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CHAPTER I 

 

INTRODUCTION TO SEE 

 

Single-event effects (SEE) in microelectronics are caused when highly energetic 

particles pass through a semiconductor material creating electron-hole pairs (EHPs) 

(figure 1) along its strike path until it has lost all its energy or left the semiconductor. The 

particle strike may cause a soft-error (e.g. transient disruption of circuit operation, change 

of logic state) or even permanent damage to the device (hard-error), based on factors such 

as circuit topology and amount of charge collected. [1, 2] 

Figure 1: A particle strike generating electron-hole pairs in the device. [3] 
	
  

	
  
In case of the soft-error, the SE results in data corruption while the device remains 

intact. Hence, the erroneous data can be corrected by writing new data. On the other 
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hand, a hard-error occurs when the SE causes physical damage to the device is physically 

damaged resulting in permanent data loss.  

 
Figure 2: Basic classification of Single-event effects [4] 

 

A single event transient (SET) is a transient voltage pulse created due to a single event 

(SE) at a node in an integrated circuit. Under certain conditions, this transient pulse can 

propagate through the integrated circuit and eventually appear at the circuit’s output. It 

may also be captured if it appears at the input of the latch during the setup and hold time 

of the latch (also known as window of vulnerability). A SET, thus captured, becomes a 

single event upset (SEU) (figure 3). [5] 

An SEU can also be generated within a latch when a radiation event causes enough 

charge to be collected at a sensitive node in the latch. The minimum charge required to 
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flip the state of the latch is termed as critical charge (Qcrit). Qcrit is a property of the 

particular circuit and depends on factors such as individual transistor currents and nodal 

capacitances. 

Figure 3: An illustration showing latching of a transient pulse [6] 

 

There are various soft-error mitigation techniques that can be implemented at the 

device, circuit and architecture levels. For instance, triple-well and silicon-on-insulator 

technologies are effective mitigation strategies at the device level, Triple Mode 

Redundancy (TMR) [7] and Dual Interlocked Cell (DICE) [8] are mitigation techniques 

at the circuit-level whereas error correcting codes (ECC) and redundant execution are 

some of the soft-error mitigation schemes at the architecture-level. 
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CHAPTER II 

	
  

BACKGROUND ON SEE & SCALING 

	
  

Advances in fabrication technologies for semiconductor integrated circuits (ICs) have 

resulted in rapidly shrinking technology node and aggressive scaling of voltage. This has 

resulted in an increase in the probability of soft-errors in advanced CMOS digital logic 

circuits.  

In most modern microprocessors large memory arrays such as caches or register files 

are protected Error detection and correction (EDAC) schemes. As a result, the chip level 

soft error rates (SER) are dominated by the error rates of the flip-flops in the 

microprocessor. [9] 

Qcrit scaling 

The critical charges of the sequential nodes approximately scale according to 

                 

€ 

Qcrit ≈Vcc × C                          (1), 

Figure 4: (a) Qcrit of latches and SRAM plotted for all transitions and state nodes. [9]     
(b) Qcrit decreases with feature size [10]	
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In (1), Vcc equals the power supply voltage, and C denotes the node capacitance. Scaling 

is known to decrease both Vcc and C. Hence, Qcrit is also expected to decrease as a result 

of technology scaling [9] and is a cause of concern as technology advances into 

nanometer technology (figure 4). Trends in Qcrit scaling for flip-flops will be revisited in 

Chapter 3.  

SER scaling 

                                       

€ 

SER =κAdiff exp(−Qcrit /η)                                        (2), 

where Adiff is the sensitive drain diffusion area, Qcrit is the critical charge, κ denotes an 

overall scaling factor and η is the charge collection efficiency[11, 12]. Technology 

scaling affects factors governing the SER such as the sensitive drain diffusion area, Adiff, 

and the critical charge, Qcrit. Since scaling reduces both Qcrit and the efficiency, η, there 

have been inconsistencies concerning the experimental data on SER for latches / flip-flop 

in some of previous research in this area, as illustrated in figure 5. These inconsistencies 

can be attributed to the variation is the design of the latch considered in each of these 

experiments. 

Figure 5: Impact of technology scaling on Soft error rate of flip-flops [9, 12] 
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Charge sharing 

Figure 6: Illustration showing (a) nodal separation between two devices (b) charge 
sharing between two PMOS devices (c) charge sharing between two NMOS devices [13] 
	
  

Decreasing technology feature size has resulted in higher packing densities. As a result of 

this, charge generated by a single particle strike may be collected at multiple nodes [14]. 

This multiple node charge collection may have an increasing impact on the vulnerability 

of the circuit to single-events as devices are scaled down. Charge sharing studies by 

Amusan et al showed that the main mechanism for charge sharing in PMOS devices is 

the parasitic bipolar transistor; while in the case of NMOS devices it is diffusion. [13] 
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In the case of SRAM if the radiation event is of a very high energy, more than a single 

bit maybe affected, creating a multi-bit upset (MBU). Decreasing feature sizes have 

resulted in smaller cell sizes in SRAM and hence the probability of MBU is increasing as 

shown in figure 7. 

Figure 7:  Probability of MBU increases as inter-cell (C-C) distance reduces [9] 
 

Mitigating SEU will become more complex as many traditional design approaches to 

mitigate soft errors, such as the DICE, are based on the assumption that an incident 

particle affects only one circuit node. The DICE latch has been shown to be vulnerable to 

SEU at low LET when multiple nodes of the latch collect charge. [15] 

This work focuses on investigating the effects of Qcrit scaling and multi-node charge 

collection on the SER trend, keeping the design geometry constant across the technology 

nodes considered. Chapter III of the thesis discusses the trends in critical charge for 
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upsets occurring due to single and multiple-node charge collection. Chapter IV describes 

the Monte Carlo simulations that have been carried out in order to study the probability 

of upsets in the flip-flop and how technology scaling affects this probability.  
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CHAPTER III 

 

CRITICAL CHARGE TRENDS 

	
  

Flip-flop designs 

Four different flip-flop designs with varying levels of area, power, speed, and soft-

error hardness were considered for this study. The flip-flops designs, as shown in figure 

9, are:  

(a) Conventional master-slave D flip-flop design (MS DFF),  

(b) A low-power version of the D flip-flop design (LPFF).  

(c) SEU-tolerant master-slave Dual-Interlocked Cell flip-flop (MS DICE FF) [8],  

(d) A master-slave flip-flop, with an 8T storage cell (Q8FF),  

The MS DFF has two storage nodes each stage, which form a complimentary pair. The 

LPFF has the same number of storage nodes as the DFF. The DICE design consists of 

cross-coupled inverters. Each stage of the design has four storage nodes, two of which are 

redundant. A voltage transient on one storage node requires a large amount of time to 

propagate through the remaining three storage nodes and as a result, the three storage 

TABLE 1. POWER AND DELAY OF THE FLIP-FLOPS NORMALIZED W.R.T DFF 
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nodes restore the flip-flop’s state to normalcy. Hence, the DICE design is considered 

immune to upset when only one of the storage nodes is perturbed [15]. 

Figure 8: (a) MS DFF (b) one stage of the DICE flip-flop (c) 8T storage cell of Q8FF 

The Q8FF also, same as DICE, has four storage nodes per stage including two redundant 

nodes. However, the Q8FF is coupled differently than the DICE flip-flop. The power and 

delay of the flip-flops, normalized with respect to the DFF for each technology node 

considered, are given in Table 1. The max. C-Q delay refers to the clock to Q delay in the 

flip-flops and is the maximum delay observed over both stages of the flip-flop and both 

states of the data (i.e., Data = HIGH and Data = LOW).  

 

 

 

	
  
	
  

(a) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
  

                                  (b)           (c) 
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SEU due to single-node charge collection 

Circuit-level simulations of the designs were carried out using Cadence® Virtuoso® 

Spectre® Circuit Simulator tool [16]. The Spectre® Circuit Simulator provides accurate 

and detailed transistor-level SPICE-level analysis of analog and digital circuits.  

The flip-flop designs were simulated in three different technologies, namely IBM 

90nm, IBM 65nm and TSMC 45nm technologies. The FET model used in these PDK was 

BSIM4. Sensitive nodes in the flip-flop, upon sufficient charge collection (a.k.a. critical 

charge), will cause the circuit to erroneously flip its state.  To identify such sensitive 

nodes and estimate their critical charge (Qcrit), charge was deposited on each node in the 

circuit by connecting a current source based on 3D TCAD simulations [17], to the node 

in consideration. The shape of the current pulse is illustrated in figure 9(a). The charge 

deposited on a node was varied until an upset was observed; the amount of charge for 

which an upset occurred is the Qcrit for that node. The sensitive nodes and the vulnerable 

transistors of one stage of the DFF for Data = ‘HIGH’ is shown in figure 9(b).  

Figure 9: (a) shape of the current source [17] (b) Sensitive nodes and vulnerable 
transistors in one stage of the DFF 

    
 (a)                                                                          (b) 
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Figure 10: Sensitive nodes and vulnerable transistors of Q8FF  
	
  
	
  

Figure 11: Qcrit for one stage of DFF, LPFF and Q8FF 
  

 

 
 
 
 
 

          
 

 
 

(a)              (b) 
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In the Q8FF, only two of the four nodes of the storage cell were found susceptible. 

The sensitive nodes of Q8FF for Data = ‘HIGH’ and their Qcrit values are shown in figure 

12. The DICE flip-flop, being a radiation-hardened design, did not show any upsets due 

to charge deposition on a single node for a large range of deposited charge. Figures 11 & 

12 indicate that the critical charge decreases as technology scales. This is consistent with 

previous findings of [9, 10], already discussed in Chapter 2 of this thesis. 

SEU due to multiple-node charge collection 

In deep sub-micrometer technologies, feature size scaling and high transistor packing 

densities has lead to reduced nodal charge and reduced spacing between transistors. Due 

to this, charge generated due to an ion strike can be collected at multiple nodes in a 

circuit [13, 14]. It has been shown by Amusan et al. [15] that charge collection by 

multiple nodes (a.k.a charge sharing) will lead to increased susceptibility of hardened 

flip-flop designs.  
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A sensitive node pair is defined as a pair of nodes that, upon simultaneous charge 

collection, causes the latch to upset. To simulate charge collection by two nodes, charge 

is deposited simultaneously on the node pairs using multiple current sources and varied to 

obtain a number of charge deposition combinations at which the flip-flops upset. As 

multi-node charge collection is a strong function of layout, and the layout may contain 

any of these nodes in physical proximity, all possible combinations of node pairs were 

simulated. The sensitive pairs in DICE latch are indicated in figure 12(a) and the 

corresponding charge combinations are represented as charge threshold plots in 12(b). 

Figure 12(a) Sensitive pairs of a DICE latch are marked on the schematic (b) Critical 
charge combinations for all the sensitive pairs of DICE (c) position of sensitive nodes on 

the layout of DICE latch 

 
(a) 

 
 

         
                                       (b)                   (c) 
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Figure 13: (a) A general charge threshold plot indicating the upset boundary. (b) Charge 
threshold plot of DFF 

	
  
The charge threshold curves in figure 12(b) represent the boundary between upset and 

no upset regions, as illustrated in figure 13. The data points on the curves indicate the 

charge required to be deposited simultaneously on each node to cause an upset.  

Any combination of charge deposition that falls in the region above the curve will 

cause an error whereas any combination that falls in the region below the curve does not 

cause an upset. The point of intersection of the curve and the axis gives the amount of 

single-node charge collection required to cause an upset. Since the DICE flip-flop did not 

upset for single-node strikes, the curves in figure 12(b) do not intersect the axes. 

Sensitive pairs (P1, N0) and (P3, N2) exhibit same charge combination requirement and 

hence, only one of the pairs has been plotted. (P1, N2) and (P3, N0) did not exhibit any 

vulnerability. Also, it may be noted from the charge combination curves in 13(b) that (P1, 

N0) is the most vulnerable node pair. Similarly, the most vulnerable node pairs were 

identified in all the flip-flop designs in each of the technology node considered, with the 

        
(a)                                                                             (b) 

 
 



	
   16 

help of charge combination curves. Figure 14 shows the charge combination curves for 

the most vulnerable node pairs in the flip-flops at each technology node. 

Figure 14: Critical charge combinations for most vulnerable node pairs of (a) DFF (b) 
DICE (c) LPFF (d) Q8FF 

	
  
From the above plots, the charge requirement for multi-node upsets was found to be 

lesser that for single-node upsets, which implies that even if two nodes collected charge 

less than the Qcrit, there is still a chance for an upset to occur. All the four designs are 

compared at all the three technology nodes in figure 15 

 

        
 

(a)                                                                              (b) 
 

         
       (c)        (d) 

 



	
   17 

 

Figure 15: Comparison of all the designs at (a) 90nm (b) 65nm (c) 45nm technology node 
 

 

 

 

 

 

 
 

                        
(a)                                                                                                 (b) 

 

 
(c) 
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CHAPTER IV 

 

MONTE CARLO SIMULATIONS  

	
  
Monte Carlo experiments are a class of computational algorithms that rely on repeated 

random sampling to compute their results. Monte Carlo simulation methods are useful for 

modeling phenomena that have significant uncertainty in their inputs.  

MRED (Monte Carlo Radiative Energy Deposition) is one of the several tools 

available for Monte Carlo analysis of single event effects. The MRED tool is based on 

the Geant4 libraries, which comprise computational physics models for the transport of 

radiation through matter. Along with the information on device and circuit level response 

to SE, MRED can be used to analyze single event effects in microelectronic circuits [18]. 

Figure 16: (a) Illustration of a conceptual transistor (b) representing the sensitive drain by 
a nested sensitive volume group [18] 

	
  
The energy deposition in the semiconductor material or device can be modeled and 

due to the radiation environment is estimated by the use of sensitive volumes. Sensitive 

                    
 

(a)                                                                         (b) 
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volumes represent regions of sensitivity within the semiconductor materials. A concentric 

weighted sensitive volume model provides a good approximation to the relationship 

between deposited energy and collected charge. Sensitive volumes are arranged with each 

volume centered about the same point, as illustrated in figure 16. A collection efficiency 

parameter, αi, is associated with each sensitive volume. The charge collected due to 

energy deposition by an individual particle event is calculated by using the relation [18]:  

                                   

€ 

Qcoll =
1pC

22.5MeV
αi × Ei

i=0

N

∑    (3) 

Construction of the flip-flop models 

As previously discussed, charge collected by a sensitive node can be defined by a 

group of concentric / nested sensitive volumes. The total collected charge at the transistor 

node is a function of the charge generated in each sub-volume of the nested sensitive 

volume group and is given by: 

                                         

€ 

Qtotal = αiQi

i=1

n

∑                                               (4), 

where αi is the efficiency of the ith sensitive volume and Qi is the deposited charge in the 

ith sensitive volume [19]. The deposited charge is calculated using the relation: 

                    

€ 

Qdeposited = 0.01035⋅ LET⋅ l                                          (5), 

where LET, in pC/µm, is the stopping power in the material and l, in µm, is the path 

length of the particle in the material [20]. From (4) and (5), charge collected in each sub-

volume of the nested sensitive volume group can be estimated using: 

                           

€ 

Qcolli = 0.01035⋅ LET⋅ αi⋅ li                                       (6) 
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In this thesis, the MRED tool will be used to estimate the charge collected by the 

sensitive nodes of the flip-flop designs in a terrestrial neutron environment. For this, each 

sensitive node of the flip-flop has to be modeled as a nested sensitive volume in order to 

determine the charge collected by that node. These nested sensitive volumes are defined 

based on 3D TCAD (Technology Computer-Aided Design) simulations of charge 

deposition in MOSFET structures. The TCAD simulator consists of numerical solvers of 

continuity and transport equations for electrons and holes at pre-defined points of interest 

in the semiconductor device. Single-event simulations were performed by depositing 

charge in the semiconductor devices, which have been calibrated to IBM 9SF 90nm 

CMOS bulk process. In [17], the authors discuss the construction and calibration of these 

devices.  

Figure 17: (a) 3D TCAD model of the two PMOS devices subjected to single-event 
simulations (b) zoomed-in 2D view of the structure showing the PMOS transistors in the 

n-well. 

	
  

 
                                   
   (a)       (b) 
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Charge deposition simulations were performed on a pair of PMOS devices, 0.5µm 

apart, (figure 17) to simulate a single-event/particle strike. The range of LET chosen for 

these simulations was 1 – 5 MeV cm2/mg. The source and gate of the PMOS transistors 

were biased to VDD to ensure the transistors were in the OFF state. The strike location 

was varied along the horizontal axis, keeping the transistor drain as the reference point 

and the charge collected for each instance is determined by integrating the transient pulse 

occurring in the drain current due to the particle strike. Similarly single-event simulations 

were preformed on NMOS transistor pair to determine the charge collected at the drain 

when particle strikes occur at various points around the transistor drain. The collected 

charge is plotted as a function of the distance of strike location relative to the drain, as 

shown in figure 18. 

With the information on various strike locations, LET and the corresponding value of 

collected charge from these TCAD simulations, the parameters αi and li in equation (6), 

can be adjusted so that the linear relation between collected charge (Qcoll) and LET 

established by equation (6) is satisfied over the chosen range of LET and strike locations.  

Figure 18: The Qcoll is plotted as a function of the distance between strike location and the 
drain of the transistor for (a) PMOS device (b) NMOS device 

  
        (a)                    (b)   
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Figure 19: (a) Defining sensitive volumes for the PMOS transistors using the TCAD 
charge collection data. (b) Conceptual 2-D cross sectional drawing of a sensitive volume 

set, which defines an individual transistor 

Curve fitting by least squares method was used to fit the two parameters, αi and li, 

which correspond to the collection efficiency and the depth of the ith sensitive volume in 

the nested group. The drain region of the transistor was modeled as the innermost 

sensitive volume with the highest collection efficiency.   

Figure 20: A reasonable fit was obtained with the least squares method for the (a) 
PMOS and (b) NMOS transistors.  

 
                     (a)           (b) 

 

 
(a) 

 
(b)	
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Figure 21: The positioning of the sensitive nodes on the flip-flop layout is shown for (a) 
DFF (b) DICE and (c) Q8FF. (d) Sensitive volume group for each transistor 

 

The placement of the sensitive volume group, thus derived, in the MRED model was 

dependant on the position of the sensitive nodes in the physical layout of the flip-flop 

designs. 

 

 
 

  
        (a)           (b) 
 

 
             (c) 
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Figure 22: A conceptual drawing of the scaling of sensitive volumes (a) TCAD 
calibrated sensitive volumes (b) Drain-scaled model and (c) All-volumes-scaled model 

for the 65nm designs 

 

For the 65nm and 45nm processes, scaled versions of the flip-flop models were 

developed. This scaling, as done previously by Narasimham et al. in [21], was based on 

the following two assumptions: 

1. Only the drain area, the innermost volume in the sensitive volume group, 

scales with technology node (Drain-scaled model) 

2. All the volumes in the in the sensitive volume group scale with technology 

(All-volumes-scaled model)  

MRED Simulations 

The MRED tool allows the user to specify, among other parameters, the energy-

depositing particle for e.g., heavy-ions etc.  For this work, a terrestrial neutron 

environment is chosen for the Monte Carlo simulations and particle strikes are simulated 

at a normal angle of incidence. The physics modules included for the simulation were 

StandardScreened, HadronElastic, HadronInelastic, PiKInelastic, NucleonInelastic and 

   
         (a)          (b)             (c) 
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IonInelastic. For every particle strike, charge collected in each sensitive volume group, 

representing a sensitive node is estimated and compared to the critical charge data 

obtained from SPICE simulations, as discussed in Chapter 3 of this thesis.    

In the charge threshold curves obtained from SPICE simulations, charge collected by 

one sensitive node (say, Q2) is plotted as a function of charge collected by the other node  

(say, Q1) of the sensitive node pair. 

Figure 23: The charge threshold curve for DFF designed at 90nm process is fitted to a 
parabolic equation that defines the upset-no upset boundary for that design. 

 

This can be represented mathematically, for e.g., figure 23 shows that the upset-no 

upset boundary for a DFF designed at 90nm technology node, can be represented by 

mathematically by the equation: 

€ 

Q2 = 0.113Q1
2 −1.34Q1 + 3.93. An upset is said to have 

occurred if the charge collected by the sensitive node pair is greater than or equal to the 
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value of the pair (Q2, Q1) that can satisfy the equation. An upset is considered a single-

node upset when one of the nodes in the sensitive node pair collects charge greater than 

or equal to the Qcrit associated with that node while the charge collected by the other node 

is a negligible value (Δ), as illustrated in figure 24. A low Δ implies a reduced occurrence 

of single-node upsets. Any upset that is not counted as a single-node upset is regarded as 

a multiple-node upset. The upset cross-section for single-node and multiple-node upsets 

is obtained by dividing the weighted count of upsets by the total fluence.  

Figure 24: Illustration of the Δ margin concept for defining single-node upsets. 

Simulation results 

The upset cross-section is normalized with respect to the results of the MRED model 

at 90nm technology node (simulated for a terrestrial neutron environment) and plotted for 

the technology nodes considered. The multiple-node upset cross-section for the DICE 
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flip-flop, in figure 25, indicates that there is an increased probability of multiple-node 

upsets at advanced technologies for both drain-scaled and all-volumes scaled cases.  

Since the DFF, LPFF and Q8FF are vulnerable to both single-node and multi-node 

upsets, the Δ margin was defined as 5% of the Qcrit associated with that sensitive node. 

The single-node and multi-node cross-sections, normalized with the multi-node cross-

section value at 90nm technology node, for these flip-flop designs are shown is figure 26.  

 

 

 

 

 

 

 

Figure 25: The normalized cross-section for multi-node upsets in DICE 

From figure 26, it can be noted that the multiple-node upsets, for the drain-scaled case, 

increases as the technology advances whereas for the assumption that all the volumes in 

the sensitive volume group scale, the multi-node upset probability increases for the 65nm 

flip-flop design as compared to the 90nm design but the probability is almost constant 

between the 65nm and 45nm designs. The single-node upset cross-section is unaffected 

by the scaling assumptions. Also, the single-node upset cross-section value for the 45nm 

flip-flop design is lower than that of the 90nm designs. This may be because the surface 
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area of the sensitive nodes in the 45nm design is approximately half of that in the 90nm 

design and hence a smaller area implies a lesser chance getting struck by a charged 

particle. 
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Figure 26: Normalized single and multi-node cross-sections for (a) DFF (b) LPFF and  
(c) Q8FF 

 
(a) 

 
(b) 

 
(c) 
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Figure 27: The layout of Q8FF with the three sensitive node pairs, (P1, P2), (N1, N2) and 
(P2, N2). Sensitive nodes P2 and N2 are affected by single-node charge collection as 

well. 

The rate of decrease in single-node upsets across the technology nodes considered is 

more for the Q8FF than the other designs (figure 26(c)). This is due to the fact that the 

Q8FF has four sensitive nodes that form three sensitive node pairs, as illustrated in figure 

27 and only two sensitive nodes are affected by single-node charge collection. The DFF 

and LPFF, on the other hand, have only two sensitive nodes that not only form a sensitive 

node pair but also upset for single-node charge collection. The presence of three sensitive 

node pairs in the Q8FF results in a higher multi-node upset cross-section than the DFF 

and LPFF and since the single-node upset cross-section, in comparison, reduces as the 

MRED models scale. 

The value of Δ is varied 1% and 10% of Qcrit of the sensitive node in the flip-flop, to 

investigate whether it impacts the upset cross-sections. The single-node and multi-node 

upset cross-sections are shown in figure 29. The results indicate that varying the Δ value 
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does not influence the upset cross-sections of the flip-flops greatly. The change in the 

upset cross-section of the flip-flops for the 45nm model as compared to the data from the 

90nm flip-flop models is given in the table below. 

Since charged particles in space can strike the circuit from all possible directions, the 

angle of incidence was changed from normal to grazing angle as the latter has a higher 

chance of affecting multiple transistors in a single strike than the former. The results, as 

seen in figure 28, show that the change in the angle of incidence has minimal impact on 

the multiple-node upset cross-section.  

Figure 28: Comparison between normal and grazing angle of incidence 

 TABLE 2. VARIATION IN UPSET CROSS-SECTIONS OF THE FLIP-FLOPS NORMALIZED W.R.T THE 90NM MODEL 

	
  
	
  

                     
 

*DSM = Drain-scaled 
model  

ASM = All-volumes-
scaled model 
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    (a)       (b) 

 
    (c)       (d) 

 
    (e)       (f) 
 

Figure 29: The effect of varying Δ margin on single-node upset cross-section is seen for (a) DFF (c) LPFF (e) 
Q8FF and on multi-node upset cross-section is seen for DFF, LPFF &Q8FF in (b), (d) &(f) respectively. 

Evidently, choosing 1,5 or 10% Δ margin does not impact the upset cross-sections significantly. 
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CHAPTER V 

	
  
SUMMARY 

	
  
This thesis investigates the trends in upset due to single-node and multi-node charge 

collection using SPICE and Monte Carlo simulations. Two factors influence the upsets in 

a flip-flop design: charge required to upset the flip-flop (Qcrit) and probability of that 

amount of charge getting collected at the node. Circuit-level simulations of four flip-flop 

designs at 90nm, 65nm and 45nm technology nodes show that the charge required for an 

upset due to both single-node and multi-node charge collection reduces with technology 

scaling. 

The resulting trends from the Monte Carlo simulations of energy deposition 

simulations of 3D models of the flip-flops indicated the following: 

i. Probability of upsets due to multiple-node charge collection increased by 5X – 

16X if only the drain scales with technology and 1.2X – 2X if all collection 

volumes scale with technology 

ii. Probability of upsets due to single-node charge collection reduced by 10% – 

50% (for the Q8FF, however, single-node charge collection reduced by 80%) 

and this trend was, for all practical purposes, unaffected by the scaling of the 

collection volumes. 

This methodology, involving circuit & device-level simulations, can be used to predict 

error rates provided the collection volumes are known for given technology.  
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APPENDIX  

 

A. Current source: 

The double exponential current source has been traditionally used to inject charge 

on a node in the single-event simulations at the circuit level for technologies older than 

the 90nm technology node. However, for deep submicron technologies, the current 

source derived from TCAD simulations (as discussed in Chapter 3) are used in 

simulations to estimate the critical charge. A comparison was made between the 

exponential current source and the current source derived from TCAD, used in this 

work (figure 30). 

 

 

 

 

 
Figure 30: Comparison between double exponential current source and the current 

source used in this thesis. The double exponential overestimates the Qcrit for the flip-
flop design considered 
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B. Strip contact v/s single contact. 

Figure 31: Comparison between a strip of contacts and single contact for the n-well. 
	
  
	
  
The n-well contacting scheme used in the TCAD simulation in Chapter 4 consisted of a 

strip of contacts that extended along the length of the well. This strip is replaced by a 

single contact for the n-well and SE simulations are performed as before. The results, as 

shown in figure 31, indicate that the charge collected by the transistor is higher when the 

strip of contacts is replaced by a single contact. This emphasizes the impact of the 

contacting scheme on SEE and implies that a strip of contacts assist in hardening the 

circuit against soft-errors occurring due to single-events. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 

 
(a)                                                                                 (b) 
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