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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction and Study Overview  

This PhD Dissertation project had as its objectives: (1) to develop MIASMA, a 

potentially open-source Medical Informatics Application for Systematic Microbiological 

Alerts that uses recently developed methods (e.g., from syndromic surveillance and from 

heuristic observations) to detect single-hospital outbreaks of both commonly occurring 

and rare bacterial species; (2) to deploy MIASMA in the Vanderbilt University Hospital 

(VUH) for use by the Department of Infection Control and Prevention; (3) to compare the 

alerting timeliness, positive predictive value, and sensitivity of MIASMA to current VUH 

infection control practices; and (4) to evaluate the utility of MIASMA when used to 

supplement current VUH infection control practices. 

Literature Review 

Context and Definitions 

Healthcare-associated infections present a substantial national burden, affecting 

approximately 2 million U.S. patients annually at a rate of 5.69 infections per 100 

hospital admissions.
1
 These infections increase patients’ lengths of stay and cause 

potentially preventable morbidity and mortality.
2
 Such infections can spread from 

patient-to-patient through direct contact (e.g., via skin contact, use of contaminated 
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instruments, or contaminated injections), via aerosols, or via care providers.
3
 Outbreaks 

are defined as “an increase in occurrence of a complication or disease above the 

background rate.” 
4
 As previously noted, outbreaks can occur as the result of several 

different modes of transmission. If multiple sources within the hospital exist (e.g., 

inadequate quality control during intravenous line placement or in subsequent line 

management), different patients may acquire varying infections from independent 

sources. Alternatively, patients may be exposed to a shared source, such as contaminated 

injectable radiological contrast dye used during invasive medical imaging.
5
 Furthermore, 

if the infection can spread from patient-to-patient, a single infected patient can transmit 

the contagion to others who may then themselves continue the chain of transmission. 

Figure 1 illustrates these three possible mechanisms by which an infection can spread. 

When these transmissions continue to propagate, an outbreak results.  

 

Figure 1: Possible disease transmission mechanisms 

 

Abnormal infection rates that may indicate an outbreak vary widely, since 

background rates for infectious diseases can differ greatly. A single case of a rare 
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infection (such as pneumonic plague) may represent an underlying outbreak, whereas 

dozens of cases of infection with a common pathogen (such as E. coli urinary tract 

infections) may not. Outbreaks fall into two categories: clonal and non-clonal. A clonal 

outbreak occurs when progeny of a single organism spread to multiple patients. Non-

clonal outbreaks typically occur when infection control techniques are suboptimal (e.g., 

improper hand washing). The resulting infections involve higher than usual rates of many 

different bacterial species. Non-clonal outbreaks are identifiable by detecting overall 

increases in infection rates on given hospital units. Clonal outbreaks, however, may 

remain unnoticed since the increase in infections by a single rarer species may not 

significantly affect the overall infection rate. Molecular fingerprinting techniques that 

allow the identification of an organism’s genetic lineage based on highly variable 

sections of the microbial genome remain the gold standard for determining the clonality 

of bacterial isolates from different patients’ cultures of the same species.
6
 Nevertheless, it 

is both more efficient and more cost effective to first screen for potential clonal outbreaks 

by comparing antibiotic sensitivity patterns for each bacterial species identified by 

cultures, since antibiotic sensitivities are routinely ordered for therapeutic guidance. 

When sensitivity patterns suggest that infected patients share a common pathogen, 

hospitals then may do more expensive genetic tests to determine clonality.
7
 

To investigate and control potential outbreaks, hospital infection control staff 

confirm existing cases of disease, locate additional previously missed cases, and 

implement preventive measures to avoid further spread.
8
 Outbreak investigation 

combines the need to establish clonality of an infecting agent with the need to discern 

pseudoinfections and pseudooutbreaks from “true” outbreaks. Pseudoinfections are when 



 4 

 

microorganisms (such as common skin contaminants) present in a stain or culture do not 

correspond to a clinical infection. Pseudo-outbreaks comprise a cluster of such 

pseudoinfections.
4 

Though pseudo-outbreaks are typically not important to investigate 

from a clinical perspective, they may be indicative of poor sample collection techniques. 

Thus, they are still important to detect and address. 

Computer-assisted healthcare-associated infection monitoring 

In the mid 1980’s, Evans and colleagues at LDS Hospital in Salt Lake City 

developed one of the earliest published systems for automated detection of healthcare-

associated infections, which also monitored antibiotic resistance patterns – the 

Computerized Infectious Disease Monitor, CIDM.
9
 To integrate other clinical data with 

information from the microbiology laboratory system, the Utah developers incorporated 

CIDM into LDS Hospital’s HELP hospital information system. The CIDM ran daily and 

generated a variety of alerts for infection control personnel. Overall, the CIDM 

demonstrated the future potential of computer-supported outbreak surveillance: it 

detected infections as accurately as infection control professionals and made clinically 

useful antibiotic selection recommendations.
10

  

In the early 1990’s, at Barnes Hospital in St. Louis, Kahn et al. developed 

GERMWATCHER, a computerized expert system used to detect nosocomial infections.
11

 

The microbiology laboratory system at Barnes Hospital generated reports in a semi-

structured format, using constrained, seemingly “natural” language that was generated 

using a limited terms dictionary. By leveraging the underlying Barnes microbiology 

terms dictionary, the researchers could use simple pattern matching to extract the 
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structured, standard-format portions of the report necessary for tracking nosocomial 

infections.  

Following and building upon the work of such early pioneers, other investigators 

have developed and demonstrated the reliability of more complex systems for tracking 

healthcare-associated infections.
12

 Some systems focused on tracking specific organisms 

(e.g., MRSA
13

); others on specific infection types (e.g., bloodstream infections
14

); and 

others on more general coverage for nosocomial infections of all types.
15,16

  

Systems with more limited coverage areas for infectious disease surveillance 

(e.g., detection constrained to a single hospital), have greater ability to use clinical reports 

to facilitate outbreak detection. For large-region surveillance, e.g., cities or states, the 

time costs associated with collecting and aggregating reports is prohibitive. At the 

University of Maryland Medical Center, Wright et al. developed a rule-based system that 

utilized data from clinical reports to help hospital infection control staff to generate 

automated “control charts” consisting of a bacterial species, a location, and an optional 

antibiotic resistance pattern. The control chart alerts notified users when characteristic 

patterns for specific pathogens were detected (e.g., when specific rare or dangerous 

organisms were detected, when pathogens had certain patterns of antibiotic resistances, or 

when a targeted pathogen it was isolated on a certain hospital unit).
17

 After configuring 

the control charts and analyzing retrospective data, the program was able to detect a 

number of outbreaks that the hospital infection control team had previously missed.
17

 

Brossette et al. implemented a different outbreak detection approach, using data 

mining techniques to discover from past institutional culture results novel association 

rules for surveillance.
18

 Brossette’s method did not require “pre-existing” triggers that 
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manually designated what constituted a clinically important finding. When applying this 

method to one year of the local hospital’s Pseudomonas aeruginosa antibiotic sensitivity 

results, Brossette’s system found short-term and long-term shifts in resistance patterns.
18

  

The World Health Organization (WHO) created WHONET, an algorithmic set of 

tools to perform retrospective analyses and derive antibiotic susceptibility trends.
19,20

 

While the WHONET software package was designed primarily to aid in monitoring and 

managing antibiotic resistance in collaborative hospital networks, it could also be used 

within individual hospitals. However, the WHONET version available as of July 2011 

does not yet include automated surveillance tools. Previously, a study integrating the 

SaTScan cluster detection software with WHONET demonstrated that standard, manual 

outbreak detection techniques missed potential Shigella outbreaks that SaTScan’s 

automated techniques caught.
21 

More recently, a study used WHONET and SaTScan to 

attempt to locate outbreaks within hospitals.
22

 That study again found that 

WHONET/SaTScan detected a number of potential outbreaks that manual infection 

control methods failed to find, and that automated methods could potentially provide 

helpful guidance to hospital infection control staff. 

At Regenstrief Institute in Indianapolis, Kho et al. made use of a city-wide health 

information exchange network to facilitate sharing data on patients with known positive 

MRSA cultures.
23

 Each individual site maintained a registry of all MRSA-positive 

patients and shared the registry with the other three participating city hospitals through a 

standardized interface. After approximately one year, their registry-based system 

generated 2,698 admission alerts for patients with a known history of MRSA, with 19% 

of alerts arising from data shared by another institution.
24
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Some commercial products include infection control applications that can be used 

for hospital-wide microbiological surveillance. Unfortunately, the commercial nature of 

such proprietary systems often limits the amount of information that their developers 

reveal through peer-reviewed publications. For example, Dr. Stanley Pestotnik and 

colleagues developed the Theradoc Expert System Platform based on the previously 

noted pioneering infection control research at LDS Hospital.
25

 Yet technical details on 

Theradoc’s operational algorithms and formal evaluations of that system’s efficacy are 

not publically available. Similarly, technical information about the MedMined suite 

evolved from Dr. Stephen Brossette’s data mining studies is not publically accessible.
26 

A 2010 study deployed and evaluated DiversiLab, a system designed to aid 

infection control personnel in determining whether a cluster of bacterial cultures 

represents an outbreak or not. The Diversilab could provide simple molecular typing data 

for a number of bacterial species, e.g., from samples taken from patients suspected as 

victims of an outbreak.
27

 DiversiLab readily aided in the identification of outbreaks of 

Acinetobacter, S. maltophilia, Enterobacter cloacae complex, Klebsiella, and E. coli, but 

was less useful for P. aeruginosa, E. faecium, and MRSA. DiversiLab thus provided a 

quick method for confirming some potential outbreaks found using epidemiologic data, 

allowing infection control staff to act more rapidly to stop further spread. 

Electronic Syndromic Surveillance Systems 

Following the 2001 anthrax attacks in the United States
28

, fears of bioterrorism 

sparked interest in syndromic surveillance. Syndromic surveillance systems use a variety 

of algorithmic approaches to rapidly identify potential infectious disease outbreaks within 
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large geographic areas (e.g., cities, counties, or states). Such systems use pre-clinical data 

(e.g., sales records for health-related products purchased in pharmacies, or chief 

complaints of patients seen in Emergency Rooms) gathered from the relevant geographic 

region. A review of syndromic surveillance system evaluations
29

 found that most early 

developers used purely temporal detection methods
30-33

, though some later incorporated 

spatial components
34-36

.
 
Algorithms used for detection range from statistical methods 

developed originally for manufacturing process surveillance to specialized algorithms 

devised specifically for syndromic surveillance.
37

 Systems such as Pittsburgh’s RODS 

system
36

 and Harvard’s AEGIS system
38

 have been implemented for statewide 

monitoring in Pennsylvania, Utah, and Massachusetts. The RODS system was used short-

term for monitoring during the 2002 Salt Lake City Winter Olympics. During that short 

time interval, it generated two alerts, though fortunately neither corresponded to a public 

health issue.
39 

The CDC’s BioSense system
40

 can monitor data on a national scale. It has 

been applied successfully for a variety of purposes, including influenza monitoring
41 

and 

the tracking of health effects of San Diego’s 2007 wildfires.
42

 

Most syndromic surveillance systems do not make use of detailed clinical reports, 

such as culture results, because those data are neither in standard formats nor available 

rapidly or widely available enough in electronic format to be able to detect the “leading 

edge” of outbreaks in a large area.
43

 For example, Eurosentinel, a large manual disease 

surveillance project conducted in Europe, was only able to make use of clinical reports 

after a weekly update from participating physicians.
39,43 

Furthermore, an analysis of the 

utility of syndromic surveillance found that the positive predictive value and specificity 

were too low when used with clinical data due to the lag time in procuring such data.
40 



 9 

 

Syndromic surveillance methods have been successfully applied to smaller geographical 

regions as well, with one study demonstrating the ability to detect lower respiratory 

infection clusters within an individual city while using national retrospective data.
44

 

With the maturation of the field of syndromic surveillance, investigators have 

recently turned to fine-tuning existing system models. More current studies have focused 

on reducing false alarms,
45

 optimizing the public health response to surveillance 

alerts,
46,47

 standardizing syndrome definitions,
48

 and determining optimal parameters for 

frequently used syndromic surveillance algorithms.
49

  

Work on specialized syndromic surveillance projects has also expanded. Several 

recent studies have tried to detect clusters of individual diseases and disease groups (e.g., 

influenza,
50-56

 tuberculosis,
57

 and sexually-transmitted illnesses
58

). Others have instead 

attempted to determine the environmental causes for certain increases in symptoms,
59-63

 

including high-profile events such as the May 2011 Icelandic volcanic ash cloud.
64,65

 

Since the mid-2000’s, syndromic surveillance algorithm development has focused 

primarily on building on Martin Kulldorff’s original space-time scan statistic (STSS) 

developed originally in 1997.
66

 Kulldorff and others have continued to improve the initial 

algorithm and make its spatial search capabilities more flexible.
67,68

 Others have simply 

drawn inspiration from its design and have designed competing algorithms.
69,70

 

Background for Current Study 

Past approaches to automated methods of hospital outbreak detection fall into two 

categories: active and passive surveillance. Active surveillance approaches use decision 

support algorithms to automatically inform infection control staff of suspicious infectious 



 10 

 

disease patterns that require further attention. Passive surveillance approaches provide 

tools that simply aggregate or display relevant information in a more usable and 

manipulable electronic format for infection control staff to review upon their own 

initiative, allowing them to better detect interesting patterns “manually”. 

The current study used four algorithms previously applied to regional syndromic 

surveillance to serve as screening tools for actively detecting potential clonal hospital 

outbreaks – individually and in combination. Two of these aberrancy detection 

algorithms originated in manufacturing quality control: cumulative sums (CUSUM) and 

exponentially weighted moving average (EWMA). The other two came from syndromic 

surveillance research: space-time scan statistic (STSS) and What’s Strange About Recent 

Events (WSARE). 

Statistical Process Control Algorithms: CUSUM and EWMA 

Statistical process control originated in 1931, when Walter Shewhart of Bell 

Laboratories first described control chart methodologies to monitor manufacturing 

processes.
71

 Statistical process control algorithms use previous data to estimate future 

values, including the mean and reasonable upper and lower limits. If actual future 

measurements fall within the predicted limits, the process is “under control.” New 

measurements that fall outside the calculated control limits may indicate that a 

noteworthy change has occurred in the underlying process. The simplest statistical 

process control algorithms set upper and lower limits as a multiple of the previously 

measured standard deviation and plot each new measurement against these limits. While 
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this approach provides a method easy enough to plot manually on a graph, it does not 

effectively detect small shifts in the mean.
72

  

CUSUM, the first algorithm deployed in the current study, is calculated by taking 

the cumulative summation of the difference between each measured value  and the 

estimated in-control mean
72

: 

 

 

 

In a process that is under control, each measured value  should be reasonably 

close to the mean (e.g., within 2-3 standard deviations). Thus, a plot of each calculated 

value of  should be centered at zero with small fluctuations up or down. When 

calculating upper and lower bounds for , methods that increase the bounds over time 

(“V-mask” methods) have historically provided greater sensitivity to small shifts in the 

mean and decreased impact from older measurements as compared to traditional control 

charts.
73,74

 

Another approach to improving Shewhart’s original control charts, the 

exponentially weighted moving average statistic (EWMA), directly incorporates 

exponentially decreasing weights applied successively to old values, thus providing a 

measurement less affected by random noise than CUSUM. EWMA is recursively defined 

as: 
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where EWMA0 is the historical mean, Yt is the measurement at time t, and λ is the decay 

rate of past measurements, with 0 < λ ≤ 1.72 At λ=1, the EWMA formula matches the 

Shewhart control chart formula. Optimal λ values vary depending on the problem 

domain, but empirically, values between 0.2 and 0.3 have provided good performance in 

manufacturing.
72,75

  

The typical upper and lower bounds for EWMA are similar to those used in 

Shewhart’s control charts, and are given by  with standard deviation 

sewma and factor k depending on the problem domain.
75

 The value of λ affects the 

variance of the EWMA statistic and thus the limits, as the estimated variance is given by: 

 

 

where s
2
 is the historical variance. Though more difficult to calculate, EWMA charts 

have the benefit of being more sensitive to small shifts in the mean than Shewhart’s 

control charts while still being easy to interpret graphically. 

Syndromic Surveillance Algorithms: Space-time scan statistic and WSARE 

 

Martin Kulldorff first introduced the space-time scan statistic in 1997, and later 

provided a reference implementation, via the SaTScan system.
66

 At that time, most 

syndromic surveillance researchers used purely temporal disease cluster detection 

methods, including the algorithms used in statistical process control.
29,37

 The STSS 

algorithm incorporates spatial information into its detection as well to attempt to improve 

detection over a large geographic area. It uses a two-stage process. First, STSS searches 
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the study area for the circular region most likely to comprise a disease cluster, assuming 

the spread of the disease follows either a Bernoulli model or a Poisson model. Second, it 

estimates the statistical significance of the cluster using Monte Carlo simulation. 

Complete details regarding the STSS algorithm appear in Kulldorff’s publications.
34,66,79  

Many studies have employed STSS with success, including those observing 

commonly occurring infectious diseases,
34

 emerging infectious diseases,
76

 and cancer 

incidence.
77,78

 The STSS approach has played a central role in many regional studies 

using WHONET,
21,80,81

 and in a recent study, investigators found that SaTScan could 

successfully bolster standard infection control practices in a hospital setting as well.
22

 

As STSS addressed the growing need for incorporating spatial data, WSARE 

addressed the growing need for a cluster detection algorithm that could incorporate 

multidimensional data (e.g., gender, age, and location in addition to disease status).
29,30,37

 

The WSARE approach first constructs a Bayesian network model based on the problem 

domain’s historical data. It then uses the Bayesian network to find the single “best” 

clustering rule for the given day and estimates a p-value using Benjamini and Hochberg’s 

False Discovery Rate method
82

 to adjust for the multiple hypothesis tests.
30

 Because the 

underlying Bayesian model can include a node for each data element, WSARE easily 

incorporates multidimensional data. For example, if the data include gender, zip code, 

and influenza diagnoses, WSARE could in theory detect an increase in influenza across 

the study region, an increase in influenza in women region-wide, or an increase in 

influenza in one specific zip code. The primary use of WSARE has occurred in 

conjunction with the RODS public health surveillance system
83

 -- both for temporary 

short term monitoring of the 2002 Winter Olympics
39

 and for long-term public health 
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surveillance of the state of Pennsylvania.
84

 Complete details of the WSARE algorithm 

appear in Wong et al.
30
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CHAPTER II 

BACKGROUND: THE MICROPARSE SYSTEM AND PROJECT 

Overview of MicroParse 

The MicroParse project had as its objectives: (1) to provide Vanderbilt University 

Hospital (VUH) with computerized tools for monitoring microbiological data; (2) to 

provide the VUH Infection Control Service with tools to help monitor and track 

infection-relevant patient-related data such as culture results, hospital location, current 

orders, and contact precautions status. Prior to the MicroParse study, VUH microbiology 

data were only available in plain text (i.e., not formally structured) format from the 

microbiology laboratory system as individual culture reports or as a single patient’s lab 

study results. Clinicians viewed microbiology study results for a particular patient 

through integration of the microbiology-result-containing laboratory system with VUH’s 

electronic health record system (“StarPanel”). Access was limited to viewing the text of 

one microbiology test report at a time.  

Introduction: Development and Validation of MicroParse 

Providing VUH with automated tools for monitoring microbiological data first 

required an accurate source of microbiological data. As of 2005, VUH used a proprietary 

microbiology lab system (Triple G
®

) that did not allow access to its underlying database, 

thus making direct access to the microbiology data impossible. The plain text reports 

supplied by the microbiology lab system to physicians provided the only easily accessible 
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method of output. For computerized tools to make use of the plain text reports, however, 

another tool had to first parse the reports into a coded format. The MicroParse project 

aimed to provide the parsing functionality that created structured data outputs. 

Methods: Development and Validation of MicroParse 

Clinical Setting and Microbiology Data Source 

Vanderbilt University Hospital at the time of MicroParse development in 2005 

was a 650-bed academic medical facility located in Nashville, TN. Its microbiology lab 

system processed nearly 20,000 unique microbiology culture and test reports per month. 

The proprietary software underlying Triple G
® 

generated microbiology reports only in a 

human-readable format with variable structure. That made report parsing (by computer 

algorithms) to identify pathogen names and other characteristics less than 

straightforward.  

 

 



 17 

 

 

Figure 2: Sample plain text microbiology report 

Description of MicroParse 

The project created a parsing program, MicroParse, to process the microbiology 

text reports into usable microorganism-related data. To the present time, for purposes of 

security, confidentiality, and convenience of data access, MicroParse runs on the 

protected set of machines within the cluster of servers dedicated to StarPanel, VUH’s 

electronic health record system. The StarPanel team configured their system to feed the 

plain text microbiology reports to MicroParse every 10 minutes. Then, Microparse 

processed each new report, and in turn passed structured data back to StarPanel for 

storage.  
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MicroParse first decomposes each plain text report into 4 sections: preamble, 

Gram stain, culture, and susceptibilities (Figure 2). The preamble contains information 

about the culture result, including the culture category (e.g., blood, CSF, urine), the report 

time and date, the report status (i.e., preliminary or final), and the site from which the 

specimen was taken (e.g., arm wound, bone marrow). Because the preamble tends to 

follow a fairly specific order with common terms, this information is easily recognized 

using Perl-compatible regular expressions.
85

 For example, to extract the report’s status, 

MicroParse uses:  

/Report status:([a-zA-Z ]+)/ 

 

The Gram stain and culture sections were more difficult to parse since they more 

closely approximated natural language. However, text from these sections comes 

primarily from the dictionary of microbiology terms defined within Triple G (“VUH 

Microbiology Thesaurus”) stored within the microbiology lab system. To generate 

reports, lab technicians select finding codes based on the results of the test or culture; the 

lab system then enters a standardized phrase into the report. However, technicians may 

also include free text in the reports, and some of the phrases share words in common, 

making recognition of the original coded terms difficult. Fortunately, unlike most other 

data within the microbiology lab system, the microbiology terms dictionary is externally 

accessible. This allowed MicroParse to use an externalized copy of the VUH 

Microbiology Thesaurus as an aid to parsing reports.  

The susceptibilities section of the textual VUH Microbiology reports contains a 

table that, in its top row, indicates an abbreviation for each isolated bacterium, and on 
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subsequent rows, indicated only by column position, the results of testing each 

organism’s growth in the presence of various antibiotics. The antibiotics for which 

susceptibilities were tested are named in the first (leftmost) column of the table rows 

(except the first row). The table columns are generally fixed-width fields, though 

complications can arise. For example, the abbreviated names often run together in the 

first row and the abbreviations are occasionally inconsistent (e.g., nonspecific coagulase-

negative staphylococcus can appear with any of 6 different column headings). Without 

consistency in the column names, demarcating the column breaks can be difficult. Also, 

when the microbiology laboratory provides minimum inhibitory concentrations for a 

given isolated bacterium, unpredictable changes occur in the column alignments. When 

multiple bacteria grow from a single culture and their sensitivities are presented as side-

by-side columns in a report, it is often the case that not all organisms were tested against 

all antibiotics, so the absence of testing is indicated by blank fields (extra spaces) within 

the table columns – further complicating the parsing task. 

After processing a given culture report, MicroParse stored the information in a 

MySQL database, also located within the StarPanel machine cluster. Figure 3 shows an 

example of the parsed fields for one of the lines in the report shown in Figure 2. In this 

case, MicroParse stored the codes IITO (“isolated in thio only”) and STRALP 

(“streptococcus alpha”), and labeled their identification status as “final.” The database 

then interfaced with StarPanel to provide information about organisms identified in the 

report to other programs within VUMC. 
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Parsing the Gram Stain and Culture Sections 

Much of the text found in both the culture and Gram stain sections was drawn 

directly from the VUH Microbiology Thesaurus. For example, to identify an isolated 

bacterium in the culture section, it was common to see a term from the categories QUANT 

(quantity) and FIDORG (final identified organism) (Figure 3).  

 

Figure 3: Breaking culture/gram stain sections into component terms 

The Thesaurus allowed MicroParse to process the Gram stain and culture results. 

The Gram stain segment of the report tends to be straightforward, as nearly all lines 

consist of a STAINQTY term followed a STAINDESC term, making the parsing process 

simple. The culture section often contains more complex information, however. 

To parse the culture section, MicroParse first processes the VUH Microbiology 

Thesaurus into a word trie.
86

 MicroParse first breaks each phrase in the terms dictionary 

into its constituent words. Starting with the first word in the phrase, MicroParse then 

builds the trie from these words, storing the valid partial phrases along with an indication 

of where completed phrases end (Figure 4). 
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Figure 4: Creating the MicroParse word trie 

Once MicroParse has created the trie as a reference source, it is ready to process 

the text in the culture section. The culture section is split into paragraphs based on line 

breaks, and for each paragraph, MicroParse searches the trie for all possible matching 

phrases. It then chooses as an encoding the combination of phrases that maximizes the 

number of parsed words while minimizing the number of phrases used (see Figure 5). A 

placeholder entry in the trie, UNPARSED, captures all phrases MicroParse encounters that 

do not have any valid matches in the dictionary.  

 

Figure 5: Matching text to coded phrases.  
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MicroParse finds all possible matches to encoded phrases within the block of text 

and selects the combination of codes that leaves the fewest possible words unparsed and 

uses the least number of phrases. In this example, MicroParse matches all words using 

two codes, BOTHGS and GPCCLR. 

Validation of MicroParse Data Capture Techniques 

To confirm that MicroParse properly parsed reports and retrieved the clinically 

relevant information from them, the MicroParse project underwent a validation study. 

MicroParse retrieved all parsed VUH culture reports from 3 days for analysis: Saturday, 

January 6, 2007, Monday, January 15, 2007, and Friday, January 19, 2007. Project 

members also acquired a complete data dump of all microbiology reports issued on those 

three days directly from the microbiology laboratory system to confirm that MicroParse 

did not incorrectly alter the text of reports or miss any reports. 

Taking this information, a computer script matched the reports to records in the 

MicroParse database. Dr. Thomas Talbot, an Infectious Disease expert, reviewed all of 

the matched records from the above-mentioned sample to confirm that the information 

stored in the MicroParse database accurately reflected all relevant content found in the 

original microbiology lab report.  

Extending the MicroParse Database: Non-narrative Results 

As MicroParse gradually garnered increasing use within VUH’s clinical practice, 

feedback from infection control staff indicated that including all available 

microbiological lab data in the MicroParse database would provide a more complete 
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picture of hospital infections than just the narrative reports. Clinical project members 

reviewed a complete list of all test types that the VUH lab system processed and 

determined which could be relevant for determining patients with bacterial, viral, or 

fungal infections. These non-narrative results consisted of an HL7 message giving the 

test name (e.g., a PCR or DFA test result for a specific pathogen), internal test ID code, 

and a test result. Project members reviewed past results for each of the test types to 

determine how to identify a positive or negative result for each individual test and 

constructed Perl-compatible regular expressions
85

 to identify them. Project members then 

updated the VUH Microbiology Thesaurus to include additional non-“official” codes for 

positive and negative non-narrative results, allowing users of the MicroParse database to 

retrieve parsed results from non-narrative reports in the same format as the narrative 

reports. 

Results: Development and Validation of MicroParse 

As of July 2011, MicroParse handled approximately 1,050 VUH microbiology 

reports per day. It is able to process and store reports at a peak rate of approximately 150 

reports per second, yielding a theoretical limit of over 10,000,000 reports per day. As of 

July 18, 2011, the MicroParse database contained 2.6 million reports, using 2.4GB of 

disk space. During the validation study of MicroParse, the expert reviewer, Dr. Talbot, 

found parsing errors with 17 reports out of 1,895 reviewed reports (0.9%), with 11 errors 

being immediately fixable and promptly corrected generically.  
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Discussion: Development and Validation of MicroParse 

Principal Findings of the MicroParse Validation Study 

During its validation study, MicroParse performed well. MicroParse processed 

and stored reports very quickly and scales well even if the number of reports processed 

by VUH increases significantly. Most of the issues encountered by the expert reviewer 

took little effort to fix. The problem with linking reports based on free text references 

within one of the reports presented a more difficult obstacle. It would require more 

sophisticated parsing techniques to potentially extract the information contained in the 

references (e.g., “E coli – sensitivities same as most recent previous culture”). 

Institutional Use of MicroParse 

MicroParse has provided VUH clinicians and informaticians with new 

opportunities. Early pilot MicroParse application projects included an MRSA/VRE 

tracking dashboard and automated antibiogram generation capabilities. MicroParse has 

also provided a number of investigational studies and real-time monitoring systems with 

microbiology result data that would have previously required manual electronic chart 

reviews, enabling previously costly and time-consuming activities to be automated. 

The VUH Enterprise Data Warehouse also has received data in near real-time 

from MicroParse. This has further allowed other institutional projects to take advantage 

of the MicroParse dataset. The largest such project, named VIPER, provides VUH 

infection preventionists with a summary of all microbiological findings in the hospital 
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with the option to review more thoroughly data on relevant on individual organisms or 

patients. 

MicroParse Post-validation Problems 

Though the initial validation study found few problems with MicroParse’s parsing 

techniques, over time, other issues became apparent. The new issues largely arose from 

the lab system’s dynamic nature. Since the validation study in 2007, the lab system has 

seen many changes, including a large update from the system’s vendor, which required 

some changes to the parsing process. In addition, VUH lab technicians sporadically add 

new entries to the VUH Microbiology Thesaurus, modify the names of antibiotics within 

the system, or modify the organism “short names” used in the Susceptibilities section of 

the narrative reports. Such changes lead to incorrect parses or incorrect linkages by 

MicroParse across reports on organism names or antibiotics if MicroParse is not kept up 

to date. 

Furthermore, project members added an organism tagging table to the MicroParse 

database mapping VUH Microbiology Thesaurus terms to bacterial, viral, and fungal 

species. This table allowed users to search for positive or negative reports for specific 

organisms. However, occasional free text reports or reports from external labs imported 

into the VUH lab system can cause MicroParse to wrongly declare a positive finding 

when there is none. For example, without adding additional entries to the Microbiology 

Thesaurus, MicroParse would process the phrase “negative for Bordetella pertussis” as 

the codes NEGATIVE, UNPARSED, (for) and BORDPE (Bordetella pertussis) and a later 

search for positive reports for B. pertussis would incorrectly retrieve this report. This 
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problem could be addressed with more sophisticated natural language processing (NLP) 

techniques. However, as it is a relatively rare issue, adding NLP could potentially cause 

new unforeseen problems. 

Lastly, though adding the previously mentioned non-narrative tests has benefited 

MicroParse’s users, the list of tests, the associated positive/negative regular expressions, 

and the dummy Thesaurus entries all require updating over time as new tests become 

available to clinicians to keep MicroParse from missing relevant organism data. This 

creates a minor technical issue since a clinical user set to update the table would struggle 

with constructing the regular expressions and a technical user would struggle with 

identifying the new tests that require inclusion. It also creates an organizational issue in 

maintaining the linkage to the StarPanel servers to ensure that the correct tests are 

reaching MicroParse. Because of the mechanism used to send reports from StarPanel to 

MicroParse, updating the list of tests currently requires a change to a core StarPanel Perl 

module, necessitating coordination with the StarPanel team. 

Despite these issues, however, MicroParse provides a valuable data resource to 

VUH. Maintenance and operation of MicroParse involves low personnel and computing 

resource requirements. Eventually, VUH plans to adopt a new lab management system 

that allows encoded export of results, thus potentially making MicroParse obsolete. 

Nevertheless, given the cost and labor requirements necessary to make such an upgrade, 

and the likelihood that at least some (e.g., outside laboratory) reports will be unstructured 

as free text entered by a laboratory technician, MicroParse will continue to have utility 

for the foreseeable future. 
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Summary of MicroParse Project 

The MicroParse project provided VUH clinicians and staff with new access to 

microbiological data that has been since used to improve patient care. The MicroParse 

tool allows its users to search the microbiology results database flexibly, facilitating a 

number of approaches to monitoring microbiological data.  
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CHAPTER III 

BACKGROUND: ALGORITHM SELECTION – MIASMA DEVELOPMENTAL 

STUDY 

The MIASMA developmental study evaluated the ability of four aberrancy 

detection algorithms to function as a screening tool for recognizing potentially clonal 

microbiological outbreaks including identification by non-culture results. The goals were 

to do so earlier and more effectively than previous manual methods. Successful 

MIASMA automated alerting might allow infection control staff to intervene sooner, 

control outbreaks earlier, and potentially prevent further transmission. This 

developmental study also determined if the targeted automated surveillance methods 

could achieve better performance than manual surveillance methods on specific, narrow, 

objective measures, recognizing that in other situations, manual methods might be more 

effective. By determining which outbreak characteristics each automated method most 

easily and accurately detected, the study provided insight into how to apply future 

automated systems in actual practice settings. 

Portions of the following text sections have been adapted from “Evaluating the 

utility of syndromic surveillance algorithms for screening to detect potentially clonal 

hospital infection outbreaks” by Carnevale, Talbot, Schaffner, Bloch, Daniels, and Miller, 

JAMIA 18(4), July 2011.
87
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Algorithm Analysis: Methods 

MIASMA Developmental Algorithm Analysis: Setting 

 

The developmental study was conducted at Vanderbilt University using data from 

the Vanderbilt University Hospital (VUH), The Vanderbilt Clinic, and the Monroe Carell 

Jr. Children’s Hospital at Vanderbilt. The Vanderbilt Institutional Review Board 

approved the study design prior to conducting the study.  

Data for this study was obtained using MicroParse, a computer program 

previously described in Chapter II that receives all microbiology reports from the 

Vanderbilt Medical Center microbiology laboratory via the electronic medical record 

(EMR) system (see Chapter II). MicroParse analyzes and encodes the “free text” natural 

language culture result output from the microbiology reports and stores the coded results 

corresponding to organism results and antibiotic sensitivities in a database. The current 

study extracted “positive” microbiological cultures (preliminary, final, and final with 

antibiotic sensitivities) and related tests (e.g., PCR and DFA tests) from MicroParse. 

“Positive” tests that indicated the presence of a potential pathogen were then forwarded 

for analysis in the current project using the cluster detection algorithms. Similar 

MicroParse output data were available to VUH Infection Control personnel during their 

real-time outbreak detection efforts.  
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Algorithm Analysis: Goals of Developmental Study 

The MIASMA developmental study measured the performance characteristics of 

four existing aberrancy detection algorithms using individual “positive” microbial 

identification instances at VUH. A secondary goal was to determine how one might later 

combine the algorithms into a single, optimal, future detection system. Thus, the 

developmental study required accurate measurement of each algorithm’s performance 

metrics individually and in various combinations.  

Algorithm Analysis: Developmental Study Overview 

The developmental study evaluated four algorithms, including two custom 

implementations (CUSUM
72

 and EWMA
72

) and two reference implementations 

(WSARE
30

 and Kulldorff’s space-time scan statistic
66

; SaTScan). The de-identified 

dataset included daily case counts for each organism taken from all microbiologic culture 

data collected from 2001 through 2006 from inpatient units, outpatient clinics, and 

emergency rooms. It included only the first result of a given culture type (i.e., organism 

and sensitivity pattern) for each patient on each unit to avoid giving extra weight to 

multiple serial cultures of the same organism from the same patient.  

The developmental study comprised three phases. Phase 1 implemented the four 

aberrancy detection algorithms using the hospital-derived retrospective microbiologic 

culture data, producing a list of potential past outbreak clusters. For review purposes, the 

PI also developed a web-based tool for displaying the relevant microbiological data for 

each cluster for Infection Control experts’ review.  
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In developmental study Phase 2, four Vanderbilt University School of Medicine 

Infectious Diseases faculty members, who were blinded to algorithm source, reviewed 

the algorithm-generated suspected clusters and categorized them as probable, possible, or 

non-outbreaks. This was accomplished using the web-based tool, and with it, experts also 

assessed whether or not the cluster would have merited investigation had they been aware 

of the cluster at the time. The developmental study labeled expert-reviewed clusters 

deemed to be probable outbreaks or possible outbreaks that merited further investigation 

as “candidate outbreaks.” Conversely, possible outbreaks or non-outbreaks not meriting 

investigation were called false positives. The study excluded clusters that experts labeled 

non-outbreaks that merited investigation (e.g., a cluster suggesting poor sample collection 

techniques) from analysis to avoid unfairly penalizing or rewarding individual 

algorithms. Table 1 summarizes the cluster classification process. The list of reviewed 

clusters also included three confirmed outbreaks that had been independently identified 

previously by the hospital’s infection control staff. Figure 6 summarizes the process 

followed for this phase.  

 

In developmental study Phase 3, project members empirically used the Phase 2 

results as feedback to adjust configuration parameters associated with each algorithm and 

investigated additional methods for combining the algorithms’ output into a single 

Table 1: Clusters considered as candidate outbreaks based on expert review 

 Probable 

outbreak 

Possible 

outbreak 

Non-outbreak 

Would investigate Candidate Candidate Exclude 

No investigation 

necessary 

Candidate False 

positive 

False positive 
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outbreak detection screening tool. The investigators then carried out a 6-month 

retrospective evaluation of the new system. 

 

Figure 6: Summary of methods used in Study Phase 2 

Algorithm Analysis Phase 1: Algorithm Implementation and Execution 

The developmental study configured each algorithm to identify clusters of 

positive cultures from daily case-culture counts for each organism – both for individual 

hospital units and across the entire institution. The study divided the culture dataset into 

three parts. The first set (1 year; 1/1/2001-12/31/2001) provided historical “seed” data for 

each algorithm. The second set (3 years; 1/1/2002-12/31/2004) served as a testing set for 

tuning the parameters of each algorithm and designing the review module before study 

initiation. This second set also provided additional historical baseline data for the final 

review. The third set (2 years; 1/1/2005-12/31/2006) provided the testing data for the 
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study Phase 2 expert review. The study converted output from each of the four study 

algorithms into a common format to prevent the reviewers from identifying which 

algorithm had generated a given cluster.  

Algorithm Analysis Phase 2: Expert Review Process 

The developmental study assigned two of the four expert reviewers to examine 

each algorithm-identified potential cluster independently. Discordant assessments were 

resolved by submitting each to a “tiebreaker” reviewer randomly selected from the two 

reviewers who had not previously evaluated the cluster. To calibrate the reliability of the 

tiebreaking opinions, the study also presented the tiebreak reviewers with several 

randomly chosen clusters on which the first two reviewers’ determinations agreed (either 

as “candidates” or not).  

The developmental study supplemented the list of candidate outbreaks identified 

by the review process (as defined above) with three infection control-investigated clusters 

(IC clusters) that had been independently characterized previously by the hospital’s 

infection control staff. These three consisted of disease clusters subjected to genetic or 

serologic testing during the study time period. 

Following the clinicians’ reviews, the study calculated the sensitivity and positive 

predictive value (recall and precision) for each cluster identification algorithm based on 

the “consensus” classifications (by two or three reviewers, per protocol) of suspected 

outbreaks and IC clusters. The study compared the individual algorithms’ performance 

statistics pairwise using McNemar’s test. 
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Algorithm Analysis Phase 3: Parameter Tuning, Precision-Recall Analysis, Combined 

Tool Development, and Retrospective Evaluation 

In developmental study Phase 3, the project empirically analyzed the effects of 

varying algorithm parameters on each algorithm’s ability to identify Phase 2 expert-

labeled candidate outbreaks. The study also explored potential methods of combining the 

individual algorithms with additional heuristic data to produce better candidate outbreak 

identification than obtained by the individual algorithms per se.  

A first approach was to adjust parameters for whichever customizable algorithm 

that demonstrated better performance in Phase 2 (CUSUM or EWMA) to detect as many 

of the candidate outbreaks as possible. For each of the expert-identified candidate 

outbreak clusters, the study calculated k, the minimum threshold at which the chosen 

algorithm would generate an alert for the outbreak, using varying decay rates λ (0.05, 

0.07, 0.1, 0.15, 0.2, 0.25, and 0.3). Project members recorded the number of additional 

alerts that would also have triggered at the given value of k. Based on these 

measurements, the study determined the optimal value of λ and generated precision-recall 

curves for varying values of k when using the optimized algorithm. 

The developmental study also explored methods of combining the output from the 

four original algorithms using various scoring metrics by which the resulting clusters 

could be ranked. A first step attempted to order the clusters by their previously measured 

value of k. Project members then made additional adjustments to the rank weights 

regarding several features identified as potentially important by the expert Infectious 

Disease faculty reviewers during the Phase 2 review, including hospital location type 

(inpatient vs. outpatient) and primary culture source type (urine, blood, wound, etc.).  
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The developmental study also examined the potential for not “alerting” for 

clusters comprised of organisms with substantially different antibiotic susceptibilities. 

This approach had the potential to eliminate noise due to clusters comprised of different 

clones from the same bacterial species. This analysis focused on clusters for which 

sensitivity results were available for at least 50% of their component cultures. Project 

members developed an algorithm that calculated for each cluster an antibiotic 

susceptibility variability score by summing the number of individual antibiotic sensitivity 

result pairwise differences within the cluster and weighting the overall result by the 

number of cultures within the cluster having each of the compared patterns. The resulting 

score thus represented the average number of differing antibiotic sensitivities between 

each pair of bacterial isolates. This filtering method, applied to the output of the 

individual screening algorithms, allowed the analysis to exclude clusters not meeting 

empirically derived uniformity limits (i.e., those that appeared to be non-clonal based on 

sufficiently varied culture sensitivities) while still allowing the system to detect 

potentially clonal clusters that had mutated only slightly in their antibiotic resistance over 

the course of the outbreak. A final best-case heuristic combination of all of these new 

methods comprised the Phase 3 combined detection system.  

With the above-described adjustments in place, Phase 3 of the developmental 

study concluded by conducting a brief retrospective validation of the combined outbreak 

detection system’s recall. The system was run using new data from 1/1/2010-6/30/2010 

and the resulting clusters were compared to the list of confirmed outbreaks that had been 

previously discovered by hospital infection control staff using manual methods for that 

time period. 
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Algorithm Analysis: Results 

Algorithm Analysis Phase 1: Algorithm Parameters in Developmental Study 

Using the first and second datasets, the MIASMA developmental study 

empirically adjusted the parameters for each algorithm. For EWMA, the project team set 

a decay rate λ = 0.3 and an alerting threshold k =5. For CUSUM, the project team used a 

V-mask for determining the alerting threshold with a daily rise of 3 times the standard 

deviation of the CUSUM statistic for each particular organism. SaTScan was executed 

using its purely temporal Poisson model, and WSARE was executed using Fisher’s exact 

scoring metric with 100 randomizations for each day. 

Algorithm Analysis Phase 2.1: Expert Review Results in Developmental Study 

For institution-wide microbial data covering the two-year developmental study 

period, the four outbreak detection algorithms collectively generated a total of 257 alerts 

(CUSUM: 114, EWMA: 66, SaTScan: 21, WSARE: 56). To present alerts more 

efficiently to clinical expert reviewers, the study combined any computer-generated alerts 

with start and stop dates differing by fewer than two days into one single alert. As a 

result, six alerts detected by two algorithms and one alert detected by three algorithms 

were combined to form the final review list of 249 cluster alerts.  
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Pairwise percent agreement on the expert-reviewed clusters ranged from 79% to 

88% with Cohen’s kappa ranging from 0.11 to 0.49 (Table 2). Overall, reviewers agreed 

on their determinations for 210 of the 249 alerts, with 17 (8.1%) deemed candidate 

outbreaks. 

For the 39 clusters on which the pair of initial reviewer assessments disagreed, the 

study assigned a randomly selected third reviewer. Of the 39, the third reviewer deemed 

nine (23%) to be candidate outbreaks. In addition, for calibration determination, the third 

reviewer also rated six randomly selected candidate outbreaks (where the two initial 

reviewers agreed the cluster was a potential outbreak) and six randomly selected false 

alarms (where the reviewers had agreed the cluster was not an outbreak). The third 

reviewer agreed with the first two reviewers on all six of the false alarms. However, for 

the six pairwise-agreed-upon candidate outbreaks, the third expert reviewer only agreed 

with the initial experts’ judgment once (17%).  

Table 2: Percent agreement between reviewers 

(Cohen's kappa in parentheses) 

Reviewer A Reviewer B % Agreement 

1 2 86% (0.22) 

1 3 81% (0.47) 

1 4 88% (0.48) 

2 3 85% (0.49) 

2 4 88% (0.38) 

3 4 79% (0.11) 
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The hospital infection control service had previously identified five suspected 

outbreak clusters during the developmental study period. Those clusters were not 

detected by any of the algorithms as originally configured for the Phase 1 study. Of the 

five, 2 have been excluded methodologically from consideration by the study analysis. In 

one, the lab assay for the involved organism, C. difficile, was not included in the study 

data input since the dataset only included organisms identified by microbiological 

culturing and thus C. difficile antigen test results could not be processed by the detection 

Table 3: Algorithm-detected candidate outbreaks by organism, cluster length in days, and 

location type 

Organism Days Location 

Acinetobacter baumannii 1  inpatient 

Shigella sonnei 1  outpatient 

Enterobacter sakazakii 1  housewide 

Acinetobacter species 1  inpatient 

Acinetobacter species 1  outpatient 

Acinetobacter baumannii 1  inpatient 

Enterovirus 3  housewide 

Staphylococcus aureus 3  outpatient 

Enterovirus 4  housewide 

Moraxella catarrhalis 5  inpatient 

Clostridium perfringens 6  housewide 

Mycobacterium avium complex 6  housewide 

Acinetobacter baumannii 7  inpatient 

Shigella sonnei 9  outpatient 

Salmonella serotype mbandaka 13  housewide 

Proteus mirabilis 17  outpatient 

Plesiomonas shigelloides 18  housewide 

RSV 25  housewide 

Shigella sonnei 30  housewide 

Mycobacterium avium complex 61  housewide 

Diphtheroids species 63  housewide 

Enterovirus 64  housewide 

Candida albicans 67  inpatient 

Shigella sonnei 88  housewide 

Diphtheroids species 89  housewide 

RSV 140  housewide 
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algorithms. In the other, the outbreak spanned several months and began prior to the 

beginning of the study period. The developmental study “gold standard” outbreak dataset 

therefore contained 29 candidate outbreaks: 17 from the initial expert consensus review, 

9 from the second expert conflict-resolving review, and 3 from the infection control 

archival data. Table 3 shows the 26 candidate outbreaks detected by the algorithms. 

Algorithm Analysis Phase 2.2: Algorithm Performance during Developmental Study 

For the four evaluated algorithms, positive predictive value relative to the expert-

determined gold standard ranged from 5.3% to 29%, with sensitivities ranging from 0.21 

to 0.31. Table 4 shows individual results for each algorithm. The PI performed pairwise 

comparisons of each algorithm’s performance using McNemar’s exact test. The 

differences in sensitivity were not sufficient to reject the null hypothesis that the 

algorithms had identical performance. For positive predictive value, CUSUM was 

significantly lower than all other algorithms (p<0.001 in all comparisons), and EWMA 

and WSARE were significantly lower than SaTScan (p<0.001 for each).  

 

 
 

Stratifying the analysis by location type (hospital-wide clusters and inpatient units 

as inpatient; clinics and emergency rooms as outpatient) demonstrated that clusters from 

Table 4: Cluster determination by algorithm 

 Candidate Non-candidate PPV Sensitivity 

CUSUM 6 108 5.3% 0.21 

EWMA 9 57 14% 0.31 

SaTScan 6 15 29% 0.21 

WSARE 7 49 13% 0.24 
 



 40 

 

inpatient locations were much more likely to be considered candidate outbreaks than 

clusters from outpatient locations (inpatient: 21/120 clusters vs. outpatient: 5/129 

clusters; chi-square p=0.002). Table 5 shows results and positive predictive values for 

each algorithm stratified by inpatient/outpatient location.  

 

 

Algorithm Analysis Phase 3.1: Parameter Adjustment Resulting from Developmental 

Study  

As EWMA yielded both better PPV and sensitivity than CUSUM, the 

developmental study team adjusted EWMA’s parameters in Phase 3. Testing various 

possible decay rates for EWMA parameters indicated that higher decay rates tended to 

decrease false positive rates as shown in Table 6, as was suggested by past research in the 

domain.
49

 For the organism/unit combinations given in the 29 system-detectable 

candidate outbreaks, EWMA’s λ parameter set to 0.05 yielded 32 potential false alarms 

vs. 8 false alarms at λ = 0.3. Using λ = 0.3 and k=5, EWMA detected 24 of the 29 

candidate outbreaks including the 3 infection-control-confirmed outbreaks, but with 629 

false positive alerts. Upon increasing the EWMA k value to 6, the system detected 23 of 

29 gold standard candidate outbreaks, with 467 false alarms, but excluded one of the 

Table 5: Algorithm performance stratified by 

cluster location (PPV in parentheses) 

  Outpatient Inpatient 

CUSUM 0/55 (0%) 6/59 (10.2%) 

EWMA 3/30 (10%) 6/36 (16.7%) 

SaTScan 0/0 6/21 (28.6%) 

WSARE 2/46 (4.3%) 5/10 (50%) 
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confirmed outbreaks. Recall-precision analysis yielded an area under the curve (AUC) of 

0.127. Figure 7 shows the recall-precision curve for the adjusted EWMA algorithm along 

with the initial performance of the four unadjusted algorithms. 

 

 

Table 6: EWMA false alarms 

generated in 29 organism/unit 

combinations 

λ 

False positive 

alerts 

0.05 32 

0.07 24 

0.1 21 

0.15 13 

0.2 9 

0.25 9 

0.3 8 
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Algorithm Analysis Phase 3.2: Scoring Metrics in Developmental Study 

Using the minimum alerting threshold k as the initial ranking metric to sort the 

original list of 249 clusters generated by the four algorithms yielded an AUC of 0.28. 

Figure 7 shows the recall-precision curve for this initial metric, with the curve for the 

adjusted EWMA and points for each of the individual algorithms. 

 

 

  

 

Figure 7: Precision-recall measurements for individual algorithms; precision-recall curves for EWMA 

adjustments and initial scoring metric 
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To investigate whether primary culture specimen type (e.g., blood, urine, wound, 

etc.) could help to separate clinically significant clusters from less important ones, project 

members developed an algorithm that labeled each cluster by specimen type if more than 

50% of the cultures in a given cluster shared a common source. A chi-square test 

compared that specimen type to all other cultures independent of source type. The only 

statistically significant relationship this analysis identified was that urine cultures were 

less reliable indicators of clusters than other culture sites (2.0% of urine vs. 13% non-

urine; p=0.03). After adjusting the ranking metric downward for clusters of urine 

cultures, the k-sorted precision-recall AUC improved from 0.28 to 0.36. As observed in 

Phase 2, clusters in inpatient locations were more likely to produce candidate outbreaks 

than clusters in outpatient units. After increasing the ranking metric for inpatient clusters, 

the AUC rose from 0.36 to 0.49. 

Project members calculated antibiotic susceptibility difference scores for the 165 

clusters that met the 50% criterion, including 6 of the 19 candidate outbreaks. Antibiotic 

susceptibility difference scores ranged from 0 to 138 in the false alarm clusters and from 

0 to 2.7 in the candidate outbreaks. Based on these results, project members generated 

new precision-recall curves after eliminating all clusters with similarity scores greater 

than a conservative threshold of 5 and an aggressive threshold of 3. These adjustments 

increased the precision-recall AUC from 0.49 to 0.53 for the conservative threshold and 

to 0.55 for the aggressive threshold. Precision-recall curves for each of these adjustments 

are shown in Figure 8. 
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Algorithm Analysis Phase 3.3: Retrospective Evaluation of Combined Algorithms 

During the 6 month retrospective evaluation period, infection control staff 

identified and confirmed two single-unit outbreaks: an outbreak of vancomycin-resistant 

Enterococcus, and an outbreak of C. difficile. Unlike the Phase 2 dataset, in Phase 3, non-

culture assays were added, allowing the system to detect the C. difficile outbreak. The 

system detected a total of 41 clusters during that time period, including both of the 

confirmed outbreak clusters. No Phase 2-type expert analyses of the other 39 clusters 

were conducted. 

 

 

 

Algorithm Analysis: Discussion 

The exploratory MIASMA developmental study attempted to determine whether 

one or more aberrancy detection algorithms might be adapted to screening for potentially 

clonal hospital outbreak detection. Because each algorithm produced a list of 

“interesting” suspect clusters substantially different from the others, an ideal system in 

this setting would consist of multiple algorithms working together. 

Algorithm Analysis: Cluster Review for Developmental Study 

Few candidate outbreaks were detected by more than one algorithm. In addition, 

each candidate algorithm varied greatly in the nature of the detected clusters. To some 

 

Figure 8: Precision-recall curves for adjusted scoring metrics 
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extent, the initial algorithm tuning parameters that were used in the developmental study 

may have pre-determined these results. Since the design of each algorithm focused on 

more immediate detection of outbreaks for syndromic surveillance, WSARE and 

SaTScan favored very short-term clusters – most candidate outbreaks for which they 

generated alerts lasted 1-3 days. By contrast, EWMA included some short-term clusters, 

but alerted on many more clusters with durations in the 1-2 week range. Finally, CUSUM 

showed the greatest variation, detecting a few short-duration clusters, but also some quite 

long ones that spanned multiple months. These lengthy “clusters” tended to be 

uninteresting to the reviewers, since they did not seem to represent an outbreak with a 

single source. 

Analysis of the expert review process demonstrated the degree of subjectivity in 

determining which clusters were potentially interesting. The first round of reviews only 

managed moderate levels of inter-rater agreement as shown in Table 2. Because the 

overall prevalence of true positive clusters was relatively low, measured values of 

Cohen’s kappa were low despite a high percentage of agreement between reviewers. The 

low kappa suggests that despite having similar training and using similar review criteria, 

the expert reviewers disagreed fairly often, and that constructing a true gold standard is 

not possible. In the second round “tiebreaker” reviews, the third reviewer only agreed 

with the initial reviews on 17% of the “seed” candidate outbreaks. By contrast, when the 

third reviewer examined clusters for which one of the two had designated it as a 

candidate cluster and the other original reviewer did not, the third reviewer designated the 

cluster as a candidate 23% of the time.  
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The low reviewer agreement suggests that an ideal hospital outbreak detection 

screening tool should favor sensitivity over positive predictive value since experts may 

disagree on which clusters merit further investigation. This strategy is further supported 

by standard infection control practice: in a prospective study, further investigation 

including molecular typing to confirm clonality would have followed for each of the 

potentially interesting clusters. Because such investigation will easily distinguish true 

positives from false positives, it is more important that the detection system acts as a 

“screening test” that does not produce many false negatives. 

After the developmental study review process, the infection control experts 

suggested a number of ways to improve potential MIASMA detection and determination 

processes. First, a few simple rules could significantly reduce the false positive rate. For 

example, certain culture types (e.g., urine), certain organisms (e.g., coagulase-negative 

Staphylococcus), and certain hospital units (e.g., emergency department) do not often 

correspond to outbreaks, and thus the system should require a higher outbreak alerting 

threshold in such situations. Alternatively, rare and dangerous organisms (e.g., Bacillus 

anthracis) should trigger an alert for a single case. More granular patient unit groupings 

would also be helpful. In some of the hospital-wide clusters, the reviewers suspected 

there could be something of interest occurring within a subset of the involved hospital 

units, such as two or three geographically adjacent units, or two units that frequently 

exchanged patients (e.g., the general surgery floor and the surgical ICU). Lastly, the 

reviewers noted that some of the identified clusters might productively serve purposes 

other than outbreak detection. For example, organisms suggesting foodborne illness or 

other outpatient issues (e.g., RSV) might not be worth investigating as a hospital-
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associated outbreak, but informing outpatient clinics of the rising prevalence in the 

general case mix might allow the clinics to more accurately diagnose or rapidly treat 

additional patients with similar symptoms.  

Algorithm Analysis: System Performance and Ranking in Developmental Study 

The lack of consensus regarding alerts generated by the four algorithms, and the 

excessive false positive rate for the parameter-adjusted EWMA system suggested that 

none of the four algorithms evaluated could solely provide a reliable alerting mechanism. 

Thus, to create a functionally useful MIASMA alerting system for hospital infection 

control purposes, some algorithmic combination technique that leveraged the relative 

strengths of each individual algorithm would likely provide the best overall system. In 

addition, based on the expert raters’ debriefing comments, some heuristic rules not 

present in any of the systems might beneficially impact the combined MIASMA system.  

Prior to the developmental study’s data analysis, the expert reviewers stated that 

performance goals for a useful generic outbreak detection system that infection control 

services might use in clinical practice. They stated that such a system would require at 

least 50% positive predictive value at 0.9 sensitivity, and at least 0.25 sensitivity at 75% 

positive predictive value. By ranking the combined list of clusters using the adjusted 

scoring metric and eliminating clusters with dissimilar antibiotic susceptibilities, the 

developmental study was able to achieve a 40% positive predictive value up to a 

sensitivity of 0.9 and a sensitivity of approximately 0.15 at a positive predictive value of 

75%. While these results did not attain the targeted performance levels, it suggested that 

further improvements might be able to reach the targeted levels of performance. By 
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incorporating the experts’ post-study advice and by addressing the developmental study’s 

limitations in the next MIASMA detection system design iteration, it might be possible to 

further reduce the false positive alerts while maintaining a good true positive detection 

rate and potentially reach the stated goals as described in the next chapter. 

 

Algorithm Analysis: Developmental Study Limitations 

The subjectivity of the review process led to an imperfect “gold standard” list of 

candidate outbreaks in the developmental study. The gold standard list could easily have 

missed some true outbreaks due to reviewer disagreement on what constituted a candidate 

cluster. Furthermore, the selection of algorithms for the study did not include the newest 

syndromic surveillance methods available by the end of the study
88-90

 and the parameter 

tuning required to implement each of the four algorithms may not have been optimal. The 

result was that true outbreak clusters in the developmental study may have been omitted 

from the algorithms’ output lists before ever being seen by the reviewers. That none of 

infection control service independently-verified outbreaks during the developmental 

study period appeared on the combined output list of the four algorithms suggests that 

suboptimal detection at the algorithmic level was likely a factor in the study. 

The culture results dataset used to generate the alerts also embodied potential 

methodological flaws. The developmental study used only the first result for a given 

organism/patient/unit combination in the dataset. While this approach prevented spurious 

alerts for multiple consecutive positive cultures on the same patient, it may have been too 

conservative overall. For example, a patient with E. coli cultures in January 2005 and 
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January 2006 would only be included in 2005, though it is unlikely that the patient’s 

infection lasted a full year. Additional errors may also arise from the system’s lack of 

information about changes within the hospital over time. For example, in late 2005 

(approximately halfway through the study period), the burn patient intensive care unit 

was relocated to another geographic ward, so new patient-organism-location clusters that 

previously would have been suppressed as duplicate cultures were not suppressed since 

they were reported from a “different” geographic unit. In addition, some clusters were 

simply a result of increased surveillance for certain organisms or an increase in a hospital 

unit’s size or number of patient-days as the study did not adjust for increases in patient-

bed-days.  

The adjustment for antibiotic sensitivity similarity was somewhat crude. For 

example, if an algorithm detected a cluster made up two distinct clones with widely 

differing sensitivities, the resulting average difference between the two could be large 

enough to eliminate the cluster from further consideration. Ideally, available antibiotic 

sensitivity data should have been included earlier in the detection process. 

Lastly, the performance of the system on retrospective datasets was not a 

guarantee of similar future performance. Because the review process was time consuming 

for the reviewers and the number of expected candidate outbreaks was limited, the 

resulting parameter adjustments have not been validated extensively. The “optimal” 

alerting thresholds determined in the developmental study may have been overfitted to 

the then-current data. Nevertheless, the six month retrospective evaluation demonstrated 

that the resulting system was able to detect all outbreaks confirmed by hospital infection 

control staff during that time period. 
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Algorithm Analysis: Conclusion 

 

The developmental study explored the potential for a syndromic-surveillance-

based approach to screening for potentially clonal inpatient infectious disease outbreaks. 

Each of the four aberrancy detection algorithms that the study examined had different 

performance characteristics that limited its individual applicability to the problem at 

hand. However, by combining the output from each algorithm and then sorting and 

filtering the possible clusters that the algorithms collectively identified -- based on 

additional heuristic data that the algorithms cannot easily incorporate -- the 

developmental study created a prototypic combined screening tool that demonstrated 

better potential to be clinically useful for hospital outbreak detection than any of the 

individual algorithms. Thus, while in-hospital outbreak surveillance presented different 

challenges than those faced by regional syndromic surveillance, the algorithms developed 

for syndromic surveillance might eventually be adapted to the inpatient screening setting. 

Further, more formal evaluation of such combined systems should occur.  
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CHAPTER IV 

PROSPECTIVE MIASMA STUDY OVERVIEW 

Prospective MIASMA Study Setting 

The project conducted a prospective study of the refined MIASMA algorithms 

previously described in Chapter III from November 2010 through April 2011 at 

Vanderbilt University using data from the Vanderbilt University Hospital, The Vanderbilt 

Clinic, and the Monroe Carell Jr. Children’s Hospital at Vanderbilt. The Vanderbilt 

Institutional Review Board approved the study design prior to its inception. The study 

team obtained data using MicroParse, the previously described (Chapter II) computer 

program that receives all microbiology reports from the Vanderbilt Medical Center 

microbiology laboratory via the electronic medical record system.  

Goals of Prospective MIASMA Evaluation 

Based on the observation that simple detection methods applied to hospital data 

had already shown promising results,
13,91

 the prospective MIASMA study began with the 

presumption that new, more advanced approaches to computer-assisted hospital infection 

control could potentially improve patient outcomes. By supplementing manual hospital 

infection control practices with an automated outbreak alerting system, the project 

attempted to achieve more rapid outbreak detection and more efficient alerting for 

outbreaks (i.e., fewer outbreaks missed with fewer “false positive” alerts that consume 

resources to investigate). 



 52 

 

MIASMA System Design 

The prospective evaluation study team designed the final MIASMA algorithms 

based on lessons learned during the previous developmental study (Chapter III).
87

 As that 

research demonstrated that no single syndromic surveillance algorithm of the four tested 

provided adequate sensitivity, the final MIASMA version accepts positive culture count 

data and microbiology-related non-culture laboratory test results as input to all four 

developmental-stage algorithms. The final MIASMA algorithm also employs a rules 

engine in parallel with the four component algorithms to help generate a list of potential 

disease clusters and to then filter the list to heuristically remove clusters unlikely to 

correspond to a clonal outbreak. New potential clusters in the list are then added to 

MIASMA’s database to present to infection control staff for subsequent review. 

System Configuration: Prospective Study 

The process the MIASMA system followed during the study is summarized in 

Figure 9. Each day, the MIASMA system reviewed the past 180 days of microbiological 

test results (cultures and lab test results) of augmented MicroParse data (i.e., culture 

results plus microbiology-related laboratory test results tests for various organisms). Prior 

to sending the data to each of the four cluster detection algorithms (CUSUM, EWMA, 

SaTScan, and WSARE) and the rules engine, MIASMA preprocessed it to properly 

format the data for each algorithm as input. The MIASMA preprocessing also identified 

hospital inpatient unit groupings that could enable CUSUM and EWMA to locate 

outbreaks occurring in a related units that often shared staff and/or patients. 
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Based on the results of the Chapter III developmental study, and in an attempt to 

reduce false positive rates, the MIASMA study team modified the custom algorithms 

(CUSUM and EWMA) to increase the threshold needed to generate an alert. The study 

team also implemented a rules engine algorithm, based on a classification from local 

Infectious Disease experts of the likelihood of each type of organism to participate in a 

“significant” outbreak (a rough measure of how many patient-culture dyads might be 

needed to trigger a cluster alert). This heuristic approach helped to ensure that MIASMA 

would generate alerts in the case of a single positive culture for extremely virulent 

organisms (e.g., smallpox or anthrax) or for instances of unusually dangerous antibiotic 

susceptibility patterns (e.g., vancomycin-resistant Staphylococcus aureus) 

As in the developmental study, each MIASMA component algorithm returned a 

list of suspicious clusters of infections. Each cluster was characterized by an organism 

name, start and end dates, and a hospital location. Then MIASMA combined the list of 

results from each algorithm to create its daily “operating list” of clusters. Because the 

data each algorithm used each day largely overlapped with the data used in the previous 

179 days, the current day’s operating list typically contained a number of clusters 

MIASMA had already identified in an earlier execution. Thus, MIASMA would first 

compare the operating list to the database table containing the previously suspected 

clonal outbreaks. Duplicate entries were then linked to the existing database entry and 

dropped from the current day’s operating list. 
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MIASMA then calculated heuristic scores used to filter and rank each cluster. 

First, for clusters with antibiotic sensitivity information available, it calculated an 

antibiotic sensitivity similarity score as described previously in Chapter III. Clusters not 

meeting an empirically derived internal similarity cutpoint were then removed from the 

operating list. For example, if four E. coli cultures had widely disparate sensitivity 

patterns, the cluster containing them would be dropped due to presumed non-clonality. 

Next, MIASMA scored clusters using the EWMA-based metric described in Chapter III. 

MIASMA then assigns score weights according to the organism type by increasing the 

scores of clusters of more dangerous or virulent organisms and decreasing the scores for 

less pathogenic organisms and for organisms commonly resulting from contamination 

 

Figure 9: Summary of the process followed during daily MIASMA execution 
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during sample collection. At this point, clusters with scores below an empirically-derived 

score cutpoint are also excluded from the operating list. MIASMA then creates a new 

database entry for the current day for each remaining cluster. 

During the prospective evaluation period, on afternoon of the same day as specific 

cluster generation, MIASMA sent the ID/Infection Control expert an email summary of 

the daily additions to the database (if any) with a link to a password-protected supporting 

data review webpage. The review webpage listed all newly detected clusters with basic 

information about each, including the location in the hospital where the cluster occurred, 

the number of patients with positive microbiological results, and the start, end, and 

detection dates of the cluster. The MIASMA tracking web page also provided a text box 

for note entry and a dropdown box for each cluster, allowing the infection control expert, 

based on a deeper analysis of available data, to categorize the cluster as a probable 

hospital-based outbreak, a probable community-based outbreak, a pseudooutbreak, or a 

false alarm. Figure 10 displays a screenshot of the MIASMA cluster review webpage. 

 

Figure 10: Main view of MIASMA cluster review webpage 
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If the user desired more information about a cluster, each row on the review page 

contained a link that the reviewer could follow to a more detailed “drill-down” view of 

each cluster. The drill-down page included a summary of the antibiotic resistance patterns 

observed in the cluster, unit counts for house-wide clusters or clusters from a group of 

units, a graphical view of the weekly positive result counts, and the full text of all 

relevant microbiological results. See Figure 11 for an example of this display. 

 

Figure 11: Drill-down view from MIASMA cluster review webpage 

Prospective Pilot Study of MIASMA at VUMC 

To evaluate MIASMA’s utility as a supplement to traditional infection control 

practices, the project team implemented MIASMA in the Vanderbilt University Medical 

Center Department of Infection Control and Prevention. The evaluation study comprised 
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a two-phase rollout. In Phase 1, before general availability of the algorithm output, only 

the PI monitored MIASMA output to evaluate its detection timeliness; no alerts were 

issued to clinicians. In Phase 2, MIASMA was fully implemented as intended, with near 

real-time alerts to Infection Control clinicians. 

 The prospective Phase 2 MIASMA evaluation covered the six months spanning 

November 2010 through April 2011. During this period, MIASMA sent its daily email 

summaries to VUMC’s chief hospital epidemiologist for review and to the PI for 

evaluation study monitoring purposes. The chief hospital epidemiologist then used the 

MIASMA review webpage to gather basic information about any new clusters, 

investigate the clusters using the data available from the MIASMA review page and any 

other desired sources (e.g., the VUMC electronic medical record system or data collected 

by the VUMC infection preventionists), and then classify the clusters using the MIASMA 

review webpage. He reviewed each MIASMA alert on the day that it occurred and rated 

each as a false alarm, pseudo-outbreak, possible community outbreak, or possible 

nosocomial outbreak and could later revisit his determinations as more information 

became available. During the study period (late January 2011), MicroParse began to 

receive results from additional non-bacterial culture microbiological tests, including 

influenza and RSV testing. 

Data Analysis Methods – Prospective Evaluation 

The study team compared MIASMA’s timeliness and accuracy of detecting 

outbreaks to traditional infection control methods. During both phases of the prospective 

study, the study team recorded data for any clusters found by either manual methods or 
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by MIASMA (or by both). Nosocomial cluster detections vs. false alarm rates were 

compared for each pair of algorithms using a chi-squared test.  

For any outbreaks missed by MIASMA but detected by standard infection control 

methods, the study conducted a thorough investigation to determine the cause of 

MIASMA’s failure to alert. The study team located all implicated culture and test results 

to find whether they had been included in MIASMA’s input and investigated methods for 

locating any missing results. These included incorporating patient bed location data prior 

to the culture being taken, and methods for estimating when culture-negative cases might 

have occurred, based on patterns in physician order entry data. 

After observing the benefits of including patient bed location and transfer data in 

locating additional patients that might be part of a cluster, the study investigated the 

utility of incorporating such patient location and transfer data (i.e., a history of bed 

locations the patient occupied) within MIASMA. In this separate analysis, for each 

positive culture result, MIASMA retrieved any available patient bed location data from 5 

days prior to the positive result and added a “dummy” positive result for each bed 

location the patient had occupied at that time. The modified MIASMA algorithm then 

filtered duplicate positives, as it had done in normal operation, to prevent multiple 

counting of results for a single patient, which could skew results. MIASMA then ran 

twice on June 18, 2011: once with the standard data feed and once with the patient bed 

transfer data included.  

To investigate MIASMA’s performance at locating “expected” outbreaks, the 

study team analyzed its ability to detect seasonal illnesses (influenza A, influenza B, and 

RSV). The Tennessee State Department of Health publishes weekly positive test counts 
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for these illnesses. The study team compared the data collected by the Health Department 

to the data observed by MIASMA to roughly estimate how much of a timeliness 

advantage MIASMA could achieve since the normal rise of each illness mimics the 

pattern seen in an outbreak. 

Lastly, at the end of the prospective study period, the PI informally interviewed 

the chief epidemiologist to solicit his perception of the system’s performance and utility 

in everyday infection control practice. 
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CHAPTER V 

RESULTS OF PROSPECTIVE MIASMA EVALUATION 

Alert Statistics 

During the 181-day prospective study period, MIASMA generated 78 alerts. On 

136 days, (75%) there were no alerts, and 36 days (20%) had one alert. Figure 12 

displays the complete data.  

 

MIASMA Alert Categorization 

Of the 78 alerts, the Infection Control expert rated 3 (4%) as possible nosocomial 

outbreaks, 51 (65%) as possible community outbreaks, 6 (8%) as pseudo-outbreaks, and 

18 (23%) as false alarms. Figure 13 displays the alerts generated each week as coded by 

the epidemiologist’s designation. Table 7 displays the counts for each designation by the 

Figure 12: Frequency of daily alert counts during MIASMA's 181-day study period 
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detecting algorithm. There were no significant pairwise differences among the four 

algorithms, though the comparison of WSARE to STSS was nearly significant in favor of 

WSARE (p=0.051). Table 8 provides a complete listing of all detected clusters during the 

study period. 

 

 

Figure 13: Weekly alerts generated by MIASMA during study period coded by expert 

designation 

Table 7: Cluster detection by algorithm and expert categorization 

  Nosocomial Community Pseudo False alarm 

CUSUM 0 12 0 0 

EWMA 0 0 0 3 

STSS 1 18 6 13 

WSARE 2 31 2 3 
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Table 8: Complete listing of detected clusters by affected site(s) and expert categorization 

during study period (Length given in days) 

Organism Unit Cases Length Expert Determination 

Enterococcus faecium 11NM 2 1 Nosocomial 

Pseudomonas aeruginosa 8N 2 1 Nosocomial 

Haemophilus influenzae all 17 20 Nosocomial 

Streptococcus pyogenes ED/P 3 1 Community 

RSV all 6 21 Community 

Influenza virus type a all 85 27 Community 

Influenza virus type b all 125 28 Community 

RSV all 101 28 Community 

Influenza virus type a all 15 1 Community 

Influenza virus type a ED/P 6 1 Community 

Influenza virus type a EMER 7 1 Community 

RSV ED/P 12 1 Community 

RSV ED/P 9 1 Community 

Influenza virus type a ED/P 3 1 Community 

RSV ED/P 9 1 Community 

Influenza virus type a ED/P 5 1 Community 

Influenza virus type a all 8 1 Community 

Streptococcus pyogenes ED/P 15 1 Community 

Influenza virus type b ED/P 9 1 Community 

Influenza virus type b all 8 1 Community 

Influenza virus type b EMER 2 1 Community 

Influenza virus type b ED/P 5 1 Community 

RSV ED/P 6 1 Community 

Influenza virus type b all 6 1 Community 

RSV ED/P 3 1 Community 

Influenza virus type b ED/P 2 1 Community 

Streptococcus pyogenes ED/P 17 1 Community 

Influenza virus type b EMER 3 1 Community 

RSV all 105 28 Community 

Influenza virus type a all 97 28 Community 

RSV ED/P 11 1 Community 

RSV all 105 27 Community 

Influenza virus type a all 3 1 Community 

Influenza virus type a ED/P 7 1 Community 

Influenza virus type a all 95 28 Community 

RSV all 117 28 Community 

Influenza virus type a all 100 27 Community 

RSV all 122 28 Community 

RSV ED/P 12 1 Community 
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Table 8 (continued): Complete listing of detected clusters by affected site(s) and expert 

categorization during study period (Length given in days) 

Organism Unit Cases Length Expert Determination 

Influenza virus type b all 122 28 Community 

RSV all 111 21 Community 

Influenza virus type a all 11 1 Community 

Streptococcus pyogenes ED/P 177 44 Community 

Streptococcus pyogenes ED/P 206 53 Community 

Influenza virus type a all 108 27 Community 

Influenza virus type a all 112 27 Community 

Influenza virus type a ED/P 4 1 Community 

Influenza virus type a ED/P 7 1 Community 

Influenza virus type a EMER 2 1 Community 

RSV all 149 27 Community 

RSV all 157 28 Community 

RSV ED/P 196 43 Community 

Influenza virus type a ED/P 61 30 Community 

RSV ED/P 268 72 Community 

Lactobacillus species all 36 25 Pseudo 

Lactobacillus species all 42 28 Pseudo 

Acid-fast bacillus all 2 2 Pseudo 

Bacteroides thetaiotaomicron all 2 1 Pseudo 

Lactobacillus species all 11 2 Pseudo 

Streptococcus pneumoniae all 11 7 Pseudo 

Coag-negative Staphylococcus PBIL 2 2 False alarm 

Coag-negative Staphylococcus 7C 2 7 False alarm 

Enterobacter aerogenes all 15 15 False alarm 

Burkholderia cepacia all 2 2 False alarm 

Lactobacillus species EMER 2 1 False alarm 

Gram positive cocci all 6 4 False alarm 

Trichophyton rubrum all 4 15 False alarm 

Epstein Barr virus all 8 6 False alarm 

Diphtheroids species all 12 4 False alarm 

Chlamydia trachomatis all 13 2 False alarm 

Aspergillus fumigatus all 5 9 False alarm 

Streptococcus intermedius all 4 4 False alarm 

Candida species all 4 2 False alarm 

Hepatitis C all 40 23 False alarm 

Citrobacter koseri all 8 8 False alarm 

Coag-negative Staphylococcus OVUH 2 1 False alarm 

Enterococcus species all 10 17 False alarm 

Gram positive ADL2 3 1 False alarm 
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Comparison of MIASMA Output to Manual Methods 

During both phases of the prospective evaluation study, there was no overlap in 

suspected bacterial cluster identification between MIASMA and the traditional infection 

control methods. Thus, no direct comparisons measuring timeliness of detection could 

occur. 

Comparison of MIASMA Output to Public Health Records for Seasonal Illnesses 

The Tennessee State Department of Health publishes weekly positive test counts 

for influenza A and influenza B. Figure 14A shows the retrospective graph published by 

the TN Department of Health on May 7, 2011.
92

 Figure 14B shows a comparable graph 

generated from MIASMA’s source data with dates marked when MIASMA generated at 

least 1 alert. Figure 15 shows data from the same time period for RSV. State data for 

RSV were not available because the testing instrument used at the state labs was being 

serviced. 
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Figure 14: Comparison of TN State Department of Health and VUMC influenza results, 2010-

2011. MIASMA alerts generated during weeks marked with bold border. 

 

A 
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Investigation of Potential Outbreaks During Prospective Study Period Missed by 

MIASMA 

During the prospective study period, a single outbreak confirmed by the Infection 

Control Service occurred. It was an outbreak of Clostridium difficile associated with 

patients who had been housed previously on S44, a general surgery unit. Infection control 

staff located a total of 12 suspected patients with C. difficile during a 1 month span, with 

6 culture-positive cases and 6 clinically diagnosed cases, some of whom had negative 

culture results. Investigation of the MIASMA dataset identified 4 of the 6 culture-positive 

results on the affected unit. Locating the remaining 2 culture-positive patients required 

 

Figure 15: RSV positive tests at VUMC during study period. MIASMA alerts generated during 

weeks marked with bold border. 
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the incorporation of a separate database containing patient bed location information, as 

the patients had been moved to new bed locations prior to their positive culture results. 

Figure 16A shows the overall C. difficile incidence. Overall, the incidence during the 

month increased by slightly over 1 additional positive culture per week during the 

outbreak period (1.25/week during the outbreak period vs. 0.11/week normally). 

Since some of the implicated patients were culture-negative, the PI also explored 

the effects of including tests negative for C. difficile as a “partial positive” test since a 

physician presumably ordered the test suspecting potential C. difficile infection. Figure 

16B shows the results of including negative tests as ¼ of a positive test. When using the 

weighted score, the increase during the outbreak period was slightly over 1 positive test 

per week greater than the non-outbreak periods (1.75/week during the outbreak period vs 

0.57 normally). 
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Figure 16: Test result data from Clostridium difficile in S44 
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Incorporating Patient Bed Location and Transfer Data 

The patient bed transfer-enriched dataset was approximately 25% larger than the 

standard dataset. Overall, the algorithms found 90 clusters on the standard data and 89 

using the bed transfer data. However, the clusters found using each dataset were quite 

different: 46 clusters were found using both datasets, while 44 were found using the 

standard dataset only and 43 using the transfer-enriched dataset only. 

Of the 90 clusters found using the standard dataset, 61 were filtered using the 

standard MIASMA suppression techniques previously described and were never viewed 

by the epidemiologist; the remaining 29 were duplicates of previously detected clusters. 

Those 29 consisted of 20 community outbreaks, 7 false alarms, and 2 pseudooutbreaks. 

When using the transfer data, MIASMA no longer detected 11 of the community 

outbreaks, 2 of the false alarms, or either of the pseudo-outbreaks. A chi-square test 

showed no difference between the designations of the clusters detected using both 

datasets versus the standard dataset alone (p=0.326). 

Expert Assessment of MIASMA System 

VUMC’s chief epidemiologist stated that MIASMA was best described a “safety 

net:” it would not be able to replace regular surveillance, but it did provide a backup to 

help prevent standard practices from missing potential outbreaks. Furthermore, 

MIASMA’s increased activity during influenza and RSV season provided an unexpected 

value to the chief epidemiologist as these data helped inform institutional policies that 

were implemented once the community incidence of these infections had increased. 
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These data also helped guide clinicians regarding probability of these infections in 

patients presenting with respiratory symptoms. 
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CHAPTER VI 

DISCUSSION OF PROSPECTIVE MIASMA EVALUATION 

MIASMA Alert Quality 

From the chief epidemiologist’s feedback, the volume of the alerts was deemed 

reasonable in terms of workload, with only alerts occurring only 1 day in every 4. In 

addition, there were no more than two false alarms or pseudo-outbreaks in any given 

week. This helped prevent alert fatigue. Of note, during late January and early February, 

the alerts were dominated by clusters of community-based seasonal illnesses (influenza, 

RSV, and Group A Streptococcus). The volume of alerts could easily be reduced by more 

restrictive methods of eliminating duplicate clusters. For example, in this study, by only 

allowing one alert for a given unit/organism combination in a given month if the first 

cluster is deemed to be community-based, MIASMA would have generated only 37 

alerts, fewer than half of the 78 actually generated during the study.  

On one day (1/29/2011), MIASMA generated 22 of the 78 alerts based on cluster 

detections made primarily by WSARE. This anomaly was the result of corrections made 

to the underlying culture reporting data. Previously, influenza antigen tests, RSV antigen 

tests, and Group A Streptococcus probes were not properly included in the MIASMA 

input data. Once those test results were incorporated into MIASMA’s input dataset, 

WSARE detected clusters of each of these pathogens though all hospital wards and in the 

pediatric and adult emergency departments. 
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Unfortunately, MIASMA could not locate the only Infection Control Service 

confirmed outbreak during the study period. Since half of the patients involved in that 

outbreak were located by the infection preventionists only based on a clinical 

symptomatic diagnosis of Clostridium difficile, MIASMA’s lab-and-culture-based 

approach was at a disadvantage. Observing the incidence of C. difficile in S44 over time, 

there was clearly an increase of positive tests during the month of the outbreak. However, 

the increase was only slight (approximately 1 additional positive test result per week), 

and if the detection algorithms were set to be sensitive enough to detect such a cluster, 

the number of false positive alerts for other organisms would likely increase. Similarly, if 

one were to incorporate the negative C. difficile tests as partial positives, one would 

observe a similar small increase over the baseline, but the increase would not be 

sufficient to trigger an alert from any of the algorithms. 

One alternative method of detecting such a cluster would be to expand the 

MIASMA rules engine to make better use of domain knowledge. During the study, 

MIASMA simply used the rules engine to alert in the event of a single positive culture for 

extremely virulent organisms (e.g., smallpox or anthrax) or unusually dangerous 

antibiotic susceptibility patterns (e.g., vancomycin-resistant Staphylococcus aureus). 

However, the engine could very easily trigger an alert for any desired incidence 

threshold. For example, the outbreak in question could have been located by firing an 

alert any time 4 or more positive C. difficile tests occur on any specific unit within a 2 

week period. By incorporating this and similar rules as suggested by the chief 

epidemiologist, MIASMA could potentially detect additional relevant clusters without 

adding many false alarms. 
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Algorithm Performance During the Prospective MIASMA Study 

None of the algorithms were significantly better than the others, though it might 

have been possible to show that WSARE outperformed STSS if the study had used a 

larger sample size. A borderline significant difference was observed, as noted. The study 

was insufficiently powered to find a difference of such a small magnitude. Nevertheless, 

this result supports the finding from Chapter III showing that no one of the implemented 

component surveillance algorithms was able to sufficiently detect all desirable clusters in 

this problem domain. 

Because the two custom-implemented algorithms (i.e., “tuneable” parameters 

were specifically adjusted by the study team for EWMA and CUSUM) could be scaled 

back to prevent excessive alert generation, they were much less prolific in generating 

alerts than were WSARE and STSS (3 and 12 alerts for EWMA and CUSUM 

respectively vs. 38 each for WSARE and STSS). However, this may not have been ideal, 

as CUSUM identified only community outbreaks during the study and EWMA only false 

alarms, suggesting that the filtering rules MIASMA applied to reduce the number of 

alerts generated by these two algorithms may not have been effective at “distilling” the 

signal from the noise within them. 

Though newer scan statistic algorithms than STSS have been developed,
67-70

 their 

focus is primarily on making the STSS spatial detection methods more flexible. Since this 

study used spatial information in the form of hospital unit groupings that were based on 

staff and patient movement rather than geographic spatial information, however, the 

newer algorithmic improvements probably would not be useful. Thus, as STSS has been 
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much more extensively used and validated than newer algorithms, it was likely an 

adequate or better choice for MIASMA than one of the newer algorithms. 

Seasonal Detection Performance 

The community-based clusters for which MIASMA generated alerts tended to 

serve as noise when trying to detect hospital-based outbreaks. However, information 

about the community influenza and RSV incidence proved useful to VUMC’s chief 

epidemiologist as noted above. The previously mentioned methods of eliminating the 

excess alerts might have diminished this unexpected MIASMA benefit. Furthermore, it is 

clear from this study that MIASMA cannot replace infection control staff, but it can 

likely provide a valuable supplement to make surveillance efforts more comprehensive. 

Thus, it may not be desirable to remove the influenza and RSV alerts. 

Comparing MIASMA’s influenza data to the TN State Department of Health 

shows that MIASMA achieved an approximately 1 week lead time in detection versus the 

State Department of Health on the initial rise in influenza. Initial MIASMA influenza 

alerts occurred very early. Coupled with the fact that the State Department of Health only 

issues reports once weekly, MIASMA had in effect up to a 2 week advantage in 

identifying the start of influenza season.  

Adding Patient Bed Location Data to MIASMA 

Incorporating historical patient bed location data into MIASMA’s input stream 

had an unexpectedly large effect on the resulting clusters detected. Prior to testing the 

system with the bed location data included, the study team expected to simply see the 
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same clusters as with the standard non-dynamic bed data with possibly a few additional 

detected clusters since the transfer dataset contained all the same results plus the extra 

data resulting from the prior bed locations. However, some clusters also disappeared after 

adding bed locations. Presumably, this effect resulted from an increase in the baseline 

rates of infection in some units. This increase could subsequently make the spike of 

infections during the previously detected cluster appear less abnormal. The clusters 

eliminated by including the patient transfer data were not significantly different by 

designation, however, so it seems unlikely that incorporating the transfer data significant 

improved the quality of the generated alerts unless the newly added clusters were 

particularly likely to be deemed outbreaks. A larger data sample encompassing longer 

observation periods is necessary to determine objectively what utility the dynamic patient 

location data might add to MIASMA. 

Other methods of incorporating dynamic bed location information might improve 

the overall performance. For example, incorporating information about incubation times 

and contagious periods for individual pathogens would allow MIASMA to be more 

discriminating in retrieving relevant patient bed location data for only the times when a 

given patient would likely have contracted the disease or when he or she could pass the 

disease on to others. 

Expert Assessment of MIASMA’s Performance and Utility 

As the volume of cultures and lab tests conducted during clinical practice grows, 

MIASMA’s functionality as a potential safety net increases in importance. The role of 

VUMC infection preventionists (IPs) has recently shifted from looking at all cultures 



 76 

 

serially to a more specialized approach where each IP is responsible for cultures that fall 

under a common rubric (e.g., only reviewing bloodstream infections in catheterized 

patients). This specialized model thus makes it more likely that the IPs might miss an 

outbreak that does not fall into one of the predetermined categories. The current 

prospective study thus corroborates past findings regarding automated surveillance for 

outbreaks in the hospital setting
91

 that found that with whole-house surveillance 

becoming less practical for large hospitals, automated surveillance can provide a useful 

supplement to standard practice. 

The MIASMA study delivered an unexpected benefit through the information 

gained by the frequent alerts for influenza and RSV. In past years, RSV and influenza 

data were not routinely collected by the IPs to be passed on to the chief epidemiologist. 

Thus, he had not been able to provide advice on the timing of such epidemics to inquiring 

clinicians. However, with MIASMA regularly keeping him informed of the influenza and 

RSV activity within the hospital, emergency departments, and clinics, he was able to give 

accurate and timely information. 

MIASMA System Portability 

The PI plans to make MIASMA and the custom implementations of the public 

domain EWMA and CUSUM algorithms freely available for not-for-profit use under a 

Simplified BSD license (or FreeBSD license).
93

 The MIASMA algorithms require only a 

PHP installation to run. The WSARE and STSS implementations are available from their 

original authors under free use licenses. However, as they are only available as binaries, 

they can only be used on platforms for which their original authors have compiled them. 
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Thus, STSS is available via the SaTScan download page
94

 for Windows, Max OSX, and 

Linux, and WSARE is available from Carnegie Mellon University’s Auton Lab download 

page
95

 for Windows and Linux only. For other platforms, users can easily configure 

MIASMA to exclude any unusable component algorithms. 

Currently, MIASMA is configured to work with the MicroParse MySQL database 

only. However, the code that queries the database is separated from the program logic, 

allowing users to relatively easily modify those portions of the system. Because 

MIASMA’s requirements for data structuring are relatively simple, only requiring a list 

of positive cultures labeled with name, date, and location, it is relatively easy to adapt the 

system to other database engines (e.g., PostgreSQL or Oracle) and schemas. The database 

tables containing the hospital unit groupings and organism names would need to be 

modified to reflect the local nomenclature to make use of all of MIASMA’s features, 

however. 

MIASMA Prospective Study Limitations 

The largest limitation of the pilot prospective MIASMA study was the small 

number of outbreaks (one) that occurred during the study period. Ideally, the study could 

have been conducted across multiple sites and for a longer duration to allow MIASMA to 

detect more outbreaks of differing types. With only a single “true” outbreak occurring, 

and in that instance, with half of the implicated patients being culture-negative, it was 

difficult to definitively determine whether MIASMA was truly useful in practice. 

On a related note, the dearth of true outbreaks made comparing MIASMA’s 

performance to that of manual methods on timeliness and accuracy infeasible. Again, this 
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could have been solved by conducting the study across multiple sites for a longer time. 

That would allow the study to find situations where both MIASMA and the local 

infection control staff detected the same outbreaks. Extending the study would also allow 

better evaluation of techniques for locating the Clostridium difficile outbreak missed 

during the study period.  

With the potential for patient bed location transfer data to be useful adjunct 

information to MIASMA’s constituent algorithms, further analysis of the impact of 

incorporating bed location transfer data could help strengthen the MIASMA system. 

Ideally, a new study would have mirrored the prospective study design using bed location 

transfer data and had all resulting clusters classified by an expert. The end result would 

be a complete picture of how the detected clusters compared using each of the datasets 

and a much clearer idea of the effects of including patient bed location data. 
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CHAPTER VII 

SYNOPSIS AND CONCLUSIONS 

Summary 

The MIASMA project developed, deployed and evaluated MIASMA, a system 

that uses recently developed methods (e.g., from syndromic surveillance and from 

heuristic observations) to detect single-hospital outbreaks of both commonly occurring 

and rare bacterial species. Because there were relatively few outbreaks during the study 

period, further research would be necessary to determine the degree to which MIASMA 

assisted hospital staff. However, MIASMA successfully supplemented VUMC’s standard 

hospital outbreak detection practices.  
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