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Chapter 1

Introduction

When subject to extreme temperature and pressure, hadronic matter like protons and

neutrons can melt into its constituent particles, quarks and gluons. The resultant state of

matter, quark-gluon plasma, is governed by the strong interaction. A fraction of a second

after the Big Bang, the entire universe was comprised of quark-gluon plasma, but this

state was short lived as the universe cooled and expanded out from this concentrated form.

Relativistic heavy-ion collisions have been nicknamed “mini Big Bangs” because the hot

matter created in the collision evolves through a similar process.

Experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory (BNL) conducted measurements that discovered quark-gluon plasma which

behaves like the most perfect liquid in nature. The collective motion of the system was

measured to correspond to very low specific viscosity. It continues to be a primary exper-

imental objective at both RHIC and the Large Hadron Collider (LHC) to characterize and

understand the properties of quark-gluon plasma in detail.

A recent area of interest in the field, and the focus of this dissertation, is a class of

collision experiments referred to as small systems, because one or both of the ions being

collided has a small number of nucleons. The original motivation for small-system colli-

sions was to understand nuclear effects which occurred independent of the presence of a

hot quark-gluon plasma system. In large systems, hot and cold nuclear matter effects are

comingled, so a measurement of just the cold nuclear matter effects was needed to help

isolate effects that originate in the quark-gluon plasma and constrain models of the system.

When performing the first small-system collision experiments, it was anticipated that any

particle correlations measured in these systems could be entirely attributed to cold nuclear

matter effects which would directly correspond (with some scaling) to cold nuclear matter
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effects in large systems. This reasoning came from the assumption that even if the nuclear

melting point was surpassed, the time spent in this state would be prohibitively short such

that the transition into quark-gluon plasma would not occur. However, particle correlation

results from both RHIC and the LHC have shown that these systems have some mechanism

for driving collective behavior in a way that is reminiscent of collectivity from quark-gluon

plasma in large systems. The mounting evidence that quark-gluon plasma is formed in

small systems has motivated a deeper exploration of the size limits of quark-gluon plasma

and has necessitated the development of a theoretical picture of how such fast melting can

occur and how such a small amount of matter can exhibit fluid properties.

Two sets of small collision system experiments were conducted at RHIC to investigate

this question. A beam energy scan was conducted using d+Au collisions across an order of

magnitude of collision energies, and a geometry scan was performed using p/d/3He+Au

collisions, all with the same collision energy. Analyses of these scans have provided im-

portant constraints on the physics of a small-system collisions.

This dissertation presents analyses of PHENIX measurements from the small-system

geometry scan. The results support the interpretation that quark-gluon plasma is formed in

small systems. A theoretical context for these results is established in Chapter 2, followed

by an experimental context in Chapter 3. Details of the analysis methods used are given

in Chapter 4. Chapters 5 and 6 provide the experimental results, which are then discussed

in greater detail in Chapter 7.
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Chapter 2

Theory Introduction

This chapter outlines the fundamental interactions of the standard model, describes

the contemporary picture of how a heavy-ion collision evolves, and introduces theoretical

frameworks used to model relativistic heavy-ion collision systems.

2.1 Fundamental Forces

Each of the fundamental forces described by the standard model play a role in under-

standing relativistic heavy-ion collisions. Some basic properties of each force are listed

in Table 2.1. General relativity, electroweak theory, quantum electrodynamics, and quan-

tum chromodynamics are the theoretical frameworks used to describe the gravitational,

weak, electromagnetic, and strong interactions, respectively. The weak and electromag-

netic interactions will be discussed here in brief, and Section 2.2 is dedicated to discussing

quantum chromodynamics and the strong interaction, which is dominant in the quark-gluon

plasma.

Interaction Force Carrier Coupling Constant Range (m)
Gravitational Graviton (theorized) 10−39 Infinite
Weak W, Z bosons 10−6 10−18

Electromagnetic Photon 1/137 Infinite
Strong Gluon see Figure 2.5 10−15

Table 2.1: Basic properties of the fundamental forces.

Figure 2.1 shows Feynman diagrams of the basic interactions of the weak and elec-

tromagnetic forces. An electromagnetic force exists between any two particles carrying

electric charge, and the strength of that force depends on the magnitude of the charges and

the distance between the particles. As depicted by Figure 2.1(a), the force is mediated by
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a photon. The weak interaction is mediated by W and Z bosons, where the W boson is

electrically charged and the Z boson is electrically neutral. As depicted by Figure 2.1(b,c),

these bosons can interact with each other. Additionally, the W boson facilitates the decay

of an electron, muon, or tau particle into its corresponding neutrino (Figure 2.1(d)) and the

decay of a quark into a differently flavored quark (Figure 2.1(e)). The Z boson can mediate

an interaction between two fermions (Figure 2.1(f)).

q
q

L

νL

Z

W−

W+

W ±

W ± f
Z

f

q

L
νL

Z
W

ft → b → c → s → u ↔ d

W−

W+
W+/γ/Z

W−/γ/Z

(a) (b)

(e)(d)

(c)

(f)

γ

x

x γ
x

photon 

± particle 

quark 

Z boson 

W boson 

lepton 

neutrino 

fermion

Figure 2.1: Feynman diagrams of electroweak interactions. Conservation laws must be
maintained, and the diagrams can be rotated.

For all of these forces, the strength of the interaction is directly proportional to the

square root of the interaction’s coupling constant (see Table 2.1). The strong and electro-

magnetic interactions are very fast while, by comparison, the weak interaction is slow. In

relativistic heavy-ion collisions, weak decays are distinguishable by their occurrence some

distance away from the primary collision, when the system has had time to expand.

Measurements of photons, W bosons, and Z bosons have played an important role in

inferring the properties of the quark-gluon plasma.

2.2 Quantum Chromodynamics

According to quantum chromodynamics (QCD), there exist six types or flavors of

quarks (up, down, strange, charm, bottom, top) and one type of gluon. The term par-
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Figure 2.2: Color (QCD charge) options available to quarks and combinations of color
which produce neutral bound states.

ton is used to refer to quarks and gluons collectively. As noted in the inset to Figure 2.1(e),

a quark can decay into a differently flavored quark through the weak interaction. While

other types of inter-quark interactions occur, the weak interaction is the only mechanism

for flavor change. Quarks have color charge, a concept analogous to electric charge but

associated with the strong force. Unlike electric charge, color charge has three “positives”

each of which have their own “negative”. As shown in Figure 2.2, this charge triad is de-

scribed by the colors red (r), green (g), and blue (b) with anti-red (r̄), anti-green (ḡ), and

anti-blue (b̄) counterparts. Every quark has one unit of color charge. Color changes be-

tween quarks occur during strong force interactions mediated by gluons (see Figure 2.3),

which themselves carry color charge. Gluons always have two colors of charge associated

with them, though these pairings are restricted to an octet of superimposed states which

are listed in Table 2.2. When a quark is bound to another quark which has its anti-color

(e.g. rr̄), the composite particle is considered color neutral, as is familiar with electric

charge. However, color can additionally be neutralized through the combination of (anti-

)red + (anti-)blue + (anti-)green. The properties of the strong interaction require that all

hadrons are color neutral. All quarks additionally carry some fractional electric charge,

while gluons are electrically neutral.

gluon 
quark

g g
g

g

g g

g

q

q

q
g

g

(a) (b) (c)

Figure 2.3: Feynman diagrams of strong interactions.
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Parton Flavor Rest Mass (MeV) Electric Charge (e) Color Charge

Quark

Up 2.2+0.6
−0.4 +2

3 r, b, g, r̄, b̄, ḡ

Down 4.7+0.5
−0.4 −1

3 r, b, g, r̄, b̄, ḡ

Strange 96+8
−4 −1

3 r, b, g, r̄, b̄, ḡ

Charm 1270±30 +2
3 r, b, g, r̄, b̄, ḡ

Bottom 4660+40
−30 −1

3 r, b, g, r̄, b̄, ḡ

Top 173,210±710 +2
3 r, b, g, r̄, b̄, ḡ

Gluon 0 0

SU(3) color octet:
(rb̄+br̄)/

√
2,

−i(rb̄−br̄)/
√

2,
(rḡ+gr̄)/

√
2,

−i(rḡ−gr̄)/
√

2,
(bḡ+gb̄)/

√
2,

−i(bḡ−gb̄)/
√

2,
(rr̄−bb̄)/

√
2,

(rr̄+bb̄−2gḡ)/
√

6

Table 2.2: Summary of parton properties [1].

The fact that gluons carry the charge associated with the force which they mediate dis-

tinguishes them from all other force carriers, and is the underlying reason that the strong

force is much different from all other forces. Specifically, as the distance between two par-

tons increases, the gluons mediating the interaction between them interact with each other

forming a gluon flux tube with high energy density, illustrated on the left side of Figure 2.4.

As a result, the potential energy between the partons increases with distance. If the partons

continue to move away from each other, the system reaches a point where it becomes ener-

getically favorable to create a new parton pair, instead of continuing to increase the energy

concentrated between the original parton pair. This phenomenon is termed confinement

because it prevents the partons from ever existing in isolation.

Confinement makes it difficult to study the properties of individual partons because they

always exist in bounds states. In order to study quarks where the interactions between them
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Figure 2.4: From left to right, a quark and anti-quark being being pulled apart form a color
flux tube between the them which facilitates the production of two new quarks, resulting in
two quark pairs.

are weakest, the energy scale must be high because that is where the coupling constant is

smallest (Figure 2.5). The high energy or, equivalently, small distance boundary is called

asymptotic freedom. Relativistic collisions are used to explore quantum chromodynamics

because, as illustrated in Figure 2.6, the high energy density system produced melts the

color neutral bound states to form a system of quarks and gluons that are close together.

This is the quark-gluon plasma.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 2.5: The QCD coupling constant (αs) as a function of energy scale (Q). Image
credit: Ref. [1].
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Increasing energy density

~1 fm

Bound state 
Quarks

Figure 2.6: From left to right, quarks confined in color-neutral baryons become unbound
in a heavy-ion collision as the energy density increases.

2.3 Quark-Gluon Plasma

In the process of formulating a theoretical description of a colliding hadronic system,

Rolf Hagedorn found that conservation laws and self-consistency required some critical

temperature, at which hadronic matter would boil [16]. As the substructure of hadrons

came to be understood, this temperature became better known as the transition temperature

required to make quark-gluon plasma. Before it was created experimentally, the quark-

gluon plasma was expected to have high enough energy density, such that the partons would

approach asymptotic freedom and be weakly interacting. As such, the prediction was that

quark-gluon plasma would be gas-like [17]. It came as a surprise then, when it was ob-

served to behave like a strongly interacting fluid. As it turns out, despite its extreme energy

density, quark-gluon plasma does not approach asymptotic freedom. In these experiments

only hard scattering processes, the instances where the highest momentum transfer occurs,

are well described by perturbative QCD calculations in which deconfinement conditions

are implicit due to the required assumption of a small coupling constant. The fluid quark-

gluon plasma, on the other hand, is so strongly interacting that it approaches the theorized

lower limit of shear viscosity over entropy density making it the most ‘perfect’ fluid ever.

The contemporary view of the upper limit for the temperature of hadronic matter is

understood as a phase transition between hadronic and partonic matter, as depicted in Fig-

8



Figure 2.7: A phase diagram of nuclear matter showing the temperature and density depen-
dence of the phase. The path followed by collisions from various experiments are drawn as
curved arrows. Image credit: Ref. [9]

ure 2.7. The transition temperature is now understood to have a strong dependence on

density. While it has been well established that the transition into quark-gluon plasma has

been achieved, the exact position of the phase transition has yet to be well constrained by

experiments and the current status of calculations from first principles have some limita-

tions. In Figure 2.7, the transition is depicted as a dashed line at low density where it occurs

as a smooth crossover between phases. The critical point is shown as a red circle connected

to a curved, grey band which indicates a line of first order phase transitions [9].

One of the major ongoing aims of the field is to continue to probe the quark-gluon

plasma in an attempt to clarify the fundamental mechanisms driving its properties. A the-

oretical understanding of how the microscopic structure of the quark-gluon plasma results

in the macroscopic features which have been experimentally observed relies partially on

measurements of nuclear collisions at the critical boundaries limiting quark-gluon plasma

creation. This dissertation focuses on the size limitation of quark-gluon plasma production,
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asking how small a droplet of quark-gluon plasma can be. Equally important studies ex-

ploring other boundaries, such as the search for a critical point in the nuclear phase diagram

have been and continue to be conducted at RHIC. In order to characterize a quark-gluon

plasma system, measurements have constrained values of properties such as viscosity, den-

sity, and the equation of state. Temperature dependence of each property must also be

considered because quark-gluon plasma created in high energy collisions is fundamentally

dynamical in nature. Chapter 3 describes some of the experimental techniques used to con-

strain these properties. Understanding the quark-gluon plasma from relativistic heavy-ion

collision results requires developing a picture of how the system undergoes the trajectory

depicted by the curved arrows in Figure 2.7.

2.4 Relativistic Heavy-Ion Collisions

The contemporary description of the evolution of a relativistic heavy-ion collision is

divided into several stages, each dominated by different physics. As relativistic heavy-ion

experiments become increasingly sophisticated and precise, so do the models employed to

describe these results. As will be discussed in Chapter 3, different experimental probes are

used to isolate the conditions of the system at different evolution times and over different

length scales. Figure 2.8 shows the stages of the system evolution, where the collision

itself happens at t = 0 and all direct measurements are restricted to after the freeze-out

stage has occurred. All other stages are not directly experimentally accessible but a range

of observables have been developed, which are sensitive to changes in these early evolution

phases and have been used to constrain models of these stages.

2.4.1 Initial State

The initial state of a relativistic heavy-ion collision refers to the state of the system

when the collision has just occurred. It describes only the static distribution of nuclear

matter as determined by the collision interactions. In a full model of a relativistic heavy-
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Figure 2.8: Evolution of a relativistic heavy-ion collision. Image credit: Ref. [10]

ion collision, the results of an initial state calculation are used as starting conditions for a

calculation which describes the dynamic evolution of the system as it cools and expands, as

will be discussed in Section 2.4.2. Many models of the initial state exist. This section will

discuss two approaches: Monte Carlo Glauber (MC-Glauber) and initial state momentum

correlations.

MC-Glauber models are a straightforward approach to describing the initial state at the

nucleon level. For a given simulated collision event, the target and the projectile nuclei

are each described in terms of two dimensional distributions of nucleons. These are con-

structed based on the probability distribution relevant for the particular nuclear species.

The collision is assigned some impact parameter (b) which determines how the two nuclei

are overlaid. Some nucleon-nucleon interaction criterion is established, a simple example

being some minimum distance between the centers of the nucleons. Nucleons which fulfill

this condition are marked as participants, while nucleons that do not are marked as specta-

tors. MC-Glauber calculations assume that spectator nucleons continue along their trajec-

tories undeflected, while participant nucleons undergo one or more interactions, forming

the initial state.
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Figure 2.9: Spatial distribution of nucleons according to a MC-Glauber model depiction
of a characteristic central 3He+Au (left), d+Au (middle), and p+Au (right) collision at√sNN = 200 GeV. Participating nucleons are filled green (target) and red (projectile) circles;
spectator nucleons are open blue circles.

Figure 2.9 shows a single MC-Glauber collision event example for each of the three

collision systems analyzed in this dissertation, p/d/3He+Au, with center-of-mass energy

per nucleon pair (√sNN ) of 200 GeV. For each event, the projectile nucleons are shown

as red circles, participant nucleons from the target are shown as green circles, and specta-

tor nucleons are shown as open blue circles. This procedure forms an array of participant

nucleons with known spatial coordinates, so a useful function of this approach is that it pro-

vides the ability to parameterize the initial-state energy density in terms of this distribution.

This is also one of the most straightforward ways of gaining insight into collision features

which are not directly measurable, such as the number of participants (Npart) or geometry

features, such as the eccentricity:

εn =

√
〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 , (2.1)

where r and φ are polar coordinates of participating nucleons [13]. The spatial distribution

(sometimes referred to as geometry) of the initial state has been shown to be a significant

factor in determining final state particle distributions when quark-gluon plasma is pro-

duced, so a theoretical approach to quantifying the geometry is essential to understanding
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the properties of quark-gluon plasma. Initial state calculations for characterizing geometry

are performed on an event-by-event basis and then averaged over many events of a partic-

ular class, which matches the event selection of the analysis. The MC-Glauber approach is

utilized in the discussion and interpretation of the results presented in this dissertation.

The color-glass condensate is an effective theory of gluons under the specific condition

of saturation. The momentum of a hadron is distributed among its constituent partons

whose fraction of the total momentum is called x. At small x, gluon occupancy begins

to increase at a high rate, but some limit to this increase is required by the necessity for

unitarity of the wave function. In the gluon saturation domain (high energy, small x), gluons

continuously recombine in order to limit their numbers. Partons in the dense (saturated)

regime have momenta less than Qs, and partons in the dilute (unsaturated) regime have

momenta much greater than Qs, where Qs is the saturation momentum scale.

1
Qs

Figure 2.10: Cartoon depiction of color domain correlations in a nucleon (left) and the
combined effect of multi-nucleon combinations (right).

One implementation of the color-glass condensate is a description the initial state of a

heavy-ion collision in terms of color domains which are analogous to ferromagnet domains.

The left side of Figure 2.10 shows a nucleon with some number of uncorrelated color do-

mains whose size depends on Qs. Depending on the value of Qs, there is some probability

that the color domains will combine such that the nucleon has some net momentum corre-

lation. In p+A collisions these initial state momentum correlations may directly translate

to final state momentum correlations. As the number of nucleons in the projectile increases
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the net momentum correlation in the initial state is expected to dilute (see Figure 2.10,

right).

2.4.2 Evolution of Hot, Dense System

It has been well-established that quark-gluon plasma behaves as a relativistic fluid,

so this section focuses on the general assumptions of hydrodynamical models [18]. The

overall purpose of hydrodynamical models is to take the energy density distribution output

from an initial state model, evolve it with relativistic hydrodynamics, and calculate how the

macroscopic system changes up until the point where the system has cooled enough that it

transitions into a hadronic phase. A range of models exist which calculate the hadronization

process itself by describing how the bulk fluid forms hadrons in a way that obeys conser-

vation laws. Most contemporary hydrodynamical models use a hybrid approach, which

couples the hadronized system to a microscopic hadronic scattering model wherein some

continued evolution will occur, as described in Section 2.4.3. The results presented in this

dissertation include comparisons to three hydrodynamical calculations from the models,

SONIC [19], superSONIC [20], and iEBE-VISHNU [21], which include a hadronic rescat-

tering stage. Additional calculations from the iEBE-VISHNU model will be shown, which

do not utilize hadronic scattering but instead treat the system macroscopically throughout

the entire evolution, hadronizing only at the very end to determine the final state particle

distribution. This approach is quantitatively inaccurate, but it is useful to consider as a way

of isolating the influence of the hadronic scattering stage.

Figure 2.11 shows the time evolution of a characteristic collision for each of the three

collision systems analyzed in this dissertation, p/d/3He+Au at√sNN = 200 GeV, as calcu-

lated by a hydrodynamical model called SONIC [19]. Each panel displays the temperature

profile of the collision event as a function of its spatial distribution. Consecutive panels,

going from left to right, show this profile for a series of time points over the course of

which the collision system cools and expands into a dynamical distribution depicted by
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Figure 2.11: Evolution of a characteristic central p+Au (top row), d+Au (middle row),
and 3He+Au (bottom row) collision at √sNN = 200 GeV as calculated by hydrodynamical
model SONIC. Each panel shows the spatial distribution of the temperature of the nuclear
matter at a given time point. The velocity field of the fluid cells is depicted by arrows, with
the longest arrow plotted corresponding to a magnitude of 0.82 c.

arrows, which represent the velocity field of the nuclear matter. Note that the shape of the

velocity field depicted corresponds roughly to the shape of the distribution of matter from

which it evolved. Within the hydrodynamical framework, this transference of azimuthal

anisotropy from the initial state spatial distribution to the final state velocity (or momen-

tum) distribution is the primary mechanism responsible for the momentum anisotropy in

the particle distribution at the time of measurement. In order to understand how this trans-

ference occurs, consider the middle row which depicts a d+Au collision. At t = 1.0 fm/c

the d+Au collision roughly forms an elliptical matter distribution with a short axis which

is parallel to the x-axis. This results in there being more pressure exerted along the x-axis

and, correspondingly, the velocity field at t = 4.5 fm/c being oriented such that the average

magnitude of the velocity is greater along the x-axis than the y-axis. The distribution of

the velocity anisotropy is essentially an ellipse perpendicular in orientation to the ellipse
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formed by the initial matter distribution. In other words, the shape of the velocity field

corresponds inversely to the initial matter distribution which set the pressure gradient. This

transference can be seen in all three systems with dominantly radial, elliptic, and triangular

velocity distributions in p+Au, d+Au, and 3He+Au, respectively.

A prevalent assumption in hydrodynamical models is that the system reaches local ther-

mal equilibrium, but when the system is small and short-lived, it is unclear how this con-

dition could physically come about. However, there is an increasing body of evidence,

including the results that follow, which strongly suggest that hydrodynamical models are

the best descriptors of the class of events in small systems where the multiplicities of the

produced particles are highest. As such, hydrodynamics outside of equilibrium is an ongo-

ing area of study, as is the examination of mechanisms which could bring about very fast

thermalization.

Hydrodynamical models utilizing a quark-gluon plasma equation of state have had sig-

nificant success in describing and predicting large systems results [18]. As this dissertation

shows, measurements in small systems are also well-described by these calculations utiliz-

ing the same parameters that have been used in large systems. This is strong evidence that

quark-gluon plasma droplets are being created in small systems.

It should be noted that there are ongoing efforts to described the evolution of this hot

partonic matter microscopically through partonic scattering models. These calculations use

an initial state model to determine the parton distribution of the system just after the col-

lision has occurred. This distribution is evolved through a series of parton-parton interac-

tions. When partons stop scattering, hadronization occurs which requires some description

of how the partons combine into hadrons in a way that obeys conservation laws. The re-

sults presented in this dissertation include a comparison to one partonic scattering model,

A Multi-Phase Transport (AMPT) model [22], which uses a parton-parton cross section

determined from leading order QCD calculations. At this point in time, comparisons to

partonic scattering models must be interpreted with the understanding that, unlike hydro-
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dynamical models, it is not yet clear if a simultaneous description of both small and large

collision systems is possible while using the same model parameters governing the particle

interactions.

2.4.3 Hadronic Rescattering

As has been discussed, modern models of relativistic heavy-ion collisions utilize a

multi-stage approach. Both hydrodynamical and partonic scattering models can be stopped

at the transition temperature in order to convert the system into hadrons. The resulting

hadronic distribution can then be sent to a hadronic cascade model to determine late stage

dynamics. Rescattering can have a significant impact on the final state particle distribution.

The general prescription followed by hadronic cascade codes is that the hadrons follow

straight-line trajectories until they encounter another hadron, at which point the result of

the interaction is determined by hadronic scattering cross sections. Direct measurements of

these cross sections are limited and only well understood for specific cases such as a pion

gas. A major source of uncertainty in this procedure is the utilization of extrapolations or

estimates to determine hadronic cross sections, the specifics of which differ by hadronic

cascade code.

When inelastic collisions between hadrons cease, the system is considered to be in

chemical freeze-out [23], at which point the particle abundances are fixed. Final particle

production ratios are well-described by a statistical model utilizing the grand canonical en-

semble of an ideal hadron gas in thermal equilibrium, dependent only on the temperature

and baryochemical potential at chemical freeze-out. Elastic collisions may continue to oc-

cur up until kinetic freeze-out, at which point all hadronic rescattering becomes negligible,

leading to frozen transverse momenta.

Measurements of the temperatures associated with the onset of chemical and kinetic

freeze-out are useful for constraining models of the hadronic scattering stage. In general,

understanding the temperature dependence is especially critical to hybrid multi-stage mod-
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els, which use temperature as a boundary condition for determining when each stage is

complete. The relative length of the evolution stages may yield different results, so an

experimental constraint of the temperature is essential.

18



Chapter 3

Relativistic Heavy-Ion Experiments

Section 3.1 presents an overview of some classic results from heavy-ion experiments

that have led to the contemporary understanding of the properties of quark-gluon plasma.

Section 3.2 gives an overview of the small-system results which have motivated the anal-

yses presented in this dissertation. Section 3.3 describes the PHENIX detector which was

used to collect the data which were analyzed.

3.1 Large Collision System

The majority of experimental results exploring quark-gluon plasma come from large

systems, heavy-ion collisions in which both collision species are large ions (see Figure 3.1

top row). At the LHC, the large-system results are all symmetric A+A collisions and are

primarily Pb+Pb, while at RHIC the A+A program is primarily Au+Au. The versatility

of RHIC has allowed it to additionally collide asymmetric systems which create unique

geometries in the initial state, such as collisions between uranium nuclei that are intrinsi-

cally deformed, and collisions between differently sized large ions. Overall, analyses from

large-system collisions have developed a rich landscape of observables which collectively

support the conclusion that quark-gluon plasma is being formed in these systems.

A basic tool for characterizing the medium produced in a collision is the measure-

ment of the multiplicity of the produced particles and the distributions of their transverse

momenta (pT ) and transverse energy (ET ). These observables are used to extract informa-

tion about the collision geometry and can be related to the initial energy density using the

Bjorken relation [23, 24]. Similarly, the system’s temperature at chemical freeze-out has

been constrained by measurements of hadronic yields including identified particle spectra.

The extracted temperature and energy density values are near or above the critical lim-
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Figure 3.1: Cartoon illustration of (top) large and (bottom) small collision systems. The
overlap region, outlined in white, roughly corresponds to the average initial state geometry.

its calculated using lattice QCD, suggesting that a transition to quark-gluon plasma has

occurred.

Jets are clusters of particles originating from high momentum scattering early in the

collision process. Momentum conservation causes jets to frequently occur in back-to-back

pairs. Many measurements have observed a significant energy imbalance between the two

jets, a phenomenon which is referred to as jet suppression. The origin of jet suppression

has been found to be a difference in the path length travelled through the medium by the

scattered partons from which the jets originate. The longer a parton’s path length through

the medium, the more likely it is to have more interactions with the medium, causing more

of its energy to disperse. Measurements of the degree to which a jet was suppressed com-

pared to its counterpart have been used to constrain the density of the medium. Jets in

general have proved a fruitful observable with many more intricate analyses of their spe-

cific structures and subtypes leading to additional model constraints.

The suppression or enhancement of particular types of particles produced in heavy-ion

collisions as compared to p+p collisions has been measured. At high pT , all particles are

suppressed to a similar level, including particles containing heavy quarks such as bottom

and charm, as a result of traveling through the hot medium created in heavy-ion collisions.

There is an ongoing effort to measure the energy loss of heavy quarks precisely, since they
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are expected to lose less energy through gluon radiation than the light quarks. Measure-

ments of the magnitude of the suppression are important for constraining properties of the

medium. It has been shown that particles which do not participate in the strong interac-

tion such as photons, W bosons, and Z bosons are unsuppressed - further evidence that the

produced medium is quark-gluon plasma.

The azimuthal distribution of particles produced in heavy-ion collisions has been mea-

sured to be anisotropic. As with jet suppression, high pT particles can form an anisotropic

distribution due to energy loss that is dependent on the path length through the medium.

For low pT particles, this anisotropy is a feature of the bulk fluid properties of the medium

which develops pressure gradients, as was described in Section 2.4.2. Measurements of

azimuthal anisotropy have been made in a wide range of collision systems and energies.

These results have been used to constrain the viscosity and equation of state of the medium.

A reaction plane, defined by the beam direction and the impact parameter of the col-

liding nuclei, makes an angle ΨR with the experiment coordinate system, as shown in Fig-

ure 3.2 (left). In A+A collisions, ΨR is naturally related to the initial geometry as the

reaction plane bisects the short axis of the elliptic overlap region. One method of mea-

suring azimuthal anisotropy estimates the reaction plane angle and measures the azimuthal

distribution of the final state particles, dN/dφ , with respect to it. A Fourier decomposition

of dN/dφ can be taken to break the distribution down into components. The nth order com-

ponent (or harmonic) has an associated amplitude, vn, which is sometimes referred to as

the flow coefficient. The specific analysis techniques used to extract flow coefficients will

be discussed in Section 4.2.

Measurements of flow coefficients have been a pillar of heavy-ion analysis. Each or-

der of flow coefficient represents the amplitude of a specific feature of the distribution; for

example, v2 represents elliptic flow and v3 represents triangular flow. As was discussed

in Section 2.4.2, a defining feature of quark-gluon plasma is its ability to translate the ini-

tial state spatial anisotropy to final state momentum anisotropy. Correspondingly, collisions
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1

1 Introduction
The azimuthal anisotropy of emitted charged particles is an important feature of the hot, dense
medium produced in heavy-ion collisions, and has contributed to the suggestion of a strongly
coupled quark-gluon plasma (sQGP) being produced in nucleus-nucleus collisions at RHIC [1–
5]. In noncentral collisions, the beam direction and the impact parameter vector define a reac-
tion plane for each event. If the nucleon density within the nuclei is continuous, the initial
nuclear overlap region is spatially asymmetric with an “almond-like” shape. In this approxi-
mation, the impact parameter determines uniquely the initial geometry of the collision, as il-
lustrated in Fig. 1. In a more realistic description, where the position of the individual nucleons
that participate in inelastic interactions is considered, the overlap region has a more irregular
shape and the event-by-event orientation of the almond fluctuates around the reaction plane.
Experimentally, the azimuthal distribution of the particles detected in the final state can be used
to determine the “event plane” that contains both the beam direction and the azimuthal direc-
tion of maximum particle density. Strong rescattering of the partons in the initial state may lead
to local thermal equilibrium and the build up of anisotropic pressure gradients, which drive a
collective anisotropic expansion. The acceleration is greatest in the direction of the largest pres-
sure gradient, i.e., along the short axis of the almond. This results in an anisotropic azimuthal
distribution of the final-state hadrons. The anisotropy is quantified in terms of a Fourier ex-
pansion of the observed particle yields relative to the event-by-event orientation of the event
plane [6]:
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d3N
d3 p

=
d3N

pT dpT dy dj
=

1
2p

d2N
pT dpT dy

 
1 +

•
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Figure 1: A schematic diagram of a noncentral nucleus-nucleus collision viewed in the plane or-
thogonal to the beam. The azimuthal angle j, the impact parameter vector b, and the reaction-
plane angle YR are shown. The event-plane angle Y, with respect to which the flow is mea-
sured, fluctuates around the reaction-plane angle.

where j, E, y, and pT are the particle’s azimuthal angle, energy, rapidity, and transverse mo-
mentum, respectively, and Y is the event-plane angle. The second coefficient of the expansion,

2.4 Reconstruction of the charged-particle transverse momentum distributions and the mean
transverse momentum 7
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Figure 2: (Color online) A schematic view of a PbPb collision with an impact parameter b =
6 fm as obtained from the Glauber model. The nucleons that participate in inelastic interactions
are marked with filled circles. The x and y coordinates represent the laboratory frame, while x’
and y’ represent the frame that is aligned with the axes of the ellipse in the participant zone. The
participant eccentricity epart and the standard deviations of the participant spatial distribution
sy0 and sx0 from which the transverse overlap area of the two nuclei is calculated are also shown.
The angle YR denotes the orientation of the reaction plane.

2.4 Reconstruction of the charged-particle transverse momentum distributions
and the mean transverse momentum

To determine the transverse momentum distributions of the charged particles produced in the
collisions, we first need to reconstruct the particles’ trajectories (“tracks”) through the 3.8 T
solenoidal magnetic field. The tracks are reconstructed by starting with a “seed” compris-
ing two or three reconstructed signals (“hits”) in the inner layers of the silicon strip and pixel
detectors that are compatible with a helical trajectory of some minimum pT and a selected re-
gion around the reconstructed primary vertex or nominal interaction point. This seed is then
propagated outward through subsequent layers using a combinatorial Kalman-filter algorithm.
Tracking is generally performed in multiple iterations, varying the layers used in the seeding
and the parameters used in the pattern recognition, and removing duplicate tracks between
iterations. This algorithm is described in detail in Ref. [55]. The algorithm used in most of the
CMS proton-proton analyses, as well as the tracking detector performance for the 2010 run, are
described in Ref. [56].

The six-iteration process used in proton-proton collisions is computationally not feasible in the
high-multiplicity environment of very central PbPb collisions. In place of this, a simple two-
iteration process is used. The first iteration builds seeds from hits in some combination of three
layers in the barrel and endcap pixel detectors compatible with a trajectory of pT > 0.9 GeV/c
and a distance of closest approach to the reconstructed vertex of no more than 0.1 cm in the
transverse plane and 0.2 cm longitudinally. These tracks are then filtered using selection crite-
ria based on a minimum number of reconstructed hits, vertex compatibility along the longitu-
dinal direction and in the transverse plane, and low relative uncertainty on the reconstructed
momentum.

Figure 3.2: (Left) A cartoon A+A collision where the nuclei are moving along the z-axis
and the overlap between the nuclei is shaded grey. The reaction plane angle, ΨR, is defined
by the direction of the impact parameter, b. (Right) A MC-Glauber calculation of a Pb+Pb
collision where the filled green circles represent nucleons which participate in the collision
and empty circles represent spectating nucleons. The primed axes represent the frame
defined by the elliptic anisotropy of the participant distribution. Image credit: Ref. [11]

which produce a highly elliptic system of quark-gluon plasma have been measured to have

large v2. The collective origin of v2 has been highlighted in measurements of this observ-

able for identified particles, where the magnitude exhibits a dependence on the mass of the

particle that is consistent with the particles having emerged from a constant velocity field.

Figure 3.2 (right) shows a MC-Glauber calculation of the nucleon distribution of a

Pb+Pb collision event. The primed axes represent the frame defined by the elliptic anisotropy

of the participant distribution which, contrary to the smooth nucleus picture, does not neatly

align with ΨR. The angle between the x- and x′-axes is the nucleon participant angle, ΨP.

While the average initial state geometry over many events conforms to the smooth pic-

ture, event-by-event fluctuations in the nucleon participant distribution have a major impact

on the final state momentum distribution. Unlike the smooth nucleus picture, which pro-

duces an entirely elliptic initial state, the nucleon participant distribution has more irregu-

lar asymmetry. Figure 3.3 shows two nucleon participant distributions from A+A collision
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events, as calculated by a MC-Glauber model, which have vastly different nucleon partici-

pant distributions despite having the same impact parameter. Event-by-event fluctuations in

the nucleon participant distribution are responsible for the formation of triangular momen-

tum anisotropy which has been measured in A+A collisions. Asymmetric large systems

can have intrinsic triangularity in the initial state (Figure 3.1, top right) which has been

measured to correspond to a modest increase in v3 [8].

Figure 3.3: Nucleon distributions from two MC-Glauber events where the participants (ma-
genta) have largely elliptic (left) and triangular (right) distributions, where ψ2 (ψ3) is the
second (third) order symmetry plane angle. Image credit: Ref. [12, 13]

Figure 3.3 also introduces another symmetry angle, the event plane angle (ψn) which

is defined in terms of the nth harmonic, just as the flow coefficients vn were and which

similarly corresponds to a particular component of anisotropy. As will be discussed in Sec-

tion 4.2, the event plane angle is determined from the final state particle distribution.

The term collective flow is used as shorthand to describe the part of the azimuthal cor-

relations which originates from bulk characteristics of the hot system. This is in contrast

to correlations which emerge among a few particles through process like jets and particles

decays, whose contribution to the measured azimuthal correlations is termed nonflow. It is

the combined effects of flow and nonflow that produce the measured dN/dφ distribution.

Most studies of collectivity use analysis techniques to identify and, when possible, remove

the nonflow component. This facilitates a more straightforward interpretation of results and

allows for comparison to models which do not include background processes. Section 4.4

describes the method of nonflow estimate applied to the presented results.
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3.2 Small Collision Systems

Small systems are defined as collisions where one or both ions have very few nucleons.

The small ion is generally a proton (A=1), deuteron (A=2), or Helium-3 (A=3), all of which

have much fewer nucleons than the commonly used large ions such as gold (A=197) or lead

(A=208). Data from small-system collisions has been collected at both RHIC and LHC for

many years, though historically these data have been used primarily as a baseline for A+A

collisions.

The study of collectivity in small systems is still a somewhat recent development. It

was previously thought to be impossible for quark-gluon plasma to form in small systems,

so there was no expectation that azimuthal anisotropy would be measured beyond that

produced by nonflow effects. The LHC experiments were first to observe features in small-

system collisions, which were reminiscent of quark-gluon plasma signatures. This first

measurements where of a near-side ridge in high multiplicity events from p+p and p+Pb

collisions [25, 26, 27, 28], followed by measurements of vn in these systems extracted

using a many different analysis techniques [29, 30]. The mass dependencies of identified

particle flow, which were observed in A+A collisions, have also been observed in small

systems [31]. These results motivated the reanalysis of previously recorded d+Au data

from PHENIX, which observed similar signals [4, 32]. Further PHENIX analyses have

found signs of collectivity in many different small systems [2, 3, 5, 6, 15, 33, 34]. These

unexpected results highlighted the need to explore size and duration limits of quark-gluon

plasma formation. This has motivated the production of a set of results that will clarify

whether these small-system collectivity measurements are strongly dependent on the initial

state geometry, as is the case in systems where quark-gluon plasma is produced.

While in large systems the geometry of the initial state is strongly dependent on cen-

trality, this is not the case to first order in small systems (Figure 3.1, bottom) where, in

most collision events, all of the projectile nucleons interact with the target. Instead, a series

of experiments was proposed to explore the geometry dependence of collectivity in small
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systems [35]. It was shown that by comparing final state momentum correlations from

three small-system species - proton+gold, deuteron+gold, and either helium-3+gold or tri-

tium+gold - the contribution of the initial spatial anisotropy of the system to the production

of final state momentum anisotropy could be evaluated, where a geometry-driven final state

would be considered strong evidence for the presence of quark-gluon plasma.

The average initial spatial anisotropy of p/d/3He+Au collisions at √sNN = 200 GeV

was quantified utilizing MC-Glauber calculations (Section 2.4.1) of the participant nucleon

distributions. The calculations utilized Equation (2.1) to produce nth order eccentricities

where ε2 (ε3) corresponds to the ellipticity (triangularity) of the initial state. Some assump-

tions are made about the energy density of nucleons, the effect of which will be examined

in Section 7.2. Within this framework, the relationships between the average second and

third order eccentricities in these collision systems were calculated to be

〈ε2〉p+Au < 〈ε2〉d+Au ≈ 〈ε2〉
3He+Au,

〈ε3〉p+Au ≈ 〈ε3〉d+Au < 〈ε3〉
3He+Au,

(3.1)

with the exact values given in Table 3.1.

〈ε2〉 〈ε3〉
p+Au 0.23±0.01 0.16±0.01
d+Au 0.54±0.04 0.18±0.01

3He+Au 0.50±0.02 0.28±0.02

Table 3.1: Average second and third order eccentricities of the initial state of central (0-5%)
p/d/3He+Au collisions with√sNN = 200 GeV calculated by a MC-Glauber model.

If the medium created in the collision is quark-gluon plasma, these spatial anisotropies

will create pressure gradients, which in turn would produce an anisotropic momentum dis-

tribution in the final state as measured by flow coefficients, vn, which would be expected

to exhibit magnitude ordering which exactly follows the initial state eccentricity ordering.

As such, measurements of both second and third harmonic flow would provide a powerful
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Figure 3.4: Nucleon distributions from a d+Au collision (left) and a 3He+Au collision
(right) as calculated by a MC-Glauber model. Participating nucleons are filled green (tar-
get) and red (projectile) circles, spectating nucleons are open blue circles. The intrinsic
shape of the projectile dominates the geometry determination of the initial state. The sec-
ond (third) order symmetry plane angle, ψ2 (ψ3), is drawn. Image credit: Ref. [6]

model constraint. Figure 3.4 depicts the symmetry plane angles which were introduced

in Section 3.1 in a MC-Glauber calculation of a d+Au collision on the left and a 3He+Au

collision on the right. In these two systems the intrinsic shape of the nucleus is the dominant

source of initial state anisotropy.

This proposed geometry engineering was carried out by RHIC from 2014-2016. This

dissertation presents PHENIX measurements of inclusive charged hadron v2 and v3 as

a function of transverse momentum in p/d/3He+Au collisions with a nucleon-nucleon

center-of-mass energy√sNN = 200 GeV.

3.3 PHENIX Detector

The PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) collaboration

was established as part of the development of RHIC at BNL. The PHENIX detector was

initially designed to be complementary to three other experiments that were established at

RHIC around the same time - STAR, PHOBOS, and BRAHMS - which shared PHENIX’s

physics goal of studying quark-gluon plasma. PHENIX collected data for sixteen years,

during which time the detector underwent substantial upgrades. The detector was disas-

sembled in 2016, but the PHENIX collaboration continues to work on extracting physics

results from the wealth of data that was collected.
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The subdetectors of PHENIX work together to build a picture of the particles that

emerge from a heavy-ion collision event. In order to identify particles and measure their

characteristics, several different types of detectors are used in conjunction. The geometry

conventions of PHENIX are similar to other comparable experiments and are summarized

in Figure 3.5. The z-axis is oriented along the beam pipe, and the orthogonal (x-y) plane is

called the transverse plane. Final state particles with nonzero transverse momentum,

pT ≡
√

p2
x + p2

y , (3.2)

must originate from particle production, since the original colliding ions have pT = 0. One

can also measure particle pseudorapidity,

η ≡− ln
(

tan
θ

2

)
, (3.3)

where the region near η = 0 is called midrapidity and the large |η | region is described as

forward or backward rapidity (see Figure 3.5). PHENIX convention refers to the positive

(negative) η side of the detector as north (south). In p/d/3He+Au collision experiments

the gold ion always enters the interaction region traveling from north to south.
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Figure 3.5: The beam axis, along which the nuclei travel is defined as the z-axis. The
transverse direction (T ) is in the x− y plane which is also where the azimuthal angle (φ )
is measured. Pseudorapidity (η) is defined orthogonally to the transverse direction with
midrapidity describing the region where |η | is small and forward/backward rapidity de-
scribing the region where |η | is large.
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The collision point depicted in Figure 3.5 should be considered the nominal interac-

tion point, as the collisions actually occur over a range of points along the z-axis. The

z-coordinate of the actual collision interaction for a given event is called the z-vertex and is

determined experimentally.

A schematic showing the locations of the various PHENIX subdetectors is given in Fig-

ure 3.6. The analysis presented in this dissertation utilizes particle tracking performed by

two central arms at midrapidity, each covering |η | < 0.35 and π

2 in azimuth [36]. The

central arms are made up of several subdetectors, which include drift chambers and pad

chambers. Charged particle trajectories are determined in these subdetectors and algorith-

mically matched to determine the particle’s track. This matching model takes hits in the

drift chamber, the innermost subsystem, and projects the particle trajectory out to the loca-

tion of the pad chambers, where it looks for a hit measurement which could correspond to

the same particle. As will be described in Section 4.1, some cut must be set to determine

the statistical confidence of this matching assignment.

Beam-beam counters located at forward and backward rapidities (3.1< |η |< 3.9), each

consist of an array of 64 quartz Cherenkov radiators read out by photomultiplier tubes [7].

These detectors provide event triggering, collision vertexing, and event-plane angle deter-

mination (see Section 4.2). Additionally, forward vertex detectors covering 1.0 < |η |< 3.0

and composed of high efficiency silicon mini-strips [37] provide an independent event-

plane angle determination. A complete description of the PHENIX detector can be found

in Ref. [38].

In order to analyze the data, it is useful to subdivide the collision events in terms of cer-

tain categories. Centrality is an experimental variable that roughly corresponds to impact

parameter. A collision is described as being more central if the impact parameter is small

and more peripheral if the impact parameter is large. Centrality is expressed in bins that are

labeled in percentage from the total inelastic cross section with 0% centrality representing

the most central events of a data set and 100% representing the most peripheral.
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Figure 3.6: (Left) The PHENIX detector viewed such that the beam is traveling in/out of
the page through the center. (Right) The PHENIX detector viewed such that the beam is
traveling right/left through the center. Image credit: PHENIX

For the results presented here, event centrality is determined using the total charge

collected in the south BBC [7].
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Chapter 4

Data Analysis Methods

The results presented in this dissertation focus on the measurement of azimuthal mo-

mentum anisotropy of the particles produced in several small collision systems, in order

to investigate the collective flow effect. This observable has been shown to be a robust in

testing model predictions with regards to quark-gluon plasma [39]. It has been measured

in a wide range of collision systems and energies at many different experiments. Several

methods exist for extracting this observable including the event plane method, pairwise

correlations between particles, and correlations between multiplets.

This chapter refers to specific PHENIX subdetectors and geometry conventions, all of

which were defined in Section 3.3. Section 4.1 describes triggers and cuts that were ap-

plied. Sections 4.2 and 4.3 describe the event plane method and the two-particle correlation

method, respectively, for determining final state correlations. The methods used to estimate

associated uncertainties are described in Section 4.4.

4.1 Event and Particle Selection

Two triggers were utilized to determine online event selection. A minimum bias trigger

was used to identify the presence of a collision in the interaction region. As is standard

in the PHENIX experiment, the minimum bias trigger required at least one hit in both the

north and south beam-beam counter. This minimum bias trigger additionally required that

the collision occur within |zvertex| < 10 cm of the nominal interaction region. The specific

analysis discussed here utilizes only the most central events, so an online high multiplicity

trigger requiring a certain number of hits (dependent on the collision system) in the south

beam-beam counter was developed to prioritize the storage of these events.
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This analysis also performed several offline cuts to select events. Occasionally, mul-

tiple nucleus-nucleus collisions occur during a single bunch crossing. These events, re-

ferred to as double interaction events or pileup, were rejected using an algorithm based

on beam-beam counter charge and timing information [5]. Centrality categorization was

performed [7] and a cut retaining only the 5% most central events was applied.

As described in Section 3.3, particle tracks are determined according to matching crite-

ria which combine information collected by the drift chamber and pad chambers. In order

to reduce background from tracks originating from sources other than the primary inter-

action or uncertainty introduced from incorrect track reconstruction, some track selections

were applied. The quality of the utilized tracks was found to be improved when the track

was required to contain hits in both the drift chamber and the outermost pad chamber layer

with three standard deviations of agreement [2, 3, 5].

4.2 Event Plane Method

The event plane method was developed by A. M. Poskanzer and S. A. Voloshin in 1998.

It is used to estimate the participant plane, which was introduced in Section 3.1. It identi-

fies an event plane angle (ψn) as corresponding to the nth order symmetry plane and then

finds the azimuthal distribution of all particles in an event with respect to the event plane

angle [40, 41]. This process produces a correlation function, the Fourier decomposition of

which yields the flow parameters or vn coefficients. Specifically, the Fourier decomposition

of dN/dφ distribution is studied,

dN
dφ

∝ 1+∑
n

2vn(pT )cos(n(φ −ψn)), (4.1)

where pT and φ are the transverse momentum and the azimuthal angle of a particle and ψn

is the nth order event plane angle. The analysis presented here measures elliptic and trian-

gular flow, which correspond to the second and third order expansion coefficients in Equa-
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tion (4.1), represented symbolically as v2 and v3. The event plane angle is defined as

ψn =
1
n

arctan
∑

N
i cosnφi

∑
N
i sinnφi

, (4.2)

where N is the number of particles and φi is the azimuthal angle of each particle.
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Figure 4.1: PHENIX azimuthal and pseudorapidity coverage in the beam-beam counter,
forward vertex detector, and central arm subdetectors.

Figure 4.1 shows the coverage of the PHENIX subdetectors used in this analysis. In

PHENIX, ψn is measured using either the south beam-beam counter or the south forward

vertex detector. The orientation of ψn is random on an event-by-event basis, so the mea-

sured distribution of these angles should be flat. In reality, there is some nonuniformity

in the azimuthal acceptance of the detectors used to measure ψn, so a flattening proce-

dure is applied as a correction. The measurement of ψn has some associated precision,

which is affected by the resolution of the detector and the number of particles that were

used to determine ψn. This precision was quantified using a resolution term, R(ψn), which

was calculated using the three-subevent method that correlates measurements in the south

beam-beam counter, south forward vertex detector, and central arms (represented as A, B,

and C, respectively):

R(ψA
n ) =

√
〈cosn(ψA

n −ψB
n )〉〈cosn(ψA

n −ψC
n )〉

〈cosn(ψB
n −ψC

n )〉
(4.3)
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The vn values are measured to be

vn =
〈cos(n(φ −ψn)〉

R(ψn)
, (4.4)

where φ is the azimuthal angle of particles emitted at |η |< 0.35, as measured by the central

arm. This establishes a large η separation between these midrapidity particle tracks and the

event plane angle measurement (at backward rapidity), which has the effect of significantly

reducing the nonflow contribution.

4.3 Two-Particle Correlation Method

The two-particle correlation method is similar to the event plane method in that it is

a way to measure momentum correlations in the final state particle distribution. Instead

of correlating to a particular symmetry angle, the two-particle correlation method assess

azimuthal correlations between long-range particle pairs. In the context of this dissertation,

this method is used in the procedure for estimating the contribution of nonflow correlations

(see Section 4.4) and, in some cases, as a cross-check for results obtained using the event

plane method.

For PHENIX analyses, the two-particle correlation method is implemented by con-

structing a normalized correlation function between midrapidity tracks and signals from

the beam-beam counter photomultiplier (PMT) tubes,

S(∆φ , pT ) =
d(QPMTNtrack(pT )−PMT

same event )

d∆φ
, (4.5)

C(∆φ , pT ) =
S(∆φ , pT )

M(∆φ , pT )

∫ 2π

0 M(∆φ , pT )∫ 2π

0 S(∆φ , pT )
, (4.6)

where QPMT is the charge detected in the PMT and Ntrack(pT )−PMT
same event is the number of track–

PMT pairs from the same event. M(∆φ , pT ) is identical to S(∆φ , pT ), except that the two

particles in the pair are each taken from different events. This is called the mixed event
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technique and it produces a correlation function of order unity. The weighting used ac-

counts for acceptance effects.

The correlation function C(∆φ , pT ) is fit with a Fourier expansion,

C(∆φ) = 1+∑2cn(pT )cos(n∆φ), (4.7)

in order to extract the Fourier coefficients, cn.

4.4 Uncertainty Estimation

There are many possible sources of and corrections for uncertainty. Each detector in

the PHENIX experiment has sources of background noise, possible physical misalignment,

variations in the detector performance with time, and variations in the detector performance

between different detector sectors. When possible, background sources are identified and

removed. For the remainder, an estimate of their effect is included in the systematic error

bars. When possible, correlations between uncertainties are assessed during the process of

estimating the magnitude of the uncertainties. Correlations can impact the ways in which

uncertainties are combined, and they are important to the statistical analysis which was

performed (described in Chapter 6). PHENIX convention is to categorize uncertainties into

three types:

1. Type A: point-to-point uncorrelated;

2. Type B: point-to-point correlated;

3. Type C: global scale uncertainties.

As described in Section 4.1, some collision events were excluded from analysis as

determined by an algorithm design to identify double interaction events. In addition, a

tracking cut was applied to reduce the contribution of particle tracks from background
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sources. Systematic uncertainties associated with these cuts were determined by varying

the selection criterion and evaluating the corresponding change in the measured vn.

Two sources of uncertainty corresponding to the calculation of the event plane reso-

lution were included, the inherent statistical uncertainty and a systematic uncertainty esti-

mated by changing the pT range of central arm tracks used in the calculation.

An uncertainty due to the choice of event plane detector was also included. In most

cases, this was determined by comparing the vn measured using event planes determined

by the south beam-beam counter and south forward vertex detector. In d+Au collisions, vn

was additionally calculated using the two-particle correlation method. The specific values

of systematic uncertainty assigned were based on a ratio of the vn values calculated using

the two-particle correlation and event plane methods.

As described in Section 3.1, nonflow must be considered. A ratio of correlation func-

tions is taken to an appropriately scaled p+p reference, constructed using minimum bias

collisions with the same center-of-mass energy. This method conservatively assumes that

any correlations present in these p+p measurements are entirely due to nonflow processes.

The two-particle correlation method described in Section 4.3 was used to perform this

estimate. The procedure to extract the cn coefficients from Equation (4.7) was executed

for the system for which nonflow was being evaluated (p/d/3He+Au) and for the p+p

reference. The nonflow contribution to the correlations, which was treated as a systematic

uncertainty, was directly evaluated from the ratio of the cn terms,

nonflow ratio =
cp+p

n (pT )
〈Qp+p〉
〈Qsystem〉

csystem
n (pT )

(4.8)

where differences in multiplicity were accounted for through a term dependent on 〈Q〉,

the corresponding average beam-beam counter charge. The assumption used to justify this

scaling is that the nonflow processes being estimated by the p+p correlations also occur in

the system being compared to at a rate proportional to (diluted by) the number of nucleon-
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n = 2
Source Type p+Au d+Au 3He+Au
Track background B ±2% ±2% ±2%
Event selection B +4% ±1% ±5%
R(ψ2) C ±3%

±0.3% n/a
ψ2 determination B ±2.5% ±5%
Detector alignment B ±5% ±< 1% ±2%
Nonflow (pT dependent) B −12%→−23% −5%→−14% −3%→−7%

Combined +7%
−13.5%→+7%

−24%
+3%
−6%→+3%

−14%
+7.5%
−8% →+7.5%

−10%

n = 3
Source Type p+Au d+Au 3He+Au
Track background B ±4% ±7% ±5%
Event selection B ±3% ±2% ±5%
R(ψ3) (sys.) C ±7% ±34% n/a
R(ψ3) (stat.) C ±13% ±17% n/a
ψ3 determination B < 1% ±17% ±15%
Detector alignment B ±8% ±5% ±15%
Nonflow (pT dependent) B +21%→+114% +18%→+27% +4%→+15%

Combined +27%
−18%→+115%

−18%
+46%
−42%→+50%

−42%
+23%
−22%→+27%

−22%

Table 4.1: Systematic uncertainties in the vn measurements as a function of pT in 0-5%
central p/d/3He+Au collisions at√sNN = 200 GeV [2, 3, 4, 5, 6].
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nucleon collisions, as estimated by 〈Q〉. If there is no nonflow contribution, then cp+p
n = 0

and the nonflow ratio equals zero; if all correlations in the system come from elementary

processes, then the absolute value of the scaled cp+p
n equals |csystem

n | and the absolute value

of the ratio equals unity.
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Figure 4.2: Second and third order measurements of correlation coefficients, cn, and
scaled ratios, cpp

n S/cdAu
n , for central (0-5%) d+Au collisions at √sNN = 200 GeV. Non-

flow estimates are determined by the ratios. The multiplicity scale factor, S, is equal to
〈Qp+p〉/〈Qd+Au〉 where 〈Qp+p〉= 5.02 and 〈Qd+Au〉= 82.1.

Figure 4.2 shows cn(pT ) for p+p and d+Au collisions at √sNN = 200 GeV as well as

the ratio described in Equation (4.8). The second order measurement shown on the left side

of Figure 4.2 has a positive value for the ratio indicating that nonflow contributions cause

an enhancement in the v2. As such, a pT dependent systematic uncertainty corresponding

to the deviation of the ratio from zero is applied only to the lower systematic error bar of

v2(pT ). In contrast, the third order measurement shown on the right side of Figure 4.2

has a negative ratio indicating that the nonflow contribution decreases the amplitude of

the measured v3. As such, the uncertainty is applied only to the upper systematic error

bars of v3(pT ). This is the only asymmetric contribution to the systematic uncertainties

in this measurement. The nonflow estimates for p+Au and 3He+Au collisions, published

in Refs. [3, 42, 2], show the same anticorrelation between the nonflow contribution to the

second and third harmonics.

37



2c

5−10

4−10

3−10

2−10 (a)

>=82.1
bbc

; cent:0-5%, <QdAu
2c

>)
dAu

bbc>/<Q
pp

bbc
 S, S = (<Q× pp

2c

(GeV/c)
T

p
0.0 0.5 1.0 1.5 2.0 2.5 3.0

dA
u

2
 S

/c
× 

pp 2c

0.05

0.10

0.15

0.20
(b)

dAu

2 S/c× pp
2c

2c

5−10

4−10

3−10

2−10 (a)

>=57.8
bbc

; cent:5-10%, <QdAu
2c

>)
dAu

bbc>/<Q
pp

bbc
 S, S = (<Q× pp

2c

(GeV/c)
T

p
0.0 0.5 1.0 1.5 2.0 2.5 3.0

dA
u

2
 S

/c
× 

pp 2c

0.00

0.05

0.10

0.15

0.20 (b)

dAu

2 S/c× pp
2c

2c

5−10

4−10

3−10

2−10 (a)

>=44.8
bbc

; cent:10-20%, <QdAu
2c

>)
dAu

bbc>/<Q
pp

bbc
 S, S = (<Q× pp

2c

(GeV/c)
T

p
0.0 0.5 1.0 1.5 2.0 2.5 3.0

dA
u

2
 S

/c
× 

pp 2c

0.0

0.1

0.2

0.3

0.4 (b)

dAu

2 S/c× pp
2c

2c

5−10

4−10

3−10

2−10 (a)

>=29.8
bbc

; cent:20-40%, <QdAu
2c

>)
dAu

bbc>/<Q
pp

bbc
 S, S = (<Q× pp

2c

(GeV/c)
T

p
0.0 0.5 1.0 1.5 2.0 2.5 3.0

dA
u

2
 S

/c
× 

pp 2c

0.0

0.2

0.4

(b)

dAu

2 S/c× pp
2c

Figure 4.3: Second order measurements of correlation coefficients, cn, and scaled ratios,
cpp

n S/cdAu
n , for four centralities of d+Au collisions at √sNN = 200 GeV. The centrality bins

shown are (top, left) 0-5%, (top, right) 5-10%, (bottom, left) 10-20%, and (bottom, right)
20-40%. Nonflow estimates are determined by the ratios. The multiplicity scale factor, S, is
equal to 〈Qp+p〉/〈Qd+Au〉 where 〈Qp+p〉= 5.02 and 〈Qd+Au〉= 82.1, 57.8, 44.8, and 29.8
for the different centrality bins going from most to least central.

Several additional centrality bins are shown in Figure 4.3. The nonflow contribution

systematically increases as the selection becomes more peripheral.

A summary of the values assigned for each type of systematic uncertainty associated

with v2 and v3 measurements in p/d/3He+Au collisions with √sNN = 200 GeV is given

in Table 4.1.
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Chapter 5

Small-Systems Geometry Scan

This chapter presents PHENIX measurements of v2(pT ) and v3(pT ) in p/d/3He+Au

collisions at√sNN = 200 GeV. These analyses were the combined effort of many individuals

over many years; leading up to this,

• v2(pT ) and v3(pT ) in 3He+Au collisions were published by PHENIX in 2015 [2],

• v2(pT ) in p+Au collisions was published by PHENIX in 2017 [3],

• v2(pT ) in d+Au collisions was published by PHENIX as two independent results in

2015 [4] and 2017 [5].

This chapter details the combination of these results, with the addition of v3(pT ) measured

in p+Au and d+Au collisions as published by PHENIX in Ref. [6]. My contribution was

primarily to the analysis of the d+Au collision data that was collected by PHENIX in 2016.

In addition, I played a significant role in performing a statistical analysis over the combi-

nation of all of the described measurements, the results of which are detailed in Chapter 6.

The results of the statistical analysis were included in Ref. [6], to which I made significant

contributions as co-chair of the Paper Preparation Group.

The small-systems geometry scan at RHIC consisted of three collision species, p+Au,

d+Au, and 3He+Au, all run at the same center-of-mass energy per nucleon pair, √sNN =

200 GeV. As introduced in Section 3.2, the primary goal of comparing this set of colli-

sions was to systematically vary the spatial distribution of the initial state in a way that is

well understood, on average. This choice of collision systems creates intrinsically circu-

lar, elliptic, and triangular initial geometries for p+Au, d+Au, and 3He+Au, respectively.

Calculations in the MC-Glauber framework found the initial state eccentricities to have the

relationship described in Equation (3.1), visualized in Figure 5.1. This ordering of the ec-
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centricities is unique and unambiguous, highlighting the utility of comparing this particular

set of small-systems collisions: final state correlations that emerge directly from this initial

state anisotropy should mimic this specific ordering.

p+
Au

d+
Au

3 He
+A

u
0.1

0.2

0.3

0.4

0.5

0.6
〈 ε2 〉

0.0
p+
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d+
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3 He
+A

u

〈 ε3 〉

Figure 5.1: Average second (third) order eccentricities, 〈ε2〉 (〈ε3〉), shown for 0-5% central
p+Au (red), d+Au (blue), and 3He+Au (grey) collisions with √sNN = 200 GeV as calcu-
lated from a MC-Glauber model using nucleons with Gaussian energy density distributions.
The inset shapes represent the geometry associated with the corresponding amplitude and
harmonic.

This analysis measures the final state momentum distributions in these collision systems

and assesses whether, as is the case in large systems which create quark-gluon plasma, they

could have originated from the initial state geometry. The role of the initial state is not yet

well understood in collision systems of this size.

A range of theory assumptions have been utilized to calculate how these initial spatial

anisotropies may affect the final state momentum distribution being measured. Relativistic

viscous hydrodynamical models are most prevalent because they have a history of success-

fully describing a wide range of observables in A+A collisions. Increasingly, measurements

of high multiplicity events in small-system collisions point to the possibility that hydrody-

namical models are also the best description in this regime. The results will be compared

to calculations from both hydrodynamical and non-hydrodynamical frameworks.
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As described in Section 2.4.2, relativistic viscous hydrodynamics calculations effi-

ciently transfer initial state spatial anisotropy into final state momentum anisotropy. With

this in mind, a straightforward prediction of hydrodynamical models is that ordering of

final state momentum anisotropy between these three systems should exactly follow the

eccentricity ordering given in Equation (3.1), that is,

vp+Au
2 < vd+Au

2 ≈ v
3He+Au
2 ,

vp+Au
3 ≈ vd+Au

3 < v
3He+Au
3 ,

(5.1)

where v2 and v3 are the second and third order flow coefficients which were introduced

in Section 3.1.

Measurements of this observable using the event plane method (Section 4.2) are shown

in Figure 5.2. The left panel shows the second harmonic measurement, where v2 in d+Au

and 3He+Au collisions have similar magnitudes, and are much larger than v2 in p+Au col-

lisions. The right panel shows the third harmonic measurement, where v3 in p+Au and

d+Au collisions have similar magnitudes, and are much smaller than v3 in 3He+Au colli-

sions. These trends are most distinct at low pT , where the nonflow contribution is small.

This ordering exactly matches the hydrodynamic prediction given in Equation (5.1). This

suggests that the initial spatial anisotropy is the primary driver of azimuthal momentum

anisotropies in particle emission. A full summary of the systematic uncertainty estimates

included in the box errors of Figure 5.2 was given in Table 4.1.

A direct comparison to two hydrodynamical predictions is shown in Figure 5.3. The

hydrodynamical models shown are SONIC [19] 1 (which was used to calculate the distribu-

tions shown in Figure 2.11) and iEBE-VISHNU [21]. The models are similar in that they

1There is some discrepancy between what Ref. [6] refers to as “SONIC ” compared to its original definition
in Ref. [19]. Historically, SONIC did not implement event-by-event initial condition fluctuations. Figure 2.11,
which presents a single event from each collision system, conforms with this original usage. Strictly speaking
the “SONIC ” calculations shown in Figure 5.3 are superSONIC [20, 43], an event-by-event generalization of
SONIC, where the preflow stage has been turned off. What is later referred to as “superSONIC ” is the same
framework where preflow has been turned on.
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Figure 5.2: Measurements of v2(pT ) (left) and v3(pT ) (right) for p/d/3He+Au collisions
with √sNN = 200 GeV, depicted as red circles, blue squares, and black diamonds, respec-
tively. Each point represents an average over pT bins of width 0.2 - 0.5 GeV/c. One
standard deviation statistical (systematic) uncertainties are represented as line (box) errors.
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Figure 5.3: Measured v2(pT ) (black circles) and v3(pT ) (black diamonds) in (a) p+Au,
(b) d+Au, and (c) 3He+Au collisions with √sNN = 200 GeV compared to hydrodynamic
predictions of vn from SONIC (solid red) and iEBE-VISHNU (dashed blue).

both evolve a given set of MC-Glauber initial conditions using viscous hydrodynamics,

hadronize the resulting fluid distribution, and then allow hadronic scattering to occur. The

key transport parameter, specific shear viscosity (η/s), is set to 0.08≈ 1
4π

in both models,

corresponding to the conjectured lower limit in QCD [44]. The differences in the resulting

calculations can be attributed to the specific choice of initial conditions and the hadronic
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rescattering software, which are different in these models. By eye, both model calcula-

tions are consistent with the v2 measurement and capture the magnitude difference of v3

compared to v2 in all three systems.

A closer look at available hydrodynamic calculations offers insight into how specific

parts of the system evolution contribute to the azimuthal anisotropy measured in the final

state momentum distribution. Figure 5.4 shows the iEBE-VISHNU calculations compared

to calculations run using the same code, where no hadronic rescattering stage has been

implemented [21]. The observed difference suggests that hadronic rescattering does not

substantially change low pT correlations, but produces some enhancement of high pT cor-

relations that brings the calculations closer to the measured magnitude.
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Figure 5.4: Measured v2(pT ) (black circles) and v3(pT ) (black diamonds) in (a) p+Au, (b)
d+Au, and (c) 3He+Au collisions with √sNN = 200 GeV compared to hydrodynamic pre-
dictions of vn from iEBE-VISHNU with (blue, dashed) and without (cyan, dotted) hadronic
rescattering.

Figure 5.5 compares the SONIC calculations to hydrodynamical model superSONIC,

which includes an additional stage in the beginning of the system evolution that models

pre-equilibrium dynamics. The affect of this stage appears most substantial in the v3(pT )

calculations causing superSONIC to significantly overestimate v3 in p+Au and d+Au colli-

sions. The tendency of superSONIC to overestimate the signal in both v2 and v3 (compared

to SONIC which tends to underestimate v2 and overestimate v3) leads to an overall less
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robust simultaneous description of these values, because the uncertainties due to nonflow

correlations are in anti-correlated between the second and third flow harmonic. This is

discussed in greater detail in Chapter 6.
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Figure 5.5: Measured v2(pT ) (black circles) and v3(pT ) (black diamonds) in (a) p+Au,
(b) d+Au, and (c) 3He+Au collisions with √sNN = 200 GeV compared to hydrodynamic
predictions of vn from SONIC (solid red) and superSONIC (solid orange).

While so far only hydrodynamical predictions have been discussed, calculations from

models based on other theory frameworks can be similarly evaluated. MSTV is a model

which utilizes the initial state momentum domain framework described in Section 2.4.1. In

these calculations, the primary mechanism driving azimuthal anisotropy in the final state

momentum distribution is anisotropy in the initial state momentum distribution [14]. As

discussed in Section 2.4.1, this prescription predicts that

vp+Au
n > vd+Au

n > v
3He+Au
n , (5.2)

which is exactly opposite to the ordering seen in the measurement (Figure 5.2). An MSTV

postdiction of the gluon correlations (which represent a maximum value, as hadronic pro-

cesses would be expected to dilute the signal) is compared to the data in Figure 5.6, which
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shows that these calculations are not consistent with the measurement2. These results elim-

inate the viability of initial state momentum correlations as the dominant mechanism driv-

ing small-systems collectivity. An overview of the open questions regarding these calcula-

tions was given in Ref. [45], which additionally includes calculations from an independent

color saturation model called IP-JAZMA. This study shows that key features of the MSTV

calculations actually come from parts of the calculation that are outside the color-glass

condensate framework. For additional comparison, a direct test of an MSTV prediction is

discussed in Chapter 7.
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Figure 5.6: Measured v2(pT ) (black circles) and v3(pT ) (black diamonds) in (a) p+Au, (b)
d+Au, and (c) 3He+Au collisions with √sNN = 200 GeV compared to a prediction from
SONIC (solid red) and a postdiction from MSTV (dotted brown).

Finally, a partonic cascade model is considered. As introduced in Section 2.4.2, these

models implement a microscopic evolution of the system driven by parton-parton scatter-

ing. Like hydrodynamical models, this framework is dependent on initial state geometry,

but in this case the mechanism driving translation is parton escape probabilities that are de-

pendent on geometry. Figure 5.7 shows predictions from A Multi-Phase Transport (AMPT)

model which demonstrates modest agreement with the measurement at low pT , but not at

high pT . The AMPT curves used here were taken from Ref. [46], where v2 and v3 are cal-

2The main PHENIX publication of these results (Ref. [6]) showed a different MSTV comparison; how-
ever, recently MSTV have published an erratum amending errors in their initial results. The comparison
shown here reflects the most recent MSTV calculations.
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culated relative to the initial participant nucleon plane (see Section 3.1), utilizing a string

melting mechanism and a parton interaction cross section of σ = 1.5 mb. A cautionary con-

sideration when interpreting AMPT calculations is that the framework has not demonstrated

the ability to describe small systems and large systems simultaneously, using a single set

of transport parameters.
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Figure 5.7: Measured v2(pT ) (black circles) and v3(pT ) (black diamonds) in (a) p+Au,
(b) d+Au, and (c) 3He+Au collisions with √sNN = 200 GeV compared to predictions from
SONIC (solid red) and AMPT (dashed magenta).

Six model calculations have been discussed, all shown together in Figure 5.8. In or-

der to objectively compare the ability of the many available model calculations to describe

all six measurements simultaneously, a method of quantitative assessment should be em-

ployed. As such, Chapter 6 provides a statistical analysis of this comparison.
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Figure 5.8: Measured (top) v2(pT ) and (bottom) v3(pT ) in (a) p+Au, (b) d+Au, and (c)
3He+Au collisions compared to six models. Hydrodynamic predictions of vn are shown for
SONIC (solid red), iEBE-VISHNU with (dashed blue) and without (dotted cyan) hadronic
rescattering, and superSONIC (solid orange). Parton cascade predictions are shown from
AMPT (dashed magenta), and and momentum domain postdictions are shown from MSTV
(dotted brown).
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Chapter 6

Statistical Analysis of Data to Model Agreement

The results presented in Chapter 5 provide the best model constraints when requiring

that a theory calculation describes not just each measurement individually, but all six mea-

surements, v2(pT ) and v3(pT ) in p+Au, d+Au, and 3He+Au collisions, simultaneously.

Visual assessment was used in Chapter 5 to identify that the MSTV and AMPT calculations

are clear outliers in their inability to describe the data, but an objective assessment of the

relative strength of the three hydrodynamical calculations shown requires a quantitative ap-

proach. As such, a statistical analysis in the form of a p-value calculation from a modified

χ2 minimization was employed. Sections 6.1 to 6.4 provide a detailed description of the

steps used to perform this calculation, and Section 6.5 describes the results.

6.1 Overview of Reduced χ̃2 and p-value Calculation

The purpose of this procedure is to take a measurement with an associated statistical

and systematic uncertainty and a theory calculation of the measured observable with its own

associated uncertainty and calculate a numerical value that reflects the degree to which they

agree. This study extracts a p-value with some magnitude between zero and one, with one

representing perfect agreement between data and theory.

The p-value calculation used in this analysis is calculated using the minimized χ̃2 and

the number of degrees of freedom. The χ̃2 calculation uses the difference in the nomi-

nal values of the measurement compared to the theory, while also accounting for the cited

uncertainties. A χ̃2 minimization procedure was performed for each data to model com-

parison. The calculation was done once for each measurement that makes up the data –

v2(pT ) and v3(pT ) in p+Au, d+Au, and 3He+Au – with some interdependencies between

the v2 and v3 calculations performed for a given collision system.
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The χ̃2 minimization procedure scales and tilts the data and theory curves by amounts

determined by the allowed parameter space, identifying what minimum change can be

made to create maximum agreement. These parameters are additionally applied as penal-

ties to χ̃2, so moving the curves by some number of standard deviations would decrease

the χ̃2 value only if doing so creates data to model agreement to a degree that exceeds

the corresponding penalty. The minimum χ̃2 was found by systematically calculating χ̃2

for all specified parameter combinations (Table 6.1). After all parameter combinations

have been tested, the set of parameters corresponding to the smallest value of χ̃2 were

retained. As such, this procedure provides a set of parameters that maximize the data to

model agreement while moving the points as little as possible, and a χ̃2 value that can be

used to calculate an associated p-value.

For this analysis, measurements of the flow coefficients, vn, as a function of transverse

momentum, pT , were considered. This procedure uses the symbol vn(i), to refer to the

measurement of the n-th order flow coefficient in pT bin i. These data have a measured

statistical uncertainty, σ stat(i), and an estimated systematic uncertainty. For these data, the

systematic uncertainty was split into two parts, the nonflow contribution, σn f (i), and all

remaining systematic uncertainty, σ sys(i). Typically the total systematic error quoted is the

combination of these two terms in quadrature (
√

σn f (i)2 +σ sys(i)2). They are separated

in this procedure in order to account for the known anti-correlation between the nonflow

uncertainties (σn f ) in v2 and v3. As was discussed in Section 4.4, the nonflow uncertainty

contributes asymmetrically, namely it systematically reduces the measured v2 and increases

the measured v3. The covariance matrix for the remaining systematic uncertainty (σ sys) is

not determined for the full set of v2 and v3 measurements across all collision systems so

this lack of knowledge is accounted for by assuming σ sys is divided among three types 1 :

1. Type A: point-to-point uncorrelated uncertainties

2. Type B: point-to-point correlated where the points have a tilt uncertainty
1This definition of Type B and C uncertainties is different from conventional PHENIX definitions.
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3. Type C: point-to-point correlated where the points all move coherently by a certain

standard deviation of σ sys

Fraction parameters (FA, FB, FC) allow the relative contribution of each Types A, B,

and C to vary over a range specified in Table 6.1. Note that this introduces only two free

parameters, as the total of the three fraction parameters must always equal unity (FA +

FB +FC = 1). The conservative approach is taken, and these fractions are allowed to vary

independently between data sets within reasonable limits.

For a given theory formalism, the calculation that is being compared the measured flow

coefficient is denoted as vtheory
n (i), representing the nth order flow coefficient calculated in

pT bin i. The uncertainty associated with the theory calculation, σ th(i), is treated as one

standard deviation. In reality, the uncertainties associated with the theoretical calculations

used in this specific comparison indicate some subset of theoretical uncertainties which

differ between the models. The full covariance matrices for these uncertainties are not

available, so for this calculation we assume that the dominant contribution is a Type C

uncertainty, which is correlated between v2 and v3. That said, given the relatively small

uncertainty bands on the theory calculations, which do not fully represent the theoretical

uncertainty, this inclusion has a relatively small effect on χ̃2.

50



Super
Sub script Definition Specific Details
theory Associated theory calculation SONIC, superSONIC,

iEBE-VISHNU,
AMPT, MSTV

n Associated harmonic order n = 2,3

Parameter Definition Specific Details
d.o.f Number of degrees of freedom, equal to the num-

ber of data points that went into the calculation
See Table 6.2

FA, FB, FC Fraction of the systematic uncertainty (without
nonflow, σ sys) taken to contribute to types A, B,
and C, respectively

FA + FB + FC = 1,
FA ∈ [0.1,0.4],
FB,FC ∈ [0.1,0.8],
steps of 0.1

εB, εC Standard deviation parameters associated with
Type B and Type C uncertainties, respectively

εB,εC ∈ [−4,4], steps
of 0.25

εn f Standard deviation parameter associated with only
the nonflow component of the systematic uncer-
tainty used to implement anti-correlation between
the nonflow systematic error of n = 2 versus n = 3

εn f ∈ [0,4], steps of
0.25

εth Standard deviation parameter associated with the
theoretical uncertainty bands

εth ∈ [−4,4], steps of
0.25

ptilt The pT point around which a tilt is applied ptilt ∈ [0.75,2.75],
steps of 0.25

Table 6.1: Summary of terms association with χ̃2 minimization and p-value calculation.

6.2 Steps to Minimize χ̃2 for a Single Data to Model Comparison

For a specified collision system, harmonic, and theory comparison, the steps used to

minimize χ̃2 are as follows. Each parameter (FB, FC, εB, εC, εn f , ptilt) is assigned a value

corresponding to the lower limit of its specified range. These values are used to calculate

the ‘new’ data point at pT bin i,

vn(i)′ = vn(i)+ εBFBσ
sys(i)

(
pT (i)− ptilt

p′− ptilt

)
+ εCFCσ

sys(i)∓ εn f σ
n f (i), (6.1)
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where p′ is

p′(GeV/c) =





0.5, if |0.5− ptilt |> |3.0− ptilt |

3.0, otherwise.
(6.2)

This calculation takes the measured data points vn(i) and adds on some value associated

with the parts of the systematic uncertainty treated as Types B and C, and the part of the

systematic uncertainty corresponding to nonflow. The ε parameters correspond to the num-

ber of standard deviations. Larger values of the ε parameters move these ‘new’ data points

further from the measured data points potentially leading to better data to model agreement

and a smaller χ̃2, but larger values of ε can also increase χ̃2 as they will be applied as

penalty terms in the calculation of χ̃2 (Equation (6.5)).

The fraction of σ sys(i) being treated as Type A, point-to-point uncorrelated, is added in

quadrature with the statistical uncertainty, σ stat(i), yielding

σ
stat(i)′ =

√
σ stat(i)2 +(FAσ sys(i))2. (6.3)

This analysis additionally requires σ stat(i)′ ≥ 4% which, while ultimately an arbitrary re-

quirement, indicates a lower limit for which the uncertainties are trusted in the comparison.

Varying this 4% value has no effect on the relative ordering of the model to data compar-

isons discussed later, and only effects the overall χ̃2 values extracted.

The ‘new’ theory curves are calculated by treating the theoretical uncertainty, σ th(i),

as Type C, modulated via the parameter εth ∈ [−4,4]. For a given εth the shifted theory

calculation of vn at pT bin i is calculated to be

vtheory
n (i)′ = vtheory

n (i)+ εthσ
th(i). (6.4)
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Finally, vn(i)′, σ stat(i)′, vtheory
n (i)′, and each ε parameter are used to find χ̃2,

χ̃
2 = ε

2
B + ε

2
C + ε

2
n f + ε

2
th +

Npt

∑
i=0

(vn(i)′− vtheory
n (i)′)2

σ̃(i)2 (6.5)

where

σ̃(i) = σ
stat(i)′

vn(i)′

vn(i)
. (6.6)

Note that Equation (6.5) is a sum over all pT bins, so Equations (6.1), (6.3), (6.4) and (6.6)

are calculated Npt times for each set of parameters.

For each data to model comparison, every possible combination of the parameters FB,

FC, εB, εC, εn f , and ptilt that is within the specified limits is used to calculate χ̃2. In

principal the parameters are continuous variables, but for computational expediency they

are varied over a grid of discrete values defined in Table 6.1. The grid size was analyzed

to ensure that a finer grid does not produce substantially different χ̃2 values. The smallest

value of χ̃2 found in this process is then used as the input to the p-value calculation.

6.3 Multiple Data to Model Comparisons Minimized Simultaneously

For completely independent data sets, a combined minimization would simply be the

combination of each independent minimization2. However, in this case the data being

compared to are not all independent – v2 and v3 are each extracted from the same data set of

collisions. As a result, for each collision system, this calculation constrains the parameter

space used for the combined minimization such that the magnitude of the nonflow term

is required to be the same for both harmonics. Experimental results indicate that, for a

given collision system, nonflow increases (decreases) the measured v2 (v3) signal, so εn f

for v2 of a given collision system is required to be equal in magnitude to that used for

v3, but applied in the opposite direction as indicated by the ∓ sign associated with this

term in Equation (6.1). Similarly, this analysis assumes that the uncertainty in the theory

2Appendix A shows the results of these calculations under this assumption
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calculation is correlated between the two harmonics, and εth for a system is required to

be identical for v2 and v3. This analysis does not assume there is any correlation between

different collision systems.

When calculating the combined χ̃2, the penalties associated with these constrained

terms (εn f and εth) are only applied once per system instead of once for each harmonic,

χ̃
2 = ε

2
n f + ε

2
th +

3

∑
n=2

[
ε

2
B,n + ε

2
C,n +

N

∑
i=0

(vn(i)′− vtheory
n (i)′)2

σ̃(i)2

]
. (6.7)

For each collision system the set of parameters that minimize the combined χ̃2 is found.

The minimum χ̃2 values for each collision system are summed to get the total χ̃2 for the

given model.

6.4 p-value Calculation from Reduced χ̃2

The p-value was calculated from the minimized χ̃2 in the standard way, where the num-

ber of degrees of freedom (NDOF) is simply the total number of data points (Table 6.2).

This analysis utilizes the standard ROOT method TMath::Prob(min chisq,NDOF) [47].

Collision system Harmonic Number of data points

p+Au
2 13
3 10

d+Au
2 10
3 10

3He+Au
2 13
3 13

Table 6.2: The number of pT bins (in the range pT ≤ 3 GeV) for v2 and v3 in central
p/d/3He+Au collisions at√sNN = 200 GeV.

6.5 Results of Statistical Analysis for Small-Systems Geometry Scan

As a reminder of the specific theory calculations that were introduced in Chapter 5, Fig-

ures 6.1 and 6.2 show v2(pT ) and v3(pT ) in all three systems compared to each model.
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Broadly, the hydrodynamical calculations (SONIC, superSONIC, iEBE-VISHNU) do a bet-

ter job of describing the pT dependence of the distribution and, therefore, might be expected

to be minimized with smaller values of εB, which modulates the tilt adjustments in the min-

imization process. It is also notable that while several theory calculations do a reasonable

job describing the magnitude of v2(pT ) (Figure 6.1), none do nearly as well in describing

v3(pT ) (Figure 6.2). By eye, SONIC provides the best agreement to the v3 measurements

with a very good description of the v3 values at low pT in p+Au and d+Au collisions.

Figures 6.3 to 6.5 show how the v2 and v3 values may change to achieve a combined

minimization. As a note, the result can sometimes appear counter intuitive because it may

be favorable to make, for example, the v3 agreement a little worse in order to make the v2

agreement much better, with the net effect of decreasing the combined χ̃2.

Figure 6.3 shows how the p+Au vn data points and model calculations are shifted to

become closer together in the minimization process for each of the five model comparisons

to which this process was applied. For each model, the top panel is v2(pT ) and the bottom

panel is v3(pT ). The experimental data, vn(i), are shown as filled blue circles, and the

‘new’ data points, vn(i)′, are shown as open black circles. As such, the blue circles are

identical in each of the five figures shown in Figure 6.3, while the open circles are not the

same and may even be drastically different depending on what shift must occur to make

the data better agree with the corresponding theory calculation. The original theory curves

(vtheory
n (i)) are shown as dashed black lines, and the ‘new’ theory curves (vtheory

n (i)′) are

shown as solid orange lines. As was shown in Equation (6.4), vtheory
n (i)′ is moved by εth

standard deviations. Figure 6.3 can be used to surmise what type of adjustment minimizes

χ̃2 in v2 and v3 in p+Au collisions simultaneously, how it corresponds to the resulting

p-values, and how the minimization differs from theory to theory for a given collision

system. All of the shifting to create the ‘new’ data points and ‘new’ theory curves was

done using the inset parameters which are also summarized in Appendix A. Figure 6.4

and Figure 6.5 show the same information for d+Au and 3He+Au collisions, respectively.
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A concise summary of the of the extracted values for the minimum χ̃2 and the associated

p-values is given in Table 6.3.

SONIC provides a very good description of the data with an overall p-value of 0.896.

iEBE-VISHNU and superSONIC give a slightly worse overall p-values of 0.138 and 0.281,

respectively. Both MSTV and AMPT yield a very poor description with p-values of effec-

tively zero.

SONIC iEBE-VISHNU superSONIC AMPT MSTV Erratum
p+Au 0.9659 0.08624 0.2428 2.088E-7 8.331E-182
d+Au 0.689 0.3131 0.2624 1.578E-18 6.11E-88

3He+Au 0.465 0.4317 0.5492 1.558E-22 6.419e-281
0.8956 0.1389 0.2809 1.943e-43 0

Table 6.3: p-values for combined v2 and v3 in p/d/3He+Au collisons. The granularity is
0.25 for εb and εc; 0.25 for εn f ; 0.25 for εth; 0.1 for Fb and Fc; and 0.25 for ptilt .
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Figure 6.1: Measured v2(pT ) in p/d/3He+Au collisions compared to six model calcula-
tions.
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Figure 6.2: Measured v3(pT ) in p/d/3He+Au collisions compared to six model calcula-
tions.
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Figure 6.3: Measured and calculated vn(pT ) in p+Au collisions before and after simulta-
neous χ̃2 minimization
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Figure 6.4: Measured and calculated vn(pT ) in d+Au collisions before and after simulta-
neous χ̃2 minimization
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Figure 6.5: Measured and calculated vn(pT ) in 3He+Au collisions before and after simul-
taneous χ̃2 minimization
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Chapter 7

Discussion

Chapter 5 primarily focused on the sensitivity of the flow coefficients, vn, to the spatial

distribution of the system at the time of collision. However, this observable is also known

to be sensitive to the multiplicity of the particles produced in the collision. While p+Au,

d+Au, and 3He+Au collisions are all considered small systems, there is still a distinct

difference in the size of the systems with the projectiles containing one, two, and three

nucleons, respectively. This translates to a difference in multiplicities, and for a given

centrality class, the average number of participant nucleons in the three systems are

〈Npart〉p+Au < 〈Npart〉d+Au < 〈Npart〉
3He+Au. (7.1)

Understanding the relative roles of multiplicity and geometry is important to the inter-

pretation of these results, because some descriptions of the system are more dependent on

one or the other. As has been discussed, hydrodynamical models are strongly dependent

on initial state geometry, but multiplicity also plays a role in this framework through its

relationship to the entropy and pressure of the system. Parton scattering models also have

a geometry response, though the underlying physics mechanism is different. On the other

hand, calculations of vn from initial state momentum correlations models such as MSTV

supposedly have no geometry dependence.

In an attempt to isolate the contributions of geometry and multiplicity, Section 7.1 takes

a closer look at multiplicity differences in p/d/3He+Au. Section 7.2 compares the sec-

ond harmonic measurements in small systems to published large-system results, which

have multiplicities that are up to two orders of magnitude larger. Since the characteriza-

tion of the initial state geometry is necessarily model dependent, Section 7.3 discusses the

assumptions present in the geometry parameters that have been used and considers alter-
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native assumptions. Section 7.4 explores the roles of eccentricity and multiplicity in small

and large systems for the third harmonic.

7.1 Comparison with Constant Multiplicity

Before the full set of second and third order flow coefficients were extracted, a question

was raised as to whether to observed ordering of v2 measured in p/d/3He+Au collisions

(Figure 5.2, a) could be dominated by event multiplicity rather than the initial state geom-

etry [2, 3, 4]. The addition of v3 measurements paints a picture that exactly follows the

expectation of geometry ordering, which is difficult to reconcile with a multiplicity order-

ing interpretation. This section shows an additional comparison that further solidifies this

conclusion.

Figure 7.1 compares p+Au and d+Au collisions in centrality classes that have the same

average dNch/dη , which is related to multiplicity 1. As such, it is assumed that the contri-

bution from multiplicity is identical in both measurements. Below pT = 1 GeV/c, where

nonflow contribution is smallest, the measurements do not overlap within one standard de-

viation of the estimated uncertainty. The systematic difference observed between the two

systems, therefore, can be attributed to differences in geometry. The ordering of the v2

values in the two systems, where v2 is larger in d+Au collisions than in p+Au collisions, is

consistent with the interpretation that this difference is the direct result of the more elliptic

initial state in d+Au collisions. At higher pT the uncertainties are large and overlap, and

a measurement with smaller uncertainty would be needed to better constrain this relation-

ship. Figure 7.1 additionally shows calculations from both a hydrodynamical model SONIC

and a initial state momentum correlations model MSTV. Both models account for system

multiplicity, but only SONIC results are affected by initial state eccentricity. The data are

1This specific comparison was first motivated by the MSTV prediction that same multiplicity small sys-
tems would yield the same vn and that their calculation of multiplicity matched d+Au and p+Au collisions
would be identical [14]. For context, the initial (erroneous) MSTV calculations reasonably described v2(pT )
in p+Au collisions.
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fairly consistent with the SONIC curves, which describe the observed separation between

the two systems. The exact magnitude is slightly below the nominal data points for both

systems, which can be attributed to the nonflow enhancement in the measurement which

is not accounted for in the SONIC calculation. In contrast, the MSTV calculation does not

describe the data, and the measurements in the two systems do not fall along a universal

curve as MSTV predicted they would. As was discussed in Chapter 5, there are many open

questions about how to interpret these MSTV results.
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Figure 7.1: Measured v2 in the 0-5% most central p+Au collisions (red circles) and 20-
40% central d+Au collisions (blue squares) compared to corresponding SONIC predictions
(red dashed and blue solid, respectively) and MSTV Erratum (brown dotted). The MSTV
Erratum calculation is for 0-5% central p+Au collisions, which the authors state yield an
identical v2 to d+Au collisions at the same multiplicity [14]. The vertical lines (boxes)
represent one standard deviation statistical (systematic) uncertainties. dNch/dη values are
taken from Ref. [15].
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7.2 Comparison of Second Harmonic Flow in Small and Large Systems

As was discussed in Chapter 3, the translation of initial geometry to final state momen-

tum anisotropy as a direct result of the hydrodynamical evolution of a strongly coupled

medium has been well established in large systems. One technique for showing the contri-

bution of geometry has been to scale the data by geometry parameters. Many large systems

have been found to fall on a universal curve when differences in geometry and multiplicity

are accounted for [32, 48]. Under the assumption that the way in which a hydrodynamic

system translates initial state spatial anisotropy to final state momentum anisotropy is lin-

ear, vn/εn scaling normalizes for geometry contribution, and isolates the multiplicity con-

tribution. When calculating the eccentricity, some assumption must be applied about the

energy density of the nucleons. In this case, the calculations for large systems assumed

the nucleons were point-like with all of the energy located at the nominal center of each

nucleon. This assumption is non-physical, but it has been shown to be a reasonable approx-

imation when the system size is large. For small systems, a more physical approach was

taken by assuming the nucleon energy density is Gauss-like [7]. The ability to use the same

assumption across all systems was limited by the availability of published data, but some

cross checks will be shown that indicate that confirm that the difference between these two

assumptions is negligible for the A+A systems shown.

Using PHENIX measurements of v2 as a function of pseudorapidity, η , and dNch/dη(η) [5,

15], an integrated v2 was extracted for p/d/3He+Au and p+Al collisions at √sNN = 200

GeV and for d+Au collisions at two additional collision energies,√sNN = 62.4 GeV and 39

GeV. All measurements are for the 5% most central events except for the d+Au collisions

at √sNN = 39 GeV for which the high centrality bin was expanded to included the 10%

most central events in order to improve statistical precision. These results are shown in the

left panel of Figure 7.2. The black points show the v2 for charged particles measured in

different collision systems with nucleon-nucleon center-of-mass energy, √sNN = 200 GeV;

the magnitude increases with dNch/dη . The v2 results for d+Au collsions at different col-
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Figure 7.2: Measured v2(dNch/dη) (left) and v2/〈ε2〉(dNch/dη) (right) in p/d/3He+Au
and p+Al at√sNN = 200 GeV and d+Au at√sNN = 62.4 GeV and 39 GeV.

lision energies are shown in Figure 7.2 as square markers with different colors. They are

measured to have similar magnitudes, though the substantial size of the uncertainties makes

it difficult to conclusively interpret their place in the trend.

The right panel of Figure 7.2 shows these data where v2 has been scaled by the average

second order eccentricity, 〈ε2〉, as calculated using a MC-Glauber model. The systematic

uncertainties from the geometry parameters were folded into the box error bars. These

geometry parameters were calculated with the assumption that the nucleons have a Gaus-

sian energy density distribution. The scaling decreases the dependence of v2 on dNch/dη ,

though the distribution is not entirely flat. While it has been well established that eccen-

tricity scaling is dominantly linear in large systems, such that v2 ∝ 〈ε2〉, it is possible that

nonlinear terms have a larger contribution in small systems.

These small-system results are shown with comparable large-system results [11, 12]

in Figure 7.3. The A+A results appear to line up along a single curve when collision energy

is constant. The small-systems results generally line up with the overall trend of the large

systems, supporting the interpretation that the mechanism driving v2 in small systems is

the same as that in large systems. As mentioned previously, this is an inherently simplified
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scaling relationship, which is not always applicable. It is possible that this is the case for

small systems.
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Figure 7.3: Measured v2/〈ε2〉(dNch/dη) in p/d/3He+Au, p+Al, Au+Au, and Cu+Cu
collisions at √sNN = 200 GeV, d+Au collisions at √sNN = 62.4 GeV and 39 GeV, and
Pb+Pb collisions at √sNN = 2.76 TeV [5, 15, 12, 11]. Eccentricity calculations utilized the
point-like (Gauss-like) assumption for large (small) systems.

7.3 Geometry Assumptions

As discussed in Section 2.4.1, initial state models are essential for understanding the

evolution of the collision system. Parameters from these models are used to characterize

collisions in ways which cannot be done directly through experiment. The initial state

parameters used in this dissertation are all from a Monte-Carlo Glauber model, and the

specific values used are summarized in Table 7.1. This section will continue to expand on
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the value and limitations of these parameters and how that impacts the interpretation of

these results.
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Figure 7.4: v2/〈ε2〉(dNch/dη) in small systems (left) and Pb+Pb (right) with the Gauss-like
assumption as closed points and the point-like assumption as open points.

The values quoted so far have used the point-like assumption for large systems and

the Gauss-like assumption for small systems, where these types of nucleon energy density

distributions were described in Section 7.2. Here the effect of using different assumptions

is explored. Figure 7.4 shows how v2/〈ε2〉(dNch/dη) changes in small systems (left) and

Pb+Pb (right) when the eccentricity is point-like (open) versus Gauss-like (closed). The

effect is substantial in small systems, most notably in p+Au and p+Al. In Pb+Pb the

difference is minimal. Figure 7.5 shows the comparison that was given in Figure 7.3 of

small and large systems with eccentricity scaling, but where the eccentricities for small

systems were calculated using the nonphysical point-like assumption in order to directly

match what was done in large systems. In terms of understanding the trend as a whole, the

choice of assumption does not make a substantial difference.

More work is needed to determine the best description of the nucleons, so two addi-

tional possibilities are considered, disk-like and diskNBD-like [7], as shown in Figure 7.6.

The disk-like assumption treats the energy density of the nucleon as uniform across the
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Figure 7.5: Measured v2/〈ε2〉(dNch/dη) in p/d/3He+Au, p+Al, Au+Au, and Cu+Cu
collisions at √sNN = 200 GeV, d+Au collisions at √sNN = 62.4 GeV and 39 GeV, and
Pb+Pb collisions at √sNN = 2.76 TeV [5, 15, 12, 11]. All eccentricities were calculated
using the point-like assumption.

entire nucleon area. The diskNBD-like assumption uses this same treatment of the indi-

vidual nucleons, but additionally applies a weighting factor to nucleons depending on their

relative position in the distribution. This weight is determined from the negative bino-

mial distribution (NBD) fit to the particle multiplicity. Calculations using the disk-like and

diskNBD-like assumptions are not substantially different from the Gauss-like assumption.

7.4 Comparison of Third Harmonic Flow in Small and Large Systems

At this point in time, the pT integrated v3 have not been measured for p/d/3He+Au

collisions, so an alternate approach is taken to investigate the relative contributions of mul-

tiplicity and eccentricity to the third harmonic flow. Figure 7.7 shows v3(pT ) in five colli-
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Figure 7.6: Measured v2/〈ε2〉(dNch/dη) in small systems. Each panel shows the points
with Gauss-like geometry parameters in closed points. Panels with open points show how
the distribution changes if the calculation assumes the nucleons are point-like (top right),
disk-like (bottom left), or diskNBD-like (bottom right).

sion systems of varying sizes, all with √sNN = 200 GeV. As a result of the availability of

published data, the centrality bins are not identical, with the A+A collisions having wider

bins. Third harmonic measurements in these systems are only weakly dependent on cen-

trality [8]. Even without any scaling, there is some overlap between the direct measurement

of v3 in small and large systems.
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Figure 7.7: Measured v3(pT ) in p/d/3He+Au, Au+Au, and Cu+Au collisions at √sNN =
200 GeV.

The first type of scaling which is applied is the same linear eccentricity scaling as was

used for the second harmonic. As shown in Figure 7.8 (left), scaling by only eccentricity

results in the data roughly clustering into two bands: an upper band of large systems and a

lower band of small systems. This matches the expectation that linear geometry scaling is

not enough to account for differences in the measured v3 between different systems, and it

suggests a system-size dependent effect. A second type of scaling is shown in Figure 7.8

(right) in which v2 is scaled by 3
√
〈Npart〉. The cubed root of the number of participants,

3
√
〈Npart〉, is used because it is proportional to the transverse particle density. This scaling

causes the ordering to change such that the intrinsically triangular systems moving to the

top, but the systematic uncertainties are quite large, so it is hard to say anything conclusive

from this.

When both scaling relationships are applied together, shown in Figure 7.9, the data still

appear to have some multiplicity separation with the Au+Au and Cu+Au data remaining

systematically above the p/d/3He+Au data. Because these are very simple scaling rela-
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tionships, it is not entirely surprising that this does not produce a universal curve for all

systems. Further analysis of these types of scaling relationships in small systems could be

insightful.
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Chapter 8

Conclusion

In summary, azimuthal particle correlations have been shown for three small collision

systems with different intrinsic initial geometries. The simultaneous constraints of v2 and

v3 in p/d/3He+Au collisions definitively demonstrates that the vn values are correlated to

the initial geometry, removing any ambiguity related to event multiplicity or the concrete

implementations in various initial geometry models. The ordering of the v2(pT ) and v3(pT )

measurements between the three collision systems is inconsistent with that expected from

initial-state momentum correlation models, ruling this out as the dominant mechanism be-

hind the observed collectivity. Hydrodynamical models, which include quark-gluon plasma

formation, were found to provide a simultaneous and quantitative description of the data in

all three systems.

Studies from both theory and experiment could be done in the future to expand on

these results. The ongoing exploration of characterizing the initial state is important to

understanding the system as a whole, both in the form of more constrained initial state

models and in the development of the methods of calculating geometry parameters within

initial state models. A promising frontier in this realm are models that are not nucleon-

based but parton-based, a consideration which one might expect is increasingly important

as the size of the system decreases.

The small collision system data shown here were all collected using the PHENIX de-

tector, which has some coverage and efficiency limitations. Analyses utilizing the recently

installed event-plane detector at the STAR experiment could be performed as a cross check.

The conclusion that quark-gluon plasma was being produced in large systems was sup-

ported by the combined evidence from many observables. A more complete picture of the
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medium produced in small systems will rely on the ongoing analysis of a broad range of

observables.

This dissertation has presented results from small collision systems which are consis-

tent with a hydrodynamic description, providing the most conclusive and comprehensive

evidence to date that the collectivity, which occurs in a subset of small-system nuclear

collisions, is the direct result of quark-gluon plasma production.
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Appendix A

Additional Materials from the Statistical Analysis

A.1 Minimization of χ̃2 for Individual Harmonics

Figure A.1 shows how the v2 data points from p+Au collisions and model calculations

are shifted to become closer together with the parameter set that minimizes χ̃2. Unlike the

results presented in Section 6.5, which shows combined minimization, this minimization

is independent of v3. Comparing the χ̃2 values yielded in this minimization to those which

were yielded for combined minimization highlights which models are most affected by

the correlation that was enforced in the combined minimization process. Appendix A.2

has tables that detail all of these values for both individual and combined minimization.

Figures A.2 and A.3 show individual minimization for v2 in d+Au and 3He+Au collisions,

and Figures A.4 to A.6 show individual minimization for v3 in p/d/3He+Au collisions.
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Figure A.1: Measurements and calculations of v2(pT ) in p+Au collisions before and after
χ̃2 minimization.
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Figure A.2: Measurements and calculations of v2(pT ) in d+Au collisions before and after
χ̃2 minimization.
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Figure A.3: Measurements and calculations of v2(pT ) in 3He+Au collisions before and
after χ̃2 minimization.
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Figure A.4: Measurements and calculations of v3(pT ) in p+Au collisions before and after
χ̃2 minimization.
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Figure A.5: Measurements and calculations of v3(pT ) in d+Au collisions before and after
χ̃2 minimization.
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Figure A.6: Measurements and calculations of v3(pT ) in 3He+Au collisions before and
after χ̃2 minimization.
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A.2 Parameter Tables Associated with χ̃2 Minimization

Taking a closer look at the specific values of the parameters that minimized χ̃2 can offer

insight into how this specific choice of statistical analysis functions. First consider the top

section of Table A.1 that shows parameters associated with the χ̃2 minimization of v2 and v3

data in p+Au collisions compared to the model SONIC. The values of εn f and εth which are

associated with the individual minimization are 0.75 and 0.25, respectively, for both v2 and

v3. As such, the correlations enforced in combined minimization are already achieved and

all parameters associated with combined minimization are identical to those that achieved

individual minimization. This is the only case in which the sum of the minimized χ̃2 for

individual v2 (5.12) and individual v3 (7.79) minimization to be greater than the minimized

χ̃2 for combined v2 and v3 (12.28), because everything is identical except that the penalties

associated with εn f and εth were only added once in the combined case, whereas they were

added once for each individual case, and therefore were added twice to the sum of the two

individual cases. For all other results presented in these tables, εn f and/or εth differ in the

individual minimization case, which means that the parameters associated with combined

minimization must change for one or both harmonics. By definition, this means that the

χ̃2 associated with that harmonic at minimization is larger than the value for individual

minimization.

83



C
om

pa
re

d
to

S
O

N
IC

ca
lc

ul
at

io
ns

Sy
st

em
H

ar
m

on
ic

M
in

χ̃
2

N
D

F
p-

va
lu

e
F a

F b
F c

p t
ilt

ε
b

ε
c

ε
n

f
ε

th
p+

A
u

v 2
5.

12
14

2
13

0.
97

24
22

0.
3

0.
6

0.
1

1.
75

0.
75

-0
.2

5
0.

75
0.

25
p+

A
u

v 3
7.

78
56

7
10

0.
64

97
63

0.
1

0.
8

0.
1

1.
75

1.
25

0
0.

75
0.

25
p+

A
u

v 2
&

v 3
12

.2
82

1
23

0.
96

58
85

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
3

0.
6

0.
1

1.
75

0.
75

-0
.2

5
0.

75
0.

25
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

8
0.

1
1.

75
1.

25
0

0.
75

0.
25

d+
A

u
v 2

7.
03

91
2

10
0.

72
17

47
0.

1
0.

8
0.

1
2.

5
-0

.7
5

0
0.

5
1.

25
d+

A
u

v 3
8.

37
21

1
10

0.
59

25
39

0.
1

0.
8

0.
1

0.
75

1.
25

0.
25

1.
25

-0
.5

d+
A

u
v 2

&
v 3

16
.4

4
20

0.
68

89
82

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
1

0.
8

0.
1

1.
75

1
0

1
0.

25
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

4
0.

1
0.

5
1.

75
0.

25
1.

25
1

0.
25

3 H
e+

A
u

v 2
6.

51
95

8
13

0.
92

51
86

0.
1

0.
8

0.
1

2
-1

0
0

0.
25

3 H
e+

A
u

v 3
19

.3
18

2
13

0.
11

35
62

0.
1

0.
8

0.
1

2.
5

-2
.7

5
-0

.2
5

0.
25

0.
5

3 H
e+

A
u

v 2
&

v 3
25

.9
65

26
0.

46
50

29
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
2

-1
0

0
0.

25
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

8
0.

1
2.

5
-2

.7
5

-0
.5

0
0.

25
C

om
bi

ne
d

v 2
18

.6
80

1
36

0.
99

23
93

C
om

bi
ne

d
v 3

35
.4

76
33

0.
35

22
89

C
om

bi
ne

d
v 2

&
v 3

54
.6

87
1

69
0.

89
55

78

Ta
bl

e
A

.1
:M

in
im

iz
ed

χ̃
2

fo
rv

2
an

d
v 3

(i
nd

ep
en

de
nt

&
co

m
bi

ne
d)

.T
hi

s
is

th
e

co
m

pa
ri

so
n

to
so

ni
c

an
d

m
in

im
iz

ed
ov

er
a

gr
an

ul
ar

ity
of

0.
25

fo
rε

b
an

d
ε

c;
0.

25
fo

rε
n

f;
0.

25
fo

rε
th

;0
.1

fo
rF

a,
F b

,a
nd

F c
;a

nd
0.

25
fo

r
p t

ilt
.

84



C
om

pa
re

d
to

su
pe

rS
O

N
IC

ca
lc

ul
at

io
ns

Sy
st

em
H

ar
m

on
ic

M
in

χ̃
2

N
D

F
p-

va
lu

e
F a

F b
F c

p t
ilt

ε
b

ε
c

ε
n

f
ε

th
p+

A
u

v 2
7.

20
11

8
13

0.
89

14
88

0.
1

0.
8

0.
1

1.
75

-1
.5

-0
.2

5
0.

25
-0

.5
p+

A
u

v 3
13

.7
13

4
10

0.
18

64
7

0.
1

0.
1

0.
8

2.
75

0.
25

1.
5

2.
25

-1
p+

A
u

v 2
&

v 3
27

.3
15

1
23

0.
24

27
92

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
1

0.
1

0.
8

2.
25

0.
25

1.
75

1.
5

-2
.7

5
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

1
0.

8
2.

75
0.

25
2

1.
5

-2
.7

5
d+

A
u

v 2
3.

22
54

1
10

0.
97

56
11

0.
1

0.
8

0.
1

1.
75

-0
.5

0
0

-0
.2

5
d+

A
u

v 3
17

.9
24

7
10

0.
05

62
47

7
0.

1
0.

1
0.

8
0.

75
0.

25
2.

75
1.

75
-1

d+
A

u
v 2

&
v 3

23
.5

53
9

20
0.

26
24

22
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

25
0.

25
0

0.
75

-1
.7

5
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

1
0.

8
0.

75
0.

25
3

0.
75

-1
.7

5
3 H

e+
A

u
v 2

7.
37

80
9

13
0.

88
16

31
0.

1
0.

2
0.

7
1.

75
0.

25
0.

75
0

-1
.5

3 H
e+

A
u

v 3
16

.6
14

7
13

0.
21

75
22

0.
4

0.
5

0.
1

1.
75

1.
25

0.
25

1.
75

-1
.5

3 H
e+

A
u

v 2
&

v 3
24

.4
69

26
0.

54
91

66
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1

0.
25

0
0.

25
-2

.2
5

(a
ss

oc
ia

te
d

v 3
pa

rs
)

0.
1

0.
8

0.
1

1.
5

2
0

0.
25

-2
.2

5
C

om
bi

ne
d

v 2
17

.8
04

7
36

0.
99

52
22

C
om

bi
ne

d
v 3

48
.2

52
8

33
0.

04
20

83
6

C
om

bi
ne

d
v 2

&
v 3

75
.3

38
69

0.
28

08
86

Ta
bl

e
A

.2
:

M
in

im
iz

ed
χ̃

2
fo

r
v 2

an
d

v 3
(i

nd
ep

en
de

nt
&

co
m

bi
ne

d)
.

T
hi

s
is

th
e

co
m

pa
ri

so
n

to
su

pe
rS

O
N

IC
an

d
m

in
im

iz
ed

ov
er

a
gr

an
ul

ar
ity

of
0.

25
fo

rε
b

an
d

ε
c;

0.
25

fo
rε

n
f;

0.
25

fo
rε

th
;0

.1
fo

rF
a,

F b
,a

nd
F c

;a
nd

0.
25

fo
r

p t
ilt

.

85



C
om

pa
re

d
to

iE
B

E
-V

IS
H

N
U

ca
lc

ul
at

io
ns

Sy
st

em
H

ar
m

on
ic

M
in

χ̃
2

N
D

F
p-

va
lu

e
F a

F b
F c

p t
ilt

ε
b

ε
c

ε
n

f
ε

th
p+

A
u

v 2
14

.6
39

1
13

0.
33

04
23

0.
1

0.
8

0.
1

1.
75

-3
.2

5
-0

.2
5

1
-0

.7
5

p+
A

u
v 3

13
.5

59
2

10
0.

19
40

64
0.

1
0.

8
0.

1
1.

75
-2

0.
25

0
0.

5
p+

A
u

v 2
&

v 3
32

.7
10

7
23

0.
08

62
41

6
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-3

.7
5

0.
25

0.
25

1
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-1

.7
5

0.
25

0.
25

1
d+

A
u

v 2
15

.4
68

6
10

0.
11

58
89

0.
1

0.
8

0.
1

1.
75

-1
.2

5
0

1.
25

-0
.2

5
d+

A
u

v 3
8.

70
25

7
10

0.
56

05
45

0.
1

0.
8

0.
1

2
1.

5
0.

25
0.

75
-0

.7
5

d+
A

u
v 2

&
v 3

22
.5

17
3

20
0.

31
31

11
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-1

.2
5

0
1.

5
-0

.5
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-1

.5
0

1.
5

-0
.5

3 H
e+

A
u

v 2
15

.3
48

3
13

0.
28

61
18

0.
1

0.
8

0.
1

1.
75

-1
.2

5
0

0
0

3 H
e+

A
u

v 3
10

.3
16

1
13

0.
66

79
07

0.
4

0.
1

0.
5

0.
75

-0
.2

5
-1

.2
5

0
0.

5
3 H

e+
A

u
v 2

&
v 3

26
.5

78
5

26
0.

43
16

87
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-1

.2
5

0
0

0
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

4
0.

1
0.

5
1.

75
-0

.2
5

-1
.7

5
0

0
C

om
bi

ne
d

v 2
45

.4
55

9
36

0.
13

42
38

C
om

bi
ne

d
v 3

32
.5

77
8

33
0.

48
80

05
C

om
bi

ne
d

v 2
&

v 3
81

.8
06

5
69

0.
13

89
27

Ta
bl

e
A

.3
:

M
in

im
iz

ed
χ̃

2
fo

r
v 2

an
d

v 3
(i

nd
ep

en
de

nt
&

co
m

bi
ne

d)
.

T
hi

s
is

th
e

co
m

pa
ri

so
n

to
iE

B
E

-V
IS

H
N

U
an

d
m

in
im

iz
ed

ov
er

a
gr

an
ul

ar
ity

of
0.

25
fo

rε
b

an
d

ε
c;

0.
25

fo
rε

n
f;

0.
25

fo
rε

th
;0

.1
fo

rF
a,

F b
,a

nd
F c

;a
nd

0.
25

fo
r

p t
ilt

.

86



C
om

pa
re

d
to

A
M

P
T

ca
lc

ul
at

io
ns

Sy
st

em
H

ar
m

on
ic

M
in

χ̃
2

N
D

F
p-

va
lu

e
F a

F b
F c

p t
ilt

ε
b

ε
c

ε
n

f
ε

th
p+

A
u

v 2
59

.9
06

13
5.

46
07

6e
-0

8
0.

1
0.

8
0.

1
1.

75
-4

0.
75

2.
25

-0
.5

p+
A

u
v 3

13
.1

58
6

10
0.

21
49

38
0.

1
0.

8
0.

1
1.

75
-2

0.
25

0.
75

0.
25

p+
A

u
v 2

&
v 3

74
.8

92
2

23
2.

08
84

8e
-0

7
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-3

.5
-0

.2
5

2
1.

75
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

4
0.

5
0.

1
1.

75
-0

.7
5

0
2

1.
75

d+
A

u
v 2

12
3.

12
6

10
1.

17
31

1e
-2

1
0.

1
0.

8
0.

1
1.

75
-4

1
2.

5
2

d+
A

u
v 3

9.
33

38
10

0.
50

07
45

0.
1

0.
8

0.
1

1.
75

-1
.7

5
0

0.
25

1
d+

A
u

v 2
&

v 3
13

2.
09

1
20

1.
57

77
4e

-1
8

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
1

0.
8

0.
1

1.
75

-4
0.

75
2.

25
3.

25
(a

ss
oc

ia
te

d
v 3

pa
rs

)
0.

4
0.

5
0.

1
1.

75
-1

0
2.

25
3.

25
3 H

e+
A

u
v 2

10
1.

86
2

13
7.

22
27

7e
-1

6
0.

1
0.

8
0.

1
1.

75
-4

0.
25

2.
75

3.
5

3 H
e+

A
u

v 3
31

.6
08

13
0.

00
27

45
16

0.
1

0.
8

0.
1

0.
75

-4
-1

.7
5

0
1.

75
3 H

e+
A

u
v 2

&
v 3

16
6.

94
6

26
1.

55
83

9e
-2

2
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-4

-1
2.

25
4

(a
ss

oc
ia

te
d

v 3
pa

rs
)

0.
1

0.
8

0.
1

0.
75

-4
-2

2.
25

4
C

om
bi

ne
d

v 2
28

4.
89

3
36

1.
78

62
2e

-4
0

C
om

bi
ne

d
v 3

54
.1

00
4

33
0.

01
17

09
9

C
om

bi
ne

d
v 2

&
v 3

37
3.

93
69

1.
94

27
4e

-4
3

Ta
bl

e
A

.4
:

M
in

im
iz

ed
χ̃

2
fo

r
v 2

an
d

v 3
(i

nd
ep

en
de

nt
&

co
m

bi
ne

d)
.

T
hi

s
is

th
e

co
m

pa
ri

so
n

to
A

M
P

T
an

d
m

in
im

iz
ed

ov
er

a
gr

an
ul

ar
ity

of
0.

25
fo

rε
b

an
d

ε
c;

0.
25

fo
rε

n
f;

0.
25

fo
rε

th
;0

.1
fo

rF
a,

F b
,a

nd
F c

;a
nd

0.
25

fo
r

p t
ilt

.

87



C
om

pa
re

d
to

M
ST

V,
PR

L
E

rr
at

um
ca

lc
ul

at
io

ns
Sy

st
em

H
ar

m
on

ic
M

in
χ̃

2
N

D
F

p-
va

lu
e

F a
F b

F c
p t

ilt
ε

b
ε

c
ε

n
f

ε
th

p+
A

u
v 2

81
5.

1
13

8.
00

6e
-1

66
0.

1
0.

8
0.

1
1.

75
-4

4
1.

75
-4

p+
A

u
v 3

11
7.

3
10

1.
75

8e
-2

0
0.

1
0.

8
0.

1
1.

75
-4

0.
75

4
-4

p+
A

u
v 2

&
v 3

93
0.

4
23

8.
33

1e
-1

82
(a

ss
oc

ia
te

d
v 2

pa
rs

)
0.

1
0.

8
0.

1
1.

75
-4

4
1.

75
-4

(a
ss

oc
ia

te
d

v 3
pa

rs
)

0.
1

0.
1

0.
8

2.
75

1.
25

4
1.

75
-4

d+
A

u
v 2

41
5.

7
10

4.
31

1e
-8

3
0.

1
0.

3
0.

6
1.

75
-4

-4
4

0.
75

d+
A

u
v 3

65
10

4.
05

7e
-1

0
0.

1
0.

8
0.

1
2

4
0.

5
2.

5
-4

d+
A

u
v 2

&
v 3

47
4.

6
20

6.
11

e-
88

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
1

0.
5

0.
4

0.
75

-4
-4

4
-3

.7
5

(a
ss

oc
ia

te
d

v 3
pa

rs
)

0.
1

0.
8

0.
1

1.
75

-4
0.

25
4

-3
.7

5
3 H

e+
A

u
v 2

12
35

13
6.

13
5e

-2
56

0.
1

0.
1

0.
8

0.
75

-4
-4

4
1.

75
3 H

e+
A

u
v 3

77
.0

5
13

3.
94

6e
-1

1
0.

4
0.

5
0.

1
1.

75
-4

-0
.7

5
0

-0
.7

5
3 H

e+
A

u
v 2

&
v 3

14
08

26
6.

41
9e

-2
81

(a
ss

oc
ia

te
d

v 2
pa

rs
)

0.
1

0.
1

0.
8

0.
75

-4
-4

4
-0

.7
5

(a
ss

oc
ia

te
d

v 3
pa

rs
)

0.
4

0.
5

0.
1

1.
75

-4
0.

25
4

-0
.7

5
C

om
bi

ne
d

v 2
24

65
36

0
C

om
bi

ne
d

v 3
25

9.
4

33
5.

83
6e

-3
7

C
om

bi
ne

d
v 2

&
v 3

28
13

69
0

Ta
bl

e
A

.5
:M

in
im

iz
ed

χ̃
2

fo
rv

2
an

d
v 3

(i
nd

ep
en

de
nt

&
co

m
bi

ne
d)

.T
hi

s
is

th
e

co
m

pa
ri

so
n

to
M

ST
V,

PR
L

E
rr

at
um

an
d

m
in

im
iz

ed
ov

er
a

gr
an

ul
ar

ity
of

0.
25

fo
rε

b
an

d
ε

c;
0.

25
fo

rε
n

f;
0.

25
fo

rε
th

;0
.1

fo
rF

a,
F b

,a
nd

F c
;a

nd
0.

25
fo

r
p t

ilt
.

88



BIBLIOGRAPHY

[1] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.

[2] A. Adare et al. Measurements of elliptic and triangular flow in high-multiplicity
3He+Au collisions at√sNN = 200 GeV. Phys. Rev. Lett., 115(14):142301, 2015.

[3] C. Aidala et al. Measurement of long-range angular correlations and azimuthal
anisotropies in high-multiplicity p+Au collisions at √sNN = 200 GeV. Phys. Rev.
C, 95(3):034910, 2017.

[4] A. Adare et al. Measurement of long-range angular correlation and quadrupole
anisotropy of pions and (anti)protons in central d+Au collisions at √sNN =200 GeV.
Phys. Rev. Lett., 114(19):192301, 2015.

[5] C. Aidala et al. Measurements of azimuthal anisotropy and charged-particle multi-
plicity in d+Au collisions at √sNN =200, 62.4, 39, and 19.6 GeV. Phys. Rev. C,
96(6):064905, 2017.

[6] C. Aidala et al. Creation of quark–gluon plasma droplets with three distinct geome-
tries. Nature Phys., 15(3):214–220, 2019.

[7] A. Adare et al. Centrality categorization for Rp(d)+A in high-energy collisions. Phys.
Rev. C, 90(3):034902, 2014.

[8] A. Adare et al. Measurements of directed, elliptic, and triangular flow in Cu+Au
collisions at√sNN = 200 GeV. Phys. Rev., C94(5):054910, 2016.

[9] Christian Schmidt and Sayantan Sharma. The phase structure of QCD. J. Phys.,
G44(10):104002, 2017.

[10] Francois Gelis and Bjoern Schenke. Initial State Quantum Fluctuations in the Little
Bang. Ann. Rev. Nucl. Part. Sci., 66:73–94, 2016.

[11] Serguei Chatrchyan et al. Measurement of the elliptic anisotropy of charged particles
produced in PbPb collisions at

√
sNN=2.76 TeV. Phys. Rev., C87(1):014902, 2013.

[12] B. Alver et al. Importance of correlations and fluctuations on the initial source eccen-
tricity in high-energy nucleus-nucleus collisions. Phys. Rev., C77:014906, 2008.

[13] B. Alver and G. Roland. Collision geometry fluctuations and triangular flow
in heavy-ion collisions. Phys. Rev., C81:054905, 2010. [Erratum: Phys.
Rev.C82,039903(2010)].

[14] Mark Mace, Vladimir V. Skokov, Prithwish Tribedy, and Raju Venugopalan. Hierar-
chy of azimuthal anisotropy harmonics in collisions of small systems from the Color
Glass Condensate. Phys. Rev. Lett., 121(5):052301, 2018. [Erratum: Phys. Rev.
Lett.123,no.3,039901(2019)].

89



[15] A. Adare et al. Pseudorapidity Dependence of Particle Production and Elliptic Flow in
Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and 3He+Au at√sNN = 200
GeV. Phys. Rev. Lett., 121(22):222301, 2018.

[16] R. Hagedorn. Statistical thermodynamics of strong interactions at high-energies.
Nuovo Cim. Suppl., 3:147–186, 1965.

[17] John C. Collins and M. J. Perry. Superdense Matter: Neutrons Or Asymptotically
Free Quarks? Phys. Rev. Lett., 34:1353, 1975.

[18] Charles Gale, Sangyong Jeon, and Bjoern Schenke. Hydrodynamic Modeling of
Heavy-Ion Collisions. Int. J. Mod. Phys., A28:1340011, 2013.

[19] M. Habich, J. L. Nagle, and P. Romatschke. Particle spectra and HBT radii for sim-
ulated central nuclear collisions of C + C, Al + Al, Cu + Cu, Au + Au, and Pb + Pb
from

√
s = 62.4 - 2760 GeV. Eur. Phys. J. C, 75(1):15, 2015.

[20] Paul Romatschke. Light-Heavy Ion Collisions: A window into pre-equilibrium QCD
dynamics? Eur. Phys. J., C75(7):305, 2015.

[21] Chun Shen, Jean-Franois Paquet, Gabriel S. Denicol, Sangyong Jeon, and Charles
Gale. Collectivity and electromagnetic radiation in small systems. Phys. Rev.,
C95(1):014906, 2017.

[22] Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, and Subrata Pal. A Multi-phase
transport model for relativistic heavy ion collisions. Phys. Rev. C, 72:064901, 2005.

[23] Itzhak Tserruya. Relativistic heavy ion physics: Experimental overview. Pramana,
60:577–592, 2003.

[24] J. D. Bjorken. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity
Region. Phys. Rev., D27:140–151, 1983.

[25] Vardan Khachatryan et al. Observation of Long-Range Near-Side Angular Correla-
tions in Proton-Proton Collisions at the LHC. JHEP, 09:091, 2010.

[26] Betty Abelev et al. Long-range angular correlations on the near and away side in p-Pb
collisions at

√
sNN = 5.02 TeV. Phys. Lett., B719:29–41, 2013.

[27] Serguei Chatrchyan et al. Observation of long-range near-side angular correlations in
proton-lead collisions at the LHC. Phys. Lett., B718:795–814, 2013.

[28] Georges Aad et al. Observation of Associated Near-Side and Away-Side Long-Range
Correlations in

√
sNN=5.02TeV Proton-Lead Collisions with the ATLAS Detector.

Phys. Rev. Lett., 110(18):182302, 2013.

[29] Serguei Chatrchyan et al. Multiplicity and Transverse Momentum Dependence
of Two- and Four-Particle Correlations in pPb and PbPb Collisions. Phys. Lett.,
B724:213–240, 2013.

90



[30] Georges Aad et al. Measurement of long-range pseudorapidity correlations and az-
imuthal harmonics in

√
sNN = 5.02 TeV proton-lead collisions with the ATLAS de-

tector. Phys. Rev., C90(4):044906, 2014.

[31] Betty Bezverkhny Abelev et al. Long-range angular correlations of π , K and p in p-Pb
collisions at

√
sNN = 5.02 TeV. Phys. Lett., B726:164–177, 2013.

[32] A. Adare et al. Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central
d+Au Collisions at√sNN =200 GeV. Phys. Rev. Lett., 111(21):212301, 2013.

[33] C. Aidala et al. Measurements of Multiparticle Correlations in d +Au Collisions at
200, 62.4, 39, and 19.6 GeV and p+Au Collisions at 200 GeV and Implications for
Collective Behavior. Phys. Rev. Lett., 120(6):062302, 2018.

[34] A. Adare et al. Measurements of mass-dependent azimuthal anisotropy in central
p+Au, d+Au, and 3He+Au collisions at√sNN = 200 GeV. Phys. Rev. C, 97:064904,
2018.

[35] J. L. Nagle, A. Adare, S. Beckman, T. Koblesky, J. Orjuela Koop, D. McGlinchey,
P. Romatschke, J. Carlson, J. E. Lynn, and M. McCumber. Exploiting Intrinsic Trian-
gular Geometry in Relativistic He3+Au Collisions to Disentangle Medium Properties.
Phys. Rev. Lett., 113(11):112301, 2014.

[36] K. Adcox et al. PHENIX central arm tracking detectors. Nucl. Instrum. Meth. A,
499:489–507, 2003.

[37] C. Aidala et al. The PHENIX Forward Silicon Vertex Detector. Nucl. Instrum. Meth.
A, 755:44–61, 2014.

[38] K. Adcox et al. PHENIX detector overview. Nucl. Instrum. Meth. A, 499:469–479,
2003.

[39] Ulrich Heinz and Raimond Snellings. Collective flow and viscosity in relativistic
heavy-ion collisions. Ann. Rev. Nucl. Part. Sci., 63:123–151, 2013.

[40] Arthur M. Poskanzer and S. A. Voloshin. Methods for analyzing anisotropic flow in
relativistic nuclear collisions. Phys. Rev. C, 58:1671–1678, 1998.

[41] S. Voloshin and Y. Zhang. Flow study in relativistic nuclear collisions by Fourier
expansion of Azimuthal particle distributions. Z. Phys., C70:665–672, 1996.

[42] Qiao Xu. Observation of Collective Behavior in High-Multiplicity Proton-Gold Col-
lisions with PHENIX at RHIC. PhD thesis, Vanderbilt U., 2018.

[43] Ryan D. Weller and Paul Romatschke. One fluid to rule them all: viscous hydro-
dynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at√

s = 5.02 TeV. Phys. Lett., B774:351–356, 2017.

[44] P. Kovtun, Dan T. Son, and Andrei O. Starinets. Viscosity in strongly interacting
quantum field theories from black hole physics. Phys. Rev. Lett., 94:111601, 2005.

91



[45] J. L. Nagle and W. A. Zajc. Assessing saturation physics explanations of collectivity
in small collision systems with the IP-Jazma model. 2018.

[46] J. D. Orjuela Koop, A. Adare, D. McGlinchey, and J. L. Nagle. Azimuthal anisotropy
relative to the participant plane from a multiphase transport model in central p + Au ,
d + Au , and 3He + Au collisions at

√
sNN = 200 GeV. Phys. Rev. C, 92(5):054903,

2015.

[47] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework.
Nucl. Instrum. Meth., A389:81–86, 1997.

[48] Albert M Sirunyan et al. Multiparticle correlation studies in pPb collisions at
√

sNN =
8.16 TeV. 2019.

92


