel market-based coalition formation scheme

that leverages the inherent redundancy in the sensory capabilities of robots to enable

a more tractable formulation of the coalition formation problem. Most prior mar-

ket based solutions are based on a contract-net based auction protocol, with robots

bidding for tasks. RACHNA reverses the bidding process and allows tasks to bid

on robots by incrementing robot payoffs. Also prior task allocation systems appear

to be tightly bound to the task domain and do not generalize well to different tasks.

RACHNA is more generic and is allows for coalition formation for different tasks.

The notion of preemption of complex multi-robot tasks is also explored.

5. This dissertation presents the multi-robot coalition formation problem in the light

of prior work done on coalition formation in economics, distributed artificial intel-

ligence, theoretical computer science, and robotics. Problems that share a similar

structure with the coalition formation problem are identified in an effort to outline

possible avenues for further research into the problem.

Instead of the current task allocation schemes that focus mainly on task specific alloca-

tion for single robot tasks, the emphasis in this dissertation was on generic, task indepen-

dent allocation schemes for multi-robot tasks. While domain knowledge is important and

should be utilized to improve performance wherever possible, we believe that it should not

be at the expense of the generalizability of the allocation scheme to different tasks.

VII.2 Future Directions

This dissertation provides the first inroads into the coalition formation problem for multi-

robot systems. However, much work needs to be done to improve the task allocation
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schemes presented in this dissertation. The successful migration of the heuristic based al-

gorithm in Chapter III from multi-agent to multi-robot domains suggests that other heuristic

based techniques from parallel problems like job shop scheduling, weighted bin-packing,

set-covering, and maximal clique may potentially be decentralized for application to the

coalition formation problem.

The RACHNA system has still only been implemented in simulation and future experi-

ments involving real world robots need to be performed. The RACHNA system also needs

to be extended to include schedules of tasks to allow for a planning component in the sys-

tem. The long term goal is to integrate the RACHNA system with a suitable interface to

allow for complex human machine teaming studies.

Another potential area of research is the handling of communication failures by coali-

tion formation systems and the formulation of techniques to make the coalition formation

process more robust to these failures. Currently, the parameters for these systems were

adjusted based on trial and error. Future work involves learning and dynamically adjusting

these parameters with experience.

So far, the emphasis has been on generic, task independent allocation methods. How-

ever, the attempt is not to undermine the role of domain knowledge but to develop systems

that would allow for allocation of many different types of tasks. The idea was not to pre-

clude the incorporation of domain knowledge but retain sufficient flexibility to allow for the

suitable incorporation of domain knowledge wherever possible. Thus, a future direction of

research would be to examine methods to flexibly utilize domain knowledge in an effort to

improve performance.

The utility functions used in this dissertation were fairly simple (Chapter III) or ran-

dom (Chapter VI). Ideally a perfect utility function should encompass and reflect all pos-

sible elements influencing the performance of a coalition-task pair such as communication

costs, probability of sensor failure, sensory costs, and the benefits of performing the task.

Although obtaining the utopian utility function is unattainable in a noisy, dynamic envi-
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ronment, it may be worthwhile to explore different utility functions incorporating these

elements.

The dissertation provides an investigative study into the notion of balance and exam-

ines its impact on both team performance and fault tolerance. However, it remains to be

seen how well the results generalize outside of the domains of multi-robot soccer and for-

aging. Another important area of research is examination techniques for obtaining balance

information in real-time to enable online improvement in performance.

A limitation of the systems described in this dissertation is that multi-robot tasks are

assumed to be decomposed into pre-defined roles, to be performed by individual robots.

Thus, for true autonomy the task allocation systems require integration with a task decom-

position system. Another useful addition would be the flexibility to take into consideration

multiple task decompositions. A further limitation of the coalition formation systems is

the number of parameters that need to be adjusted for the allocation process to work. A

learning mechanism may be worthwhile to implement in order to arrive at optimal values

for these parameters.

The difficulty of the coalition formation problem is compounded by the various nu-

ances associated with a robotic environment. Physical constraints, communication costs,

and environmental factors have a huge impact on the performance of a multi-robot task al-

location algorithm. Thus far, the coalition formation problem has been somewhat neglected

by the multi-robot research community. However, as the field matures and task complexity

increases, solutions to the coalition formation problem are assuming greater significance.

This dissertation provides the initial inroads into the multi-robot coalition formation prob-

lem in an effort to both bridge the divide between agent and robotic environments while

also directing the attention of the multi-robot research community towards this very impor-

tant problem.
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APPENDIX: DEFINITIONS

The theories of coalition formation are generally with regard to cooperative “n-person

games in characteristic function form with side payments.” The following defines some

concepts that are relevant to the coalition formation process as defined in game-theory lit-

erature.

COALITION: A coalition is defined as a subset of the set of N players and is denoted

by S. To say that a coalition S is formed, it is required that agreements take place involving

approval by every player in S and by no players not in S (set N-S).

COALITION STRUCTURE: A coalition structure is a means of describing how the play-

ers in N divide themselves into mutually exclusive and exhaustive coalitions. Any proposed

or actual partition of the players can be described by a set

ρ = S1,S2, ...,Sm (1)

of the m coalitions that formed. The set P is a partition of N that satisfies three condi-

tions:





S j 6= φ , j = 1, ...,m

Si∩S j = φ f oralli 6= j,and
⋃

S j∈ρ = N




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COOPERATIVE VS NON-COOPERATIVE GAMES: The defining quality of a co-

operative game is that players may enter into mutually binding agreements. Specifically it

is assumed that negotiations are compulsory.

CHARACTERISTIC FUNCTION: A cooperative n person game in characteristic func-

tion form with sidepayments is a pair (N,v), where N = (A1,A2, . . . ,AN) is a set of players

and v is a real valued function defined on the subsets of N called a characteristic function,

which assigns a real number v(S) to each subset S of players. The number v(S), known as

the value of S, is the money which the coalition can obtain when its members act together.

The value of the empty set, is always v(φ) = 0.

PAYOFF CONFIGURATION: The payoff configuration is the means by which any pro-

posed or actual outcome of a game may be expressed. Formally, a payoff configuration

(PC) for a set of n agents A1,A2, ...,AN is defined as a pair

(x;ρ) = (xA1,xA2, . . . ,xAN ;S1,S2, . . . ,Sm) (2)

where x is a payoff vector and S is a coalition structure, as defined previously. These defi-

nitions require that there cannot be more coalitions than players, and that

x(S j)≡ ∑
i∈S j

xi = ν(S j),∀ j = 1,2, . . . ,m. (3)

Equation (3) expresses the requirement that each proposed or formed coalition will dis-

burse neither less or more than its value to its members.
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SUPER-ADDITIVE VS NON-SUPER-ADDITIVE ENVIRONMENTS: Superadditiv-

ity is a property of characteristic functions that says that any two disjoint coalitions can

earn at least as much profit by joint effort as they can individually. In characteristic func-

tion notation:

ν(S∪T )≥ ν(S)+ν(T )∀S,T ⊆ N such that S∩T = φ (4)

Superadditivity means that any pair of coalitions is better off by merging into one. Clas-

sically it is argued that almost all games are superadditive because in the worst case, the

agents in the composite coalition can use solutions that they had when they were in separate

coalitions. However, many games are not superadditive because there is some cost to the

coalition formation process itself. For example, there might be coordination overhead like

communication cost. The multi-robot domain falls into the non-super-additive category be-

cause the addition of more robots to a coalition leads to increased interference between the

robots and increased computational costs. Also when allocating the coalitions to individual

tasks we cannot have a single grand coalition.

SUPERADDITIVE COVER: Aumann and Dreze (1974) defined the superadditive cover

of a coalition as the maximum obtainable joint output from any partition of subsets of the

coalition. Formally the superadditive cover is given by:

ν̂(S) = max
P

P

∑
j=1

ν(S j) (5)

such that P = (S1, . . . ,SP) is a partition of S.

That is the coalition divides into subcoalitioins such that the sum of the values of the sub-

coalitions is a maximum.
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INDIVIDUAL RATIONALITY: An agent joins a coalition only if it can benefit at least as

much within the coalition as it could benefit by itself. An agent benefits if it fulfills tasks,

or receives a payoff that compensates for the loss of resources or non fulfillment of some

of its tasks. Thus individual rationality requires that:

xi ≥ ν(T ) for every T ⊆ N. (6)

GROUP RATIONALITY: Group rationality states that a player A should refuse any PC

that yields a lower payoff for the player A than the payoff player A would receive when the

group as a whole receives optimal payoff. For superadditive games, the coalition structure

that forms will satisfy:

∑
S∈ρ

ν(S) = ν(N) (7)

for non-superadditive games,ν(N) is replaced by its superadditive cover ν̂(N).

COALITIONAL RATIONALITY: Coalitional rationality extends the principle of group

rationality to a subset of players. That is, no combination of players should settle for less

than what it can collectively obtain by forming a coalition. Formally, this coalitional ratio-

nality constraint can be expressed as the constraint on (x;ρ) where:

x(T )≥ ν(T ) for every T ⊆ N. (8)

CORE: Gillies (1953) introduced the core for superadditive games. The concept was gen-

eralized by Aumann and Dreze (1974) to non-superadditive games. Formally, the Core of

a game (N;ν) is the set of all PCs (x;ρ), if any, such that x(T )≥ ν(T )∀T ⊆ N. Informally,

it is the set of all PCs that satisfy coalitional, group and individual rationality.
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PARETO OPTIMALITY: A payoff vector is Pareto-optimal if no other payoff vector

dominates it, i.e., no other payoff vector is better for some of the agents and no worse for

the others. A specific Pareto-optimal payoff vector is not necessarily the best for all the

agents. There may be multiple Pareto-optimal payoff vectors where different agents prefer

different payoff vectors. Therefore, Pareto optimality is insufficient for the evaluation of

possible coalitions.

EXCESS: The excess (Davis and Maschler, 1965) of a coalition C with respect to the

coalitional configuration PC is defined by :

e(C) = ν(C)− ∑
Ai∈C

xi (9)

where xi is the payoff of agent Ai in PC. C is not necessarily a coalition in PC, and it can

be in any other coalitional configuration. ν(C) is the coalitional value of coalitional C.

SURPLUS: The maximum surplus Si j of agent Ai over agent A j with respect to a PC is de-

fined by , Si j = maxC|Ai∈C,A j /∈C e(C) where e(C) represents the excesses of all the coalitions

that include Ai and exclude A j, and the coalitions C are not in PC, the current coalitional

configuration. Agent Ai outweighs agent A j if Si j > S ji and x j > (A j), where ν(A j) is the

coalitional value of agent A j in a single agent coalition.

If one agent Ai has a higher maximum surplus than an agent A j, then Ai is stronger

than A j and can claim part of A j’s payoff in the same coalitional configuration, but this

claim is limited by individual rationality which requires that x j > (A j). This means that

in any suggested coalition, agent A j must receive more payoff than it obtains by itself in

a single member coalition. Two agents Ai and A j cannot outweigh one another and are in

equilibrium if one of the following conditions is satisfied:
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



Si j = S ji

Si j > S jiandx j = ν(A j)

Si j < S jiandx j = ν(A j)





.

KERNEL: The definition of the kernel as provided by Davis and Maschler (1965) is

the set K of all PCs (x;ρ) such that every pair of players Ai and A j are in equilibrium as

defined above.

132



BIBLIOGRAPHY
Abdallah, S. and Lesser, V. (2004). Organization-Based Cooperative Coalition Formation.

In Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Techonology, IAT, pages 162–168.

Aumann, R. J. and Dreze, J. H. (1974). Cooperative games with coalition structures. Inter-
national Journal of Game Theory, 3:217–237.

Baker, D. P. and Salas, E. (1992). Principles for measuring teamwork skills. Human
Factors, 34(6):469–475.

Balas, E. and Padberg, M. (1976). Set partitioning: A survey. SIAM Review, 18:710–760.

Balch, T. (1997). Clay: Integrating motor schemas and reinforcement learning. Technical
Report GIT-CC-97-11, College of Computing, Georgia Institute of Technology.

Balch, T. (1998). Behavioral Diversity in Learning Robot Team. PhD thesis, Georgia
Institute of Technology, Dept. of Computer Science.

Balch, T. (2002). Taxonomies of multirobot task and reward. In Balch, T. and Parker, L. E.,
editors, Robot Teams: From Diversity to Polymorphism, pages 323–335.

Balch, T. and Arkin, R. C. (1994). Communication in reactive multiagent robotic systems.
Autonomous Robots, 1(1):1–25.

Balch, T. and Ram, A. (1998). Integrating robotics research with javabots. In Working
Notes of the American Association for Artificial Intelligence.

Bandura, A. (1986). Social Foundations of Thought and Action. Prentice Hall, Englewood
Cliffs.

Bar-Yehuda, R. and Even, S. (1981). A linear time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198–203.

Bass, B. M. (1980). Individual capability, team performance and team productivity. Human
Performance and Productivity, pages 179–232.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, (90):281–300.

Boicu, M., Tecuci, G., Stanescu, B., Marcu, D., Barbulescu, M., and Boicu, C. (2004).
Design principles for learning agents. In American Association of Artificial Intelligence
Workshop on Intelligent Agent Architectures: Combining the Strengths of Software En-
gineering and Cognitive Systems, Techical Report WS-04-07, pages 26–33.

Borenstein, J. and Koren, Y. (1991). The vector field histogram: A fast obstacle-avoidance
for mobile robots. IEEE Journal of Robotics and Automation, 7(3):278–288.

133



Borgwardt, K.-H. (1982). Some distribution-independent results about the asymptotic or-
der of the average number of pivot steps of the simplex algorithm. Mathematics of
Operations Research, 7:441–461.

Botelho, S. C. and Alami, R. (1999). M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 1234 – 1238.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14–23.

Brou, R., Doane, S., Bradshaw, G., Giesen, J. M., and Jodlowski, M. (2005). The role
of individual differences in dynamic team performance. In Proceedings of the Human
Factors and Ergonomics Society 49th Annual Meeting, pages 1238–1242.

Caloud, P., Choi, W., Latombe, J.-C., Pape, C. L., and Yim, M. (1990). Indoor automation
with many mobile robots. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 67–72.

Chen, Q., Zhu, K., and McCalley, J. D. (2001). Dynamic decision-event trees for rapid
response to unfolding events in bulk transmission systems. In IEEE Porto Power Tech.
Proceedings, pages SSR5–399.

Choset, H. (2001). Coverage for robotics - A survey on recent results. Annals of Mathe-
matics and Artificial Intelligence, 31:113–126.

Chu, P. C. and Beasley, J. E. (1996). A genetic algorithm for the set covering problem.
European Journal of Operational Research, 94:396–404.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research, 4(3):233–235.

Cohen, P. R. and Levesque, H. J. (1991). Teamwork. Nous, Special Issue on Cognitive
Science and Artificial Intelligence, 25(4):487–512.

Collins, J., Jamison, S., Mobasher, B., and Gini, M. (1997). A market architecture for multi-
agent contracting. Technical Report 97-15, University of Minnesota, Dept. of Computer
Science.
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