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CHAPTER I 

 

INTRODUCTION 

 

1.1 Molecular Imaging 

Molecular imaging (MI) is the observation and quantification of a molecular 

event in vivo1. It provides relevant biological information to characterize and measure 

physiological processes at the molecular level in vivo. Disease is usually diagnosed based 

on physiological changes, which are a late manifestation of molecular changes underlying 

the disease. Therefore, imaging of these molecular changes would allow earlier detection 

of diseases. In addition, quantification of diseased area indicates alterations of disease, 

which provides opportunities in efficacy monitoring. Moreover, successful surgical 

resection relies on accurate location of diseased tissue. Imaging of the diseased cells can 

be potentially used to improve clinical outcome.  

Due to the importance of molecular imaging, this multi-disciplinary area is now 

adding a new dimension to our understanding of biological pathways, pharmacological 

mechanisms and disease processes. Using exogenous targeted probes, researchers can 

now perform non-invasive studies on cells and living systems as well as visualize gene 

expression, biochemical reactions, signal transduction, regulatory pathways and direct 

drug action in whole organisms in vivo2.  

There are four major concerns about development of molecular imaging strategies: 

(1) Is there a molecular target relevant to the disease of interest? (2) After a target is 

selected, is there a molecular probe with high binding affinity for the target? (3) Can this 
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probe overcome biologic delivery barriers, such as vascular, interstitial and cell 

membrane? (4) What is the imaging system that can provide sensitive, fast and high 

resolution images? To address these concerns, imaging modalities, targets and probes 

will be discussed in this chapter. 

 

1.2 Imaging Modalities, Targets and Agents 

Commonly used molecular imaging modalities include positron emission 

tomography (PET), single photon emission computed tomography (SPECT), magnetic 

resonance imaging (MRI), optical imaging, ultrasound (US) and computed tomography 

(CT). Each imaging modality has strengths and weakness in terms of sensitivity, spatial 

and temporal resolution, contrast and cost (Table 1.1)3-5. Exquisite sensitivity is the 

primary advantage of nuclear imaging modalities, especially for PET, which is even more 

sensitive than SPECT. The major limitation is low spatial resolution and high cost. 

Magnetic resonance imaging (MRI) has high spatial resolution; however, it requires high 

concentrations of imaging agents for detection (e.g. it has low sensitivity). Optical 

imaging is highly sensitive and provides high contrast images, but has limited tissue 

penetration. Ultrasound is very sensitive for contrast agent detection, but achieving 

Table 1.1. Comparison of imaging modalities 

        Resolution 
Modality Sensitivity Cost Spatial Temporal Contrast 
MRI * *** 10-100 μm msec *** 
PET *** *** 4-5 mm min ** 
SPECT ** ** 8-12 mm min * 
Optical  *** * 1-2 mm msec *** 
US *** ** 50 μm msec ** 
CT * * 50-100 μm sec ** 

***, high; **, medium; *, low. 
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sufficient stability of these agents remains challenging. Moreover, high spatial resolution 

of ultrasound decreases dramatically with depth. CT is limited by low sensitivity and 

adverse effects of ionizing radiation.  

Selecting a biologically active target is usually the first step in molecular imaging 

research and leads the design of a molecular imaging agent. Potential targets include 

proteins, DNA, RNA, carbohydrates and lipids6. Several properties of these biomolecules 

as imaging targets need to be considered, such as location of the target molecules, related 

biological activities or diseases, available ligands that specifically target these 

biomolecules, and the number of biomolecules in each cell. To visualize these targets in 

living subjects and study molecular events, specifically targeted imaging agents need to 

be developed7,8.   

A molecular imaging agent typically consists of a signaling moiety, such as a 

radioisotope, metal ion or a fluorochrome, and a targeting functionality, including 

receptor ligand, sugar, enzyme substrate, antibody and protein. In general, imaging agents 

can be categorized into three groups: nonspecific, non-activatable targeted and 

activatable targeted agents6,9. Nonspecific agents do not have targeting functionalities, 

thus are not able to interact with a specific target. These agents differentiate tissues based 

on permeability or perfusion and are usually used to characterize physiological changes 

which occur relatively late in disease processes. Both non-activatable and activatable 

targeted agents allow visualization of specific biological processes at the cellular or 

molecular level, allowing characterization of disease in the early stages. Since the 

signaling moieties in non-activatable targeted agents are always active, these agents are 

detectable regardless of their interaction with the targeting site. As a result, background 
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noise is usually seen but tends to decrease to low level after the agent remains bound to 

the target and unbound agents are cleared. Activatable targeted agents, also called “smart 

agents”, are not detectable until they are activated by the target (usually an enzyme)10. 

Therefore, improved signal to noise ratio is achieved9. Imaging agents can be categorized 

into five groups, based on imaging modalities, including MRI agents, radionuclide  

imaging agents, optical imaging agents, ultrasound imaging agents and multi-modality 

imaging agents. The details of these agents will be discussed in this dissertation.  

 

1.3 Magnetic Resonance Imaging 

1.3.1 Magnetic Resonance Imaging Principles 

The fundamental basis of magnetic resonance imaging is governed by the same 

principles of nuclear magnetic resonance (NMR)11-13. Water and lipids, which have many 

hydrogen atoms, are the primary components in the human body. As hydrogen nuclei can 

produce NMR signal, the human body can be imaged under a powerful, uniform magnet. 

In principle, unpaired nuclear spin generates a magnetic field. When a strong 

external magnetic field is applied, unpaired nuclear spins align either parallel (low energy) 

or anti-parallel (high energy) to the external magnetic field, with slightly more spins at 

parallel position than at anti-parallel position. After the magnetic field is perturbed by a 

radiofrequency pulse, these spins will relax to their original orientation, with the emission 

of a radio frequency signal. This emission signal corresponds to the energy difference 

between the two energy states and can be detected by a radio frequency coil in the MRI 

instrument. When spins move back to the low energy parallel position, two types of 

relaxation take place. Spin-lattice relaxation (T1) is related to energy exchange between 
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the spin system and the surrounding thermal reservoir. Spin-spin relaxation (T2) is 

related to energy exchange within the system itself. Roughly speaking, T1 relaxation time 

determines how fast an MRI signal can be repeatedly collected and the T2 relaxation time 

determines how quickly each measurement can be made. Both relaxations occur 

simultaneously with the only restriction being that T2 is less than or equal to T111. T1 and 

T2 are dependent on sample, tissue, and magnetic field strength12. MRI contrast agents 

can modify T1 or T2 relaxation times for improved sensitivity.  

Main advantages of MRI include high spatial resolution and the ability to 

simultaneously record information at both anatomical and molecular levels5. Common 

magnetic field strengths range from 0.3 to 3 T, although field strengths of 9.4 T or higher 

are used in research scanners. Standard clinical magnetic resonance imagers (1.5-Tesla 

magnetic field strength) provide images with about 1 mm spatial resolution. When 

special coils and probes are employed to imagers, resolution as low as 10 μM can be 

achieved14. The high spatial resolution makes intravascular and intracavitary MR imaging 

possible14. In addition, MRI has good temporal resolution (ms), and a typical image 

requisition can be obtained in seconds to minutes. For high resolution three dimensional 

MRI scan, the examination time is usually several hours15.  

However, MRI is limited by its low sensitivity, which is several orders of 

magnitude less than PET, SPECT and optical imaging3,6. This necessitates larger 

quantities (millimolar to micromolar) of contrast agents at the target site, and therefore, 

large amounts need to be injected. This low sensitivity of MRI is mainly due to the small 

percentage of hydrogen magnetic dipoles that preferentially align themselves within an 

applied external magnetic field7. MRI also has some other disadvantages, such as the 
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high cost and complexity of the scanners, compared to optical imaging, ultrasound and 

CT.  

1.3.2 Magnetic Resonance Imaging Agents and Targets 

Generally there are two types of MRI contrast agents: lanthanide chelates (T1 

agents) and iron particles (T2 agents). Lanthanide complexes slow T1 relaxation time and 

increase the number of spins that can absorb energy from the radio frequency pulse12,16,17. 

As a result, T1 contrast agents increase signal to noise ratio and have positive signal 

enhancement on MRI images18. For T2 contrast agents, the most common probes are 

iron-oxide nanoparticles. These agents reduce T2 time and decrease the local signal 

intensity. Therefore, T2 agents decreases signal to noise ratio and produce a negative 

signal enhancement on T2-weighted MRI images4,12. In other words, T2 contrast 

increases with “darkness”.  

O

N N

NN

O

OGd3+

O O
O

O

O

 
Figure 1.1. Structure of 
Gd-DOTA 

Typical T1 contrast agents are small molecules with a lanthanide chelate as 

contrast producing moiety. Usually the chelated metal ion 

is Gd3+, even though Mn2+ and Fe3+ ions are suitable for T1 

weighted MRI imaging as well19,20.  Gadolinium (III) is 

highly paramagnetic with seven unpaired electrons and a 

long electronic relaxation time, making it a good relaxation 

agent. One example of Gd3+ based agent is gadolinium- 

tetraazacyclododecanetetraacetic acid (Gd-DOTA) (Figure 1.1), which is one of the 

earliest T1 contrast agents and has been successfully used for contrast enhanced imaging 

of various diseases and cancers21-29. Some other examples of Gd-based T1 contrast agents 

include gadolinium- diethylenetriaminepentaacetic acid (Gd-DTPA)30, gadolinium- 
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ethylenediaminetetraacetic acid (Gd-EDTA)31, and gadolinium 1,4,7-

tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacycl ododecane (Gd-HP-

DO3A)32. 

As it was mentioned earlier, the low sensitivity of MRI necessitates larger 

quantities (millimolar to micromolar) of T1 contrast agents at the target site. This 

disadvantage can be partially resolved by using targeted, polymeric (multiple Gd3+ on 

one molecule) and/or smart T1 weighted MRI contrast agents. Targeted contrast agents 

are usually synthesized by direct conjugation of a contrast agent (such as Gd-DOTA) to a 

targeting functionality, such as an antibody and a receptor ligand. Some examples include 

Gd labeled antibodies for tumor angiogenesis imaging33, polylysine-Gd-embryonic 

antigen complex that target colorectal carcinoma34, Gd labeled mesoporphyrins for 

necrotic tumor assessment35 and folate receptor targeted Gd-folate-dendrimer complex 

for ovarian tumor imaging36. Polymeric Gd agents can be prepared by chelating multiple 

Gd ions with cyclodextrin or coupling multiple Gd based lanthanide chelates to 

dendrimers/polymers37-42. The polylysine-Gd-embryonic antigen and Gd-folate-

dendrimer complexes are both based on polymer/dendrimer backbone. A smart MRI 

agent consists of a lanthanide chelate and a “bridge” over the metal ion. The bridge 

blocks the interaction between the metal ion and bulk water molecules, making it 

ineffective at water 

interaction. Upon reaction 

with a certain disease-

specific target enzyme, the 

bridge can be opened, 
 

Figure 1.2. The transition of EgadMe from a weak to 
a strong relaxivity state43. 
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allowing direct interaction of water protons with the metal ion. In other words, the bridge 

acts as a “switch”, which can be used to turn the contrast agent’s MR enhancement 

function on and off. A well known smart MRI contrast agent is EgadMe (Figure 1.2), in 

which a lalactopyranose ring acts as the “bridge” and can be cleaved by β-galactosidase 

encoded by he labZ genes43. EgadMe was successfully used to image gene expression in 

vivo43.       

T2 contrast agents usually consist of a crystalline iron-oxide core, surrounded by 

polymer coatings, which can be polysaccharides, polyethyleneglycol or citrate. These 

agents are known as superparamagnetic iron-oxide nanoparticles (SPIO). Each iron-oxide 

nanoparticle contains thousands of iron atoms resulting in very high T2 relaxivities. As a 

result, as low as micromolar to nanomolar concentrations of T2 agents can be detected, 

whereas millimolar to micromolar of T1 agents are needed for detection 20. Nonspecific 

cellular uptake of T2 contrast agents occurs through phagocytosis and pinocytosis. 

Targeted imaging using T2 agents is usually achieved by conjugating peptides and 

proteins to iron-oxide nanoparticles.  

SPIO particle sizes range greatly from 2 nm to 3.5 µm44. SPIO can be categorized 

into four groups based on the size: oral SPIO (300 nm to 3.5 µm), standard SPIO (SSPIO, 

60-150 nm), ultrasmall SPIO (USPIO, 10-40 nm) and monocrystalline iron-oxide 

nanoparticles (MION, a subset of USPIO, 10-30 nm)20,44. Cross-linked iron oxide (CLIO) 

is a form of MION, stabilized by a crosslinked aminated dextran. For molecular imaging 

applications, SPIO molecules are usually less than 50 nm in diameter. Therefore, to avoid 

confusion, the term SPIO is used to refer to all USPIO, MION and CLIO in this 

dissertation.   
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The value of SPIO was first demonstrated in prostate cancer diagnosis by 

distinguishing healthy lymph nodes (which uptake SPIO into the cells by phagocytosis) 

and cancerous lymph nodes (no SPIO uptake)45,46.  Recently, target molecules have been 

attached to SPIO for molecular imaging. One example is SPIO attached to human protein 

transferrin to detect breast cancer cells overexpressing the transferrin receptor47. There 

has also been interest in stem cell tracking. In another experiment, SPIO attached with tat 

peptide was used to label progenitor cells and track their fate in vivo48. A number of other 

SPIO imaging agents have recently been developed to image angiogenesis and apoptosis, 

processes that are characteristic of diseases including cancer49,50.  

      

1.4 Radionuclide Imaging 

1.4.1 Radionuclide Imaging Principles 

Positron emission tomography (PET) is based on detection of decaying 

Nucleus

γ Ray

γ Ray
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γ Ray

Electron
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Figure 1.3.  Positron emission tomography

radioisotopes, which are neutron deficient and emit positively charged electrons 

(positrons)51,52. The positron can travel a few millimeters in tissue before annihilating 

with an electron (Figure 1.3). The 

annihilation produces energy in the 

form of two high energy (511 keV) γ 

rays at 180° apart. These γ rays are 

detected by a scanner with multiple 

detectors made of scintillation 

crystals12. The scanner determines the 

site of annihilation and reconstructs a 
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map of distribution of the radionuclide. Since the positron travels in unpredictable path, 

PET has very low resolution (4-5 mm)52. Frequently used positron-emitting isotopes 

include 18F, 15O, 13N and 11C. Others less common ones include 64Cu, 68Ga, 76Br, 82Rb, 

14O, 62Cu, 124I and 94mTc12,53.  

Single photon emission computed tomography (SPECT) is similar to PET, but the 

signal is from gamma-emitting radioisotopes, such as 133Xe, 99mTc, 123I , 131I and 

111In7,12,54. The gamma photons are detected by a gamma camera rotating around the 

subject. The γ emitters used for SPECT are generally more readily available and have 

longer half-lives (t1/2 = hours to days) compared to positron emitters (t1/2 = minutes to 

days) (Table 1.2). However, the spatial resolution of SPECT is rather low (8-12 mm) due 

to collimation errors and the relatively large size of the detectors12.   

Both PET and SPECT are highly sensitive and the sensitivity is independent of 

the location depth of the tracer of interest. The sensitivity of PET (10-11-10-12 M) is 1 to 2 

orders of magnitude greater than that of SPECT (10-10 M)54. This is due to the fact that 

PET detectors record simultaneous emission of two photons, whereas SPECT absorbs 

photon by the mechanical collimator12. PET has additional advantages including higher 

spatial resolution than SPECT and being fully quantitative55.   

The limitation of PET and SPECT include: (1) low spatial resolution, which 

makes it difficult to assign the signal to specific anatomical-morphological structure; (2) 

Table 1.2. Radionuclides half-lives 
 
Imaging 
Modality         SPECT     PET   

Radionuclide 99mTc 131I 123I 111In 18F 11C 15O 13N 68Ga 64Cu

Half life 6h 8d 13.2h 2.8d 1.8h 20min 2min 10min 68min 12.7h

 10



short half-life of some radioisotopes for PET, such as 11C (t1/2 = 20 minutes) and 18F (t1/2 

= 110 minutes); (3) exposure to ionizing radiation and production of radioactive waste.  

1.4.2 Radionuclide Imaging Agents and Targets 

PET and SPECT imaging agents are usually labeled by incorporation of radio 

isotopes into the probe either covalently (such as 18F and 11C) or noncovalently (such as 

111In) using chelators56. Due to the high sensitivity of PET and SPECT, most radionuclide 

imaging agents are given in low doses (subnanomolar)57. Radionuclide imaging agents 

can be divided into two groups: SPECT agents that emit single gamma rays such as 99mTc, 

111In, 123I, and 131I; and PET agents which use positron emitting radionuclides, such as 18F, 

11C, 15O, 13N, 68Ga and 64Cu.  

Commonly used radionuclides for SPECT have half-lives from 6 hours to 8 days 

(Table 1.2). These relatively long half-lives allow SPECT agents to be shipped, avoiding 

the need for cyclotrons and chemistry laboratories nearby. Many SPECT agents have 

been developed for imaging cancers, cardiac infarction, renal function, receptor binding, 

transporter function and inflammatory diseases4. For example, 111In-D-Phe-DTPA-

octreotide and 99mTc-depreotide were used to image over-expressed sonatostatin receptor 

in breast carcinoma, lymphoma and neutoendocrine tumors58-60. Iodine-131 –

pertechnetate and 99mTc-pertechnetate were applied in diagnosing and targeting therapy 

of mammary gland abnormalities61. Hexakis(2-methoxyisobutyl isonitrile)Tc-99m(I) 

(99mTc-Sestamibi) is a widely used radiopharmaceutical to identify adenosine 

triphosphate-binding cassette (ABC) transporter protein expressed tumors and tissues62-64. 

Tat protein attached with a metal chelator was used to deliver 99mTc in vivo for cell 

tracking65.   
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Positron-emitting radionuclides, such as 18F and 11C, have also been incorporated 

into numerous imaging agents. The most well known PET agent is [18F]fluoro-2-deoxy-

D-glucose (18FDG). 18FDG is a glucose analog which can be phosphorylated and trapped 

in cells, whereas glucose itself can be further metabolized to water and carbon dioxide. 

Due to the increased glucose metabolism rate in cancer cells compared to normal cells, 

18FDG provides great opportunities in cancer imaging66. Choline uptake and its 

phosphorylation are known to be increased in tumor cells as well. Several PET agents, 

including [11C]Choline, [18F]fluoroethylcholine and [18F]fluoromethylcholine were 

successfully used to image tumors56. Some PET agents can be up-taken by tumor cells 

based on accelerated protein synthesis, such as [11C]methionin, [11C]tyrosine and 

[18F]fluorethyl-tyrosine67. Tumor proliferation activity can also be investigated based on 

DNA metabolism using [18F]fluorothymidine (18FLT)68,69, dopamine synthesis using 

[18F]fluoro-metatyrosine (18FDOPA), tumor hypoxia using [18F]fluoromisonidazole 

(18FMISO), hormone receptor expression using 16α[18F]fluoro-17β-oestradial (18FES)70, 

translocator protein expression using N-(5-fluoro-2-phenoxyphenyl)-N-(2-

[18F]fluoromethyl-5-methoxybenzyl)acetamide  (18FMDAA1106)71, and reporter gene 

expression using 8-[18F]fluoropenciclovir (18FPCV)72.  

 

1.5 Optical Imaging 

1.5.1 Optical Imaging Principles 

Optical imaging is based on fluorescence or bioluminescence. Fluorescence is the 

absorption of a photon and its subsequent emission at a longer wavelength73. Near-

infrared (NIR) fluorescence imaging is usually used for in vivo applications because 
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Figure 1.4. Tissue transparency window75 

hemoglobin, water and 

lipids have lowest 

absorption coefficient 

in NIR region (650-900 

nm), allowing deep 

tissue penetration 

(Figure 1.4)74,75. In 

addition, the 

autofluorescence from 

the non-targeted area is minimized. NIR fluorescence imaging allows deep tissue imaging 

up to 10 cm76. Bioluminescence on the other hand does not require absorption of light, 

but arises from the conversion of chemical energy to light. In bioluminescence, luciferase 

catalyses the oxidation of luciferin, resulting in the release of photons5. Because 

mammalian tissues do not autoluminesce and bioluminescence only occurs when 

luciferin reacts with luciferase, bioluminescence has zero background signal and high 

signal to noise ratio12.    

Optical imaging is advantageous in many aspects. It has 1-2 mm spatial resolution 

(1 µm for intravital microscopy) and possesses nanomolar sensitivity73. Compared to 

other imaging modalities such as MRI, PET, SPECT and US, the instruments are 

relatively inexpensive. In addition, a variety of imaging probes and signal amplification 

strategies are available77. Optical imaging also allows multichannel imaging using 

multiple probes with different spectral properties and co-registration of surface  

anatomical information with molecular information7.   
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Optical imaging is limited due to its surface-weighted nature, as well as tissue 

absorption and autofluorescence. These limitations can be partially resolved by NIR 

fluorescence imaging or fluorescence molecular tomography (FMT). In FMT a subject is 

rotated within an array of emitter and detectors76. The detected fluorescence, which is 

spatially recorded, is subsequently reconstructed tomographically, resulting in a 

quantitative three dimensional map. Penetration depths of 7-14 cm are theoretically 

achievable using appropriate fluorochromes in FMT77. The main limitation of 

bioluminescence imaging is that absolute quantification of target signal is not possible.  

1.5.2 Optical Imaging Agents and Targets 

Optical imaging is a rapid, inexpensive and sensitive approach for in vitro and in 

vivo study of biochemical and biological processes, and is the main focus in this 

dissertation. Optical imaging agents are usually prepared by conjugating a specific ligand 

to a fluorochrome. Several types of optical imaging agents have been developed, 

including fluorescence agents (such as NIR agents), bioluminescence agents, and 

quantum dots. 

1.5.2.1 Fluorescence Agents 

Both endogenous and exogenous fluorescent agents have been discovered for 

optical imaging. All tissue contains fluorophores that absorb light and subsequently emit 

fluorescence at a longer wavelength78. Several well known endogenous tissue 

fluorophores include nicotinamide adenine dinucleotide (NAD[H]), elastin, collagen, and 

flavins78,79. Changes in concentration or distribution of these endogenous fluorophores 

are believed to correlate with changes in histology80,81. While promising as a diagnostic 

tool, these signatures are limited in early lesion detection due to low signal to noise (S/N) 
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stemming from a relatively low signal (small changes in concentration of the endogenous 

fluorophores detected in early disease) and a large background (scattering, reflected light 

etc.). 

Because of the limitations of endogenous fluorophores in early disease detection, 

the use of exogenous fluorescence agents has currently experienced an expanded level of 

attention. Exogenous fluorescence agents can be generally classified as perfusion and 

targeted agents. Perfusion agents are nonspecific, usually smaller molecules, which have 

vascular distribution with leakage into the extracellular space. They increase contrast of 

pathology by differential rates of tissue/tumor perfusion or vascular leakage. However, 

perfusion agents are usually limited in molecular imaging due to low S/N ratio and the 

lack of any specific molecular information82. Targeted fluorescent agents usually have 

targeting functionalities, such as receptor ligands, antibodies and peptides, allowing 

increased localization of imaging agents in diseased tissues and reduced agents’ uptake in 

normal tissues.  

Most exogenous fluorescent agents utilize fluorescent dyes as signaling moieties. 

Some commonly used fluorescent dyes include fluorescein, rhodamine and cyanine dyes. 

Fluorescein is a green dye with excitation at 494 nm and emission at 521 nm. A well 

known fluorescein derivative is fluorescein isothiocyanate (FITC), which has 

isothiocyanate group (-N=C=S) for conjugation. Fluorescein dyes are limited in optical 

imaging due to the green autofluorescence from skin and viscera, high hemoglobin 

absorption, and strong tissue scattering. Rhodamine is a family of red dyes. An example 

is lissamine rhodamine B sulfonyl chloride, which absorbs at 568 nm and emits at 583 

nm in methanol. With the sulfonyl chloride group, this rhodamine dye allows easy 
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conjugation to specific ligands. Compared to fluorecein dyes, rhodamine dyes are red-

shifted, allowing reduced tissue autofluorescence, absorption and scattering. However, 

lissamine dyes are not optimal for in vivo imaging neither, due to relatively low tissue 

penetration compared to NIR dyes.  

N
(CH2)xR3

N
(CH2)yR4

R1 R2

 
Figure 1.5. General structure of cyanine 
dye 

Most NIR dyes belong to the 

cyanine dye family (Figure 1.5). 

Cyanine dyes represent one of the most 

prominent classes of optical imaging 

agents with adjustable optical properties 

and high extinction coefficients. The absorption and emission ranges throughout the 

visible to the NIR range78,83. At the same time, cyanine dyes can be conjugated to 

targeting ligands, imparting molecular specificity. There are many commercially 

available cyanine dyes, such as indocyanine green (ICG), Cy5, Cy5.5, Cy7, IRDyeTM 

700DX, IRDyeTM 800RS and IRDyeTM 800CW.  

ICG (Figure 1.6) is one example of a clinically approved perfusion cyanine dye. It 

has very low toxicity in humans with only one known adverse reaction (rare 

anaphylaxis)84. ICG has been used clinically for many years to test hepatic function85, 

cardiac physiology86 and fluorescence angiography in ophthalmology87. Moreover, 

cancer imaging was proven to be somewhat feasible using ICG88-90.  

Recently, several improved heptamethine indocyanine dyes have become 

available. Figure 1.6 shows one example, IRDyeTM 800CW NHS ester (LI-COR 

Biosciences, Lincoln, NE). This molecule has four sulfonate (SO3  groups rather than (־

two in ICG, which increases water solubility and aqueous quantum yield (QY). Moreover, 

 16



N N

O3S SO3 Na

SO3

O

NN

SO3O3S

O SO3

O
N

O

O

Na

Na

Na

 
                        ICG                                            IRDyeTM 800CW NHS ester 
 
Figure 1.6. Structure of ICG and IRDyeTM 800CW NHS ester 

 

the N-hydroxysuccinimide (NHS) ester allows covalent conjugation to targeting ligands.  

NIR targeting agents have been widely used to target cancer. These agents are 

usually synthesized by coupling NIR dyes to antibodies, peptides or small targeting 

ligands. For example, an angiogenesis associated antibody was labeled with Cy7 for 

diagnostic imaging of cancer91. Another study exploited the folate receptor for cancer 

specific targeting using NIR2-folate conjugate92. Somatostatin receptor was targeted for 

cancer imaging as well, using cypate-peptide complex93, and indodicarbocyanine (IDCC) 

or indotricarbocyanine (ITCC) labeled peptide94,95. Similarly, ITCC was tagged with 

transferrin (Tf) or human serum albumin (HSA) for the detection of tumors. Recently, 

epidermal growth factor (EGF) was labeled with Cy5.596 or IRDyeTM 800CW97,98 to 

target the EGF receptor (EGFr), over-expressed in breast, lung, ovary, brain and prostate 

tumors. In a similar way, vascular endothelial growth factor (VEGF, involved in 

angiogenesis)99, and annexin V (related to apoptosis)100-102 were labeled with cyanine 
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dyes to image tumors. Cancer cells can also be imaged due to their increased glucose 

metabolism rate, using NIR dye labeled sugars, such as pyropheophorbide 2- 

deoxyglucosamide (Pyro-2DG)103, Cy5.5-D-glucosamine (Cy5.5-2DG)104 and 

multivalent carboncyanine-glucosamine105. Using low quantities of these NIR agents, 

high specificity and good tissue penetration can be achieved. However, relatively low 

signal-to-background ratio is sometimes seen due to the signal from un-bound NIR agents.  

Auto-quenched NIR agents that become detectable upon enzyme activation can 

increase signal-to-background ratios up to several hundred folds8,106. An example is 

shown in Figure 1.756,107. Urokinase plasminogen activator (uPA) and uPA receptor 
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Figure 1.7. An enzyme cleavable NIR imaging agent 
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facilitate cancer cell invasion into surrounding tissues. Overexpression of uPA is also 

found in various cancers. Weissleder and coworkers designed a probe which consists of 

multiple peptide (uPA substrate) motifs capped with Cy5.5 or Cy7 and a poly-lysine 

backbone107. Due to the crowding of NIR dyes, the fluorescence of the dye is quenched. 

When the agent reacts with urokinase, the enzyme cleaves the peptide and releases the 

NIR dye from the polymer. As a consequence, fluorescence of the dye is recovered and 

signal intensity is amplified. Using similar techniques, many smart NIR agents have been 

developed and used to target cathepsin B, K, D and H; caspase 1 and 3; matrix 

metalloproteinases (MMP) 2, 9, and 13; urokinase and other proteases for cancer 

imaging8,10,56.  

1.5.2.2 Bioluminescence Agents 
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Figure 1.8. Structure of 
luciferin 

Bioluminescence contrast agents are based 

on luciferin (Figure 1.8). Upon meeting luciferase, 

bioluminescence agents are oxidized in the 

presence of oxygen and adenosine triphosphate 

(ATP), and emit light. Compared to fluorescence agents, bioluminescence agents provide 

high signal-to-background ratio, as there is no inherent background with bioluminescence. 

Numerous bioluminescence agents exist in nature, such as firefly luciferin in male firefly 

and other luciferins in sponges, corals, jellyfish, clams and several types of fish77. Firefly 

luciferin has an emission at 562 nm with good quantum yield (90%)108, thus becoming 

the most commonly used substrate for in vivo bioluminescence imaging109-111. A variety 

of synthetic luciferins have been developed as well for studying enzyme activities112-115.  

Chemical modification of the 6-hydroxyl group of luciferin seems to be an effective  
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means to approach bioluminescent assays for enzymes of interest. 

1.5.2.3 Quantum Dots 

 Semiconductor quantum dots (QDs) have attractive optical and electronic 

properties. Compared to organic fluorophores, QDs have several unique advantages: (1) 

QDs are highly resistant to irreversible photo-oxidation photobleaching, whereas organic 

fluorophores are sensitive to local environment and can undergo photobleaching; (2) 

QDs’ emission wavelengths can be easily tuned from blue to near infrared by changing 

size and composition. (3) QDs have improved brightness due to high molar extinction 

coefficients; (4) because of the broad excitation spectra and narrow emission profile, QDs 

can be excited with a single light source and emit light with different colors, making 

multicolor labeling possible116-119.  However, due to the hydrophobic surfaces, most QDs 

are challenged by biocompatibility in imaging studies120. Some water soluble QDs have 

been developed, but most of them suffer from decreased quantum efficiency, aggregation, 

high cost and instability121.  
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Shell

Amphiphilic
polymer coating

Shell

Core

 
Figure 1.9. Quantum dots

 QDs are typically synthesized at high 

temperatures in organic solvents and consist of an 

inorganic core and inorganic shell of metal (Figure 1.9). 

For in vitro and in vivo imaging applications, QDs are 

usually solubilized by aqueous-compatible organic 

layer. Both group II-VI (e.g. CdSe, CdTe, CdS, and ZnSe) and group III-V (e.g. InP and 

InAs) nanocrystals have been used as the core116,122. A thin layer of semiconductor 

material, such as ZnS and CdS, is often grown on top of the core to protect the core 

surface from oxidation and increase the quantum yield123. The resulting particle is only 
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soluble in organic solvents. For biological imaging, QDs must be additionally coated with 

amphiphilic polymers with both a hydrophobic moiety (such as hydrocarbons) and a 

hydrophilic segment (such as carboxylate, amine and thiol groups)117. These hydrophilic 

groups allow easy bioconjugation to targeting molecules, such as receptor ligands, 

peptides and DNA.  

 Bioconjugated QDs have been imaged in numerous biologically and clinically 

relevant studies, such as cell trafficking124, in vivo cancer imaging125, immunoassay126,127, 

DNA hybridization128, and receptor-mediated endocytosis126. Lidke, Jovin and their 

coworkers coupled EGF to quantum dots to study receptor tyrosine kinase (RTK) 

mediated signal transduction in various cancer cells lines129. Gao et al. developed QDs 

with triblock polymers to incorporate tumor-targeting ligands for in vivo prostate cancer 

imaging125. Dahan and colleagues visualized single-molecule movement in single living 

cells using a primary antibody, biotinilated anti-mouse Fab fragments, and streptavidin-

coated QDs130. Kim and coworkers used polydentate phosphine coated NIR QDs to guide 

real time resection of sentinel lymph nodes131. Some recent studies show that QDs 

labeled cells can be tracked over extended period of time (up to several months)129,132,133. 

Overall, QDs hold great promise for biological and clinical applications, especially in the 

imaging of cancers.  

 

1.6 Ultrasound 

1.6.1 Ultrasound Principles 

Ultrasound imaging uses high frequency sound waves as the signal source. The 

sound waves are emitted from a transducer placed against the skin and reflected back 
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from the internal organs under examination7,134.  Sound waves are altered by traveling 

through tissues, thus providing different acoustic signatures for different tissues. The 

image contrast depends on sound attenuation, sound speed, backscatter and imaging 

algorithm used7. Clinical ultrasound uses frequencies from 2-15 MHz and yields images 

with a spatial resolution of 300-500 µm7. Ultrasound biomicroscopy works at 40-60 MHz 

frequency and can be used to image vessels with 15-40 µm diameters3.  

Ultrasound is the most commonly used clinical imaging modality due to the high 

sensitivity, good surface resolution, low cost, availability and safety. Ultrasound is 

widely applied in cardiac, fetal, vascular and abdominal imaging. The real-time nature of 

ultrasound also facilitates its application in image-guided injection procedures. 

Furthermore, small anatomical structures at the embryonic and early postnatal stages can 

be visualized using ultrasound biomicroscopy7. In addition, recent development of 

ultrasound contrast agents has enabled ultrasound to be applied in liver lesions 

characterization, blood pool enhancement and perfusion imaging135.   

Ultrasound is mainly limited by poor resolution in deep tissues and image 

shadowing. Spatial resolution of ultrasound decreases rapidly with depth, thus unable to 

provide details about deep tissues. Moreover, targeted ultrasound imaging is limited by 

the availability and stability of contrast agents5.  

1.6.2 Ultrasound Agents and Targets 

Ultrasound contrast agents are usually micrometer-sized gas-filled microbubbles. 

The most commonly used gases include perfluorocarbons, such as octafluoropropane 

(C3F8), decafluorobutane (C4F10), and sulfur hexafluoride (SF6)135. To improve in vivo 

stability, microbubbles are usually encapsulated with shells composed of lipids, proteins 
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or polymers4,135. The microbubbles vibrate strongly in response to ultrasound waves and 

produce strong backscattered acoustic signal that can be detected. Since microbubbles are 

several thousand times as reflective as normal tissue, the amount of ultrasound contrast 

agent needed is rather small (a single microbubble with micrometer diameter can be 

detected)4. Though sensitive and inexpensive, ultrasound imaging using microbubbles is 

challenged with low spatial resolution and instability of contrast agents135.  

Unlike the small imaging agents used in MR, nuclear and optical imaging, 

microbubbles do not normally leave the vascular space, thus are intravascular tracers. 

Microbubbles are widely used clinically for blood pool enhancement and perfusion 

imaging135.  

 Recently, targeted ultrasound imaging agents have been developed based on 

microbubbles. There are two strategies to synthesize targeted microbubbles. The first one 

is to modify the microbubble shell to facilitate the attachment of microbubbles to disease-

related cells. Lindner and collegues incorporated negatively charged phospholipids 

phospatidylserine into microbubble shell. The resulting microbubbles were able to attach 

to and get phagocytosed by activated leukocytes, thus providing opportunities in imaging 

of inflammation 136-138. The other strategy involves attaching target-specific ligands, such 

as monoclonal antibodies, asialoglycoproteins, polysaccharides, peptides and aptamers, to 

the microbubble shell135,139. For example, alpha (v)-integrin targeted microbubble-

antiobody complex has been developed to study angiogenesis, which is associated with 

plaque inflammation and tumor growth140. In another study, microbubbles with 

GPIIIbIIIa receptor targeted peptide were successfully used to image intravascular 

thrombi in vitro and in vivo141.  
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1.7 Computed Tomography 

Computed tomography (CT) is based on the fact that tissues absorb X-rays 

differently142. Recent development of CT is micro CT, which allows high-resolution 

imaging of small animals143-145. Image resolution is on 50-100 µm and data acquisition 

takes 5 to 30 minutes.  

Despite the high spatial resolution and fast acquisition, CT suffers from poor soft 

tissue contrast and low inherent sensitivity6,7. CT is mainly used as a complementary 

modality to other modalities, particularly nuclear imaging modalities. CT addresses low 

spatial resolution issue of PET/SPECT by the introduction of nuclear/CT fusion systems, 

such as PET-CT and SPECT-CT. These systems integrate molecular information from 

PET or SPECT with anatomical details from CT and are playing an increasing role in 

molecular imaging6,55,146. 

 

1.8 Multimodality Imaging 

 As discussed, each imaging modality has its limitations. These limitations can be 

resolved by incorporation of multiple imaging modalities. For example, optical imaging 

is highly sensitive, but limited by surface-weighted nature. On the other hand, MRI is not 

limited to tissue penetration, but has very low sensitivity. Incorporation of optical 

imaging and MRI will take advantage of both high sensitivity (optical imaging) and deep 

tissue penetration (MRI). Moreover, preoperative MRI contrast and intraoperative optical 

signal from the same targets can be applied to improve surgical outcome. Multimodality 

imaging can potentially provide anatomic information, as well as functional, metabolic or 

molecular information simultaneously.  
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Due to the superior nature of multimodality imaging, significant effort has been 

placed into development of multimodal imaging agents during the last decade. Meade 

and coworkers synthesized bifunctional optical/MR imaging agents that possess multiple 

Gd3+ chelators and fluorescent tetramethylrhodamine attached to poly-lysine or dextran147. 

These bimodal agents were used to study cell divisions and cell lineage distributions of 

developing embryos. However, these agents are limited in animal studies as 

tetramethylrhodamine is not a NIR dye. Weissleder and collegues developed a smart 

NIR/MRI agent by attaching Cy5.5-derivatized peptides to the surface of cross-linked 

iron oxide (CLIO) nanoparticle148. Fluorescence signal is amplified when the peptides are 

cleaved by certain enzymes. This smart nanopartical, Cy5.5-CLIO allowed delineation of 

brain tumors both by preoperative magnetic resonance imaging and by intraoperative 

optical imaging149.  
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Figure 1.10. Cocktail approach of 
multimodal imaging agent. R1: 
conjugation arm; R2: chelating arm. 

 Other than bimodal optical/MRI imaging agents, other multimodal probes have 

been investigated as well. For example, Achilefu and coworkers developed NIR/SPECT 

agents consisting of heptamethine carbocyanine and 111In-DOTA150. An agent consisting 

of liposomes co-encapsulating iohexol (an iodine based CT agent) and gadoteridol (an 

Gd3+ based MR agent) was developed for CT/MR imaging151. Other combinations of  

optical, nuclide, MR, ultrasound and CT 

imaging agents are being developed to 

produce multimodal images7.  

 Our group has developed a cocktail 

approach of multimodal imaging 

agents152,153. This cyclen-based tri-
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functional agent (Figure 1.10) consists of two chelating arms (R2) for metal ion chlation, 

one antenna that can sensitize light and transfer energy to chelated metal, and one 

conjugation arm which is used to couple target-specific ligands. This kind of agent’s 

emission is far from the absorption (Δλ≥280 nm). Moreover, fluorescent lifetimes are 

rather long (0.5–3.5 ms).  As a result, background signal is reduced to low level154. 

Another advantage of this tri-funtional imaging agent is that synthetic modifications on 

this agent can yield tunable spectroscopic and physical properties. For example, pendant 

arm modifications can change complex water solubility and antenna modifications can 

change absorption property. By chelating different metals, this agent is detectable by 

optical imaging (such as Eu3+ and Tb3+), PET imaging (such as 64Cu2+ and 68Ga3+), MRI 

(such as Gd3+), and SPECT (such as 111In3+). A multimodal imaging approach is achieved 

by mixing the agent with different metal ions. One agent developed possesses two 

phosphorous acid pendant arms for strong chelating ability, an energy absorbing/ 

transmitting quinoline chromophore as antenna, and a carboxylic acid conjugation arm. 

By coupling this agent to a peripheral benzodiazepine receptor (PBR) ligand, the 

resulting imaging agents chelated with Eu3+ and Gd3+ were successfully imaged by 

optical imaging and MRI to study C6 glioma cells153.  

 

1.9 Dissertation Overview 
 

The ultimate success of molecular imaging depends heavily upon discovery of 

selective imaging probes. This dissertation is focused on development, characterization 

and in vitro/in vivo imaging of novel imaging agents that target glucose metabolism, 

translocator protein or cannabinoid CBB2 receptor.  
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Chapter II illustrates NIR-glucosamine as an [18F]fluoro-2-deoxy-D-glucose 

(18FDG) analog. 18FDG is widely used clinically as a PET agent, however, 18FDG-PET 

imaging technique is limited due to low spatial resolution, exposure to ionizing radiation, 

short half life of 18F (110 minutes), requirement of a local cyclotron and difficulty of 

compound synthesis. In chapter II, the synthesis and characterization of an 18FDG analog, 

NIR-glucosamine, is first shown. Next, stability of NIR-glucosamine in various solutions 

is presented. At the end of this chapter, quantitative in vitro and in vivo assessment of 

NIR-glucosamine in an SW480 mouse model of human colorectal adenocarcinoma is 

discussed. 

Chapter III presents a novel conjugable translocator protein (TSPO) ligand, 

C6Ro5-4864. TSPO is an attractive target for cancer imaging as it is overexpressed in a 

variety of tumors. This chapter describes the synthesis and characterization of C6Ro5-

4864 and a fluorescence dye labeled C6Ro5-4864, LissRo5. The specific binding of 

LissRo5 to translocator protein was verified by binding study, live cell competition, and 

in vitro imaging.  

Chapter IV describes another novel conjugable TSPO ligand, n-TSPOmbb732. n-

TSPOmbb732 is a analog of DAA1106, which binds to TSPO with picomolar binding 

affinity. This chapter starts with the development of a series of seven n-TSPOmbb732 

(n=3-9) molecules and corresponding structure activity relationship (SAR) studies. 

Following this, synthesis, characterization, binding studies and in vitro imaging of three 

fluorescence dye labeled 6-TSPOmbb732 (n-TSPOmbb732 with 6 carbon linker), 

including NIR6T, Liss6T and cypate6T, are presented. At last, the prospect of three 
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lanthanide chelate labeled 6-TSPOmbb732 for multimodality imaging or PET imaging is 

discussed.  

Chapter V shows a cancer drug-6-TSPOmbb732 complex for enhanced cancer 

therapy. The synthesis and characterization of etoposide-6-TSPOmbb732 (Et6T) is 

presented, followed by cytotoxicity study on breast cancer and glioma cells.  

Chapter VI illustrates synthesis and characterization of a functional cannabinoid 

CB2 receptor ligand, mbc94. CB2 receptor is an attractive target for immune system 

imaging and therapy. This chapter first describes the development of mbc94, which is the 

first fully conjugable CB2 receptor ligand. The preparation and in vitro imaging of a NIR 

dye labeled mbc94, NIRmbc94, is then discussed. At the end of this chapter, competition 

and saturation binding studies are shown to evaluate NIRmbc94 as a potent CB2 receptor 

targeted imaging agent.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 28



1.10 References 
 

(1) Weissleder R, M. U. Molecular imaging. Radiology 2001, 219, 316-333. 

(2) Gross, S.; Piwnica-Worms, D. Spying on cancer: Molecular imaging in vivo with 
genetically encoded reporters. Cancer Cell 2005, 7, 5-15. 

(3) Pomper, M. G. Molecular imaging: An overview. Academic Radiology 2001, 8, 
1141-1153. 

(4) Miller, J. C.; Thrall, J. H. Clinical molecular imaging. Journal of the American 
College of Radiology 2004, 1, 4-23. 

(5) Wunder, A.; Straub, R. H.; Gay, S.; Funk, J.; Muller-Ladner, U. Molecular 
imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology 2005, 44, 
1341-1349. 

(6) Hengerer, A.; Wunder, A.; Wagenaar, D. J.; Vija, A. H.; Shah, M. et al. From 
genomics to clinical molecular imaging. Proceedings of the Ieee 2005, 93, 819-
828. 

(7) Massoud, T. F.; Gambhir, S. S. Molecular imaging in living subjects: seeing 
fundamental biological processes in a new light. Genes & Development 2003, 17, 
545-580. 

(8) Weissleder, R.; Mahmood, U. Molecular imaging. Radiology 2001, 219, 316-333. 

(9) Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. 
Nature Reviews Cancer 2002, 2, 11-19. 

(10) Weissleder, R.; Tung, C. H.; Mahmood, U.; Bogdanov, A. In vivo imaging of 
tumors with protease-activated near-infrared fluorescent probes. Nature 
Biotechnology 1999, 17, 375-378. 

(11) Longmore, D. B. The Principles of Magnetic-Resonance. British Medical Bulletin 
1989, 45, 848-880. 

(12) Cassidy, P. J.; Radda, G. K. Molecular imaging perspectives. Journal of the Royal 
Society Interface 2005, 2, 133-144. 

(13) Jasanoff, A. Functional MRI using molecular imaging agents. Trends in 
Neurosciences 2005, 28, 120-126. 

(14) Serfaty, J. M.; Yang, X. M.; Aksit, P.; Quick, H. H.; Solaiyappan, M. et al. 
Toward MRI-guided coronary catheterization: Visualization of guiding, catheters, 
guidewires, and anatomy in real time. Journal of Magnetic Resonance Imaging 
2000, 12, 590-594. 

 29



(15) Schneider, J. E.; Bamforth, S. D.; Grieve, S. M.; Clarke, K.; Bhattacharya, S. et al. 
High-resolution, high-throughput magnetic resonance imaging of mouse 
embryonic anatomy using a fast gradient-echo sequence. Magnetic Resonance 
Materials in Physics Biology and Medicine 2003, 16, 43-51. 

(16) Jacobs, R. E.; Papan, C.; Ruffins, S.; Tyszka, J. M.; Fraser, S. E. MRI: volumetric 
imaging for vital imaging and atlas construction. Nature Cell Biology 2003, Ss10-
Ss16. 

(17) Aime, S.; Cabella, C.; Colombatto, S.; Crich, S. G.; Gianolio, E. et al. Insights 
into the use of paramagnetic Gd(III) complexes in MR-molecular imaging 
investigations. Journal of Magnetic Resonance Imaging 2002, 16, 394-406. 

(18) Artemov, D. Molecular magnetic resonance imaging with targeted contrast agents. 
Journal of Cellular Biochemistry 2003, 90, 518-524. 

(19) Lin, Y. J.; Koretsky, A. P. Manganese ion enhances T-1-weighted MRI during 
brain activation: An approach to direct imaging of brain function. Magnetic 
Resonance in Medicine 1997, 38, 378-388. 

(20) Gimi, B.; Pathak, A. P.; Ackerstaff, E.; Glunde, K.; Artemov, D. et al. Molecular 
imaging of cancer: Applications of magnetic resonance methods. Proceedings of 
the Ieee 2005, 93, 784-799. 

(21) Magerstadt, M.; Gansow, O. A.; Brechbiel, M. W.; Colcher, D.; Baltzer, L. et al. 
Gd(Dota) - an Alternative to Gd(Dtpa) as a T1,2 Relaxation Agent for Nmr 
Imaging or Spectroscopy. Magnetic Resonance in Medicine 1986, 3, 808-812. 

(22) Bousquet, J. C.; Saini, S.; Stark, D. D.; Hahn, P. F.; Nigam, M. et al. Gd-Dota - 
Characterization of a New Paramagnetic Complex. Radiology 1988, 166, 693-698. 

(23) Meyer, D.; Schaefer, M.; Bonnemain, B. Gd-Dota, a Potential Mri Contrast Agent 
Current Status of Physicochemical Knowledge. Investigative Radiology 1988, 23, 
S232-S235. 

(24) Manelfe, C.; Berry, I.; Arrue, P. Gd-Dota Enhanced Mr Imaging of Spinal-Cord 
Tumors. American Journal of Neuroradiology 1988, 9, 1006-1006. 

(25) Hodler, J.; Orellano, J.; Thurnher, S.; Marincek, B.; Vonschulthess, G. K. Gd-
Dota in Musculoskeletal Diseases. Fortschritte Auf Dem Gebiete Der 
Rontgenstrahlen Und Der Neuen Bildgebenden Verfahren 1990, 153, 535-539. 

(26) Bonnet, P. A.; Michel, A.; Fernandez, J. P.; Cyteval, C.; Rifai, A. et al. The Use 
of Gd-Dota in Magnetic-Resonance-Imaging of Experimentally Induced 
Mammary-Tumors. Magnetic Resonance Imaging 1990, 8, 71-77. 

 30



(27) Soyer, P.; Tidjani, K.; Laissy, J. P.; Sibert, A.; Menu, Y. Dynamic Gd-Dota-
Enhanced Mr-Imaging of Hepatic Metastases from Pancreatic Neuroendocrine 
Tumors. European Journal of Radiology 1994, 18, 180-184. 

(28) Niemi, P.; Paajanen, H.; Kormano, M.; Alanen, A.; Maattanen, H. et al. Mr 
Imaging of Experimental Intramuscular Hemorrhage at 0.02-T - Contrast 
Enhancement with Gd-Dota. Acta Radiologica 1990, 31, 455-459. 

(29) Hervesomma, C. M. P.; Sebag, G. H.; Prieur, A. M.; Bonnerot, V.; Lallemand, D. 
P. Juvenile Rheumatoid-Arthritis of the Knee - Mr Evaluation with Gd-Dota. 
Radiology 1992, 182, 93-98. 

(30) Mcnamara, M. T.; Ehman, R. L.; Revel, D.; Sievers, R.; Brasch, R. C. et al. The 
Use of Gd-Dtpa as a Perfusion Marker for Magnetic-Resonance Imaging. 
Circulation 1984, 70, 170-170. 

(31) Burai, L.; Hietapelto, V.; Kiraly, R.; Toth, E.; Brucher, E. Stability constants and 
H-1 relaxation effects of ternary complexes formed between Gd-DTPA, Gd-
DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate 
ions. Magnetic Resonance in Medicine 1997, 38, 146-150. 

(32) Runge, V. M.; Gelblum, D. Y.; Pacetti, M. L.; Carolan, F.; Heard, G. Gd-Hp-
Do3a in Clinical Mr Imaging of the Brain. Radiology 1990, 177, 393-400. 

(33) Sipkins, D. A.; Cheresh, D. A.; Kazemi, M. R.; Nevin, L. M.; Bednarski, M. D. et 
al. Detection of tumor angiogenesis in vivo by alpha(v)beta(3)-targeted magnetic 
resonance imaging. Nature Medicine 1998, 4, 623-626. 

(34) Curtet, C.; Maton, F.; Havet, T.; Slinkin, M.; Mishra, A. et al. Polylysine-Gd-
DTPA(n) and polylysine-Gd-DOTA(n) coupled to anti-CEA F(ab ')(2) fragments 
as potential immunocontrast agents - Relaxometry, biodistribution, and magnetic 
resonance imaging in nude mice grafted with human colorectal carcinoma. 
Investigative Radiology 1998, 33, 752-761. 

(35) Lee, S. S.; Goo, H. W.; Bin Park, S.; Lim, C. H.; Gong, G. Y. et al. MR Imaging 
of reperfused myocardial infarction: Comparison of necrosis-specific and 
intravascular contrast agents in a cat model. Radiology 2003, 226, 739-747. 

(36) Konda, S. D.; Wang, S.; Brechbiel, M.; Wiener, E. C. Biodistribution of a Gd-
153-folate dendrimer, generation=4, in mice with folate-receptor positive and 
negative ovarian tumor xenografts. Investigative Radiology 2002, 37, 199-204. 

(37) Corot, C.; Schaefer, M.; Beaute, S.; Bourrinet, P.; Zehaf, S. et al. Physical, 
chemical and biological evaluations of CMD-A2-Gd-DOTA - A new 
paramagnetic dextran polymer. Acta Radiologica 1997, 38, 91-99. 

(38) Aime, S.; Botta, M.; Frullano, L.; Crich, S. G.; Giovenzana, G. B. et al. Contrast 
agents for magnetic resonance imaging: A novel route to enhanced relaxivities 

 31



based on the interaction of a Gd-III chelate with poly-beta-cyclodextrins. 
Chemistry-a European Journal 1999, 5, 1253-1260. 

(39) Lu, Z. R.; Wang, X. H.; Parker, D. L.; Goodrich, K. C.; Buswell, H. R. Poly(L-
glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic 
resonance imaging. Bioconjugate Chemistry 2003, 14, 715-719. 

(40) Langereis, S.; de Lussanet, Q. G.; van Genderen, M. H. P.; Meijer, E. W.; Beets-
Tan, R. G. H. et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) 
dendrimers as contrast agents for MR imaging. Nmr in Biomedicine 2006, 19, 
133-141. 

(41) Bryant, L. H.; Jordan, E. K.; Bulte, J. W. M.; Herynek, V.; Frank, J. A. 
Pharmacokinetics of a high-generation dendrimer-Gd-DOTA. Academic 
Radiology 2002, 9, S29-S33. 

(42) Rudovsky, J.; Botta, M.; Hermann, P.; Hardcastle, K. I.; Lukes, I. et al. PAMAM 
dendrimeric conjugates with a Gd-DOTA phosphinate derivative and their 
adducts with polyaminoacids: The interplay of global motion, internal rotation, 
and fast water exchange. Bioconjugate Chemistry 2006, 17, 975-987. 

(43) Louie, A. Y.; Huber, M. M.; Ahrens, E. T.; Rothbacher, U.; Moats, R. et al. In 
vivo visualization of gene expression using magnetic resonance imaging. Nature 
Biotechnology 2000, 18, 321-325. 

(44) Thorek, D. L. J.; Chen, A.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron 
oxide nanoparticle probes for molecular imaging. Annals of Biomedical 
Engineering 2006, 34, 23-38. 

(45) Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S. et 
al. Noninvasive detection of clinically occult lymph-node metastases in prostate 
cancer. New England Journal of Medicine 2003, 348, 2491-U2495. 

(46) Mack, M. G.; Balzer, J. O.; Straub, R.; Eichler, K.; Vogl, T. J. Superparamagnetic 
iron oxide - Enhanced MR imaging of head and neck lymph nodes. Radiology 
2002, 222, 239-244. 

(47) Weissleder, R.; Moore, A.; Mahmood, U.; Bhorade, R.; Benveniste, H. et al. In 
vivo magnetic resonance imaging of transgene expression. Nature Medicine 2000, 
6, 351-354. 

(48) Lewin, M.; Carlesso, N.; Tung, C. H.; Tang, X. W.; Cory, D. et al. Tat peptide-
derivatized magnetic nanoparticles allow in vivo tracking and recovery of 
progenitor cells. Nature Biotechnology 2000, 18, 410-414. 

(49) Kang, H. W.; Josephson, L.; Petrovsky, A.; Weissleder, R.; Bogdanov, A. 
Magnetic resonance imaging of inducible E-selectin expression in human 
endothelial cell culture. Bioconjugate Chemistry 2002, 13, 122-127. 

 32



(50) Schellenberger, E. A.; Hogemann, D.; Josephson, L.; Weissleder, R. Annexin V-
CLIO: A nanoparticle for detecting apoptosis by MRI. Academic Radiology 2002, 
9, S310-S311. 

(51) Hoffman, E. J.; Phelps, M. E. Positron Emission Tomography. Medical 
Instrumentation 1979, 13, 147-151. 

(52) Robinson, R. O.; Ferrie, C. D.; Capra, M.; Maisey, M. N. Positron emission 
tomography and the central nervous system. Archives of Disease in Childhood 
1999, 81, 263-270. 

(53) Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. 
Nature Reviews Cancer 2002, 2, 683-693. 

(54) Mandl, S.; Schimmelpfennig, C.; Edinger, M.; Negrin, R. S.; Contag, C. H. 
Understanding immune cell trafficking patterns via in vivo bioluminescence 
imaging. Journal of Cellular Biochemistry 2002, 239-248. 

(55) Jaffer, F. A.; Weissleder, R. Molecular imaging in the clinical arena. Jama-
Journal of the American Medical Association 2005, 293, 855-862. 

(56) Danthi, S. N.; Pandit, S. D.; Li, K. C. P. A primer on molecular biology for 
imagers: VII. Molecular imaging probes. Academic Radiology 2004, 11, 1047-
1054. 

(57) Cherry, S. R.; Gambhir, S. S. Use of positron emission tomography in animal 
research. ILAR journal 2001, 42, 219-232. 

(58) Krenning, E. P.; Kwekkeboom, D. J.; Bakker, W. H.; Breeman, W. A. P.; Kooij, P. 
P. M. et al. Somatostatin Receptor Scintigraphy with [in-111-Dtpa-D-Phe(1)]- and 
[I-123-Tyr(3)]-Octreotide - the Rotterdam Experience with More Than 1000 
Patients. European Journal of Nuclear Medicine 1993, 20, 716-731. 

(59) Vallabhajosula, S.; Moyer, B. R.; ListerJames, J.; McBride, B. J.; Lipszyc, H. et 
al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-
binding peptides. Journal of Nuclear Medicine 1996, 37, 1016-1022. 

(60) Breeman, W. A. P.; de Jong, M.; Kwekkeboom, D. J.; Valkema, R.; Bakker, W. H. 
et al. Somatostatin receptor-mediated imaging and therapy: basic science, current 
knowledge, limitations and future perspectives. European Journal of Nuclear 
Medicine 2001, 28, 1421-1429. 

(61) Tazebay, U. H.; Wapnir, I. L.; Levy, O.; Dohan, O.; Zuckier, L. S. et al. The 
mammary gland iodide transporter is expressed during lactation and in breast 
cancer. Nature Medicine 2000, 6, 871-878. 

 33



(62) Piwnicaworms, D.; Rao, V. V.; Kronauge, J. F.; Croop, J. M. Characterization of 
Multidrug-Resistance P-Glycoprotein Transport Function with an 
Organotechnetium Cation. Biochemistry 1995, 34, 12210-12220. 

(63) Piwnicaworms, D.; Chiu, M. L.; Budding, M.; Kronauge, J. F.; Kramer, R. A. et 
al. Functional Imaging of Multidrug-Resistant P-Glycoprotein with an 
Organotechnetium Complex. Cancer Research 1993, 53, 977-984. 

(64) Cordobes, M. D.; Starzec, A.; DelmonMoingeon, L.; Blanchot, C.; Kouyoumdjian, 
J. C. et al. Technetium-99m-sestamibi uptake by human benign and malignant 
breast tumor cells: Correlation with mdr gene expression. Journal of Nuclear 
Medicine 1996, 37, 286-289. 

(65) Polyakov, V.; Sharma, V.; Dahlheimer, J. L.; Pica, C. M.; Luker, G. D. et al. 
Novel Tat-peptide chelates for direct transduction of technetium-99m and 
rhenium into human cells for imaging and radiotherapy. Bioconjugate Chemistry 
2000, 11, 762-771. 

(66) Luker, G. D.; Piwnica-Worms, D. Molecular imaging - Beyond the genome: 
Molecular imaging in vivo with PET and SPECT. Academic Radiology 2001, 8, 
4-14. 

(67) Jager, P. L.; Vaalburg, W.; Pruim, J.; de Vries, E. G. E.; Langen, K. J. et al. 
Radiolabeled amino acids: Basic aspects and clinical applications in oncology. 
Journal of Nuclear Medicine 2001, 42, 432-445. 

(68) Shields, A. F.; Grierson, J. R.; Dohmen, B. M.; Machulla, H. J.; Stayanoff, J. C. et 
al. Imaging proliferation in vivo with [F-18]FLT and positron emission 
tomography. Nature Medicine 1998, 4, 1334-1336. 

(69) Shields, A. F.; Dohmen, B. M.; Grierson, J. R.; Kuntzsch, M.; Machulla, H. J. et 
al. Imaging with [F-18]FLT and FDG in patients with cancer. Journal of Nuclear 
Medicine 1999, 40, 61p-61p. 

(70) Koh, W. J.; Bergman, K. S.; Rasey, J. S.; Peterson, L. M.; Evans, M. L. et al. 
Evaluation of Oxygenation Status During Fractionated Radiotherapy in Human 
Nonsmall Cell Lung Cancers Using [F-18] Fluoromisonidazole Positron Emission 
Tomography. International Journal of Radiation Oncology Biology Physics 1995, 
33, 391-398. 

(71) Zhang, M. R.; Maeda, J.; Furutsuka, K.; Yoshida, Y.; Ogawa, M. et al. [F-
18]FMDAA1106 and [F-18]FEDAA1106: Two positron-emitter labeled ligands 
for peripheral benzodiazepine receptor (PBR). Bioorganic & Medicinal Chemistry 
Letters 2003, 13, 201-204. 

(72) Iyer, M.; Barrio, J. R.; Namavari, M.; Bauer, E.; Satyamurthy, N. et al. 8-[F-
18]fluoropenciclovir: An improved reporter probe for imaging HSV1-tk reporter 

 34



gene expression in vivo using PET. Journal of Nuclear Medicine 2001, 42, 96-
105. 

(73) Dzik-Jurasz, A. S. K. Molecular imaging in vivo: an introduction. The British 
Journal of Radiology 2003, 76, S98-S109. 

(74) Shah, K.; Weissleder, R. Molecular optical imaging: applications leading to the 
development of present day therapeutics. The American Society for Experimental 
NeuroTherapeutics 2005, 2, 215-225. 

(75) Weissleder, R. A clearer vision for in vivo imaging. Nature Biotechnology 2001, 
19, 316-317. 

(76) Ntziachristos, V.; Ripoll, J.; Weissleder, R. Would near-infrared fluorescence 
signals propagate through large human organs for clinical studies? (vol 27, pg 333, 
2002). Optics Letters 2002, 27, 1652-1652. 

(77) Weissleder, R.; Ntziachristos, V. Shedding light onto live molecular targets. 
Nature Medicine 2003, 9, 123-128. 

(78) Bornhop, D. J.; Contag, C. H.; Licha, K.; Murphy, C. J. Advances in contrast 
agents, reporters, and detection. Journal of Biomedical Optics 2001, 6, 106-110. 

(79) Banerjee, B.; Miedema, B.; Chandrasekhar, H. R. Emission spectra of colonic 
tissue and endogenous fluorophores. American Journal of the Medical Sciences 
1998, 316, 220-226. 

(80) Romer, T. J.; Fitzmaurice, M.; Cothren, R. M.; Richardskortum, R.; Petras, R. et 
al. Laser-Induced Fluorescence Microscopy of Normal Colon and Dysplasia in 
Colonic Adenomas - Implications for Spectroscopic Diagnosis. American Journal 
of Gastroenterology 1995, 90, 81-87. 

(81) Wagnieres, G. A.; Star, W. M.; Wilson, B. C. In vivo fluorescence spectroscopy 
and imaging for oncological applications. Photochemistry and Photobiology 1998, 
68, 603-632. 

(82) Mahmood, U.; Weissleder, R. Near-infrared optical imaging of proteases in 
cancer. Molecular Cancer Therapeutics 2003, 2, 489-496. 

(83) Bremer, C.; Ntziachristos, V.; Weissleder, R. Optical-based molecular imaging: 
contrast agents and potential medical applications. European Radiology 2003, 13, 
231-243. 

(84) Frangioni, J. V. In vivo near-infrared fluorescence imaging. Current Opinion in 
Chemical Biology 2003, 7, 626-634. 

 35



(85) Leevy, C. M.; Smith, F.; Longuevi.J; Paumgart.G; Howard, M. M. Indocyanine 
Green Clearance as a Test for Hepatic Function. Journal of the American Medical 
Association 1967, 200, 236-&. 

(86) Schad, H.; Brechtelsbauer, H.; Kramer, K. Studies on Suitability of a Cyanine 
Dye (Viher-Test) for Indicator Dilution Technique and Its Application to 
Measurement of Pulmonary-Artery and Aortic Flow. Pflugers Archiv-European 
Journal of Physiology 1977, 370, 139-144. 

(87) Flower, R. W.; Hochheimer, B. F. Indocyanine Green Dye Fluorescence and 
Infrared-Absorption Choroidal Angiography Performed Simultaneously with 
Fluorescein Angiography. Johns Hopkins Medical Journal 1976, 138, 33-42. 

(88) Reynolds, J. S.; Troy, T. L.; Mayer, R. H.; Thompson, A. B.; Waters, D. J. et al. 
Imaging of spontaneous canine mammary tumors using fluorescent contrast 
agents. Photochemistry and Photobiology 1999, 70, 87-94. 

(89) Licha, K.; Riefke, B.; Ntziachristos, V.; Becker, A.; Chance, B. et al. Hydrophilic 
cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, 
photophysical properties and spectroscopic in vivo characterization. 
Photochemistry and Photobiology 2000, 72, 392-398. 

(90) Gurfinkel, M.; Thompson, A. B.; Ralston, W.; Troy, T. L.; Moore, A. L. et al. 
Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor 
tissue using fluorescence, near-infrared reflectance imaging: A case study. 
Photochemistry and Photobiology 2000, 72, 94-102. 

(91) Neri, D.; Carnemolla, B.; Nissim, A.; Leprini, A.; Querze, G. et al. Targeting by 
affinity-matured recombinant antibody fragments of an angiogenesis associated 
fibronectin isoform. Nature Biotechnology 1997, 15, 1271-1275. 

(92) Tung, C. H.; Lin, Y. H.; Moon, W. K.; Weissleder, R. A receptor-targeted near-
infrared fluorescence probe for in vivo tumor imaging. Chembiochem 2002, 3, 
784-786. 

(93) Achilefu, S.; Dorshow, R. B.; Bugaj, J. E.; Rajagopalan, R. Novel receptor-
targeted fluorescent contrast agents for in vivo tumor imaging. Investigative 
Radiology 2000, 35, 479-485. 

(94) Licha, K.; Hessenius, C.; Becker, A.; Henklein, P.; Bauer, M. et al. Synthesis, 
characterization, and biological properties of cyanine-labeled somatostatin 
analogues as receptor-targeted fluorescent probes. Bioconjugate Chemistry 2001, 
12, 44-50. 

(95) Becker, A.; Hessenius, C.; Licha, K.; Ebert, B.; Sukowski, U. et al. Receptor-
targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature 
Biotechnology 2001, 19, 327-331. 

 36



(96) Ke, S.; Wen, X. X.; Gurfinkel, M.; Charnsangavej, C.; Wallace, S. et al. Near-
infrared optical imaging of epidermal growth factor receptor in breast cancer 
xenografts. Cancer Research 2003, 63, 7870-7875. 

(97) Kovar, J. L.; Volcheck, W. M.; Chen, J. Y.; Simpson, M. A. Purification method 
directly influences effectiveness of an epidermal growth factor-coupled targeting 
agent for noninvasive tumor detection in mice. Analytical Biochemistry 2007, 361, 
47-54. 

(98) Kovar, J. L.; Johnson, M. A.; Volcheck, W. M.; Chen, J. Y.; Simpson, M. A. 
Hyaluronidase expression induces prostate tumor metastasis in an orthotopic 
mouse model. American Journal of Pathology 2006, 169, 1415-1426. 

(99) Backer, M. V.; Patel, V.; Jehning, B. T.; Backer, J. M. Self-assembled "dock and 
lock" system for linking payloads to targeting proteins. Bioconjugate Chemistry 
2006, 17, 912-919. 

(100) Petrovsky, A.; Schellenberger, E.; Josephson, L.; Weissleder, R.; Bogdanov, A. 
Near-infrared fluorescent imaging of tumor apoptosis. Cancer Research 2003, 63, 
1936-1942. 

(101) Ntziachristos, V.; Schellenberger, E. A.; Ripoll, J.; Yessayan, D.; Graves, E. et al. 
Visualization of antitumor treatment by means of fluorescence molecular 
tomography with an annexin V-Cy5.5 conjugate. Proceedings of the National 
Academy of Sciences of the United States of America 2004, 101, 12294-12299. 

(102) Choi, H. K.; Yessayan, D.; Choi, H. J.; Schellenberger, E.; Bogdanov, A. et al. 
Quantitative analysis of chemotherapeutic effects in tumors using in vivo staining 
and correlative histology. Cellular Oncology 2005, 27, 183-190. 

(103) Zhang, M.; Zhang, Z. H.; Blessington, D.; Li, H.; Busch, T. M. et al. 
Pyropheophorbide 2-deoxyglucosamide: A new photosensitizer targeting glucose 
transporters. Bioconjugate Chemistry 2003, 14, 709-714. 

(104) Cheng, Z.; Levi, J.; Xiong, Z. M.; Gheysens, O.; Keren, S. et al. Near-infrared 
fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and 
living mice. Bioconjugate Chemistry 2006, 17, 662-669. 

(105) Ye, Y. P.; Bloch, S.; Kao, J.; Achilefu, S. Multivalent carbocyanine molecular 
probes: Synthesis and applications. Bioconjugate Chemistry 2005, 16, 51-61. 

(106) Tung, C. H.; Bredow, S.; Mahmood, U.; Weissleder, R. Preparation of a cathepsin 
D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chemistry 
1999, 10, 892-896. 

(107) Law, B.; Curino, A.; Bugge, T. H.; Weissleder, R.; Tung, C. H. Design, synthesis, 
and characterization of urokinase plasminogen-activator-sensitive near-infrared 
reporter. Chemistry & Biology 2004, 11, 99-106. 

 37



(108) Adam, W.; Reinhardt, D.; SahaMoller, C. R. From the firefly bioluminescence to 
the dioxetane-based (AMPPD) chemiluminescence immunoassay: A retroanalysis. 
Analyst 1996, 121, 1527-1531. 

(109) Contag, C. H.; Spilman, S. D.; Contag, P. R.; Oshiro, M.; Eames, B. et al. 
Visualizing gene expression in living mammals using a bioluminescent reporter. 
Photochemistry and Photobiology 1997, 66, 523-531. 

(110) Contag, P. R.; Olomu, I. N.; Stevenson, D. K.; Contag, C. H. Bioluminescent 
indicators in living mammals. Nature Medicine 1998, 4, 245-247. 

(111) Contag, C. H.; Jenkins, D.; Contag, F. R.; Negrin, R. S. Use of reporter genes for 
optical measurements of neoplastic disease in vivo. Neoplasia 2000, 2, 41-52. 

(112) Valley, M. P.; Zhou, W.; Hawkins, E. M.; Shultz, J.; Cali, J. J. et al. A 
bioluminescent assay for monoamine oxidase activity. Analytical Biochemistry 
2006, 359, 238-246. 

(113) Zhou, W. H.; Valley, M. P.; Shultz, J.; Hawkins, E. M.; Bernad, L. et al. New 
bioluminogenic substrates for monoamine oxidase assays. Journal of the 
American Chemical Society 2006, 128, 3122-3123. 

(114) Zhou, W. H.; Shultz, J. W.; Murphy, N.; Hawkins, E. M.; Bernad, L. et al. 
Electrophilic aromatic substituted luciferins as bioluminescent probes for 
glutathione S-transferase assays. Chemical Communications 2006, 4620-4622. 

(115) O'Brien, M. A.; Daily, W. J.; Hesselberth, P. E.; Moravec, R. A.; Scurria, M. A. et 
al. Homogeneous, bioluminescent protease assays: Caspase-3 as a model. Journal 
of Biomolecular Screening 2005, 10, 137-148. 

(116) Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y. et al. 
Luminescent quantum dots for multiplexed biological detection and imaging. 
Current Opinion in Biotechnology 2002, 13, 40-46. 

(117) Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W. et al. In vivo 
molecular and cellular imaging with quantum dots. Current Opinion in 
Biotechnology 2005, 16, 63-72. 

(118) Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe 
nanocrystals in growth. Journal of the American Chemical Society 2002, 124, 
2049-2055. 

(119) Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for 
multiplexed optical coding of biomolecules. Nature Biotechnology 2001, 19, 631-
635. 

(120) Kaji, N.; Tokeshi, M.; Baba, Y. Quantum dots for single bio-molecule imaging. 
Analytical Sciences 2007, 23, 21-24. 

 38



(121) Yu, W. W.; Chang, E.; Drezek, R.; Colvin, V. L. Water-soluble quantum dots for 
biomedical applications. Biochemical and Biophysical Research Communications 
2006, 348, 781-786. 

(122) Sapsford, K. E.; Pons, T.; Medintz, I. L.; Mattoussi, H. Biosensing with 
luminescent semiconductor quantum dots. Sensors 2006, 6, 925-953. 

(123) Kumar, S.; Richards-Kortum, R. Optical molecular imaging agents for cancer 
diagnostics and therapeutics. Nanomedicine 2006, 1, 23-30. 

(124) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S. et al. 
Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 
538-544. 

(125) Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo 
cancer targeting and imaging with semiconductor quantum dots. Nature 
Biotechnology 2004, 22, 969-976. 

(126) Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive 
nonisotopic detection. Science 1998, 281, 2016-2018. 

(127) Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A. et al. 
Immunofluorescent labeling of cancer marker Her2 and other cellular targets with 
semiconductor quantum dots (vol 21, pg 41, 2003). Nature Biotechnology 2003, 
21, 452-452. 

(128) Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed assembly of DNA 
functionalized quantum dots. Journal of the American Chemical Society 1999, 
121, 8122-8123. 

(129) Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N. et al. 
Quantum dot ligands provide new insights into erbB/HER receptor-mediated 
signal transduction. Nature Biotechnology 2004, 22, 198-203. 

(130) Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B. et al. Diffusion 
dynamics of glycine receptors revealed by single-quantum dot tracking. Science 
2003, 302, 442-445. 

(131) Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J. et al. Near-infrared 
fluorescent type II quantum dots for sentinel lymph node mapping. Nature 
Biotechnology 2004, 22, 93-97. 

(132) Ballou, B.; Lagerholm, B. C.; Ernst, L. A.; Bruchez, M. P.; Waggoner, A. S. 
Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry 2004, 15, 
79-86. 

 39



(133) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long-term multiple 
color imaging of live cells using quantum dot bioconjugates. Nature 
Biotechnology 2003, 21, 47-51. 

(134) Jensen, J. A. Medical ultrasound imaging. Progress in Biophysics & Molecular 
Biology 2007, 93, 153-165. 

(135) Kaufmann, B. A.; Lindner, J. R. Molecular imaging with targeted contrast 
ultrasound. Current Opinion in Biotechnology 2007, 18, 11-16. 

(136) Christiansen, J. P.; Leong-Poi, H.; Fisher, N. G.; Klibanov, A. L.; Kaul, S. et al. 
Non-invasive imaging of myocardial inflammation following reperfusion injury 
using leukocyte-targeted contrast echocardiography. Circulation 2001, 104, 589-
589. 

(137) Lindner, J. R.; Song, J.; Xu, F.; Klibanov, A. L.; Singbartl, K. et al. Noninvasive 
ultrasound imaging of inflammation using microbubbles targeted to activated 
leukocytes. Circulation 2000, 102, 2745-2750. 

(138) Lindner, J. R.; Dayton, P. A.; Coggins, M. P.; Ley, K.; Song, J. et al. Noninvasive 
imaging of inflammation by ultrasound detection of phagocytosed microbubbles. 
Circulation 2000, 102, 531-538. 

(139) Lanza, G. M.; Wickline, S. A. Targeted ultrasonic contrast agents for molecular 
imaging and therapy. Current Problems in Cardiology 2003, 28, 625-653. 

(140) Leong-Poi, H.; Christiansen, J.; Klibanov, A. L.; Kaul, S.; Lindner, J. R. 
Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted 
to alpha(v)-integrins. Circulation 2003, 107, 455-460. 

(141) Schumann, P. A.; Christiansen, J. P.; Quigley, R. M.; McCreery, T. P.; Sweitzer, 
R. H. et al. Targeted-microbubble binding selectively to GPIIb IIIa receptors of 
platelet thrombi. Investigative Radiology 2002, 37, 587-593. 

(142) McCullough, E. C.; Payne, J. T. X-ray-transmission computed tomography. 
Medical physics 1977, 4, 85-98. 

(143) Paulus, M. J.; Gleason, S. S.; Kennel, S. J.; Hunsicker, P. R.; Johnson, D. K. High 
resolution X-ray computed tomography: An emerging tool for small animal 
cancer research. Neoplasia 2000, 2, 62-70. 

(144) Paulus, M. J.; Gleason, S. S.; Easterly, M. E.; Foltz, C. J. A review of high 
resolution X-ray computed tomography and other imaging modalities for small 
animal research. Lab Animal 2001, 30, 36-45. 

(145) Berger, F.; Lee, Y. P.; Loening, A. M.; Chatziioannou, A.; Freedland, S. J. et al. 
Whole-body skeletal imaging in mice utilizing microPET: optimization of 

 40



reproducibility and applications in animal models of bone disease. European 
Journal of Nuclear Medicine and Molecular Imaging 2002, 29, 1225-1236. 

(146) Beyer, T.; Townsend, D. W.; Blodgett, T. M. Dual-modality PET/CT tomography 
for clinical oncology. Quarterly Journal of Nuclear Medicine 2002, 46, 24-34. 

(147) Huber, M. M.; Staubli, A. B.; Kustedjo, K.; Gray, M. H. B.; Shih, J. et al. 
Fluorescently detectable magnetic resonance imaging agents. Bioconjugate 
Chemistry 1998, 9, 242-249. 

(148) Josephson, L.; Kircher, M. F.; Mahmood, U.; Tang, Y.; Weissleder, R. Near-
infrared fluorescent nanoparticles as combined MR/optical imaging probes. 
Bioconjugate Chemistry 2002, 13, 554-560. 

(149) Kircher, M. F.; Mahmood, U.; King, R. S.; Weissleder, R.; Josephson, L. A 
multimodal nanoparticle for preoperative magnetic resonance imaging and 
intraoperative optical brain tumor delineation. Cancer Research 2003, 63, 8122-
8125. 

(150) Zhang, Z. R.; Liang, K. X.; Bloch, S.; Berezin, M.; Achilefu, S. Monomolecular 
multimodal fluorescence-radioisotope imaging agents. Bioconjugate Chemistry 
2005, 16, 1232-1239. 

(151) Zheng, J. Z.; Perkins, G.; Kirilova, A.; Allen, C.; Jaffray, D. A. Multimodal 
contrast agent for combined computed tomography and magnetic resonance 
imaging applications. Investigative Radiology 2006, 41, 339-348. 

(152) Manning, H. C.; Goebel, T.; Marx, J. N.; Bornhop, D. J. Facile, efficient 
conjugation of a trifunctional lanthanide chelate to a peripheral benzodiazepine 
receptor ligand. Organic Letters 2002, 4, 1075-1078. 

(153) Manning, H. C.; Goebel, T.; Thompson, R. C.; Price, R. R.; Lee, H. et al. 
Targeted molecular imaging agents for cellular-scale bimodal imaging. 
Bioconjugate Chemistry 2004, 15, 1488-1495. 

(154) Griffin, J. M. M.; Skwierawska, A. M.; Manning, H. C.; Marx, J. N.; Bornhop, D. 
J. Simple, high yielding synthesis of trifunctional fluorescent lanthanide chelates. 
Tetrahedron Letters 2001, 42, 3823-3825. 

 

 41



CHAPTER II 

 

IN VITRO AND IN VIVO EVALUATION OF A POTENTIAL OPTICAL 
ANALOGUE TO [18F]FLUORO-2-DEOXY-D-GLUCOSE (18FDG) 

 

2.1 Introduction 

  One of the most successful molecular imaging agents is [18F]-fluoro-2-deoxy-D-

glucose (18FDG), which has been employed as a positron emission tomography (PET) 

agent to image living subjects non-invasively for three decades. 18FDG-PET imaging is 

widely used in studying normal and pathologic functions, especially tumors of brain, 

heart, breast, head, neck, ovary, and other tissues1-5.  
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Figure 2.1. Structures of 18FDG and glucose 

18FDG is a glucose analogue (Figure 2.1). Under steady state conditions, 18FDG is 

taken up by cells via glucose transporters (GLUT) in competition with glucose6. Once 

inside cells, 18FDG and glucose are phosphorylated to 18FDG-6-phosphate and glucose-6-

phosphate respectively by hexokinase7. Both 18FDG-6-phosphate and glucose-6-

phosphate can be dephosphorylated to 18FDG and glucose by glucose-6-phosphatase, 

however the dephosphorylation 

occurs rather slowly due to the 

low concentration of the enzyme 

in most cells6. Unlike glucose-6-

phosphate, which can be 

metabolized further eventually to water and carbon dioxide, 18FDG-6-phosphate can not 

act as a substrate for further glycolysis8. Therefore, 18FDG-6-phosphate accumulates in 

cells. Due to these facts, 18FDG can be used to depict spatial distribution of increased 
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glucose metabolism, which is related to many diseases7. For example, most tumors 

overexpress GLUTs and have high levels of glycolysis. As a result, 18FDG has become an 

efficient contrast agent for cancer imaging.  

While 18FDG-PET imaging is highly sensitive and clinically useful, the 

requirement of a cyclotron to generate radioisotopes, the short half life time of 18F (110 

minutes), exposure to ionizing radiation, and low special resolution remain as limitations. 

To overcome some of these limitations, several 18FDG analogs for optical imaging have 

been developed, including 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-

glucose (2-NBDG)9-13, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG)6, multivalent 

carboncyanine-glucosamine14, and Cy5.5-D-glucosamine (Cy5.5-2DG)15. 

Matsuoka and colleagues developed the first optical 18FDG analogue, 2-NBDG, in 

1996. It was demonstrated that cellular uptake of 2-NBDG was inhibited by D-glucose 

but not L-glucose9. In addition, intracellular phosphorylation of 2-NBDG to 2-NBDG-6-

phosphate was verified by mass spectrometry10. These results suggest that 2-NBDG is 

taken up and accumulated via the GLUT/hexokinase pathway. However, the 

spectroscopic properties (λex = 475 nm and λem = 550 nm) render the 2-NBDG probe a 

poor choice for in vivo imaging due to high hemoglobin absorption and strong tissue 

scattering. 

Recently, several studies have attempted to develop 18FDG analogues suitable for 

in vivo imaging by coupling glucosamine to NIR dyes. Pyro-2DG (λex = 665 nm and λ

em = 720 nm), which functions as both a NIR imaging and photodynamic therapy agent, 

demonstrated enhanced tumor uptake relative to the surrounding muscle tissue and 

selective mitochondrial damage to tumor region6. Preliminary confocal microscopy 
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studies suggest that the uptake of Pyro-2DG is GLUT-specific, since D-glucose appears 

to competitively inhibit cellular localization of Pyro-2DG but not Pyro-acid6. Using an 

alternative approach, Achilefu and coworkers synthesized multivalent carboncyanine-

glucosamine complex (λex = ~780 nm and λem = ~810 nm) based on an inner NIR 

carbocyanine core14. Although the number of glucosamine (1, 2, 3, 4, 6, or 8) conjugated 

to the carbocyanine core does not appear to correlate with tumor uptake, each of the 

dendritic glucosamine arrays provided some tumor signal. However, the mechanisms of 

uptake and accumulation of the multivalent carbocyanine-glucosamine complex remain 

unknown. Interestingly, Gambhir and colleagues reported that another 18FDG analogue, 

Cy5.5-2DG (λex = 675 nm and λem =695 nm), does not appear to follow the 

GLUT/hexokinase pathway and provides significantly less contrast enhancement than the 

free Cy5.5 dye15. The authors hypothesize that the dye characteristics are responsible for 

the differing behaviors of 2-NBDG and Cy5.5-2DG and suggest careful selection of NIR 

fluorophores for particular biological applications. 

In an effort to develop an improved optical analogue to 18FDG, we have 

developed an alternative NIR 18FDG analogue by conjugating D-glucosamine to 

IRDyeTM
 800CW NHS ester (mentioned in 1.5.2.1). Compared to pyropheophorbide (no 

sulfonate or carboxylate group after conjugation) and carbocyanine(0-1 carboxylate 

group after conjugation), IRDyeTM
 800CW NHS ester (four sulfonate groups) has 

increased water solubility. In addition, IRDyeTM
 800CW NHS ester (λex = 778 nm and 

λem =794 nm), capitalizes on the increased photon penetration in the NIR tissue 

transparency window and is red-shifted relative to either Cy5.5 or pyropheophorbide. 

This red-shift in excitation and emission eliminates the fluorescence contribution from 
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the autofluorescence of typical alfalfa-based rodent chow, which is often seen in the 

Cy5.5 wavelength region, and is more suitable for in vivo imaging16. 

Here, we report the synthesis, and in vitro/in vivo characterization of IRDyeTM
 

800CW–glucosamine (NIR-glucosamine). An SW480neo mouse model of human colon 

cancer was used for imaging studies and the results corroborate and expand upon the 

recent discoveries reported for Cy5.5-2DG15. 

 

2.2 Materials and Methods 
 
2.2.1 Materials 

The IRDyeTM 800CW NHS Ester dye and IRDyeTM 800-acid (designated here as 

“free NIR dye”) were obtained from LI-COR Biosciences (Lincoln, NE). Sodium 

methoxide, glucosamine hydrochloride, D-(+)-glucose monohydrate, and cytochalasin B 

were purchased from Fluka/Sigma Aldrich (St. Louis, MO). Dimethylsulfoxide (DMSO) 

was purchased from Fisher Scientific (Pittsburgh, PA). SW480 (human colorectal 

adenocarcinoma) cells were acquired from the American Type Culture Collection (ATCC; 

Manassas, VA). Calcium- and magnesium-free phosphate buffered saline (CMF-PBS), 

Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), and gentamicin 

sulfate were obtained from Invitrogen Corporation (Carlsbad, CA). Female athymic nude 

mice (6 weeks of age) were obtained from Harlan Sprague Dawley (Indianapolis, 

IN). 

2.2.2 NIR-glucosamine Synthesis 

A mixture of sodium methoxide (9.3 mg, 0.17 mmol) and D-glucosamine 

hydrochloride (37 mg, 0.17 mmol) in DMSO (2 mL) was stirred under room temperature 
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for 2 h. A portion (150 μL) of the solution (12.9 µmol) was added to a stirring solution of 

IRDyeTM 800CW (5 mg, 4.3 µmol) in DMSO (9.85 mL) solution. The mixture was 

stirred in dark under argon positive pressure flow overnight.  

High performance liquid chromatography (HPLC) analysis was performed to 

monitor the reaction on a Varian Polaris C-18 column (250 × 4.6 mm) at a flow rate of 

0.8 mL/min. Flow A was 0.1% triethylamine (TEA) in water and flow B was 0.1% TEA 

in acetonitrile. The elution method for analytical HPLC started with a linear gradient 

from 100% to 80% A over 30 min, then from 80% to 50% A for 5 min, arrived at 20% A 

in another 3 min, held at 20% A for 10 min, and finally returned to 100% A over 1 min. 

The elution profile was monitored by ultraviolet (UV) absorbance at 254 and 780 nm. 

Product was purified by preparative HPLC using a Varian Polaris C-18 column (250 × 

21.2 mm) at 17 mL/min. The collected solution was concentrated by vacuum rotary 

evaporation, frozen to -78ºC and dried under freeze-dry system. The amount of NIR-

glucosamine was determined by absorption in DMSO solution at 780 nm (3.5 mg, 66%). 

1H NMR 400 MHz (MeOD) δ 8.02-7.93 (m, 2H), 7.88-7.80 (m, 6H), 7.36 (d, J=8.4 Hz, 

1H), 7.28 (d, J=8.4 Hz, 1H), 7.19 (d, J=8.8 Hz, 2H), 6.29 (d, J=14.4 Hz, 1H), 6.19 (d, 

J=14.0 Hz, 1H), 5.08 (d, J=3.2 Hz, 1H), 4.20-4.14 (m, 2H), 4.10 (t, J=6.8 Hz, 2H), 3.89-

3.58 (m, 5H), 3.06-3.01 (m, 2H), 2.92-2.86 (m, 2H), 2.82-2.75 (m, 2H), 2.28-2.22 (m, 

2H), 2.08-2.05 (m, 2H), 2.00-1.91 (m, 5H), 1.80-1.79 (m, 2H), 1.71-1.68 (m, 3H), 1.40 (s, 

12H). MS (ESI)+ [M+H]+ calcd 1162.3, found 1162.2. 

2.2.3 Spectroscopic Characterization 

The absorbance spectra of free NIR dye and NIR-glucosamine were measured 

using a Shimadzu UV-VIS 1700 spectrophotometer (Columbia, MD) and the emission  
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spectra were measured using a PTI Technologies spectrofluorometer (Oxnard, CA). 

2.2.4 NIR-glucosamine Stability Study 

To determine the stability of NIR-glucosamine, the sample was dissolved in 

DMSO, pH 5.0 buffer, pH 6.0 buffer, Phosphate Buffered Saline (PBS) buffer (pH 7.3), 

pH 8.2 buffer, pH 9.0 buffer, and DI water (pH 6.0) independently. The methods for 

preparation of buffer solutions are listed in Table 2.1. All samples were excited at their 

maximum absorption wavelength when fluorescence spectra were taken. The fluorometer 

settings were: 1 nm/second scan rate, 1.5 nm slit width and 75 watts Photomultiplier tube 

(PMT) voltage. 

Table 2.1. Buffer solutions preparation method 

Buffer solutions Preparation methods 

pH 5.0 0.1 M potassium hydrogen phthalate (KHP) solution was mixed 
with 0.1 M sodium hydroxide solution 

pH 6.0 Added 0.1 M hydrochloric acid solution to 0.1 M potassium 
phosphate solution  

PBS buffer Dissolved one PBS tablet in 100 mL water 

pH 8.2 0.1 M sodium bicarbonate solution 

PH 9.0 0.1 M sodium bicarbonate solution was mixed with 0.1 M sodium 
carbonate 

 

2.2.5 Cell Culture 

Stable SW480 clones expressing the neomycin selection cassette (SW480neo) 

were isolated and characterized as previously reported17. SW480neo (human colorectal 

adenocarcinoma) cells were propagated in Dulbecco’s Modified Eagle Medium (DMEM; 

high glucose) supplemented with 2 mM L-glutamine, 10% FBS, and 50 mg gentamicin 

sulfate in vented culture flasks (Corning; Corning, NY) at 37 °C and 5% CO2. The 
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medium was replaced every three days or as necessary. After attaining confluence, the 

cells were sub-cultured approximately 1:2 to 1:10. 

2.2.6 Animal Models 

Animal studies were performed under guidelines approved by the Institutional 

Animal Care and Use Committee (IACUC) at Vanderbilt University.  

SW480neo cells were propagated until near confluency as described above. Cells 

were harvested by incubation with trypsin, pelleted by centrifugation, resuspended in 

sterile CMF-PBS, counted and assessed for viability (%) using trypan blue staining. The 

cells were again pelleted by centrifugation, resuspended in sterile CMF-PBS at a 

concentration of 1.5 × 106 or 2 × 106 cells/100 μL and kept on ice. Prior to cell 

implantation, the cell-containing tube was gently inverted several times to assure proper 

cell distribution. Athymic nude (nu/nu) mice were finally injected with approximately 1.5 

× 106 or 2 × 106 SW480neo cells (100 μL volume) subcutaneously on one or both hind 

limbs. 

2.2.7 In Vivo Optical Imaging Studies 

During the imaging sessions, the mice were kept on a heated animal support plate 

under general anesthesia by inhalation of 2-3% isoflurane. Anesthesia was initiated in an 

induction chamber.   

Tumor-bearing mice that had been fasted overnight to decrease blood glucose 

levels were retroorbitally injected with 20 nmoles of either free NIR dye or NIR-

glucosamine (100 µL in sterile saline). The biodistribution and accumulation of free NIR 

dye and NIR-glucosamine were monitored in real-time using the IVIS Imaging System 

200 (Xenogen Corporation/ Caliper LifeSciences; Alameda, CA) equipped with an 
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indocyanine green (ICG) excitation and emission filter set (710 – 760 nm and 810 – 875 

nm, respectively).  Images were obtained pre-injection and at numerous time points post-

injection (typically several minutes post-injection, 1 hour, 3 hours, 4 hours, 6 hours, 8 

hours, 12 hours, 24 hours, and 48 hours). The following instrument settings were used: 1 

or 3 second exposure time, small or medium binning (4 × 4 pixels or 8 × 8 pixels, 

respectively), f/stop of 8, and FOV B or C (6.4 cm × 6.4 cm and 12.8 cm × 12.8 cm, 

respectively).  At the conclusion of the study, the mice were sacrificed and the harvested 

organs (heart, lungs, kidneys, liver) and tumors were also imaged using the same IVIS 

instrument parameters and/or on the Odyssey Infrared Imaging System. The tumors and 

organs were subsequently fixed in 10% formalin followed by ethanol dehydration. The 

fixed tumor tissues were then paraffin embedded and serially sliced. Alternating slices 

were stained with hematoxylin and eosin (H&E) for histological characterization or 

DAPI-mounted for NIR fluorescence microscopy.  

The data were processed in Living Image® Software Version 2.50 (Xenogen 

Corporation). Regions of interest (ROIs) were drawn over the xenograft tumors and a 

normal region.  Since most of the mice had two hindlimb tumors, several “normal” ROIs 

were drawn and evaluated including: (A) regions over one forelimb; (B) along the 

midline (spine) between the two flank tumors; (C) slightly to the right or left of the spine 

between the two flank tumors; (D) between the forelimbs; and (E) below the tumors on 

the lower portion of a hindlimb. All of the data presented here refer to the lower hindlimb 

ROI analysis for reasons discussed below. Also, since these mice were imaged 

longitudinally, the contribution of residual NIR-glucosamine or free NIR dye was 

accounted for by subtracting the original (true) pre-injection fluorescence intensity 
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obtained on the first day of imaging from the initial “pre-injection” fluorescence intensity 

acquired a week or more later. This image also allows the baseline pre-injection values to 

be reestablished.  For example:  

FI 6h pi, dayB
’ = FI 6h pi, dayB – (FI preinjection, dayB – FI preinjection, day A) 

where FI ≡ fluorescence intensity in terms of average radiance = [p/s/cm2/sr] and  

(FI preinjection, dayB – FI preinjection, day A) represents the contribution from the residual 

fluorescence signal. 

To generate time activity curves and monitor biodistribution, accumulation and 

clearance rates, the average radiance (photons/sec/cm2/sr) ± standard deviation for each 

group were plotted as a function of time post-injection to generate time-activity curves (n 

= 2 – 8 tumors from 1 – 4 mice per group). To further determine tumor specificity, the 

tumor to normal contrast ratio was calculated as the average ratio of the fluorescence 

intensity of the tumor region relative to the normal tissue. 

2.2.8 In Vivo MicroPET Imaging 

SW480neo tumor-bearing mice that had been fasted overnight to decrease blood 

glucose levels were injected with approximately 118-300 μCi of 18FDG two days pre- or 

post-injection of NIR-glucosamine and imaged dynamically for 1-1.5 hours using the 

Concorde Microsystems microPET Focus 220 (Concorde Microsystems; Knoxville, TN).  

Maximum a posteriori (MAP) reconstructions were performed after the scans were 

collected. Data processing was performed using ASIPro VMTM (Concorde Microsystems; 

Knoxville, TN). 

2.2.9 Blood Stability 

HPLC was used to evaluate the stability of NIR-glucosamine in blood.  Since 
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blood samples taken from mice ~3.5 hours post-injection of NIR-glucosamine did not 

contain enough compound to analyze via HPLC or mass spectrometry, these studies were 

performed ex vivo. To keep a similar NIR-glucosamine concentration as in animal 

imaging studies (20 nmoles injected per mouse, estimated to have a blood volume of 1.6 

mL), five nmoles of NIR-glucosamine was added to 400 μL of blood obtained from 

Balb/c mice in the ex vivo experiment. The blood was originally collected and stored in 

heparinized-tubes. The NIR-glucosamine-containing blood was then incubated at 37 °C 

for either zero, four or eight hours to allow sufficient time for agent degradation by blood 

components. The NIR-glucosamine-containing blood was then centrifuged at 1,800 g for 

20 minutes to separate the red blood cells from the plasma. The supernatant (plasma) was 

collected, vortexed, and centrifuged again for 20 minutes at 1,800 g to settle any 

sediment. The supernatant was carefully transferred to another tube and an equal volume 

of acetonitrile was added for precipitation.  The tube was vortexed for 60 seconds and 

centrifuged for five minutes at 1,800 g. Supernatant was transferred to a separate tube and 

centrifuged again at 1,800 g for five minutes to remove any residual precipitate.   

Stock NIR-glucosamine and free NIR dye as well as the purified plasma samples 

were analyzed via HPLC at 782 nm.  Flow A was 20 mM tetrabutylammonium bromide 

in water and B was 20 mM tetrabutylammonium bromide in 90% acetonitrile and 10% 

water. The elution method started with a linear gradient from 100% to 50% A over 10 

minutes, held at 50% for 5 minutes, arrived at 10% A in another 10 minutes, held at 10% 

A for 5 minutes and finally returned to 100% A over 1 minute.  The data were processed 

by integrating the area under the peaks at 782 nm using Empower software (Waters 

Corporation; Milford, MA).  The relative percent free NIR dye (eluting at 23 minutes)  
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and NIR-glucosamine (eluting at 18 minutes) were calculated as:  and NIR-glucosamine (eluting at 18 minutes) were calculated as:  

100 x 
min23at Areamin 18at Area

minutes 23at  Area  Dye NIR Free %
+

=  

100 x 
min23at Areamin 18at Area

minutes 18at  Area  eglucosamin-IRN %
+

=  

2.2.10 Cell Imaging 

SW480neo cells (~75,000 per dish) were plated in collagen-coated glass bottom 

dishes (MatTek Corporation; Ashland, MA) 48 hours prior to experimentation. The cells 

were first washed once with warmed glucose- and FBS-free medium and then incubated 

with 10–20 μM NIR-glucosamine or free NIR dye for 30 minutes at 37 °C.  Subsequently, 

the cells were washed three times with medium and imaged. A Nikon Eclipse TE2000-U 

fluorescence microscope equipped with a mercury lamp, indocyanine green (ICG) filter 

set and a Hamamatsu ORCA II BT 512 camera controlled by Metamorph software v6.1 

(Molecular Devices Corporation; Downingtown, PA) was used for imaging.   

 

2.3 Results and Discussion 

To synthesize NIR-glucosamine, we first activated glucosamine hydrochloride 

with sodium methoxide, followed by conjugating IRDyeTM 800CW NHS ester with the 
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Scheme 2.1. Reaction scheme for IRDyeTM 800CW-glucosamine 
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Figure 2.2. Absorption and fluorescence curves  of 
NIR-glucosamine in water 

2-amino group of the glucosamine (Scheme 2.1). The resulting NIR-glucosamine was 

purified by semipreparative HPLC and then characterized by NMR and mass 

spectrometry. The maximum absorption and fluorescence emission wavelengths of NIR-

glucosamine (λab = 774 nm and λem = 800 nm) in water are identical to those of free 

NIR dye (IRDye800 acid) 

(Figure 2.2).  

To study the stability of 

NIR-glucosamine, absorbance 

and fluorescence spectra were 

collected 13 times over 31 days 

and the results are displayed in 

Figures 2.3 and 2.4. Maximum 

absorption and fluorescence of free dye in DMSO and all NIR-glucosamine samples are 

listed in Table 2.2. The absorption and fluorescence λmax of NIR-glucosamine shifted ~23 

nm and ~22 nm respectively in aqueous solutions compared to solutions made in DMSO 

due to solvent effect.  

The stability analysis of NIR-glucosamine shows that the compound is stable in 

Table 2.2. Maximum absorption and fluorescence of free dye and NIR-glucosamine 
samples 
 
Sample NIR-glu
  

free dye 
DMSO 

NIR-glu 
DMSO 

NIR-glu 
pH 5 

NIR-glu 
pH 6 

NIR-glu 
PBS 

NIR-glu 
pH 8 

NIR-glu 
pH 9 DI water

λab 
(nm) 

797 797 774 774 774 774 774 774

λem 
(nm) 

820 820 798 798 798 798 798 800
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Figure 2.3. Absorbance percentage differences of NIR-glucosamine samples over 31 
days 
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DMSO, water, acidic solutions, and PBS buffer solution, but relatively unstable in basic 

solutions. In basic solutions, the highly conjugated cyanine backbone in NIR-

glucosamine could possibly be broken by a nucleophile, as shown in Figure 2.5. As the 

cyanine backbone is the basic of NIR-glucosamine absorption at 774 nm, the 

decomposed molecule lost NIR absorption. Figure 2.3 and Figure 2.4 show that the half-

lives of NIR-glucosamine in DMSO, water, pH 5 buffer, pH 6 buffer, and PBS buffer 

solutions are longer than one month. Even in basic solutions the molecule has half-lives  

of about 7 days (in pH 9 buffer) and 8 days (in pH 8 buffer), which is much longer than 

the half-life of 18FDG (110 minutes).  

In a preliminary study of the in vivo tumor targeting capabilities of NIR-

glucosamine, an SW480neo tumor-bearing mouse was injected with 20 nmoles of NIR-

glucosamine and imaged over time using the IVIS Imaging System 200. Fluorescence 

images taken pre-injection as well as approximately three minutes and six hours post-

injection of NIR-glucosamine are shown in Figure 2.6; the fluorescence images are also 

overlaid onto the corresponding photographic images for orientation. Prior to injection, 

SO3

O

NN

SO3O3S

O SO3

O OH
OH

HO

HN
HO

B

SO3

O

NN

SO3O3S

O SO3

O OH
OH

HO

HN
HO

B

 
Figure 2.5. Decomposition of NIR-glucosamine in basic solution 
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Figure 2.6.  Biodistribution and accumulation of NIR-glucosamine in real-time. 
(A) Fluorescence images of an SW480 tumor-bearing mouse overlaid onto the 
corresponding photographic images, displayed on a color bar scale ranging from 
2.2x108 to 2.2x109 photons/sec/cm2/sr (acquired using FOV C and medium 
binning).  Substantial accumulation of NIR-glucosamine is seen in the tumor region 
relative to the normal tissues approximately six hours post-injection. (B) Zoomed 
image of the tumor region with better resolution on a color bar scale ranging from 
1.75x109 to 3x109 photons/sec/cm2/sr (acquired using FOV B and small binning). 

the mice are essentially devoid of NIR fluorescence, revealing the negligible 

autofluorescence of tissue in the exploited wavelength region. Approximately 3 minutes  

post-injection, the NIR-glucosamine appears to be fairly uniformly distributed throughout 

the mouse with some increased signal near the retroorbital injection site (right eye). 

However, almost six hours post-injection, substantial accumulation of NIR-glucosamine 

is apparent in the tumor tissue. The bright fluorescence signal on the left rear paw is 

believed to result from urine contamination and is not present in other imaging studies.  

Figure 2.6B displays a zoomed image of the tumor region, imaged using a smaller IVIS 

field of view (FOV B = 6.4 × 6.4 cm), with better resolution (binning = 4 × 4), and 

presented on a different average radiance scale. Quantification of the fluorescent signal in 

the tumor region relative to the normal tissue on the opposite hindlimb demonstrates a 
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2.3-fold tumor-specific enhancement, suggesting that NIR-glucosamine specifically 

labels tumor tissue in vivo.   

Two days after optical imaging, the mouse shown in Figure 2.6 was injected with 

118 µCi of 18FDG and dynamically imaged in the Concorde MicroSystems microPET 

scanner. A summation of the microPET images taken over an hour and ten minutes post-

injection of 18FDG is shown in Figure 2.7A. As expected, enhanced PET signal resulting 

from increased uptake and accumulation of 18FDG is seen in the highly metabolic tissues 

including the brain, heart, and tumor. The bladder is also significantly bright due to the 

renal excretion of 18FDG.  For comparison, the optical image demonstrating NIR-

glucosamine accumulation six hours post-injection is shown in Figure 2.7B. We 

originally attributed the lack of fluorescence signal emanating from the heart and brain 

following injection with NIR-glucosamine to decreased sensitivity in deeper tissues and 

the potential that NIR-glucosamine may not cross the blood brain barrier. Further studies 

have demonstrated otherwise as discussed below.   

Figure 2.7C displays a coronal slice through the tumor of the 18FDG-PET image 

for comparison to the tumor-specific accumulation of NIR-glucosamine (Figure 2.7D).  It 

is noteworthy that both images have a similar size and shape, indicating potential 

correlation between the two imaging probes and methodologies. However, the central 

region of the tumor is devoid of 18FDG-PET signal while the optical image shows 

substantial fluorescence intensity mid-tumor. This observation is presumably due to the 

fact that the IVIS Imaging System produces two-dimensional projection images of 

fluorescence intensity and is essentially a volumetric ensemble of all the photons 

emanating from the interrogated regions, whereas the microPET image is a slice through 
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Figure 2.7.  Comparison of 18FDG signal to NIR-glucosamine accumulation in the 
tumor region of the same SW480 tumor-bearing mouse.  (A) The microPET image 
illustrates 18FDG accumulation in the highly metabolic tissues (brain, heart, and tumor) as 
well as the bladder due to renal excretion of 18FDG.  (B) The optical image captured six 
hours post-injection shows substantial accumulation of NIR-glucosamine in the same 
tumor two days prior to 18FDG-microPET imaging.  (C) A coronal slice through the 
tumor of the 18FDG-PET image for comparison to the tumor-specific accumulation of 
NIR-glucosamine (D). Zoomed optical image of the tumor region with better resolution 
on a color bar scale ranging from 1.75x109 to 3x109 photons/sec/cm2/sr. 
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the tumor itself. This discrepancy is analogous to the difference between fluorescence 

and confocal microscopy.  It is likely that the dark region on the 18FDG-microPET image 

represented necrotic tissue that was not evident in the 2D optical projection image. (In 

later studies, it became apparent that unlike 18FDG, NIR-glucosamine does label necrotic 

and transitioning tissues, which may also account for the difference.)  Qualitatively, but 

not quantitatively, the tumor-specific uptake of NIR-glucosamine appears to mimic that 

of 18FDG uptake and accumulation. We therefore set out to determine the uptake 

mechanism responsible for tumor-specific labeling by NIR-glucosamine and to compare 

the in vivo biodistribution, clearance, and accumulation of NIR-glucosamine with free 

NIR dye.   

To evaluate the in vivo biodistribution, clearance, and accumulation of NIR-

glucosamine compared to free NIR dye, a pilot imaging study was performed in four 

SW480neo tumor-bearing mice. Approximately four and a half weeks post-implantation, 

the tumors were externally visible but fairly small (2 – 8 mm in their longest dimension).  

Following an overnight fast, the tumor-bearing mice were retroorbitally injected with 20 

nmoles of free NIR dye and imaged over 24 hours using the Xenogen IVIS Imaging 

System 200. Two days later, the same mice were injected with NIR-glucosamine and 

again monitored over 24 hours post-injection. The fluorescence intensity of the tumor and 

normal regions were subsequently quantified in terms of average radiance 

(photons/sec/cm2/steradian) to generate time activity curves and determine tumor 

specificity.  It is important to note that since these mice each had two flank tumors, the 

opposite hindlimb could not be used as the “normal” tissue control. Thus, several ROIs 

were evaluated to determine the most appropriate “normal” tissue region, including  
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regions (1) over one forelimb, (2) along the midline (spine) between the two flank tumors,  

(3) slightly to the right or left of the spine between the two flank tumors, (4) between the 

forelimbs and (5) below the tumors on the lower portion of a hindlimb.  The “normal” 

region defined over one forelimb consistently provided the highest tumor to normal  

contrast.  However, this region did not appear to accurately represent normal tissue 

biodistribution as evident even in the immediately post-injection images (ex. Figure 

2.6A).  The “normal” regions defined along the spine and slightly offset from the spine 

demonstrated increased fluorescence intensity relative to the rest of the normal tissue, 

even immediately post-injection. These ROIs were also too close to the bladder and 

presumably included some signal from the renally cleared agents. Finally, the “normal” 

ROI between the shoulders consistently demonstrated a different clearance profile than 
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Figure 2.8.  Time activity curves for NIR-glucosamine and free NIR dye in the 
tumor region and “normal” lower hindlimb tissue of mice bearing relatively small 
SW480 xenograft tumors.  The same average radiance data up to four hours post-
injection is displayed in the inset plot.  The NIR-glucosamine appears to clear slightly 
faster than the free NIR dye in both the tumor and normal regions.   
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either the tumor or the other normal ROIs and was consequently eliminated. Thus, all of 

the results presented herein result from quantitative analysis of the tumor ROI relative to 

the lower portion of the hindlimb.   

The in vivo time activity curves of NIR-glucosamine and free NIR dye in mice 

bearing relatively small SW480neo tumors are shown in Figure 2.8; the same average 

radiance data up to four hours post-injection is displayed as an inset. The NIR- 

glucosamine and free NIR dye appear to clear from the tumor and normal tissues with 

slightly different clearance profiles. More specifically, the time necessary to clear half of 

the maximum fluorescence intensity occurring immediately post-injection is 
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Figure 2.9.  The tumor to normal contrast ratios of mice bearing relatively small 
SW480 xenograft tumors at each time point post-injection.  Overall, both agents 
appear to provide very little to no tumor-specific contrast enhancement, suggesting a 
potential size or vascularity requirement for substantial tumor uptake. 
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approximately 2.5 hours for the free NIR dye, but only ~ 1.5 hours for the NIR-

glucosamine. The faster rate of clearance presumably results from the increased polarity 

and therefore water solubility of NIR-glucosamine relative to the free NIR dye, which is  

more lipophilic. Overall, both agents appear to provide very little to no contrast 

enhancement in the relatively small tumors (Figure 2.9), suggesting a potential size or 

vascularity requirement for substantial tumor uptake. 

Several weeks later, when the tumors approximately doubled in size, both the free 

NIR dye and NIR-glucosamine were injected to the same animals again. The injected 

agents provided enhanced tumor-specific contrast relative to the adjacent normal 

hindlimb tissue. The time activity curves and tumor to normal contrast ratios for two 
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Figure 2.10.  Time activity curves for NIR-glucosamine and free NIR dye in the 
tumor region and “normal” lower hindlimb tissue of mice bearing relatively 
larger SW480 xenograft tumors. The same average radiance data up to six hours 
post-injection is displayed in the inset plot. The NIR-glucosamine appears to clear 
slightly faster than the free NIR dye in the normal hindlimb region.     
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mice imaged simultaneously following retroorbital injection of 20 nmoles of free NIR 

dye or NIR-glucosamine are shown in Figures 2.10 and 2.11, respectively. As previously 

demonstrated in Figure 2.8, the NIR-glucosamine appears to clear more rapidly than the 

free NIR dye, particularly from the normal hindlimb tissue (Figure 2.10 inset). As a result,  

the apparent tumor to normal contrast from NIR-glucosamine increases from 1.0 

immediately post-injection to a maximum of 2.7 six hours post-injection (Figure 2.11). 

This 2.7-fold contrast enhancement persists for the duration of the study (~24 hours). 

Conversely, the tumor to normal ratio from the free NIR dye is only 1.8 at six hours post-
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Figure 2.11.  The tumor to normal contrast ratios of mice bearing relatively larger 
SW480 xenograft tumors at each time point post-injection. The NIR-glucosamine 
reaches a maximum tumor to normal contrast ratio (2.7) at six hours post-injection, 
while the free NIR dye contrast steadily rises to 3.3 over 24 hours post-injection. This 
discrepancy is presumably due to the faster rate of NIR-glucosamine clearance in the 
normal hindlimb tissue, which appears to result in earlier tumor-specific contrast and 
potentially less toxicity.  
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injection, but steadily increases to 3.3-fold at 21 hours post-injection. Since the 

fluorescence intensity in the free NIR dye-containing tumors is consistently higher than 

the fluorescence intensity in the NIR-glucosamine-containing tumors, this contrast 

discrepancy is presumably due to the faster normal tissue washout of NIR-glucosamine 

rather than preferential NIR-glucosamine accumulation over free NIR dye.  This 

increased normal tissue clearance due to the contribution of the D-glucosamine may 

prove beneficial over free NIR dye due to the earlier contrast enhancement and could 

potentially provide a reduction in cytotoxicity. However, more animal studies are 

necessary to evaluate the potential advantages of NIR-glucosamine over the use of free 

NIR dye for tumor labeling.  

Since both NIR-glucosamine and free NIR dye provide similar contrast 

enhancement in SW480neo tumor-bearing mice, it is possible that the conjugated 

compound has poor blood stability. HPLC analysis was used to determine whether or not 

NIR-glucosamine is degraded to free NIR dye in the presence of blood components on a 

relevant time scale. Following a 0, 4, or 8 hour incubation in whole blood, the elution  

      Table 2.3.  Blood stability analysis. 
 

;100 x 
min23at  Areamin  18at  Area

minutes 23at  Area  Dye NIR Free % a

+
= 100 x 

min23at Areamin  18at  Area
minutes 18at  Area  eglucosamin-NIR % b

+
=

Compound Experimental 
Condition

Peak Elution 
Time (min) 
NIR-gluc

Area
Peak Elution 
Time (min) 

Free NIR dye
Area

% NIR-
glucosaminea

% Free NIR 
Dyeb

Free NIR Dye Stock Solution 18.3 1.3 22.5 95 1 % 99 %

NIR-glucosamine Stock Solution 18.1 88 22.6 7.7 92 % 8 %

NIR-glucosamine Diluted in blood and 
immediately purified 18.0 66 22.5 6.9 91 % 9 %

NIR-glucosamine In whole blood for    
4 hours 18.2 53 23.1 7.1 88 % 12 %

NIR-glucosamine In whole blood for    
8 hours 18.1 61 23.0 4.7 93 % 7 %
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profile of NIR-glucosamine was compared to that of the NIR-glucosamine and free NIR 

dye stocks at 782 nm (Table 2.3).  NIR-glucosamine and free NIR dye eluted at ~18.1 

minutes and ~22.5 minutes, respectively. The shorter elution time for NIR-glucosamine 

indicates an increased polarity relative to the free NIR dye, as previously discussed. The 

reduction in area following incubation in whole blood results from poor baseline in 

HPLC chromatograph due to the very low signal of these samples. The small fraction of 

the NIR-glucosamine stock (~8 %) that eluted at 22.6 minutes is likely free NIR dye.  

The NIR-glucosamine sample used for these studies was approximately six months old 

C D

A B

 
Figure 2.12.  Fluorescence microscopy of SW480 cells incubated with NIR-
glucosamine (white light image in A and NIR fluorescence in B) or free NIR dye 
(white light image in C and NIR fluorescence in D) in glucose- and FBS-free 
medium.  The fluorescence signal appears to be primarily associated with the cell 
membrane.  The localization is better demonstrated by the full, pseudo-confocal z-
stack. 
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and had probably degraded to free NIR dye slightly. However, this small contribution to 

the entire elution profile remains less than 13 % after exposure to whole blood 

components for 4 or 8 hours.  This suggests that the NIR-glucosamine remains intact and 

is stable in blood for at least 8 hours.   

  Finally, fluorescence microscopy studies were performed to assess the cellular 

localization of NIR-glucosamine and free NIR dye. Figure 2.12 displays one slice of a 

pseudo-confocal NIR z-stack of SW480neo cells incubated with NIR-glucosamine (A, B) 

or free NIR dye (C,D) for 30 minutes. Both agents appear to be primarily localized to the 

outer cellular membrane. This localization is better demonstrated by the full z-stack, 

which shows localized fluorescence at the top of the cell that spreads radially outwards as 

one traverses through the cell.  These fluorescence images further suggest non-specific 

binding to the lipid membrane.     

 

2.4 Conclusion 

In summary, this study describes the synthesis and characterization of an 

alternative optical 18FDG analogue. Preliminary imaging studies in an SW480neo mouse 

model of human colon cancer suggest that NIR-glucosamine specifically labels tumor 

tissue in vivo with a 2.3 to 2.7-fold contrast enhancement over normal tissue. This tumor-

specific fluorescence signal also appears to mimic that of 18FDG accumulation. Blood 

stability analysis and preliminary tissue imaging studies suggest that NIR-glucosamine is 

not degraded to free NIR dye in blood and appears to be able to extravasate from the 

vasculature at least in liver, kidneys and lungs. 

Overall, NIR-glucosamine and free NIR dye appear to provide enhanced tumor  
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contrast over normal tissues in reasonably sized tumors. Although the mechanism of 

uptake and accumulation remains unknown, the increased rate of NIR-glucosamine 

clearance from the normal tissue due to increased polarity may prove beneficial for 

imaging of vascular permeability and could result in less toxicity. However, additional 

animal studies are necessary to evaluate the potential advantages of NIR-glucosamine 

over free NIR dye for tumor labeling. 
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CHAPTER III 

 

A NOVEL CONJUGABLE TRANSLOCATOR PROTEIN LIGAND LABELED WITH A 
FLUORESCENCE DYE FOR IN VITRO IMAGING 

 

3.1 Introduction 

Molecular imaging (MI) has emerged as an important multidisciplinary area which 

involves radiology, chemistry, biology, biochemistry, physics, engineering, and medicine. MI 

combines molecular agents with imaging tools to follow specific molecular pathways in the 

body and can be widely applied in locating, diagnosing, and treating disease. Synthetic 

chemistry is essential to MI by providing potent imaging agents.  

The translocator protein (18 kDa), TSPO, previously known as the peripheral-type 

benzodiazepine receptor has become an interesting target in MI1. TSPO is a mitochondrial 

protein which is associated with a variety of biological activities such as cell proliferation, 

apoptosis, immunomudulation, steroidogenesis, and transport of porphyrin and heme1-3. 

TSPO is ubiquitously expressed throughout the human body, with high level of expression in 

non-neoplastic diseases such as ischemia, brain damage induced by toxins, viral encephalitis, 

hepatic encephalopathy, epilepsy, nerve degeneration, and trauma4. TSPO overexpression 

has also been observed in various cancers including breast, glioma, prostate, colorectal, 

esophageal, ovarian, and small cell lung cancer4. 

Several selective and potent TSPO ligands have been developed, such as 

benzodiazepines (Ro5-4864), isoquinoline carboxamides (PK11195), indolacetamide 

derivatives (FGIN-1-27), pyrisanoindole derivatives (SSR180575), and phenoxylphenyl 
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acetamide derivatives (DAA1106 or DAA1097). The study of TSPO, an important 

mitochondrial membrane protein is currently limited because only two ligands that exist are 

conjugable to signaling moieties for tracking and quantitation. An FGIN analogue was 

labeled with a fluorophore (NBD) which is not ideal for in vitro imaging due to the low 

molar extinction coefficient (~ 8000 L mol-1 cm-1)5,6. Our lab developed a PK11195 analogue 

which has a six-carbon linker and a terminal primary amino group7. Development of 

conjugable forms of the numerous PBR ligands would facilitate the study of TSPO and 

possibly allow for it to be used as a target for in vivo imaging. 

A conjugable form of PK11195 has been reported and the molecule has been coupled 

to a lanthanide chelate7 and a fluorescence dye8. These TSPO-targeted agents showed good 

TSPO binding activity, allowing in vitro molecular imaging studies. Ro5-4864 and PK11195 

are reversible competitive inhibitors of each other, and they show distinct biological 

properties in inflammation9, depression10, nociception11 and apoptosis enhancement4.  Given 

these facts, to further study TSPO function in relation to its expression levels, a conjugable 

form of Ro5-4864 was deemed as a necessity.   

We report herein the synthesis of a conjugable form of Ro5-4864 having a six-carbon 

spacer (C6Ro5-4864). Through the primary amino group, this molecule can be conjugated to 

a variety of signaling moieties, thus allowing the use of different imaging modalities. 

Lissamine-rhodamine B sulfonyl chloride, a fluorescence dye with a high molar extinction 

coefficient (88,000 L/mol cm in methanol), was selected for conjugation to C6Ro5-4864. The 

resulting TSPO-targeted fluorophore, lissamine-C6Ro5-4864, labels TSPO-expressing cells 

selectively and shows promise for MI studies in imaging disease states where TSPO levels 

are affected, either as the cause or the outcome of the disease.  
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3.2 Experimental Procedures 

3.2.1 Synthesis 

7-Chloro-5-(4-chlorophenyl)-1-methyl-1H-benzo[1,2,4]triazepin-2-one (2). (5-

Chloro-2-(methylamino)phenyl)(4-chlorophenyl)methanone 1 (2 g, 7 mmol) and ethyl 

carbazate (1.5 g, 17 mmol) were stirred at 210 °C for 3.5 h. After the reaction was cooled to 

room temperature, the product was purified by column chromatography on silica gel by 

eluting with 1:3 ethyl acetate/hexanes to yield 2 as a yellow solid (774 mg, 34%). 1H NMR 

300 MHz (CDCl3) δ 7.38-7.53 (6H, m), 7.15 (1H, d, J=8.7 Hz), 7.05 (1H, d, J=2.7 Hz), 3.29 

(3H, s); MS (MALDI)+ m/z 320.3 ([M + H]+, 100%). 

(6-Bromohexyloxy)(tert-butyl)dimethylsilane (4). To a solution of 6-bromo-1-

hexanol (906 mg, 5 mmol) in dichloromethane (25 mL) at 0 °C was added imidazole (1.02 g, 

15 mmol). After 5 min, 4-(dimethylamino)pyridine (DMAP) (60 mg, 0.5 mmol) was added, 

followed by tert-butyldimethylsilyl chloride (1.5 g, 10 mmol). The resulting solution was 

stirred at 0 °C for 2 h, quenched with 30 mL water, and extracted with dichloromethane (3 × 

30 mL). The organic layers were combined, dried over sodium sulfate, and concentrated by 

vacuum rotary evaporation. The product was purified by silica gel chromatography using 

1:20 ethyl acetate/hexanes as the eluent. Compound 4 was isolated as a colorless liquid (1.3 g, 

88%).  1H NMR 300 MHz (CDCl3) δ 3.60 (t, J=6.3 Hz, 2H), 3.40 (t, J=6.9 Hz, 2H), 1.86 (q, 

J=5.1 Hz, 2H), 1.54-1.35 (m, 6H), 0.89 (s, 9H), 0.04 (s, 6H). MS (GC): 295, 293 [M•].  

(Z)-3-(6-(tert-Butyldimethylsilyloxy)hexyl)-7-chloro-5-(4-chlorophenyl)-1-

methyl-1H-benzo[e][1,2,4]triazepin-2(3H)-one (5). Sodium hydride (60% in mineral oil) 

(20 mg, 0.5 mmol) was added to a stirring solution of compound 2 (256 mg, 0.8 mmol) in dry 

DMF (4 mL). The mixture was stirred under argon for 30 min. Compound 4 was then added 
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to the mixture, and the resulting mixture was stirred for another 30 min. The reaction solution 

was poured into 50 mL of a stirring 1 M ammonium chloride solution at 0 °C. The mixture 

was transferred to a separation funnel and extracted with ethyl ether (3 × 40 mL). The 

organic layers were combined, dried over sodium sulfate, and concentrated by vacuum rotary 

evaporation. The crude product was purified by silica gel chromatography using gradient 

1:20 to 1:4 ethyl acetate/hexanes as the eluent to give a yellow oil (349 mg, 89%).  1H NMR 

400 MHz (CDCl3) δ 7.55-7.53 (m, 2H), 7.46 (dd, J=8.8, 2.4 Hz, 1H), 7.41-7.39 (m, 2H), 7.12 

(d, J=8.8 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 3.73 (bs, 1H), 3.55 (t, J=2.4 Hz, 2H), 3.23 (s, 3H), 

1.65 (bs, 2H), 1.49-1.43 (m, 2H), 1.33-1.24 (m, 5H), 0.88 (s, 9H), 0.02 (s, 6H). MS (ESI)+: 

556.2 Da [M + Na]+. 

(Z)-7-Chloro-5-(4-chlorophenyl)-3-(6-hydroxyhexyl)-1-methyl-1H-

benzo[e][1,2,4]triazepin-2(3H)-one (6). Tetrabutylammonium fluoride (TBAF) (3.5 mL 1 

M solution in THF) was added to a stirring solution of compound 5 (377 mg, 0.7 mmol) in 

THF (2.5 mL) at 0 °C. The reaction solution was stirred at 0 °C for 3 h, quenched with 30 

mL of water, and extracted with ethyl ether three times. The organic layers were combined, 

dried over sodium sulfate, and concentrated by vacuum rotary evaporation. The crude 

product was purified by column chromatography (silica gel) using 1:2 ethyl acetate/hexanes 

as eluent. Compound 6 was collected as a pale yellow oil (281 mg, 95%). 1H NMR 300 MHz 

(CDCl3) δ 7.55-7.53 (m, 2H), 7.46 (dd, J=9.0, 2.4 Hz, 1H), 7.41-7.38 (m, 2H), 7.12 (d, J=8.7 

Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 3.72 (bs, 1H), 3.61-3.56 (m, 3H), 3.23 (s, 3H), 1.69-1.62 (m, 

2H), 1.57-1.48 (m, 2H), 1.37-1.24 (m, 5H). 13C NMR 75 MHz (CDCl3) δ 163.6, 161.1, 145.5, 

136.5, 134.5, 131.7, 130.3, 129.2, 129.0, 128.8, 128.5, 120.9, 62.8, 51.5, 35.5, 32.6, 27.7, 

26.6, 25.4. MS (ESI)+: 442.2 Da [M + Na]+. 
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(Z)-6-(7-Chloro-5-(4-chlorophenyl)-1-methyl-2-oxo-1H-benzo[e][1,2,4]triazepin-

3(2H)-yl)hexyl 4-Methylbenzenesulfonate (7). A solution of compound 6 (182 mg, 0.43 

mmol) and triethylamine (188 µL, 1.3 mmol) in dry dichloromethane (6 mL) was stirred at 0 

°C for 5 min. p-Toluenesulfonyl chloride (298 mg, 1.56 mmol) was added slowly to the 

above solution. The resulting mixture was warmed to room temperature and stirred overnight. 

The reaction was then quenched with 20 mL of water and extracted with dichloromethane (3 

× 20 mL). The combined organic layers were dried over sodium sulfate and concentrated by 

vacuum rotary evaporation. The crude product was purified by silica gel chromatography 

using a 1:19 to 2:3 ethyl acetate/hexanes gradient as eluent. Compound 7 was isolated as a 

yellow oil (238 mg, 96%). 1H NMR 300 MHz (CDCl3) δ 7.77 (dm, J=8.1 Hz, 2H), 7.54-7.51 

(m, 2H), 7.46 (dd, J=8.7, 2.4 Hz, 1H), 7.52-7.39 (m, 2H), 7.33 (d, J=7.8 Hz, 2H), 7.12 (d, 

J=8.7 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 3.97 (t, J=6.3 Hz, 2H), 3.70-3.40 (m, 2H), 3.23 (s, 

3H), 2.44 (s, 3H), 1.62-1.55 (m, 4H), 1.31-1.21 (m, 4H). MS (ESI)+: 596.3 Da [M + Na]+.  

C6Ro5-4864 (8). A sealed tube with a solution of compound 7 (25 mg, 44 µmol) in 

methanol (1 mL) was cooled to -78 °C and flushed with ammonia gas. After about 2.5 mL 

liquid ammonia was condensed, the tube was sealed and warmed to room temperature. The 

reaction was stirred under room temperature overnight. The mixture was concentrated by 

nitrogen flow, redissolved by dichloromethane, and treated with a saturated sodium 

bicarbonate solution. The mixture was extracted with dichloromethane three times. The 

organic layers were combined, dried over sodium sulfate, and concentrated by vacuum rotary 

evaporation. The crude product was purified by column chromatography (silica gel) using a 

gradient with dichloromethane and dichloromethane/methanol/ammonia (6:1:0.1) as the 

eluent. C6Ro5-4864 was collected as a pale yellow oil (14 mg, 77%). 1H NMR 300 MHz 
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(CDCl3) δ 7.55-7.51 (m, 2H), 7.45 (dd, J=8.7, 2.4 Hz, 1H), 7.41-7.37 (m, 2H), 7.12 (d, J=8.7 

Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 3.80-3.45 (m, 2H), 3.23 (s, 3H), 2.62 (bs, 2H), 1.65 (bs, 2H), 

1.49-1.38-1.24 (m, 8H). 13C NMR 75 MHz (CDCl3) δ 163.6, 161.1, 145.5, 136.4, 134.5, 

131.7, 130.2, 129.2, 129.0, 128.8, 128.5, 120.9, 51.5, 42.1, 35.5, 33.7, 27.7, 26.6, 26.5. MS 

(ESI)+: 419.3 Da [M + H]+. 

Lissamine-C6Ro5-4864. A mixture of lissamine rhodamine B sulfonyl chloride 

(mixed isomers) (10 mg, 17 μmol), C6-Ro5-4864 (8 mg, 19 μmol), and triethylamine (15 μL) 

in dry dichloromethane (1.6 mL) was stirred at room temperature under argon flow for 2 h. 

The product was purified through column chromatography (silica gel) using a mixture of 

24:1 dichloromethane:methanol as the eluent. Lissamine-C6Ro5-4864 was isolated as a pink 

solid (Isomer I, 3.2 mg, 19%; Isomer II, 2.2 mg, 13%). 1H NMR 500 MHz (CDCl3) Isomer I: 

δ 8.81 (d, J=2.0 Hz, 1H), 7.96 (dd, J=8.0, 1.5 Hz, 1H), 7.55-7.53 (m, 2H), 7.47 (dd, J=8.5, 

2.5 Hz, 1H), 7.41-7.39 (m, 2H), 7.29 (d, J=9.5 Hz, 2H), 7.20 (d, J= 8.0 Hz, 1H), 7.15 (d, 

J=9.0 Hz, 1H), 7.07 (d, J=2.0 Hz, 1H), 6.81 (dd, J=9.5, 2.5 Hz, 2H), 6.66 (d, J=2.5 Hz, 2H), 

4.99 (t, J=6.5 Hz, 1H), 3.50-3.59 (m, 8H), 3.23 (s, 3H), 3.01 (q, J=7.0 Hz, 2H), 1.69-1.58 (m, 

6H), 1.55-1.50 (m, 2H), 1.29 (t, J=7.5 Hz, 14H). Isomer II: δ 8.66 (s, 1H), 8.38 (dd, J=8.0, 

1.0 Hz, 1H), 7.52-7.50 (m, 2H), 7.46 (dd, J=8.5, 2.5 Hz, 1H), 7.38-7.36 (m, 2H), 7.23 (d, 

J=7.5 Hz, 1H), 7.17 (d, J= 9.5 Hz, 1H), 7.14 (d, J=9.0 Hz, 1H), 7.04 (d, J=2.5 Hz, 1H), 6.85 

(dd, J=9.5, 1.5 Hz, 2H), 6.70 (d, J=2.5 Hz, 2H), 5.24 (bs, 1H), 3.63-3.55 (m, 8H), 3.21 (s, 

3H), 2.89 (q, J=6.5 Hz, 2H), 1.72-1.61 (m, 9H), 1.33 (t, J=7.5 Hz, 14H). MS (ESI)+: 981.4 

Da [M + Na]+. Rf 0.23 (Isomer I), 0.14 (Isomer II) (4% methanol in dichloromethane).  
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3.2.2 Spectroscopic Characterization 

The lissamine-C6Ro5-4864 absorption and emission spectra were obtained using a 

Shimadzu 1700 UV-vis spectrophotometer and ISS PCI spectrofluorometer at room 

temperature on a 5 μM sample.   

3.2.3 Binding Studies 

  C6 glioma cells were cultured in Dulbecco’s modified Eagle medium (DMEM)-F12 

medium (Gibco/Invitrogen) supplemented with 0.5% FBS and 2.5% horse serum (HS) at 

3.7% CO2. Cells were scraped from 150 mm culture dishes into 5 mL of phosphate-buffered 

saline (PBS), dispersed by trituration, and centrifuged at 500 xg for 15 min. Cell pellets were 

resuspended in PBS and assayed for protein concentration. [3H]PK11195 binding studies on 

30 μg of protein from cell suspensions were performed as previously described12. 

Displacement studies using increasing concentrations of lissamine-C6Ro5-4864 were 

performed in the presence of 15 nM [3H]PK11195. Data were analyzed using PRISM 

software (vs 4.0, GraphPad, Inc., San Diego, CA). 

3.2.4 Cell Imaging 

C6 rat glioma and MDA-MB-231 human breast carcinoma cells were plated in 

MaTekTM dishes. The growth media was removed and replaced with media containing the 

contrast agent. C6 and MDA-MB-231 cells were dosed with 100 nM lissamine-C6Ro5-4864 

for 30 min at 37 °C under 5% CO2. Cells dosed with 100 nM free lissamine dye were imaged 

as control. At the end of the incubation time, cells were rinsed with PBS three times and 

imaged under a Nikon Eclipse TE2000-U microscope (Lewisville, TX).  

3.2.5 In Vitro Competition 

MDA-MB-231 human breast carcinoma cells were plated in MaTekTM dishes. The  
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growth media was removed and replaced with media containing the contrast agent. 

Unchallenged MDA-MB-231 cells were dosed with 5 μM lissamine-C6Ro5-4864. 

Challenged cells were dosed with 5 μM lissamine-C6Ro5-4864 and PK1195 (500 nM, 5 μM 

or 50 μM). All cells were incubated for 30 min at 37 °C under 5% CO2. At the end of the 

incubation time, cells were rinsed with PBS three times and imaged under a Nikon Eclipse 

TE2000-U microscope (Lewisville, TX).  
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Scheme 3.1. Synthesis of C6-Ro5-4864  

The overall goal of this synthetic effort was to construct a conjugable TSPO ligand 

with a biologically active portion of Ro5-4864. (5-Chloro-2-(methylamino)phenyl)(4-

chlorophenyl)methanone 1 was synthesized from commercially available 4-chloro-

phenylacetonitrile and 4-chloronitrobenzene as reported13. After several unsuccessful 

attempts using semicarbazide and high-boiling solvents to induce a ring-closure reaction with 

1, we synthesized the triazepinone 2 by heating a mixture of ethyl semicarbazide and 1 at  
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210 °C without any solvent(Scheme 3.1).. The tert-butyldimethylsilyl (TBS)-protected six-

carbon linker 4 was added to 2 by an N-alkylation reaction. It is noteworthy that two other 

linkers, 1,3-dihydro-1,3-dioxo-2H-isoindole-2-hexanoic acid and 6-nitrohexanoic acid were 

also employed, but we were unsuccessful in achieving the final product. After the TBS group 

in 5 was removed via TBAF, the hydroxyl group in 6 was converted to a tosyl group and 

subsequently reacted with ammonia to yield the final product 8.  

Since the commercially available lissamine-rhodamine B sulfonyl chloride is a 

mixture of two isomers (Scheme 3.2), the N-sulfonylation reaction between C6Ro5-4864 and 

the fluorescence dye produced two isomer products. It was possible to isolate these two  

products through silica gel column chromatograph (Rf is 0.23 for isomer I and 0.14 for 

isomer II in 4% methanol in dichloromethane). C6Ro5-4864 is in para position in isomer I 

and ortho position in isomer II, verified by pH test14. Isomers I and II have a similar 

maximum absorption (isomer I: 561 nm; isomer II: 563 nM) and emission (isomer I: 583 nm; 

isomer II: 585 nm) wavelength to that of the free lissamine dye (Abs = 568 nm and Fluo = 

583 nm) and Liss-ConPK11195 (Abs = 571 nm and Fluo = 585 nm) (Figure 3.1)8. However, 

the molar extinction coefficients of the produced isomers are significantly different (isomer I:  
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Scheme 3.2. Synthesis of lissamine-C Ro5-48646
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Figure 3.1. Lissamine-C Ro5-4864 isomer I (left, para) and isomer II (right, ortho) 
absorption and fluorescence curves

6
.  
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Figure 3.2. Fluorescence imaging of C6 rat glioma cells:  (A) phase contrast microscopy 
of  cells dosed with lissamine-C6Ro5-4864; (B) fluorescence imaging of cells dosed with 100 
nM lissamine-C6Ro5-4864; (C) phase contrast microscopy  of cells dosed with lissamine dye; 
(D) fluorescence imaging of cells dosed with 100 nM lissamine dye (control). 
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Figure 3.3. Fluorescence imaging of  MDA-MB-231 human breast cancer cells:  (A) 
Phase contrast microscopy of cells dosed with lissamine-C6Ro5-4864; (B) fluorescence 
imaging of  cells dosed with 100 nM lissamine-C6Ro5-4864; (C) Phase contrast microscopy 
of cells dosed with lissamine dye; (D) fluorescence imaging of cells dosed with 100 nM 
lissamine dye (control). 

175000 L/mol cm; isomer II: 91000 L/mol cm).  Isomer I has much higher ε than lissamine-

rhodamine B sulfonyl chloride (ε = 88000 L/mol cm), which indicates that C6Ro5-4864 

produces a positive effect on lissamine’s absorptive property. The molar extinction 

coefficient of Liss-ConPK11195 was reported as 35000 L/mol cm, which is lower than both 

isomer I and isomer II. Isomer I was selected for imaging due to the relative high absorption 

and fluorescence (Figure 3.1).  
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Figure 3.4. In vitro competition study using MDA-MB-231 human breast cancer cells: 
(A) fluorescence imaging of  cells dosed with 5 µM lissamine-C6Ro5-4864; (B) fluorescence 
imaging of  cells dosed with 5 µM lissamine-C6Ro5-4864 and 500 nM PK11195; (C) 
fluorescence imaging of  cells dosed with 5 µM lissamine-C6Ro5-4864 and 5 µM PK11195; 
(D) fluorescence imaging of  cells dosed with 5 µM lissamine-C6Ro5-4864 and 50 µM
PK11195; (E-H) corresponding phase contrast microscopy. 

3.3.2 Cell Imaging and Binding Study 

The cellular uptake of lissamine-C6Ro5-4864 was examined in C6 rat glioma and 

MDA-MB-231 human mammary adenocarcinoma cells by fluorescence microscopy. Both 

cell types were previously shown to contain relatively high levels of TSPO15,16. The resulting 

images were compared with those obtained using the same concentrations of the free 

lissamine dye as control. Cell uptake of lissamine-C6Ro5-4864 was observed in fluorescence 

images of both cell lines (Figures 3.2 and 3.3, panel B) while the control exhibited no 

significant fluorescence. Images using Liss-ConPK11195 showed similar quality8. 

Radioligand binding studies further demonstrated specific binding of lissamine-

C6Ro5-4864 to the TSPO protein. In these studies, [3H]PK11195, the well characterized 

diagnostic TSPO drug ligand, was used as the competitive radioligand. The concentration of 

lissamine-C6Ro5-4864 tested varied from 10-11 M to 10-4 M in the competitive binding assays 
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performed. The Ki value derived from IC50 was calculated to be 2.6 ± 1.4 µM, which is 

similar to Liss-ConPK11195 (1 µM)8. Even though the binding affinity is significantly lower 

than that of [3H]Ro5-4864 (Ki = 5 nM)17, the selective binding of lissamine-C6Ro5-4864 to 

TSPO is clearly shown and visualized. The specificity of lissamine-C6Ro5-4864 to TSPO is 

further verified by in vitro competition study. In this experiment, MDA-MB-231 cells were 

treated with 5 µM lissamine-C6Ro5-4864 and PK11195 with different concentrations as 

competitor. Challenged cells showed reduced fluorescence signal compared to unchallenged 

cells (Figure 3.4). Taken together these data suggest that lissamine-C6Ro5-4864 is a 

promising TSPO targeted MI agent.  

 

3.4 Conclusions 

We synthesized and characterized a conjugable form of the benzodiazepine Ro5-4864, 

C6Ro5-4864, which can be conjugated to a variety of signaling moieties for TSPO-targeted 

imaging. This TSPO ligand has been coupled to a fluorescent dye, and the resulting imaging 

agent, lissamine-C6Ro5-4864, displays attractive optical properties for fluorescence 

microscopy imaging. The specific binding of this agent to TSPO was demonstrated by 

radioligand binding studies and live cell imaging on MDA-MB-231 breast cancer and C6 

glioma cells.  
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CHAPTER IV 

 

A NOVEL FUNCTIONAL TRANSLOCATOR PROTEIN LIGAND FOR DISEASE 
IMAGING AND STEM CELL TRACKING 

 

F

O

N

O

O

O

DAA1106

Figure 4.1. Structure 
of DAA1106  

4.1 Introduction 

The 18 kDa translocator protein (TSPO), also known as the peripheral-type 

benzodiazepine receptor (PBR), has become an attractive target for cancer1-3 and 

neurodegenerative disease imaging4-6. Over-expression of TSPO has been observed in a 

variety of cancers, including brain, breast, colorectal, prostate and ovarian cancers, 

astrocytomas and hepatocellular and endometrial carcinomas7. TSPO is also associated 

with a number of biological processes, such as cell proliferation, apoptosis, 

steroidogenesis, and immunomodulation, however, its exact physiological role still is not 

clear.  

Several TSPO-selective ligands have been developed, including the diazepam 

derivative (Ro5-4864), the isoquinoline derivative (PK11195), the 2-acryl-3-

indoleacetamide derivative (FGIN-1), and the 

phenoxyphenyl-acetamide derivative (DAA1106)8,9. 

DAA1106 (Figure 4.1) has become an attractive TSPO 

ligand. It has higher binding affinity for TSPO than PK11195, 

Ro5-4864, and FGIN1. DAA1106 has been shown to 

displace TSPO-complexed PK11195 and Ro5-4864 at a very 
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low concentration (10-15–10-12 M), however, 0.1-1 μM amounts of PK11195, Ro5-4864 

or FGIN1 were necessary to displace DAA110610. Although promising, TSPO studies 

using DAA1106 have been limited due to the fact that the molecule is not easily 

functionalized.  

A conjugable analog of DAA1106, which can be coupled to a variety of signaling 

moieties, would be a valuable tool for studying TSPO function. Even though DAA1106 

labeled with 11C, 3H and 18F have been used to study TSPO activity, these labels are 

limited by their short half-lives11-13. In addition, positron emission tomography (PET) has 

very low resolution (4-5 mm)14. Furthermore, biological studies using tritium are 

cumbersome, expensive, time consuming and create radioactive waste. A conjugable 

version of PK11195 was developed previously and labeled with a fluorescent dye15,16.  

Unfortunately, the binding affinity of the imaging agent was rather low (1 µM).  

In this part of research, conjugable analogues of DAA1106, n-TSPOmbb732 (n is 

the number of carbon on the linker) were synthesized and characterized.  The analogue 

has a terminal amino group that facilitates coupling reactions. The binding affinities and 

yields of seven n-TSPOmbb732 (n=3-9) molecules were compared.  The 6-TSPOmbb732 

was determined as the version with the highest affinity in cell homogenate. Signaling 

moieties, including three fluorescent dyes and three lanthanide chelates, were coupled to 

6-TSPOmbb732 for optical, PET and multi-modality imaging. The fluorescent dyes 

coupled to 6-TSPOmbb732 include IRDyeTM 800CW NHS ester (LI-COR Biosciences, ε 

= 300000 L/mol cm in methanol), lissamineTM rhodamine B sulphonyl chloride 

(Invitrogen, ε = 88000 L/mol cm in methanol) and cypate17,18 (ε = 224000 L/mol cm in 

20% DMSO/H2O). The resulting optical imaging agents have nanomolar binding 
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affinities to TSPO and target TSPO in vitro. 6-TSPOmbb732 was also labeled with two 

trifunctional lanthanide chelators for multi-modality imaging. One agent has a methyl 

quinoline antenna, whereas the other one uses coumarin as the antenna. Finally, a cyclen 

(1,4,7,10-tetraazacyclododecane) macrocycle based agent, 64Cu-DOTA-6-TSPOmbb732, 

was synthesized. The prospect of this agent in TSPO targeted PET imaging will be 

considered.  

Several 6-TSPOmbb732 based imaging agents have been investigated in TSPO 

targeted cancer cell imaging. MDA-MB-231 mammary adenocarcinoma breast cancer 

cells or C6 rat glioma cells were treated with IRDyeTM 800CW-6-TSPOmbb732 (NIR6T), 

lissamineTM-6-TSPOmbb732 (Liss6T) and MitoTracker Green (a mitochondrial marker). 

Co-localization of these molecules was studied to analyze the specific targeting. 

Moreover, fluorescence images of cancer cells dosed with NIR6T or Liss6T and the 

images of cells dosed with corresponding free dye were compared. In addition, a 

relatively inexpensive and stable NIR dye, cypate, was coupled to 6-TSPOmbb732. 

Cypate-6-TSPOmbb732 (Cypate6T) was used to image MDA-MB-231 cells.  

Even though our TSPO targeted imaging has been focused on studying cancers 

and other diseases1,19,20, preliminary results presented in this chapter suggest that stem 

cell tracking will probably become another attractive area for TSPO targeted 

investigations. Transplantation of stem cells into damaged tissue is a promising strategy 

for the treatment of a number of disorders, such as Parkinson’s disease, Alzheimer’s 

disease, and myocardial infarction21. However, the specific contribution of these stem 

cells toward therapy is not well understood because fate, function, and movement of 

these cells has not been well defined22. Since stem cells do not have any internal 
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signaling moieties, they cannot be imaged directly with available imaging techniques. 

The use of imaging agents is thus necessary.  

Many contrast agents for stem cell tracking have been developed, such as Gd-

DTPA (T1 MRI agent,)23,24, gadolinium rhodamine dextran(GRID, bifunctional 

MRI/opcial agent)25-27, 18FHBG28, superparamagnetic iron oxide nanoparticles (SPIO, 

T2 MRI agents)29-31 and microbubbles (ultrasound)32. Unfortunately, there are still many 

unanswered questions. These include the destiny of the injected cells, what procedure 

gives desired outcome, and what the long-term impact of stem cell therapy is33.  

Receptor targeted stem cell imaging agents would be favorable alternative to non-

specific cell labeling and could possibly label stem cells for a longer period of time. 

Specific receptor-ligand binding may keep imaging agents from being cleared out of cells. 

Recently, TSPO expression in stem cells and effects of TSPO ligands on proliferation and 

differentiation of these cells were studied34. These studies suggest that TSPO is 

potentially a promising target for stem cell imaging. Due to these facts, three TSPO 

targeted optical imaging agents, NIR6T, Liss6T and LissRo5 (refer to Chapter 3) were 

used to label bone marrow mononuclear cells (MNC), embryonic epithelial progenitor 

cells (eEPC) and embryonic stem cells (ESC).  Preliminary in vitro images indicate that 

these agents are able to track these stem cells for at least a day. Significant fluorescence 

signal was observed from MNC cells labeled with NIR6T three weeks after treatment. 

This indicates that TSPO targeted imaging agents can be potentially used to follow 

transplanted stem cells.  
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4.2 Experimental Procedures 

4.2.1 Synthesis  

N-(2-Bromo-5-methoxybenzyl)-N-(5-fluro-2-phenoxphenyl)acetamide (2). To 

a dry round bottom flask, was added anhydrous DMF (10 mL) and sodium hydride (100 

mg), followed by N-(5-fluoro-2-phenoxyphenyl)acetamide 1 (1.08 g, 4.4 mmol). After 

the solution was stirred for 15 min, 2-bromo-5-methoxy-benzyl bromide (1.4 g, 5.0 mmol) 

was added.  After another 30 min, the reaction was added to stirring water chilled to 0°C 

(60 mL).  The mixture was extracted with dichloromethane three times.  The organic 

solutions were combined, dried over Mg2SO4 and evaporated to dryness.  The residue 

was chromatographed (silica gel) using 1:3 ethyl acetate/hexanes as the eluent to yield 

compound 2 as a yellow oil (1.94 g, 99%).  1H NMR 300 MHz (CDCl3) δ 7.29-7.33 (m, 

3H), 7.12 (t, J=7.6 Hz, 1H), 7.02 (d, J=3.2 Hz, 1H), 6.80-6.96 (m, 5H), 6.62 (dd, J=8.4, 

2.8 Hz, 1H), 4.96 (AX, J=15.2 Hz, Δν=178 Hz, 2H), 3.66 (s, 3H), 2.00 (s, 3H). MS 

(ESI)+ [M+H]+ calcd 444.1, found 444.3.  

General method for n-TSPOmbb732 (3) synthesis. Pd[P(t-Bu)3]2 (102 mg, 0.2 

mmol), cetyltrimethylammonium bromide (36 mg, 0.1 mmol), potassium hydroxide (842 

mg, 15 mmol) and diamine (30 mmol) were mixed in toluene (4 mL) under argon. 2 (4.44 

g, 10 mmol) in toluene (6 mL) and water (270 μL, 15 mmol) were added to the mixture 

by syringe. The flask was sealed with a septum and the reaction mixture was stirred 

vigorously at 90°C for 6 h. The reaction then was concentrated by vacuum and purified 

by column chromatography using 9:1:0.1 CH2Cl2/CH3OH/NH3
.H2O on silica gel to yield 

n-TSPOmbb732 as a colorless oil.  
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3-TSPOmbb732 (Y=8.7%). NMR data is not shown because diastereomers 

could not be separated.  MS (ESI)+ [M+H]+ calcd 438.2, found 438.2. 

4-TSPOmbb732 (Y=7.9%). NMR data is not shown because diastereomers 

could not be separated. MS (ESI)+ [M+H]+ calcd 452.2, found 452.3. 

5-TSPOmbb732 (Y=10%). 1H NMR 400 MHz (CDCl3) δ 7.27 (t, J=8.4 Hz, 2H), 

7.09 (t, J=7.6 Hz, 1H), 6.91-6.96 (m, 1H), 6.79-6.83 (m, 1H), 6.69-6.75 (m, 4H), 6.39 (d, 

J=8.8 Hz, 1H), 6.19 (d, J=2.8 Hz, 1H), 4.75 (AX, J=9.6 Hz, Δν=79.2 Hz, 2H), 3.60 (s, 

3H), 2.86-3.03 (m, 2H), 2.77 (t, J=5.1 Hz, 2H), 1.94 (s, 5H), 1.50-1.62 (m, 2H), 1.40-

1.45 (m, 5H). MS (ESI)+ [M+H]+ calcd 466.3, found 466.3. 

6-TSPOmbb732 (Y=33%). 1H NMR 300 MHz (CDCl3) δ 7.28 (t, J=8.1 Hz, 2H), 

7.10 (t, J=7.5 Hz, 1H), 6.91-6.95 (m, 1H), 6.79-6.84 (m, 1H), 6.70-6.75 (m, 4H), 6.40 (d, 

J=8.7 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.76 (AX, J=14.7 Hz, Δν=95.1 Hz, 2H), 3.61 (s, 

3H), 2.87-3.03 (m, 2H), 2.66 (t, J=6.9 Hz, 2H), 1.94 (s, 3H), 1.54-1.61 (m, 2H), 1.28-

0.48 (m, 9H).  MS (ESI)+ [M+H]+ calcd 480.3, found 480.2.           

7-TSPOmbb732 (Y=12%). 1H NMR 300 MHz (CDCl3) δ 7.28 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.5 Hz, 1H), 6.91-6.98 (m, 1H), 6.80-6.85 (m, 1H), 6.70-6.75 (m, 4H), 6.41 (d, 

J=9.0 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.76 (AX, J=14.7 Hz, Δν=103.2 Hz, 2H), 3.60 (s, 

3H), 2.84-3.06 (m, 2H), 2.68 (t, J=7.2 Hz, 2H), 1.94 (s, 3H), 1.53-1.60 (m, 2H), 1.31-

1.46(m, 11H). MS (ESI)+ [M+H]+ calcd 494.3, found 494.3.  

8-TSPOmbb732 (Y=5.8%). 1H NMR 400MHz (CDCl3) δ 7.28 (t, J=8.4 Hz, 2H), 

7.10 (t, J=7.6 Hz, 1H), 6.92-6.97 (m, 1H), 6.81-6.84 (m, 1H), 6.71-6.74 (m, 4H), 6.41 (d, 

J=8.8 Hz, 1H), 6.20 (d, J=2.8 Hz, 1H), 4.76 (AX, J=14.4 Hz, Δν=140.4 Hz, 2H), 3.60 (s, 
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3H), 2.85-3.04 (m, 2H), 2.72 (t, J=7.2 Hz, 2H), 1.94 (s, 3H), 1.44-1.59 (m, 6H), 1.30-

1.37(m, 9H). MS (ESI)+ [M+H]+ calcd 508.3, found 508.3. 

9-TSPOmbb732 (Y=11%). 1H NMR 300 MHz (CDCl3) δ 7.29 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.5 Hz, 1H), 6.92-6.97 (m, 1H), 6.80-6.85 (m, 1H), 6.71-6.75 (m, 4H), 6.41 (d, 

J=9.0 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.76 (AX, J=14.4 Hz, Δν=105.3 Hz, 2H), 3.61 (s, 

3H), 2.84-3.06 (m, 2H), 2.72 (t, J=6.9 Hz, 2H), 2.51 (s, 2H), 1.94 (s, 3H), 1.45-1.62 (m, 

5H), 1.19-1.36(m, 10H). MS (ESI)+ [M+H]+ calcd 522.3, found 522.3. 

General method for n-TSPOmbb732 amide (4) synthesis. A mixture of acetic 

acid (1.6 μL, 27.5 μmol), triethylamine (TEA) (50 μL) and 2-succinimido-1,1,3,3,-

tetramethyluronium tetrafluoroborate (TSTU) (8.3 mg, 27.5 μmol) in dry 

dichloromethane (1 mL) was stirred at room temperature under argon for 3 h.  A solution 

of 3 (25 μmol) in anhydrous dichloromethane (1 mL) was added to the mixture and was 

stirred for another 2.5 h.  The reaction solution then was concentrated by vacuum rotary 

evaporation and the product was purified via silica gel column chromatography using 3% 

methanol in dichloromethane as eluent.  n-TSPOmbb732 amide was collected as a 

colorless oil.   

3-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.27 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.71-6.84 (m, 3H), 6.63 (d, J=7.5 Hz, 2H), 6.40 (d, J=8.7 Hz, 1H), 

6.19 (d, J=2.7 Hz, 1H), 6.04 (br s, 1H), 5.12 (br s, 1H), 4.77 (AX, J=14.4 Hz, Δν=36.9 

Hz, 2H), 3.61 (s, 3H), 3.29 (q, J=6.3 Hz, 2H), 2. 94-3.13 (m, 2H), 1.97 (br s, 6H), 1.75-

1.79 (m, 2H), 1.67 (br s, 1H). MS (ESI)+ [M+Na]+ calcd 502.2, found 502.1. 

4-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.27 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.92-6.99 (m, 1H), 6.65-6.84 (m, 5H), 6.56 (br s, 1H), 6.34 (d, 
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J=8.7 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.78 (AX, J=14.7 Hz, Δν=36.0 Hz, 2H), 3.61 (s, 

3H), 3.28 (m, 2H), 2.81-3.05 (m, 2H), 2.01 (s, 3H), 1.96 (s, 3H), 1.63-1.68 (m, 5H). MS 

(ESI)+ [M+H]+ calcd 494.2, found 494.2. 

5-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.28 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.5 Hz, 1H), 6.92-6.99 (m, 1H), 6.80-6.85 (m, 1H), 6.68-6.76 (m, 4H), 6.47 (br 

s, 1H), 6.39 (d, J=8.7 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.81 (br s, 1H), 4.78 (AX, J=14.4 

Hz, Δν=73.5 Hz, 2H), 3.61 (s, 3H), 3.28 (q, J=6.0 Hz, 2H), 2.82-3.08 (m, 2H), 1.95 (s, 

3H), 1.95 (s, 3H), 1.44-1.65 (m, 6H). MS (ESI)+ [M+H]+ calcd 508.3, found 508.2. 

6-TSPOmbb732 Amide. 1H NMR 400 MHz (CDCl3) δ 7.28 (t, J=7.6 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.92-6.97 (m, 1H), 6.80-6.84 (m, 1H), 6.70-6.75 (m, 4H), 6.40 (d, 

J=8.8 Hz, 1H), 6.19 (d, J=2.8 Hz, 1H), 5.90 (br s, 1H), 4.87 (br s, 1H), 4.76 (AX, J=14.4 

Hz, Δν=114.0 Hz, 2H), 3.60 (s, 3H), 3.24 (q, J=6.0 Hz, 2H), 2.86-3.06 (m, 2H), 1.97 (s, 

3H), 1.94 (s, 3H), 1.48-1.59 (m, 4H), 1.33-1.41 (m, 4H). MS (ESI)+ [M+H]+ calcd 522.3, 

found 522.2. 

7-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.28 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.92-6.98 (m, 1H), 6.80-6.85 (m, 1H), 6.70-6.75 (m, 4H), 6.40 (d, 

J=8.7 Hz, 1H), 6.19 (d, J=2.7 Hz, 1H), 5.64 (br s, 1H), 4.87 (br s, 1H), 4.76 (AX, J=14.4 

Hz, Δν=100.2 Hz, 2H), 3.60 (s, 3H), 3.23 (q, J=6.0 Hz, 2H), 2.86-3.03 (m, 2H), 1.96 (s, 

3H), 1.94 (s, 3H), 1.45-1.60 (m, 4H), 1.31-1.36 (m, 6H). MS (ESI)+ [M+H]+ calcd 536.3, 

found 536.4. 

8-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.29 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.91-6.98 (m, 1H), 6.80-6.85 (m, 1H), 6.70-6.74 (m, 4H), 6.41 (d, 

J=8.7 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 5.60 (br s, 1H), 4.86 (br s, 1H), 4.76 (AX, J=14.4 
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Hz, Δν=113.1 Hz, 2H), 3.61 (s, 3H), 3.23 (q, J=6.0 Hz, 2H), 2.84-3.06 (m, 2H), 1.96 (s, 

3H), 1.94 (s, 3H), 1.46-1.59 (m, 4H), 1.31-1.37 (m, 8H). MS (ESI)+ [M+H]+ calcd 550.3, 

found 550.5. 

9-TSPOmbb732 Amide. 1H NMR 300 MHz (CDCl3) δ 7.29 (t, J=7.5 Hz, 2H), 

7.10 (t, J=7.2 Hz, 1H), 6.91-6.98 (m, 1H), 6.80-6.85 (m, 1H), 6.70-6.74 (m, 4H), 6.41 (d, 

J=9.0 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 5.31 (br s, 1H), 4.86 (br s, 1H), 4.76 (AX, J=14.4 

Hz, Δν=110.1 Hz, 2H), 3.61 (s, 3H), 3.23 (q, J=6.0 Hz, 2H), 2.84-3.05 (m, 2H), 1.97 (s, 

3H), 1.94 (s, 3H), 1.46-1.59 (m, 4H), 1.31-1.37 (m, 10H). MS (ESI)+ [M+H]+ calcd 564.3, 

found 564.5. 

IRDyeTM 800CW-6-TSPOmbb732 (NIR6T). IRDyeTM 800CW NHS ester (3 mg, 

2.6 μmol) and 6-TSPOmbb732 (3 mg, 6.3 μmol) were mixed in DMSO (7 mL) in a 

round bottom flask and stirred under argon flow for 1 h.  HPLC analysis was performed 

on a Varian Polaris C-18 column (250 × 4.6 mm) at a flow rate of 0.8 mL/min.  Flow A 

was 0.1% TEA in water and flow B was 0.1% TEA in acetonitrile.  The elution method 

for analytical HPLC started with a linear gradient from 100% to 70% A over 20 min, 

continued to 50% A over 5 min, arrived at 20% A in another 10 min, held at 20% A for 3 

min, and finally returned to 100% A over 1 min.  The elution profile was monitored by 

UV absorbance at 254 and 780 nm.  The product was purified by preparative HPLC using 

a Varian Polaris C-18 column (250 × 21.2 mm) at 12 mL/min. The collected solution was 

concentrated by vacuum rotary evaporation, frozen to -78ºC and dried using a freeze-dry 

system. NIR6T was collected as a dark green solid (1.2 mg, 31%). 1H NMR 500 MHz 

(MeOD) δ 7.99-7.91 (m, 3H), 7.86-7.78 (m, 6H), 7.34 (d, J=8.0 Hz, 1H), 7.27-7.23 (m, 

3H), 7.17 (d, J=8.5 Hz, 1H), 7.10-7.01 (m, 3H), 6.77-6.74 (m, 1H), 6.70 (dd, J=9.0, 3.0 
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Hz, 1H), 6.59 (d, J=8.5 Hz, 2H), 6.42 (d, J=9.0 Hz, 1H), 6.26 (d, J=14.0 Hz, 1H), 6.20 (d, 

J=3.0 Hz, 1H), 6.15 (d, J=14.0 Hz, 1H), 4.96 (d, J=14.5 Hz, 1H), 4.60 (d, J=14.5 Hz, 1H), 

4.15-4.10 (m, 2H), 4.08-4.05 (m, 2H), 3.52 (s, 3H), 3.43-3.39 (m, 2H), 3.14-3.11 (m, 2H), 

3.04-2.93 (m, 2H), 2.89-2.86 (m, 2H), 2.82-2.72 (m, 5H), 2.17 (t, J=7.0 Hz, 2H), 2.05-

2.02(m, 2H), 1.96-1.91 (m, 8H), 1.79-1.76 (m, 3H), 1.68-1.63 (m, 3H), 1.53-1.41 (m, 6H), 

1.37 (d, J=4.0 Hz, 12H). MS (ESI)+ [M+H]+ calcd 1464.4, found 1464.5. 

LissamineTM-6-TSPOmbb732 (Liss6T). A mixture of lissamineTM rhodamine B 

sulphonyl chloride (10 mg, 17 μmol), 6-TSPOmbb732 (10 mg, 20 μmol) and 

triethylamine (15 μL) in dichloromethane (1.6 mL) was stirred under argon at room 

temperature for 1 h.  The reaction solution was concentrated by vacuum rotary 

evaporation and the crude product was purified through column chromatography (silica 

gel) using a 19:1 dichloromethane:methanol solution to yield Liss6T as a pink solid.  

(Isomer I, 5.7 mg, 32%; Isomer II, 4.7 mg, 27%). 1H NMR 400 MHz (CDCl3) Isomer I: δ 

8.84 (s, 1H), 7.98 (d, J=7.6 Hz, 1H), 7.30-7.24 (m, 3H), 7.19 (d, J=7.6 Hz, 1H), 7.08 (t, 

J=7.2 Hz, 1H), 6.93-6.90 (m, 2H), 6.78 (t, J=8.8 Hz, 3H), 6.70 (dd, J=8.4, 2.0 Hz, 1H), 

6.66-6.63 (m, 3H), 6.37 (d, J=8.4 Hz, 1H), 6.19 (s, 1H), 5.61 (t, J=5.2 Hz, 1H), 4.78 (d, 

J=6.4 Hz, 1H), 3.59 (s, 3H), 3.56-3.45 (m, 7H), 3.10 (q, J=6.4 Hz, 2H),  3.02-2.96 (m, 

1H), 2.87-2.81 (m, 1H), 2.01 (s, 2H), 1.72-1.50 (m, 12H), 1.44-1.37 (m, 4H), 1.29-1.25 

(m, 10H). Isomer II: δ 8.72 (s, 1H), 8.36 (d, J=7.2 Hz, 1H), 7.27-7.18 (m, 5H), 7.08 (t, 

J=7.6 Hz, 1H), 6.95-6.89 (m, 2H), 6.87-6.85 (m, 3H), 6.79-6.76 (m, 1H),  6.71 (d, J=2.4 

Hz, 2H), 6.65 (d, J=8.0 Hz, 2H), 6.20 (d, J=2.8 Hz, 1H), 6.05-6.00 (m, 1H),  4.77 (s, 2H),  

3.62-3.56 (m, 11H), 3.32-3.27 (m, 1H), 3.02-2.96 (m, 1H), 2.96-2.91 (m, 3H), 2.85-2.79 

(m, 2H), 1.95 (s, 3H), 1.52-1.42 (m, 4H), 1.32 (t, J=7.2 Hz, 12H), 1.15-1.11 (m, 3H). MS 
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(ESI)+ [M+H]+ calcd 1020.4, found 1020.4. Rf 0.39 (Isomer I), 0.32 (Isomer II) (6% 

methanol in dichloromethane). 

Cypate-6-TSPOmbb732 (Cypate6T). A mixture of  cypate (6.3 mg, 10 μmol), 

2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate (HBTU) 

(4.0 mg, 11 μmol) and 1-Hydroxybenzotriazole (HOBT) (1.3 mg, 10 μmol) in 0.6 mL 

50:50 DMF/Dichloromethane was stirred at room temperature for 5 min. The above 

mixture was treated with diisopropylethylamine (DIEA) (2.5 μL) and stirred for another 

10 min. 6-TSPOmbb732 (5.7 mg, 12 μmol) in 0.4 mL 50:50 DMF/dichloromethane 

solution was added to the above mixture and the reaction solution was stirred for 4 h and 

then neutralized by 0.1 M HCl solution. The mixture was concentrated by vacuum and 

product was purified by semi-preparative C18 HPLC column. Flow A was 0.1% TFA in 

water and flow B was 0.1% TFA in acetonitrile. Gradient elution method was 50% to 

90% B in 84 min with 10 mL/min flow rate. Cypate-C6DAA1106 was collected as a 

green solid (2.8 mg, 26%). MS (ESI)+ [M+H]+ calcd 1086.6, found 1087.0.  

2-(4,10-Bis(benzyloxycarbonyl)-7-((6-methylquinolin-2-yl)methyl)-1,4,7,10-

tetraazacyclododecan-1-yl)acetic acid (6).  Compound 5 was synthesized as preciously 

reported35. A 7 M KOH solution was added slowly to a stirring solution of bromoacetic 

acid (13.8 g, 0.1 mol) in water (50 mL) at 0 °C, until pH went to 10. A solution of 5 (2.7 

g, 4.5 mmol) in ethanol (100 mL) was added to the above mixture while stirring. White 

precipitate came out immediately. Added dioxane until reaction solution became clear. 

The mixture was stirred for 36 h and pH was kept at about 10 during this time. The 

reaction solution was then concentrated by vacuum rotary evaporation and product was 

purified by silica gel column chromatography using 12:1 dichloromethane/methanol as 
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eluent. Compound 6 was collected as a white solid (2.3 g, 78%). 1H NMR 300 MHz 

(CDCl3) δ 8.04-7.91 (m, 1H), 7.81 (d, J=8.4 Hz, 1H), 7.55-7.51 (m, 2H), 7.33 (bs, 5H), 

7.13 (bs, 6H), 5.08 (s, 2H), 4.95 (s, 2H), 3.51-3.39 (m, 16H), 3.14 (bs, 2H), 2.93 (bs, 2H), 

2.53 (s, 3H).  MS (ESI)+ [M+H]+ calcd 654.3, found 654.7.  

Dibenzyl-4-(2-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-((6-methylquinolin-2-yl)methyl)-

1,4,7,10-tetraazacyclododecane-1,7-dicarboxylate (7). A mixture of compound 6 (654 

mg, 1 mmol), TSTU (301 mg, 1 mmol) and TEA (5 mL) in dichloromethane (80 mL) 

was stirred in a round bottom flask under argon at room temperature for 2.5 h. A solution 

of 6-TSPOmbb732 (480 mg, 1 mmol) in dichloromethane (30 mL) was added slowly to 

the above mixture and the resultant mixture was stirred at room temperature overnight. 

Reaction solution was concentrated by vacuum rotary evaporation and product was 

purified by silica gel column using 30:1 dichloromethane/methanol as eluent. Compound 

7 was collected as a yellow oil (922 mg, 83%). 1H NMR 400 MHz (CDCl3) δ 7.95 (bs, 

1H), 7.88 (d, J=8.4 Hz, 1H), 7.54-7.51 (m, 2H), 7.31-7.21 (m, 13H), 7.09 (t, J=7.2 Hz, 

1H), 6.96-6.91 (m, 1H), 6.83-6.79 (m, 1H), 6.73-6.69 (m, 4H), 6.38 (d, J=8.8 Hz, 1H), 

6.19 (d, J=2.8 Hz, 1H), 5.02 (bs, 4H), 4.90 (d, J=14.8 Hz, 1H), 4.56 (d, J=14.8 Hz, 1H), 

3.91 (bs, 2H), 3.60 (s, 3H), 3.39 (bs, 9H), 3.16 (bs, 3H), 2.97-2.83 (m, 4H), 2.78-2.75 (m, 

7H), 2.53 (s, 4H), 1.91 (s, 3H), 1.57-1.50 (m, 4H), 1.40-1.28 (m, 4H). MS (ESI)+ [M+H]+ 

calcd 1115.6, found 1115.7.  

N-(5-Fluoro-2-phenoxyphenyl)-N-(5-methoxy-2-(6-(2-(7-((6-methylquinolin-

2-yl)methyl)-1,4,7,10-tetraazacyclododecan-1-yl)acetamido)hexylamino)benzyl) 

acetamide (8). A mixture of compound 7 (360 mg, 0.32 mmol) and 10% Pd/C (11 mg, 
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0.03 mmol) in anhydrous ethanol (9 mL) was stirred under hydrogen positive pressure at 

room temperature for 2 d. Pd/C was removed by filtration through celite and filtrate was 

concentrated by vacuum rotary evaporation. The product was then purified by silica gel 

column using 9:1:0.1 dichloromethane/methanol/aqueous ammonia as eluent. Compound 

8 was isolated as a yellow oil (226 mg, 83%). 1H NMR 400 MHz (CDCl3) δ 8.03 (d, 

J=8.4 Hz, 1H), 7.87 (d, J=8.4 Hz, 1H), 7.55-7.50 (m, 2H), 7.43 (d, J=8.4 Hz, 1H), 7.29-

7.24 (m, 2H), 7.09 (t, J=7.5 Hz, 1H), 6.97-6.90 (m, 1H), 6.83-6.78 (m, 1H), 6.73-6.68 (m, 

4H), 6.35 (d, J=8.7 Hz, 1H), 6.18 (d, J=3.0 Hz, 1H), 4.88 (d, J=14.4 Hz, 1H), 4.57 (d, 

J=14.4 Hz, 1H), 4.01 (s, 2H), 3.74 (d, J=9.6 Hz, 1H), 3.60 (s, 3H), 3.28 (s, 2H), 3.22 (q, 

J=7.5 Hz, 2H), 2.83-2.77 (m, 20H), 2.51 (s, 4H), 1.91 (s, 3H), 1.53-1.43 (m, 4H), 1.33-

1.22 (m, 4H). MS (ESI)+ [M+H]+ calcd 847.5, found 847.9. 

Di-tert-butyl-(4-(2-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-((6-methylquinolin-2-yl)methyl)-

1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)diphosphonate (9). 

Paraformaldehyde (1.5 mg, 50 μmol) was added to a stirring solution of compound 8 (17 

mg, 20 μmol) in anhydrous THF (1 mL) and the mixture was stirred under argon for 1 h. 

Tri-tert-butyl-phosphite36 (46 mg, 180 μmol) was added to the above mixture and the 

reaction solution was stirred for  2 days. After the mixture was concentrated by vacuum 

rotary evaporation, product was purified via column chromatography (silica gel) using 

15:1:0.1 dichloromethane/methanol/aqueous ammonia as eluent. Compound 9 was 

collected as a colorless oil (13 mg, 52%).  1H NMR 400 MHz (CDCl3) δ 9.39 (t, J=5.4 

Hz, 1H), 8.75 (d, J=8.7 Hz, 1H), 8.02 (d, J=8.4 Hz, 1H), 7.62-7.53 (m, 2H), 7.31-7.19 (m, 

2H), 7.10 (t, J=7.5 Hz, 1H), 6.67-6.91 (m, 1H), 6.84-6.79 (m, 1H), 6.75-6.68 (m, 4H), 
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6.38 (d, J=8.7 Hz, 1H), 6.20 (d, J=3.0 Hz, 1H), 4.90 (d, J=14.7 Hz, 1H), 4.60 (d, J=14.7 

Hz, 1H), 3.94 (bs, 1H), 3.60 (s, 6H), 3.39-3.33 (m, 2H), 3.08-2.95 (m, 4H), 2.88-2.82 (m, 

4H), 2.67-2.59 (m, 8H), 2.53-2.46 (m, 11H), 1.95 (s, 3H), 1.49-1.38 (m, 8H), 1.11 (bs, 

36H). MS (ESI)+ [M+2H]2+ calcd 630.4, found 630.5. 

(4-(2-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-((6-methylquinolin-2-yl)methyl)-

1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)diphosphonic acid (10). A 

solution of compound 9 (23 mg, 18 μmol) in trifluoroacetic acid (TFA) (2 mL) was 

stirred at room temperature overnight. Reaction solution was then concentrated by 

vacuum rotary evaporation and product was used without purification. 1H NMR 300 

MHz (MeOD) δ 8.97 (bs, 1H), 8.43 (d, J=9.0 Hz, 1H), 8.06 (bs, 1H), 7.98-7.91 (m, 1H), 

7.42 (d, J=8.7 Hz, 1H), 7.36-7.27 (m, 4H), 7.25-7.14 (m, 2H), 7.03 (dd, J=9.0, 3.0 Hz, 

1H), 6.94-9.89 (m, 1H), 6.76 (d, J=8.4 Hz, 2H), 6.58 (d, J=3.0 Hz, 1H), 5.15 (d, J=15.3 

Hz, 1H), 4.73 (d, J=15.0 Hz, 1H), 4.40 (bs, 2H), 3.98 (s, 2H), 3.72 (s, 4H), 3.64-3.47 (m, 

8H), 3.28-3.06 (m, 9H), 2.88 (bs, 6H), 2.63 (s, 3H), 2.04 (s, 3H), 1.80-1.67 (m, 2H), 1.38-

1.24 (m, 8H). MS (ESI)+ [M+2H]2+ calcd 518.2, found 518.4. 

(4-(2-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-((6-methylquinolin-2-yl)methyl)-

1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)diphosphonic acid, 

europium(III) chelate (Eu-MQ-Phos-6T). A mixture of compound 10 (9 mg, 9 μmol) 

and Europium (III) trifluoromethanesulfonate (6 mg, 10 μmol) in acetonitrile (3 mL) was 

refluxed for 2.5 days. Solvent was then removed by vacuum rotary evaporation. MS 

(ESI)+ [M+H]+ calcd 1185.4, found 1185.4. 
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tert-Butyl-2,2'-(4-(2-(benzyloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-

1,7-diyl)diacetate (12). Compound 11 was synthesized as reported37. A solution of 

benzyl-2-bromoacetate (350 mg, 1.53 mmol) in anhydrous acetonitrile (15 mL) was 

added dropwise to a stirring solution of 11 (795 mg, 1.99 mmol) in anhydrous acetonitrile 

(40 mL). The mixture was stirred under argon for an hour and then concentrated by 

vacuum rotary evaporation. The product was purified on a silica gel column using 

gradient 1:99 to 10:90 methanol/chloroform as eluent. 12 was collected as a white solid 

(446 mg, 53%). 1H NMR 300 MHz (CDCl3) δ 7.39-7.32 (m, 5H), 5.15 (s, 2H), 3.45 (s, 

2H), 3.34 (s, 4H), 3.12-3.06 (m, 4H), 2.94-2.81 (m, 12H), 1.45 (s, 18H). MS (ESI)+ 

[M+H]+ calcd 549.4, found 549.3. 

tert-Butyl-2,2'-(4-(2-(benzyloxy)-2-oxoethyl)-10-(2-oxo-2H-chromene-3-

carbonyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (13).  A mixture of 

coumarin-3-carboxylic acid (95 mg, 0.5 mmol), anhydrous DMF (4 μL) and oxalyl 

chloride (69.8 mg, 0.55 mmol) in anhydrous dichloromethane (3 mL) was stirred at 0 ºC 

under argon for 10 mins.  The ice bath was then removed and reaction continued stirring 

at room temperature for 2 hours. The solution was then concentrated by vacuum rotary 

evaporation and re-dissolved with anhydrous THF (2 mL) as coumarin-3-carboxylic acid 

chloride solution. In another dry round bottom flask, 2.5 M n-butyl lithium in hexanes 

(60 μL, 0.15 mmol) was added dropwise to a solution of 12 (55 mg, 1mmol) in 

anhydrous THF (2 mL) at -78 ºC. After the mixture was stirred for 15 mins, the 

coumarin-3-carboxylic acid chloride in THF solution was added dropwise. The resulting 

mixture was stirred in dry ice/acetone bath for another 30 mins. The reaction was 

quenched by saturated sodium bicarbonate solution (1 mL) and partitioned between 
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dichloromethane (20 mL) and water (8 mL). The aqueous solution was extracted with 

dichloromethane three times (3 × 20 mL), and the organic layers were combined, dried 

over sodium sulfate and concentrated by vacuum rotary evaporation. Product was 

purified by silica gel column chromatography using gradient 1:49 to 1:5 

dichloromethane/methanol as eluent to yield 13 as a brown oil (35.5 mg, 49%). 1H NMR 

400 MHz (CDCl3) δ 7.84 (s, 1H), 7.55 (t, J=7.6 Hz, 1H), 7.50 (d, J=7.6 Hz, 1H), 7.38-

7.27 (m, 7H), 5.12 (s, 2H), 3.80-3.72 (m, 4H), 3.49 (s, 2H), 3.34 (s, 2H), 3.16 (s, 2H), 

3.04-3.92 (m, 4H), 2.82-2.66 (m, 8H), 1.47 (s, 9H), 1.35 (s, 9H). MS (ESI)+ [M+H]+ 

calcd 721.4, found 721.3. 

2-(4,10-Bis(2-tert-butoxy-2-oxoethyl)-7-(2-oxo-2H-chromene-3-carbonyl)-

1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (14). A mixture of 13 (35 mg, 49 μmol) 

and palladium on carbon (5%, 10 mg) in methanol (2 mL) was stirred under hydrogen 

overnight. Reaction solution was then filtered through celite and concentrated by vacuum 

rotary evaporation. Flash chromatography of the residue over silica gel, using 9:1:0.1 

dichloromethane/methanol/ aqueous ammonia, gave 14 (18 mg, 59%) as a pale yellow oil. 

1H NMR 400 MHz (CDCl3) δ 8.17 (s, 1H), 7.64 (d, J=7.6 Hz, 1H), 7.58 (t, J=7.6 Hz, 1H), 

7.34 (d, J=8.4 Hz, 2H), 3.8-2.8 (m, 22H), 1.46 (s, 9H), 1.34 (s, 9H). MS (ESI)+ [M+Na]+ 

calcd 653.3, found 653.2. 

tert-Butyl 2,2'-(4-(2-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-

4-methoxyphenylamino)hexylamino)-2-oxoethyl)-10-(2-oxo-2H-chromene-3-

carbonyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (15). TEA (200 μL) and 

TSTU (17.2 mg, 56 μmol) was added to a stirring solution of 14 (36 mg, 56 μmol) in 

anhydrous dichloromethane (4 mL). The resulting mixture was stirred under argon for 2.5 
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h. A solution of 6-TSPOmbb732 (32 mg, 68 μmol) was then added and the stirring 

continued overnight. Evaporation of the solvent and flash silica gel chromatography of 

the residue using gradient 99:1:0.1 to 9:1:0.1 dichloromethane/methanol/aqueous 

ammonia yielded 15 (34.2 mg, 56%) as a yellow oil. 1H NMR 400 MHz (CDCl3) δ 7.94 

(s, 1H), 7.84 (m, 1H), 7.55-7.48 (m, 2H), 7.37-7.28 (m, 3H), 7.10 (t, J=7.6 Hz, 1H), 6.97-

6.92 (m, 1H), 6.84-6.81 (m, 1H), 6.75-6.71 (m, 4H), 6.39 (d, J=8.8 Hz, 1H), 6.20 (d, 

J=2.8 Hz, 1H), 4.92 (d, J=14.8 Hz, 1H), 4.59 (d, J=14.4 Hz, 1H), 3.83-3.70 (m, 4H), 3.61 

(s, 3H), 3.30 (s, 2H), 3.24-3.15 (m, 4H), 3.08-2.66 (m, 13H), 2.64-2.50 (m, 4H), 1.94 (s, 

3H), 1.56-1.29 (m, 27H). MS (ESI)+ [M+H]+ calcd 1092.6, found 1092.5. 

2,2'-(4-(2-(6-(2-((N-(5-Fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-(2-oxo-2H-chromene-3-

carbonyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (16). A solution of 15 

(16 mg, 15 μmol) in TFA (2 mL) was stirred at room temperature for 4 h. TFA was then 

removed by vacuum rotary evaporation and 16 was used for chelation without further 

purification. 1H NMR 500 MHz (MeOD) δ 8.36 (s, 1H), 7.65 (d, J=7.5 Hz, 1H), 7.61(d, 

J=8.0 Hz, 1H), 7.36-7.33 (m, 2H), 7.28-7.22 (m, 4H), 7.17-7.12 (m, 1H), 7.09 (t, J=7.5 

Hz, 1H), 6.95 (dd, J=9.0, 2.5 Hz, 1H), 6.85-6.82 (m, 1H), 6.66 (d, J=8.0 Hz, 2H), 6.51 (d, 

J=2.5 Hz, 1H), 5.06 (d, J=15.0 Hz, 1H), 4.61 (d, J=15.0 Hz, 1H), 3.90 (s, 2H), 3.84-3.72 

(m, 2H), 3.62-3.57 (m, 2H), 3.66 (s, 3H), 3.40-3.05 (m, 18H), 1.93 (s, 3H), 1.80-1.76 (m, 

2H), 1.59-1.55 (m, 2H), 1.42-1.34 (m, 4H), 1.28-1.20 (m, 4H). MS (ESI)+ [M+H]+ calcd 

980.5, found 980.5. 

2,2'-(4-(2-(6-(2-((N-(5-Fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexylamino)-2-oxoethyl)-10-(2-oxo-2H-chromene-3-
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carbonyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid, europium(III) 

chelate (Eu-CM-Carb-6T) (17). A mixture of 16 (1.1 mg, 1.1 μmol), TEA (0.5 μL) and 

Europium (III) trifluoromethanesulfonate (1 mg, 1.7 μmol) in methanol (1 mL) was 

stirred at room temperature overnight. The reaction solution was then concentrated by 

vacuum rotary evaporation and crude product 17 was collected. MS (ESI)+ [M]+ calcd 

1130.4, found 1130.4. 

DOTA-tris(tert-butyl)-6-TSPOmbb732 A mixture of 6-TSPOmbb732 (50 mg, 

0.1 mmol), DOTA-tri(tert-butyl)-NHS ester (82 mg, 0.1 mmol), and TEA (200 μL) in 

anhydrous dichloromethane (6 mL) was stirred under argon at room temperature for 1.5 h. 

The mixture was then concentrated by vacuum rotary evaporation and product was 

isolated by silica gel column chromatography using gradient 24:1 to 12:1 

dichloromethane/methanol as eluent. DOTA-tris(tert-butyl)-6-TSPOmbb732 was 

collected as a yellow oil (77 mg, 74%).  1H NMR 400 MHz (CDCl3) δ 7.30-7.26 (m, 2H), 

7.10 (t, J=7.6 Hz, 1H), 6.96-6.91 (m, 1H), 6.83-6.79 (m, 1H), 6.74-6.70 (m, 4H), 6.39 (d, 

J=8.8 Hz, 1H), 6.36 (t, J=5.6 Hz, 1H), 6.19 (d, J=2.8 Hz, 1H), 4.89 (d, J=14.4 Hz, 1H), 

4.84 (bs, 1H), 4.60 (d, J=14.4 Hz, 1H), 3.60 (s, 3H), 3.20-3.15 (m, 3H), 3.02-2.95 (m, 

3H), 2.89-2.83 (m, 3H), 2.79-2.00 (m, 16H), 1.93 (s, 3H), 1.55-1.49 (m, 3H), 1.45 (s, 9H), 

1.44 (s, 18H), 1.37-1.25 (m, 8H). MS (ESI)+ [M+2H]2+ calcd 517.8, found 518.0. 

DOTA-6-TSPOmbb732 A mixture of DOTA-tris(tert-butyl)-6-TSPOmbb732 

(30 mg, 29 μmol) and TFA (2 mL) was stirred at room temperature for 1 h. TFA was 

then removed by vacuum rotary evaporation and the residue was purified using silica gel 

chromatography using gradient 12:1:0.1 to 2:1:0.1 dichloromethane/methanol/aqueous 

ammonia to yield DOTA-6-TSPOmbb732 as a brown solid (17 mg, 68%). 1H NMR 400 
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MHz (CDCl3) δ 7.28 (t, J=7.6 Hz, 2H), 7.09 (t, J=7.2 Hz, 1H), 6.92 (t, J=7.2 Hz, 1H), 

6.83-6.78 (m, 1H), 6.75-6.67 (m, 4H), 6.40 (d, J=8.8 Hz, 1H), 6.19 (d, J=4.8 Hz, 1H), 

4.98-4.85 (m, 1H), 4.59-4.45 (m, 1H), 3.80-3.62 (m, 3H), 3.57 (s, 3H), 3.51-3.33 (m, 3H), 

3.05-2.60 (m, 16H), 2.40-1.96 (m, 8H), 1.91 (s, 3H), 1.57-1.30 (m, 8H).  MS (ESI)+ 

[M+H]+ calcd 866.4, found 866.4. 

64Cu-DOTA-6-TSPOmbb732 (64Cu6T) 150 μL of 1 M sodium acetate solution 

was added to 64CuCl2 (about 1 ng) solution in a plastic vial. The liquid was swished 

around a couple times to ensure proper mixing. 10 μL of 2 mg/mL DOTA-6-

TSPOmbb732/DMSO solution was added to the above mixture and the resulting solution 

was stirred for 1 h. During the chelation time, a 150 mg bed volume C18 cartridge was 

activated by flushing with 5 mL absolute ethanol, followed by 5 mL of water. After 

chelation was completed, the reaction solution was added to the SPE cartridge, flushed 

with 5 mL water to elute extra 64Cu acetate, followed by 1 mL absolute ethanol to elute 

product out.  

4.2.2 Spectroscopic Characterization  

Upon preparing NIR6T, Liss6T, Cypate6T, Eu-QM-Phos-6T and Eu-CM-Carb-

6T, absorption and emission spectra were obtained at room temperature with a Shimadzu 

1700 UV-vis spectrophotometer and ISS PTI spectrofluorometer respectively.  

4.2.3 Binding Studies  

C6 glioma cells were cultured in Dulbecco’s modified Eagle medium (DMEM)-

F12 medium (Gibco/Invitrogen) supplemented with 0.5% FBS and 2.5% horse serum 

(HS) at 3.7% CO2. Cells were scraped from 150 mm culture dishes into 5 mL phosphate 

buffered saline (PBS), dispersed by trituration, and centrifuged at 500 xg for 15 min.  
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Cell pellets were resuspended in PBS and assayed for protein concentration. [3H]PK 

11195 binding studies on 30 μg of protein from cell suspensions were performed as 

previously described38. Displacement studies using increasing concentrations of 

synthesized TSPO ligands were performed in the presence of 15 nM [3H]PK11195. Data 

were analyzed using PRISM software (vs 4.0, GraphPad, Inc., San Diego, CA). 

4.2.4 Cell Imaging  

MDA-MB-231 mammary adenocarcinoma breast cancer cells or C6 rat glioma 

cells in MaTek dishes were incubated with 1 μM NIR6T and 1 μM Liss6T in culture 

media for 30 min. 1 nM MitoTracker Green was then added to the plate and incubated for 

another 10 min. Cells were rinsed and re-incubated with saline before imaging using a 

Nikon epifluorescence microscope equipped with a Hamamatsu C4742-98 camera, Nikon 

Plan Apo 60x/1.40 oil objective, a mercury lamp, an ICG filter set, a Texas Red filter set, 

and a FITC filter set.  

 When imaged with cypate6T, MDA-MB-231 cells in MaTek dishes were 

incubated with 300 nM cypate6T or 300 nm free cypate dye for 30 min. Cells were rinsed 

and re-incubated with saline before imaging.  

In stem cell tracking studies, dog bone marrow mononuclear cells (MNC),   

mouse embryonic epithelial progenitor cells (eEPC) and mouse embryonic stem cells 

(ESC) were incubated with 1 μM NIR6T, 5 μM Liss6T, 5 μM LissRo5 or the same 

concentration of corresponding free dye for 30 min. Cells were then washed and re-

incubated with media. Fluorescence images were collected from these cells daily until no 

significant fluorescence signal was shown from cells dosed with TSPO targeted imaging 

agents. Most cells lost fluorescence signal within a week, whereas MNC cells dosed with 
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Scheme 4.1. Synthesis of n-TSPOmbb732  
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NIR6T still showed significant fluorescence signal three weeks after treatment. No 

further data was collected after this period.  

 

4.3 Results and Discussion 

Table 4.1. n-TSPOmbb732 reactions summary 

n-TSPOmbb732 Reaction 
time (hr) 

Yield (%)

3-TSPOmbb732 3 8.7 

4-TSPOmbb732 2 7.9 

5-TSPOmbb732 2 10 

6-TSPOmbb732 6 33 

7-TSPOmbb732 2.5 12 

8-TSPOmbb732 2.5 5.8 

9-TSPOmbb732 2.5 11 

 

The n-TSPOmbb732 synthetic pathway is shown in Scheme 4.1. Compound 1 

was synthesized as previously reported39.  The alkylation reaction of 1 with 2-bromo-5-

methoxybenzyl bromide was 

straightforward and produced 

compound 2 at 99% yield. 

Aromatic substitution of a diamine 

(with a 3-9 carbon linker) resulted 

in relatively low yield (6%-33%), 

and is attributed to several 

byproducts and decomposition of 

the desired product prior to 

reaction completion.  The optimal 

reaction time for the n-TSPOmbb732 reaction is listed in Table 4.1.  
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Scheme 4.2. Capped n-TSPOmbb732 synthesis 
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Table 4.2. Capped n-TSPOmbb732 binding studies 

n-TSPOmbb732 IC50 (µM) Ki (nM) 

3-TSPOmbb732 0.39 ± 0.13 68 ± 23 

4-TSPOmbb732 0.80 ± 0.21 141 ± 36

5-TSPOmbb732 0.84 ± 0.28 149 ± 49

6-TSPOmbb732 0.35 ± 0.22 52 ± 30 

7-TSPOmbb732 0.40 ± 0.19 71 ± 33 

8-TSPOmbb732 0.24 ± 0.11 43 ± 19 

9-TSPOmbb732 0.29 ± 0.09 51 ± 17 

 

The effect of spacer length on the binding affinity of the n-TSPOmbb732 was also 

investigated. More specifically, n-TSPOmbb732 with 3-9 carbon spacers, was 

synthesized, characterized, and used in a competitive binding assay. The amino group 

was capped by an acetyl group to reduce non-specific binding (Scheme 4.2).  The binding 

affinity data is shown in Table 4.2 and Figure 4.2.  Lower IC50 and Ki values indicate 

higher binding affinities. 3-TSPOmbb732 (n-TSPOmbb732 with a three-carbon linker) 

(IC50=0.39 µM) and 7-TSPOmbb732 (IC50=0.40 µM) seem to have higher binding 

affinities than 4-TSPOmbb732 (IC50=0.80 µM) and 5-TSPOmbb732 (IC50=0.84 µM), 

but relatively low binding affinities 

compared to 6-TSPOmbb732 

(IC50=0.29 µM), 8-TSPOmbb732 

(IC50=0.24 µM) and 9-

TSPOmbb732 (IC50=0.29 µM).  

Even though these binding 

affinities are much lower than  
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Figure 4.2. Affect of spacer length (number of carbon on linker) on n-
TSPOmbb732 binding affinities 

DAA1106 (IC50=0.28 nM) and [11C]DAA1106 (IC50=0.91 nM),  the nanomolar 

binding affinities (Ki=43-149 nM) appeared rather promising39,40.  A six-carbon linker 

seemed to be the most optimal due to its relatively high binding affinity and yield (33%) 

of 6-TSPOmbb732.  

NIR probes capable of targeting specific receptors are attractive noninvasive 

imaging tools for preclinical diagnosis41, therefore we conjugated our relative high 

binding affinity TSPO-targeted ligand, 6-TSPOmbb732, to IRDyeTM 800CW NHS ester 

(Scheme 4.3).  The reaction was straightforward, but the overall yield was relatively low 

(31%), mainly due the impurities in the dye sample and side reactions.        
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Scheme 4.3. IRDyeTM 800CW-6-TSPOmbb732 (NIR6T) reaction scheme 
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Figure 4.3. Left: HPLC chromatograph of IRDyeTM 800CW and NIR6T at 780 nm; 
right: absorption and emission spectra of NIR6T in methanol. 
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Figure 4.4. Liss6T isomer (left) and isomer II (right) absorption and fluorescence
Scheme 4.4. Lissamine-6-TSPOmbb732 (Liss6T) reaction scheme 
HPLC was used to monitor the production of IRDyeTM 800CW-6-TSPOmbb732 

(NIR6T).  The chromatographs for both the NIR dye and NIR6T at 780 nm are shown in  

Figure 4.3 (left). Figure 4.3 (right) shows the excitation and emission spectra. The 

excitation of NIR6T at 778 nm and its subsequent NIR emission at 800 nm allow deep 

tissue penetration with reduced absorption and scattering for in vivo imaging.  

LissamineTM rhodamine B sulphonyl chloride also was used to conjugate 6-

TSPOmbb732 (Liss6T) (Scheme 4.4). Lissamine is optimized for the commonly used 

Texas Red filter set and is well known for providing high quality images. Since the 

commercially available lissamine dye has two isomers, the conjugation reaction yielded 

two isomers as well. The conjugable ligand is in para position in isomer I and ortho 

position in isomer II, verified by pH test42. The spectroscopy curves are shown in Figure 
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4.4. Isomer I, which has a higher molar extinction coefficient (ε=124000 L/mol cm in 

methanol) than isomer II (ε=80000 L/mol cm in methanol), was selected for imaging.  

Fluorescence microscopy imaging studies were performed to investigate the 

cellular uptake of NIR6T and Liss6T in MDA-MB-231 (human metastatic mammary 

adenocarcinoma) and C6 (rat glioma) cells. Accumulation of both agents in these cells 

was observed (Figures 4.5 and 4.6). To demonstrate mitochondrial binding of the dyes, 

cultures were co-incubated with MitoTracker Green, a mitochondrial marker, and our two 

molecules. Overlaid pictures (E, F, G and H in Figures 4.5 and 4.6) demonstrate similar 

organelle labeling of all three molecules, which suggested that the optical probes bind to 

mitochondria, the primary site of TSPO expression. In addition, fluorescence images of 

cells dosed with NIR6T or Liss6T were compared with those of cells dosed with 

corresponding free dyes. Figure 4.7 shows fluorescence images of C6 cells dosed with 

NIR6T, Liss6T or corresponding free dye (IRDyeTM 800CW acid or lissamineTM 

rhodamine B sulphonyl chloride). Figure 4.8 presents fluorescence images of MDA-MB-

231 cells dosed with NIR6T, Liss6T or free dye. In both figures, cells dosed with NIR6T 

or Liss6T showed significant fluorescence signal, whereas cells dosed with free dye are 

relatively devoid of fluorescence. The nanomolar binding affinities (Ki=42 nM for 

NIR6T and 0.91 nM for Liss6T) provided further evidence for the selective binding.  

In addition to IRDyeTM 800CW, another NIR dye, cypate, was also used to label 6-

TSPObmm732. Compared to most NIR dyes, cypate is relatively stable (stored at room 

temperature, whereas most NIR dyes need to be stored in freezer) and easy to synthesize 

(only takes three steps)18. Cypate6T was synthesized by well-established peptide 

coupling using 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyl uronium  
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Figure 4.5. Fluorescence imaging of MDA-MB-231 cells incubated with NIR6T, 
Liss6T and MitoTracker Green. (A) Phase contrast microscopy of cells dosed 
simultaneously with NIR6T, Liss6T and MitoTracker Green; (B) fluorescence imaging of 
cells dosed with 1 µM NIR6T (fluorescence signal is shown blue in overlaid pictures E, F 
and H); (C) fluorescence imaging of cells dosed with 1 µM Liss6T; (D) fluorescence 
imaging of cells dosed with 1 nM MitoTracker Green; (E) overlaid picture of B and C; 
(F) overlaid picture of B and D; (G) overlaid picture of C and D; (H) overlaid picture of 
B, C and D.  
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Figure 4.6. Fluorescence imaging of C6 cells incubated with NIR6T, Liss6T and 
MitoTracker Green. (A) Phase contrast microscopy of cells dosed simultaneously with 
NIR6T, Liss6T and MitoTracker Green; (B) fluorescence imaging of cells dosed with 1 
µM NIR6T (fluorescence signal is shown blue in overlaid pictures E, F and H); (C) 
fluorescence imaging of cells dosed with 1 µM Liss6T; (D) fluorescence imaging of cells 
dosed with 1 nM MitoTracker Green; (E) overlaid picture of B and C; (F) overlaid 
picture of B and D; (G) overlaid picture of C and D; (H) overlaid picture of B, C and D.  

 

 

 

114



B

D E

A C

F

B

D E

A B

D E

A C

F

C

F  

Figure 4.7. Fluorescence imaging of C6 rat glioma cells incubated with NIR6T, 
Liss6T or free dye: (A) Phase contrast microscopy of cells dosed with NIR6T; (B) 
fluorescence imaging of cells dosed with 1 µM NIR6T; (C) fluorescence imaging of cells 
dosed with 1 µM Liss6T; (D) Phase contrast microscopy of cells dosed with free NIR 
dye; (E) fluorescence imaging of cells dosed with 1 µM free NIR dye (control); (F) 
fluorescence imaging of cells dosed with 1 µM free lissamine dye (control). 
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Figure 4.8.  Fluorescence imaging of MDA-MB-231 human breast cancer cells 
incubated with NIR6T, Liss6T or free dye: (A) Phase contrast microscopy of cells 
dosed with NIR6T; (B) fluorescence imaging of cells dosed with 1 µM NIR6T; (C) 
fluorescence imaging of cells dosed with 1 µM Liss6T; (D) Phase contrast microscopy of 
cells dosed with free NIR dye; (E) fluorescence imaging of cells dosed with 1 µM free 
NIR dye (control); (F) fluorescence imaging of cells dosed with 1 µM free lissamine dye 
(control). 
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Scheme 4.5. Cypate-6-TSPOmbb732 (Cypate6T) reaction scheme 

N

COO

N

COOH

N

COO-

N

O
N

O

N
H

F

O

NH2

O
N

O

HN

F

O

NH
O

+

HBTU
HOBT

DIEA

 

A B

C D

A B

C D 60X

A B

C D

A B

C D 60X
 

Figure 4.9. Fluorescence imaging of MDA-MB-231 human breast cancer cells 
incubated with cypate6T or free cypate dye: (A) Phase contrast microscopy of cells 
dosed with cypate6T; (B) fluorescence imaging of cells dosed with 300 nM cypate6T; 
(C) Phase contrast microscopy  of cells dosed with free cypate dye; (D) fluorescence 
imaging of cells dosed with 300 nM free cypate dye (control).  
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hexafluorophosphate (HBTU) (Scheme 4.5). The molecule has maximum absorption at 

786 nm and emission at 811 nm in methanol. Cypate6T binds to TSPO at nanomolar 

affinity (Ki=51±34 nm). In vitro cell imaging was conducted to study cellular uptake. 

MDA-MB-231 cells were dosed with 300 nm cypate6T or same concentration of free 

cypate dye, washed, and imaged with a fluorescence microscope. Significant 

fluorescence signals were seen from the cells dosed with cypate6T, unfortunately, cells 

dosed with same concentration of free dye showed similar fluorescence signals (Figure 

4.9). We postulate that non-specific binding dominates the interaction, probably due to  
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Figure 4.10. Fluorescence imaging of MNC cells 21 days after treatment of 1 µM 
NIR6T or free dye: (A) Phase contrast microscopy of cells dosed with NIR6T; (B) 
fluorescence imaging of cells dosed with 1 µM NIR6T; (C) Overlay of A and B 
(fluorescence signal is shown blue); (D) fluorescence imaging of cells dosed with 1 µM 
free NIR dye (control).  
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Figure 4.11. Fluorescence imaging of MNC cells 6 days after treatment of 1 µM
Liss6T or free dye: (A) Phase contrast microscopy of cells dosed with Liss6T; (B) 
fluorescence imaging of cells dosed with 1 µM Liss6T; (C) Overlay of A and B; (D) 
fluorescence imaging of cells dosed with 1 µM free lissamine dye (control).  
the relatively high lipophilicity of cypate dye, allowing good permeability through cell 

membrane.  

 Other than imaging diseased cells, TSPO targeted imaging agents can also be 

potentially used to track stem cells. In this study, dog bone marrow mononuclear cells 

(MNC), mouse embryonic epithelial progenitor cells (eEPC) and mouse embryonic stem 

cells (ESC) were labeled with NIR6T, Liss6T and LissRo5. To determine the ability of 

TSPO targeted agents to label stem cells over time, fluorescence imaging was conducted 

daily on each sample until no significant fluorescence signal was detected. Figure 4.10, 

4.11 and 4.12 show three examples of the fluorescence images from MNC cells.  
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Figure 4.12. Fluorescence imaging of MNC cells 5 days after treatment of 1 µM
LissRo5 or free dye: (A) Phase contrast microscopy of cells dosed with LissRo5; (B) 
fluorescence imaging of cells dosed with 1 µM LissRo5; (C) Overlay of A and B; (D) 
fluorescence imaging of cells dosed with 1 µM free lissamine dye (control).  

Table 4.3. TSPO targeted stem cell 
tracking (days) 
  MNC ES EPC 
NIR6T >21 1 1 
Liss6T 7 3 3 

LissRo5 5 2 1 

Significant fluorescence signals were seen from the cells dosed with TSPO targeted 

imaging agents, whereas cells incubated with same concentration of corresponding free 

dye are relatively devoid of signal. Table 4.3 shows the maximum cell-tracking time, 

after which no significant fluorescence signal could be observed from stem cells under 

microscope. Generally, MNC cells were 

labeled for relatively long period of time 

compared to the other two cell lines. 

This indicates that MNC cells might  
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have higher TSPO expression than ESC and EPC cells. Most cells studies exhibited 

significant fluorescence signal for less than a week. The loss of signal can be explained 

by progressive dilution of dye-TSPO ligand complex due to cell division and clearance of 

unbound imaging agents from cells over time. However, MNC cells dosed with NIR6T 

still showed significant fluorescence signal three weeks after treatment. Even though the 

signal became lower during imaging period due to cell division, the clearance of NIR6T 

from MNC cells seems minimal, as signal reduction seems rather slow. This observation 

is probably partly due to relatively high binding affinity of NIR6T to TSPO receptor and 

high TSPO expression in MNC cells. Overall, TSPO targeted imaging agents were 

successfully used to label stem cells over time and can be potentially applied in stem cell 

tracking in vivo.  

 6-TSPOmbb732 was also conjugated to lanthanide chelates so as to investigate 

potential multi-modal imaging agents. The first attempted lanthanide chelate is Eu-MQ-

Phos, which has a methyl quinoline antenna, two phosphate chelation arms and an acetic 

acid conjugation arm. As mentioned in section 1.8, the antenna is used to sensitize light 

and transfer energy to chelated europium ion. The synthesis started with alkylation 

reaction between bromoacetic acid and compound 5 (Scheme 4.6). Next, 6-TSPOmbb732 

was conjugated to 6 by regular peptide coupling using N,N,N′,N′-tetramethyl-O-(N-

succinimidyl)uronium tetrafluoroborate (TSTU), followed by removal of benzyl 

carbonate (Cbz) by hydrogenation. tert-Butyl protected phosphate was introduced to 8 in 

presence of paraformaldehyde to yield 9, whose tert-butyl protecting group was then 

removed by trifluoroaceitic acid (TFA).  Finally, Eu3+ was chelated by refluxing 10 and 

Europium (III) trifluoromethanesulfonate in acetonitrile for two and half days. The final  
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Scheme 4.6. Synthetic pathway of Eu-MQ-Phos-6-TSPOmbb732 (Eu-MQ-Phos-6T)
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product was characterized by mass spectrometry. Figure 4.13 shows the absorption and 

emission of Eu-MQ-Phos-6T in acetonitrile. Eu-MQ-Phos-6T has maximum absorption 

at 322 nm and emission peaks at 421 nm, 591 nm, 611 nm and 698 nm. The broad 

emission at 421 nm is likely due to methyl quinoline that did not sensitize Eu3+ ion. The 

large peak at 645 nm is 2λexi , which is due to Rayleigh scattering43. Peaks at 591 nm, 611 

nm and 698 nm are from Eu3+ sensitized by methyl quinoline.  

Eu-MQ-Phos-6-TSPOmbb732 seems to be a promising imaging agent, however, 

it takes a lot of effort to synthesize methyl quinoline antenna (3 steps)44. A lanthanide 

chelate with a commercially available antenna is probably more favorable.  
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Figure 4.13.  Eu-QM-Phos-6T absorption and fluorescence

 

 

 

 

 

 

 

 

 

 

The second attempted lanthanide chelate has two carboxylate chelating arms and 

a coumarin antenna. Compared to tri-tert-butyl-phosphite (phosphate arm), tert-butyl 2-

bromoacetate (carboxylate arm) is relatively stable and the alkylation reaction with 

corresponding cyclen ring has higher yield (91%, reported by Sherry and coworkers37 vs 

52% for compound 9). In addition, coumarin-3-carboxylic acid is commercially available 

and easily coupled to the cyclen ring. The synthetic pathway is shown in Scheme 4.7. 11 

was prepared here as reported37. Benzyl-2-bromoacetate was then coupled to 11 via 

alkylation. The yield (53%) is relatively low probably due to the production of di- 

substituted byproduct. Next, coumarin-3-carboxylic acid was converted to acyl chloride 

by oxalyl chloride, and the following N-acylation reaction with 12 produced 13. After 

Cbz protecting group was removed by hydrogenation, 6-TSPOmbb732 was conjugated 

to14 by N-acylation using TSTU. At last, tert-butyl groups were removed by TFA and 
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Scheme 4.7. Synthetic pathway of Eu-Coumarin-Carboxyl-6-TSPOmbb732 (Eu-CC-
6T) 
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Eu3+ was chelated in basic solution. The absorption and emission spectra are shown in 

Figure 4.14.  

 Multimodal lanthanide chelates labeled 6-TSPOmbb732 shows promise, and if 

optical imaging is not a desired modality, a chelate without an antenna can be used. This 

simpler version of lanthanide chelate labeled 6-TSPOmbb732 was therefore synthesized. 

A DOTA labeled 6-TSPOmbb732 was achieved in only two steps (Scheme 4.8) and can 

label different ions such as 64Cu (PET imaging), 111In (SPECT imaging) and Gd3+ (MRI). 
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Figure 4.14.  Eu-CM-Carb-6T absorption and fluorescence 

 

Scheme 4.8. 64Cu-DOTA-6-TSPOmbb732 (64CuD6T) reaction scheme 
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The synthesis involves coupling 6-TSPOmbb732 to commercially available 

DOTA-tri(tert-butyl)-NHS ester via N-acylation, followed by removal of tert-butyl 
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groups by TFA. We selected 64Cu2+ for PET imaging applications and 64Cu2+ was 

chelated by stirring DOTA-6-TSPOmbb732 and copper-64 acetate (64Cu(Ac)2) in DMSO 

for an hour. 64Cu2+ has relatively long half life (12.7 hours), therefore, in-lab cyclotron is 

not necessary. 64Cu-DOTA-6-TSPOmbb732 will be investigated in stem cell tracking in 

vivo.  

 

4.4 Conclusion 

In conclusion, we have synthesized a functional TSPO ligand, n-TSPOmbb732, 

which can be conjugated to a variety of signaling moieties and widely applied for TSPO 

targeted cancer imaging. Structure activity relationship (SAR) study indicates that 6-

TSPOmbb732 is the most promising TSPO ligand. 6-TSPOmbb732 was then labeled 

with three fluorescent dyes, including IRDyeTM 800CW NHS ester, lissamineTM 

rhodamine B sulphonyl chloride and cypate. IRDyeTM 800CW or lissamineTM rhodamine 

B labeled 6-TSPOmbb732, NIR6T and Liss6T, display nanomolar binding affinities to 

TSPO and have been successfully imaged in vitro. Preliminary stem cell tracking studies 

showed that NIR6T could label MNC cells for over three weeks. Cypate6T binds to 

TSPO at nanomolar affinity and labels MDA-MB-231 cells as well, but free cypate dye 

also labels these cells. In addition, 6-TSPOmbb732 was coupled to two tri-functional 

lanthanide chelates for multimodal imaging. Finally, 64Cu-DOTA-6-TSPOmbb732 was 

developed for TSPO targeted PET imaging.  
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CHAPTER V 

 

A TRANSLOCATOR PROTEIN TARGETED CANCER DRUG FOR ENHANCED 
THERAPY 

 
 

5.1 Introduction 
 

 One in four deaths in the United States is due to cancer, which makes it one of the 

leading causes of death1. A total of 559,650 deaths and 1,444,920 new cancer cases for 

cancers are projected to occur in the United States in 20071.  Cancer is a disease where 

abnormal cells divide uncontrollably and form a tumor as their numbers increase2,3. 

Tumors can be benign (non-cancerous) or malignant (cancerous)3. Benign tumors can be 

removed, do not spread and are rarely a threat to life. Malignant cells invade and destroy 

the tissue around them. These cells can also break away from a malignant tumor and 

enter the bloodstream or lymphatic system. As a result, cancer cells may spread to distant 

anatomic sites to form new tumors. This spread of cancer is called metastasis3.  
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Figure 5.1. Etoposide 
Structure 

Cancer can be treated by surgery, chemotherapy, radiation therapy, 

immunotherapy, monoclonal antibody therapy or other 

methods3. Cytotoxic drugs that target actively 

proliferating cells are often used in cancer treatment. 

One of the most widely used anticancer drugs is 4'-

demethyl-epipodophyllotoxin 9-[4,6-O-(R)-ethylidene-

beta-D-glucopyranoside], 4' -(dihydrogen phosphate) 

(Etoposide, Figure 5.1), which is active against small-

 131

http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Chemotherapy
http://en.wikipedia.org/wiki/Radiation_therapy
http://en.wikipedia.org/wiki/Immunotherapy
http://en.wikipedia.org/wiki/Monoclonal_antibody_therapy


cell lung cancer, testicular cancer, ovarian cancer, breast cancer, gastric cancer, 

leukemias, rhabdomyosarcomas, neuroblastomas, and lymphomas4-7.   

Etoposide works by inhibiting the DNA topoisomerase II. Type II topoisomerases 

modulate DNA topology and can cleave the opposing strands of the DNA helix 

simultaneously5,6,8. Once severed, the ends of the DNA are separated, and a second intact 

DNA duplex is passed through the break. Following passage, the severed DNA is 

resealed. This double-stranded DNA passage reaction allows topoisomerase II enzymes 

regulate over- and under-winding of the double helix and resolve nucleic acid knots and 

tangles. Etoposide poisons these enzymes by stabilizing their covalent DNA cleavage 

complexes thus preventing the severed DNA from being resealed5. The accumulation of 

DNA cleavage in cell activates the DNA’s damage sensors, leading to apoptosis. Some 

cells depend more heavily upon DNA topoisomerase II for replication than others. Cells 

that are more dependent upon topoisomerse II for proliferation are better targets for 

etoposide.  

 The application of etoposide in cancer therapy is limited as etoposide does not 

selectively target cancer cells9.  Instead, etoposide targets any actively proliferating cell 

that manufactures and utilizes sufficiently high amounts of topoisomerase II.  Just as 

cancer cells actively proliferate, so do many normal cells such as hair follicle cells and 

certain cells of the gastro-intestinal tract, the reproductive tract, and bone marrow.  As a 

result, etoposide takes effect on these normal cells as well, giving rise to side effects such 

as nausea, hair loss, myelosuppression, vomiting, and mucositis6. A cancer targeted 

etoposide complex with enhanced selectivity and good efficacy would be more favorable, 

reducing off-target affects.  
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Translocator protein (TSPO) 

is highly expressed in leukemia10, 

lymphoma11 and a variety of 

cancers12, such as brain, breast, 

lung, and prostate cancer. N-(4-

chloro-2-phenoxyphenyl)-N-(2-

isopropoxybenzyl)acetamide 

(DAA1106)  (Figure 5.2) is a very effective TSPO ligand with picomolar binding 

affinity13. It has been hypothesized that by conjugating etoposide to DAA1106, the 

resulting molecule would provide a more selective therapy and potentially increase the 

efficacy of etoposide. Unfortunately, DAA1106 is not easily conjugable. As previously 

mentioned in Chapter 4, a conjugable analog of DAA1106, 6-TSPOmbb732 (Figure 5.2), 

was developed for extended TSPO studies. Moreover, several imaging agents based on 6-

TSPOmbb732 display nanomolar binding affinities for TSPO and have been successfully 

used for in vitro imaging (Chapter 4). Due to these promising results, an etoposide-6-

TSPOmbb732 conjugate was developed and assessed as a potential targeted cancer drug.  

To discover if the etoposide-6-TSPOmbb732 (Et6T) would protect off-target cells 

while still effectively killing the target cells, the efficacies of etoposide and Et6T were 

compared in both high and low TSPO expressing cell lines. The high TSPO expressing 

cells represent the target tumor cells and the low TSPO expressing cells represent the 

“normal” or control cells.  The high TSPO expressing cells used in the first trial were 

MDA-MB-231 cells, human breast carcinoma cells derived from a pleural effusion 

metastasis.  Jurkat cells (human T-lymphocytes infected with acute T-cell leukemia) were 
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used as a representative low TSPO cell line. In a second trial, C6 rat glioma cells were 

used as the high TSPO expressing cell line and IEC-6 normal rat intestinal epithelial cells 

were used as the low TSPO expressing cell line.   

In order to compare the efficacy of etoposide and Et6T in the two cell lines of 

each trial, the cytotoxicity of each drug in both cell lines was studied by measuring the 

cell viability at the end of the incubation period.   

 

5.2 Experimental Procedures 

5.2.1 Synthesis 

2-Bromo-N-(6-(2-((N-(5-fluoro-2-phenoxyphenyl)acetamido)methyl)-4-

methoxyphenylamino)hexyl)propanamide (2) A solution of 6-TSPOmbb732 1 (48 mg, 

0.1 mmol) and TEA (14.5 μL, 0.1 mmol) in anhydrous THF (4 mL) was cooled by dry 

ice/acetone. One equivalent of 2-bromo-propionyl chloride (10.1 μL, 0.1 mmol) was then 

added and the resulting mixture was allowed to stir for 10 min. Triethyl ammonium 

hydrochloride salt was filtered through filter paper. Solvent was removed by vacuum 

rotary evaporation and the product was purified by silica gel column chromatography 

using 32:1 dichloromethane/methanol as eluent to give 2 as a colorless oil (20 mg, 33%). 

1H NMR 300 MHz (CDCl3) δ 7.30-7.26 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.97-6.91 (m, 

1H), 6.84-6.79 (m, 1H), 6.77-6.68 (m, 4H), 6.40 (d, J =  8.7 Hz, 1H), 6.19 (d, J = 2.7 Hz, 

1H), 4.93-4.86 (m, 2H), 4.66-4.59 (m, 1H), 4.41 (q, J = 10.5, 3.6 Hz, 1H), 3.60 (s, 3H), 

3.27 (q, J = 9.8, 3.2 Hz, 2H), 3.02-2.88 (m, 3H), 1.95 (s, 3H), 1.86 (d, J = 6.9 Hz, 3H), 

1.64-1.50 (m, 4H), 1.47-1.31 (m, 4H). MS (ESI)+ [M+H] calcd 614.2, found 614.6.  

 134



Etoposide-6-TSPOmbb732 (3) A mixture of etoposide (12 mg, 20 μmol), K2CO3 

(4 mg, 30 μmol) and 18-crown-6 (1 mg, 4 μmol) in anhydrous acetone (1 mL) was stirred 

for 5 min under room temperature. A solution of 2 (6 mg, 10 μmol) in anhydrous acetone 

(300 μL) was added to the mixture and the reaction was heated to reflux with vigorous 

stirring. After 6 h, the reaction was allowed to cool down to room temperature and the 

solvent was removed by vacuum rotary evaporation. The residue was partitioned between 

water (5 mL) and dichloromethane (10 mL). Aqueous layer was extracted with 

dichloromethane three times (3 × 10 mL). The organic layers were combined, dried over 

sodium sulfate and concentrated by vacuum rotary evaporation. The residue was purified 

by silica gel column chromatography using 3% methanol in dichloromethane as eluent to 

yield 3 as a colorless oil (5.7 mg, 52%). 1H NMR 300 MHz (CDCl3) δ 7.81 (m, 1H), 7.28 

(t, J = 7.2 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), 6.95-6.92 (m, 1H), 6.83-6.69 (m, 6H), 6.45 

(d, J = 3.2 Hz, 2H), 6.41-6.38 (m, 2H), 6.19 (t, J = 2.4 Hz, 1H), 5.96-5.94 (m, 2H), 4.94-

4.85 (m, 3H), 4.72 (q, J = 4.8 Hz, 1H), 4.68-4.47 (m, 4H), 4.25-4.23 (m, 1H), 4.18-4.14 

(m, 1H), 3.93 (t, J = 6.8 Hz, 1H), 3.81 (s, 6H), 3.60 (s, 3H), 3.58-3.56 (m, 2H), 3.44 (t, J 

= 9.2 Hz, 1H), 3.35-3.26 (m, 3H), 3.18-3.13 (m, 2H), 3.00-2.89 (m, 4H), 2.80-2.70 (m, 

1H), 1.94-1.92 (m, 3H), 1.60 (s, 3H), 1.58-1.52 (m, 4H), 1.42-1.34 (m, 5H), 1.36 (d, J = 

5.2 Hz, 3H). MS (ESI)+ [M+H]+ calcd 1122.5, found 1122.7. 

5.2.2 Cytotoxicity Study 

Two culture-treated, optical-bottomed, 96-well plates were used for cytotoxicity 

study. One plate was plated with 10,000 MDA-MB-231 cells per well and the other one 

was plated with 10,000 Jurkat cells per well. Seven concentrations (10-4 M, 10-5 M, 10-6 

M, 10-7 M, 10-8 M, 10-9 M, and 10-10 M) of etoposide or Et6T in corresponding media 
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were prepared. Cells were treated as shown in Figure 5.3. Columns three through nine of 

rows B,C,D were incubated with increasing concentrations of Et6T and columns three 

through nine of rows E,F,G were incubated with increasing concentrations of etoposide.  

Column two, rows B through G served as the control wells and were not treated with any 

drug.  These cells would be treated with the cell viability assay and compared with drug 

treated cells 72 h after treatment. An additional control (media control) was made in 

column ten to allow for cell counts following the incubation period. These cells would 

not be treated with the viability assay.  

 After the 72 h incubation period, the media control of each cell line was counted 

so that results could be normalized for cell number. Cells were quantified using a VWR® 

hemacytometer and trypan blue staining. To quantify cell death induced by drug 

treatment, cell viability was measured on cells treated with either etoposide or Et6T and 

compared to the control cells without drug treatment. Cell viability was quanitified using 

CellTiter-Glo® luminescent cell viability assay (Promega® Corp.).  The assay generates 

luminescent signal in the presence of ATP from viable cells, therefore, photons released 

are directly proportional to the number of viable cells. The luminescence was then 

measured using the Xenogen® IVIS® 200 imaging system. The same procedure was  

used for cytotoxicity study using C6 cells and IEC-6 cells. 

 

5.3 Results and Discussion 

 The purpose of this study is to develop a TSPO targeted cancer drug with 

enhanced selectivity and efficacy. An efficient TSPO ligand, 6-TSPOmbb732, was  
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Scheme 5.1. Synthesis of Etoposide-6-TSPOmbb732 

 

therefore coupled to a commonly used cancer drug, etoposide (Scheme 5.1). The 

synthesis involves only two steps. At first, a small linker, 2-bromo-propionyl chloride, 

was coupled to 6-TSPOmbb732 by acylation. Second, the phenol group on etoposide was 

deprotonated in basic solution and the following alkylation with the 2-bromo-propionyl 

group on 2 yielded Et6T. The product was characterized by NMR and MS.  

In the first trial of cytotoxicity studies, 10,000 MDA-MB-231 breast cancer cells 

or 10,000 Jurkat T-lymphocyte cells were treated with etoposide or Et6T. High TSPO 

expressing MDA-MB-231 cells represent cancer cells and low TSPO expressing Jurkat 

cells represent normal cells. The density of cells was chosen such that cells would be able 

to replicate over the 72 hours incubation period without becoming overly confluent.  In 

reaching confluent distribution within the well, the cells’ natural contact inhibition 

mechanisms may negatively affect cell viability. Two groups of cells served as controls. 

The first group of cells (column two, rows B through G in Figure 5.3) was not treated  
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Et6T

Figure 5.3. Representative image of treatment scheme 
for the 96 well-plates 

with any drug. These 

cells were labeled with 

cell viability assay and 

compared with 

etoposide or Et6T 

treated cells 72 hours 

after treatment. The 

other control cells 

(column ten, rows B 

through G in Figure 5.3) 

are media control, and 

were not treated with drug or cell viability assay. These cells were used for cell counting 

following the incubation period. Three days after non-control cells were treated with 

etoposide or Et6T, all cells except media control cells were labeled with cell viability 

assay and the 96-well plates were imaged under IVIS imaging system (Figure 5.4). 

 

 
Figure 5.4: Xenogen® IVIS® images of  MDA-MB-231 cells (left) and Jurkat cells 
(right). Higher lumiscent signal (highest = red) indicates more viable cells.  
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Higher luminescent signal directly corresponds to a greater cell number. Figure 5.4 shows 

that in the etoposide treated rows on the Jurkat plate, cell death occurred at a lower 

concentration (10-6 M) than Et6T (10-4 M) treated rows. On the MDA-MB-231 plate, 

there does not appear to be a significant difference between the wells dosed with 

etoposide and the wells dosed with Et6T.  Both etoposide and Et6T appear to kill MDA 

cells at a concentration of 10-4M. 

Using LivingImage® software, the data from the IVIS® images was quantified and 

plotted. Figure 5.5 shows luminescence as percent to the control on the y-axis and drug 

concentration on the x-axis. Luminescence corresponds to the number of viable cells 

present at each concentration. At the lowest concentrations (10-10 M, 10-9 M, 10-8 M and 

10-7 M) of both etoposide and Et6T, the drugs did not cause any significant cell death. 

Jurkat cells began to respond to etoposide at 10-6 M (approximately 60% cell deaths), and  
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Figure 5.5. Cytotoxicity comparison between Et6T and etoposide on MDA-MB-231 
and Jurkat cells 
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they were effectively responding at 10-5 M (approximately 100% cell deaths). However, 

Jurkat cells effectively respond to Et6T at 10-4 M (approximately 100% cell deaths) and 

no significant cell death was observed at 10-5 M. This indicates that Et6T protects the 

non-target, normal cells. In addition, Figure 5.5 shows that at highest concentration of 

both etoposide and Et6T, approximately 40% of MDA-MB-231 cells were killed. There 

does not appear to be a significant difference between the efficacy of etoposide and Et6T 

in the MDA-MB-231 cells. MDA-MB-231 cells were beginning to respond to etoposide 

and Et6T at 10-4 M. This suggests that Et6T and etoposide have similar efficiency in 

killing high TSPO expressing MDA-MB-231 cancer cells 

 Jurkat cells reacted strongly to etoposide due to their upregulated DNA 

topoisomerase II activity14.  Since the inhibition of topoisomerase II causes cell death 

through etoposide treatment, Jurkat cells are good targets for etoposide. This implies that  

Jurkat cells are not good choices as “normal” cells. On the other hand, Jurkat cells did not 

respond well to Et6T. This is probably due to minimal expression of TSPO. It appears 

that Et6T served to protect Jurkat cells from etoposide’s inhibition of topoisomerase II.  

In MDA-MB-231 cells, even though Et6T did not inherently enhance efficacy as 

expected, it appeared to kill cancer cells with about the same efficacy as etoposide.   

To investigate cytotoxicity of etoposide and Et6T in other cells, a second trial 

using C6 glioma cells (high TSPO expressing) and IEC-6 intestinal epithelial cells (low 

TSPO expressing) was tested. C6 and IEC-6 were chosen for two reasons. First, the low 

TSPO expressing control cells in this trial were non-cancerous cells unlike the jurkats, 

which are leukemia. Second, both C6 and IEC-6 cells are adherent which allows a more 

uniform bioluminescent signal. In the first trial, MDA-MB-231 cells are adherent  

 140



10-10 10-9 10-8 10-7 10-6 10-5 10-4
0

10
20
30
40
50
60
70
80
90

100
110

Et6T-C6
Etoposide-C6
Et6T-IEC-6
Etoposide-IEC-6

[Drug] (M)

Lu
m

in
es

ce
nc

e 
(%

 c
tr

l)

 
Figure 5.6. Cytotoxicity comparison between Et6T and etoposide on C6 and IEC-6 cells 
 

 

whereas Jurkat cells are not.  It is advantageous to keep adherence property the same for 

both cell lines. 

In the second trial using C6 and IEC-6 cells, etoposide killed both high and low 

TSPO expressing cell lines at two orders of magnitude lower concentration (10-7 M for 

C6 cells, ~40% cell deaths and 10-6 M for IEC-6 cells, ~80% cell deaths) than Et6T (10-5 

M for C6 cells, ~55% cell deaths and 10-4 M for IEC-6 cells, ~80% cell deaths) (Figure 

5.6).  Unlike in the MDA/Jurkat trial, etoposide and Et6T show significant difference in 

efficacy. It seems that etoposide is not efficacious in MDA-MB-231 cells, as 10-4 M 

etoposide was needed to take effect on MDA cells whereas only 10-7 M etoposide was 

needed to kill C6 cells. The observed similarity in efficacy on MDA cells between 

etoposide and Et6T is probably because neither is effective until the largest concentration 

of drug (10-4 M).  This indicates that neither etoposide nor Et6T is a good drug for MDA 
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cells. High concentrations of drug may kill cells through mechanism that does not involve 

topoisomerase II. For IEC-6 cells, etoposide took effect at 1 µM (about 77% cell deaths) 

while Et6T took effect at 100 fold higher concentration (100 µM, about 82% cell deaths).  

The results of this C6/IEC-6 trial show that etoposide began to kill cells at two orders of 

magnitude lower concentration than Et6T in both high and low PBR cell lines. Et6T 

appears to protect the IEC-6 cells, but kill C6 cells with lower efficacy.  This suggests 

that Et6T is able to protect normal cells from off-target effects, however, it does not have 

as good efficacy as etoposide on killing cancer cells.  

 

5.4. Conclusion 

In conclusion, we developed a TSPO targeted cancer drug by coupling a TSPO 

ligand, 6-TSPOmbb732 to a non-selective cancer drug, etoposide. Cytotoxicity of 

etoposide and the TSPO targeted drug, Et6T were compared in high TSPO expressing 

cancer cells and low TSPO expressing control cells. In the first trial using MDA-MB-231 

cancer cells and Jurkat control cells, Et6T appeared to protect Jurkat cells and had similar 

efficacy as etoposide in killing MDA-MB-231 cancer cells. However, neither etoposide 

nor Et6T was effective in treating MDA cells until reaching the largest concentration 

(100 μM). In the second trial using C6 glioma cells and IEC-6 normal epithelial cells, 

etoposide started killing cells at two orders of magnitude lower concentration than Et6T 

in both cell lines. Overall, even though Et6T does not appear to increase efficacy in 

cancer treatment compared to etoposide, it seems to protect low TSPO expressing control 

cells from off-target effects.   
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CHAPTER VI 

 

MBC94, A NOVEL CONJUGABLE CANNABINOID CB2 RECEPTOR LIGAND 

 
 

6.1 Introduction 
 
 Cannabinoid receptors are 7-transmembrance domain G protein-coupled receptors 

(GPCR) and located on cell membrances1,2. To date, two distinct cannabinoid receptors 

have been identified, including CB1 and CB2 receptors3,4. The CB1 receptor is expressed 

primarily in the central nervous system whereas the CB2 receptor is expressed 

predominantly in tissues of the immune system, such as the spleen, tonsils and thymus5,6. 

The two receptors share an overall 44% homology, however, within the transmembrane 

domains of CB1 and CB2, 68% of their amino acid sequence is identical4.  

 Although the exact functional role of CB2 is still not clear, the receptor seems to 

be involved in signal transduction in the immune system7 and mediates 

immunosuppressive and immunostimulatory effects8-10. The CB2 receptor is only highly 

expressed in immune cells while the expression in other cells is low, which makes this 

receptor a particularly attractive target for immune system imaging and therapy6. The 

CB2 receptor is undetectable in thyroid, retina, placenta, skeletal muscle, kidney, liver, 

brain, cerebellum, cortex, pituitary gland, adrenal gland, heart, protate and ovary6. This 

provides great opportunities in imaging with low background and therapy with reduced 

side effects. The CB2 receptor has become an interesting target for drug development 

aiming at treatment of pain11,12, inflammation13, osteoporosis14, malignant gliomas15, 

tumors of immune origin16, and immunological disorders17.  
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CB2 receptor ligands 

 Together with the characterization of 

the CB2 receptor, a considerable effort has 

been carried out to identify or develop CB2 

receptor ligands. The term cannabinoid was 

first used to describe terpenophenolic 

compounds in Cannabis Sativa L., among 

which (-)-trans-Δ9-tetrahydrocanabinol (Δ9-

THC) was shown to be the active 

constituent18. Many immunological effects 

of Δ9-THC have been discovered, including anti-inflammatory effect, inhibiting 

production of tumor necrosis factor-α, interleukin-2 and nitric oxide from macrophages 

and T cells, and induction of arachidonic acid release13. CB2 receptor ligands can be 

divided into two groups: endogenous and exogenous ligands. Two endogenous CB2 

receptor agonists are known (Figure 6.1), including arachidonoylethanolamide 

(anandamide)19 and 2-arachidonoyl glycerol (2-AG)20,21.  Both molecules have 

marginally greater CB1 than CB2 affinity22. Even though 2-AG acts as a full CB1 and CB2 

receptor agonist, anandamide acts as a partial agonist (showing mixed agonist-antagonist 

properties) toward these receptors21. Many exogenous CB2 receptor ligands have been 

discovered as well, such as Δ9-THC, HU-210, CP55940, WIN55212-2, AM630 and SR 

144528 (Figure 6.2).  Δ9- THC, HU-210, CP55940, WIN55212-2 are canabinoid receptor 

agonists with no or marginal CB1- or CB2 selectivity22. AM630 and SR 144528 are both 

selective CB2 receptor ligands and behave as inverse agonists rather than as “silent” 
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Figure 6.2. Structures of exogenous CB2 receptor ligands  

antagonists. The CB2/CB1 affinity ratio is less for AM630 (CB2/CB1 affinity =165) than  

for SR 144528 (CB2/CB1 affinity >700)22. SR 144528 has been widely used as a 

pharmacological tool for recognizing CB2 receptor-mediated effects22.  

 Even though SR 144528 has been extensively used to characterize CB2 

receptors1,22-26, the application of SR 144528 in CB2 receptor targeted imaging is limited  

as SR 144528 is not conjugable. In other words, signaling moieties, such as fluorescent 

dyes, lanthanide chelates and nanoparticles, can not be easily coupled to SR 144528. To 

further study CB2 receptor and related diseases, development of a conjugable SR 144528 

analog seems to be a reasonable strategy.  

 In the current study, we synthesized a conjugable SR 144528 analog, mbc94. To 

our knowledge, this is the only fully conjugable CB2 receptor ligand in existence, which 

has a terminal amino group, allowing easy conjugation to other molecules. It is expected 

that by coupling signaling moieties to SR 144528, the molecule can provide opportunities 

in CB2 receptor targeted disease imaging. A near infrared (NIR) dye, IRDyeTM 800CW 
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NHS ester, was selected to label mbc94 for optical imaging. Both mbc94 and the NIR 

dye labeled mbc94 (NIRmbc94) bind to CB2 receptor with nanomolar binding affinities. 

Preliminary live cell imaging showed that NIRmbc94 labeled CB2 receptor expressing 

cells.  

 

6.2 Experimental Procedures 

6.2.1 Synthesis 

 Compound 3 was prepared from 4’-chloro-3’methylacetophenone and diethyl 

oxalate as previously described27. Formation of pyrazoles 4 and 5 were achieved by 

following literature procedures28. Fenchylamine 8 was prepared by converting fenchone 

to a formamide 7, followed by hydrolysis of the amide bond as previously described29.  

5-(4-chloro-3-methylphenyl)-N-(1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-1H-

pyrazole-3-carboxamide (9). A mixture of 5 (237 mg, 1 mmol), 2-(1H-Benzotriazole-1-

yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate (HBTU) (417 mg, 1.1 mmol), and 

1-Hydroxybenzotriazole (HOBT) (135 mg, 1 mmol) in 50/50 dichloromethane/DMF (10 

mL) was stirred at RT for 5 min. DIEA (248 µL, 1.5 mmol) was added and the resulting 

mixture was stirred for another 10 min. A solution of 8 in 50/50 dichloromethane/DMF 

(10 mL) was then added to the mixture and the reaction mixture was stirred for another 2 

h. The reaction solution was concentrated by vacuum rotary evaporation and purified 

with silica gel column chromatography eluted with 100% hexanes to 1:7 ethyl 

acetate/hexanes. Compound 9 was collected as a white solid (314 mg, 84%). 1H NMR 

400 MHz (CDCl3) δ 7.51 (s, 1H), 7.42 (s, 1H), 6.97 (s, 1H), 6.76 (bs, 1H), 3.84 (d, J = 

9.6 Hz, 1H), 2.43 (s, 3H), 1.81 (d, J = 3.6 Hz, 1H), 1.73 (d, J = 10.8 Hz, 2H), 1.50-1.41 
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(m, 2H), 1.29-1.26 (m, 2H), 1.18 (s, 3H), 1.11 (s, 3H), 0.88 (s, 3H); MS (ESI)+ [M+Na]+ 

calcd 394.2, found 394.4. 

1-(4-(bromomethyl)benzyl)-5-(4-chloro-3-methylphenyl)-N-(1,3,3-

trimethylbicyclo[2.2.1]heptan-2-yl)-1H-pyrazole-3-carboxamide (10) NaH (60% in 

mineral oil, 14.4 mg, 0.36 mmol) was added to a solution of 9 (111.6 mg, 0.3 mmol) in 

anhydrous toluene (30 mL) at room temperature. The mixture was heated at 70 °C for one 

hour and then cooled to room temperature. αα-Dibromo-p-xylene (791.9 mg, 3 mmol) 

was added and the resulting mixture was refluxed for 20 h. The reaction solution was 

then concentrated by vacuum rotary evaporation and the crude mixture was purified by 

column chromatography (silica gel) using gradient 100% hexanes to 1:9 ethyl 

acetate/hexanes as eluent. Compound 10 was collected as an colorless oil (131.9 mg, 

79%). 1H NMR 400 MHz (CDCl3) δ 7.28 (s, 1H), 7.19 (s, 1H), 7.02 (s, 1H), 6.94 (d, J = 

7.6 Hz, 4H), 6.77 (s, 1H), 5.24 (s, 2H), 4.40 (s, 2H), 3.75 (d, J = 9.6 Hz, 1H), 2.26 (s, 3H), 

1.73 (s, 1H), 1.65 (d, J = 10.0 Hz, 2H), 1.43-1.34 (m, 2H), 1.20-1.45 (m, 2H), 1.10 (s, 

3H), 1.04 (s, 3H), 0.80 (s, 3H); MS (ESI)+ [M+Na]+ calcd 578.1, found 578.2. 

Mbc94 (11) A solution of 10 (22.2 mg, 40 µmol) in dichloromethane (5 mL) was 

added dropwise to a stirring solution of 1,6-hexane diamine (93 mg, 0.8 mmol) in 

dichloromethane (5 mL). The resulting mixture was stirred at room temperature for 5 h. 

The solution was then concentrated by rotary evaporation and chromatographed on a 

silica gel column using gradient 100% dichloromethane to 8:1:0.1 

dichloromethane/methanol/ammonia as eluent. Mbc94 was collected as a pale yellow oil 

(19 mg, 70%). 1H NMR 400 MHz (CDCl3) δ 7.33 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 

2H), 7.11 (d, J = 1.6 Hz, 1H), 7.04-6.99 (m, 4H), 6.83 (s, 1H), 5.30 (s, 2H), 3.81 (dd, J = 
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9.6, 1.6 Hz, 1H), 3.76 (s, 2H), 2.68 (t, J = 2.4 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.32 (s, 

3H), 1.79-1.78 (m, 1H), 1.72-1.70 (m, 5H), 1.53-1.41 (m, 6H), 1.34-1.30 (m, 4H), 1.26-

1.21 (m, 2H), 1.16 (s, 3H), 1.11 (s, 3H), 0.86 (s, 3H); MS (ESI)+ [M+H]+ calcd 590.3, 

found 590.3.  

NIRmbc94 A mixture of mbc94 (5 mg, 8.5 μmol) and IRDyeTM 800CW NHS  

ester (5 mg, 4.3 μmol) in DMSO (7 mL) was stirred under argon at room temperature 

overnight. HPLC analysis was performed to monitor the reaction on a Varian Polaris C-

18 column (250 × 4.6 mm) at a flow rate of 0.8 mL/min. Flow A was 0.1% TEA in water 

and flow B was 0.1% TEA in acetonitrile. The elution method for analytical HPLC 

started with a linear gradient from 100% to 80% A over 30 min, then from 80% to 50% A 

for 5 min, arrived at 20% A in another 3 min, held at 20% A for 10 min, and finally 

returned to 100% A over 1 min. The elution profile was monitored by UV absorbance at 

254 and 780 nm. Product was purified by preparative HPLC using a Varian Polaris C-18 

column (250 × 21.2 mm) at 17 mL/min. The collected solution was concentrated by 

vacuum rotary evaporation and frozen to -78ºC. The solvent (mostly water) was then 

removed via lyophilization. The amount of NIRmbc94 was determined by absorption in 

DMSO solution at 780 nm (3.0 mg, 44%). 1H NMR 400 MHz (MeOD) δ 8.02 (d, J = 

14.4 Hz, 1H), 7.89-7.78 (m, 5H), 7.74 (d, J = 1.2 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.34-

7.32 (m, 4H), 7.24 (d, J = 8.4 Hz, 1H), 7.20-7.17 (m, 3H), 7.09 (d, J = 8.0 Hz, 2H), 6.84 

(s, 1H), 6.33 (d, J = 14.0 Hz, 1H), 6.14 (d, J = 14.0 Hz, 1H), 5.49 (s, 2H), 4.20-4.15 (m, 

4H), 4.09 (t, J = 2.4 Hz, 2H), 3.76 (dd, J = 9.2, 1.2 Hz, 1H), 3.01-2.93 (m, 4H), 2.89 (t, J 

= 2.8 Hz, 2H), 2.80 (t, J = 5.6 Hz, 2H), 2.74 (t, J = 5.6 Hz, 2H), 2.34 (s, 3H), 2.11 (t, J = 

6.8 Hz, 2H), 2.05-2.02 (m, 2H), 1.95-1.92 (m, 5H), 1.79-1.71 (m, 6H), 1.64-1.49 (m, 8H), 
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1.40 (s, 6H), 1.34 (s, 6H), 1.25-1.21 (m, 7H), 1.15 (s, 3H), 1.08 (s, 3H), 0.92-0.86 (m, 

2H), 0.85 (s, 3H). MS (ESI)- [M-H]- calcd 1572.6, found 1572.5. 

6.2.2 Satruation Binding Study 

Wild-type and 2D4 DBT cells were expanded in DMEM containing Glutamax™, 

D-glucose (4.5g/l) and sodium pyruvate (110 mg/ml) (Invitrogen/Gibco 10569), and 

supplemented with FBS (10%), HEPES (10 mM), NaHCO3 (5 mM), penicillin (100 U/ml) 

and streptomycin (100 μg/ml). Ninety-six well plates were thinly-coated with collagen 

Type I (2.5 µg/ml, 30 min, BD Bioscience #354236) diluted in acetic acid (0.02 N) in 

sterile H2O. Wells were subsequently rinsed three times with PBS and allowed to air dry 

in a cell incubator at 37 ºC. 

The cells were seeded in 96 well plates with an optical bottom polymer (NUNC®) 

at 4 x 104 cells per 200 µL of DMEM (same DMEM as above) per well. Twenty-four h 

later, cells typically reached a density of 80% confluence. The media was then replaced 

by DMEM + FBS (1%, 100 µL) containing NIRmbc94 and incubated at 37 ºC for 30 min. 

The cells were rinsed twice with DMEM + FBS (1%, 100 µL) to remove unbound 

NIRmbc94.  

Fluorescence at 800 nm was then immediately quantified with a Li-Cor 

Odyssey® Infrared Imaging System. The values for non-specific binding (wild-type DBT 

cells) were subtracted from the total binding values (2D4 DBT cells) with data expressed 

in terms of relative fluorescence units (RFU), analyzed by Scatchard analysis, and 

calculated by nonlinear regression using Graph Pad Prism® software (GraphPad Prism®, 

San Diego, CA, USA). 
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6.2.3 Competitive Binding Study 

DBT cells expressing CB2 receptor were expanded in 10 mm dishes. Once at 

confluence, cells were rinsed once with PBS and frozen without supernatant. Cells were 

then lysed in Tris-EDTA-MgCl2 buffer (50 mM, 1 mM and 3 mM; pH 7.4; buffer A), 

homogenized using a polytron homogenizer and centrifuged at 14,000 g (20 min, 4 ºC). 

Pellets were resuspended in buffer A and centrifuged at 14,000 g (20 min, 4 ºC). 

Saturations and binding experiments were performed using silanized tubes and pipettes 

tips. Homogenates (50 μg of proteins in 150 μL of buffer A containing 1% FFA-BSA) 

were added to tubes containing either 0.2 μL of drug in DMSO or DMSO alone (0.1%, 

total binding), and 50 μL of [3H]-CP-55,940 (3 nM final concentration). Non-specific 

binding was determined in the presence of 10 μM CP-55,940. Tubes were incubated for 1 

h in a shaking water bath at 30 ºC. Cold buffer was rapidly added to the tubes, solutions 

filtered through pre-soaked glass-fibers filters (Whatman GF/B) using a Brandell 

harvester (Gaithersburg, MD) and tubes rinsed twice using cold buffer. Radioactivity on 

the filter was counted using 10 mL of Ecoscint scintillation liquid following 10 s of 

agitation and 3 h resting. Ki values were calculated from the IC50 values using the 

Cheng-Prusoff equation30 yielding Kd and Bmax values of 3.1 nM and 6 pmol/mg, 

respectively. 

 6.2.4 Cell Imaging  

CB2 expressing DBT (2D4) cells in MaTek dishes were incubated with 5 μM 

NIRmbc94 or 5 μM free NIR dye in culture media for 30 min. Cells were rinsed and re-

incubated with saline before imaging using a Nikon epifluorescence microscope equipped 

with a Hamamatsu C4742-98 camera, Nikon Plan Apo 60x/1.40 oil objective, a mercury  
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lamp, an ICG filter set, a Texas Red filter set, and a FITC filter set (Figure 6.5).  
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Scheme 6.1. Synthesis of mbc94 
 
 

6.3 Results and Discussion 
 

The synthetic pathway of the conjugable SR 144528 analog, mbc94 is shown in 

Scheme 6.1. Compound 327, 528, 729 and 829 were prepared as reported. Compound 9 was 

prepared using thionyl chloride before, but the yield was relatively low (70%)28. We 

synthesized 9 by regular peptide coupling using 2-(1H-Benzotriazole-1-yl)-1,1,3,3-

tetramethyl uronium hexafluorophosphate (HBTU) and the yield was improved to 84%.  

The following N-alkylation with αα-Dibromo-p-xylene produced 10 and another N-

alkylation with 1,6-hexane diamine yielded the conjugable CBB2 receptor ligand, mbc94.   

The use of near-infrared (NIR) light in molecular imaging has gained increasing  
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Scheme 6.2. Synthesis of NIRmbc94 
 
interest during recent years. In the NIR region (650-900 nm), tissues are relatively 

transparent because hemoglobin, water and lipids exhibits relatively low absorption 

coefficients31.  Therefore, we labeled mbc94 with a NIR dye, IRDyeTM 800CW NHS 

ester for NIR optical imaging. The reaction was monitored by analytical HPLC at 780 nm 

and the product, IRDyeTM 800CW-mbc94 (NIRmbc94), was purified using a semi 
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Figure 6.3. NIRmbc94 absorption and fluorescence  

preparative HPLC and characterized by NMR and mass spectrometry. The absorption and 

emission spectra were then taken (Figure 6.3). NIRmbc94 has maximum absorption at 

780 nm and emission at 799 nm (methanol), which are in the NIR spectral region which 

would allow deep tissue emission for enhanced in vivo imaging.   

A competitive binding study was performed on mbc94 and NIRmbc94 to test their 

ability to displace the binding of [3H]-CP-55,940 (a CB2 ligand) to DBT cells membrane 

fractions that stably express mouse CB2 receptors (Figure 6.4). SR 144528 was found to 

have a Ki of 0.7 nM, which is in agreement with the literature value (Ki = 0.6 nM)32. 

Mbc94 had a Ki of 15 nM and NIRmbc94 had a Ki of 120 nM. Though lower than the 

binding affinity of SR144528, the nanomolar binding affinities of mbc94 and NIRmbc94 

is rather high, making them promising CB2 receptor ligands.  

NIRmbc94 was then tested for its ability to specifically label intact CB2-

expressing DBT cells in culture. Total binding was determined in CB2-expressing DBT  
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Figure 6.4. Competitive binding study of mbc94 and NIRmbc94 
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Figure 6.5. Saturation binding study of NIRmbc94 
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cells and non-specific binding was determined in wild-type DBT cells, which are devoid 

of CB2 receptors. Figure 6.5 shows that CB2-expressing DBT cells had significantly 

higher fluorescence signal than wild-type DBT cells. In addition, it was found NIRmbc94 

binds to CB2 receptors with nanomolar affinity (Kd = 480 nM, Figure 6.5). These facts 

indicate that NIRmbc94 binds specifically to CB2-expressing DBT cells.  

Fluorescence microscopy imaging was performed to study the cellular uptake of 

NIRmbc94 in CB2 receptor expressing DBT cells (Figure 6.6). Cells labeled with 5 μM 

NIRmbc94 showed significant fluorescence signal (S/N=1.6) whereas cells labeled with 

the same concentration of free dye (IRDyeTM 800CW acid) did not give significant 

A B

C D

A B

C D 60X

A B

C D

A B

C D 60X  
 
Figure 6.6. Fluorescence imaging of DBT cells incubated with NIRmbc94 or free 
NIR dye: (A) Phase contrast microscopy of cells dosed with NIRmbc94; (B) 
fluorescence imaging of cells dosed with 5 µM NIRmbc94; (C) Phase contrast 
microscopy  of cells dosed with free NIR dye; (D) fluorescence imaging of cells dosed 
with 5 µM free NIR dye (control). 
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fluorescence signal.  

 

6.4 Conclusion 

In conclusion, we developed a conjugable CB2 receptor ligand, mbc94, which has 

nanomolar binding affinity (Ki = 15 nM) for CB2 receptors. Mbc94 has a terminal amino 

group, making it universally conjugable. A NIR dye labeled mbc94, NIRmbc94, was 

found to displace a known CB2 ligand, [3H]-CP-55,940 from CB2 receptors (Ki = 120 

nM). In addition, saturation binding studies indicated that CB2-expressing DBT cells 

labeled significantly more NIRmbc94 than low-CB2 expressing wild-type DBT cells (Kd 

= 480 nM). Finally, to a much greater extent, a preliminary live cell imaging studies 

showed uptake of NIRmbc94 in CB2-expressing DBT cells. Overall, NIRmbc94 has been 

shown to be a potent CB2 receptor targeted imaging agent and mbc94 seems to be a 

promising conjugable CBB2 receptor ligand.  
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