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CHAPTER I

INTRODUCTION

1.1 Overview

Time-dependent reliability analysis of engineering components/devices is a challenging

interdisciplinary problem, which involves many major research areas, such as multi-physics

modeling and experiments, numerical analysis, probability theory, and statistical inference.

An important part of reliability analysis is to propagate forward uncertainty from different

sources to the performance prediction of target components/devices. Several analytical and

numerical methods have been developed for uncertainty propagation in reliability analysis,

including first-order reliability methods (FORM), second-order reliability methods (SORM),

out-crossing methods, surrogate model-based methods, and Monte Carlo simulation-based

methods [Melchers, 1999; Mahadevan and Dey, 1997; Kuschel and Rackwitz, 2000]. No matter

which method is chosen, the accuracy of reliability prediction is significantly affected by

uncertainty quantification (UQ), which is the process of quantifying uncertainty at different

levels (e.g., input level, modeling level, and prediction level) of scientific computing.

Two categories of uncertainty, aleatory uncertainty (uncertainty due to natural variability)

and epistemic uncertainty (uncertainty due to lack of knowledge/information), have been

identified and widely accepted in the UQ community [O’Hagan and Oakley, 2004; McFarland

and Mahadevan, 2008; Der Kiureghian, 2009]. In our recent research, epistemic uncertainty

is further divided into two types, namely model uncertainty (uncertainty due to the use

of approximate models) and data uncertainty (uncertainty due to the use of insufficient

or imprecise data) [Sankararaman et al., 2011b,a]. Very limited amount of research have

aimed at developing a comprehensive UQ framework [McFarland, 2008; Lucas et al., 2008;
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Roy and Oberkampf, 2011; Sankararaman et al., 2011a] that integrates multiple types of

uncertainty. Most of the reliability research has only focused on quantifying the natural

variability at the input level, and then estimate the uncertainty at the output level via

uncertainty propagation [Beran et al., 2006; Mâıtre et al., 2007; Wojtkiewicz et al., 2001;

Najm, 2009; Reagan et al., 2003; Guo et al., 2010].

Within the UQ community, three types of activities are pursued to address different

aspects of model uncertainty: (1) model calibration [Kennedy and O’Hagan, 2001], which

aims to quantify the uncertainty in the estimation of model parameters, (2) model vali-

dation [Oberkampf and Trucano, 2004; Rebba et al., 2006; Ling and Mahadevan, 2013b],

which is used to quantify the uncertainty and confidence in model prediction, and (3) model

verification [Babuska and Oden, 2004; ASME, 2006; Rangavajhala et al., 2011], which focuses

on solution approximation error. Probabilistic methods to address data uncertainty in

engineering problems are also being actively pursued, and some recent development can be

found in [Zaman et al., 2010; Sankararaman and Mahadevan, 2011a, 2012b]. With the rapid

development in UQ activities and fundamental methods, the need to obtain more rigorous

prediction of reliability accounting for multiple sources of uncertainty has emerged, and it

has become more feasible to perform time-dependent reliability analysis with the inclusion of

UQ results.

1.2 Research objectives

The overall objective of the proposed research is to develop a rigorous and efficient

framework for integrating time-dependent reliability analysis with comprehensive uncertainty

quantification that considers natural variability, data uncertainty, and model uncertainty.

Four tasks are pursued in order to achieve this overall objective. The first task focuses

on Bayesian calibration of computer simulation models that are used in time-dependent

reliability analysis using available information, which aims at the quantification of uncertainty
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at the modeling level (including uncertainty in model parameters and model form), and the

uncertainty introduced by the use of insufficient data in model calibration. The second task

is to study and develop quantitative model validation methods, that quantify the confidence

of models in the domain of intended use (e.g., prediction domain) and guide decision making

in model selection. The third task is to explore efficient and accurate methods for uncertainty

propagation and the calculation of failure probability in time-dependent problems. The

fourth task investigates methods to include data collected on a system in service (e.g., load

data, inspection data) in the reliability analysis. Two application examples: (1) long-term life

prediction of a radio frequency (RF) micro-electromechanical system (MEMS) switch, and

(2) fatigue crack growth analysis of a rotorcraft mast component, are developed to illustrate

the overall uncertainty framework proposed in this research.

1.3 Organization of the dissertation

The subsequent chapters of this dissertation will be devoted to the objectives proposed

above.

Chapter II provides an introduction to the state-of-the-art tools and methods developed

for uncertainty quantification and time-dependent reliability analysis, including: (1) Bayesian

networks, (2) Bayesian model calibration, (3) quantitative model validation, (4) PHI2

algorithm for time-dependent reliability estimation, and (5) surrogate modeling techniques.

Chapter III addresses several challenging issues in the application of Bayesian model

calibration to realistic problems: (1) appropriate formulation of model discrepancy function

to account for model form uncertainty, (2) identifiability of model parameters in an inverse

problem, and (3) calibration strategy for multiple physics models with shared parameters.

Methods to address these issues are presented in detail in this chapter.

Based on the various quantitative model validation methods illustrated in Chapter II,

Chapter IV discusses possible scenarios of model validation given data from three types of
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experiments. Extensions to Bayesian hypothesis testing-based method are developed, and

the relationships and interpretations of the existing methods are investigated.

Chapter V develops a Bayesian network-based uncertainty quantification framework for

time-dependent reliability analysis, with application to the life prediction of a MEMS device,

which is a multi-physics problem involving elasticity, electrostatics, creep, gas damping, and

contact. We construct a Bayesian network in order to integrate multiple physics models and

the corresponding experimental data. Various physics models at different levels of the system

are also validated using the quantitative model validation techniques discussed in Chapter IV.

The results of calibration and validation are then included within time-dependent reliability

prediction of the MEMS device.

Chapters VI and VII develop a probabilistic framework to include data regarding a system

in service in the reliability analysis, with application to fatigue crack growth prognosis of a

rotorcraft component.

Chapter VI explores various modeling choices of fatigue load history, and statistical

updating of load models using real-time monitoring data is outlined. The highlight of this

chapter is the development of an ARIMA model-based approach, which integrates the ARIMA

modeling technique, Bayesian calibration, and Bayesian model averaging in order to quantify

various sources of uncertainty in applied loading.

Chapter VII considers the integration of health monitoring data, in particular, crack

inspection data into the prediction of the remaining useful life of the rotorcraft component.

Various sources of uncertainty are identified using global sensitivity analysis. Gaussian

process surrogate modeling technique is used to simulate non-planar crack growth under

variable amplitude and multi-axial loading. A Bayesian network is constructed to integrate

fatigue-related models and system monitoring data. Bayesian calibration is applied to infer

the probability distribution of equivalent initial crack size, and the ARIMA model-based

approach is applied to characterize and update the applied load history. Fatigue prognosis
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of the rotorcraft components under different scenarios of system monitoring data is then

performed, by integrating the information from all the models and available data through

the Bayesian network.
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CHAPTER II

BACKGROUND

This chapter starts with a brief introduction to Bayesian networks, a platform we use

throughout this dissertation to integrate various sources of information in a multi-level multi-

physics system. Two main research areas of uncertainty quantification, model calibration and

validation, are reviewed. The basic methodology of Bayesian model calibration is given in

Section 2.2. Section 2.3 presents the currently available model validation techniques. Detailed

discussions and further developments are provided in Chapters III and IV. The theory of

time-dependent reliability analysis is given in Section 2.4 along with a brief introduction

to the PHI2 algorithm. Surrogate modeling techniques that can expedite time-dependent

reliability analysis are discussed in Section 2.5.

2.1 Brief introduction to Bayesian networks

A BN is a directed acyclic graph formed by the variables (nodes) together with the

directed edges, attached by a table of conditional probabilities of each variable on all its

parents [Jensen and Nielsen, 2007]. Therefore, it can be used as a graphical representation of

uncertain quantities, and explicitly incorporates the probabilistic causal dependence between

the variables. Following certain rules, BN allows information to pass from component level to

system level, which makes it a powerful tool in system reliability analysis [Torres-Toledano

and Sucar, 1998; Mahadevan et al., 2001; Weber and Jouffe, 2006; Langseth and Portinale,

2007; Straub and Der Kiureghian, 2010; Bensi, 2010].

Based on the chain rule in probability theory, a BN consisting of a set of nodes U =
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{X1, X2, ..., Xn} presents the joint probability distribution of these nodes as

p(U) =
n∏
i=1

p(Xi|PaXi) (2.1)

where PaXi is the set of parent nodes of the node Xi, which can be identified based on

the directed edges in the graph. The conditional probability of Xi given its parent nodes,

p(Xi|PaXi), can be found in the conditional probability table.

If there are observation data D available for a subset (Uobs) of the nodes, the joint

probability distribution of the other nodes Ūobs in the BN can be updated based on Bayes’

theorem

p(Ūobs|Uobs = D) =
p(Ūobs, Uobs = D)∫

p(Ūobs, Uobs = D) dŪobs
(2.2)

Note that the integration in the denominator of Eq. 2.2 is valid if Ūobs contains only continuous

random variables and p(∗) stands for probability density function. In the case of discrete

random variables, the integration should be replaced by the summation of probability mass

function. Eq. 2.2 provides the basis for model calibration which will be discussed in Section 2.2.

In addition to updating the unobserved nodes, forward prediction of the quantity of

interest (QoI) can also be performed in the BN. For example, if QoI is in the set Ūobs, the

posterior probability distribution of QoI can be obtained by marginalizing the joint posterior

distribution p(Ūobs|Uobs = D) in Eq. 2.2.

2.2 Bayesian model calibration

Model calibration is the process of adjusting unknown model parameters in order to

improve the agreement between model output and observed data [Campbell, 2006], and it

is a widely used technique in the uncertainty analysis of engineering systems [McFarland,

2008]. Kennedy and O’Hagan [Kennedy and O’Hagan, 2001] developed a Bayesian calibration
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framework (commonly known as the KOH framework), which is capable of including various

sources of uncertainty. One of the main features of this framework is the use of a model

discrepancy function to explicitly account for the uncertainty due to model inadequacy. It has

been shown that by including an appropriate model discrepancy function in calibration, bias

and overfitting in the estimation of physical parameters can be mitigated or avoided [Brynjars-

dottir and O’Hagan, 2013]. Based on the KOH framework, efficient and rigorous calibration

methods have been developed for realistic problems [Higdon et al., 2008; Koutsourelakis, 2009;

Arendt et al., 2012; Ling and Mahadevan, 2013a], and practical applications can be found

in many areas of science and engineering, such as environmental management [Arhonditsis

et al., 2008], heat transfer [McFarland and Mahadevan, 2008], astronomy [Bower et al., 2010],

hydrology [Renard et al., 2010], geochemistry [Sarkar et al., 2012], fatigue [Sankararaman

et al., 2011b], and aerothermal modeling [DeCarlo et al., 2013].

This dissertation will focus on model calibration with direct measurement data of the

model output variable. In the case that the available information are the moments of the

probability distributions of the model output variable, some recently developed methodologies

based on optimization with constraints on the moments may be considered [Zabaras and

Ganapathysubramanian, 2008; Guan et al., 2009]. In addition, a Bayesian approach has been

developed to include the information on the moments of unknown model parameters [Berry

et al., 2012].

Section 2.2.1 illustrates the basic framework of model calibration. In Sections 2.2.2

and 2.2.3, two types of experimental data are considered, namely interval data and time

series data, and the corresponding details of calibration are developed. Some discussions on

computing likelihood functions, which can be computationally expensive for complex systems,

are provided in Section 2.2.4.
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2.2.1 Basic methodology

Consider a computer model, ym = G(x;θ), with input x, parameter θ, and output ym.

This model is constructed to predict a physical quantity of interest y, which is observable

through experiments. The model input x is a set of quantities that modelers consider

unnecessary to calibrate, since these quantities can be either measured in experiments or

computed from other physics models. Therefore, the model input x is set to be xD in the

process of model calibration, where xD is a set of measured/computed values of x. Note that

in the presence of measurement error in experiments, or other sources of uncertainty in the

models used to compute x, some elements of xD may be treated as random variables with

known probability distributions. In contrast to x, the model parameter set θ is considered

unknown due to the lack of experimental data or physical knowledge, and the objective of

model calibration is to estimate these parameters based on available information.

Model 
G(x; θ)

Unknown parameter θ

Output
ym

Input
xD

Model discrepancy
δ

Observation noise 
ɛobs

Observation
yD

Figure 2.1: Relationship between a computer model and corresponding experimental observa-
tion

In the KOH framework, the relationship between experimental observation yD, true value
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of the quantity y, and model output ym is described as (Fig. 2.1)

yD = y + εobs (2.3)

y = ym + δ = G(xD,θ) + δ(xD) (2.4)

where εobs represents measurement uncertainty and is often treated as a zero-mean Guassian

random variable with variance σ2
obs. Uncertainty due to model inadequacy is represented by

a model discrepancy term δ, which could be a function of model input x. Since σobs and δ are

usually unknown, they may also need to be calibrated. Note that yD is treated as a random

variable in Eq. 2.3, and the samples of yD are the actual observation data of y. Assuming m

samples of yD (denoted as D = [D1, D2, ..., Dm]) are collected for a single input setting xD,

we can calibrate the unknown parameters θ, σobs, and δ using Bayes’ theorem as

π(θ, σobs, δ|D) =
L(θ, σobs, δ) π(θ) π(σobs) π(δ)∫

L(θ, σobs, δ) π(θ) π(σobs) π(δ) dθ dσobs dδ

L(θ, σobs, δ) ∝
m∏
i=1

π(yD = Di|xD, θ, σobs, δ) (2.5)

where π(θ), π(σobs), π(δ) are the prior PDFs of θ, σobs, and δ respectively, representing prior

knowledge of these parameters before calibration; π(θ, σobs, δ|D) is the joint posterior (or

calibrated) PDF of θ, σobs, and δ; the joint likelihood function of θ, σobs, and δ, which is

denoted as L(θ, σobs, δ), is proportional to the conditional probability of observing the data

D given these parameters. Note that π(∗) denotes probability density function in this paper.

In the case where experimental observations are taken for multiple input settings, paired

data {xDi, yDi}ni=1 may be available. Let XD = [xD1,xD2, ...,xDn], and the corresponding

output observation yD = [yD1, yD2, ..., yDn]. Note that yD becomes a random vector. As-

suming that m realizations fo yD (denoted as D = [D1,D2, ...,Dm]) are collected in the
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experiments, the likelihood function in Eq. 2.5 becomes

L(θ, σobs, δ) ∝
m∏
i=1

π(yD = Di|XD,θ, σobs, δ) (2.6)

where π(yD = Di|XD,θ, σobs, δ) is the joint PDF of the random vector yD evaluated at Di,

and this probability distribution is conditioned on XD, θ, σobs, and δ.

In this section, the likelihood function is constructed based on measurement data reported

as point values. In practical problems, various types of experimental data may be available,

including interval data and time series data. For these different types of data, which will be

discussed in the subsequent sections.

2.2.2 Bayesian calibration with interval data

Due to the imprecision of measurement techniques and limited experimental resources,

the data of many quantities is only available in the form of an interval, which brings

in additional data uncertainty (i.e., the actual experimental value lies within an interval).

Sankararaman and Mahadevan [Sankararaman and Mahadevan, 2011a] developed a likelihood-

based approach to quantify this type of uncertainty. In the example shown in Fig. 2.1, the

experimental data D may be reported as an interval, i.e., D = [Da, Db], and we can derive

the corresponding expression for the likelihood function of unknown parameters based on the

method developed in [Sankararaman and Mahadevan, 2011a] as

L(θ, σobs, δ) ∝ Pr(Da ≤ yD ≤ Db|θ, σobs, δ)

=

∫ Db

Da
π(yD|xD,θ, σobs, δ) π(xD) dyD dxD (2.7)

If data are in the form of half intervals, i.e., yD ≥ Da, the likelihood function can be obtained

by letting Db = +∞ in Eq. 2.7. Similarly, let Da = −∞ if yD ≤ Db.

In some problems, measurements may be available at multiple input settings XD =
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[xD1,xD2, ...xDn], and the data may be in the form of multiple intervals or a mixture of

intervals and point values. We can conveniently extend Eq. 2.7 to these two cases. Suppose

the available data are now a set of intervals, i.e., D = {[Da
1 , D

b
1], [Da

2 , D
b
2], ..., [Da

n, D
b
n]}, which

forms a n-dimensional hypercube Ωn. The probability of observing the data is thus equivalent

to the probability of the n-dimensional random vector yD = [yD1, yD2, ..., yDn] lying inside

the hypercube Ωn. Hence, the likelihood function of unknown parameters can be derived as

L(θ, σobs, δ) ∝ Pr(yD ∈ Ωn|θ, σobs, δ)

=

∫
Ωn

π(yD|XD,θ, σobs, δ) π(XD) dyD dXD (2.8)

In the case that the available information is a mixture of k intervals and (n− k) point

values, the k intervals form a k-dimensional hypercube Ωk. Let yD,k represent the elements

of the random vector yD corresponding to interval data, and yD,n−k represent the rest of

the elements corresponding to point data Dpoint = [Dn−k+1, Dn−k+2, ..., Dn]. The likelihood

function L(θ, σobs, δ) can be derived as

L(θ, σobs, δ) ∝ Pr
(
(yD,k ∈ Ωk) ∩ (yD,n−k = Dpoint)|θ, σobs, δ)

=

∫
Ωk

π(yD,k|yD,n−k = Dpoint,XD,θ, σobs, δ) π(XD) dyD,k dXD (2.9)

where π(yD,k|yD,n−k = Dpoint,XD,θ, σobs, δ) is obtained by substituting yD,n−k = Dpoint

into the joint PDF of the random vector yD.

2.2.3 Bayesian calibration with time series data

In dynamic systems, information is commonly available in the form of time series data.

This type of information leads to several additional challenges; in particular, the model

prediction and the corresponding measurement data are dependent on the states of the
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system in the previous time steps, and replicate time series observations may be taken with

a large number of time points. Both of these characteristics may complicate the computation

of the likelihood function. To perform model calibration with time-series data, we again use

the KOH framework discussed in Section 2.2.1. In general, a dynamic model can be written

as ym,t = G(ym,−t,x, t;θ); ym,t represents the model prediction at time t; ym,−t represents

the model predictions for the previous time steps; x and θ are the same as in Section 2.2.1.

Note that ym,t is deterministic for given values of ym,−t, x, t and θ. The model discrepancy

function may also become time dependent as δt. To simplify the problem, we assume that δt

can be parameterized as a function with time-invariant coefficients φ, and thus the problem

of calibrating δt is converted to the inference of a finite number of unknown coefficients. The

measurement uncertainty is still represented as εobs ∼ N (0, σ2
obs), which is time-independent.

Similar to Eqs. 2.3 and 2.4, the relationship between experimental observation yD,t and the

corresponding model prediction ym,t can be written as

yD,t = ym,t + δt + εobs (2.10)

The fact that ym,t is dependent on ym,−t renders the construction of the likelihood

function L(θ, σobs,φ) difficult. For example, suppose we have one set of time-series data

available Dt = [Dt1, Dt2, ..., Dtn], i.e., the measurements are taken at several time points

tD = t1, t2, ..., tn when the values of the experimental inputs xD remain the same. Note that

again we consider that the actual data Dt are random realizations of the random vector

yD,t = [yD,t1, yD,t2, ..., yD,tn]. The corresponding likelihood function can be written as

L(θ, σobs, δt) ∝ π(yD,t = Dt|θ, σobs,φ)

=

∫ (
π(yD,t = Dt|ym,−t,xD,θ, σobs,φ) (2.11)

π(ym,−t|xD,θ) π(xD)
)

dym,−t dxD
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Note that if strictly written, ym,−t in Eq. 2.11 should be different for different data points.

We chose not to write out each ”ym,−t” to avoid making the equation unnecessarily complex.

It can be seen that the PDF of model predictions for the past time points π(ym,−t|xD,θ)

and an integration over all the elements of ym,−t are needed, which makes the evaluation of

the likelihood function analytically intractable, and numerically expensive methods (such as

Monte Carlo simulation) may be needed.

The extension to the cases where multiple sets of time series data are available is

straightforward in theory. The difference from the case of single time series data is that

yD,t, ym,−t and xD in Eq. 2.11 become matrices instead of being vectors. In the special case

that the multiple series are replicates, i.e., we have repeated measurements at the same time

points for the same set of inputs, the variation from one series to another can be attributed

to the observation noise εobs, and thus we can directly compute εobs based on these repeated

time series. Assuming that εobs is a zero-mean Gaussian random variable with variance σ2
obs

independent of time t, the variance σ2
obs can be estimated as

σ2
obs =

1

n1(n2 − 1)

n1∑
j=1

n2∑
i=1

[yiD,tj −
1

n2

n2∑
i=1

(yiD,tj)]
2 (2.12)

where n2 is the number of repeated time series, and n1 is the number of time points in each

series. The estimated σobs and the average time series (1/n2)
∑n2

i=1(yiD,tj ) can be further used

to compute the likelihood as in the single time series case.

If the measurement uncertainty in the experimental inputs is negligible, xD can be treated

as constant. Note that ym,−t is deterministic for given values of xD and θ (initial condition

is also considered as input). Then, the calibration with time series data Dt becomes much

simpler, as Eq. 2.11 can be simplified as

L(θ, σobs,φ) ∝ π(yD,t = Dt|xD,θ, σobs,φ) (2.13)
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where π(yD,t = Dt|xD,θ, σobs,φ) can be evaluated once the model discrepancy is formulated

as shown in Section 3.2.1.

In the case that the time series data set is becoming available in real time during the

operation of a system, i.e., the observation is made in real time and the model is used to make

predictions for future time points, we can continuously calibrate (or update) the model using

algorithms such as Kalman filter (for linear models), extended Kalman filter (for non-linear

models), particle filter (sampling implementation of sequential Bayesian calibration) [Thrun

et al., 2005], etc.

2.2.4 Computational issues

Bayesian calibration in Eq. 2.5 can be computationally expensive due to two reasons: (1)

the likelihood function may be expensive to compute numerically, and (2) the multivariate

integration in the denominator of Eq. 2.5 can be time consuming if the number of parameters

is large.

Adding a model discrepancy term to the original model can lead to a high dimensional-

parameter space, as a set of coefficients which parameterize the model discrepancy needs to

be estimated in addition to the actual physics model parameters θ. For the case that the

data points are sparse, it may not be feasible to calibrate the model along with the estimation

of these parameters of model discrepancy. A compromised solution is to use a simplified

model discrepancy function with less flexibility, i.e., a smaller number of parameters. Another

possible method is to estimate the model parameters θ and the coefficients of δ in two

sequential steps. First, the model parameters θ are calibrated without considering model

discrepancy. Then, we can estimate the coefficients of δ based on the a posteriori estimate

of θ (denoted as θ∗), i.e., we can obtain the posterior PDF of the coefficients of δ which is

conditioned on θ∗.

The likelihood function represents the probabilistic relationship between measured data
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and unknown parameters, and repeated runs of the computer model G(x;θ) are required to

compute this relationship. Hence, previous studies have mostly focused on approximating the

computational model with a surrogate model [Kennedy and O’Hagan, 2001; Sankararaman

et al., 2010], i.e., replacing the physics-based model G(x;θ) with a faster model without losing

much accuracy. Surrogate modeling techniques that have been developed in literature include

Kriging or Gaussian Process (GP) interpolation [Rasmussen and Williams, 2006], polynomial

chaos expansion [Xiu and Karniadakis, 2002; Ghanem and Spanos, 2003; Marzouk and Najm,

2009], support vector machine (SVM) [Vapnik, 1999], relevance vector machine [Tipping,

2001], adaptive sparse grid collocation [Ma and Zabaras, 2009], etc. Then, the likelihood

function of the parameters can be evaluated based on executing the surrogate model a number

of times.

If the measurement uncertainty is the only source of uncertainty considered and can be

represented using a Gaussian random variable, the likelihood function can be calculated

analytically based on the model predictions. However, in the case that various sources of

uncertainty exist (e.g., natural variability in the input x, data uncertainty in input and

output measurement, and model uncertainty), the likelihood function is no longer simple

to compute. In that case, sampling methods like Monte Carlo simulation are needed to

compute the function for given parameter values. If the number of calibration parameters is

relatively large, the evaluation of the likelihood function can become expensive even with a fast

surrogate model for G(x;θ). In such cases, another surrogate model can be built to directly

approximate the joint likelihood function of all the parameters, based on actual evaluations of

the likelihood function for selected values of the parameters. Thereafter, we can evaluate this

surrogate model, instead of the actual likelihood function, in the calculation of the posterior

PDFs, which can speed up Bayesian calibration under multiple sources of uncertainty. For

example, Bliznyuk et al. [Bliznyuk et al., 2008] approximated the unnormalized posterior

density (the product of likelihood function and prior density) using radial basis functions.
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If the number of parameters is relatively small, the integration of the product of the

likelihood function and the prior PDFs of parameters can be conducted accurately and

efficiently using numerical integration methods, such as Gaussian quadrature or the trapezoidal

rule. When the number of parameters becomes large, Markov Chain Monte Carlo (MCMC)

methods are widely used due to the relative insensitivity of the computational effort to

the number of parameters. MCMC methods do not conduct the integration explicitly, but

instead directly generate the random samples from the unnormalized posterior density of

the parameters, upon convergence. Several algorithms are available for MCMC sampling,

including Metropolis-Hastings [Hastings, 1970; Chib and Greenberg, 1995; Green, 1995;

Gelman et al., 1996; Haario et al., 2006; Zuev et al., 2012], Gibbs [Casella and George, 1992],

slice sampling [Neal, 2003], etc.

2.3 Quantitative model validation techniques

Model validation is defined as the process of determining the degree to which a model

is an accurate representation of the real world from the perspective of the intended use of

the model [AIAA, 1998; ASME, 2006]. Qualitative validation methods such as graphical

comparison between model predictions and experimental data are widely used in engineering.

However, statistics-based quantitative methods are needed to supplement subjective judg-

ments and to systematically account for errors and uncertainty in both model prediction and

experimental observation [Oberkampf and Trucano, 2002].

Previous research efforts include the application of statistical hypothesis testing methods

in the context of model validation [Hartmann et al., 1995; Hills and Trucano, 1999, 2002; Hills

and Leslie, 2003; Rebba et al., 2006; Rebba and Mahadevan, 2006, 2008], and development

of validation metrics as measures of agreement between model prediction and experimental

observation [Urbina et al., 2003; Oberkampf and Barone, 2006; Rebba and Mahadevan, 2008;
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Ferson et al., 2008; Ferson and Oberkampf, 2009]. Discussions on the pros and cons of these

validation methods can be found in [Rebba and Mahadevan, 2008; Liu et al., 2011].

Suppose a computational model is constructed to predict a physical quantity. Quantitative

model validation methods involve the comparison between model prediction and experimental

observation. In this thesis, we use the following notations

- Y represents the ‘‘true value” of the system response

- Ym is the model prediction of this true response Y

- YD is the experimental observation of Y .

The various quantitative validation methods investigated in this thesis are classified into

two categories: (1) statistical binary hypothesis testing-based methods, and (2) non-hypothesis

testing-based methods.

2.3.1 Hypothesis testing-based methods

Statistical binary hypothesis testing involves deciding between the plausibility of two

hypotheses - the null hypothesis (denoted as H0) and the alternative hypothesis (denoted

as H1). H0 may be something that one believes could be true, whereas H1 is a hypothesis

opposite to H0 [Marden, 2000]. For example, given a model for damping coefficient prediction,

H0 can be the hypothesis that the model prediction is equal to the actual damping coefficient,

and correspondingly H1 states that the model prediction is not equal to the actual damping

coefficient. The null hypothesis H0 will be rejected if it fails the test, and will not be rejected

if it passes the test. Two types of error can possibly occur from this exercise: rejecting the

correct hypothesis (type I error), or failing to reject the incorrect hypothesis (type II error).

In the context of model validation, it should be noted that the underlying subject matter

domain knowledge is also necessary for the implementation of the hypothesis testing-based

methods, especially in the formulation of test hypotheses (H0 and H1) and the selection

of model acceptance threshold. To formulate appropriate H0 and H1 for the validation
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of a model with stochastic output prediction Ym, we need to be clear about the physical

interpretation of ‘‘model being correct”. In other words, we need to decide whether or not

accurate prediction of statistical moments or the entire PDF of Ym suggests that the model

is correct.

2.3.1.1 Classical hypothesis testing

In classical hypothesis testing, a test statistic is first formulated and the probability

distributions of this statistic under the null and alternative hypothesis are derived theoretically

or by approximations. Thereafter, one can compute the value of the test statistic based on

validation data and thus calculate the corresponding p-value, which is the probability that

the test statistic falls outside a range defined by the computed value of the test statistic

under the null hypothesis. The p-value can be considered as an indicator of how good the null

hypothesis is, since a better H0 corresponds to a narrower range defined by the computed

value of the test statistic and thus a higher probability of the test statistic falling outside the

range.

The decisions whether or not to reject the null hypothesis can be made based on the

acceptable probabilities of making type I and type II errors (specified by the decision maker).

The concept of significance level α defines the maximum probability of making type I error,

and the probability of making type II error β can be estimated based on α and the probability

distribution of the test statistic under H1. The null hypothesis will be rejected if the computed

p-value is less than α, or the computed β exceeds the acceptable value. Correspondingly,

we will reject the model if H0 is rejected, and accept the model if H0 is not rejected. An

alternative approach to comparing p-value and α is to use confidence intervals. A confidence

interval can be constructed based on the confidence level γ = 1− α, and the null hypothesis

will be rejected if the confidence interval does not include the predicted value from the model.

Various test statistics have been developed corresponding to different types of hypotheses.
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The t-test or z-test can be used to test the hypothesis that the mean of a normal random

variable is equal to the model prediction; the chi-square test can be used to test the hypothesis

that the variance of a normal random variable is equal to the model prediction; and the

hypothesis that the observed data come from a specific probability distribution can be

tested using methods such as the chi-square test, the Kolmogorov-Smirnov (K-S) test, the

Anderson-Darling test and the Cramer test [Lehmann and Romano, 2005]. The discussion in

this thesis is limited to the tests on distribution mean, namely the t-test and the z-test, since

the tests on variance or probability distribution require relatively large amounts of validation

data, which is rarely available in practice.

The t-test is based on Student’s t-distribution. Suppose the quantity of interest Y is

a normal random variable with mean µ and standard deviation σ, and the measurement

error εD is a normal random variable with zero mean and standard deviation σD. Thus,

the experimental observation YD = Y + εD ∼ N(µ, σ2 + σ2
D), i.e., YD also follows a normal

distribution with mean µ and variance σ2+σ2
D. For the sake of simplicity, let σYD =

√
σ2 + σ2

D.

The validation data are a set of random samples of YD with size n (i.e., yD1, yD2, ..., yDn)

and the corresponding sample mean is ȲD and sample standard deviation is SD. The variable

(ȲD−µ)/(SD/
√
n) is modeled with a t-distribution with (n−1) degrees of freedom. Therefore,

if one assumes that the model mean prediction µm (if model prediction is deterministic, µm

equals to the prediction value) is the mean of Y , i.e., the null hypothesis is H0 : µ = µm,

then the corresponding test statistic t (follows the same t-distribution) is

t =
ȲD − µm
SD/
√
n

(2.14)

The p-value for the two-tailed t-test (considering both ends of the distribution) can be

obtained as

p = 2FT,n−1(−|t|) (2.15)
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where FT,n−1 is the cumulative distribution function (CDF) of a t-distribution with (n− 1)

degrees of freedom. If the chosen significance level is α, then one will reject the null hypothesis

H0 if p < a, or fail to reject H0 if p > a.

The t-test requires a sample size n ≥ 2 in order to estimate the sample standard deviation

SD. If n = 1, the z-test can be used instead by assuming that the standard deviation of Y is

equal to the standard deviation of model prediction Ym, i.e., σ = σm and σYD =
√
σ2
m + σ2

D.

Thus, the variable (ȲD − µ)/(σYD/
√
n) follows the standard normal distribution. Under the

null hypothesis H0 : µ = µm, the test statistic z is

z =
ȲD − µm
σYD/

√
n

(2.16)

The corresponding p-value for the two-tailed z-test can be computed as

p = 2Φ(−|z|) (2.17)

where Φ is the CDF of the standard normal variable. Similar to the t-test, one will reject H0

if p < a, or fail to reject H0 if p > a.

To compute the probability of making type II error β, an alternative hypothesis H1 is

needed and a commonly used formulation is H1 : µ = µm + εµ. In t-test, under the alternative

hypothesis H1 : µ = µm + εµ, the t statistic follows a non-central t-distribution with

noncentrality parameter δ =
√
nεµ/σYD [Srivastava, 2002; McFarland, 2008], the probability

of making type II error β can then be estimated as

β = 1− Pr(|t| > t1−α/2,n−1|δ) (2.18)

where the term Pr(|t| > tα/2,n−1|δ) is called the power of the test in rejecting H0. In this

thesis, we use ”Pr” in mathematical expressions and equations to represent the probability
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of a certain event. Similarly, β in the z-test can be estimated as

β = 1− Pr
(
|z − δ| > Φ−1(1− α/2)

)
(2.19)

2.3.1.2 Bayesian hypothesis testing

In probability theory, Bayes’ theorem reveals the relationship between two conditional

probabilities, e.g., the probability of occurrence of an event A given the occurrence of an

event E (denoted as Pr(A|E)), and the probability of occurrence of the event E given the

occurrence of the event A (denoted as Pr(E|A)). This relationship can be written as [Haldar

and Mahadevan, 2000]

Pr(E|A) =
Pr(A|E)Pr(E)

Pr(A)
(2.20)

Suppose event A is the observation of a single validation data point yD, and event E

is hypothesis H0 being true (or hypothesis H1 being true). Using Bayes’ theorem, we can

calculate the ratio between the posterior probabilities of the two hypotheses given validation

data yD as

Pr(H0|yD)

Pr(H1|yD)
=

Pr(yD|H0)

Pr(yD|H1)
∗ Pr(H0)

Pr(H1)
(2.21)

where Pr(H0) and Pr(H1) are the prior probabilities of H0 and H1 respectively, representing

the prior knowledge one has on the validity of these two hypotheses before collecting ex-

perimental data; and Pr(H0|yD) and Pr(H1|yD) are the posterior probabilities of H0 and H1

respectively, representing the updated knowledge one has after analyzing the collected exper-

imental data. The likelihood function Pr(yD|Hi) in Eq. 2.21 is the conditional probability of

observing the data yD given the hypothesis Hi (i = 0 or 1), and the ratio Pr(yD|H0)/Pr(yD|H1)

is known as the Bayes factor [O’Hagan, 1995; Kass and Raftery, 1995] and is used as the

validation metric.
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The original intent of the Bayes factor was to compare the data support for two mod-

els [Pericchi, 2005], and thus the two hypotheses become H0: model Mi is correct and H1:

model Mj is correct. If θi and θj are the parameters of the two competing models respectively,

the Bayes factor is calculated as

B =
Pr(yD|H0)

Pr(yD|H1)
=

∫
Pr(yD|θi)π(θi)dθi∫
Pr(yD|θj)π(θj)dθj

(2.22)

where π(θi) and π(θj) are the probability density distributions of θi and θj respectively.

In the context of validating a single model, H0 and H1 need to be formulated differently.

Rebba and Mahadevan [Rebba and Mahadevan, 2008; Rebba et al., 2006] proposed the

equality-based formulation (H0 : ym = yD, H1 : ym 6= yD) and the interval-based formulation

(H0 : |ym − yD| < ε, H1 : |ym − yD| > ε) for Bayesian hypothesis testing, where ym is the

model prediction for a particular input x.

2.3.2 Non-hypothesis testing-based methods

Besides the binary hypothesis testing methods, various other validation metrics have

been developed to quantify the agreement between models and experimental data from other

perspectives, such as the Mahalanobis distance [Srivastava, 2002; Rebba and Mahadevan,

2006], Kullback-Leibler divergence [Seghouane et al., 2005; Jiang and Mahadevan, 2006],

probability bounds [Urbina et al., 2003], confidence intervals [Oberkampf and Barone,

2006], reliability-based metric [Rebba and Mahadevan, 2008], and area metric [Ferson

and Oberkampf, 2009; Ferson et al., 2008]. Our discussion is restricted to the reliability-based

metric and the area metric, since these two metrics have clear probabilistic or physical

interpretations regarding the degree of model validity, and both can be applied to validation

of a model with multiple input variables using data from discrete test combinations.
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2.3.2.1 Reliability-based metric

The reliability metric r proposed by Rebba and Mahadevan [Rebba and Mahadevan,

2008] is a direct measure of model prediction quality and is relatively easy to compute. It

is defined as the probability of the difference (d) between observed data (YD) and model

prediction (Ym) being less than a given tolerance limit ε

r = Pr(−ε < d < ε), d = YD − Ym (2.23)

Note that in Eq. 2.23, experimental observation is treated as random variable due to

measurement error, and model output is treated as stochastic as well under the combined effect

of epistemic and aleatory uncertainty. As the difference between two random variables, d is

treated as a random variable, and the probability distribution of d can be obtained from the

probability distributions of YD and Ym. For instance, if the model prediction Ym ∼ N(µm, σ
2
m),

and the corresponding observation YD ∼ N(µ, σ2
YD

), the difference d ∼ N(µ− µm, σ2
YD

+ σ2
m).

For the sake of simplicity, let σd =
√
σ2
YD

+ σ2
m. In this case, the reliability-based metric r

can be derived as

r = Φ[
ε− (µ− µm)

σd
]− Φ[

−ε− (µ− µm)

σd
] (2.24)

2.3.2.2 Area metric-based method

The area metric proposed by Ferson et al. [Ferson and Oberkampf, 2009; Ferson et al.,

2008] measures the difference between the cumulative distribution functions (CDF) of model

output and experimental data, and is defined as

d(FYm , SYD) =

∫ +∞

−∞
|FYm(y)− SYD(y)| dy

where FYm(y) is the cumulative distribution function (CDF) of model output, and SYD(y) is

the empirical CDF of experimental data.
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The area metric can incorporate experimental data collected from multiple test combi-

nations [Liu et al., 2011] using the so-called ‘‘u-pooling” procedure (transformation from

physical space to probability space). For a single test combination with input xi, suppose Fm
xi

is the corresponding CDF of model output Ym and yDi is the observation, one can compute

ui = Fm
xi

(yDi) for this experimental combination. Based on the probability integral transform

theorem [Angus, 1994], if the observation yDi is a random sample from the probability

distribution of model output, the computed ui will be a random sample from the standard

uniform distribution, and thus the empirical CDF of all the ui’s (i = 1, 2, ..., N) should match

the CDF of the standard uniform random variable. The difference between these two CDF

curves is a measure of the disparity between model predictions and experimental observations.

Hence, an area metric in the transformed probability space can be developed as [Ferson et al.,

2008]

d(Fu, Su) =

∫ 1

0

|Fu − Su| du (2.25)

where Fu is the empirical CDF of all the ui’s and Su is the CDF of the standard uniform random

variable. If the value of d(Fu, Su) is small/large, the model predictions are correspondingly

close/not close to experimental observations.

2.4 Time-dependent reliability analysis

In a system with time-varying inputs and degradation mechanisms, probability of failure

(Pf) becomes a function of time, and continuous tracking of Pf is necessary for long-term

reliability analysis. This section will discuss the theory and computational methods for

time-dependent reliability analysis with a single or multiple performance criteria.
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2.4.1 Time-dependent reliability analysis with a single performance

criterion

For devices with a single performance criterion (denoted as y), the limit state function

can be expressed as

G(xt, t) = y − ycr = f(xt, t)− ycr (2.26)

where xt is the set of input variables that characterize the device and the operational

environment. Due to the existence of aleatory and epistemic uncertainty, xt are either

treated as random variables (if the probability distribution of xt is independent of time), or

random processes (if the probability distribution of xt is time-dependent). The degradation

function f(x, t) describes how y changes with time. The device is identified as failed when

the performance variable y falls below a certain critical value ycr. The probability of failure

at a given time instant can be obtained as

Pf (t) =

∫
G(xt,t)<0

π(xt) dxt (2.27)

where π(xt) is the joint probability density function of xt.

In some practical problems, the analytical expression of f(xt, t) may not be readily

available but instead a computer simulation model y = GM (xt, t;θ) is created to approximate

the limit state function. Note that the original set of input variables xt is divided into two

sets: xt is the set of variables for which the probability distribution can be obtained directly

from measurement data; θ is the set of variables for which the probability distribution can

be obtained by model calibration, as presented in Section 2.2.

In the context of long term reliability analysis with a large number of input and parameter

dimensions, the calculation of Pf can be hindered by two factors: (1) Integration of the joint

PDF π(xt) over the entire input and parameter space is required, and (2) repetitive evaluations

of GM(xt; t,θ) are needed at each time instant. The first issue may be addressed by using
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first-order reliability methods (FORM) and second-order reliability methods (SORM) [Haldar

and Mahadevan, 2000], or importance sampling-based Monte Carlo integration techniques,

which is an effective numerical method for high-dimensional integration [Zwillinger, 1995;

Dey and Mahadevan, 2000]. The second issue may be addressed by using response surface

(or surrogate model) [Bichon et al., 2011].

In addition to the failure probability at a single time point, the reliability of a device

is often connected to the probability of failure during a time period. Compared against

brute-force Monte Carlo simulation, the out-crossing approach is relatively efficient and can

give the upper bound of the failure probability as [Ditlevsen and Madsen, 1996]

Pf (0, T ) ≤ Pf (0) + E[N+(0, T )] (2.28)

where N+(0, T ) is the number of outcrossings of limit state function out of the safe domain

G(xt, t) > 0 during the time period [0, T ]. The expectation of N+(0, T ) can be expressed

using outcrossing rate ν+(t), as

E[N+(0, T )] =

∫ T

0

ν+(t)dt (2.29)

If the probability of having more than one outcrossing in a small time interval is negligible,

the outcrossing rate ν+(t) can be defined as [Rackwitz, 2001]

ν+(t) =

lim
∆t→0

Pr
(
G(xt, t) > 0 ∩G(xt+∆t, t+ ∆t) ≤ 0

)
∆t

(2.30)

Eq. 2.30 can be approximated using the PHI2 method with FORM algorithm [Andrieu-Renaud

et al., 2004], as

ν+(t) = lim
∆t→0

Φ2[β(t),−β(t+ ∆t); ρG(t, t+ ∆t)]

∆t
(2.31)
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where Φ2 stands for standard binormal cumulative distribution function. ρG(t, t+ ∆t) is the

linear correlation between two limit states G(xt, t) and G(xt+∆t, t+ ∆t) in the equivalent

standard normal space, which can be computed as

ρG(t, t+ ∆t) = α(t)α(t+ ∆t)

where α(t) is the gradient of the limit state function G(xt, t).

2.4.2 Time-dependent reliability analysis with multiple performance

criteria

For devices with multiple dominant failure mechanisms, the performance variable becomes

a vector (denoted as y). Similar to the case of single failure mechanism, what we actually

use in practice may be a computer model y = GM(xt, t;θ). In general, the failure region E

of a device can be defined by a group of inequalities with the elements of y as variables. An

example of these inequalities is yi < ycr,i (i = 1, 2, ...), i.e., the device fail when any element

of the performance variable y falls below its corresponding critical value. The probability of

failure at time t can be written as

Pf (t) = Pr
(
y = GM(xt, t;θ) ∈ E

)
=

∫
E

π(xt,θ)dxdθ (2.32)

As we can see from Eq. 2.32, the existence of multiple failure mechanisms increases

the difficulty of determining the integration domain E. Meanwhile, due to the correlation

between multiple performance criteria, it is difficult to apply the PHI2 method to estimate the

failure probability over a certain time period Pf (0, T ), and Monte Carlo simulation combined

with response surface models may be needed.
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2.5 Surrogate modeling techniques

As shown in the previous sections, Monte Carlo sampling-based methods require large

amounts of limit state function evaluations. Even though the PHI2 method may reduce the

number of function evaluations at a single time point, high number of time points can still

render the long term reliability prediction for complex systems impossible. Time-dependent

problem can be further complicated by the fact that the current system state is often

dependent on the system states at k previous time points, e.g.,

yt = G(yt−1,yt−2, ...,yt−k,x; θ) (2.33)

In such cases, the state transition function G needs to be evaluated recursively to obtain

the limit state function at time t. One practical example is the non-planar growth of a 3-D

crack under fatigue load, where the current crack surface is obtained by evolving the crack

surfaces at previous time steps. Therefore, developing computationally efficient surrogate

models for the original limit state function or state transition function may become necessary

for time-dependent reliability analysis.

Various surrogate modeling techniques have been developed and applied in reliability

analysis, including linear/quadratic polynomial-based response-surface [Faravelli, 1989; Rous-

souly et al., 2013], artificial neural networks [Hurtado and Alvarez, 2001; Gomes and Awruch,

2004], support vector machine (SVM) [Rocco and Moreno, 2002; Li et al., 2006], polynomial

chaos expansion (PCE) [Ghanem and Spanos, 2003; Xiu and Karniadakis, 2002; Huang

et al., 2007], and Gaussian process (GP) interpolation (or Kriging) [Romero et al., 2004;

Kaymaz, 2005]. Some reviews and discussions of these metamodeling techniques can be

found in [Rackwitz, 2001; Gomes and Awruch, 2004; Hurtado, 2004; Blatman, 2009]. In this

dissertation, PCE and GP interpolation, especially the latter one, are explored to accelerate

time-dependent reliability analysis, as will be shown in the subsequent sections. Note that
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the discussion is limited to surrogate models with a single output variable. For surrogate

modeling of high dimensional limit state functions or state transition functions, principal

component analysis-like methods may be needed to reduce the dimension of the problem. One

such example can be found in [Hombal et al., 2012; Hombal and Mahadevan, 2013b], where

the evolution of a 3D crack surface characterized by 93 coordinate variables is approximated

by using a Gaussian process surrogate model in a low-dimension latent space.

2.5.1 Gaussian process interpolation

Let y = G(x) be the target function which we intend to describe with a surrogate model.

GP interpolation (or kriging) assumes that the output y over the domain of input x is a

Gaussian random process with a mean function m(x) and a covariance function k(x,x′), i.e.,

E[y|x] = m(x)

Cov(y, y′) = k(x,x′) (2.34)

Given a set of training data {XT ,yT} and the input Xp where prediction is desired,

the conditional probability distribution of the output yP follows a multivariate Gaussian

distribution [Rasmussen and Williams, 2006] as

yP |XP ,XT ,yT ∼ N (µ,Σ)

µ = m(XP ) + ΣPTΣ−1
TT

(
yT −m(XT )

)
(2.35)

Σ = k(x,x′)ΣPP − ΣPTΣ−1
TTΣT

PT

where µ is the mean vector of the prediction yP conditioned on the training data, and

Σ is the conditional covariance matrix of yP ; ΣPT is the covariance matrix between the
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prediction and the training data; ΣTT is the covariance matrix of the training data; ΣPP is

the unconditional covariance matrix of yP .

In order to determine the multivariate Gaussian distribution in Eq. 2.35, we need to

formulate the mean function m(x) and the covariance function k(x,x′). m(x) is often

formulated as a polynomial function of x. The form of k(x,x′) may be selected from a

number of commonly-used covariance functions based on the desired properties (order of

continuity, stationary/nonstationary, isotropic/anisotropic) [Rasmussen and Williams, 2006].

Note that the selected formulations of m(x) and k(x,x′) contain unknown coefficients. Let φ

denotes the coefficients of m(x), and ϕ denotes the coefficients of k(x,x′). These coefficients

can be estimated by maximizing their likelihood function, which is proportional to the

probability density of training data conditioned on φ and ϕ, i.e.,

L(φ,ϕ) ∝ π(yT |XT ,φ,ϕ) (2.36)

Since yT |XT ,φ,ϕ ∼ N
(
m(XT ),ΣTT

)
, the conditional probability density function π(yT |XT ,φ,ϕ)

is a multivariate Gaussian PDF as

π(yT |XT ,φ,ϕ) = (2π)−
n
2 |ΣTT |−

1
2 ∗

exp
(
− 1

2
[yT −m(XT )]T Σ−1

TT [yT −m(XT )]
)

(2.37)

where n is the size of the training data set.

Since the estimation of coefficients depends on finding the maximum of the likelihood

function, one needs to be cautious on the choice of optimization algorithms. In a high-

dimension coefficient space, the likelihood function is rarely convex, and thus gradient-based

local optimization algorithms may not be effective. When global optimization methods such

as the DIRECT algorithm [Finkel and Kelley, 2004] and simulated annealing [Kirkpatrick

et al., 1983] are used, careful selection of algorithm parameters is suggested. In order to
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ensure achieving the global maximum, we may need to manually divide the coefficient space

into multiple smaller regions, and then search for maximums in these regions separately.

Note that the inverse of the covariance matrix ΣTT is needed in the computation of

the likelihood function in Eq. 2.36, as well as the construction of model prediction in

Eq. 2.35. Some discussions on the efficient numerical strategies of inversing ΣTT can be found

in [McFarland, 2008; Haarhoff et al., 2013]. Also note that the size of ΣTT increases with the

size of training data set, which may lead to ill-conditioned matrix and high computational

cost. In such cases, sparse Gaussian process approximations may be used, which estimate the

inverse of ΣTT via projections from the high-dimension training data space to a low-dimension

latent space [Quinonero-Candela and Rasmussen, 2005].

2.5.2 Polynomial chaos expansion

PCE was originally used in the analysis of stochastic processes since it can converge to

any process with finite second-order moments [Wiener, 1938; Xiu and Karniadakis, 2002]. A

spectral method has been developed to use PCE in stochastic finite element analysis [Sudret

and Der Kiureghian, 2002; Ghanem and Spanos, 2003], which represents the input random

field with a finite expansion (such as a Karhunen-Loeve expansion) and represents the system

response using a polynomial chaos expansion. This method can also be applied to construct

a PCE surrogate model for any target computer model.

Consider again y = G(x) as the target model. First, the input vector x needs to

be transformed into standard normal random variables, which requires the probability

distributions of x being available. Several methods can be used to transform non-normal

random variables into normal [Rebba, 2005], including Rosenblatt transformation [Rosenblatt,

1952], Nataf transformation [Nataf, 1962], and Power and Modulus transformations [Box and

Cox, 1964]. If some elements of the input vector x are random processes or random fields,

Karhunen-Loeve expansion can be used to approximate these random processes/fields using
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a limited number of standard normal random variables [Ghanem and Spanos, 2003; Huang

et al., 2001].

After the input x is converted into a set of standard normal random variables (denoted

as ζ), the model output y can then be represented using a Hermite-chaos expansion, which is

a summation of Hermite polynomial functions of ζ. A P th order PCE surrogate model for y

can be written as

y(x) ≈ PCE(ζ) + εm =
M∑
i=1

aiHi(ζ) + εm M =

nζ + P

nζ

 (2.38)

where Hi’s are Hermite polynomials; nζ is the dimension of the transformed input ζ and

P is the order of the polynomial; εm is the error of the PCE model. Because of the

orthogonality of Hermite polynomials, the coefficients ai’s can be obtained as generalized

Fourier coefficients [Huang et al., 2007]

ai =

∫
PCE(ζ) Hi(ζ) dζ∫

H2
i (ζ) dζ

(2.39)

Numerical integration methods, such as quadrature rule, smolyak grid [Gerstner and Griebel,

1998], and stochastic collocation [Huang et al., 2007], can be used to compute the integration

in Eq. 2.39. Training data of the GPC surrogate model are thus needed on the grid points of

these integration algorithms.

For any given input xk and the corresponding transformed input ζk, the prediction of

GPC surrogate model
∑M

i=1 aiHi(ζk) in Eq. 2.38 is deterministic, whereas the residual term

εm is random. Under the Gauss-Markov assumption, εm asymptotically follows a normal

distribution with zero mean, and the variance can be estimated as [Liang and Mahadevan,

2011; Seber and Wild, 2003]

σ2
m = σ2[1 +HT (ζk)(HTH)−1H(ζk)] (2.40)
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where σ2
m is a function of the transformed input ζk (and thus a function of xk); the vector

H(ζk) = [H1(ζk), H2(ζk), ..., HM(ζk)]
T ; the matrix H = [H(ζ1), H(ζ2), ..., H(ζN)]T ;

and σ2 = 1/(N −M)
∑N

j=1[GPC(ζj)− y(xj)]
2. {xj,y(xj)}Nj=1 is the training data set, and

{ζj}Nj=1 is the corresponding transformed input set.

2.6 Summary

This chapter introduced the basic methods that will be used in uncertainty quantification

and time-dependent reliability analysis. The Bayesian networks described in Section 2.1 are

powerful tools to integrate models and experimental data at multiple levels of the system.

The use of Bayesian networks to facilitate the integration of reliability prediction and UQ

activities are demonstrated in subsequent chapters. Section 2.2.1 introduced Bayesian model

calibration under the KOH framework, which explicitly accounts for model form uncertainty

in the estimation of model parameters and can help avoid over-fitting. Section 2.3 introduced

various quantitative model validation methods, which assess the predictive capability of

model and can help quantify the uncertainty in model prediction. Several challenging issues

in Bayesian calibration and in quantitative model validation are addressed respectively

in Chapter III and Chapter IV. Section 2.5 illustrated two efficient surrogate modeling

techniques, namely PCE and GP, that can facilitate the time dependent analysis described

in Section 2.4. Inclusion of these UQ activities and surrogate models in time-dependent

multi-physics system reliability analysis, and to prognosis with health monitoring data are

investigated in Chapters V - VII.
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CHAPTER III

CHALLENGING ISSUES IN BAYESIAN MODEL CALIBRATION

3.1 Introduction

As discussed in Section 2.2, Bayesian model calibration based on the KOH framework has

been successfully applied in many problems. However, several challenging issues still remain

in practical applications. Brynjarsdottir and O’Hagan [Brynjarsdottir and O’Hagan, 2013]

showed that the calibration results may not be satisfying if the prior assumption of discrepancy

does not capture the physics missing in the model. Moreover, the addition of a discrepancy

term to the physics model may sometimes lead to parameter non-identifiability [Renard et al.,

2010; Arendt et al., 2012; Ling and Mahadevan, 2013a]. Several different prior assumptions

of model discrepancy have been used in previous studies, including constant [Arhonditsis

et al., 2008], physics-based deterministic function [DeCarlo et al., 2013], Gaussian random

variable [Renard et al., 2010; Sankararaman et al., 2011b; Sarkar et al., 2012; Koutsourelakis,

2009; Park et al., 2010; Riley and Grandhi, 2011], uncorrelated random vector [Bower et al.,

2010], random walk [Arhonditsis et al., 2008], and Gaussian random process [McFarland and

Mahadevan, 2008; Higdon et al., 2008; Arendt et al., 2012]. However, a rigorous comparison

between these different prior formulations of model discrepancy has not been conducted, and

a general guideline for choosing the formulations is not currently available.

In Section 3.2.1, we will investigate Bayesian calibration with five different prior formula-

tions of model discrepancy function: (1) constant, (2) Gaussian random variable with fixed

mean and variance, (3) Gaussian random variable with input-dependent mean and variance,

(4) Gaussian random process with stationary covariance function, and (5) Gaussian random

process with non-stationary covariance function.
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A three-step method is proposed in Section 3.2.2 in order to assess these prior formulations

of discrepancy, and also obtain a probability distribution of model parameters that accounts

for the uncertainty due to the lack of knowledge of model inadequacy. First, Bayesian

calibration is performed using each of the five options of model discrepancy function, and five

posterior distributions of model parameters and model discrepancy are obtained. In the second

step, we use the reliability-based metric introduced in Section 2.3.2.1 to assess the posterior

model predictions corresponding to the distributions of model parameters and discrepancy

obtained in the first step. In the third step, the five distributions of model parameters and

discrepancy are combined into a single distribution based on the total probability theorem

and the weights derived from the validation metric.

Section 3.3 gives a overview on the issue of model parameter identifiability, with focus on

the non-identifiability caused by adding a model discrepancy function to the original physics

model. A first-order Taylor series expansion-based method is developed in order to help

choose a model discrepancy function without causing parameter non-identifiability.

The wide use of multi-physics simulations in engineering also poses another challenge to

Bayesian calibration, since the dimension of parameter space is often large and the evaluation

of likelihood function involves running multiple physics simulations which could become

computationally expensive. Thus, simultaneous calibration of such multi-physics systems

may not always be feasible. In Section 3.4, we will examine the calibration of coupled physics

models using a Bayesian network-based approach. Strategies of sequential calibration are

developed, which can provide accurate posterior distributions for unknown model parameters

while keeping the dimension of the parameter space relatively low in each calibration.
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3.2 Formulations and selection of model discrepancy

in Bayesian calibration

3.2.1 Formulations of model discrepancy function

Section 2.2.1 reviewed the basic framework of Bayesian model calibration with a generalized

discrepancy term. To establish the likelihood in Eq. 2.6, the model discrepancy function δ need

to be formulated prior to calibration. This section explores several options to parameterize

model discrepancy, and the corresponding likelihood functions are derived. These formulations

can be used to represent the modeler’s prior knowledge of model inadequacy, and the

coefficients of the parameterized model discrepancy function can be included in Bayesian

calibration in order to obtain a posteriori estimation of model discrepancy.

3.2.1.1 Model discrepancy as a constant bias

The simplest formulation is to treat model discrepancy as a constant, i.e., the bias between

model prediction and the real process is assumed to be independent of the input x. Using the

assumption that measurement error εobs ∼ N (0, σ2
obs) and the linear relationship specified in

Eqs. 2.3 and 2.4, experimental observation (yD|XD,θ, σobs, δ) is normally distributed:

(yD|XD,θ, σobs, δ) ∼ N (G(XD;θ) + δ, σ2
obsI) (3.1)

where I represents identity matrix, i.e., the elements of yD are conditionally independent of

each other. The likelihood function in Eq. 2.6 can then obtained by evaluating the PDF of

the above Gaussian distribution with yD = Di.
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3.2.1.2 Model discrepancy as i.i.d. Gaussian random variables with fixed mean

and variance

Bias between model and experiment is rarely an input-independent constant. Instead,

it may be different at different input settings. If the variation is purely random, model

discrepancy can be treated as independent and identically distributed (i.i.d.) Gaussian

random variables over the input domain, with fixed mean µδ and variance σδ. Therefore, for

any input x, we have

δ(x) ∼ N (µδ, σ
2
δ ) (3.2)

This type of model discrepancy not only adds a mean correction (µδ) to the model

prediction but also increases the variance of yD by σ2
δ . The conditional probability distribution

of yD then becomes

(yD|XD,θ, σobs, µδ, σδ) ∼ N (G(XD,θ) + µδ, (σ
2
obs + σ2

δ )I) (3.3)

3.2.1.3 Model discrepancy as Gaussian random variables with input-dependent

mean and variance

If there is some evidence/knowledge suggesting the existence of input dependency in the

model discrepancy function, the assumption of i.i.d. random variables may no longer be valid.

The input dependency can be explicitly accounted for by assuming the mean and variance of

δ to be functions of x, i.e.,

δ ∼ N (µδ(x;φ), σ2
δ (x;ϕ)) (3.4)

where φ is the set of coefficients in the mean function µδ(∗), and ϕ is the set of coefficients in

the variance function σ2
δ (∗). The choice of the form of the mean and variance functions can

be rather subjective and is typically problem-specific. One such choice will be demonstrated

in the numerical example.
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In this case, the conditional probability distribution of yD becomes

(yD|XD,θ, σobs,φ,ϕ) ∼ N (G(XD,θ) + µδ(XD;φ), [σ2
obs + σ2

δ (XD;ϕ)]I) (3.5)

3.2.1.4 Model discrepancy as a Gaussian process with stationary covariance

function

The aforementioned formulations of model discrepancy assume that model discrepancies

at different input points are statistically independent of each other. However, if a model

makes poor prediction at one input point, it is not uncommon to find that it also fails at

a nearby input point, which suggests the existence of statistical correlation between model

discrepancies at these two input points. Instead of a set of independent random variables, it

may be desirable to treat δ as a Gaussian process

δ ∼ N (m(x;φ), k(x,x′;ϕ)) (3.6)

where m(∗) is the mean function of this Gaussian process δ, and φ is the set of coefficients of

m(∗); k(∗) is the covariance function of δ, and ϕ is the set of coefficients of k(∗). Covari-

ance functions with different properties (e.g., order of continuity, stationary/nonstationary,

isotropic/anisotropic) have been developed. The most widely used one within the machine

learning field is the squared exponential function, which is infinitely differentiable, stationary,

and isotropic [Rasmussen and Williams, 2006]. An example squared exponential function can

be written as

k(x,x′;ϕ) = λ exp
(
−

q∑
i=1

(xi − x′i)2

2l2i

)
(3.7)

where ϕ = [λ, l1, l2, ..., lq], and q is the dimension of the inputs x = [x1, x2, ..., xq]; λ is the

variance of this Gaussian process; li is the length-scale parameter corresponding to the input
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variable xi. Higher values of li indicate higher statistical correlation along the input dimension

xi.

As the discrepancy function is assumed to be a Gaussian process, the elements of yD

become correlated, and they follow a multivariate Gaussian distribution as

(yD|XD,θ, σobs,ϕ) ∼ N (G(XD;θ) +m(XD;φ),Σ + σ2
obsI) (3.8)

where

m(XD;φ) =


m(xD1;φ)

...

m(xDn;φ)

 , Σ =


k(xD1,xD1;ϕ) . . . k(xD1,xDn;ϕ)

...
. . .

...

k(xDn,xD1;ϕ) . . . k(xDn,xDn;ϕ)

 (3.9)

In order to compute the likelihood function L(θ, σobs, δ), the PDF of the multivariate

Gaussian distribution in Eq. 3.8 needs to be evaluated, which requires computing the

determinant and inverse of the covariance matrix Σ + σ2
obsI. As the number of data points

increases, this covariance matrix may become ill-conditioned and lead to significant numerical

errors in the computation of the likelihood function. In this paper, we use a Cholesky

decomposition-based strategy to compute the determinant and inverse of the covariance

matrix, which helps mitigate the numerical difficulty in likelihood evaluation. [Haarhoff et al.,

2013]

3.2.1.5 Model discrepancy as a Gaussian process with non-stationary covari-

ance function

The Gaussian process in Section 3.2.1.4 is stationary since the squared exponential

covariance function satisfies k(x,x′;ϕ) = k(x+ ∆x,x′+∆x;ϕ), i.e., the marginal variances

of model discrepancy at different input points are the same. If we consider variance as an

indicator of the degree of uncertainty, it may be desirable to allow the variance of model
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discrepancy to vary with model input, since the uncertainty regarding model discrepancy

at an input setting depends on the amount of data points available and the smoothness of

the underlying discrepancy function. In order to account for the non-stationary trend of

variance in the Gaussian process discrepancy formulation, we can add an input-dependent

term to the squared exponential covariance function. For example, if time is one of the input

variables and one has reasons to believe that the variance of discrepancy decreases with time,

the following covariance function may be used

k(x,x′;ϕ) =


k1(x,x′;ϕ1), t 6= t′

k1(x,x′;ϕ1) + k2(t;w), t = t′
(3.10)

where k1(∗) is the squared exponential function in Eq. 3.7; the second term k2(t;w) =

w1 exp(−w2t) is an exponential decreasing function with respect to time when w1 > 0 and

w2 > 0, which essentially reduces the values of the diagonal entries of the covariance matrix

Σ in Eq. 3.9.

Note that other types of non-stationary covariance functions, such as linear/polynomial

dot product kernels and neural network kernels [Rasmussen and Williams, 2006], can also be

used depending on the features of a specific problem.

Substituting the new covariance function into Eq. 3.9, we can obtain the corresponding

covariance matrix, which can be further used to compute the likelihood function as described

in Section 3.2.1.4.

3.2.2 Assessment and combination of calibration results using a

three-step approach

If the discrepancy term explains all the missing physics in a model, the posterior distri-

bution of model parameters is expected to converge to the true distribution given sufficient
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data. However, precise knowledge of model discrepancy is rarely available in practice. In this

section, we propose a three-step heuristic approach based on a quantitative model validation

metric and the total probability theorem, as explained below.

(1) The available experimental data are partitioned into two sets, one of which will be

used for calibration (denoted as {XC
D,y

C
D} whereas the other one will be used for validation

(denoted as {XV
D,y

V
D}).

(2) We perform Bayesian calibration on model parameters with the various formulations

of model discrepancy function using data set DC as discussed in Section 3.2.1. By imposing

the i-th prior formulation of the discrepancy function (denoted as δi) and adding it to

the model G, we obtain the corrected model Mi = G + δi. The corresponding posterior

probability distribution of model parameters and discrepancy is denoted as π(θ, δ|DC ,Mi).

Model predictions based on π(θ, δ|DC ,Mi) are then validated using a reliability-based metric,

which calculates the probability of model predictions being within a specified tolerance from

the validation data.

(3) The probability of model prediction satisfying a specified tolerance can be used in the

selection of the model discrepancy formulation, or can be further used to obtain an ”average”

posterior distribution of model parameters based on the total probability theorem.

3.2.2.1 Reliability-based model validation metric

The purpose of validation activity in this section is to assess the quality of predictions

resulting from calibration with different prior formulations ofthe model discrepancy function.

The reliability-based metric is illustrated in Section 2.3.2.1 which can be used as a measure of

model predictive capability. It is defined as the probability of the absolute difference between

model prediction and observed data being less than a specified tolerance ε, i.e.,

r(x) = Pr(|yD − ym| < ε) (3.11)
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where r(x) is the reliability metric for a given input point x within the validation domain,

i.e., x ∈XV
D; yD is the observation corresponding to x and thus yD ∈ yVD; ym is the model

prediction at x. The computation of r(x) requires the probability distributions of yD and

ym, which are discussed below.

We first discuss how to obtain the prediction ym and the corresponding probability

distribution. As illustrated in Sections 2.2.1 and 3.2.1, the computer model G(x;θ) and the

discrepancy function δ(x) can be calibrated using the observed values of yCD (denoted as DC),

and then we obtain the posterior probability distribution π(θ, δ|DC) of model parameters

and δ. The prediction ym in Eq. 3.11 is based on the extrapolation of the calibrated computer

model and discrepancy function into the validation domain, i.e.,

ym|x,θ, δ = G(x;θ) + δ(x), x ∈XV
D

π(ym|x,DC) =

∫
π(ym|x,θ, δ)π(θ, δ|DC) dθ dδ (3.12)

Note that we cannot yet use the relationship specified in Eqs. 2.3 and 2.4 to obtain

the probability distribution of yD, since the model and discrepancy function have not been

validated with {XV
D,y

V
D} and thus Eq. 2.4 may not be valid in the validation domain.

However, Eq. 2.3 still applies since it is independent of model prediction. If the true value y is

treated as a constant for the given input x, and the measurement error is treated as a Gaussian

random variable with zero mean and fixed variance, yD will also be a Gaussian random

variable. The mean and variance of yD can be estimated using repetitive measurements at the

same input x. If only one measurement is taken at x, we may assume that yD ∼ N (D, σ2
obs),

where D is the measured value of yD, and σ2
obs is the variance of the measurement error

obtained in the calibration step, i.e., the measurement error is assumed to be the same in the

calibration and validation domain.

Eq. 3.11 defines the reliability metric as a function of the input x, and we can compute
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the values of r at each point within the validation domain, e.g., r(xD1), r(xD2), .... These

individual values of r can inform decisions on point-wise model selection [Hombal and

Mahadevan, 2013a]. However, the focus of this section is to assess the formulations of model

discrepancy in Bayesian calibration based on validation results. Thus, it is desirable to

establish a single measure of model predictive capability over the entire validation domain,

which can be achieved by treating the input x as a random variable. The probability

distribution of x is determined by a certain design of experiment and the elements of XV
D

are random samples from this distribution. As a function of x, the reliability metric r also

becomes a random variable, and {r(xDi)|xDi ∈ XV
D} are samples of this random variable.

These samples can be used to estimate the mean of r (denoted as µr), which represents the

expected probability of prediction being tolerable over the validation domain, and thus can

be considered as an overall validation metric.

By substituting the results of Bayesian calibration into Eq. 3.12, the validation metric µr

can be computed with respect to each of the various model discrepancy formulations illustrated

in Section 3.2.1. If the µr corresponding to a particular formulation δi is significantly higher

than the others, it is suggested that the calibration using δi leads to better prediction in

the validation domain, and thus δi may be the best approximation to the actual model

discrepancy. However, different formulations can sometimes lead to similar values of µr, in

which case one may use a total probability theorem-based approach as discussed below.

3.2.2.2 Combining the posterior probability distributions of model parameters

and discrepancy

When predictions based on different formulations of model discrepancy function lead

to similar validation results, it is not clear which formulation of δ and the corresponding

calibration result one should select for further prediction. In such cases, combining the

various posterior distributions of model parameters and discrepancy may be considered. This
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approach accounts for the uncertainty induced by the lack of knowledge regarding model

discrepancy formulation, and can be viewed as an extension to the Bayesian framework

proposed by Sankararaman and Mahadevan [Sankararaman and Mahadevan, 2012a], which

demonstrated the use of model validation results to combine the prior and posterior probability

distributions of model parameters in multi-level systems [Sankararaman, 2012; Mullins et al.,

2013].

Since the overall reliability metric µr described in the previous section is a probabilistic

metric which quantifies the predictive capability of Mi, we assume that the probability of

the model Mi being correct is proportional to the corresponding reliability metric µir, i.e.,

Pr(Mi) ∝ µir. By assuming further that {δi}Ni=1 is the set of all the possible model discrepancy

formulations, we can obtain the corresponding set of possible corrected models {Mi}Ni=1. Thus,

normalization of µir leads to the probability of Mi as

Pr(Mi) =
µir∑N
j=1 µ

j
r

(3.13)

Each Mi corresponds a posterior probability distribution of model parameters and discrep-

ancy π(θ, δ|DC ,Mi). Based on the total probability theorem, the density functions of these

posterior distributions can be combined to obtain a single density function π(θ, δ|DC) as

π(θ, δ|DC) =
N∑
i=1

π(θ, δ|DC ,Mi)Pr(Mi) (3.14)

Note that the probability density function π(θ, δ|DC) is not conditioned on any specific

model discrepancy formulation, and it is expected to be wider than the conditional density

functions {π(θ, δ|DC ,Mi)}Ni=1 since the uncertainty due to model discrepancy formulation is

included.
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3.2.3 Numerical example

The various options of model discrepancy function are investigated by considering the

calibration of Young’s modulus using an Euler-Bernoulli beam model and synthetic data. A

example with a more complicated physics model and real experimental data will be showed

in Section 5.3.1.

P

x

y

L
h

b

Figure 3.1: A thick cantilever subjected to point load at the free end

A thick microcantilever beam subjected to a point load P is considered (Fig. 3.1, L = h =

400 µm, b = 1 µm). By solving the Euler-Bernoulli equation, the static vertical deflection uy

along the x-axis (y = 0) can be obtained as [Gere and Goodno, 2009]

uy =
P (3L− x)x2

6EI
(3.15)

The solution in Eq. 3.15 does not account for shear deformation. A more accurate solution

of uy can be obtained from the Timoshenko beam theory as [Timoshenko and Goodier, 1970;

Augarde and Deeks, 2008]

uy =
P

6EI

[
(4 + 5ν)

h2x

4
+ (3L− x)x2

]
(3.16)

In this example, we assume for the sake of illustration that the solution in Eq. 3.16
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represents the true value of uy. 20 experimental data points are synthetically generated

by adding a measurement noise term εobs ∼ N (0, 0.1) to Eq. 3.16 with Young’s modulus

E = 200 GPa and the applied load P = 2.5 µN. Note that this value of Young’s modulus

and the true solution in Eq. 3.16 are assumed to be unknown in the calibration exercise.

The Euler-Bernoulli beam solution in Eq. 3.15 is assumed to be the available physics model,

and the synthesized data are used to calibrate E using Eq. 3.15. The discrepancy function

between the physics model and the true solution is a linear function of x as

δtrue =
P

6EI
(4 + 5ν)

h2x

4
(3.17)

Assuming δtrue in Eq. 3.17 is unknown, a common practice to acquire prior knowledge

of model discrepancy is by examining the difference between calibration data and the

least-squares model prediction (i.e., prediction using Eq. 3.15 with E estimated using the

least-squares method). The upper subplot of Fig. 3.2 shows the calibration data and least-

squares model prediction, and the lower subplot shows the actual model discrepancy δtrue

and the least-squares model discrepancy δls. We can observe that both δtrue and δls have

functional dependence on the input x. However, δls appears to be a nonlinear function of x,

whereas the dependence of δtrue on x is linear, which suggests that we may not be able to

infer the actual form of model discrepancy function from δls.

In order to study the effect of model discrepancy assumptions on the calibration results,

we consider the various options discussed in Section 3.2.1: (1) an unknown constant δ1;

(2) i.i.d. Gaussian random variables with input-independent mean and variance, i.e., δ2 ∼

N (µδ2 , σ
2
δ2

); (3) Gaussian random variables with input-dependent mean and variance, i.e.,

δ3 ∼ N (µδ3(x), σδ3(x); (4) a Gaussian process with squared exponential covariance function,

i.e., δ4 ∼ N (m(x), k(x, x′)). The dependence of model discrepancy on the input x which we

observed in the plot of δls can be accounted for by using δ3 or δ4, since both options include

input-dependent mean and variance function. In this example, µδ3(x), σδ3(x), and m(x) are
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Figure 3.2: Actual model discrepancy versus least squares model discrepancy

assumed to be linear functions of x. The unknown coefficients in these model discrepancy

formulations are calibrated along with Young’s modulus E, and independent uniform prior

distributions are used.
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Figure 3.3: Marginal posterior PDFs of Young’s modulus

The marginal posterior PDFs of Young’s modulus corresponding to the various options

of model discrepancy are shown in Fig. 3.3. It can be observed that calibration without
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model discrepancy results in the most biased estimation of E, which is expected since the

physics model is imperfect. The posteriors of E obtained from calibration with δ1 or δ2 are

also away from the true value, since these two options assume that model discrepancy is

input-independent whereas the actual δ is input-dependent. Note that the use of δ2 leads

to a wider posterior of E compared to δ1, since treating model discrepancy as i.i.d. random

variables (δ2) overestimates the uncertainty due to model error. Calibration with δ3 or δ4

gives identical posteriors of E, and both posterior PDFs cover the true value. We can also

observe that these two posterior PDFs are significantly wider than the others, which is mainly

due to the uncertainty on the coefficients of µσ3(x) and m(x). If stronger priors are enforced

on these coefficients, i.e., the ranges of their uniform prior distributions are set to be smaller,

the posterior variance of E will decrease correspondingly.
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Figure 3.4: Comparison between the predictions of calibrated beam model and calibration
data

We verify the posterior distributions of E and δ by comparing the calibrated model

prediction against the calibration data, as shown in Fig. 3.4. The solid lines in Fig. 3.4 are

the mean predictions of the model corrected by the various choices of δ, and the dashed lines
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are the corresponding 90% probability bounds. We can observe that all the mean predictions

match the calibration data well, whereas only the 90% probability bounds resulting from δ2,

δ3, and δ4 are able to account for the variation in data.

Further, we assess the various options of model discrepancy formulations by examining the

predictive capability of the calibrated model outside the domain of calibration (P = 2.5 µN).

20 validation data points are generated with the applied load P = 3.5 µN, and the three-step

approach proposed in Section 3.2.2 is implemented. A graphical comparison between the

validation data and the calibrated model predictions (Mi = G+ δi, i = 0, 1, 2, 3, 4) is shown

in Fig. 3.5 (a)-(e), where the solid lines represent mean prediction and the dashed lines are

90% probability bounds.
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Figure 3.5: Comparison between the predictions of calibrated beam model and validation
data

It is interesting to observe from Fig. 3.5 that the predictions M3 and M4 are outperformed

by the other three in the validation domain, although M3 and M4 include better estimations

of E and more accurate assumptions on model discrepancy. The reason why M3 and M4

fail to match the validation data is that δ3 and δ4 only depend on x, whereas the actual δ
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is a function of both x and P . Thus, when we extrapolate the model from the calibration

domain (P = 2.5 µN) to the validation domain (P = 3.5 µN), δ3 and δ4 are no longer good

representations of model discrepancy. Since the model with the true value of E has significant

errors as shown in Fig. 3.2, inaccurate estimation of the model error will not be able to correct

the model prediction. In contrast, calibration without δ or with a simple formulation of δ

may produce a model with relatively small errors (e.g., δls in Fig. 3.2), and the prediction is

more sensitive to the physics model than to the model discrepancy function δ. Consequently,

we may see more consistent performance from the models calibrated with simple δ or without

δ given that the behavior of the true physical quantity does not change dramatically outside

the calibration domain (e.g., from linear to highly nonlinear).

Table 3.1 lists the values of the overall validation metric µr computed with the tolerance

level ε = 0.75 µm for the model predictions plotted in Fig. 3.5. The model calibrated with δ1

(constant bias) is found to have the highest value of reliability. If the reliability of M1 is not

considered high enough to rule out other choices of model discrepancy, we can combine the

various posterior distributions of E and δ via the method proposed in Section 3.2.2.2 and

Eq. 3.14. The combined PDF of E is shown in Fig. 3.6, and the prediction (MComb) based

on the combined distribution of E and δ is shown in Fig. 3.5 (f). The combined distribution

of E becomes bimodal and covers the true value of E, and the prediction Mcomb has a wider

probability bound, which accounts for the uncertainty in model discrepancy formulation.

Table 3.1: Overall reliability of model predictions

M0 (No δ) M1 M2 M3 M4

µir 0.50 0.66 0.55 0.36 0.34

Discussion In this numerical example, we demonstrated how the various choices of the

model discrepancy function (δ) can affect the calibration result, and how the three-step

approach proposed in Section 3.2.2 can help the selection of discrepancy formulation. We

51



50 100 150 200 250 300
E (GPa)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
ar

gi
na

lP
os

te
ri

or

Figure 3.6: Combined marginal PDF of Young’s modulus

showed that calibration with inaccurate assumption on δ can lead to biased estimation of

physical parameters. However, posterior predictions based on simpler and less accurate

assumptions of δ can still match data well outside the calibration domain. This is because

the prediction is more sensitive to δ if complicated formulations are used, and thus the

capability of δ to extrapolate from the calibration domain becomes crucial for achieving

accurate predictions. In contrast, prediction based on a simpler formulation of δ tends to rely

more on the physics model, which may have better extrapolation capability than a purely

statistical term δ.

3.3 Identifiability of model parameters

Before implementing the calibration of a model, it is often of interest to determine whether

we can extract useful information from the calibration data. A model is non-identifiable

if there are infinite ”best” (depending on the criterion chosen) estimates for the model

parameters. In the Bayesian model calibration framework, a typical sign of non-identifiabilty
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is that the posterior PDFs of some of the model parameters are close to the prior PDFs,

which indicates that the marginal likelihoods of these parameters are nearly flat leading to

an infinite number of maximum likelihood estimates of the model parameters. In general,

model non-identifiability can be classified into two types, namely structural non-identifiability

and practical non-identifiability [Raue et al., 2009]. The first type of non-identifiability,

structural non-identifiability is due to the redundant parameterization of the model structure.

Even if the model is structurally identifiable, a second type of non-identifiability, practical

non-identifiability, can still arise due to the insufficient amount and quality of observation

data. The quality of data is related to the bias and noise in the data due to the imprecision

of measurement techniques. Successful detection of structural non-identifiability may help

reduce model redundancy. Also, by detecting the existence of practical non-identifiability,

analysts may be able to overcome it by developing better design of experiments or improving

data quality [Arendt et al., 2011].

It is usually straightforward to detect structural non-identifiability if the analytical

expression of a model is available; however, in many problems, the analytical expression of

the model is not readily available. One example is a dynamics model without an explicit

steady state solution. Another possible case occurs when we add a discrepancy function

to the numerical solutions of some governing equations, which in fact forms a new model

without any analytical expression to consider [Arendt et al., 2010]. Various analytical

and numerical methods have been developed to detect the structural non-identifiability of

dynamics models [Grewal and Glover, 1976; Walter and Pronzato, 1996; Jia-fan et al., 2011],

whereas the second possible case does not appear to have been studied in the literature. This

section addresses this case.

Since the second level of non-identifiability, practical non-identifiability, is related to

both model structure and observation data, it is necessary to inspect the likelihood function

in order to determine whether some parameters of a model are practically non-identifiable.
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In fact, rigorous definitions of model non-identifiability can be constructed based on the

analytical properties of likelihood functions [Gu and Lu, 1994; Paulino and de Bragança

Pereira, 1994; Little et al., 2010]. In addition to the theoretical analysis of likelihood functions,

Raue et al. [Raue et al., 2009, 2011] developed a numerical approach based on the concept of

”profile likelihood” [Murphy and Van der Vaart, 2000], which has been shown to be effective

in detecting practical non-identifiability. When the analytical expression of the likelihood

function is available, or its numerical evaluation is trivial, it may be preferable to apply

the profile likelihood-based method and determine the practical non-identifiability directly.

But this method becomes cumbersome when the construction of the likelihood function is

computationally expensive, since repetitive evaluations of the likelihood function are required

to compute the profile likelihood.

Given the above observations, we propose a first-order Taylor series expansion-based

method, which can detect structural non-identifiability for models without analytical ex-

pressions, and can detect practical non-identifiability due to insufficient amount of data.

This method does not involve computation of the likelihood function, and thus is simpler to

implement and less computationally demanding. The limitations of this method are: (1) it

uses a linear approximation of the model, and hence may fail to detect non-identifiability if

the model is highly nonlinear; (2) it can only detect local non-identifiability as the Taylor

series expansion is constructed based on the derivatives at a single point; (3) it does not

apply to statistical models; and (4) it does not cover practical non-identifiability due to the

quality of data.

Suppose the physics model to be calibrated is ym = G(x;θ), and a Gaussian process

discrepancy function δ ∼ N
(
m(x;φ), k(x,x′;ϕ)

)
is added to the model. Thus, a new model

is formed as Gnew(x;ψ) = G(x;θ) +m(x;φ), where ψ = [θ,φ] includes the parameters of

the physics model (θ) and the parameters of the mean of the discrepancy function (φ). In

the case that the measurement noise is a zero mean random variable, Gnew is the expectation
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of observation yD according to Eqs. 2.3 and 2.4. Further assume that the analytical form of

Gnew is not available. In such cases, the first-order Taylor series expansion of this model (as

shown in Eq. 3.18) can be used as an efficient approximation when the model is believed to

be not highly nonlinear:

E[yD] = Gnew(xD;ψ) ≈ Gnew(xD; ψ̂) +

p∑
i=1

∂Gnew

∂ψi

∣∣∣∣
ψ=ψ̂

ψi (3.18)

where ψ̂ is the mean value of the prior of ψ, and p is the number of model parameters.

Suppose there are n data points available, i.e., experimentally observed values D =

[D1, D2, ..., Dn] corresponding to different input settings XD = [xD1,xD2, ...,xDn]. Without

considering measurement uncertainty and the variance of the model discrepancy function,

we can construct a linear system as

AψT = D, A =


∂Gnew
∂ψ1

∣∣
xD1,ψ̂

... ∂Gnew
∂ψp

∣∣
xD1,ψ̂

...
. . .

...

∂Gnew
∂ψ1

∣∣
xDn,ψ̂

... ∂Gnew
∂ψp

∣∣
xDn,ψ̂

 (3.19)

The linear system in Eq. 3.19 can be underdetermined or determined, depending on the

rank of the matrix A (denoted as rA). If rA < p, the system is underdetermined and there

will be an infinite number of ψ values satisfying Eq. 3.19; if rA = p, the system is determined

and there will be a unique vector ψ satisfying Eq. 3.19. The latter case suggests that the

model is practically identifiable given the available data points (assuming the quality of

the data does not cause non-identifiability). The former case suggests that the model is

non-identifiable either due to the model structure or insufficient data. If the inequality rA < p

continues to hold as we increase the number of observation data, then it can be inferred that

the model is structurally non-identifiable.

In order to help the analyst reduce model redundancy once a model is detected as
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structurally non-identifiable, it may be of interest to know which set of parameters can/cannot

be identified. Using the formulation of the linear system in Eq. 3.19, we can retrieve this

information by checking the linear dependency between the column vectors of the matrix A,

since the i-th column of A corresponds to the parameter ψi. For example, if the i-th column

vector ai and the j-th column vector aj are linearly dependent, it is apparent that the

corresponding parameters ψi and ψj are non-identifiable using the linear model in Eq. 3.18.

We can also find one set of identifiable parameters using the simple algorithm below (note

that there may be multiple sets of identifiable parameters):

Algorithm 1 Find one set of identifiable parameters

Input: The first-order derivative matrix A
Output: The index set of identifiable parameters I
Atemp = A
I = empty set
for i = 1 to p do

r1 = the rank of Atemp

Remove the i-th column from Atemp

r2 = the rank of Atemp (with the i-th column removed)
if r1 > r2 then

Add the value of i to the set I as an element
end if

end for
return I

In order to illustrate the proposed method, consider a simple example:

ym = θ1x+ θ2x
2

δ = φ1 + φ2x (3.20)

It is not difficult to see from the above expressions that the two parameters of model (θ1 and

θ2) are identifiable given no less than two pairs of input-output data. However, if we add the

model discrepancy δ to the model, θ1 and φ2 will become unidentifiable no matter how many

data points are available.
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Let ψ = [θ1, θ2, φ1, φ2]. Suppose measurements are available at five input points: x1
D =

−1.0, x2
D = 2.0, x3

D = 3.5, x4
D = 4.0, and x5

D = 6.0. We can calculate the derivatives

∂(ym + δ)/∂ψi numerically (e.g., forward difference or central difference) at these input

points for given values of the parameters, and thus obtain the matrix A. For example, for

[θ1, θ2, φ1, φ2] = [2.0, 0.5, 4.0, 1.5], the matrix A for the combination of the physics model and

δ is

A =



−1.0 1.0 1.0 −1.0

2.0 4.0 1.0 2.0

3.5 12.25 1.0 3.5

4.0 16.0 1.0 4.0

6.0 36.0 1.0 6.0


The rank of A is equal to 3, indicating that the parameters become unidentifiable after the

combination of ym and δ. We can also use the program in Algorithm 1 to infer that the

parameters will become identifiable once the term φ1x is removed from the model discrepancy

function.

3.4 Calibration of multi-physics computational models

Multi-physics modeling usually involves the combination of several models from different

individual physics analyses. Ideally, these models would be calibrated separately with

input-output experimental data corresponding to individual models. But in practice the

experimental data may not be sufficient or available for some of the models. To calibrate all

the models with limited information, a Bayesian network-based method is proposed below.
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3.4.1 Integration of multi-physics models and experimental data

via Bayesian network

Suppose we have two physics models ym1 = G1(x1;θ1,θ12) and ym2 = G2(x2;θ2,θ12).

Note that these two models have different input variables (x1 versus x2) and parameters (θ1

versus θ2), but they also share some common parameters θ12. Based on the discussion in

Section 2.2, two Bayesian networks can be constructed for these two models individually.

Further, due to the existence of the common parameters, these two networks can be connected

to form a full network as shown in Fig. 3.7, which enables information flow from one network

to the other.

ɛobs1

xD1 θ1

δ1 ym1

σobs1

yD1

ɛobs2

θ2 xD2

δ2ym2

σobs2

yD2

θ12

φ2 
ϕ2

φ1
ϕ1

D1 D2

Figure 3.7: Bayesian network for two physics models

3.4.2 Strategy of Bayesian calibration for multi-physics models

If both the observation data D1 and D2 are available, we have three options for model

calibration based on the Bayesian networks in Fig. 3.7, as presented below.

The first option is to calibrate the two models simultaneously. Let Φ1 and Φ2 represents

the calibration parameters of the two networks respectively except for the common parameters
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θ12, i.e., Φ1 = [θ1, σobs1,φ1,ϕ1], Φ2 = [θ2, σobs2,φ2,ϕ2].

π(Φ1,Φ2,θ12|yD1 = D1, yD2 = D2) (3.21)

=
π(yD1 = D1, yD2 = D2|Φ1,Φ2,θ12) π(Φ1) π(Φ2) π(θ12)

π(yD1 = D1, yD2 = D2)

From the first option, we can obtain the posterior PDFs of all the parameters using both

D1 and D2. However, this option can be computationally expensive because of the high

dimensional parameter space.

The second option is to let information flow from left to right, conducting a two-step

calibration. Following the procedure of Bayesian calibration for a single model presented

in Section 2.2, Φ1 and θ12 are first calibrated using the observation data D1. Then, the

marginal posterior PDF of θ12, π(θ12|yD1 = D1), is used as the prior when we calibrate the

parameters of the other network (Φ2 and θ12). Applying Bayes’ theorem, we have

π(θ12|yD1 = D1) =

∫
π(yD1 = D1|Φ1,θ12) π(Φ1) π(θ12) dΦ1∫

π(yD1 = D1)

π′(Φ2,θ12|yD1 = D1, yD2 = D2)

=
π(yD2 = D2|Φ2,θ12) π(Φ2) π(θ12|yD1 = D1)∫

π(yD2 = D2|Φ2,θ12) π(Φ2) π(θ12|yD1 = D1) dΦ2 dθ12

(3.22)

=
π(yD2 = D2|Φ2,θ12) π(Φ2) π(θ12|yD1 = D1)

π(yD2 = D2|yD1 = D1)

We can prove that Eq. 3.22 gives the same joint posterior PDF of Φ2 and θ12 as from
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Eq. 3.21. By combining the two expressions in Eq. 3.22, we have

π′(Φ2,θ12|yD1 = D1, yD2 = D2)

=
π(yD2 = D2|Φ2,θ12)π(Φ2)

∫
π(yD1 = D1|Φ1,θ12)π(Φ1)π(θ12)dΦ1

π(yD2 = D2|yD1 = D1) π(yD1 = D1)

=

∫
π(yD1 = D1|Φ1,θ12) π(yD2 = D2|Φ2,θ12) π(Φ1) π(Φ2) π(θ12)

π(yD2 = D2|yD1 = D1) π(yD1 = D1)
dΦ1

=

∫
π(yD1 = D1, yD2 = D2|Φ1,Φ2,θ12) π(Φ1) π(Φ2) π(θ12)

π(yD2 = D2|yD1 = D1) π(yD1 = D1)
dΦ1

=

∫
π(Φ1,Φ2,θ12|yD1 = D1, yD2 = D2) dΦ1 (3.23)

Therefore, the second option provides us the posterior PDF of Φ1 based on D1, and the

posterior PDFs of Φ2 and θ12 based on both D1 and D2. Note that the computational effort

in the second option can be much smaller than in the first option, due to the reduced number

of parameters in each step of the calibration.

The third option is similar to the second one, except that the information flows from

right to left, i.e., Φ2 and θ12 are first calibrated using the observation data D2, and then the

marginal posterior PDF of θ12, π(θ12|yD2 = D2), is used as prior in the calibration of Φ2 and

θ12 using the data D1. Hence, the posterior PDFs of Φ1 and θ12 are obtained using both D1

and D2, whereas the posterior PDF of Φ2 is only based on D2.

Note that although the above Bayesian network-based method is presented using a

two-model problem, it can be extended to the cases that N(N ≥ 2) physics models are to be

calibrated with limited information, and there will be up to N ! + 1 options of calibration

available, depending on the existence of common parameters between different models.

3.5 Conclusion

This chapter first investigated various prior formulations of the model discrepancy function

in Bayesian calibration. A first-order Taylor series expansion-based method was developed to
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determine the identifiability of model parameters, especially when one tries to add a model

discrepancy function to a model. The numerical example showed that different choices of

model discrepancy (δ) formulation can result in significantly different calibration results, and

that the estimation of physical parameters may be biased if the formulation is over-simplified.

It is also observed that the prediction based on complicated model discrepancy formulations

may not match data well outside the calibration domain. In order to facilitate the selection

of model discrepancy formulation and also accommodate the uncertainty due to this selection,

we developed a three-step approach using a reliability-based model validation metric and the

total probability theorem. This approach combines the posterior probability distributions of

model parameters and δ resulting from the various options of δ into a single distribution,

which is useful especially when the various options of δ have similar performances.

This chapter also proposed a Bayesian network-based approach in order to simplify the

calibration of a multi-physics system. Multiple options of calibration exist when various

physics models are connected via common parameters, and more efficient calibration may

be achieved with sequential calibration strategies. This Bayesian network-based approach

using a set of multi-physics models and data for two types of MEMS devices is illustrated in

Chapter V.

61



CHAPTER IV

INTERPRETATIONS, RELATIONSHIPS, AND APPLICATION ISSUES IN
MODEL VALIDATION

4.1 Introduction

This chapter is motivated by several issues that remain unclear in the practice of model

validation: (1) validation with fully characterized, partially characterized, or uncharacterized

experimental data; (2) validation of constant vs. stochastic model predictions; (3) accounting

for the existence of directional bias; and (4) interpretation and selection of thresholds in

different validation metrics.

The four issues cannot be discussed without an introduction to the terminology concerning

model and validation experiments. When a model is developed, the physical quantity of

interest Y is postulated to be a function of a set of variables {x,θ}, i.e., Y = f(x,θ). This

function is not exactly known and hence is approximated using a model with output Ym, i.e.,

Ym = g(x,θ). Y is observable through some experiments and x is the set of input variables

to the experiments. The term ‘‘input” is referred to as the variables in a model that can be

measured in experiments. We assume that the same set of variables goes into the model and

validation experiments as inputs (i.e., the terms ‘‘model input” and ‘‘experimental input”

represent the same set of variables), and we are comparing the outputs of the model and

experiments during validation. Although there is an infinite set of variables in nature that can

affect validation experiments, ‘‘model input” and ‘‘experimental input” only contain a subset

of these variables due to the assumptions and approximations that are made in modeling.

Model parameter set (θ) contains variables that may be measurable in concept but are

usually difficult or impractical to directly measure in validation experiments. Therefore, the

values/distributions of these variables are usually obtained from model calibration (performed
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prior to validation with a different set of input-output experimental data), and assumed

invariant during multiple replicates of the validation experiment. For example, the maximum

deflection (w) of a cantilever beam subjected to a point load at the free end is the quantity of

interest, and it is known to be a function of the load value P , beam geometry, and Young’s

modulus (E). The solution w = PL3/(3EI) based on Euler-Bernoulli beam theory is a

model that approximates this unknown function. The model input set x includes the load P ,

the moment of inertia I, and beam length L; the model parameter set θ contains only one

variable E.

The division of variables into two sets (model input x and model parameter θ), which is

usually decided by modelers, helps classify the sources of uncertainty involved in validation.

If a variable is measured and reported as point value, the uncertainty in this value is due to

measurement error; if a variable is not measured but a range/distribution is assigned, the

uncertainty is due to imprecise data; if a variable is inferred from model calibration, the sources

of uncertainty include natural variability (the variability between different experiments),

data uncertainty (uncertainty due to measurement error and insufficient data) and model

uncertainty. It should be noted that the diagnostic quality and the bias in experiments are

not considered as ”input”. Instead, they are classified as components of the measurement

error, which is represented by εD in this thesis.

With the terminology introduced above, we can now continue with the discussion of the

four issues. First, validation data can be collected from three possible types of experiments:

(1) fully characterized (i.e., all the input variables of individual experiments are measured and

reported as point values), (2) partially characterized (i.e., some inputs of individual experi-

ments are not measured or are reported as intervals), or (3) uncharacterized (i.e., experiments

are performed on multiple input combinations, but these input combinations are not measured

or are reported as a single interval). In the cases of partially characterized or uncharacterized

validation data, x is treated as a random vector due to the lack of measurements on the input
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Table 4.1: Three types of validation experiments and the corresponding input-output data

Fully characterized
Input xD1 xD2 ... xDn

Output yD1 yD2 ... yDn

Partially characterized
Input π(xD1) π(xD2) ... π(xDn)

Output yD1 yD2 ... yDn

Uncharacterized
Input π(xD)

Output yD1 yD2 ... yDn

set x. The reported intervals and expert opinions (if available) are needed to construct a

probability distribution of x, and the corresponding density function is denoted as π(x). Note

that in the Bayesian approach, the lack of knowledge (epistemic uncertainty) is represented

through a probability distribution (subjective probability). Non-probabilistic approaches

have also been proposed to handle the epistemic uncertainty; in this thesis, we only focus on

probabilistic methods. For partially characterized validation data, input distributions are

assigned to different experiments separately, and these distributions represent input data

uncertainty in each individual experiment. For uncharacterized validation data, a single

input distribution is assigned to multiple experiments, and this distribution represents the

uncertainty due to both natural variability and input data uncertainty. Table 4.1 shows a

typical format of input-output data collected from the three types of experiments. Although

uncertainty exists in the inputs of partially characterized or uncharacterized experiments, the

resulting data may still be considered for validation by practitioners if the input uncertainty

is limited. While most of the previous studies only focus on validation with fully characterized

experimental data, this chapter explores the use of all three types of data in various validation

methods.

Second, due to the existence of aleatory and epistemic uncertainty, both the model

prediction (denoted as Ym) and the physical quantity to be predicted (denoted as Y ) can be

uncertain, and this has been the dominant case studied in the literature [Hills and Leslie,

2003; Zhang and Mahadevan, 2003; Rebba et al., 2006; Rebba and Mahadevan, 2006, 2008;
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Ferson et al., 2008; Ferson and Oberkampf, 2009]. However, in practice it is possible that

either Ym or Y can be considered as deterministic. Deterministic Ym implies that for given

values of the model input variables, the output prediction of the model is deterministic. The

application of various validation methods to these different cases is examined in this chapter.

Third, in this study, we define two terms to characterize the difference between model

prediction and validation data - bias and directional bias. Bias is defined as simply the

difference between the mean value of model prediction and the statistical mean value of

experiment data, and the term ‘‘directional bias” implies the persistence of bias in one

direction as one varies the inputs of model and experiment. This chapter explores whether

various validation metrics are able to account for the existence of directional bias.

Fourth, although different validation metrics are developed to measure the agreement

between model prediction and validation data from different perspectives, this chapter shows

that under certain conditions some of the validation metrics can be mathematically related.

These relationships may help decision makers to select appropriate validation metrics and

the corresponding model acceptance/rejection thresholds.

Various quantitative validation metrics, including the p-value in classical hypothesis

testing [Schervish, 1996], the Bayes factor in Bayesian hypothesis testing [O’Hagan, 1995],

a reliability-based metric [Rebba and Mahadevan, 2008], and an area metric [Ferson et al.,

2008; Ferson and Oberkampf, 2009], are investigated in this chapter. Based on the original

definition of Bayes factor, we formulate two types of Bayesian hypothesis testing, one on the

accuracy of the predicted mean and standard deviation of model prediction, and the other one

on the entire predicted probability distribution of model prediction. These two formulations

of Bayesian hypothesis testing can be applied to both fully characterized and partially

characterized experiments. The use of these two types of experimental data in the other

validation methods is also investigated. The first formulation of Bayesian hypothesis testing,

along with the modified reliability-based method and the area metric-based method, takes into
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account the existence of directional bias. The mathematical relationships among the metrics

used in classical hypothesis testing, Bayesian hypothesis testing, and the reliability-based

method are investigated.

Section 4.2 discusses the possible scenarios and the general procedure of quantitative model

validation in the presence of uncertainty. Sections 4.3 and 4.4 investigate the aforementioned

model validation methods for fully characterized, partially characterized, and uncharacterized

validation experiments. The mathematical relationships among some of these validation

methods are presented in Section 4.5. Interpretations of the various validation methods are

given in Section 4.6. Section 4.7 illustrates the detection of directional bias using Bayesian

interval hypothesis testing, the reliability metric, and the area-based metric.

4.2 Scenarios and decision process of model validation

under uncertainty

The development of quantitative validation metrics is usually based on assumptions

regarding the quantity of interest Y , the corresponding model prediction Ym, and the

experimental observation YD. These assumptions relate to the various sources of uncertainty

and the types of available validation data. In order to select appropriate validation methods,

the first step is to identify the sources of uncertainty and the type of validation data.

As mentioned earlier, the available validation data can be from fully characterized,

partially characterized, or uncharacterized experiments. In the case of fully characterized

experiments, the model/experimental inputs x are measured and reported as point values. The

value of Y corresponding to each of the experiments is a constant (although unknown). Ym is

also a constant if both the model parameters and model form error are treated as constants,

otherwise Ym is stochastic. If the experiment is partially characterized, the uncertainty in x

is represented by treating x as a random vector. Since the model output Ym is considered
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Table 4.2: Scenarios of validation and the
Experimental data Quantity of interest Y Model prediction Ym

Fully characterized
Constant Constant
Constant Stochastic

Partially characterized Constant Stochastic
Uncharacterized Stochastic Stochastic
Note: YD is always treated as a random variable due to measurement error

as a function of x, Ym becomes stochastic even with constant model parameters and model

form error. Y is still a constant for individual experiments since the epistemic uncertainty in

the input does not make the true value stochastic. If the experiments are uncharacterized,

the sources of uncertainty in x include the variability across multiple experiments and the

lack of precise measurement. Correspondingly, Y needs to be treated as a random variable

to account for the variability of the quantity of interest across multiple experiments.

Note that YD results from the addition of measurement error to the true value of the

physical quantity Y , i.e., YD = Y + εD, where εD represents measurement error. Hence, the

uncertainty in the experimental observation (YD) can be split into two parts, the variability

in the physical system response (Y ) and the measurement error in experiments (εD). It

should be noted that experimental data with poor quality can hardly provide any useful

information on the validity of a model. The discussions in this chapter are restricted to the

cases when uncertainty in data (due to the error in measuring experimental input and output

variables) is limited.

Table 4.2 summarizes the stochasticity of Y , Ym, and YD in different scenarios as discussed

above, and the applicability of various validation methods to these scenarios will be presented

in Section 4.4.

After selecting a validation method and computing the corresponding metric, another

important aspect of model validation is to decide if one should accept or reject the model

prediction based on the computed metric and the selected threshold. Section 4.5 and 4.6
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will provide some discussions on the decision threshold based on the relationship between

various validation metrics. The flowchart in Fig. 4.1 describes a systematic procedure for

quantitative model validation.

Quantity 
to be predicted

Model 
prediction

Stochastic or
Deterministic

Validation 
experiment

Fully or partially 
characterized

Accept/reject the 
model prediction

Select validation method 
and calculate metric

Stochastic or
Deterministic

Figure 4.1: Decision process in quantitative model validation (Note: The last two steps
involve decision making)

4.3 Development of Bayesian interval/equality hypoth-

esis testing

When both the quantity of interest Y and the corresponding model prediction Ym are

considered to be random variables, the equality and interval hypotheses formulated in [Rebba

and Mahadevan, 2008; Rebba et al., 2006] are no longer suitable. In this section, we develop

extensions to the equality and interval hypotheses so that they can be applied to the above

case: (1) the extended interval hypothesis states that the difference between the means of Ym

and Y , and the difference between the standard deviations of Ym and Y , are within desired

intervals respectively; (2) the extended equality hypothesis states that the PDF of Ym is equal

to the PDF of Y . With the first formulation, it is straightforward to derive the likelihood

functions under the null and alternative hypothesis, and the existence of directional bias can

be reflected in the test, as will be shown below. The advantages of the second formulation
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are that it avoids the setting of interval width in the first formulation, and leads to a direct

test on probability distributions instead of distribution parameters. For the case that either

Y or Ym is deterministic, the first formulation can still be applicable by setting the standard

deviation of the deterministic quantity to be zero; however, the second formulation only

applies to the case when both Y and Ym are stochastic. These two formulations are applicable

to both fully characterized and partially characterized experiments. Note that in the case

where the model output follows a tail-heavy distribution, formulating hypotheses on higher

order moments (instead of the mean and standard deviation) may be necessary in order to

assess the validity of the model.

4.3.1 Interval hypothesis on distribution parameters

The interval hypothesis can be formulated as H0 : εµ1 ≤ µm−µ ≤ εµ2, εσ1 ≤ σm−σ ≤ εσ2,

and H1 : µm − µ > εµ2 or µm − µ < εµ1, σm − σ > εσ2 or σm − σ < εσ1. µm and µ are the

means of Ym and Y respectively, and σm and σ are the standard deviations of Ym and Y

respectively. εµ1, εµ2, εσ1 and εσ2 are constants which define the width of interval. Note that

εµ1 < εµ2, εσ1 < εσ2.

Under the interval hypothesis H0, µ can be any value between [µm − εµ2, µm − εµ1].

So µ ∼ Unif(µm − εµ2, µm − εµ1), and the PDF π0(µ|µm) = 1/(εµ2 − εµ1). Similarly, σ ∼

Unif(σm − εσ2, σm − εσ1), and the PDF π0(σ|σm) = 1/(εσ2 − εσ1). Thus

π0(y|µm, σm) =

∫ ∫
π(y|µ, σ)π0(µ|µm)π0(σ|σm)dµdσ

=
1

(εµ2 − εµ1)(εσ2 − εσ1)

∫ σm−εσ1

σm−εσ2

{∫ µm−εµ1

µm−εµ2
π(y|µ, σ)dµ

}
dσ (4.1)

In the presence of measurement error, the experimental observation is a random variable

with conditional probability Pr(yD|y). Hence, the likelihood function under the null hypothesis
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H0 can be derived as

Pr(yD|H0) =

∫
Pr(yD|y)π0(y|µm, σm)dy (4.2)

Under the alternative hypothesis H1, µ can be any value outside [µm− εµ2, µm− εµ1], but

the uniform distribution is not applicable to infinite space in practical cases. To avoid this

issue, we can assume that the possible values of µ are within a finite interval [µl, µu] based

on the underlying physics. Therefore µ ∼ Unif(µl, µm − εµ2) ∪ (µm − εµ1, µu), and the PDF

π1(µ|µm) = 1/(µu − µl + εµ1 − εµ2). Similarly, σ ∼ Unif(σl, σm − εσ2) ∪ (σm − εσ1, σu), and

the PDF π1(σ|σm) = 1/(σu − σl + εσ1 − εσ2). thus

π1(y|µm, σm) =

∫ ∫
π(y|µ, σ)π1(µ|µm)π1(σ|σm)dµdσ

=
A

(µu − µl + εµ1 − εµ2)(σu − σl + εσ1 − εσ2)
(4.3)

where A is calculated as

A =

∫ σm−εσ2

σl

{∫ µm−εµ2

µl

π(y|µ, σ)dµ+

∫ µu

µm−εµ1
π(y|µ, σ)dµ

}
dσ +∫ σu

σm−εσ1

{∫ µm−εµ2

µl

π(y|µ, σ)dµ+

∫ µu

µm−εµ1
π(y|µ, σ)dµ

}
dσ (4.4)

The likelihood function under H1 can then be derived as

Pr(yD|H1) =

∫
Pr(yD|y)π1(y|µm, σm)dy (4.5)

The Bayes factor for the Bayesian interval hypothesis testing can be calculated by dividing

Pr(yD|H0) in Eq. 4.2 by Pr(yD|H1) in Eq. 4.5.
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4.3.2 Equality hypothesis on probability density functions

To further validate the entire distribution of Ym predicted by a probabilistic model, H0

or H1 can be formulated correspondingly as the predicted distribution π(ym) being or not

being the true distribution of the quantity to be predicted Y , i.e., H0 : π(y) = π(ym), and

H1 : π(y) 6= π(ym). The Bayes factor in this case becomes

B =
Pr(yD|H0)

Pr(yD|H1)
=

∫
Pr(yD|y)π0(y)dy∫
Pr(yD|y)π1(y)dy

(4.6)

where Pr(yD|y) is the conditional probability of observing noisy data yD given that the actual

value of Y is y; π0(y) is the PDF of Y under the null hypothesis H0 and hence π0(y) = π(ym);

π1(y) is the PDF of Y under the alternative hypothesis H1. If no extra information about

π1(y) is available, it can be assumed as a non-informative uniform PDF. Note that the bounds

of this uniform distribution will affect the value of the estimated Bayes factor, and thus it

should be carefully selected based on available information.

Note that Pr(yD|y) is proportional to the value of the PDF of YD conditioned on y which

is evaluated at YD = y, i.e., Pr(yD|y) ∝ π(yD|y). Therefore, Eq. 4.6 can be rewritten as

B =

∫
π(yD|y)π0(y)dy∫
π(yD|y)π1(y)dy

(4.7)

4.3.3 Bayesian hypothesis testing with multiple data points

If fully or partially characterized validation experiments are conducted for multiple test

input combinations (including replicas), we can first compute individual Bayes factors Bi’s

(i = 1, 2, ..., N) corresponding to each data point based on the methods describe above, and

then multiply these individual Bayes factors to obtain an overall Bayes factor B =
∏N

i=1 Bi,

assuming model predictions (as well as experimental measurements) corresponding to different

data points are independent. If there is a large difference between Bayes factors corresponding
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to different experiments, we can express these Bayes factors on a logarithmic scale in order

to achieve better visualization (e.g., Figs. 5.13 and 5.14).

Another way to obtain an overall Bayes factor is by treating these fully/ partially

characterized experiments as uncharacterized. That is to say, the individual measurements or

probability distributions of the input x for different experiments are combined into a single

probability distribution, and the output measurement data are treated as replicas. This

approach is called ”ensemble validation” in this dissertation, and the resulting overall Bayes

factor in a Bayesian interval/equality hypothesis testing can be calculated as

B =

∫ [∏N
i=1 π(yiD|y)

]
π0(y) dy∫ [∏N

i=1 π(yiD|y)
]
π1(y) dy

(4.8)

If the assumption of independence between model predictions at different input points

does not hold, a more rigorous approach would be to account for the statistical correlation

between different data points in calculating the Bayes factor [Sankararaman, 2012], where

the model prediction Ym is treated as a random process over the input field x. The equality

null hypothesis H0: y|xi = ym|xi, i = 1, 2, ..., N approximates the quantity of interest Y

with a random process Ym, and the alternative hypothesis becomes H1: y|xi 6= ym|xi, i =

1, 2, ..., N . The likelihoods of H0 and H1 aggregating multiple data points yD can be obtained

as [Sankararaman, 2012]

L(H0) ∝ Pr(yD|H0)

=

∫ (∫ [ N∏
i=1

π(yiD|xi,θ)π(xi)
]
dxi

)
π(θ) dθ

L(H1) ∝ Pr(yD|H1)

=

∫ ( N∏
i=1

π(yiD|yi)
)
π1(y) dy (4.9)
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4.4 Validation with fully characterized, partially char-

acterized, or uncharacterized experimental data

As discussed in Section 4.2, both the quantity of interest Y and the corresponding model

prediction Ym are stochastic when uncharacterized experimental data are considered. In such

cases, all the five methods illustrated in Sections 2.3 and 4.3 can be used as long as the

probability distribution of Ym are available. In order to obtain the probability distribution

of Ym, we need to first construct the probability distributions of x based on the reported

intervals or expert opinions [Sankararaman and Mahadevan, 2011a]. Assuming that the

probability density function of x is π(x), one can calculate the unconditional PDF of model

prediction π(ym) via propagating uncertainty from x to model output Ym as

π(ym) =

∫
[(G(x) = ym)]π(x)dx (4.10)

where G(x) denotes the model. The above distribution of Ym can then be substituted into

the various methods to compute the corresponding validation metrics.

The probability distribution of Ym in the case of partially characterized experiments can

also be obtained using the procedure described above. Below We will discuss the use of

various validation methods with fully and partially characterized experimental data.

Classical hypothesis testing Classical hypothesis testing can be applied to fully or

partially characterized experiments by comparing the data against the model predictions.

Since Y is constant given input x, the standard deviation σ in the equations shown in Section

2.3.1.1 becomes zero; if Ym is constant, σm becomes zero. The computation procedure of

p-value remains the same.
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Bayesian interval hypothesis testing The interval assumption for the case when Y is

constant will only be made on µ and µm, since we know σ is zero. For fully characterized

experiments, if Ym is constant, σm is set to be zero and the rest of the computation remains

the same; if Ym is stochastic, µm and σm are computed from probability distribution of Ym

given the measured x. For partially characterized experiments, Ym is always stochastic, and

µm and σm are computed from probability distribution of Ym obtained in Eq. 4.10.

Bayesian equality hypothesis testing As showed in Section 4.3.2, the extended equality

hypothesis treats both Y and Ym as random variables. However, as discussed in Section 4.2,

Y is in fact a constant given a specific input x when the validation experiments are fully

or partially characterized. The equality hypothesis that π(y) = π(ym) can be viewed as

an approximation of the unknown constant Y using a random variable. In other words,

the epistemic uncertainty about Y is represented by a subjective probability distribution

following the Bayesian way of thinking.

However, for fully characterized experiments, if both Y and Ym are constant (i.e., Y = y,

Ym = ym = G(x)), we can modify the equality hypothesis to be y = ym = G(x) instead of

π0(y) = π(ym). Let the alternative hypothesis be y = y1, the corresponding Bayes factor is

B =
π
(
yD|y = G(x)

)
π(yD|y = y1)

(4.11)

Reliability metric The computation of the reliability metric only requires the probability

distributions of YD and Ym. Therefore, the reliability-based validation method can be applied

to the cases when the validation experiments are fully/partially characterized. Since the

quantity of interest Y is constant, σ is set be zero while computing σ2
YD

; when the model

prediction Ym is constant, σm is set to be zero.
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Area-based metric Similar to the reliability metric, calculating the area-based metric

only requires the probability distributions of YD and Ym, and thus it can also be applied

to the cases when the validation experiments are fully/partially characterized. When the

model prediction Ym is constant, the area metric-based method can be used by considering

the model output to follow a degenerate distribution, i.e., FYm(y) = 0 for y < ym, FYm(y) = 1

for y ≥ ym.

4.5 Relationship between p-value, Bayes factor, and

the reliability metric

4.5.1 Relationship between p-value and Bayes factor

Although the p-value in classical hypothesis testing and the Bayes factor B are based on

different philosophical assumptions and formulated differently, it has been shown that these

two metrics can be mathematically related for some special cases [Rouder et al., 2009]. In the

discussion below, the Bayes factor based on the hypothesis of probability density functions

for a fully characterized experiment is found related to the p-value in t-test and z-test, if the

model prediction Ym is a normal random variable with mean µm and standard deviation σm.

Starting from the formula of Bayes factor in Eq. 4.7, since we assume that the PDF of the

quantity to be predicted Y under the alternative hypothesis H1 is uniform, the integration

term in the denominator is not affected by the target model and thus can be treated as a

constant 1/C. Based on the null hypothesis H0, the quantity of interest Y ∼ N(µm, σ
2
m).

Recall the relationship YD = Y +εD, and εD ∼ N(0, σ2
D), we know that YD ∼ N(µm, σ

2
m+σ2

D).

Thus the numerator of Eq. 4.7 can be calculated as

∫
π(yD|y)π0(y|x)dy =

1√
σ2
m + σ2

D

φ(
yD − µm√
σ2
m + σ2

D

) (4.12)
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where φ(∗) is the PDF of the standard norm random variable.

If the variance of measurement noise is negligible compared to the variance of Ym, i.e.,

σ2
D � σ2

m, we have σ2
m +σ2

D ≈ σ2
m. Also note that for a single data point ȲD = yD. Therefore

Eq. 4.7 becomes

B =
C

σm
∗ φ(

ȲD − µm
σm

) (4.13)

Based on Eqs. 2.14 and 2.16, we have

ȲD − µm =


t ∗ SD/

√
n , for t-test

z ∗ σYD/
√
n , for z-test

(4.14)

Substituting Eq. 4.14 into Eq. 4.13, we obtain

B =


C/σm ∗ φ[(t ∗ SD)/(σm

√
n)] , for t-test

C/σm ∗ φ[(z ∗ σYD)/(σm
√
n)] , for z-test

(4.15)

where φ is the probability density function of a standard normal variable.

From Eq. 4.15, we can see that the Bayes factor can be related to either the z statistic or

the t statistic, and hence it can be related to the p-value in both z-test and t-test. Combining

Eqs. 2.17 and 4.15, we obtain the relation between Bayes factor and the p-value in the z-test

as

B =
C

σm
∗ φ[Φ−1(

p

2
)
σYD
σm
√
n

] (4.16)

where Φ−1 is the inverse standard normal CDF. Similarly, the relation between Bayes factor

and the p-value in the t-test can be obtained by combining Eqs. 2.15 and 4.15 as

B =
C

σm
∗ φ{[SD ∗ F−1

T,n−1(
p

2
)]/(σm

√
n)} (4.17)

where F−1
T,n−1 is the inverse CDF of a t-distribution with (n− 1) degrees of freedom.
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If the chosen significance level in z-test or t-test is α, the corresponding threshold Bayes

factor Bth can be calculated using Eq. 4.16 or 4.17 by letting p = α. In that case, the

z-test/t-test with significance level α and Bayesian hypothesis testing with the corresponding

threshold value Bth will give the same model validation result.

4.5.2 Relationship between p-value and the reliability metric

Recall that experimental data are considered as samples of the random variable YD. If

the size of experimental data set (n) is relatively large, e.g., n > 30, the sample variance S2
D

can be assumed to be a good estimator of σ2
YD

(the true variance of YD), which is needed to

compute the reliability metric. If n is small and no prior information on σ is available, we

can assume that σ = σm, which is the same assumption used in z-test. By assuming further

that the mean of validation data ȲD is equal to µ, Eq. 2.24 can be re-written as

r = Φ[
ε− (ȲD − µm)

σd
]− Φ[

−ε− (ȲD − µm)

σd
] (4.18)

By substituting Eq. 4.14 into Eq. 4.18, the relation between the reliability-based metric r

and the test statistic in the t-test or z-test is obtained as

r =


Φ[(ε− t ∗ SD/

√
n)/σd] + Φ[(ε+ t ∗ SD/

√
n)/σd]− 1, for t-test

Φ[(ε− z ∗ σYD/
√
n)/σd] + Φ[(ε+ z ∗ σYD/

√
n)/σd]− 1, for z-test

(4.19)

By combining Eqs. 2.15, 2.17 and 4.19, the reliability-based metric can be further related
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to the p-value in the t-test or z-test as

r =



Φ[(ε− F−1
T,n−1(p/2) ∗ SD/

√
n)/σd]+

Φ[(ε+ F−1
T,n−1(p/2) ∗ SD/

√
n)/σd]− 1, , for t-test

Φ[(ε− Φ−1(p/2) ∗ σYD/
√
n)/σd]+

Φ[(ε+ Φ−1(p/2) ∗ σYD/
√
n)/σd]− 1, , for z-test

(4.20)

If one chooses to test models based on a threshold reliability value rth calculated by letting

p = α in Eq. 4.20 above, the result of model validation will be the same as that in the t-test

or z-test with significance level α.

4.6 Interpretation of quantitative model validation re-

sults

Classical hypothesis testing Failing to reject H0 indicates that the accuracy of the

model is acceptable, but it does not prove that H0 is true. The comparison between p-value

and significance level α becomes meaningless when the sample size of experimental data is

large. Since almost no null hypothesis H0 is true, the p-value will decrease as the sample

size increases, and thus H0 will tend to be rejected at a given significance level α as the

sample size grows large [Marden, 2000]. In addition, the over-interpretation of p-value and

the corresponding significance testing result can be misleading and dangerous for model

validation. Criticisms on over-stressing p-value and significance level can be found in [Ziliak

and McCloskey, 2008; Ambaum, 2010].

Bayesian hypothesis testing If the Bayes factor calculated is greater than 1, it is

indicated that the data favor the null hypothesis; if the Bayes factor is less than 1, it is
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indicated that the data favor the alternative hypothesis. In addition, Jeffreys [Jeffreys, 1983]

gave a heuristic interpretation of Bayes factor in terms of the level of support that the

hypotheses obtain from data. The threshold value of Bayes factor Bth can be related to the

so-called Bayes risk in detection theory [Kay, 1998; Jiang and Mahadevan, 2007], which is the

sum of costs due to different decision scenarios - failing to reject the true/wrong hypothesis

and rejecting the true/wrong hypothesis. It has been shown that appropriate selection of Bth

can help reduce the Bayes risk [Kay, 1998]. If one assumes that the cost of making correct

decisions (failing to reject the true hypothesis or rejecting the wrong hypothesis) is zero, the

costs of type I and type II error are the same, and the prior probabilities of the null and

alternative hypothesis being true are equal, then the resulting Bth = 1 [Jiang and Mahadevan,

2007]. However, It should be noted that as a part of the decision making process, the choice

of thresholds for Bayes factor inevitably contains subjective elements.

Before collecting validation data, there may be no evidence to support or reject the

model. In such cases, it may be reasonable to assume that the prior probabilities of the null

hypothesis and alternative hypothesis are equal (= 0.5), and thus a simple expression of the

posterior probability of the null hypothesis can be derived in terms of the Bayes factor [Rebba

et al., 2006], which is a convenient metric to assess the confidence in model prediction:

Pr(H0|yD) =
Pr(yD|H0)Pr(H0)

Pr(yD|H0)Pr(H0) + Pr(yD|H1)Pr(H1)

=
Pr(yD|H0)

Pr(yD|H0) + Pr(yD|H1)
(4.21)

=
B

1 +B

An advantage of Bayesian hypothesis testing is that the posterior probabilities of H0

and H1 obtained from the validation exercise can both be used through a Bayesian model-

averaging approach [Hoeting et al., 1999; Zhang and Mahadevan, 2000, 2003] to reflect the

effect of the model validation result on the uncertainty in model output, as shown in Eq. 4.22
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π̄(y) = π0(y)Pr(H0|yD) + π1(y)Pr(H1|yD) (4.22)

where π̄(y) is the predicted PDF of Y combining the PDFs of Y under the null and alternative

hypothese. Therefore, instead of completely accepting a single model, one can include the

risk of using this model in further calculations. This helps to avoid both Type I and Type II

errors, i.e., accepting an incorrect model or rejecting a correct model.

Reliability metric The threshold rth used in the reliability-based method represents the

minimum probability of the difference d falling within an interval [−ε, ε], and the decision of

accepting/rejecting a model can be made based on the decision maker’s acceptable level of

model reliability.

Area-based metric Different from the validation metrics in hypothesis testing methods

and the reliability-based method, the area metric has no probability interpretation; it is the

difference between two CDFs; its physical unit is the same as for the quantity of interest

(Y ), and thus the area metric can be viewed as a direct measure of prediction error.

The area-based metric defined in u-space based on Eq. 2.25 can be transformed back to

physical space to retrieve its physical interpretation. As suggested in [Ferson et al., 2008], one

can use the CDF of model output (Gy) at a certain point to perform a back-transformation:

yi = G−1
y (ui), and then compute the area metric in the physical space

d(Fy, Gy) =

∫
|Fy −Gy| dy (4.23)

where yi is the transformed variable with the physical unit of the quantity of interest, and

Fy is the empirical CDF of yi.

Since the area metric has the physical unit of the quantity of interest and represents the
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prediction error of a model, the threshold of model rejection/acceptance can be set up based

on the error tolerance limit in the prediction domain.

4.7 Detection of the directional bias

Bayesian interval hypothesis testing The directional bias defined in Section 4.1 can

be captured by conducting two separate Bayesian interval hypothesis tests. In the first test,

we set εµ1 = −εµ and εµ2 = 0, and thus under the null hypothesis −εµ ≤ µm − µ ≤ 0. In the

second test, we set εµ1 = 0 and εµ2 = εµ, and thus under the null hypothesis 0 ≤ µm−µ ≤ εµ.

The model will fail if any of these two null hypotheses fails the corresponding test. Therefore,

the existence of directional bias will increase the chance of a model to fail the combined

test. Fig. 4.2 illustrates this combined test using the concept of data space. Suppose Z is

the overall validation data space, Z1 is the set of data which does not support the model in

the first Bayesian interval hypothesis test, and Z2 is the set of data which does not support

the model in the second test. Then, the union of Z1 and Z2 is the set of data that does not

support the model combining these two tests.

Z1 Z2

Z

Figure 4.2: Graphical illustration of the combined test

Reliability-based metric Since the reliability-based metric is the probability of d being

within a given interval, it can also reflect the existence of directional bias by modifying the

intervals. Similar to the Bayesian interval hypothesis testing, we can take two different
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intervals [0, ε] and [−ε, 0], and calculate the corresponding values of metric r1 and r2 as:

r1 = Φ[
ε− (µ− µm)

σd
]− Φ[

−(µ− µm)

σd
]

r2 = Φ[
−(µ− µm)

σd
]− Φ[

−ε− (µ− µm)

σd
] (4.24)

By comparing the values of r1 and r2 against the threshold rth/2 (half of the original

threshold value because the width of intervals considered is half of the original one), the

model may be judged to have failed the validation test if either r1 or r2 is less than rth/2.

The area-based metric The area-based metric can reflect the existence of directional bias,

i.e., when the experimental observations are consistently below or above the corresponding

mean predictions of numerical model. For example, if the model outputs at different test

combinations are normal random variables, the values of Fm
xi(yDi) will all be less than 0.5 if

yDi’s are smaller than the mean of the corresponding normal variables. Therefore, instead

of being uniformly distributed between [0,1], ui’s are distributed between [0,0.5], causing a

large area between the empirical CDF of ui and the standard uniform CDF.

4.8 Conclusion

This chapter explored various quantitative validation methods, including classical hypoth-

esis testing, Bayesian hypothesis testing, a reliability-based method, and an area metric-based

method, in order to validate computational model prediction.

A Bayesian interval hypothesis testing-based method was formulated, which validates the

accuracy of the predicted mean and standard deviation from a model, taking into account the

existence of directional bias. Further, Bayesian hypothesis testing to validate the entire PDF

of model prediction was formulated. These two formulations of Bayesian hypothesis testing

can be used in the case when multiple validation points are available. We also discussed
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the applicability of the various validation methods to the cases when validation data are

collected from fully characterized, partially characterized, or uncharacterized experiments.

It is shown that while the classical hypothesis testing is subject to type I and type II

error, the Bayesian hypothesis testing can minimize such risk by (1) selecting a risk-based

threshold, and (2) subsequent model averaging using posterior probabilities. It is observed

that under some conditions, the p-value in the z-test or t-test can be mathematically related

to the Bayes factor and the reliability-based metric.

The area metric in the transformed probability space (u-space) is shown to be sensitive

to the direction of bias between model predictions and experimental data, and so are the

Bayesian interval hypothsis testing-based method and the reliability-based method. The

Bayesian model validation result and reliability-based metric can be directly incorporated in

long-term failure and reliability analysis of the device, thus explicitly accounting for model

uncertainty [Sankararaman, 2012]. In addition, due to the use of likelihood function in the

Bayesian hypothesis testing, the Bayesian model validation method can be extended to the

case that the validation data is in the form of interval, as shown in [Sankararaman and

Mahadevan, 2011a,b].
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CHAPTER V

TIME-DEPENDENT RELIABILITY ANALYSIS: APPLICATION TO
MULTI-PHYSICS MEMS DEVICE

5.1 Introduction

As introduced in Chapter II, time-dependent reliability analysis for a complicated engi-

neering system may involve the use of many physics-based models and surrogate models,

which bring in various types of uncertainty. This chapter develops a Bayesian network-based

probabilistic framework, which integrates model calibration, model validation, and surrogate

modeling techniques, in order to address the issues listed below.

Quantification of uncertainty in model parameters and model form The estima-

tion of model parameters is subject to various sources of uncertainty as outlined in [Kennedy

and O’Hagan, 2001]. Quantifying the uncertainty due to the use of imprecise physics model

is in particular challenging. Bayesian calibration under the KOH framework introduced

in Section 2.2.1 has the capability to account for the various sources of uncertainty in the

construction of the posterior probability distribution of model parameters, with the inclusion

of a model discrepancy term to represent model form uncertainty.

Quantification of uncertainty in model predictive capability By applying quan-

titative model validation methods illustrated in Chapter IV, the predictive capability of

physics-based or surrogate models are assessed. The results of model validation can be

used to inform the decision of accepting or rejecting the models. Bayesian hypothesis test-

ing 2.3.1.2 and the reliability-based method 2.3.2.1 can further provide probabilistic measure

of confidence in model prediction.
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Propagation of uncertainty from the component level to the system level By

performing model calibration and model validation, uncertainty in the component (or model)

level can be quantified. As illustrated in Sections 2.4 and 2.5, the cost of propagating

uncertainty from the component level to the system level can be prohibitive in a time-

dependent system. Therefore, efficient surrogate modeling techniques, such as Gaussian

process (GP) interpolation and polynomial chaos expansion (PCE), will be used to facilitate

the propagation of uncertainty and obtain the probability of failure.

Quantification of uncertainty in system level reliability prediction If validation

experimental data are available at the system level, the prediction of failure probability can

be assess again by using the quantitative model validation methods. As mentioned above, we

can obtain a probabilistic measure of prediction confidence via Bayesian hypothesis testing

or the reliability-based method.

Background of application Despite many desirable features such as the superior perfor-

mance provided in terms of signal loss and isolation compared with silicon devices [Rebeiz,

2003], microelectromechanical system (MEMS) devices have been known for the existence

of large variability in the performance and life time due to difficulty in controlling the

manufacturing process [Guo et al., 2010]. In addition, multiple physical phenomena behind

the behavior of MEMS devices have not been fully understood. Therefore, quantification of

aleatory and epistemic uncertainty emerges as an essential part in the design and reliability

analysis of MEMS devices.

In this chapter, we consider a contacting radio frequency (RF) capacitive MEMS switch as

the target device. The overall prediction goal is the device life after a certain period of usage.

A variety of degradation mechanisms have been identified for this type of device, including

dielectric charging caused by trapped charges inside the thin dielectric layer, contact area

damage and wear, mechanical creep development at very high or very low temperatures, etc.
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Two performance metrics that relate to these failure mechanisms, pull-in and pull-out voltage,

are used to predict the failure probability. The prediction of pull-in and pull-out voltage

involves the simulation of the device displacement as a function of time, which is further

based on multiphysics and multiscale modeling, such as microscale dynamic structural model,

fluid damping model, creep model, dielectric charging model, and mesoscale contact model.

Besides the length scale, the time scale used in different models can also be different. In

addition to these physics models, experimental data with different forms (point/interval/time

series), and corresponding to different physics and different generations of devices have also

been collected.

In Section 5.2, we construct an overall Bayesian network, which includes the physics

models involved in different levels of the system, and the corresponding experimental data.

Using the overall BN as a platform, we apply the Bayesian calibration methods developed in

Chpater III to the calibration of multiple physics models related to the failure mechanisms

of RF MEMS switches, as will be showed in Section 5.3. In Section 5.4.1, the various

quantitative model validation methods discussed in Chapter IV are used to validate a gas

damping model. The Bayesian equality hypothesis testing illustrated in Section 4.3.2 is also

applied to assess the predictability of several other physics models using fully and partially

characterized validation data. Further, the failure probability of the target device is computed

based on the the calibrated and validated models, as will be showed in Section 5.5.

5.2 Construction of a Bayesian network based on multi-

scale and multi-physics models

The target MEMS device of this chapter is used as a capacitive switch. The moving

top electrode (modeled as membrane/beam) deflects under some applied voltage, and will

be pulled into contact with the dielectric pad when the applied voltage exceeds a certain

86



threshold (pull-in voltage Vpi). The contact between top electrode and dielectric pad forms a

large capacitance, and thus presents a small impedance in an AC circuit. The top electrode

will return to the original position when the applied voltage is reduced to a certain threshold

(pull-out voltage Vpo). Both pull-in and pull-out voltages are important metrics in the

reliability analysis of the device after a certain period of usage. Prediction of pull-in/pull-out

voltage involves the use of multiple physics models, including electrostatic model, dielectric

charging model, damping model, contact model, creep model, and structural model. The

electrostatic model takes applied voltage as inputs, and calculates electrostatic loading as

output. The dielectric model [Palit and Alam, 2012] predicts the number of charges trapped in

the dielectric pad after contact, which can affect the electrostatic field. The gas squeeze-film

damping model provides an expression for the damping coefficient, which can be further used

to compute damping force [Guo and Alexeenko, 2009]. The contact model [Kim et al., 2012]

models the dynamic interaction between the top electrode and the dielectric pad based on

molecular dynamics (MD) simulation. The Coble creep model [Coble, 1963; Hsu et al., 2011]

calculates the plastic deformation of the device under long-term loading. The electrostatic

force, damping force, contact force, creep deformation are the inputs to the device level

simulation. Two structural models with different fidelity can be considered to predict the

dynamic behavior of the device: (1) a 1-D Euler-Bernoulli beam model [Ayyaswamy and

Alexeenko, 2010], and (2) a 3-D membrane model [Das et al., 2012].

Combining all the aforementioned physics models, a schematic illustration of the overall

BN is shown in Fig. 5.1. Because this BN is constructed based on physics models, the

conditional probability associated with each directed edge can be obtained by considering

the physical relationships between model input and output variables.
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Figure 5.1: Bayes network integration of various models and data for device-level uncertainty
quantification

5.3 Bayesian network-based model calibration

We illustrate the model calibration methods presented in the previous chapters using two

numerical examples. In Section 5.3.1, we calibrate a dielectric charging compact model [Palit

and Alam, 2012] with time series data to illustrate the Bayesian approach discussed in
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Section 2.2.3 and the formulations of model discrepancy proposed in Section 3.2.1. In Sec-

tion 5.3.2, we implement Bayesian calibration of multi-physics models, based on the methods

presented in Section 2.2.2 and 3.4. Two types of radio-frequency (RF) microelectromechanical

system (MEMS) devices are used in this example. Examination of model parameter identi-

fiability is performed in both examples using the first-order Taylor series expansion-based

method proposed in Section 3.3.

5.3.1 Calibration of dielectric charging parameters using a com-

pact model

Dielectric charging has been identified as an important failure mechanism of RF MEMS

switches, causing the switches to either remain stuck or fail to actuate [Jain et al., 2011]. In

this section, we will focus on the calibration of a compact dielectric charging model developed

in [Palit and Alam, 2012]. The model has three input variables (voltage V , temperature T ,

and time t), seven unknown parameters (trap density NT , barrier height ΦB, capture cross

section σ, Frenkel-Poole (FP) attempt frequency γ, high frequency dielectric constant εINF ,

effective mass m∗, and trap activation energy EA), and a single output variable (transient

current density J). Experiments were conducted on a 200-nm silicon nitride (Si3N4) dielectric

with 2 mm*2 mm area for 12 different combinations of V and T , and the transient current

density was measured at about 190 discrete time points between 0 and 100 seconds. These

experiments were repeated four times, and thus a data set with size n = 12 ∗ 4 ∗ 190 = 9120 is

available. Assuming that the measurement error depends only on V and T , we can estimate

the variance of measurement error for a particular combination of V and T using Eq. 2.12.

We again consider the various options of model discrepancy discussed in Section 3.2.1,

and the same notations are used as in Section 3.2.3 (i.e., δ1, δ2, ...). Note that we also include

δ5 as a Gaussian process with non-stationary covariance function. The mean function and

variance function of δ3 are chosen to be linear functions of the model input combined with
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exponential functions of time as

µδ3 = φ1V + φ2T + φ3t+ φ4 exp(φ5t)

σ2
δ3

= ϕ0 + ϕ1V + ϕ2T + ϕ3t+ ϕ4 exp(ϕ5t) (5.1)

The same form of mean function is used in δ4 and δ5. We still use a squared exponential

function as the covariance function of δ4, and Eq. 3.10 is used as the covariance function of

δ5. Based on the first-order Taylor series expansion-based method developed in Section 3.3, a

check of identifiability is performed while selecting the form of the mean function µδ3 , since the

addition of the discrepancy function to the original model may cause non-identifiability. In

this example, there are 12 unknown parameters in G+µδ3 , i.e., p = 12, and the corresponding

matrix A is full rank, which suggests that the combination of the dielectric model and this

mean function is identifiable. In fact, the reason that there is no constant term in the mean

function is because the constant term is found to be unidentifiable.

Note that the model needs to be evaluated at all calibration experiment input points

in order to compute the likelihood function for a given parameter set. Due to limited

computational resources, we use only a subset of the experimental data (40 time points for

each combination of V and T ; total number of data points = 12 ∗ 40 = 480). As discussed in

Section 3.2.2, we further partition the selected data set into two sets (each with 240 data

points), one for calibration and the other for validation.

Due to the high number of parameters (up to 19), we use the Metropolis-Hastings Markov

chain Monte Carlo (MCMC) method [Hastings, 1970] to generate samples from the posterior

distribution. 500,000 samples are collected and the fitted marginal posterior PDFs of the

dielectric charging model parameters are shown in Fig. 5.2. Note that calibration using δ1

cannot be implemented in this example because the likelihood function remains zero for

any set of parameters, which suggests that the difference between the model and data is
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Figure 5.2: Marginal PDFs of dielectric charging model parameters

input-dependent and the assumption of constant model error is not valid. It can be observed

that the various choices of model discrepancy give significantly different posteriors for some

parameters. However, it is not clear which option is better until we perform the validation

step.

The aforementioned validation data set (240 data points) is used to assess the predictive

capability of the calibrated models. A graphical comparison between model predictions and
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data is shown in Fig. 5.3 (a)-(e), and the corresponding reliability metrics are shown in

Table 5.1.
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Figure 5.3: Comparison between the predictions of calibrated dielectric charging model and
validation data

The graphical comparison and the validation metric suggest that calibration without delta

or with δ3 (input-dependent Gaussian random variables) gives the best posterior prediction

of current density. However, it can be observed from Fig. 5.3 that the 95% probability

bounds of M0 and M3 are both small, whereas the probability bounds of M2, M4, and M5

give better coverage of the validation data. Thus, it is preferable to conduct the third step

of the proposed method in Section 3.2.2.2, which combines the various posteriors of model

parameters and model discrepancy based on the validation results. The model prediction

based on the combined distribution of model parameters and δ is shown in Fig. 5.3 (f), of

which the probability bound also gives a good coverage of the data.
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Table 5.1: Overall reliability of model predictions

M0 (No δ) M1 M2 M3 M4 M5

µir 0.86 - 0.58 0.82 0.37 0.36

Discussion In this numerical example, a complicated physics model with little information

on the model error is calibrated with experimental data. We applied the first-order Taylor

series expansion-based method in order to avoid parameter non-identifiability due to the

addition of a model discrepancy function. It is observed that the various options of δ can

lead to different calibration results, and the proposed three-step approach is implemented to

combine the posterior distributions of model parameters and model discrepancy, which leads

to accurate prediction while also accounting for the uncertainty in the form of model error.

5.3.2 Calibration of multi-physics models using interval and point

data

The target MEMS device of this example (denoted as Dev-1) shown in Fig. 5.4(a) is

used as a switch. The membrane deflects under some applied voltage, and will contact the

dielectric pad when the applied voltage exceeds a certain threshold. This threshold voltage is

called pull-in voltage (Vpl), and the device will be closed when the contact occurs. Pull-in

voltage is an important metric in the reliability analysis of the device after a certain period

of usage. Several models are needed to calculate the pull-in voltage, namely dynamic model,

electrostatic model, damping model, and creep model. A 1-D Euler-Bernoulli beam model is

used to simulate the dynamic behavior of the MEMS device [Ayyaswamy and Alexeenko,

2010]. The electrostatic model takes applied voltage and air gap (g) as inputs, and calculates

electrostatic loading as output. The damping model considers the gas pressure and air gap,

and the corresponding damping force is computed [Alexeenko et al., 2011]. The electrostatic
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loading, damping force, device geometry, material property, boundary condition, and time

are the inputs of the dynamic model. The creep model calculates the plastic deformation of

the device under long-term loading, and is coupled with the dynamic model. The unknown

parameters include Young’s modulus (E) and residual stress (σrs) in the dynamic model, and

the creep coefficient Ac in the Coble creep model [Coble, 1963; Hsu et al., 2011]. To predict

the pull-in voltage, an iterative method is used by varying the values of applied voltage, and

calculating the resulting maximum deflection of the beam. The pull-in voltage is equal to the

minimum value of applied voltage that causes the beam to be in contact with the dielectric

pad.

Ni membrane (Ti layer)

Dielectric (SiO2/Si3N4)

Au Pull-down electrode 
(Ti layer)

(a) Dev-1: Contacting capacitive RF MEMS switch (b) Dev-2: RF MEMS varactor

Figure 5.4: Example RF MEMS devices (Courtesy: Purdue PRISM center)

5.3.2.1 Different data on two devices

Due to the limitation of experimental resources, currently only the measurement data of

pull-in voltage at an early time point is available, and the data are collected on 17 Dev-1

devices with different geometries and initial positions. Because the pull-in voltage data are

obtained by keeping increasing the applied voltage by 5 volts until the switch becomes closed,

the data are reported in the form of intervals.
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Study of creep modeling has been separately performed for another type of device (denoted

as Dev-2, which has different boundary conditions from Dev-1 as shown in Fig. 5.4(b)), and

measurements of device deflection under constant voltage for a relative long time period

(∼700 hours) are available. Since these two types of devices are made of the same material,

the material-related parameters E and Ac can be considered as the same. A polynomial chaos

expansion (PCE) surrogate model is constructed based on 3-D membrane simulation for Dev-2,

with E and Ac as inputs and the deflection at three different time points t = [2lead00, 400, 600]

hours as output, i.e., gt2 = PCE(Ac, E) + δ2. δ2 is the model discrepancy term.

Dg

σobs2

ɛobs2

E

gt2

δ2

DV

σobs1

ɛobs1

Vpl

gt1

σrsδ1

Ac

Vpl,D gt2,D

Figure 5.5: Bayesian network

Based on the aforementioned models and data, we construct a Bayesian network as shown

in Fig. 5.5. Note that Ac is not directly related to pull-in voltage, since the calculation of pull-

in voltage at a given time point only requires dynamic simulation within microseconds, and

creep is negligible in such a short time period. Therefore the only common parameter between

the two physics models is E. The second and the third options presented in Section 3.4.2 are

both implemented for the purpose of comparison in this example, although the first option is

not considered due to its higher computation cost.
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The identifiability of the calibration parameters in the Bayesian network given the

available experimental data is checked using the first-order Taylor series expansion-based

method presented in Section 3.3. Since the measurement data of pull-in voltage for 17 Dev-1

devices will be directly used to calibrate the parameters (E, σrs, δ1) in the left half of the

Bayesian network in Fig. 5.5, we obtain a 17 ∗ 3 first-order derivative matrix A with rank

rA = 3, i.e., E, σrs, and δ1 are identifiable with these 17 data points of pull-in voltage. We

also examine the identifiability of parameters E, Ac and δ2 in the right half of the Bayesian

network with the deflection data of Dev-2 at the three test time points (200, 400, and 600

hours). In this case, the size of the matrix A is 3 ∗ 3 and the rank of A is 3, which indicates

that E, Ac and δ2 are all identifiable with the deflection data. Note that this method is not

applicable for σobs1 and σobs2, since the standard deviations of measurement noise are the

parameters of statistical models as stated in Section 3.3.

5.3.2.2 Calibration with information flowing from left to right in the Bayesian

network

Following the second option presented in Section 3.4.2, the left half of the Bayesian

network is considered first, i.e., the parameters E, σrs, δ1, and σobs1 are calibrated using the

pull-in voltage data. The prior and marginal posterior PDFs of E, σrs, δ1, and σobs1 are

plotted in Fig. 5.6. The prior PDFs are shown as red dashed lines, whereas the posterior

PDFs are shown as black solid lines (the same format applies to Figs. 5.7, 5.8, and 5.9). The

corresponding statistics are shown in Table 5.2. Note that all the prior PDFs used in this

example are assumed to be uniform, except for the prior PDF of the common parameter E in

the second step calibration, which is the posterior PDF obtained in the first step calibration.

Then, the parameters in the right half of the Bayesian network are calibrated using the

deflection data of Dev-2, and the posterior PDF of E obtained in the first step is used as
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Figure 5.6: Calibration of parameters using pull-in voltage data

Table 5.2: Prior and posterior statistics of parameters (with data on Dev-1)

Mean Standard deviation

Prior Posterior Prior Posterior

E (GPa) 196.0 195.5 5.78 5.76
σrs (MPa) 10.00 9.07 23.10 4.76
δ1 (Volt) 0 -4.27 20.22 10.35
σobs1 (Volt) 15.50 13.16 8.38 2.98

prior. Fig. 5.7 shows the prior and marginal posterior PDFs of E, Ac, δ2, and σobs2, and

Table 5.3 contains the corresponding statistics.
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Figure 5.7: Calibration of parameters using deflection data

5.3.2.3 Calibration with information flowing from right to left in the Bayesian

network

Following the third option presented in Section 3.4.2, the sequence of calibration in the

previous section is now reversed. First, the calibration parameter (E, Ac, δ2, and σobs2) in
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Table 5.3: Prior and posterior statistics of parameters (with data on Dev-2)

Mean Standard deviation

Prior Posterior Prior Posterior

E (GPa) 195.5 194.7 5.76 5.51
Ac 5.50e-7 5.85e-7 1.44e-7 1.35e-7
δ2 (µm) -0.050 -0.057 0.087 0.040
σobs2 (µm) 0.075 0.026 0.043 0.027

the right half of the Bayesian network in Fig. 5.5 are calibrated with the deflection data of

Dev-2. The prior and marginal posterior PDFs, and the corresponding statistics are shown

in Fig. 5.8 and Table 5.4.
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Figure 5.8: Calibration of parameters using deflection data

Table 5.4: Prior and posterior statistics of parameters (with data on Dev-2)

Mean Standard deviation

Prior Posterior Prior Posterior

E (GPa) 196 .0 195.1 5.78 5.57
Ac 5.50e-7 5.88e-7 1.44e-7 1.35e-7
δ2 (µm) -0.050 -0.054 0.087 0.040
σobs2 (µm) 0.075 0.025 0.043 0.027

Similarly to the previous section, the posterior PDF of the common parameter E obtained

in the first step of calibration is used as prior, and the parameters in the left half of the
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Bayesian network are calibrated using the pull-in voltage data of Dev-1. The calibration

results can be found in Fig. 5.9 and Table 5.2.
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Figure 5.9: Calibration of parameters using pull-in voltage data

Table 5.5: Prior and posterior statistics of parameters (with data on Dev-1)

Mean Standard deviation

Prior Posterior Prior Posterior

E (GPa) 195.1 194.7 5.56 5.51
σrs (MPa) 10.00 9.08 23.10 4.76
δ1 (Volt) 0 -4.22 20.22 10.35
σobs1 (Volt) 15.50 13.16 8.38 2.98

.

5.3.2.4 Discussion

In this example, the posterior PDFs of the parameters are computed directly using

trapezoidal integration rule as only 4 parameters need to be calibrated at one time. Uniform

grids are used for the numerical integration over the parameters, and the number of grid

points for each parameter is selected based on the convergence of the posterior density

computation. By comparing Figs. 5.7 and 5.8, or Tables. 5.3 and 5.4, we observe that the

second and the third options give similar posterior PDFs and statistics of the calibration

parameters. The same observation can be drawn from the comparison between Figs. 5.6

and 5.9, or Tables. 5.2 and 5.5. This is due to the fact that the posterior PDFs of the
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common parameter E obtained in the first step of these two options are not significantly

different from the uniform prior PDFs. Hence, the calibration in the second step, which uses

the posterior PDF of E obtained from the first step as prior, will give similar results to the

case that the uniform prior PDF is used. The relatively small difference between the prior

and posterior PDFs of E indicates that the available experimental data are insufficient to

reduce significantly the uncertainty about E. In addition, it can be observed from Tables. 5.3

and 5.5 that both the second and the third options give the same posterior statistics of E

after the two-step calibration, which is expected since in theory both options should give

π(E|D1, D2) as the calibrated PDF of E (D1 denotes the pull-in voltage data of Dev-1, and

D2 denotes the deflection data of Dev-2).

5.4 Bayesian network-based model validation

5.4.1 Validation of a damping model

In this section, the aforementioned model validation methods presented in Section 2.3

and Chapter IV are demonstrated via an application example on damping prediction for

MEMS switches. The quantity of interest is the damping coefficient, and the corresponding

computational model is a polynomial chaos expansion surrogate model. The validation data

are obtained from fully characterized experiments, and it is found that the directional bias

defined in Section 4.1 exists between model prediction and validation data.

5.4.1.1 Modeling of micro-scale squeeze-film damping

Within the framework of uncertainty quantification in the modeling of RF MEMS switches,

the validation of squeeze-film damping model emerges as a crucial issue due to two factors:

(1) damping strongly affects the dynamic behavior of the MEMS switch and therefore its
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lifetime [Snow and Bajaj, 2010]; (2) it is difficult to accurately model micro-scale fluid

damping and available models are applicable to limited regimes [Bidkar et al., 2009].

Two major sources of uncertainty have been shown to affect the prediction of gas

damping [Guo et al., 2010]. The first one is epistemic uncertainty related to the lack of

understanding of fundamental failure modes and related physics models. The second one

is aleatory uncertainty in model parameters and inputs due to variability in either the

fabrication process or in the operating environment. Uncertainty quantification approaches

usually require large numbers of deterministic numerical simulations. In order to reduce the

computational cost, a polynomial chaos expansion (PCE) surrogate model is constructed and

trained using solutions of the Navier-Stokes (N-S) equation for a few input combinations,

thus avoiding repetitively solving the N-S equation.

Based on the calculated damping coefficient values y(xj) at the quadrature nodes xj by

solving the Navier-Stokes Slip Jump model [Gad-el Hak, 2005], the PCE model ym(x) can be

constructed using Eqs. 2.38 and 2.39.

Therefore, for a given input combination xk, the prediction of damping coefficient based

on the PCE model is a random variable with normal distribution N(µm(xk), σm(xk)).

3

Ni membrane (~1‐3 m thick)
Ti layer (~250 A) 

Dielectric
(SiO2/Si3N4 ~200 nm )

Pull‐down electrode 
( Au ~0.5 m thick 
Ti layer ~ 250 A)

• Membrane
– Length ~ 400 m
– Width ~ 100 m
– Thickness ~ 1‐3 m

• N2 or air environment  (~ 1 atm)
• Actuation voltage ~ 40‐100V
• Hold down voltage ~ 5‐15V
• Switching frequency 100 Hz‐10 kHz
• Response time – 3‐10 microseconds

• Contacting capacitive RF MEMS 
switch

• Used for contact actuators and 
capacitive switches

• Metal membrane makes periodic 
contact with thin dielectric layer

Figure 5.10: Example RF MEMS switch (Courtesy: Purdue PRISM center)

The example RF MEMS switch modeled as a membrane is shown in Fig. 5.10. To
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construct a PCE model for the damping coefficient, the variables x need to be specified

first. A probabilistic sensitivity analysis shows that the membrane thickness t, the gap

height g, and the frequency ω are the major sources of variability in the damping coefficient.

Hence, these three variables are included in the PCE model and they are all measured in the

validation experiment, i.e., x = [t, g, ω]. The coefficients ai’s in Eq. 2.38 are the parameters

(θ) of the PCE model. Note that the parameters of this PCE surrogate model are estimated

using the simulation data {xj, y(xj)} from the Navier-Stokes Slip Jump model as shown

in Eq. 2.39, instead of using experimental data. Four different gas pressures - 18798.45

Pa, 28664.31 Pa, 43596.41 Pa, and 66661.19 Pa - are considered and correspondingly four

PCE models are constructed. This example uses a third order PCE model with Legendre

polynomial bases [Guo et al., 2010]. The representation accuracy of the surrogate model

can be quantified by the standard deviation (σm) of the surrogate model error term (εm)

in Eq. 2.40. In this example, the magnitude of σm is limited to less than 5% of the model

prediction over the training (sampling) domain, which we consider acceptable. However, it

should be noted that the validity of the surrogate model does not guarantee the validity of

the original model. We only have access to the surrogate model and validation experimental

data; therefore in this example we are only assessing the validity of the surrogate model.

If the original model is to be validated, the number of model evaluations needed to

compute a validation metric may be of interest in practice as the original model could

be computationally demanding in some problems. In general, z-test, t-test, and Bayesian

interval hypothesis testing require less number of model evaluations, since only the mean

and variance of the model output are used to compute the validation metric. More model

evaluations are needed in Bayesian equality hypothesis testing, the reliability-based method,

and the area metric-based method, since the entire probability distribution of model output

is needed. In this example, the output of each PCE model follows a normal distribution as
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shown in Eq. 2.38, which is fully described by the mean and variance. Therefore, the number

of surrogate model evaluations needed in each validation approach is the same.

5.4.1.2 Experimental data for validation

In the experiment, seven devices with different geometric dimensions are considered. For

each of the four pressures mentioned above, 5 tests are conducted on each of the seven devices

with slightly different frequencies, and hence 140 data points are collected. Since the input

set [t, g, ω] are recorded for each of the data points, these experiments are fully characterized

and the 140 data points correspond to 140 different test input combinations. That is to

say, there are 140 sample sets and each set contains only one sample. We assume that the

variability of samples in each sample set is due to measurement error, and measurement

errors for different test combinations are treated as statistically independent. Therefore, the

sample sets are also statistically independent from one another.

Fig. 5.11(a) shows a graphical comparison between the mean PCE model prediction and

experimental data under the four different pressures by aggregating predictions and data

with respect to the 35 test combinations for each pressure value. The top/bottom points are

correspondingly the maximum/minimum value of model mean predictions and experimental

data, and the square/diamond markers are the average values of predictions/data on the 35

test combinations. Note that Fig. 5.11(a) ignores the difference between the seven devices,

and thus should not be considered as a rigorous comparison. A more detailed graphical

comparison showing mean prediction of the PCE model vs. experimental data on each of the

individual test combinations is provided in Figs. 5.11(b)-(e).

From the graphical comparison, we can see that the PCE model performs better under

the middle two values of pressure. Also note that there is a systematic bias between the

PCE model and experimental observations at the low pressure value (18798.45 Pa), i.e., the

mean predictions of the PCE model are always larger than the experimental data.
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Figure 5.11: Graphical comparisons between PCE predictions and experimental data

5.4.1.3 Classical hypothesis testing

Because the sample size for each experimental combination is only 1, the t-test is not

applicable and instead z-test is used. The p-values calculated using Eq. 2.17 are shown in

Fig. 5.12. The dashed lines in Fig. 5.12 represent the significance level α = 0.05. The model is
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considered to have failed at the experimental combinations where the corresponding p-values

fall below the dashed line. Note that a more rigorous test will need to include the probability

of making type II error (β). The individual numbers of failures of the four PCE models are

shown in Table 5.6.
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Figure 5.12: p-value of z-test

Table 5.6: Performance of PCE models in z-test with α = 0.05

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

Number of failures 10 5 7 20
Failure percentage 28.6% 14.3% 20.0% 57.1%
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5.4.1.4 Bayesian hypothesis testing

Interval hypothesis on distribution parameters As discussed in Section 4.7, combi-

nation of two Bayesian hypothesis tests based on the interval null hypotheses H1
0 and H2

0

respectively can reflect the existence of directional bias. In practice, the parameters εµ, εσ1,

and εσ2 that define the intervals can be determined based on the strictness requirement of

validation. For the purpose of illustration, we set εµ = 0.025, εσ1 = −0.005, and εσ2 = 0.005.

µl and µu that define the possible range of µ are set as 0 and 1 respectively since the MEMS

device considered is under-damped. σl and σu are set to be 0.001 and 0.05 respectively. The

results of Bayesian interval hypothesis testings are calculated using Eq. 4.1 - 4.5, and are

shown in Fig. 5.13 and Table 5.7.
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Figure 5.13: Bayes factor in interval-based hypothesis testing (on logarithmic scale)
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Table 5.7: Performance of PCE models in interval-based Bayesian hypothesis testing with
logBth = 0

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

H1
0 :

−εµ ≤ µm − µ ≤ 0 # of failures 10 5 0 10
εσ1 ≤ |σm − σ| ≤ εσ2 Overall B 3.1 58.3 92.9 44.1

H2
0 :

0 ≤ µm − µ ≤ εµ # of failures 5 4 5 14
εσ1 ≤ |σm − σ| ≤ εσ2 Overall B 63.9 87.1 74.1 1.4

Combined test
# of failure 10 5 5 16
Failure % 28.6% 14.3% 14.3% 45.7%

Equality hypothesis on probability density functions The possible values of damping

coefficient range from 0 to 1 since the system is under-damped. Hence the limit of integration

in the denominator of Eq. 4.7 is [0, 1], while the limit of integration in the numerator is

[−∞,+∞].

The performance of the PCE models in Bayesian hypothesis testing are shown in Fig. 5.14

and Table 5.8. The values of Bayes factor are calculated using Eq. 4.7, and the threshold

Bayes factor Bth = 1 (this threshold value is chosen based on the discussion in Section 4.6).

Although the performance of the PCE model in terms of failure percentage is different for

the two hypothesis tests as shown in Table 5.6 and Table 5.8, if one increases the threshold

Bayes factor Bth to 2.88, which is calculated using Eq. 4.16 with p = 0.05 in Section 4.5.1,

the result of Bayesian hypothesis testing in terms of the number of failures becomes the same

as in the z-test in Section 5.4.1.3. The reason for this coincidence has been explained in

Section 4.5.1. Note that the performance of the second PCE model (for pressure = 28664.31

Pa) remains the same when Bth is raised from 1 to 2.88, and this can be easily observed from

Fig. 5.14(b).

By comparing the results based on interval hypothesis on distribution parameters and

equality hypothesis on probability density functions (Tables 5.7 and 5.8), it can be observed

that the performance of the PCE model for pressure 18798.45 Pa in the first test is significantly
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Figure 5.14: Bayes factor in equality-based hypothesis testing (on logarithmic scale)

worse than in the second test, while the models for the other three pressures have similar

failure percentages in these two tests. As shown in Fig. 5.11(b), the data are all located below

the mean predictions of this PCE model, which indicates the existence of directional bias,

and thus the PCE model for pressure 18798.45 Pa performs worse in the Bayesian interval

hypothesis testing.

5.4.1.5 Reliability-based metric

Fig. 5.15 and Table 5.9 show the calculated values of the reliability-based metric r, r1

and r2 (Eq. 2.24 and 4.24), the failure percentage of models with ε = 0.025 and the decision

criterion rth = 0.2325. This decision criterion is obtained using Eq. 4.20 with the significance

level α = 0.05, and thus the results of validation (comparing r with rth) in terms of failure
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Table 5.8: Performance of PCE models in equality-based hypothesis testing with logBth = 0

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

Number of failures 5 5 3 15
Failure percentage 14.3% 14.3% 8.6% 42.9%
Overall Bayes factor (log-scale) 7.4 57.2 72.3 -10.2

percentage are the same as in the z-test in Section 5.4.1.3. It can also observed that the

failure percentage of the PCE model for pressure 18798.45 Pa increases significantly in the

test that comparing r1 and r2 with rth/2 due to the existence of directional bias.
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Figure 5.15: Reliability-based metric
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Table 5.9: Performance of PCE models in reliability-based method with rth = 0.69

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

r vs. rth
Number of failures 10 5 7 20
Failure percentage 28.6% 14.3% 20.0% 57.1%

r1 and r2 vs. rth/2
Number of failures 20 7 12 25
Failure percentage 57.1% 20.0% 34.3% 71.4%

5.4.1.6 Area metric-based method

The area metrics for the four PCE models in both u-space and physical space are computed

using Eqs. 2.25 and 4.23, and the results are shown in Fig. 5.16 and Table 5.10. Note that

the PCE model for pressure 18798.45 Pa has the highest area value in u-space. This is due

to the directional bias between mean predictions and experimental data, and it is reflected in

the area metric as discussed in Section 4.7. Since the area metric in physical space (d(Fy, Gy))

can be interpreted as prediction error, the decision of rejecting/accepting the models can be

made by comparing the values of d(Fy, Gy) against a specified tolerance limit. If we use the

same tolerance limit ε = 0.025 as in the reliability-based method, the PCE model for pressure

66661.19 Pa will be rejected as the corresponding area metric (= 0.033) is larger than 0.025,

whereas the other three PCE models will be accepted.

Table 5.10: Area metric for PCE models

Pressure (Pa) 18798.45 28664.31 43596.41 66661.19

d(Fu, Su) 0.343 0.139 0.151 0.249
d(Fy, Gy) 0.024 0.014 0.013 0.033

5.4.1.7 Discussion

This section validated the PCE surrogate models for the MEMS switch damping coeffi-

cient using the validation methods presented in Section 2.3 and Chapter IV, and 140 fully
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Figure 5.16: Comparison of CDFs in the u-space and the physical space

characterized experimental data points. Based on the performance of the PCE model in these

validation tests, it can be concluded that the prediction of the PCE model has better agree-

ment with observation under the middle two values of pressure (28664.31 Pa and 43596.41

Pa), whereas less agreement can be found under the lowest and highest pressure values

(18798.45 Pa and 66661.19 Pa). The decision on model acceptance can be formed based on

the failure percentages with the hypothesis testing methods and the reliability-based method,

and the values of area metric, given the desired prediction error tolerance. It is shown that

the z-test and the reliability-based metric give the same results in terms of failure percentage

when rth is selected corresponding to the significance level α used in z-test. Similarly, classical

and Bayesian hypothesis testing give the same result by choosing a specific threshold Bayes

factor as shown in Section 4.5.1. It is also shown that the existence of directional bias can be
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reflected in the Bayesian interval hypothesis testing, reliability-based method with modified

intervals, and the area metric-based method. Models that have directional bias will perform

worse in these three validation methods than in classical hypothesis testing and in Bayesian

hypothesis testing with equality hypothesis on probability density functions.

5.4.2 Validation of calibrated dielectric charging model

The physical parameters calibrated using the compact model in Section 5.3.1 can be

used as inputs to a full simulation model, which predicts the number of trapped charges

in the dielectric pad after a period of sustained contact with the top electrode, and the

trapped charges affect the pull-out voltage. PCE surrogate models are constructed with these

parameters as inputs for different contact durations, and with change in pull-out voltage as

output. In order to validate the calibrated parameter distributions, changes in the pull-out

voltage of target devices due to 1, 10, 100, and 1000 millisecond of sustained contact with

holddown voltage = 120V are measured in experiments. 13 repetitive tests are performed

on 5 identical devices. The normalized histogram of experimental data and the predicted

probability density function of model prediction are shown in Fig. 5.17.

By treating the experimental data as uncharacterized, we can obtain the overall Bayes

factors for the four PCE surrogate models via the ensemble validation approach discussed in

Section 4.3.3, as showed in the individual titles of Fig. 5.17. The Bayes factors suggest that

the predictive capability of the model is acceptable (> 1) when the contact time is shorter

than 10ms, but the quality of model prediction gradually decreases with time.

5.4.3 Validation of calibrated creep model

The target MEMS device has also tested in order to validate the creep model calibrated

in Section 5.3.2. In the validation experiment, the creep deformations of four devices under

different constant amplitude voltages are recored for ∼ 50 hours. The collected deflection
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Figure 5.17: Validation of the calibrated dielectric charging parameters using pull-out voltage
data

data and the corresponding model predictions are shown in Figs. 5.18(a) - 5.21(a). Bayesian

equality hypothesis testing is applied and Bayes factors are computed for each time point,

and the values are shown in Figs. 5.18(b) - 5.21(b).

It can be observed from the graphical comparisons in Figs. 5.18(a) - 5.21(a) that the

model predictions do not match well with the validation data. This is in part due to the fact

that the experiments only last for less than 50 hours and the resulting creep deformations

are relatively small compared against measurement noise. The alternative hypothesis in the

Bayesian equality hypothesis testing is chosen to be a uniform distribution ranging from [0,
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Figure 5.18: Validation of the calibrated creep model using 25V data

1]. This is a weak alternative hypothesis since the range is relatively large compared against

the range of experimental data, which is the cause of high Bayes factor values at some time

points even when the graphical comparison is not satisfying. A more rigorous validation of

the creep model will require data collected from a longer time scale and more careful selection

of the alternative hypothesis.

5.4.4 Validation of device level simulation

By combining multiple physics models mentioned in Section 5.2, device level simulation

predicts pull-in and pull-out voltage. In the corresponding validation experiments, the pull-in

and pull-out voltages of seven target device are measured, and the test is repeated for 20

times. The histograms of the data are shown in Fig. 5.22. Because the 3-D membrane

model in the device level simulation is computationally demanding, two surrogate modeling

techniques, polynomial chaos expansion (PCE) and Gaussian process regression (GPR) are

used to approximate the original simulation with efficient surrogates. The 1-D Euler-Bernoulli

beam-based device level simulation is also approximated using a GPR surrogate model for

the purpose of comparison. Five variables, membrane thickness h, gap between one end of
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Figure 5.19: Validation of the calibrated creep model using 45V data

the membrane and the substrate g1, gap between the other end of the membrane and the

substrate g2, Young’s modulus E, contact height dc, are identified as inputs to the model and

experiments. Due to the precision of the measurement techniques, the geometry parameters

h, g1, and g2 are reported as intervals for each of the five devices. Direct measurements

of E and dc are not available, but the ranges of these two variables can be obtained via

multi-scale simulations [Koslowski and Strachan, 2011; Kim et al., 2012]. As described above,

each device corresponds to a combination of the input set [h, g1, g2, E, dc], which is in the

form of intervals. Thus, the validation data are partially characterized with 20 replicas.

Bayesian equality hypothesis testing is performed for each input combinations. Fig. 5.22(a)

shows a graphical comparison between the PDF of pull-in voltages generated using the PCE

surrogate model, and the PDF of pull-in voltages generated using the GPR surrogate model

(GPR MEMOSA denotes the surrogate for the 3-D membrane model-based simulation, and

GPR CG denotes the surrogate for the 1-D beam model-based simulation), and the histogram

of experimental data. Similarly, Fig. 5.22(b) shows a graphical comparison between pull-out

voltage predictions and experimental data. The corresponding Bayes factors are showed in

the titles of the sub-figures of Fig. 5.22.
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Figure 5.20: Validation of the calibrated creep model using 58V data

We also apply the ensemble validation approach to obtain the overall Bayes factor. Each

of the five input variables has seven individual intervals corresponding to the seven devices,

and these intervals are combined into a single one by simply taking the minimum value

of the lower bounds and the maximum value of the upper bounds. Unconditional model

predictions are obtained by treating the input variables as uniformly distributed with the

combined ranges, and propagating the uncertainty from the input to the output as showed

in Eq. 4.10. Fig. 5.23 shows the graphical comparisons between the unconditional model

predictions and the histogram of all experimental data, and the corresponding Bayes factors

are showed in the titles of the sub-figures.

The validation results showed in Fig. 5.22 and Fig. 5.23 suggest that the overall perfor-

mance of the device level simulation is not satisfying although the prediction matches well

with the data at some input combinations. These results could be partly due to surrogate

model errors, since the current surrogate models are constructed based on a limited number

of training points. Adaptive training algorithms [Hombal and Mahadevan, 2011] for Gaussian

process surrogate model are currently under investigation in order to obtain a more accurate

approximation of the original simulation.
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Figure 5.21: Validation of the calibrated creep model using 30V data
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Figure 5.22: (a) Validation of pull-in voltage prediction. (b) Validation of pull-out voltage
prediction

5.5 Reliability of the target device

In this section, we study the reliability of the target device considering failure due to

dielectric charging, which causes the performance variables, the pull-in and pull-out voltages,

to decrease with time. For the purpose of illustration, the device ”Die 10 D2” is assumed to

be the target device, and the surrogate model ”GPR CG” of device level simulation validated

in Section 5.4.4 is used to predict the initial pull-in and pull-out voltage for given values
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Figure 5.23: (a) Ensemble validation of pull-in voltage prediction. (b) Ensemble validation
of pull-out voltage prediction

of h, g1, g2, E, and dc. ”GPR CG” is selected because the corresponding Bayes factor for

pull-out voltage prediction of the device ”Die 10 D2” is significantly higher than the other

two surrogate models. The Bayes factors obtained in the validation exercise can be used to

derive the posterior probabilities of model being correct Pr(H0|D) and model being incorrect

Pr(H1|D). In order to include the uncertainty in the model prediction, the Bayesian model

averaging approach described in Section 4.6 can be used to obtained a combined probability

distribution of Vpi or Vpo as

π̄(Vpi) = π0(Vpi)Pr(H0|D) + π1(Vpi)Pr(H1|D)

π̄(Vpo) = π0(Vpo)Pr(H0|D) + π1(Vpo)Pr(H1|D) (5.2)

where π0(Vpi) and π0(Vpo) are the probability density functions of Vpi and Vpo predicted using

the model; π1(Vpi) and π1(Vpo) are the probability density functions of Vpi and Vpo considered

in the alternative hypothesis H1. The combined PDFs π̄(Vpi) and π̄(Vpo) are showed in

Fig. 5.24,

Further, surrogate models are constructed for changes in pull-in and pull-out voltages due
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Figure 5.24: Inclusion of model uncertainty in pull-in and pull-out voltage prediction

to dielectric charging, with the dielectric charging model parameters and contact duration as

input arguments. By incorporating the probability distribution of the device level simulation

input [h, g1, g2, E, dc] and the calibrated dielectric charging model parameters, we can

obtain the failure probability of the target device as a function of time. For the purpose of

illustration, the hold-down voltage is set to be 120V, and the failure criteria are set to be

Vpi < 50.0V or Vpo < 0.1V . The prediction of failure probability without the inclusion of

model uncertainty in the prediction of initial Vpi or Vpo is showed in Fig. 5.25, whereas the

prediction of failure probability that includes model uncertainty in predicting initial Vpi or

Vpo is showed in Fig. 5.26.

It can be observed from Fig. 5.24 that the combined probability density functions (PDF)
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Figure 5.25: Probability of failure of the target device without the inclusion of model
uncertainty

of the initial pull-in and pull-out voltage are significantly wider than the surrogate model

prediction. Correspondingly, more uncertainty can be observed in the predictions of Vpi and

Vpo at future time instants, as showed in Fig. 5.26.

5.6 Conclusion

In this chapter, we constructed an overall Bayesian network approach to integrate various

aspects of uncertainty quantification towards the reliability prediction of a MEMS device.

Bayesian model calibration was extended to multi-physics models to quantify the un-

certainty in model parameters and model form. Various options of model discrepancy were
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Figure 5.26: Probability of failure of the target device with the inclusion of model uncertainty

investigated in the calibration of the dielectric charging model, and different posterior prob-

ability distributions of model parameters and discrepancy were obtained. The three-step

approach proposed in Section 3.2.2 was applied to assess the calibrated model in order to help

the analyst select or improve the model discrepancy formulation. The sequential strategies

outlined in Section 3.4 were implemented to calibrate residual stress and creep coefficient

using two physics models and the corresponding experimental data.

Predictive capability of the simulations at the model level and the device level was

assessed using quantitative model validation methods with fully and partially characterized

experimental data. Ensemble validation was also performed to obtain an overall measure of

model validity.
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Based on the calibrated and validated physics-based models and surrogate models, pre-

diction for the time-varying reliability of the target device was obtained, which incorporates

the uncertainty from different levels of the system.
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CHAPTER VI

INCLUSION OF TIME-DEPENDENT INPUT MONITORING DATA

6.1 Introduction

Quantifying the uncertainty due to the use of approximate models in time-dependent

reliability analysis was the focus of Chapter V. In addition, time-varying load applied to

engineering systems as an input may also contribute to the uncertainty in reliability prediction.

Tremendous research efforts have been devoted to the modeling and simulation of random

load using the theory of stochastic process, especially in the area of earthquake and foundation

engineering [Shinozuka and Deodatis, 1991; Deodatis, 1996; Phoon et al., 2002]. Based on

the established load models, this chapter will further focus on quantifying the uncertainty

in time-dependent load via the inclusion of real-time monitoring data, with application

developed for fatigue loading.

Background of application The fatigue process of mechanical components under service

loading is stochastic in nature. Therefore, methodologies for uncertainty quantification and

propagation have been developed [Doebling and Hemez, 2001; Farrar and Lieven, 2007; Gupta

and Ray, 2007; Pierce et al., 2008; Sankararaman et al., 2009] for probabilistic crack growth

and life prediction. Among the various uncertainty sources considered, including natural

variability, data uncertainty and model uncertainty, past experimental studies have suggested

that the variability and uncertainty in the load spectrum have considerable influence on crack

growth behavior and fatigue life [Moreno et al., 2003; Zapatero et al., 2005; Wei et al., 2002].

In addition to the extensive efforts that have been devoted to generate deterministic load

spectra [Heuler and Klatschke, 2005; Xiong and Shenoi, 2008], it is desirable to characterize
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the uncertainty in the load spectrum based on data from monitoring systems, and develop

robust future load prediction capability for damage prognosis.

Two types of methods have been developed to model the fatigue load spectrum, namely

cycle counting methods and random process methods. The cycle counting methods extract

counting matrices from load amplitude data, containing the information on the number

of cycles, the mean value and the range of each cycle [ASTM, 2005]. Among various

cycle counting methods, has been considered as the most efficient and accurate [Dowling,

1972]. Further, following certain rules, load history can be regenerated from the counting

matrices [Khosrovaneh and Dowling, 1990]. The cycle counting methods can be directly

applied to the estimation of fatigue damage by using an S-N curve-based fatigue damage

cumulative law, such as the Palmgren-Miner linear rule [Miner, 1945]. The random process

methods characterize fatigue load spectrum as a stochastic process. The Markov chain method

treats loading as a discrete time Markov chain with stationary transition probabilities [Krenk

and Gluver, 1989; Rychlik, 1996], retaining the correlation between adjacent turning points

(load extrema). Note that load amplitudes are discretized into different levels in both the

Markov chain method and the cycle counting method, and hence a relatively large transition

matrix is required if the variation of loading amplitude is high. Further, it is assumed that

the next turning point depends only on the previous turning point. This assumption may

not be valid if strong autocorrelation exists in the load spectrum.

Frequency domain-based methods and time domain-based methods have been investigated

to model the load spectrum as a random process with continuous state space (i.e., load extrema

are not discrete) and more flexible autocorrelation assumption. Frequency domain-based

methods characterize loading with power spectral density, spectral moments and bandwidth

parameters, and these characteristics are related directly to fatigue damage estimation [Tovo,

2002; Benasciutti and Tovo, 2005, 2007]. The application of frequency domain-based methods

to fatigue damage prognosis is not straightforward since prognosis-related issues, such as risk
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assessment and management, inspection and maintenance scheduling, operational decision-

making, etc., are mainly defined in the time domain. The autoregressive moving average

(ARMA) method [Box et al., 1994] is based on time series analysis and characterizes the

fatigue load spectrum in the time domain. Available studies identify the order of the ARMA

model based on some criteria, and then estimate the value of the unknown parameters of

the model using time series data. The parameters are assumed to be deterministic and the

variability and the uncertainty of loading are represented by a random noise term [Leser

et al., 1994, 1998]. Several important issues remain unresolved. (1) It is unclear what

order of model should be selected when several model orders have similar performance under

identification criteria, and sometimes it is desired to incorporate multiple competing models.

(2) The variability in loading comes from various environmental factors and the underlying

mechanisms of the load spectrum can be complicated, and hence it may not be appropriate

to lump all the variability into one single noise term. (3) The data used to estimate the

ARMA model coefficients may not be sufficient and cause additional uncertainty.

It should be noted that all of the three aforementioned methods are applicable for

stationary load spectra, i.e., the statistics of loading are assumed to be constant with respect

to time. In practice, the loading condition may be non-stationary. Leser et al. [Leser et al.,

1994, 1998] used a truncated Fourier series to account for the non-stationary part of the

loading history and model the stationary part with an ARMA model. The Fourier series

fitted from the time series data is periodic with the length of the data as period, but the

real load history may not be periodic. Therefore, a more general modeling framework that

accounts for the non-stationary load spectrum is desired.

While all the three above methods can predict future loading, it is also beneficial to know

which method provides more accurate prediction before a particular method is chosen to

apply to prognosis. The assessment of the confidence in the predictions of these methods

can be done using model validation [Sargent, 2005]. Several types of validation techniques,
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such as conceptual, graphical, and quantitative validation, have been developed based on

comparisons between data and model predictions [Knepell and Arangno, 1993]. Conceptual

and graphical validation methods are shown inadequate in some conditions [Defense Modeling

and Simulation Office, 1996]. Rebba et al. [Rebba et al., 2006] proposed a quantitative metric

based on Bayesian hypothesis testing to validate computational models with controlled input,

considering the measurement uncertainty in experimental data. This metric needs to be

extended to assess the confidence in the prediction of fatigue loading using time series data,

and the uncertainty in the model needs to be included.

The first part of this chapter investigates stochastic characterization and reconstruction

of fatigue load history using the aforementioned methods, i.e., rainflow counting, the Markov

chain method, and the ARMA method. The ARMA approach is found to be most versatile

and useful for prognosis, and is adapted to include all three types of uncertainty -- natural

variability, data uncertainty, and model uncertainty. The parameters of the ARMA model are

assumed to be random variables with unknown probability distributions that are constructed

to represent both the natural variability of loading and the uncertainty from sparse data.

A probabilistic weighting method is applied to the ARMA model to incorporate multiple

competing models (model uncertainty).

In the second part of this chapter, a continuous model updating approach based on real-

time monitoring data is proposed to account for the time-variant features of the load history.

Direct updating of the characteristic matrices is applied to the rainflow counting method

and the Markov chain method. A Bayesian approach is used to update the probabilistic

weights and coefficients of ARMA model. The relation between updating interval and the

accuracy of model predictions is evaluated quantitatively. Further, a quantitative model

validation method based on Bayesian hypothesis testing is proposed to assess the confidence

in the prediction from the three different loading models, which can help in the selection of
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the most suitable model for damage prognosis. The proposed techniques are illustrated with

numerical examples.

6.2 Characterization of load history

Section 6.2 discusses three different methods to characterize applied load based on available

history data. Based on the models constructed, random samples of the anticipated load

spectrum can be generated and used in stochastic fatigue damage prognosis. Note that the

focus of this section is to stochastically characterize a random loading history, i.e., the real

and reconstructed load histories are expected to be statistically equivalent, which is in terms

of the characteristic matrix (i.e., counting matrix in the rainflow method and transition

probability matrix in the Markov Chain method). The uncertainty quantification in loads

will help further quantify the uncertainty in the prognosis output, like the remaining useful

life.

6.2.1 Rainflow counting method and stochastic reconstruction

Among the well-established counting methods, the two-parameter rainflow counting

method has the greatest significance for fatigue life prediction as it fully captures the basic

damaging elements (the number, amplitudes, and mean values of load cycles) of a load

history [Heuler and Klatschke, 2005], and can be used for uncertainty quantification of the

variable amplitude load spectrum.

Following a certain set of rules [ASTM, 2005], the rainflow counting method extracts and

counts cycles of various amplitudes and mean values, leaving only a residue behind. These

load cycles are considered to be the basic elements of a load sequence. The final counting

result is contained in a matrix A of size k*k, in which the element a ij gives the number of
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counted cycles from load level i to load level j, and k is the number of load discretization

levels [Amzallag et al., 1994].

Rainflow reconstructions are based on the idea of extracting cycles from the rainflow

matrix and placing them in valid locations [Dressler et al., 1997]. Several rules are defined

to ensure that cycles are inserted in such a way as to yield a similar rainflow matrix as

the original signal [Khosrovaneh and Dowling, 1990]. Instead of calculating the fatigue

life of a component based on a single load sequence, stochastic reconstruction allows for

statistical evaluation of the fatigue life based on numerous load sequences that have the

same statistical properties as the original spectrum. It should be noted that this method

assumes that the original spectrum is representative of the typical load spectrum experienced

by the component since all reconstructions are based on the rainflow matrix calculated from

the original signal. The regenerated loading histories are equivalent in terms of the damage

calculated by some ‘‘macroscopic” methods like the Palmgren-Miner rule, but will yield

different crack growth results if fracture mechanics-based models are adopted. A modified

rainflow algorithm accounting for the load sequence effect has also been developed [Anthes,

1997], and the regenerated loading histories can yield similar crack growth results using

fracture mechanics-based models.

6.2.2 Markov chain method and transition probability matrix

For a realistic loading history, not only is the load amplitude at a certain time instant

random, but the load amplitudes at adjacent time instants may also be correlated, e.g., the

amplitude at time instant T k can affect the amplitude at time instant T k+1. Given this

assumption, fatigue loading history with m discrete load levels is modeled as a discrete time

Markov chain {X n}, which is a Markov stochastic process whose state space (the set of

discretized load levels) is a finite set, and for which n is a discrete time instant ( n = T 0, T 1,

T 2, . . . , ) [Karlin, 1966]. Let event E k,i denote that the loading amplitude at time instant
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T k is equal to load level i, and let event E k+1,j denote that the loading amplitude at T k+1 is

equal to load level j. A one-step transition probability P k,k+1
i,j between E k,i and E k+1,j is

defined as the probability of E k+1,j, given E k,i, i.e.,

P k,k+1
i,j = Pr(Ek+1,j|Ek,i) (6.1)

With a further assumption that the one-step transition probability is independent of the

time instants, i.e., the transition probability between E k,i and E k+1,j depends on i and j only,

P k,k+1
i,j becomes stationary and can be simplified as P i,j. which forms a stationary Markov

chain transition probability matrix P. Note that the fatigue load spectrum is a series of

extreme points, i.e., it is formed by minimum -- maximum -- minimum - . . . , etc. Hence,

the transition matrix P is split into two triangular matrices Pu and Pl. The elements of the

upper triangular matrix Pu are the transition probabilities from minima to maxima, whereas

the elements of the lower triangular matrix Pl are the transition probabilities from maxima

to minima.

Given a load spectrum with discrete load levels from time T 0 to T e, P i,j can be estimated

using the number of occurrences that the event E k,i is followed by the event E k+1,i, i.e.,

Ci,j =
e−1∑
k=0

Ii,j(k) (6.2)

Pi,j =

Ci,j/
m∑

j=i+1

Ci,j i < j, Pi,j ∈ P u

Ci,j/
i−1∑
j=1

Ci,j i > j, Pi,j ∈ P l

(6.3)

where I i,j(k) is an indicator function:

Ii,j(k) =
0 if Ek,i is followed by Ek+1,j

1 if Ek,i is not followed by Ek+1,j

(6.4)
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For example, consider a load history data containing four load levels [2, 1, 3, 4, 1, 4, 1, 4,

1, 3, 1, 3, 4], the corresponding C matrix is calculated as: [0, 0, 3, 2; 1, 0, 0, 0; 1, 0, 0, 2; 3,

0, 0, 0], and the resulting P matrix is: [0,0, 0.6, 0.4; 1, 0, 0, 0; 1, 0, 0, 1; 1, 0, 0, 0].

Once the transition matrix is obtained, random samples of loading history can be conve-

niently generated from a given initial extreme point.

6.2.3 ARIMA process loading

6.2.3.1 Autoregressive integrated moving average (ARIMA) model

The autoregressive integrated moving average (ARIMA) model is widely used in time

series analysis for its flexibility. The expression of ARIMA model can be better explained by

first introducing the ARMA model, which is a mix of the autoregressive (AR) and moving

average (MA) models. AR model represents the value at the current time instant in terms of

the values at the previous time instants. Hence, it is capable of capturing the autocorrelation

between time series. MA model represents the deviation of the series at the current time

instant from its mean value as a linear combination of errors in the past time instants.

Combining a pth order AR model and a qth order MA model, an ARMA(p, q) model is

obtained as [Hanke and Wichern, 2005]

Yt = ϕ0 + ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p +

εt − ω1εt−1 − ω2εt−2 − ...− ωqεt−q (6.5)

where Yt is the value at time instant t; Yt−i is the value at time instant t− i (there are i time

lags before t); ϕi is the coefficient of the AR model; εt is the random noise term with respect

to time instant t; εt−i is the random noise term at time instant t− i; ωi is the coefficient of

the MA model.

ARMA models are used to describe stationary time series, i.e., the mean of the underlying
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process does not change with time. For processes with time-varying mean, we can use an

ARIMA model with order (p, d, q), which is defined by summing (or ”integrating”) an

ARMA(p, q) process d times [Box et al., 1994]. For example

Yt+1 = Yt + OYt if d = 1

Yt+1 = 2Yt − Yt + O2Yt if d = 2

where OdYt is an ARMA process (the expression can be obtained by replacing Yt in Eq. 6.5

with OdYt).

To account for the natural variability in loading and the uncertainty due to insufficient

data, the coefficients of the ARIMA model are assumed as random variables. Therefore the

output of an ARIMA(p, d, q) model (denoted as Mi) also becomes an random variable, of

which the probability density function can be written as

π(Yt|Mi) =

∫ (
π(Yt|Mi,ϕ

i,ωi,Y−t)

π(ϕi,ωi)π(Y−t|Mi)
)
dϕidωidY−t (6.6)

where Y−t is the vector containing the model outputs in the previous time steps Yt−1, Yt−2,

..., Yt−p. π(Yt|Mi,ϕ
i,ωi,Y−t) is the conditional probability density function of output Yt

for this ARIMA model Mi and its associated parameters ϕi and ωi, which can be derived

from Eq. 6.5. π(Y−t|Mi) is the joint probability density distribution of model outputs in the

previous time steps, which is obtained using Eq. 6.6 in the previous time steps. π(ϕi,ωi)

is the probability density function of ϕi and ωi, which can be assumed as uniform at the

beginning of prognosis if no prior information is available.
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6.2.3.2 Identification of ARIMA model

The first step to build an ARIMA model is to identify its orders p, d, and q. The order

of differentiation d can be determined by examining if the time series become stationary

after the d-th differentiation. The sample autocorrelation function and the sample partial

autocorrelation function of the stationary time series data obtained from differentiation can

be used to help identify p and q.

The autocorrelation function (ACF) for a stationary time series Y with mean µ and

standard deviation σ is defined as:

ρk =
E[(Yt − µ)(Yt+k − µ)]

σ2
(6.7)

where the operator E refers to the expected value; ρk is the autocorrelation function for time

lag k, i.e., the correlation between Y t and Y t+k.

The partial autocorrelation function (PACF) at time lag k is defined as a measure of

the correlation between Y t and Y t+k without accounting for the effects of the values at

intermediate time instants (Y t+1, . . . , Y t+k-1) . Derivation and estimation of the partial

autocorrelation function are given in [Box et al., 1994].

It is known that each ARMA model has a unique pattern for its ACF and PACF [Hanke

and Wichern, 2005]. For an ARMA(p, 0 ) model, its ACF dies out gradually while the PACF

shows a cutoff after time lag p. For an ARMA(0, q) model, its ACF cuts off after time lag q

while the PACF dies out slowly. For an ARMA(p, q) model, both the ACF and the PACF

exhibit a smoothly decaying pattern [Box et al., 1994]. Hence, if the sample ACF and the

sample PACF of the time series data match the theoretical pattern of a certain ARMA(p, q)

model, this ARMA model with orders p and q is identified as the model desired.

However, subjectivity is involved while visually comparing the sample ACF and PACF

with the theoretical values. To address the identification problem, a tentative initial model
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is first selected, and then the parameters and residuals associated with the selected model

are estimated using the least square method. Hereafter, some statistics or criteria are used to

check for adequacy; if the tentative model is shown to be inadequate to represent the data, it

may be replaced by another model. The Ljung-Box Q statistic [Ljung and Box, 1978], which

is a function of the residual autocorrelations and is approximated as a chi-square random

variable, is used here to check the adequacy of the tentative model. The formula for Q is:

Qm = n(n+ 2)
m∑
k=1

r2
k

n− k (6.8)

where Qm is a chi-square variable with m-r degrees of freedom, and r is the number of the

estimated parameters in the ARMA model; r k is the residual autocorrelation at time lag k ;

n is the number of residuals; and m is the number of time lags considered in this test. If

the p-value, which is equal to (1 - the cumulative probability of Q evaluated at Qm), is not

large enough, this tentative model is rejected.

6.2.3.3 Uncertainty in the ARIMA model

Real-time monitoring of the loads which will be used to estimate the accumulated fatigue

damage is commonly known as Operational Loads Monitoring (OLM), which is part of a

Health and Usage Monitoring System (HUMS) [Staszewski et al., 2004]. Two techniques

have been applied to implement OLM, namely flight parameters-based loads monitoring

and strain gauge-based loads monitoring. The flight parameters-based loads monitoring

method uses built-in sensors of the aircraft to measure the parameters related to acceleration

and mass, and then this information is used to estimate the loading sequence experienced

by the components. The strain gauge-based loads monitoring method requires additional

strain gauges to measure strain sequences at some chosen discrete locations, and then the

recorded data is input to a pre-built load model to obtain loading sequence at any location

of interest on the components. The measurement technique and the projection from raw
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data to a well-defined loading history inevitably cause variations and errors. Hence, the use

of the loading sequence data from OLM in fatigue damage prognosis becomes a source of

uncertainty.

In previous studies [Leser et al., 1994, 1998], the coefficients of ARIMA model have been

treated as deterministic and estimated through a moment estimator. The inherent variability

of loading amplitude and uncertainty from data are incorporated into the single noise term

εt, which is assumed as an independently and identically distributed random process with

zero mean and constant variance. Mechanical components usually work under complicated

operating environments and many factors contribute to the variability of loading amplitudes.

The uncertainty due to limited amount of data can also be significant. Therefore, a single

noise term is not always sufficient. To accurately capture the aforementioned variability and

uncertainty, the parameters - ϕ and ω - of ARIMA model, along with the noise term εt, can

be assumed to be random variables. At the beginning of prognosis, if no information about

the probability distributions of ϕ and ω is available, a uniform prior distribution may be

assumed and further calibrated by usage monitoring data based on Bayes theorem, which

will be explained in detail in Section 6.3.2.

Besides inherent variability of loading amplitudes and uncertainty from data, additional

uncertainty arises in the selection of the appropriate ARIMA model, which is referred

to as model form uncertainty. When multiple competing models can be considered, the

tentative model identification method with the Q statistics can help eliminate models that are

insufficient to represent the data, and there may still be several competing models left. The

risk of choosing a single incorrect model can be reduced by considering several possible models.

A straightforward way to incorporate multiple models is to assign a probabilistic weight to

each of the competing models [Zhang and Mahadevan, 2000]. The probabilistic weight PMi

for the model M i represents the probability of the model M i being correct. Combining the

uncertainty in the ARIMA model parameters and the probabilistic weights, the probability
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density function of the fatigue loading amplitude at time t is

f(Yt) =
n∑
i=1

PMi

∫
f(Yt|Mi, ϕ

i, ωi, Y−t)f(ϕi, ωi)f(Y−t)dϕidωidY −t (6.9)

where Y-t is the vector containing the model outputs in the previous time steps Y t-1, Y t-2 ,

. . . , Y t-p, and M i‘s (i = 1, 2, . . . , n) are the competing models. f (Y t|M i,ϕ
i,ωi,Y-t) is the

conditional probability density function of loading amplitude Y t for a given ARIMA model

M i and its associated parameters ϕi and ωi, which can be derived from Eq. 6.5. f (Y-t) is

the joint probability density distribution of loading amplitudes in the previous time steps,

which is obtained using Eq. 6.9 in the previous time steps. f (ϕi,ωi) is the probability density

function of ϕi and ωi, which can be assumed as uniform at the beginning of prognosis if

no prior information is available. Similarly, all the values of probabilistic weights PMi’s

can be assumed as 1/n if no information is available to support any single model. These

prior assumptions can be calibrated based on usage monitoring data, as will be discussed in

Section 6.3.2.

Once the probability distribution of loading amplitude with respect to time instant t is

obtained, samples of future anticipated loading can be generated and applied in probabilistic

fatigue prognosis.

6.3 Statistical updating of load models based on real-

time monitoring data

The samples of anticipated load history required in stochastic fatigue prognosis can be

generated through any of the three methods presented in Section 6.2 based on the available

data. An assumption underlying the application of these methods is that the available

data fully represent the load history and provides sufficient information to predict future
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loading. This assumption is challenged when the available data is limited and significant

uncertainty exists. Further, the characteristics of loading may vary gradually with time, due

to the change in operating environments of mechanical components. A continuous updating

approach for each of the three load modeling methods is therefore proposed in this section

based on real-time monitoring data. Section 6.3.1 presents a direct updating scheme for

both the rainflow counting method and the Markov chain method. Section 6.3.2 presents a

Bayesian approach for updating the ARIMA model.

6.3.1 Direct updating of the characteristic matrix

Both the rainflow counting method and the Markov chain method characterize fatigue

load spectrum with a single matrix. In the rainflow counting method, the counting matrix

stores the number of cycles from one load level to another load level; in the Markov chain

method, the transition probability matrix stores the transition probability from one load

level to another load level. As mentioned in Section 6.2.1 and 6.2.2, the elements of these

two characteristic matrices are obtained based on the available load amplitude data, and

samples of load spectrum can be generated. Once a new set of data is collected, the rainflow

counting method and the Markov chain method are applied to obtain updated characteristic

matrices. If the pattern of new data is different from the previous data, it can then be

incorporated into the updated characteristic matrices. For the rainflow counting method, a

new counting matrix can be obtained from the new data set, and it can be added directly to

the previous characteristic matrix to obtain an updated matrix. Similarly for the Markov

chain method, a new C matrix can be derived from the new data set, and then the addition

of the new C matrix and the previous C matrix forms an updated C matrix. The elements

C i,j are calculated by summing the indicator functions as shown in Eqs. 6.2 and 6.4. An

updated transition probability matrix can be obtained from this updated C matrix as shown
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in Eq. 6.3. The updated characteristic matrices of these two methods can then be used to

generate samples of load spectrum for the next period of prognosis.

6.3.2 Bayesian updating of the ARIMA model

6.3.2.1 Model Calibration based on the Bayes Theorem

Considering one of the competing ARIMA models M i, with the associated parameters

ϕi and ωi, the load amplitude Y t is predicted as:

Yt = Mi(ϕ
i, ωi, t, Y−t) (6.10)

Note that the model M i contains uncertainty from the random noise terms εt, εt-1, . . . ,

ε0, in addition to the variability in its parameters. The noise terms are assumed to be normal

random variables with zero mean and variance σ2
ε . σ

2
ε can be estimated by comparing the

model predictions with available data set D, as follows:

σ2
ε =

1

n− 1

n∑
k

[YDk − Ytk)]2 (6.11)

where Y Dk is the k th element in the data set, and Y tk is the corresponding prediction of the

model M i with given values of parameters ϕi and ωi; n is the number of the data points

considered.

The conditional probability density function f (Y t|M i,ϕ
i,ωi,Y-t) of the model output Y t

of M i for given values of ϕi and ωi can be constructed based on Eqs. 6.10 and 6.11 and the

probability distributions of the noise terms. Monte Carlo simulation can be used to estimated

f (Y t|M i,ϕ
i,ωi,Y-t).

Assuming a joint prior distribution f (ϕi,ωi) for ϕi and ωi, the calibrated distribution of
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ϕi and ωi given a collection of data D, f (ϕi,ωi |D), is obtained as:

f(ϕi, ωi|D) =
L(ϕi, ωi)f(ϕi, ωi)∫

L(ϕi, ωi)f(ϕi, ωi)dϕidωi
(6.12)

where the likelihood function of ϕi and ωi, L(ϕi,ωi), is the probability of observing the

collected data for given values of ϕi and ωi, which is calculated as:

L(ϕi, ωi) =

∫
f(YD|Mi, ϕ

i, ωi, Y−t)f(Y−t)dY −t (6.13)

By assuming the data points are independent of each other, Eq. 6.13 can be further

written as:

L(ϕi, ωi) =
n∏
k=1

∫
f(YDk|Mi, ϕ

i, ωi, Y−t)f(Y−t)dY −t (6.14)

The probabilistic weight of M i, i.e., the probability of M i being the correct model, can be

calibrated using Bayes’ theorem as:

P (Mi|D) =
L(Mi)P (Mi)∑
i L(Mi)P (Mi)

(6.15)

where P(M i) and P(M i|D) are the prior weight and updated weight, respectively; L(M i)

is the likelihood function of M i, that is, the probability of observing the data with the

assumption that M i is the correct model. L(M i) is calculated as:

L(Mi) =

∫∫
L(ϕi, ωi)f(ϕi, ωi)dϕidωi (6.16)

6.3.2.2 Continuous Bayesian updating of the ARIMA model

Model calibration based on the Bayes theorem can be applied to the ARIMA model

continuously with real-time monitoring data. The updated model can then represent the

pattern of the latest data without losing information contained in the previous data sets.
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In addition, Bayesian updating can reduce the uncertainty in the model coefficients and

the selection of models as more data are used. The continuous Bayesian updating can be

implemented following the five steps shown below:

(1) At the beginning of prognosis, by using the initial set of data, the ARIMA models

satisfying the Q statistic based-criteria (Eq. 6.8) are identified as competing models. If no

prior information about the probability distribution of the corresponding model parameters,

uniform distributions are first assumed as the priors. Note that these uniform distributions

are independent because the model parameters are random variables independent from each

other. Similarly, if no model is preferable from the prior knowledge, they are assumed to be

equally weighted.

(2) The probability distributions of model parameters and probabilistic model weights

are calibrated using Eq. 6.12 and Eq. 6.15 as mentioned in Section 6.3.2.1.

(3) With the estimated distributions of model parameters and weights, the probability

distribution of predicted loading amplitude with respect to time is obtained using Eq. 6.9.

Samples of the load spectrum are then generated with sampling techniques and applied in

fatigue prognosis.

(4) After a new set of monitoring data is collected, Step (2) is again conducted by assuming

the previously estimated ARIMA model parameter distributions and model weights as priors.

(5) Repeat Steps (2) to (4), until the end of the prognosis.

In the above continuous updating procedure, the length of the updating interval remains

unclear. A shorter period length means monitoring data is retrieved more frequently and so

is the updating. The increased data transmission activities will lower the battery life of the

monitoring device, and more updating will increase the computational effort. It is useful to

find an optimum time interval that balances prediction accuracy and efficiency. Therefore,

it is desired to investigate the effect of the updating interval length on the accuracy of the

ARIMA model prediction.
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Note that the output of the ARIMA model is a random process indexed by time, and

hence two quantitative statistical metrics -- mean square error MSE p of mean prediction

with respect to load history data, and the width W p of the 95% prediction bounds are used

to evaluate the accuracy of model output for a selected updating interval:

MSEp = (E(Yt)− YDt)
2 (6.17)

Wp = F−1
Yt (0.975)− F−1

Yt (0.025) (6.18)

E (Y t) is the mean prediction of ARIMA model at time t, whereas YDt is the load am-

plitude data at time t ; FYt
-1 is the inverse cumulative probability function of Y t, e.g.,

FYt(FYt
-1(0.975)) = 0.975. If the value of MSE p is small, the prediction of ARIMA model

is close to the real data, i.e., the prediction is accurate with the corresponding updating

interval. If the value of W p is small, the uncertainty in the prediction of ARIMA model with

the corresponding updating interval is also small.

6.3.3 Summary

A continuous model updating approach has been developed in this section, which is capable

of including information from real-time load monitoring. Direct updating of characteristic

matrices is applied to the rainflow counting method and the Markov chain method. A Bayesian

updating approach is applied to the ARIMA model through calibrating the probability

distributions of the model coefficients and the values of the probabilistic weights. The effect

of the updating interval on the accuracy of model prediction is investigated quantitatively.
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6.3.4 Confidence assessment in load history prediction

In fatigue damage prognosis, the aforementioned models are used for the prediction of

future loading, and it is desired to validate the prediction. Here we use the Bayesian equality

hypothesis testing-based method illustrated in Section 4.3.2.

As discussed in the previous sections, the loading amplitude predicted by each of the three

methods at a given time instant is a random variable due to various sources of uncertainty. Let

f (Y t) be the probability density function of the output of a model M at time t. For ARIMA

models, f (Y t) is obtained as shown in Eq. 6.9; for rainflow counting and the Markov chain

method, f (Y t) can be estimated by directly sampling load histories from the corresponding

characteristic matrices. Hence, the Bayes factor for a model M at time t can be derived as:

B(t) =
P (YDt|H0)

P (YDt|H1)
=

∫
L(Yt)f(Yt)dYt∫
L(Yt)g(Yt)dYt

(6.19)

where Y Dt is the data collected at time t, and y t is a particular value of Y t at time t ; L(y t) is

the likelihood function of Y t, which is the conditional probability of observing the data Y Dt

with a given value of Y t; g(Y t) is the prior probability density of Y t under the alternative

hypothesis H 1, and it can be assumed as a uniform density function if no information on

g(Y t) is available.

Since the collection of data is usually accompanied with measurement noise, which is

assumed to be a lognormal random variable with unit mean and a relatively small standard

deviation σm (<0.30), the likelihood function can be calculated approximately as [Haldar

and Mahadevan, 2000]:

L(yt) = f(YDt|Yt) ≈
1

Yt
√

2πσ2
m

exp{−1

2

[ln(YDt/Yt)]
2

σ2
m

} (6.20)

The confidence metric (posterior probability) of the model M at time t, i.e., C (t), can

be calculated by substituting B(t) from Eq. 6.19 into Eq. 4.21. Further, if the data is a
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discrete time signal collected with a sampling interval ∆t s, the overall confidence metric for

the model M can be derived by averaging C (t) over time as:

CM =

∑
C(t)∆ts
T

(6.21)

6.4 Numerical example

A scaled helicopter combat maneuver loading history data including 510 cycles (1020

extrema/turning points) [Khosrovaneh et al., 1989] as shown in Fig. 6.1 is used for investigating

the rainflow counting and reconstruction method, the Markov chain method, and the ARIMA

model method. It can be observed from the data plot that the load history shows a time-

variant pattern, and hence the proposed continuous updating approach is applied to the

aforementioned three methods.
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Figure 6.1: A Scaled Helicopter Combat Maneuver Load History Data
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6.4.1 Rainflow counting, stochastic reconstruction and updating

For the purpose of illustration, two subsets of the original data set are used, 1-250 cycles

and 251-500 cycles. The first subset (1-250 cycles) is assumed to be the data currently

available and is used to conduct the initial rainflow counting. A graphical representation of

the counting matrix is shown in Fig. 6.2(a). Samples of simulated load history are generated

from the counting matrix using the reconstruction technique introduced in Section 6.2.1, as

shown in Fig. 6.2(b). The samples of load history show random rearrangements of the cycles

extracted from the data. For the purpose of prognosis, the generated samples can be used as

the prediction for future loading cycles, i.e., load amplitudes during 251-500 cycles, before

the new real-time monitoring data is collected.
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Figure 6.2: (a) Graphical representation of rainflow counting matrix from the first subset of
the load history data (1-250 cycles); (b) comparison of the load history data and two samples
of simulated load history (1- 250 Cycles)

Consider the second subset of data (251-500 cycles) as the newly collected monitoring

data, and then the direct updating method presented in Section 6.3.1 can be applied. First

the rainflow counting technique is implemented on the new data and a new cycle counting

matrix is obtained. This new matrix is added to the matrix counted from the previous data
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set (1-250 cycles) and then an updated counting matrix is obtained, as shown in Fig. 6.3(a).

Further, samples of loading history are generated based on the updated counting matrix,

and these samples can be again considered as predictions for future loading and used in

probabilistic fatigue damage prognosis.
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Figure 6.3: (a) Graphical representation of the updated rainflow counting matrix using the
second subset of the load history data; (b) comparison of the load history data and two
samples of simulated load history (251-500 cycles)

6.4.2 Markov chain method

The two subsets of data in Section 6.4.1 are also used to illustrate the Markov chain

method and the updating of the transition probability matrix. The first data subset is

assumed as the initially available data set, and the second data subset is the monitoring data

set obtained later. Following the method presented in Section 6.2.2, the initial transition

probability matrix is estimated using the first data subset and samples of the simulated load

spectrum are generated as shown in Figs. 6.4(a)-(b). The generated samples are considered

as the prediction of future loading and used in prognosis for the next time interval (251-500

cycles). After a new set of monitoring data is obtained (the second data subset), the initial
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transition probability matrix is updated and then predictions for future loading can be again

generated for prognosis, as shown in Figs. 6.5(a)-(b).
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Figure 6.4: (a) Graphical representation of Markov chain transition probability matrix using
the first subset of the load history data (1-250 cycles); (b) comparison of the load history
data and two samples of simulated load history (1-250 cycles)
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Figure 6.5: (a) Graphical representation of updated Markov chain transition probability
matrix using the second subset of the load history data; (b) comparison of the load history
data and two samples of simulated load history (251-500 cycles)
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6.4.3 ARIMA model method

6.4.3.1 Partition of data set and initial model identification

The entire data set (510 cycles) is used to demonstrate the extended ARIMA model

method, the Bayesian approach, and the model verification and validation methodology. Due

to the cyclic nature of fatigue loading, the load spectrum is split into two parts, the mean

amplitude and the cycle variation, as shown in Fig. 6.6.
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Figure 6.6: (a) The mean amplitude of the load spectrum; (b) the cycle variation of the load
spectrum

The sample ACF and PACF of the mean amplitude data, as shown in Figs. 6.7(a)-(d),

suggest that the mean amplitude of the load spectrum can be modeled as an ARIMA process,

whereas the lack of ACF and PACF in the cycle variation suggest that it can be modeled as

a white noise.

To illustrate the continuous updating approach, the original data set is devided into

several subsets. The first data set (1-250 cycles) is considered as the initially available data,

and the following data sets (data set 2, 3, . . . , N) are assumed as real-time monitoring data

retrieved subsequently.
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Figure 6.7: (a) Sample autocorrelation function (ACF) of the mean amplitude of the load
history data; (b) sample partial autocorrelation function (PACF) of the mean amplitude of
the load history data; (c) sample ACF of the cycle variation of the load history data; (d)
sample PACF of the cycle variation of the load history data

The initial data set is used to identify possible ARMA models based on the Q statistics

and the associated p-values presented in Section 6.2.3.2. As shown in Table. 6.1, both

ARIMA(1,0,0) and ARIMA(2,0,0) pass the chi-square test since the corresponding p-values

are significant. Therefore ARIMA(1,0,0) and ARIMA(2,0,0) are considered as candidate

models for the load spectrum.
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Table 6.1: Calculated Q statistics and the associated p-values
Time Lag 12 24 36 48

ARIMA(1,0,0)
Ljung-Box Q 10.84 22.78 31.11 36.64
p-value 0.37 0.41 0.61 0.84

ARIMA(2,0,0)
Ljung-Box Q 8.45 20.19 28.87 34.57
p-value 0.58 0.57 0.71 0.89

6.4.3.2 Continuous updating of model parameters and probabilistic weights

The parameters of ARIMA(1,0,0), i.e., ϕ0 and ϕ1, and the parameters of ARMA(2,0,0),

i.e., ϕ0, ϕ1, and ϕ2, are treated as random variables. Following the Bayesian approach

in Section 6.3.2.1, the initial probability distributions of these variables can be estimated

by combining the likelihood functions from the initial data set and non-informative priors.

Probabilistic weights are assigned to ARIMA(1,0,0) and ARIMA(2,0,0) respectively. The

initial values of the weights are assumed equal to each other, i.e., the two candidate models

are initially assumed to have equal probability of being the correct model for the loading

history.

With the monitoring data set retrieved subsequently, the probability distributions of

ARIMA model parameters and the probabilistic weights are continuously updated, as pre-

sented in Section 6.3.2.1 and 6.3.2.2. For the purpose of illustration, the plot of initial

probability distributions, updated distributions using the second monitoring data set, and

the updated distributions using the third monitoring data set are shown in Figs. 6.8(a)-(e).

The plot of the updated values of the probabilistic weights is also shown in Fig. 6.8(f).

As shown in Figs. 6.8(a)-(e), the widths of the probability distribution functions of

the ARIMA model parameters shrink gradually, i.e., the uncertainty due to sparse data

decreases as more data is retrieved. The increasing values of the probabilistic weight for

ARIMA(1,0,0) as shown in Fig. 6.8(f) suggest that ARIMA(1,0,0) obtained increasing support

from monitoring data.
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Figure 6.8: (a) - (e) Initial probability distribution functions of the ARIMA model parameters
-- ϕ0, ϕ1 of ARIMA(1,0,0), ϕ0, ϕ1, ϕ2 of ARIMA(2,0,0) - and the updated distributions with
newly collected data sets; (f) the updated values of the probabilistic weights versus time
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Figure 6.9: (a)-(b) Prediction bound and mean prediction versus data when the updating
interval is 5 cycles; (c) MSEp of mean prediction versus the updating interval; (d) width of
95% prediction bound Wp versus the updating interval

The two metrics presented in Section 6.3.2.2, MSE p of mean prediction with respect to

load history data, and the width of 95% prediction bound W p, are calculated to investigate

quantitatively the relationship between the model prediction accuracy and the model updating

interval. Figs. 6.9(a)-(b) give a graphical illustration of the two metrics when the updating

interval is five cycles. Figs. 6.9(c)-(d) plot the relations between the two metrics and the
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Table 6.2: Overall predictive confidence for the three methods
Rainflow Markov chain ARIMA

Overall predictive confidence 0.68 0.61 0.71

updating interval. It is observed that W p decreases with smaller updating interval, which

suggests that the uncertainty in model prediction can be reduced by more frequent updating;

similarly, MSE p also decreases with smaller updating interval, which suggests that the

accuracy of model prediction can be improved by more frequent updating. It is also seen that

the model prediction can capture the time-variant feature of data by continuous updating.

6.4.4 Confidence assessment of model prediction

The predictions from the three methods above are validated using the confidence as-

sessment method presented in Section 6.3.4. The data is partitioned in the same way as

Section 6.4.3.1. The first data set (1-250 cycles) is considered as the initially available data,

and the following data sets (data set 2, 3, . . . , N) are assumed as the monitoring data

retrieved subsequently. To make a fair comparison between these three methods, each of

them generates predictions for loading with a 5-cycle updating interval, i.e., each model is

updated every 5 cycles and the models make predictions for loading in the next 5 cycles.

By assuming that the measurement noise follows lognormal distribution with unit mean

and standard deviation equal to 0.1, the Bayes factor value and the degree of confidence in

predictions for 251-500 cycles are calculated using Eqs. 6.19-6.21.

As shown in Fig. 6.10, the Bayes factor values are higher than unity at most of the time

points, which indicates that the predictions from all the three methods have good support

from the time series data.

As shown in Table. 6.2, the overall predictive confidence for the ARIMA method is the
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Figure 6.10: Bayes factor versus time

highest, which suggests that the ARIMA method has the best performance in the prediction

of load amplitudes in this example.

6.5 Conclusion

Three different methods, namely rainflow counting method, Markov chain method and

ARIMA model method, to characterize and reconstruct fatigue load spectra for use in

prognosis were investigated. The ARIMA method was extended through random parameters

and probabilistic weights to accommodate the inherent variability in loading, the uncertainty

due to sparse data, and the uncertainty in model selection. A continuous model updating

approach with real-time monitoring data was developed, including direct updating of the

characteristic matrices for the rainflow counting method and the Markov chain method, and a

Bayesian updating approach for the ARIMA model method. The relation between prediction

accuracy and updating interval was investigated quantitatively. It is shown in Section 6.4.3.2
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that the continuous updating approach can help the ARIMA model method to capture the

time-variant feature of fatigue loading and also reduce the uncertainty in prediction due to

limited data. A quantitative validation method based on Bayesian hypothesis testing was

proposed to assess the predictive confidence of the three methods discussed. It is shown in

Section 6.4.4 that all the three methods with the continuous updating approach perform

comparably well for the load history example, as the Bayes factor values are larger than unity

at most of the time points. The overall confidence metric suggests that the prediction of the

ARIMA method has the best support from load amplitude data in the numerical example

presented.
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CHAPTER VII

INCLUSION OF TIME-DEPENDENT SYSTEM HEALTH MONITORING
DATA

7.1 Introduction

Time-dependent reliability analysis is useful for risk management of a system in several

ways: (1) optimum design of the system with reliability as a constraint [Kuschel and Rackwitz,

2000; Singh et al., 2010; Wang and Wang, 2012], (2) prognosis of the system, e.g., remaining

useful life [Kulkarni and Achenbach, 2008; Zio, 2009], and (3) scheduling of inspection,

maintenance, and repair based on the results of prognosis [Kong and Frangopol, 2003; Zhou

et al., 2007; Niu et al., 2010]. This chapter will focus on uncertainty quantification in

prognosis with application to aging aerospace mechanical components under fatigue loading.

The objective of fatigue prognosis is to obtain accurate estimation of remaining useful

life (RUL), which has been a challenge due to the complexity and uncertainty in service

environments and multidisciplinary damage mechanisms. The emerging techniques in both

the areas of structural health monitoring (SHM) and fatigue damage prognosis (FDP) provide

a promising future for tackling this challenge. Note that SHM and FDP are connected in

nature, and a robust FDP relies on knowledge of the current status of components and

service environment monitored by SHM system. Hence, in addition to the extensive research

efforts conducted separately in SHM and FDP, integration of these two technologies is

desired [Farrar and Lieven, 2007].

Based on the sensor-monitored data of external loading applied on mechanical compo-

nents, different methods have been used to characterize and predict loading for fatigue

damage prognosis, including rainflow counting [Amzallag et al., 1994], the Markov chain

method [Rychlik, 1996], and ARMA (autoregressive moving average) modeling [Leser et al.,
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1998], etc. In Section VI, we have extended the ARMA modeling method to account for

various uncertainty sources in service loading and developed a Bayesian approach to update

the load model with real-time monitoring data. On-ground damage inspection for aerospace

mechanical components using non-destructive inspection (NDI) techniques includes crack

detection and size measurement. Different techniques using crack size measurement (CSM)

data to infer the probability distribution of an equivalent initial flaw size (EIFS), which is

the starting point of fatigue crack growth analysis, have been developed [Makeev et al., 2007;

Cross et al., 2007; Sankararaman et al., 2010], including Bayesian approaches to account for

multiple sources of uncertainty [Sankararaman et al., 2010, 2011b].

In the area of FDP, numerous fracture mechanics-based crack propagation models have

been proposed to analyze the behavior of metal fatigue, and a summary of these models

can be found in [Schijve, 2003]. Due to the stochastic nature of fatigue crack growth, a

probabilistic prognosis method is desired. Studies have been conducted on probabilistic

damage prognosis accounting for physical variability [Farrar and Lieven, 2007; Pierce et al.,

2008; Gupta and Ray, 2007]. In a recent paper, we have developed a detailed uncertainty

quantification approach for fatigue crack growth modeling that includes physical variability,

data uncertainty and model uncertainty [Sankararaman et al., 2011a].

The purpose of this chapter is to develop a probabilistic methodology to integrate SHM

results into a fracture mechanics-based FDP for aerospace mechanical components in a fleet,

accounting for various sources of uncertainty and errors.

First, uncertainty quantification approaches for SHM and FDP are investigated. Two

types of SHM data - real-time load monitoring data and on-ground crack inspection data - are

considered, and the uncertainty due to the monitoring technique is quantified in Section 7.2.

In Section 7.3, crack growth prognosis for mechanical components with realistic geometry and

subjected to multi-axial variable amplitude loading is presented, with a focus on uncertainty

quantification. Various sources of uncertainty and errors in prognosis are quantified, including
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physical variability in loading and material properties, data uncertainty due to the use of the

structural health monitoring data and insufficient data, and model uncertainty and errors due

to the use of various models in prognosis (crack growth model, loading model, finite element

discretization error, etc.). A Bayesian network is constructed to systematically integrate the

various uncertainties and errors, and a global sensitivity analysis is performed to identify the

contributions of these sources to the uncertainty in the prognosis results (the predicted crack

size after a number of loading cycles).

Section 7.4 proposes a framework to integrate SHM data with FDP. The fatigue loading

sequence is characterized and predicted using an ARIMA (autoregressive integrated moving

average) modeling method based on real-time load monitoring data. A Bayesian updating

approach is used to estimate the coefficients of the ARIMA model and a probabilistic model

averaging method is used to account for load model uncertainty. The probability distributions

of EIFS and current crack sizes are inferred from the on-ground crack inspection data via a

Bayesian method. The application of this integrated framework is shown for both individual

components and a fleet of components. Sometimes it may be expensive to implement load

monitoring and comprehensive inspection for the entire fleet. Only some of components

may be selected for load monitoring and detailed examination, including crack detection

and measurement, and the health status of the other components may have to be inferred

combining existing data and model based-prognosis. Strategies of FDP for components in the

fleet with different monitoring status are proposed. The prognosis results are validated using

a Bayesian hypothesis testing method when new crack inspection data become available. A

numerical example is presented in Section 7.5 to illustrate the overall framework of integrating

prognosis with structural health monitoring under uncertainty.
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7.2 Crack inspection data

Both real-time load monitoring and on-ground crack inspection are considered in this

application since they are directly relevant to fatigue damage prognosis (FDP) for aerospace

mechanical components. However, load monitoring was discussed in detail in Chapter VI.

Therefore, this section will focus on crack inspection data.

On-ground damage inspection is a critical aspect of mechanical components maintenance.

Various non-destructive inspection (NDI) techniques have been developed and applied to

mechanical systems, including visual inspection, ultrasonics, eddy current, acoustic emission,

X-ray, thermography and shearography [Staszewski et al., 2004]. However, the performance

of NDI techniques is affected by many uncertain factors, such as the geometry of inspected

components, sensitivity of inspection equipment, location of damage, operator skills, etc.

Several probabilistic metrics have been developed to evaluate the performance of NDI,

including probability of detection (POD), flaw size measurement accuracy, and false call

probability (FCP) [Zhang and Mahadevan, 2001]. These criteria are developed from different

methods, and they are used to evaluate different aspects of NDI performance. In the context

of fatigue crack growth prognosis, FCP is not considered in this application since it is assumed

that cracks exist in all the components inspected.

POD is usually a monotonic function of crack size and is used to represent the uncertainty

in the crack detection. The result of crack detection (denoted as Id) can be considered as a

binary variable

Id =

 = 1 Crack detected

= 0 Crack not detected
(7.1)

The probability of the two possible values of Id can be expressed in terms of POD

Pr(Id = 1|aN) = POD(aN) = f(aN)

Pr(Id = 0|aN) = 1− POD(aN) = 1− f(aN) (7.2)

157



where ”Pr” stands for ”Probability”. The value of POD function evaluated at crack size

aN , denoted as f(aN), can be obtained either by pure empirical methods [Spencer and

Schurman, 1995] or model-assisted methods [Smith et al., 2007]. In this application, a

statistical representation is adopted by treating f(aN) as a standard normal cumulative

distribution function (CDF) [Berens and Hovey, 1983]

f(aN) = Φ(α + βaN) =
1

2
[1 + erf(

α + βaN√
2

)] (7.3)

where Φ is the standard normal CDF, erf is the Gauss error function, and α and β are the

parameters of this POD model.

The size measurement accuracy is used to quantify the uncertainty in experimental crack

growth data, with the following expression determined by regression analysis [Zhang and

Mahadevan, 2001]

am = β0 + β1a+ εm (7.4)

where a is the actual crack size, am is the measured crack size, εm is the measurement noise

term, and β0 and β1 are regression parameters. Note that this linear regression model is used

only for the purpose of illustration. In practice, the size measurement accuracy can also be

represented by other probabilistic models depending on the actual experimental data of a

specific NDI technique [Heasler et al., 1993].

7.3 Fatigue damage prognosis under uncertainty

To quantify the uncertainty in fatigue damage prognosis, a significant amount of crack

growth simulation analyses are required. However, for mechanical components with compli-

cated geometry under service loading conditions (multi-axial, variable amplitude loading),

cycle-by-cycle crack growth analyses and finite element analyses are usually needed to obtain
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accurate prognostic results, which render the uncertainty quantification extremely expensive.

To address this issue, an efficient deterministic fatigue crack growth simulation method is

presented in Section 7.3.1. Following it, detailed uncertainty quantification in fatigue crack

growth prediction is presented in Section 7.3.2. Various sources of uncertainty and error are

connected through a Bayesian network, and then a global sensitivity analysis is performed to

identify the most important sources of uncertainty in fatigue crack growth prognosis.

7.3.1 Fatigue crack growth simulation under multi-axial variable

amplitude loading

More than 20 different fracture mechanics-based fatigue crack growth models have been

developed to simulate propagation of long cracks, including Paris’ law [Paris and Erdogan,

1963], a modified Paris’ law [Donahue et al., 1972], Forman’s equation [Forman et al., 1967],

Weertman’s equation [Weertman, 1966], NASGRO equation [NASA and Southwest Research

Institute, 2010], etc. Note that for a specific application, it may be unclear which model

is correct, and the selection of model brings in uncertainty. This issue will be discussed in

Section 7.3.2.1. For the sake of illustration, a modified Paris’ law [Donahue et al., 1972] is used

in this example, and a Wheeler’s retardation model [Yuen and Taheri, 2006] is incorporated

to account for the crack growth retardation effect due to the existence of overloads in a

variable amplitude loading history

da

dN
= ϕrC(∆K)n(1− ∆Kth

∆K
)m (7.5)

where da/dN is the crack growth rate per loading cycle; ϕr is the retardation parameter and

its calculation can be found in [Yuen and Taheri, 2006]; C, n, and m are parameters of this

crack growth model, which can be estimated from existing crack growth data; ∆K is the

stress intensity factor (SIF), and ∆Kth is the threshold SIF.
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Note that Eq. 7.5 is not applicable to the short crack growth regime, i.e., the initial value

of this differential equation - initial crack size a0 - has to exceed the characteristic length of

material microstructure. The concept of an equivalent initial flaw size (EIFS) was proposed

to bypass short crack growth analysis and make direct use of a long crack growth law for

total fatigue life prediction (including both the short crack growth and the long crack growth

regime) [Johnson, 2010]. Note that this example adopts the damage-tolerance approach to

fatigue life, and thus the total fatigue life does not include crack initiation period. Liu and

Mahadevan [Liu and Mahadevan, 2009] related EIFS a0 to material properties and component

geometry based on the Kitagawa-Takahashi diagram [Kitagawa and Takahashi, 1976] and

the El Haddad equation [El Haddad et al., 1979], and derived the relationship

a0 =
1

π
(

∆Kth

Y∆σf
)2 (7.6)

where ∆Kth is the threshold stress intensity factor and ∆σf is the fatigue limit (both are

considered as material properties); Y is the geometry correction factor.

Further, in the case of multi-axial loading, Liu and Mahadevan [Liu and Mahadevan,

2007] adopted a characteristic plane method [Liu and Mahadevan, 2007] to combine the

mode-I mode-II and mode-III SIFs (KI , KII , KIII) into a single equivalent SIF based on a

fatigue limit criterion under multi-axial loading for 3D stress condition [Liu and Mahadevan,

2007], as

Kmixed,eq =
1

B

√
(k1)2 + (

k2

s
)2 + (

k3

s
)2 + A(kH)2 (7.7)

where k1, k2, k3 are the parameters associated with modes I, II, and III loading, respectively.

kH is related to hydrostatic stress. s is the ratio of Modes II and I threshold SIF. A and B

are material parameters. Note that the formulation of this equivalent SIF is based on the

principle of dimension reduction, i.e., finding a scalar SIF that can represent the multi-axial

loading condition. Liu and Mahadevan [Liu and Mahadevan, 2007] verified the accuracy
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of this approach for several materials commonly used in the aerospace industry, including

aluminum alloys and steel. Further verification is needed for other types of materials.

Analytical solutions of ∆K are usually unavailable for mechanical components with

complicated geometry and under multi-axial loading. Therefore numerical methods like

finite element analysis (FEA) are needed. However, as used in Eq. 7.5, the SIF ∆K needs

to be evaluated for each loading cycle, which means thousands of FEA runs have to be

performed for a high-cycle fatigue problem. To reduce the computation cost and render the

uncertainty quantification analysis in the following section possible, the Gaussian process

surrogate modeling technique illustrated in Section 2.5.1 is used to replace FEA in the cyclic

crack growth simulation. In order to construct a GP model for the calculation of SIF, a few

FEA runs are performed with different crack configurations and load combinations (including

current crack size, aspect ratio, amplitudes of the applied bending and torsion moments)

and the corresponding SIFs are calculated. Eq. 7.7 is used to calculate the equivalent SIF

K values. Based on these training points with input combinations x and the corresponding

SIF solutions K, the parameters of the GP surrogate model are estimated, including the

coefficients of its trend function β, the process variance λ and the parameters of correlation

function ξ. Then, the mean prediction and variance of the SIF K(x∗) for a particular input

combination x∗ (i.e., crack configuration and loading) are calculated as

E[K(x∗)|K] = fT (x∗)β + rTR−1(K − Fβ)

Var[K(x∗)|K] = λ(1− rTR−1r) (7.8)

where f(x) is the trend function; r is the vector of correlations between x∗ and each of the

training points, and R is the matrix of correlations among the training points. Both r and R

are obtained by evaluating the correlation function ξ. F is the matrix of the trend function

f(x) at each of the training points.
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Note that for deterministic crack growth simulation, only the mean prediction E[K(x∗)|K)

is needed. The calculation of variance is needed in the following section to account for

surrogate model uncertainty.

7.3.2 Uncertainty quantification in fatigue crack growth simula-

tion

The fatigue crack growth analysis presented in Section 7.3.1 is deterministic and does not

account for errors and uncertainty. An investigation on various sources of uncertainty in

fatigue crack growth simulation is presented in this section.

7.3.2.1 Classification of uncertainty sources

The sources of uncertainty can be classified into three different types - physical variability,

data uncertainty and model uncertainty - as discussed below. A graphical summary of the

uncertainty sources classification is shown in Fig. 7.1.

(1) Physical or natural variability

The external loading applied on aircraft mechanical components in service condition is

a result of multiple factors, such as air pressure, air flow, friction, and weights of other

components, etc., and therefore is inherently stochastic. To represent this randomness,

ARIMA models with a Gaussian random noise term is used as illustrated in Section 6.2.3.

Similarly, material properties could also be affected by many factors, such as manufacturing

process, sample composition, micro-structure, etc., and variability in measurements. Fatigue

limit and threshold stress intensity factor, two material parameters that are used to derive

the prior estimation of EIFS, are treated as random variables to account for the natural

variability in material properties. (Note: the geometry correction factor Y , and other material

properties such as Young’s modulus and Poisson’s ratio can also be considered as random

variables if the variations are not negligible.)
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(2) Data uncertainty

The uncertainty associated with loading data includes the measurement noise and the

error due to projecting raw data to a full loading sequence in OLM. To account for this

uncertainty, the coefficients of ARIMA models estimated from this data are assumed as

random variables. The uncertainty in crack inspection data includes crack detection and

measurement uncertainty due to the use of NDI techniques, as discussed in Section 7.2.

Also, the probability distributions of some material properties are inferred from laboratory

experiments. This data may be sparse and cause uncertainty regarding the probability

distribution type and parameters. Two probabilistic methods have been developed to account

for sparse data, namely a flexible probability distributions-based method [Zaman et al., 2010]

and a likelihood-based method [Sankararaman and Mahadevan, 2011a]. The uncertainty

due to data size is taken into account while estimating the probability distribution of the

threshold stress intensity factor and the fatigue limit, and this uncertainty is propagated to

EIFS through the relation given in Eq. 7.6.

(3) Model uncertainty and errors

This study uses several models (crack growth model, ARIMA model, finite element model,

surrogate model, etc.), and each of these models has its own error/uncertainty. Some of these

errors are deterministic while others are stochastic; these need to be treated in different ways.

The errors and uncertainties occur at different stages of the analysis, and may be combined

in nonlinear, iterative or nested manner.

Model uncertainty comes from two sources: model form, and solution approximations.

Model form uncertainty can be subdivided into two types: uncertainty in model coefficients

and model fitting residual. The uncertainty in the coefficients of the modified Paris law -

C, n and m - can be represented through their probability distributions. To represent the

residual due to model fitting, a multiplicative lognormal random error term εcg with unit
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mean is introduced

da

dN
= ϕrC(∆K)n(1− ∆Kth

∆K
)mεcg (7.9)

The issue of model selection also exists while using ARIMA models to characterize and

predict future loading. As shown in Section 6.2.3.3, a probabilistic model averaging method

is used to address this uncertainty.

Finite element discretization error can be quantified using several methods [Ainsworth

and Oden, 1997]. This chapter uses the Richardson extrapolation (RE) method, because it

directly estimates the actual discretization error [Richardson, 1911]. Note that the use of RE

requires the model solution to be monotonically convergent and the domain to be discretized

uniformly (uniform meshing) [Rebba et al., 2006]. With the RE method, the discretization

error for a coarse mesh is calculated as

εh =
f1 − f2

rp − 1
(7.10)

where f1 and f2 are solutions for a coarse mesh and a fine mesh respectively. If the

corresponding mesh sizes are denoted by h1 and h2, then the mesh refinement ratio r is

calculated as h2/h1. The order of convergence of p is calculated as

p =
log(f3−f2

f2−f1 )

log(r)
(7.11)

where f3 represents the solution for a finer mesh of size h3, with the same mesh refinement

ratio, i.e., r=h2/h1=h3/h2.

In this chapter, the role of FEA is to provide training data for the Gaussian process (GP)

surrogate model as mentioned in Section 7.3.1. To incorporate the discretization errors, three

FEA runs are perform for each of the training points to obtain f1, f2 and f3. Then, the RE
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discretization errors are calculated and added to the coarse mesh solutions f1 to approximate

the true solutions, which become the training data for GP surrogate model.

The uncertainty due to the use of a GP model is reflected in the variance term in Eq. 7.8.

Hence, by considering the SIF predicted from the GP model as a Gaussian random variable for

a given crack configuration with the mean and variance values from Eq. 7.8, the uncertainty

contribution of the surrogate model is also included.
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Figure 7.1: Classification of uncertainty sources in fatigue crack growth analysis

7.3.2.2 Connection of uncertainty sources using a Bayesian network

As introduced in Section 2.1, a Bayesian network is a graphical representation of uncertain

quantities that explicitly incorporates the probabilistic causal dependence between the

variables as well as the flow of information in the model. In this section, we construct a
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Figure 7.2: Bayesian network to connect sources of uncertainty and errors

Bayesian network for fatigue crack growth analysis under various sources of uncertainty and

errors as shown in Fig. 7.2. The conditional probability between each node is given by the

equations and models in the aforementioned crack growth analysis.

7.3.2.3 Probabilistic sensitivity analysis

A probabilistic sensitivity analysis (PSA) is required to study the contributions from each

of the uncertainty sources to the overall uncertainty in the prognostic output - the crack

size after a particular number of cycles of operation. Identifying the uncertainty sources

that have significant contributions can help in allocating resources to monitor the important

uncertainty sources and hence improve the efficiency and accuracy of the overall SHM-FDP

system. Various methods have been developed to perform PSA, including variance-based

global sensitivity analysis [Saltelli et al., 2008] and the Kullback-Leibler (K-L) entropy-based

method [Liu et al., 2006]. The variance-based global sensitivity analysis provides a global

measure of the contribution from a particular source and is adopted in this chapter.
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Consider a model with n random input variables X1, X2, ..., Xn

Y = G(X1, X2, X3, ..., Xn) (7.12)

The first-order effect index quantifies the individual contribution from an input variable

Xi without interaction with other variables, and is given by

S1
i =

VarXi [EX∼i [Y |Xi]]

Var[Y ]
(7.13)

where E is the expectation operator, Var is the variance operator, and X∼i stands for all

the input variables except for Xi. EX∼i calculates the expected value of the model output

Y when Xi is fixed at a specific value; VarXi computes the variance of this expected value

when the randomness of Xi is included.

The contribution from the variable Xi including its interaction with all other variables is

known as the total effects index and can be calculated as

STi = 1− EX∼i [VarXi [Y |X∼i]]
Var[Y ]

(7.14)

where VarXi computes the variance of Y when all the input variables except for Xi are

fixed at specific values; EX∼i calculates the expected value of this variance considering the

randomness of X∼i.

In this chapter, all Xi’s denote the various sources of uncertainty in fatigue crack growth

prognosis as classified in Section 7.3.2.1. The calculation of sensitivity indices in Eqs. 7.13

and 7.14 by brute force nested Monte Carlo simulation requires a large number of model

evaluations, and hence an efficient method reported in [Saltelli, 2002] is used, which designs

an approximation-based strategy to reduce the number of model evaluations required by an

order of magnitude.
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7.4 Use of crack inspection data within prognosis

System monitoring provides data to quantify the uncertainty in two of the most important

inputs in fracture mechanics-based fatigue crack growth prognosis - external loading and the

equivalent initial flaw size (EIFS). In this application, we adopt the ARIMA model-based

approach as illustrated in Chapter VI, which provides a rigorous framework for uncertainty

quantification of loading using real-time monitoring data. The estimation of EIFS using

crack inspection data is illustrated below.

7.4.1 Inference of EIFS using crack inspection data

As mentioned in Section 7.3.1, the concept of the equivalent initial flaw size (EIFS) is

used to bypass the complexity due to small crack growth and a long crack growth model

can be used regardless of the scale of the actual initial crack size. Since the EIFS is not a

physical quantity and hence cannot be measured directly. Eq. 7.6 gives an estimation of

EIFS considering two material properties (the threshold SIF and the fatigue limit) and the

geometry of component. Fatigue analysis based on this EIFS estimation has been validated

using experimental data under constant amplitude, uni-axial and multi-axial loading [Liu

and Mahadevan, 2009; Xiang et al., 2010; Lu et al., 2010]. However, its accuracy for variable

amplitude loading is not clear so far. Meanwhile, approximation is needed while calculating

the geometry factor for components with realistic geometry. Given these considerations, it is

useful to consider the probability distribution of EIFS estimated from Eq. 7.6 as a prior and

then update this distribution using Bayes’ theorem

π(a0|D) =

∏M
i Pr(Di|a0)π(a0)∫ ∏M
i Pr(Di|a0)π(a0)da0

(7.15)

Consider three possible outcomes of crack inspection: (1) no crack is detected; (2) crack

is detected but the size is not measured; (3) crack is detected and the size is measured. The
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likelihood function
∏M

i Pr(Di|a0) is the conditional probability of M crack inspection results

given a particular EIFS value a0, which can be written for each of the three possible outcomes

as

Case 1: Pr(Di|a0) =

∫
f(aN)π(aN |a0)daN (7.16)

Case 2: Pr(Di|a0) =

∫
[1− f(aN)]π(aN |a0)daN (7.17)

Case 3: Pr(Di|a0) ∝ π(am|a0) =

∫
π(am|aN)π(aN |a0)daN (7.18)

where f(aN ) is the probability of detection (POD) and can be obtained from Eq. 7.3; π(am|aN )

is the conditional probability density function of measured crack size for a given actual crack

size, which can be derived from Eq. 7.4. By assuming the regression coefficients β0 and β1 as

constants, and assuming the residual term εm as a zero-mean normal random variable, this

conditional probability can be derived as

π(am|aN) =
1√

2πσ2
exp[−am − β0 − β1aN)2

2σ2
m

] (7.19)

where σm is the standard deviation of εm.

7.4.2 Strategy of prognosis for components in a fleet

For a fleet of aerospace mechanical components in service, an ideal case will be to conduct

structural health monitoring for each component, followed by individual prognosis. However,

due to budget or technical limitations, load monitoring data and crack inspection data may

or may not be available for every component in the fleet. Four scenarios of prognosis can be

classified based on the availability of monitoring data as shown below.

Scenario 1: Prognosis for components with OLM and CSM

This is the best situation where prognosis is tied to the individual component. The future
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loading can be predicted using the Bayesian ARIMA model presented in Sections 6.2.3 and

6.3.2, and the initial values of the ARIMA model are the latest recorded loading amplitudes.

Before crack inspection, the prognosis starts from the EIFS with the prior probability

distribution derived from Eq. 7.6. After the crack inspection, the prognosis of future crack

growth starts from the current crack size, which can be obtained using the measured crack

size by rewriting Eq. 7.4 as

a =
1

β1

(am − β0 − εm) (7.20)

Scenario 2: Prognosis for components without OLM but with CSM

For components without loading monitored, future loading predictions are generated with

random initial values using the ARIMA model estimated in Scenario 1. The extra uncertainty

due to the random initial value will require more Monte Carlo simulations for prognosis than

in Scenario 1.

The use of the prior EIFS distribution before inspection and the estimation of the current

crack size based on measured crack size is the same as in Scenario 1.

Scenario 3: Prognosis for components with OLM but without CSM

In this case, the prediction for future loading is the same as in Scenario 1. The use

of the prior EIFS distribution before inspections is the same as in Scenario 1. However,

after inspections, since the crack size is not measured, crack growth simulation based on

updated EIFS is used to infer the probability distribution of current crack size. Note that this

procedure also applies to (i) components without any crack inspection and (ii) components

with crack detection but without size measurement. The updated probability distribution

of EIFS is obtained using crack inspection data via the Bayesian approach as presented in

Section 7.4.1.

Scenario 4: Prognosis for components with no OLM or CSM

This is the worst case, where no load monitoring data or inspection data are available for

an individual component. In such a situation, the prognosis for such a component has to be
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based on data obtained on other components. In this case, the prediction for future loading

is the same as in Scenario 2. The use of the prior EIFS distribution before inspections is the

same as in Scenario 1, and the estimation of the current crack sizes is the same as in Scenario

3.

7.4.3 Validation of prognosis with new crack inspection data

It is important to assess the validity and performance of prognostic algorithms based on the

comparison between predictions and observed data, and various graphical and quantitative

methods have been developed for this purpose [Oberkampf and Barone, 2006; Hills and Leslie,

2003; Saxena et al., 2010; Rebba et al., 2006]. A detailed illustration and discussion of the

existing quantitative model validation methods has been given in Section 2.3 and Chapter IV.

The Bayesian equality hypothesis testing-based approach illustrated in Section 4.3 is used

here since it takes into account the entire probability distribution of model output, instead

of only the distribution parameters, and a confidence metric for model prediction can be

easily derived based on the calculated validation metric. Two hypotheses are compared,

namely H0 - the null hypothesis that the proposed method gives correct predictions, and

H1 - the alternative hypothesis that the proposed method gives incorrect predictions. The

validation metric - Bayes factor - is equal to the ratio of the likelihood functions of these two

hypotheses [O’Hagan, 1995]

B =
Pr(D|H0)

Pr(D|H1)
=

∏
i

∫
Pr(Di|aN)π0(aN)daN∏

i

∫
Pr(Di|aN)π1(aN)daN

(7.21)

where Pr(Di|aN) is the conditional probability of obtaining the inspection data Di for a

given actual crack size. Eqs. 7.2 and 7.19 are used to calculate this conditional probability

for three different types of inspection results. In Eq. 7.21, π0(aN) is the PDF of the actual

crack size under the null hypothesis, and π1(aN) is the PDF of the actual crack size under
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the alternative hypothesis. π0(aN) is the same as the PDF of crack size predicted by the

prognosis. In order to calculate π1(aN ), we assume that under the alternative hypothesis the

crack size follows a uniform distribution, i.e., the crack sizes within a certain interval are

equally probable. Note that the boundaries of this interval will affect values of the estimated

Bayes factor.

In addition to crack inspection data, load monitoring data can also be used for validation.

An example of using loading data to validate the prediction of the ARMA model can be

found in Section 6.3.4. If new SHM data on system health status or damage response are

available, further validation can be performed by comparing the system response estimated

based on crack size predictions against the SHM data.

7.5 Numerical example

This section provides a numerical example of the proposed methodology for model-based

fatigue damage prognosis, which incorporates information from real-time loading monitoring

and on-ground crack inspection.

7.5.1 Problem description

A two-radius hollow cylindrical component subjected to bending and torsion is considered,

similar to a rotorcraft mast. (The mast also experiences an axial thrust load; the effect of this

load is much smaller than that of bending and torsion in this problem and therefore the axial

load is ignored in this example). Assume that the crack inspection is for a possible elliptical

surface crack in the fillet radius region. Nominally identical specimens of the cylindrical

component may be used in a fleet of rotorcraft. Our interest is in crack growth prognosis for

individual components under the four scenarios discussed in section 7.4.2, by making use of

the load monitoring and crack inspection data.
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Figure 7.3: Surface crack model

Crack growth prognosis in this example uses linear elastic fracture mechanics (LEFM),

and assumes a planar crack. The commercial finite element software ANSYS (version 11.0) is

used to calculate the mode I, mode II, and mode III stress intensity factors. A sub-modeling

technique is used to facilitate computational efficiency in finite element analysis, as shown in

Fig. 7.3. First the entire structure is modeled with a coarse mesh and solved; this is referred

to as the full model. Then the region surrounding the crack is modeled using a refined mesh,

which is called the sub-model. The boundary conditions of the sub-model are obtained from

the solution of the full model.

Table 7.1 list the material and geometrical properties of the components under study,

and the values are assumed as constant in this example. Note that in reality, the parameters

in Tables 7.1 may be random and require probabilistic treatment.

A modified Paris law is used for crack growth analysis, combined with a Wheeler’s

retardation model, as described in section 7.3.1. Cracks are assumed as elliptical (characterized

by the crack sizes along x-axis and y-axis). Five hundred and two runs of FEA are conducted,

accounting for different combinations of input variables - crack sizes along x-axis, aspect
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Table 7.1: Material and geometrical properties
Material properties of Al 7075-T6 Geometrical properties of cylinder
Modulus of Elasticity 71.7 GPa Length 0.152 m
Poisson Ratio 0.33 Inside radius 7.62 mm
Yield Stress 691 MPa Outside radius (narrow sect) 15.24 mm
Ultimate Stress 764 MPa Outside radius (wide sect) 20.3 mm

ratios, bending moments (torsion is assumed to be proportional to bending), and the SIFs at

crack tip are calculated.

7.5.2 Uncertainty and error quantification

The various sources of uncertainty and errors discussed in Section 7.3.2.1 are quantified

for this application example as discussed below. Details are provided in Table 7.2. Note that

some of the statistics in Table 7.2 can be found in the literature, such as the statistics of

∆Kth and ∆σf , which are material properties. Some of the statistics, e.g., the statistics of

model uncertainty εcg, are assumed for the sake of illustration, and they can be conveniently

replaced in practice if more information is available.

Physical variability The probability distributions of the fatigue limit and threshold stress

intensity factor are found in [Liu and Mahadevan, 2009]. Further, the prior distribution of

EIFS is derived from Eq. 7.6, which is a lognormal distribution with parameters λ and ζ in

this example. The loading is characterized using the ARIMA modeling method presented in

Section 6.2.3, based on load monitoring data. The Gaussian noise term εt in ARIMA models

represents the physical variability in loading. In this example, the data are simulated using

an ARIMA(2,1,0) process. Note that these synthetic data are only used for the purpose of

illustration, and could be replaced by real world load monitoring data if available.
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Data uncertainty The coefficients in the expression of POD and the CSM uncertainty

are assumed as shown in Table 7.2. To account for uncertainty due to sparse data, the two

distribution parameters of EIFS - λ and ζ - are considered as random variables. Their prior

distributions can be estimated using a re-sampling technique. For the purpose of illustration,

it is assumed that λ and ζ are both normal random variables.

Model uncertainty and errors The parameters of the crack growth law are estimated

by fitting the model using the experimental data of aluminum 7075-T6. Because it is difficult

to determine simultaneously the statistics of all the parameters, n (= 3.9) and p (= 0.75) are

treated as deterministic quantities [Liu and Mahadevan, 2009]. The parameter C is assumed

to have a lognormal distribution (since C > 0) and the corresponding statistics are estimated.

The uncertainty in the crack growth model (εcg) is treated as a lognormal random variable.

The uncertainty due to the surrogate model is quantified using the expected output and the

corresponding variance. For each FEA solution, three different meshes were considered and

the discretization error was quantified as explained in Section 7.3.2.1. The discretization

errors are added to the finite element solutions and the Gaussian process model is trained to

predict the stress intensity factor. The uncertainty due to the selection of ARIMA loading

model will be considered in the next subsection.

Probabilistic sensitivity analysis (global) is performed to evaluate the significance of

the uncertainty sources quantified in this example. It is found that the variations in the

crack growth simulation are mainly contributed from three sources - the parameter of the

modified Paris law C, EIFS, and loading. The corresponding sensitivity indices are shown

in Figs. 7.4(a)-(c). The sensitivity indices of C and loading increase over time, while the

sensitivity indices of EIFS decrease over time. This is because C and loading are input of

the crack growth model in every cycle while EIFS is only used at the initial time point.
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Table 7.2: Uncertainty quantification and associated statistics
Uncertainty
classification

Unceratinty
source

Random
variable

Distribution
type

Mean Standard
deviation

Physical
variability

Material
properties

∆Kth (MPam0.5) Lognormal 5.66 0.268
∆σf (MPa) Lognormal 201 20.1

Loading
ARIMA(2,1,0)

εt Normal 0 0.1

Data
uncertainty

POD
α Constant -2.1 0
β Constant 8.3E3 0

Crack size
measurement

β0 Constant 0 0
β1 Constant 0 0

εm (m) Normal 0 0.04E-3

Prior EIFS
λ Normal -7.60 0.1
ζ Normal 0.22 0.05

Loading
ARIMA(2,1,0)

ϕ0 Uniform 0 0.05
ϕ1 Uniform 0.67 0.1
ϕ2 Uniform 0.3 0.05

Model
uncertainty

Crack growth
model

C (m/cycle) Lognormal 6.54E-13 4.01E-13
εcg Lognormal 1 0.1

7.5.3 Usage of structural health monitoring data

It is assumed that 20 components in the fleet are monitored. Real-time load monitoring

is applied to components No. 1, 2, 3, 4, 10, 11, 12, 13, 15, and 16. Crack detections are

performed for all components after 10,000 cycles of operation, and no crack is detected

on components No. 2 and 6 (crack is detected on all the other components). Among the

components with crack detected, crack size measurements are reported on components No. 1,

3, 4, 5, 7, 8, 9, 10, and 14.

The load monitoring data (maximum bending moment in loading cycles, load ratio R=0)

are generated from an ARIMA(2,1,0) model shown in Table 7.2. The crack inspection data

are generated by crack propagation from an EIFS distribution (this distribution is assumed

as the ”actual” distribution of EIFS for this fleet of components). The various scenarios

of crack detection are sampled based on POD. The measured crack sizes are generated by
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Figure 7.4: Sensitivity indices

adding sampled measurement noises to the actual crack sizes after 10,000 load cycles as

shown in Eq. 7.4.

7.5.3.1 Characterization and prediction of loading sequence

For a component with real-time load monitoring, the ARIMA models used to characterize

and predict the loading sequence are updated using the load monitoring data of that compo-

nent, as discussed in Section 6.2.3. For example, the load monitoring data of Component No.

10 are shown in Fig. 7.5(a), and it is assumed that these data are collected every 250 cycles.

By comparing the patterns of ACF and PACF of the data and ARIMA models and calculating
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the Q statistics, two possible ARIMA models are chosen as ARIMA(1,1,0) and ARIMA(2,1,0).

The coefficients and weights of these two models are updated continuously using the Bayesian

approach presented in Section 6.3.2. The updating of the probabilistic model weights are

shown in Fig. 7.6(a). It can be observed that the weight of the ARIMA(2,1,0) model increases

to nearly one in a short time, implying that the ARIMA(2,1,0) model fits the data better.

This implication is valid since the data was generated from an ARIMA(2,1,0) model. The

prior and updated PDFs of the coefficient ϕ1 of the ARIMA(2,1,0) model are shown in

Fig. 7.6(b) as an example, and it is shown that the uncertainty in the coefficient shrinks after

updating. Based on the estimated coefficients and model weights, the probability distribution

of the loading amplitude at a future time point can be obtained using Eqs. 6.6 and 6.9, and

the mean value and 95% probability bound of the predicted loading amplitude are shown in

Fig. 7.5(b).
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Figure 7.5: (a) Real-time load monitoring data of component No. 10; (b) Prediction of future
loading based on available data

7.5.3.2 Inference of EIFS

Following the Bayesian method presented in Section 7.4.1, the likelihood function of

EIFS is constructed incorporating the three types of inspection results (crack is not detected,
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Figure 7.6: Continuous updating of ARIMA model weights and ARIMA model coefficient ϕ1

crack is detected but not measured, and crack is detected and measured). The prior and

updated distributions of EIFS are shown in Fig. 7.7. Recall that the crack inspection data are

generated from an assumed EIFS distribution (Gaussian, with mean µ = 0.38 and standard

deviation σ = 0.03). It is observed that the updated distribution of EIFS using inspection

data is close to the generating distribution.
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Figure 7.7: Prior and posterior PDF of EIFS
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7.5.4 Prognosis for components in a fleet

Four different scenarios of prognosis are possible for the 20 inspected components described

in Section 7.5.3, and other components in the fleet without any inspection, as discussed

in Section 7.4.2. Component numbers 10, 14 and 12 are selected as examples of Scenarios

1, 2 and 3, respectively. The prognosis in Scenario 4 is for components without any crack

inspection or load monitoring, and hence is not associated with any of the 20 inspected

components. Prognostic results for all four scenarios are shown in Figs. 7.8(a)-(d). It can be

observed from the results that the uncertainty in the prognosis of the four scenarios decreases

significantly after inspection. Among the four scenarios, uncertainty in the prognosis of

Scenario 1 is the smallest while the prognosis of Scenario 4 has the largest scatter, as expected.

This indicates that the load monitoring and crack inspection for an individual component

significantly reduce the uncertainty in the prognosis for this component.

7.5.5 Validation of prognosis results

Once new inspection data are available, the prognosis can be validated using Bayesian

hypothesis testing as discussed in Section 7.4.3. In this example, it is assumed that 5 of the 20

components considered in Section 7.5.3 (component No. 10, 11, 12, 13, and 14) are detected

again for crack after 5,000 cycles of operation, and the sizes of cracks on component No. 10

and 14 are measured. These new inspection data are used for validation. Since the crack sizes

are measured for components 10 and 14, the prognoses in the Scenario 1 (for component No.

10) and the Scenario 2 (for component No. 14) are validated using the measured crack size

of the corresponding components, while the prognoses in the Scenario 3 and 4 are validated

using the inspection data of all the five components. The calculated Bayes factors and the

confidence metrics are shown in Table 7.3. The prognoses are well supported by the data as

the Bayes factors are all larger than 1, and the high values of confidence metric (B/B + 1)

indicates that we have high confidence in the prognosis.
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Figure 7.8: Results for the four scenarios of prognosis

Table 7.3: Bayes factor and confidence assessment

Scenario Component # Bayes factor Confidence metric

1 No. 10 15.1 0.94
2 No. 14 7.30 0.88
3 No. 12 45.7 0.98
4 - 41.3 0.98

7.6 Conclusion

This chapter developed a probabilistic framework to integrate fatigue damage prognosis

(FDP) of mechanical components with structural health monitoring (SHM) data, accounting
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for various sources of uncertainty and error. Efficient crack growth analysis for components

with realistic geometry and multi-axial variable amplitude loading was presented using a GP

surrogate model. The concept of EIFS was used to bypass micro-crack growth analysis. The

uncertainty and errors related to the prognosis were classified into three categories: physical

variability, data uncertainty and model uncertainty/errors, and these uncertainty sources

are connected through a Bayesian network. A global sensitivity analysis was performed to

evaluate the significance of these uncertainty sources.

The real-time load monitoring data were used to characterize and predict loading sequence

using the ARIMA model-based approach. The crack inspection data were used to update

the distribution of EIFS used in crack growth calculation. According to the availability

of the real-time load monitoring data and on-ground crack inspection data, four different

scenarios of prognosis were considered for a fleet of components, and appropriate strategies

were developed for each scenario. The prognosis results were validated using a Bayesian

hypothesis testing method.
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CHAPTER VIII

SUMMARY AND FUTURE WORK

The overall goal of this research is to develop a rigorous probabilistic framework to quantify

the uncertainty in reliability prediction for practical engineering applications. This target is

approached by carrying out studies regarding the state-of-the-art uncertainty quantification

and propagation techniques, with Bayesian network as the platform that integrates various

sources of information. The accomplishment of this dissertation and some potential future

work are outlined below.

Bayesian model calibration In Chapter III, methods were developed to address three

challenging issues regarding Bayesian model calibration: (1) formulation and selection of

model discrepancy to account for model form uncertainty, (2) detection of model parameter

identifiability, and (3) development of calibration strategy for multi-physics system.

First, Bayesian calibration with various prior formulations of the model discrepancy

function (δ) was studied, and numerical examples suggest that different choices of formulation

can result in significantly different calibration results. If the formulation of δ is over-simplified,

the estimation of physical parameters may be biased. However, if the formulation of δ is

complicated but fails to cover all the missing physics, the resulting calibrated model may

be outperformed by models calibrated using simpler formulation of δ outside the calibration

domain. In order to help the analyst formulate and select the model discrepancy function, a

three-step approach was developed using a reliability-based model validation metric and the

total probability theorem. This approach provides an assessment of calibrated models using

different options of δ, and it is capable of combining the posterior probability distributions of

model parameters and δ resulting from the various options of δ into a single distribution,

which is useful especially when the various options of δ have similar performances.
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Second, a first-order Taylor series expansion-based method was developed to detect

structural non-identifiability for models without analytical expressions, and detect practical

non-identifiability due to insufficient amount of data. This method does not require the

computation of likelihood function, and thus is simpler to implement and less computationally

demanding. As pointed out in Section 3.3, the limitations of this method include: (1) it uses

a linear approximation of the model, and hence may fail to detect non-identifiability if the

model is highly nonlinear; (2) it can only detect local non-identifiability as the Taylor series

expansion is constructed based on the derivatives at a single point; (3) it does not apply to

statistical models; and (4) it does not cover practical non-identifiability due to the quality of

data.

Third, a Bayesian network-based approach was proposed in order to develop insights into

the calibration of a multi-physics system. We showed by using a Bayesian network that

multiple options of calibration exist when various physics models are connected via common

parameters, and more efficient calibration may be achieved with sequential calibration

strategies. Preliminary study has been perform to the calibration of two physics-based models

using data collected from two types of MEMS devices, as showed in Section 5.3.

Future research efforts may include: (1) examining more options of model discrepancy,

and investigating the extrapolation capability of model discrepancy to higher level of system

hierarchy, (2) extending the first-order Taylor series expansion-based method to models

containing hyperparameters (e.g., when the model discrepancy is approximated using a

Gaussian process, the coefficients of the covariance function need to be taken into account),

and (3) searching for an optimal calibration strategy for systems with more complicated

structures (e.g., multi-scale, multi-level).

Quantitative model validation Chapter IV was devoted to four issues existing in quan-

titative model validation methods: (1) validation with fully characterized, partially charac-

terized, or uncharacterized experimental data; (2) validation of constant vs. stochastic model
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predictions; (3) accounting for the existence of directional bias; and (4) interpretation and

selection of thresholds in different validation metrics.

The above issues were examined with various quantitative validation methods, including

classical hypothesis testing, Bayesian hypothesis testing, a reliability-based method, and an

area metric-based method.

The applicability of the various validation methods to the cases when validation data are

collected from fully characterized, partially characterized, or uncharacterized experiments were

discussed. Two hypotheses were developed for Bayesian hypothesis testing for validation with

uncharacterized experimental data: (1) interval hypothesis on the distribution parameters of

model prediction, which accesses the accuracy of the predicted mean and standard deviation

from a model, taking into account the existence of directional bias, and (2) equality hypothesis

on the entire PDF of model prediction. We showed that these two formulations of Bayesian

hypothesis testing can be used in the case when multiple validation points are available.

We also showed that under some conditions, the p-value in the z-test or t-test can be

mathematically related to the Bayes factor and the reliability-based metric.

It was observed that the area metric in the transformed probability space (u-space) is

sensitive to the direction of bias between model predictions and experimental data, and so

are the Bayesian interval hypothsis testing-based method and the reliability-based method.

Thus, these three methods can be used to detect the existence of the directional bias.

Future research efforts may include (1) investigating the case when the available validation

data is a mixture of fully characterized, partially characterized, and uncharacterized, and

(2) incorporation of the Bayesian model validation result and reliability-based metric in

long-term failure and reliability analysis of engineering systems, which explicitly accounts for

model uncertainty [Sankararaman, 2012].

Multi-physics system reliability prediction In Chapter V, the procedure of integrating

various sources of uncertainty and information across multiple levels and physics based on
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Bayesian networks was systematically demonstrated. Model calibration and model validation

techniques developed in previous chapters were applied to quantify the uncertainty at

different levels of the system, including uncertainty in model parameters and model form,

and uncertainty in the predictive capability of the calibrated models. Efficient surrogate

models were constructed to replace expensive physics-based dynamic simulations. Considering

dielectric charging as the failure mechanism, the reliability of the target MEMS device was

computed with the pull-in and pull-out voltage as the performance metrics.

Future work may include: (1) considering system reliability applications with multiple

failure mechanisms, (2) exploring the inverse reliability problems for the multi-physics system,

including resource allocation and optimal design, (3) performing rigorous surrogate model

verification in order to justify the use of the surrogate models in reliability prediction, and (4)

quantifying the uncertainty due to extrapolation from the calibration and validation domain

to prediction domain.

Quantifying uncertainty in time-varying input using monitoring data Chapter VI

investigated three different methods, namely rainflow counting, Markov chain method, and

ARIMA model method, to characterize and reconstruct the fatigue load history using real-

time monitoring data. The ARIMA method was extended through random parameters and

probabilistic weights to accommodate the inherent variability in loading, the uncertainty

due to sparse data, and the uncertainty in model selection. A continuous model updating

approach with real-time monitoring data was developed, including direct updating of the

characteristic matrices for the rainflow counting method and the Markov chain method,

and a Bayesian updating approach for the ARIMA model method. The relation between

prediction accuracy and updating interval was investigated quantitatively. We showed

that the continuous updating approach can help the ARIMA model method to capture the

time-variant feature of fatigue loading and also reduce the uncertainty in prediction due to

limited data. A Bayesian hypothesis testing-based method was used to assess the predictive
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confidence of the three methods discussed. It is shown in the numerical example that all

the three methods with the continuous updating approach perform comparably well, as the

Bayes factor values are larger than unity at most of the time points. The overall confidence

metric suggests that the prediction of the ARIMA method has the best support from load

amplitude data in the numerical example presented.

The methods developed for fatigue loading prediction in this dissertation are particularly

suitable for a single component under continuous monitoring, i.e., the load model is updated

based on observed load history data. The future work of interest is to generate fleet-level

loading predictions based on monitoring of several components under service, incorporating

information in multiple load histories from these 1components.

Inclusion of health monitoring data in reliability analysis Chapter VII developed a

probabilistic framework to integrate failure probability prediction of mechanical components

under fatigue load with structural health monitoring (SHM) data. The framework facilitates

a more informative and robust estimation of remaining useful life for mechanical components.

Two features - the use of a surrogate model to significantly reduce the computational effort,

and the quantification of uncertainty and confidence in prognosis - make it possible to explore

online health assessment and decision making under uncertainty during a mission, regarding

flight maneuvers based on the current state of health of the aircraft.

The proposed framework was illustrated with linear elastic fracture mechanics-based crack

growth prognosis, assuming planar crack growth. Various sources of uncertainty and error,

including natural variability, data uncertainty and model uncertainty/errors, were considered

in the fatigue prognosis application. These uncertainty sources were connected through a

Bayesian network, and the Sobol index-based global sensitivity analysis was performed to

evaluate the significance of these uncertainty sources. A GP surrogate model was developed

to expedite crack growth analysis for components with realistic geometry and multi-axial

variable amplitude loading.
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Two types of SHM data were considered: (1) real-time load monitoring data, which were

used to characterize and predict loading sequence using the ARIMA model-based approach,

and (2) on-ground crack inspection data, which were used to update the distribution of

equivalent initial crack size. According to the availability of the real-time load monitoring

data and on-ground crack inspection data, four different scenarios of prognosis were identified

for a fleet of mechanical components, and appropriate strategies were developed for each

scenario. The Bayesian hypothesis testing-based method was used to validate the prognosis

results.

Future efforts may incorporate advanced material models and crack growth models that

consider plastic deformation, and more realistic 3-D non-planar crack growth based on

advanced surrogate modeling techniques developed in [Hombal et al., 2012; Hombal and

Mahadevan, 2013b]. Future efforts may also investigate risk management decision-making

based on the integration of diagnosis and prognosis.

Concluding remarks This dissertation has focused on the quantification and inclusion of

model uncertainty in time-dependent reliability analysis, while also accounting for natural

variability and data uncertainty. Although the state-of-the-art UQ methods often work

well with simple mathematical problems, many interesting yet challenging issues have been

identified in more realistic and complicated applications, as summarized in this chapter. The

biggest challenge in a practical application may be the lack of experimental data at the

device/system level, which are needed in the UQ framework proposed in this dissertation

to assess the quality of the reliability prediction. Development of UQ methods to quantify

the confidence in system-level prediction via information fusion from multiple sources in

heterogeneous formats and multiple levels of fidelity will be of high value to the decision

makers.
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