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Chapter 1

Introduction

Despite President Richard Nixon signing the National Cancer Act of 1971, publicly
declaring ‘war’ on cancer, in 2018 cancer remains the 2nd leading cause of death in the
world. Nevertheless, substantial progress has been made over the long history of this dis-
ease. Surgical resection, which is still often the most effective treatment for noninvasive
solid tumors, could do little for metastatic disease. Chemotherapy, which gained promi-
nence through the 1940’s and 50’s offered a systemic approach that targeted and killed
cancer cells all throughout the body (DeVita and Chu, 2008). Nevertheless, treatment with
a single chemotherapeutic agent was generally insufficient to eradicate cancer from the
body, leading to combination chemotherapies, and eventually a surge in targeted therapies
(Joo et al., 2013).

The idea of targeted therapies, which gained considerable momentum in the 1990’s due
to the success of imatinib in the treatment of chronic myeloid leukemia, was to identify
a specific genetic or molecular aberration that distinguishes a patient’s cancer from their
healthy cells. A successful targeted therapy will potently kill cells harboring that aberra-
tion, while having minimal or no impact on healthy cells. Nevertheless, despite several
successes, even targeted therapies often fail eventually (Huang et al., 2014; Bozic et al.,

2012).

1.1 Heterogeneity and relapse in cancer

A common wisdom has emerged in oncology that no two cancers are the same. This
is further exacerbated within a patient who might have several disconnected tumors with
different types, or even different cells within the same tumor that are genetically and molec-

ularly distinct. In 1976, Peter Nowell proposed a model of clonal evolution within a pop-



ulation of tumor cells (Nowell, 1976), showing that treatment with a drug that kills most
of the tumor may simply be putting evolutionary pressure, selecting for the eventual emer-
gence of a population of tumor cells resistant to treatment. Nevertheless, in many cancers,
development of targeted therapies has had major a impact on prolonging and improving

patients’ lives.

1.2 Lung cancer

Lung cancer is a highly prevalent disease, and comes in second only behind prostate (in
men) and breast (in women) cancer for new diagnoses each year. However, lung cancer is
still the number one cause of cancer related deaths in both men and women (American Can-
cer Society, 2018). Lung cancer is broadly divided into small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC), the latter type encompassing lung adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma. Both types carry poor prognoses, with
S-year survival rates of about 30% for NSCLC, and 10% for SCLC (American Cancer
Society, 2018). Targeted therapies, especially for EGFR and ALK, have in recent years
produced a major impact on the treatment of patients with advanced NSCLC (Chan and
Hughes, 2015), however, patients with SCLC are still prescribed a combination of chemo-

and radiation-therapy as standard of care (Rudin et al., 2015).

1.2.1 Small-cell lung cancer

Small Cell Lung Cancer (SCLC) is a neuroendocrine tumor representing 15% of lung
cancer. Due to its fast growth, early metastatic spread, and rapid relapse following dramatic
chemotherapy responses, it is the most lethal form of lung cancer. Current standard of ini-
tial care is confined to combination chemo- or radiation-therapy (Table 1.1), regardless of
stage, alongside prophylactic cranial irradiation to delay onset of tumor metastasis to the
brain (Rudin et al., 2015). Proposals to stratify patients based on tumor phenotype have

been met with resistance due to unclear clinical relevance and lack of actionable informa-



Limited Stage Chemotherapy and radiation therapy
Combination chemotherapy alone

Surgery + chemotherapy or chemoradiation
therapy

Prophylactic cranial irradiation

Extensive Stage Combination chemotherapy
Radiation therapy

Prophylactic cranial irradiation

Recurrent Chemotherapy
Disease Palliative therapy

Table 1.1: Standard of care options for patients with limited, extensive, or recurrent stage
disease.

tion (Hiltermann et al., 2012; Jones et al., 2004; Subramanian and Simon, 2010; Travis,
2012). Indeed, SCLC cells are strikingly uniform by histopathology, displaying a classic
“small blue round cell” morphology. Nevertheless, recent years have yielded an explosion
of reports of SCLC phenotypic heterogeneity (George et al., 2015; Borromeo et al., 2016;
Mollaoglu et al., 2017; Lim et al., 2017; Jahchan et al., 2016; Calbo et al., 2011; Udyavar
etal., 2017), and it is widely anticipated that improved clinical outcomes will emerge from
phenotypic SCLC stratification (George et al., 2015; Mollaoglu et al., 2017; Lim et al.,
2017; Jahchan et al., 2016). Heterogeneity was implicated in the aggressiveness of the
disease when Calbo et al. (Calbo et al., 2011) demonstrated that interactions between two
distinct SCLC phenotypes, one with more neuroendocrine character and one with more
mesenchymal character, were necessary to promote metastasis. Others have identified dis-
tinct SCLC phenotypes characterized by MYC (Mollaoglu et al., 2017), NEURODI1 (Bor-
romeo et al., 2016; Mollaoglu et al., 2017), NOTCH (George et al., 2015), REST (Lim
et al., 2017), and others. Indeed, a combination of older (Carney et al., 1985) and newer
(George et al., 2015; Mollaoglu et al., 2017; Lim et al., 2017; Jahchan et al., 2016; Calbo

et al., 2011; Udyavar et al., 2017) observations indicate that the uniform morphology may



hide a variety of functionally distinct phenotypes with the ability to form an SCLC ecosys-
tem that is robust to perturbations and treatment.

One promising avenue for treatment strategies in SCLC is based on an understand-
ing of how SCLC cells, within a landscape of heterogeneous phenotypes, are able to evade
treatment and acquire drug resistance. Phenotype functional diversification, within the con-
straint of “small blue round cells”, may provide escape routes so that cells transition from
sensitive to resistant phenotypes either prior to or soon after a drug challenge (Udyavar
et al., 2017). Nevertheless, there is no standardized atlas of SCLC phenotypic hetero-
geneity, and similarities between reported phenotypes are not clear, especially across the
diverse range of model systems. Defining phenotypes at the molecular and genetic levels,
across model systems, and quantifying their routes and rates of plasticity is thus critical for
connecting reported heterogeneity with patients’ tumor clonal dynamics. The ability to pre-
dict drug-response trajectories based on initial tumor phenotypic composition and detected
changes over time has major implications for drug discovery and treatment optimizations
in SCLC. Finally, strategies to “reprogram” SCLC cells to a sensitive state may provide an
alternative or adjuvant avenue to chemotherapy. Thus, we are interested in understanding

the relationship between SCLC cell identity and drug response.

1.3 Modeling cell differentiation and reprogramming in cancer

1.3.1 Acknowledgements

This section is derived from work previously published. Reprinted by permission from
Elsevier B.V.: Wooten DJ and Quaranta V, Mathematical models of cell phenotype regu-
lation and reprogramming: Make cancer cells sensitive again!, Biochimica et Biophysica

Acta - Reviews on Cancer, 2017, v1867:167-175 (Wooten and Quaranta, 2017).



1.3.2 Introduction

Cancer is traditionally viewed as a genetic disease caused by the random accumulation
of mutations in critical genes or pathways that control proliferation and other hallmark traits
(Hanahan and Weinberg, 2011). Heterogeneity within a tumor would then arise through
classic Darwinian evolutionary processes of mutation and clonal selection (Nowell, 1976).
Expansion of heterogeneous phenotypes can then limit the effectiveness of treatment which
is inevitably directed to the majority (average) clones, as insensitive phenotypic variants
emerge.

However, it is becoming increasingly clear that the phenotype of a cancer cell is not just
determined by its genotype. Epigenetic (Ballestar and Esteller, 2008) and microenviron-
mental (Mbeunkui and Johann Jr, 2009) factors provide additional significant contributions,
such that two cancer cells with identical genotype may actually exhibit distinct phenotypes
(Figure 1.1).

This establishes provocative parallels with embryonic development in which a single
genome can give rise to widely diverging differentiated phenotypes. This review discusses
key advances toward a systems-level understanding of cell identity and reprogramming,
first in the context of normal development, then connecting it to cancer heterogeneity and
evolution. We review the foundational theory of cellular reprogramming, and discuss quan-
titative methods to predict or improve reprogramming efficiency and outcomes. In the last
section, we position these exciting recent cell biological breakthroughs in the context of

cancer heterogeneity and tumor evolution.

1.3.3 Cellular Reprogramming

Within developmental biology, the traditional dogma of cellular differentiation has been
that an organism begins as a zygote which gives rise to pluripotent stem cells (Gilbert,

2016). Upon division, environmental cues (Derynck and Akhurst, 2007) or stochastic ef-



Biological function

Adaptation, Selection

Selection

Figure 1.1: Levels of biological regulation. Due to genetic instability, cancer cells in a tu-
mor may have several distinct genomes (bottom). Each distinct genome underlies a unique
epigenetic landscape (middle), which defines what cell phenotypes are possible (top). This
allows both for cells with identical genomes to adopt distinct phenotypes, and also for cells
with distinct genomes to identify identical phenotypes (left VS right). This opens up pow-
erful possibilities for reprogramming cancer cells with diverse genetic backgrounds into
more treatable or less malignant phenotypes.

fects (McHale and Lander, 2014) can give rise to a hierarchy of cells with increasingly
differentiated states. Differentiation was considered an irreversible process, in which his-
tone modifications and DNA methylation controlled the accessibility of key DNA regions
(Gilbert, 2016) through opening or closing of the chromatin structure. However, differen-
tiated cells still maintain all the DNA required for pluripotency. Indeed, it was shown that
implanting the nucleus of a somatic cell into a denucleated oocyte could produce a stem
cell (Hwang et al., 2004), demonstrating the existence of unknown regulatory mechanisms
in the oocyte cytoplasm which were able to re-activate the locked pluripotency state.

In 2006, Takahashi and Yamanaka found a set of 4 transcription factors (TFs): Oct3/4,
Sox2, KlIf4, and c-Myc (collectively “OSKM?”), that could cause dedifferentiation of mouse
embryonic fibroblasts to induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka,
2006). On average, though, only about 0.05% of transduced cells underwent transforma-

tion, and upon relaxation of the TF cocktail, the cells fell back into their previous, differen-



tiated state (Okita et al., 2007). Other studies have extended the gamut of reprogrammable
cell types (Buganim et al., 2013), and while in many cases efficiency has been greatly
improved (Hanna et al., 2009; Rais et al., 2013), deciphering the regulatory programs con-
trolling cell identity promises to enable many biomedical applications (Khalil and Collins,
2010; Cherry and Daley, 2012), and may have future impacts on cancer therapy.

The OSKM TFs have been classified as “pioneer transcription factors,” able to bind
enhancers in a closed chromatin state (Soufi et al., 2012). These factors were also found
to promiscuously activate multiple off-target genes, such that final establishment of the
pluripotent state very likely requires a system-wide rebalancing of the gene regulatory net-
work (GRN) (Soufi et al., 2012).

Mathematical modeling is appropriate for understanding the GRN dynamics underlying
this rebalancing, and could accelerate discovery of key TFs to reprogram cells to a target
phenotype. This may be especially true in cancer cells, in which phenotypes are often not
clearly classifiable, especially with respect to treatment sensitivity. In the next sections, we
will discuss theoretical frameworks which aim to clarify the topology of epigenetic land-
scapes in mathematical terms, and could help resolve the nature of cancer cell phenotypes

and their drivers.

1.3.4 The epigenetic landscape and theory of attractors

In 1957, CH Waddington proposed the concept of an epigenetic landscape (Wadding-
ton, 1957) (Figure 1.2), in which cells roll downhill through bifurcating channels represent-
ing differentiation pathways. As cells progress down these metaphorical slopes, they be-
come increasingly committed to a terminal phenotype at the bottom. Distinct pathways are
separated by ridges, confining cells to their differentiated identity. While this framework
was intended purely as a conceptual tool to obtain a “rough and ready picture” that “‘cannot
be interpreted rigorously” (Waddington, 1957), it was nonetheless developed within the

mathematical context of dynamical systems theory.



Quasi-potential

Figure 1.2: Epigenetic landscape. Waddington envisioned cell differentiation as cells
rolling downhill in an “epigenetic landscape”, becoming increasingly more committed to
a terminal cell fate. Here we show an artistic rendering of a bumpy epigenetic landscape
characterized by a quasi-potential. Cells move downhill and settle into one of the minima,
termed “basins of attraction”. Some cell states may be more or less stable, depending on
the height of the energy barrier between them. Small perturbations will not push cells out of
their basin of attraction, however large and properly directed perturbations can reprogram
cells by moving them into a neighboring basin (shown as arrows depicting transitions).

This was reasonable since, within this theory, stable states (named attractors) com-
monly arise from dissipative systems which must exchange energy and matter with their
environment to sustain function (Gros, 2008), a seemingly realistic and necessary behavior
for cells. Thus, biologically, an attractor describes a state in which a cell identity can stably
persist.

Over the past 50 years, several researchers have taken on the task of formalizing this
attractor framework in the context of biology, in order to understand how signaling path-
ways and GRNs may robustly coordinate cell behavior (Ferrell, 2012; Kauffman, 1969b,a;
Huang et al., 2005; Huang, 2012; Wang et al., 2010; Choi et al., 2012; Tyson et al., 2003;
Woodcock, 1978; Huang, 2002; Zhou et al., 2012; Wang et al., 2008; Li and Wang, 2014,
2013a). The next section highlights these efforts and their potential relevance to cell repro-

gramming.



1.3.5 Gene regulatory dynamics and attractors

Stuart Kauffman proposed the idea of Boolean network models, in which genes can
either be ON or OFF (Kauffman, 1969b), in order to simulate the dynamics of GRNs. His
models revealed that networks with certain structural properties did indeed settle into a
small number of stable attractors, providing the first evidence that cell types may corre-
late with GRN attractors (Kauffman, 1969b,a). A few decades later, Huang and coworkers
(Huang et al., 2005) provided an experimental justification for this intriguing idea. In math-
ematics, attractors by definition have an associated region called the “basin of attraction”
(Figure 1.2) corresponding to all states that will eventually approach the attractor (Strogatz,
2014). Huang and coworkers exploited the fact that HL60 human promyelocytic leukemia
cells can be induced to differentiate into neutrophils via treatment with either DMSO or
ATRA. Tracking the trajectory of a 2773-gene expression panel, they showed that HL60
cells respond divergently to treatment with these agents. However, the trajectories eventu-
ally converged to an identical neutrophil state. They reasoned that the divergent trajectories
must both have been within the basin of attraction of the neutrophil state, which must then
be an attractor (Huang et al., 2005).

This basin of attraction is ultimately responsible for the stability of an attractor, as
small deviations from the attractor will remain confined within the same basin (Figure
1.2)(Kaneko, 2006; Strogatz, 2014). Within this framework, it has been suggested that
reprogramming can be achieved by forcing a cell out of its basin of attraction either through
an external push, or an internal rewiring which causes the landscape to shift, such that
the cell will be ultimately drawn toward an alternative attractor (Figure 1.2) (Wang et al.,
2011; Kaneko, 2006; Zhou et al., 2011; Zhou and Huang, 2011; Li and Wang, 2013b;
Huang, 2009; Zhou and Huang, 2013; MacArthur et al., 2008; Huang, 2002). These efforts
provided a motivation for developing quantitative models to connect the dynamics of GRNs

to cellular phenotype and reprogramming, as described in the next section.
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Figure 1.3: Hill kinetic gene regulatory functions. Hill kinetics are commonly used to quan-
tify the dynamics of GRNs. (a) A single activating interaction showing the characteristic
sigmoidal shape of the Hill curve. Low regulator concentrations do little to induce expres-
sion of the target gene, however as the concentration approaches a threshold value (red
dotted line) the regulatory strength increases rapidly. At the red dotted line, the regulator
has half of its maximum possible influence on its target. Further increases in concentration
gradually cause the influence to asymptotically approach the maximum regulation (blue
dotted line). Here, a = b =3, K = 0.3, and n = 3. (b) The Hill curve becomes more
switchlike as n becomes larger. Here, a =b =1, K =0.5, and n € {1,2,3,5,7,10,50} as
the switch becomes more instantaneous.
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1.3.6 Quantifying, drawing, and analyzing the epigenetic landscape

For biological systems, GRNs are comprised of hundreds to thousands of interacting
genes. Mathematically, each gene represents a single dimension, and it is possible to rou-
tinely compute with all these dimensions. However, most humans can only visualize a
maximum of 3 dimensions at once (2 genes, plus the landscape height, Figure 1.2), so
that it is in general impossible to visually represent the entire high-dimensional epigenetic
landscape for real biological systems. Nevertheless, quantifying this landscape can pro-
vide information about the barriers between separate basins, and visualizing 2D slices can
promote an intuitive understanding of cells’ behaviors.

A common method to quantify the dynamics of a GRN is based on Hill kinetics
(de Jong, 2002; Wang et al., 2008, 2011; Li and Wang, 2014; Zhou et al., 2011; Foster
et al., 2009; Li and Wang, 2013a; Savageau, 1995) (Figure 2). When each regulator of a

given TF (say, x;) acts independently, the dynamics take the form

L] N kL
dx; aj,ix; bjiK;; fox 11
T X pmomt Y ok (L1
J€Eactivators ™ j i +xj JErepressors X j i +xj

where a;; and b;; represent the maximum contribution or inhibition of the j’h TF on ex-
pression of x; (Figure 1.3), K;; reflects the threshold for the j’h TF to influence x;, n;
controls how switchlike or gradual the regulation is (Figure 1.3), and k; represents the nat-
ural decay rate of x;. More complicated forms are able to account for interactions between
TFs (Buchler et al., 2003).

The epigenetic landscape is often thought of as analogous to potential energy from
physics, and is ideally computed as a function, U (X), such that cells roll down the gradient

of U(X) under the dynamics of the GRN

= VU (1.2)

&5

In practice, however, even simple GRNs are not gradient systems (Ferrell, 2012; Wang
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et al., 2008; Zhou et al., 2012; Bhattacharya et al., 2011), and cannot be fully described
by Equation (1.2). One proposed method to overcome this is to split Equation (1.1) into a
portion which is describable by a landscape and some remainder (Wang et al., 2008; Zhou

etal., 2012)

= _V(’j<)?) +ﬁremainder<z) (13)

&

where U (X) is commonly referred to as a “quasi-potential” (Figure 1.2). Equation (1.3)
essentially separates the dynamics of relaxing foward the attractor (—VU (X)) from the dy-
namics along the attractor (ﬁrema,-nde,()_c’)) (Wang et al., 2008; Li and Wang, 2014). However,
there are infinitely many ways to construct such a decomposition (Equation (1.3)) and the
precise method chosen will influence the resulting landscape and difficulty of computation
(Zhou et al., 2012). Nevertheless, given a landscape it is possible to identify pathways of
least resistance (Li and Wang, 2013a; Wang et al., 2010, 2011; Zhou et al., 2012; Zhou
and Huang, 2013) for cells to transition between attractors, and it has been proposed (Li
and Wang, 2013a; Zhou and Huang, 2013) that such paths may provide a roadmap for ef-
ficient reprogramming strategies. Indeed, by varying parameters, from Equation (1.1) it is
possible to quantify how much each individual interaction contributes to the barrier height
between attractors. In a model of stem cell differentiation, Li found that previously estab-
lished reprogramming factors had a large impact on the barrier height along the path of
least resistance between attractors in a model of stem cell differentiation (Li and Wang,
2013a).

Alternative methods have been proposed to quantify the energy landscape, including
network entropy (Banerji et al., 2013) and a stitched-together landscape of potential energy
changes (Bhattacharya et al., 2011), and although these methods are more phenomenolog-
ical, they have been shown to qualitatively agree with intuitive expectations, and may be

appropriate for very high-dimensional systems.

12



Figure 1.4: Regulatory networks and basins of attraction. (a) A common regulatory motif
which consists of two TFs which repress one-another’s expression, while activating their
own. (b-d) Possible attractors and basins of attraction for different parameter sets from
Equation (1.1). While there is a stable “hybrid” state in (b), it can be destabilized as in (c)
and (d) by reducing the strength of self-activation. Similarly, by adjusting the activating
and repressing parameters, one phenotype may become more epigenetically favorable (d)
than the other (c).

1.3.7 Boolean network models can identify reprogramming strategies

Equation (1.1) models regulatory interactions as sigmoidal functions (Figure 1.3), so
that low concentrations have no regulatory impact, and high concentrations saturate toward
a maximal impact. By letting the Hill coefficient n become large, the transition from zero to
maximal impact becomes instantaneous (Figure 1.3)(Alon, 2006), mimicking the Boolean
structure proposed by Kauffman (Kauffman, 1969b). Boolean models therefore represent
a coarse-grained approach which is useful to derive qualitative results.

Using Boolean models to describe cellular reprogramming, Crespo and colleagues
(Crespo et al., 2013) developed network models of several biological systems. Simula-

tions of activations and knockdowns which drove the systems between attractors revealed
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experimentally validated cocktails of reprogramming factors.

Alternatively, Lang and colleagues (Lang et al., 2014) built a Hopfield neural network
(a type of Boolean model) to simulate dynamics leading toward 63 distinct cell states.
This approach revealed multiple attractors between cell types, which they suggested may
be responsible for the partial reprogramming observed experimentally. Furthermore, they
computed the contribution of each TF to the stability of a state and were able to identify

many known reprogramming TFs.

1.3.8 Simple models reveal topological properties of reprogramming

It has been proposed that GRNs maintain separated basins through clusters of TFs
which mutually activate one another’s expression via positive feedback, and reciprocally
inhibit expression of alternative clusters through negative feedback (Angeli et al., 2004;
Crespo and Del Sol, 2013; Kim and Wang, 2007; MacArthur et al., 2008) giving rise to
multistability (Thomas, 1978; Ferrell, 2012; Huang et al., 2007; Foster et al., 2009) (Fig-
ure 1.4). Intuitively, once one module becomes dominant, it simultaneously reinforces its
own activity, while silencing its repressors. Depending on the parameters of such systems,
which are potentially influenced by multiple external factors (Ferrell, 2012; Huang et al.,
2007), stable states may become destabilized (Figure 1.4). This is one way to force cells
into the basin of an alternative attractor (Figure 1.2). Thus, positive and negative feed-
back loops are a key driver of multistability, and represent a promising motif for cellular
reprogramming.

Inspired by this observation, Crespo and Del Sol (Crespo and Del Sol, 2013) identified
reprogramming factors by simply searching for positive feedback loops whose elements
are differentially expressed between distinct cell states. Within these feedback loops, genes
with maximum out-degree were predicted to be master regulators. This technique was able
to identify known reprogramming recipes for the several cell types they tested (Crespo and

Del Sol, 2013).
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Other researchers have studied structural properties of simple models in which entire
clusters of TFs are simulated as single, auto-activating and cross-inhibiting nodes (Figure
1.5) (MacArthur et al., 2008; Artyomov et al., 2010; Foster et al., 2009). For instance,
MacArthur and colleagues (MacArthur et al., 2008) built a simple model for stem cell
differentiation by coupling 3 auto-activating lineage-specific modules and a pluripotency
module with negative feedback loops. They found that increasing differentiation factors led
to an irreversible progression through pluripotent, tripotent, bipotent, and finally terminally
differentiated states. Noise added to the pluripotency module enabled differentiated cells
to stochastically dedifferentiate, while noise in other modules had no effect.

This TF clustering approach was adopted by Cahan, Morris, and coworkers (Cahan
etal., 2014; Morris et al., 2014) who developed CellNet to score performance of reprogram-
ming experiments between a predefined set of 21 cell types (though it has now expanded
to include 36: 16 human cell types and 20 mouse), and suggest TFs to push partially repro-
grammed cells the rest of the way. To build CellNet, the authors identified network-based
clusters of TFs with specific enrichment for a distinct cell type. TFs are prioritized as
reprogramming targets based on their differential expression levels and centrality within
these clusters. Applying their method to established protocols of cellular reprogramming,
the authors consistently found evidence of partial reprogramming. In many cases, further
manipulation of prioritized TFs improved target cell function and stability (Morris et al.,
2014).

Others have considered GRNs arranged as a hierarchy of positive and negative feedback
loops, which lead to hierarchies of differentiation (Foster et al., 2009; Zhou et al., 2011).
Artyomov and coworkers studied topological reprogramming properties of such networks
(Artyomov et al., 2010), and observed that successful reprogramming was only achievable
by targeting TF modules of the immediate progenitor or the immediate neighbor of the
current state. (Artyomov et al., 2010).

Rackham and colleagues developed Mogrify (Rackham et al., 2016) based on a simi-
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Figure 1.5: Multistable regulatory network and reprogramming. (a) Example topology of a
GRN extending the motif in Figure 1.4 in which TFs specific to a certain cell type (given as
colors) predominately promote one another’s expression through positive feedback loops,
and inhibit TFs specific to alternative cell types. (b) This topology is often ammenable to
reducing to interactions between clusters of TFs. (c¢) Such topologies commonly give rise
to multistable systems where each cluster of TFs are activated in particular phenotypes.
(d) Reprogramming by activating TFs from a target phenotype may destabilize several of
the phenotypic attractors, but may still maintain a rugged landscape with partially repro-
grammed cells and off target effects. Further activations or knockdowns can alleviate this
and result in more complete and stable reprogramming.
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Figure 1.6: Network construction and analysis workflow. A workflow we used in our
recent work (Udyavar et al., 2017) in which we identify and model a TF network control-
ing phenotypic heterogeneity in small-cell lung cancer. It consists of three phases. First,
analyzing gene expression data to identify distinct cellular phenotypes and co-expressed
clusters of genes which distinguish those phenotypes (as in Figure 1.5). Second, identify-
ing TFs which regulate those co-expressed gene clusters and assembling them into a TF
network. Finally, simulating the dynamics of the TF network to identify stable attractors.
We used a Boolean modeling approach to find SCLC phenotype attractors.

lar principle by prioritizing TFs based on their proximity to differentially expressed genes.
They integrated topological information from gene regulatory networks from the STRING
database (Szklarczyk et al., 2011) and FANTOM consortium (Kawaji et al., 2009), and as-
sign a score to TFs based on a combined score of their own differential expression between
the two tissue types, and also by weighting the differential expression of downstream target
genes based on their regulatory distance and specificity. They have applied this approach
to prioritize TFs to reprogram between any of 173 cell types and 134 tissues in humans,

identifying and validating several novel reprogramming experiments.
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1.3.9 Reprogramming in cancer

While often thought of as a purely mutational disease, cancer is recognized as having
a significant epigenetic component (Ballestar and Esteller, 2008), supporting the idea that
the methods of cellular reprogramming may find new applications in treatment.

Tumors are known to be heterogeneous cell populations including multiple types of
cancer cells as well as various non-malignant supporting cells. The behaviors and interac-
tions between all these cell types leads to the overall phenotype of the tumor. For instance,
clonal evolution in cancer can lead to selection of resistant subpopulations of tumor cells
during treatment (Greaves and Maley, 2012). The cancer stem cell hypothesis suggests
that tumors have a small population of cells which persist through treatment, and which
are able to give rise to and replenish the entire pool of tumor phenotypic diversity (Jordan
et al., 2000).

Different groups have shown that tumor cells can be reprogrammed to iPSCs using
the same factors as in normal cells (Miyoshi et al., 2010; Zhang et al., 2013; Suva et al.,
2014). For instance, Miyoshi and colleagues (Miyoshi et al., 2010) found that the Ya-
manaka OSKM factors were able to induce an embryonic stem-cell-like phenotype in gas-
trointestinal cancer cell lines, and found that these transformed cells showed reactivation
of tumor suppressor genes, increased chemosensitivity, and decreased invasiveness.

Likewise, Zhang and coworkers (Zhang et al., 2013) showed that overexpression of
Oct4, Nanog, Sox2, Lin28, Klf4, and c-Myc was able to reprogram human sarcomas into
1PSCs. Furthermore they showed that these tumorous iPSCs could be redifferentiated into
connective tissue and red blood cells, and that this process resulted in a loss of tumorigenic-
ity.

Glioblastomas (GBMs) contain rare populations of tumor propagating cells with stem-
like properties which are known to drive tumor progression and therpeutic resistance. Suva
and colleagues (Suva et al., 2014) showed that activation of Pou3f2, Sox2, Sall2, and Olig2

is able to transform GBM cells to behave like these tumor propagating cells.
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Taking another direction, Véncio and colleagues (Véncio et al., 2012) showed that re-
programming the tumor microenvironment could also have a therapeutic effect. They found
that CD90+ prostate cancer-associated stromal cells could be reprogrammed to iPSCs by
overexpressing Pou5fl, Lin28, Nanog, and Sox2, causing the reprogrammed stromal cells
to lose their tumor supporting phenotype.

These studies have relied on the vast amount of knowledge and expertise developed
in the stem-cell reprogramming field, and serve as proof-of-principles to establish repro-
gramming as a viable avenue for treatment. However, the extreme diversity of cancer het-
erogeneity provides challenges and opportunities for additional reprogramming strategies
between different cancer-specific phenotypes, or even reverting the cancer phenotype to a
non-malignant one. Prioritizing targets to drive conversions between these different pheno-
types will benefit from the application of the computational and mathematical frameworks
reviewed in this paper.

Indeed, it has been argued that the view of cell types as attractors of some epigenetic
landscape is applicable not only to understand epigenetic regulation in normal tissue, but
also cancer and cancer heterogeneity. For instance, several groups have advocated that the
malignant state itself represents an attractor of some epigenetic landscape, and that healthy,
non-malignant states may still be reachable via reprogramming (Kauffman, 1971; Huang
et al., 2009; Li et al., 2015; Szedlak et al., 2014).

Additionally, other groups including ourselves have found that distinct TF network at-
tractors specify heterogeneous cancer phenotypes. For instance, we (Udyavar et al., 2017)
(Chapter 2 here) found that neuroendocrine-epithelial and mesenchymal-like heterogeneity
in small-cell lung cancer could be explained as attractors of a TF network derived following
a mixed bioinformatics, modeling, and experimental workflow in Figure 1.6. Significantly
we found that treatment with chemotherapeutics caused shifts toward a hybrid phenotype,
suggesting that epigenetically modulated cancer heterogeneity contributes to treatment re-

sistance. Reprogramming cells out of resistant states and into sensitive ones is likely to
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improve treatment effectiveness in such cases.

Many of these results have also been demonstrated by other groups using microRNA
perturbations to reprogram cancer cells, instead of TFs. This builds off of reports that
microRNAs can efficiently reprogram cells (Anokye-Danso et al., 2011; Hu et al., 2013).
Tsuno and colleagues (Tsuno et al., 2014) showed that lentiviral induction of miR-520d
was able to reprogram hepatoma cells to a stem-like state which, when injected into mice,
showed no malignancy. Importantly, Ogawa and colleagues (Ogawa et al., 2015) adminis-
tered miR-302 and miR-369 in vivo to reprogram colon tumors to less malignant states,
showing that the reprogrammed tumor cells had higher activation of apoptosis. Other
groups have also shown the potential of miR-302 to reprogram cancer cells toward a stem-
like state (Lin et al., 2008; Koga et al., 2014), and may improve drug sensitivity (Koga
etal., 2014).

1.3.10 Moving to the clinic: Opportunities and Challenges

One of the primary challenges facing cancer researchers and clinicians today is that
while treatment may be initially efficacious, the tumor eventually relapses, and has become
refractory to further treatment (Kottke et al., 2013). It would therefore be powerful to find
ways to reprogram tumor cells back to a sensitive phenotype, or adjuvant treatments which
prevent the emergence of resistant phenotypes altogether.

Early efforts to develop such treatments will benefit by focusing on cancer types with
well-established signatures of heterogeneity, such as small-cell lung cancer (Udyavar et al.,
2017), glioblastoma (Parker et al., 2016), non-small-cell lung cancer (Boutros et al., 2009),
or breast cancer (Almendro et al., 2014b; Dai et al., 2015), and phenotype-specific drug
sensitivity patterns. Based on these gene signatures, a workflow like that shown in Figure
1.6 can be used to to identify a GRN underlying that cancer’s epigenetic landscape, and
transitions between sensitive and resistant attractors.

Clinically, transcriptomic profiling of multiregion biopsies (Gerlinger et al., 2012) or of
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circulating tumor cells (liquid biopsies) (Hayes and Paoletti, 2013) could be used to deter-
mine the specific phenotypic composition of a patient’s primary tumor and/or metastases.
Optimal combinations of TF activations or knockdowns for this specific patient can then be
identified to stabilize the sensitive cells, and destabilize the resistant ones.

Historically it has been difficult to develop chemical therapeutics targeting transcrip-
tion factor function, but recent advances have shown that this is a promising area of future
research (Bhagwat and Vakoc, 2015). Nevertheless, there are several, alternate approaches
which may result in indirect perturbations of a patient’s TF network, including combina-
tions of drugs, signaling pathways, microRNAs, and epigenetic agents.

Bioinformatically, the Connectivity Map (Lamb et al., 2006) and LINCS L1000 (Duan
et al., 2014) databases provide information about gene expression changes resulting from
pharmacological or genetic perturbations. Interrogating these online resources with appro-
priate datasets from clinical tumors may help identify existing approved compounds which
are statistically linked to activation or inhibition of target TFs. Nevertheless, the mecha-
nism of these changes is generally not well understood, and off-target effects may limit the
effectiveness of this approach.

Mechanistically, signal transduction pathways carry information through a cell and of-
ten end in the activation, deactivation, and/or degradation of one or many TFs. Impor-
tantly, the phosphorylation events that carry information through signaling pathways are
well suited to pharmacological inhibition or activation.

Another promising approach is through clinical overexpression or inhibition of mi-
croRNAs. Currently no microRNA therapeutics are FDA approved, however there are sev-
eral under preclinical investigation, and a few in clinical trials. Significantly, as discussed
above, in some cases microRNAs have been shown to be effective reprogramming agents,
including in cancer, and they may therefore become important components of reprogram-
ming therapies.

Gene expression is intrinsically limited by the accessibility of a region of DNA, and
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chromatin structure can help lock in a cell’s identity. Chemical agents which act as hi-
stone deacetylase inhibitors or DNA methyltransferases can cause extensive changes in
gene expression and plasticity, and have been shown as effective reprogramming agents.
Furthermore, there are several FDA approved epigenetic therapeutics which may be used
in combination with other strategies to improve reprogramming efficacy.

Biologically, the actions of signaling networks, microRNAs, chromatin structure, and
TF regulation occur over several timescales, from seconds or minutes (within a single cell’s
lifetime), to hours and days (spanning cell generations) (Voss and Hager, 2014). We fore-
see that a key theoretical challenge will be to reconcile the dynamics of these different

timescales, and across cell divisions.

1.3.11 Discussion

60 years after its introduction, Waddington’s epigenetic landscape remains a power-
ful metaphor to understand differentiation and reprogramming. Recent advances in cancer
biology have painted a clearer picture of the importance of epigenetic regulation in main-
taining malignancy and heterogeneity, and indeed several studies have already shown the
feasibility of using TFs to reprogram cancer cells, particularly in the context of differenti-
ation.

Analysis of stability, perturbations, and topology have all been applied to identify pos-
sible reprogramming targets with great success in normal developmental biology, and pro-
vided insights into how cells maintain barriers between differentiated states through feed-
back loops.

However, it is not always clear how dysregulation in cancer GRNs may give rise to
unique phenotypes. Nevertheless, recent results have suggested that these same tools may
be useful to decode cancer epigenetic regulation.

As our understanding of epigenetic regulation improves, we should be able to create

detailed models which provide a theoretical, high-resolution depiction of the control of
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cancer and cancer heterogeneity which will be indispensable in the search for therapeutic
options. The outcome of such research could fundamentally reverse the standard approach
to personalized therapy, in which new drugs are developed to match specific subtype of
cancer. Instead, we may find ways to develop therapies which reprogram resistant cells

into a sensitive state, matching cells to the drug.

1.4 Outline of dissertation

In this dissertation, I will report the methods and results of my studies into the relation-
ship between phenotypic heterogeneity, cell identity, and drug response in cancer, as well
as methods to identify systems-based therapies, and quantify their effectiveness. The first
two chapters report the results of my investigation into phenotypic heterogeneity in SCLC. I
identify several transcriptionally and functionally distinct SCLC phenotypes, including the
characterization of a multi-drug resistant, and develop mathematical models to understand
the key regulatory genes that stabilize these phenotypes. The next two chapters report the
results of my investigation into modeling the drug response of heterogeneous populations
of cells, as well as a new method to quantify the synergystic behaviors of combinations of
drugs. In total, this work represents progress towards a systems-level understanding of the

relationship between cancer, heterogeneity, cell identity, and drug response.
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Chapter 2

Transcription factor network regulates NE and ML differentiation in SCLC, and reveals

distinct, variant SCLC phenotypes

2.1 Acknowledgement

This chapter is derived from work previously published. Reprinted by permission from
the American Association for Cancer Research: Udyavar AR et. al, Novel Hybrid Pheno-
type Revelaed in Small Cell Lung Cacner by a Transcription Factor Network Model That
Can Explain Tumor Heterogeneity, Cancer Research, 2017, 77(5):1063-1074 (Udyavar
et al., 2017).

2.2 Introduction

Small cell lung cancer (SCLC), accounting for 13% of lung cancers (American Cancer
Society, 2016), is exceptionally aggressive. Patients with extensive disease die 1 year
from diagnosis, and patients with limited disease experience a dismal 20% cure rate (Rudin
et al., 2015; Fischer et al., 2007; Hann and Rudin, 2007). Standard of care (Rudin et al.,
2015), confined to chemo and radiotherapy for half a century, is largely ineffective as SCLC
patients exhibit high initial response rates rapidly followed by treatment-refractory relapse.

Expression-based subtyping, impactful in other cancers (Marusyk et al., 2012), may
be effective in SCLC because of phenotypic variability (Rudin et al., 2015; Carney et al.,
1985) with respect to neuroendocrine features of its cell of origin (Sutherland et al., 2011;
Calbo et al., 2011). A recent study (George et al., 2015) identified two transcriptional
SCLC subtypes distinguishable by Notch pathway activity and aggressiveness, but without
mutational differences. In genetic mouse models of SCLC, Calbo et al. showed that spon-
taneously occurring neuroendocrine and non-neuroendocrine cell phenotypes coexist and

cooperate to promote metastasis (Calbo et al., 2011).
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These reports indicate that a deeper understanding of cellular phenotypes could produce
insights into biology and evolution of SCLC. A limitation of previous studies (Calbo et al.,
2011; George et al., 2015) is that analyses were based on population averages, whereas
variability in tumors should be considered at the single-cell level (Marusyk et al., 2012;
Almendro et al., 2014a; Meacham and Morrison, 2013). It also remains unclear why this
heterogeneity emerges.

To fill these knowledge gaps, we investigate SCLC phenotypic heterogeneity at the
single-cell level using an integrative computational and experimental approach. Consistent
with previous reports, we found two transcriptional subtypes at the population level in cell
lines and patient specimens, characterized by gene co-expression modules enriched in neu-
roendocrine/epithelial (NE) and mesenchymal-like (ML) features. To understand how these
phenotypes may arise in the absence of driving mutations (George et al., 2015), we hypoth-
esized that they are attractors of a regulatory TF network. This approach is grounded in
the mathematical interpretation of Waddington’s epigenetic landscape (Waddington, 1957;
Huang, 2012), whereby attractors correspond to biological differentiation states or stable
phenotypes. Based on this view, it has previously been proposed that malignant pheno-
types in cancer correspond to attractors (Kauffman, 1971; Huang et al., 2009), and some
have suggested “differentiation therapy” from malignant to benign attractors as a possible
treatment strategy (Kauffman, 1971; Huang et al., 2009; Li et al., 2015; Szedlak et al.,
2014).

To this end we construct an SCLC master regulatory network of transcription factors
(TFs) from NE and ML gene-expression signatures. We then adopt a discrete Boolean
modeling approach to simulate the behavior of this TF network and evaluate its ability to
dynamically control NE and ML phenotypes. Discrete models are well suited to provide
insight into complex TF networks by identifying steady state TF patterns of expression,
termed attractors. Mathematically, attractors represent the stable configurations of the dy-

namic TF network. Biologically, attractors correspond to transcriptional steady states of
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Figure 2.1: Identification of two phenotypes in SCLC cell lines and patients. Consensus
clustering was used to identify robust clusters of CCLE cell lines (A and C) and CLCGP
tumor specimens (B and D). The consensus score is the frequency that a given pair of
samples was placed in the same cluster over 1,000 iterations. The cumulative distribution
of SCLC cell line (A) and patient (B) consensus scores is shown for values of k from 2 to
10. These results most strongly support 2 transcriptional subtypes in SCLC cell lines and
patients, though in cell lines 4 subtypes may be a good fit. Corresponding consensus score
heatmaps for SCLC cell lines (C) and patients (D) are shown for k=2 to k=4. Each point
represents a pair of samples, colored by consensus score from white (0, never co-cluster)
to blue (1, always co-cluster).
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an epigenetic landscape formed by active (ON) and silent (OFF) TFs regulating each other.
While discrete models are coarse approximations, they are nevertheless informative and cir-
cumvent the obstacle of unfeasible parameter acquisition (Albert et al., 2008; Wynn et al.,
2012).

Simulations of our SCLC TF network predict attractors corresponding to the NE and
ML SCLC subtypes. Furthermore, by distilling the NE and ML states to their core driving
TFs, the model highlighted a shortcoming of the two-subtype classification, as several cell
lines and patient samples did not match any attractors. Western blots revealed that these
samples expressed similar levels of both NE and ML markers. Flow cytometry revealed
that this “double-positive” phenotype reflected the character of individual single-cells, con-
firming the existence of a previously unreported “hybrid” single-cell phenotype in SCLC.
Exposure to cytotoxic and epigenetic drugs caused NE and ML cells to transition toward

the hybrid state, implicating it as a refuge for survival of treated SCLC tumors.

2.3 Characterization of SCLC NE and ML phenotypes

We applied consensus clustering (Wilkerson and Hayes, 2010) to the 53 SCLC cell
lines in the Cancer Cell Line Encyclopedia (CCLE) database (Barretina et al., 2012), and
to 28 tumor samples from the Clinical Lung Cancer Genome Project (CLCGP) (, CLCGP),
with the expectation to detect previously observed neuroendocrine and non-neuroendocrine
phenotypes (Calbo et al., 2011; George et al., 2015). Consensus clustering analysis, which
provides a rationale for determining the number of robustly separated subtypes, indicated
that the CCLE cell lines and the CLCGP patient specimens are most consistently separated
into 2 distinct clusters (termed Clusters 1 and 2, Figure 2.1).

To characterize these clusters, we applied weighted gene co-expression network analy-
sis (WGCNA) (Langfelder and Horvath, 2008) to the 53 CCLE cell lines. WGCNA iden-
tified 13 gene co-expression modules (Figure 2.2). To summarize the overall expression

of each module, eigengenes (first principal component of all genes within a module) were
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Figure 2.2: WGCNA co-expression modules. (A) Dendrogram generated by WGCNA un-
supervised hierarchical clustering of genes from SCLC dataset. Adopting a cutoff height of
0.95 resulted in 14 gene modules. 13 modules contain co-expressed genes and are assigned
colors, as is standard for the WGCNA package. The grey module contains all genes which
could not be clustered using this cutoff. (B) Boxplots comparing distribution of module
eigengenes for the consensus clusters assigned in Figure 2.1. Only the Blue and Turquoise
module were statistically significantly different.
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computed (Figure 2.3). The Blue module eigengene was upregulated (Bonferroni adjusted
p i 0.001) within Cluster 2, while the Turquoise module eigengene was upregulated (Bon-
ferroni adjusted p j 0.05) within Cluster 1 (Figure 2.3 and Figure 2.2B). No other module
eigengenes showed statistically significant differences between the consensus clusters (Fig-
ure 2.2B).

WGCNA modules are derived agnostically, and reveal co-expressed genes participat-
ing in similar biology. Blue and Turquoise module genes therefore provide information
about the overall character of the consensus clusters. Visual inspection reveals that hubs
(highly connected genes) in the Blue and Turquoise modules are well-known neuroen-
docrine/epithelial or mesenchymal biomarkers, respectively (Figures 2.4 and 2.5). Statisti-
cal analyses by Gene Ontology and EnrichmentMap (Merico et al., 2010) confirm enrich-
ment of the Blue module for neuroendocrine and epithelial differentiation processes, while
the Turquoise module is enriched for pathways involved in mesenchymal phenotype and
epithelial-to-mesenchymal transition (EMT) (Figure 2.6 and 2.7). Additionally, we per-
formed gene-set enrichment analysis (GSEA) with published signatures of pro-neural, mes-
enchymal and proliferative glioblastoma subtypes (Carro et al., 2010) on the 12 cell lines
with highest Blue module eigengene expression, and 9 cell lines with highest Turquoise
module eigengene expression. The pro-neural (Figure 2.7B, lower panel) and mesenchy-
mal (Figure 2.7B, upper panel) signatures were enriched in the cell lines with high Blue
module and Turquoise module expression, respectively. As a control, the proliferative sig-
nature was significantly enriched in neither (p-value > 0.1, data not shown).

Thus the Blue module genes are a signature of the canonical neuroendocrine state of
SCLC, while the Turquoise module genes are a signature of non-neuroendocrine / mes-
enchymal cells. We therefore refer to Cluster 2 (in which Blue module genes are high) as
the SCLC neuroendocrine/epithelial (NE) subtype, and to the Cluster 1 (in which Turquoise

module genes are high) as the SCLC mesenchymal-like (ML) subtype (Figure 2.1B, C).
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Figure 2.3: Two anti-correlated gene co-expression networks distinguish phenotypic clus-
ters. (A and B) Upper panels: Heatmap view of the Blue (A) and Turquoise (B) module
genes (rows) across 53 SCLC cell lines (columns). Cell lines are ordered and marked as
in Figure 2.1C consensus clustering. Lower panels: The gene expression profile for each
cell line is summarized by the eigengene. The Blue and Turquoise modules had signifi-
cantly different eigengene expression between the two consensus clusters. (C) The Blue
and Turquoise module eigengenes plotted for each cell line reveals anti-correlated expres-
sion of Blue vs. Turquoise module (Pearson’s correlation: -0.86, p-value: 1.6e-16).
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Figure 2.4: Blue module network topology given by WGCNA. This figure shows nodes
within the Blue module defined via WGCNA while edges denote a topological overlap
measure (TOM). TOM is a metric for the degree of co-expression/correlation between a
pair of genes (Langfelder and Horvath, 2008). If the TOM is significant, an edge is drawn
between a pair of genes. The thickness of the edges denotes the magnitude of TOM. The
size of the node and its font denotes intramodular connectivity ("hubness’) (Langfelder and
Horvath, 2008) within the Blue module, higher the value - larger the size of the node and

its font. The nodes in red denote well-known biomarkers of neuroendocrine and epithelial
differentiation.
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Figure 2.5: Turquoise module network topology given by WGCNA. Same as Figure 2.4,
except that the nodes in red denote well-known biomarkers of Epithelial-mesenchymal

transition (EMT) or mesenchymal differentiation.
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Figure 2.6: Biological processes associated with Blue and Turquoise module genesets. The
Blue and Turquoise modules exhibit statistically significant differences (FDR;0.05) in dif-
ferentiation (upper part) and signaling (lower part) pathways, by comparative enrichment
analysis of Gene Ontology (GO) pathways using BINGO and EnrichmentMap (Merico
et al., 2010) in Cytoscape (www.cytoscape.org). These differences are presented as a net-
work, where nodes denote the GO categories and edges denote GO connections between
the pathways. Solid red dots are umbrella nodes that connect distinct but related biological
processes (manually encircled with dotted lines). The characteristics of the other dots are
indicated in the box. Blue module shows enrichment for epithelial and neuronal develop-
ment and differentiation, neuronal signaling, axon guidance, neurotransmitter secretion and
cell-cell signaling. Turquoise module shows enrichment for myeloid and neural crest dif-
ferentiation, MAPK, JAK-STAT, NF-kB, TGFbeta, and cytokine signaling cascades (TNF,
VEGEF, IL-6, IL-8) that are known to be associated with a mesenchymal/EMT phenotype.
Note that statistically significant differences between Blue and Turquoise modules were
also found for the following pathways: metabolism, adhesion, transcription, proliferation
and apoptosis (data not shown).
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Figure 2.7: Pathway expression of the Blue and Turquoise modules given by comparative
pathway enrichment analysis. (A) In columns, expression of genes comprised in differ-
entiation and signaling pathways that distinguish the Blue and Turquoise module (Figure
2.6), averaged within each of the 53 SCLC cell lines (rows, ordered by Blue eigengene
as in Figure 2.3). Blue module shows enrichment for neuronal signaling, axon guidance,
neurotransmitter secretion and cell-cell signaling. Turquoise module shows enrichment for
MAPK, JAK-STAT, NFKappaB, TGFBeta, cytokine signaling cascades (TNF, VEGF, IL-6,
IL-8) that are known to be associated with a mesenchymal/EMT phenotype. (B) Gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) of pro-neural and mesenchymal
glioblastoma subtype signatures (Carro et al., 2010) in SCLC cell lines. In this analysis,
the 15477 CCLE genes are rank-ordered (left to right) based on correlation between their
expression to the top 9 (ML phenotype) and bottom 12 (NE phenotype) SCLC cell lines as
ordered in (A). These rank-ordered genes are then assessed for enrichment with gene sig-
natures of pro-neural (bar code in upper panel, as indicated) and mesenchymal (bar code
in lower panel, as indicated) glioblastoma subtypes (Carro et al., 2010). Upper panel: the
Enrichment Score (ES) for the mesenchymal glioblastoma signature quickly rises in the
part of the gene ranking list correlated with the SCLC ML cell lines, and decreases there-
after. Lower panel: the ES for the pro-neural glioblastoma signature rises alongside genes
correlated with the SCLC NE cell lines.
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2.4 Boolean simulations of TF network predict attractors corresponding to NE and ML

states

Since NE and ML subtypes are not associated with driver mutations (George et al.,
2015), we hypothesized they may be regulated epigenetically, as during normal cell dif-
ferentiation. Cell identity in differentiation is largely controlled by regulatory networks
of transcription factors (TFs) that coordinate expression of each other and of target genes
(Dowen et al., 2014; Gilbert and Barresi, 2017). To understand specification of NE or ML
cell identity, we derived a network of TFs which regulate expression of genes within the
Blue and Turquoise modules (see Methods; Figure 2.8). By pruning nodes which had no
outgoing edges, we reduced this network to a core set of 33 TFs and 361 interactions (Fig-
ure 2.9). We used random asynchronous order Boolean simulation with both threshold and
inhibitory dominant update rules to identify attractors. Using the threshold update rule, we
found 57 stable fixed-point attractors (Figure 2.9A) and no oscillating attractors. With the
inhibitory dominant rule we found only 6 fixed point attractors, but 5 two-state oscillating
attractors as well. Both the threshold and inhibitory dominant attractors revealed similar
features in all subsequent analyses, suggesting that these results are robust to the precise
nature of the regulatory interactions. We also inferred network robustness to perturbations
using Derrida curves (Derrida and Pomeau, 1986) (Figure 2.10). These results indicate that
the basins of attraction are more robust than those of a random network, and that the net-
work dynamics are ordered, rather than chaotic. Together, these observations suggest that
the internal structure of interactions imposed to the network (Figure 2.9A) is non-random
and naturally leads to well-regulated stationary states, and that our coarse modeling ap-
proach is acceptable for this system.

Each attractor is a 33-dimensional vector of TFs, differing by the overall TF ON-OFF
expression pattern (columns in Figures 2.9B). Many of the attractors differ only by one
or a few TFs. Hierarchical clustering segregated the threshold attractors into four distinct

clusters (Figure 2.9B). Results from the inhibitory dominant network are qualitatively sim-
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Figure 2.8: Identification of transcription factors that regulate SCLC phenotypic states.
(A) Overview of Boolean model network generation analysis. To identify a global SCLC
transcriptional regulatory network, ARACNE analysis (based on mutual information be-
tween genes) was performed on 53 SCLC cell lines and 15477 genes in the CCLE dataset.
The analysis yielded a network of 8706 nodes (genes) and 27224 edges (see Methods).
This core SCLC network was analyzed using Fisher’s exact test to identify top transcrip-
tion factors (TF) that act as master regulators of either the NE or ML networks (identified
via WGCNA). These TFs were independently validated using literature and transcription
factor ChIP-Seq and TF-binding site prediction databases via EnrichR (Chen et al., 2013),
leading to a list of 76 TFs. Only the most variant TFs across the SCLC cell lines were
selected for building the boolean model network. (B) Correlation heatmap plot of indi-
vidual 73 Blue and 184 Turquoise module and 23 common TF regulators (columns) with
1179 Blue and 3471 Turquoise module genes (rows). Yellow-orange-red indicates positive
correlation suggesting positive target gene regulation while green-blue indicates negative
correlation suggesting negative target gene regulation. (C) Density histogram of the Blue/-
Turquoise TF regulators and correlation with its targets in the Blue or Turquoise modules.
This suggests that a particular TF differentially regulates the 2 modules. (D) ARACNE
network view of the top TFs shown in B and C (identified via master regulator analysis)
that regulate the Blue, Turquoise or both modules. The node connectivity of a TF is given
by its bigger size indicative of the number of targets regulated by the TF. Edges are derived
from ARACNE mutual information between the nodes given its co-expression.
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Figure 2.9: Transcription factor network predicts NE and ML attractors. (A) The 33 TF
SCLC regulatory network. Green edges indicate activation, while red indicate inhibition.
(B) Boolean simulations identified 57 stable attractors (columns). TF expression patterns
for all attractors is displayed in rows: shaded cells represent TFs that are ON, white repre-
sents OFF. (C) TF expression in the CCLE dataset reveals similar expression patterns to in
silico attractors. (D) Correlation score between attractors (columns) and cell lines (rows).
Positive correlation is indicated in red, no correlation in yellow, and negative correlation
in white. Attractors 49-25 show high correlation with the NE cell lines, while attractors
35-34 show high correlation with the ML cell lines. Nevertheless several cell lines are un-
correlated with NE or ML attractors, possibly revealing a hybrid phenotype. (E) Pearson
correlation scores were computed as in (D) between the 57 attractors (columns) and 28
SCLC patient tumor specimens from the CLCGP (rows).
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Figure 2.10: Derrida analyses show that network dynamics are ordered. Derrida plots
showing the average Hamming distance between two states after a single update of the
Boolean network, as a function of the Hamming distance between the two initial states
for (A) threshold update, and (B) inhibitory dominant updates. The solid blue line distin-
guishes whether states get farther apart (above the line) or closer together (below the line)
after a single update. Chaotic trajectories tend to get farther apart, and therefore lie above
the line, while ordered trajectories converge, and lie below. These results suggest that the
SCLC TF network dynamics are within an ordered regime.
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ilar, and are shown in Figure 2.11. Based on the TF ON-OFF patterning in each attractor
within the clusters, attractors 49 to 25 (along the dendrogram, Figure 2.9B) have active
TFs known to be either neuroendocrine (INSM1, POU3F2, SOX2, SOX11) or epithelial
(FOXA2, OVOL2). In contrast, attractors 35 to 34 (along the dendrogram, Figure 2.9B)
contain active TFs (MYC, NFKB1, SMAD3) involved in mesenchymal differentiation or
EMT.

We computed a correlation score between attractors and both cell lines and patients by
scaling the CCLE and CLCGP expression data from O to 1 (Figures 2.9C) and calculating
Pearson’s correlation coefficient pairwise between each attractor and sample. Several at-
tractors exhibited high correlation with cell lines within the NE consensus cluster, while
others exhibited high correlation with cell lines within the ML consensus cluster (Figure
2.9D). Similar results were observed with patients (Figure 2.9E), and in both cases the
model’s attractors were found to be significantly more correlated to the samples than ran-
dom (Figure 2.12).

These results confirm that the simulated dynamics of the 33 TF network agree well with
the NE and ML nature of the cell lines, suggesting that the gene expression signatures of
these phenotypes is driven by these underlying NE and ML TF attractors. Nevertheless, a
few attractors showed no significant correlation with any cell line or tumor. These attractors
were not further pursued, as we do not observe them biologically. More significantly,
however, several cell lines and patient samples did not have significant correlation with any
attractor. These samples may represent mixed populations of NE and ML cells, leading to
poor correlation with either subtype at the population level, or alternatively may represent

populations of “hybrid” cell types.
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Figure 2.11: Inhibitory dominant dynamics show qualitatively similar attractors to thresh-
old updates. (A) Attractors identified using the inhibitory dominant update method (see
Methods). We found 6 steady state attractors, as well as 5 distinct 2-state oscillating at-
tractors, or limit cycles. (B) Correlation score of the attractors with the CCLE cell lines,
as in Figure 2.4. The inhibitory dominant update method still identifies several attractors
which are correlated to the NE and ML cell lines, however several cell lines still show no
significant correlation with any attractor. The limit cycle attractors transition between sim-
ilar states, suggesting that each limit cycle may still be thought of as only either NE or ML,
not transitions between them.
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Figure 2.12: Statistical significance of TF network attractors. 10,000 random attractors
were generated to derive a correlation distribution for the null hypothesis that the model
finds random attractors. (A and C) The distribution of attractor correlations with the CCLE
dataset for threshold updates (A) and inhibitory dominant updates (C). For each attractor,
only the highest correlation was considered to avoid saturating the distribution with poor
correlations (i.e. if an attractor correlates with a NE cell line, it will almost certainly be
anti-correlated or poorly correlated with the ML cell lines). The blue distribution shows
the best correlation of random attractors, while the green distribution shows the best cor-
relation of the model’s attractors. By the Mann-Whitney U test, the model’s correlations
are significantly higher than random (threshold: p-value = 9.5e-34, inhibitory-dominant:
p-value = 7.6e-9). (B and D) The distribution of attractor correlations with the CLCGP
dataset for threshold updates (B) and inhibitory dominant updates (D). As in (A) only the
highest correlations are considered. By the Mann-Whitney U test, the model’s correlations
are significantly higher than random (threshold: p-value = 1.7e-23, inhibitory-dominant:
p-value = 1.7e-6).
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2.5 Experimental validation of network attractors reveals a hybrid single-cell SCLC

phenotype

We probed the expression of cell lines for 10 of the 33 TFs. In general, NE TFs were ex-
pressed at a higher level in NE than ML cell lines, and vice versa (Figure 2.13A). Consistent
with the finding that some cell lines did not correlate with either the NE or ML attractors
(Figures 2.9D), we observed cell lines which simultaneously expressed both NE and ML
TFs. Similarly, CD56 (NE marker) and CD44 (ML marker) were found co-expressed in 3
out of 10 patient samples (pt1112-1, pt216-1, and pt460-1, Figure 2.13B). The other tumor
samples had mutually exclusive expression of either CD56 or CD44.

These double-positive cell lines may be either composed of mixed populations of NE
and ML cells, or hybrid single-cells simultaneously co-expressing features of both pheno-
types. We investigated this using single-cell flow cytometry with well-established neuroen-
docrine/epithelial and mesenchymal differentiation biomarkers (Figure 2.14 legend). To
aid visualization, we defined overall NE and ML scores as the unweighted sum of NE and
ML biomarkers, respectively.

In biaxial plots of these scores, NE cell lines consist primarily of NE+ML- single cells,
while ML cell line single cells were NE-ML+ (Figure 2.14A, C). However, in several cell
lines, single cells simultaneously expressed similar levels of both NE and ML biomarkers
(Figure 2.14B). These results confirm the existence of a novel SCLC NE+ML+ hybrid phe-
notype comprised of both neuroendocrine/epithelial and mesenchymal-like characteristics.

Other reports of hybrid phenotypes in cancer have associated the hybrid cells with a
more stem-like phenotype (Jolly et al., 2015; Xue et al., 2015). We measured single-cell
expression of CD133, a cancer stem-cell marker, and found no significant difference be-

tween the NE, ML, and hybrid cell lines (Figure 2.15).
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Figure 2.13: Experimental validation of TF network states in human SCLC. (A) 5 NE TFs
(FOXA2, OVOL2, SOX2, ASCLI1, and LEF1) and 5 ML TFs (SMAD3, MYC, NFKBI,
ZEB1, MITF) validated by western blot. The NE TFs show higher expression in the NE
cell lines (dark blue, as in consensus clustering) than the ML cell lines (light blue), and vice
versa. Nevertheless, several cell lines showed similar levels of expression of both NE and
ML TFs, including NCI-H146, NCI-H209, NCI-H1184, DMS53, NCI-H1048, NCI-H446.
Many of these cell lines, such as DMS53, also showed poor correlation with any attractor
in Figures 2.9 and 2.11, and were near the center in Figure 2.3C, suggesting a non-NE and
non-ML phenotype. These cell lines are tentatively denoted as “hybrid” phenotypes. (B)
CD56 (a NE marker) and CD44 (a ML marker) were probed by western blots in 10 SCLC
patient samples. Most patients show expression of only one or the other, however Pt112-
1, Pt216-1, and Pt460-1 show double positive expression of both markers, suggesting the
hybrid phenotype may be important in patients as well.
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Figure 2.14: Single-cell level expression of phenotypic biomarkers in SCLC cell lines re-
veals hybrid cells. Flow cytometry was performed using 4 NE surface markers (CD56,
CD24, CADM1, and ALCAM) and 2 ML surface markers (EPHA2 and CD151). Axes
represent unweighted sums of normalized NE and ML fluorescence. (A) CORLS51, NCI-
H146, and NCI-H2141 were classified as NE by consensus clustering, and single cells
show NE+ML- phenotype. (B) DMS53, NCI-H446, and NCI-H1048 showed comparable
levels of expression of NE and ML TFs (Figure 2.13), Blue- and Turquoise-module eigen-
genes (Figure 2.3), and poor correlation with either NE or ML attractors (Figures 2.4, 2.11).
At the single cell level, these cells also show similar levels of expression of NE and ML
markers, suggesting these cells are in a hybrid NE+ML+ or NE-ML- phenotype, not well
described by a NE vs ML dichotomy. The hybrid state is characterized by cells along the
diagonal of these plots. (C) SW1271, NCI-H841, and DMS114 were consistently classified
as ML, and single-cells exhibit NE-ML+ phenotype.
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Figure 2.15: Hybrid cells are not enriched for stem cell marker. Distribution of fluorescence
intensities of CD133, a cancer stem-cell marker, for NE, ML, and hybrid cell lines. Density
estimates show that there is no significant difference in the expression levels of this marker
between the three subsets.

2.6 Modulation of SCLC phenotypes with chemotherapy or epigenetic drugs

Next, SCLC cell lines were treated with etoposide and cisplatin, and with epigenetic
modulators valproic acid (HDAC inhibitor) and 5-azacytidine (DNA methylation inhibitor).
Flow cytometry measurement of NE and ML markers (see Figure 2.14 legend) was used
to characterize how treatment shifted the phenotypic identity of SCLC cells. Biaxial plots
of NE vs ML scores showed phenotypic shifts at the single-cell level for all perturbations
(Figure 2.16), converging toward hybrid populations. The hybrid phenotype was thus an

end-state for SCLC cells subjected to stress.

2.7 Discussion

In this work, we identified signatures of phenotypic heterogeneity in SCLC, and a set of
TFs regulating expression of these genes. Through discrete Boolean model simulations, we
showed that a master SCLC TF network naturally settles into states which were identified
as NE or ML. This suggests that the NE and ML cell identities can naturally emerge from
regulatory dynamics of TF networks, rather than being driven by genomic mutations. Most

significantly, by distilling the NE and ML phenotypes to their essential TF drivers, the
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Figure 2.16: Phenotypic modulation by treatment pushes cells toward hybrid state. NE,
ML, and Hybrid (HY) cell lines (from Figure 2.14) are combined to show overall pheno-
typic responses. NE and ML axes are the same as defined in Figure 2.14. Each column
represents a unique treatment condition: Untreated (column 1); 1uM Etoposide (column
2); 1uM Cisplatin (column 3); 1uM Azacitidine (column 4); SmM Valproic Acid (column
5). Cells were treated for 2 days. (A) The NE cell lines show a shift toward the NE+ML+
or NE-ML- quadrants. (B) The HY cell lines show no significant shift. (C) The ML cell
lines show a shift toward the NE+ML+ quadrant.
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model also exposed some cell lines which had been improperly classified as NE or MLL
through transcriptome based clustering. In vitro validation confirmed existence of SCLC
cell lines and patient samples that simultaneously express both NE and ML markers and
TFs. We verified this hybrid phenotype at the single-cell level in cell lines, and showed that
cell lines transition toward this hybrid state for survival upon drug treatment.

As resolving cancer heterogeneity can have profound impact on patient care and out-
comes (Fisher et al., 2013), a deeper understanding of SCLC heterogeneity, i.e., NE, ML,
hybrid and beyond, may translate to benefits in the clinic. Historically, attempts to sepa-
rate SCLC into subtypes in the clinic were abandoned due to poor reproducibility among
pathologists and unclear clinical relevance (Travis, 2012). However, our findings indicate
that SCLC heterogeneity is dynamic, since a core TF network specifies both the NE and
ML phenotypes, which may confound static associations. The hybrid phenotype may be
an additional confounder, exacerbated by the tendency of both NE and ML cells to move
toward the hybrid phenotype under treatment. We argue that SCLC heterogeneity is best
interpreted as states within a phenotypic landscape, and understanding phenotypic mobility
within this landscape could provide ties to clinical relevance.

While SCLC has a high mutation rate, no correlations between mutations and distinct
subtypes have been observed (George et al., 2015). In this work we show a non-mutational
mechanism for regulation of distinct SCLC cell identities, as attractors of a TF regula-
tory network. This framework of equating cell types to attractors was first advanced by
Waddington in his eponymous epigenetic landscape (Waddington, 1957), and has since
been expounded upon by many mathematical biologists (Huang, 2012). It has further been
argued that malignant cancer states and cancer heterogeneity are best described by the con-
cept of attractors (Kauffman, 1971; Huang et al., 2009; Li et al., 2015). Significantly, this
framework has been shown to provide possible therapeutic strategies by identifying targets
in silico which most significantly perturb the attractor states (Szedlak et al., 2014). We do

not exclude the possibility that mutations can drive SCLC heterogeneous phenotypes, but
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our results indicate that epigenetic causes should also be considered.

The Boolean modeling approach used here is an established way of obtaining a coarse-
grained picture of large network behavior, and is well suited to identifying the stable states
of TF networks (Albert et al., 2008; Wynn et al., 2012). Our approach was novel in
constructing the TF network in blind fashion from SCLC gene expression datasets, TF
databases and literature, and was validated by its ability to reproduce correlations with
known phenotypes. Significantly our model revealed the existence of a previously unrec-
ognized hybrid phenotype, by showing that some cells do not correlate to either the NE or
ML attractors. However, we did not identify attractors correlated with the hybrid pheno-
type. Hybrid EMT phenotypes have been previously reported in NSCLC (Lecharpentier
et al., 2011) and lung adenocarcinoma (Schliekelman et al., 2015), and other groups have
recently reported computational modeling of hybrid EMT phenotypes by driving EMT net-
works with external stimuli (Jolly et al., 2015; Steinway et al., 2015). Additionally, the
Boolean modeling approach cannot capture intermediate levels of expression, and there-
fore attractors corresponding to the hybrid state may not be identifiable using this method.
Continuum modeling approaches may be needed to better understand the hybrid state. Iden-
tification of gene co-expression modules enriched in the hybrid phenotype may also reveal
additional relevant TFs. Considering all of these possibilities, current ongoing work in our
laboratory is directed at identifying hybrid attractors.

Our study establishes the hybrid phenotype as a refuge for drug-treated SCLC cell
lines. We anticipate that this phenotype may play a significant role in the evolution of
SCLC tumors under treatment, and possibly in relapse. SCLC TF networks may serve as
a guide for interventions aimed at preventing phenotypic transitions into resistant states.
While we focused on SCLC here, such transcriptional regulation may play a similar role in
maintaining non-mutational heterogeneity in other cancer types, and our approach should

be generally useful in uncovering underlying mechanisms.
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2.8 Methods

2.8.1 Data normalization

CCLE dataset (Barretina et al., 2012) was downloaded from Broad Institute as CEL
files. Data were normalized and median centered using quantile RMA normalization using
Affy Bioconductor package (Gautier et al., 2004) in R. Probe-level data for all the datasets
was converted to gene-level data by probe merging using collapseRows (Miller et al., 2011).

Probes with no known gene symbols were removed.

2.8.2 Consensus clustering

Consensus clustering was performed using ConsensusClusterPlus v1.24.0 package in R
v3.2.3 (Wilkerson and Hayes, 2010) on both the 53 SCLC cell line dataset from CCLE and
28 SCLC patients from CLCGP, with 80% sub-sampling of both genes and samples, 1000
repetitions, 1 - Pearson correlation, and k-means. Both the CCLE and GLCGP datasets
were subsetted to only include genes measured in the GSE6044 (Rohrbeck et al., 2008)

dataset, in order to maximize overlap with our previous work (Udyavar et al., 2013).

2.8.3 WGCNA and Network analysis

Co-expression network analysis was performed in R v3.2.3 using the WGCNA pack-
age v1.49 (Langfelder and Horvath, 2008). As with the consensus clustering analysis, the
CCLE SCLC dataset was subsetted to only include genes measured in GSE6044 (Rohrbeck
et al., 2008). We used 1 - Pearson’s correlation to build a co-expression based dissimilarity
matrix. Modules were generated using unsupervised average-linked hierarchical clustering
with a static height of 0.95. We required that each module contain at least 100 genes.

Comparative Pathway enrichment analysis of the Blue and Turquoise modules was per-
formed using BINGO and Enrichment map (Merico et al., 2010) and visualized Cytoscape.

Expression values were transformed to Z-scores, and the average expression of all genes
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that are simultaneously represented in a given pathway and a module (blue or turquoise) as

the represented score for that module pathway combination.

2.8.4 Transcriptional regulatory network construction

To generate an SCLC-specific transcriptional network, we applied the bootstrap version
of ARACNE (Margolin et al., 2006) on gene expression profiles from the 53 CCLE SCLC
cell lines using the following parameters: p-value = 10-7, dpi = 0 and 100 bootstraps, result-
ing in 27,224 interactions among 8,706 nodes. To evaluate if genes in Blue and Turquoise
module are enriched for targets of any specific TF, we used Fisher’s exact test (FET) (Carro
et al., 2010) to compute TF enrichment with the Blue and Turquoise module genes. We se-
lected all TFs to be candidate master regulators if the FET p-value was < 0.05, leaving 96
and 207 TFs for Blue and Turquoise module, respectively. Of these, 23 TFs were common
to both modules (Figure 2.8).

Modeling gene regulatory networks which were inferred entirely from the available data
can suffer from circular reasoning: a dataset generates a network, which then predicts the
dataset. To avoid this fallacy, we built the network topology strictly using sources external
to the datasets of interest. Thus, we first filtered ARACNE TF predictions based on gold-
standard TF-target binding site databases CHEA, ENCODE, TRANSFAC, JASPAR using
EnrichR (Lachmann et al., 2010; Consortium, 2004; Matys et al., 2003; Mathelier et al.,
2014; Chen et al., 2013), and literature databases such as Pubmed and Glad4U (Jourquin
etal., 2012)A. These filtration steps produced a list of 76 likely TF regulators of NE and/or
ML differentiation. We took only heterogeneously expressed TFs (median absolute devi-
ation above the 50th percentile) yielding a list of 38 TFs that we used to build a Boolean
network for SCLC. Next we extracted directed interactions between these TFs using only
information from the above gold-standard references and literature. Where possible, in-
teractions were classified as activating or inhibiting by manually searching the literature.

Interactions which we could not find in literature were classified as activating if the TFs are
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positively correlated across the CCLE dataset, or inhibitory given negative correlation. 5

TFs did not have outgoing edges and were eliminated, leaving 33 TFs.

2.8.5 Boolean network simulation and analysis

The TF network was simulated as a Boolean network where each node was either ON
(active) or OFF (silent). Nodes were updated using the random order asynchronous method
(Albert et al., 2008). We considered two distinct approaches updating TFs: 1) threshold up-
dating, in which the total number of ON inputs are compared such that the target node is
switched ON when there are more activators, and OFF when there are more inhibitors, and
2) inhibitory dominant, in which having any inhibitor ON is sufficient to turn the target
node OFF. The threshold update rule is referred to as a Hopfield neural network in some
literature. Because the network’s state space is so large, we only simulated a random sub-
sample of the states. For both update rules, a state transition network was seeded with
8,000 randomly generated initial states, in which each TF had a 50% chance of being ON
or OFF. When TFs are updated in asynchronous random order, it is possible that the state at
time t may have several possible outgoing trajectories to time t+1. To account for this, each
state that we observed was initialized and updated 30 times to sample distinct trajectories
to the next state that may be influenced by the update order. Each newly observed state
was queued to be updated in this fashion, until there were no new states identified. At-
tractors were identified by applying the attracting components algorithm from NetworkX
to the state transition graph for each update rule. Using threshold updates, we found 57
fixed point attractors, and no oscillating ones. We observed the same set of attractors using
synchronous updates with 217 and 218 initial states. Using the inhibitory dominant update
rule, we found 6 fixed point attractors, and 5 two-state oscillating attractors, finding the
same set of attractors using synchronous updates from 212 to 218 initial states.

To score the correlation between samples and attractors, CCLE and CLCGP expression

data were independently scaled between O and 1, and Pearson’s r was calculated pairwise
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between attractors and cell lines/patients. Statistical significance was determined by con-
sidering the highest correlation between each attractor and cell line, and comparing against
a null distribution, obtained by generating 10,000 random TF vectors. The Mann-Whitney
U test was used to compare the score distributions. The model attractors had higher corre-
lation with cell lines than the random attractors (threshold: p-value = 9.5e-34, inhibitory-
dominant: p-value = 7.6e-9), and higher correlation with patients than the random attractors
with (threshold: p-value = 1.7e-23, inhibitory-dominant: p-value = 1.7e-6). Individual at-
tractors were assigned a p-value for their highest correlation with each sample by direct

comparison with the null distribution.

2.8.6 Robustness of NE and ML attractor states

Cells need to be able to robustly guide their differentiation choices depending on driv-
ing signals, and therefore we would expect trajectories toward cell attractors to be robust.
Structural coherence (Willadsen and Wiles, 2007) is a topological metric which measures
how reliably an initial condition evolves toward its appropriate attractor given a perturba-
tion. This metric requires an estimate of the total size of the basin of attraction, so we
were only able to apply it to attractors for which we could reliably estimate this size (a
few basins were too small to reliably estimate their size). Values of random, maximum,
observed, and structural coherence are reported in Table S4. We also calculated Derrida
curves (Derrida and Pomeau, 1986) (Figure 2.10), as the average increase growth or decay

of an initial perturbation after one step, for perturbation sizes ranging from 1 to 32 TFs.

2.8.7 Antibodies and Reagents

Antibodies used for western blotting include GAD1/2, EphA2, PDGFR (Cellsignal),
E-cadherin (BD Biosciences), Vimentin (SantaCruz), OVOL2, CBFA2T2, SOX2, ASCLI,
POUSF1, GAPDH, SOX2, FYN, beta-actin (Sigma). Fluorophore-conjugated primary an-

tibodies were used for flow cytometry - CD56 BV605, CD151 PE, CD24 BUV395 (BD
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Biosciences), CD44 Pacific blue, E-cadherin Pacific blue (Cellsignal), CADM1 A647
(MBL), EPHA2 A488 (R&D Systems), CD133 PE-Cy7 (Biolegend), Vimentin (San-

tacruz).

2.8.8 Cell culture

Authenticated cell lines were obtained from ATCC from 2012-2015, authenticated by
DNA STR profiling, morphology, and mycoplasma detection. Cell lines were grown in
company recommended media. New cell lines were obtained as needed every 1-2 years.
Cell lines were expanded in culture for less than 2 months, then frozen in aliquots for
subsequent use. Cell lines are passaged no more than 30 times before being discarded
(approximately 4 months). Any contaminated cell lines were discarded and new aliquots
thawed and cultured. Mycoplasma test was performed on all cell lines in culture every 2

weeks.

2.8.9 Flow cytometry data generation and analysis

1-2 million cells were plated in T75 or T150 flasks the previous day and collected for
flow experiment the next day as described below. For drug treatment experiments, cells
were plated same as above the previous day, followed by drug addition the next day. Cells
were incubated with drugs at 37 degrees then collected for flow experiments.

Cells were dissociated using TryplE (GIBCO) for 10-15 minutes followed by stain-
ing with Alexa 700 dye (Molecular Probes) for 5 minutes at 37 degrees. Cells were then
washed and fixed with 2% paraformaldehyde (10 minutes at room temperature), followed
by surface marker staining or permeabilization with ice-cold 100% methanol at -20 for 30
minutes. Cells were then stained with fluorescent conjugated antibodies for 30 minutes
in dark at room temperature. Samples were washed with PBS and run on BD 5-laser in-
strument at the Vanderbilt Flow cytometry core. Fluorescent channels were compensated

using anti-mouse IgK beads (BD Biosciences) that were tagged with fluorescent antibodies.
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First intact cells were gated on the Forward Scatter Area (FSC-A) and Side-Scatter Area
(SSC-A) plot, where debris has a low FSC-SSC ratio. This was followed by gating for
Alexa700 negative viable cells as described previously (Box 1 in (Irish and Doxie, 2014)),
where A700 positive populations are dead/dying cells. Finally, A700 negative viable cells
are further gated to include only singlet populations. At least 20000-30000 viable singlet
cells were collected per sample. All subsequent gates on fluorescent markers are made on
viable singlet cells depicted in the sunburst plot. The raw cytometer intensity readouts for
fluorescent channels were first converted to log scale by using the asinh() function with a

co-factor of 150. Gating was conducted in Cytobank (Kotecha et al., 2010).

2.8.10 Western blotting

Cell lines were plated for 2 days in complete medium to equilibrate. Lysates were pre-
pared by spinning cells at 4C, aspirating the media, and adding M-PER lysis buffer (Pierce)
containing 1X phosphatase inhibitors 2 and 3 and protease inhibitor (Sigma-Aldrich).

Lysates were incubated for five minutes at room temperature, vortexed for 30 seconds
and centrifuged at 15000 rpm for 15 minutes (at 4C). The protein concentration was quan-
tified using BCA assay (Pierce). Lysates were boiled for 10 minutes at 100 degrees with
1X NuPage sample buffer (Molecular Probes) and run on 8% or 4-12% Tris-glycine gels
(Molecular Probes). Semi-dry transfer was followed by blocking with 1X Casein-TBS.

Blots were imaged by chemiluminescence.
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Chapter 3

Variant-NE SCLC phenotypes show distinct gene expression, drug sensitivity, and

transcriptional regulatory programs

3.1 Gene co-expression modules differentiate neuroendocrine, non-neuroendocrine, and

distinct variant phenotypes

Chapter 2 reported variant SCLC phenotypes (termed “hybrid”) that are distinct from
the canonical NE and non-NE phenotypes. This chapter provides a more comprehensive
characterization of the transcriptional and phenotypic nature of these 2 additional variant
SCLC subtypes. Additionally, analyses in this chapter are based on an updated RNA-
seq expression from the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012),
including a total of 50 SCLC cell lines.

To identify robustly distinguishable phenotypes in SCLC, we applied Consensus Clus-
tering (Wilkerson and Hayes, 2010) to this new RNA-seq dataset. The consensus clusters
suggest that the SCLC cell lines are best described as either two or four distinct phenotypes
(Figure 3.1. Because of our previous results, and growing literature on SCLC heterogene-

ity supporting more than two distinct subtypes, here we further investigate the four-cluster

SCLC Phenotypes Clustered by Gene Expression

NE Variants

Non-NE

Figure 3.1: Consensus clustering robustly separates SCLC cell lines by into four groups,
including a non-NE cluster, and 3 distinct NE clusters.
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result.

We compared expression of 19 well-studied markers previously associated with het-
erogeneity in SCLC (Jahchan et al., 2016; Lim et al., 2017; Calbo et al., 2011; Borromeo
et al., 2016; Mollaoglu et al., 2017; Williamson et al., 2016; Huang et al., 2018) (Fig-
ure 3.2). Three of the four consensus clusters overlap well with previously reported phe-
notypes: the canonical neuroendocrine (NE) ASCL1T NEURODI~ SOX2*" (Borromeo
et al., 2016) phenotype, an NE-variant NEUROD1" MYC™ ASCL1~ phenotype (Bor-
romeo et al., 2016; Mollaoglu et al., 2017), and a non-NE variant REST™ NOTCH* HES1"
phenotype (Lim et al., 2017). The final phenotype, which we here refer to as NE Variant-2,
expressed canonical NE markers such as ASCL1, DDC, and GRP, but also HES1, which
has been reported as an indicator of Notch pathway activity in SCLC (Lim et al., 2017).
Interestingly, in the NE Variant-2 phenotype, HES1 is expressed despite comparatively low
NOTCH expression (Figure 3.2).

To identify gene programs driving the distinction between the four SCLC phenotypic
clusters, we performed weighted gene co-expression network analysis (WGCNA) on the
RNAseq data. Using a scaling factor of 12, WGCNA identified 17 co-expressed gene
modules. We computed module eigengenes, which summarize the overall expression of
all genes in a given module, for each cell line and found 11 out of 17 modules were able
to statistically distinguish between the four cell line clusters (Figure 3.3, Kruskal-Wallis

fdr-adjusted p-value < 0.05).

3.2 Expression of four cell-surface markers is able to robustly distinguish SCLC

phenotypes.

The identification of these four SCLC phenotypes prompted us to search for biomarkers
that could be used as a proxy for presence of phenotypes in heterogeneous tumors. Our
computational approach uses linear discriminant analysis (LDA) to identify a set of genes

that are able to distinguish between the four phenotypes. Our search was limited to cell
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Figure 3.2: Consensus phenotypes are well represented by literature reports. Several recent
reports have identified markers and characteristics of heterogeneous SCLC subpopulations.
Here, we compare these markers with the consensus clusters identified in Figure 3.1. The
top group includes markers for the “tumor propagating cell” (TPC) subtype characterized
in mice by Jahchan et. al. (Jahchan et al., 2016), which can distinguish the NE and NE
Variant-2 clusters from the non-NE and NE Variant-1. The second row contains markers of
the HES1+, NOTCH+ phenotype reported in mice by Lim et. al. (Lim et al., 2017), which
are enriched in the non-NE cluster. The third row shows expression of an alternative non-
NE marker, CD44 which was reported in mice and humans by Calbo et. al. (Calbo et al.,
2011). Interestingly, CD44 is enriched specifically within a subset of the non-NE cluster,
suggesting the possibility of additional heterogeneity. The fourth row contains markers of
the canonical NE SCLC phenotype (Borromeo et al., 2016), which are highly expressed in
the NE and NE Variant-2 subtypes. The fifth row shows markers of an alternative NEU-
ROD+ ASCLI- phenotype which has been reported in humans (Borromeo et al., 2016) and
mice (Mollaoglu et al., 2017). The sixth row shows markers of a rare population found in
circulating tumor cells that show vasculogenic mimicry (Williamson et al., 2016). Here,
CDHS is poorly distinguishing across our subtypes, though CLDN4A is specific to the NE
and NE Variant-2 types. The last row shows expression of POU2F3, which has recently
been proposed as a master regulator in SCLC cells with a potentially distinct cell of origin
(Huang et al., 2018). However, this gene has no distinguishing power across the subtypes
defined here.
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Figure 3.3: WGCNA analysis of four phenotypes. (A) WGCNA analysis identifies 11 sta-
tistically distinguishing modules of co-expressed genes across this panel of 50 cell lines.
(N) Expression of all genes within each of the 11 distinct modules reveals a mosaic pattern
of expression distinguishing SCLC subtypes, such that most modules are upregulated in
more than one phenotype. A few key markers are highlighted for each module and pheno-

type.

surface markers, based on the Jensen Compartments database (Binder et al., 2014), so
that live cells could be used for future analyses. Because an exhaustive search of marker
sets would be computationally expensive, we prioritized markers based on their ability
to distinguish between at least two phenotypes (pairwise fdr-corrected Mann-Whitney U
test between each phenotype). We then selected four of the markers at a time to make a
candidate marker set, which were used as “features” in the gene expression data (RNA-seq
data from the CCLE) on 50 cell lines. LDA attempts to find the best model for separating
two or more defined populations of data; in our analysis, we sought the LDA model that
best separates the four phenotypes based on the candidate set of features in phenotypic
space, where each feature represents a different dimension of the space.

Using a random 80% of the data, we performed cross-validation on our model by train-
ing a model on each possible combination from the candidate list, and scoring the LDA’s
predictive accuracy on the remaining 20% of the data, and repeating this process 100 times.

The accuracy score of each model was then computed as the average accuracy score over
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Figure 3.4: Linear discriminant analysis projection of RET, TYRO3, EPHA2, and CEA-
CAMS. Each dot represents one cell line. Over 1000 iterations, 80% of cell lines were used
to train the LDA model, while 20% were used for validation. The shape of each point re-
flects its phenotype based on the consensus clustering results, while the color indicates how
often each cell line was assigned to each type by the LDA model over the 1000 iterations.

100 iterations. Because of the inherent randomness associated with selecting 80% of the
data, we repeated this process 10 times to determine the best marker sets for discriminating
between phenotypes. Based on this cross-validation, as well as availability of high quality
antibodies, we identified the marker set RET, TYRO3, EPHA2, and CEACAMS (Figure
3.4) as the best marker set. RET and CEACAMS are both members of the brown module,
and TYRO3 and EPHA2 are both members of the blue module. Figure 3.4 shows clear
separation between the four phenotypes based on expression of these four markers. Addi-
tional validation at the single-cell level with flow cytometry is currently ongoing work in
the lab, and alternative marker sets may be used if protein expression of these markers does

not match our prediction based on RNA.

3.3 SCLC phenotypes are differentially enriched in diverse biological processes,

including drug metabolism and catabolism

To assess the phenotypic character of these gene modules, we performed gene ontology

(GO) enrichment analysis using the Consensus Path Database (Kamburov et al., 2013).
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GO enrichment analysis of each of the 11 significant gene modules (Figure 3.3) resulted
in a combined total of 1,763 statistically enriched biological processes. To visualize this
GO space, we used the GoSemSim package (Yu et al., 2010) in R to compute a pairwise
dissimilarity score between all GO terms that were statistically enriched (p < 0.05) in at
least one of the 11 significant modules. We projected the GO terms into a 2D space using
t-distributed stochastic neighbor embedding (tSNE) (Van Der Maaten and Hinton, 2008).
tSNE is popular method which computes a low-dimensional embedding of datapoints that
seeks to preserve the high-dimensional distance between points in the low-dimensional
space. Therefore, GO terms that describe semantically similar biological functions are
placed close to one-another in the tSNE projected GO space (Figure 3.5).

This analysis revealed distinct phenotypic identities for the gene modules, spanning
tissue morphogenesis, cell migration, and cell-type specification, immune response regu-
lation and response to environmental signals, secretion, and metabolism (Figure 3.5). In
particular, the yellow, salmon, and pink modules are enriched for neuroendocrine differen-
tiation and neurotransmitter secretion and are highly upregulated in the canonical NE and
NEUROD+ NE variant phenotypes (Figure 3.6). Genes in these modules are specifically
upregulated in the NE phenotypes (salmon and pink modules are specific to the variant phe-
notype) (Figure 3.3). In contrast, the blue, black, and purple modules are enriched for cell
adhesion and migration ontologies (Figure 3.6, and are highly upregulated in the non-NE
variant phenotype (Figure 3.3).

Genes within the green, midnight blue, and brown modules tended to be more highly
expressed in the NE variant-2 phenotype, though brown-module genes are also expressed in
the canonical NE subtype, suggesting that these modules may describe the unique character
of this previously unreported variant phenotype.

The brown module was enriched for canonical phenotypic features of SCLC, particu-
larly cellular secretion and epithelial differentiation. Interestingly, the green module was

enriched for immune response and drug/xenobiotic metabolism, as well as cellular response
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Figure 3.5: SCLC heterogeneity biological process phenospace. A dissimilarity score be-
tween pairs of SCLC enriched GO terms was calcuated using GoSemSim (Yu et al., 2010),
and used to create a tSNE projection grouping similar biological processes together. Each
blue dot is a GO term, with selected terms highlighted. Several distinct clusters of related
processes can be seen.
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Figure 3.6: Module specific phenospace. A breakout of where each of the 11 statistically
significant WGCNA modules individual falls in the GO space from Figure 3.5. Of particu-
lar interest, the green module, which is highly upregulated in the NE Variant-2 phenotype,
is highly enriched in metabolic ontologies, including drug catabolism and metabolism and
xenobotic metabolism.
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to environmental signals. The high enrichment for drug metabolism suggests that NE
variant-2 cells may represent a drug-resistant SCLC phenotype. This could further ex-
plain the drug-induced transitions toward the hybrid phenotypes reported in Chapter 2 and
(Udyavar et al., 2017), as drug treated cells move toward the NE variant-2 phenotype and

become more resistant.

3.4 NE variant-2 phenotype shows decreased sensitivity to a broad range of drugs

The differential gene expression profiles and GO enrichment of the 4 SCLC subtypes
prompted us to investigate the response of each subtype to therapeutic agents. Because
the ontology enrichment analysis suggested that genes related to drug metabolism may
be overexpressed in Variant 2, compared to other phenotypes. Therefore, we sought to
test the hypothesis that the Variant 2 phenotype acquires resistance by increased ability to
metabolize therapeutic agents. We computed activity area of dose response curves, which

accounts for both potency and efficacy, as a metric of drug sensitivity.

AA= ) [1-V(d)] (3.1

dE€doses

where V (d) is the percent-viability of cells treated at dose d.

We analyzed dose-response curves from a previously published (Polley et al., 2016)
drug panel containing 103 FDA-approved oncology agents and 423 investigational agents.
This drug response panel included some SCLC cell lines not present in the CCLE, and
therefore not assigned to the consensus clusters (Figure 3.1). For these additional cell lines,
we predicted their phenotypic classification using the microarray gene expression of RET,
TYRO3, CEACAMS, and EPHA2 fom (Polley et al., 2016), as inputs to the LDA model
in Figure 3.4. In more than half of drugs tested, the NE Variant-2 phenotype was most
resistant, suggesting that this may be a broadly drug resistant SCLC phenotype. Across the

entire panel, 43 drugs had statistically significant different response based on the activity
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Figure 3.7: Drugs show differential response accross SCLC phenotypes. The y-axis shows
the activity area (3.1), and is correlated with drug sensitivity. (A) The NE-V1 phenotype
shows the most sensitivity to AZD-1152, an inhibitor of AURKB, in line with previous
reports (Mollaoglu et al., 2017). Conversely, the NE-V2 phenotype is the most resistant.
(B) Most SCLC cell lines are resistant to trametinib, however the NE-V2 and non-NE
phenotypes are significantly more sensitive than the NE and NE-V1. (C) JQ1, a BET
bromodomain inhibitor that has been used as a MYC inhibitor in SCLC (Kaur et al., 2016)
has the most activity in NE-V1 and non-NE subtypes, which have the highest expression
of MYC (Figure 3.2.

area (ANOVA, fdr corrected p < 0.05) between the four SCLC phenotypes. Of these,
Variant 2 was the most resistant to 22 drugs.

To investigate patterns across the drug panel, we grouped drugs together into classes
representing broad biological targets, using information from the Probes & Drugs database.
The NE Variant-1 cell lines were more sensitive to aurora kinase (AURK) inhibitors than
other subtypes as was previously reported. This phenotype is associated with high expres-
sion of MYC and NEUROD (Figure 3.2), reflecting similar results recently published in
a NEUROD1 mouse model of SCLC with increased sensitivity to AURK inhibitors (Mol-

laoglu et al., 2017). Nevertheless, while we find the NE Variant-1 phenotype to be the most
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Figure 3.8: Average response of 15 AURK inhibitors and 13 MEK pathway inhibitors show
differential activity across the phenotypes. Broadly, AURK inhibitors have high activity in
NE-V1 and low activity in NE-V2 cells, while MEK inhibitors have the highest activity in
non-NE and NE-V2 cells.

sensitive to AURK inhibition, the more notable trend is the increased resistance of the NE
Variant-2 subtype to AURK inhibition (Figure 3.8).

Conversely, the MEK inhibitor class was the only category analyzed that showed higher
sensitivity of Variant 2 cells that the other subtypes, though most cell lines were not affected

by these inhibitors. This suggests a possible area for further study.

3.5 Transcription factor network defines SCLC phenotypic heterogeneity and reveals

master regulators

We previously (Udyavar et al., 2017) identified a TF network that was able to explain

the stability of NE and non-NE SCLC phenotypes (see Chapter 2), however that analy-
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sis did not find attractors that distinguish the NE phenotype from the NE Variant-1 and
Variant-2 phenotypes reported here. To understand how these NE-variant phenotypes are
stabilized, we identified putative master transcription factor (TF) regulators from each of
the 11 significant WGCNA modules. From each module, we selected master TFs based
on their differential expression across the four SCLC phenotypes. Regulatory relationships
between these TFs were extracted from public TF regulatory databases, including ChEA,
TRANSFAC, JASPAR, and ENCODE, based on evidence of TF — DNA binding in the
promoter region of a target TF, as well as several sources from the literature. The network
is shown in Figure 3.9.

In Chapter 2, we simulated the network using coarse-grained Boolean modeling ap-
proaches, specifically threshold updates and inhibitor dominant rules. Nevertheless, more
complex Boolean regulatory patterns are possible, and likely to be common in biology.
Here we describe a method to infer logical relationships between regulators based on steady
state gene expression data, and show that the inferred model is able to describe the stabi-

lization of all four SCLC phenotype.

3.5.1 Inference of logical relationships in the TF network

A Boolean function of N input variables is a function F : {0,1}" +— {0,1}. The do-
main of F is a finite set with 2V elements, and therefore F is completely specified by a
2V dimensional vector in the space {0, 1}2N in which each component of the vector cor-
responds to the output of F for one possible input. For instance, if F = F(A,B) (N =2
input regulators), one possible version of F is given by the right column of Table 3.1, cor-
responding to F = AV B. In general, knowledge of the steady states of F is unlikely to be
sufficient to fully constrain all 2¥ components of the vector describing F. Therefore we
adopt a probabilistic framework, in which each component of the vector is a continuous
real-value v; € [0, 1] reflecting our confidence in the output of F, based on the available

constraints. Components of F that are near 0.5 will indicate uncertainty about whether the
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Figure 3.9: Regulatory network of differentially expressed TFs from each of the 11 coex-
pressed gene modules (Figure 3.3. Colors indicate which phenotype each TF is upregulated
in. Black is upregulated in non-NE, light green NE-V 1, blue in NE, red in NE-V2, cyan in
NE-V1 and NE, magenta in NE and NE-V2, brown in NE-V2 and non-NE, dark green in
NE-V1 and non-NE, and white in NE, NE-V1, and NE-V2. Red edges indicate inhibition
(on average), and green activation (on average).
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A | B | F(A,B)
00| 0
01 1
1|0 1
1|1 1

Table 3.1: An example Boolean function, F(A,B) =AV B.

output should be 0 or 1, given the available constraining data.

Given M observations (in our case, each observations is a measurement of gene expres-
sion of the N regulator TFs and the target TF in M = 50 cell lines), we want to compute this
probabilistic vector 1% describing a probabilistic Boolean function F' of N variables. First,
we organize the input-output relationship as a binary decision tree with N layers leading to
the 2V leaves, each of which corresponds to a component of vector V. For instance, given
two regulators A and B (N = 2), the leaves of the binary decision tree correspond to the
probabilities that (A AB), (A AB), (AAB), and (A AB). Collectively, the observations define
an M x N matrix R = |R|,R,,...,Ry quantifying the input regulator variables (columns)
for each observation (rows), as well as an M dimensional vector T = t1,12,. .., ty] quan-
tifying the target, output variable. A Gaussian mixed model is then used to transform the
columns of R (regulator variables) and the vector T into probabilities R and T’ of the
variables being OFF or ON in each observation (row).

Let P; (E’ ;) be a function that quantifies the probability that the input variables of the i""
observation belong to the j"* leaf of the binary decision tree. For instance using the example
above, the second leaf of the binary tree is (A A B). Therefore, Pj—(A,B) = (1 —A)-B. Note
that by this definition, Z?Zl P; (R';) = 1. Using this, we define an M x 2V weight matrix
W =w; ;as

W,‘J = Pj(]_é/i) (32)

that describes how much the i observation constrains the j* component of V. Ad-

ditionally, to avoid overfitting underdetermined leaves, we define the uncertainty U=
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[ur,uz,...,uyn] of each leaf

i=1— x 3.3
uj e {TﬁfM}(Ww) (3.3)

From these, we then define the vector 1% describing function F' as

M
) t{-w,}j—{—O.S-uj
i=1

Vj= (3.4)

M
Zl Wij+u;

1

Thus, each component of V is the average of the output target variable T weighted by
W, with an additional uncertainty term U to avoid overfitting. For leaves j of the binary
tree that are poorly constrained by any of the observables, v; ~ 0.5, indicating maximal
uncertainty in the output of F at those leaves. Uncertainty of a leaf j also arises when
observations i with large weight w; ; have inconsistent values for ¢/, such as if 7{ = 0 and

e
=1

3.5.2 Probabilistic simulation of SCLC GRN identifies stable states corresponding to the

four SCLC subtypes

Probabilistic logical relationships were derived for all nodes of the SCLC TF network
in Figure 3.9. Figure 3.10 shows the rule fitting results for ASCL1, NEUROD2, REST, and
ELF3. The dynamics of Boolean networks can be simulated as discrete state transitions
forming a state transition graph (STG), where each state is defined by the TFs that are
ON and OFF. Here we simulate the dynamics of the SCLC network using the inferred
probabilistic rules, and a general-asynchronous (Albert et al., 2008) update scheme. In a
general-asynchronous update, one TF is selected at random to be updated. Therefore, in
this 27-node TF network, each state in the STG has 27 possible neighbors, corresponding
to switching each one of the TFs, and the probability of traversing that edge is given by the
probability in the inferred rule.

The large size of the STG, which has 227 = 134,217,728 possible states, precludes an
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Figure 3.10: Probabilistic Boolean rule fits for (A) ASCL1, (B) NEUROD?2, (C) REST,
and (D) ELF3. In each case, the target gene is a function of all the genes along the binary
tree at the top, while expression of the target is shown on the left. Each row represents one
cell line, each column represents on possible input state, and the bottom shows the inferred
function F for every possible input state. Color ranges from O=blue (highly confident the TF
is off), to 0.5=white (no information about whether the TF should be on or off), to 1=red
(highly confident the TF is on). The greyscale indicates how much each cell line (row)
constrains each state (column). Rows are organized by subtype (top to bottom: NE, NE-
V1, NE-V2, non-NE). For instance in (A), many NE cell lines constrain the state OLIG2=0,
TEADA4=0, FLI1=1, SMAD4=1, KLF2=0, MITF=0, and in all of those cell lines, ASCL1
is on. Therefore, that leaf of the rule at the bottom is highly confident that ASCL1 should

be ON.
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NE NE
non-NE Variant 2 Variant 1 NE

AsCL1 1
FOXAL 1 1
FOXA2 1 1
ELF3 1
RBP) 1
FLIL 1
SMAD4 - 1
NROB2 1
NROBL - 1
BCL3 1
STAT6
ISL1
SOX11
CEBPD N
EBF1 1 E gFF
TCF4 1 1
RCOR2 1
TCF3 1
NEUROD?2
OLIG2 1
MITF 1 1
SIXS 1 1
TEAD4 1 1
ZNF217 1 1
KLF2 1 1 1
GATA4 1 1 1
REST 1 1 1

Figure 3.11: Stable states of the inferred probabilistic rules. Each state has a probability <
0.5 of transitioning away from itself for all TFs, under the probabilistic Boolean dynamics.
Based on gene expression, these attractors correspond to the four SCLC phenotypes, and
reveal the overlaps between them.

exhaustive search through the state space. Nevertheless, regions of interest can be probed,
both by exhaustive search of neighborhood of states we are interested in, and by random
walks. To focus on areas of interest, we calculated an “average” state for each phenotype
by averaging the expression of TFs across all cell lines belonging to the phenotype, and
rounding values to O or 1. Next, we exhaustively searched the neighborhood of each of
these starting states out to a distance of 6 TF changes.

Within this subset of the overall state space, we found 10 states for which all 27 TFs
had a probability less than 50% of switching. Transitions into these states are therefore
more likely than transitions out, such that they are stable states of the network dynamics

(Figure 3.11).
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3.5.3 Insilico activation and knockdown of TFs identifies master regulators that increase

or decrease stability of SCLC phenotypes

To quantify the baseline stability of the steady states in Figure 3.11, we performed
random walks starting from each stable state, and counted how many steps were required
to reach a state with outside of a 4-TF neighborhood around the starting state. The random

walk was executed following Algorithm 1.

Algorithm 1 Probabilistic Boolean Random Walk

1: procedure RANDOM WALK
Input:
state_init: Starting Boolean state
rules: Probabilistic update rules that map state to a probability of turning each TF ON
or OFF
R: Maximum walk radius

Output:
Number of steps taken before the random walk is a distance greater than R from
state_init
2: State <— state_init
3: steps < 0
4: while d(state,state_init) < R do
5: steps <— steps+ 1
6: TF < arandomly chosen TF
7: probability_update < rules(state, TF)
8: r = random_uniform(0,1)
9: if r < probability _update then
10: state[TF| < 1 —state|TF]
11: Return: steps

1000 random walks were executed from each stable state, and the average number of
steps before the walk left a 4-TF neighborhood of the starting state was used as a measure of
the stability of the state. In silico TF activation and knockdowns were carried out by fixing
the target TF as ON or OFF, and setting the probability of it changing to 0. Each TF in the
network was individually activated and knocked down in each of the stable states, and 1000
random walks were executed for each condition, keeping the perturbed TFs constant. The

percent increase or decrease of the stability relative to the baseline stability was calculated,
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Figure 3.12: Random walks starting from the attractors in Figure 3.11 will eventually get
away from the start state due to uncertainty in the Boolean rules. “Reference” counts how
many random steps are required to get a distance greater than 4 TFs away from the start
state under the network’s natural dynamics. The knockdowns and activations shown here
hold expression of the perturbed gene OFF or ON. In these four examples, the perturbation
destabilized the start state, such that the random walk left the neighborhood sooner.
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resulting in a score of how much activating or knocking out each TF stabilizes the starting
state phenotype (Figure 3.13).

Figure 3.13A shows thatt the model predicts that activation of many TFs, including
FOXA1/2, SMAD4, OLIG2, ELF3, NEUROD?2, TCF4, and ASCL1, destabilizes the non-
NE phenotype, suggesting that these are collectively master NE or NE-Variant regulators.
Conversely, activation of TCF3 stabilizes the non-NE phenotype, as does knockout of
TEAD4 and REST. REST has previously been implicated as a master regulator of non-NE
differentiation in SCLC (Lim et al., 2017), as has TEAD4 through its role as an activator
of YAP and TAZ through the hippo pathway (Horie et al., 2016).

Similarly key regulators are predicted for the other subtypes. Of note, ASCLI and
FOXA1/2 are predicted as regulators stabilizing the NE and NE Variant-2 phenotypes,
while NEUROD?2 and OLIG?2 stabilize the NE Variant-1. SMAD4 and TCF4 are both
found to stabilize the NE and NE Variant-1 phenotypes, while SOX11 stabilizes both NE
variants.

While many of the predicted master regulators, including REST, TEAD4, ASCL1, and
NEUROD?2, match previously reported regulators of SCLC subtypes, further work mod-
ulating expression of the additional TFs will be required to understand and validate their
roles. Particularly of interest, knockdown of ELF3 and NROB1 is predicted to destabilize
only the NE Variant-2 phenotype, and therefore modulation of these genes may provide key
therapeutic advantages by forcing SCLC cells to move away from the more drug resistant

phenotype.

3.6 Discussion

These findings further clarify the role that SCLC phenotypic heterogeneity plays in
the context of differential drug sensitivity, and potentially therapeutic response. We have
positioned our four subtypes (non-NE, NE, NE Variant-1, and NE Variant-2) within the

broader literature of SCLC heterogeneity. One advantage of this analysis is that instead of
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defining each subtype by expression of one or a few markers, we have identified distinct
co-expressed gene programs that participate in unique biological processes. A key finding
of this was the enrichment of the NE Variant-2 subtype with drug/xenobiotic metabolis-
m/catabolism genes. A drug screen across a broad range of compounds indicated that this
phenotype is generally more resistant than the others, though the trend may be reversed in
MEK pathway genes, which may be a promising target for future combination therapies.

The distinction between the NE and NE Variant-2 phenotypes is significant, because
previous markers of SCLC heterogeneity were unable to differentiate these two subtypes.
Nevertheless, validation in mice or in humans of the existence of the NE Variant-2 subtype,
and its drug resistant properties will be of significant importance. To this end, we developed
a panel of four cell-surface biomarkers that, in vitro, are able to clearly distinguish all four
subtypes.

Finally, we have introduced a novel method for identifying key master regulators of
phenotypic heterogeneity. A key benefit of this method is that it does not overfit the data -
each TF is assumed to diffuse randomly in states for which there has been no data to con-
strain its dynamics. With this method we were able to recapitulate known master regulators
of SCLC heterogeneity, as well as making novel predictions. One future direction currently
being pursued in the lab is reprogramming cells via induced expression or knockout of tar-
get TFs, and future studies will be directed at tracking cell phenotype identities, as well as
drug sensitivities, after such perturbations.

In summary, we have provided a framework to more comprehensively understand di-
verse biological processes, regulation, and drug response associated with SCLC hetero-

geneity.
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Chapter 4

Modeling tumor relapse in heterogeneous populations of cancer cells

4.1 Introduction

Heterogeneity has been heavily implicated in the emergence of resistance, and eventual
relapse, in almost all forms of cancer. A recent report introduced the clonal fractional pro-
liferation method (Frick et al., 2015) to quantify the heterogeneous proliferative dynamics
of clonal lineages within cancer cell populations. This method quantifies the drug induced
proliferation (DIP) rate for single-cell clonal lineages within a cell population Here, we
develop a mathematical framework, named the “heterogeneous growth model” (HGM) for
predictive modeling of population level drug response based on the underlying distribution
of clonal DIP rates. The HGM explicitly quantifies the role of clonal fitness variation in
driving the rate of relapse, and is flexible enough to be applied to several possible DIP
rate distributions. We show that the HGM can be used to make quantitative predictions of
time-to-relapse (TTR), defined as the time it takes for a drug treated population of cells to
regress, and return back to the original population level. Sensitivity analysis is performed
to identify cases for which combination treatments targeting the DIP rate distribution mean,

variance, or skewness are likely to have the most significant impact on TTR.

4.2 Notation

Throughout this chapter we will use the following notation: P = Total population
r = Proliferation rate of a given set of cells
x(r) = Number of cells with proliferation rate r
z(r) = Normalized proliferation rate distribution (i.e. z(r) = @)

W = Average proliferation rate of entire population

o = Standard deviation of proliferation rates
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w, = The n'" central moment of the proliferation rate distribution. Note u, = 6>

' = The n'"* raw moment of the proliferation rate distribution. Note Hy=u
t = Time

Unless it is otherwise made explicitly clear, each variable (except for r) is considered to
potentially be a function of time (e.g. P = P(t), x(r) = x(r,1)). Occasionally for clarity this

dependence will be stated explicitly, but for the sake of brevity it will generally be dropped.

4.3 Population level proliferative dynamics can be quantified by the moment generating

function of the underlying DIP rate distribution
4.3.1 HGM Assumptions

To quantitatively describe the rebounding growth dynamics of a population of cells
whose proliferation rates are distributed with non-zero variance, we will here make two
biological assumptions, and one technical assumption about the admissible DIP rate distri-
butions. Using data from PC9 cells treated with erlotinib, we later demonstrate the validity
of the biological assumptions for at least some systems, though we also discuss situations

in which they may not hold.

1. Proliferation rate is completely heritable. That is, all cells with a given proliferation

rate, r, produce daughter cells which have the same proliferation rate.

2. A population of cells with a given proliferation rate » grows or shrinks according to

exponential population growth, independent of all other populations.

3. The initial distribution of proliferation rates has a well defined and finite moment

generating function (MGF) V¢ > 0 (where ¢ is the conventional MGF parameter).

It should be noted that for simplicity the following derivations treat the proliferation
rate as a continuous distribution, but the results may be equally formulated as a discrete

distribution by replacing integrals with sums where relevant.
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Figure 4.1: Cell population with heterogeneous proliferation rates. Cells are divided into
continuous subpopulations with a fixed proliferation rate r. Here we highlight in green a
subpopulation with negative proliferation rate, which will thus decay exponentially over
time. The total population is equivalent to the total area under the curve.

4.3.2 Population dynamics follow the moment generating function of the initial DIP rate

distribution

Assumptions 1 and 2 can be written as a differential equation

dx(r,2)
dr

:r-x(r,t) (41)

This has the well-known solution

x(r,t) = x(r,0)e"” 4.2)

Here, x(r,0) is the initial measurement of cell counts with proliferation rate r. To obtain

the full population, we integrate over all r

P(t) = /o;x(r,t)dr 4.3)

See Figure 4.1 for an example of the model setup.

Substituting (4.2) into (4.3), and recalling that z(r) = ’@ we find
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P(t) = P(0) /_ o:oz(r, 0)e dr (4.4)

which is the definition of the MGF (Kenney, 1939) of the initial proliferation rate dis-
tribution, z(r,0), multiplied by the initial population. All further analyses thus rely on the
convergent behavior of the integral in equation (4.4), as stated in assumption 3. Since the
MGEF of many common distributions is known, it is possible to compute the total popu-
lation at any time ¢ by looking up the appropriate MGF. Nevertheless, a more intuitive

understanding of the model may be achieved by further analysis.

4.4  The variance of the DIP rate distribution drives the population rebound

To put (4.3) into a more meaningful form, we compute P as

/—xrt
—/rx t)dr

Because P(t) = [~ _x(r,t)dr, we find

) . ’ d i
% - /wr-z(r,t)dr = (1) 4.5)
Thus we find that
dp
PO wioyp) “6)

Thus, at any time ¢, the total population proliferates at a rate equal to the average pro-
liferation of the underlying clonal lineages. Furthermore, the general solution of equations
of the form (4.6) is given by

P(t) = Pyelor()d 4.7)
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Figure 4.2: A normal distribution of proliferation rates moves to the right under (4.1) with
constant velocity given by its variance. The shape of the distribution stays the same as the
mean increases.

From (4.6), it is clear that if p(¢) is constant, the population dynamics reduce to ex-
ponential growth or decay given by the average proliferation rate. However, if u(t) is
increasing, the population growth is predicted to be super-exponential, whereas if () is
decreasing, the population growth is sub-exponential. To understand how p(7) changes

with time, we compute

du(r) d [Sor-x(rt)dr
a  dr % x(r,t)dr
ffwxdrffwrg—’; dr— ffwrxdrffwi—f dr
([7 xdr)?
[2xdr [Z r2xdr [T rxdr [ rxdr
([oxdr)2  ([Cxdr)?

In the first term we may cancel [~ xdr from the numerator and denominator. In the second,

= rxdr

recall from (4.5) that Tdr = u

L)
_ [ rexdr —,U2
7 xdr

= E[] - (B[]’

— o2(1) (4.8)
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Thus if a population of cells has a distribution of proliferation rates with non-zero vari-
ance, it will grow super-exponentially as long as assumptions 1 and 2 are satisfied (if there
is no density of positive DIP clones it will not “grow”, but the exponential decay will slow
down). This finding is a form of Fisher’s fundamental theorem of natural selection which
states that “the rate of increase in fitness of any organism at any time is equal to its genetic
variance in fitness at that time.” (Qian, 2013; Price, 1972; Fisher, 1930). In cancer, this is
particularly significant when drug treatment initially induces an on-average negative DIP
rate for a population of cells, which is then driven to be on-average positive DIP rate by
variance in the underlying DIP rate, resulting in a rebounding population.

It should be noted that while this model in general may allow for limitless increase of
U, it is expected that for large times either assumption 1 or 2 may break down. Specifically,
there are physical constraints on the maximum possible proliferation rate, and we expect
the variance to decrease as the cell population becomes dominated by the fastest prolifer-
ating subpopulation. Furthermore, other recent reports suggest that in other cancer types,
phenotypic transitions may cause a violation of assumption 1 (Paudel et al., 2018), leading
to deviations from the HGM predictions.

In the next sections, we explore the dynamics of (4.6) and (4.8) in the specific cases of

normally distributed and skewed DIP rate distributions.

4.4.1 Normal distribution

If proliferation rates are normally distributed, the total population (4.4) is the well-

known MGF for the normal distribution:

6(0)242

P(t) = P(0)eH =2 (4.9)

Here we can see (as we later prove directly) that the variance must be constant (Figure
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4.2), allowing us to directly integrate equation (4.8) as

dut) _
dr
t t
/du(t/):/czdt/
0

and then directly integrating the exponent of (4.7). To understand (and later prove) why the

variance is constant, consider

o2 — [ x(r—u)?dr
B [ xdr
d o [T [T far(r— ) =20 (r— )] dr — [ — ) dr e dr
dr (fio xdr)2

o)

Splitting up the terms, and noting that %” = o2 we find

_ ffmxrir—/.t)zdr_262fi::oxrdr+2ozu_ fiooox(:—ﬂ)zd’”_f%x”d”
= xdr = xdr = xdr = xdr
JZxd JZxd JZxd JZxd

Notice the occurance of the average rate (4.5) in the second and last term, and the variance
(4.8) also in the last term.

_Sxr(r—p)?d
N [ xdr

_ [ xr(r—p)*dr 5
N [ xdr “oH

-
—20%u+20%u—o’u

Expanding the numerator of the first term gives

[ xridr [Saxrtdr L [T xrdr
= — = = -0 4.10
5 xdr K [ xdr K 7 xdr H (4.10)

Notice here that the integrals in the third term are the average proliferation rate (4.5). To
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deal with the second term recall that the variance is defined in terms of the expectation,

E[A(r)] = [T A(r) -z(r)dr as

o’ =E[r*] - (E[r])?

J > xr?dr )

[ xdr —H
Thus we can see that
2
Xxrodr
ffw — =02+ pu? (4.11)
Plugging this back into (4.10) we get
d [ xr3dr
a 2= T xdr —2u(0”+u?) +p’ — o’
[ xr3dr
7 xdr _“3 _BGZH
> x(rP —u)dr
J T xdr —30%u (4.12)

To continue we show that (4.12) is in fact equivalent to the third central moment, us.

To do this, consider the definition of 13

[ x(r—p)*dr

= 4.13
M3 T xdr (4.13)
B [ x(rP =3r7u+3ru? — p?)dr
N 2 xdr
_ [ x(rP —u)dr B [ xr?dr N 5 [T xrdr
5 xdr H 2 xdr H = xdr
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The second term is the second raw moment, which we calculated in (4.11), and the third

term is again the definition of average growth rate from (4.5). Substituting these yields

B [ x(r* —p?)dr

T xdr —3u(o”+u?) +3u°
= x(rP—pd)dr
_/ }w — I 362y (.14)

Thus in (4.14) we show that (4.12) is equivalent to the third central moment u3 as

defined in (4.13), or

d ,

—0° = 4.15

i M3 (4.15)
The third central moment is closely related to the skewness (y = %), and thus because

the normal distribution has no skewness, its variance is constant. This is of course not a
proof, as we have not yet addressed whether a distribution which is initially normal may
become skewed over time. As we show later, however, the shape of the normal distribution

1s invariant under the HG model, and the variance is indeed constant.

4.4.2 Skewed distributions

Equation (4.15) immediately leads to consideration of skewed distributions which have
in general U3 # 0. Indeed, if ps < 0, that is, the distribution is negatively skewed, the
variance decreases over time leading to slower rebound (Figure 4.3). If instead 3 > 0, that
is, the distribution is positively skewed, the variance increases leading to faster rebound
(Figure 4.4).

Interestingly, through numerical simulation of (4.4), it is further observed that over
time, a positively or negatively skewed skew-normal(Azzalini, 2005) distribution will ap-
proach a normal distribution, which then proceeds with a constant variance (Figures 4.3 -

4.5).
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Figure 4.3: Negative skew causes decreased variance. A negative skewnormal (o0 = —3)

distribution has a decreasing variance, until it reaches steady state. The decreased variance
leads to significantly slower rebound dynamics.
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Figure 4.4: Positive skew causes decreased variance. A positive skewnormal (o = 3) dis-
tribution has an increasing variance, until it reaches steady state. The increased variance
leads to accelerated rebound dynamics.
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4.4.3 Higher order moments

While the increase in average (and thus observed, (4.6)) proliferation rate is driven by
the variance, as described by equation (4.8), the variance may in general be modulated
through over time by the general shape of the distribution. In (4.15) we showed that the
derivative of variance is exactly the third central moment, but of course now we must
consider how the third central moment changes over time. More generally, consider the n'"

central moment U, given by

_ o (r) - (r—p)"dr

Un = = x(r)dr (4.16)

We seek to find a general form for its derivative, as
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du, 5 xdr [T, [xr(r— )" —nxo(r— ,LL)"*I] dr— % x(r—w)"dr [~ _xrdr

dr ()% xdr)?
_ ffwxr(r—u)”dr sz x(r—p)"tdr B 5 x(r—w)"dr . % xrdr
o xdr % xdr % xdr % xdr
_ f:oxrgor— w)"dr B nGZIJnfl o
o xdr

Because n must be a positive integer, the first term may be expanded using the binomial

theorem

n f oo_xrn k+1 dr
Z ( ) k f xdr nczun_l — Ul

By separating the first and last terms from the sum, we may find the terms associated with

the (n+ 1)"" moment:

> xr"tldr =l /n [ xr K dr
T M () IO e

fiooox dr fiooox dr

Here we must be careful, as the sign of (—1)"” becomes dependent on n. If n is odd:

o (L _ntlyg, e kg
d, (-t Z ( ) A @7)

d [ xdr [ xdr

If n is even:

d‘Ll,n ffmx(rn-i-l —/.L”H)dr ) n—1 n . fi"mxrn—k—kl dr
= oyt — Joeo T
dr [ xdr o ) (=1) [ xdr

— 62y 1 — il (4.18)

In (4.18) we have included the term +2u"*! to balance out the —u"*! in the integrand
in the numerator of the first term, leaving a net +1u"*!. The first term in both (4.17) and

(4.18) appears to be related to the (n+ 1)”’ central moment. Working from this direction,
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we expand the (n4 1) central moment from (4.16) using the binomial theorem:

_ o) dr

_”f n+1 . )k [ xr =kl gy
= H S5 xdr

Separating the first and last terms, and considering first the case where n is odd (n+1 is

even):

jx’x rn—H _ n+l dr n +1 fwxrn—k—i-l dr
— f ( _ nu' ) +2un+1 + Z n (_ )k f _
Joexdr =\ k 5 xdr

Here the +2u""! is again needed because the (—1)"*! would have been positive. However,

by separating the k = n term from the summation, we find another source of p”*!

i 1 1
_ f—oox(rn+ _,un+ )dr+2un+l_(n+1)un+l

2 xdr
n—1 oo —k+1
n+1  Joxr” dr
+kz’1( k >( H) 7 xdr
Jooxdr =\ k = xdr
This may be solved to find
fi" X(r”+1—un+1)dr . n—1 n4+1 kfio xrnfkﬂdr
- = —Hu"t - —u)—— (4.1
™ xdr Hni1 +(n—1)p k; L)) e @19

if n is odd. Repeating this analysis for n even, we find after separating the first and last

terms from the sum

_ [2x(rt —phdr & n+1 kfjx,xr"_kHdr
po = AUk ) O T e
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And again separating k = n we get

ff’ x(rn+1 _ ‘un+1)dr n—1 n4+1 fj" xrnfk+1 dr
— fd 1 n+1 Y 0o
% xdr +n+hp +,§’1 k (1) % xdr
This may be solved to find

fi"oox(rn—l—l —,u"“)dr
[ xdr

n—1 o n—k+1
+1 o xr dr
= U] — N — " —p)—— (@2
Ups1— (n+1)p kZ]( L )( 1) i (4.20)

7 xrdr

To simplify the notation, recall that T is the n" raw moment, which we will
denote by p),. Using this notation, and plugging (4.19) and (4.20) into (4.17) and (4.18)

respectively, we find:

du, " n—+1 n
A T T Z K =) ot

Reordering some terms and applying Pascal’s rule

= Unt1 — Mt =G>y 1 + (n— 1" Z( ) Vbt
k=1

for n odd, and

d[.tn n n
o = Mo = (e DR 20 ey —

) () st

. n—1 n
= M1 — Pt — 107y — (n— Dp" = Y (k_ 1)(—u)ku,2_k+1
k=1

for n even. Notice that the only difference between the even and odd cases is the sign

of the (n— 1)u™*! term, leading to the conclusion that for all n € N (as long as typical
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conventions are followed regarding empty sums):

du,
dr

n—1
n n n
= lnt1 — Mt — 10>y — (1) (n— "' = Y (k_ 1)(—u)"u,ik+1 (4.21)
k=1

To further simplify (4.21) we must first examine the sum

n—1

n

—SUM =~} (k_ 1) (=) 1
k=1

The raw moment g, 41 may be expanded as a sum of central moments(Papoulis, 1984)
n—1 n—k+1
n n—k+1 INARIY,
=-) (k_ 1) DU ( y )ukfu” it
k=1 k'=0

The p* may be distributed to the inner sum

n—1 n n—k+1 n—k+l o
:I;(_l)k+l(k_l) Z ( y )Hk’li k+1

k'=0

Consider that this equation may be recast as

n—1 n—k+1
—SUM =Y ar Y, cipby (4.22)
k=1 k'=0

where

a = (=" <ki 1)

. n—k'+1
by = e

n—k+1
Cr k! = %

Let A be an (n— 1) x (n+ 1) matrix with each element A; ; = a;41c;y1,;b; (the +1 in
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the index for a and c is arbitrary to keep our indices more relevant to the summation).

Glcl,obo (1101,151 a101,2b2 @101,353 S @101,nbn

@202,050 a202,1b1 a202,2b2 (12(32,353 S @202,nbn

an—20n—2,3b3

Gn710n71,0b0 anflcnfl,lbl an,16n71’2b2 anflcnfl,BbS B anflcnfl,nbn

The sum in (4.22) is equivalent to summing over the shaded region of the matrix, which
we separate into two sections, a rectangular region spanning the first 2 columns, and the
remaining triangular region. The value of this is that the rectangular region may be reduced
to a non-nested double sum, and the order of the summation in the triangular region may

be reversed.

n—k'+1

n—1 1 n
—SUM = Z Z akckyk/bk/ + Z bkr Z Cr k' Ak
k=1k'=0 k'=2 k=1

Substituting in values for ay, by, and ¢y p

d n n—k+1 Nk
Z Z(_l)k—H (k_1)< y ),LLkI,LL k'+1

k=1k'=0

n n—k'+1
n—k+1 ke mo\ (n—kA+l
/ —1
‘|‘k;2ﬂkl~1 1; =1 (k_l) < K
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The first set of sums may be explicity expanded over k’, noting that yp = 1 and p; =0,

while the kK’ = n term may be separated from the second, nested sum

; n—1 n
= ut! Z(—l)"“(k_l) +
k=1

_! g A n n—k+1
+Z“k/u k+1 Z (_1)k+l<k_1)( y )

n
K'=2 k=1

It turns out the inner sum of the nested sum is 0; to see this we first shift the index from

k—k—1
K~ et 1
=Y (=) (k 1)+unu (4.23)
k=1 -
n—1 n—k'
K NIV
+k;2“ku k;)( 2 <k)( K )
Consider the inner sum from k = 0 to n — k'

ni(/(_l)k <Z) (n;?k) - nik/(_l)kkz(;i k) k’!(fzn—_kkz!k’)!

k=0 k=0
_n! "’k/( ) 1
KA k' (n—k—K)!
_ "ifj(_ X (n—k)!
Kl (n—k)! = kl(n—k—k)!

()
NOPENY

From the properties of Pascal’s triangle this last sum is O for kX’ < n, thus the nested sum

in the last term of (4.23) is 0. Thus the sum from (4.21) is

n—1
n
—SUM = "'y (—1)<! <k 1> + Ut
k=1 -
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Plugging this back into (4.21) we get

du,

n—1
n
B ) — ot =GP — (1) (= D Y (<) (k— 1) + i
k=1

Here we may cancel out the i, terms, and group the u"*! terms together

n—1
= Ups1 — O g + " [—(—1)”(n— 1)+ Z(_1>k+1 (k n )]

k=1 —1

We may shift the summation indices from kK — k — 1 as before

n—2 n
~ Bt =0+ [—(—w"(n— D+ Z<—1>k(k)]

k=0

The summation may be completed all the way to kK = n if we then explicity subtract both

missing terms
2 1 4 k(T 1
SR IR B C LIRS M e ¢ B CIV A v
As before, this summation now vanishes, leaving

= Pt =10 g + 1 (1) (0= 1) + (=1)"n— (=1)"]

n

Factoring out (—1)
= o1 —nG 1+ (1) (—n+14n—1)]
Thus the entire last term vanishes. We have now reduced (4.21) to its simplest form

du,

5 = M — no, (4.24)
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Population doublings

Figure 4.6: Predictions of the TTR for 3 distributions, spanning negative skew (ot = —3),
normal (o = 0), and positive skew (ox = 3). As expected, the negative skew distribution
has significantly slower relapse due to the skew decreasing the variance, while the positive
skew distribution is accelerated.

This formula describes how higher order central moments ultimately influence the vari-
ance, and equations (4.7) and (4.8) describe how the variance then contributes to the growth

of the population.

4.4.4 Steady state solution

Together with equation (4.8), (4.24) defines how the distribution of proliferation rates
changes over time. Due to (4.8), the only stationary distributions of (4.1) are Dirac delta
distributions, with the location as a free parameter. However, if we relax the criteria that
the mean be constant (i.e. we permit distributions with positive variance, corresponding to

an increasing mean) we find one more steady state solution

nqun_l :n>11s odd
Hnt1 =
0 :n>21seven

The moments of a normal distribution satisfy this constraint(Siegrist, 2014), and thus
we have shown (as hinted above) that the shape of a normal distribution remains constant,
while the distribution itself moves in the positive direction with velocity equal to the vari-

ance.
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4.5 DIP rate distribution parameters can predict time-to-relapse (TTR)

In cancer, we are predominately interested in DIP rate distributions with a negative
mean, but enough variance to drive the mean to be positive. In this case, from (4.7), we can

define the time-to-relapse, 7', which must satisfy

/OTu(t) dr=0 (4.25)

While they dynamics of p1(¢) are not known for arbitrary DIP rate distributions, we may
analyze the behavior of T for the normal and skew-normal cases. For a normal distribution,
u(t) = u(0) 4 62, such that the TTR satisfies

272
o°T
=0
2

u(0)T +

Ignoring the trivial solution of 7' = 0, we find for a normal distribution

(4.26)

For a skew-normal distribution, we recall that the total population is equivalent to the

MGEF scaled by the initial population (4.4). The MGF of the skew-normal distribution is

given by
MGF () = LI+ (1 +erf <w—5t>> (4.27)
7 .
_ _«a _ __on ; —u—
where 6 = NwL the scale parameter ® = Nyt the location parameter § = U

Yo} %, and o is the skew parameter(Azzalini, 2005).

Thus we find that the TTR for a skew-normal distribution must satisfy

L terf (“’—j;) _ (57 (4.28)
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Figure 4.7: Measurement of DIP rate distribution in PC9 treated with erlotinib. Top: PC9
cells were treated with 3uM erlotinib and displayed exponential growth over a 7 day period.
Bottom: DIP rates (day!), showing fits for normal (1 = —0.164, ¢ = 0.126 and skew-
normal (@ = —1.16, £ = —0.07, @ = 0.158) distributions.

As expected, a negatively skewed DIP rate distribution has a longer TTR because the
skew decreases the variance, while a positively skewed distribution has a shorter TTR be-

cause the skew increases the variance (Figure 4.6).

4.5.1 HGM predicts relapse of PC9 cells treated with erlotinib

A DIP rate distribution for PC9 cells in 3uM erlotinib was measured using the clonal
fractional proliferation method from Frick er. al. (Frick et al., 2015). Cells were treated
with erlotinib for 72 hours prior to time t=0, and imaged once per day starting at 72 hours.
Over a 1 week period, each colony of cells displayed exponential growth, characterized
by straight lines in Figure 4.7. A linear model was fit to each colony’s trajectory, where
the slope represents that colony’s DIP rate. The resulting DIP rate distribution, as well as
normal and skew-normal fits is shown in Figure 4.7.

From these estimates of the normal distribution fit, the HGM would predict (4.26) a

TTR of about 21 days, while the skew-normal prediction (4.28) is about 24 days. Further-
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Figure 4.8: PC9 rebound matches HGM. Heterogeneous PC9 population level response to
treatment with 3uM erlotinib shows response dynamics that are closely predicted by the
cFP derived HGM. There is some slight deviation between the cFP and rebound response
on days 6 and 7, that may be responsible for the difference in depth of response.

more, the normal distribution prediction suggests that the PC9 population response should
reach its minimum point at about 10 days. PC9 population rebound was tracked for 17
days over 14 replicates (Figure 4.8, with a rebound closely following the HGM prediction.
This is true even though the data collected through the clonal fractional proliferation assay

(Figure 4.7) only went out 7 days, and had not shown signs of rebound (Figure 4.8).

4.5.2 Parameter Sensitivity

The goal of cancer treatment is to push 7" back as far as possible, ideally beyond the ex-
pected lifetime of a patient. Here we investigate sensitivity of TTR to different parameters
of normal and skew-normal DIP rate distributions.

4.5.2.1 Normal distribution

For a normal distribution, the relative sensitivity of T (equation (4.26) to the initial

mean, 1 (for brevity we have dropped the argument of 11(0), but it should be noted that this
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Figure 4.9: Sensitivity analysis of TTR. The relative sensitivity of TTR to u and o is shown
for a negative skew (left), normal (middle), and positive skew (right) distribution. Top:

Example skewnormal distributions, showing the effect of the shape parameter a. Bottom:
sens n
Sensq

reflect greater sensitivity to u, while purple regions reflect greater sensitivity to o. The
influence of & on the relative sensitivity reveals that negative skew increases the relative
importance of u, while positive skew increases the relative sensitivity of o.

Relative sensitivity of TTR to varying u VS varying ¢. Color is In [ ] . Green regions

is the initial proliferation rate mean) and the standard deviation o, may be determined by

comparing the partial derivatives with respect to each variable.

or 2
ou o2
oT  4u
do o3

The ratio of the magnitude of the effects between them is given by

oT

Riw.o) = |52 |

oT | _ 2lu]
(9

i (4.29)
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Thus as long as o < 2|u|, TTR is predicted to be more sensitive to changes in 6. On

the other hand, if ¢ > 2|u|, TTR is predicted to be more sensitive to changes in U.

4.5.3 Skew-normal distribution

It 1s impossible to analytically solve (4.28) for for 7', but it may be numerically ex-
plored. Simulation over a grid with u € [—1,—0.1], 6 € [0.1,2), and « € [—3,3] with grid
points sampled with regular step lengths of 0.1 revealed no points with maximum sensi-
tivity to o. Figure 4.9 shows the results of simulation at three values of o, with 0.01s~!
resolution in ¢ and o, and reveals that skew has very little impact on where TTR is more

sensitive to either y or o.

4.6 Discussion

While heterogeneity is ubiquitously understood to be a major driver of relapse in drug-
treated tumors, we have here introduced a model, HGM, that explicitly quantifies the impact
of the variance of clonal subpopulation fitness. Due to the stability of the HGM solution
for DIP rates following a normal distribution, we conclude that even for approximately
normal DIP rate distributions, the predictions of the HGM should be close to the observed
population level response. Nevertheless, we were able to show that positive (negative)
skewness can accelerate (decelerate) the rate of relapse by driving an increase (decreases)
in the DIP rate variance.

We propose that treatments with a second agent that lead to decreased mean or de-
creased variance of the DIP rate distribution can lead to an extension of the TTR. Further-
more, depending on the exact shape of the DIP rate distribution, we are able to identify
which parameter is likely to have a greater impact on the TTR. Nevertheless, further work
remains to understand cases in which assumption 1 may be invalid, such as in the recent

work by Paudel et. al. (Paudel et al., 2018).
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Chapter 5

MuSyC: A new framework for quantifying synergy of drug combination response surfaces

unifies the landscape of synergy metrics by decoupling synergy of potency and efficacy

5.1 Introduction

Recent decades have witnessed an exponential expansion of available drugs for the
treatment of disease (Inglese et al., 2007; Janzen, 2014; Mott et al., 2015; Gong et al.,
2017). This expansion has been concomitant with an evolving understanding of disease
complexity (Hanahan and Weinberg, 2011; Mitchell, 2012); complexity commonly neces-
sitating combination therapy (He et al., 2016). However, the clinical use of combination
therapy is often limited by tolerable dose ranges, and therefore, it is desirable to identify
combinations that enable dose reduction (Tallarida, 2011), i.e., synergistic potency. Ad-
ditionally, combining drugs does not guarantee a priori an increase in efficacy over the
single agents, and therefore it is desirable to identify combinations with effects greater
than achievable with either drug alone (Foucquier and Guedj, 2015), i.e., synergistic ef-
ficacy. To assess a combination’s performance, several drug synergy metrics have been
proposed (Foucquier and Guedj, 2015). The roots of current synergy metrics can be traced
back to either Loewe, who advanced the Dose Additivity Principle (Loewe, 1926) or Bliss
who first described the Multiplicative Survival Principle (BLISS, 1939). Nearly a century
later, methods to quantify drug synergy continue to appear (Chou and Talalay, 1984; Greco
etal., 1992; Yadav et al., 2015; Twarog et al., 2016; Zimmer et al., 2016; Schindler, 2017).
However, none of these methods distinguish between synergistic potency and synergistic
efficacy. Instead, they either make no distinction (Loewe, 1926; BLISS, 1939; Chou and
Talalay, 1984; Twarog et al., 2016) or assume the only form of synergism is through po-
tency (Yadav et al., 2015; Zimmer et al., 2016). Nevertheless, this distinction is essential

to arrive at an unambiguous definition of synergy and properly rationalize the deployment
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of drug combinations, e.g. in personalized medicine. Indeed, conflating them may mislead
drug combination discovery efforts. For instance, a search for improved efficacy based on
traditional synergy frameworks may be confounded by their inability to sort out synergisti-
cally potent combinations.

To address this critical shortcoming and resolve these two independent types of syn-
ergy, herein we propose a new synergy framework termed Multi-dimensional Synergy of
Combinations (MuSyC), which is based on a two-dimensional (2D) extension of the Hill
equation. MuSyC distinguishes between synergistic potency and synergistic efficacy based
on parameters arising from the 2D Hill equation. These parameters can be directly related
to the shape of sigmoidal dose-response curves, and therefore, to standard pharmacologic
measures of potency and efficacy. We visualize synergy of potency and efficacy on Drug
Synergy Diagrams (DSDs) which stratify drug combinations along orthogonal axes of syn-
ergy facilitating rapid comparisons between different combinations.

In direct comparisons, we found that traditional major synergy frameworks emerge
as special cases of MuSyC, and that when certain conditions are not met, these methods
introduce biases and/or ambiguous conclusions.

To demonstrate the value of MuSyC, we investigate a panel of anti-cancer compounds in
combination with osimertinib, a third-generation mutant-EGFR inhibitor, in EGFR-mutant
non-small cell lung cancer (NSCLC). We find that drugs targeting epigenetic regulators
and microtubule polymerization are synergistically efficacious with osimertinib. In con-
trast, drugs co-targeting kinases in the MAPK pathway affected potency, not the efficacy
of osimertinib. These conclusions have implications for drug combination deployment in
NSCLC where increasing the efficacy of EGFR-inhibitors has historically relied on trial
and error with no overarching principles to guide development (Tang et al., 2013; Schiff-
mann et al., 2016).

We also apply MuSyC to study the clinically-relevant combination targeting RAF and

MEK in BRAF-mutant melanoma (Long et al., 2014). Overwhelmingly, we find this com-
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bination to be synergistically efficacious, though in several cases at the cost of antagonistic
potency. We then identify NOXS as an unsuspected molecular co-target for mutant-BRAF
melanomas and show the synergistic efficacy of BRAF and NOXS inhibitors is proportional

to NOXS expression.

5.2 Generalized multi-dimensional Hill equation describes orthogonal synergies of

potency, efficacy, and cooperativity
5.2.1 One-dimensional Hill equation

In pharmacology, the effect of a drug is usually described by the Hill equation, which
arises from the equilibrium of a reversible transformation between an unaffected population

fraction (U) and an affected population fraction (A)

Ut+h-d==A (5.1)

r—1

Here, d is the concentration of the drug, 4 is the Hill slope, often called cooperativity, and
r1 and r_1 are constants corresponding to its rate of action. This reaction is represented in
Figure 5.1A as transitions (given by edges) between states (given by nodes). It has been
shown that it is reasonable to assume that populations U and A reach equilibrium much
faster than they proliferate on their own (Harris et al., 2016), such that we may solve for
the equilibrium as

dU

— =A-r —U-nd"=0
dr r— r

ridh

A
U r_1

When d" = r;—ll, then half the population is affected, and half is unaffected (A = U). This

dose is called the EC50, denoted as C, such that C" = ’”;_11 Because 100% of the population
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is either unaffected or affected, we also have
U+A=1

which leads to the 1D Hill equation

Ch

If the unaffected and affected populations differ phenotypically by some effect (such as
proliferation rate), the average observed effect over the whole population at dose d of some
drug will be a weighted average of the two effects by the percent affected and unaffected.
Namely,

E;=U-Ey+A-Epn,

where Ej is the effect characteristic of the unaffected population, and E,, is the effect
characteristic of the affected population. From this we find the final form of a 4-parameter
sigmoidal equation describing dose-response due to Hill-kinetics:

E-E, C
Ey—E, Ch+d"

(5.3)

where E is the observed effect at dose d. The parameters of equation 5.3 correspond to

efficacy (Ep — E,;), potency C, and the Hill coefficient, which is often called cooperativity

h.

5.2.2 Two-dimensional Hill equation

To extend the 1D Hill equation to two drugs, we consider four possible states, U, Ay, A3,
and A » reflecting cell populations that are unaffected, affected by drug 1 alone, affected

by drug 2 alone, or affected by both drugs 1 and 2, respectively. We model this system
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using four distinct reactions:

U+hy-di = A, (5.4)

r—i

Uthy-dy == A,
r_a
hy
o r
A+ (nh) -dp =—=A12
r—p
(Xhlrl

Ar+ (phy)-dy == A,

r—1

Here, o and o reflect the modulation of drug 1 and drug 2 on cells’ affinity for drug 2
and drug 1, respectively.

This leads to the following underdetermined system of differential equations

dU
E:—U. (rld{“—l—rzdgz) +Ayr_1+Ayr (5.5)
dA
d_t1 =—A;- <r_1 +r2(061d2)ﬂh2) +U-nd)" +A1272
dA
d_t2 = —A,- <r1 (0pdy)?M +r_2> FU-rd+A12-r
dA;p hy h
—dl‘ = —A1’2 . (l”_1 —|—r_2) +A- Otlrzdz +A,- rl(azdl)

Finally, as in the 1D case we have

U+A+Ar+A1n=1. (5.6)

At equilibrium, the equations 5.5 must be equal to zero; however, the system only

defines a rank 3 matrix. Taking the first three equations from 5.5 with 5.6, we define
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Figure 5.1: Mass action kinetics based, multi-dimensional model of drug effect. A) The
commonly observed sigmoidal dose dependent response of a system to a single drug is
classically fit to a generalized Hill equation which stems from a two state model of drug
action. Three parameters of the Hill equation denote the compound’s efficacy (E1), potency
(C1), and cooperativity (7). B) Two dimensional extension for two drug case to four-state
model. Correspondingly, the fit is now a Hill surface with parameters for synergistic ef-
ficacy (B), synergistic potency (o)m and synergistic cooperativity (). fB is the percent
increase in effect of the combination beyond most efficacious single agent. « is the multi-
plicative change in the effective dose of one drug given saturating doses of the other. ¥ is
the multiplicative change in the cooperativity (i.e. switch-like behavior) of one drug with
saturating doses of the other. C) Three drug extension to hyper-cube and corresponding
hyper-dose-response surface. Representations depicted have metrics of effect for which
Ey > E3; however, MuSyC can also be applied if the drug increases the effect £y < E3 by
changing the sign on f3.
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such that
T T
M|:U Al Ay A1,2:| = |:0 00 11
or
T | T
[U A; Ay ALz} =M [0 0 0 1] (5.8)

If we once again consider distinct effects Ey, E1, E», and E3 distinguishing populations U,

Al, Az, and A172, we find

.
Ez[Eo E, E, E3}'M1'[O 00 1] (5.9)

Equation 5.9 has the following twelve explicit parameters: ry, r_1, 12, r—2, Eg, E1, E2,

r_

E3, hy, hy, o and 0. As before we define EC50, C, such that Ci" = r—ll, and similarly for
(. C; and G, describe the EC50s of the first two reactions in 5.4. However, the EC50s for
the third and fourth reactions in 5.4 are Cff fective _ %, and likewise for C;f fective Thus,
the o parameters can be thought of as multiplicative factors for the EC50s. Likewise, the
Hill slopes of the third and fourth reactions are multiplied by the y parameters.

We therefore interpret ¢¢; and o, as parameters for potency synergy, and y; and 9 as

parameters for cooperativity synergy. Likewise, we define

. mil’l(El,E2> —E3
~ Ey—min(Ey,E,)

B (5.10)

(Note: This form of f3 is used when the drugs cause a decrease in E. If drugs increase E,
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max(E1,E,) is used instead. Thus, 3 quantifies the percent increase or decrease in efficacy
of the combination of drugs, relative to the more efficacious single agent.

Synergistic potency () quantifies the extent to which one drug modulates the “effec-
tive” dose of the other. In general, each drug can independently modify the effective dose
of the other therefore, for two drugs, there are two «s. Finally, synergistic cooperativity
() corresponds to the amount the hill coefficient of one compound is altered by the other.
As with o, 7 is asymmetric. These three types of modifications are depicted in Figure
5.1B. From equation 5.9 a ‘null’ dose-response surface can be generated where there is no
synergy (B =0,01 =0 = 1,71 = % = 1) (Figure 5.1B).

This framework is easily extended to multiple drugs following a cubic geometry as
depicted in Figure 5.1C. This geometry results in a hyper-dose response surface depicted
in Figure 5.1C and can be conceptualized as a stacking of dose response surfaces along
the third dimension. Due to MuSyC’s geometric foundation, it is possible to continue
to extend MuSyC to increasing number of drugs, at the cost of an increasing number of
synergy parameters.

There is a corresponding increase in the number of parameters with o and y scaling by
n+2""! —p (the number of edges for a hyper-cube minus the edges connecting unaffected
and singly affected states). This and the commensurate data necessary to fully constrain
these hyper-surfaces invokes a parameter identifiability problem. Because efficacy and
potency are the most important for cancer therapeutics, we generally impose that y; =
P> = 1, and in our own data this approximation does not lead to poor dose-response fits.
Nevertheless, in other systems cooperativity synergy may be of greater importance and

interest.

5.3 MuSyC unifies dominant synergy frameworks

Several other methods for calculating synergy exist, including long-standing traditional

methods Loewe (Loewe, 1927), Bliss (BLISS, 1939), and CI (Chou and Talalay, 1984),
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as well as more recent methods such as ZIP (Yadav et al., 2015), BRAID (Twarog et al.,
2016), and the effective dose model (Zimmer et al., 2016). All of these methods, as well
as MuSyC, define a null surface that quantifies the expected effect of a combination. Com-
binations with effects greater than or less than expected surface are deemed synergistic or
antagonistic respectively. These methods broadly use one of two approaches to quantify
synergy. Loewe, Bliss, CI, and ZIP quantify synergy at every concentration based on how
the experimentally measured response relates to the null surface. Conversely, BRAID, the
effective dose model, and MuSyC provide equations describing the entire surface, contain-
ing synergy parameters which are fit to experimental data using non-linear optimization
techniques.

Here, we briefly compare our model to each of these others and show that our model (1)
is able to describe combination surfaces that other methods cannot, (2) results in synergy
parameters which are straightforward to interpret, (3) is not restricted to a special class of
effects with bounded scales, and (4) reduces to the most common approaches (Loewe, CI,

and Bliss) in special cases.

5.3.1 The Dose Equivalence Principle: Loewe and CI

The first prevalent foundational principle, established by Loewe (Loewe, 1926), and
subsequently expanded on by CI(Chou and Talalay, 1984), is the dose equivalence princi-
ple. This states that for a given effect magnitude E, such that dose d; of drug 1 alone, or
dose d, of drug 2 alone achieves that effect, then there is a constant ratio R = % such that
using b less of drug 2 can always be compensated for by using @ = Rb more of drug 1. One
limitation of this definition is that the null surface is only defined for combinations whose
magnitude of effect is less than the weaker drug’s maximal effect. This is because beyond
such concentrations, no amount a of the weaker drug can compensate for reducing the dose
of the stronger drug by b.

An “isobole” is a curve comprised of concentrations d; and d, of drugs 1 and 2 that all
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E3=E1E2

Figure 5.2: Loewe additivity and Bliss independence emerge as special cases of MuSyC.
(A) As has previously been reported, Loewe additivity corresponds to mutually exclusive
drugs (Chou and Talalay, 1984), such that state A; , does not exist. This is achieved in
MuSyC by setting ¢; = o; = 0, and also require ] = hy = 0. (B) The Bliss independence
null model can be matched by MuSyC by setting &t = o = 0, and E3 = E1E,. The first
constraint is equivalent to the MuSyC null model, while the second simply describes a shift
in the expected effect E3. Exempting that, the Bliss and MuSyC null models are equivalent.

achieve the same effect (Greco et al., 1995). The null surface defined by Loewe additivity
is characterized by linear isoboles. MuSyC’s null surface shares this property when the
two drugs are maximally antagonistic with respect to potency and h; = hy = 1 (Figure 5.2).

This can be seen by setting a; = o, = 0, in which case equation 5.9 reduces to

dy

(E—E0)+(E—E1)(%)hl+(E—E2) (C—2>h2:o 5.11)

By this it is easy to see when h; = hy = 1, iso-effect lines are represented by the linear
isoboles characteristic of Loewe Additivity and the CI null models. However, even in this
case MuSyC is not limited by the weaker drug, and can therefore extend Loewe’s isoboles

to any combination doses.

5.3.2 The Multiplicative Survival Principle: Bliss and Effective Dose

The other prevalent foundational synergy principle is multiplicative survival, described
by Bliss (BLISS, 1939). Bliss defines a null model by assuming the probability of a cell

being unaffected by drug 1 (Uj) is independent of the probability of a cell being unaffected
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Figure 5.3: Isoboles show linear or nonlinear shapes depending on h. (A) As in Figure
5.2, here we show that when & = 1 and & = 0, MuSyC results in linear isoboles, which are
defined as contours of equivalent effect. However in (B) and (C), we show that MuSyC
predicts nonlinear isoboles when & # 1.

by drug 2 (U;). From this, the null surface states the probability of being unaffected by
both drug 1 and drug 2 in combination is U = U - U, (BLISS, 1939). The MuSyC model
leads Bliss null surfaces when there is no potency synergy (0 = 0p = 1), and E3 = E1E;
(Figure 5.2).

To show this, we first assume that each drug in isolation has a 1D hill response
1
hi
@)

where U; reflects the portion of cells unaffected by drug i alone. For the 2D case, when

U, = (5.12)

o) = op = 1, each edge in Figure 5.1B satisfies detailed balance

di\™
Ar=(2L) ©
: (C1>
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Including equation 5.6, we find that for a combination of two drugs

1
U e (5.13)
(&) + (&) + (&) (&)
hy
d
(&
Al =
hy hy hy hy
d d. d d
() ()" ()" )
hy
d.
(&
Ay = -
di\! &\ a\" (4 \"
(&) + (&) (2) (&)
(@) (&)
Cy Cy
12=

h hy h hy
EOROROES

From this, it is easy to verify that U = U - U,, which is equivalent to the Bliss Independence

null model. Furthermore, given Ey = 1
E=U-+AE +AyE), —|—A172E3

We define U;, A;, and E; = U; + A,E; to be the fraction of unaffected cells, fraction of
affected cells, and observed effect for treatment with the single drug i, as described by

equation 5.12. Then

BB = [0+ (1-TE ) [T+(1-TE)]

=U,U, +E1(F2—U1U2) +E2(71—U1U2)—|—E1E2(1 —Fl)(l —72)
From 5.13, we know U = U, - Uy, and A; 5 = A; - A, leading to

=U+E(U,—U)+E (U —U)+EEA,
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Similarly, it is simple to show A; = U, — U, and similarly for A,

=U+EA +EAy+ E\EbA| »

Therefore, given @y = ap = 1, Ey = 1, and E3 = E|E,, then E| - E; = E. Thus, while
Bliss was derived purely within the scope of “percent affected”, MuSyC shows that the
Bliss model may be appropriately extended to any measure of effect for which Ey = 1 and
effects are expected to be multiplicative. Nevertheless, for effects which do not satisty these
criteria, the Bliss model is not appropriate, while MuSyC may still be used for arbitrary

effects.

5.3.3 Bliss and Loewe cannot distinguish synergistic potency from synergistic efficacy

While the null models of Bliss and Loewe emerge as special cases of MuSyC, and in-
deed the Bliss null model is equivalent regardless of /4, neither Bliss nor Loewe are designed
to distinguish synergistic potency and efficacy. Figure 5.4 shows this by plotting lines for
which Loewe (A) or Bliss (B) are constant, but which span synergistic and antagonistic

potency and efficacy in MuSyC.

5.4 Comparison of MuSyC to other metrics

Several newer methods of calculating synergy have been proposed in recent years. Here
we compare several newer models with MuSyC. We find many similarities, and show that
many alternative metrics quantify either potency or efficacy synergy, but not both. In ad-
dition, most of the alternative frameworks are limited to specific types of effect metrics,
or limited by the magnitude of the effects. Collectively, key limitations and differences of

several synergy models in comparison with MuSyC are summarized in Table 5.1.
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Figure 5.4: Contour lines showing constant values of Loewe (A) and Bliss (B) for various
values of o = o and . Loewe and Bliss are calculated for each plot at the EC50 of each
drug. Parameters to generate: h=1, EO=1, E1=E2=0.5, and beta ranging from -1 (E3=1) to
1 (E3=0).

Loewe | Bliss | CI | HSA | ZIP | Effective | BRAID | MuSyC
Dose
Usable for arbi- | X X X X X
trary effect (not
just percent af-
fected)

Effect which ex- X X X X X
ceeds weaker
Effect which ex- X X X
ceeds stronger
Concentration in- X X X
dependent
Satisfies sham X X X
Needs marginal X X
data only
Distinguishes po- X
tency and efficacy
Directly related X X X
to traditional
dose response
parameters

Table 5.1: Comparison of traditional and modern frameworks for calculating synergy.
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5.4.1 Effective dose model

Zimmer et. al. (Zimmer et al., 2016) introduced the effective dose model as a param-
eterized extension of Bliss. In Bliss, the combination’s expected “unaffected” cell frac-
tion is the product of unaffected fractions from each individual drug. The effective dose
model is constructed by fitting the dose response of each single drug to a 1D Hill equa-
tion as in equation 5.12, which they call g;(D;), which is a function of the dose D;. They
then transform the doses D; to “effective doses” via a Michaelis-Menten-like equation:
Djcrr = Dillj4 (1 +ai’jlfféj+%> 71. (Dj o represents the IC50 of the j’h drug - each

drug is fit explicitly assuming that the effect ranges from O to 1). The parameter a; ; rep-

resents how drug j modifies the effective dose synergistically (a; ; < 0) or antagonistically

14Djerr/Djo
Djesr/Djo

D sy — 0, which defines the bounds over which they can define a; ;.

(ai,j > 0) drug i. Note that as a; ; — — < >, D;crr — +oo, and as a; j — +oo,
From this, they arrive at a surface fitting model by using their effective doses in a Bliss-

like equation

Uip = 81(D1efr) - 82(D2efr)

There are obvious similarities between their parameter a; ; and MuSyC’s parameters
¢, as both reflect a transformation of dose, however the exact method is slightly differ-
ent. Their formulation assumes that each drug has a Michaelis-Menten like effect on the
potency of the other drugs, whereas our model can account for non-Michaelis-Menten ef-
fects, specifically when A4! = 1. Furthermore, by using equation 5.12, they explicitly as-
sume that the measured drug effect ranges from 100% to 0%, and fit the data with this
constraint. Therefore their model is unable to describe combinations where the two drugs
either have unequal maximum effects, or the combination has a greater effect than the drugs
can achieve alone, features which are commonly observed (Fallahi-Sichani et al., 2013). In
contrast, MuSyC is able to fit dose response surfaces with arbitrary effect magnitudes.

Nevertheless, the differences between the effective dose model and MuSyC mean that the
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Figure 5.5: MuSyC is capable of describing highly complex dose response surfaces. At
high concentrations of Drugl, Drug2’s dose response becomes non-monotonic in this ex-
ample. In this case, Drug2’s antagonism of Drugl’s potency causes A to dominate at high
concentrations of Drug2, and E, is a better response than both E; and E3. Parameters to
generate: Eg =0.04, E; =0.03, E; =0.005, E3 =007, hy =14, hh, =13, 01 =1, 00 =0

—0.04

effective dose model is able to generate surfaces that MuSyC cannot.

542 ZIP

Like the effective dose model (Zimmer et al., 2016), as well as our potency synergy
(a), ZIP works by quantifying how one drug shifts the potency of the other (Yadav et al.,
2015). ZIP is formulated for arbitrary Ey and E,,,,; however, it assumes E,,; is the same
for both drugs, as well as the combination (E| = E> = E3). To identify potency shifts, the
ZIP method fixes the concentration of one drug, then fits a Hill-equation dose response for
the other drug. However, for combinations with efficacy synergy or antagonism, slices of
the dose-response surface can have non-Hill, and even non-monotonic shapes (Figure 5.5).
Because MuSyC accounts explicitly for efficacy synergy, its surfaces are able to describe
such complex drug combination surfaces where ZIP cannot.

Furthermore, ZIP calculates synergy at every concentration. This is similar to the ap-
proach taken by Bliss, Loewe, and CI, and can be used to find doses which maximize the

observed synergy. Nevertheless, clinically it is less relevant to find the dose leading to
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maximum synergy, because high synergy still does not mean high efficacy and quantifying
synergy on a dose by dose basis can misleading. Additionally, this dose dependence often
leads to ambiguous results about whether a given combination is synergistic or not, as it

synergizes at some concentrations, and antagonizes at others.

543 BRAID

BRAID assumes that each drug alone has a Hill-like response, and constructs an ad hoc
Hill-like equation for the combination (Twarog et al., 2016). This equation uses a single
dose parameter which combines the doses of both individual drugs using a parameter k.
To uniquely solve for k, this formalism, like Loewe additivity, adds the constraint that a
drug in combination with itself must be neither synergistic nor antagonistic. By adjust-
ing k, BRAID is able to fit complex drug combination surfaces, including non-monotonic
responses, unlike ZIP. Additionally, because BRAID fits the whole combination surface
using a single parameter, it can be used to make unambiguous statements about whether
the combination is synergistic or antagonistic. Nevertheless, BRAID does not account for
differences in synergy due to efficacy vs. potency, whereas we find many combinations that
are synergistic with respect to one, but antagonistic with respect to the other. Indeed, the
biochemical interpretation of k is not straightforward. Furthermore, the BRAID model is
unable to fit combination surfaces with synergistic efficacy, as it assumes that the maximum

effect of the combination is equal to the maximum effect of the stronger single-drug.

5.4.4 Highest Single Agent

Highest single agent (HSA) (Foucquier and Guedj, 2015) is a simple model that de-
fines synergy dose by dose, as the net difference between the combination response, and
the stronger single-drug response HSA = min(E(d;,0),E(0,d>)) — E(d},d>) (this form as-
sumes that drug decreases E, though it can also be defined for drugs that increase E). At

high concentrations of d; and d>, HSA becomes similar to our definition of efficacy syn-

117



ergy (). Nevertheless, at intermediate doses, HSA will conflate synergy of potency and

efficacy.

5.5 MuSyC resolves Hill-dependent biases introduced by “sham-compliant” synergy

frameworks

Several combination synergy frameworks are founded, at least partly, in the “sham
combination principle”. This principle is based on a thought experiment in which a single
drug is divided into two vials, and a drug combination experiment is conducted treating
those vials as though they are distinct drugs. The sham combination principle states that
a synergy framework should not identify such a sham combination as either synergistic
or antagonistic. The sham experiment has become a crucial test for synergy frameworks.
Famously, Bliss is known to be non sham-compliant (Foucquier and Guedj, 2015), and
this extends also to the Zimmer’s effective dose model. Some synergy models, includ-
ing BRAID, are derived by asserting sham compliance as an assumption of their model
(Twarog et al., 2016; Schindler, 2017), while others, including Loewe, CI, and ZIP demon-
strate sham compliance as a consequence of their models (Loewe, 1926; Chou and Talalay,
1984; Yadav et al., 2015).

Here we investigate the sham experiment in the context of MuSyC, and show that the
biochemistry of the sham experiment is sufficiently different than the biochemistry of non-
sham combinations, leading to a Hill-coefficient dependent bias in sham-compliant synergy

frameworks.

5.5.1 Sham compliance of MuSyC

Traditionally, to be sham-compliant, MuSyC should predict neither synergy nor antago-
nism for sham combinations. Nevertheless, the mass-action framework of MuSyC requires
that a sham combination should result in ¢&; = @ = 0, because A; >, which reflects a cell

state that is affected by both drugs, does not exist if there is only one drug. Furthermore,
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if the A  state does not exist (A1, = 0), then E3 does not exist, and therefore f3 is com-
pletely unconstrained. Therefore, to test the sham compliance of MuSyC, we only consider
the case when a; = ap = 0.

Because both drugs are actually the same drug, we can further assert that h; = hy = h,

C) =C, =C, and E| = E,. Using this with equation 5.11, we find

dl+dl
Eo+E1 2
EMusyC Ch
Egam (d1,d2) = —1 o (5.14)
_|_

Conversely, the null surface of a sham experiment can defined directly using its 1D dose

response from equation 5.3 as

gqrab:qi(dl d2) smgle(dl +d2) (5.15)
h
E() + £ <d1+d2>

B 1+ <d1+d2)h

Equations 5.14 and 5.15 are only equivalent when & = 1, suggesting that MuSyC is not,
in general, sham-compliant. To understand this discrepancy, consider a sham experiment
where the drug has 3 binding sites (2 = 3) and follows Hill-type kinetics, and is split into
two vials used for a sham 2-drug combination experiment. Following the reasoning above,

and referencing equation 5.2, we find

A (di+d)\’

u \ C

4y didy  didi 43
"ot e e

The two cross-terms in the middle account for the difference between the true sham
experiment result and MuSyC. Hill-kinetics formally result from equilibria of chemical

reactions of the form U + hDrug = A, such that all 2 drug molecules bind simultaneously.
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Figure 5.6: An illustration of the unique biochemistry of the sham experiment. The top left
state represents an undrugged cell, with three binding sites. Hill kinetics are derived from
the assumption that all three drugs bind instantaneously, however intermediate transition
steps are shown here. In a sham experiment, a drug is treated as though it it two separate
drugs (green and blue). As shown in this figure, mixed states of the binding sites being
bound by both green and blue drugs exist. Because green and blue are the same, these all
represent the same fully drugged state. We highlight the three paths that can be followed to
reach a mixed-drugged state.

The first cross-term above represents a mixed case, in which only 2 molecules of drug;
are bound and 1 molecule of drug; is bound. This is fine in a sham experiment, because
drugs 1 and 2 are the same, so the Hill assumption is satisfied when combinations of drug
1 and 2 add up to account for a total of % (3, in our example) molecules being bound, as
shown in Figure 5.6. (the coefficients of the cross terms correspond to the 3 ways this can
be achieved: ‘112°, ‘121, 211°).

However, in combinations of two different drugs, these cross-terms represent partially
drugged states that violate the Hill-kinetic assumption that all 2 molecules of each drug
must bind simultaneously. Furthermore, if the two drugs have different Hill-coefficients,
there is no evident rationale to combine them into a single, meaningful Hill-coefficient as

in 5.15, and there is no clearly defined diagonal in Figure 5.6.
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Figure 5.7: The hill coefficient induces nonlinearities that bias Loewe. Loewe and CI
assume the dose-response surface contours (i.e., the DIP rate axis comes out of the page)
are linear (middle panel). The blue area indicates regions synergistic by MuSyC, while
white regions are antagonistic. When h2<1 (left panel), Loewe and CI misclassify the
hatched region as synergistic, while when h2>1 (right panel), they misclassify the hatched
region as antagonistic.

5.5.2 Sham compliance introduces a Hill-coefficient dependent bias on synergy

The centrality of the sham principle within the field of drug synergy cannot be over-
stated, as new frameworks are praised or critiqued based on compliance, and several meth-
ods are even derived with the sham principle as an explicit assumption (Cokol et al., 2011;
O’Neil et al., 2016). Because sham compliance is characterized by linear isoboles, we can
use equation 5.11 to explore the consequence of 47 on sham compliant models.

Specifically, for drugs with & < 1, we predict that synergy models with linear isoboles
will tend to overestimate synergy, while drugs with 2 > 1 will lead to underestimated syn-
ergy (Figure 5.7). Using two previously published drug combination datasets (Cokol et al.,
2011; O’Neil etal., 2016), we explored the impact of /2 on synergy, specifically using Loewe
additivity. To this end, we calculated an expected baseline synergy value for these methods
by constructing a MuSyC null surface (&; = ap = 1 and 8 = 0) for each combination, and
using the other frameworks to calculate the synergy of the MuSyC null surface.

Figures 5.8 reveal that these methods are biased toward synergism at low values of A.
Interestingly, the underestimation of synergy when 4 > 1 is largely counterbalanced by
the overestimation of synergy that these models make by assuming o; = o = 0 (that is, if

o = 0.5, MuSyC shows that drug 1 antagonizes the potency of drug 2, but because o; > 0,
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Figure 5.8: Hill dependent bias observed in large published drug screens. Loewe synergy
calculated for two large drug screens, from (Cokol et al., 2011; O’Neil et al., 2016). The red
shaded regions show moving window percentiles (10th through 90th percentiles, in steps
of 10). The top plots show how many are present in the window. Black curve in middle
plot shows the median predicted Loewe baseline with o = 1 as a function of Hill slope with
hi = hy. This curve is just an average, as each individual datapoint has its own Loewe bias
baseline based on its concentration. Subtracting each datapoint’s individual bias yields the
bottom plot, which show the elimination of the bias.

122



this is still more synergistic than the sham null model of infinite potency antagonism). By
subtracting the MuSyC predicted baseline synergy for each tested combination, the Hill-

dependent bias is significantly reduced.

5.6 2D Hill equation distinguishes synergy of potency from synergy of efficacy for drug

combinations

As we have shown, the dose-effect relationship of a single drug is traditionally quan-
tified by the Hill equation, which contains parameters describing efficacy (Emax) and po-
tency (EC50) of a dose-response curve (Figure 5.9A). To characterize the dose-effect rela-
tionship for drug combinations, we derived a 2D generalization of the Hill equation from a
drug-combination model (Figure 5.1), using principles of mass action kinetics. The 2D Hill
equation parameterizes a dose-response surface (Figure 5.9B) (Greco et al., 1992; Yadav
et al., 2015), a 2D generalization of 1D dose-response curves (Figure 5.9A). In this equa-
tion, the alteration in the potency and changes in the efficacy are quantified by parameters
for synergistic potency, denoted by o, and synergistic efficacy, denoted by 3. These pa-
rameters govern the shape of the dose-response surface and can capture complex patterns
in the experimental data.

The parameter 3 is defined as the percent increase in a drug combination’s effect be-
yond the most efficacious single drug. For instance, in the case of synergistic efficacy
(B > 0), the effect at the maximum concentration of both drugs (E3) exceeds the maximum
effect of either drug alone (E1, E2) (Figure 5.9C Quadrants I, IT). For antagonistic efficacy
(B < 0) (Figure 5.9C Quadrants III, TV), at least one or both drugs are more efficacious as
single agents than in combination.

The parameter o quantifies how the effective dose of one drug is altered by the presence
of the other. In the case of synergistic potency (o > 1), the half-maximal effective concen-
tration or EC50 (denoted C in Figure 5.9C) decreases due to the addition of the other drug

(Figure 5.9C Quadrants I, IV). In the case of antagonistic potency (0 < o < 1), the EC50
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Figure 5.9: 2D Hill equation for parameterizing dose-response surfaces distinguishes be-
tween synergistic efficacy and synergistic potency of a drug combination. A) Sigmoidal
dose-response curves relating drug concentration to a measured effect, fit to the 1D Hill
equation. The equation contains parameters for estimating a drug’s potency, (C) the con-
centration required for half-maximal effect, and efficacy (Emax), the maximal effect. Here,
Drug 1 is more potent than Drug 2 (C1<C2) while Drug 2 is more efficacious (E2<E1).
For simplicity, in this diagram we only depict a metric for which increasing efficacy results
in lower values (e.g., anti-proliferative drugs). However, the same considerations are valid
for metrics which increase in value with increased efficacy. B) A dose-response surface
for Drugs 1 and 2, based on the 2D Hill equation, under the null hypothesis of no synergy
of efficacy and potency (o = o = 1), and (B = 0). C) Representative dose-response sur-
faces for each quadrant on a Drug Synergy Diagram (DSD). The vertical axis is divided
into antagonistic (8 < 0) and synergistic (8 > 0) efficacy. The horizontal axis is divided
into antagonistic (log(a) < 0) and synergistic (log(a) > 0) potency where « can be either
o or 0. Quadrant I corresponds to synergistic potency and efficacy. In contrast, combi-
nations in quadrant IV have synergistic potency, but antagonistic efficacy corresponding to
a blunting in efficacy at lower doses.
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Figure 5.10: Combination surfaces with asymmetric synergistic potency. A) Combination
surface with asymmetric potency and no synergistic efficacy (E1 = E; = E3). At saturating
concentrations of one drug there is no difference between the maximal effect and minimal
effect of the other drug. B) Combination surface with asymmetric synergistic potency with
synergistic efficacy. C) Combination surface with asymmetric synergistic potency with
antagonistic efficacy.

increases (Figure 5.9C Quadrants II, III). Since each drug can modulate the effective dose
of the other independently (Zimmer et al., 2016), we define two o values (; and ). This
separation of ¢ values in the 2D Hill equation makes it possible for a given drug combina-
tion to have synergism of potency in one direction (¢; > 1), and antagonism of potency in
the other (o, < 1), or vice versa (see Figure 5.10 for example surfaces).

In summary, the 2D Hill equation enables a formalism, termed Multi-dimensional Syn-
ergy of Combinations (MuSyC), in which synergistic efficacy and synergistic potency are

orthogonal and quantified by the parameters 3, related to Emax, and « related to EC50.

5.7 MuSyC quantifies synergy of potency and efficacy in a drug combination screen

We applied MuSyC to evaluate the synergistic potency and efficacy of 64 drugs in
combination with osimertinib, a mutant EGFR-tyrosine kinase inhibitor recently approved
for first-line treatment of EGFR-mutant NSCLC (Soria et al., 2018). The selected drugs
span a diverse array of cellular targets that can be broadly grouped into four categories:
kinases, receptors and channels, epigenetic regulators, and mitotic check-points (Figure
5.12C), each with several sub-categories. The combinations were tested in PC9 cells, a

canonical model of EGFR-mutant NSCLC (Sharma et al., 2010) using a high-throughput,
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Figure 5.11: High throughput experimental pipeline for generating dose response surfaces.
A) Initial drug matrix is prepared on 384-well plate and transferred to cells seeded at sub-
confluent densities. Cells have are engineered to express a fluorescently tagged histone
(H2B-RFP) allowing for cell counts using automated segmentation software. Each condi-
tion is imaged every 6-8 hours resulting in growth curves. The growth curves are fit for the
DIP rate (Harris et al., 2016) to quantify drug effect. This matrix of effects is then fit to
estimate the dose response surfaces.

in vitro, drug-screening assay (Figure 5.11). We quantified drug effect using the drug-
induced proliferation (DIP) rate metric (Harris et al., 2016), a recently developed drug
effect metric which avoids temporal biases characteristic of traditional endpoint assays (see
section 5.11.1).

We extracted MuSyC synergy parameters from fitted combination surfaces for all com-
binations (Figure 5.12). B(obs) is the observed synergistic efficacy at the maximum tested
dose range). As single agents, the drugs display wide ranges of efficacy (E2) (Figure 5.13)
and potency (C). The efficacy and potency of the single agents have no relationship with
the synergistic efficacy and synergistic potency when combined with osimertinib (Pearson
correlation<0.2) (Figure 5.13). This confirms MuSyC’s synergy parameters are indepen-
dent of single-agents’ dose-response curve and therefore cannot be predicted from single
agent pharmacologic profiles.

As specific examples highlighting synergistic efficacy and potency, the dose-response
surface for M344 (a histone deacetylase (HDAC) inhibitor) in combination with osimertinib
exhibits extreme synergistic efficacy (B (obs) = 1.25 £0.03), reflecting a 125% increase in
efficacy over osimertinib alone (Figure 5.12A,D). However, this combination is antagonis-
tically potent (log(a) = —0.90) as observed in the shift in the EC50 of osimertinib in the

presence of 1uM M344 (Figure 5.12A red to purple dotted line). In contrast, ceritinib, an

126



T
(
0uM cer |
~4uM cer |

—0.0254-0.2uM osi r

-8 -6 =10 -8
log(m344)[M] log(osimertinib)[M]

! 1-0uMm344
0.025 \m 44 ~0uM osi \E?\
-~ ~0.2uM osi W

S 0000 +=—+=ci-=== o i
S | ‘\.\ _n
-0025 . log(osi)[M] oy 000 fmmmmmmms 4

-9 -8 -7
s log(osimertinib)[M] 003

log(m344)[M] &

0.03

0.0 0.0 1 R
pIP (h~Ty pIP (h-1)
4

Kinases
Receptors&
Channels
Epigenetic
Regulators
itotic
cnecepane LT[ T]T] [T Inem
Mitotic Epigenetic Receptors&
D All Checkpoint Regulators Channels Kinases
CH @ Protein Syn/Stab. AT @ MAPK-RTKIs A SFK
10 ! @ DNA Syn/Dam M4 8??“0 &Channels & MAPK/PI3K
A ‘ & Tubulin &\DBET BGPCRs | ° :'l-J'E(K/CDK
S
[ vindesindf®, auisjnostat \entinostat ¢ e
s 05l o | inorelbine. LTS l’lmsmmb !
< 9. . ' ud cernis®
0.0 g ==~ ° ----*---- (N S Tap— L ---S8-----] Y s -
4 1 ® 1 - 3
1
* Feo yas d o 1 R
-0.5 hary L L L& h
-5 0 5
log(az) (X potentiates osi)
E Tubulin HDACi Channels MAPK/PI3K
50% 95%
! J 95% D,?
° b L
] = Lo
<1 50% | _ . - f 2
3
i~ \3

log(az)

Figure 5.12: High throughput screen of 64 drugs combined with osimertinib demonstrates
the drug class dependence of synergistic potency and efficacy in NSCLC. A) Combination
surface of M344, an HDAC], and osimertinib (os1). Grey plane indicates a cytostatic growth
rate (ie DIP rate=0 h-1). Left are the dose-response curves for each drug alone (orange and
red curves) and each drug with the maximum tested concentration of the other (green and
purple). Colors correspond to the colored lines on the combination surface. The dotted
lines demarcate the EC50 for each curve. B) Combination surface for ceritinib (cer), an
ALK inhibitor with off-target effects on IGFIR, in combination with osimertinib. Ceritinib
increases the potency of osimertinib at maximum tested concentration, as observed in the
shift of the EC50 between orange and green curves in the top left panel. The shift is pro-
portional to the concentration used and would, therefore, increase at higher concentrations;
however, such concentrations are not physiologically realizable due to the low potency of
ceritinib in this system (EC50=2.02 uM). C) Drug panel used in combination with osimer-
tinib (mutant EGFR-TKI) matched by target’s biological function and grouped in the 4
indicated categories. D) DSDs for drug combinations. In practice, it is best to quantify the
synergistic efficacy at the maximum tested concentrations (denoted 3 (0bs)) instead of the
theoretical maximal effect (). The vertical axis quantifies synergistic efficacy, ((obs)).
The horizontal axis (log(ay)) quantifies how osimertinib’s potency is modulated by each
drug (see Figure 5.14 for o plot). Error bars represent the parameter’s fit uncertainty based
on the MCMC optimization (See methods 5.11 for fitting algorithm). E) 2D density plots
and associated marginal distributions for 3(obs) (vertical axis) and @ (horizontal axis) for
all drugs (black) and selected category subclasses. Colored tick marks indicate the 50%
and 95% probability density intervals for each class.
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Figure 5.13: Correlation of efficacy (E..(0bs)) and potency (C) with the synergistic po-
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(Emax(obs)), CluM], and hill slope (k). B) Synergy parameters do not correlate with a
single drug’s potency and efficacy in isolation. (=X potentiates osimertinib)

ALK inhibitor with off-target effects on IGFIR (Shaw et al., 2014), increases osimertinib’s
potency (log(o) = 6.25) (Figure 5.12B green to orange dotted line) at 4uM (maximal
tested concentration). However, the concentration of ceritinib required to observe a maxi-
mal reduction in the EC50 of osimertinib is greater than the maximum tested concentration
due to the low potency of ceritinib alone (EC50=2.02uM) highlighting the importance of
interpreting synergistic potency in the context of the absolute potency (C) fit in the 2D Hill
equation.

To visualize synergistic/antagonistic efficacy and potency across the entire drug screen
at once, we plot each drug combination on DSDs constructed on axes representing the syn-
ergistic parameters extracted from the dose-response surfaces (Figure 5.12A,B). Specifi-
cally, synergistic efficacy (B(obs)) is plotted on the vertical axis, and synergistic potency
on the horizontal axis (Figure 5.12D). Because a; # , here we plot only the synergistic
effect on osimertinib’s potency on the horizontal axis (osimertinib’s alteration of the other
drug’s potency is shown in Figure 5.14). These DSDs reveal distinguishing trends between
the drug categories. The marginal distributions of tubulin destabilizers (which affect micro-

tubule polymerization) or epigenetic regulators (which broadly affect gene expression) in
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Figure 5.14: DSDs for by drug class for examining the potentiation of drug X by os-
imertinib. Notably, ceritinib is not potentiated by osimertinib (last panel) and linsitinib’s
potency is antagonized by osimertinib.

combination with osimertinib shows an upward shift along the axis of synergistic efficacy
(Figure 5.12E comparing blue and orange to black vertical distributions). In contrast, we
observe limited synergistic/antagonistic efficacy in drugs targeting receptors and channels
with the notable exception of linsitinib (an IGF1R inhibitor) (Figure 5.12D). Cross-talk has
been demonstrated between the IGF1R pathway and the EGFR pathway (van der Veeken
et al., 2009).

We observed limited synergistic efficacy in directly co-targeting kinases in the MAPK
pathway suggesting this may be an unproductive avenue in EGFR-mutant NSCLC (Fig-
ure 5.12E). As expected, no synergistic benefit was observed for combinations within the
channels drug subclass (Figure 5.12E comparing blue and orange distributions to black
distribution). Epigenetic regulators have previously been suggested to prime NSCLC for
sensitivity to EGFRi (Sharma et al., 2010; Greve et al., 2015; Schiffmann et al., 2016) and
the HDAC inhibitor entinostat in combination with erlotinib (first generation EGFR-TKI)
has been shown to increase overall survival in EGFR-mutant NSCLC cases with high ex-

pression of E-cadherin (Witta et al., 2006, 2012). Consistent with this, we also observe
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entinostat was synergistically efficacious with osimertinib (8 (0bs) = 0.84 £0.23) in PC9
cells, an E-cadherin high expressing cell line (Shimoyama et al., 1992).

In summary, by quantifying synergy of potency separate from synergy of efficacy,
MuSyC reveals drug-class trends which can be used to guide subsequent screens and trans-

lational applications in NSCLC.

5.8 MuSyC validates co-targeting RAF and MEK in BRAF-mutant melanoma

The NSCLC osimertinib drug screen (Figure 5.12) suggests combinations targeting
molecules within the same signaling pathway may not be productive avenues for increasing
efficacy. However, a combination used clinically in BRAF-mutant melanoma (Long et al.,
2014; Eroglu and Ribas, 2016) co-targets BRAF and MEK in the MAPK pathway. To
investigate this combination in more detail, we screened a panel of four BRAF inhibitors
(BRAFi) in pairwise combination with four MEK inhibitors (MEKi), with a panel of eight
BRAFV600 mutant melanoma cell lines for a total of 128 experiments (see (Paudel et al.,
2018) for cell-line information).

Based on the mean f3(obs) across cell-lines, all 16 combinations were synergistically ef-
ficacious (Figure 5.15A, Figure 5.16) indicating MuSyC would have identified this combi-
nation prospectively. MuSyC is sensitive enough to detect variations in synergistic efficacy
between cell lines (Figure 5.15A, 5.16) pointing to cell-intrinsic mechanisms modulating
synergistic efficacy of the particular combination. For instance, A2058, a canonically in-
sensitive cell-line (Hardeman et al., 2017), displayed low average synergistic efficacy to
combined MAPK inhibition suggesting this cell-line does not depend on MEK reactivation
in the presence of BRAFi as a resistance mechanism, which may be mediated instead by
an altered metabolic phenotype (Parmenter et al., 2014; Hardeman et al., 2017).

These data indicate the magnitude of a drug combination’s synergistic efficacy depends
upon the molecular and cellular context, i.e., co-targeting within the MAPK pathway may

work for mutant-BRAF melanoma, not for mutant-EGFR NSCLC.

130



A RAFi MEKi
A2058 A375 SKMEL28 SKMELS a) dabrafenib cobimetinib
b, pd98059
2 L L L c selumetinib
@ d trametinib
kS Cobigf el nranelkib | o opeighakt | mgacd it nefinid
< o ]___ moicbLanmm|oabegmpiioimmmnl | onifapSosuunnl ﬁ_--.ﬂnllll §) PI4720 Co et
adhp n po g; selumetinib
trametinib
SKMEL5C10 WM1799 WM2664 WM983B i} raf265 cobimetinib
{( pd98059
k ) selumetinib
@ 2 [ B B N 1) trametinib
2 railh I ki j ohni ebf o ¢ jai eidc|| m) vemurafenib  cobimetinib
S ceobfdumll| bdapchen | daPJ ohni e ,__f_f_TELlll 1] o pdlggosg X
hmap jf o, selumetini
J CALL L 12 p trametinib
B &1 C GO Biological Process GO Cellular Component D CCLE Expression
GO Molecular Function KEGG Pathways 05 [ SKMELS

oxidative phosphorylation

parkinson's disease

metabolic pathways

mitochondrial membrane

inorganic cation transmembrane transporter activity
cofactor binding

nad binding

generation of precursor metabolites and energy
respiratory electron transport chain

electron transport chain

1
=)

1
N
o

log(RPKM) NOX5
1
o

-25

0.000 0.025

—— T '
0 20 Time (hrs) 80 100 0,0 50 _iogl0(adj-pval) 150 DIP Rate (8uM PLX)
A2058
E 0 SC10 vs SCO01 F |t _ N G1.5 T | )
) : ] 1 A2058 1A2058
g £ o !
8 ™| -oumde T 101 H H
5 kot __Jf Wwﬁ ‘SKMELS W_w_ﬁ 1SKMEL5
g > "1do 75 wsle ! °.
S y log(plx4720)[M] ® Iscio 19scor| sco1@®@ scio
101 ' & Y sco7 fwmss ®scor
T T T QR 1 00 {--gF-——=jp—==+———-
0.0 2.5 50 @Q Q&_ ; wigs ! !
log10(mean expression) log(PLX4720)[M] \og N %1%%7:4772200 H P a— T
Y S e = log(a+) log(@2)
003 0 -0.03 " A5 -10 (BRAFi -> NOX5i) (NOX5i -> BRAFi)
DIP Rate (h-1) log(dpiiM]

Figure 5.15: Synergistic efficacy and/or potency of drug combinations in BRAF-mutant
melanoma. A) Eight BRAF-mutant melanoma cell lines were treated with all possible
pairwise combinations of 4 RAF and 4 MEK inhibitors for a total of 128 unique combina-
tions. Waterfall plots of B (obs) for each cell line with all combinations which converged
in fitting. Drug combinations noted by letter in the legend to right. B) Growth curves
of single-cell-derived subclones from SKMELS treated with 8uM PLX4720. Grey curves
represent colony growth according to the clonal fractional proliferation assay (Tyson et al.,
2012). The parental response indicated in black curve. Subclones with varying sensitivity
to BRAFi (SCO01, SC07, SC10) were subsequently used to identify 200 DEGs. C) Top
gene set enrichment terms for 200 DEGs. D) NOXS expression correlates with BRAFi
sensitivity in 10 BRAF-mutant melanoma cells. Drug sensitivity was quantified as DIP
rate measured in 8M PLX4720. E) Pairwise comparison between SCO1 and SC10 of DEGs
(FDR<0.001) identified using DESeq2 (Love et al., 2014). The 200 identified DEGs from
ANOVA between all 3 subclones are in black. Dotted red lines denote plus/minus 4X fold
change. F) Dose-response surface for PLX4270+DPI (NOXS inhibitor) in A2058. G) DSD
for NOX5i+BRAFi reveals NOXS5 expression correlates with the synergistic efficacy of
NOXS5i+BRAFi.

131



dabrafenib cobimetinib
~ 10 1 ~ 10 1
k) s
b § o
plx4720 pd98059
@
raf265 selumetinib
L ] *
| ——— - - . o = ——- - - s
vemurafenib trametinib
e I e
) i :
c cobimetinib pd98059 selumetinib trametinib dabrafenib  plx4720 raf265 vemurafenib
3
2 -
-
L ] -
17 IS ° Ps
) . & sgpe?
Ll s endelpelE R T T
Qo el o Qo Qo e} Qo e} e} e} el Qo e} e}
Sa 52 S2 £2 02 £ 2% of RE 2% B2 ,E £% gf o .
gn O5 9 05 £ L0 9% (U8 Rt go §Q 895 ¢ Q5 ot 85
5% ©¢ ©BE BY %o B2 TE T L FE X Qgf BY TP 9P o
58 5E 5t s S8 5% 5E& X§ X5 55 88 ®E s5E XE £BE %
ER E2 Es ESZ ° £ 3§ a3 °f §3 ° g sf a§ £ 3
g gy g}}: gS ° 35 n T a 51 o n
D | A2058 A375 SKMEL28 SKMEL5 SKMEL5C10 WM9838|
A2058 A375 SKMEL28 SKMELS

Max RAFi  Max MEKi RAFi+MEKi
(E1) (E2) (E3)
SKMEL5C10 WM983B

_? _____ = = = Y K= T ._? _____ @ _____ G

Figure 5.16: Synergistic Potency, synergistic efficacy, and maximal effect of combined
RAF and MEK inhibition. A) Jitter plots of log(oy) for each RAF inhibitor for the four
MEK inhibitors tested. o corresponds to the alteration in MEK inhibitor’s effective dose
due to the presence of a RAF inhibitor. Dashed line denotes zero separating synergistic and
antagonistic potency. The color of plotted points is corresponds to the cell line as annotated
at the bottom of the figure. B) Jitter plots of log(oy) for each MEK inhibitor for the four
RAF inhibitors tested. o corresponds to the alteration in RAF inhibitor’s effective dose
due to the presence of a MEK inhibitor. C) Rank ordered jitter plots of the median f3,,; for
each drug combination across all cell lines. D) Distribution of maximal effects for RAFi
alone (E1, 4 drugs), MEKi alone (E2, 4 drugs), and the combination (E3, 16 combinations)
for each cell line. Orange bar denotes mean.
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MuSyC also provides information on synergistic potency for these combinations.
Specifically, it determines whether a combination is antagonistically or synergistically po-
tent in a particular cell line. Notably, a popular combination (Dabrafenib and Trametinib)
is synergistically efficacious but antagonistically potent in all cell lines except one (Figure

5.16), a trade-off that may be relevant for translation.

5.9 NOXS is a synergistically efficacious BRAF co-target in BRAF-mutant melanoma

While drug combinations are commonly initially identified from top-down approaches,
e.g. high throughput drug screens, many others, including BRAFi/MEKi, were discov-
ered from a bottom-up approach via molecular correlates of insensitivity (Paraiso et al.,
2010; Sturm et al., 2010). To demonstrate how MuSyC can also be applied to these stud-
ies, we looked for molecular correlates of BRAFi1 insensitivity between subclones of a
BRAF-mutant melanoma cell line (SKMELY5). We isolated three SKMELS5 with differen-
tial sensitivity to BRAFi (Figure 5.15B), quantified gene expression using RNAseq, and
identified 200 differentially expressed genes (DEGs) (FDR<0.001). This gene set was sig-
nificantly enriched in processes, cellular components, and molecular functions relating to
metabolism (Figure 5.15C), aligning with previous reports on the relationship between al-
tered metabolism and resistance to BRAFi (Haq et al., 2013; Smith et al., 2016; Hardeman
etal., 2017).

We computed the correlation of the 200 DEGs’ expression to BRAF sensitivity across a
10 cell line panel (see Methods 5.11) using data from (Subramanian et al., 2017). NADPH
oxidase 5 (NOXS) stood out as one of five genes with a significant, positive correlation
with BRAFI insensitivity (Pearson r=0.65, p-val=0.042) (Figure 5.15D) and was signifi-
cantly up-regulated in the BRAFi insensitive subclone (SC10) compared with the sensitive
subclone (SCO1) (Figure 5.15E). Previously unconsidered, NOXS is an interesting target
due to its convergent regulation on metabolic and redox signaling at mitochondria, (Lu

et al., 2012; LeBleu et al., 2014), processes significantly enriched in the DEGs (Figure
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5.15C).

We tested PLX4720 in combination with DPI, a NOXS5 inhibitor (Jaquet et al., 2011),
in a panel of 7 melanoma cell lines selected based on differential NOXS expression. The
synergistic efficacy of the combination correlated with NOXS5 expression (Pearson r=0.77,
p-value=0.043) (Figure 5.15G). Of note, A2058, well-known for its resistance to BRAFi
exhibited the greatest synergistic efficacy and NOXS expression, among the cell lines (Fig-
ure 5.15F). Indeed, in A2058, the NOX5i/BRAFi combination was more synergistically
efficacious than all tested MEKi/BRAFi combinations (Figure 5.15A).

Taken together, these results suggest co-targeting NOXS in BRAF-mutant melanoma
could lead to improved outcomes for BRAF-mutant melanoma patients with a unique
metabolic program for which NOXS is a biomarker. Furthermore, this study demonstrates
the utility of MuSyC in translating putative combinations based on molecular data to the
clinically-relevant scale of the cancer cell population. These results demonstrate the broad
applicability of MuSyC to discover synergistically potent and/or efficacious combinations

from both high throughput drug screens and molecularly directed studies.

5.10 Discussion

The goal of using synergistic drugs is to achieve more with less. It is therefore intuitive
that two types of synergy exist: one corresponding to how much more is achievable (syner-
gistic efficacy), the other to how much less is required (synergistic potency). Finding such
combinations is vital for optimizing therapeutic windows, as there exists a fundamental
trade-off between clinical efficacy and tolerable doses. Synergistic combinations widen the
therapeutic window thereby increasing the odds of success. By stratifying synergy along
distinct axes of potency and efficacy using MuSyC, informed choices can be made about
this trade-off. Furthermore, the distinction facilitates identifying drug-classes that can be
iteratively expanded in future drug combination screens to optimize synergistic efficacy or

synergistic potency, whichever is desirable for a particular system.
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Conditions for which single-drug efficacy is deemed sufficient would benefit from syn-
ergistically potent combinations to drive down toxicity. Alternatively, conditions with low
efficacy treatments are in pressing need of synergistically efficacious combinations in or-
der to improve depth and durability of response. In this respect, MuSyC provides a global
view of the synergistic behavior of whole classes of drugs, e.g. from a high-throughput
drug screen, via DSDs. It also facilitates detailed investigations of a given combination
via dose-response surfaces. In the case of osimertinib, which targets a signaling path-
way, combinations targeting independent biological processes (chromatin organization and
microtubule polymerization) tend to produce a gain in efficacy, whereas combinations tar-
geting co-dependent processes (such as other signaling pathways) tend to vary along the
axis of potency. These insights should guide future screens for translational applications of
combinations with desired synergistic properties.

Loewe additivity and Bliss independence have maintained dominance in the field, along
with the related work of Chou and Talalay. Yet there is broad uncertainty regarding the
appropriate use of each of these methods because they are based on differing foundational
principles, often leading to incompatible results (Tang et al., 2015). MuSyC removes this
uncertainty by unifying these methods into a single framework, within which Loewe and
Bliss emerge as special cases.

There has been much critical analysis over the past twenty-five years on the term ‘syn-
ergy’ (Greco et al., 1992, 1995), arguably rooted in the practice of defining synergy with
respect to arbitrary expectations of drug additivity implicitly codified in their foundational
principles. In contrast, ambiguity about the meaning of ‘synergy’ disappears in MuSyC,
because its parameters directly relate to standard pharmacology dose-response parameters:
efficacy and potency. Indeed, a major advance of MuSyC is the decisive shift toward param-
eters directly relating to a quantifiable change in efficacy and/or potency. Thus, ambiguous
questions, such as “Is there synergy?”, can be recast into more precise questions, such as

“How much does efficacy/potency change when these drugs are used in combination?”.
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Such precise language may promote a move away from arbitrary cut-offs for “significant
synergy” (Meletiadis et al., 2010).

Traditional frameworks define synergy on a dose-by-dose basis, commonly leading to
ambiguous results across the dose matrix. This ambiguity precludes connecting gene ex-
pression with the synergy of a given combination, hampering its clinical translatability.
MuSyC instead fits synergy parameters for the entire dose-response surface, and when
applied across diverse drug panels, can help elucidate the connections between gene ex-
pression and synergy of potency or efficacy for a combination.

While we focused on the DIP rate as our metric of effect, MuSyC may be applied to
any quantifiable phenotype whose dose-response is suitable to be fit by a Hill equation. In
contrast, all other synergy models we surveyed impose strict constraints on the type and/or
magnitude of the drug effect metric. Thus, MuSyC opens up the potential to study synergy
of drug effects which were previously impossible to address by existing methods.

In conclusion, we have presented MuSyC, a drug synergy framework that maintains
a distinction between two intuitive types of synergy and that may be applied to any drug
effect metric. We showed this framework allows for a richer understanding of combination
drug interactions, with practical translational consequences. We foresee this approach will
streamline drug discovery pipelines and facilitate the deployment of precision approaches

for therapeutic combinations.

5.11 Methods

5.11.1 Calculating the DIP Rate

Traditionally, the efficacy of an anti-proliferative compound was measured as the per-
cent of viable cells (relative to control) after a treatment interval (Fallahi-Sichani et al.,
2013; Yang et al., 2013); however, it has been recently shown this metric is subject to

temporal biases (Hafner et al., 2016; Harris et al., 2016). To address these biases, we pre-
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viously developed an unbiased metric of drug effect termed the drug-induced proliferation
(DIP) rate(Harris et al., 2016). The DIP rate is defined as the steady state proliferation rate
achieved after drug equilibration. A positive DIP rate indicates an exponentially growing
population, while a negative DIP rate indicates a regressing one. A rate of zero indicates cy-
tostasis, which may result from cells entering a non-dividing state or from balanced death
and division (Paudel et al., 2018). A single compound is often insufficient to achieve a
negative DIP rate, prompting the search for combinations of drugs to improve increase the
efficacy. This mirrors treatment in the clinic which commonly involves a cocktail of cyto-
toxic therapies and/or targeted therapies (Yap et al., 2013; Mokhtari et al., 2015; Ettinger
et al., 2017). The method used to calculate the DIP rate is extensively described in (Harris

et al., 2016).

5.11.2 Bioinformatic identification of gene expression correlating to BRAFi insensitivity

RNA-seq of melanoma cell lines

Total RNA was isolated from untreated SKMELDS single-cell derived sublines, each in trip-
licate, using Trizol isolation method (Invitrogen) according to the manufacturers instruc-
tions. RNA samples were submitted to Vanderbilt VANTAGE Core services for quality
check, where mRNA enrichment and cDNA library preparation were done with Illumina
Tru-Seq stranded mRNA sample prep kit. Sequencing was done at Paired-End 75 bp on
the Illumina HiSeq 3000. Reads were aligned to the GRCh38 human reference genome
using HISAT?2 (Siren et al., 2014; Kim et al., 2015) and gene counts were obtained using
featureCounts (Liao et al., 2014). All downstream analyses were performed in R.
Differential Expression Gene Analysis and Functional Enrichment Analysis
Differentially Expressed Genes (DEGs) were selected by ANOVA on baseline gene ex-
pression data on three clones based on a statistical cutoff of Likelihood Ratio Test
(LRT) (p-values < 0.001). Functional enrichment analyses, including GO Term En-

richment and Pathway Enrichment Analysis were done using CRAN Package Enrichr
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(https://cran.r-project.org/web/packages/enrichR/index.html), based on a web-based tool
for analyzing gene sets and enrichment of common annotated biological functions (http:
/lamp.pharm.mssm.edu/Enrichr/). The enriched GO terms and enriched KEGG path-
ways were restricted to those with p-values corrected for multiple testing less than ad-
justed.p.values < 0.001. The top GO Biological Processes included generation of precursor
metabolites and energy, electron transport chain, inorganic cation transmembrane trans-
port, and metabolic process. The top GO Molecular Function terms included inorganic
cation transmembrane transporter activity, cofactor binding, NAD binding, and ATPase
activity. The top GO Cellular Component terms included mitochondria. Top KEGG path-
ways enriched for DEGs include metabolic pathways, oxidative phosphorylation, carbon
metabolism and TCA cycle (Figure 5.15). Overall, these enriched GO terms and pathways
point toward differences in the regulators of metabolic function in the three subclones.
This is consistent with previous reports that suggest altered metabolism is implicated in
drug sensitivity and melanoma resistance to BRAFi (Haq et al., 2013; Hardeman et al.,
2017; Vazquez et al., 2013). Correlation of BRAFi insensitivity was computed for each
identified DEG according to 10 cell line panel. Pair-wise comparisons of DEGs was was
performed on genes (after low count genes were removed) using DESeq2 pipeline (Love
et al., 2014).

RT-qPCR quantification of NOXS5 expression

Total RNA was extracted using Trizol isolation method (Invitrogen) according to the man-
ufacturers instructions [1]. cDNA synthesis was performed with QuantiTect Reverse Tran-
scription Kit (Cat# 205311) from Qiagen. RT-qPCR was performed using the IQTM SYBR
Green Supermix from BioRad (Cat# 1708880). Amplifications were performed in BioRad
CFX96 TouchTM Real-Time PCR Detection System. All experiments were done at least
in 3+ technical replicates. Log2 of the transcript expressions were normalized to their ex-
pressions to SKMELS subline SCO1. HPRT or 36B4 were used as housekeeping gene in

all the experiments.
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Chapter 6

Conclusion

6.1 Discussion

A major theme throughout this work has been the idea of stability. Living systems all
exist in a shared environment with other living systems, and continuous competition and
evolution ensure an ever changing landscape that they all must contend with. Indeed, given
the enormous combinatorial complexity of behaviors that are possible, one of the most
paradoxical aspects of biology is that it can be understood at all; that it finds robust, stable
patterns of behavior.

Stability likewise lies at the heart of dynamical systems theory in mathematics. Systems
which may have arbitrarily complex behavior throughout the entire phase space often settle
into subregions, where the behavior becomes more understandable, and more predictable.

Nevertheless, the second major theme throughout this work must be instability. Cancer
has taught us that it won’t be confined into a box easily. Cancer therapies, especially in
small cell lung cancer, often have great effect at the start of treatment. And yet tumors are
able to evolve, both genetically, and with growing appreciation throughout the field, epi-
genetically. In many ways, cancer exemplifies Bruce Lee’s famous adage to be “formless,
shapeless, like water.” Cancer adapts to our therapies, whether passively or actively, and
evades our attacks. The longterm goal of this work is to understand how to better control
the way cancer adapts, and as much as possible, to make it adapt in ways that we choose.

In this effort, Waddington’s original idea of a “creode” (Waddington, 1957) is excep-
tionally important. It suggests that not only are biological identities stable, but that tran-
sition pathways between distinct identities are themselves stable - some paths are easier
to traverse than others, and once a cell starts down a path, it becomes (loosely) locked in.

Understanding the paths that cancer takes then, and how those paths are regulated, could
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have a dramatic impact on our ability to disrupt cancer’s adaptability.

In chapters 2 and 3, I studied the stability of small cell lung cancer’s phenotypic iden-
tity. In this work, I illustrated how existing SCLC heterogeneity may emerge spontaneously
through pre-wired genetic regulatory programs, driven by master regulator transcription
factors. I identified and characterized a novel SCLC subtype, NE Variant-2, which is dis-
tinguished phenotypically from the other subtypes as being exceptionally resistant to treat-
ment. In chapter 2 I showed that under drug treatment, NE and ML (non-NE) cells shift
toward the variant subtypes, however a full characterization of drug treated cells remains to
be completed. In chapter 3, I identified possible master regulators of the NE Variant-2 sub-
type, and ongoing work in the lab is directed at reprogramming those cells into other states,
to possibly increase their sensitivity. Nevertheless, to achieve clinical utility, these master
regulators must be targeted through signaling pathways, and connecting the complexity of
fast-acting signaling pathways with slow transcriptional cell identity programs remains a
large challenge.

In chapters 4 and 5, I developed tools that can be used to understand and model a
cellular population’s response to treatment. In chapter 4, I extended the traditional model
of exponential population growth to the case where the growth rate is distributed over
subpopulations with stable identity. In doing so, I showed the significance of different
parameters of the proliferation rate distribution, with respect to how they contribute to the
overall relapse. Furthermore, I demonstrated the stability of the Gaussian distribution in
drug treated populations. Because of this stability, the model can make reliable predictions,
even if the DIP rate distribution is slightly non-normal: it will become more normal over
time.

This derivation assumed that daughter cells will inherit their parent cell’s prolifera-
tion rate, and this assumptions was shown to be reasonable in erlotinib treated PC9 cells.
Nevertheless, over longer terms, or in other cancers, this assumption may be less likely to

hold. Understanding the interplay between drug-induced phenotype transitions, and drug-
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induced proliferation rates is an ongoing challenge in the lab, especially in melanoma, for
which the DIP rates appear much less stable (Paudel et al., 2018).

Finally, I introduced a novel and unifying framework for modeling drug combination
synergy: MuSyC. This too has its roots in stability, as the population is modeled as an equi-
librium between multiple, distinct drugged states. MuSyC is powerful in its flexibility, but
most importantly in its interpretability. Synergy parameters in MuSyC reflect real, geomet-
rical features of the dose-response surface, and have unambiguous meaning. We demon-
strated MuSyC’s usefulness in drug combination screens in non-small-cell lung cancer, and
in melanoma. Interestingly we were able to identify trends between drug classes and syn-
ergistic efficacy vs synergistic potency. A systematic and predictive connection between
these tradeoffs would be a significant advance in targeted therapy.

Overall, each of the chapters in this work represent pillars, but the goal is to connect
the pillars to arrive at a comprehensive and predictive framework for identifying holistic
combination treatments that confine the tumor’s response in a phenotypic region that it
can be killed. Of course, the ultimate goal is the improvement of patients lives, and the
eradication of this terrible disease, and it is my hope that this work represents a small step

in that direction.

6.2 Future Directions

This work leads to several possible directions of future research.

6.2.1 SCLC

Our work in SCLC revealed distinct drug sensitivity patterns associated with distinct
transcriptional patterns. Jahchan et. al. (Jahchan et al., 2016) identified a tumor propagat-
ing cell phenotype in a mouse model of SCLC that is capable of giving rise to several dif-
ferent cell types. Nevertheless it is not known how plastic these phenotypes are, whether all

types may spontaneously transition or transdifferentiate into the others, nor how different
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selective pressures within the tumor microenvironment may promote or inhibit transitions.
Many standard SCLC cell lines have been established for several decades (Carney et al.,
1985), and their phenotyptic traits are well conserved. Nevertheless, future work tracking
single-cell fates over time of SCLC cells alone, in mixed populations, in response to pertur-
bations such as drug treatment, or in in vitro xenograft models could quantify the relative
baseline stability of these phenotypes in different contexts.

Furthermore, given recent proliferation of literature on SCLC heterogeneity (Calbo
et al., 2011; George et al., 2015; Borromeo et al., 2016; Jahchan et al., 2016; Udyavar
et al., 2017; Mollaoglu et al., 2017; Lim et al., 2017; Williamson et al., 2016; Huang et al.,
2018), there is uncertainty within the field about what are the significant differences or
similarities between these distinct phenotypes, a problem that is compounded by the use
of diverse model systems spanning cell lines, mouse xenografts and genetically engineered
mouse models, and human patients. An atlas showing transcriptional and ontological sim-
ilarities and differences, spanning these phenotypes and model systems, would clarify to
what extent results obtained in one system may be applicable to another.

We identified key TF drivers of the non-NE and 3 NE phenotypes. Future work is
ongoing to explore the effects of targeted perturbation of these TFs. Many cellular repro-
gramming efforts are hindered by partially reprogrammed cells, and it is not known to what
extent semi-stable states may exist in-between the phenotypes we have identified. Further-
more, it remains unclear whether TF perturbation will induce changes in cell surface mark-
ers, gene co-expression modules, and/or drug sensitivity. There may be SCLC-specific
regulatory interactions that are not well reflected in the literature or databases. Experimen-
tal GRN reconstruction methods, such as ATAC-seq and DNA footprinting may be used to
identify SCLC-specific regulation. Even if TF perturbations do induce transitions, it is of-
ten challenging to target TFs in clinical settings, while molecules in signaling pathways are
generally more amenable targets. Identification of differentially active signaling pathways

across the phenotypes may reveal novel, actionable targets. Coupling signaling pathways
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to downstream activation or silencing of TF activity could provide further specificity for
identifying targets. Mechanistic models coupling the dynamics and cross-talk of multi-
ple signaling pathways with the TF GRN in figure 3.9 would require modeling approaches
bridging the timescale differences between signaling networks and TF regulatory networks,
but could result in systematic prediction of targets that could drive SCLC cells toward death
states.

Furthermore, modern single-cell technologies are opening up the possibility to quanti-
tatively sample the “position” of cells along their creodes, in a way that will greatly improve
our ability to understand the regulation, and the stability, of these creodes (Herring et al.,
2018). By treating them as timeseries data, pseudotime trajectories inferred from single-

cell derived creodes may be used to better fit the rules governing transitions .

6.2.2 TF network modeling

The probabilistic, uncertainty Boolean network model approach developed in section
1.3.5 can also be expand to account for more complex situations. Because of the expected
robustness in biological regulation, it may be possible to estimate regulatory output on
leaves for which there are no constraining biological observations. Each leaf has N neigh-
bors, corresponding to the N regulatory inputs to the target TF, and in cases for which all
regulatory neighbors have similar output, it may be biologically reasonable to assume that
the unconstrained leaf ought to behave similarly. This could be explored by comparing
leaves’ regulation to their neighbors across many different networks and datasets.

Additionally, knowledge about the family, structure, and molecular function of TFs, or
knowledge of their protein-protein interactions, may be added to constrain their regulation.
For instance, a regulatory function like A = B A C may reflect an underlying protein inter-
action, or coactivator activity of B and C. Such pre-defined knowledge may be useful to
better constrain uncertain leaves.

This uncertainty network approach can also be used to identify functionally irrelevant
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regulators, as well as detecting the absence of necessary regulators. The first may be ob-
served when all pairs of leaves following a given input TF being ON or OFF are nearly iden-
tical, that is, whether the TF is ON or OFF makes no effective difference to the output. The
latter case may be observed when two samples that constrain the same leaf differ as to their
predicted output. For instance, if A = f(B,C), and one sample is (A;,B;,C;) = (1,1,0),
and another is (A3, B;,C;) = (0,1,0), then this suggests that A must be a function of at least
one other TF.

Finally, the model presented here is specifically designed for non-perturbed, steady-
state data. When validating model predictions, it may be useful to collect timeseries data or
data corresponding to perturbed cells, and this data should be useful at further constraining
the rules, especially in regions of expression space between attractors. Timeseries data may
be included by adding a time dependent component, and allowing that A = f(B,C) be re-
placed with A(t;+1) = f(B;,C;), such that the distribution of how each sample at each time-
point constrains the output TF at the next timepoint. Care should be taken in how timesteps
are chosen experimentally. Data corresponding to cells with one or more perturbed TFs
may be used, but can only constrain rules for those TFs which are not perturbed. While
cells may get stuck in previously unaccounted attractors, adding these data to the model

may therefore be used to troubleshoot and debug reprogramming experiments.

6.2.3 Heterogeneous proliferation model

The heterogeneous proliferation model derived in chapter 4 is applicable for systems
with low phenotypic plasticity, however transitions between different phenotypes are likely
to play a significant role in the relapse of more phenotypically plastic cancers. Phenotypic
stability may be less in other cancer types, such as in (Paudel et al., 2018). Furthermore,
spatial constraints and microenvironmental interactions may additionally induce pheno-
typic plasticity in in vivo systems. The stability of proliferation rates observed in figure 4.7

should be assessed in 3D culture and in vivo.
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Plasticity may be reasonably modeled using a transition-proliferation model

dxi(t)

— = i = L) xi(0) + YT () ©.1)

J J

where T; ; quantifies the transition rate from phenotype i to phenotype j.

Additionally, it remains unclear how the proliferation rate connects to underlying
molecular states. Understanding this relationship may reveal molecular correlates of DIP
rate variance or skewness, and targeting these correlates may then be able to modulate the

underlying distribution to delay the time-to-relapse.

6.2.4 Drug combination synergy

In chapter 5, we demonstrated the application of MuSyC to combinations of 2 drugs.
Nevertheless, in many cases drug treatment may require administration of 3 or more com-
pounds. In general for a combination of N drugs, MuSyC must fit 2% — N — 1 distinct
efficacy synergies and 2V~!. N — N distinct potency and cooperativity synergies each. As
discussed in chapter 5, for N = 2, this results in 1 efficacy synergy and 2 each of potency
and cooperativity synergies. Nevertheless, for combinations of N = 3 drugs, this requires
4 distinct efficacy synergies, corresponding to the efficacy gains of combination of drugs
(1,2), (2,3), (1,3), and (1,2,3), and 9 distinct potency and cooperativity synergies. Further
work remains to understand to what extent all of these higher order synergies are impor-
tant, as well as the best strategies for sampling drug-responses to optimally constrain the
greatest amount of these parameters.

Additionally, clinically it is common to treat with one drug, then after a pause, treat with
a second drug. The MuSyC model was designed under the assumption that equilibrium is
reached for both drugs simultaneously, but in the time-staggered case, this assumption is
not valid. While MuSyC’s synergy parameters have clear, geometrical interpretations for

the shape of the edges of the dose response surface, there may be significant differences in
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the interior of the surface depending on the order of treatment.

The identification of NOXS5 as anti-correlated with DIP rate following BRAF inhibition
suggested combination of BRAFi1 + NOXS5i, which we showed to be synergistic in Figure
5.15. This suggests that systematic connection of gene expression, molecular networks,
and single-drug sensitivity may enable accurate prediction of synergistic combinations. To
this end, connecting the gene co-expression modules from Figure 3.3 to the drug sensitivity
in Figure 3.7 may be useful to identify synergistic combinations.

Prediction of synergistic targets in this way may further be improved by understanding
which co-targets will result in synergistic efficacy VS other types. For instance, it may be
that co-targeting two molecules in the same pathway tends to result in one type of synergy,
while co-targeting disparate pathways, or biological processes, tends to result in another
type. Mechanistic models of signaling pathways and crosstalk may be systematically ex-
plored with in silico perturbations to identify patterns that may result in one or another type

of synergy.
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